

Backend Server System Design Based on REST API
for Cashless Payment System on Retail Community

Abstract— Backend is logical space with functional and
operations from software applications or information system. One
of its implementations is cashless system. The increasing of
cashless and electronic payment, and then retail community which
not implement it, they must have electronic data capture especially
to fullify cashless technology. Through this study we build a
system cashless technology as backend server based on REST API.
this system can handle some backend process such as top up, and
then all of its feature will served in one system which can be
accessed from any software platform. In this study, already build
data protocol which can be accessed by client application (front-
end), backend service with login system, register, withdraw, top-
up balance with virtual account, top-up from administrator, top-
up with bank account, transactions between users, balance
information, transaction log, logout and database configuration
itself. The backend system is tested for its robustness with 100 API
requests carried out in 1 second. The success rate for the entire
system is 76.92% of the 13 features offered. Transaction features
have a 45% success rate for the process of reducing buyer balance,
a 65% success rate for the process of adding seller balance. The
top up balance feature reaches 72% and for the withdraw feature
has a success rate of 77%.

Keywords— Backend Server, cashless, REST API.

I. INTRODUCTION

The development of information technology in the
current era has experienced a lot of progress. The
development of web technology tends to be divided into 3
main concentrations, one of which is the backend. Back-end
refers to programs and scripts that work on servers behind the
scenes. So, back-end can be interpreted as a container of the
core functional logic and operation of software applications
or information systems. The backend system ensures that the
data or services requested and sent by the front-end system or
application are delivered through programmed methods.
Back-end consists of core application logic, database, data
integration and application, API and other back-end
processes. The implementation of back-end technology
which, is often used is in cashless payments.

Cashless payment is a payment system without
money (paper or metal). The special tools are needed to make
a cashless payment, one of them is Electronic Data Capture
(EDC). EDC is an electronic machine used on debit or credit
cards to conduct cashless payment. EDC has terms and
conditions that are divided into several groups, including
individuals, business entities and foundations [1]. Where
some retail communities cannot always meet these
requirements. Therefore, a system is needed to help

consumers and the retail community in conducting cashless
payment.

With these problems, it is filled in the concept of
inter-communal cashless payment in a small-scale place-
based community such as schools or institutions, from the
concept also explains the importance of local communities
and institutions to need data where the data is transaction data
and consumer behavior. Because the cashless payment
system generally has, a centralized system and local
communities or institutions do not necessarily know the data
from consumers and transaction behavior. Furthermore, with
this concept, the community can apply money transactions
and turnover to only one community and turn on transactions
between citizens from one community, such as schools or
institutions.

In this study, a cashless payment system will be
created in the form of a REST API-based backend server. In
the non-cash transaction system that created, it can handle the
process in the form of payments, top up balances and
transaction logs, and then all these features will be packaged
in a single system that can be accessed by various soft
platform platforms. The data communication method used is
HTTP Request using the REST API, where this method is
widely used for application development because it can be
used by many programming languages and many platforms.

This paper discussed the server and API for the
cashless payment system. Section 1 discussing about
introduction of cashless payment. Section 2 discussing the
related works. Section 3 discussing about system design.
Section 4 discusses the experimental result, and the last
section is discussing about the conclusion.

II. RELATED WORKS

A. Cashless Payment Design

According to research conducted by T. Ma, H. Zhang
(2015), entitled "The Design and Implementation of an
Innovative Mobile Payment System Based on QR Bar Code
[2]. In this research, infrastructure was describe as one way to
implement the non-cash payment system.

The system in question is an interface with an online client
application, a wireless network with servers, a server that
supports cellular payment processes based on QR codes, then
a database, storage, maintenance, and account handling. The
scheme of the payment system by involving buyers, sellers,
and payment system servers.

