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Martin Charles Golumbic 

 

 

 



 

Dedications in honor of Martin Golumbic in the occasion 
of his 60th birthday 

“In 1985, as a newcomer in graphs and algorithms, I became aware of Marty's won-
derful monograph "Algorithmic Graph Theory and Perfect Graphs", and in the same 
year I was happy enough to get a copy of his monograph (which was not so easy in 
East Germany at that time) which tremendously influenced my work and interests on 
graph classes and algorithms. A variety of Marty's papers such as results on chordal 
bipartite graphs and variants, on intersection graphs, on clique-width of distance-
hereditary graphs and of unit interval graphs, on induced matchings and other topics 
directly and also indirectly inspired and motivated a great number of my papers. 
Marty has set milestones in various fields of research.” 
 

        Andreas 
Brandstädt 

 

Marty Golumbic 

Like many others, I first knew of Marty through his book,  "Algorithmic Graph Theory 
and Perfect Graphs" which I read as a graduate student.  It is a remarkable book for its 
organization, the clarity of exposition and its shelf life.  It is still a useful reference to-
day.  The book is memorable in part because it is sprinkled with just the right amount of 
Marty’s quirky sense of humor.  What is especially impressive is how young Marty was 
when he wrote this book; he was only 32 when it first appeared in print. 

It was a great honor and privilege for me to work with Marty on our book "Toler-
ance Graphs," published in 2004.  We began work in 1999 when I made a three-week 
visit to Israel.  After this we worked together three or four times a year in North 
America (Ithaca,  Wellesley, New York City, Rutgers, Boca Raton, Toronto) with 
Marty cheerfully taking on much more than his fair share of travel.    Marty’s good 
nature helped make these intense work visits a real pleasure. 

I learned so much from working with Marty.  He has the patience to painstakingly 
work through background papers and to rewrite sections for added clarity.  Yet he 
also is pragmatic enough to know when it is time to move on and declare a project 
finished.  He has an abundance of good sense and I have benefited immensely from 
his advice and encouragement.  Working with Marty has been one of the highlights of 
my professional career.  I am so pleased I was able to join Marty and his family, 
friends and colleagues at his 60th birthday celebration. 

 
Ann Trenk 

A Tribute to Marty 

I have known Marty for many years, since before he came on Aliya to Israel. In 2001 
Marty asked me if I would be the scientific coordinator in the new Interdisciplinary 
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Research Institute in the University of Haifa, headed by him. I gladly accepted the 
offer. The Caesarea Edmonds Benjamin de Rothschild Foundation Institute for Inter-
disciplinary Applications of Computer Science (yes, it is a mouth full- CRI for short) 
was flourishing in the period 2001-2008.  We had more than 100 conferences and 
workshops, dozens of new interdisciplinary courses, hundreds of visitors, and many 
research projects dealing with interdisciplinary research applications of computer sci-
ence. Most projects were within the university, many touched other universities in 
Israel and abroad, and some touched the community as a whole.  I enjoyed working 
with Marty, and I learned a lot from him. I feel indebted to Marty for giving me this 
opportunity of contributing to CRI, serving many faculty members, and learning from 
them. Heading such an institution requires an open mind, genuine interest in cross-
disciplinary subjects, vision, political skills, hard work, and more. Marty has all these 
traits, and he made CRI what it is. Kol- Hakavod!  

Irith Hartman 
 
Marty Golumbic's 1980 book, Algorithmic Graph Theory and Perfect Graphs, has 

been largely responsible for fostering an entire community of researchers who work 
on the rich field of problems suggested by the fascinating work he describes there.  I 
came across the book in 1992 when I was getting my doctorate, and I have used the 
open questions suggested by the book as a roadmap for my entire subsequent research 
career, as have many other researchers. This work, and other papers and monographs 
of his on structured classes of graphs have been enormously influential and remain so. 

When my copy of his 1980 book fell to tatters a few years ago because of many 
years of reading, carrying it in suitcases, and lending it to friends and students, I was 
dismayed to find that it was out of print. People were selling used copies on the Inter-
net for many times the original selling price.  Fortunately, printing of this classic text 
is back by popular demand. 

Marty has also cultivated the interest of many people in the field by organizing 
conferences and taking a long-term and selfless interest in the success of newcomers 
and the vitality of our research community. His talk at the conference about the high-
lights of his career brought back many memories for those of us who have known him 
for many years. 

Ross McConnell 
 

I first met Marty as an undergraduate student in his graph theory course. I was 
charmed by the way Marty taught graph theory. It inspired my curiosity and interest 
and challenged me intellectually. His influence gave me the motivation to complete 
the doctoral studies which he advised me to pursue a few years later. Even though I 
worked very hard, it felt like playing a mathematical game. Graph theory is not all I 
learned from Martin; I also learned precious life values – broad vision, approaches to 
problem solving, team work and multidicplinarity. Marty's guidance will continue to 
influence my life and career for many years to come. 

Marina Lipshteyn 
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For me it all began when Martin invited me to participate in one of his seminars in 
Bar-Ilan University about nine years ago. Back then it was to be invited by "the Pro-
fessor" who wrote "the book": Algorithmic Graph Theory and Perfect Graphs.  

Martin introduced me to his students and also to his colleagues. I felt honored and I 
still do. At these seminars I learned so much and grew fond of the subjects of VPT, 
EPT and intersection graphs in general. Then Martin moved to the University of Haifa 
to be the director of CRI. When I finished my Ph.D., Martin took me into CRI under 
his wide wing. It became a warm and welcoming place to come to and work once a 
week. I treasure the long hours we work together. Thank you so much, with all my 
heart, Happy Birthday. 

Michal Stern 

 
I was delighted to be able to participate in the celebration of Martin Charles Golum-
bic's sixtieth birthday, held in September, 2008, in Jerusalem, Tiberias and Haifa.  It 
was a wonderful celebration of a man who has succeeded spectacularly on a number 
of fronts.  When I first met Marty thirty years ago, he had completed a doctorate in 
mathematics under one of the leading twentieth century mathematicians, Sammy 
Eilenberg, and had published a book in a prestigious research series, Algorithmic 
Graph Theory and Perfect Graphs, which was on the cusp of mathematics and com-
puter science, and the first of several important works.  I met him when he attended 
the Southeastern International Conference on Combinatorics, Graph Theory and 
Computing at Florida Atlantic University.  He has been back many times since then, 
with repeated appearances as an invited plenary speaker, and as an organizer of spe-
cial sessions. 

Marty is an extremely creative and versatile mathematical scientist.  He has advanced 
established research areas, and begun new ones.  He has served as an editor for highly 
respected journals, and is the founder of a new journal.  I have been privileged to work 
with him as a member of the editorial board of his Annals of Mathematics and Artificial 
Intelligence, and as a co-organizer of the series of biennial International Symposia on 
Artificial Intelligence and Mathematics.  He is a delightful person to work with, and an 
excellent leader.  Marty has been successful in both industry and academics, and as the 
founder and director of an outstanding research institute.  The administration of our uni-
versity was excited to be able to enter into a cooperative arrangement with the Caesarea 
Edmond Benjamin de Rothschild Institute for Interdisciplinary Applications of Com-
puter Science. 

Marty is a great person, with a wonderful, loving family.  He is a true friend, and a 
brilliant thinker.  We look forward to many more accomplishments from him as he 
enters the prime of his life. 

 
Fred Hoffman 

 
 
 
 
 
 



 

 

Preface 
 

This volume is dedicated to Martin Charles Golumbic on the occasion of his 60th 
birthday. Professor Golumbic has been making seminal contributions to algorithmic 
graph theory and artificial intelligence throughout his career. He is universally ad-
mired as a long-standing pillar of the discipline of computer science. To honor this 
event, many of Martin’s graduate students, research collaborators, and computer sci-
ence colleagues gathered in Israel for a conference on subjects related to Martin’s 
manifold contributions in the field. 

The conference, “Graph Theory, Computational Intelligence and Thought” was 
held in Jerusalem, Tiberias and Haifa, Israel during September 19–25, 2008. The con-
ference was organized by Irith Ben-Arroyo Hartman, Shlomo Kipnis and Michal 
Stern. Local arrangements were coordinated by CRI staff members Rona Perkis, Avi-
tal Berkovich, Orly Ross, George Karapetyan and graduate students Hananel Hazan 
and Elad Cohen. Their help was instrumental in the success of the event and is most 
gratefully acknowledged. 

The meeting received generous support from the following institutions: 

• Hadassah College, Jerusalem 
• Caesarea Edmond Benjamin de Rothschild Institute, University of  

               Haifa 
The 19 refereed papers of this volume have been drawn from the proceedings of 

the event. A few lectures are not represented; some varied somewhat from the subse-
quent written contributions; and some contributors to this volume were unfortunately 
unable to attend the event. All papers have undergone the review process. 

 

January 2009 Marina Lipshteyn 
Vadim E. Levit 

Ross M. McConnell 
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Landmarks in Algorithmic Graph Theory:  
A Personal Retrospective  

Martin Charles Golumbic  

Abstract. This is an edited version of the conference lecture delivered by the 
author in celebration of his 60th birthday. It is intended to be an autobiographi-
cal tour through stories, pictures and theorems, suitable for both mathematicians 
and non-scientists.   

1   When I Was Seventeen, It Was a Very Good Year… 

Erie, Pennsylvania, on Lake Erie, where I was born and grew up, could be pro-
nounced in Hebrew as “Ir-i” עירי —which coincidentally means “my city”. I gradu-
ated from Academy High School in 1966; there is a picture of me from the Erie 
Morning News on June 10th one of five students in a graduating class of 500 chosen to 
be a commencement speaker.  

Mankind has thrilled at the prospect of operating in boundless space. 
But with this thrill has come dread that the advance of nations into 
space will precipitate a new cycle of conflict. To combat this threat, na-
tions have sought to cooperate with each other, to ensure peace. … 

This is the opening of my high school commencement address, “Cooperation in 
Space”.  In many ways, the speech reflects some of the big issues that matter to me—
those I speak and write about today—that are not so different from the way they were 
when I was 17. 

I would like to start by thanking my coauthors, whom I have listed here.  This has 
been a long journey, and we will see landmarks in this talk of what I have been in-
volved in over the years. I would like to thank all of these people who have worked 
and published with me: 

Alexander Belfer, Zeev Ben-Porat, David Bernstein, Anne Berry, An-
dreas Brandstadt, Mark Buckingham, Elad Cohen, Ido Dagan, Ronen 
Feldman, Dina Q. Goldin, Clinton F. Goss, Dennis Grinberg, Vladimir 
Gurvich, Peter L. Hammer, Irith Hartman, Tirza Hirst, Robert Jamison, 
Haim Kaplan, Hugo Krawczyk, Renu Laskar, Vadim E. Levit, Van Bang 
Le, Moshe Lewenstein, Marina Lipshteyn, Frederic Maffray, Yishai 
Mansour, Moshe Markovich, Aviad Mintz, Clyde Monma, Gregory Mo-
rel, Ido Nahshon, Uri Peled, Yehoshua Perl, Thomas K. Philips, Ron Pin-
ter, Nicholas Pippenger, Vladimir Rainish, Doron Rotem, Udi Rotics, 
Edward R. Scheinerman, Uri N. Schild, Ron Shamir, Michal Shindler, 
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Shimon Shrem, Assaf Siani, Michal Stern, Michael Tiomkin, Ann N. 
Trenk, William T. Trotter, Shalom Tsur, Jorge Urrutia, Elad Verbin, 
Amir Wassermann 

And so here is the first theorem of the day.   

Theorem. The people on Marty’s coauthor list have Erdős Number 1, 2 or 3.  

Most of you know that Paul Erdős was a very famous Hungarian mathematician; leg-
endary in our discipline. If you’ve written a paper with Erdős, your number is 1; if 
you’ve written a paper with a person who wrote a paper with Erdős, you’re number is 
2, and so forth. Since I have Erdős number 2, it follows that everyone on my list will 
have numbers 1, 2 or 3. That’s a proof.  

Just one story about Erdős—there are so many stories about him. When our family 
was visiting in Budapest about 12 years ago on a roots trip, I spent one day—I got 
permission from Lynn, my wife, to spend one day—at the Math Institute. After re-
turning from lunch with Erdős, Vera Sós and Tamás Turán (György’s brother and 
Vera’s son) Erdős was kind of tired, and he drifted off a little bit in the coffee room. It 
was a Friday, and when I got back to our apartment about an hour before Shabbat, the 
phone rang and Erdős was on the phone—he apologized for not saying goodbye to 
me, and he called to wish us a Shabbat Shalom. I think that this says something very 
special about the character of this man, and the character of a number of mathemati-
cians we have encountered over the years—those who have a very special personal 
connection with the people in our field.  

Frank Sinatra, on his 50th birthday, produced a record album called “September of 
My Years”. We are in September, and I am in the September of my years. This is part 
of the text of the song that gives its name to the album. 

As a man, who has always had the wandering ways 
I keep looking back to yesterdays 
‘til a long forgotten love appears 
And I find, I’m sighing softly as I near 
September, the warm September of my years. 

 
Lattices and other hierarchies 

As an undergraduate at the Pennsylvania State University, I learned what mathematics 
really was. In high school you don’t really know. Maybe I still don’t know. I did a 
Bachelor’s and a Master’s degree simultaneously in my four years at Penn State. My 
Master’s research paper was on the topic “Congruence Relations in Lattices”. Let me 
tell you what a lattice is.  A lattice is a kind of hierarchy, like this one: a boy is a 
male, a boy is a child, a child is a human, and (many would say that) a male is a hu-
man. These kinds of ontologies of words you may see in dictionaries, encyclopedias 
and so on. Mathematicians are also interested in hierarchies like this.  

What is a lattice? For the mathematicians, a precise definition: a hierarchy (i.e. a 
poset) where every pair of nodes has a unique lowest ancestor above it and a unique 
highest descendant below it.  

Consider the two diagrams above. The first one is a lattice but the second one is 
not. The reason the second is not a lattice is because you can go down from child and 



 Landmarks in Algorithmic Graph Theory: A Personal Retrospective 3 

 

male in two ways, to boy and also to young heir. You might say there’s an error in 
this second diagram, because it is not a lattice, that your hierarchy should really be a 
little bit different. Maybe the young heir should appear over boy or, in the case of our 
family, a young heir might be female, then one would really need change the lattice. 
However, there is a serious side to this type of reasoning, namely, that it may be im-
portant either semantically or computationally for you to insist that the structure being 
used is a lattice. 

There are other kinds of hierarchies that we are familiar with and one of them is the 
hierarchy “Father-of “. This is a hierarchy whose structure is a rooted tree, as in the 
figure below, where Isaac Golumbic is the root and under him are four nodes (actually 
seven if it were complete) where one of those is Abe and another is Eddie. Under Abe 
you have Burt and Marty; Marty is the father of Elana, Yaela, Tali and Adina. Eddie 
has one son Cal, and he has two sons named Lars and Court.  

There’s another hierarchy, that’s the “Mother-of “ hierarchy.  Here we have a 
mother tree with matriarch Leah, mother of Vera and Shlomo. Vera has daughters 
Judy, Sharona (not visible here) and Lynn; Lis is the mother of Lars and Court, etc. In 
my lecture, I colored the girls in pink and the boys in blue, and there is a lot of pink in 
the slide.  

 

 
 

What are family trees? 

I now want to ask a serious mathematical question, and that is: What is the structure of 
family trees? It is a question for people who work in posets. For one thing family trees 
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A family tree 

are not trees, because they have cycles in them. Each node has two parents—one from 
the father tree and one from the mother tree. It is still a hierarchy but it is not a tree.  

What exactly do I mean by this open question: What are family trees? The 
mathematicians know what I mean, but the non-mathematicians probably don’t 
really get it. Yet! 

A mathematician solving this problem will look for “meaningful” patterns. For ex-
ample, this next pattern, which looks like a cycle of six boxes and might occur in your 
family tree, says something—it has some semantics. And what is it?  

 

This hierarchy says that ‘first cousins marry and have a child’. So if you see this 
pattern, it has meaning, even without filling in the names in each box.  

Here are two others, which I will call ‘Incest’. On the left there are a brother and 
sister that have a child, and on the right, G-d forbid, a parent and a child that have a 
child. These are biologically possible, but culturally unlikely.  
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We will now see an example of a hierarchy that is biologically impossible. If this 
pattern occurs in your family tree, you have an error in your data, and actually there’s 
a lot of value to that. The value is that it focuses your attention on where you have to 
go back to your notebooks, to see who was mother of whom, figure out where the 
mistake came from, and fix it in your database.  

 

A hierarchy that is biologically impossible! 

Why is this hierarchy biologically impossible? I will give you a proof. Look at the 
middle child. He/she has a mother and father. Let’s say the father is on the left and the 
mother is on the right. Now we have a dilemma. On the one hand, the child on the left 
has its male parent on the left, so the middle parent must be female. On the other 
hand, the child on the right has its female parent on the right, so the middle parent 
must be male. Since this cannot happen biologically (in humans), this cannot happen 
in your family tree. Therefore, our conclusion is that this particular hierarchy cannot 
be in a family tree. We have a mathematical proof of something that we call a “for-
bidden” form or configuration.  

 

Now, my question to the mathematicians here is, ‘Can we characterize family trees 
by a complete set of forbidden forms?’ And if you would like to work on this problem 
with me, that would be great, especially someone who is not yet on the list.  

So what is this all about? 

It is to look for important patterns that might indicate errors in your database or that 
might help find anomalies or interesting or suspicious patterns. This is also part of 
what people do in data mining or in link analysis of emails—finding phenomena that 
have meaning or scrutinizing who is sending emails to whom. They are also looking 
for patterns that are suspicious, maybe terrorists or perhaps friends, by characterizing 
those patterns to look at. It’s being able to determine and locate those things that are 
important. 
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2   When I Was Twenty One, It Was a Very Good Year… 

I left Penn State and had a summer job in Fort Belvoir, Virginia as a junior mathema-
tician, then moved to New York City. The years 1970 to 1975 were spent earning my 
doctorate at Columbia University. Incidentally, Sammy Eisenberg, my Ph.D. advisor, 
and I were both born on September 30th. I worked on comparability graphs (transi-
tively oriented graphs) for my thesis, wrote a paper on inducibility of graphs with 
Nick Pippinger (he did most of it) and another paper on combinatorial merging. That 
last one was actually the first paper that I wrote but the third paper to be published, 
because it took me about two and a half years until I understood how to write mathe-
matics. It was a very good lesson. Took me a while but I guess I learned.  

This was also a very exciting time for the field of computational complexity. It was 
the years when the theory of NP-completeness was just being discovered and used, 
and I didn’t know what that was. Until then, I thought NPC was my uncle, Norman P. 
Cohen.  

But very quickly I learned what it was and I started teaching it.  
Now a comment for my son-in-law Avishai:  A few weeks ago you asked us a 

question and I would like to answer that question now. The period 1970 through 
1975, both professionally and personally, was the defining period of my life. Every-
thing that I had done till then was preparation for my doctoral years at Columbia and 
everything that I have done since is the result of those five years: my professional 
career, my personal and family life, my character and my values, my returning to live 
in the homeland of the Jewish people. 

My first academic position was with the Courant Institute at New York University 
as Assistant Professor of Computer Science for the five years 1975-1980. Clint Goss, 
an undergraduate at the time, came to me and wanted to work on a research problem. 
It turned out he was a very smart guy. Together, we introduced the family of chordal 
bipartite graphs and wrote the initial paper on that family of graphs.  

I took one year off to do a postdoc. We went to Paris. Lynn had said, “Why should 
you use your postdoc and stay in New York? Let’s go someplace else, someplace in-
teresting.” So we chose Paris so I could join the group of Claude Berge, and it was an 
experience. We spent a little over a half a year in Paris and then four months at the 
Weizmann Institute. I came back to Courant and finished writing the chapters for my 
book on algorithmic graph theory. Just around 1979, the book was finished, and the 
page proofs were coming. I remember walking our first daughter, Elana, in a baby 
carriage, and when she would fall asleep I could quickly take out the page proofs and 
go over a few pages of corrections until she woke up. 

Now those of you who are familiar with my book Algorithmic Graph Theory, 
know that I like to tell stories. In fact, Ann Trenk just mentioned how my book is full 
of stories. It is part of my style in whatever I do. I was influenced in part by the mys-
tery story by Claude Berge, whose book was one of the early inspirations for my own 
work in graph theory. So I would like to run through a new story with you which has 
a mathematical theme.  

A Mathematical Story 

Two groups of high school students, the girls of Evelina and the boys of Hartman, 
visited the Hecht Museum on the same day. Take out your pencils and paper because 
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we have to take notes on these rules: The students came on their own, arriving and 
leaving at different times. Each school gathered their students together to tour as a 
group. The Hecht Museum is rather small, so if a boy and girl were in the museum at 
the same time, certainly they met each other. Those are the rules. 

Here is my Question:  

 Adina’s boyfriend is Eitan and her brother is Doron.  
 Yael’s boyfriend is Doron but her brother is Eitan.  
 Is it possible that the girls met their boyfriends but not their brothers?  
 
As my daughter Tali knows, now I am going to exit while you figure out the answer. 
I’m back. 
Show of hands: how many say ‘Yes, it is possible’? How many say ‘No, it is im-

possible’? Remember there are impossible things.  
The answer is, ‘No, it is not possible’. The reason, the same kind of reasoning as in 

the family tree argument, is the following:  
If Adina did not meet her brother Doron, it follows that their time periods did not 

overlap—Adina came and she left and Doron came and he left. They didn’t see each 
other. Now Yael and Adina toured together because the rules say that the girls from 
Evelina toured together, so they saw each other, and thus their time intervals must 
overlap. But Yael also saw her boyfriend Doron, so their intervals also overlap. So 
this is the configuration of the time intervals, with Yael “spanning the gap” between 
Adina and Doron. Now what about Eitan?  

 

On the one hand, Eitan toured together with Doron and the other Hartman boys, on 
the other hand he saw his girlfriend Adina. So this gap is also covered by Eitan’s time 
interval. Thus, Yael and Eitan would have seen each other!   

Therefore, it is impossible that both girls met their boyfriends and not their brothers.  
This story is an example of reasoning about time and it can be modeled by a graph. 

CSI might like to use this information the next time they are trying to solve a crime 
scene investigation. But there is mathematics behind this, and—work with me a little 
bit you non-mathematicians—I want to say a few technical things, and I hope you’ll 
catch the gist of what I am doing.  

We build a graph, with a vertex for each student and an edge connecting two verti-
ces if the two students did not meet in the museum, that is, their time intervals were 
disjoint. We call this graph the disjointness graph. In our example, Adina and Doron 
were disjoint and everyone else intersects with everyone else.  
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T 

What our argument says mathematically is that the configuration that we call 2K2 is 
forbidden to be in the database of temporal facts. (This is just like the fact in the fam-
ily tree that up-down-up-down-up-down was forbidden. By the way, if you go up-
down-up-down an even number of times it’s ok, but if you go up-down-up-down an 
odd number of times, it’s not ok.) 

 

So this is a forbidden graph and graph theorists call graphs that don’t have these, 
chain graphs. Chain graphs are a kind of bipartite graph, a graph where you have 
nodes for the girls and nodes for the boys and edges between them representing dis-
jointness, like in the figure below. And sure enough, we have a theorem that tells us 
about this class of graphs. 

 

Theorem (Hammer, Peled, Simeone; others). Let G = (X ∪ Y, E) be a bipartite 
graph. The following are equivalent:   

1) G is 2K2-free. 
2) X can be ordered so that neighborhoods are nested. 
3) Y can be ordered so that neighborhoods are nested.  
4) Every induced subgraph of G has at most one non-singleton component, and 

has a universal x or a universal y vertex.1 
5) Each vertex v of G can be assigned a weight w(v), and a threshold t can be 

assigned, such that (x,y)∈E  if and only if  |w(x) – w(y)| > t, for all x and y. 
                                                           
1 A universal vertex in a bipartite graph is one that is adjacent to all vertices on the other side 

of the bipartition.  
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Remark. X or Y can simply be ordered by number of neighbors (vertex degree). 

There are three names for this class of graphs. One is called chain graphs from the 
nested neighborhood properties (2) and (3); one is called difference graphs from the 
weights and threshold property (5); and one is simply called 2K2-free bipartite graphs 
from the forbidden subgraph property (1). In addition, you can recognize them in lin-
ear time by using property (4), repeatedly pulling off a universal vertex one by one, 
and erasing isolated vertices, just like you do in recognizing threshold graphs. In fact, 
difference graphs are very, very close to threshold graphs.  

Remark. Who was Evelina? Evelina Gertrude de Rothschild was from the English 
branch of the Rothschilds. She died at a fairly young age (August 25, 1839 – Decem-
ber 4, 1866) and her father, Baron Lionel de Rothschild, the first Jewish member of 
the British House of Commons, assumed sponsorship of the first school for girls in 
Israel, opened in Jerusalem in 1854, renaming it the Evelina de Rothschild School. 
The Hartman High School is part of the Shalom Hartman Institute in Jerusalem.  

3   When I Was Thirty Five, It Was a Very Good Year… 

If Micky Rodeh were here, he would say, “That Golumbic, he always has his five-
year plan.” All I can say is that things somehow fit into five year periods. Now I don’t 
know if it has really been on purpose or not, but that’s what has happened.  

And the next five years, from ’80 to ’85, was a transition time—first, my moving 
from academia at NYU to industrial research at Bell Labs and then at IBM, and sec-
ond, our moving from the USA to Israel. 

And Yaela was born. Now look at her name very carefully. In English or in He-
brew: Yaela — יעלה  and compare it to Aliya — עליה (moving up, the word 
traditionally used for immigration to Israel). You don’t have to be dyslexic to note the 
similarity.  

During this period of time I introduced tolerance graphs with Clyde Monma. Then 
Tom Trotter joined us and we wrote what might be called the fundamental paper start-
ing the study of tolerance graphs. I also initiated the study of EPT graphs with Robert 
Jamison during that period. And then when I moved to Israel, I started working on 
projects of expert systems and prolog, getting into artificial intelligence, scheduling 
and CSP constraint satisfiability problems.  

I remained working in Haifa and here’s another play on words. You remember the 
first slide about Erie “my city”. Haifa is spelled like this: חיפה. But if you parse it or 
split it in the middle, pull it apart, it says something interesting in Hebrew, which the 
city of Haifa has been popularizing on billboards this summer: אני חי פה. “I live 
here”. So I moved from Erie (עירי) to חי פה. And during that period Tali and Adina 
were both born.  

While still working at IBM, I became an adjunct professor at Bar-Ilan University in 
1985, the start of my next five year plan. I travelled there once a week to keep up my 
pure research activities, working with graduate students both in graph theory and in 
artificial intelligence. David Bernstein and Ron Pinter mentioned in their talks that at 
IBM, I began to work with them (and others) on compilers. I worked on register  
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allocation and instruction scheduling, and with Vladimir Rainish we had a patent. In 
graph theory, Ron Pinter, Ido Dagan and I initiated the work on trapezoid graphs, 
which we introduced in this period.  

There were three other very important landmark series that started towards the end 
of that period. The first was founding the Bar-Ilan Symposium on the Foundations of 
Artificial Intelligence (BISFAI) which has taken place every two years since that 
time. I owe Micky Rodeh and Joe Raviv a little credit for my learning indirectly that 
if you want to go to more international conferences or if you want Israelis to be able 
to go to more international conferences, you bring the international conference to Is-
rael. And I think that this has been a driving motivation for the 105 workshops and 
conferences in Israel that Irith Hartman mentioned in her opening remarks about my 
professional activities. The second was founding the Annals of Mathematics and Arti-
ficial Intelligence, of which I am still the editor-in-chief. I owe a lot of credit to Peter 
Hammer for having brought me in to do that and for much advice and friendship over 
the years. His tragic death a year ago was a terrible blow to the discrete mathematics 
community. And the third landmark was the founding of the International Symposium 
on AI & Mathematics series in Fort Lauderdale together with Fred Hoffman, who is 
here with us.  

Artificial intelligence and reasoning about graphs 

I would like to add something now about artificial intelligence. A central issue in AI 
is dealing with missing data, and having to deduce consistency with only partial in-
formation. For example, suppose at the Hecht Museum we don’t know about the arri-
val times and the departure times of the students. We only have some information 
about when some of the Evelina girls and Hartman boys came and left. Even with that 
partial information, can we still construct a consistent set of intervals? Can we find 
new facts based on existing facts? Look at the example we just saw. If you know that 
Adina met Eitan, and you know that she did not meet Doron, and you know that Yael 
met Doron, then you can conclude, without having to know anything else, that it must 
be that Yael met Eitan. Otherwise, you’d have a contradiction. So you could deduce 
the fourth piece of information, having known only the three.  

In graph theory we also have a kind of problem where we have missing informa-
tion, and must reason about how to complete it. I would call this guessing and filling 
in missing edges from a partially specified graph. One such problem is called the 
Graph Sandwich Problem. The other is called the Probe Problem.  

Again I am going to ask the non-mathematicians to stay with me for a little bit, 
while I address the mathematicians. I am sure you’re going to appreciate at least some 
of what I am doing. You don’t need to know the details, but rather watch my process 
of thinking.  

Let’s talk about the graph sandwich problem for chain graphs: A bipartite graph  
G = (X ∪ Y, E) is given to you and a set E0 of optional edges (pairs of vertices in  
X  Y ) which you could add to your graph. The algorithmic question is: Is there a 
subset F  ⊆ E0 of the op tional edges that you could add to the graph, such that the 
filled-in graph G′ = (X ∪ Y, E ∪ F) is a chain graph? In fact, there is a theorem that 
says that the chain graph sandwich problem can be solved in linear time: Repeatedly, 
remove either an isolated vertex in G or a universal vertex in H  = (X ∪ Y, E ∪ E0).  

That was an easy problem. Now there is a harder problem. 
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The chain probe graph problem 

A bipartite graph G = (X ∪Y,E) is a chain probe graph if there exists an independent 
set S of vertices (also known as a stable set) and a subset F  ⊆  S  S of pairs of verti-
ces from S such that when you fill in the graph with this subset F, you obtain a chain 
graph G′ = (X ∪ Y, E ∪ F). This is actually the non-partitioned version of the probe 
problem, that is, the set S is not given as part of the input to the problem.  

As an example, consider the figure below.  Remembering that chain graphs are the 
ones that are characterized by the forbidden 2K2, you have to “bust up” the two occur-
rences of 2K2 in the graph on the left. If the probes are indicated by the three vertices 
circled, you can destroy the copies of 2K2 by adding the two new edges shown in the 
graph on the right. Then you would have a chain graph. So in this case we have a 
chain probe graph by selecting these three vertices as S, filling in the two edges, giv-
ing a solution in this particular example.  

 

Just like in the family tree problem, where I was looking for forbidden configura-
tions, here too I am looking for forbidden configurations to characterize chain probe 
graphs. In a very recent paper by Frederic Maffray, a student of his, Gregory Morel 
and myself, we solved this problem—now you know what I do when I go to France, I 
don’t just lie out on the Riviera. Our theorem characterizes this family of graphs.  

Theorem. A bipartite graph is chain probe if and only if it contains none of the six 
forbidden graphs in the figure below. 
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Now, if I had the time to give you the proof, then I would first prove two lemmas 
that would be enough to show that those six graphs are not chain probes, showing the 
“only if” implication. The proof in the opposite direction is a little more mathemati-
cally complicated, and for that I would let you read the paper. Moreover, I would 
show you that algorithmically we have a solution to the complexity question and that 
recognizing chain probe graphs can be done in O(n2) time. 

I hope you have all gotten the point. Mathematicians are looking for a complete set 
of forbidden subgraphs that fully characterizes this kind of graph. And then they can 
write a computer program to find them. 

More graph theory problems 

Blocking together the next two five-year periods, 1990-2000, I soon left IBM to return 
to academia full time at Bar-Ilan—working on temporal reasoning problems, introduc-
ing sandwich problems with Ron Shamir and Haim Kaplan, on induced matchings with 
Renu Laskar and Moshe Lewenstein, on clique width with Udi Rotics, on acyclic hy-
pergraphs, and on factoring Boolean functions with Avi Mintz. All of this culminating 
with two more landmarks that sort of “started the new millennium”. 

The years 2000-2005. The first personal landmark was writing the book Tolerance 
Graphs with Ann Trenk. It was fantastic experience for me. We were a great working 
pair.  I think there’s an appropriate song, “We belong to a mutual admiration society.”  
It was a lot of fun writing the book, and we both got a tremendous sense of profes-
sional satisfaction having produced it.  

The second landmark was founding CRI: The Caesarea Rothschild Institute at the 
University of Haifa, with my cofounders, Libi Oded and Irith Hartman; Libi on the 
administration side and Irith on the scientific side. I call them my cofounders because 
it would have been impossible to do something on this scale without a really solid 
team, and I thank them.  

I have other people at CRI to thank, the many great staff people that have followed 
along in those years: Miriam Daya, Meirav Resnick, Orna Nagar-Hillman, Ornit Bar-
Or, Sara Kaufman, Avital Berkowich, George Karapetyan, Orly Ross, and Rona 
Perkis. And especially for this conference, thanks go to Rona and Orly who have done 
the bulk of the administrative work, to George making sure that technical things run 
smoothly and Hananel Hazan making sure the things that George is too busy to do, 
get done, to Elad Cohen who did the abstract book and Avital who did the backroom 
stuff and had to stay home in the office to make sure that no fires took place.  

And there are another set of projects—the projects with Trento, Italy on Innovative 
Technology for Human Development—with my dear friend, colleague and partner in 
all kinds of crazy ideas, Oliviero Stock, who is also here for this meeting. Thank you, 
Oliviero. 

But during this period of time, I didn’t just sit around doing nothing research-
wise: new results on tolerance graphs, on rank tolerance graphs with Robert Jamison, 
who unfortunately isn’t here—but he sent me a copy of a paper he wrote for the 
Boca conference proceedings this year, which he actually dedicated to my birthday, 
and which may inspire us to do some new things coming up; the work on chordal 
probe graphs with Marina Lipshteyn and Ann Berry; and the work on k-EPT graphs 
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and (h,s,t)-hierarchies with Marina and Michal Stern. I would also like to thank them 
for their help in this conference, along with Irith who ran the program, selected the 
speakers and made this into a technically high-powered—and amazing seven days. 

Finally, there was this other “meshuga” idea, writing the book Fighting Terror 
Online, that just appeared this year published by Springer. This goes back to the very 
first or second year in CRI, when we sponsored a workshop and a seminar with two 
professors from the Law School, Michael Birnhack and Niva Elkin-Koren, and a 
bunch of students who were majoring in computer science and law. They gathered 
lots of material, summarized many discussions with experts, and wrote up a white 
paper in Hebrew on fighting terror online. We then translated it, and I started editing 
and adding more material until it grew into a book. I am extremely grateful to Mi-
chael and Niva for working with me on this book. Although they decided not to be 
coauthors, they really are in every sense of the word, coauthors. I also owe a lot of 
debt to my editors Sara Kaufman and Diane Romm. This is really not a Marty book; 
this is a book that Marty helped edit, enlarge, add some of my personality too. I get 
some credit but the credit goes to a lot of people. Finally, I must also thank my wife 
Lynn because at an early stage, she looked at the manuscript and said, “You know, 
this is important stuff. People should know about it.” It confirmed what I felt, and one 
way or another, I knew that it had to come out and it did. 

Vivaldi’s Allegro from Spring 

We’ve talked about my spring. We’ve talked about my summer. And now starting 
tonight, on the Hebrew calendar, autumn.  

So what will I do next?  

My next talk to be written is for March 2009 in Warwick, England. I will be working 
during the coming months to put some meat into this title: Conflict and Tolerance in 
Graph Theory. It will be a model, similar to rank tolerance, but broader, like the new 
paper by Jamison. The technical details, for mathematicians, are that it will be a graph 
where each vertex has a rank, indicating its tendency to have edges, just like tolerance 
is a weight or function that gives the tendency for not having edges. Join them to-
gether, you’ll get an edge if and only if a ranking function exceeds the tolerance—the 
tendency to have edges exceeding the tendency to not have edges. All of our literature 
on intersection graphs and types of tolerance graphs fit into this framework and much 
more. I think that there are a lot of places where we can do good work. 

So this is the beginning of the autumn. 

4   But Now the Days Are Short…  

Frank Sinatra… and wine…and a toast with Lynn. 

Vivaldi’s Allegro from Autumn 

Thank you.    
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Abstract. In this paper, we present a high-level formalism based on port graph
rewriting, strategic rewriting, and rewriting calculus. We argue that this formalism
is suitable for modeling autonomic systems and briefly illustrate its expressivity
for modeling properties of such systems.

1 Introduction

Autonomic computing [1] refers to self-manageable systems initially provided with
some high-level instructions from administrators. This is a concept introduced in 2001
with an intended biological connotation. The four most important aspects of self-mana-
gement as presented in [1] are self-configuration, self-optimization, self-healing, and
self-protection.

This idea of biologically inspired formalisms gained much interest with the recent
development of large scale distributed systems such as service infrastructures and grids.
For such systems, there is a crucial need for theories and formal frameworks to model
computations, to define languages for programming and to establish foundations for
verifying important properties of these systems. Several approaches contributed
to this ambitious goal. Without exhaustivity, let us mention in particular the brane
calculus [2, 3], membrane computing and P-systems [4], and the bigraphical reactive
systems [5], but also several calculi inspired from biology such as [6–8].

Another connected approach is provided by chemical programming, which uses the
chemical reaction metaphor to express the coordination of computations. This metaphor
describes computation in terms of a chemical solution in which molecules (represent-
ing data) interact freely according to reaction rules. Chemical solutions are represented
by multisets (a set data structure that allows several occurrences of the same element).
Computation proceeds by rewritings, which consume and produce new elements ac-
cording to conditions and transformation rules. The Gamma formalism was first pro-
posed in [9] and later extended to the γ-calculus and HOCL (Higher-Order Chemical
Language) in [10, 11] for modeling self-organizing and autonomic systems or grids in
particular. MGS is another formalism based on the chemical model. It was designed
to represent and manipulate local transformations of entities structured by abstract
topologies [12].

Beyond the chemical programming idea, another approach presented in [13], called
the Organic Grid, is similarly a radical departure from current approaches and is in-
spired by the self-organization property of complex biological systems.

M. Lipshteyn et al. (Eds.): Golumbic Festschrift, LNCS 5420, pp. 15–26, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Our previous work on biochemical applications led us to consider the structure of
port graph [14] (or multigraph with ports) to model interactions between molecules, in
particular proteins [15]. The behavior of a protein is given by its functional domains
which determine which other proteins it can bind to or interact with; these domains are
usually abstracted as sites that can be bound or free, visible or hidden. Hence a protein
is characterized by the collection of interaction sites on its surface and proteins can bind
to each other forming molecular complexes. Based on such structures, we considered
graphs with multiple edges and loops, with nodes having explicit connection points,
called ports, and edges attaching, more specifically, to ports of nodes; we called them
port graphs. Port graphs provide a modeling formalism for molecular complexes by
restricting the connectivity of a port (called site in the biological model) to at most
one other port. In [15], port graph rewriting and rewrite strategies are used to model
molecular complexes and their interaction on a fragment of the epidermal growth factor
receptor (EGFR) signaling pathway.

We extend the chemical model with high-level features by considering a graph struc-
ture for the molecules and permitting control on computations to combine rule applica-
tions. The result is a higher-order port graph rewriting calculus. By lifting port graph
rewriting to a calculus, we are able to express rules and strategies as port graphs and so
to rewrite them as well. The calculus also permits the design of rules that create new
rules, providing a way of modeling emergence in a system. We borrow various concepts
from graph theory, in particular from graph transformations [16], and we use different
representations for graphs already intensively formalized.

In this paper, we propose port graphs as a formal model for distributed resources
and grid infrastructures. Each resource is modeled by a node with ports. We model
the lack of global information, the autonomous and distributed behavior of components
by a multiset of port graphs and rewrite rules which are applied locally, concurrently,
and non-deterministically. Hence the computations take place wherever it is possible
and in parallel as soon as they do not interfere. This approach also provides a formal
framework to reason about computations and to verify desirable properties.

The paper is structured as follows. Section 2 introduces the rewriting relation for port
graphs and presents some rewrite strategies used in this paper. Having all ingredients
in hand, in Sect. 3 we give the main ideas of a high-level calculus for port graphs, and
in Sect. 4, we argue that this calculus is a suitable formalism for modeling autonomic
systems. In Sect. 5 we give some suggestions on expressing properties of a modeled
system as strategies.

2 Port Graph Rewriting

In order to illustrate our approach and the proposed concepts, we develop the example
of a mail delivery system borrowed from [17]. It consists of a network of several mail
servers each with its own address domain; the clients send messages for other clients
first to their server domain, which in turn forwards them to the network and recovers the
messages sent to its clients. Servers are distributed resources with connections between
them, created when sending and receiving the messages.
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Fig. 1. A mail system configuration

In Fig. 1, we illustrate an initial configuration of the mail delivery system. The net-
work is a node with several ports, each port being connected to at most one server. We
represent graphically a node as a box with the unique identifier and the name placed
outside the box. The ports are represented as small points on the surface of the box.
A server node has a handler port for connecting to the network, and several ports for
the clients. A client node has a handler port for connecting to a server. All client and
server nodes have two ports for the incoming and outgoing messages respectively. The
network node has one port for the messages. Messages are nodes with only one port
and their names have the form (rec @ domain # m) where rec is the identifier of
the recipient client, domain is the identifier of the server domain, and m the body
of the message. If redundant, the domain and/or the client identifiers are removed: this
is the case as soon as the message is arrived in the server domain or at the client. In the
system described in Fig. 1, the server identified by 5 is disconnected from the network
node, meaning that it is crashed.

Formally, given a finite set of node names and a finite set of port names, a p-signature
is a function associating to each node name a set of port names.

A port graph rewrite rule L ⇒ R is a port graph consisting of two port graphs L
and R over the same p-signature and one special node⇒, called arrow node connect-
ing them. L and R are called, as usual, the left- and right-hand side respectively. We
assume here that all node identifiers are variables. The arrow node has the following
characteristics:

1. for each port p in L, to which corresponds a non-empty set of ports {p1, . . . , pn} in
R, the arrow node has a unique port r and the incident edges (p, r) and (r, pi), for
all i = 1, . . . , n;

2. all ports from L that are deleted in R are connected to a black hole port, named bh.

The arrow node together with its adjacent edges embed the correspondence between
elements of L and elements of R.

We illustrate some port graph rewrite rules in Fig. 2. We represent graphically the
edges incident to the arrow node only if the correspondence is ambiguous. In conse-
quence, port graphs represent a unifying structure for representing port graph rewrite
rules as well.

A port graph rewrite system R is a finite set of port graph rewrite rules.
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Fig. 3. Basic rules for the mail delivery system

Coming back to our example, the evolution of the mail delivery distributed system
is modeled via port graph transformations, themselves expressed by port graph rewrite
rules and the generated rewriting relation. We illustrate in Fig. 3 some basic rules for
the mail system. A mail sent by a client goes to its server: if the mail is sent to a client
in the same server domain then it goes to the input port by r1, otherwise to the outgoing
port by r2. By rule r3 a server forwards a mail to a client if he is the recipient. Rule
r4 specifies that a server forwards a mail to the network if its recipient is not in the
domain, while rule r5 specifies that the network forwards a mail to the appropriate
server as specified in the mail.

Let us now formalize the graph transformations induced by port graph rewrite rules.
Let L ⇒ R be a port graph rewrite rule and G a port graph such that there is an in-
jective graph morphism g from L to G; hence g(L) is a subgraph of G. Replacing
g(L) by g(R) and connecting it appropriately in the context, we obtain a port graph
G′ which represents a result of one-step rewriting of G using the rule L ⇒ R, written
G→L⇒R G′. There can be different such injective morphisms g from L to G leading to



A Higher-Order Graph Calculus for Autonomic Computing 19

different results. They are built as solutions of a matching problem from L to a subgraph
of G. If there is no such injective morphism, we say that G is irreducible with respect
to L⇒ R. Given a port graph rewrite systemR, a port graph G rewrites to a port graph
G′, denoted by G →R G′, if there exists a port graph rewrite rule r in R such that
G→r G′. The formal definition of port graph rewriting is given in [14].

The port graph rewrite system R generates an abstract reduction system, whose
nodes are graphs and whose oriented edges are rewriting steps. Then a derivation in
R is a path in the underlying graph of the associated abstract reduction system. The
notions of strategy and strategic rewriting were introduced in the rewriting community
in order to control rule applications, i.e. to select relevant derivations. Strategies are
formalized as a subset of derivations in [18]. A strategy can be described by a strategy
language. Various approaches have been followed, yielding different strategy languages
such as ELAN [19], Stratego [20], TOM [21] or Maude [22]. All these languages share
the concern to provide abstract ways to express control of rule applications. Follow-
ing [18], we can distinguish two classes of constructs in the strategy language: the first
class allows construction of derivations from the basic elements, namely the rewrite
rules, identity (Id ) and failure (Fail ). The second class corresponds to constructs that
express the control, like sequence (Sequence or ; ) or left-biased choice (First). More-
over, the capability of expressing recursion in the language brings even more expressive
power. The strategies can be composed to build other useful strategies. One composed
strategy, for instance, is Try which applies a strategy if it can, and the identity strategy
otherwise. Similarly, the Repeat combinator is used in combination with a fixpoint op-
erator to iterate the application of a strategy. We will give later a formal description of
strategies in our port graph rewriting calculus.

3 The Port Graph Rewriting Calculus

In this section, we define a rewriting calculus for port graphs, the ρpg-calculus, whose
first-class citizens are object port graphs, port graph rewrite rules and rule application.
This is an instance of an Abstract Biochemical Calculus, the ρ〈Σ〉-calculus, modeling
interactions between abstract molecules over a structure described by the objects of a
category Σ and presented in [23]. Here, we consider the port graph structure and the
port graph rewriting relation defined in Section 2 for the abstract molecules and their
interactions respectively.

The ρpg-calculus generalizes the ρ-calculus [24] and the ρg-calculus [25], since port
graphs generalize the tree-like structure of terms and the graph-like structure of ter-
mgraphs respectively. It inherits from the ρ-calculus the fact that it also generalizes the
λ-calculus through a more powerful abstraction power that considers for matching not
only a variable, like in the λ-calculus, but a port graph with variables.

The ρpg-calculus provides a formal model for systems whose states correspond to
a multiset of object port graphs and whose transitions are reductions obtained by ap-
plying port graph rewrite rules. Due to the intrinsic concurrent (or parallel) nature of
rewriting on disjoint redexes, we model a kind of Brownian motion, a basic principle
in the chemical paradigm consisting in “the free distribution and unspecified reaction
order among molecules” [17], if we consider port graphs as molecules.
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3.1 Syntax

LetO be the set of object port graphs modeling systems states. We denote byA the set
of abstractions, which are port graph rewrite rules consisting of two port graphs for the
left- and right-hand side, and the arrow node embedding the correspondence between
the two sides. Graphically, the abstractions are first defined as follows:

A0 ::= ⇒
...

����O
...

�� ��

O

| ⇒
...

���� ����
O ⇒ O

...

�� 		

O ⇒ O
We construct in an iterative way the set of port graph molecules. In a first step, let us

consider the set G0 of port graph molecules which are either an object port graph in O,
an abstraction in A0, a juxtaposition of molecules from G0, or the empty port graph ε:

G0 ::= O | A0 | G0 G0 | ε

The juxtaposition “ ” is associative, commutative with ε the neutral element.
In a second step, the set of abstractionsA0 is extended with port graph rewrite rules

that transform an object from O into a port graph molecule from G0:

A ::= A0 | ⇒
...

���� ����O

...

�� 



G0

Then the set of port graph molecules G includes G0 and A, as well as a set of
variables X :

G ::= X | G0 | A | G G
Finally, molecules are encapsulated into worlds. A world represents a state of the

modeled system that contains all molecules present in the environment at a current step
together with the connections between them. A world is again represented as a port
graph with a node [ ] connected to all object port graphs and all abstractions in the
environment. This node corresponds to a permutative variadic operator.

3.2 Reduction Semantics

In a world, an abstraction A and a port graph molecule G can interact non-deterministi-
cally. This interaction is modeled thanks to the Heating rule given in Fig. 4. This rule
introduces an application node @ which connects the abstraction A and the port graph
molecule G in the context of other molecules C in the world.

A successful application of an abstraction A on a port graph molecule G yields a
port graph G′ according to a port graph rewriting step G→A G′ with a port graph
rewrite rule A of the form L⇒ R. The successful application of an abstraction to a
port graph molecule may produce different molecules, according to different matching
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solutions. So we get in general a multiset of results if the application succeeds (see Rule
Application in Fig. 4), while a matching failure returns the initial abstraction and the
port graph molecule unchanged (see Rule ApplicationFail in Fig. 4).

After the application of the abstraction on the port graph molecule has taken place,
a cooling rule, the counterpart of the heating rule, is in charge of rebuilding the state of
the different produced systems. This is Rule Cooling in Fig. 4.

(Heating) [C A G] −→ [C A@G]

(Application) A@G −→ {[G1] . . . [Gn]} if G →A Gi, 1 ≤ i ≤ n

(ApplicationFail) A@G −→ A G if G is A-irreducible

(Cooling) [C {[G1] . . . [Gn]}] −→ {[C G1] . . . [C Gn]}

Fig. 4. Semantic rules with explicit application

The full calculus is developed in [23]. All steps computing the application of an
abstraction to a port graph molecule, including the matching and the replacement op-
erations, are expressible using port graphs by considering more auxiliary nodes and
extending the reduction relation with appropriate graph reduction rules. This illustrates
well the expressivity of the port graph structure and transformation. Matching and re-
placement mechanisms are internalized in the calculus as port graph transformations,
but since the rules are quite technical, we do not include them here. They can be found
in [23].

3.3 Explicit Failure Handling

In the previous reduction rules for the semantics in Fig. 4, failure is implicit and the
failure information is not exploited. In order to do that, we introduce the failure node
stk in the ApplicationFail rule:

(ApplicationFail’) A@G −→ stk if G is A-irreducible

Fig. 5. Semantic rule for explicit failure

In addition, when handling explicitly failure in this way, other rules are needed to
clean up the worlds, such as :

[G] [stk] −→ [G] [stk] [stk] −→ [stk]

3.4 Strategies as Abstractions

Instead of having this highly non-deterministic and non-terminating behavior of port
graph rewrite rule application, one may want to introduce some control to compose or
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choose the rules to apply, possibly exploiting failure information. This is possible by
defining strategies as extended abstractions.

In this section, we define strategies as objects of the calculus, using the basic con-
structs, as one can do in the λ-calculus or the γ-calculus. For such definitions, we use an
approach similar to the one used in [26] where rewrite strategies are encoded by rewrite
rules. Let us consider, for the rewrite strategies given in Sect. 2, the following objects:
id, fail, seq, first and try.

Let S, S1, S2 denote strategies. We encode the strategies Id, Fail, ; , First and
Try as the following aliases for extended abstractions respectively:

id � X ⇒ X

fail � X ⇒ stk

seq(S1, S2) � X ⇒ S2@(S1@X)
first(S1, S2) � X ⇒ (S1@X) (stk⇒ (S2@X))@(S1@X)

try(S) � first(S, id)

Other useful strategies are provided for negation and test:

not(S) � X ⇒ first(stk⇒ X, X ′ ⇒ stk)@(S@X)
ifThenElse(S1, S2, S3) � X ⇒ first(stk⇒ S3@X, X ′ ⇒ S2@X)@(S1@X)

The composed strategy Repeat is defined with a recursion operator μ as follows:

repeat(S) � μX.try(seq(S, X))

We can encode the μ abstraction using the fixed-point combinator of the λ-calculus as
already done for encoding iterators in the ρ-calculus(See [24]).

Based on these strategy definitions, we can reformulate the heating rule using a fail-
ure catching mechanism: if S@G reduces to failure, i.e., to the stk node, then the ab-
straction stk⇒ S G restores the initial port graphs.

(Heating’) [C S G] −→ [C first(S, stk ⇒ S G)@G]

Fig. 6. Semantic rule for failure catching

3.5 Persistent Strategies

At this level of definition of the calculus, strategies are consumed by a non-failing inter-
action with a port graph molecule. One advantage is that, since we work with multisets,
a strategy can be given a multiplicity, and each interaction between the strategy and a
port graph molecule consumes one occurrence of the strategy. This permits controlling
the maximum number of times an interaction can take place.

Sometimes it may be suitable to have persistence of strategies. In this case, the strate-
gies should not be consumed by the reduction. For that purpose, we define the persistent
strategy combinator that applies a strategy given as argument and, if successful, repli-
cates itself:

S! � μX.seq(S, first(stk⇒ stk, Y ⇒ Y X))
Indeed if S@G −→ {[G1] . . . [Gn]}, then S!@G −→ {[S! G1] . . . [S! Gn]}.
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4 Expressivity of the ρpg-calculus: Modeling Autonomic Systems

In autonomic computing, systems and their components reconfigure themselves auto-
matically according to directives (rewrite rules and strategies) given initially by admin-
istrators. Based on these primary directives and their acquired knowledge along the
execution, the systems and their components seek new ways of optimizing their perfor-
mance and efficiency via new rewrite rules and strategies that they deduce and include
in their own behavior. Since there is no ideal system, functioning problems and mali-
cious attacks or failure cascades may occur, and the systems must be prepared to face
them and solve them. Let us consider here and illustrate on the mail delivery system ex-
ample, three aspects that an autonomic system must handle, namely self-configuration,
self-healing, and self-protection.

The self-configuration is simply described by the concurrent application of the five
rules given in Fig. 3 using the reduction semantics introduced in Sect. 3. An interesting
problem may concern the operations of splitting and merging servers (their domains).
Then biologically inspired port graph rules from Fig. 2 (a) and (c) could be applied as
well for servers.

