
12/11/2017

1

Algoritma Traversal Graph

Graph Traversal Algorithms

• In general, graphs do not have a vertex, like a

root, that initiates unique paths to each of the

vertices. From any starting vertex in a graph, it

might not be possible to search all of the

vertices. In addition, a graph could have a

cycle that results in multiple visits to a vertex.

© 2005 Pearson Education, Inc., Upper

Saddle River, NJ. All rights reserved.

12/11/2017

2

Graph Traversal Algorithms

(continued)

• The breadth-first search visits vertices in the

order of their path length from a starting

vertex. It may not visit every vertex of the

graph

• The depth-first search traverses all the vertices

of a graph by making a series of recursive calls

that follow paths through the graph.

© 2005 Pearson Education, Inc., Upper

Saddle River, NJ. All rights reserved.

Graph Traversal Algorithms

(continued)

• Graph algorithms discern the state of a vertex

during the algorithm by using the colors

WHITE, GRAY, and BLACK.

© 2005 Pearson Education, Inc., Upper

Saddle River, NJ. All rights reserved.

12/11/2017

3

Breadth-First Search Algorithm

© 2005 Pearson Education, Inc., Upper

Saddle River, NJ. All rights reserved.

Breadth-First Search Algorithm

(continued)
• Color all vertices of the sample graph WHITE

and push the starting vertex (A) onto the
queue visitQueue.

• Pop A from the queue, color it BLACK, and
insert it into visitList, which is the list of visited
vertices. Push all WHITE neighbors onto the
queue.

© 2005 Pearson Education, Inc., Upper

Saddle River, NJ. All rights reserved.

12/11/2017

4

Breadth-First Search Algorithm

(continued)

• Pop B from the queue and place it in visitList

with color BLACK. The only adjacent vertex for

B is D, which is still colored WHITE. Color D

GRAY and add it to the queue

© 2005 Pearson Education, Inc., Upper

Saddle River, NJ. All rights reserved.

Breadth-First Search Algorithm

(continued)

• Pop C and place it in visitList. The adjacent

vertex G is GRAY. No new vertices enter the

queue.

© 2005 Pearson Education, Inc., Upper

Saddle River, NJ. All rights reserved.

12/11/2017

5

Breadth-First Search Algorithm

(continued)

• Pop vertex G from the queue and place it in

visitList. G has no adjacent vertices, so pop D

from the queue. The neighbors, E and F, enter

the queue.

© 2005 Pearson Education, Inc., Upper

Saddle River, NJ. All rights reserved.

Breadth-First Search Algorithm

(continued)

• Continue in this fashion until the queue is

empty.

© 2005 Pearson Education, Inc., Upper

Saddle River, NJ. All rights reserved.

12/11/2017

6

Implementing Breadth-First Search

• Define

© 2005 Pearson Education, Inc., Upper

Saddle River, NJ. All rights reserved.

public enum VertexColor

{

WHITE, GRAY, BLACK

}

Implementing Breadth-First Search

(continued)

• The DiGraph class declares three methods

that access and update the color attribute of a

vertex.

© 2005 Pearson Education, Inc., Upper

Saddle River, NJ. All rights reserved.

class DiGraph<T> (color methods) ds.util

 void colorWhite()

Set the color in each vertex to WHITE.

 VertexColor getColor(T v)

Returns the color of vertex v. If v is not a graph vertex,

throws IllegalArgumentException.

 VertexColor setColor(T v, VertexColor c)

Sets the color of vertex v and returns the previous color. If

v is not a graph vertex, throws IllegalArgumentException.

12/11/2017

7

Implementing Breadth-First Search

(continued)

• The method bfs() returns a list of vertices

visited during the breadth-first search from a

starting vertex.

© 2005 Pearson Education, Inc., Upper

Saddle River, NJ. All rights reserved.

© 2005 Pearson Education, Inc., Upper

Saddle River, NJ. All rights reserved.

bfs()
// perform the breadth-first traversal

// from sVertex and return the list

// of visited vertices

public static <T> LinkedList<T> bfs(

DiGraph<T> g, T sVertex)

{

// queue stores adjacent vertices; list

// stores visited vertices

LinkedQueue<T> visitQueue = new LinkedQueue<T>();

LinkedList<T> visitList = new LinkedList<T>();

// set and iterator retrieve and scan

// neighbors of a vertex

Set<T> edgeSet;

Iterator<T> edgeIter;

T currVertex = null, neighborVertex = null;

12/11/2017

8

© 2005 Pearson Education, Inc., Upper

Saddle River, NJ. All rights reserved.

bfs() (continued)
// check that starting vertex is valid

if (!g.containsVertex(sVertex))

throw new IllegalArgumentException(

"bfs(): starting vertex not in the graph");

// color all vertices WHITE

g.colorWhite();

// initialize queue with starting vertex

visitQueue.push(sVertex);

while (!visitQueue.isEmpty())

{

// remove a vertex from the queue, color

// it black, and add to the list of

// visited vertices

currVertex = visitQueue.pop();

g.setColor(currVertex,VertexColor.BLACK);

visitList.add(currVertex);