1st Bob Maulana Adam
Department of Informatics and

Computer Engineering
Politeknik Elektronika Negeri Surabaya

Surabaya, Indonesia
bobmaulanaadam8@gmail.com

2nd Adnan Rachmat Anom Besari
Department of Informatics and

Computer Engineering
Politeknik Elektronika Negeri Surabaya

Surabaya, Indonesia
anom@pens.ac.id

3rd Mochamad Mobed Bachtiar
Department of Informatics and

Computer Engineering
Politeknik Elektronika Negeri Surabaya

Surabaya, Indonesia
mobed@pens.ac.id

208

2019 International Electronics Symposium (IES)

978-1-7281-4449-8/19/$31.00 ©2019 IEEE

B. Server Based on REST API

Research conducted by X. H. Huang with the title "A
Token-Based User Authentication Mechanism for Data
Exchange in RESTful API" [3]. This study discussed the use
of RESTful API. REST is not a standard but a software
architecture design pattern. REST is a practical approach to
web application development where systems in development
need to be improved or need simple ways to interact with
independent systems. REST is stateless and data-oriented,
everything in the REST architecture is data. Each request is
independent, the server does not store any request status. An
Application Programming Interface (API) that follows the
REST Style is called a RESTful API. RESTful API uses a
Uniform Resource Identifier (URI) to represent data. For
operations on data, the GET method is used to obtain data, The
POST method is used to create new data, The PUT method is
used to update data with the resource id, and the DELETE
method is used to delete data or data sets [4].

III. SYSTEM DESIGN

System design is the stage after analysis of the system
development cycle. Defining the needs of functional
requirements and preparation for design and implementation
describes how a system is formed. The aim is to meet the
needs of system users and provide a clear picture and complete
design to developers and readers. The process for server and
API for the cashless payment system shown in Fig 1.

Data
Protocol Backend

Database

API Bank

Notification

Data

Apps

REST
REST

JSON

Socket

Fig 1. System Design

In this system design, it show that the backend server that
created is a server to process the data received from the client
application and send the results to the client application. There
is a logical process from the non-cash payment system. The
system accepts input from the front-end section or can be
called an application. Then after input is processed and
processed on the back end such as a list of accounts, account
logins, payment transactions, API Bank access to request Top
Up transfer codes, replies from API Bank in the form of
transfer code and so on connection with database to store all
logs and data in the payment system.

A. Data Protocol

The data protocol is a rule that defines functions that exist
on the server and must be fulfilled by the client application to
be able to use the function. The protocol is to design a Uniform
Resource Identifier (URI) from the API along with the REST
method in accessing the API [5]. When the server is active, it
will run on the IP provided by the server system. The server
used is a Virtual Private Server (VPS) and in this design is
given a domain ezpy.advlop.com, which will facilitate the
form of the URI and then the domain will connect to the server
IP. The examples from the data protocol shown in Table 1.

TABLE I. PROTOCOL DATA

Login
Method : POST
URI : http://ezpy.advlop.com/api/v1/user/loginApi

Body
(JSON
Object) :

{
 "email": "<email>",
 "password": "<pass>"
}

Response
(JSON)

{
 "success": "Berhasil Login",
 "token": "<jwt_token>",
 "Nama": "<nama>",
 "Role": "<angka>"
}

B. Database

Designing data storage is an important part of designing a
server system [6]. To design a server on an application, a list
needed as shown in the following Fig 2.

Fig 2. Collections Database Server on MongoDB

From the list of collections database servers, then each
document model of the collections is as follows:
1. Charge

Charge is a collection for storing documents from
bank transfer billing responses with a virtual account for
each user account.

2. Notification
Notification are collections for storing notification

documents of successful transactions and top up balances
of each user account

3. Balance
Balances are collections for storing balance

documents from each user account.

209

4. Top up
Top up are collections for storing top up virtual

account notification documents from payment service
providers, top up balances with bank transfer manual
validation and top up balances in the admin for each user
account.

5. Transactions
Transactions are collections for storing transaction

logs from each user account.
6. User

Users are collections for storing user account data
from each user.