An autonomic system detects when a server crashes and the connection of the crashed
server to the network is cut. It is expected to repair the problem of the clients connected
to the crashed server and the problem of the mails that were about to be sent from that
particular server. This self-healing behavior can be described by rules that detect the
problems and by rules that repair them by modifying the configuration or introducing
new rules in the system. The same method can be used as well for self-optimization.
For finding the problem in the system, the calculus is powerful enough to find the right
pattern and apply the appropriate rule.

We show in the following a concrete example for self-protection behavior of the mail
system. Let us consider the rules in Fig. 7. When a spam arrives at a server node, the
filtering rule r6 deletes it, assuming that the server has a procedure for deciding when
a mail is a spam. The rules r7 and r8 are analogous to r6 but for a client node and
a network node respectively, assuming as well that both entities have their own spam
detection procedure. In order to limit spam sending, the rule r8 should have a higher
priority than r5 in Fig. 1, and the rule r6 a higher priority than r3. Then we replace r3
and r6 by seq(try(r6), r3), and r5 and r7 by seq(try(r8), r5).

When a client receives a mail and, based on a spam decision procedure, concludes
that the mail is a spam, it deletes the mail and provides the server with a new rule
specifying that from now on the server node should delete all mails of this kind. This
behavior is specified by the rule r9.

A bigger development of this mail delivery system example with further rules can be
found in [23].

5 Embedding Runtime Verification

We have shown in Sect. 4 how a particular autonomic system can be modeled using the
ρpg-calculus. The model should also ensure formally that the intended self-managing
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k:Server

c

l:Client

in m
r9

if isSpamForClient(m)

h

k:Server

c

l:Client

inh

k:Server

i@#min

k:Server

in

k:Server

in j@#m
r6

k:Server

in
if isSpamForServer(m)

l:Client

in m

i:Network

i/o j@k#m

r7

r8

l:Client

in

i:Network

i/o

if isSpamForClient(m)

if isSpamForNetwork(m)

Fig. 7. Rules for self-protection in the mail delivery system

specification of the system helps indeed preserving the properties of the system. Some
properties can be verified by checking the presence of particular port graphs. Such prop-
erties can be easily encoded as object port graphs, abstractions, or strategies, hence as
entities of the calculus. Consequently, the properties can be placed at the same level as
the specification of the modeled system and they can be tested at any time.

An invariant of the system can be expressed as a port graph rewrite rule with identical
sides, G ⇒ G, testing the presence of a port graph G. The failure of the invariant is
handled by a failure port graph Failure that does not allow the execution to continue.
The strategy verifying such an invariant is then:

first(G⇒ G, X ⇒ Failure)!

Such strategy is useful for instance to ensure, in our running example, the persistence of
a given critical server of the network, or may be used also to check that there is always
a minimal number of servers available in the network. From another perspective, we
express the unwanted occurrence of a concrete port graph G in the system using the
strategy:

(G⇒ Failure)!

In practice, such strategies are employed in model checking applications to test un-
wanted situations.

In both cases above, instead of yielding the failure Failure signaling that a property
of the system is not satisfied, the problem can be “repaired” by associating to each
property the necessary rules or strategies to be inserted in the system in case of failure.
Such ideas need to be further explored since they open a wide field of possibilities for
combining runtime verification and self-healing in ρpg-calculus.
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6 Conclusion

In this paper our main objective was to propose a formalism, the port graph calculus,
for modeling autonomic systems.

From the computational point of view, we have shown that this calculus allows us to
model concurrent interactions between port graph rewrite rules and object port graphs,
as well as interactions between rewrite rules or interactions creating new rewrite rules.
Thanks to strategies, some interactions may be designed with more control. The suitable
balance between controlled and uncontrolled interactions is an interesting question to
address for a given application. Here again, biological systems may provide us with
valuable intuitions.

From the verification point of view, we can take advantage of the classical techniques
used in rewriting for checking properties of autonomic systems. However, rules may
also interfere giving rise to some conflicts. Detecting them can be done through con-
fluence check and computation of critical pairs. Also some processes may be required
to terminate when they are involved in computations. On the contrary, for known non-
terminating processes, detecting periodicity of the processes may be of interest. There-
fore, further work needs to address the verification of such properties for port graph
rewriting. We have also outlined in this paper some ideas for runtime verification of
properties in such systems, that need further exploration.
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Abstract. We describe polynomial time algorithms to find in subtree filament 
graphs a minimum dominating hole, a clique intersecting all its maximum inde-
pendent sets and a maximum induced split subgraph. 

Keywords: subtree filament graph, dominating hole, perfect graph, induced 
split subgraph. 

1   Introduction 

We consider only finite graphs G(V,E) with no parallel edges and no self-loops, where V 
is the set of vertices and E the set of edges; coG is the complement of G. For U⊆V, G(U) 
is the vertex subgraph defined by U. Two vertices connected by an edge u⎯v are called 
adjacent; a directed edge from u to v is denoted u→v. We also denote N(v,G)={u| 
u⎯v∈E}, N[v,G]=N(v,G)∪{v}, Nin(v,G)={u| u→v in G}, Nout(v,G)={u| v→u in G}, 
Nin[v,G]=Nin(v,G)∪{v}, Nout[v,G]=Nout(v,G)∪{v}. By a path p(v1,vk)=v1⎯...⎯vk we 
always mean a simple path; p is an induced path if it has no chords. A hole 
h(v1,vk)=v1⎯...⎯vk⎯v1 is a chordless cycle with four or more vertices. A hole or an 
induced path h is dominating in G, if every vertex of G is adjacent to a vertex of h. A 
subset of V is a clique (an independent set) if every two of its vertices are adjacent (not 
adjacent, respectively). We denote by α(G) the size of a maximum independent set and 
by θ(G) the size of a minimum covering by cliques.  

A graph G is an intersection graph of a family S of distinct subsets of a set if there 
is a one-to-one correspondence between the vertices of G and the subsets in S such 
that two subsets intersect iff their corresponding vertices are adjacent; S is a represen-
tation of G. Intersection graphs are of interest in various domains such as computer 
science, genetics and ecology [11,13,15].  A family of sets is called Helly if every 
subfamily of mutually intersecting sets has a non-empty intersection. Two distinct 
sets b,d overlap if b∩d≠φ, b⊄d and d⊄b. An oriented graph G(V,E) is transitive if it is 
acyclic and for every three vertices u,v,w∈V, u→v,v→w∈E implies u→w∈E [11]. A 
graph G is perfect if in every subgraph H of G α(H)=θ(H). These graphs were intro-
duced by Berge [1] with his famous Strong Perfect Graph Conjecture proved recently 
by Chudnovsky et al. [3]. Golumbic's book [11] is an excellent compendium of prob-
lems, algorithms and applications of perfect graphs and intersection graphs. 

A graph GI(V,F) is chordal if it has no holes; a chordal graph GI(V,F) has  
O(|V|) maximal cliques [6]. Every chordal graph GI(V,F) is the intersection graph of a 
family FI={a(v) | v∈V} of subtrees of a tree T such that (by the Helly property) the 



28 F. Gavril 

intersection of every maximal subfamily of mutually intersecting subtrees contains a 
vertex x∈T [6]. As proved in [4,9], we can assume that in FI no two subtrees have a 
common endpoint and the intersection of every maximal set of intersecting subtrees 
contains an edge of T. Assume that T is in a plane PL and let PP be a surface perpen-
dicular to PL whose intersection with PL is exactly T. For a(v)∈FI, let PP(a(v)) be the 
subsurface of PP whose intersection with PL is exactly a(v). In PP(a(v)), above T, we 
connect all the endpoints of a(v) by a continuous function f(v):a(v)→R+ ( i.e., f(x)=0 
for every endpoint x of v) called a subtree filament, such that if a(u),a(v) overlap the 
two filaments intersect, if a(u),a(v) are disjoint, the two filaments do not intersect, and 
if a(u)⊂a(v), the two filaments may or may not intersect. The intersection graph 
G(V,E) of a family FT of subtree filaments on FI is called a subtree filament graph. 
When T is a line and FI is a family of intervals, the filaments are called interval fila-
ments and their intersection graphs are called interval filament graphs.  

The subtree filament graphs and the interval filament graphs were introduced by 
Gavril [8] and he proved that they contain the families of polygon-circle, cocompara-
bility, circular-arc and chordal graphs [6,7,10]. In [9] Gavril gave for them improved 
definitions and constructions and extended them to 3D-interval filament graphs. En-
right and Stewart [4] proved that the subtree filament graphs are exactly the overlap 
subtree graphs and this was extended in [9] to 3D-interval filament graphs.  

Consider a family AR of arcs on a circle CR, no two arcs covering CR. Let GI(V,F) 
be the intersection graph of AR, AR={a(v) | v∈V}. Assume that CR is in a plane PL 
and let PP be a surface perpendicular to PL whose intersection with PL is exactly CR. 
For a(v)∈AR, let PP(a(v)) be the subsurface of PP whose intersection with PL is ex-
actly a(v). In PP(a(v)), above CR, we connect the endpoints of every a(v)∈AR by a 
continuous function f(v):a(v)→R+ called a circular-arc filament, such that if a(u),a(v) 
overlap the two filaments intersect, if a(u),a(v) are disjoint, the two filaments do not 
intersect, and if a(u)⊂a(v), the two filaments may or may not intersect. The intersec-
tion graph G(V,E) of a family of circular-arc filamets FAR={v | a(v)∈AR} is a circu-
lar-arc filament graph [8].  

A cactus CA is a graph which can be decomposed by cut-vertices into chordless 
cycles and trees. We can define subtree filaments on a family of subtrees on a cactus 
CA, similarly to the circular-arc and subtree filaments; their intersection graphs are 
called cactus-subtree graphs. 

The various families of filament graphs have polynomial time algorithms for many 
problems: Gavril [8,9] described polynomial time algorithms for maximum weight 
cliques, maximum independent sets and induced holes and antiholes of given parity. 
Cameron [2] described polynomial time algorithms for maximum weight induced 
matchings. On the other hand, Pergel [14] proved that the recognition problem for 
polygon circle graphs and interval filament graphs is NP-complete. 

In the present paper, we describe algorithms to find in subtree filament graphs a 
clique intersecting all maximum independent sets (Section 2), a minimum dominating 
hole (Section 3) and a maximum induced split subgraph (Section 4). These algorithms 
are extended to circular-arc and cactus-subtree filament graphs. Note that Kratsch and 
Stewart [12] described a polynomial time algorithm to find minimum induced domi-
nating paths in cocomparability graphs and Faigle et al. [5] described a polynomial 
time algorithm to find a maximum induced split subgraph in comparability graphs.  
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Given the intersection graph G(V,E) of a family of filaments, we denote the filament 
corresponding to a vertex v of G also by v. The base graph GI of G is the intersection 
graph of its respective family of subtrees or arcs. We denote by a(v) the element in GI 
corresponding to v. Our algorithms do not require an intersection representation of the 
filament graphs, but only a representation of their base graphs.  

2   Algorithm for a Clique Intersecting All Maximum Independent 
Sets 

Consider a family of graphs having a polynomial time algorithm for maximum inde-
pendent set and fulfilling that every graph G(V,E) in the family has a polynomial 
number of cocomparability subgraphs G(Vd), indexed by d, which can be found in 
polynomial time, such that every clique of G is contained in one of them. Every 
coG(Vd) being transitively orientable, we assume such an orientation. Our purpose is 
to describe an algorithm to find a clique CL which intersects all maximum independ-
ent sets of G. For a maximum independent set IND of G and any coG(Vd), the vertices 
in IND∩Vd fulfill v1→v2→...→vk in coG(Vd); we call v1 the innermost vertex of IND 
in Vd. Let NN(v,G,d)=G(V-N(v,G)-Nin(v,coG(Vd))) denote the subgraph obtained from 
G by deleting the vertices adjacent to v in G and the vertices u having an edge u→v  
in coG(Vd). 
 

Lemma 1. A vertex v, v∈Vd, is the innermost vertex in Vd for some maximum inde-
pendent set IND if and only if α(NN(v,G,d))=α(G(V)). 
 

Proof. If v∈Vd, is the innermost vertex in Vd for some maximum independent set IND, 
then, clearly, α(NN(v,G,d))=α(G(V))=|IND|.  

Conversely, assume that α(NN(v,G,d))=α(G(V)) for some v∈Vd. Since v has  
no adjacent vertices in G(NN(v,G,d)), every maximum independent set IND of 
G(NN(v,G,d)) contains v and contains no u having u→v. Thus, v is the innermost ver-
tex of IND in Vd.                                                                                                               
 

The algorithm to find in G a clique CL which intersects all its maximum independent 
sets, works as follows: We consider every cocomparability subgraph G(Vd) of G. If 
α(G(V-Vd))=α(G(V)), G(Vd) contains no such CL. Assume that α(G(V-Vd))<α(G(V)). 
We want to find in G(Vd)  a clique CL of G, such that α(G(V-CL))<α(G(V)). Let 
Y={v| v∈Vd, α(NN(v,G,d))=α(G(V))}; Y is the set of innermost vertices in Vd  of the 
maximum independent sets. If Y is a clique, then CL=Y. Assume that Y is not a clique. 
Consider u,v∈Y, u innermost for INDu and v innermost for INDv, such that u→v in 
coG(Vd). For every w∈INDv∩Vd we have u→v→w, hence u→w in coG(Vd) implying 
that u is not adjacent in G to any vertex of INDv∩Vd. Thus u∉CL, otherwise 
CL∩INDv=φ; still CL∩INDu can be a vertex different from u. We delete from Vd and 
Y every vertex u∈Y having u→v, v∈Y, in coG(Vd). If the new Vd fulfills α(G(V-
Vd))=α(G(V)), then it does not contain a clique CL intersecting all the maximum inde-
pendent sets of G and we go to the next Vd. If the new Vd fulfils α(G(V-Vd))<α(G(V)), 
we look in Vd -Y for the vertices which replace in Y the deleted vertices as innermost 
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in the new Vd, by adding to Y the vertices v∈Vd -Y fulfilling α(NN(v,G,d))=α(G(V)). 
We continue in this way, until for some Vd we have α(G(V-Vd))<α(G(V)) and Y is a 
clique, or we declare that such a clique does not exists.  

Let G(V,E) be an intersection graph of a family FT of subtree filaments with base 
graph GI; GI is the intersection graph of a family FI={a(v) | v∈V} of subtrees on a 
tree T. Every maximal clique CL of G is contained in a maximal clique c of GI. The 
graph GI is chordal and has O(|V|) maximal cliques which can be found by the algo-
rithm described in [6]. By the Helly property, the intersection of the subtrees corre-
sponding to any maximal clique c of G contains a point dc of T. Consider now a point 
d=dc on T and let Vd={v| v∈V, d∈a(v)}. For every two vertices v,u∈Vd, there exists 
a(v)∩a(u)≠φ, hence Vd is a maximal clique c of the chordal graph GI. Every two ver-
tices v,u∈Vd not adjacent in G, have either a(v)⊂a(u) or a(u)⊂a(v), since u∩v=φ  and 
d∈a(v)∩a(u). If a(v)⊂a(u), we orient in coG(Vd) the edge v⎯u as v→u. We obtain a 
transitive orientation of coG(Vd). Therefore, there are O(|V|) points d on T and co-
comparability subgraphs G(Vd) of G, such that every clique CL of G is contained in 
some G(Vd). 

Let G(V,E) be an intersection graph of circular-arc filaments with base graph GI; 
GI is the intersection graph of a family AR of arcs on a circle CR, no two arcs cover-
ing CR. Let c be a maximal clique of GI corresponding to a set of mutually intersect-
ing arcs of AR; AR may not have the Helly property, but [8], there are two points 
x,y∈CR such that each arc corresponding to a vertex in CL contains x or y and not 
both.  Consider now two points x,y on CR and let Vx,y be the subset of vertices v in V 
such that a(v) contains either x or y but not both. For every two non-adjacent vertices 
v,u∈Vx,y, we orient in coG(Vx,y) the edge v⎯u as v→u whenever filament v is between 
filament u and the point x of CR. We obtain a transitive orientation of coG(Vx,y); it is 
enough to consider O(|V|2) such pairs x,y defined by the pairs of arcs containing no 
arc endpoints. Therefore, there are O(|V|2) cocomparability subgraphs G(Vd) of G, 
such that every clique CL of G is contained in some G(Vd). 

In a cactus-subtree filament graph G, a clique CL is contained either in some Vx,y, 
x,y points in a circle of the cactus CA or in some Vd for some point d of CA, as shown 
above for circular-arc and subtree filament graphs. 

Therefore, the algorithm to find a clique intersecting all maximum independent sets, 
can be applied to subtree filament, circular-arc filament and cactus-subtree filament 
graphs, since they have algorithms [8] to evaluate α(G) in time O(|V|3). The algorithm 
works in time O(|V|5) for subtree filament graphs and in time O(|V|6) for circular-arc 
filament and cactus-subtree filament graphs. 

In a perfect graph G and in any of its subgraphs H, α(H)=θ(H). Thus, any clique 
CL in a minimum covering by cliques of G, intersects all maximum independent sets 
of G. In a perfect graph, the converse is also true: if a clique CL intersects all maxi-
mum independent sets, then it is a clique of a minimum covering by cliques, and 
α(G(V-CL))=α(G(V))-1=θ(G(V))-1. Therefore, we can use the above algorithm to 
find a minimum covering by cliques in a perfect filament graph: we find a clique CL 
intersecting all maximum independent sets, we delete CL from G and continue on the 
graph G(V-CL). The algorithm works in time O(|V|6) for subtree filament graphs and 
in time O(|V|7) for circular-arc filament and cactus-subtree filament graphs. 
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3   Minimum Dominating Holes 

First we prove that the existence problem of a dominating hole in general graphs is 
NP-complete, using a reduction from the NP-complete problem 3SAT. Next, we 
give a characterization of the dominating holes in subtree filament graphs. The 
problems are: 
 
The 3SAT problem: 
Instance: A set U of Boolean variables and a collection C of clauses over U, where a 
clause is a disjunction of at most three literals and a literal is a variable x∈U or its 
negation -x. 
Question: Is there an assignment of true or false to the variables in U such that each 
clause in C is true? Such a truth assignment is called satisfiable. 
 
The Dominating Hole problem: 
Instance: A graph G(V,E). 
Question: Is there a dominating hole in G? 
 
Lemma 2. The 3SAT problem is reducible to the Dominating Hole problem, hence 
the Dominating Hole problem is NP-complete. 
 
Proof. Consider an instance U={u1,u2,…,ur}, C={c1,c2,…,cs} of the 3SAT problem. 
We construct a graph G with vertex set X∪C, where X={u1,-u1,y1,u2,-u2,y2,…,ur,-
ur,yr}, and edge set defined as follows: {ui,-ui,ui+1,-ui+1}, {ui,-ui,yi} are cliques for 
every 1≤i≤r-1, {ur,-ur,u1,-u1}, {ur,-ur,yr} are cliques, and every c in C is adjacent to its 
literals. 

If G has no dominating holes, then there is no satisfiable truth assignment for C, 
since such a truth assignment would define a hole of G which dominates C∪X. 

Conversely, consider a dominating hole h of G; h contains a vertex from every 
pair ui,-ui to dominate yi. Assume that h contains both ui,-ui for some variable ui. 
Since one of ui+1,-ui+1, say ui+1, is contained in h, it follows that h contains the clique 
{ui,-ui,ui+1}, contradicting that h is a hole. Thus, |h∩{ui,-ui}|=1 for every i, h⊂X and 
h dominates C; by assigning true to the literals in h we obtain a satisfiable truth as-
signment of C.                                                                                                                   
 
Let G(V,E) be an intersection graph of a family of subtree filaments with base graph 
GI; GI is the intersection graph of a family FI={a(v) | v∈V} of subtrees on a tree T. 
Let us define IN(v)={u | u∉N[v,G] and a(u)⊂a(v)}, OUT(v)={u | u∉N[v,G] and  
a(v)∩a(u)=φ or a(v)⊂a(u)}. Let p(v1,vk) be an induced path in G(IN(v)). Then 
a(v1)∪a(v2)∪...∪a(vk) is a subtree of T, and the filament w=v1∪v2∪...∪vk is properly 
contained in the surface s(v) bounded by v∪a(v), since for getting out of s(v), w must 
intersect v. Using this observation, Gavril [9] proves the following Lemma: 
 

Lemma 3. [9] Consider a hole h(v1,vk) of G. Then, either h is a hole of its base graph 
GI, or h has a vertex vj such that h-{vj,vj−1,vj+1} is an induced path of GI(IN(vj)).  
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Using Lemma 3, we characterize dominating holes:  
Lemma 4. Consider a dominating hole h of a subtree filament graph G. Then, either h 
is a hole of GI which dominates G or h has a vertex vj such that {vj−1,vj+1} dominates 
G(OUT(vj)) and h-{vj,vj−1,vj+1}  is an induced path of GI(IN(vj)) which dominates the 
vertex set IN(vj)-N[vj,vj−1,vj+1,G].  
 

Proof. Consider a dominating hole h of a filament graph G. By Lemma 3, h is a hole 
of GI, or h has a vertex vj such that h-{vj,vj−1,vj+1}  is an induced path of GI(IN(vj)). 

In the first case, the hole h of GI dominates G. In the second case, the connected 
filament defined by h-{vj,vj−1,vj+1}  is properly contained in the surface bounded  
by vj∪a(vj) and cannot intersect the filaments corresponding to the vertices in 
OUT(vj); hence, the vertices in OUT(vj) are dominated by {vj−1,vj+1}. The vertices 
which are not dominated by {vj,vj−1,vj+1} are those in IN(vj)-N[vj,vj−1,vj+1,G]. Thus, 
h-{vj,vj−1,vj+1} is an induced path of GI(IN(vj)) which dominates the vertex set 
IN(vj)-N[vj,vj−1,vj+1,G].                                                                                                
 
The algorithm to find a dominating hole h in a subtree filament graph G works as fol-
lows: Chordal graphs have no holes. We consider every three vertices {vj,vj−1,vj+1} 
which dominate OUT(vj), such that vj−1,vj+1∈N[vj,G], and vj−1∉N[vj+1,G], as 
{vj,vj−1,vj+1} of the hole h we try to find. We consider every two non adjacent vertices 
vj−2,vj+2 such that vj−2∈N[vj-1,G]∩ IN(vj), vj+2∈N[vj+1,G]∩ IN(vj), 

Let x,y be two farthest endpoints of a(vj+2),a(vj-2) in a(vj). Let PT(x,y) be the unique 
path in a(vj) connecting x and y, and let GI' be the interval graph defined by the inter-
vals I={PT(x,y)∩a(vq)| vq∈IN(vj)-N[vj,vj−1,vj+1,G]}; since a(vj) is a tree, if h exists, 
then h-{vj,vj−1,vj+1} is an induced path of GI'. 

Therefore, the problem reduces to finding in the interval graph GI', defined by I on 
PT(x,y), a minimum induced path p(u1,uk), between two given vertices u1,uk, 
{u1,uk}={vj+2,vj-2}, which dominates all vertices in Vj=IN(vj)-N[vj,vj−1,vj+1,G]. This is 
done as follows: We assume that PT(x,y) is drawn horizontally from x at left to y at 
right on a line L with all other subtrees of T corresponding to the vertices in Vj  at-
tached below. For every interval i∈I we denote by l(i) its left endpoint in PT and by 
r(i) its right endpoint in PT. On this representation I, PT we perform the following 
algorithm: 

We consider every vertex u2 in GI' whose interval overlaps i(u1) at the right, such 
that {u1,u2}  dominates the vertices u∈Vj having l(i(u))<r(i(u1)) or having subtrees 
attached below i(u1). Note that if l(i(u))<r(i(u1))<r(i(u)) then u1 dominates u. We con-
tinue on L from left to right on the left endpoints of the intervals, from r(i(u1)) to 
l(i(uk)). Assume that we are at i(ui) and for every i(ui-1) overlapping i(ui) at the left we 
found already a minimum induced path p(u1,ui-1,ui) ending in ui-1,ui, which dominates 
all the vertices u∈Vj having l(i(u))<r(i(ui-1)) or having subtrees attached below 
i(u1)∪... ∪i(ui-1). If ui∉N(uk,G) we consider every i(ui+1) overlapping i(ui) at the right 
(advancing on the left endpoints), and for every such ui+1 we consider every ui-1 ful-
filling: ui-1 overlaps ui at the left, i(ui-1)∩i(ui+1)=φ  and ui,ui+1 dominate the vertices 
u∈Vj having r(i(ui-1))<l(i(u))<r(i(ui)) or having subtrees attached below. For a given 
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ui+1, we choose among these paths p(u1,ui-1,ui)  the one with a minimum length, we 
add to it ui+1 and this path is assigned to the pair ui,ui+1. If ui∈N(uk,G)  and ui,uk domi-
nate all the vertices u∈Vj having r(i(ui-1))<l(i(u)) or having subtrees attached below, 
then p(u1,ui-1,ui)∪ {uk} is a dominating induced path. Among all such pairs ui-1,ui, we 
take the one with minimum length. 

The algorithm to find a minimum induced dominating hole in a circular-arc fila-
ment graph G, with base graph GI on a circle CR, works as follows: Lemmas 3,4 are 
true also for circular-arc filament graphs, implying that a dominating hole h(v1,vk) of 
G either is a hole of GI which dominates G or has a vertex vj such that {vj−1,vj+1} 
dominates OUT(vj) and h-{vj,vj−1,vj+1} is an induced path of GI(IN(vj)) which domi-
nates the vertex set IN(vj)-N[vj,vj−1,vj+1,G]. To find a minimum induced hole h of GI 
which dominates G, we consider every vertex as v1 of h, we take every two non-
adjacent vertices in N(v1,G), which dominate the vertices in OUT(v1) as v2,vk and on 
the arc CR-a(v1) we find a minimum induced path from v2 to vk which dominates in 
the vertex set IN(v1)-N[v1,v2,vk,G], using the above algorithm for interval graphs. 
Among all choices of vertices, we take the one giving a minimum dominating hole. 
To find a minimum induced dominating hole h of G which may not be a hole of GI, 
we consider every vertex as vj of h and the intersections of the other arcs with the arc 
a(vj) as a family of intervals on a(vj). We then apply the algorithm for subtree (in fact 
interval) filament graphs above. A similar algorithm exists for cactus-subtree filament 
graphs. The algorithms work in time O(|V|7). 

4   Algorithm for a Maximum Induced Split Subgraph 

Reference [5] describes a simple, nice algorithm to find a maximum induced split 
subgraph in a comparability graph and proves that the problem is NP-complete for 
general graphs. We extend this algorithm to any family of graphs having a polynomial 
time algorithm for maximum independent set and fulfilling that every graph G(V,E) in 
the family has a polynomial number of comparability or cocomparability subgraphs 
Gd=G(Vd), indexed by d, which can be found in polynomial time, such that every 
clique of G is contained in one of them. By the definition of the G(Vd)'s in Section 2, 
this family of graphs contains the circle graphs, the subtree filament graphs, the circu-
lar-arc filament graphs and the cactus subtree filament graphs. When Gd or its com-
plement coGd is transitively orientable, we assume such an orientation. Clearly, we 
can find in Gd a maximum clique. A maximum induced split subgraph of G is com-
posed of a maximum independent set and a maximum clique, which are disjoint or 
have exactly one vertex in common. Thus, the algorithm for a maximum induced split 
subgraph must find a pair of disjoint maximum independent set and maximum clique, 
if such a pair exists, otherwise it can take any pair of maximum independent set and 
maximum clique. 

First, we consider maximum cliques CL of G(V,E) contained in subgraphs Gd of G 
such that coGd is transitively oriented. For every maximum independent set IND of G, 
the set IND(d)=IND∩Vd is a clique (not necessarily maximal) of coGd and 
IND(d)={v1→v2→...→v|IND(d)|} in the orientation of coGd. 
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Lemma 5. For every pair of disjoint maximum clique CL, in a cocomparability graph 
Gd, and maximum independent set IND, where IND(d)={v1→v2→...→v|IND(d)|} in 
coGd, either CL⊆Vd−Nin[v|IND(d)|,coGd] or CL⊆Vd−Nout[v1,coGd] or there is a vertex vi 
in IND(d) such that CL⊆Vd−(Nout[vi,coGd]∪Nin[vi-1,coGd]). 
 

Proof. Consider a maximum clique CL⊆Vd and a maximum independent set IND s.t. 
IND∩CL=φ, IND(d)={v1→v2→...→v|IND(d)|} in coGd and CL∩Nin[v|IND(d)|,coGd]≠φ.  

Let i be the minimal index such that CL∩Nin[vi,coGd]≠φ. Then 
CL∩Nout[vi,coGd]=φ since u,w∈CL, u∈Nin[vi,coGd] and w∈Nout[vi,coGd] would imply 
u→vi→w in coGd, which by the transitivity of coGd would imply that u,w are adjacent 
in coGd and thus are not adjacent in the clique CL. If i>1 then CL∩Nin[vi-1,coGd]=φ, 
by the minimality of i, thus CL⊆Vd−(Nout[vi,coGd]∪Nin[vi-1,coGd]). If i=1 then 
CL⊆Vd−Nout[v1,coGd].                                                                                                     
 

Next, we consider maximum cliques CL of G(V,E) contained in transitively oriented 
subgraphs Gd of G, where CL={v1→v2→...→v|CL|} in the orientation of Gd. 
 

Lemma 6. For every pair of disjoint maximum independent set IND, and maximum 
clique CL={v1→v2→...→v|CL|} contained in a comparability graph Gd, either 
IND⊆V−Nin[v|CL|,Gd] or IND⊆V−Nout[v1,Gd] or there is a vertex vi in CL such that 
IND⊆V−(Nout[vi,Gd]∪Nin[vi-1,Gd]). 
 

Proof. Consider a maximum independent set IND and a maximum clique 
CL={v1→v2→...→v|CL|} such that IND∩CL=φ and IND∩Nin[v\CL\,Gd]≠φ.  

Let i be the minimal index such that IND∩Nin[vi,Gd]≠φ. Then, IND∩Nout[vi,Gd]=φ 
since u,w∈IND, u∈Nin[vi,Gd] and w∈Nout[vi,Gd] would imply u→vi→w, which by the 
transitivity of Gd would imply that u,w are adjacent in the independent set IND. If i>1 
then IND∩Nin[vi-1,Gd]=φ, by the minimality of i, thus, IND⊆V-(Nout[vi,Gd]∪Nin[vi-

1,Gd]). If i=1 then IND⊆V−Nout[v1,Gd].                                                                            
 

By Lemmas 5,6, we can find in G a pair of disjoint maximum independent set and 
maximum clique, as follows: We consider every Gd.  

If Gd is a cocomparability graph, we check if Gd has a vertex v such that 
Vd−Nin[v,coGd]  contains a maximum clique of G and (V−Vd)∪Nin[v,coGd] contains 
a maximum independent set of G, or if Gd has a vertex v such that Vd−Nout[v,coGd]  
contains a maximum clique of G and (V−Vd)∪Nout[v,coGd] contains a maximum 
independent set of G, or if Gd has two adjacent vertices u→v in coGd such  
that Vd−(Nout[v,coGd]∪Nin[u,coGd]) contains a maximum clique of G, and 
(V−Vd)∪Nout[v,coGd]∪Nin[u,coGd] contains a maximum independent set of G.  

If Gd is a comparability graph, we check if Gd, has a vertex v such that Nin[v,Gd] 
contains a maximum clique of G and V−Nin[v,Gd] contains a maximum independent 
set of G, or if Gd has a vertex v such that Nout[v,Gd]  contains a maximum clique of G 
and V−Nout[v,Gd] contains a maximum independent set of G, or if Gd, has two adja-
cent vertices u→v in Gd such that Nout[v,Gd]∪Nin[u,Gd] contains a maximum clique of 
G, and V−(Nout[v,Gd]∪Nin[u,Gd]) contains a maximum independent set of G. We can 
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use this algorithm to find a maximum induced split subgraph in subtree filament 
graphs in O(|V|5) time and in circular-arc or cactus-subtree filament graphs in O(|V|6) 
time.  

Lemmas 5,6 hint to a new interesting subfamily of subtree filament graphs in 
which the subraphs Gd=G(Vd), Vd as defined in Section 2, are both comparability and 
cocomparability graphs, that is they are permutation graphs.   
 
Acknowledgements. I am grateful to the two referees whose suggestions greatly im-
proved the paper.  
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Abstract. We consider a two-terminal directed acyclic graph (st-dag)
characterized by a special structure of its mincuts and call it a nested
graph. This graph is of interest as an st-dag with a minimum possible
number of mincuts.We present a linear-time algorithm for recognizing
nested graphs.

1 Basic Concepts

A two-terminal directed acyclic graph (st-dag) has only one source s and only
one sink t [2]. In an st-dag, every vertex lies on some path from s to t.

A multigraph may contain multiple edges between any pair of vertices. A
simple graph is a graph without multiple edges.

A cut is a set of edges whose removal disconnects t from s. A mincut is a
minimal cut [1], [3], [8], [10].

For example, the st-dag in Figure 1 has four mincuts: {(1, 2), (1, 3), (1, 4)},
{(2, 4), (1, 3), (1, 4)},{(1, 2), (3, 4), (1, 4)}, {(2, 4), (3, 4), (1, 4)}.
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Fig. 1. An st-dag

A series-parallel graph is an st-dag defined recursively as follows:
(i) A single edge (u, v) is a series-parallel graph with source u and sink v.
(ii) If G1 and G2 are series-parallel graphs, so is the graph obtained by either

of the following operations:
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(a) Parallel composition: identify the source of G1 with the source of G2

and the sink of G1 with the sink of G2.
(b) Series composition: identify the sink of G1 with the source of G2.

For instance, the st-dag in Figure 1 is a series-parallel graph.
The construction of a series-parallel graph in accordance with its recursive

definition may be represented by a binary tree which is called a decomposition
tree. The edges of the graph are represented by the leaves of the tree. The inner
nodes of the tree are labeled S, indicating a series composition, or P , indicating
a parallel composition. Each subtree in the decomposition tree corresponds to
a series-parallel subgraph. Figure 2 shows an example of a series-parallel graph
(a) together with its decomposition tree (b).
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Fig. 2. A series-parallel graph (a) and its decomposition tree (b)
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2 Nested Graphs

For any mincut C in the st-dag G = (V, E), Provan and Ball [8] identify the two
disjoint sets: SN(C) = {u ∈ V : there exists a path from s to u containing no
edges of C} and TN(C) = {v ∈ V : there exists a path from v to t containing
no edges of C}. The mincut C consists exactly of those edges with exactly one
endpoint in SN(C) and one endpoint in TN(C).

Consider an st-dag G that has µ mincuts denoted Ci, i = 1, 2 . . . , µ. We define
G as a nested graph if its mincuts can be ordered in such a way that

SN(C1) ⊂ SN(C2) . . . ⊂ SN(Cµ).

The series-parallel graph G in Figure 2(a) has five mincuts: {a, c, h}, {b, c, h},
{d, f, h}, {e, f, h}, and {g, h}. Their sets SN(Ci) (i = 1, 2, 3, 4, 5) are {1}, {1, 2},
{1, 2, 3}, {1, 2, 3, 4}, and {1, 2, 3, 4, 5}, respectively. Thus G is nested. The series-
parallel graph in Figure 1 is not nested. The sets SN(Ci) (i = 1, 2, 3, 4) of its
mincuts are {1}, {1, 2}, {1, 3}, and {1, 2, 3}.

The following general findings on structural features of nested graphs were
presented in [4] and [6].

Proposition 1. A nested graph is series-parallel.

Proposition 2. If G is an n-vertex st-dag, the following are equivalent.

1. If G is not a single-edge graph, it can be obtained by a parallel composition
of a nested graph and a single edge or by a series composition of nested graphs.

2. G is a nested graph.
3. G has exactly n− 1 mincuts.

Proposition 3. Suppose an st-dag G1 is a nested graph and G2 is a 2-vertex
st-dag that presents a set of parallel edges with a common source and a common
sink. Then the st-dag G obtained by a parallel composition of G1 and G2 is
nested.

As follows from Proposition 2, a non-single-edge st-dag is nested if and only if it
can be obtained by a parallel composition of a nested graph and a single edge or
by a series composition of nested graphs. So, the graph that cannot be obtained
in this way, is not nested.

As shown in [4] and [7], the minimum possible number of mincuts in an n-
vertex st-dag is n− 1. Hence, by Proposition 2, a nested graph is of interest as
an st-dag with a minimum possible number of mincuts.

3 The Nested Graph Recognition Algorithm

The proposed algorithm for the nested graph recognition uses Propositions 1, 2,
and 3. It is based on revealing the specific structure, inherent in a nested graph
exclusively, in a series-parallel graph.
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It is clear that a single edge is a nested graph. As follows from Proposition
2, a non-single-edge simple graph is nested if and only if it is obtained by a
parallel composition of a nested graph and a single edge or by a series compo-
sition of nested graphs. In the general case, when a considered st-dag may be
a multigraph, it is nested if and only if it is obtained by a parallel composition
of a nested graph and a set of parallel edges (see Proposition 3) or by a series
composition of nested graphs. As noted in Section 2, the graph that cannot be
obtained in this way, is not nested.

An algorithm for the nested graph recognition is organized as follows. Ini-
tially, a series-parallel graph recognition algorithm is executed. If the graph is
non-series-parallel, then, by Proposition 1, it is not nested. There exist several
algorithms recognizing series-parallel graphs, which are linear in the number of
edges in a graph (see [9], [11], [12]). Specifically, as noted in [11], the algorithm
presented there can be modified so that it computes a binary decomposition tree
of a graph under consideration, on condition that the graph is series-parallel.
Thus, we run the algorithm from [11] accompanied by computing the binary
decomposition tree. Further we apply an additional routine which is based on
the postorder tree walk procedure that traverses the tree and checks whether it
respects the structure of the nested graph.

Therefore, the structure of the recursive algorithm for the nested graph recog-
nition reads as follows.

1. Replace in the given graph G the sets of parallel edges with single edges; let
G′ denote the obtained simple graph.

2. If G′ is a single edge, then G is nested, and the procedure stops.
3. Run the algorithm from [11] to check that G′ is a series-parallel graph, while

constructing the decomposition tree T . If G′ is not series-parallel, then G is
not nested, and the procedure stops.

4. If G′ is a series-parallel graph, traverse T in postorder and check that (a)
for every parallel composition, one subgraph is a single edge and another
subgraph is nested; (b) for every series composition, both subgraphs are
nested. If this condition is true, then G is nested. Otherwise, G is not nested.

The complexity of the algorithm is determined as follows. As noted, the al-
gorithm from [11] requires O(m) time for an m-edge graph. The decomposition
tree T of a series-parallel graph is a full binary tree (each node has exactly zero
or two children). A k-leaf full binary tree has 2k − 1 nodes. Hence, since T has
m leaves, the number of nodes in T is equal to 2m − 1. On the other hand,
the time taken by the postorder tree walk procedure depends linearly on the
number of nodes in the tree. Thus, the running time of the algorithm is O(m),
where m is a number of edges in the simple graph obtained by the replacement
in the given graph G the sets of parallel edges with single edges. The number
of edges in an n-vertex simple series-parallel graph does not exceed 2n− 3 (see
[9], [5]). Therefore, if G is a series-parallel graph, then the algorithm is executed
in O(n) time.
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4 Conclusions

We have considered a special kind of series-parallel graphs called nested graphs.
Using the recursive structure of nested graphs, we have presented the algorithm
for their recognition, which can be used for both simple graphs and multigraphs.
The algorithm is linear-time in the size of a graph.
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Abstract. We introduce a new class of games, asynchronous congestion
games (ACGs). In an ACG, each player has a task that can be carried
out by any element of a set of resources, and each resource executes its
assigned tasks in a random order. Each player’s aim is to minimize his
expected cost which is the sum of two terms – the sum of the fixed costs
over the set of his utilized resources and the expected cost of his task
execution. The cost of a player’s task execution is determined by the
earliest time his task is completed, and thus it might be beneficial for
him to assign his task to several resources. We show the existence of pure
strategy Nash equilibria in ACGs. Moreover, we present a polynomial
time algorithm for finding such an equilibrium in a given ACG.

1 Introduction

Congestion games received a lot of attention in the recent game theory and
computer science literature [2,3,4,5,6]. In a classic congestion game [7], each
player chooses a subset of a set of available resources in order to perform his
task. The cost of using a particular resource is determined by its congestion.
The important property of congestion games is that they possess pure strategy
Nash equilibria. Monderer and Shapley [6] introduced the notions of potential
function and potential game and proved that the existence of a potential function
implies the existence of a pure strategy Nash equilibrium. They also showed that
the classes of finite potential games and congestion games coincide.

Classic congestion games can be viewed as synchronous: the cost suffered by
a player when selecting a particular resource is determined only by the number
of users who have chosen that resource, and does not take into account the ac-
tual order in which the assigned tasks are executed. In this extended abstract
we present a new class of games – asynchronous congestion games (ACGs) –
that model noncooperative congestion settings in which resources execute their
� Based on a short paper (4 pages) in Proceedings of AAMAS-08 [1].

�� The work was done when the author was a Ph.D. student at the Technion, Haifa
32000, Israel.
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assigned tasks in a randomly chosen order. The random order of task execution
reflects, for instance, a situation where players and resources are the elements
of an asynchronous distributed system, in which each process has its own inde-
pendent clock1.

In ACGs, we consider a finite set of players, each having a unit length task
that can be carried out by any element of a finite set of independent resources
(machines). Each resource executes its assigned tasks in a randomly chosen order.
As a result, a player may selfishly assign his task to several resources, hoping
that his task will be completed in a short time by at least one of the resources.
It is assumed that resource usage is costly; that is, every player has to pay
for utilizing each of his chosen resources. More specifically, a player’s aim is to
minimize his expected total cost which is composed of the sum of the fixed costs
over the set of his chosen resources and the cost of his task execution which is
determined by the minimum completion time of his task by any of his chosen
resources.

By considering the order of task execution, the study of ACGs is related to
the literature on selfish scheduling. There are two types of selfish scheduling:
scheduling involving selfish machines [9,10,11] in which resources attempt to
optimize their own objectives, and scheduling involving selfish tasks [12,13,14]
in which each participant’s objective is to minimize the completion time of his
task. The latter type is closely related to congestion games.

Introducing a new class of games raises the important question of the existence
of pure strategy equilibria as well as the computation of such equilibria. There
are only few known classes of games which possess pure strategy equilibria, and
there seems to be relatively little work providing efficient and exact algorithms
for computing such equilibria. In this extended abstract we introduce the class
of ACGs and show that these games possess a Nash equilibrium in pure strate-
gies, despite the non-existence of a potential function. In addition, we present
a polynomial time algorithm for finding such an equilibrium in a given ACG.
Proofs are not presented due to space limitations.

2 The Model

Let N = {1, . . . , n} be a set of n players and let M = {e1, . . . , em} be a set of m
resources. Player i ∈ N chooses a strategy σi ∈ Σi which is a nonempty subset
of the resources: Σi = P (M) � {∅}. Given a subset S ⊆ N of the players, the
set of strategy combinations of the members of S is denoted by ΣS = ×i∈SΣi,
and the set of strategy combinations of the complement subset of players is
denoted by Σ−S (Σ−S = ΣN�S = ×i∈N�SΣi). The set of pure strategy profiles
of all the players is denoted by Σ (Σ = ΣN ). Let σ = (σ1, . . . , σn) ∈ Σ be a
strategy profile. The (m-dimensional) congestion vector that corresponds to σ is
h(σ) = (he(σ))e∈M , where he(σ) =

∣
∣{i ∈ N : e ∈ σi}

∣
∣.

1 The idea of using random ordering in order to reflect the asynchronous nature of
processes in distributed systems is discussed, for example, in Monderer and
Tennenholtz [8].
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The outcome for player i ∈ N from σ is the vector xi(σ) =
(

xi
e(σ)

)

e∈M
∈

{1, . . . , n,∞}m of the ordering numbers of player i’s task on all the resources,
where xi

e(σ) ∈ {1, . . . , n} for e ∈ σi and xi
e(σ) = ∞ for e /∈ σi. The player’s

objective is to minimize his total cost that consists of the sum of the fixed costs
over the set of resources he uses and the cost of the player’s task execution. The
fixed cost for utilizing each of the resources equals t units of money. The cost of
task execution is a nonnegative, nondecreasing function of its completion time;
thus, the longer it takes to complete the task execution, the greater is the cost
incurred by the player. We assume that each player pays a fixed price, say c, for
a unit of time his task is in the system before completed by at least one of the
resources and, w.l.o.g., that this cost is one unit of money per unit of time. That
is, the cost of a player’s task execution is determined by the minimum among the
completion times of his task by his chosen resources. Hence, the cost to player
i from a strategy profile σ and his outcome xi(σ), ci

(

σ, xi(σ)
)

, is defined as
follows:

ci

(

σ, xi(σ)
)

= min
e∈σi

xi
e(σ) + |σi|t.

Given a strategy profile σ, for any player i ∈ N and resource e ∈ σi, let X i
e(σ)

denote a random variable representing the ordering number of player i’s task
on resource e. Since it is assumed that each task requires a unit of time to be
processed and each unit of time costs one unit of money, X i

e(σ) represents the
cost to player i for his task execution by resource e. We assume that X i

e(σ)
is uniformly distributed over {1, . . . , he(σ)}. The expected cost of player i from
strategy profile σ, Ci(σ), is therefore:

Ci(σ) = E

(

min
e∈σi

X i
e(σ)

)

+ |σi|t

=
mine∈σi

he(σ)
∑

q=1

Pr

(

min
e∈σi

X i
e(σ) ≥ q

)

+ |σi|t

=
mine∈σi

he(σ)
∑

q=1

∏

e∈σi

he(σ)− q + 1
he(σ)

+ |σi|t.

The aim of each player is to minimize his own expected cost.
Note that if t = 0 then the dominant strategy of each player is to assign

his task to all of the resources. As a result, the system is overloaded and less
efficient.

3 The (Non)-Existence of a Potential Function

Monderer and Shapley [6] introduced the notion of potential function (or, poten-
tial) as follows. Let G be a game in strategic form with a finite set of players,
N . The set of strategies of player i ∈ N is Σi, and the payoff function of player
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i is Ci : Σ → R, where Σ = ×i∈NΣi is the set of strategy profiles. A function
P : Σ → R is a potential function of G if for every i ∈ N and for every σ−i ∈ Σ−i,

Ci(σ−i, x)− Ci(σ−i, y) = P (σ−i, x)− P (σ−i, y),

for any x, y ∈ Σi. G is called a potential game if it admits a potential function.
The authors [6] showed that the classes of finite potential games and congestion
games coincide.

In this section, we study the existence of a potential function in ACGs. We
show that a 2 × 2 ACG is a potential game but any ACG with n > 2 players
or m > 2 resources does not possess a potential function. Hence, ACGs are not
congestion games.

3.1 ACGs with 2 Players and 2 Resources

Here we present a potential function for an ACG with 2 players and 2 resources.
Let two players N = {1, 2} share a set of two resources M = {e1, e2}. In Figure
1 we present the payoff matrix of the game. A potential function of the game is
presented in Figure 2.

{e1} {e2} {e1, e2}
{e1} C1 = 3

2 + t C1 = 1 + t C1 = 3
2 + t

C2 = 3
2 + t C2 = 1 + t C2 = 1 + 2t

{e2} C1 = 1 + t C1 = 3
2 + t C1 = 3

2 + t

C2 = 1 + t C2 = 3
2 + t C2 = 1 + 2t

{e1, e2} C1 = 1 + 2t C1 = 1 + 2t C1 = 5
4 + 2t

C2 = 3
2 + t C2 = 3

2 + t C2 = 5
4 + 2t

Fig. 1. Players’ payoffs in the 2 × 2 ACG

{e1} {e2} {e1, e2}
{e1} 3

4
1
4

1
4

+ t

{e2} 1
4

3
4

1
4

+ t

{e1, e2} 1
4

+ t 1
4

+ t 2t

Fig. 2. A potential function of the 2 × 2 ACG

By exploring Figures 1 and 2, one can verify that for any two strategy profiles
differing by the choice of a single player, the difference in the payoff of that player
between the two profiles equals the corresponding increment in the function
presented in Figure 2. Therefore, this function is a potential.

3.2 ACGs with n > 2 Players or m > 2 Resources

Here we show that any ACG with n > 2 players or m > 2 resources does not
admit a potential function. To prove this statement we use the following technical
characterization of potential games.
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Let G be a game in strategic form with a set N = {1, . . . , n} of players, a
set Σ = ×i∈NΣi of strategy profiles, and a vector C = (C1, . . . , Cn) of payoff
functions. A 4-cycle, i.e. a cycle of length 4, in Σ is a sequence τ = (α →
β → γ → δ → α) of strategy profiles, such that α = (xi, xj , z), β = (yi, xj , z),
γ = (yi, yj, z), δ = (xi, yj , z), where i, j ∈ N , xi, yi ∈ Σi, xj , yj ∈ Σj , and
z ∈ Σ−{i,j}. A 4-cycle τ is zero-sum if

C(τ) = Ci(α)− Ci(β) + Cj(β)− Cj(γ) + Ci(γ)− Ci(δ) + Cj(δ)− Cj(α) = 0,

and non-zero-sum otherwise. Monderer and Shapley [6] showed that G is a po-
tential game if and only if it does not possess non-zero-sum 4-cycles.

Based on the above characterization, we show that every ACG with n > 2
players or m > 2 resources does not admit a potential function. Let G1 be any
ACG with n > 2 players and m ≥ 2 resources, and consider the 4-cycle τ1 which
is formed by α = ({e1}, {e2}, z), β = ({e2}, {e2}, z), γ = ({e2}, {e1, e2}, z),
δ = ({e1}, {e1, e2}, z), where z ∈ Σ−{1,2} satisfies he1(z) < he2(z) (see Figure 3).
By exploring Figure 3, one can verify that C(τ1) is positive, which implies that
τ1 is a non-zero-sum 4-cycle. Hence, G1 is not a potential game.

{e2} {e1, e2}
{e1} C1 =

he1 (z)+2
2 + t C1 =

he1 (z)+3
2 + t

C2 =
he2 (z)+2

2 + t C2 =
he1 (z)+3

2

+
1−(he1 (z)+2)2

6(he2 (z)+1) + 2t

{e2} C1 =
he2 (z)+3

2 + t C1 =
he2 (z)+3

2 + t

C2 =
he2 (z)+3

2 + t C2 =
he1 (z)+2

2

+
1−(he1 (z)+1)2

6(he2 (z)+2) + 2t

Fig. 3. Non-existence of potentials in ACGs with n > 2 players

Now, let G2 be any ACG with n = 2 players and m > 2 resources. Consider
the 4-cycle τ2 which is formed by α = ({e1}, {e3}), β = ({e1, e2}, {e3}), γ =
({e1, e2}, {e1, e2, e3}), δ = ({e1}, {e1, e2, e3}) (see Figure 4).

Direct calculation shows that C(τ2) = − 1
4 , implying that τ2 is a non-zero-sum

4-cycle and G2 is not a potential game.

{e3} {e1, e2, e3}
{e1} C1 = 1 + t C1 = 3

2 + t

C2 = 1 + t C2 = 1 + 3t

{e1, e2} C1 = 1 + 2t C1 = 5
4 + 2t

C2 = 1 + t C2 = 1 + 3t

Fig. 4. Non-existence of potentials in ACGs with m > 2 resources
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4 The Existence of a Pure Strategy Nash Equilibrium

Despite the fact that ACGs, in general, are not potential games, in this section
we show that every ACG possesses a Nash equilibrium in pure strategies. If the
number of resources is greater than or equal to the number of players (m ≥ n)
then the profile σ = (ei)i∈N is a Nash equilibrium as well as an optimal strategy
(one that minimizes the sum of the players’ expected costs). If m < n then
proving the existence of such an equilibrium is not trivial, as is demonstrated
below.

Our proof uses the notion of stability under single moves, previously presented
in [15], and proceeds as follows. Below, in 4.1 we define three types of single
moves (A-, D- and S-moves) and show that a profile which is stable under all
these moves is a Nash equilibrium (see Lemma 1). In 4.2 we observe that the
DS-stable2 profile is easy to find, but the existence of a profile which is stable
under all three types of single moves is not obvious (see Lemma 2 and the
discussion following it). We look for such a profile using two types of addition
operations, which are defined in 4.3. Lemma 3 in this subsection describes how
these additions affect DS-stable profiles. Based on this lemma, in 4.4 we show
that for some DS-stable profiles the above additions do not ruin the DS-stability
(see Lemma 4). We complete our proof by showing that applying a finite series
of addition operations to such a profile results in an equilibrium (see Lemma 5
and Corollary 1).

4.1 The Single Profitable Move Property

As pointed out in [15], in a congestion setting, we are mainly interested in three
types of single moves, where each type is a deviation involving a single resource,
as follows.

Definition 1. [15] For any strategy profile σ ∈ Σ and for any player i ∈ N ,
the operation of adding precisely one resource to his strategy, σi, is called an
A-move of i from σ. Similarly, the operation of dropping a single resource is
called a D-move, and the operation of switching one resource with another is
called an S-move.

The following observation provides technical characterizations of single moves
and is heavily utilized in the presentation and the proofs of our results.

Observation 1. Given a profile σ, let h denote its corresponding congestion
vector (h = h(σ)), and assume there exist a, b ∈ M and i ∈ N such that a ∈ σi

and b /∈ σi. Then,

(1) If a D-move with a is profitable for i then

t >

mine∈σi−a he
∑

q=1

∏

e∈σi−a

he − q + 1
he

· q − 1
ha

.

