
12/11/2017

1

Graph

Terminologi Graph

• A graph consists of a set of vertices V, along 

with a set of edges E that connect pairs of 

vertices.

– An edge e = (vi,vj) connects vertices vi and vj.

– A self-loop is an edge that connects a vertex to 

itself. We assume that none of our graphs have 

self-loops.

© 2005 Pearson Education, Inc., Upper 

Saddle River, NJ.  All rights reserved. 

Vertices = {v1, v2, v3, …, vm}

Edges =    {e1, e2, e3,  …, en}



12/11/2017

2

Graph Terminology (continued)

© 2005 Pearson Education, Inc., Upper 

Saddle River, NJ.  All rights reserved. 

Graph Terminology (continued)

• The degree of a vertex is the number of edges 

originating at the vertex.

• Two vertices in a graph are adjacent

(neighbors) if there is an edge connecting the 

vertices.

• A path between vertices v and w is a series of 

edges leading from v to w. The path length is 

the number of edges in the path. 

© 2005 Pearson Education, Inc., Upper 

Saddle River, NJ.  All rights reserved. 



12/11/2017

3

Graph Terminology (continued)

• A path is simple if all its edges are distinct. A 

cycle is a simple path that starts and ends on 

the same vertex.

• A graph is connected if there is a path 

between any pair of distinct vertices.

• A complete graph is a connected graph in 

which each pair of vertices is linked by an 

edge.

© 2005 Pearson Education, Inc., Upper 

Saddle River, NJ.  All rights reserved. 

Graph Terminology (continued)

© 2005 Pearson Education, Inc., Upper 

Saddle River, NJ.  All rights reserved. 



12/11/2017

4

Graph Terminology (continued)

• A graph described until now is termed an 

undirected graph. Movement between 

vertices can occur in either direction.

• In a digraph, edges have  a direction. There 

might be an edge from v  to w but no edge 

from  w to v.

© 2005 Pearson Education, Inc., Upper 

Saddle River, NJ.  All rights reserved. 

Graph Terminology (continued)

© 2005 Pearson Education, Inc., Upper 

Saddle River, NJ.  All rights reserved. 



12/11/2017

5

Graph Terminology (continued)

• In a digraph, a directed path (path) connecting 

vertices vs and ve is a sequence of directed 

edges that begin at vs and end at ve.

• The number of the edges that emanate from a 

vertex v is called the out-degree of the vertex.

• The number of the edges that terminate in 

vertex v is the in-degree of the vertex.

© 2005 Pearson Education, Inc., Upper 

Saddle River, NJ.  All rights reserved. 

Graph Terminology (continued)

• A digraph is strongly connected if there is a 

path from any vertex to any other vertex.

• The digraph is weakly connected if, for each 

pair of vertices vi and vj, there is either a path 

P(vi, vj) or a path P(vj,vi).

© 2005 Pearson Education, Inc., Upper 

Saddle River, NJ.  All rights reserved. 



12/11/2017

6

Graph Terminology (continued)

© 2005 Pearson Education, Inc., Upper 

Saddle River, NJ.  All rights reserved. 

Graph Terminology (concluded)

• An acyclic graph has no cycles.

• Each edge in  a weighted digraph, has a cost 

associated with traversing the edge. 

© 2005 Pearson Education, Inc., Upper 

Saddle River, NJ.  All rights reserved. 



12/11/2017

7

Creating and Using Graphs

• The Graph interface specifies all  basic graph 

operations including inserting and erasing 

vertices and edges.

© 2005 Pearson Education, Inc., Upper 

Saddle River, NJ.  All rights reserved. 