C. Backend Design

When the data protocol is accessed or requested by the
client application, the API (data protocol) that is accessed will
be routing, in this section there are two path options, namely
the API path and the Display path (view), this API path is used
to access the features of the server , then for the display path
used to access the display in the form of a web page from the
server for the admin section. There is an outline of the
workflow to explain the flow of input is routing, and produce
an output that matches the input shown in Fig 3.

Start

Protocol
Data

Routing

API View

1 2

Fig 3. Routing path

 After passing through the routing path, then next is routing
to the features or API that is own, routing for each API shown
in Fig 4.

Routing

Register Log in Balance Transaction
Top Up
Balance

Logout

A1 B1 F1C1 D1 E1

Cash Flow

G1

1

Notification

H1

Fig 4. Routing API

After routing, the next process is enter the controller that is
needed. In the process according to the API call (data
protocol) requested, after the process is complete, there is
output data according to the requested API in the form of
JSON. However, several systems are carried out first to check
tokens carried by clients when accessing data protocols. The
token is obtained when the API login is successfully accessed.
In figure 5, is the verification section of the token, the system
will check the token received and verified whether it is
appropriate or not. The token is checked whether it matches

the key of the system and whether the token is still active
because when making tokens the active period of the token is
given, after that it can use the requested system API. The token
used here is from JSON Web Token (JWT) [7]. Figure 5 is the
token check code line. There are other parts of the backend
server system is create a new account, login, balance,
transaction, withdraw, top up admin, top up virtual account,
transfer bank account, log top up, log notification, cash flow,
logout.

Start

Header Bearer +token

Check Tokens

Matching Invalid Token

Finish

No

Yes

Route used API

Expired Token Expired
Yes

No

Fig 5. Token Checking

D. Connect to API Bank

Fig 6 is the flow of top up requests through the API Bank
at the back end:

Request for transfer to
API Bank

Transfer Code
Response

Save Input Data and Transfer Code

Transfer Code Response
for Users

Finish

Token
Matching

No

Yes

Token doesn’t
match / Expired

E1

Fig 6. Flow of Top Up requests on API Bank

The buyer's user first gives the desired number of top up,
then the system checks the token from the user, when
appropriate, and then proceed to the top up the process and

210

when it does not match until its finished. Then when it
matches the token, then the user top up requests according to
the data format and protocol data needed by the API Bank,
then the system will get a virtual account number reply that
will be forwarded to the buyer's user and save it to the
database.

After the buyer user transfers via ATM with the given
virtual account number, the back end receives a reply in the
form of POST Notification from the payment gateway
MIDTRANS server when the transfer has been completed.
Fig 7 is the flow of API Bank replies to the back end.

Start

Success Transfer Information

Status checking according to input on
transfer information

Nominal Addition of Balance
according to ID

Making Top Up and
Notification Reports

Top Up Notification
Completed according to ID

Finish

Fig 7. Top Up Flow Successful on Bank API

The data is compared with top up request data according
to the user ID requesting top up to differentiate from top up
requests with other users. Then after comparison, the addition
of the nominal balance according to the user ID top up and
the making of top up reports and at the same time save the
database.

There is a database of top up information in the form of
notifications by storing it in the notification collection and
then giving the bank top-up notification successfully to the
buyer's account via socket.io.

IV. EXPERIMENTAL SETUP

System testing is done by running a program on a Virtual
Private Server (VPS) with certain specifications. The VPS
specifications, operating systems [8], and programming tools
for this testing process are those mentioned in Table 2

TABLE II. PROGRAMMING TOOLS

No Description Specification
1 Processor 1 vCPU
2 RAM 1 GB
3 Harddisk 25 GB Disk
4 OS type Ubuntu 16.04.5 64 bit
5 Database MongoDB
6 Framework NodeJS
7 Application Postman, IntelliJ and JMeter

A. Token for security system

Incorrect token testing is done by using an inappropriate
token or several lines of tokens that are tried to delete and
check the token checking system, this test can be done with
the entire backend system that is on the login and user list.
The results issued by the system are invalid signatures in
figure 8.