2 A strategy profile which is stable under D- and S-moves (see Definition 2).
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If mine∈σi−a he = mine∈σi he and the D-move with a is non-profitable for i
then

t ≤
mine∈σi−a he

∑

q=1

∏

e∈σi−a

he − q + 1
he

· q − 1
ha

.

(2) If an A-move with b is non-profitable for i then

t ≥
mine∈σi

he
∑

q=1

∏

e∈σi

he − q + 1
he

· q − 1
hb + 1

.

If ∃e ∈ σi such that he ≤ hb + 1 and the A-move with b is profitable for i
then

t <

mine∈σi
he

∑

q=1

∏

e∈σi

he − q + 1
he

· q − 1
hb + 1

.

(3) An S-move from a to b is profitable for i if and only if hb + 1 < ha.

Lemma 1 below implies that any strategy profile in which no player wishes
unilaterally to apply a single A-, D- or S-move, is a Nash equilibrium. This
property is called the single profitable move property and it allows us to consider
only single moves rather than considering all possible deviations.

Lemma 1. (The single profitable move property) Given an ACG, let σ ∈ Σ
be a strategy profile which is not in equilibrium, and let i ∈ N be a player for
which a profitable deviation from σ is available. Then, i has a profitable A-, D-
or S-move from σ.

4.2 Stability Under Single Moves

By Lemma 1, in order to prove the existence of a pure strategy Nash equilibrium
in games possessing the single profitable move property, it suffices to present a
strategy profile for which no player wishes to unilaterally apply an A-, D- or
S-move. This observation motivates the following definition.

Definition 2. [15] A strategy profile σ is said to be A-stable (resp., D-stable,
S-stable) if there are no players with a profitable A- (resp., D-, S-) move from
σ. An A- and D-stable profile (resp., A- and S-stable, D- and S-stable) will be
termed AD-stable (resp., AS-stable, DS-stable).

In order to investigate stability under single moves in ACGs we use the notions
of light and heavy resources as well as of even and nearly-even strategy profiles.

Definition 3. [15] Given a strategy profile σ, resource e′ is called σ-light if
e′ ∈ arg mine∈M he(σ) and σ-heavy otherwise. A strategy profile σ with no heavy
resources will be termed even. An even strategy profile with a common conges-
tion of k on the resources will be termed k-even. A strategy profile σ satisfying
|he(σ) − he′(σ)| ≤ 1 for all e, e′ ∈M will be termed nearly-even.
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Obviously, every even strategy profile is nearly-even. In addition, in a nearly-
even strategy profile all heavy resources (if such exist) have the same congestion.
Moreover, as is shown in the following lemma, the notions of nearly-eveness and
S-stability are strongly connected.

Lemma 2. In an ACG, a strategy profile is S-stable if and only if it is
nearly-even.

Note that the pairwise intersections of the set of S-stable strategy profiles with
the set of A-stable profiles or the set of D-stable profiles are not empty. In
particular, the strategy profile σM = (M, . . . , M) is AS-stable, while the profile
σ0 = (ei mod m)i∈N is DS-stable. However, at first glance, it is not clear whether
there exists a profile which is stable under all three types of single moves, or
even if there is an AD-stable profile.

Intuitively, one can try to achieve a Nash equilibrium by selecting a profile
which is stable under two types of single moves and applying on it a series of
single moves of the third type. For instance, one can pick a DS-stable strategy
profile and try to transform it into a Nash equilibrium by applying on it a series
of profitable A-moves. However, simple examples show that such moves may
destroy the D- or the S-stability of the selected profile; moreover, an A-move
from the selected profile may initiate a long chain of D- and S-moves. Therefore,
the chosen actions have to be picked out in a careful and subtle way. In this
context, we first restrict the set of available A-moves to the subset of one- and
two-step addition operations, as defined in the sequel.

4.3 One- and Two-Step Additions

Let σ ∈ Σ be a strategy profile and let h denote its corresponding congestion
vector (h = h(σ)). For any X ⊆ M such that he < n for all e ∈ X , we denote
by hX the congestion vector with the congestion of each resource in X being
increased by 1, while the congestion of all other resources remains unchanged.
That is, hX

e = he+1 for all e ∈ X and hX
e = he for all e ∈M �X . For each player

i ∈ N , let ei ∈ argmine∈M�σi he. That is, ei is a lightest resource not previously
chosen by i. Then, one can make the following (straightforward) observation.

Observation 2. If there exists a profitable A-move for player i, then an A-move
with ei, a lightest resource not chosen previously by i, is profitable for i as well.

If no player wishes to change his strategy in this manner, i.e. Ci(σ) ≤ Ci(σ−i,
σi+ei) for all i ∈ N , then by Observation 2, Ci(σ) ≤ Ci(σ−i, σi+a) for all i ∈ N
and a ∈M�σi. Hence, σ is A-stable. Otherwise, let N(σ) denote the subset of all
players for which there exists ei such that a unilateral addition of ei is profitable.
Let a ∈ arg minei : i∈N(σ) hei . Let also i ∈ N(σ) be the player for which ei = a.
If a is σ-light, then let σ′ = (σ−i, σi + a). In this case we say that σ′ is obtained
from σ by a one-step addition of resource a, and a is called an added resource.
If a is σ-heavy then there exists a σ-light resource b and a player j such that
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a ∈ σj and b /∈ σj . Then let σ′ =
(

σ−{i,j}, σi + a, σj − a + b
)

. In this case we say
that σ′ is obtained from σ by a two-step addition of resource b, and b is called
an added resource.

We notice that, in both cases, the congestion of each resource in σ′ is the same
as in σ, except for the added resource, with the congestion in σ′ increased by 1.
Thus, if σ is nearly-even then σ′ is also nearly-even (since the added resource is
σ-light). Then, Lemma 2 implies the S-stability of σ′. Lemma 3 below shows that
if, in addition, σ is D-stable then the only potential cause for the non-D-stability
of σ′ is the existence of player i ∈ N with σ′

i = σi who wishes to drop the added
resource a.

Lemma 3. Let σ be a nearly-even and D-stable strategy profile of a given ACG,
and let σ′ be obtained from σ by a one- or two-step addition of resource a. Then,
there are no profitable D-moves for any player i ∈ N with σ′

i 	= σi. For i ∈ N
with σ′

i = σi, the only possible profitable D-move (if such exists) is to drop the
added resource a.

Note that although we did not succeed in keeping the D-stability, we have sig-
nificantly reduced the set of possible post-addition D-moves. This motivates us
to present the term of post-addition D-stability which plays a central role in our
method, as follows.

4.4 Post-Addition D-Stability

Let σ ∈ Σ be a strategy profile and let σ′ be obtained from σ by applying a
one- or two-step addition operation. Then, based on Lemma 3, σ is said to be
post-addition D-stable if σ′ does not admit profitable D-moves with the added
resource. Formally, the post-addition D-stability is defined as follows.

Definition 4. A strategy profile σ of a given ACG is called post-addition D-
stable if

t ≤
mine∈σi−a he(σ)

∑

q=1

(
∏

e∈σi−a

he(σ)− q + 1
he(σ)

)

q − 1
ha(σ) + 1

, (1)

for every i ∈ N with |σi| > 1 and for every σ-light resource a ∈ σi.

We note that by Observation 1, inequality (1) implies the non-profitability of a
D-move with the added resource.

Let Σ0 ⊆ Σ denote the subset of all D-stable strategy profiles, and let Σ1 ⊆
Σ0 be the subset of all even and D-stable strategy profiles. By Lemma 2, every
profile in Σ1 (if such exists) is S-stable. For any σ ∈ Σ1, let hσ denote the
common congestion on the resources, and let Σ2 ⊆ Σ1 be the subset of Σ1

consisting of all those profiles with maximum congestion on the resources: Σ2 =
argmaxσ∈Σ1 hσ. Then,

Lemma 4. Given an ACG, there exists a strategy profile σ ∈ Σ2 that is either
a pure strategy Nash equilibrium or post-addition D-stable.
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It is not clear, by first look, if the existence of a post-addition D-stable strategy
profile implies the existence of a pure strategy Nash equilibrium. To show such
an implication, post-addition D-stability should be preserved while applying a
series of addition operations. In addition, such a series of addition operations
should converge to a pure strategy Nash equilibrium in a finite number of steps.
In this context, Lemma 5 and Corollary 1 below provide the needed steps for
completing the proof of existence of a pure strategy equilibrium.

Lemma 5. Given an ACG, let σ be a nearly-even and post-addition D-stable
strategy profile, and let σ′ be obtained from σ by applying on it a one- or two-step
addition operation. If mine∈M he(σ′) = mine∈M he(σ) then σ′ is also nearly-even
and post-addition D-stable.

Corollary 1. By Lemma 5, if we can find a post-addition D-stable strategy pro-
file σ′ that lies in Σ2, then a pure strategy Nash equilibrium can be achieved
by applying on σ′, in a sequential manner, less than m one-/two-step addition
operations. This is because if we perform m addition operations then an even
D-stable strategy profile σ′′ with hσ′′

> hσ′
is obtained, contradicting σ′ ∈ Σ2.

Theorem 1 below follows directly from Lemmas 4 and 5, and Corollary 1.

Theorem 1. Every ACG possesses a Nash equilibrium in pure strategies.

5 Computation of a Pure Strategy Nash Equilibrium

We are now ready to present our Asynchronous Nash equilibrium (ANE)-
algorithm that constructs a pure strategy Nash equilibrium in any given ACG.
Let us start with a brief description of the algorithm:

• Based on Lemma 5, the goal of the algorithm is to find a strategy profile in
Σ2 which is either a pure strategy Nash equilibrium or post-addition D-stable.
In the latter case, the strategy profile can be turned into a Nash equilibrium
by applying on it at most m − 1 one-/two-step addition operations. For that,
the algorithm has to determine a value k∗ = maxσ∈Σ1 hσ that represents the
common congestion on the resources for any strategy profile in Σ2.
• To find k∗ as above, the algorithm uses a variable k initiated with the value

k = n and gradually decreases until k∗ is found (Steps [0] – [1]).
• For k = n, the only even strategy profile with n being its common congestion

is σ = (M, . . . , M), which is obviously A- and S-stable. If σ is also D-stable then
k∗ = n, and the algorithm outputs σ and halts (Step [0]). Otherwise, k∗ < n
and the algorithm proceeds with k = n− 1 (Step [1]).
• Given 
 n

m� < k < n, the algorithm checks whether a k-even D-stable strat-
egy profile exists. If there is no such profile then k∗ < k and the algorithm
proceeds with the next value of k (repeating Step [1]). Otherwise, k∗ = k.
• If k∗ = 
 n

m� then the algorithm constructs a strategy profile
σ = (ei modm)i∈N (Step [2]). As we show in the proof of Theorem 2, σ is a
Nash equilibrium.
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• Otherwise, k∗ > 
 n
m�. In this case, the algorithm constructs a k∗-even

strategy profile σ with n∗ = n
(


k∗m
n �+ 1

)

−k∗m players using 
k∗m
n � resources

and n − n∗ = k∗m − n
k∗m
n � players using 
k∗m

n � + 1 resources (Step [3]). As
we show in the proof of Theorem 2, the obtained σ is D- and S-stable. If σ is
also A-stable then the algorithm outputs σ and halts (Step [4]). Otherwise, we
show that σ ∈ Σ2 and is post-addition D-stable. Then, based on Lemma 5 and
Corollary 1, a pure strategy Nash equilibrium is achieved by applying at most
m− 1 one- or two-step additions on σ (Steps [5] – [9]).

The ANE-algorithm is presented below.

ANE-Algorithm

Step [0] If t ≤∑n
q=1

(
n−q+1

n

)m−1 q−1
n then set

σ := (M, . . . , M) and QUIT;
Otherwise, set k := n− 1 and go to Step [1];

Step [1] If t >
∑k

q=1

(
k−q+1

k

)� km
n �−1

q−1
k then set

k := k − 1; Otherwise go to Step [3];
Step [2] If k = 
 n

m� then set σ := (ei mod m)i∈N

and QUIT; Otherwise go to Step [1];
Step [3] Set n∗ := n

(
km
n �+ 1

)− km;
For i = 1 to n∗:

Set σi = {er ∈M : 1 ≤ r ≤ 
km
n �}

and reorder the resources:
for all er ∈M set er := e(r+� km

n 	)mod m ;
If n∗ = n then go to Step [4];
Otherwise, for i = n∗ + 1 to n:

Set σi = {er ∈M : 1 ≤ r ≤ 
km
n �+ 1}

and reorder the resources:
for all er ∈M set er := e(r+� km

n 	+1)mod m ;

Step [4] If t ≥∑k
q=1

(
k−q+1

k

)� km
n 	

q−1
k+1 then QUIT;

Step [5] For all i ∈ N , select ei ∈ arg mine∈M�σi he(σ);
Step [6] Set N(σ) := {i ∈ N : Ci(σ−i, σi + ei) < Ci(σ)};

If N(σ) = ∅ then QUIT;
Step [7] Set M(σ) := {e ∈M : ∃i ∈ N(σ), e = ei};
Step [8] Select a∗ ∈ arg mine∈M(σ) he(σ)

and i∗ ∈ {i ∈ N(σ) : ei = a∗};
Step [9] If a∗ is σ-light set σi∗ := σi∗ + a∗

and go to Step [5];
Otherwise select a σ-light resource b∗

and j∗ ∈ {i ∈ N : a∗ ∈ σi, b
∗ /∈ σi},

set σi∗ := σi∗ + a∗, σj∗ := σj∗ − a∗ + b∗,
and go to Step [5].
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Theorem 2. The ANE-algorithm finds a pure strategy Nash equilibrium in any
given ACG, and its time complexity is O(nm2).

6 Summary and Future Work

In this extended abstract, we introduced and investigated the class of asyn-
chronous congestion games – ACGs – which extends the models of congestion
games to allow for a random ordering of task execution. In an ACG, each player
aims to minimize his own cost which is determined by the sum of two terms:
the execution cost of his task which is assumed to be proportional to its com-
pletion time, and the sum of the fixed costs over the resources he uses. The
completion time of the player’s task is determined by the minimum among its
completion times by all of his chosen resources.

We studied the existence of a pure strategy Nash equilibrium and a potential
function in ACGs. We showed that only ACGs with 2 players and 2 resources are
potential games, and any other ACG is not a potential game. Nevertheless, we
showed that any ACG possesses a pure strategy Nash equilibrium. We presented
a polynomial time algorithm for constructing a pure strategy Nash equilibrium
in a given ACG.

The model of ACGs can be extended in various ways. One can consider other
probability distributions over the set of permutations (orders) of the tasks as-
signed to a particular resource. In addition, it will be a challenge to consider
different processing times rather than these of single units, different subsets of
resources available to each of the players, players with multiple tasks etc. We
believe such extensions will be significantly more difficult to analyze. It is also
of interest to study the stability under deviations of coalitions and the social
(in)efficiency of equilibria in ACGs.
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Abstract. Given a family of Horn clauses, what is the minimal number of Horn
clauses implying all other clauses in the family? What is the maximal number
of Horn clauses from the family without having resolvents of a certain kind? We
consider various problems of this type, and give some sharp bounds. We also
consider the probability that a random family of a given size implies all other
clauses in the family, and we prove the existence of a sharp threshold.

1 Introduction

Horn formulas form a basic framework for knowledge representation, being an expres-
sive and tractable fragment of logic. They have been studied from many different as-
pects, such as reasoning and learning [1,2].

In our recent work [3,4,5], we studied related problems on Horn formulas in the con-
text of Horn approximation and belief revision. Motivated by applications such as the
Open Mind Common Sense [6] project for the acquisition of commonsense knowledge
bases, we formulated the KnowBLe (Knowledge Base Learning) problem on synthesiz-
ing learning and belief revision. The objective is to learn a Horn formula in the model
of learning with entailment, using a learning algorithm which updates its hypotheses in
a rational manner in the spirit of the AGM paradigm [7].

In order to analyze various approaches to this problem, it would be useful to have a
good understanding of the combinatorial and probabilistic properties of Horn formulas,
such as how many additional clauses are implied and how many resolution steps can be
formed. In this paper we consider some combinatorial problems of this sort.

Given a family of Horn clauses, what is the minimal number of Horn clauses needed
to imply all Horn clauses in the family? What is the maximal number of Horn clauses
in the family such that no resolution steps of a certain kind can be performed? These
questions also appear to be of independent interest in combinatorics, as related ques-
tions about hypergraphs are much studied in extremal hypergraph theory.

As an interesting basic case, we discuss definite Horn clauses of size 3 in most of the
paper (we briefly discuss the simple case of definite Horn clauses of size 2 as well, as
it provides some interesting analogies). In the intended commonsense knowledge base
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application it seems reasonable to assume that the knowledge base contains definite
clauses of size at least 2 (in contrast to other applications where the knowledge base is
used to derive facts from other facts).

It is noted that if a set of definite, size-3 Horn formulas implies a definite, size-3
Horn clause, then that clause has a resolution derivation using intermediate clauses of
size at most 4 (and size-4 intermediate clauses may be necessary). The minimal number
of definite, size-3 Horn clauses implying all definite Horn clauses of size 3 over n
variables is determined exactly. At the other end, asymptotically sharp bounds are given
for the maximal number of definite, size-3 Horn clauses over n variables, such that no
resolution (resp., no resolution giving a resolvent of size 3, and no resolution giving a
resolvent of size 4) can be performed among those clauses.

We also consider the probability that a given number of random definite, size-3 Horn
clauses imply all other definite, size-3 Horn clauses. It is shown that this probability has
a sharp threshold.

The paper is organized as follows. Section 2 gives some preliminaries, Section 3
discusses the case of definite Horn clauses of size 2 and Section 4 gives the bound on the
size of intermediate clauses. Section 5 is on the minimal number of definite, size-3 Horn
clauses implying all definite, size-3 Horn clauses. The bounds for the maximal number
of definite, size-3 Horn clauses without different kinds of resolvents are contained in
Section 6. Random formulas are considered in Section 7. We make a few final remarks
in Section 8.

2 Preliminaries

We use standard terms from propositional logic such as literal and clause. Formulas are
over n variables, and the variables are Xn = {x1, . . . , xn}. A clause is Horn (resp.,
definite Horn) if it contains at most one (resp. exactly one) unnegated literal. We will
generally write the Horn clause (x̄ ∨ ȳ ∨ z) in the form x, y → z. For a definite Horn
clause C, let Body(C) be the set of variables corresponding to the negated literals in C
and let Head(C) be the unnegated variable of C.

The size of a clause is the number of literals it contains. We use Dn
k to denote the

collection of all size-k definite Horn clauses on n variables. Its size is

|Dn
k | = k ·

(
n

k

)

, (1)

which is Θ(nk) for constant k.
A (definite) Horn formula is a conjunction—or a set, whichever view is more

convenient—of (definite) Horn clauses.
A clause C is an implicate of a Boolean formula ϕ if every assignment satisfying

ϕ also satisfies C; clause C is a prime implicate if it is an implicate but none of C’s
sub-clauses is an implicate.

We say that two clauses have an opposing literal when there is a variable that appears
negated in one clause and unnegated in the other. A pair of Horn clauses can have either
zero, one, or two opposing literals. We define the familiar operation of resolution for the
case of Horn clauses to apply to a pair of Horn clauses that have exactly one opposing
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literal. Let C1 and C2 be such Horn clauses, and assume w.l.o.g. that C1 is definite
with its head being the opposing literal: Head(C1) ∈ Body(C2). Resolution returns
the clause (Body(C1) ∪ Body(C2) \ {Head(C1)}) → Head(C2), which is called the
resolvent of C1 and C2. Thus the resolvent of the two clauses (a, b→ c) and (c, d→ e)
is (a, b, d → e). The resolvent of two definite, size-3 Horn clauses has size 3 or 4,
referred to as a 3-resolvent, resp., a 4-resolvent. The resolvent of two definite size-2
Horn clauses always has size 2. A set of clauses F is called resolvent-free if no two
clauses in F can be resolved.

We will use standard facts about Horn resolution, such as that every prime implicate
of a Horn formula is a Horn clause, and we will also refer to the standard procedure
of forward chaining, which can also be viewed as a unit resolution proof procedure
(e.g., [2,8]).

3 Definite Horn Formulas with Size-2 Clauses

In this section we consider some extremal problems for definite Horn formulas with
size-2 clauses. A definite, size-2 Horn clause a → b can be thought of as a directed
edge (a, b), so definite Horn formulas with size-2 clauses can be viewed as directed
graphs.

Proposition 1. There is a subset of Dn
2 of size n that has every clause in Dn

2 as an
implicate, and no smaller size subset has this property.

Proof. The formula

(x1 → x2) ∧ (x2 → x3) ∧ · · · ∧ (xn → x1)

of clauses forming a cycle implies every size-2 definite Horn clause: For i <
j, the clause xi → xj can be obtained by resolving (xi → xi+1), (xi+1 →
xi+2), . . . , (xj−1 → xj), two at a time in order. If instead i > j, then resolve (xi →
xi+1), (xi+1 → xi+2), . . . , (xn−1 → xn), (xn → x1), (x1 → x2), . . . , (xj−1 → xj).
At least n clauses are needed, as otherwise there is a variable that never appears as a
head, and there is no way to obtain implicates having that head.

Proposition 2. If F ⊆ Dn
2 is resolvent-free, then |F | ≤

⌊
n2

4

⌋

for n ≥ 3, and the bound

is sharp.

Proof. Partition the set Xn of variables into sets A and B, and consider all clauses of
the form a → b with a ∈ A and b ∈ B. Clearly, this is a resolvent-free family. The
number of clauses is maximized if |A| = 
n

2 � and |B| = �n
2 , giving a family of the

claimed size.
Now we show that the bound is the largest possible for n ≥ 3. The cases n = 3, 4

are trivial. In digraph terms, we want the directed graph on n vertices with a maximum
number of edges, having no simple path of length 2. If there is cycle of length two then
its vertices cannot be incident to any other edge and the statement follows by induction.
Otherwise, every vertex has either in-degree 0 or out-degree 0, and so the graph is a
subgraph of a complete directed bipartite graph described above.
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4 Size of Intermediate Clauses in Resolution

A resolution derivation of a short clause from a formula consisting of short clauses
may contain large intermediate clauses. It is a basic observation with far-reaching im-
plications that in some cases large intermediate clauses are unavoidable [9,10]. A trivial
example for a class of clauses where such a phenomenon cannot occur is size-2 clauses,
as every resolvent of such clauses has size at most 2. We note that there is also no
blow-up of intermediate clauses for Horn formulas. (See also [11,12].)

Theorem 1. Let ϕ be a definite Horn formula with clauses of size at most 3. Then any
size-3 prime implicate of ϕ has a resolution derivation where all clauses occurring in
the proof have size at most 4.

Proof. (Sketch) Since ϕ is definite, all its resolvents and hence all its prime implicates
must be definite Horn clauses. Assume that C = a, b → c is the implied clause. Then
there is a forward chaining derivation of c from ϕ ∧ a ∧ b. In this derivation, each
resolvent is shorter than its non-unit parent by one. Thus intermediate clauses all have
size at most 2. Now omit any resolutions that used a or b. This new resolution derivation
contains the same clauses as the original one, except that some clauses have a and/or b
added to their body. Intermediate clause sizes could therefore be as large as 4. The final
clause of this derivation, which is an implicate of ϕ, could in general have any subset
of {a, b} as its body and c as its head. However, since C is a prime implicate, the final
clause must be C.

The bound of 4 cannot be improved, as there may be size-3 prime implicates where
we must use some intermediate clause of size 4. For example, we must use a size-4
intermediate resolvent to derive the prime implicate a, b→ e of the Horn formula

(a, b→ c) ∧ (a, b→ d) ∧ (c, d→ e) .

Theorem 1 can be generalized, for example, to the following statement, using the
same argument.

Corollary 1. Let ϕ be a definite Horn formula with clauses of size at most s. Then any
prime implicate of ϕ with t variables in its body has a resolution derivation where all
intermediate clauses occurring in the proof have size at most s− 1 + t.

5 Small Formulas with All Implicates

In this section we consider the problem of finding the smallest family of definite size-3
Horn clauses implying every clause in Dn

3 , and as in Proposition 1, we find the exact
minimum.

Theorem 2. There is a subset of Dn
3 of size

(
n
2

)

that has every clause in Dn
3 as an

implicate, and no smaller size subset has this property.

Proof. To show that
(
n
2

)

clauses are sufficient, we exhibit a set Sn ⊆ Dn
3 of this size

and demonstrate that Sn implies all definite size-3 clauses. Each clause of Sn is in one
of three categories:
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I. xi, xj → xi+1, for i ≤ n− 2 and i + 1 < j,
II. xi, xi+1 → xi+2, for i ≤ n− 2,

III. xn−1, xn → x1.

Note that Sn can be viewed as the size-3 analog of the directed cycle considered in
Proposition 1.

All definite Horn clauses of size 3 are satisfied by the all 1’s vector, the all 0’s vector
and all unit vectors. Call these vectors standard.

Assume for contradiction that C ∈ Dn
3 is not implied by Sn. Then there is a truth

assignment that satisfies Sn and falsifies C. This truth assignment has at least two 1’s
(corresponding to variables in Body(C)) and at least one 0 (namely, Head(C)), thus it is
non-standard. Therefore, it is sufficient to show that every non-standard vector falsifies
at least one clause of Sn. A non-standard vector can have the following forms (using
regular expressions):

1. (0+1)*10(0+1)*1(0+1)*,
2. (0+1)*110(0+1)*,
3. 0(0+1)*11.

Vectors of form 1 falsify clauses of class I, vectors of form 2 falsify clauses of class
II, and vectors of form 3 falsify clauses of class III.

For the lower bound, note that resolution of two definite clauses of size at least 3 does
not produce clauses with any new bodies of size 2. Therefore a set of clauses implying
all other clauses must contain all possible bodies.

Incidentally, an examination of the resolutions needed shows that in order to derive all
the clauses of Dn

3 from Sn one does not need any size-4 intermediate clauses, unlike
the general case given by Theorem 1.

Theorem 3. Every clause C ∈ Dn
3 can be derived from Sn with every intermediate

clause being in Dn
3 .

Table 1. All definite size-3 Horn clauses with head xh

n n-1 . . . h+1 h-1 . . . 2
x1, xn → xh 1 x1, xn−1 → xh . . . x1, xh+1 → xh x1, xh−1 → xh . . . x1, x2 → xh

x2, xn → xh x2, xn−1 → xh . . . x2, xh+1 → xh x2, xh−1 → xh . . .
x3, xn → xh x3, xn−1 → xh . . . x3, xh+1 → xh x3, xh−1 → xh . . .

. . . . . . . . . . . . . . . . . .
xh−1, xn → xh xh−1, xn−1 → xh . . . xh−2, xh+1 → xh xh−2, xh−1 → xh . . .

xh+1, xn → xh xh+1, xn−1 → xh . . . xh−1, xh+1 → xh . . .

. . . . . .
xn−2, xn → xh xn−2, xn−1 → xh . . . . . .
xn−1, xn → xh . . .

Proof. (Sketch) A careful series of inductions shows that eventually all clauses can be
derived. Table 1 gives a hint of the idea for each of the

(
n−1

2

)

clauses with head xh,
for some arbitrary h. Starting at the leftmost column, with the boxed clause, we can
derive all the clauses above the boxes, up through column h + 1. Next these can be
used to obtain the rest of the clauses in the leftmost columns (going “down” these same
columns.) Two similar steps then handle the right columns.
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6 Large Formulas without Resolvents

A set of clauses F ⊆ Dn
3 is 3-resolvent-free (resp. 4-resolvent-free) if no two of its

clauses can be resolved to produce a 3-resolvent (resp., 4-resolvent). In this section we
prove upper bounds on the size of resolvent-free, 3-resolvent-free, and 4-resolvent-free
clause sets. First, we formulate a few technical lemmas.

6.1 Duplicates and Escher Configurations

Definite, size-3 clauses C1, C2 form a duplicate if they contain the same set of variables.
Thus duplicate clauses are of the form a, b→ c and a, c→ b.

Lemma 1. Let F ⊆ Dn
3 be 3-resolvent-free. Then there is an S ⊆ F of size at most

(
n
2

)

such that F \ S contains no duplicates.

Proof. It is sufficient to show that if clause a, b→ c occurs in a duplicate in F , then F
cannot contain another clause with the same body. Indeed, such a clause a, b→ d gives
a size-3 resolvent with both a, c → b and b, c → a, and one of these clauses occurs
in F .

Lemma 2. Let F ⊆ Dn
3 be 4-resolvent-free. Then there is an S ⊆ F of size at most

(3/2)n2 such that F \ S contains no duplicates.

Proof. Consider the weighted undirected graph G on the vertex set Xn with an edge
(b, c) for every pair of duplicates a, b → c and a, c → b. The weight of such an edge
(b, c) is the number of such vertices a. If we delete a clause from each such pair then no
duplicates remain. Therefore, it is sufficient to prove the claimed upper bound for the
sum of the edge weights in G.

We claim that the edges of G having weight at least 3 are independent. Assume that
(b, c) and (c, d) both have weight at least 3. Then there is a vertex e such that b, e → c
is in F , and there is a vertex f such that c, f → d is in F . For the last assertion we use
the fact that (c, d) has weight at least 3, as f then can be chosen to be different from b
and e. But the two clauses can be resolved to produce a 4-resolvent.

Hence the number of edges in G with weight at least 3 is at most n/2. Every weight
is at most n, so the total weight of edges in G is at most (n2/2) + 2

(
n
2

) ≤ (3/2)n2.

Definite, size-3 clauses C1, C2 form an Escher configuration if Head(C1) ∈
Body(C2) and Head(C2) ∈ Body(C1). (The name is inspired by Escher’s Drawing
Hands , though here it is heads rather than hands that are on one another.) Note that
such a pair of clauses cannot be resolved.

Lemma 3. Let F ⊆ Dn
3 be resolvent-free. Then there is an S ⊆ F of size at most 2n2

such that F \ S contains no Escher configurations.

Proof. Consider the undirected graph G on the vertex set Xn with an edge
(Head(C1), Head(C2)) for every pair of clauses C1, C2 ∈ F forming an Escher con-
figuration. We claim that every vertex of this graph has degree at most 2. Assume that
d has neighbors a, b, c in G. Then F contains clauses

(a.→ d), (d.→ a), (b.→ d), (d.→ b), (c.→ d), (d.→ c),
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where the dots correspond to one additional literal in each body. One can use a “sudoku”
argument to derive a contradiction. If the second and third clauses cannot be resolved
then the third clause must be b, a → d. Similarly, if the fourth and fifth (resp., sixth
and first) clauses cannot be resolved then the fifth (resp., first) clause must be c, b→ d
(resp., a, c→ d). But then the first and fourth clauses can be resolved.

Thus G has at most n edges. Every edge corresponds to at most 2(n − 2) clauses
(those obtained by adding a second literal to the bodies), and so the bound of the lemma
follows.

6.2 No Resolvents

Let us partition the set of variables Xn into set A and B, and consider the set of clauses
of the form a, b → c with a, b ∈ A, c ∈ B. Clearly, this is a resolvent-free family of
definite, size-3 Horn clauses, which can be viewed as the size-3 analog of the complete
directed bipartite graph of Section 3. The number of clauses in the family is

(
m
2

)

(n−m),
where |A| = m. This quantity is maximized for m with |m − 2n/3| ≤ 1, and the
maximum is

p(n) =
4
9

(
n

3

)

+ O(n2).

The family constructed for the optimal value of m thus has size p(n). We now show
that this size is asymptotically optimal.

Theorem 4. There is a positive c such that if F ⊆ Dn
3 is resolvent-free, then

|F | ≤ p(n) + cn2 .

Proof. Let F ⊆ Dn
3 be resolvent-free. Applying Lemma 3, we can delete O(n2) clauses

such that no Escher configuration remains. In the remaining set F ′ of clauses, no vari-
able can occur in a body of a clause and in the head of another clause, as those two
clauses would either be resolvable or form an Escher configuration. Thus every vari-
able is either head only, or body only, or neither. Thus F ′ is a subfamily of some family
obtained by the above construction, and so its size is at most p(n).

6.3 No Resolvents of Size 3

Let us again partition the set of variables Xn into sets A and B, and this time consider
the set of clauses of the form a, b → c with a, b ∈ A, c ∈ B, or a, b ∈ B, c ∈ A. This
is a 3-resolvent-free family of definite, size-3 Horn clauses. (On the other hand, there
are many resolvents of size 4.) The number of clauses in the family is

(
m
2

)

(n −m) +
(
n−m

2

)

m, where |A| = m. This quantity is maximized for m with m = 
n/2�, and the
maximum is

q(n) =
3
4

(
n

3

)

+ O(n2).

The family constructed for the optimal value of m thus has size q(n). We now show
that this size is asymptotically optimal.
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Theorem 5. There is a positive c such that if F ⊆ Dn
3 is 3-resolvent-free, then

|F | ≤ q(n) + cn2 .

Proof. Let F ⊆ Dn
3 be 3-resolvent-free. Applying Lemma 1, we can delete O(n2)

clauses such that no duplicates remain. Let a, b→ c be a clause in the remaining family
F ′. Then no clause in F ′ can have body a, c → or b, c →, as any such clause would
either produce a 3-resolvent with a, b→ c, or form a duplicate with it.

Consider the undirected graph G with vertices Xn and edges corresponding to the
bodies of clauses in F ′, and let t be the number of vertex triples containing precisely
one edge of G. The remark above implies that |F ′| ≤ t.

Therefore we get the required upper bound on |F | by noting that the number of
triples containing precisely one edge of G is at most

1
2

∑

d(v)(n − 1− d(v)) ≤ n

2

(
n− 1

2

)2

.

6.4 No Resolvents of Size 4

The families constructed in Section 6.2 have no resolvents, thus the same construction
trivially shows that there are families of size p(n) without 4-resolvents. Our final re-
sult shows that this is asymptotically optimal even for 4-resolvent-free families. This
theorem thus supersedes Theorem 4 (ignoring lower order terms). On the other hand,
Theorem 4 has a very simple proof, while the proof of Theorem 6 uses difficult recent
results from extremal hypergraph theory. A 3-uniform hypergraph is specified by a set
of vertices and a set of 3-element subsets of the set of vertices.

Theorem 6. For every ε > 0 and sufficiently large n, if F ⊆ Dn
3 is 4-resolvent-free

then |F | ≤ p(n) + εn3.

Proof. Let F ⊆ Dn
3 be a 4-resolvent-free set of clauses. Applying Lemma 2, we can

delete O(n2) clauses from F such that no duplicates remain. Let the remaining set of
clauses be F ′, and consider the 3-uniform hypergraph H obtained from F ′ by replacing
every clause a, b → c with the triple {a, b, c}. From now on we omit curly braces for
triples and write abc for simplicity.

Let T be the 3-uniform hypergraph {abc, abd, abe, cde} and T ′ be the 3-uniform
hypergraph obtained from T by duplicating vertices a and b. Thus T ′ consists of the
13 triples abc, ab′c, a′bc, a′b′c, abd, ab′d, a′bd, a′b′d, abe, ab′e, a′be, a′b′e, cde. By an
orientation of this family we mean a family of 13 definite, size-3 Horn clauses, each
containing the 3 variables of a different triple from T ′.

Lemma 4. Any orientation of T ′ contains two clauses with a resolvent of size 4.

Proof. Consider an orientation of T ′. We may assume by symmetry that cde is oriented
as c, d → e. Then the clauses a, b → e and a′, b′ → e must be present, otherwise we
get a 4-resolvent with c, d → e. Now considering the triple ab′c, we find that every
orientation leads to a 4-resolvent.
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It follows from Lemma 4 that H contains no copy of T ′. From this, in the next lemma,
we conclude that H contains only “few” copies of T .

Lemma 5. For sufficiently large n, every 3-uniform, n-vertex, T ′-free hypergraph has
at most n4.5 copies of T .

Proof. Assume that G has more than n4.5 copies of T . For every triple cde, let us
consider the set of pairs ab which form a copy of T in G. Triples that have fewer than
n3/2 such pairs contribute at most

(
n
3

)

n3/2 < n4.5 copies of T . Thus there is a triple
cde with at least n3/2 such pairs. The pairs corresponding to such a triple form a cycle
aba′b′ of length 4 [13]. But then {a, b, a′, b′, c, d, e} forms a T ′ in G.

Now we can apply a special case of a deep result, the hypergraph removal
lemma [14,15] to show that one can delete a “few” edges from H such that no copies
of T remain.

Theorem 7 ([14,15]). For every ε > 0 and sufficiently large n, if H is a 3-uniform,
n-vertex hypergraph containing at most n4.5 copies of T , then one can delete εn3 edges
of H such that no copies of T remain.

The maximal number of edges in a 3-uniform hypergraph without a copy of T has been
determined exactly by [16].

Theorem 8 ([16]). For sufficiently large n, every 3-uniform, n-vertex, T -free hyper-
graph has at most p(n) edges.

Now, putting things together, we get that the original set of clauses F contains at most
p(n) + O(n2) + εn3 clauses, proving the theorem.

7 Random Formulas

In this section we consider a probabilistic version of the problem studied in Section 5.
Let p(n, s) be the probability that the conjunction of s random clauses fromDn

3 implies
every clause from Dn

3 . (Each clause is drawn from the uniform distribution over Dn
3 .)

Informally, the property of implying every clause has a sharp threshold if around a cer-
tain number of clauses its probability jumps from low to high over a short interval (see,
e.g., [17]). The following result shows that n2 ln n is a sharp threshold for this property.
See [18] for a similar result in a related probability model. Note that for definite, size-
2 Horn clauses the analogous property is the strong connectivity of random digraphs,
which has been studied for a long time (e.g., [19,20,21]). Phase transitions for Horn
formulas in other probability models have been considered in [22].

Theorem 9. For every ε > 0 there exists some c > 0 such that if n is sufficiently large
then

a) p(n, n2 ln n− cn2) < ε,
b) p(n, n2 ln n + cn2) > 1− ε.
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Proof. (Sketch) We use the following facts about the coupon collector problem: the
expected number of trials needed to collect all of m coupons is m lnm + Θ(m), its
variance is Θ(m2), and hence its standard deviation is Θ(m). (See, e.g., [23].) Part a)
follows directly from these facts, the Chebyshev inequality and the observation used in
Theorem 2 that having all

(
n
2

)

possible bodies in the formula is a necessary condition
for generating every clause in Dn

3 .
In order to prove part b) we use another observation of Theorem 2: in order to show

that a random formula of a given size implies every clause with high probability, it is
sufficient to show that with high probability it is falsified by every non-standard vector.

Let Fs be the conjunction of s random clauses from Dn
3 . For 2 ≤ k ≤ n− 1 let

q(n, k, s) = Pr(some weight k vector satisfies Fs),

where the weight of a vector is the number of its 1’s. We would like to prove upper
bounds for q(n, k, s).

A vector of weight k falsifies
(
k
2

)

(n− k) clauses in Dn
3 , as the body of such a clause

must contain variables set to 1, and the head of such a clause must be a variable set to
0. So

q(n, k, s) ≤
(

1−
(
k
2

) · (n− k)
3 · (n

3

)

)s

·
(

n

k

)

.

For k = 2, a direct computation shows that for s = n2 ln n + (ln(1/ε))n2 it holds that

q(n, 2, s) < e−
2s

n(n−1)

(
n

2

)

<
ε

2
.

If 3 ≤ k ≤ n− 2 then for s = n2 ln n it holds that

q(n, k, s) < e
−(k

2)·(n−k)

3·(n
3)

·s+k ln( e·n
k )

< ek(− (k−1)(n−k)
n ·ln n+1+ln n) < n−2.

If k = n− 1 then

q(n, n− 1, s) ≤
(

1− 1
n

)s

· n

and so for s = n2 ln n it holds that q(n, n− 1, s) = o(1). Thus

n−1∑

k=3

q(n, k, n2 ln n) = o(1),

hence part b) of the theorem follows.

8 Further Comments

The proof of Theorem 6 can be strengthened to show that p(n) is actually the
exact maximum (and thus Theorem 4 is also sharp). This result will be contained
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in a future paper. Along the same lines, it would be interesting to show that
q(n) is the exact maximum in Theorem 5.

There are many other open problems related to the ones discussed here. Extending
the results to definite Horn clauses of size greater than 3 seems to be interesting. For
size-3 clauses the problems could be reduced to questions about graphs in several cases.
For larger sizes this may not be the case anymore. Instead, one may get questions about
hypergraphs, which tend to be more difficult.

From the point of view of the intended knowledge base learning application it would
be interesting to extend Theorem 9 in several different ways. What is the expected
number of clauses implied by a random family of s clauses for s below n2 ln n? Other
questions involve the length of resolution proofs of implied clauses. For s in the range
n2 ln n or higher, a random family of s clauses implies every other clause with high
probability. What is the expected length of the shortest resolution derivation of clauses?
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Abstract. Consider a tree T and a forest F. The paper discusses the following 
new problems: The Forest vertex-cover problem (FVC): cover the vertices of T 
by a minimum number of copies of trees of F, such that every vertex of T is 
covered exactly once. The Forest edge-cover problem (FEC): cover the edges 
of T by a minimum number of copies of trees of F, such that every edge of T is 
covered exactly once. For a solution to always exist, we assume that F contains 
a one vertex (one edge) tree.  

Two versions of Problem FVC are considered: ordered covers (OFVC), and 
unordered covers (UFVC). Three versions of Problem FEC are considered: or-
dered covers (OFEC), unordered covers (UFEC) and consecutive covers 
(CFEC). We describe polynomial time algorithms for Problems OFVC, UFVC 
and CFEC, and prove that Problems OFEC and UFEC are NP-complete. 

Keywords: vertex-cover of a tree by a forest, edge-cover of a tree by a forest, 
graph algorithms.  

1   Introduction 

In the present paper we consider only rooted trees. The root of a tree t is denoted  
by root(t). For a vertex v of t, we denote by pt(v) the father of v, by Ch(v) its set of  
children and by deg(v)=|Ch(v)| their number. For a subset X⊆V(t), we denote 
Ch[X]=∪v∈XCh(v). We denote by tv the subtree of t rooted at v and containing v and all 
its descendants. The number of edges in the unique path between two vertices x,y of t 
is called distance between x and y and is denoted by dist(x,y); height(t) is the distance 
from root(t) to the farthest leaf. Isomorphism between two rooted trees t, f is denoted 
by t ≈ f. The connected components f1,...,fq of a forest F are rooted trees; for simplicity, 
we denote by F also the family {f1,...,fq}. For a forest F, we denote by V(F), E(F), L(F) 
its set of vertices, edges and leaves, respectively.  

A forest vertex-cover (forest edge-cover) of a tree T by a forest F, is a partition of T 
into vertex (edge) disjoint subtrees t1,...,tk such that each ti is isomorphic to some fj∈F. 
A minimum forest vertex-cover is one which uses a minimum number of copies of 
trees of F.  

We define the following two new problems: 

FVC: Find a minimum forest vertex-cover of a tree T by a forest F. 
FEC: Find a minimum forest edge-cover of a tree T by a forest F. 
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To ensure that a cover exists, we assume throughout the paper that F contains a 
unique tree f1 consisting of a single vertex, for vertex covers, and of a single edge, for 
edge covers. 

A rooted tree is ordered if there exists an order between the children of every ver-
tex. A cover is ordered if the trees ti and fj are isomorphic as ordered trees. A cover 
without this restriction is unordered. We discuss two versions of Problem FVC: Prob-
lem OFVC – ordered forest vertex-cover (see Fig. 1), and Problem UFVC – unordered 
forest vertex-cover. Likewise, for edges we have Problem OFEC – ordered forest 
edge-cover, and Problem UFEC – unordered forest edge-cover. 

In an ordered tree T, let {u1,…,udeg(u)} be the children of a vertex u . We say that the 
children of u are covered consecutively by the children of a vertex x of F if for some 
1≤i≤deg(u)−deg(x), the children ui,…,ui+deg(x)–1 of u are all covered by the children of 
x. A cover of T by F is consecutive if for every vertex u in T which is covered by a 
vertex x of F, u's children are covered consecutively by x's children. Problem CFEC is 
to find a minimum consecutive edge-cover of an ordered tree T by a forest F. Note 
that Problem CFVC – to find a minimum consecutive vertex-cover – is a restricted 
case of OFVC. 

For a vertex-cover t1,...,tk of a tree T by a forest F, let FC be the multiset of non-
trivial subtrees tj in the forest vertex-cover fulfilling |V(tj)|>1. Let r=|FC|: FVC is 
equivalent to finding a forest vertex-cover which minimizes r+(|V(T)|–∑|V(tj)|), that 
is, it maximizes ∑|V(tj)|–r. The problem is new, having a flavor of both max and 
min: for a constant ∑|V(tj)|, it minimizes r, while for a constant r, it maximizes 
∑|V(tj)|. Therefore, FVC is equivalent to packing into T a set of copies of trees in F–
{f1}, where |V(f1)|=1, such that ∑|V(tj)|–r is maximized. When the trees in F–{f1} are 
of equal cardinality, the problem is of maximizing r, becoming equivalent to the 
maximum packing problem. When more than one set of trees covers the same number 
of vertices in T, the problem becomes one of minimizing the number r of trees. Simi-
larly, Problem FEC is equivalent to finding a forest edge-cover which minimizes 
r+(|E(T)|–∑|E(tj)|), that is, maximizes ∑|E(tj)|–r. 
 
  a1                  b2                      c5                                                                                   b2

      

                             
                        b1           c1                  c4                                                  b1                                 c5     

           
                                                       

  f1                f2              f3         c2               c3                            c1                 a1                 c4                 a1

                                       

   
                                    F={f1,f2,f3}                                               T        c2                 c3                 a1   

 

Fig. 1. An ordered forest vertex-cover of size 5: three copies of f1 and one of f2 and f3 
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The above problems are related to the subtree isomorphism problem. Algorithms 
for the subtree isomorphism problem were given in [6,7,8], while the problem of sub-
graph isomorphism of a forest F into a tree T is NP-complete [3]. In the present paper 
we describe two polynomial time algorithms to solve Problems OFVC, UFVC and 
CFEC, and prove that Problems OFEC and UFEC are NP-complete. One algorithm 
called MAP-CHILDREN is similar to the algorithm for graph isomorphism and its 
complexity depends on |V(F)|. The other algorithm called MAP-LEAVES seems to 
be new, and works by replacing in F every maximal directed path in which the inter-
nal vertices have only one child, by a single edge; its complexity depends on |L(F)|, 
being very efficient when |L(F)| is much smaller than |V(F)|, for example when the 
trees in F are paths. The algorithms can be extended to unrooted trees by considering 
copies of T rooted at each one of its vertices and extending the family F={f1,...,fq} to 
contain copies of every fi rooted at each one of its vertices. 

Problem FVC in a restricted form was discussed by Golumbic [4] for the factoriza-
tion of a tree Boolean function as a read-once (fan-out) function, and by Levin and 
Pinter [5] for the realization of a tree Boolean function using a minimum number of 
logic circuits. An additional application is in translation: we wish to cover a syntax 
tree of a source language sentence by a minimum number of phrases, each of which 
has an optimal translation to the target language.  

In Sections 2,3 we describe polynomial time algorithms to solve Problems OFVC 
and UFVC: in Section 2 the complexity depends on |V(F)|, while in Section 3, the 
complexity depends on |L(F)|. In Section 4 we describe similar algorithms to solve 
maximum packing problems of copies of trees of F into T. In Section 5 we prove that 
Problems OFEC and UFEC are NP-complete. In Section 6 we describe a polynomial 
time algorithm to solve CFEC. 

2   Algorithm MAP-CHILDREN for Forest Vertex-Cover 

Consider a tree T and a forest F. We shall describe how to extend covers of a subtree 
Tu of T, consisting of u and all its descendants, to a complete cover of T. Let u∈V(T), 
f∈F and x∈V(f). An [Tu , fx] forest vertex-cover of Tu is an F∪{fx} forest vertex-cover 
of T, such that u=root(Tu) is covered by x=root(fx) and when x≠root(f), fx is used only 
once in the cover. Note that if a vertex u is covered by a vertex x of f∈F, x≠root(f), 
then the parent pf(x) of x must cover the parent pT(u) of u. Let W(u,x) be the number of 
trees in a minimum [Tu

 , fx] forest vertex-cover of Tu. Let W(u) denote the number of 
trees in a minimum forest vertex-cover of Tu. Clearly W(u)=minf∈F{W(u,root(f))}.  

Consider first the case where x is a leaf of f, i.e., V(fx)={x}. Then in any [Tu
 , fx] 

forest vertex-cover of Tu, u is covered  by x and each of its children is covered by the 
root of a tree of F. Hence, W(u,x) = 1 + ∑v∈Ch(u) W(v). 

In the general case, consider an [Tu
 , fx] forest vertex-cover of Tu; let X⊆V(T) be the 

set of vertices of the subtree rooted at u of Tu  covered by fx. Tu –X is a set of disjoint 
subtrees of Tu, each subtree rooted at a vertex in Ch[X] –X  and covered by a forest 
vertex-cover of F. Let T[X] denote the vertex subgraph of T induced by X. Hence, 

W(u,x)=1+minX{∑z∈Ch[X−{u}]–XW(z)+∑v∈Ch(u)–XW(v) : X⊆V(Tu), T[X]≈ fx , root(T[X])=u}. (1) 
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The above equation requires us to find all isomorphic copies of fx rooted at u and 
hence might lead to an exponential time algorithm. To get a polynomial time algo-
rithm we will show how to compute W(u,x) from the values of W(v),W(y), v∈Ch(u), 
y∈Ch(x). 

An [Tu
 , fx] forest vertex-cover of Tu exists only if deg(x)≤deg(u). We construct the 

cover of Tu from optimal covers of the children of u: deg(x) of u's children are cov-
ered by the deg(x) trees in {fz : z∈Ch(x)} and the remaining children of u are covered 
by trees of F. A matching is an injection μ : Ch(x)→Ch(u); let M[Ch(x),Ch(u)] denote 
the set of possible matchings of Ch(x) into Ch(u). Therefore, 

W(u,x) = 1 – deg(x) + minμ∈M[Ch(x),Ch(u)]{∑1≤j≤deg(x)W(μ(xj),xj) + ∑v∈Ch(u)–μ(Ch(x)) W(v)} (2)

Finally, W(u)=minf∈F W(u,root(f)),and the size of a minimum cover is W(root(T)). 
We describe a generic dynamic programming algorithm which is conducted by a 

postorder traversal of T and F, that is, it considers the children of u and x before con-
sidering u and x. This ensures that when evaluating the left side of equation (2), the 
values of the right side have been evaluated.  

The dynamic programming algorithm traverses T and F in postorder and for every 
u∈V(T), f∈F and x∈V(f), it finds the size of a minimum [Tu

 , fx] forest vertex-cover of 
Tu. To obtain W(u) the algorithm finds the f∈F which minimizes W(u) = minf∈F 
{W(u,root(f))}. Since the trees of F are disjoint, once a vertex x is chosen, the tree 
f∈F to which it belongs and the vertex of T covered by root(f) are uniquely deter-
mined. When x is a leaf of f, hence fx={x}, the algorithm already evaluated for Tu the 
minimum cover of every tree Tv, v∈Ch(u), thus W(u,x) = 1 + ∑1≤i≤deg(u) W(ui). 

When x is not a leaf of f, the algorithm simulates a minimum weight isomorphism 
algorithm of fx into Tu, by assuming that the corresponding ancestor of u, will be cov-
ered by root(f). Thus, by optimally covering the children of u by the children of x, it 
carries to u (and to root(f)) the sizes of the minimum covers. This is done as follows: 

A matching μ between a sequence of vertices (u1,…,um) and (x1,…,xr) is non-
crossing when every pair xi,xi+1 is matched to a pair uj,uk fulfilling j<k. For each sub-
problem P we will restrict the permitted matchings to a subset MP[Ch(x),Ch(u)] of all 
possible matchings. For OFVC, MP is the set of non-crossing matchings and for 
UFVC, MP is the set of all matchings. To every pair [ui,xj] we assign a cost equal to 
W(ui,xj). Hence, a minimum cost matching μ* of Ch(x) into Ch(u) in equation (2), will 
give us the optimal way of covering the children of u by the children of x. This, to-
gether with the postorder traversal ensures by induction that the dynamic program-
ming algorithm is correct.  

Equation (2) is rewritten below as a minimum cost matching μ*∈MP[Ch(x),Ch(u)] 
of a complete bipartite graph [Ch(x),Ch(u)], in which the cost of every edge (ui,xj) is 
W(ui,xj)–W(ui): 

W(u,x) = 1 – deg(x)+∑1≤i≤deg(u) W(ui) + ∑1≤j≤deg(x) [W(μ*(xj),xj) – W(μ*(xj))] . (3)

We denote WS(u) = ∑1≤i≤deg(u) W(ui) and cost(μ*)=∑1≤j≤deg(x) [W(μ*(xj),xj) – 
W(μ*(xj))].  
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The algorithm keeps pointers along the minimum cost matchings to retrace the 
minimum forest vertex-cover when u=root(T), and does not have to remember the 
intermediate forest vertex-covers.  
 