Creating and Using Graphs (continued)

© 2005 Pearson Education, Inc., Upper 

Saddle River, NJ.  All rights reserved. 

interface GRAPH<T>            ds.util.Graph  

 Methods 

 boolean addEdge(T v1, T v2, int w) 

If the edge (v1, v2) is not in the graph, adds the edge with 

weight w and returns true. Returns false if the edge is already in 

the graph. If v1 or v2 is not a vertex in 

the graph, throws IllegalArgumentException. 

 boolean addVertex(T v) 

If v is not in the graph, adds it to the graph and returns true; 

otherwise, returns false. 

 void clear() 

Removes all of the vertices and edges from the graph. 

 



12/11/2017

8

Creating and Using Graphs 

(continued)

© 2005 Pearson Education, Inc., Upper 

Saddle River, NJ.  All rights reserved. 

interface GRAPH<T>              ds.util.Graph  

 Methods (continued) 

 boolean containsEdge(T v1, T v2) 

Returns true if there is an edge from v1 to v2 and returns false 

otherwise. If v1 or v2 is not a vertex in the graph, throws 

IllegalArgumentException. 

 boolean containsVertex(Object v) 

 Returns true if v is a vertex in the graph and false otherwise. 

 Set<T> getNeighbors(T v) 

Returns the vertices that are adjacent to vertex v in a Set object. If v is 

not a graph vertex, throws IllegalArgumentException. 

 

Creating and Using Graphs (continued)

© 2005 Pearson Education, Inc., Upper 

Saddle River, NJ.  All rights reserved. 

interface GRAPH<T>              ds.util.Graph  

 Methods (continued) 

 int getWeight(T v1, T v2) 

Returns the weight of the edge connecting vertex v1 to v2. If the edge 

(v1,v2) does not exist, return -1. If v1 or v2 is not a vertex in the 

graph, throws IllegalArgumentException. 

boolean isEmpty() 

Returns true if the graph has no vertices or edges and false otherwise. 

int numberOfEdges() 

Returns the number of edges in the graph. 

 



12/11/2017

9

Creating and Using Graphs (continued)

© 2005 Pearson Education, Inc., Upper 

Saddle River, NJ.  All rights reserved. 

interface GRAPH<T>              ds.util.Graph  

 Methods (continued) 

int numberOfVertices() 
Returns the number of vertices in the graph. 

boolean removeEdge(T v1, T v2) 

If (v1,v2) is an edge, removes the edge and returns true; otherwise, 

returns false. If v1 or v2 is not a vertex in the graph, throws 

IllegalArgumentException. 

boolean removeVertex(Object v) 

If v is a vertex in the graph, removes it from the graph and returns 

true; otherwise, returns false. 

 

Creating and Using Graphs 

(continued)

© 2005 Pearson Education, Inc., Upper 

Saddle River, NJ.  All rights reserved. 

interface GRAPH<T>              ds.util.Graph  

 Methods (continued) 

int setWeight(T v1, T v2, int w) 

If edge (v1, v2) is in the graph, update the weight of the edge and 

return the previous weight; otherwise, return -1. If v1 or v2 is not a 

vertex in the graph, throws IllegalArgumentException. 

Set<T> vertexSet() 

Returns a set-view of the vertices in the graph. 

 



12/11/2017

10

Creating and Using Graphs (continued)

© 2005 Pearson Education, Inc., Upper 

Saddle River, NJ.  All rights reserved. 

The DiGraph Class

• The DiGraph class implements the Graph 

interface and adds other methods that are 

useful in applications.

– A constructor creates an empty graph.

– The methods inDegree() and outDegree() are 

special methods that access a properties that are 

unique to a digraph.

– The static method readGraph() builds a graph 

whose vertices are strings.

© 2005 Pearson Education, Inc., Upper 

Saddle River, NJ.  All rights reserved. 



12/11/2017

11

The DiGraph Class (continued)

• DiGraph method readGraph() inputs the 

vertex values and the edges from a textfile.

– File format:

© 2005 Pearson Education, Inc., Upper 

Saddle River, NJ.  All rights reserved. 

(Number of Edges n)

Source1 Destination1 Weight1
Source2 Destination2 Weight2
. . .