Fig 8. Incorrect Token

Testing of expired tokens is done by using tokens that
expire from more than 24 hours after being created, this test
can be carried out throughout the existing backend system
except for the login and user list. The results released by the
system are Jwt Expired in figure 9.

Fig 9. The token has expired

B. Top Up Via API BANK

Testing the top up virtual account through a server using
the PUT data protocol http://ezpy.advlop.com/api/v1/charge/
midtrans/<name>/<email>/<nominal_topup>. The process
are required name, email user and nominal that will added to
the balance. The data protocol is accessed and successful, the
system will issue data as in table 3, namely the response
obtained from the MIDTRANS payment gateway server is
one such as the virtual account number (bill key) and
company number (biller code) with the transaction status is
pending, for banks selected in this mode only PT Bank
Mandiri (Persero) Tbk.

TABLE III. TESTING TOP UP VIRTUAL ACCOUNT

Postman Top Up Virtual Account

Method :
URI :

211

Token :

Response
(JSON)

In the payment test, there is a web page from MIDTRANS
to collect top up payments when accessing the API of top up
virtual account, what is needed is a virtual account number
(bill_key) and company number (biller_code) in response to
table 3 then simulating payments by accessing web pages
https://simulator.sandbox.midtrans.com/mandiri/bill/index.

Once paid, the server gets a notification from the link that
has been provided for MIDTRANS in the form of POST
notification with the form of the data protocol is http: // ezpy
.advlop.com/api/v1/notifMidtrans. In figure 10, received
notifications will be stacked on top up database but only need
to require transaction status data responses and stacked
transaction times by relying on virtual account number
searches from top up databases when billing according to the
virtual account numbers received at POST notifications.

Fig 10. Notifications received from Midtrans

It can be seen in Figure 10 for the process that occurs on
the server when receiving notifications from MIDTRANS.
Notifications in figure 11 will appear in the buyer's console
log account that is owned by the client application, in this test
exemplified by a web socket with a web display.

Fig 11. Top up virtual account notifications with Web
Socket

Changes the transaction status to be paid or "settlement"
then there is a process of adding balance according to the user
who made the top up a virtual account.

C. Testing for robustness in data traffic

In this test, the endurance test is carried out on the server,
the tests performed are API requests by many users in time, so
that the system can be seen as resilient in dealing with data
traffic that can change over time. Tests are carried out on each
backend system. This test is done by using a third-party
application, namely Jmeter and done on a Virtual Private
Server (VPS). JMeter is a Java-based open-source application
that can be used for performance tests [9]. For a QA JMeter
Engineer can be used to load/stress testing Web Application,
FTP Application, and Database server tests.

In this test, the system will be accessed by 100 users done
in 1 second [10][11]. Table IV are the test results:

TABLE IV. TESTING ALL SYSTEM

Name
Success

Rate
Latency

(ms)

Connect
Time
(ms)

Load
Time
(ms)

Sign Up 100 % 5188,1 5,6 5188,2

Login 100 % 5238,12 41,45 5238,2

Balance 100 % 71,81 5,94 71,87

Transaction

Buyer
45%

Seller
46%

339,93 59,7 340,12

Top Up 72 % 891,41 16,01 891,43

Log
Transaction 100 % 1275,55 9,99 1746,7

VA Charge 100 % 1196,09 9,66 1196,1

Transfer
Bank

Charge
100 % 77,26 6,77 77,28

Log Top
Up 100 % 1645,58 47,49 7169,8

Log
Notification 100 % 837,27 6,03 1292,1

Withdraw 77 % 84,07 5,64 84,11

Cash Flow 100 % 837,27 6,03 1292,1

Logout 100 % 759,59 297,3 756,68

V. CONCLUSION

The backend system which designed in this paper involves
account management systems such as login, register and
logout. Beside that is balance system, admin top-up
information, log notification, account transfer and cash flow
report. The protocol designed using REST architecture with
HTTP Request there are GET, POST and PUT and also
involved security system with JWT token. The result of this
research are backend testing with its robustness on 100 API
request carried out in 1 second with success rate for the entire
system is 76.92% of the 13 features offered. Transaction
features have a 45% success rate for the process of reducing