Algorithm MAP-CHILDREN 
for every u∈V(T) in postorder W(u)=∞; 

if u is a leaf then W(u)=1, WS(u)=0; 
if u is not a leaf then WS(u) = ∑v∈Ch(u)W(v); 
for every x∈V(F) in postorder 

if u is a leaf 
    if x is a leaf then W(u,x)=1 else W(u,x)=∞; 
if u is not a leaf 
      if x is a leaf then W(u,x) = 1+WS(u); 
      if x is not a leaf 

Let μ* be a minimum cost matching in MP[Ch(u),Ch(x)]; 
W(u,x) = 1 – deg(x) + WS(u) + cost(μ*) // equation (3) 

if x=root(f), for some f∈F then W(u)=min {W(u,x),W(u)};  
if u=root(T) then W(u) is the size of the minimum cover; 

end 
 

In order to use the generic algorithm MAP-CHILDREN we need to specify how to 
calculate equation (3). For OFVC, MP is the set of non-crossing matchings. Assuming 
that W(ui) and W(ui,xj) (ui∈Ch(u) and xj∈Ch(x)) have been computed, we need to find 
a minimum cost non-crossing matching μ*. We use dynamic programming again: 

Let SCh(u)Ch(x)[i,j] be the value of the minimum cost non-crossing matching between 
u1,...,ui  and x1,...,xj where SCh(u)Ch(x)[1,1]=W(u1,x1) and SCh(u)Ch(x)[i,j]=∞ if i<j. Then 

SCh(u)Ch(x)[i,j]=min {SCh(u)Ch(x)[i–1,j–1]+W(ui,xj),SCh(u)Ch(x)[i–1,j]+W(uj)} for i>1, j≤i . (4)

To compute all SCh(u)Ch(x)[i,j]'s for given vertices u,x it takes O(deg(u)deg(x)) time. 
For all vertices, the required time is 

∑u∈V(T) ∑x∈V(F) deg(u)deg(x) = ∑u∈V(T) deg(u) ∑x∈V(F) deg(x) < |V(T)||V( F)| . (5)

To find a minimum unordered cover UFVC, when the tree T and the forest F are 
unordered, we also apply MAP-CHILDREN. The only difference is that in equation 
(3) we drop the constraint that the matching be non-crossing, i.e., MP is the set of all 
matchings between Ch(x) and Ch(u). 

To find the matching μ* in the complete bipartite graph MP[Ch(x),Ch(u)] we fol-
low [1,7,8] and employ the maximal flow minimum cost algorithm of [2] to yield an 
algorithm that requires O(∑f∈F|V(f)|1.5 |V(T)| log|V(T)|) time. 

3   Algorithm MAP-LEAVES for Forest Vertex-Cover 

In this section we construct an algorithm for OFVC and UFVC whose complexity 
depends on the number |L(F)| of leaves of F, which may be much smaller than  
the number of vertices of F. The key step is to cover the vertices of T by the leaves  
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of F: covering a vertex u∈V(T) by a leaf x of f determines how the path from x to 
root(f) covers vertices of T. However, in order not to scan each vertex of f separately, 
we shall replace the tree f by its skeleton – the tree skel(f) – resulting by replacing 
every maximal directed path in which the internal vertices have only one child, by a 
single edge. Now, every internal vertex of the tree skel(f) has at least two children. 
Thus, |V(skel(f))|≤ 2|L(f)|. Let SKEL = {skel(f) : f∈F} and let SKEL+ be the set con-
taining the vertices of SKEL and their children in F. Since every edge of SKEL gives 
rise to one child of F, |SKEL+|≤|2V(SKEL)|=O(|L(F)|). 

Consider covering the vertex u∈V(T) by a vertex x∈V(skel(f)), skel(f)∈SKEL. If u 
is a leaf then it can be covered only by leaves of SKEL. If u is not a leaf and x is a 
leaf, then u is covered by x, each of its children v∈Ch(u) is covered by the root of a 
tree of F, and Tv is covered by a minimum forest vertex-cover with trees of F. If nei-
ther u nor x is a leaf, then each child of x in f must cover a child of u. The edge in 
skel(f) connecting x to a child yx, corresponds in f to a path (x,xj,...,yx). Assume that xj 
covers ui. Then ui must have a descendant at distance dist(xj,yx) = dist(x,yx)−1 which is 
covered by yx. 

Let W(u), WS(u) and W(u,x) be as defined in Section 2. If u' is a descendant of u, 
let PathT(u,u') denote the path in T from u to u'. Let CPathT(u,u') be the set of children 
of vertices in PathT(u,u')−{u'}, children which are not in PathT(u,u'), and let 
WP(u,u')=∑v∈CPath(u,u')W(v). We compute WP(pT(u),u') from WP(u,u') by 

WP(pT(u),u') = WP(u,u') + ∑ {W(v) : v∈Ch(pT(u))} – W(u) = WP(u,u') + WS(u) – W(u). (6) 

To compute W(u,x) for u∈V(T), x∈V(f), f∈F, we need to decide which children of u 
should be covered by the children of x in f(x). Let (x,yx) be an edge in skel(f), let xj be 
the child of x on the path in f from x to yx and let d = dist(xj,yx); to every child xj of x 
corresponds exactly one yx and one d. Let D={dist(xj,yx) : xj∈SKEL+, pf(xj)=x}. Since 
to every child xj of x corresponds exactly one yx it follows that 
|D|≤|SKEL+|=O(|L(F)|). Let D[ui,d] be the list of descendants of ui∈V(T) at distance 
d from ui. Thus, for children ui of u and xj of x we have 
 

W(ui,xj) = minu' {W(u',yx) + WP(ui,u') : d = dist(xj,yx), u'∈D[ui,d]} .             (7) 
 

Now, according to equation (3), rewritten below as (8), we need to find a minimum 
cost matching μ*∈MP[Ch(u),Ch(x)] of a complete bipartite graph (Ch(u),Ch(x)), 
where the cost of every edge (ui,xj) is W(ui,xj) –W(ui) and evaluate: 
 

W(u,x) = 1 – deg(x) + ∑v∈Ch(u) W(v) + ∑z∈Ch(x)[W(μ*(z),z) − W(μ*(z))] .              (8) 
 

By equations (5-7) we do not have to compute W(u,x) for all vertices x∈V(F), but 
only for vertices x in SKEL+. Thus we need to compute only O(|V(T)||L(F)|) such 
values. 

In the preprocessing stage we discard from F the trees whose height exceeds 
height(T) and prepare SKEL, SKEL+ and D ; this requires O(|V(F)|) time. Also, we 

prepare D[u,d] for all u∈V(T) and d∈D. Let dmax=max {d : d∈D }; clearly 
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dmax≤height(T). In the worst case, each vertex appears in the list of all its ancestors, 
and so this requires O(|V(T)| dmax) time. The algorithm traverses T in postorder, and at 
vertex u it examines the cost of covering u by every x∈SKEL+. 
 

Algorithm MAP-LEAVES 
 for every u∈V(T) in postorder W(u)=∞; 
      if u is a leaf then W(u)=1, WS(u)=0; 
      if u is not a leaf then WS(u) = ∑v∈Ch(u)W(v);  
         for every v∈Ch(u)  // compute WP 

      for all descendants w of v at distance at most dmax 
             WP(u,w) = WS(u)−W(v) +WP(v,w); 

      for every x∈SKEL+ in postorder 
           if u is a leaf 

      if x is a leaf then W(u,x)=1 else W(u,x)=∞; 
           if u is not a leaf 

    if x is a leaf then W(u,x) = 1+WS(u); 
else if x∈V(SKEL)  

Let μ* be a minimum cost matching in MP[Ch(u),Ch(x)] 
W(u,x) = 1 – deg(x) + WS(u) + cost(μ*) // equation (7) 
if x∈SKEL+ −  V(SKEL) 

let yx be the closest descendant of x that belongs to a tree in SKEL; 
                                  d = dist(x,yx); 
                                 W(u,x) = minw∈D[u,d] {W(w,yx) +WP(u,w)}; // yx is unique for x  (9) 

if x=root(f), f∈F then W(u)=min {W(u,x),W(u)};  
if u=root(T) then W(u) is the size of the minimum cover; 
end 

 
The computation of WP(u,w) for every u,w requires O(|V(T)| dmax) time, since each 

vertex w appears only in the list of its ancestors. The vertex w∈V(T) in equation (9) is 
considered for its ancestor u at distance d = dist(x,yx). Thus for each x∈SKEL+, w ap-
pears in O(|SKEL+|) computations of the minimum in (9). Hence, over all w∈V(T), the 
number of vertices considered in the computation of all the minima in (9) is 
O(|V(T)||SKEL+|)=O(|V(T)||L(F)|). Since the matching can be found as in Section 2, we 
obtain: For OFVC, Algorithm MAP-LEAVES requires O(|V(T)|dmax+|V(T)||L(F)|) ≤ 
O(|V(T)|height(T) +|V(T)||L(F)|) time. For UFVC, Algorithm MAP-LEAVES requires 
O(|V(T)|dmax+∑f∈F|L(f)|1.5|V(T)| log|V(T)|) ≤ O(|V(T)|height(T)+∑f∈F|L(f)|1.5|V(T)|log| 
V(T)|)  time.  

4   Algorithms for Maximum Packing of a Forest in a Tree 

Algorithms MAP-CHILDREN and MAP-LEAVES can be used for many other opti-
mization problems on T and F. For example, finding a maximum packing of vertex 
disjoint copies of trees of F into T, can be solved in polynomial time; here we assume 
that F contains no single vertex tree, otherwise the problem is trivial. This problem has  
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two versions, one to maximize the number of packed trees and another to maximize the 
number of covered vertices of T. Denote by W(u) the number of trees in a maximum 
forest packing of Tu. An [Tu , fx] forest packing of Tu is an F∪{fx} forest packing of Tu, 
such that u=root(Tu) is covered by x=root(fx) and when x≠root(f), fx is used only once 
in the packing. Let W(u,x) be the number of trees in a maximum [Tu , fx] forest packing 
of Tu. Then, similarly to equation (1), 
 

 W(u,x)=1+maxX{∑z∈Ch[X−{u}]–XW(z)+∑v∈Ch(u)–XW(v) X⊆V(Tu), T[X]≈ fx, root(T[X])=u}. (10) 
 

Note that if a vertex u is covered by a vertex x of f∈F, x≠root(f), then pT(u) must be 
covered by pf(x). W(u,x) can be evaluated as a maximum weight matching 
μ*∈MP[Ch(x),Ch(u)] of a complete bipartite graph [Ch(x),Ch(u)], in which the 
weight of every edge (ui,xj) is W(ui,xj)–W(ui): 
 

W(u,x) = 1 – deg(x) + ∑1≤i≤deg(u) W(ui) + ∑1≤j≤deg(x) [W(μ*(xj),xj) – W(μ*(xj))].    (11) 
 

Clearly W(u)=max {∑1≤i≤deg(u) W(ui) , maxf∈F{W(u,root(f))}} and the size of a maxi-
mum packing is W(root(T)); when u is a leaf, W(u)=0. 

For a packing covering a maximum number of vertices of T, equation (11) is re-
placed by: W(u,x) = 1+ ∑1≤i≤deg(u) W(ui) + ∑1≤j≤deg(x) [W(μ(xj),xj) – W(μ(xj))]. 

The complexity of the algorithms is similar to the complexity of the algorithms in 
Sections 2, 3. 

5   Covering the Edges by a Minimum Ordered or Unordered 
Forest Edge-Cover 

Consider a tree T and a forest F, F={fi : i=1,..,k }. For u∈V(T) and x∈V(F), since we 
are looking for an edge-disjoint cover, the edge from the parent pT(u) of u  to u must 
be covered by exactly one edge of the forest F.  

We prove that the Problems OFEC and UFEC are NP-complete, by reducing to 
them the NP-complete problem of Exact Cover by 3-Sets (X3C) [3].  
 

Problem: Exact Cover by 3-Sets (X3C) 
Instance: A set X={v1,...,vn} and a family of 3-subsets S={s1,...,sk} of X.  
Question: Is there a subfamily S'⊆S s.t. every vi∈X is contained in exactly one set  

in S' ?  

Theorem 1: The problems of exact covering of the edges of a tree T by a minimum 
ordered or unordered forest edge-cover are NP-complete. 

 

Proof. We show that the problem X3C is reducible to the Problems OFEC and UFEC, 
i.e., for each instance of X3C we show an instance of the edge-cover problem that has 
a cover of size n/3 if and only if X3C has a solution.  

Consider a set X={v1,...,vn} and a family of 3-subsets S={s1,...,sk} of X.  We con-
struct a tree T (Fig. 2a) with root v whose children are v1,...,vn and at every vi we at-
tach a subtree Ti defined as follows (Fig. 2b): Ti's root is vi, vi has i children which are 
leaves and vi has attached a path with n−i+1 vertices. Clearly, every Ti has exactly 
n+2 vertices and no two Ti's are isomorphic. For every sj={va,vb,vc}∈S, a <b < c, we 
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define a tree fj  (Fig. 2c) with root sj, children va,vb,vc from left to right, and copies of 
Ta, Tb, Tc attached as subtrees. Let F={f1,f2,...,fk}∪{e}, where e is the tree consisting 
of two vertices and an edge between them. Consider an ordered or unordered forest 
edge-cover of size n/3 of T; such a covering is minimum since all vertices sj's are 
mapped on v. Then, for every child vi of v in T, there exists some fj with child vi of sj, 
covering the child vi of v. Thus, a forest edge-cover of size n/3 of T by trees in F gives 
an exact covering of X by subsets in S.  

                                                                                                                                                   
                    v     (a)                            vi      (b)                                            sj     (c)
             T                                   Ti                                                      fj              

                                           

                                                         ...                                          va                      vb                       vc     

                                                     i leaves                                    Ta              Tb             Tc

     v1               v2       ...     vn                                       
                                                           n–i+1                                                      
     T1              T2               Tn              vertices                                         

 

Fig. 2. An instance of forest edge-cover problem corresponding to an instance of X3C 

Conversely, an exact covering of X by subsets si,1,...,si,n/3∈S will give a cover 
fi,1,...,fi,n/3∈F of the edges of T. Note that the order of the edges in the fi's is compatible 
to that of T. Thus any exact cover is an ordered cover.                                                  

By the same reduction, the maximum packing problems of edge disjoint copies of 
trees of F into a tree T, are NP-complete. 

6   An algorithm for a Minimum Consecutive Forest Edge-Cover 

Problem CFEC, finding a minimum consecutive edge-cover, assumes that T is an or-
dered tree and if u∈V(T) is covered by x∈V(F), then the children of u covered by the 
children of x, are consecutive in the order of T. Let the edge from the parent of a ver-
tex v to v in a tree t be denoted by pt(v)→v. For non-roots u∈T and x∈V(F), since we 
are looking for an edge-disjoint cover, the edge pT(u)→u should be covered by ex-
actly one edge of F, the edge pf(x)→x. Let us denote fx

+= fx∪{pf(x)→x}, 
Tu

+=Tu∪{pT(u)→u}. For non-roots u, x, let [Tu
+, fx

 +,j] denote a consecutive edge-
cover of the subtree Tu

+ by the forest  F∪{fx
+} such that the edge pf(x)→x covers the 

edge pT(u)→u, the children{x1,...,xdeg(x)} of x cover the children uj−deg(x)+1,...,uj of u, 
and the tree fx

+ is used only once in the cover.  
Let Tu(i,j) denote the subtree of Tu containing u (as root), the children ui,...,uj of u 

and all the children's descendants. The algorithm is based on the observation that in a 
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[Tu
+,fx

 +,j] consecutive edge-cover, the subtrees Tu(1,j–deg(x)) and Tu(j+1,deg(u)) 
have consecutive edge-covers by F, that is, u is covered only by roots of trees in F, 
while Tu(j–deg(x)+1, j)∪{pT(u)→u} has a consecutive edge-cover by the forest  
F∪{fx

+}, using the tree  fx
+ only once. 

Let μu,x,j be a minimum cost matching of the complete bipartite graph [Ch(x),{uj–

deg(x)+1,...,uj}] in which the cost of every edge (v,z), v∈{uj–deg(x)+1,...,uj}, z∈Ch(x), is the 
size of a minimum [Tv

+,fz
+,j] consecutive edge-cover. Let W(u,i,j) be the cardinality of 

a minimum consecutive edge-cover of Tu(i,j) by F. For every u and j we will evaluate 
 

                 W(u,1,j) = minf∈F {W(u,1, j – deg(root(f)) + cost(μu,root(f),j)}                    (12) 
 

     W(u,j,deg(u)) = minf∈F {W(u, j + deg(root(f),deg(u)) + cost(μu,root(f),j+deg(root(f)–1))} .   (13) 
 

For non-roots u, x, let WR(pT(u)→u,pf(x)→x) be the size of a minimum among all j, 
1≤j≤deg(u), of a [Tu

+, fx
 +, j] consecutive edge-cover,  Therefore 

 

     WR(pT(u)→u,pf(x)→x)=mindeg(x)≤j≤deg(u){W(u,1,j–deg(x))+W(u,j+1,deg(u))+cost(μu,x,j)}.(14) 
 

Algorithm MAP-EDGES 
 for every u∈V(T) in postorder 
     for every f∈F  

for j=1,...,deg(u) set W(u,1,j)=W(u,j,deg(u))=∞; 
     if u is not a leaf then 

   for every j=deg(u) –deg(root(f)+1,...,deg(u) 
      find a minimum cost matching μu,root(f),j; 
      W(u,1,j)=minf∈F{W(u,1, j–deg(root(f)) + cost(μu,root(f),j)}; 
   for every j=deg(u),deg(u) –1,..., deg(u) –deg(root(f)+1 
    W(u,j,deg(u))=minf∈F{W(u, j+deg(root(f),deg(u)) + cost(μu,root(f),j+deg(root(f)–1))}; 

 if u≠root(T) then 
     for every x∈f∈V(F), x≠root(f), in postorder 

if u is a leaf then 
   if x is a leaf then WR(pT(u)→u,pf(x)→x)=1 else WR(pT(u)→u,pf(x)→x)=∞; 

              if u is not a leaf then 
      if x is a leaf then WR(pT(u)→u,pf(x)→x)=1+W(u,1,deg(u)); 
      if x is not a leaf then 

Let μu,x,j be a minimum cost matching of the complete bipartite graph  
                                                                  MP[Ch(x),{uj–deg(x)+1,...,uj}]; 

               WR(pT(u)→u,pf(x)→x)=mindeg(x)≤j≤deg(u){W(u,1,j–deg(x))+W(u,j+1,deg(u)) 
                                                                                        +cost(μu,x,j)}; 

      if u=root(T) then W(u,1,deg(u)) is the size of the minimum edge-cover; 
end 

 
The algorithm works in O(∑f∈F |V(f)|1.5 |V(T)| log|V(T)|) time by the matching al-

gorithms in [1,2]. 
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The maximum packing problems of edge disjoint copies of trees of F into T, where 
the children of u covered by the children of x, are consecutive in the order of T, can 
also be solved in polynomial time; here we assume that F contains no single vertex 
and no single edge tree otherwise the problem is trivial. This is done by an algorithm 
similar to the above, by changing the equations (12), (13) to: 
 

   W(u,1,j) = min {W(u,1,j–1) , minf∈F{W(u,1, j – deg(root(f)) + cost(μu,root(f),j)}}.  (15) 
 
W(u,j,deg(u)) = min {W(u,1,j+1), 
                                    minf∈F{W(u,j+deg(root(f),deg(u)) + cost(μu,root(f),j+deg(root(f)1)) }} . (16) 
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1 Departamento de Matemática da Universidade de Aveiro,
3810-193 Aveiro, Portugal

dcardoso@ua.pt
2 DIMAP and Mathematics Institute, University of Warwick,

Coventry, CV4 7AL, UK
V.Lozin@warwick.ac.uk

Abstract. We study the problem of determining whether or not a graph
G has an induced matching that dominates every edge of the graph,
which is also known as efficient edge domination. This problem is
known to be NP-complete in general as well as in some restricted do-
mains, such as bipartite graphs or regular graphs. In this paper, we
identify a graph parameter to which the complexity of the problem is
sensible and produce results of both negative (intractable) and positive
(solvable in polynomial time) type.

Keywords: Dominating induced matching; Efficient edge dominating
set; Polynomial-time algorithm.

1 Introduction

Let G be a simple graph, i.e, an undirected graph without loops and multiple
edges. Given an edge e in G, we say that e dominates itself and every edge
sharing a vertex with e. An induced matching in G is a subset of edges such that
each edge of G is dominated by at most one edge of the subset. In this paper we
study the problem of determining whether a graph has a dominating induced
matching, i.e., an induced matching that dominates every edge of the graph.
This problem is also known in the literature as efficient edge domination.
It can also be viewed as a restricted version of vertex 3-colorability, i.e.,
the problem of determining whether the vertices of a graph can be partitioned
into three independent sets. In the dominating induced matching problem
we are looking for a partition of a graph into three independent sets such that
two of them induce a 1-regular graph.

Our concern in this paper is the computational complexity of the dominating
induced matching problem in special classes of graphs. Recently, it was shown
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in [4] that an induced matching in a graph is dominating only if it is of maximum
size. Finding a maximum induced matching is a well studied problem (see e.g.
[1,2,6]). It is NP-hard in general graphs and in many particular classes such as
bipartite graphs of degree at most three [10] or line graphs [8]. This, however,
does not necessarily imply the NP-completeness of the dominating induced
matching problem in the same class, as we shall see later.

The NP-completeness of the dominating induced matching problem was
first shown in [7]. In [9], the author proved the NP-completeness of this problem
in cubic graphs, while [4] extended this result to d-regular graphs for an arbitrary
d ≥ 3. The NP-completeness was also shown for bipartite graphs [13] and planar
bipartite graphs [12]. On the other hand, polynomial-time solutions have been
developed for the problem in the class of bipartite permutation [13] and chordal
graphs [12].

Following this line of research, we present results of two types. First, we gen-
eralize many of the NP-completeness results mentioned above by identifying a
graph parameter to which the complexity of the problem is sensible. Then we
present a new polynomially solvable case which deals with the class of claw-free
graphs. Observe that the maximum induced matching problem is NP-hard
in this class [8], which reveals the computational difference between the two
problems. It is interesting to note that in the abstract of paper [7] the au-
thors mistakenly claimed the NP-completeness of the dominating induced
matching problem in the class of line graphs (a proper subclass of claw-free
graphs). Our solution to the problem in claw-free graphs corrects this wrong
statement.

The organization of the paper is as follows. In the rest of this section, we
introduce general notations and definitions. In Section 2, we prove the NP-
completeness result, while in Section 3 develop a polynomial-time algorithm
for the problem in the class of claw-free graphs. Section 4 concludes the paper
with some further observations on the complexity of the problem in special graph
classes.

For a graph G, we denote by V (G) and E(G) the vertex set and the edge set of
G, respectively. If v ∈ V (G), then N(v) is the neighborhood of v, i.e., the set of
vertices adjacent to v. The degree of v is |N(v)|. A graph is k-regular of the degree
of each vertex is k. An independent set in G is a subset of pairwise nonadjacent
verteices. For a subset, U ⊆ V (G), we denote by G[U ] the subgraph of G induced
by vertices of U . If G does not contain induced subgraphs isomorphic to a graph
H , we say that G is H-free and call H a forbidden induced subgraph for G. The
class of graphs containing no induced subgraphs isomorphic to graphs in a set
M will be denoted Free(M).

As usual, Kn is the complete graph on n vertices, Kn,m is the complete bipar-
tite graph with parts of size n and m, and Pn (Cn) is the chordless path (cycle)
on n vertices. By G + H we denote the disjoint union of two graphs G and H .
In particular, mG = G + . . . + G is the disjoint union of m copies of G. Also,
Si,j,k and Hi are two graphs represented in Figure 1.
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Fig. 1. Graphs Si,j,k (left) and Hi (right)

2 An NP-Completeness Result

From [7] we know that determining if G has a dominating induced matching is
an NP-complete problem. Moreover, it is NP-complete even for bipartite graphs
[13]. In this section, we prove a somewhat stronger result. To this end, let us
first present the following technical lemma.

Lemma 1. Let G be a graph and e an edge in G. If G′ is the graph obtained
from G by subdividing the edge e exactly three times, then G has a dominating
induced matching if and only if G′ has.

Proof. Denote the endpoints of e by a and b, and the three vertices subdividing
the edge e by x, y, z. Assume first that G has a dominating induced matching
M . If e = ab ∈ M , then the set M ′ = M ∪ {ax, zb} is a dominating induced
matching in G′. If e = ab �∈ M and e is dominated by a certain edge of M
incident to a, then M ′ = M ∪ {yz} is a dominating induced matching in G′.

Conversely, suppose G′ has a dominating induced matching M ′. If neither xy
nor yz belong to M ′, then ax, zb ∈ M ′ and hence M = (M ′ − {ax, zb}) ∪ {ab}
is a dominating induced matching in G. Assume now without loss of generality
that yz ∈ M ′. Then the set M = M ′ − {yz} is a dominating induced matching
in G. ��
A direct consequence of this lemma is the following result.

Lemma 2. For any k, the dominating induced matching problem is NP-
complete in the class of bipartite (C3, . . . , Ck, H1, . . . , Hk)-free graphs of vertex
degree at most three.

Proof. We prove the lemma by reducing the problem from graphs of vertex
degree at most three, where the problem is known to be NP-complete.

Let G be a graph of vertex degree at most 3 and G′ a graph obtained from G
by a triple subdivision of an edge of G. Then G′ is also of degree at most three
and it has a dominating induced matching if and only if G has. If we subdivide
each edge of G three times, then we obtain a bipartite graph, since the length
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of each edge of G increases 4 times. Applying this operation repeatedly, we can
get rid of small induced cycles and small graphs of the form Hi. The resulting
graph is bipartite, of maximum degree three and it has a dominating induced
matching if and only if G has. This proves the lemma. ��
We now generalize this lemma in the following way. Let Sk denote the class of
(C3, . . . , Ck, H1, . . . , Hk)-free bipartite graphs of vertex degree at most 3. To
every graph G we associate the parameter κ(G), which is the maximum k such
that G ∈ Sk. If G belongs to no class Sk, we define κ(G) to be 0, and if G belongs
to all classes Sk, then κ(G) is defined to be ∞. Finally, for a set of graphs M ,
we define κ(M) = sup{κ(G) : G ∈M}.
Theorem 1. Let M be a set of graphs and X the class of M -free bipartite
graphs of vertex degree at most 3. If κ(M) <∞, then the dominating induced
matching problem is NP-complete in the class X.

Proof. To prove the theorem, we will show that there is a k such that Sk ⊆ X .
Denote k := κ(M) + 1 and let G belong to Sk. Assume that G does not belong
to X . Then G contains a graph A ∈ M as an induced subgraph. From the
choice of G we know that A belongs to Sk, but then k ≤ κ(A) ≤ κ(M) < k, a
contradiction. Therefore, G ∈ X and hence, Sk ⊆ X . By Lemma 2, this implies
the NP-completeness of the problem in the class X . ��

3 Dominating Induced Matchings in Claw-Free Graphs

The results of the previous section suggest that, unless P = NP , the problem
is solvable in polynomial time in the class Free(M) only if κ(M) = ∞. One of
the ways to push κ(M) to infinity is to include in M a graph G with κ(G) =∞.
By definition, κ(G) =∞ if and only if G belongs to all classes Sk, which means
G has no induced cycles, no induced graphs of the form Hi and no vertices of
degree more than three. In other words, κ(G) =∞ if and only if every connected
component of G is of the form Si,j,k represented in Figure 1. In this section, we
analyze the first non-trivial cases when κ(G) =∞, namely, G = S1,1,1. The class
of graphs excluding S1,1,1 as an induced subgraph is known in the literature as
the claw-free graphs. The main result of the section is that in the class of claw-free
graphs the dominating induced matching problem is solvable in polynomial-
time. In the proof, we use an alternative definition of the problem which asks
to determine if the vertex set of a graph G admits a partition into two subsets
W and B such that W is an independent set and B induces a 1-regular graph.
Throughout the section we will call the vertices of W white and the vertices of
B black, and the partition V (G) = B ∪W black-white partition of G. In other
words, a graph G has a dominating induced matching if and only if G admits a
black-white partition. We will use these two notions interchangeably.

Assigning one of the two possible colors to the vertices of G will be called
coloring of G. A coloring is partial if only part of the vertices of G have been
assigned colors, otherwise it is total. A partial coloring is valid if no two white
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vertices are adjacent and no black vertex has more than one black neighbor. A
total coloring is valid if no two white vertices are adjacent and every black vertex
has exactly one black neighbor.

We start with preliminary results valid for all graphs, not necessarily claw-free.
First, we observe that

Observation 1. If G admits a black-white partition, then in any triangle of G
two vertices are black and one is white.

Second, we prove the following helpful lemma.

Lemma 3. If a graph G has a dominating induced matching, the neighborhood
of each vertex of G induces a subgraph each connected component of which is a
star K1,s for some s.

Proof. Let v be a vertex in a graph G with a dominating induced matching.
Then G[N(v)] is K3-free, since otherwise G is not 3-colorable (and hence has no
dominating induced matching).

Assume G[N(v)] contains an induced P4 = (a, b, c, d). Then v is not white,
since otherwise the vertices a, b, c, d are all black, which is not possible in a valid
black-white partition. If v is black, then at most one of the vertices a, b, c, d is
black and then at least three are white with two of these three connected by an
edge, which is a contradiction.

Similarly, we can show that G[N(v)] is C4-free. Therefore, G[N(v)] is a forest.
Since G[N(v)] is P4-free, each connected component of this forest is a star K1,s

for some s. ��

From now on, G is a claw-free graph. Without loss of generality we will assume
that G is connected and the maximum vertex degree in G is at least 3 (for graphs
of degree at most 2 the problem is trivial). The next lemma shows that we also
may assume that the maximum vertex degree in G is at most 4.

Lemma 4. If a claw-free graph G has a vertex of degree more than 4, then G
has no dominating induced matching.

Proof. Let v be a vertex of degree more than 4 and assume by contradiction that
G has a dominating induced matching. From Lemma 3 we know that G[N(v)]
is a forest each connected component of which is a star K1,s for some s. Since
G is claw-free, the number of components is at most 2 and for each component
we have s ≤ 2. Moreover, to avoid a claw, we conclude that if G[N(v)] has a
component K1,2, then there are no other components, i.e., the degree of v is 3.
If each component has at most 2 vertices, then the degree of v is at most 4. This
contradiction completes the proof of the lemma. ��

From Lemmas 3 and 4, we conclude that a claw-free graph G has an efficient
edge dominating set only if each vertex v of G is one of the following six types:

(1) degree 1,
(2) degree 2 with two adjacent neighbors,
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(3) degree 2 with two non-adjacent neighbors,
(4) degree 3 with G[N(v)] inducing a K1 + K2,
(5) degree 3 with G[N(v)] inducing a K1,2,
(6) degree 4 with G[N(v)] inducing a 2K2.

Before we proceed to an algorithm, let us simplify the input graph as follows.
First, we replace any three consecutive vertices of type 3 by an edge. According
to Lemma 1, the modified graph has an efficient edge dominating set if and only
if the original one has. In other words, we will assume without loss of generality
that

(a) if v is a vertex of type 3, then at least one of its neighbors is not of type 3.

This implies in particular that any vertex of degree 1 is connected to the nearest
vertex of degree 3 by a chordless path of length at most 3. Moreover, it is not
difficult to see that if the length of the path is 3, we can delete this path and
the new graph has an efficient edge dominating set if and only if the original one
has. Therefore, in what follows we assume that

(b) any vertex of degree 1 is connected to the nearest vertex of degree 3 by a
chordless path of length at most 2.

For the reader’s convenience, we also recall that

(c) G is connected and has at least one vertex of degree more than 2.

With the assumptions (a), (b), (c) in mind we can derive the following con-
clusion the proof of which is simple and hence is omitted.

Lemma 5. Let G be a graph with a black-white partition and v a vertex of G.
If

– v is of type 1 with a neighbor of type 4, then v is white.
– v is of type 1 with a neighbor of type 3, then v is black.
– v is of type 3 with a neighbor of type 3, then v is black.
– v is of type 3 with a neighbor of type 1, then v is black.
– v is of type 3 with both neighbors of type 4, then v is white.
– v is of type 5, then v is black.
– v is of type 6, then v is white.

According to Lemma 5, the vertices of types 1,3,5 and 6 can be colored before
the main step of the algorithm starts. If this initial coloring produces a conflict
(two white adjacent vertices or a black vertex with more than one black neigh-
bor), then the algorithm terminates and reports that the input graph has no
black-white partition. Otherwise, the initial coloring can be further propagated
according to the following obvious rules:

R1 : each neighbor of a white vertex must be black;
R2 : all neighbors of two black adjacent vertices must be white;
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R3 : if v is a vertex of type 4 and w its neighbor which is isolated in G[N(v)],
then v and w must be colored differently.

A partial coloring will be called maximal if it cannot be extended by applica-
tion of rules R1 − R3. Assuming that the initial coloring is valid and maximal
and G still has some uncolored vertices, we divide the rest of the algorithm into
two steps. First, in the subgraph of G induced by uncolored vertices, we color
the cycles of length more than three.

Lemma 6. If the subgraph of G induced by uncolored vertices contains a chord-
less cycle C with at least 4 vertices, then C is of even length. Moreover, if G
admits a black-white partition, then the vertices of C are colored alternately black
and white, and furthermore, by switching the colors along the cycle we again ob-
tain a valid black-white partition of G.

Proof. Clearly, no vertex of C can be of type 2. Therefore, each vertex of C is
of type 4. For any vertex v of type 4, exactly two edges incident to v belong to
a triangle and we will call them heavy edges, and the remaining edge belong to
no triangle, and we will call it a light edge.

Since each vertex of C is of type 4, light edges in C alternate with heavy edges.
Therefore, C is of even length. Moreover, since the endpoints of light edges must
be colored differently (rule R3), the colors of vertices of C must alternate. Each
vertex u of G that has a neighbor on C must be adjacent to two consecutive
vertices of the cycle (otherwise a claw arises). Since one of these neighbors is
white, u must be colored black. Therefore, switching the colors along the cycle
does not produce any conflicts, and hence leads to another black-white partition
of G. ��

Lemma 6 reduces the problem to the induced subgraph of G which is a chordal
graph, i.e., a graph containing no chordless cycles of length more than 3. It turns
out this subgraph can be always colored without producing any conflicts (if the
current coloring is valid and maximal).

Lemma 7. Let φ is a maximal partial valid coloring of G such that the subgraph
of G induced by uncolored vertices has no chordless cycles of length more than
three. Then φ can be extended to a total valid coloring of G.

Proof. The connected components of the subgraph of G induced by uncolored
vertices can be colored separately and independently of each other. Therefore,
we may assume without loss of generality that the uncolored vertices induce a
connected graph. Denote by H the subgraph of G obtained by deleting those col-
ored vertices that have no neighbors among uncolored ones (clearly, the deleted
vertices are of no importance for finding an extension of φ).

By Lemma 5 and maximality of φ, every vertex of H belongs to exactly one
triangle and any two triangles of H are disjoint. Let T1, T2, . . . , Tk be the list of
all these triangles. Also, from maximality of φ we know that
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– each triangle Ti has either two or three uncolored vertices;
– if a triangle Ti has two uncolored vertices, then the only colored vertex of Ti

is black;
– no two black vertices of different triangles Ti and Tj are adjacent.

The last item implies in particular that H has no chordless cycles of length more
than three. In other words, by contracting each triangle Ti into a single vertex
we obtain a tree. A triangle of H that becomes a leaf in this tree will be called
a leaf triangle of H .

We will prove the lemma by induction on k, i.e., on the number of triangles
in H . If k = 1, then G contains exactly two uncolored vertices. By coloring one
of them white and the other black we obtain a total valid coloring of G.

Assume the lemma is true for any number of triangles less then k and let Ti

be a leaf triangle of H . By deleting Ti we obtain a subgraph of H which, by the
induction hypothesis, admits a total valid coloring φ′. This subgraph contains
a unique vertex x that has a neighbor y in Ti. Observe that y is necessarily
uncolored in φ, as every colored vertex of H has degree 2 in this graph. If x
is black in φ′, then we color y white, and vice versa. The rest of Ti is colored
arbitrarily according to the rule that any triangle must contain strictly two black
vertices. ��

We summarize the above discussion in Algorithm α below. This algorithm is
robust in the sense that it does not require the input graph G to be claw-free.
The algorithm either finds a black-white partition of G or reports that G has
no such partition or G is not claw-free. As before, we assume without loss of
generality that G satisfies (a), (b) and (c).

Algorithm α

Input: a graph G
Output: a black-white partition of G or report “G has no black-white parti-

tion or G is not claw-free”

1. If at least one vertex of G is not of type 1, 2, 3, 4, 5 or 6, then STOP and
output “G has no black-white partition or G is not claw-free”.

2. If G has no vertices of type 1,3,5,6, then A := ∅, otherwise, color the vertices
of type 1,3,5,6 according to Lemma 5, extend this coloring to a maximal one
according to rules R1−R3, and denote the set of colored vertices by A.

3. If the coloring of vertices of A is not valid, then STOP and output “G has
no black-white partition or G is not claw-free”.

4. If A = V (G), then STOP and output the coloring of V (G), otherwise, U :=
V (G)−A.

5. As long as G[U ] has a cycle C of length more than 3, do

5.1. color the vertices of C alternately black and white (starting with an
arbitrary vertex), extend the coloring to a maximal one, add the newly
colored vertices to A and delete them from U ;
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5.2. if the coloring of vertices of A is not valid, then STOP and output “G
has no black-white partition or G is not claw-free”;

5.3. if A = V (G), then STOP and output the coloring of V (G).
6. Extend the coloring of A to a total coloring according to Lemma 7 and

output the black-white partition of G.

Theorem 2. Algorithm α correctly solves the dominating induced matching
problem for any claw-free graph G with n vertices in time O(n2).

Proof. Correctness of the algorithm follows from Lemmas 3-7. The most time
consuming steps of the algorithm are 5 and 6. In the analysis of step 5, it is
helpful to consider the subgraph H of G obtained by deleting those colored
vertices that have no neighbors among uncolored ones. Similarly as in Lemma 7,
every vertex of H belongs to exactly one triangle and any two triangles of H
are disjoint. By contracting each triangle of H into a single vertex, we obtain an
auxiliary (multi)graph H ′ that has a cycle if and only if H has a cycle of length
more than 3. Finding a cycle in H ′ is a linearly solvable problem, hence step 5
can be implemented in quadratic time. Obviously, this time is also sufficient to
execute step 6. ��

4 Concluding Remarks

In this paper, we studied the computational complexity of the dominating in-
duced matching problem (also known as efficient edge domination) on
special graph classes. We tightened the gap between classes where the problem is
NP-complete (by strengthening some of the NP-completeness results) and those
where the problem is solvable in polynomial time (by revealing a new polynomi-
ally solvable case). But still the gap contains a vast variety of unexplored classes.
Further tightening can be obtained, for instance, on the basis of the following
observation.

Observation 2. The dominating induced matching problem can be solved
in polynomial time in any class of graphs of bounded clique-width.

Recently, many classes of graphs have been shown to be of bounded clique-width
(see e.g. [5,11,14]), which implies by Observation 2 and results in [3] linear-
time solvability of the problem in such classes. For some other classes, efficient
algorithms can be derived by combining Observation 2 with other results. We
complete the paper with an example of this type. In particular, by combining
Observation 2 with Lemma 3 we obtain an alternative proof of the fact that
the problem is solvable in polynomial time in the class of chordal graphs, i.e.,
graphs without chordless cycles of length at least 4. Observe that in general the
clique-width of chordal graphs is unbounded.

Proposition 1. The dominating induced matching problem can be solved
in the class of chordal graphs in linear time.
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Proof. A gem is a graph on 5 vertices of which 4 induce a P4 and one is adjacent
to each vertex of the P4. By Lemma 3, if a graph contains a gem as an induced
subgraph then it has no dominating induced matching. Chordal graphs that are
gem-free are known as ptolemaic graphs and they from a subclass of distance-
hereditary graphs. Therefore, the clique-width of gem-free chordal graphs is at
most 3 [5]. This suggests the following algorithm to solve the problem for a
chordal graph G: if G contains a gem (which can be determined in linear time),
then G has no dominating induced matching. Otherwise, apply the results from
[3] to solve the problem for G in linear time. ��
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Abstract. Generalized hypertree width (short: ghw) is a concept that leads to
a large class of efficiently solvable CSP instances, whose associated recognition
problem (of checking whether the ghw of a CSP is bounded by a constant k) is
however known to be NP-hard. An elegant way to circumvent this intractability
has recently been proposed in the literature, by means of a “no-promise” approach
solving CSPs of bounded ghw without the need of actually computing a gener-
alized hypertree decomposition. In fact, despite the conceptual relevance of this
approach, its computational issues have not yet been investigated and, indeed,
precise bounds on the running time of the no-promise algorithm are missing.

The first contribution of this paper is precisely to fill this gap. Indeed, the com-
putational complexity of the no-promise approach is analyzed, by exploiting an
intuitive characterization relying on the notion of hyperconsistency width. It turns
out that, in the basic formulation, the approach is hardly suited for practical ap-
plications mainly because of its bad scaling in the size of the constraint database.
Motivated by these news and based on a variant of hyperconsistency width, a dif-
ferent and more efficient method to decide whether CSPs of bounded ghw admit
solutions is then provided. Importantly, the improved method exhibits the same
scaling as current evaluation algorithms for instances of bounded hypertree width,
nonetheless allowing to isolate a larger class of queries. Finally, to give a com-
plete picture of the complexity issues of the no-promise approach, the problems
of computing one solution and of enumerating all the solutions are also studied.

1 Introduction

The Constraint Satisfaction Problem (CSP) is a well-known framework to model and
solve search problems in several application domains. Formally, a CSP instance (e.g.,
[5]) is a triple (Var , U, C), where Var is a finite set of variables, U is a finite domain
of values, and C = {C1, C2, . . . , Cq} is a finite set of constraints, where each Ci is a
pair (Si, ri), in which Si ⊆ Var is called the constraint scope, and ri ⊆ U |Si| is called
the constraint relation. Then, a solution for a CSP instance is simply a substitution
θ : Var �→ U that satisfies all constraints.

Following [13], in this paper we shall exploit the logic-based characterization of a
CSP instance as a pair (Q,D), whereD is the constraint database, i.e., the set of all the
constraint relations ri, for each constraint Ci = (Si, ri), and Q is a conjunctive query,
i.e., an existentially quantified first-order formula with no negations or disjunctions,
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over the relational vocabulary consisting of the atoms ri(Si). Then, a solution θ is a
substitution such that θ(Q) evaluates true overD. The set of all the solutions for (Q,D)
will be denoted by Q[D].

Since solving CSPs in their general formulation is an NP-hard problem, much re-
search has been spent to identify restricted classes of CSPs over which solutions can
efficiently be computed. In this paper, we shall focus on classes of CSPs defined by
structural restrictions on the queries (see, e.g., [15,5,11,7]). In this context, we recall
that a class C is generally considered an “island of tractability” for CSPs if both the
recognition problem of deciding whether Q is in C, and the following promise problem

SATp
∅[C] :

⎧

⎨

⎩

Input : a CSP instance (Q,D) s.t. Q ∈ C
Output : Yes iff Q[D] �= ∅,

No iff Q[D] = ∅

are feasible in polynomial time.
When the recognition problem is hard, the promise problem SATp

∅[C] might still be
of interest in some applications, since one may have a guarantee that Q belongs to the
class C. But, this is in general not the case and, hence, one is more likely interested in
solving the no-promise problem SATnp

∅ [C], where an arbitrary CSP instance (Q,D) is
given in input, and where an algorithm may possibly decline to answer (e.g., answering
IDon′tKnow) when Q �∈ C:

SATnp
∅ [C] :

⎧

⎪⎪⎨

⎪⎪⎩

Input : a CSP instance (Q,D)
Output : Yes only if Q[D] �= ∅,

No only if Q[D] = ∅,
IDon′tKnow only if Q �∈ C

The need of dealing with no-promise problems has recently been argued in [3],
where the class of queries whose generalized hypertree width [8] is bounded by
a constant k (short: class C(ghw, k)) has been considered, and where it is shown
that SATnp

∅ [C(ghw, k)] can be solved in polynomial time, by means of a projective
k-consistency algorithm. Even though this result is conceptually relevant because check-
ing whether the ghw of a CSP is bounded by a constant k is NP-hard [9], its practical
applicability is still unclear because a thorough analysis of the complexity issues of the
projective k-consistency algorithm has not been conducted and, in fact, precise bounds
on its running time were missing.

In this paper we continue along this line of research, and we face the above research
questions by shedding light on the computational aspects of the projective k-consistency
algorithm, which have not been discussed in [3]. Indeed:

(1) We introduce the notion of hyperconsistency width as a measure for characterizing
the intricacy of constraints, and we study the computational properties of the class
C(hcw, k) of those queries whose hyperconsistency width is bounded by k.

(2) We show that this notion is a different, yet equivalent reformulation of the projec-
tive width, implicit in [3]. In fact, our reformulation leads to a conceptually sim-
pler method whose correctness is proven without the need of any game-theoretic
characterization for it.
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hcw≤ghw ahcw≤ghw

SATp
∅ O(q3kr2k) O(q2k+1rk)

SATp
∃ O(q3k+1r2k+1) O(q2k+2rk+1)

SATp
∀ O(q3k+1r2k+1o) O(q2k+2rk+1o)

SATnp
∅ O(q3k+1r2k+1) O(q2k+2rk+1)

SATnp
∃ O(q3k+1r2k+1) O(q2k+2rk+1)

SATnp
∀ O(q3k+2r2k+2o) O(q2k+3rk+2o)

Fig. 1. Results for SAT[C(ghw, k)]. On the left: bounds for the algorithm in [3]; on the right:
improved bounds.

(3) We introduce and investigate a different method to solve problems in C(ghw, k),
whose complexity improves on the bounds derived in (1). In particular, the basic
version of the projective k-consistency algorithm scales as O(q3kr2k), where q is
the size of Q (i.e. the number of atoms plus the number of variables in the for-
mula), and r is the size of the largest relation in D (i.e. the number of its entries).
To the contrary, our novel method scales as O(q2k+1rk), thereby significantly en-
larging the class of instances that can practically be managed. Indeed, this scal-
ing is basically the same that one may achieve when solving CSPs on the class
of queries having bounded hypertree width [8] (short: C(hw, k)), even though this
class is properly contained in C(ghw, k) and is, in fact, one of the largest classes of
tractable CSPs that is known to be also efficiently recognizable (see, e.g., [2,7]).

(4) Technically, the result in (3) is achieved by exploiting the fact that the hyper-
consistency width is defined in a way that is parametric w.r.t. the underlying de-
compositions. This is the main conceptual difference with the projective width. In
fact, our improved method is based on restricting the consistency algorithm on the
class of acyclic decompositions whose width is bounded by k (short: the subclass
C(ahcw, k) of C(hcw, k)). The relationships among these two notions and the no-
tion of generalized hypertree width are also clarified in the paper.

(5) Finally, to complement the results on the decision problems related to the class
C(ghw, k), we investigate the complexity issues arising for the problems of com-
puting one solution (short: SAT∃) and of computing all the solutions (short: SAT∀).

Our results are summarized in Figure 1, where o denotes the size of the output Q[D].
Notice that the complexity of the problems SAT, SAT∃, and SAT∀ has completely been
characterized for both the cases of promise and no-promise problems, and for both
the approach investigated in [3] and for the improved methods based on the notion of
acyclic hyperconsistency width.

The rest of the paper is organized as follows. In Section 2, the basic notion of hy-
perconsistency width is presented and its links with the notion of projective width are
discussed. Then, in Section 3, the subclass C(ahcw, k) of C(hcw, k) is defined and its
computational properties are studied, by also comparing them with the bounds derived
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for the approach in [3]. The problems of computing one solution and of computing
all the solutions are discussed in Section 4. Eventually, a few final remarks and some
directions for further work are reported in Section 5.

2 HyperConsistency Width

In this section, we present the notion of hyperconsistency width, which can be viewed
as a natural generalization of the various consistency concepts that have been studied in
the context of binary representations of constraints (e.g., [4,14]). Then, we compare it
with the notion of projective width that is implicit in [3].

The first step is to introduce the concept of hypergraph decomposition. In fact, the
reader might already be familiar with the notion of (generalized) hypertree decompo-
sition [8], which is basically a tree whose vertices are associated with a set of atoms
and with a subset of the variables occurring in them, and where for each variable X ,
the subgraph induced over the vertices containing X is connected (see Section 3.1).
Then, hypergraph decompositions can be viewed as an extension of hypertree decom-
positions where the underlying shape is an arbitrary graph rather than a tree, and where
the connectedness condition is omitted. In the following, let us denote by var(Q) (resp.,
atoms(Q)) the set of variables (resp., atoms) in a query Q.

Definition 1. A hypergraph decomposition J of a query Q, is a tuple (G, χ, λ) such
that:

– G = (V (J), E(J)) is a directed graph;
– λ : V (J) → 2atoms(Q) associates to each vertex v ∈ V (J) a set of atoms λ(v) ⊆

atoms(Q);
– χ : V (J)→ 2var(Q) associates to each vertex v ∈ V (J) a set of variables χ(v) �= ∅

satisfying χ(v) ⊆ ⋃A∈λ(v) var(A).

The width of J is defined as maxv∈V (J) |λ(v)|. �

Next, we shall make use of some standard relational operators to manipulate constraint
relations (see, e.g., [1]). Thus, if ri is a relation over the scope Si, and X is a subset
of Si, we denote by ΠX(ri) the relation obtained by projecting ri over X . Also, given
two relations ri and rj , the join of ri and rj is denoted by ri��rj ; and, the semi-join of
ri and rj , denoted by ri � rj , is just a shortcut for ri��(ΠSi∩Sj ri).

Let G = (V, E) be a directed graph. A G-set of relations R is a set of relations in
one-to-one correspondence with the nodes V ; thus, for each v ∈ V , rv ∈ R is the
associated relation in R. The �G-fixed-point of R, denoted by γG(R), is the G-set of
relations obtained as the unique fixed-point of R for the set of rules {rv := rv � rv′ |
(v, v′) ∈ E}.

Based on these notions, we can define an extremely simple and clear algorithm
AJ (for a decomposition J) deciding whether Q[D] = ∅. This algorithm, reported in
Figure 2, firstly computes for each node v, the joins and the projections corresponding
to λ(v) and χ(v), respectively. Then, it computes the �G-fixed-point of the resulting
G-set of relations. Finally, it reports No (resp., IDon′tKnow) if some relation in this
�G-fixed-point is (resp., is not) empty.
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Input: a CSP instance (Q,D), and a decomposition J ;
Output: No or IDon′tKnow;

begin
for each vertex v ∈ V (G) do

let rv = Πχ(v)(��A∈λ(v) (A[D]));
compute {r′v | v ∈ V (G)} = γG({rv | v ∈ V (G)});
if there is v ∈ V (G) such that r′v = ∅, then return No;
else return IDon′tKnow;

end.

Fig. 2. Algorithm AJ

Actually,AJ may be incomplete, but one may easily see that it is sound. In addition,
we next show that it terminates in polynomial time and that, for some special classes of
decomposition, it leads to a very efficient procedure.

Proposition 1. For a k-width hypergraph decomposition J , algorithm AJ returns No
on input (Q,D) only if Q[D] = ∅. Moreover, the �G-fixed-point can be computed so
thatAJ terminates in time: O(|V |×|E|×r2k), in the general case, and O((|V |+|E|)×
rk) when G is acyclic.

Proof. If some relation r′v in the �G-fixed-point is empty, then any substitution θ for
the variables in χ(v) can not be extended to a solution, i.e., to a substitution for all the
variables in the query satisfying the constraints.

As for the running time, on a RAM machine, the join of k relations can be computed
in time O(rk), the projection of one relation in linear time, and the semijoin of two
relations in linear time [6]. Therefore, the set {rv | v ∈ V (G)} can be computed in
time O(|V | × rk), and each semijoin required for computing γG({rv | v ∈ V (G)})
takes O(rk). When G is acyclic, its edges can be sorted according to a topological
order, so that only |E| steps are needed to reach the fixed point. In the general case,
instead, the result follows since |V | × rk steps are required at most to reach the fixed
point, because this is an upper bound on the number of tuples in {rv | v ∈ V (G)}, and
since each step involves |E| semijoin computations. �

Depending on the structure of Q and J , AJ might be a complete decision procedure.
Formally, we say that a hypergraph decomposition J of a query Q is consistent if, for
each databaseD,

AJ returns

{

No iff Q[D] = ∅
IDon′tKnow iff Q[D] �= ∅

Then, the hyperconsistency width hcw(Q) of Q is the minimum width over all its
consistent decompositions. The class of those queries whose hyperconsistency width
is bounded by k is denoted by C(hcw, k). Focusing on this class provides a guarantee
for the tractability of CSPs. This is shown below, by providing a polynomial bound for
solving the SATp

∅[C(hcw, k)] problem.
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Theorem 1. Let (Q,D) be a CSP instance, let q be the size of Q and r the size of the
largest relation in D. Then, SATp

∅[C(hcw, k)] is feasible in O(q3kr2k).
Proof. Let J = (G, χ, λ) and J ′ = (G′, χ′, λ′) be two hypergraph decompositions for
the same query Q. We say that J is contained in J ′, denoted by J 	 J ′, if there is a
morphism f from the nodes of G to the nodes of G′ such that f(G′) is a subgraph of G
and, for each node v of G: χ′(f(v)) ⊇ χ(v), and λ′(f(v))) ⊇ λ(f(v).

Armed with this notion, one may note that J 	 J ′ ∧ J is consistent ⇒
J ′ is consistent. In addition, we observe that for any fixed natural number k, the hy-
pergraph decomposition Jk where:

– V (Jk) = {v ⊆ atoms(Q) | |atoms(v)| ≤ k)};
– E(Jk) = V (Jk)× V (Jk);
– ∀v ∈ V (Jk), λ(v) = v and χ(v) = (∪A∈vvar(A)).

is 	-maximal among the set of all the k-width hypergraph decompositions.
When hcw(Q) ≤ k, we know that Jk is consistent and we can decide

SATp
∅[C(hcw, k)] by using the algorithm AJk

. Then, we can apply Proposition 1,
and the running time follows by observing that |V (Jk)| × |E(JK)| = |V (Jk)|3 and
that |V (Jk)| = O(qk), by construction. �

2.1 Links with Projective Width

We are now in the position of showing that the notion of hyperconsistency width is a dif-
ferent formulation of the notion of projective width of [3]. The result is next proven by
observing that this notion provides a simple and natural characterization of the k-cover
game, introduced in [3] to define classes of queries with bounded projective width.