© 2005 Pearson Education, Inc., Upper

Saddle River, NJ. All rights reserved.

bfs() (continued)

// obtain the set of neighbors for current vertex

edgeSet = g.getNeighbors(currVertex);

// sequence through the neighbors and look

// for vertices that have not been visited

edgeIter = edgeSet.iterator();

while (edgeIter.hasNext())

{

neighborVertex = edgeIter.next();

12/11/2017

9

© 2005 Pearson Education, Inc., Upper

Saddle River, NJ. All rights reserved.

bfs() (concluded)

if (g.getColor(neighborVertex) ==

VertexColor.WHITE)

{

// color unvisited vertex GRAY and

// push it onto queue

g.setColor(neighborVertex,VertexColor.GRAY);

visitQueue.push(neighborVertex);

}

}

}

return visitList;

}

© 2005 Pearson Education, Inc., Upper

Saddle River, NJ. All rights reserved.

bfs() (concluded)

if (g.getColor(neighborVertex) ==

VertexColor.WHITE)

{

// color unvisited vertex GRAY and

// push it onto queue

g.setColor(neighborVertex,VertexColor.GRAY);

visitQueue.push(neighborVertex);

}

}

}

return visitList;

}

12/11/2017

10

Running Time of Breadth-First Search

• The running time for the breadth-first search

is O(V + E), where V is the number of vertices

and E is the number of edges.

© 2005 Pearson Education, Inc., Upper

Saddle River, NJ. All rights reserved.

Breadth-First Search Example

© 2005 Pearson Education, Inc., Upper

Saddle River, NJ. All rights reserved.

// create a graph g and declare startVertex and visitList

DiGraph<String> g = DiGraph.readGraph("bfsgraph.dat");

String startVertex;

List<String> visitList;

...

// call bfs() with arguments g and startVertx

visitList = DiGraphs.bfs(g, startVertex);

// output the visitList

System.out.println("BFS visitList from " + startVertex +

": " + visitList);

12/11/2017

11

Breadth-First Search Example

(concluded)

© 2005 Pearson Education, Inc., Upper

Saddle River, NJ. All rights reserved.

Output:
Run 1: (startVertex = "A")

BFS visitList from A: [A, G, B, C, D, E, F]

Run 2: (startVertex = "D")

BFS visitList from D: [D, E, F, G]

Run 3: (startVertex = "E")

BFS visitList from E: [E]

Depth-First Visit

• The depth-first visit algorithm is modeled after

the recursive postorder scan of a binary tree.

In the tree, a node is visited only after visits

are made to all of the nodes in its subtree. In

the graph, a node is visited only after visiting

all of the nodes in paths that emanate from

the node.

© 2005 Pearson Education, Inc., Upper

Saddle River, NJ. All rights reserved.

12/11/2017

12

Depth-First Visit (continued)

• Backtrack to the previous recursive step and

look for another adjacent vertex and launch a

scan down its paths. There is no ordering

among vertices in an adjacency list, so the

paths and hence the order of visits to vertices

can vary.

© 2005 Pearson Education, Inc., Upper

Saddle River, NJ. All rights reserved.

Depth-First Visit (continued)
• Discover A (color GRAY)

• Discover B (color GRAY)

• Discover D (color GRAY)

• Discover E (color GRAY, then BLACK)

• Backtrack D (color BLACK)

• Backtrack B (color BLACK)

• Backtrack A (A remains GRAY)

• Discover C (color BLACK)

• Backtrack A (color BLACK). Visit complete.

© 2005 Pearson Education, Inc., Upper

Saddle River, NJ. All rights reserved.

12/11/2017

13

Depth-First Visit (continued)

• The depth-first visit is a recursive algorithm

that distinguishes the discovery and finishing

time (when a vertex becomes BLACK) of a

vertex.

• The depth-first visit returns a list of the

vertices found in the reverse order of their

finishing times.

© 2005 Pearson Education, Inc., Upper

Saddle River, NJ. All rights reserved.

Depth-First Visit (continued)
• An edge that connects a vertex to a neighbor

that has color GRAY is called a back edge.

– A depth-first visit has a cycle if and only if it has a

back edge.

© 2005 Pearson Education, Inc., Upper

Saddle River, NJ. All rights reserved.

12/11/2017

14

© 2005 Pearson Education, Inc., Upper

Saddle River, NJ. All rights reserved.

dfsVisit()
// depth-first visit assuming a WHITE starting

// vertex; dfsList contains the visited vertices in

// reverse order of finishing time; when checkForCycle

// is true, throws IllegalPathStateException if it

// detects a cycle

public static <T> void dfsVisit(DiGraph<T> g, T sVertex,

LinkedList<T> dfsList, boolean checkForCycle)

{

T neighborVertex;

Set<T> edgeSet;

// iterator to scan the adjacency set of a vertex

Iterator<T> edgeIter;

VertexColor color;

if (!g.containsVertex(sVertex))

throw new IllegalArgumentException(

"dfsVisit(): vertex not in the graph");