Sourcen Destinationn Weightn

The DiGraph Class (continued)

• The method toString() provides a 

representation of a graph. For each vertex, the 

string gives the list of adjacent vertices along 

with the weight for the corresponding edge. 

The information for each vertex also includes 

its in-degree and out-degree.

© 2005 Pearson Education, Inc., Upper 

Saddle River, NJ.  All rights reserved. 



12/11/2017

12

The DiGraph Class (continued)

© 2005 Pearson Education, Inc., Upper 

Saddle River, NJ.  All rights reserved. 

File samplegraph.dat

5 // data for the vertices

A B C D E

6 // data for the edges

A B 3

A C 2

B C 6

C B 4

C D 1

E B 5 

// input vertices, edges, and weights from samplegraph.dat

DiGraph g = DiGraph.readGraph("samplegraph.dat");

// display the graph

System.out.println(g) 

The DiGraph Class (continued)

© 2005 Pearson Education, Inc., Upper 

Saddle River, NJ.  All rights reserved. 

Output:

A:  in-degree 0  out-degree 2

Edges: B(3)  C(2)  

B:  in-degree 3  out-degree 1

Edges: C(6)  

C:  in-degree 2  out-degree 2

Edges: B(4)  D(1)  

D:  in-degree 1  out-degree 0

Edges: 

E:  in-degree 0  out-degree 1

Edges: B(5) 



12/11/2017

13

Program 24.1

© 2005 Pearson Education, Inc., Upper 

Saddle River, NJ.  All rights reserved. 

© 2005 Pearson Education, Inc., Upper 

Saddle River, NJ.  All rights reserved. 

Program 24.1 (continued)
import java.io.FileNotFoundException;

import ds.util.Set;

import ds.util.Iterator;

import ds.util.DiGraph;

public class Program24_1

{

public static void main(String[] args)

throws FileNotFoundException

{

// construct graph with vertices of type

// String by reading from the file "graphIO.dat"

DiGraph<String> g =

DiGraph.readGraph("graphIO.dat");

String vtxName;

// sets for vertexSet() and adjacent

// vertices (neighbors)

Set<String> vtxSet, neighborSet;



12/11/2017

14

© 2005 Pearson Education, Inc., Upper 

Saddle River, NJ.  All rights reserved. 

Program 24.1 (continued)
// output number of vertices and edges

System.out.println("Number of vertices: " +

g.numberOfVertices());

System.out.println("Number of edges: " +

g.numberOfEdges());

// properties relative to vertex A

System.out.println("inDegree for A: " +

g.inDegree("A"));

System.out.println("outDegree for A: " +

g.outDegree("A"));

System.out.println("Weight e(A,B): " +

g.getWeight("A","B"));

// delete edge with weight 2

g.removeEdge("B", "A");

// delete vertex "E" and edges (E,C),

// (C,E) and (D,E)

g.removeVertex("E");

© 2005 Pearson Education, Inc., Upper 

Saddle River, NJ.  All rights reserved. 

Program 24.1 (continued)
/* add and update attributes of the graph */

// increase weight from 4 to 8

g.setWeight("A","B",8);

// add vertex F

g.addVertex("F");

// add edge (F,D) with weight 3

g.addEdge("F","D",3);

// after all updates, output the graph

// and its properties

System.out.println("After all the graph updates");

System.out.println(g);

// get the vertices as a Set and

// create set iterator

vtxSet = g.vertexSet();

Iterator vtxIter = vtxSet.iterator();



12/11/2017

15

© 2005 Pearson Education, Inc., Upper 

Saddle River, NJ.  All rights reserved. 

Program 24.1 (concluded)

// scan the vertices and display

// the set of neighbors

while(vtxIter.hasNext())

{

vtxName = (String)vtxIter.next();

neighborSet = g.getNeighbors(vtxName);

System.out.println("   Neighbor set for " +

"vertex " + vtxName + " is "

+ neighborSet);

}

}

}