For a query Q and a databaseD, the game k-cover(Q,D) can be described as follows.
Two players, spoiler and duplicator, play one after the other. At each step i, the spoiler
chooses a pair (Xi, Li) such that Li⊆atoms(Q), |Li|≤k and Xi⊆

⋃

A∈Li
var(A).

Then, the duplicator chooses a homomorphism hi from variables in Xi to constants
in D such that hi(Xi) ∈ ΠXi(��A∈Li A[D]). Moreover, from the step i > 1, the
duplicator is also asked to choose hi such that, for each variable V ∈ Xi−1 ∩ Xi,
hi(V ) = hi−1(V ). The spoiler wins if the duplicator cannot find the required homo-
morphism, and the duplicator wins if the play is infinite.

Theorem 2. Let Q be a query. Then, the following statements are equivalent:

– for each database D, Q[D] = ∅ implies that the spoiler has a winning strategy in
the k-cover(Q,D) game;

– hcw(Q) ≤ k.

Proof. (Sketch) For each k-width hypergraph decomposition J = (G, χ, λ) of Q,
and for each database D, we can naturally define the game k-coverJ (Q, D) as a
restriction of k-cover(Q, D), where the spoiler is asked to choose tuples of the form
(Xi, Li) = (χ(vi), λ(vi)) for some vi ∈ V (J), and to follow the edges of E, i.e.,
for each i > 1, (Xi−1, Li−1) = (χ(vi−1), λ(vi−1)) is such that (vi−1, vi) ∈ E(J).
Then, we can show that for each node v ∈ V (J), the relation r′v computed by the
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algorithm AJ in Figure 2 exactly corresponds to a mapping witnessing a winning
strategy for the duplicator in the game k-coverJ(Q,D). Therefore, a hypergraph
decomposition J is consistent if and only if for each database D such that Q[D] = ∅,
the spoiler has a winning strategy in k-coverJ(Q, D). To conclude the proof,
we claim that k-cover(Q,D) coincides with the game k-coverJk

(Q, D), where Jk is
the	-maximal hypergraph decomposition constructed as in the proof of Theorem 1. �

Note that a similar link was established in [14] for binary representations of CSPs.

3 Acyclic HyperConsistency Width

According to Theorem 1, the promise problem for the class C(hcw, k) can be solved
in polynomial time in the size of the query and the database. However, despite this
theoretical guarantee on the tractability, the running time O(q3kr2k) seems not suited
for practical applications, mainly because of the bad scaling in the size of the database.
In particular, we point out that solving CSPs in the class C(hw, k) (or, in C(ghw, k),
when a decomposition is given to hand) can be done by means of algorithms scaling as
O(rk) in the size of the database (see, e.g., [8]).

Hence, improving on the scaling we have derived for the notion of hyperconsistency
width is a major requirement for making this approach practical and competitive w.r.t.
structural methods already used in the literature. To achieve this goal, the basic idea
we shall exploit is to introduce a refinement of the notion of hyperconsistency width,
for which a good scaling is obtained by suitably restricting the shape of the underlying
hypergraph decompositions to acyclic graphs (as suggested by the better scaling which
can be achieved in this case according to Proposition 1).

Definition 2. The acyclic hyperconsistency width hcw(Q) of a query Q is the minimum
width over all its consistent decompositions J = (G, χ, λ) such that:

(1) J is acyclic; and,
(2) the depth of J (the length of the longest path in G) is bounded by the size of Q. �

Clearly enough, this novel notion comes as a refinement of the hyperconsistency width
and, therefore, it holds that C(ahcw, k) ⊆ C(hcw, k). On the other hand, it allows us to
improve the complexity result of Theorem 1, as stated below.

Theorem 3. SATp
∅[C(ahcw, k)] is feasible in O(q2k+1rk).

Proof. We observe that for any fixed natural number k, the following hypergraph de-
composition Jk,n where:

– V (Jk,n)=V × {0, 1, ..., n}, where V = {v ⊆ atoms(Q) | |atoms(v)| ≤ k)};
– E(Jk,n)={((v, i), (v′, i′)) | (v, v′)∈V×V ∧ i′=i + 1}
– ∀v ∈ V (Jk), λ(v) = v and χ(v) = (∪A∈vvar(A)).

is	-maximal among all the k-width decompositions of depth bounded by n. Therefore,
when ahcw(Q) ≤ k, and n = |Q| we know that Jk,n is consistent and we can decide
SATp

∅[C(hcw, k)] by using the algorithm AJk,n
. The running time, then, follows from

Proposition 1. �



94 G. Gottlob, G. Greco, and B. Marnette

3.1 Links with Generalized Hypertree Width

We next investigate on how the classes C(ahcw, k) and C(hcw, k) compare with
C(ghw, k). Let us start by preliminary recalling the definition of generalized hypertree
width [8], by stating it as a specialization of the notion of hypergraph decomposition.

In fact, the focus is on acyclic decompositions (similarly to the case of ahcw), satis-
fying some additional requirements.

Definition 3. A generalized hypertree decomposition J of a query Q is a hypergraph
decomposition (G, χ, λ) such that:

– G is a rooted tree;
– ∀A ∈ atoms(Q), ∃v ∈ V (G) such that A ∈ λ(v);
– ∀X ∈ var(Q), the subgraph of G induced over the nodes in {v ∈ V (G) | X ∈

χ(v)} is a tree.

The generalized hypertree width of Q, denoted by ghw(Q), is the minimum width
over all its generalized hypertree decompositions. �

Proposition 2. Let J be a generalized hypertree decomposition. Then, J is consistent.

Proof. (Sketch) It is sufficient to observe that when J is a generalized hypertree
decomposition, the algorithms AJ in Figure 2 basically coincides with the evaluation
algorithm in [16], proposed for the class of acyclic queries. �

Therefore, C(ghw, k) ⊆ C(hcw, k) (cf. [3]) and, hence, when ghw(Q) ≤ k and when a
generalized hypertree decomposition J is given to hand, we can decide whether Q[D] =
∅, for each database D, by using Theorem 1.

Unfortunately, this approach to solve instances of bounded generalized hypertree
width has two important drawbacks. First, its scaling is O(q3kr2k) as a direct con-
sequence of the result on hyperconsistency width. And, second, no polynomial-time
algorithm may exist to recognize instances in the class C(ghw, k), unless P = NP (cf.
[9]). Dealing with the intractability of ghw will be addressed in Section 4. Here, we
focus instead on the former drawback, by relating the three notions studied in the pa-
per and by observing that the nice scaling results of the ahcw can be extended to the
generalized hypertree width.

Theorem 4. For every natural number k, it holds that: C(ghw, k) ⊆ C(ahcw, k) ⊆
C(hcw, k).
Proof. (Sketch) We know that C(ahcw, k) ⊆ C(hcw, k); hence, only C(ghw, k) ⊆
C(ahcw, k) remains to be proven. Actually, since generalized hypertree decompositions
are always acyclic, it suffices to show that when ghw(Q) ≤ k for a query Q, a
generalized hypertree decomposition of Q exists whose depth is bounded by size of Q.
In fact, this follows from the game-theoretic characterization of generalized hypertree
width in [10], where monotone winning strategies can be mapped into generalized
hypertree decompositions; indeed, because of the monotonicity of the game, the depth
of the generalized hypertree decomposition is bounded by |var(Q)|. �

A consequence of the theorem above is that the algorithm for SATp
∅[C(ahcw, k)] dis-

cussed in the proof of Theorem 3 is also an algorithm for SATp
∅[C(ghw, k)].
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Corollary 1. SATp
∅[C(ghw, k)] is feasible in O(q2k+1rk).

To conclude the analysis on the relationships among the various notions, we observe that
from [3] and Theorem 2 it follows that there are classes of queries where the generalized
hypertree width is unbounded, while the hyperconsistency width remains bounded.

Indeed, this is because the hyperconsistency width is preserved under taking cores
[12], while the generalized is not. Recall, here, that the core of a query Q, denoted
by CORE(Q), is a query Q′ such that: (1) atoms(Q′) ⊆ atoms(Q); (2) there is a
mapping f : var(Q) �→ var(Q′) such that for each atom ri(X1, ..., Xn) ∈ atoms(Q),
ri(f(X1), ..., f(Xn)) is in atoms(Q′); and, (3) there is no query Q′′ satisfying (1) and
(2) such that atoms(Q′′) ⊂ atoms(Q′).

In fact, we can show that a similar result holds when comparing the notion of acyclic
hyperconsistency width and the generalized hypertree width.

Proposition 3. There is a class {Qn | n > 0} of queries with ghw(Qn)
ahcw(Qn) → +∞.

Proof. Let (Qn)n∈N be a class of queries such that ghw(Qn) → +∞. For each
query Qn, we select a variable X ∈ var(Qn), and we define the novel query
Q′

n = Qn ∧
∧{rn(X, . . . , X) | rn(Sn) ∈ atoms(Qn)}. Then, we can check that

ghw(Q′
n) = ghw(Qn), ghw(CORE(Q′

n)) = 1, and ahcw(Qn) = 1. �

4 Complexity Results on No-Promise Problems

In this section, we complete our investigation by focusing on the description of incom-
plete algorithms for solving CSPs. The main aim is to extend the tractability result in
Corollary 1 to the case of no-promise problems, i.e., when a generalized hypetree de-
composition is not given to hand. Actually, besides the decision problem of checking
whether Q[D] is empty for an instance (Q,D), we will also consider the related com-
putation problem SAT∃ of computing an element in Q[D], and the problem SAT∀ of
computing the whole set Q[D].

Moreover, rather than focusing on some specific structural decomposition method,
the algorithms we shall present correctly behave on any class of queries which is stable.
Formally, a class C of queries is stable if, for each Q ∈ C, for each unary constraint r
not in Q, and for each variable X , we have that Q ∧ r(X) is in C.

Theorem 5. Let C be a class of queries which is stable. Let A be an algorithm solving
in O(qarb) the problem:

Input: a CSP instance (Q,D);
Output: No only if Q[D] = ∅, and

IDon′tKnow only if Q[D] �= ∅ or Q �∈ C
Then, we can decide:

SATp
∅[C] in O(qarb); SATnp

∅ [C] in O(qa+1rb+1);
SATp

∃[C] in O(qa+1rb+1); SATnp
∃ [C] in O(qa+1rb+1);

SATp
∀[C] in O(qa+1rb+1o); SATnp

∀ [C] in O(qa+2rb+2o).
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Input: a CSP instance (Q,D);
Output: a solution θ ∈ Q[D] only if Q[D] �= ∅, and

No only if Q[D] = ∅, and
IDon′tKnow only if Q �∈ C

Given: An incomplete algorithm A solving the following :
Input: a CSP instance (Q′,D′);
Output: No only if Q′[D′] = ∅, and

IDon′tKnow only if Q′[D′] �= ∅ or Q′ �∈ C
begin

if A(Q,D) returns No then return No;
let θ = ∅;
for each variable X ∈ var(Q) do

let rX be a fresh predicate symbol of arity 1;
let A ∈ atoms(Q) be such that x ∈ var(A);
let QX = Q ∧ rX(X);
let lX = Π{X}(A[D]);
for each e ∈ lX do

let DX,e = D ∪ {rX(e)};
if ∀e ∈ lX A(QX ,DX,e) returns No then

stop and return IDon′tKnow:
else

let e be s.t. A(QX ,DX,e) returns IDon′tKnow;
(Q,D) := (QX ,DX,e);
let θ(X) = e;

if θ �∈ Q[D] then return IDon′tKnow;
else return θ;

end.

Fig. 3. Algorithm Anp
∃ for SATnp

∃ [C] (cf. [3])

Proof. (SATp
∅[C]). We can solve SATp

∅[C] by means of an algorithmAp
∅ that returns No

iff A(Q,D) returns No, and returns Yes iff A(Q,D) returns IDon′tKnow.
(SATnp

∃ [C]). Consider the algorithm Anp
∃ reported in Figure 3, that is basically the

algorithm discussed in [3] for the class of queries having bounded generalized hyper-
tree width. This algorithm only returns No when A(Q,D) returns No (in which case,
Q[D] = ∅). Otherwise, i.e., when Q[D] �= ∅, the algorithm starts computing a solution θ
by iteratively fixing a value e ∈ lX , for each variable X such that QX [DX,e] �= ∅. Note
that during the computation, the query Q is updated by adding a unary constraint pre-
cisely fixing the value for X . Hence, provided that the class C is stable, any such modi-
fication preserves the membership of Q in C. Finally, the algorithm returns IDon′tKnow
iff θ is not a solution. Note that when Q[D] �= ∅, there always exists at least one value
e ∈ lX , for each variable X such that QX [DX,e] �= ∅. For the complexity of Anp

∃ ,
note that the size of Q (resp.D) always remains smaller than 2q (resp. 2r) and therefore
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Input: a CSP instance (Q,D), a set O ⊆ var(Q);
Output: ΠO(Q[D]), and

IDon′tKnow only if Q �∈ C;

Given: An algorithm Anp
∅ for SATnp

∅ [C]

begin
if Anp

∅ (Q,D) returns IDon′tKnow then
stop and return IDon′tKnow;

if Anp
∅ (Q,D) returns No then
stop and return ∅;

if O = ∅ then
stop and return ∅;

else
choose a variable X in O and let O′ = O − {X};
let rX be a fresh predicate symbol of arity 1;
let A ∈ atoms(Q) be such that X ∈ var(A);
let QX = Q ∧ rX(X), lX = Π{X}A[D], and R = ∅;
for each e ∈ lX

let DX,e := D ∪ {rX(e)}
if Anp

∅ (QX ,DX,e) returns IDon′tKnow then
stop and return IDon′tKnow

if Anp
∅ (QX ,DX,e) returns Yes then

for each h′ ∈ Anp
∀ (QX ,DX,e,O′) do

let h′(X) := e;
R := R∪ {h′};

return R;
end.

Fig. 4. Algorithm Anp
∀ for SATnp

∀ [C]

each call to the algorithm A costs O(qarb). The number of such calls is bounded by
Σ{|lX |, X ∈ var(Q)} = O(qr). Therefore,Anp

∃ terminates in time O(qa+1ra+1).
(SATnp

∅ [C] and SATp
∃[C]). We can use the algorithm Anp

∅ which simply returns Yes
iff Anp

∃ returns one solution θ ∈ Q[D], and the same output of Anp
∃ , if no solution is

computed. Clearly enough,Anp
∅ is also an algorithm for SATp

∃[C].
(SATnp

∀ [C]). Armed with Anp
∅ , we present in Figure 4 the recursive algorithm Anp

∀
for SATnp

∀ [C], taking as extra-argument a set of variables O (for O = var(Q), the
whole relation Q[D] is computed). The algorithm Anp

∀ only returns a relation R =
ΠO(Q[D]) when every call toAnp

∅ (QX ,DX,e) have returned either Yes or No, in which
case we know by correctness of Anp

∅ that we didn’t forget any (or add any extra) tuple
in ΠO(Q[D]). Therefore,Anp

∀ only returns IDon′tKnow when Q �∈ C. Each call to Anp
∅

costs O(qa+1rb+1). Indeed,Anp
∀ first executes r calls to the algorithmAnp

∅ for the first
variable X ∈ O, and then applies r more calls each time that the case “Anp

∅ (Qx,Dx,e)
returns Yes” appears. This may happen O(|O| × o) = O(qo) times at most. Therefore,
Anp

∀ terminates in time O(qro) ×O(qa+1rb+1) = O(qa+2rb+2o).
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(SATp
∀[C]). The problem can be solved in time O(qa+2rb+2o), by a slight variation

of the algorithm Anp
∀ , where Ap

∅ is used instead of Anp
∅ . The complexity is then

O(qa+1rb+1o). �

As an example application of the above theorem, we next show that the class of queries
having bounded generalized hypertree width is stable, so that bounds in Figure 1 are
correct.

Proposition 4. For every k, the class C(ghw, k) is stable.

Proof. Let J = (G, χ, λ) be a k-width generalized hypergraph decomposition of Q, let
r be a unary constraint not in Q, let X be a variable, and let Q′ = Q∧r(X). We build a
hypergraph decomposition J ′ by adding a node v′ to V (J) such that χ(v′) = {X} and
λ(v′) = {r(X)}, and an edge (v, v′) to E(J), where v is an arbitrarily chosen node
such that X ∈ χ(v). Then, J ′ is a k-width generalized hypertree decomposition. �

5 Discussion and Conclusion

We have characterized the computational complexity of solving the promise and no-
promise problems on the class of queries having bounded generalized hypertree width,
by means of consistency-based algorithms. On the one hand, we have provided precise
bounds for the technique of [3], which firstly suggested the idea of no-promise algo-
rithms for C(ghw, k). On the other hand, the notion of hyperconsistency width being
parameterized by the underlying decomposition allowed us to obtain improved com-
plexity bounds. These bounds have been established for both the case of promise and
no-promise problems, and for the problems SAT, SAT∃, and SAT∀.

It turned out that instances of bounded generalized hypertree width can be solved
with the enhanced no-promise approach by means of an algorithm whose scaling is
the same as current evaluation algorithms for instances of bounded hypertree width
(see [8], for the description of these algorithms), but with the advantage of isolating a
larger class of instances (recall that C(ghw, k) ⊃ C(hw, k)). This is relevant in the light
that C(hw, k) is one of the largest classes of tractable CSPs that is known to be also
efficiently recognizable (see, e.g., [2,7]).

Several research questions naturally arise from this contribution. First, assessing the
exact relationship among the classes C(ghw, k), C(hcw, k), and C(ahcw, k) is still an
open problem. In particular, given that one may easily observe that for each query Q, it
is the case that hcw(Q)=hcw(CORE(Q)), it is natural to ask whether ghw(CORE(Q))
coincides with hcw(Q) (and ahcw(Q)).

Second, the (improved) no-promise algorithm scales as O(q2k) in the size of the
query. Interestingly, this is also the best upper bound known for computing a hypertree
decomposition. Whether it is possible to improve on this exponent appears therefore a
crucial question for a deeper and unifying understating of these notions.
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Abstract. The Multidimensional Assignment Problem (MAP) (abbreviated s-
AP in the case of s dimensions) is an extension of the well-known assignment
problem. The most studied case of MAP is 3-AP, though the problems with larger
values of s have also a number of applications. We consider several known and
new MAP local search heuristics for MAP as well as their combinations. Compu-
tational experiments with three instance families are provided and discussed. As
a result, we select dominating local search heuristics. One of the most interesting
conclusions is that combination of two heuristics may yield a superior heuristic
with respect to both solution quality and the running time.

1 Introduction

The Multidimensional Assignment Problem (MAP) (abbreviated s-AP in the case of s
dimensions) is a well-known optimization problem with a host of applications (see, e.g.,
[3,5,6] for ‘classic’ applications and [4,15] for recent applications in solving systems of
polynomial equations and centralized multisensor multitarget tracking). In fact, several
applications described in [4,5,15] naturally require the use of s-AP for values of s larger
than 3.

MAP is an extension of a well-known Assignment Problem (AP) which is exactly
two dimensional case of MAP. While AP can be solved in a polynomial time [12], s-AP
for every s ≥ 3 is NP-hard [7].

For a fixed s ≥ 2, the s-AP is stated as follows. Let X1 = X2 = . . . = Xs =
{1, 2, . . . , n}. We will consider only vectors that belong to the Cartesian product X =
X1 × X2 × . . . × Xs. Each vector e ∈ X is assigned a non-negative weight w(e).
For a vector e ∈ X , the component ej denotes its jth coordinate, i.e., ej ∈ Xj . A
collection A of t ≤ n vectors e1, e2, . . . , et is a (feasible) partial assignment if ei

j �= ek
j

holds for each i �= k and j ∈ {1, 2, . . . , s}. The weight of a partial assignment A is
w(A) =

∑t
i=1 w(ei). An assignment (or full assignment) is a partial assignment with

n vectors. The objective of s-AP is to find an assignment of minimum weight.
We will sometimes use the term x-assignment for an assignment of weight x.

M. Lipshteyn et al. (Eds.): Golumbic Festschrift, LNCS 5420, pp. 100–115, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2 Heuristics

In this section we discuss and compare several known and new MAP local search
heuristics as well as their combinations.

2.1 Dimensionwise Variation

Dimensionwise Variation (DV) for 3-AP is introduced by Huang and Lim as a local
search procedure for their Genetic Algorithm [10]. We propose an extension of this
heuristic for s-AP. Fixing all but one dimensions, it constructs a 2-AP, solves it, and
modifies the unfixed dimension according to the solution of the 2-AP.

More formally, consider the current assignment A = {e1, e2, . . . , en}. On each step
of the heuristic all the dimensions but some kth are fixed and an n× n matrix Mi,j =
w(vi,j) is generated, where

vi,j
d =

{

ei
d if d �= k

ej
d if d = k

for d = 1, 2, . . . , s.

Let permutation ρ be a solution of the corresponding 2-AP. If ρ is not an identity per-
mutation, the heuristic changes the s-AP assignment in the following way:

ei
d =

{

ei
d if d �= k

e
ρ(i)
d if d = k

for i = 1, 2, . . . , n and d = 1, 2, . . . , s.

DV performs such steps sequentially for k = 1, 2, . . . , s. If any improvement was
made by any of these steps, the whole procedure is repeated. The maximum number
of iterations can be very large theoretically, however, our experiments show that the
number of iterations does not correlate with the instance size and is actually between 3
and 7 in the most cases. For some limitation, we allow at most 10 iterations. This note
is also true for all the heuristics considered in the paper.

The time complexity of one step of DV is O(n2 + n3) = O(n3) since the matrix M
generation requires n2 operations, and the 2-AP solver time complexity is O(n3). The
time complexity of the whole heuristic is O(n3 · s).

2.2 Multi-dimensionwise Variation

The Multi-dimensionwise Variation (MDV) heuristic is introduced in this paper. It is
a modification of DV (see Subsection 2.1). While DV fixes all but one dimensions,
our heuristic tries every combination of the fixed and unfixed dimensions subsets. A
nonempty set of distinct dimensions F � {1, 2, . . . , s} is selected on each step. The
corresponding dimensions are fixed, while the others are varied. An n × n matrix
Mi,j = w(vi,j) is generated, where

vi,j
d =

{

ei
d if d ∈ F

ej
d if d /∈ F

for d = 1, 2, . . . , s.
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Let permutation ρ be a solution of the corresponding 2-AP. If ρ is not an identity per-
mutation, the heuristic changes the s-AP assignment in the following way:

ei
d =

{

ei
d if d ∈ F

e
ρ(i)
d if d /∈ F

for i = 1, 2, . . . , n and d = 1, 2, . . . , s.

There are 2s − 2 distinct sets F of the fixed dimensions, but a half of them may be
omitted since there is no difference whether to fix the selected dimensions and to vary
the others, or to vary the selected dimensions and to fix the others. So, every iteration of
the heuristic tries 2s−1− 1 distinct sets F in the following order: on the ith step, where
i = 1, 2, . . . , 2s−1 − 1, the set F contains a value j if the jth bit of the s-digit binary
presentation of the number i is zero (for example, if s = 5 and i = 510 = 001012,
then F = {1, 3}). The algorithm repeats until no improvement is obtained during an
iteration, but at most 10 times (see Subsection 2.1). The time complexity of MDV is
O(n3 · 2s).

2.3 2-Opt

The 2-Opt local search heuristic was first introduced by Balas and Saltzman [3] for 3-
AP as a pairwise interchange heuristic. We propose an extension of this heuristic for
s-AP.

2-opt proceeds as follows. Remove two vectors p, q from the current assignment and
replace them with the best recombination p′, q′, i.e., p′1 = p1, p′d ∈ {pd, qd} for every
1 < d ≤ s, and q′d = {pd, qd} \ {p′d} for every 1 ≤ d ≤ s, to minimize w(p′) + w(q′).

There are 2s−1 recombinations p′, q′ for every vector pair p and q. Thus, the com-
plexity of one 2-opt iteration is O(n2 ·2s). In fact, the heuristic works repeatedly until no
improvement takes place during an iteration, but at most 10 times (see Subsection 2.1).
The time complexity of 2-opt is O(n2 · 2s).

As an improvement, we do not consider a pair of vectors p and q if either w(p) =
w(q) = mine∈X w(e), or both p and q have remained unchanged during the previous
iteration.

2.4 3-Opt

3-Opt local search is like 2-opt but we take three vectors each time and try every possible
recombination of them, i.e., 3!s−1 − 1 recombinations. The time complexity of 3-opt is
O(n3 · 6s).

As we did for 2-opt, we do not consider the vector triples (p, q, r) if either all the
vectors p, q, and r have remained unchanged during the previous iteration, or w(p) =
w(q) = w(r) = mine∈X w(e).

2.5 Variable Opt

The Variable Opt (v-opt) was first introduced by Balas and Saltzman as a Variable
Depth Interchange (VDI) [3] for 3-AP. We provide here a natural extension of the
VDI heuristic for the s-dimensional case, s ≥ 3 and, then, we improve this extension
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like MDV improves DV (see Subsections 2.1 and 2.2). Our computational experiments
showed that the improved version of v-opt is superior to the natural extension of VDI
in the solution quality at a reasonable increase in running time. Thus, v-opt refers to the
improved version of the heuristic in what follows unless otherwise specified.

We explain the heuristic in a different way to the description provided in [3], how-
ever, both versions of our algorithm are equal to the VDI in case of s = 3. This fact was
also checked by reproduction of the computational evaluation results reported in [3].

For a set F ⊂ {1, 2, . . . , s}, let the F -interchange between vectors v and w be a
vector u(v, w, F ) equal to v in all the coordinates that are not listed in F and equal to
w in all the coordinates listed in F :

u(v, w, F )j =
{

vj if j /∈ F
wj if j ∈ F

for 1 ≤ j ≤ s.

The difference between the two versions of v-opt is only in the U(v, w) definition.
For the natural extension of VDI, let U(v, w) be a set of all the possible F -interchanges
between the vectors v and w such that |F | = 1:

U(v, w) =
⋃

|F |=1

{

u(v, w, F )
}

=
⋃

1≤k≤s

{

u(v, w, {k})}.

For the improved version of v-opt, let U(v, w) be a set of all the possible
F -interchanges between the vectors v and w such that |F | ≤ s/2:

U(v, w) =
⋃

|F |≤s/2

{

u(v, w, F )
}

.

The constraint |F | ≤ s/2 guarantees that at least half of the coordinates of an F -
interchange are equal to the first vector coordinates. The computational experiments
show that removing this constraint increases the running time and decreases the average
solution quality.

Let vector umin(v, w) be the minimum weight interchange between v and w:

umin(v, w) = argmin
u∈U(v,w)

w(u).

Let A = e1, e2, . . . , en be an initial assignment. The heuristic repeats the following
algorithm at most 10 times until no improvement is found (the VDI algorithm has no
limitation for the iteration number, however this limitation does not affects the heuristic
quality in our experiments).

1. For every c = 1, 2, . . . , n do the rest of the algorithm.
2. Initialize the total gain G = 0, the best assignment Abest = A, and a set of available

vector indices I = {1, 2, . . . , n} \ {c}.
3. Set m = argmini∈I w

(

umin(ec, ei)
)

, v = umin(ec, em), and vj = {ec
j, e

m
j } \ {vj}

for every 1 ≤ j ≤ s. Now v ∈ U(ec, em) is the minimum weight interchange of ec

with some other vector in the assignment, and v is an addition to v.
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4. Set G = G + w(ec)− w(v). If now G ≤ 0, set A = Abest and stop.
5. Replace em with v and ec with v. Mark em as an unavailable for the further inter-

changes vector: I = I \ {m}.
6. If w(A) < w(Abest), record the new assignment as the best one: Abest = A.
7. Repeat from Step 3 while the total gain is positive (see Step 4) and I �= ∅. Note that

ec now refers to v.

The time complexity of the v-opt algorithm is O(n3 · 2s).
The time complexity of the natural extension of VDI is O(n3 · s), and the compu-

tation experiments also show a significant difference between the running times of the
improved and the natural extensions. However, the solution quality of the natural ex-
tension for s ≥ 7 is quite poor, while for the smaller values of s it produces solutions
similar to or even worse than MDV solutions at the cost of much larger running times.

2.6 Combined Heuristics

All the heuristics considered above can be split in two groups: the vectorwise heuris-
tics (2-opt, 3-opt, and v-opt), which can modify all the coordinates of a subset of the
assignment vectors on each step, and dimensionwise heuristics (DV and MDV), which
can modify all the vectors of the assignment but just in a subset of the coordinates on
every step. It is likely that a combination of the heuristics from different groups can
lead to a superior heuristic. Next we consider all the six possible combinations of the
vectorwise and dimensionwise heuristics and report the computational results for the
most successful of them in Section 4.

All the combined heuristics start with a trivial assignment ei = (i, i, . . . , i). Then a
dimensionwise heuristic and a vectorwise heuristic are applied sequentially. The opti-
mization procedure repeats until one of these heuristics fails to improve the assignment
but at most 10 times (see Subsection 2.1). Note that the dimensionwise heuristic is ap-
plied first in all the combinations since the dimensionwise heuristics are more efficient,
i.e., they usually produce a better solution in a smaller time and, thus, they suit better
the first step that is the hardest step for the combined heuristic.

After evaluation and analysis of the computational experiment results, we have ex-
cluded three of the six combinations due to different reasons.

– The combination MDV + 2-opt is very similar to just MDV in the solution quality
but the running time is significantly larger.

– The combination DV + 3-opt is mostly worse than MDV + 3-opt with respect to both
solution quality and the running time.

– The combination DV + v-opt is mostly worse than MDV + v-opt with respect to both
solution quality and the running time.

In what follows, we consider DV + 2-opt (DV2), MDV + 3-opt (MDV3), and MDV +
v-opt (MDVV) only.

2.7 Other Algorithms

Here we observe the most successful MAP algorithms presented in literature.
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– A Memetic Algorithm by Huang and Lim [10] (Local Search Genetic Algorithm,
LSGA) can be considered as a state-of-the art heuristic for 3-AP. However, LSGA
is intended for quality-critical applications and, thus, it cannot be compared with the
local search, which are much faster. Observe that LSGA takes more than a second
on our evaluation platform to solve a Random instance (see Subsection 3.1) of size
26 while the slowest heuristic considered in the paper takes less than a second to
solve a Random instance of size 100.

– A Greedy Randomized Adaptive Search Procedure (GRASP) for 3-AP by Aiex
et al. is presented in [1]. According to [10], LSGA outperforms GRASP with re-
spect to both the solution quality and the running time.

– Crama and Spieksma’s approximation heuristic [6] is designed for a special case
of the Composite instance set (see Subsection 3.2), called T� in [6]. We have
conducted the computational experiments for T� instances and concluded that
even the fast heuristic DV clearly outperforms Crama and Spieksma’s heuristic with
respect to the solution quality (the running time is not provided in [6]).

3 Test Bed

In this section we discuss instance families used for experimental evaluation of the local
search heuristics.

3.1 Random Instance Family

In Random Instance Family the weight assigned to a vector is a random uniformly dis-
tributed integer value in the interval [a, b− 1]. Random instances were used in [1,3,14]
and some others.

Since the instances are random and quite large, it is possible to estimate the average
solution value for the Random Instance Family. In fact, we prove that it is very likely
that every Random instance we consider in our experiments has an an-assignment, i.e.,
a minimal possible assignment (note that a minimal assignment includes n vectors of
weight a).

Let α be the number of assignments of weight an and let c = b − a. We would like
to have an upper bound on the probability Pr(α = 0). Such an upper bound is given
in the following theorem whose proof is based on the Extended Jansen Inequality (see
Theorem 8.1.2 of [2]).

Theorem 1. For values of n such that n ≥ 3 and

(
n− 1

e

)s−1

≥ c · 2 1
n−1 , (1)

we have Pr(α = 0) ≤ e−
1
2σ , where σ =

n−2∑

k=1

(n
k)·ck

[n·(n−1)···(n−k+1)]s−1 .
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Proof. Let [n] = {1, 2, . . . , n}. Let t be the number of all feasible assignments and let
A be an arbitrary assignment consisting of vectors e1, e2, . . . , en such that ei

1 = i for
each i ∈ [n]. There are n! possibilities to choose the jth coordinate of all vectors in A
for each j = 2, 3, . . . , n and, thus, t = (n!)s−1.

Let R be the set of vectors in X of weight a and let {A1, A2, . . . , At} be the set of
all assignments. Let Bi be the event {Ai ⊂ R} for each i ∈ [n]. Let μ =

∑t
i=1 Pr(Bi)

and Δ =
∑

i∼j Pr(Bi ∩Bj), where i ∼ j if i �= j and Ai ∩Aj �= ∅ and the sum for Δ
is taken over all ordered pairs (Bi, Bj) with i ∼ j.

By the Extended Jansen Inequality,

Pr(α = 0) ≤ e−
μ2

2Δ (2)

provided Δ ≥ μ. We will compute μ and estimate Δ to apply (2) and to show Δ ≥ μ.
It is easy to see that μ = t

cn .
Now we will estimate Δ. Let Ai ∩Aj = K , k = |K| and i �= j. Thus, we have

Pr(Bi ∩Bj) = Pr(K ⊂ R) ·Pr(Ai \K ⊂ R) ·Pr(Aj \K ⊂ R) =
1

ck

(
1

cn−k

)2

=
1

c2n−k
.

Let (f1, f2, . . . , fn) be an assignment with f i
1 = i for every i ∈ [n] and consider

the following two sets of assignments. Let

P (k) = {(e1, e2, . . . , en) : ∀i ∈ [n] (ei
1 = i) and ∀j ∈ [k] (ej = f j)}

and let Q(n − k) = {(e1, e2, . . . , en) : ∀i ∈ [n] (ei
1 = i) and ∀j ∈ [n − k] (ek+j �=

fk+j)}. Let h(n, k) = |P (k)∩Q(n−k)|. Clearly, h(n, k) ≤ |P (k)| = (

(n−k)!
)s−1

.
Observe that

h(n, k) ≥ |P (k)| − (n− k)|P (k + 1)| = L(n, k, s),

where L(n, k, s) =
(

(n− k)!
)s−1 − (n− k) · ((n− k − 1)!

)s−1
.

Let g(n, k) be the number of ordered pairs (Ai, Aj) such that |Ai∩Aj | = k. Observe
that g(n, k) = t · (n

k

) · h(n, k) and, thus, t · (n
k

) · L(n, k, s) ≤ g(n, k) ≤ t · (n
k

) · ((n−
k)!

)s−1
.

Observe that Δ =
n−2∑

k=1

∑

|Ai∩Aj |=k

Pr(Bi ∩Bj) =
n−2∑

k=1

g(n, k) · ck−2n. Thus,

(n!)s−1

c2n
·
n−2∑

k=1

(
n

k

)

· ck ·L(n, k, s) ≤ Δ ≤ (n!)s−1

c2n

n−2∑

k=1

(
n

k

)

· ck · ((n− k)!
)s−1

(3)

Now Pr(α = 0) ≤ e−
1
2σ follows from (2) by substituting μ with (n!)s−1

cn and Δ
with its upper bound in (3). It remains to prove that Δ ≥ μ. Since n ≥ 3, L(n, 1, s) ≥
1
2

(

(n − 1)!
)s−1

. By the lower bound for Δ in (3), we have Δ ≥ (n!)s−1

c2n−1 · L(n, 1, k).

Therefore, Δ
μ ≥ 0.5((n−1)!)s−1

cn−1 . Now using the inequality (n − 1)! > (n−1
e )n−1, we

conclude that Δ
μ ≥ 1 provided (1) holds. �
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The lower bounds of Pr(α > 0) for different values of s and n and for b − a = 100,
are reported below.

s = 4 s = 5 s = 6 s = 7

n Pr(α > 0)

15 0.575
20 0.823
25 0.943
30 0.986
35 0.997
40 1.000

n Pr(α > 0)

10 0.991
11 0.998
12 1.000

n Pr(α > 0)

8 1.000

n Pr(α > 0)

7 1.000

One can see that a 4-AP Random instance has an (an)-assignment with probability
very close to 1 if n ≥ 40; a 5-AP instance has an (an)-assignment with probability very
close to 1 for n ≥ 12, etc.; so, the optimal solutions for all the Random instances used in
our experiments (see Section 4) are very likely to be of weight an. For s = 3 Theorem 1
does not provide a good upper bound, however we are able to use the results from
Table II in [3] instead. Balas and Saltzman report that in their experiments the average
optimal solution of 3-AP for Random instances reduces very fast and has a small value
even for n = 26. Since the smallest Random instance we use in our experiments has
size n = 100, we assume that all 3-AP Random instances considered in our experiment
is very likely to have an an-assignment.

Useful results can also be obtained from (11) in [8] that is an upper bound for the
average optimal solution. Grundel, Oliveira and Pardalos [8] consider the same instance
family except the weights of the vectors are real numbers uniformly distributed in the
interval [a, b]. However the results from [8] can be extended to our discrete case. Let
w′(e) be a real weight of the vector e in a continuous instance. Consider a discrete in-
stance with w(e) = �w′(e)� (if w′(e) = b, set w(e) = b − 1). Note that the weight
w(e) is a uniformly distributed integer in the interval [a, b−1]. The optimal assignment
weight of this instance is not larger than the optimal assignment weight of the contin-
uous instance, thus, the upper bound for the average optimal solution for the discrete
case is correct.

In fact, the upper bound z̄∗u (see [8]) for the average optimal solution is not accurate
enough. For example, z̄∗u ≈ an + 6.9 for s = 3, n = 100 and b − a = 100, and
z̄∗u ≈ an + 3.6 for s = 3, n = 200 and b − a = 100, so it cannot be used for s = 3
in our experiments. The upper bound z̄∗u gives a better approximation for larger values
of s, e.g., z̄∗u ≈ an + 1.0 for s = 4, n = 40 and b − a = 100, but Theorem 1 provides
stronger results (Pr(α > 0) ≈ 1.000 for this case).

3.2 Composite Instance Family

Composite Instance Family is a family of semi-random instances. They were introduced
by Crama and Spieksma for 3-AP as a problem T [6]. We extend this family for s-AP.

Let d1, d2, . . . , ds be n × n matrices of non-negative uniformly distributed random
integers in the interval [a, b − 1]. Let us consider a graph G

(

X1 ∪ X2 ∪ . . . ∪ Xs,
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(X1×X2)∪(X2×X3)∪. . .∪(Xs−1×Xs)∪(X1×Xs)
)

, where the weight of an edge
(i, j) ∈ Xk ×Xk+1 is dk

i,j for 1 ≤ k < s and the weight of an edge (i, j) ∈ X1 ×Xs

is ds
i,j . In this interpretation of s-AP, the objective is to find a set of n vertex-disjoint

s-cycles C ⊂ X1 ×X2 × . . . ×Xs such that the total weight of all edges covered by
the cycles C is minimized.

In other words, w(e) = d1
e1,e2

+ d2
e2,e3

+ . . . + ds−1
es−1,es

+ ds
e1,es

.

3.3 GP Instance Family

GP Instance Family contains pseudo-random instances with predefined optimal solu-
tions. GP instances are generated by an algorithm given by Grundel and Pardalos [9].
The generator is naturally designed for s-AP for arbitrary large values of s and n. How-
ever, the GP generator is relatively slow and, thus, it was impossible to experiment with
large GP instances.

4 Experiment Results

The experiments were conducted for the following instances:

– Random instances with a = 1 and b = 101. According to Subsection 3.1, the
optimal solutions of all the considered Random instances are very likely to be
an = n.

– Composite instances with a = 1 and b = 101. Instead of the optimal solution value
we use the best known solution value.

– GP instances with predefined optimal solutions.

The instance name consists of three parts: the number of dimensions s, the type of
the instance (‘gp’ for GP, ‘r’ for Random, and ‘c’ for Composite), and the size n of
the instance. We use 10 different instances of every combination of type and size in our
experiments.

For Random and Composite instances we use standard Miscrosoft .NET random
generator [13] which is based on the Donald E. Knuth’s subtractive random number
generator algorithm [11]. The GP generator is implemented in C++ programming lan-
guage, and, thus, the standard Visual C++ random number generator is used instead. As
a seed of the random number sequences for all the instance types we use the following
number: seed = s + n + i, where i is an index of the instance of this type and size,
i ∈ {1, 2, . . . , 10}.

All the heuristics are implemented in Visual C++. The evaluation platform is based
on an AMD Athlon 64 X2 3.0 GHz processor.

The results of the experiments of two different types are provided and discussed in
Subsections 4.1 and 4.2. In the single run experiments, a heuristic starts from a trivial
assignment and runs exactly once. In repetitive search experiments, a heuristic runs
several times starting from a random assignment every time until the allowed time is
elapsed.
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4.1 Single Run Experiments

In the first type of the experiments we run every heuristic for every instance exactly once.
The results reported in Tables 1 and 2 are averages for 10 experiments since every row of
these tables corresponds to 10 instances of some fixed type and size but of different seed
values. The average values for different instance families and numbers of dimensions
are provided at the bottom of each table. The winner is underlined in every row.

The value of the solution error is calculated as v−vbest
vbest

· 100%, where v is the ob-
tained solution value and vbest is the optimal solution value (or the best one in case of
Composite instances, see above).

At first, we will compare only the single heuristics results (see Table 1). As regards
the solution quality, 3-opt, v-opt, and MDV achieve the best results. Perhaps since 3-opt
tries more different vectors than the other single heuristics, it achieves the best results
for the Random and GP instances. The Composite instances have a special dimension-
wise structure and, thus, suit better a dimensionwise heuristic MDV. For 3-AP, DV (or
MDV which is the same for s = 3) produces the best results. v-opt is the best for 4-AP,
but 3-opt and MDV are still good. For the larger numbers of dimensions (for s > 4)
3-opt produces the best results.

As regards the running time of the heuristics (see Table 2), 2-opt and DV are the
winners, but MDV is also quite fast. v-opt and especially 3-opt are significantly slower.

Now we will discuss the combined heuristics. DV2 is the fastest among them but its
solution quality is usually worse that the MDV solution quality, while the running times
of these heuristics are similar. MDVV is approximately ten times slower than DV2 but
it is superior to DV2 and is even the best heuristic for 3- and 4-AP with respect to the
solution quality. MDV3 is the slowest combined algorithm we consider but its solution
quality is the best or close to the best for every instance type and every number of
dimensions.

Note that every combined heuristic is superior to the corresponding vectorwise
heuristics with respect to both the solution quality and the running time. DV2 is the
only exception as it is slightly slower than 2-opt. In all other cases both the solution
error and the running time of a combined heuristic are smaller or very similar to the
results of the corresponding vectorwise heuristic in every experiment. And, obviously,
the solution quality of the combined heuristic is never worse than the solution quality
of the corresponding dimensionwise heuristic.

As a conclusion, we may select MDV3, MDVV, and MDV as the most efficient heuris-
tics. MDV3 produces very good solutions in just several seconds or even less for quite
large instances (up to 64 millions of vectors). The MDVV heuristic’s solution quality
decreases with s growth but it is still good even for s = 8 while for 3- and 4-AP MDVV
produces the best results among all the heuristics. At the same time, MDVV is signif-
icantly faster than MDV3. The single heuristic MDV is the best among the other fast
heuristics and it produces good solutions for large instances.

Another interesting result is that a combination of two different heuristics may yield
a superior heuristic with respect to both the solution quality and the running time. This
happens if the first heuristic is significantly faster than the second one: the initial stage
of the optimization is performed by the fast heuristic, while the more accurate local
search is performed by the slower heuristic.
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Table 1. Solution quality comparison

Solution error, %

Inst. Best 2-opt 3-opt v-opt DV MDV DV2 MDV3 MDVV

3gp50 251.5 21.0 12.8 20.2 10.1 10.0 10.1 9.1 9.6
3gp100 504.4 19.6 10.0 19.8 4.6 5.2 4.6 5.0 5.2
3c100 1551.8 85.0 29.0 11.7 10.0 9.8 10.0 9.1 7.3
3r100 100.0 181.2 31.8 4.1 12.8 15.0 12.8 13.0 3.3
3c200 2231.6 113.6 41.7 13.1 9.1 8.3 9.1 7.3 7.0
3r200 200.0 113.5 10.8 0.8 0.3 0.2 0.3 0.2 0.1
3c250 2537.3 123.1 46.9 11.4 7.8 7.2 7.8 7.1 7.1
3r250 250.0 95.5 5.1 0.2 0.1 0.0 0.1 0.0 0.0
4gp30 145.2 17.4 4.2 13.4 9.9 8.1 9.8 3.9 7.7
4c50 1282.8 66.0 20.1 13.5 23.0 9.1 20.5 8.4 7.7
4r50 50.0 166.2 18.8 4.8 60.8 37.6 54.6 14.6 5.6
4c80 1610.8 82.4 31.4 18.3 24.6 13.3 23.7 11.5 11.8
4r80 80.0 115.0 7.3 2.0 22.5 10.1 19.6 3.9 2.1
5gp12 66.2 10.6 2.1 8.5 12.2 5.6 7.9 1.8 5.3
5c30 1192.6 43.0 16.1 19.5 30.6 14.7 25.4 12.1 12.0
5r30 30.0 118.7 8.3 9.0 109.7 52.3 98.0 8.3 7.7
5c40 1320.4 57.6 20.5 20.6 31.6 15.2 28.4 13.5 14.5
5r40 40.0 104.5 4.3 3.8 68.0 30.8 58.8 3.5 4.0
6gp8 41.8 6.7 2.4 5.3 15.8 6.5 7.2 2.4 4.8
6c20 1159.0 33.4 11.6 27.1 34.2 12.9 23.2 9.1 11.7
6r20 20.0 118.5 2.5 18.0 158.0 51.5 89.0 3.0 12.0
7gp5 25.6 6.3 3.9 10.2 16.4 5.9 5.9 3.9 5.5
7c12 1162.9 22.5 8.0 26.9 30.1 9.7 16.8 6.7 9.7
7r12 12.0 92.5 0.0 40.0 244.2 70.8 100.8 0.0 21.7
8gp4 19.2 6.8 5.2 10.9 19.3 5.2 6.2 5.2 5.2
8c8 1148.3 12.0 2.0 18.6 19.4 4.3 7.4 3.9 4.3
8r8 8.0 90.0 0.0 41.3 370.0 78.8 97.5 0.0 31.3

All avg. 71.2 13.2 14.5 50.2 18.4 28.0 6.2 8.3

Composite avg. 63.9 22.7 18.1 22.0 10.4 17.2 8.9 9.3
Random avg. 119.6 8.9 12.4 104.6 34.7 53.2 4.6 8.8
GP avg. 12.6 5.8 12.6 12.6 6.6 7.4 4.5 6.2

3-AP avg. 94.1 23.5 10.2 6.8 7.0 6.8 6.3 5.0
4-AP avg. 89.4 16.4 10.4 28.2 15.6 25.6 8.4 7.0
5-AP avg. 66.9 10.3 12.3 50.4 23.7 43.7 7.8 8.7
6-AP avg. 52.9 5.5 16.8 69.3 23.6 39.8 4.8 9.5
7-AP avg. 40.4 4.0 25.7 96.9 28.8 41.2 3.5 12.3
8-AP avg. 36.3 2.4 23.6 136.2 29.4 37.1 3.0 13.6

4.2 Repetitive Search Experiments

As we saw in the previous section, different heuristics have different running times. To
equate the running times of different heuristics, in the second type of our experiments
we used a simple strategy that we call Repetitive Search Metaheuristic (RSM). RSM



Local Search Heuristics for the Multidimensional Assignment Problem 111

Table 2. Running times comparison

Running time, ms

Inst. 2-opt 3-opt v-opt DV MDV DV2 MDV3 MDVV

3gp50 2.56 82.68 17.08 1.41 1.59 3.43 46.80 10.58
3gp100 9.64 917.29 243.36 14.91 16.11 15.73 385.32 57.72
3c100 11.54 1170.01 321.36 14.09 16.89 17.43 499.20 173.16
3r100 13.93 678.60 34.32 10.19 9.88 10.81 196.56 35.88
3c200 42.95 10374.07 3614.54 48.36 53.04 49.92 4378.95 1077.97
3r200 29.64 3706.58 126.36 25.66 27.48 23.60 138.84 40.56
3c250 68.64 21400.22 8018.45 95.16 102.96 121.68 6920.20 1422.73
3r250 48.36 5099.67 184.08 37.44 37.44 35.88 249.60 53.04
4gp30 1.06 127.92 45.24 3.73 1.46 1.17 115.44 21.00
4c50 9.03 923.53 341.64 4.71 13.11 8.24 322.92 121.68
4r50 7.13 413.40 40.56 3.19 9.16 5.56 263.64 35.88
4c80 17.40 4505.31 1733.17 16.68 27.34 17.62 2187.13 737.88
4r80 17.21 1168.45 62.40 12.74 21.34 14.15 357.24 76.44
5gp12 0.30 31.20 6.98 0.25 1.95 0.49 24.96 5.97
5c30 7.57 1113.85 156.00 10.25 8.37 7.64 469.56 76.44
5r30 4.82 315.12 18.37 4.03 5.65 3.29 235.56 20.28
5c40 14.55 2892.26 439.92 7.49 18.27 11.79 1241.77 120.12
5r40 7.81 503.88 37.44 3.62 11.88 10.15 318.24 40.56
6gp8 1.71 49.92 5.00 0.22 0.43 0.32 43.68 3.21
6c20 8.21 1865.77 102.96 0.99 10.13 8.01 1054.57 37.67
6r20 3.06 277.68 16.04 0.70 2.63 3.47 251.16 17.25
7gp5 0.08 53.04 2.46 1.71 0.44 0.21 35.88 2.40
7c12 3.02 1748.77 34.32 0.49 4.27 4.28 1190.29 15.25
7r12 0.97 170.04 11.44 1.89 6.50 1.17 180.96 12.77
8gp4 0.08 126.36 3.81 0.13 0.60 0.25 56.16 3.92
8c8 1.13 2857.94 27.23 0.32 5.83 2.68 918.85 9.58
8r8 0.70 201.24 10.93 0.23 7.42 0.81 184.08 12.08

All avg. 12.34 2324.99 579.83 11.87 15.64 14.07 824.73 157.11

Comp. avg. 18.40 4885.17 1478.96 19.85 26.02 24.93 1918.34 379.25
Rand. avg. 13.36 1253.47 54.19 9.97 13.94 10.89 237.59 34.47
GP avg. 2.20 198.34 46.28 3.19 3.22 3.09 101.18 14.97

3-AP avg. 28.41 5428.64 1569.95 30.90 33.17 34.81 1601.94 358.96
4-AP avg. 10.37 1427.72 444.60 8.21 14.48 9.35 649.28 198.58
5-AP avg. 7.01 971.26 131.74 5.13 9.22 6.67 458.02 52.67
6-AP avg. 4.33 731.12 41.33 0.64 4.39 3.93 449.80 19.38
7-AP avg. 1.35 657.28 16.07 1.36 3.73 1.89 469.04 10.14
8-AP avg. 0.64 1061.85 13.99 0.23 4.62 1.25 386.36 8.53

runs the given heuristic several times starting from a random assignment each time.
RSM stops when the time allowed is elapsed. The best assignment obtained in the con-
ducted repeats is selected as an RSM solution. In our experiments RSM is given time
enough for the slowest heuristic to run once.
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Table 3. Repetitive Search Metaheuristic experimental results

Solution error, %

Inst. Time, sec 2-opt 3-opt v-opt DV MDV DV2 MDV3 MDVV

3gp50 0.1 17.6 12.3 17.7 6.7 6.4 6.7 7.0 6.9
3gp100 0.9 17.7 10.2 18.8 3.2 3.1 3.2 4.0 3.4
3c100 1.1 68.3 31.5 7.3 1.5 2.6 1.5 7.5 3.3
3r100 0.7 131.3 30.2 1.4 6.9 7.1 6.6 10.3 0.7
3c200 10.0 97.3 41.0 9.4 1.0 1.1 1.2 5.0 3.7
3r200 3.4 86.8 9.2 0.0 0.0 0.0 0.0 0.0 0.0
3c250 21.9 106.8 43.7 8.9 1.0 0.8 1.0 4.9 2.3
3r250 5.0 78.0 5.3 0.0 0.0 0.0 0.0 0.0 0.0
4gp30 0.1 12.7 3.9 10.3 5.5 3.5 5.6 3.2 5.1
4c50 0.9 46.0 18.5 13.3 9.3 1.9 7.4 8.1 3.9
4r50 0.4 103.6 20.0 0.8 29.2 17.6 27.0 14.8 0.6
4c80 5.1 63.2 26.1 13.9 10.5 2.0 10.0 7.2 4.5
4r80 1.1 80.6 8.1 0.0 8.8 4.1 8.4 2.5 0.0
5gp12 0.0 3.6 1.8 6.2 5.1 2.0 3.3 1.8 2.7
5c30 1.1 28.9 17.8 14.1 13.7 1.4 10.6 5.8 1.6
5r30 0.3 73.7 9.3 0.0 46.7 27.7 37.3 10.7 1.3
5c40 2.7 39.4 21.2 13.6 16.3 2.8 13.7 7.4 4.2
5r40 0.6 65.0 4.0 0.0 33.8 16.5 26.5 4.0 0.5
6gp8 0.1 2.4 2.4 2.4 2.6 2.4 2.4 2.4 2.4
6c20 1.7 16.1 11.6 17.2 15.0 0.9 7.8 7.2 3.2
6r20 0.4 49.5 3.5 0.0 54.5 24.0 35.0 2.5 0.5
7gp5 0.1 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9
7c12 2.0 6.0 4.9 10.1 9.4 0.7 2.8 3.4 1.0
7r12 0.2 25.8 1.7 0.8 79.2 17.5 24.2 1.7 1.7
8gp4 0.1 5.2 4.2 5.2 5.2 5.2 5.2 5.2 5.2
8c8 2.6 0.4 3.2 6.0 3.5 0.1 0.1 2.7 0.1
8r8 0.2 10.0 0.0 0.0 97.5 15.0 11.3 0.0 0.0

All avg. 45.9 12.9 6.7 17.4 6.3 9.7 4.9 2.3

Composite avg. 47.2 22.0 11.4 8.1 1.4 5.6 5.9 2.8
Random avg. 70.4 9.1 0.3 35.6 12.9 17.6 4.6 0.5
GP avg. 9.0 5.5 9.2 4.6 3.8 4.3 3.9 4.2

3-AP avg. 75.5 22.9 7.9 2.5 2.6 2.5 4.8 2.5
4-AP avg. 61.2 15.3 7.7 12.6 5.8 11.7 7.2 2.8
5-AP avg. 42.1 10.8 6.8 23.1 10.1 18.3 5.9 2.1
6-AP avg. 22.7 5.8 6.5 24.0 9.1 15.1 4.0 2.0
7-AP avg. 11.9 3.5 5.0 30.8 7.4 10.3 3.0 2.2
8-AP avg. 5.2 2.5 3.7 35.4 6.8 5.5 2.6 1.8

Avg. no. repeats 214.7 1.0 19.2 585.6 124.6 195.1 3.6 34.6

To provide equal opportunities to all the heuristics, our RSM algorithm stops if T +
t/2 ≥ A, where T is the total time spent by all previous repetitions, t is the time of the
last heuristic’s run, and A is the time allowed to RSM. In other words, in the second type
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Fig. 2. Repetitive search for 5r40 instance

of the experiments we allow approximately equal time for every heuristic. The results
are provided in Table 3. The time allowed to RSM is reported in the column Time. As
with the other values in the table, this column contains the average for 10 instances of
the given type and size. The average number of repeats for every heuristic is provided at
the bottom of the table. For the optimal (best) solution values refer to Table 1. In other
aspects Table 3 is similar to Table 1.