© 2005 Pearson Education, Inc., Upper

Saddle River, NJ. All rights reserved.

dfsVisit() (continued)

// color vertex GRAY to note its discovery

g.setColor(sVertex, VertexColor.GRAY);

edgeSet = g.getNeighbors(sVertex);

// sequence through the adjacency set and look

// for vertices that are not yet discovered

// (colored WHITE); recursively call dfsVisit()

// for each such vertex; if a vertex in the adjacency

// list is GRAY, the vertex was discovered during a

// previous call and there is a cycle that begins and

// ends at the vertex; if checkForCycle is true,

// throw an exception

edgeIter = edgeSet.iterator();

12/11/2017

15

© 2005 Pearson Education, Inc., Upper

Saddle River, NJ. All rights reserved.

dfsVisit() (concluded)

while (edgeIter.hasNext())

{

neighborVertex = edgeIter.next();

color = g.getColor(neighborVertex);

if (color == VertexColor.WHITE)

dfsVisit(g, neighborVertex, dfsList,

checkForCycle);

else if (color == VertexColor.GRAY && checkForCycle)

throw new IllegalPathStateException(

"dfsVisit(): graph has a cycle");

}

// finished with vertex sVertex; make it BLACK

// and add it to the front of dfsList

g.setColor(sVertex, VertexColor.BLACK);

dfsList.addFirst(sVertex);

}

Depth-First Visit Example

© 2005 Pearson Education, Inc., Upper

Saddle River, NJ. All rights reserved.

LinkedList<String> finishOrder = new LinkedList<String>();

g.colorWhite();

DiGraphs.dfsVisit(g, "B", finishOrder, false);

Output: finishOrder: [B, D, E, F, C]

12/11/2017

16

Depth-First Visit Example (concluded)

© 2005 Pearson Education, Inc., Upper

Saddle River, NJ. All rights reserved.

finishOrder = new LinkedList<String>();

g.colorWhite();

try

{

DiGraphs.dfsVisit(g, "E", finishOrder, true);

System.out.println("finishOrder: " + finishOrder);

}

catch (IllegalPathStateException ipse)

{

System.out.println(ipse.getMessage());

}

Output: dfsVisit(): cycle involving vertices D and E

Depth-First Search Algorithm

• Depth-first search begins with all

WHITE vertices and performs depth-first visits

until all vertices of the graph are BLACK.

• The algorithm returns a list of all vertices in

the graph in the reverse order of their

finishing times.

© 2005 Pearson Education, Inc., Upper

Saddle River, NJ. All rights reserved.

12/11/2017

17

© 2005 Pearson Education, Inc., Upper

Saddle River, NJ. All rights reserved.

dfs()

// depth-first search; dfsList contains all

// the graph vertices in the reverse order

// of their finishing times

public static <T> void dfs(DiGraph<T> g,

LinkedList<T> dfsList)

{

Iterator<T> graphIter;

T vertex = null;

// clear dfsList

dfsList.clear();

// initialize all vertices to WHITE

g.colorWhite();

© 2005 Pearson Education, Inc., Upper

Saddle River, NJ. All rights reserved.

dfs() (concluded)

// call dfsVisit() for each WHITE vertex

graphIter = g.vertexSet().iterator();

while (graphIter.hasNext())

{

vertex = graphIter.next();

if (g.getColor(vertex) == VertexColor.WHITE)

dfsVisit(g, vertex, dfsList, false);

}

}

12/11/2017

18

Running Time for Depth-First Search

• An argument similar to that for the breadth-

first search shows that that the running time

for dfs() is O(V+E), where V is the number of

vertices in the graph and E is the number of

edges.

© 2005 Pearson Education, Inc., Upper

Saddle River, NJ. All rights reserved.

Depth-First Search Example

© 2005 Pearson Education, Inc., Upper

Saddle River, NJ. All rights reserved.

dfsVisit() starting at E followed by dfsVisit() starting at A

dfsList: [A, B, C, E, F, G, D]

12/11/2017

19

© 2005 Pearson Education, Inc., Upper

Saddle River, NJ. All rights reserved.

Program 24.2
import java.io.FileNotFoundException;

import ds.util.DiGraph;

import ds.util.DiGraphs;

public class Program24_2

{

public static void main(String[] args)

throws FileNotFoundException

{

DiGraph<String> g = DiGraph.readGraph("cycle.dat");

// determine if the graph is acyclic

if (DiGraphs.acyclic(g))

System.out.println("Graph is acyclic");

else

System.out.println("Graph is not acyclic");

© 2005 Pearson Education, Inc., Upper

Saddle River, NJ. All rights reserved.

Program 24.2 (concluded)
// add edge (E,B) to create a cycle

System.out.print(" Adding edge (E,B): ");

g.addEdge("E", "B", 1);

// retest the graph to see if it is acyclic

if (DiGraphs.acyclic(g))

System.out.println("New graph is acyclic");

else

System.out.println("New graph is not acyclic");

}

}

Run:

Graph is acyclic

Adding edge (E,B): New graph is not acyclic