212

buyer balance, a 46% success rate for the process of adding
seller balance. The top-up balance feature reaches 72% and
for the withdraw feature has a success rate of 77%.

Based on the results of the research as far as the author did,
some things must be added for further development is the
server specifications, it needs to be improved for the processor
and memory so that all requests that enter the server can be
processed by the system. After that, change the data update
method in the database to support the success of the data
processing system. After that, additional permission from the
MIDTRANS payment gateway is needed to be able to use real
money transactions.

REFERENCES
[1] “EDCBCA”,HTTPs://www.bca.co.id/id/Bisnis/Produk-dan-

Layanan/E-Banking/edc, Accessed on 2 July 2018.

[2] T. Ma, H. Zhang, J. Qian, X. Hu and Y. Tian, "The Design and
Implementation of an Innovative Mobile Payment System Based on
QR Bar Code," 2015 International Conference on Network and
Information Systems for Computers, Wuhan, 2015, pp. 435-440.

[3] Xiang-Wen Huang, Chin-Yun Hsieh, Cheng Hao Wu and Yu Chin
Cheng, "A Token-Based User Authentication Mechanism for Data
Exchange in RESTful API," 2015 18th International Conference on
Network-Based Information Systems, Taipei, 2015, pp. 601-606.

[4] Z. Niu, C. Yang and Y. Zhang, "A design of cross-terminal web system
based on JSON and REST," 2014 IEEE 5th International Conference

on Software Engineering and Service Science, Beijing, 2014, pp. 904-
907.

[5] A. Agocs and J. L. Goff, "A web service based on RESTful API and
JSON Schema/JSON Meta Schema to construct knowledge graphs,"
2018 International Conference on Computer, Information and
Telecommunication Systems (CITS), Colmar, 2018, pp. 1-5.

[6] D. Ramesh, E. Khosla and S. N. Bhukya, "Inclusion of e-commerce
workflow with NoSQL DBMS: MongoDB document store," 2016
IEEE International Conference on Computational Intelligence and
Computing Research (ICCIC), Chennai, 2016, pp. 1-5.

[7] M. Haekal and Eliyani, "Token-based authentication using JSON Web
Token on SIKASIR RESTful Web Service," 2016 International
Conference on Informatics and Computing (ICIC), Mataram, 2016, pp.
175-179.

[8] A.J. Poulter, S.J. johnston and S. J. Cox, “Using the MEAN stack to
implement a RESTful service for an Internet of Things application,”
2015 IEEE 2nd Forum on Internet of Things (WF-IoT), Milan, 2015,
pp.

[9] S. Kiran, A. Mohapatra and R. Swamy, "Experiences in performance
testing of web applications with Unified Authentication platform using
Jmeter," 2015 International Symposium on Technology Management
and Emerging Technologies (ISTMET), Langkawai Island, 2015, pp.
74-78.

[10] I.Y. Andhica and D. Irwan, “Performa Kinerja Web Server Berbasis
Ubuntu Linux Dan Turnkey Linux” 2017 Jurnal Penelitian Ilmu
Komputer, Sistem Embedded & Logic 5(2) : 68-78 (2017)

[11] Dani, Rahmad & Suryawan, Fajar. (2017). Perancangan dan Pengujian
Load Balancing dan Failover Menggunakan NginX. Khazanah
Informatika: Jurnal Ilmu Komputer dan Informatika. 3. 43.
10.23917/khif.v3i1.2939.

213