3-opt was the slowest heuristic in our experiments. In the most cases it was allowed
just one run. MDV3 was repeated 5 times approximately on average, other heuristics had
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more than 25 repeats on average. Unlike in the previous experiment, MDVV outperforms
MDV3 almost always and, thus, shows the best results. Another interesting observation
is that MDV outperforms all other heuristics for Composite and GP instances on average.
Random instances are processed by v-opt (and MDVV that includes v-opt as a part) better
than by other heuristics.

Dependence of the RSM solution quality from the running time is shown on
Figures 1 and 2 for instances 4c80 and 5r40 respectively. Every graph is plotted
for 10 instances of the fixed type and size. The solution quality and the running time
of every repetition is average. The time allowed to RSM in both cases is enough for
the slowest heuristic (3-opt) to repeat twice. Most of heuristics are able to improve the
solution quality significantly during this time. However, some heuristics were clearly
unsuccessful in these experiments (2-opt for 4c80 and 2-opt, DV, MDV, and DV2 for
5r40) and, thus, are excluded from the graphs.

One can see that for 4c80 instance (and this tendency is common for the most of
Composite and GP instances), MDV reaches a near optimal solution in a short time.
MDVV works well for both instances and its performance is close to v-opt performance
for 5r40 (as well as for other Random instances). Other heuristics are clearly outper-
formed by MDV, v-opt or MDVV and, thus, are not discussed here.

5 Conclusion

Several local search heuristics and their combinations are proposed and discussed in
this paper. An efficient approach to construction of a heuristic by combination of two
single heuristics is successfully applied; the yielded heuristics showed that they com-
bine strengths of the both single heuristics. The experimental evaluation for a set of
instances of different types show that MDV and MDVV heuristics, proposed in this pa-
per, dominate all other heuristics. MDV is a fast heuristic, and it outperforms all other
fast heuristics with respect to the solution quality. MDVV is significantly faster than the
most powerful heuristics but it achieves the best or close to the best results in all the
experiments. If the Repetitive Search Metaheuristic is applied, i.e., all the heuristics are
allowed the same running time, MDV and MDVV clearly outperform all other heuristics.
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Abstract. For a finite undirected graph G = (V, E) and positive integer
k ≥ 1, an edge set M ⊆ E is a distance-k matching if the mutual distance
of edges in M is at least k in G. For k = 1, this gives the usual notion
of matching in graphs, and for general k ≥ 1, distance-k matchings were
called k-separated matchings by Stockmeyer and Vazirani. The special
case k = 2 has been studied under the names induced matching (i.e.,
a matching which forms an induced subgraph in G) by Cameron and
strong matching by Golumbic and Laskar in various papers.

Finding a maximum induced matching is NP-complete even on very
restricted bipartite graphs but for k = 2, it can be done efficiently on
various classes of graphs such as chordal graphs, based on the fact that an
induced matching in G corresponds to an independent vertex set in the
square L(G)2 of the line graph L(G) of G which, by a result of Cameron,
is chordal for any chordal graph G.

We show that, unlike for k = 2, for a chordal graph G, L(G)3 is
not necessarily chordal, and finding a maximum distance-3 matching
remains NP-complete on chordal graphs. For strongly chordal graphs and
interval graphs, however, the maximum distance-3 matching problem can
be solved in polynomial time. Moreover, we obtain various new results
for induced matchings.

Keywords: Distance-k matching; chordal graphs; Maximum Distance-k
Matching Problem; Maximum Induced Matching Problem.

1 Introduction

A distance-k matching for positive integer k ≥ 1 in an undirected graph G is a
set of edges whose mutual distance is at least k in G. (For k = 1, this gives the
usual notion of matching in graphs.) Stockmeyer and Vazirani [40] called those
matchings δ-separated matchings, and the special case k = 2 has also been stud-
ied under the name induced matching (i.e., a matching which forms an induced
subgraph in G) by Cameron in [10] and strong matching by Golumbic and Laskar
in [25]. An induced matching can also be interpreted as risk-free marriage, and
in various papers, δ-separated matchings are motivated by modeling communi-
cation network testing [40] or modeling concurrent transmission of messages in

M. Lipshteyn et al. (Eds.): Golumbic Festschrift, LNCS 5420, pp. 116–126, 2009.
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wireless ad hoc networks [1]. Induced matchings are closely related to irredun-
dancy in graphs [25] as well as to secure communication channels as described
by Golumbic and Lewenstein [26]; see [26] for other applications as well. Finding
large induced matchings is also a subtask of finding a so-called strong edge col-
oring in a graph [19,20,28,39] where the edge set is partitioned into a minimum
number of induced matchings.

Let L(G) denote the line graph of G = (V, E), i.e., the edges of G are the
vertices of L(G), and two edges of G are adjacent in L(G) if they intersect each
other.

For two vertices x, y ∈ V , let distG(x, y) denote the distance between x and
y in G, i.e., the length of a shortest path between x and y in G. For integer
k ≥ 1, the k-th power Gk of G is the graph with the same vertex set as G, and
two vertices are adjacent in Gk if their distance in G is at most k. The distance
of two edges e, e′ ∈ E is the length of a shortest path between e and e′, i.e.,
distG(e, e′) = min{distG(u, v) | u ∈ e, v ∈ e′}. In particular, this means that
distG(e, e′) = 0 if and only if e ∩ e′ �= ∅.

A vertex set U ⊆ V is independent (or stable) if the vertices in U are mutually
nonadjacent in G. Obviously, for edges e and e′, distG(e, e′) ≥ k if and only
if e and e′ are nonadjacent in the k-th power (L(G))k (subsequently denoted
by L(G)k for short) of the line graph of G for all k ≥ 1. Thus, the following
proposition holds:

Proposition 1. For k ≥ 1 and graph G, the edge set M is a distance-k matching
in G if and only if M is an independent vertex set in L(G)k.

Let μk(G) denote the maximum size of a distance-k matching in G, and if w is
a weight function on E, let μk,w(G) denote the maximum weight of a distance-
k matching in G. The Maximum Distance-k Matching (MDkM) Problem asks
for a distance-k matching of maximum size (and of maximum weight in the
weighted case). By Proposition 1, the MDkM problem on graph G corresponds
to the Maximum Independent Vertex Set problem on graph L(G)k, and the first
problem is efficiently solvable on graph G whenever the last problem is efficiently
solvable on L(G)k. For k = 2, the MDkM problem is also called Maximum
Induced Matching (MIM) Problem and MWIM in the weighted case.

Recently, these problems attracted much attention because of their theoretical
interest and practical motivation - see the papers mentioned above and also
[5,10,11,12,13,22,30,31,33,43]. Stockmeyer and Vazirani [40] have shown that for
every k ≥ 2, the MDkM Problem is NP-complete even for bipartite graphs of
degree 4. In particular, the MIM Problem is NP-complete on bipartite graphs
which was shown independently by Cameron [10]. It is NP-complete even on
planar bipartite graphs of maximum degree 4 as shown in [30]. The MIM problem
remains NP-complete for line graphs [31] and thus also for claw-free graphs. It
is NP-complete even if the input graph is restricted to hamiltonian line graphs
of so-called well-matched graphs as shown by Orlovich and Zverovich [37] and
for line graphs of bipartite graphs (which are exactly the (claw,diamond,odd-
hole)-free graphs) [38]. Various papers such as [16,36] deal with the hardness of
approximating the MIM problem.
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On the other hand, the MIM Problem is efficiently solvable on various classes
C of graphs such as chordal, weakly chordal, circular-arc, interval-filament graphs
and AT-free graphs (see e.g. [11] for a list of references) since for these classes,
L(G)2 is in the same class C as well and the Maximum Independent Set Prob-
lem can be solved efficiently on these classes. Most of the papers on distance-k
matchings deal with the case k = 2, i.e., with the MIM problem, and do not
study larger k ≥ 3. For AT-free graphs, however, Chang [13] has shown that for
every k ≥ 2, L(G)k is AT-free.

We deal with the Maximum Distance-3 Matching (MD3M) Problem on var-
ious graph classes; in particular we show that for a chordal graph G (strongly
chordal graph, respectively), L(G)3 is not necessarily chordal (strongly chordal,
respectively), and the MD3M Problem remains NP-complete on chordal graphs.
We also investigate strongly chordal graphs and interval graphs as subclasses
of chordal graphs with respect to L(G)3 and show that for strongly chordal
G, L(G)3 is chordal. Moreover, we extend some previous results for induced
matchings. In particular, we use a combination of clique separators and modular
decomposition in order to find induced matchings efficiently on various graph
classes.

Due to space limitations, all proofs are omitted.

2 Basic Notions

Let G = (V, E) be a finite undirected graph with vertex set V and edge set E.
An edge e with vertices x and y is denoted as e = {x, y} or e = xy for short. We
say that x and y see each other if xy ∈ E. As already mentioned, a vertex set is
independent if its elements are mutually nonadjacent. A vertex set is a clique if
its elements mutually see each other.

For U ⊆ V , let G[U ] denote the induced subgraph of G with vertex set U .
Let Pk denote the induced path with k vertices, say v1, . . . , vk and edges vivi+1,
1 ≤ i ≤ k − 1, and let Ck denote the induced cycle with the same vertices and
edges vivi+1, 1 ≤ i ≤ k (index arithmetic modulo k). A hole is a Ck for k ≥ 5. For
a set F of graphs, a graph G is called F-free if G contains no induced subgraph
from F . A graph is chordal if it is Ck-free for all k ≥ 4. For the many properties
of chordal graphs see e.g. [7,23]. A subset U ⊆ V is a cutset (or separator) in G
if G[V \ U ] has more connected components than G. A clique cutset is a cutset
which is a clique. An atom in G is an induced subgraph of G without clique
cutset. Chordal graphs are known to be those graphs whose atoms are cliques
(e.g., see [7]).

The Maximum Weight Independent (or Stable) Set problem (MWS problem)
asks for an independent vertex set of maximum weight in the given graph G with
vertex weight function w. Let αw(G) (α(G), i.e., the independence number of G,
respectively) denote the maximum weight (maximum cardinality, respectively)
of an independent vertex set in G. The MS problem is the MWS problem where
all vertices v have the same weight w(v) = 1. Frank [21] gave a linear time
algorithm for the MWS problem on chordal graphs.
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Let Π denote a hereditary graph property. A graph is nearly Π if for each of its
vertices, the subgraph induced by the set of its nonneighbors has property Π (for
example, Π = chordal or Π = perfect). Note that the concept of nearly Π graphs
is explicitely or implicitely mentioned in various papers; thus, e.g., complements
of nearly bipartite graphs appear in the literature as quasi-line graphs which
are an important part of the structural characterization of claw-free graphs by
Chudnovsky and Seymour - see [15].

Obviously, the MWS problem on a graph G with vertex weight function w
can be reduced to the same problem on antineighborhoods of vertices in the
following way:

αw(G) = max{w(v) + αw(G[N(v)]) | v ∈ V }. (1)

Thus, whenever MWS is solvable in time T on a class with property Π then
it is solvable on nearly Π graphs in time |V | · T . Thus, the MWS problem can
be solved in time O(|V | · |E|) for nearly chordal graphs. Note that circular-
arc graphs are nearly interval graphs and thus nearly chordal. This implies a
straightforward way of solving MWS on circular-arc graphs in time O(|V | · |E|)
(which is conceptually simpler than that in [24]) and which is also applicable
to the MIM problem on circular-arc graphs [25] in the following way: A graph
G = (V, E) is edge-nearly Π if for each of its edges e = xy ∈ E, the subgraph
induced by the set of its nonneighbors, i.e., G[N(e)] = G[N(x) ∩ N(y)] has
property Π . Obviously, the following holds:

μ2,w(G) = max{w(e) + μ2,w(G[N (e)]) | e ∈ E}. (2)

Thus, whenever the MIM problem is solvable in time T on a class with property
Π then it is solvable on nearly Π graphs in time |E| · T . This can be easily
generalized to distance-k matchings for k > 2. We call (2) and its generalization
for k > 2 the antineighborhood approach for MIM (for MDkM, respectively).
Obviously, nearly Π implies edge-nearly Π . Whenever MIM is solvable in time
T on a class with property Π , it is solvable on edge-nearly Π graphs in time
|E| · T . For example, MIM is efficiently solvable on edge-nearly chordal and on
edge-nearly weakly chordal graphs.

A subset of vertices M ⊆ V in graph G = (V, E) is a module in G if every
vertex u /∈M sees either all vertices of M or none of them. A module is trivial if
it is empty, a singleton or the set V . Nontrivial modules are called homogeneous
sets. If an edge xy ∈ E is a module then x and y are true twins. A graph is prime
if all its modules are trivial. Note that prime graphs are connected. See [35] for
the importance of modular decomposition and [34] for a linear time algorithm
for obtaining the modular decomposition tree of a graph.

The Minimum Distance-k Edge Coloring Problem (MDkEC Problem for short)
is the problem of finding a partition of the edge set E of a given graph G = (V, E)
into a minimum number of distance-k matchings. The Minimum Distance-k
Edge �-Coloring Problem (MDkE�C Problem for short) is the problem of finding
a partition of the edge set E of a given graph G = (V, E) into � distance-k
matchings. For k = 2, this problem is called the Strong Edge Coloring problem.
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For graph classes not defined here such as perfect graphs, circular-arc graphs
and distance-hereditary graphs see e.g. [7].

3 The Maximum Distance-3 Matching Problem for
Chordal Graphs Is NP-Complete

As shown by Cameron, the following holds for k = 2:

Theorem 1 ([10]). If graph G is chordal then L(G)2 is chordal.

Thus, by Proposition 1, and by using an efficient algorithm for MWS on chordal
graphs, e.g. [21], the MIM problem can be solved efficiently on chordal graphs
(see also [5] for a linear time algorithm). Since for chordal graph Gk, also Gk+2

is chordal [17], it follows:

Corollary 1. For every chordal graph G and every integer k ≥ 1, L(G)2k is
chordal.

Now let k = 3 and G be a chordal graph. Then L(G)3 is not necessarily chordal
(and not even perfect) as the following example shows: As in Figure 1, let G
have 15 vertices a1, . . . , a5, b1, . . . , b5, c1, . . . , c5 such that a1, . . . , a5 is a clique,
and for i ∈ {1, . . . , 5}, bi, ci are true twins such that bi and ci see exactly ai and
ai+1 (index arithmetic modulo 5). Obviously, the five edges bici, i ∈ {1, . . . , 5},
induce a C5 in L(G)3.
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Fig. 1. Chordal graphs G1 with a C5 in L(G)3 (indicated by boldface edges) and G2

with C5 in L(G)5, respectively

It is easy to see that the example in Figure 1 can be generalized such that
the edges bici, i ∈ {1, . . . , 5}, have distance k ≥ 1 and thus, L(G)2k+1 contains
a C5, i.e., for all k ≥ 1, L(G)2k+1 is not perfect.

Theorem 2. The Maximum Distance-3 Matching Problem is NP-complete for
chordal graphs.
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Theorem 3. For each k ≥ 3, the Minimum Distance-3 Edge k-Coloring Prob-
lem is NP-complete for chordal graphs.

4 Strongly Chordal Graphs, Ptolemaic Graphs and
Interval Graphs

Graph G is a block graph if G is a (connected) graph whose 2-connected compo-
nents are cliques. The gem consists of a P4 and a fifth vertex seeing all vertices
of the P4. G is a ptolemaic graph if it is gem-free and chordal.

For k ≥ 3, let Sk denote the (complete) sun with 2k vertices u1, . . . , uk and
w1, . . . , wk such that u1, . . . , uk is an independent vertex set, w1, . . . , wk is a
clique and, for i ∈ {1, . . . , k}, ui is adjacent to exactly wi and wi+1 (index
arithmetic modulo k).

A graph is strongly chordal if it is chordal and sun-free, i.e., Sk-free for all
k ≥ 3 - see e.g. [7] for various characterizations of strongly chordal graphs.
Obviously, every block graph is ptolemaic, and every ptolemaic graph is strongly
chordal.

In [10], it is mentioned that for strongly chordal graphs G, L(G)2 is not
necessarily strongly chordal. The example in [10] can be easily extended to an
example of a strongly chordal graph (which is even a block graph) G such that
L(G)3 is not strongly chordal - see Figure 2. Obviously, the example can be
extended to arbitrarily large k ≥ 2, i.e., for every k ≥ 2, there is a block graph
G such that L(G)k is not strongly chordal.
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Fig. 2. A block graph G with a 3-sun in L(G)3 (indicated by boldface edges)

The following is our main result in this section.

Theorem 4. If graph G is strongly chordal then L(G)3 is chordal.

Corollary 2. The Maximum Distance-3 Matching Problem is solvable in poly-
nomial time for strongly chordal graphs.

A graph is an interval graph if it is the intersection graph of a collection of
intervals on the real line. It is known that interval graphs are strongly chordal.
For interval graphs, we have the following result:
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Theorem 5. If G is an interval graph then L(G)3 is an interval graph.

Note that circular-arc graphs are nearly interval graphs and thus, the MD3M
problem on circular-arc graphs can be solved efficiently by using the antineigh-
borhood approach (2) and by solving the MD3M problem on interval graphs.
This extends the corresponding result of Golumbic and Laskar [25] for the MIM
problem on circular-arc graphs.

By a result of Golumbic and Rotics [27], the clique-width of ptolemaic graphs
is at most 3. Since the MD3M problem can be formulated in Monadic Sec-
ond Order Logic without edge predicates, it is efficiently solvable on ptolemaic
graphs. It would be nice to give a direct way of solving the problem on ptole-
maic graphs. The same remark holds for distance-hereditary graphs instead of
ptolemaic graphs [27].

5 Combining Clique Separators, Modular Decomposition
and the Antineighborhood Approach

In [41], Tarjan describes how clique separator decomposition of graphs can be ob-
tained efficiently and how various problems on graphs such as MWS can be solved
efficiently (see also [42]). One can extend this approach to the MIM problem as
well and obtains the subsequent Theorem 6, details of which will be described
in the forthcoming paper [8] and which is based on the following lemma.

Lemma 1. If G is a graph G with clique separator Q = V1 ∩ V2 such that Q
separates G into G1 = G[V1] and G2 = G[V2] and there are edges e1 ∈ E(G1)
and e2 ∈ E(G2) which are nonadjacent in L(G)2 then Q∗ := {e ∈ E | e∩Q �= ∅}
is a clique separator in L(G)2.

Then such clique separators in L(G)2 can be used to find a maximum independent
set in L(G)2, i.e., by Proposition 1, a maximum induced matching in G.

Theorem 6. Given a graph G in a hereditary graph class G, if MWIM can be
solved for every atom of G in time T , then MWIM can be solved for G in time
O(n2 · T ).

The following result allows to combine clique separator decomposition and mod-
ular decomposition for solving the MWS problem:

Theorem 7 ([4]). Given a graph G in a hereditary graph class G, if MWS can
be solved for every prime atom of G in time T , then MWS can be solved for G
in time O(n2 · T ).

In [8], this is extended to the MIM problem (by a slight modification of prime
to E-prime) as follows:

Theorem 8. Given a graph G in a hereditary graph class G, if MWIM can be
solved for every E-prime atom of G in time T , then MWIM can be solved for G
in time O(n2 · T ).
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In [31], modular decomposition has been used for solving the MIM problem on
various graph classes. Theorem 8 together with the antineighborhood approach
enables us to solve the MIM problem efficiently for various subclasses of claw-
free graphs and of P5-free graphs which extends some results of [31] as well as
to the classes described in [6] which generalize chordal graphs.

6 The Maximum Distance-k Matching Problem for
AT-Free Graphs, (Claw,Net)-Free Graphs and Some
Other Subclasses of Claw-Free Graphs

An asteroidal triple (AT) in a graph G is a triple of pairwise nonadjacent vertices
v1, v2, v3 such that there is a path between vi and vi+1 avoiding the neighborhood
of vi+2, i ∈ {1, 2, 3} (index arithmetic modulo 3). A graph is AT-free if it contains
no asteroidal triple.

The claw is a graph consisting of four vertices with a central vertex of degree
three and three vertices being adjacent to the central vertex. Let Ti,j,k denote the
graph consisting of three vertex-disjoint induced paths Q1, Q2, Q3, of lengths
i, j, k, respectively, such that the only edges between the paths are a triangle
between a choice a1, a2, a3 of end vertices, i.e., ai is one of the two end vertices
of Qi, i ∈ {1, 2, 3}. Then the net is the special case T1,1,1, i.e., a graph consisting
of six vertices such that three of them induce a triangle and each of the other
three vertices sees exactly one of the triangle vertices.

Chang in [13] defines LAT-free graphs which are a generalization of AT-free
graphs, and shows that for LAT-free graphs, the Maximum Distance-k Matching
Problem is solvable in polynomial time for every fixed k ≥ 2. As corollaries, he
obtains:

Corollary 3. If G is an AT-free graph then L(G)k is AT-free for every k ≥ 2.

Corollary 4. The Maximum Distance-k Matching Problem is solvable in poly-
nomial time for AT-free graphs for every k ≥ 3.

In [14], it is shown that for AT-free graphs G and every k ≥ 2, Gk is a cocom-
parability graph. Since the Minimum Distance-k Edge Coloring Problem in G
corresponds to the Chromatic Number Problem in L(G)k, for AT-free graph G
also L(G)k, k ≥ 2, is AT-free and for cocomparability graphs, the Chromatic
Number Problem is solvable in polynomial time, it follows:

Corollary 5. For even k ≥ 4, the Minimum Distance-k Edge Coloring Problem
is solvable in polynomial time on AT-free graphs.

The problem seems to be open for k = 2 and k = 3 and for odd k ≥ 5.
In [31], it is shown that the Maximum Distance-2 Matching Problem is NP-

complete on line graphs (which implies NP-completeness on claw-free graphs)
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and is also NP-complete on hamiltonian graphs. In this section, we deal with
(claw,net)-free graphs (note that 2-connected (claw,net)-free graphs are hamil-
tonian [18] - see also [3,29]). To this purpose we use a result in [2]:

Lemma 2. Every (claw,net)-free graph is nearly (claw,AT)-free.

This leads to Theorem 9 by using Proposition 1 and a polynomial time algorithm
for MWS on AT-free graphs [9,32].

Theorem 9. The MIM problem is solvable in polynomial time on (claw,net)-free
graphs.

In [8], we extend Theorem 9 in the following way by using the approach in
section 5.

Theorem 10. For (claw,T1,1,p)-free graphs, the MWIM problem can be solved
in time O(n2m2p+3).

Theorem 11. For (claw,T0,2,p)-free graphs, the MWIM problem can be solved
in time O(n2m2p+5).

7 Conclusion

In this note, we have shown that the MD3M problem is NP-complete on chordal
graphs but efficiently solvable on strongly chordal graphs and thus on interval
graphs. We mention that the antineighborhood approach, combined with clique
separators and modular decomposition, is fruitful for various examples. Moreover
we announce some new results on the MIM problem which extend some results
by Kobler and Rotics [31].
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Abstract. G is a König-Egerváry graph provided α(G)+μ(G) = |V (G)|,
where μ(G) is the size of a maximum matching and α(G) is the cardi-
nality of a maximum stable set, [2], [21].

S is a local maximum stable set of G, and we write S ∈ Ψ(G), if S is a
maximum stable set of the subgraph induced by S ∪ N(S), where N(S)
is the neighborhood of S, [11]. Nemhauser and Trotter Jr. proved that
any S ∈ Ψ(G) is a subset of a maximum stable set of G, [19].

In this paper we demonstrate that if S ∈ Ψ(G), the subgraph H
induced by S ∪ N(S) is a König-Egerváry graph, and M is a maxi-
mum matching in H , then M is a local maximum stable set in the line
graph of G.

1 Introduction

Throughout this paper G = (V, E) is a simple (i.e., a finite, undirected, loopless
and without multiple edges) graph with vertex set V = V (G) and edge set
E = E(G).

If X ⊂ V , then G[X ] is the subgraph of G spanned by X . By G−W we mean
the subgraph G[V −W ], if W ⊂ V (G). We also denote by G − F the partial
subgraph of G obtained by deleting the edges of F , for F ⊂ E(G), and we write
shortly G− e, whenever F = {e}.

If A, B ⊂ V are disjoint and non-empty, then by (A, B) we mean the set
{ab : ab ∈ E, a ∈ A, b ∈ B}.

The neighborhood of a vertex v ∈ V is the set N(v) = {w : w ∈ V and
vw ∈ E}. If |N(v)| = 1, then v is a pendant vertex. We denote the neighborhood
of A ⊂ V by NG(A) = {v ∈ V − A : N(v) ∩A �= ∅} and its closed neighborhood
by NG[A] = A ∪N(A), or shortly, N(A) and N [A], if no ambiguity.

Kn, Cn denote respectively, the complete graph on n ≥ 1 vertices, and the
chordless cycle on n ≥ 3 vertices. A graph having no K3 as a subgraph is a
triangle-free graph.

A stable set in G is a set of pairwise non-adjacent vertices. A stable set of
maximum size will be referred to as a maximum stable set of G, and the stability

M. Lipshteyn et al. (Eds.): Golumbic Festschrift, LNCS 5420, pp. 127–133, 2009.
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number of G, denoted by α(G), is the cardinality of a maximum stable set in
G. In the sequel, by Ω(G) we denote the set of all maximum stable sets of the
graph G.

A set A ⊆ V (G) is a local maximum stable set of G if A is a maximum stable
set in the subgraph spanned by N [A], i.e., A ∈ Ω(G[N [A]]), [11]. Let Ψ(G) stand
for the set of all local maximum stable sets of G.

Clearly, every set S consisting of only pendant vertices belongs to Ψ(G). Nev-
ertheless, it is not a must for a local maximum stable set to contain pendant
vertices. For instance, {e, g} ∈ Ψ(G), where G is the graph from Figure 1.

� � � � �

� �

�
�

�
a b c d

g f

e

Fig. 1. A graph having various local maximum stable sets

The following theorem concerning maximum stable sets in general graphs, due
to Nemhauser and Trotter Jr. [19], shows that some stable sets can be enlarged
to maximum stable sets.

Theorem 1. [19] Every local maximum stable set of a graph is a subset of a
maximum stable set.

Let us notice that the converse of Theorem 1 is true, because Ω(G) ⊆ Ψ(G).
The graph W from Figure 1 has the property that any S ∈ Ω(W ) contains some
local maximum stable set, but these local maximum stable sets are of different
cardinalities: {a, d, f} ∈ Ω(W ) and {a}, {d, f} ∈ Ψ(W ), while for {b, e, g} ∈
Ω(W ) only {e, g} ∈ Ψ(W ).

However, there exists a graph G satisfying Ψ(G) = Ω(G), e.g., G = Cn, for
n ≥ 4.

A matching in a graph G = (V, E) is a set of edges M ⊆ E such that no
two edges of M share a common vertex. A maximum matching is a matching
of maximum size, denoted by μ(G). A matching is perfect if it saturates all the
vertices of the graph. A matching M = {aibi : ai, bi ∈ V (G), 1 ≤ i ≤ k} of
a graph G is called a uniquely restricted matching if M is the unique perfect
matching of G[{ai, bi : 1 ≤ i ≤ k}], [5]. Recently, a generalization of this concept,
namely, a subgraph restricted matching has been studied in [4].

Krogdahl found that a matching M of a bipartite graph is uniquely restricted
if and only if M is alternating cycle-free, [9]. This statement was observed for
general graphs by Golumbic et al. in [5].

In [11], [12], [15], [16], [17] we showed that, under certain conditions involving
uniquely restricted matchings, Ψ(G) forms a greedoid on V (G). The classes of
graphs, where greedoids were found include trees, bipartite graphs, triangle-free
graphs, and well-covered graphs.

Recall that G is a König-Egerváry graph provided α(G) + μ(G) = |V (G)|,
[2], [21]. It is a known that any bipartite graph is a König-Egerváry graph, [3],
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[8]. Properties of König-Egerváry graphs were discussed in a number of papers,
e.g., [1], [6], [7], [10], [13], [14], [18], [20]. Let us notice that if S is a stable set
and M is a matching in a graph G such that |S| + |M | = |V (G)|, it follows
that S ∈ Ω(G), M is a maximum matching, and G is a König-Egerváry graph,
because |S|+ |M | ≤ α(G) + μ(G) ≤ |V (G)| is true for any graph.

The line graph of a graph G = (V, E) is the graph L(G) = (E, U), where
eiej ∈ U if ei, ej have a common endpoint in G.

In this paper we give a sufficient condition in terms of subgraphs of G that
ensure that its line graph L(G) has proper local maximum stable sets. In other
words, we demonstrate that if: S ∈ Ψ(G), the subgraph H induced by S ∪N(S)
is a König-Egerváry graph, and M is a maximum matching in H , then M is
a local maximum stable set in the line graph of G. It turns out that this is
also a sufficient condition for a matching of G to be extendable to a maximum
matching.

2 Maximum Matchings and Local Maximum Stable Sets

In a König-Egerváry graph, maximum matchings have a special property, em-
phasized by the following statement.

Lemma 1. [13] Every maximum matching M of a König-Egerváry graph G is
contained in each (S, V (G)− S) and |M | = |V (G) − S|, where S ∈ Ω(G).

For example, M = {e1, e2, e3} is a maximum matching in the König-Egerváry
graph H (from Figure 2), S = {a, b, c, d} ∈ Ω(H) and M ⊂ (S, V (H) − S). On
the other hand, M1 = {xz, yv}, M2 = {yz, uv} are maximum matchings in the
non-König-Egerváry graph G (depicted in Figure 2), S = {x, y} ∈ Ω(G) and
M1 ⊂ (S, V (G) − S), while M2 � (S, V (G)− S).
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Fig. 2. {x, y} ∈ Ω(G) and {a, b, c, d} ∈ Ω(H)

Clearly, (maximum) matchings in a graph G correspond to (maximum, respec-
tively) stable sets in L(G) and vice versa. However, not every matching M in G
gives birth to a local maximum stable set in L(G), even if M can be enlarged to
a maximum matching.

For instance, M1 = {e1, e6}, M2 = {e3, e6} are both matchings in the graph G
from Figure 3, but only M1 is a local maximum stable set in L(G). Remark that
S1 = {v, z} ∈ Ψ(G), S2 = {x, y} /∈ Ψ(G) and each Mi is a maximum matching
in G[N [Si]], for i ∈ {1, 2}.
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Fig. 3. The graph G and its line-graph H = L(G)

Theorem 2. If S ∈ Ψ(G), H = G[N [S]] is a König-Egerváry graph, and M is
a maximum matching in H, then M is a local maximum stable set in L(G).

Proof. Let M = {ei = viwi : 1 ≤ i ≤ μ(H)}. According to Lemma 1, it follows
that

M ⊆ (S, V (H)− S) and |M | = |V (H)− S| ,
because H is a König-Egerváry graph. Consequently, without loss of generality,
we may suppose that

{vi : 1 ≤ i ≤ μ(H)} ⊆ S, while V (H)− S = {wi : 1 ≤ i ≤ μ(H)}.

Since NH(vi) = NG(vi) ⊆ N(S) = V (H)− S, we have that

NL(G)[M ] = E(H) ∪ {e = wt ∈ E : w ∈ V (H)− S, t /∈ S}.

Hence, every e ∈ NL(G)[M ]− V (L(H)) is incident in G to some wi.
Assume that M is not a maximum stable set in L(G), i.e., there exists some

stable set Q ⊆ NL(G)[M ], such that |Q| > |M |. In other words, Q is a matching
using edges from

E(H) ∪ {e = wt ∈ E : w ∈ V (H)− S, t /∈ S},

larger than M . Let F = (M − Q) ∪ (Q −M). Since M and Q are matchings,
every vertex appearing in G[F ] has at most one incident edge from each of them,
and the maximum degree of a vertex in G[F ] is 2. Hence, G[F ] consists of only
disjoints chordless paths and cycles. Moreover, every path and every cycle in
G[F ] alternates between edges of Q and edges of M . Since |Q| > |M |, it follows
that G[F ] has a component with more edges of Q than of M . Such a component
can only be a path, say Px,y, that starts and ends with edges from Q (more
precisely, from Q−M) and and x, y are not saturated by edges belonging to M .
Hence, Px,y must have an odd number of edges.

Case 1. Px,y contains only one edge, namely xy. This is not possible, since at
least one of the vertices x, y belongs to V (H)− S and is saturated by M .

Case 2. Px,y contains at least three edges.
Let xa, by ∈ Q be the first and the last edges on Px,y. Clearly, E(Px,y) �

E(H), because, otherwise
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(M − E(Px,y)) ∪ (E(Px,y)−M)

is a matching in H , larger than M , in contradiction with the maximality of M .
Hence, Px,y contains edges from M , that alternates with edges from (E(H) −
M) ∪W , where

W = {wt ∈ E(G) : w ∈ V (H)− S, t ∈ U},
with

U = (S − {vi : 1 ≤ i ≤ μ(H)}) ∪ (V (G) − V (H)} �= ∅.

Therefore, each second vertex on Px,y must belong to V (H)−S. Consequently,
we infer that also y ∈ V (H)−S, and hence, it is saturated by M , a contradiction.
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Fig. 4. M = {e5, e7} is a matching in G and a local maximum stable set in L(G)

Notice that M = {e5, e7} ∈ Ψ(L(G)), while there is no S ∈ Ψ(G), such that
M is a maximum matching in G[N [S]], where G is depicted in Figure 4. In other
words, the converse of Theorem 2 is not true.

Clearly, every matching can be enlarged to a maximal matching, which is not
necessarily a maximum matching. For instance, the graph G in Figure 5 does
not contain any maximum matching including the matching M = {e0, e1, e2}.
The following result shows that, under certain conditions, a matching can be
extended to a maximum matching.
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Fig. 5. {e0, e1, e2} is a maximal but not a maximum matching

Corollary 1. If S ∈ Ψ(G), H = G[N [S]] is a König-Egerváry graph, and M is
a maximum matching in H, then there exists a maximum matching M0 in G
such that M ⊆M0.

Proof. According to Theorem 2, M is a local maximum stable set in L(G). By
Theorem 1, there is some M0 ∈ Ω(L(G)), such that M ⊆ M0. Hence, M0 is a
maximum matching in G containing M .
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Fig. 6. M = {ab, cd, fh} is a maximum matching in N [{a, c, f}]

Let us notice that Corollary 1 can not be generalized to any subgraph of a
non-bipartite König-Egerváry graph.

For instance, the graph G depicted in Figure 6 is a König-Egerváry graph,
S = {a, c, f} ∈ Ψ(G), and M = {ab, cd, fh} is a maximum matching in G[N [S]],
which is not a König-Egerváry graph, but there is no maximum matching in G
that includes M .

Since any subgraph of a bipartite graph is also bipartite, we obtain the fol-
lowing result.

Corollary 2. If G is a bipartite graph, S ∈ Ψ(G) and M is a maximum match-
ing in G[N [S]], then there exists a maximum matching M0 in G such that
M ⊆M0.

3 Conclusions

We showed that there is a connection between Ψ(G) and Ψ(L(G)).
Let us notice that there are graphs whose line graphs have no proper local

maximum stable sets (see, for example, the graphs in Figure 7).
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Fig. 7. Both G and its line graph L(G) have no proper local maximum stable sets

Moreover, there are graphs whose iterated line graphs have no proper local
maximum stable set, e.g., each Cn, for n ≥ 3, since Cn and L(Cn) are isomorphic.

An interesting open question reads as follows. Is it true that for a connected
graph G the fact that L(G) has no proper local maximum stable sets implies
that G itself does not contain proper local maximum stable sets?
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Abstract. We provide a new proof of a theorem of Saks which is an
extension of Greene’s Theorem to acyclic digraphs, by reducing it to
a similar, known extension of Greene and Kleitman’s Theorem. This
suggests that the Greene-Kleitman Theorem is stronger than Greene’s
Theorem on posets. We leave it as an open question whether the same
holds for all digraphs, that is, does Berge’s conjecture concerning path
partitions in digraphs imply the extension of Greene’s theorem to all
digraphs (conjectured by Aharoni, Hartman and Hoffman)?

1 Introduction

Dilworth’s well known theorem [7] states that in a partially ordered set the size
of a maximum antichain equals the size of a minimum chain partition. Greene
and Kleitman [13] generalized Dilworth’s theorem to a min-max theorem for the
maximum cardinality of the union of k antichains (k ∈ N). Previously, Greene
[12] had proved a similar min-max theorem where the role of chains and an-
tichains is interchanged. Linial [15] conjectured that the theorems of Greene-
Kleitman and Greene can be extended to all digraphs by replacing the equality
by an inequality. Later, Berge [3] made a stronger conjecture than Linial’s ex-
tending the Greene-Kleitman theorem to all digraphs, and Aharoni, Hartman
and Hoffman (AHH) [1] made a similar conjecture which extends Greene’s the-
orem to all digraphs, and is stronger than Linial’s conjecture. Both conjectures
of Berge and Aharoni-Hartman-Hoffman were proved for all acyclic digraphs
(see [15], [6],[17], [5] and [1]). For k = 1 Berge’s conjecture holds by the Gallai-
Milgram theorem [11], and the Aharoni-Hartman-Hoffman conjecture holds by
the Gallai-Roy theorem [10,16]. Recently, Berger and Hartman [4] proved Berge’s
conjecture for k = 2. For other values of k (except for the extreme upper val-
ues), all of the conjectures mentioned above are open. For a survey of the subject
see [14].

The purpose of this paper is reduce the Aharoni-Hartman-Hoffman conjecture
for acyclic digraphs to Berge’s conjecture. Furthermore, a polynomial algorithm
is given proving the AHH Conjecture, based on an oracle for Berge’s Conjecture.
If the same holds for all digraphs, then it will be sufficient to prove Berge’s
conjecture, and the rest of the conjectures will follow.
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2 Preliminaries and the Main Result

Let G = (V, E) be a directed graph and let |V | = n. If L is a collection of subsets
of V , we set

⋃
L := {x; x ∈ A for some A ∈ L}. The cardinality of the set X is

denoted by |X |.
A path P in G is a sequence of distinct vertices (v1, v2, . . . , vl) such that

(vi, vi+1) ∈ E, for i = 1, 2, . . . , l − 1. Let the cardinality of P be |P | = l. If a
path P is of cardinality one, then we say it is trivial.

For positive integers q, k, a q-path system is a family Pq := {P1, P2, . . . , Pq}
of q pairwise disjoint paths, a k-colouring is a family Ck := {C1, C2, . . . , Ck} of
k pairwise disjoint independent sets, also called colour classes.

Denote λq := max |⋃Pq| and αk := max |⋃ Ck| where the maximum is taken
over all q-path systems and k-colourings, respectively, and |⋃Pq| (|⋃ Ck|) de-
note the number of vertices covered by Pq (Ck). A q-path system with |⋃Pq| =
λq is called optimal.

A family P of paths is called a path partition of G if all its members are
pairwise disjoint, and ∪P = V . The k-norm |P|k of a path partition P =
{P1, . . . , Pm} is defined by |P|k :=

∑m
i=1 min{|Pi|, k}. Denote by P0 the set

of trivial paths in P , and by P≥k (P>k) the sets of paths in P of cardinality at
least (more than) k. A partition which minimizes |P|k is called k-optimal. Let
πk(G) = min|P|k where the minimum is taken over all possible path partitions
in G. If k is the cardinality of the smallest non-trivial path on P , then clearly,
|P|k = k|P≥k|+ |P0|.

Similarly, a colouring C is a family of pairwise disjoint independent sets where
∪C = V . The q-norm |C|q of a colouring C = {C1, . . . , Cm} is defined by |C|q :=
∑m

i=1 min{|Ci|, q}. Let χq(G) = min|C|q where the minimum is taken over all
possible colourings in G.

Theorem 1 (Greene-Kleitman[13]). If G is a graph of a poset, then αk(G) =
πk(G) for all 1 ≤ k ≤ λ1.

Theorem 2 (Greene[12]). If G is a graph of a poset, then λq(G) = χq(G) for
all 1 ≤ q ≤ α1.

The inequality αk(G) ≤ πk(G) is trivial since any path P (chain) in a poset
induces a clique which can meet a k-colouring by at most min{|Pi|, k} vertices.
Similarly, every independent set (antichain) C in a poset can meet a q-path
system by at most min{|Ci|, q} vertices, implying the inequality λq(G) ≤ χq(G).
The other direction of the inequalities is less trivial and was conjectured by
Linial to be true for all digraphs:

Conjecture 3 (Linial[15]). Let G be a digraph, and k, q positive integers. Then

1. αk(G) ≥ πk(G)
2. λq(G) ≥ χq(G)
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For any graph G, a k-colouring Ck is orthogonal to a path partition if each Pi ∈ P
meets exactly min{|Pi|, k} different colour classes in Ck. Similarly, a colouring
C is orthogonal to a q-path system Pq if each Ci ∈ C meets exactly min{|Ci|, q}
different paths in Pq.

Conjecture 4 (Berge’s Strong Path Partition Conjecture [3]). Let G be
a digraph, k a positive integer, and P a k-optimal path partition. Then there
exists a k-colouring Ck orthogonal to P.

This conjecture implies Conjecture 3-(1). The following is an equivalent conjec-
ture to Conjecture 4:

Conjecture 5 (Equivalent to Conjecture 4). Let G be a digraph, k a posi-
tive integer, and let P be some path partition in G. Then either there exists a k-
colouring Ck orthogonal to P, or there exists a path partition P ′ with |P ′|k < |P|k
The following conjecture extends Greene’s Theorem to all digraphs and implies
part 2 of Conjecture 3, in a similar way that Berge’s Conjecture extends the
Greene-Kleitman Theorem:

Conjecture 6 (Aharoni, Hartman, Hoffman (AHH) [1]). Let G be a di-
graph, q a positive integer, and Pq an optimal q-path system. Then there exists
a colouring C orthogonal to Pq.

Conjecture 7 (Equivalent to Conjecture 6). Let G be a digraph, q a positive
integer, and Pq some q-path system in G. Then either there exists a colouring C
orthogonal to Pq, or there exists a q-path system P ′q with |P ′q| > |Pq|.
Conjecture 4 implies Conjecture 3-(1) and it holds for k = 1 by the Gallai-
Milgram [11] theorem. Conjecture 6 implies Conjecture 3-(2) and it holds for
q = 1 by the Gallai-Roy [10,16] theorem.

The following definition of Frank [9] helps us in uniting all Conjectures 3-6.

Definition 8. A q-path system Pq = {P1, P2, . . . , Pq} and a k-colouring Ck =
{C1, C2, . . . , Ck} are orthogonal if

1. V = (∪Pq)
⋃

(∪Ck)
2. |Pi ∩ Cj | = 1 for 1 ≤ i ≤ q, 1 ≤ j ≤ k

For a q-path system Pq, the associated path partition P is defined by P :=
Pq ∪ {{x}; x /∈ ∪Pq}. Similarly, the associated colouring to a k-colouring Ck is
defined by C := Ck ∪ {{x}; x /∈ ∪Ck}.
Observation 9. 1. Let Pq be a q-path system orthogonal to Ck, a k-colouring,

for some integers q and k. Then Ck is orthogonal to the associated path
partition P := Pq ∪ {{x}; x /∈ ∪Pq} and the associated colouring C := Ck ∪
{{x}; x /∈ ∪Ck} is orthogonal to Pq.

2. Conversely, if Ck is orthogonal to some path partition P, then Ck is orthog-
onal to Pq := P≥k. Note that Ck is also orthogonal to Pq where Pq consists
of paths of cardinality more than k, and any number of paths of cardinality
exactly k are included in Pq.
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3. Similarly, if a colouring C is orthogonal to some q-path system Pq, then Pq

is orthogonal to the k-colouring Ck := C≥q, where C≥q denotes the set of
independent sets in C of size at least q.

4. Furthermore, if Pq and Ck are orthogonal then αk(G) ≥ πk(G) and λq(G) ≥
χq(G), implying Linial’s conjectures for these values of k and q.

Theorem 10. Conjecture 7 can be reduced to Conjecture 5 for acyclic digraphs.

Corollary 11. Theorem 1 implies Theorem 2, i.e. Greene-Kleitman’s Theorem
implies Greene’s Theorem.

Proof of Corollary. Assume Theorem 1 holds. Then any optimal k-colouring
Ck in a graph of a poset must be orthogonal to an optimal path partition P
because in a poset each P ∈ P can meet at most min{|P |, k} vertices from Ck.
If some P would meet less than min{|P |, k} vertices from Ck, we would have
αk(G) < πk(G), contrary to Theorem 1. Hence Conjecture 4 holds for posets,
implying by Theorem 10 that Conjecture 6 holds, and hence Greene’s Theorem
(Theorem 2) follows.

3 Proof of Theorem 10

3.1 Outline of Proof

We assume that Conjecture 5 is true. Given any path partition P , and positive
integer k, we assume that we have some Oracle that either finds a k-colouring
Ck orthogonal to P , or finds a path partition P ′ with |P ′|k < |P|k. Let q ≥ 1,
and let Pq be a q-path system. We will show that Conjecture 7 holds for Pq. Let
P be the path partition associated with Pq. We prove that either there exists
a k, 1 ≤ k ≤ minP∈Pq |P |, and a k- colouring Ck orthogonal to P , implying by
Observation 9-(1) and (2) that C := Ck ∪ {{x}; x /∈ ∪Ck} is orthogonal to Pq, or
we find another q-path system P ′q with |P ′q| > |Pq|.

The proof is algorithmic and it uses a network constructed from G as in Frank
[9]. We define a flow f which corresponds to the path partition P associated with
Pq. We begin with k = 1. If P is 1-optimal, then by the Gallai -Milgram Theorem
(or Conjecture 4 for k = 1) there exists an independent set C1 orthogonal to it,
implying that C := C1 ∪ {{x}; x /∈ ∪Ck} is orthogonal to Pq (by Observation
9) and we are done. Otherwise, P is not 1-optimal, and the Oracle finds a path
partition P ′ with |P ′|1 < |P|1. Let f ′ be the flow corresponding to P ′. Then f ′−f
is a feasible flow in the residual network Nf ′ corresponding to f ′. Depending on
f ′, we either increase k by one, or we show that f ′− f can be used to find a new
flow f ′′ which satisfies two main conditions:

1. f ′′ corresponds to a path partition P ′′ in G.
2. P ′′ contains a q-path system which covers more vertices than Pq, contra-

dicting the optimality of Pq.
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We prove that if no k-colouring Ck exists which is orthogonal to P , for all 1 ≤
k ≤ minP∈Pq |P |, then a new flow is found, yielding a k-path which covers more
vertices than Pq. This will imply Conjecture 7.

In general digraphs, the subgraph P ′′, corresponding to f ′′, may contain cycles
and the proof may fail.

3.2 Details of Proof

We proceed to define the network N , the flow f corresponding to a path partition
P , the residual network Nf corresponding to f , and the criterion for either
increasing k, or finding a flow f ′′ which contradicts the optimality of Pq.

The network. We describe the network N as in [9]. Assume G = (V, E) where
V = {v1, v2, . . . , vn}, and k ≥ 1. Associate a network N = (V , E, a, c, s, t) with
G as follows:

Let V = {s, t, v′1, v′2, . . . , v′n, v′′1 , v′′2 , . . . , v′′n}, E = {(s, v′i); i = 1, 2, . . . , n} ∪
{(v′′i , t); i = 1, 2, . . . , n} ∪ {(v′i, v′′j ); (vi, vj) ∈ E} ∪ {(v′i, v′′i ); 1 ≤ i ≤ n} ∪ {(s, t)}.

All of the arc capacities c(e) are equal to one, while the costs a(e) are:

a(e) =

⎧

⎨

⎩

1 if e = (v′i, v
′′
i )

k if e = (s, t)
0 otherwise

We denote the value of a feasible flow f by val(f) and its cost by cost(f).

Path partitions and flows. Since all the capacities are one we may assume
that a feasible flow in N is integral. We define a full feasible flow as a flow which
satisfies that for each vi ∈ V (G), at least one of the edges (s, v′i) or (v′′i , t) has
non-zero flow. For example, a maximal flow (i.e. a flow f s.t. there exists no
other flow f ′, f ≤ f ′) is a full flow.

Assume we have a full feasible flow f in N of value v. We associate with it a
partition P = P(f) of V (G) into paths defined as follows: If f(v′i, v

′′
j ) = 1, i �= j,

then (vi, vj) ∈ E[P ], and if f(v′i, v
′′
i ) = 1 then (vi) is a trivial path in P . Since

f is full each vertex in V (G) is covered by P , and since all the capacities are
one, P is indeed a collection of disjoint paths. If G is not acyclic, then P is a
collection of disjoint paths and cycles.

If P = P(f) is a path partition, and k is less than or equal to the smallest
non-trivial path in P , then

|P|k = k|P≥k|+ |P0| = k|P>1|+ |P0| = k(n− val(f)) + cost(f) (1)

Conversely, given a path partition P in G, we associate with it the flow f := fP
defined by: If (vi) ∈ P0 then f(s, v′i) = f(v′i, v

′′
i ) = f(v′′i , t) = 1. For each

(vi, vj) ∈ E[P ] define f(s, v′i) = f(v′i, v
′′
j ) = f(v′′j , t) = 1. The flow in all other

edges is defined as zero. It is easy to check that fP is a full feasible flow with
val(f) = n− |P>1|, and cost(f) = |P0|. If k ≤ minP∈P>1 |P |, then the equation
in formula (1) holds.
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The residual network. For a given flow f in N , the residual network Nf is
defined to be:

Nf = (V , Ef , af , cf , s, t)

where
Ef := {e ∈ E; f(e) < c(e)} ∪ {←−e ; e ∈ E and f(e) > 0}.

Here if e = (u, v) then ←−e = (v, u) is its reverse. The residual capacity cf :
Ef → R

+ is defined as cf ≡ 1. The cost function af : Ef → R is defined as:
af (e) := a(e) for every e ∈ E, and af (←−e ) := −a(e) for every e ∈ E.

Lemma 12 ( see[2])

1. If f is a feasible flow in a network N , and g is a feasible flow in the residual
network Nf , then f + g is a feasible flow in the original network N defined
as follows: (f + g)(e) = f(e) + g(e) − g(←−e ) for every e ∈ E. (If e /∈ Ef ,←−e /∈ Ef , we let g(e) = 0, g(←−e ) = 0, respectively). The flow f + g satisfies
val(f + g) = val(f) + val(g) and cost(f + g) = cost(f) + cost(g).

2. Similarly, if f, f ′ are two feasible flows in a network N , then f ′ − f is a
feasible flow in the residual network Nf of value val(f ′) − val(f) and cost
cost(f ′)− cost(f). The flow f ′− f in Nf is defined as follows: If e ∈ E ∩Ef

then (f ′−f)(e) = (f ′(e)−f(e))+ where x+ = max{x, 0}. Similarly, if e ∈ E,
and ←−e ∈ Ef , then (f ′ − f)(←−e ) = (f(e)− f(′(e))+.

3. Since all the capacities are one, f ′−f can be represented as the sum of flows
along s− t paths and cycles in Nf , each having flow value of 0, 1 or −1.

For a full feasible flow f define

wk(f) := k · val(f)− cost(f) (2)

If f is the flow corresponding to a path partition P , then by Equation (1),
|P|k = kn− wk(f).

Lemma 13. Let P and P ′ be path partitions with |P ′|k < |P|k, and assume
that all non-trivial paths in P and P ′ are of cardinality at least k. Let f and
f ′ be feasible flows in N corresponding to P and P ′, respectively. Let f ′ − f =
f1 + f2 + ... + fm, where each fi is an s− t-flow in Nf of value 0, 1 or −1. Then
there exists some fi0 ( 1 ≤ i0 ≤ m) with wk(fi0) > 0.

Proof. From |P ′|k−|P|k < 0, it follows from (1) and (2) that wk(f ′)−wk(f) > 0.
By Lemma 12,

wk(f ′)−wk(f) = k·val(f ′)−cost(f ′)−(k·val(f)−cost(f)) = k·val(f ′−f)−cost(f ′−f) =

= wk(f ′ − f) = k · val(Σm
i=1fi) − cost(Σm

i=1fi) = Σm
i=1wk(fi) > 0

Hence, there must be some fi0 , (1 ≤ i0 ≤ m) with wk(fi0) > 0.
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The Algorithm and proof of correctness

0. Input: G , q ≥ 1, Pq

1. Initialize: k ← 1; P := Pq ∪ {{x};x /∈ ∪Pq}; f ← fP
2. while (k ≤ minP∈Pq |P |) do
3. begin
4. if (∃Ck orthogonal to P) then Stop
5. Let P ′ with |P ′|k < |P|k, and wk(fi0) > 0. If (val(fi0) = 0 or 1 ) then find improved P ′q. Stop
6. else (val(fi0) = −1) then k ← k + 1
7. end

Remarks

1. In line 4, the Oracle, as implied by Conjecture 5, finds a k-colouring Ck

orthogonal to P . By Observation 9, C = Ck ∪ {{x}; x /∈ ∪Ck} is orthogonal
to Pq, and we are done.

2. Otherwise, (line 5) the Oracle finds a path partition P ′ with |P ′|k < |P|k.
We assume that all non-trivial paths in P ′ are of cardinality at least k.
(Otherwise, we just break up paths of cardinality less than k into single
vertices). Lemma 13 implies the existence of fi0 with val(fi0) = 0, 1 or −1
and wk(fi0) > 0

Lemma 14. Let P be a path partition and f = fP . If there exist flows fj0 and
fj1 in Nf satisfying val(fj0) = 1, val(fj1) = −1, cost(fj0) + cost(fj1) < 0, then
there exists a flow f ′ in Nf with val(f ′) = 0 and cost(f ′) < 0.

Proof. If fj0 and fj1 are disjoint, then f ′ = fj0 + fj1 is a flow satisfying
val(f ′) = val(fj0) + val(fj1) = 0 and cost(f ′) = cost(fj0) + cost(fj1) < 0.
Otherwise, fj0 + fj1 is a collection of cycles (not necessarily disjoint!) of total
negative cost. One of these cycles must have a negative cost, and corresponds to
a flow f ′ in Nf with val(f ′) = 0 and cost(f ′) < 0.

We are now ready to prove the correctness of the algorithm:

Theorem 15. Given a q-path system Pq, the algorithm above either finds a
colouring C orthogonal to it, or a q-path system P ′′q with |⋃P ′′q| > |⋃Pq|.

Proof. In line 1, k is initialized to 1, the path partition P associated with Pq

is constructed, and a flow f corresponding to P is defined in N . If the algorithm
stops at line 4, then by Remark (1) above we are done. Otherwise, the Oracle
finds a path partition P ′ with |P ′|k < |P|k. Let fi0 be the flow (of value 0,1 or -1)
as implied in Lemma 13. Let f ′′ := f + fi0 , and P ′′ := P(f ′′).

Case 1: Assume val(fi0) = 0. Since wk(fi0) > 0 it follows that cost(fi0) < 0
and f ′′ = f + fi0 is a flow with val(f ′′) = val(f) and cost(f ′′) < cost(f).



On Path Partitions and Colourings in Digraphs 141

Then |P ′′>1| = |P>1| = n − val(f) ≤ q. However, |⋃P ′′>1| = n − cost(f ′′) >
n−cost(f) = |⋃Pq|. If Pq contains no trivial paths then P ′′>1 is a q-path system
with |⋃P ′′q| > |⋃Pq| , and we are done. Otherwise, we add the necessary
number of trivial paths to P ′′>1 to make it a q-path system, and we are done
again.

Case 2: If val(fi0) = −1 then k is increased unless k = minP∈Pq |P |. Assume
k = minP∈Pq |P |. From wk(fi0) > 0 we deduce that cost(fi0) ≤ −k− 1. If k = 1
then P contains t trivial paths, for some t ≥ 1, and q− t non-trivial paths. Now
|P ′′>1| = n− val(f ′′) = n− (val(f) + val(fi0)) = n− val(f) + 1 = |P>1|+ 1 =
q − t + 1. But cost(fi0) ≤ −2, implying that P ′′>1 in addition to t − 1 trivial
paths is a q-path system which covers at least one more vertex than Pq.

Assume now that k ≥ 2. Let P = (v1, v2, . . . , vk) be the shortest path in Pq.
Then fi1 = (s, v′k, v′′k , v′k−1, v

′′
k−1, . . . , v

′
1, v

′′
1 , t) is a flow in Nf with val(fi1) = 1

and cost(fi1) = k. By applying Lemma 14 on the flows fi1 and fi0 we are
guaranteed the existence of a flow f ′ in Nf with val(f ′) = 0 and cost(f ′) < 0.
We let f ′′ := f + f ′. As was shown in Case 1, P ′′q = P ′′>1 is a q-path system
which covers more vertices than Pq.

Case 3.1: If val(fi0) = 1 and k = 1, then cost(fi0) ≤ 0. Then |P ′′>1| = n −
val(f ′′) = n− val(f)− 1 ≤ q− 1, and P ′′>1 covers n− cost(f ′′) ≥ n− cost(f) =
|⋃Pq| vertices. If we add any path from G − ⋃P ′′>1 to the family P ′′>1, we
have a q-path system which covers more vertices than Pq, and we are done.

Case 3.2: Finally, if val(fi0) = 1 and k ≥ 2, then k was increased to its current
value because there exists a flow fi1 with val(fi1) = −1 and wk−1(fi1) > 0. From
wk(fi0) > 0, and wk−1(fi1) > 0 we deduce that cost(fi0) < k and cost(fi1) <
−(k−1). By Lemma 14, there exists a flow f ′ with val(f ′) = 0 and cost(f ′) < 0.
The rest follows as in Case 1. This completes the proof.

4 When G Is Not Acyclic

In an arbitrary digraph, which is not necessarily acyclic, we have no guarantee
that f ′′ := f + fi0 (where fi0 was defined in Lemma 13) corresponds to a path
partition. It may correspond to a partition of paths and cycles. However, we do
know that f ′ = f + Σm

i=1fi does correspond to a path partition (the partition
P ′!). Perhaps fi0 can be replaced by a collection of flows, thus yielding the
following conjecture:

Conjecture 16. Let G be digraph, k ≥ 1. Assume P and P ′ are path partitions
in G and |P ′|k < |P|k. We assume that all non-trivial paths in P and P ′ are of
cardinality at least k. Let f ( f ′) be the corresponding flow fP (respectively f ′

P)
in our network N . Let f ′−f =

∑m
i=1 fi be a decomposition of f ′−f such that for
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Fig. 1. G. P2 = {P1, P2}

any i, fi ∈ Nf and val(fi) ∈ {0,−1, 1}. Then there exists a subset I ⊆ {1, ..., m}
such that the flow S =

∑

i∈I fi satisfies:
(i) S ∈ Nf

(ii) P(f + S) is acyclic
(iii) wk(S) > 0
(iv) val(S) ∈ {0,−1, 1}

Mercier[8] has found a counterexample to this conjecture. Consider the graph in
Figure 1. Let k = 1, P = {(a, b, c, d, e), (f, g, h, i, j), (k), (l), (m), (n)} and
P ′ = {(a, k), (f, l), (n, j), (m, d, g, i, c, h, b, e)}.
Let f1 = (t, n′′, n′, j′′, i′, c′′, b′, e′′, d′, g′′, f ′, l′′, l′, s), and
f2 = (t, m′′, m′, d′′, c′, h′′, g′, i′′, h′, b′′, a′, k′′, k′, s). It is easy to verify that
f ′ − f = f1 + f2, where f ′ and f correspond to the path partitions P ′ and P ,
respectively. Since both f1 and f2 are flows in Nf from t to s, it follows that
val(f1 + f2) = −2. However, P(f + fi) contains a cycle, for each i = 1, 2. This
contradicts Conjecture 16.

Acknowledgment. I thank Eli Berger, and Fabien Mercier for their helpful
comments on this paper.
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Abstract. A graph is well-covered if every maximal independent set has
the same cardinality. The recognition problem of well-covered graphs is
known to be co-NPC. The complexity status of the problem is not
known if the input is restricted to graphs with no cycles of length 4. We
conjecture that the problem is polynomial if the input graph does not
contain cycles of length 4 and 6, and prove several theorems supporting
our conjecture.

1 Introduction

Throughout this paper G = (V, E) is a simple (i.e., a finite, undirected, loopless
and without multiple edges) graph with vertex set V = V (G) and edge set
E = E(G).

Let S ⊆ V be a set of vertices, and let i ∈ N. Then

Ni(S) = {w ∈ V | mins∈S d(w, s) = i},
where d(x, y) is the minimal number of edges required to construct a path be-
tween x and y. If i �= j then obviously Ni(S) ∩Nj(S) = φ. If S = {v} for some
v ∈ V , then Ni({v}) is abbreviated to Ni(v).

A set of vertices S ⊆ V is independent if for every x, y ∈ S, x and y are not
adjacent. It is clear that an empty set is independent. The independence number
of G, denoted by α(G), is the cardinality of the maximum size independent set
in the graph.

A graph is well-covered if every maximal independent set has the same car-
dinality, α(G).

Let T ⊆ V . Then S dominates T if S∪N1(S) ⊇ T . If S and T are both empty,
then N1(S) = φ, and therefore S dominates T . If S is a maximal independent
set of G, then it dominates the whole graph.

Two adjacent vertices, x and y, in G are said to be related if there is an
independent set S, containing neither x nor y, such that S ∪ {x} and S ∪ {y}
are both maximal independent sets in the graph.

The recognition of well-covered graphs is known to be co-NPC. The prob-
lem remains co-NPC even when the input is restricted to K1,4-free graphs [3].
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However, the problem is polynomially solvable for K1,3-free graphs [5], [6]; for
graphs with girth at least 5 (see [4]); or for graphs with a bounded maximal
degree [2].

In [1], Brown, Nowakowski and Zverovich investigate well-covered graphs with
no cycles of length 4. They denote such graphs by WC(Ĉ4), and prove the fol-
lowing theorem.

Theorem 1. Let G ∈ WC(Ĉ4). If xy is an edge in G, but x and y are not
related, then G− xy is well-covered and α(G) = α(G − xy).

In [1] the following open problem is presented.

Problem 1. What is the complexity of determining whether an input graph with
no cycles of length 4 is well-covered?

2 Graphs without Cycles of Length 4

In this section we continue the investigation of the structure of well-covered
graphs with no cycles of length 4.

Theorem 2. Let G = (V, E) be a graph which does not contain cycles of length
4, and let xy ∈ E. Suppose G−xy ∈ WC(Ĉ4). Then the following two conditions
are equivalent:

1. There is no independent set of
N2(x) ∩N3(y), which dominates N1(x) ∩N2(y),

and
there is no independent set of
N2(y) ∩N3(x), which dominates N1(y) ∩N2(x).

2. G ∈ WC(Ĉ4) and α(G) = α(G − xy).

Proof. Assume that Condition 1 holds. Let S be any maximal independent set
of G. It is enough to prove that |S| = α(G− xy).

If |S ∩ {(x, y)}| = 0, then S is a maximal independent set of G − xy, and
therefore |S| = α(G− xy).

Suppose |S∩{(x, y)}| = 1, and assume, without loss of generality, that x ∈ S.
Condition 1 implies that y is dominated by S − {x}. Hence, S is a maximal
independent set of G− xy, and |S| = α(G− xy).

Assume on the contrary that Condition 2 holds but Condition 1 does not.
Assume, without loss of generality, that there exists an independent set
I ⊆ N2(y) −N1(x) which dominates N1(y) − {x}. Let S be any maximal inde-
pendent set of G − xy which contains I ∪ {x, y}. Hence, S − {y} is a maximal
independent set of G, which contradicts Condition 2.

3 Graphs without Cycles of Length 4 and 6

In this section our discussion is restricted to graphs which contain neither cycles
of length 4 nor cycles of length 6. For such graphs, Condition 1 of the Theorem



146 V.E. Levit and D. Tankus

2 is equivalent to the claim that x and y are not related. Thus, in this context
Theorem 2 proves the opposite direction of Theorem 1.

LetWC(Ĉ4, Ĉ6) be the set of well-covered graphs which contain neither cycles
of length 4 nor cycles of length 6.

Theorem 3. The following problem can be solved in polynomial time:

Input: A graph G = (V, E) ∈ WC(Ĉ4, Ĉ6), and an edge xy ∈ E.
Question: Are x and y related?

Proof. For every v ∈ {x, y}, let u = {x, y} − {v}, and define:
M1(v) = N1(v) ∩N2(u), M2(v) = N1(M1(v)) − {v}.

The vertices x and y are related if and only if there exists an independent
set in M2(x) ∪M2(y) which dominates M1(x) ∪M1(y).

The fact that the graph does not contain cycles of length 6 implies the fol-
lowing 3 conclusions:

– There are no edges which connect vertices of M2(x) with vertices of M2(y).
– The set M2(x) ∩M2(y) is independent.
– There are no edges between M2(x) ∩M2(y) and other vertices of

M2(x) ∪M2(y).

Hence, if Sx ⊆M2(x) and Sy ⊆M2(y) are independent, then Sx∪Sy is indepen-
dent, as well. Therefore, it is enough to prove that one can decide in polynomial
time whether there exists an independent set in M2(v) which dominates M1(v),
where v ∈ {x, y}.

Let v be any vertex in {x, y}. Every vertex of M2(v) is adjacent to exactly
one vertex of M1(v), or otherwise the graph contains a C4. Every connectivity
component of M2(v) contains at most 2 vertices, or otherwise the graph contains
either a C4 or a C6. Let A1, ..., Ak be the connecivity components of M2(v).

Define a flow network Fv = {GF = (VF , EF ), s ∈ VF , t ∈ VF , w : EF −→ R}
as follows:

Let VF = M1(v)∪M2(v)∪{a1, ..., ak, s, t}, where a1, ..., ak, s, t are new vertices,
s and t are the source and sink of the network, respectively.

The directed edges EF are:

– the directed edges from s to each vertex of M1(v);
– all directed edges v1v2 s.t. v1 ∈M1(v), v2 ∈M2(v) and v1v2 ∈ E;
– the directed edges vai, for each 1 ≤ i ≤ k and for each v ∈ Ai;
– the directed edges ait, for each 1 ≤ i ≤ k.

Let w ≡ 1. Invoke any polynomial time algorithm for finding a maximum flow
in the network, for example Ford and Fulkerson’s algorithm. Let Sv be the set
of vertices in M2(v) in which there is a positive flow. Clearly, Sv is independent.
The maximality of Sv implies that |M1(v)∩N1(Sv)| ≥ |M1(v)∩N1(S′

v)|, for any
independent set S′

v of M2(v).
Let us conclude the proof with a brief sketch of the algorithm as a whole.
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For each v ∈ {x, y}, build a flow network Fv as described above, and find a
maximum flow. Let Sv be the set of vertices in M2(v) in which there is a positive
flow. If Sv does not dominate M1(v) the algorithm terminates announcing that
x and y are not related. Otherwise, let S be any maximal independent set of
G − {x, y} which contains Sx ∪ Sy. Each of S ∪ {x} and S ∪ {y} is a maximal
independent set of G, and x, y are related. This algorithm can be implemented
in polynomial time.

4 Conclusions

Our main conjecture reads as follows.

Conjecture 1. The following recognition problem can be solved in polynomial
time:

Input: A graph G which does not contain cycles of length 4 or 6.
Question: Is G well-covered?

Moreover, we assume that this recognition problem may be solved by the
following algorithm.

Algorithm 4. Algorithm for deciding whether G ∈ WC(Ĉ4, Ĉ6).

– For each edge e in the graph G, decide whether e is related.
By Theorem 3 this task may be implemented in polynomial time.

– Delete all non-related edges from the graph G.
Denote the obtained graph by G∗.

– Decide whether G∗ ∈ WC(Ĉ4, Ĉ6).
– If G∗ /∈ WC(Ĉ4, Ĉ6) then G /∈ WC(Ĉ4, Ĉ6).
– If G∗ ∈ WC(Ĉ4, Ĉ6) then G ∈ WC(Ĉ4, Ĉ6).
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Abstract. A unit cube in k dimensions (k-cube) is defined as the Carte-
sian product R1×R2×· · ·×Rk where Ri(for 1 ≤ i ≤ k) is a closed interval
of the form [ai, ai + 1] on the real line. A graph G on n nodes is said to
be representable as the intersection of k-cubes (cube representation in k
dimensions) if each vertex of G can be mapped to a k-cube such that
two vertices are adjacent in G if and only if their corresponding k-cubes
have a non-empty intersection. The cubicity of G denoted as cub(G) is
the minimum k for which G can be represented as the intersection of
k-cubes.

An interesting aspect about cubicity is that many problems known to
be NP-complete for general graphs have polynomial time deterministic
algorithms or have good approximation ratios in graphs of low cubicity.
In most of these algorithms, computing a low dimensional cube repre-
sentation of the given graph is usually the first step.

We give an O(bw · n) algorithm to compute the cube representation
of a general graph G in bw + 1 dimensions given a bandwidth ordering
of the vertices of G, where bw is the bandwidth of G. As a consequence,
we get O(Δ) upper bounds on the cubicity of many well-known graph
classes such as AT-free graphs, circular-arc graphs and cocomparability
graphs which have O(Δ) bandwidth. Thus we have:

1. cub(G) ≤ 3Δ − 1, if G is an AT-free graph.
2. cub(G) ≤ 2Δ + 1, if G is a circular-arc graph.
3. cub(G) ≤ 2Δ, if G is a cocomparability graph.

Also for these graph classes, there are constant factor approximation
algorithms for bandwidth computation that generate orderings of vertices
with O(Δ) width. We can thus generate the cube representation of such
graphs in O(Δ) dimensions in polynomial time.

Keywords: Cubicity, bandwidth, intersection graphs, AT-free graphs,
circular-arc graphs, cocomparability graphs.
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1 Introduction

Let F = {Sx ⊆ U : x ∈ V } be a family of subsets of a universe U , where V is an
index set. The intersection graph Ω(F) of F has V as vertex set, and two distinct
vertices x and y are adjacent if and only if Sx∩Sy �= ∅. Representations of graphs
as the intersection graphs of various geometrical objects is a well studied topic in
graph theory. Probably the most well studied class of intersection graphs are the
interval graphs, where each Sx is a closed interval on the real line. A restricted
form of interval graphs, that allow only intervals of unit length, are indifference
graphs, also called unit interval graphs. Other characterizations of these graphs
including their equivalence with proper interval graphs are detailed in [1].

A well known concept in this area of graph theory is the cubicity, which was
introduced by F. S. Roberts in 1969 [2]. This concept generalizes the concept of
indifference graphs. A unit cube in k dimensions (k-cube) is a Cartesian product
R1 × R2 × · · · × Rk where Ri (for 1 ≤ i ≤ k) is a closed interval of the form
[ai, ai + 1] on the real line. Two k-cubes, (x1, x2, . . . , xk) and (y1, y2, . . . , yk) are
said to have a non-empty intersection if and only if the intervals xi and yi have a
non-empty intersection for 1 ≤ i ≤ k. For a graph G, its cubicity is the minimum
dimension k, such that G is representable as the intersection graph of k-cubes.
We denote the cubicity of a graph G by cub(G). The graphs of cubicity at most
1 are exactly the class of indifference graphs.

If we require that each vertex correspond to a k-dimensional axis-parallel box
R1 × R2 × · · · × Rk where Ri (for 1 ≤ i ≤ k) is a closed interval of the form
[ai, bi] on the real line, then the minimum dimension required to represent G is
called its boxicity denoted as box(G). Clearly box(G) ≤ cub(G) for any graph
G because cubicity is a stricter notion than boxicity.

It has been shown that deciding whether the cubicity of a given graph is at
least 3 is NP-hard [3].

In many algorithmic problems related to graphs, the availability of certain
convenient representations turn out to be extremely useful. Probably, the most
well-known and important examples are the tree decompositions and path de-
compositions. Many NP-hard problems are known to be polynomial time solvable
given a tree(path) decomposition of the input graph that has bounded width.
Similarly, the representation of graphs as intersections of “disks” or “spheres”
lies at the core of solving problems related to frequency assignments in radio net-
works, computing molecular conformations etc. For the maximum independent
set problem which is hard to approximate within a factor of n(1/2)−ε for general
graphs, a PTAS is known for disk graphs given the disk representation [4,5] and
an FPTAS is known for unit disk graphs [6]. In a similar way, the availability
of cube or box representation in low dimension make some well known NP hard
problems like the max-clique problem, polynomial time solvable since there are
only O((2n)k) maximal cliques if the boxicity or cubicity is at most k. Though
the complexity of finding the maximum independent set is hard to approximate
within a factor n(1/2)−ε for general graphs, it is approximable to a log n factor
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for boxicity 2 graphs (the problem is NP-hard even for boxicity 2 graphs) given
a box or cube representation [7,8].

It is easy to see that the problem of representing graphs using k-cubes can be
equivalently formulated as the following geometric embedding problem. Given an
undirected unweighted graph G = (V, E) and a threshold t, find an embedding
f : V → R

k of the vertices of G into a k-dimensional space (for the minimum
possible k) such that for any two vertices u and v of G, ||f(u) − f(v)||∞ ≤ t if
and only if u and v are adjacent where || ||∞ denotes the L∞ norm. Clearly, a k-
cube representation of G yields the required embedding of G in the k-dimensional
space. The minimum dimension required to embed G as above under the L2 norm
is called the sphericity of G. Refer [9] for applications where such an embedding
under L∞ norm is argued to be more appropriate than embedding under L2

norm. The connection between cubicity and sphericity of graphs were studied in
[10,11].

As far as we know, the only known upper bound for the cubicity of general
graphs (existential or constructive) is by Roberts [2], who showed that cub(G) ≤
2n/3 for any graph G on n vertices. The cube representation of special class
of graphs like hypercubes and complete multipartite graphs were investigated
in [2,11,12]. A lower bound for the cubicity of general graphs was given [13].
The cubicity of interval graphs was shown to be bounded above by 	log Δ
 + 4
in [14].

Linear Ordering and Bandwidth. Given an undirected graph G = (V, E) on n
vertices, a linear ordering of G is a bijection f : V → {1, . . . , n}. The width of
the linear ordering f is defined as max(u,v)∈E |f(u)−f(v)|. The bandwidth mini-
mization problem is to compute f with minimum possible width. The bandwidth
of G denoted as bw(G) is the minimum possible width achieved by any linear
ordering of G. A bandwidth ordering of G is a linear ordering of G with width
bw(G). Our algorithm to compute the cube representation of a graph G takes as
input a linear ordering of G. The smaller the width of this ordering, the lesser
the number of dimensions of the cube representation of G computed by our al-
gorithm. It is NP-hard to approximate the bandwidth of G within a ratio better
than k for every k ∈ N [15]. Feige [16] gives a O(log3(n)

√
log n log log n) approx-

imation algorithm to compute the bandwidth (and also the corresponding linear
ordering) of general graphs. For bandwidth computation, several algorithms with
good heuristics are known that perform very well in practice [17].

1.1 Our Results

We summarize below the results of this paper.

1. For any graph G, cub(G) ≤ bw(G) + 1
2. For an AT-free graph G with maximum degree Δ, cub(G) ≤ 3Δ− 1
3. For a circular-arc graph G with maximum degree Δ, cub(G) ≤ 2Δ + 1
4. For a cocomparability graph G with maximum degree Δ, cub(G) ≤ 2Δ
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1.2 Definitions and Notations

All the graphs that we consider will be simple, finite and undirected. For a graph
G, we denote the vertex set of G by V (G) and the edge set of G by E(G). For a
vertex u ∈ V (G), let d(u) denote its degree (the number of outer neighbors of u).
The maximum degree of G is denoted by Δ(G) or simply Δ when the graph under
consideration is clear. For a vertex u ∈ V (G), we denote the set of neighbours
of u by NG(u). By definition, NG(u) = {v ∈ V (G) | (u, v) ∈ E(G)}. Again,
for ease of notation, we use N(u) instead of NG(u) when there is no scope for
ambiguity. Let G′ be a graph such that V (G′) = V (G). Then G′ is a supergraph
of G if E(G) ⊆ E(G′). We define the intersection of two graphs as follows. If G1

and G2 are two graphs such that V (G1) = V (G2), then the intersection of G1

and G2 denoted as G = G1 ∩G2 is the graph with V (G) = V (G1) = V (G2) and
E(G) = E(G1) ∩ E(G2). Let bw(G) denote the bandwidth of G.

An indifference graph is an interval graph which has an interval representation
that maps the vertices to unit length intervals on the real line such that two
vertices are adjacent in the graph if and only if the intervals mapped to them
overlap.

Definition 1 (Unit interval representation). Given an indifference graph
I(V, E), the unit interval representation is a mapping f : V (I) → R such that
for any two vertices u, v, |f(u)− f(v)| ≤ 1 if and only if (u, v) ∈ E(I).

Note that this is equivalent to mapping each vertex of I to the unit interval
[f(u), f(u) + 1] so that two vertices are adjacent in I if and only if the unit
intervals mapped to them overlap. Now, consider the mapping g : V (I) → R

given by g(u) = xf(u) where x ∈ R. It can be easily seen that for any two vertices
u, v, |g(u)− g(v)| ≤ x if and only if (u, v) is an edge in I. g thus corresponds
to an interval representation of I using intervals of length x. We call such a
mapping g a unit interval representation of I with interval length x. We can
thus alternatively define indifference graphs as follows: a graph G(V, E) is an
indifference graphs if and only if there exists a function f : V (G) → R and a
constant t such that for u, v ∈ V (G), (u, v) ∈ E(G)⇔ |f(u)− f(v)| ≤ t.

Definition 2 (Indifference graph representation). The indifference graphs
I1, . . . , Ik constitute an indifference graph representation of a graph G if G =
I1 ∩ · · · ∩ Ik.

Theorem 1 (Roberts[2]). A graph G has cub(G) ≤ k if and only if it has an
indifference graph representation with k indifference graphs.

2 Cubicity and Bandwidth

2.1 The Construction

We show that given a linear ordering of the vertices of G with width b, we
can construct an indifference graph representation of G using b + 1 indifference
graphs.
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Theorem 2. If G is any graph with bandwidth b, then cub(G) ≤ b + 1.

Proof. Let n denote |V (G)| and let A = u0, u1, . . . , un−1 be a linear ordering of
the vertices of G with width b. We will assume that n ≥ b; otherwise, Roberts’
result[2] gives us cub(G) ≤ 2n/3 ≤ 2b/3 giving us a better bound than required.
Since A has width b, if (uj , uk) ∈ E(G), then |j − k| ≤ b. For two vertices
uj, uk ∈ V (G), we will abuse notation to say that uj < uk if j < k and uj > uk

if j > k. The relations ≤ and ≥ on V (G) are also defined similarly.
We construct b + 1 indifference graphs I0, I1, . . . , Ib−1 and H , such that G =

I0 ∩ I1 ∩ · · · ∩ Ib−1 ∩H .

Construction of indifference graph H
The vertex set of H is V (G) and let its edge set be denoted by E(H). Since H
has to be a supergraph of G, we have to make sure that every edge in E(G) has
to be present in E(H). b being the bandwidth of the linear ordering A of vertices
taken, a vertex uj is not adjacent in G to any vertex uk when |j − k| > b. Let the
function h : V (G) → R be the unit interval representation for H with interval
length b, i.e., for uj, uk ∈ V (G), (uj , uk) ∈ E(H)⇔ |h(uj)− h(uk)| ≤ b. We con-
struct h in such a way that E(H) = {(uj, uk) | |j − k| < b}∪{(uj , uk) | |j − k| =
b and (uj, uk) ∈ E(G)}. h is defined as:
Let ε = 1/n2.

h(uj) = j, for j < b

h(uj) = h(uj−b) + b, for j ≥ b and (uj−b, uj) ∈ E(G)
h(uj) = h(uj−b) + b + ε, for j ≥ b and (uj−b, uj) �∈ E(G)

The definition of h can be explained as the following iterative procedure. We
first assign the interval [j, j + b] to vertex uj , for all j. This makes sure that uj

is not adjacent to any vertex uk, if k > j + b. Now, each vertex is adjacent in H
to exactly the b vertices preceding and following it in A. Now, for each vertex
uj where j ≥ b, we shift h(uj), the interval for uj , slightly to the right (by ε)
if uj is not adjacent to uj−b in G so that h(uj) becomes disjoint from h(uj−b).
Along with h(uj), all the intervals that start after h(uj) are also shifted right by
ε. This procedure is done for vertices ub, . . . , un−1 in that order. Our choice of
a small value for ε ensures that h is still a supergraph of G, as it will be shown
later.

Note that for a vertex uj,

h(uj) ≤ h(uj−b) + b + ε

≤ h(uj−2b) + 2b + 2ε ≤ · · · ≤ h(uj mod b) + �j/b�b + �j/b�ε
= j mod b + �j/b�b + �j/b�ε
= j + �j/b�ε
≤ j + nε = j + 1/n

Claim. H is a supergraph of G.
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Proof. First we observe that for any vertex uj, j ≤ h(uj) ≤ j + 1/n. Now,
consider an edge (uj , uk) of G where j < k. Since the width of the input linear
ordering A is b, we have k − j ≤ b. Now we consider the following two cases. If
k − j ≤ b − 1 then h(uk) − h(uj) ≤ k + 1/n− j ≤ b − 1 + 1/n < b. Since each
interval in H has length b, it follows that (uj , uk) ∈ E(H). If k − j = b then
from the definition of h, it follows that h(uk) = h(uk−b) + b = h(uj) + b. Thus
h(uk) − h(uj) = b implying that (uj , uk) ∈ E(H). Every edge in G is therefore
present in H , or in other words, H is a supergraph of G.

Construction of Ii, for 0 ≤ i ≤ b− 1.
The vertex set of the indifference graph Ii is V (G) and let E(Ii) denote the edge
set of Ii. Ii is constructed as follows. Let v0, v1, . . . , vk−1 be a subsequence of A
of k vertices such that v0 = ui, v1 = ui+b, v2 = ui+2b, . . ., vj = ui+jb and so
on where k = 	n−i

b 
. We define vk as a dummy vertex with the property that
∀u ∈ V (G), u < vk. We now define fi, the unit interval representation for Ii with
interval length 2, as follows:

fi(u) = 1, if u < ui

If u be a vertex such that u ≥ ui:

fi(u) = t, if u = vt

= t + 2, if vt < u < vt+1 and (u, vt) ∈ E(G)
= t + 3, if vt < u < vt+1 and (u, vt) �∈ E(G)

Claim. Ii for 0 ≤ i ≤ b− 1 is a supergraph of G.

Proof. Consider the indifference graph Ii. Let (x, y) be any edge in E(G). We
assume without loss of generality that x < y.
Case x < ui = v0: Then y < ui+b = v1. Thus, fi(x) = 1 and 0 ≤ fi(y) ≤ 3.
Therefore, |fi(x)− fi(y)| ≤ 2 which implies that (x, y) ∈ E(Ii) (since fi is a unit
interval representation with interval length 2).
Case x = vt for some t: Then y ≤ vt+1, therefore fi(x) = t and fi(y) = t + 1 (if
y = vt+1) or t + 2 (if y < vt+1). In either case, |fi(x) − fi(y)| ≤ 2 and therefore,
(x, y) ∈ E(Ii).
Case vt < x < vt+1 for some t: Then y < vt+2. Therefore, fi(x) can take values
in {t+2, t+3} while fi(y) can take values in {t+1, t+2, t+3, t+4}. Therefore,
|fi(x) − fi(y)| ≤ 2, which implies that (x, y) ∈ E(Ii).

Since all the cases have been considered, it follows that any edge in E(G) is
also an edge in E(Ii).

It remains to show that G = I0 ∩ · · · ∩ Ib−1 ∩H . To do this, it suffices to show
that any (x, y) /∈ E(G) is not present in at least one of the indifference graphs
I0, . . . , Ib−1, H . Let x = uj and y = uk and we will assume without loss of
generality that j < k (i.e. x < y). Consider the case k − j ≥ b. In this case, we
claim that (x, y) /∈ E(H). This is because of the following. If k − j = b then
clearly h(x) − h(y) = h(uk)− h(uj) = b + ε and thus (x, y) /∈ E(H) (recall that
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h is a unit interval representation with interval length b). Now, if k − j ≥ b + 1
then h(uk) − h(uj) ≥ k − j − 1/n ≥ (b + 1) − 1/n > b (since h(uk) ≥ k and
h(uj) ≤ j + 1/n). Thus (uj , uk) /∈ E(H). Now the remaining case is k − j < b.
Consider the graph Il where l = j mod b. Let t = �j/b� and let vr = ul+rb, for
r = 0, 1, 2, . . .. Then vt = uj . Since k−j < b, uk < vt+1. Thus we have fl(uj) = t
and fl(uk) = t + 3. Thus, |fl(uj)− fl(uk)| > 2 and hence (uj, uk) /∈ E(Il) as
required.

Thus I0, . . . , Ib−1, H is a valid indifference graph representation of G using
b + 1 indifference graphs which establishes that cub(G) ≤ b + 1.

Tightness of the result: Though the bound of cub(G) ≤ bw(G)+1 might seem
far from being tight for many graphs such as complete graphs, there are several
graphs for which the bound becomes almost tight. For example, the bandwidth
and cubicity of paths are both equal to 1 and for cycles, the bandwidth and
cubicity are both equal to 2 – our bound is thus tight but for an additive constant
of 1. A Roberts’ graph is the graph obtained by removing a perfect matching
from a complete graph. It can be seen from the results of [2] that the cubicity
of a Roberts’ graph on n vertices is n/2. The bandwidth of the Roberts’ graph
can be seen to be n− 2 upon observation. Thus our bound is tight upto a factor
of 2 for Roberts’ graphs.

2.2 The Algorithm

Our algorithm to compute the cube representation of G in b+1 dimensions given
a linear ordering of the vertices of G with width b constructs the indifference
supergraphs of G, namely, I0, . . . , Ib−1, H using the constructive procedure used
in the proof of Theorem 2. It is easy to verify that this algorithm runs in O(b ·n)
time where b is the width of the input linear arrangement and n is the number
of vertices in G. However, it has to be noted that obtaining a linear ordering of
the vertices of a given graph with width equal to the bandwidth of the graph is
an NP-hard problem and thus limits the use of our algorithm for general graphs.
Feige[16] provides a polynomial time algorithm to generate a linear ordering of
the vertices of a graph with width at most O(log4 n) times the bandwidth of
the graph. Moreover, for bandwidth computation, several algorithms with good
heuristics are known that perform very well in practice [17].

3 Applying Our Results

Theorem 2 can be used to derive upper bounds for the cubicity of several special
classes of graphs such as circular-arc graphs, cocomparability graphs and AT-
free graphs. We find upper bounds for the bandwidth of these graph classes in
terms of the maximum degree and consequently obtain upper bounds on the
cubicity. Bandwidth of circular-arc graphs have been studied in [18,19], that of
AT-free graphs in [20] and that of cocomparability graphs in [21]. The following
lemmas can also be proved using certain properties given in [18,20,21].
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Lemma 1. If G is a circular-arc graph, bw(G) ≤ 2Δ, where Δ is the maximum
degree of G.

Proof. Let an arc on a circle corresponding to a vertex u be denoted by [h(u),
t(u)] where h(u)(called the head of the arc) is the starting point of the arc when
the circle is traversed in the clockwise order and t(u) (called the tail of the arc)
is the ending point of the arc when traversed in the clockwise order. We assume
without loss of generality that the end-points of all the arcs are distinct and that
no arc covers the whole circle. If any of these cases occur, the end-points of the
arcs can be shifted slightly so that our assumption holds true.

Choose a vertex v1 ∈ V (G). Start from h(v1) and traverse the circle in the
clockwise order. We order the vertices of the graph (other than v1) as v2, . . . , vn

in the order in which the heads of their corresponding arcs are encountered
during this traversal. Now, we define an ordering f : V (G) → {1, . . . , n} of the
vertices of G as follows:

f(vj) = 2j, if 1 ≤ j ≤ �n/2�.
f(vj) = 2(n− j) + 1, if �n/2� < j ≤ n.

We now prove that the width of this ordering is at most 2Δ.
We claim that if h(vj) and h(vk) are two consecutive heads encountered during

a clockwise traversal of the circle, |f(vj)−f(vk)| ≤ 2. To see this, we will consider
the different cases that can occur:
Case : When 1 ≤ j < j + 1 = k ≤ �n/2�. Here, f(vj) = 2j and f(vk) = 2(j + 1).
Therefore, |f(vj)− f(vk)| = 2.
Case : When �n/2� < j < j + 1 = k ≤ n. In this case, f(vj) = 2(n− j) + 1 and
f(vk) = 2(n− (j + 1)) + 1, which means that |f(vj)− f(vk)| = 2.
Case : When j = �n/2� < j + 1 = k,
Subcase : If n is even. f(vj) = 2j = n and f(vk) = 2(n − (j + 1)) + 1 =
2n− 2j − 1 = n− 1.
Subcase : If n is odd, f(vj) = 2j = n− 1 and f(vk) = 2n− 2j − 1 = n.
In both these cases, |f(vj)− f(vk)| = 1.
Case : When j = n and k = 1. We then have f(vj) = 1 and f(vk) = 2. Therefore,
|f(vj)− f(vk)| = 1.

Now, consider any edge (vj , vk) ∈ E(G). Assume without loss of generality
that h(vj) occurs first when we traverse the circle in clockwise direction starting
from h(v1). Now, if we traverse the arc corresponding to vj from h(vj) to t(vj),
we will encounter at most Δ−1 heads h(u1), h(u2), . . . , h(uΔ−1) before we reach
h(vk) since vj can be connected to at most Δ vertices in G. We already know
that |f(vj) − f(u1)| ≤ 2 and |f(ui) − f(ui+1)| ≤ 2, for 1 ≤ i ≤ Δ − 2. Also,
|f(uΔ−1−f(vk)| ≤ 2. It follows that |f(vj)−f(vk)| ≤ 2Δ. Thus f is an ordering
of the vertices of G with width at most 2Δ and therefore we have bw(G) ≤ 2Δ.

��
Corollary 1. If G is a circular-arc graph with maximum degree Δ, then
cub(G) ≤ 2Δ + 1.

Proof. Follows from Theorem 2 and Lemma 1. ��
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Lemma 2. If G is a cocomparability graph, then bw(G) ≤ 2Δ − 1, where Δ is
the maximum degree of G.

Proof. Let V denote V (G) and let |V | = n. Since G is a comparability graph,
there exists a partial order ≺ in G on the node set V such that (u, v) ∈ E(G)
if and only if u ≺ v or v ≺ u. This partial order gives a direction to the edges
in E(G). We can run a topological sort on this partial order to produce a linear
ordering of the vertices, say, f : V → {1, . . . , n}. The topological sort ensures
that if u ≺ v, then f(u) < f(v). Now, let (u, v) ∈ E(G) and let w be a vertex such
that f(u) < f(w) < f(v). We will show that w is adjacent to either u or v in G.
Suppose not. Then (u, w), (w, v) ∈ E(G) and therefore u ≺ w and w ≺ v. Now,
by transitivity of ≺, this implies that u ≺ v, which means that (u, v) ∈ E(G) –
a contradiction. Therefore, any vertex w such that f(u) < f(w) < f(v) in the
ordering f is adjacent to either u or v. Since the maximum degree of G is Δ,
there can be at most 2Δ− 2 vertices between with f(·) value between f(u) and
f(v). Thus, the width of the ordering given by f is at most 2Δ−1 and therefore,
bw(G) ≤ 2Δ− 1. ��

Corollary 2. If G is a cocomparability graph with maximum degree Δ, then
cub(G) ≤ 2Δ.

Proof. Follows from Theorem 2 and Lemma 2. ��

A caterpillar is a tree such that a path (called the spine) is obtained by removing
all its leaves. In the proof of Theorem 3.16 of [20], Kloks et al. show that every
connected AT-free graph G has a spanning caterpillar subgraph T , such that
adjacent nodes in G are at a distance at most four in T . Moreover, for any edge
(u, v) ∈ E(G) such that u and v are at distance exactly four in T , both u and v
are leaves of T . Let p1, . . . , pk be the nodes along the spine of G.

Lemma 3. If G is an AT-free graph, bw(G) ≤ 3Δ−2, where Δ is the maximum
degree of G.

Proof. Let Li denote the set of leaves of T adjacent to pi. Clearly, |Li| ≤ Δ and
Li ∩ Lj = ∅ for i �= j. For any set S of vertices, let 〈S〉 denote an arbitrary
ordering of the vertices in set S. Let 〈u〉 denote ordering with just one vertex
u in it. If α = u1, . . . , us and β = v1, . . . , vt are two orderings of vertices in G,
then let α � β denote the ordering u1, . . . , us, v1, . . . , vt. Let A = 〈L1〉 � 〈p1〉 �
〈L2〉 � 〈p2〉 � · · · � 〈Lk〉 � 〈pk〉 be a linear ordering of the vertices of G. One can
use the property of T stated in the previous paragraph to easily show that A
is a linear ordering of the vertices of G with width at most 3Δ− 2. Therefore,
bw(G) ≤ 3Δ− 2. ��

Corollary 3. If G is an AT-free graph with maximum degree Δ, then cub(G) ≤
3Δ− 1.

Proof. Follows from Theorem 2 and Lemma 3. ��
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Abstract. In the early 1980’s, Cunningham described a unique decom-
position of a strongly-connected graph. A linear time bound for finding
it in the special case of an undirected graph has been given previously,
but up until now, the best bound known for the general case has been
O(n3). We give an O(m log n) bound.
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1 Introduction

Split decomposition is a unique decomposition of arbitrary strongly-connected
digraphs described by Cunningham in 1982 [3]. Because undirected graphs are a
special case of strongly-connected digraphs, a special case of the decomposition
applies to arbitrary undirected graphs. Also known as join decomposition, it is
useful in many areas ranging from recognition of certain graph classes [5] to
optimizations of NP-hard problems [9]. It is a proper generalization of the well
known modular decomposition, also called substitution decomposition [8,7].

As a convention we denote the number of vertices of a graph as n = |V | and
the number of edges m = |E|.

Cunningham gave the first algorithm for computing the decomposition on
arbitrary strongly-connected digraphs, which runs in O(n4) time [3]. Bouchet
improved this to O(n3) [2]. This solves an interesting special case, which is de-
termining whether a graph is prime with respect to the split decomposition,
which means that it can be decomposed only in trivial ways (explained further
below). Spinrad gave an O(n2) algorithm for determining whether an arbitrary
strongly-connected directed graph is prime [10], but not for finding the decom-
position tree if it has a nontrivial decomposition. Since then, much work has
focused on the special case of undirected graphs. This work includes an O(nm)
algorithm by Gabor, Supowit, and Hsu [5], an O(n2) algorithm by Ma and Spin-
rad [6], and, finally, a linear-time (O(n + m)) algorithm by Dahlhaus [4].

M. Lipshteyn et al. (Eds.): Golumbic Festschrift, LNCS 5420, pp. 158–171, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



O(m log n) Split Decomposition of Strongly Connected Graphs 159

This leaves open the possibility of improving on the previous best bound
of O(n3) for finding the decomposition of strongly-connected digraphs. In this
paper, we give an O(m log n) bound.

Our approach borrows generously from techniques developed by Ma and Spin-
rad for their O(n2) algorithm for undirected graphs [6]. In particular, we make
similar use of a technique called graph partitioning or partition refinement.

As an historical note, it is worth noting that techniques for implementing
partition refinement efficiently, and many well-known applications of it, were
first described by Spinrad [11], [14], [13]. We get the improvement to Ma
and Spinrad’s time bound, a generalization to strongly-directed graphs, and a
substantial simplification of their approach, by modifying a clever charging argu-
ment for partition refinement, called halving before re-use. The use of this trick
for modular decomposition, transitive orientation, and many related problems
was circulated widely in the mid-1980’s in a working manuscript, also written by
Spinrad [12]. He obtained the trick by showing how to modify a related one, de-
veloped by Hopcroft, for state minimization in deterministic finite automata [1].
These techniques and applications have been mistakenly attributed in the lit-
erature to subsequent papers that, like the present paper, borrow heavily from
Spinrad’s early work on the subject.

2 Split Sets and Split Decomposition Trees

We view an undirected graph as the special case of a directed graph where every
undirected edge is a directed two-cycle. If X is a nonempty subset of V , by G[X ]
we denote the subgraph of G induced by X . If x ∈ V , by deg(x), we denote the
degree of x. If G is a directed graph, then we let deg(x) denote the number of
in-neighbors plus the number of out-neighbors.

A split in a directed graph is a partition of the vertices into two sets, X and
Y , where the edges directed from X to Y forms a cartesian product X ′ × Y ′,
for some X ′ ⊆ X and some Y ′ ⊆ Y , and the edges directed from Y to X form a
cartesian product Y ′′ ×X ′′, for some Y ′′ ⊆ Y and some X ′′ ⊆ X . For example,
in Figure 1, X ′ = {a}, Y ′ = {c, d, e}, X ′′ = {b}, and Y ′′ = {c, d, e}. X and Y are
split sets if they satisfy these requirements. X ′ is the set of outgoing connectors
of X , and X ′′ is the set of incoming connectors of X . Y ′ is the set of outgoing
neighbors of X , and Y ′′ is the set of incoming neighbors of X . Applying these
definitions to Y reverses the roles of outgoing vs. incoming and connectors vs.
neighbors. In a directed graph, it is not necessary that X ′ = X ′′ or Y ′ = Y ′′

or that they be disjoint, but in an undirected graph, symmetry dictates that
X ′ = X ′′ and Y ′ = Y ′′, in which case we can refer to X ′ and Y ′ simply as the
connectors and neighbors of X .

Figure 1 shows how, if we find a split, we can represent the graph with two
quotients, where, in one quotient, Y is replaced with a single marker vertex whose
out-neighbors and in-neighbors are the in-connectors and out-connectors of X ,
and X is similarly replaced with a marker vertex in the other. This process is
invertible; we can reconstruct the original graph by a composition of the two
quotients.
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Fig. 1. Two quotients formed by a split in a directed graph

This differs from modular decomposition, where a graph is broken into a
quotient, which receives a marker, and a factor, which does not. This asymmetry
is due to the fact that, unlike split decomposition, where the complement of a
split set is a split set, the complement of a module in modular decomposition is
not a module.

The quotient consisting of X and its marker y can be considered a many-to-
one mapping of V to X ∪ {y}, where each element of X maps to itself and each
element of Y maps to y. This mapping has the property that any split set of G
maps to a split set of the quotient, and the inverse image of any split set of the
quotient is a split set of G. Let us call this the homomorphic rule.

There can be an exponential number of split sets (consider the complete graph,
where all nonempty proper subsets of V are split sets). However, they can be
represented implicitly in O(n) space with a split decomposition tree, which is an
unrooted tree whose leaves are the vertices of G. We first describe how this is
accomplished for an undirected graph. If u is an internal node, let a neighbor set
of u be the set of leaves reachable through a neighbor v of u. That is, they are
the set of vertices of G that are in v’s component of the tree if the tree edge uv
is removed. Each internal node of the tree is labeled prime or degenerate. A set
is a split set if and only if it is a neighbor set of an internal node, a union of all
but one neighbor set of an internal node, or any union of at least one and fewer
than all neighbor sets of a degenerate node. Cunningham showed that there is
a unique tree with these properties.

For instance, Figure 2 gives the split decomposition of an undirected graph.
The neighbor sets of node 3 are {c}, {y, x, w, v}, {a}, {e, d, b, f}, and {g, h, i , j, k,
n, p, q, r, s, t}. This is a degenerate node, since every union of these neighbor
sets is a split set. For instance, the union of {u, v, w, x, y}, {c}, and {b, d, e, f} is a
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Fig. 2. The split decomposition of an undirected graph

split set with connectors {u, c, e, f}. Node 5, on the other hand is prime: the
only unions of its neighbor sets that are split sets are one neighbor set or all but
one neighbor set.

The associated quotient at an internal node u is the quotient G′ of G obtained
by replacing each of u’s neighbor sets with a marker vertex. For simplicity, if
V ′ is the neighbor set reachable through a neighbor v, we can consider v to be
the marker for V ′. For instance, the associated quotient at node 3 of Figure 2
is a complete graph on vertices {1, a, 7, 5, c}. The associated quotient at node 5
is a graph on vertex set {3, 6, i, 2, q, 4, t} and edge set {{6, i}, {i, q}, {q, 4}, {4, t},
{t, 6}, {3, t}, {3, 6}, {2, q}, {2, i}}.

A graph is prime if its only split sets are the one-element subsets and their
complements, and degenerate if all nonempty proper subsets of its vertices are
split sets. By the homomorphic rule, the quotient associated with a prime node is
a prime graph and the quotient associated with a degenerate node is a degenerate
graph. The only degenerate quotients associated with nodes of the decomposition
of a connected undirected graph are stars and complete graphs. It is easy to see
that the process of decomposing G into the quotients at the internal nodes of the
decomposition tree is invertible; G can be reconstructed by composition using
the tree and its associated quotients.

If the graph is a strongly-connected digraph, the decomposition tree is similar,
except that, in addition to prime and degenerate nodes, it may have circular
nodes. At a circular node, there is a cyclic ordering of its neighbor sets, and a
union of neighbor sets is a split set if and only if it is a union of at least one and
fewer than all of the neighbor sets that are consecutive in the cyclic ordering. By
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the homomorphic rule, it must be the case that the quotient associated with a
circular node is a graph with a cyclic ordering on its vertices, such that a set of
vertices is a split set if and only if it is a nonempty proper subset of the vertices
that is consecutive in the circular ordering. Let us call such a graph a circular
graph.

A cycle of transitive tournaments is a cyclic ordering of transitive tourna-
ments, where the sink of each is identified with the source of the next. Figure 3
gives an example. Cunningham showed that a graph with at least four vertices
is a circular graph if and only if it is a cycle of transitive tournaments. By the
homomorphic rule, therefore, the quotient associated with a circular node of
degree at least four must be a cycle of transitive tournaments.

Fig. 3. The quotient associated with a circular node is a cycle of transitive tournaments.
The sink of each transitive tournament is the source of the next (circled vertices), and
a nonempty set of vertices is a split set if and only if the vertices are a proper subset
of the vertices that is consecutive in the cyclic order.

So far, our distinction between prime, degenerate, and circular nodes is am-
biguous for nodes of degree three. We therefore consider a node of degree three
to be circular if its associated quotient is a cycle of transitive tournaments.

2.1 The Strategy

Let a, b, c be vertices of G. We have two methods at our disposal whose imple-
mentation is described below: S(a, b, G), which finds the maximal split sets in G
that don’t contain a or b, and L(a, b, c, G) which finds the maximal split set in
G that doesn’t contain a or b but does contain c. We show below that S(a, b, G)
is a partition of V \ {a, b}, and, because L(a, b, c, G) is the member of S(a, b, G)
that contains c, it is unique. We could get L(a, b, c, G) by running S(a, b, G) and
discarding all returned sets except the one that contains c, but we use a separate
procedure that omits the unnecessary steps for efficiency reasons. Before show-
ing how to compute S(a, b, G) and L(a, b, c, G), we show how to reduce finding
the split decomposition to calls to these procedures.

Because a, b, c are vertices of G, they must be leaf nodes of G’s split decom-
position tree. We don’t yet know what the G’s decomposition tree looks like,
but we do know that the paths connecting a, b, and c in the tree must intersect
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Fig. 4. What we get from calling S(a, b, G)

at single internal node, which we will call u. (See Figure 4.) Let A, B, and C
denote the neighbor sets of u that contain a, b, and c, respectively.

It is easy to see from the relationship between the split sets and neighbor sets
of prime nodes that if all nodes of the split decomposition are prime, S(a, b, G)
returns precisely the neighbor sets of nodes on the path from a to b that do not
contain a or b. It follows that S(a, b, G) is a partition of V \ {a, b}, that each
neighbor set of u, other than A and B, is a member of S(a, b, G), and that A\{a}
and B \ {b} each are unions of the remaining members of S(a, b, G), since they
are the neighbor sets of the nodes other than u on the path from a to b. A call to
L(b, c, a, G) finds A and a call to L(a, c, b, G) finds B. We now know all neighbor
sets of u.

To find the remainder of the decomposition tree, we replace each neighbor
set of u with a quotient graph, recursively find the decomposition trees of these
quotients, and then join them by identifying their markers with u (see Figure 5).
The correctness of this algorithm when each node of the decomposition tree is
prime is immediate from the homomorphic rule.

Introducing degenerate and circular nodes. From the relationship between
the split sets and the decomposition tree, it is easy to see that once the possibility
of degenerate and circular nodes is introduced, the following are the members
of S(a, b, G) for some node v on the path from a to b: a neighbor set of v that
does not contain a or b if v is prime, the union of all neighbor sets that do not
contain a or b if v is degenerate, the union of neighbor clockwise from A and
counterclockwise from B or the union of neighbor sets clockwise from A and
counterclockwise from B if v is a circular node. (In the case of a circular node,
one of the two sets is empty if A and B are adjacent in the cyclic order.)

As before, we find A and B by calls to L(b, c, a, G) and L(a, c, b, G), and
recursively find the decomposition trees of the quotients for A, B, and those
members of S(a, b, G) that are not subsets of A or B, that is, that are unions of
one or more neighbor sets of u. If u is prime, this requires one recursive call for
each neighbor set of u. If u is degenerate, this requires three recursive calls, one
for A, one for B, and one for the union of all other neighbor sets. If u is circular,
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Fig. 5. Completing the decomposition tree through recursion

it requires up to four recursive calls, as explained above. We then identify the
markers with u to perform a composition of these trees as before.

If u is degenerate, let X be the union of neighbor sets of u other than A and B
returned by S(a, b, G). By induction, we may assume that a recursive call on the
quotient consisting of X and a marker produces the split decomposition of this
graph. Identifying u and the marker for X , and doing the same for the results of
recursive calls on A and B makes u a tree node of degree three. If X is the union
of more than one neighbor set of u in the actual decomposition of G, then this
is incorrect, because u should have one neighbor for each of these. Note that w
carries the missing neighbor sets that should be u’s. Since u has degree at most
four, it takes O(1) time to find its associated quotient and determine whether it
is a complete graph, a star, or a circular graph (cycle of transitive tournaments).
By induction, we assume that this has been determined for w by the recursive
call. If u and w both have complete or circular quotients, the composition of
their quotients obtained by identifying the markers corresponding to u and w
is a larger complete or circular quotient. We accomplish this by contracting
the edge uw in the tree, letting u stand for the resulting node. This allows u
to inherit its individual neighbor sets from w. Similarly, if both of u and w
have associated quotients that are stars, we can determine in O(1) time whether
the composition of their two stars is a larger star, and perform the contraction
if it is.

2.2 Implementation of S(a, b, G) and L(a, b, c, G)

S(a, b, G) works by starting with an initial partition {{a}, {b}, V \ {a, b}} of
V , and successively refining the partition classes until they give {a}, {b}, and
S(a, b, G).

For simplicity, let us first assume that G is undirected. We find S(a, b, G)
by selecting a vertex as a pivot vertex, p, and perform a pivot operation on it,
which may refine the partition by splitting partition classes that do not contain
p. The outsiders of a partition class S are those vertices V \ S. For a vertex v
that starts out in V \ {a, b} the only initial outsiders of its class are a and b.
Every time the class containing v is split, it finds itself in a smaller class that
has more outsiders. If S is a partition class, the known outsiders are those on
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which we have performed a pivot since the point when they became outsiders
of S, and the known connectors of S are those vertices of S that have edges to
known outsiders.

We show that if the following invariants apply before a pivot, then they also
apply after the pivot:

– Splitting invariant: A split set that started out as a subset of a single par-
tition class remains a subset of a single partition class after each refinement.

– Pivot invariant: If P is the set of finished outsiders of S, S is a split set
in G[P ∪ S].

The invariants apply to the initial partition because no partition class has been
split and no partition class has any finished outsiders. When all outsiders of every
partition class are known, it follows by the pivot invariant that each partition
class is a split set. Since the initial partition is {{a}, {b}, V \{a, b}}, the splitting
invariant ensures that the final partition is {a}, {b}, and the maximal split sets
that do not contain a or b, in other words, the final partition is {{a}, {b}} ∪
S(a, b, G).

Implementation of a pivot. We first describe the implementation of a pivot
operation in the undirected case. Pivoting on a pivot vertex p moves it from the
unfinished to the finished outsiders of each partition class except the one, P , that
contains p and is not allowed to split during the pivot. In S(a, b, G), for each par-
tition class S other than P , we identify the following founding sets for subclasses
that S will be subdivided into during the pivot: the known connectors of S that
are non-neighbors of p, the known connectors that are neighbors of p, and the
members of S that were not known connectors, but that are neighbors of p.

Some of these founding sets may be empty, and if S has at most one non-
empty founding set, it will still satisfy the pivot invariant once p is included
among its known outsiders. Otherwise, members of different founding sets in S
have different sets of known outside neighbors, so they cannot remain in the
same partition class without violating the pivot invariant. They become the
known connectors of new subclasses that S will be partitioned into. It remains
to determine which other members of S can be placed with which founding sets.
We select a vertex z that has already been claimed for a subclass S′ of S, and
have it claim all of its neighbors in S for S′, except for those neighbors that have
already been claimed. Let us call z a claim staker. A second claim-staking by z
during a split of S cannot claim any new vertices for its subclass, so each vertex
is selected at most once to stake claims during a pivot. Once all members of S
have been claimed for a subclass, these subclasses become the refinement of S.

Except for the requirement that a vertex already be claimed before it is se-
lected as a claim-staker, the order in which we select vertices as claim-stakers
does not matter in maintaining the splitting invariant, which can be seen as
follows. Let S′′ be a split set that is a subset of S. If it intersects the known con-
nectors of S, then the connectors of S′′ must be its intersection with the known
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connectors of S, and since its connectors have the same neighbors outside of S,
its known connectors are a subset of a single founding set. All paths into S′′

contain one of its connectors, the claiming of vertices in S′′ is initiated at its
connectors, and claims to other members of S′′ are sealed off from claims to other
members of S′′. All of S′′ ends up in the subclass founded by this founding set.
Similarly, if S′′ doesn’t intersect a founding set, its connectors are all claimed at
once by the first outsider of S′′ that claims vertices for its class, since a neighbor
of one of its outsiders is a neighbor of all of them. This again seals off the rest of
S′′ from claims by competing classes, and S′′ ends up in a single partition class,
as required.

After the split of S, each subclass’s founding set is its set of known connectors,
and they all have the same set of known outsiders that are neighbors, including
p. The pivot invariant is preserved.

L(a, b, c, G) is implemented using pivots also, with the only difference being
that we keep only the partition class that contains c. Every time this class is
split by a pivot, we discard the resulting subclasses that do not contain p.

For a strongly-connected digraph, we run the same procedure for a pivot on
p, with the only difference that we reinterpret the neighbors of a vertex to be
its out-neighbors. Let us call this the outward pivot. This refines the partition,
but does not refine the class containing p. We then re-run the procedure on the
refined partition, this time reinterpreting the neighbors of a vertex to be its in-
neighbors. This is the inward pivot. A pivot on p consists of an outward pivot
and then an inward pivot. Using trivial variants of the above arguments, and
the fact that the graph is strongly-connected, which means that every nonempty
proper subset of V has both incoming and outgoing directed edges, it is easy to
see that the splitting and pivot invariants are maintained.

2.3 The O(m log n) Time Bound

When the algorithm generates a recursive call, it adds a marker to it. That
recursive call may, in turn, generate others, the marker is passed to one of them,
and a new marker is added to that call. This shows that multiple markers can
occur in a single call deep in the recursion.

To avoid proliferation of markers in any one call, when we select a, b, and c,
we give priority to markers in selecting a and b. We claim that this ensures that
there are at most two markers in any recursive call. The proof is by induction on
the depth of the call. Suppose that it is true for a recursive call on a quotient,
G. Since priority is given to markers in selecting a and b, no other vertices are
markers. Since a and b are passed to different recursive calls, each recursive call,
which receives a new marker, still has at most two markers.

Let the non-marker degree sum in a recursive call be the sum of in-degrees
and out-degrees of the non-markers. Because each recursive call has at most two
non-markers, there are at most two directed edges that fail to be incident to a
marker. The following is immediate:
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Lemma 1. If k is the non-marker degree sum in a recursive call, then the total
degree sum of all vertices in the call is O(k).

We keep a list of in-neighbors and a list of out-neighbors on each vertex. We
implement each partition class with a doubly-linked list, where each element has
a pointer to the front of the list that supports identifying its partition class in
O(1) time. In addition, we keep a doubly-linked list of the known in-connectors
and a doubly-linked list of the known out-connectors, and mark the vertices in
these lists according to which they are members of, which may be both of them.

During the outward pivot, this representation allows creating lists of the
founding sets of all partition classes that don’t contain p, in time proportional
to deg(p), by traversing p’s list of out-neighbors, identifying the neighbor’s class
S, removing it from S, and from the list of incoming connectors if it is an in-
coming connector, and putting it in one of two doubly-linked lists of founding
sets for the subclasses of the class. Which founding set it goes into depends on
whether the neighbor is already a known inward connector. This gives at most
two founding sets for each partition class S: neighbors of p that were not already
know inward connectors and neighbors of p that were not. The third founding
set for S, the non-neighbors of p that were already known inward connectors of
S, is what’s left of the doubly-linked list of inward connectors after neighbors
of p have been removed, and we have not touched them. We therefore spend
O(deg(p)) time getting a doubly-linked list of the members of each founding set
for all partition classes that don’t contain p. If S has only one founding set, then
it is unnecessary to split it to get it to continue to satisfy the pivot invariant, so
this founding set is just restored as the known inward connectors of S, and no
further work is done on it.

If S does not contain p and has more than one founding set, then it is split.
When z ∈ S is selected as a claim-staker, it traverses its list of out-neighbors,
and ignores the neighbor if it is either marked or a member of a different class
from S. Otherwise it marks it and moves it to its own class. We conclude that,
during an outward pivot, we spend O(deg(z)) time for each member z of a class
that is properly split by the pivot on p. A similar analysis applies to the inward
pivot.

The insight that leads to the strategy for getting the O(m log n) bound is to
suppose for the moment that every time a class S is split into a set of subclasses
by a pivot on p, each of these side classes has at most half the non-marker degree
sum of S, and that we select a vertex p as a pivot only if it is ripe, that is, only
if the non-marker degree sum of the class that contains it is at most half that
of the class that contained it the last time it was used as a pivot. Then, by the
foregoing, we spend O(deg(x)) time on each vertex each time the degree sum
of its class halves, for a total of O(deg(x) log m) = O(deg(x) log n) over all uses
of the vertex as a pivot or a claim staker. The total time over all vertices is
O(m log n).

Let us now repair this strategy once we consider the possibility that if a class
is split, one of the resulting subclasses it is split into may have greater than half
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the non-marker degree sum of the original. We begin by bounding the cost of all
calls to S(a, b, G) over all recursive calls.

The cost of calls to S(a, b, G). When vertices in up to three subclasses of
a class S that is being split lay claim to vertices for their own class, we work
on the subclasses in parallel, keeping the degree sum of the vertices that have
made claims so far equal among the three calls. A class becomes closed if all of
its members have attempted to lay claim to new members, and has no hope of
capturing further members. When two classes become closed, we can put the
remaining list of unclaimed members at the front of the list of the third class
without touching them individually, and update the data structures for the three
classes in time proportional to the time we’ve spent so far on the class. One of
the other two subclasses has non-marker degree sum at most half of that of S,
so we can charge all costs to the non-marker degree sum of this subclass, plus
the degree of p. We can still charge all costs to the degree sum of vertices that
find themselves in classes whose non-marker degree sum has halved since the last
time they were charged.

We must also bound the cost of identifying ripe pivots. When we pivot on a
vertex, we pivot on all vertices in the class. We label each class with the non-
marker degree sum of the most recent class that contained its members. When
we split a class, each of the subclasses inherits this label, and the ones whose
current degree sum is half this label are put in a list of ripe classes.

A risk in adhering to the discipline of only pivoting on ripe vertices might
cause the partition refinement to halt, due to the absence of ripe vertices, before
the partition classes are split sets. The key insight is that if we ever run out of
ripe vertices to pivot on, the class X with the largest non-marker degree sum is
a split set. This is because every other partition class Y has at most the non-
marker degree sum that X has, so Y has at most half the non-marker degree
sum as the most recent partition class that contained both X and Y . Y has
become ripe at some point since it was separated from X , and since it is not
ripe, all of its vertices have been used as pivots since that time. All members
of Y are finished outsiders of X . Applying this to all partition classes Y �= X ,
we see that all members of V \ X are finished outsiders of X . By the pivot
invariant, X is a split set. We then pivot once on a connector from this X (it
doesn’t matter which one, since they all have the same neighbors outside of X),
and then remove X from consideration. This pivot may split some more classes,
generating more ripe vertices, or else we may repeat the argument and remove
another class X from consideration. Despite the new constraint, the procedure
for finding S(a, b, G) halts when we have found and removed every member of
{{a}, {b}} ∪ S(a, b, G), and we get S(a, b, G) in O(m log n) time.

It remains to show that the cost of calls to S(a, b, G) over all recursive calls
of the split decomposition algorithm is also O(m log n) time. Other than A and
B, each recursive call is a member D of S(a, b, G). In the recursive call on D,
when we choose a new a and b, this creates two ripe vertices that can be used
to re-start the partitioning on D without violating the constraint that we only
pivot on ripe vertices. Unfortunately, A and B are each a union of members of
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S(a, b, G), each of which may have smaller non-marker degree sum than A or B.
However, as depicted in Figure 5, the members of S(a, b, G) that are adjacent to
vertices on the subpath from a to u are just S(a, u, GA), where GA is quotient
passed to the recursive call on A. We avoid overcharging vertices in A for calls
to S() by passing in the members of S(a, u, GA), which are computed as a side-
effect of finding S(a, b, G), instead of making a call to find S(a, u, GA). This
avoids the need to re-charge vertices in A before they become ripe again.

The cost of calls to L(a, c, b, G) and L(b, c, a, G). In a call L(a, c, b, G), we
keep only one of the partition classes that we would during a call to S(a, c, G),
namely, the one that contains b. We make use of a pivot p exactly once, when
it is no longer in the partition class S that contains b. We ignore neighbors of p
that are not in S, obtaining the founding sets of S, as before, in O(deg(p)) time.
If S has only one founding set, we do no work on it, as before. Otherwise, since
S is the only class of interest, we make use of a vertex to stake claims only if it
is in S. If the subclass S′ that contains b has more than half of the non-marker
degree sum of S, then we charge the cost of the inward pivot to vertices in a
different subclass. If it is less than half of the non-marker degree sum of S, we
could charge the cost to the degree sum of S′, but since the degree sum of the
other subclasses exceeds this, we can still charge it to vertices in other subclasses.
The invariant this maintains is that at no point have we charged any costs to
the degrees of vertices in the class that contains b. This gives the following:

Lemma 2. If B is the set returned by L(a, c, b, G), the cost of the call to
L(a, c, b, G) is the degree sum of V \B.

When it is time to call L(a, c, b, G) and L(b, c, a, G), we already know S(a, b, G).
If some element D of S(a, b, G) has non-marker degree sum larger than that half
that of G, we replace D with a marker before the calls to avoid charging elements
internal to D. By the homomorphic rule and the fact that the sets returned by
L(a, c, b, G) and L(b, c, a, G) are unions of sets in {{a}, {b}} ∪ S(a, b, G), this
does not affect the result of the calls. Touching the marker for D can be charged
to the recursive call on D, and since there are O(n) recursive calls overall, this
contributes O(n) = O(m) to the total running time. The edges incident to
the marker can be found by looking elements of D in all adjacency lists of
vertices outside of G, and we are allowed O(1) charges for each such adjacency-
list element, since it is not in D.

If there is no such D, it may be that A or B, say, B has more than half the
non-marker degree sum of G. If we knew this in advance, we could avoid charging
to elements internal to B by running L(a, c, b, G) to find B first, charging this
to elements in V \B. By Lemma 2, we could then replace B with a marker b’ to
create a quotient graph G′, and since A is disjoint from B, a call to L(b′, c, a, G′)
returns the same result as L(b, c, a, G).

Unfortunately, we don’t know in advance which of A and B might turn out
to have more than half the degree sum of G. We therefore we run the calls
L(a, c, b, G) and L(b, c, a, G) in parallel, keeping the degree sum of vertices used
as pivots and claim-stakers equal. If L(a, c, b, G) halts first, we have touched
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all edges incident to vertices in V \ B during the call, so we can subtract their
non-marker degree sum from that of G to obtain that of B. If this is more than
half the degree sum of G, then since both calls have spent the same amount of
time, we can charge the cost of both calls so far to elements of V \ B, even if
the call to L(b, c, a, G) has touched elements internal to B. We then replace B
with a marker, just as we did with D, above, before finishing out the call to
L(b, c, a, G). This prevents elements internal to B from getting charged.

Summarizing, every time a vertex or an element of its adjacency list is charged
during a call to L(), the non-marker degree sum of the partition class that
contains the vertex is at most half what it the previous time these elements were
charged, and the charges pay for all costs of running the algorithm. The sum of
these charges is O(m log m) = O(m log n).

3 What Goes Wrong If G Is Not Strongly-Connected

One question that Cunningham did not dwell on is what goes wrong when a
digraph is not strongly-connected. Using the existence of Cunningham’s decom-
position tree, we have shown that the maximal split sets that do not contain a
or b is a partition of V \ {a, b}. Figure 6 shows that this is not the case when
G is not strongly-connected, and therefore, the representation with the unique
decomposition tree as we have described it does not exist. Cunningham’s proof
that it does exist makes use of the fact that, in a strongly-connected graph, for
every nonempty proper subset S of V , there is an edge from an element of S to
an element of V \ S, and this is not true for arbitrary directed graphs.

b

e

a

dc

Fig. 6. A digraph that is not strongly-connected, and its maximal split sets that do
not contain a or b

Nevertheless, a split is well-defined on an arbitrary directed graph, and the
question of whether an arbitrary directed graph is prime is also well-defined.
Spinrad gives an O(n2) algorithm for testing whether a strongly-connected graph
is prime. As far as we know, there has been no work on the problem of deter-
mining whether an arbitrary directed graph is prime.
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7. Möhring, R.H.: Algorithmic aspects of the substitution decomposition in opti-
mization over relations, set systems and boolean functions. Annals of Operations
Research 4, 195–225 (1985)
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Andreas Brandstädt1, Martin C. Golumbic2, Van Bang Le1,
and Marina Lipshteyn2

1 Institut für Informatik, Universität Rostock, D-18051 Rostock, Germany
{ab,le}@informatik.uni-rostock.de

2 Caesarea Rothschild Institute and Department of Computer Science,
University of Haifa, Haifa, Israel

{golumbic,marinal}@cs.haifa.ac.il

Abstract. In this paper, we introduce the notion of path-bicolorability
that generalizes bipartite graphs in a natural way: For k ≥ 2, a graph
G = (V, E) is Pk-bicolorable if its vertex set V can be partitioned into
two subsets (i.e., colors) V1 and V2 such that for every induced Pk (i.e.,
path with exactly k − 1 edges and k vertices) in G, the two colors alter-
nate along the Pk, i.e., no two consecutive vertices of the Pk belong to
the same color Vi, i = 1, 2. Obviously, a graph is bipartite if and only
if is P2-bicolorable, every graph is Pk-bicolorable for some k and if G is
Pk-bicolorable then it is Pk+1-bicolorable. The notion of Pk-bicolorable
graphs is motivated by a similar notion of cycle-bicolorable graphs in-
troduced in connection with chordal probe graphs. Moreover, P3- and
P4-bicolorable graphs are closely related to various other concepts such
as 2-subcolorable graphs, P4-bipartite graphs and alternately orientable
graphs.

We give a structural characterization of P3-bicolorable graphs which
also implies linear time recognition of these graphs. Moreover, we give
a characterization of P4-bicolorable graphs in terms of forbidden sub-
graphs.

Keywords: P3-bicolorable graphs; P4-bicolorable graphs; bipartite
graphs; linear time recognition.

1 Introduction

Let k ≥ 2 be an integer. We call a graph G = (V, E) Pk-bicolorable if its vertex
set V can be partitioned into two disjoint subsets V1 and V2 (the color classes)
such that for every induced Pk (i.e., a path with exactly k − 1 edges and k
vertices) in G, no two consecutive vertices of the Pk belong to the same color
class. Obviously, the P2-bicolorable graphs are exactly the bipartite graphs. Let
Pk denote the class of all Pk-bicolorable graphs. Then Pk ⊂ Pk+1.

This notion is motivated by various other concepts which were previously
studied.

M. Lipshteyn et al. (Eds.): Golumbic Festschrift, LNCS 5420, pp. 172–182, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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1. In connection with chordal probe graphs, first studied in [13] and [23], Berry,
Golumbic and Lipshteyn [3] define the following class of graphs: A graph
G = (V, E) is cycle-bicolorable if its vertex set V can be partitioned into
two subsets V1 and V2 (the color classes) such that for every chordless cycle
C in G, no two consecutive vertices in C belong to the same color class,
i.e., the two colors alternate in each chordless cycle of G. Bipartite graphs
and chordal graphs as well as chordal probe graphs are cycle-bicolorable,
and cycle-bicolorable graphs are odd-hole-free and antihole-free [13,23] from
which it follows by the famous Strong Perfect Graph Theorem [8] (i.e., a
graph is perfect if and only if it contains no odd hole and no odd antihole)
that cycle-bicolorable graphs are perfect. Berry, Golumbic and Lipshteyn [3]
characterized cycle-bicolorable graphs and gave a polynomial time recogni-
tion algorithm for the class.

2. Hoàng [15] defined two related notions: A graph G = (V, E) is alternately
orientable if the edges of G can be oriented in such a way that in every chord-
less cycle of G, the orientations of two consecutive edges ab and bc alternate,
i.e., if ab is directed a→ b then bc is directed c→ b. A graph G = (V, E) is
alternately colorable if the edges of G can be colored by two colors in such
a way that in every chordless cycle of G, the colors of consecutive edges al-
ternate. Hoàng [15] showed that both, alternately orientable and alternately
colorable graphs, are classes of perfect graphs by using the important fact
that in a minimal imperfect graph, every P3 extends into a chordless cycle
(which is shown in [15]).

It is easy to see that cycle-bicolorable graphs are alternately orientable (if the
two colors are red and green, orient every edge from red to green) but not vice
versa. This gives a proof of perfection of cycle-bicolorable graphs without using
the Strong Perfect Graph Theorem.

It is clear that every P3-bicolorable graph is cycle-bicolorable but not vice
versa as the example of the bull shows (see Figure 1).

Other papers related to P3-bicolorable graphs are [1,7,11]: A graph G = (V, E)
is 2-subcolorable if V admits a partition into disjoint subsets V1 and V2 such that
every P3 in G contains vertices from both V1 and V2. Clearly, P3-bicolorable
graphs are 2-subcolorable but not vice versa. In [7,11], among others, it is shown
that recognizing 2-subcolorable graphs is NP-complete, even for restricted graph
classes.

A paper related to P4-bicolorable graphs is [16]: A graph G = (V, E) is P4-
bipartite if V admits a partition into disjoint subsets V1 and V1 such that every
P4 in G contains vertices from both V1 and V2. Clearly, P4-bicolorable graphs
are P4-bipartite graphs but not vice versa. In [16], it was shown that recognizing
P4-bipartite graphs is NP-complete. As we will see (cf. Proposition 1), recogniz-
ing P4-bicolorable graphs is solvable in polynomial time. While no non-trivial
characterization of P4-bipartite graphs is known, we are able to give a charac-
terization of P4-bicolorable graphs in terms of forbidden induced subgraphs.
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Other well-investigated graph classes related to P4-bicolorable graphs are
cographs (i.e., P4-free graphs) [9,10], P4-reducible graphs [18,19] and P4-sparse
graphs [14,20], to mention just a few of the many papers dealing with general-
izations of cographs (see [6] for further examples).

Our main results are structural characterizations of P3- as well as of P4-
bicolorable graphs. Due to space limitations, the longest and most complicated
proofs are omitted.

2 Basics and Terminology

Throughout this paper, let G = (V, E) be a finite undirected graph without
self-loops and multiple edges with vertex set V and edge set E, and let |V | = n,
|E| = m. For a vertex v ∈ V , let N(v) = {u | uv ∈ E} denote the (open)
neighborhood of v in G, and let N [v] = {v} ∪ {u | uv ∈ E} denote the closed
neighborhood of v in G. We also write x ∼ y for xy ∈ E and x �∼ y for xy �∈
E. A clique is a set of vertices which are mutually adjacent. A stable set is a
set of vertices which are mutually nonadjacent. For subset X of vertices, write
N(X) = ∪x∈XN(x)−X . As usual, the complement graph G of G = (V, E) is the
graph with vertex set V and for x �= y, xy is an edge in G if and only if xy �∈ E.
Sometimes we also denote G by co-G.

For U ⊆ V , let G[U ] denote the subgraph of G induced by U . Throughout
this paper, all subgraphs are understood to be induced subgraphs. Let F denote
a set of graphs. A graph G is F-free if none of its induced subgraphs is in F .

For two disjoint sets X and Y of vertices in a graph, we write X 1©Y (X 0©Y )
for the fact that every vertex in X is adjacent (nonadjacent) to every vertex
in Y .

For k ≥ 1, let Pk denote a chordless path with k vertices and k − 1 edges,
and for k ≥ 3, let Ck denote a chordless cycle with k vertices and k edges. A
hole is a Ck with k ≥ 5. An odd hole is a C2k+1 with k ≥ 2. An antihole is the
complement Ck for k ≥ 5. An odd antihole is the complement of an odd hole.
A graph is chordal if it contains no induced Ck, k ≥ 4. G = (V, E) is bipartite
if there is a partition V = X ∪ Y with stable sets X and Y . A bipartite graph
G = (X, Y, E) is a complete bipartite graph if X 1©Y .

Two vertices x, y ∈ V are true twins if they have the same closed neighbor-
hood, i.e., N [x] = N [y]. The true twin operation adds a new vertex y to graph
G which is a true twin to an already existing vertex x in G.

A vertex subset U ⊆ V is a module in G if for all v ∈ V \U , either v is adjacent
to all vertices of U or v is adjacent to none of them. We note that the modules
of G are indentical to the modules of G. A module U is nontrivial if U �= V and
|U | > 1. A homogeneous set is a nontrivial module. A graph G is prime if all its
modules are trivial. A clique module in G is a module which induces a clique in
G. Obviously, true twins are a clique module.

It is well known (see e.g. [6]) that in a connected and co-connected graph
G, the maximal homogeneous sets are pairwise disjoint, and if G∗ denotes the
result of contracting each maximal homogeneous set to a corresponding single
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vertex (the so-called characteristic graph of G) then G∗ is prime. The modular
decomposition of a graph is based upon this property; see e.g. [24].

A result of Hoàng and Reed [17, Claim 3.5], describes how in a prime graph,
a C4 extends to a larger subgraph; let A be the graph consisting of six vertices
v1, . . . , v6 such that vertices vi, i ∈ {1, 2, 3, 4} induce a C4 with edges vivi+1

(index arithmetic modulo 4), and v5 (v6, respectively) is only adjacent to v1 (v4,
respectively). The domino is the graph with the same six vertices as A where
additionally to A, the pair v5v6 is an edge. The graph called house (see Figure 1)
is the complement of P5.

Lemma 1 ([17]). If a prime graph contains an induced C4 then it contains an
induced house, A or domino.

In its complement version, Lemma 1 says that if a prime graph contains 2K2

(i.e., C4) then it contains P5 or A or co-domino.
Other small graphs which play an important role in this paper are shown in

Figure 2 where the house is called G1; the graph G2 is also called net, and its
complement G3 is also called 3-sun or S3. Note that G6 = A, G4 = G7 and
G12 = G13.

Let k ≥ 2 be a fixed integer. For a graph G = (V, E), the reduced graph
rk(G) of G is obtained from G by removing all edges in G that do not belong
to an induced Pk in G. The 2-cnf formula Fk(G) associated to G is defined as
follows: The boolean variables are the vertices of G, and for each induced Pk

x1x2 . . . xk−1xk of G, (xi ∨ xi+1) and (xi ∨ xi+1), 1 ≤ i ≤ k − 1, are 2k − 2
clauses, the Pk-clauses for that Pk. The formula Fk(G) is then the conjunction
of all Pk-clauses for all Pk in G and of all one-literal clauses (v) for each vertex
v that is not contained in any induced Pk in G.

Proposition 1. Let k ≥ 2 be an integer. The following statements are equivalent
for any graph G.

(i) G is Pk-bicolorable;
(ii) rk(G) is bipartite;
(iii) Fk(G) is satisfiable.

Proof. (i)⇒ (ii), (iii): Let G = (V, E) be Pk-bicolorable, and let V = V1 ∪ V2 be
a Pk-bicoloring of G. Then, first, all edges of G connecting two vertices in V1 or
two vertices in V2 are not contained in any induced Pk in G, hence V1 and V2 are
stable sets in rk(G), and (ii) holds. Next, assign all x ∈ V1 to true and all y ∈ V2

to false. Clearly, Fk(G) is satisfied by this truth assignment, and (iii) holds.
(ii) ⇒ (i): Let V = V1 ∪ V2 be a bipartition of V into disjoint subsets V1 and

V2 that are stable sets in rk(G). Since every induced Pk in G is also an induced
Pk in rk(G), each edge of any Pk in G must connect a vertex in V1 and a vertex
in V2, i.e., G is Pk-bicolorable.

(iii)⇒ (i): Let Fk(G) be satisfied by a truth assignment, and let V1 consist of
all true vertices and V2 consist of all false vertices. Then, by definition of Fk(G),
every edge of any induced Pk in G must connect a vertex in V1 and a vertex in
V2, i.e., G is Pk-bicolorable. ��
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Corollary 1. For every fixed k ≥ 2, Pk-bicolorable graphs can be recognized in
polynomial time.

Indeed, if tk is the time needed to listing all Pk in G, t0 := O(1), then Propo-
sition 1 gives a recognition algorithm for testing if G is Pk-bicolorable in time
O(tk−2 ·m) where m is the number of edges of G.

3 P3-Bicolorable Graphs

The following observation is easy to see.

Observation 1. Odd holes and the house, bull, dart, gem and W4 (see Figure
1) are not P3-bicolorable.

house bull gem dart W4

Fig. 1. Minimal odd-hole-free non-P3-bicolorable graphs

Theorem 1. For all graphs G, the following statements are equivalent:

(i) G is P3-bicolorable;
(ii) G is (odd-hole, house, bull, dart, gem, W4)-free;
(iii) Every induced subgraph of G is bipartite or has true twins;
(iv) G results from a bipartite graph B by substituting cliques into the vertices

of B.

Proof. (i) ⇒ (ii): By Observation 1.
(ii)⇒ (iii): It suffices to prove that G itself is bipartite or has true twins since

all induced subgraphs of G also satisfy (ii). Suppose that G is not bipartite.
Then, since G is odd-hole-free, G has a maximal clique Q with at least three
vertices. If Q has no neighbor in G − Q then clearly, every two vertices in Q
form true twins. Now, let v ∈ G − Q be adjacent to a vertex q1 ∈ Q. As Q is
a maximal clique, there is a vertex q2 ∈ Q such that v is nonadjacent to q2.
Consider a vertex q3 ∈ Q \ {q1, q2}.

If v is nonadjacent to q3 then q2, q3 form true twins since otherwise, if a vertex
u distinguishes q2 and q3, say u is adjacent to q2 and nonadjacent to q3 then
u, v, q1, q2, q3 would induce a bull or dart or gem or house.

If v is adjacent to q3 then q1, q3 form true twins since otherwise, if a vertex
u distinguishes q1 and q3, say u is adjacent to q1 and nonadjacent to q3 then
u, v, q1, q2, q3 would induce a dart or gem or W4.

(iii)⇒ (iv): If G is not bipartite, let x, y be true twins in G. Then (iv) follows
easily by the induction hypothesis for G− y.

(iv) ⇒ (i) is obvious. ��
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Theorem 1 implies further structural properties of P3-bicolorable graphs that
lead to a linear time recognition algorithm as we will explain below. A universal
vertex is a vertex adjacent to all other vertices.

Corollary 2. Let G be a connected graph with disconnected complement G.
Then the following statements are equivalent:

(i) G is P3-bicolorable;
(ii) G is (P4, dart, W4)-free;
(iii) G results from a complete bipartite graph by substituting cliques into the

vertices;
(iv) G has exactly two co-connected components each of which induces a P3-free

subgraph in G, or the set C of all universal vertices in G is a non-empty
clique and G− C is P3-free.

Proof. (i) ⇒ (ii): By noting that if G has a P4, then, as G is disconnected, G
has a gem; thus (ii) follows by Theorem 1 (ii).

(ii)⇒ (iii): Let G satisfy (ii). Then G clearly satisfies (iii) in Theorem 1, hence
by Theorem 1 (iv), G is obtained from a bipartite graph B by substituting cliques
into vertices of B. As G is connected and P4-free, B is connected and P4-free.
Thus, (iii) follows by noting that connected P4-free bipartite graphs are exactly
the complete bipartite graphs.

(iii)⇒ (iv): Let G satisfy (iii) with a complete bipartite graph B = (X, Y, E).
Now, if |X | ≥ 2 and |Y | ≥ 2, then clearly the first case in condition (iv) occurs,
and if |X | = 1 or |Y | = 1, the second case.

(iv) ⇒ (i) is obvious. ��
Corollary 3. Let G be a connected graph with connected complement G. Then
G is P3-bicolorable if and only if its characteristic graph G∗ is bipartite and each
homogeneous set in G induces a P3-free subgraph.

Proof. (⇒): Let G = (V, E) be P3-bicolorable. First, as G∗ is (isomorphic to)
an induced subgraph of G, G∗ is also P3-bicolorable, hence, by Theorem 1 (iii),
G∗ is bipartite. Next, consider a homogeneous set M in G, and let R = V −
(N(M) ∪M). As G is connected, N(M) �= ∅, and as G is connected, R �= ∅.
Moreover, N(R) ∩ N(M) �= ∅. Thus, any P3 in G[M ] together with a vertex
u ∈ N(M) and a vertex v ∈ R adjacent to u would induce a dart. Hence G[M ]
must be P3-free.

(⇐): This direction is clear by noting that G is obtained from G∗ by substi-
tuting P3-free graphs into vertices of G∗. ��
Theorem 2. P3-bicolorable graphs can be recognized in linear time.

Proof. By Corollaries 2 and 3, any linear time algorithm for modular decom-
position (see e.g. [24]) gives a linear time algorithm for recognizing whether a
given graph G is P3-bicolorable: If G is disconnected then decompose G into its
connected components. If G is disconnected then check whether G satisfies (iv)
in Corollary 2, and finally, if G is connected and co-connected then check the
conditions of Corollary 3. Clearly, all this can be done in linear time. ��
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4 3-Leaf Powers and P3-Bicolorable Graphs

A graph G = (V, E) is a 3-leaf power (see [25]) if there exists a tree T such that
(i) all leaves of T are exactly the vertices of G and (ii) two distinct vertices in G
are adjacent if and only if they are at distance at most three in T . In [5], among
others, the following is shown:

Theorem 3 ([5]). A connected graph is a 3-leaf power if and only if it is ob-
tained from a tree T by substituting the vertices of T by cliques.

From Theorems 1 and 3, we conclude

Corollary 4. For any connected chordal graph G, the following statements are
equivalent:

(i) G is P3-bicolorable;
(ii) G is (bull, dart, gem)-free;
(iii) G is a 3-leaf power;
(iv) G is the result of substituting cliques into the vertices of a suitable tree.

A linear-time recognition algorithm for 3-leaf powers is given in [5] (that improves
the time bound O(n3) given in [25]). Corollary 4 means that the linear-time
recognition algorithm for P3-bicolorable graphs in Theorem 2 provides another
way to recognize 3-leaf powers in linear time.

5 P4-Bicolorable Graphs

The main result of this section, namely Theorem 4, gives a characterization of
P4-bicolorable graphs in terms of forbidden induced subgraphs. The following
observation is easy to verify.

Observation 2. Odd holes and the graphs G1, . . . , G13 depicted in Figure 2 are
not P4-bicolorable.

G2G1 G5 G6 G7

G8 G9 G10

G3 G4

G13G12G11

Fig. 2. Minimal non-P4-bicolorable graphs G1, . . . , G13
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It turns out that the following notion of P4-connectedness introduced in [21] is
helpful in studying P4-bicolorable graphs. A graph G = (V, E) is P4-connected,
if for every partition of V into nonempty disjoint sets V1, V2 there exists a P4

containing vertices from both V1 and V2, a crossing P4. The maximal induced
subgraphs in G which are P4-connected are the P4-connected components of G.

Observation 3. Let G be a P4-connected (G12, G13)-free graph. Then every ho-
mogeneous set in G induces a cograph.

Proof. Let M be a homogeneous set in G = (V, E). As G is P4-connected, there
exists an induced P4, say P , crossing M and V −M . Assuming Q is an induced
P4 in G[M ], Q ∪ (P −M) induces a G12 or a G13. Thus, G[M ] is P4-free. ��
The subsequent Observation 4 follows from the definition of P4-connectedness
and from Observation 3; note that if G is P4-connected then G and G are con-
nected, and recall that G∗ is obtained from G by contracting each maximal
homogeneous set to a single vertex.

Observation 4

(i) G is P4-bicolorable if and only if each P4-connected component of G is P4-
bicolorable.

(ii) Let G be a P4-connected graph. Then G is P4-bicolorable if and only if each
homogeneous set in G induces a cograph and G∗ is P4-bicolorable.

Due to space limitations, the proof of the main result of this section, namely of
Theorem 4, is omitted. It makes use of the following Lemmas 2 and 3.

A co-pan is a graph with five vertices, say a, b, c, d, e and edges ab, bc, cd, ce, de;
the edge de is called the cross edge of the co-pan. Similarly, a co-chair is a graph
with five vertices, say a, b, c, d, e and edges ab, bc, bd, cd, ce, de; the edge cd is
called the cross edge of the co-chair.

Lemma 2. Let G be an odd-hole-free and (G1, . . . , G13)-free graph. Then no
cross edge of a co-pan in G is contained in a P4 of G.

Lemma 3. Let G be an odd-hole-free and (G1, . . . , G13)-free graph. Then no
cross edge of a co-chair in G is contained in a P4 of G.

Theorem 4. A graph is P4-bicolorable if and only if it is odd-hole-free and
(G1, . . . , G13)-free.

6 P4-Bicolorable Graphs and Related Graph Classes

We already mentioned that there are other well-investigated graph classes related
to P4-bicolorable graphs: Obviously, every cograph (i.e., P4-free graph) [9,10] is
P4-bicolorable. P4-sparse graphs [14,20] are those graphs where each collection of
five vertices induces at most one P4. By definition, G is P4-sparse if and only if
it is (C5, P5, P5,chair, co-chair,pan,co-pan)-free, and a result of [14] characterizes
the prime P4-sparse graphs as the spiders. G is P4-reducible [18,19] if G is P4-
sparse and (S3, S3)-free. Then Theorem 4 implies:
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Corollary 5

(i) P4-reducible graphs are P4-bicolorable.
(ii) A P4-sparse graph is P4-bicolorable if and only if it is a P4-reducible graph.

Another interesting result in connection with P4-bicolorable graphs is a charac-
terization of those graphs which are interval graphs and whose complement is
an interval graph. It is well known [12] that a graph is a split graph if and only
if it is (2K2, C4, C5)-free.

Theorem 5 ([2]). A graph and its complement is an interval graph if and only
if it is a (G2, G3, G4, G7)-free split graph.

Recall that G3 = G2, G7 = G4 and G13 = G12. Moreover, G6 = A.
By Theorem 4 we have:

Corollary 6. G and G are P4-bicolorable if and only if G is (C5, P5, P5, G2, G2,
G4, G4, A, A, G12, G12)-free.

Theorem 6. For a graph G, G and G are P4-bicolorable if and only if for each
of its P4-conncected components H of G,

(i) the homogeneous sets of H induce cographs, and
(ii) the characteristic graph H∗ of H is an interval and co-interval graph.

Proof. ”=⇒”: By Observation 3, the homogeneous sets of P4-connected compo-
nents H induce cographs. H∗ is prime and thus, by Lemma 1, contains no 2K2

and no C4, i.e., it is a split graph which moreover is (G2, G2, G4, G4)-free. Thus,
by Theorem 5, H∗ is an interval and co-interval graph.

”⇐=”: By Observation 4 (i), G is P4-bicolorable if and only if each P4-
connected component of G is P4-bicolorable. Thus it suffices to show that each
P4-conncected component H is P4-bicolorable. If the characteristic graph H∗ of
H is an interval and co-interval graph then by Theorem 5 and by Theorem 4,
H∗ is P4-bicolorable. Moreover, by substituting cographs as homogeneous sets,
this property is maintained, i.e., a P4-bicoloring of H∗ remains a P4-bicoloring
of H . ��
Another interesting class was studied in [26]:

Theorem 7 ([26]). A graph is superbrittle if and only if it is (C5, P5, P5, A, A,
G12, G12)-free.

Theorem 8 ([4]). A graph G is superbrittle if and only if for each of its P4-
conncected components H of G,

(i) the homogeneous sets of H induce cographs, and
(ii) the characteristic graph H∗ of H is a split graph.

Corollary 7. If G and its complement G are P4-bicolorable then G is superbrittle.
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7 Conclusion

In this extended abstract, we defined the classes of Pk-bicolorable graphs for
k ≥ 2. The P2-bicolorable graphs are precisely the bipartite graphs, and we have
characterized the classes of P3-bicolorable and P4-bicolorable graphs in terms
of forbidden induced subgraphs. We have also shown that P3-bicolorable graphs
can be recognized in linear time. Note that Proposition 1 gives a recognition
algorithm for P4-bicolorable graphs in O(m2) time. We pose the question whether
the P4-bicolorable graphs can be recognized in linear time.

Obviously, for every fixed k the recognition of Pk-bicolorable graphs can be
done in polynomial time. If k is part of the input, this is no longer clear: T.
Kaiser [22], based on an idea of J. Kratochv́ıl, has shown that a given graph G
with n vertices and a specified vertex v has a Hamiltonian path starting at v if
and only if a simple derived graph G′ is not P2n+2-bicolorable.
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5. Brandstädt, A., Le, V.B.: Structure and linear time recognition of 3-leaf powers.
Information Processing Letters 98, 133–138 (2006)

6. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM Mono-
graphs on Discrete Math. Appl., vol. 3. SIAM, Philadelphia (1999)

7. Broersma, H., Fomin, F.V., Nešetřil, J., Woeginger, G.: More about subcolorings.
Computing 69, 187–203 (2002)

8. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect
graph theorem. Annals of Mathematics 64, 51–229 (2006)

9. Corneil, D.G., Lerchs, H., Stewart-Burlingham, L.: Complement reducible graphs.
Discrete Appl. Math. 3, 163–174 (1981)

10. Corneil, D.G., Perl, Y., Stewart, L.K.: A linear recognition algorithm for cographs.
SIAM J. Computing 14, 926–934 (1985)

11. Fiala, J., Jansen, K., Le, V.B., Seidel, E.: Graph subcolorings: Complexity and
Algorithms. SIAM J. Discrete Math. 16, 635–650 (2003)
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14. Hoàng, C.T.: Perfect Graphs, Ph.D. Thesis, School of Computer Science, McGill
University Montreal (1985)
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Abstract. A polyhedron P has the integer decomposition property, if
every integer vector in kP is the sum of k integer vectors in P . We ex-
plain that the projections of polyhedra defined by totally unimodular
constraint matrices have the integer decomposition property, in order to
deduce the same property for coflow polyhedra defined by Cameron and
Edmonds. We then apply this result to the convex hull of particular stable
sets in graphs. Therebye we prove a generalization of Greene and Kleit-
man’s well-known theorem on posets to arbitrary digraphs which implies
recent and classical purely graph theoretical results on cycle covers, is
closely related to conjectures of Berge and Linial on path partitions, and
implies these for some particular values of the parameters.

1 Introduction

Partitioning the vertex-set of a graph by a minimum number of paths is one of
the most natural problems concerning graphs. Minimizing the number of paths
in such a partition contains the Hamiltonian Path problems both in the directed
and undirected case.

For undirected graphs some variants involve matching theory some others the
connectivity of graphs. Some results concern only particular classes of graphs.
The only general result about minimum partitions of the vertex-set into paths
in undirected graphs concerns intersection graphs of paths in a tree, by Monma
and Wei [27], a class later generalized in [19], [20].

For digraphs, a classical theorem of Gallai and Milgram relates the problem
to the stability number of a graph. Path partitions in digraphs have been treated
both with elegant graph theory, network flows, and polyhedral combinatorics,
but have not yet revealed all of their secrets:

Conjectures of Berge [4] and Linial [26] about the relation of maximum sets
of vertices inducing a k-chromatic subgraph and particular path partitions resist
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through the decades. Hartman’s excellent survey [22] witnesses of the variety of
the methods that have been tried out with a lot of partial results but no break-
through as far as the general conjectures are concerned. Some other conjectures
are less well-known or have not yet been stated.

Led by analogies, we ask and answer in this talk more questions, and point
at some connections.

Section 2 states analogous pairs of theorems on path partitions and cycle
covers.

Section 3 presents the results concerning cycle covers deducing all from a gen-
eral theorem proved with the help of the property of a corresponding polyhedron:
the integer decomposition property.

Section 4 presents some results on path partitions, and some connections of
these to cycle covers.

Notation and Terminology: Let G = (V, E) a digraph. A path of a digraph
is an ordered set P = (v1, . . . , v|P |) of vertices, all different, so that vivi+1 ∈ E
(i = 1, . . . , |P | − 1). We will denote ini(P ) := v1 the initial (first) vertex of
a path and ter(P ) := v|P | the terminal (last) vertex of it. For us a path will
be a vertex-set, that is, with an abuse of notation we will apply set-operations
involving a path P , and in this case P is just the set of its vertices. If the first
and last points are equal it is called a cycle which also included one element
sets (even if there is no incident loop). A subpartition is just a family of disjoint
subsets of V .

For a family of sets P , R(P) := V \ ∪P . This complementation concerns the
complement with respect to the graph in which it is defined. If we delete some
vertices and the new vertex set is V ′, for a subpartition P ′ of V ′, R(P ′) is defined
as R(P ′) := V ′ \∪P ′. We apply this notation only when the vertex-set to which
we apply it is clear. A subpartition of paths is a path partition if and only if
R(P) = ∅.

If we do not say otherwise, G = (V, E) is a digraph, n := |V | and m := |E|.
A stable set is a subset of vertices that does not induce any edge. The maxi-

mum size of a stable set of a graph G is denoted by α = α(G). The maximum
size of a k-chromatic induced subgraph (equivalently, the union of k stable sets)
is denoted by αk; α1 = α. The chromatic number, denoted by χ = χ(G), is the
minimum of k such that αk = n. The minimum size of a partition into paths
is denoted by π = π(G), and the minimum cover by cycles is ζ = ζ(G). By
convention {v} is also a cycle for all v ∈ V (and it is of course a path too). So
π, ζ ≤ n. The number of vertices of the longest path is denoted by λ = λ(G).

Two families of sets are called orthogonal if taking any set of each, the inter-
section is always 1. A family is said to cover a set, if the union of its members
contains the set.

The subgraph induced by a set X ⊆ V will be denoted by G(X), just replaced
by X to avoid double parentheses, for instance α(X) := α(G(X));“strongly
connected” will sometimes be replaced by strong.



Path Partitions, Cycle Covers and Integer Decomposition 185

2 Pairs of Assertions

2.1 Tournaments (α = 1)

A tournament is an oriented complete graph.

Theorem 1 (Rédei [28]). Let G be a tournament. Then it has a Hamiltonian
Path.

Theorem 2 (Camion [12]). Let G be a strong tournament. Then it has a Hamil-
tonian Cycle.

We state “loose” and “tight” versions of some assertions. The former refers to
inequalities that generalize the nontrivial inequalities of minmax theorems (of
Dilworth’s, of Greene-Kleitman’s or of some more recent ones), and the latter
generalize “complementary slackness” (the sstructure implied by the equality in
these inequalities).

2.2 Stability (k = 1, loose)

Theorem 3 (Gallai, Milgram [17]). Let G be an arbitrary digraph. Then α ≥ π.

Theorem 4 (Bessy, Thomassé [7], Gallai’s conjecture [16]). Let G be strong .
Then α ≥ ζ.

Specializing these to acyclic transitive digraphs both imply the nontrivial part of
Dilworth’s theorem stating equality in the former theorem for acyclic transitive
digraphs (posets), see for instance [33]. To deduce it from the latter theorem,
we first have to make an acyclic transitive digraph strongly connected. This can
be done for instance by adding a “supersource” and joining it to all the vertices
of 0 indegree (sources), adding a “supersink” and joining all the vertices of 0
outdegree (sinks) to it, and adding an arc from the supersink to the supersource.
(Just one vertex joined to and from all vertices is also a possible choice.)

2.3 Stability (k = 1, tight)

Any proof of the Gallai-Milgram theorem obviously provides the following:

Theorem 5. Let G be an arbitrary digraph. Then there exists a path partition
P of G and a stable set orthogonal to P.

Since Theorem 4 is the weakening of a min-max theorem, the condition of equal-
ity (“complementary slackness”) easily implies:

Theorem 6. Let G be a strong digraph. Then there exists a cycle cover C of G
and a stable set S orthogonal to C, where each element of S is covered by exactly
one member of C.
Of course these statements can also be specialized to Dilworth’s theorem, with
the same reduction as before.
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2.4 Coloring (k = λ, loose)

Theorem 7 (Gallai, Roy [18], [29]). Let G be an arbitrary digraph. Then there
exists a path of size at least χ.

Theorem 8 (Bondy [8]). Let G be a strong digraph. Then there exists a cycle
of size at least χ.

2.5 Coloring (k = λ, tight)

Any proof of the Gallai-Roy theorem obviously provides the following:

Theorem 9. [8] Let G be an arbitrary digraph. Then for any longest path there
exists a colouring whose color classes are orthogonal to the path.

Bondy’s theorem does correspond to an LP duality theorem, but the vertices are
not stable sets and cycles ; the corresponding polyhedron does have fractional
vertices [31], and it is not evident how it would imply an analogous theorem for
the longest cycle in a strongly connected graph. Nevertheless, this tight version
of Bondy’s theorem is true, and this is actually what Bondy proved:

Theorem 10. [8] Let G be a strong digraph. Then there exists a cycle and a
colouring so that the color classes are orthogonal to the cycle.

Here is a somewhat different structural sharpening of the Gallai-Roy theorem:

Conjecture 1 (Laborde, Payan, Xuong [25]). Let G be an arbitrary digraph.
Then there exists a stable set in G that meets every longest path.

Could this be true replacing “longest path” by “longest cycle” in strongly con-
nected graphs ?

2.6 General (Loose)

Conjecture 2 (Linial [26]). Let G be a digraph. Then αk ≥ minX⊆V {|X | +
kπ(V \X)}.
Theorem 11 (Sebő [31]). Let G be a strong digraph. Then αk ≥ minX⊆V {|X |+
kζ(V \X)}.
Corollary 1 (Greene-Kleitman [21]). Let G be a transitive acyclic digraph.
Then αk = minX⊆V {|X |+ kζ(V \X)}.
Indeed, for transitive acyclic digraphs “ ≤ ” is easy, and to prove the nontrivial
inequality of the Greene-Kleitman theorem, the reduction of Subsection 2.2 to
strongly connected graphs works again. So the corollary indeed follows from
the preceding theorem. Note that the right hand side of the Greene-Kleitman
theorem or of Linial’s conjecture is usually written as min{∑P∈P min{|P |, k} :
P is a path partition}, and this sum is called the k-norm of P .
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2.7 General (Tight)

The following is a simple already unknown version of Berge’s conjecture. It im-
plies Linial’s conjecture. (The two conjectures have been stated independently.)

Conjecture 3 (Berge [4]). Let G be a digraph, and k ∈ IIN, k ≥ 1. Then there
exists X ⊆ V , a path partition P of V \X, and k disjoint stable sets orthogonal
to P whose union contains X.

We prove now the cycle cover version of this conjecture. Note that there are
several options here for replacing “there exists” by “for all”. Berge originally
stated for all X ⊆ V , and path partition P of V \ X minimizing |X | + k|P|.
We will call this strongest conjecture since it implies the above weaker assertion
which implies in turn Linial’s conjecture.

Theorem 12 (Sebő [31]). Let G be a strong digraph, and k ∈ IIN, k ≥ 1. Then
there exists X ⊆ V , a cycle cover C of V \X, and k disjoint stable sets covering
X, all orthogonal to C. Furthermore, each element of the stable sets is covered
by at most one member of C.
This last theorem easily implies all that has been previously stated about covers
in strongly connected graphs:

It shows k stable sets whose union U satisfies |U | = |X |+k|C| for some X ⊆ V
and cycle cover C of V \X . Theorem 11 follows since αk ≥ |U |. Theorem 12 and
Theorem 11 are central in our presentation. We show here how they can be
proved through the integer decomposition property of coflow polyhedra, and
how they can be useful.

Theorem 8 follows from Theorem 12 because choosing k to be the size of the
longest cycle, |X |+ k|C| ≥ |X |+ | ∪ C| ≥ n, so the union of the k disjoint stable
sets provided by Theorem 12 is at least n. So G can be colored with k colors.

The k = 1 special case of Theorem 12 is Theorem 6, itself implying Theorem 4.
Indeed, in this case the elements in X can be replaced by 1-element cycles.

Theorem 12 will, in turn, be proved in Section 3.3.

3 Cycle Covers

The ultimate goal of this section is to prove the second theorem of each subsec-
tion of Section 2. They have already been proved from Theorem 12, and here
we will prove this latter. There are some interesting tools on the way, and they
will lead us further: the integrality and integer decomposition property of coflow
polyhedra, and the coherent orders of Knuth, Bessy and Thomassé. For the no-
tations and basic notions from polyhedral combinatorics (including TDI, integer
decomposition, etc.) we refer in this extended abstract to [32], [33]. The talk will
be self-contained.
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3.1 Coflows and Integer Decomposition

We wish to introduce here a ready to use helpful treatment of node-capacitated
circulation problems. The idea is well-known: node-capacities can be reduced
to edge-capacities by splitting each vertex v into two copies, an in-copy vin

and an out-copy vout and adding the arc vinvout with the given vertex-capacities
(possibly lower and upper), see [32], [11]. It is less well-known that relevant cycle-
cover or cycle packing problems arise in this way and have useful properties, such
as box total dual integrality, primal integrality if the parameters are integers
[11], furthermore integer decomposition (below). This elegant tool defined by
Cameron and Edmonds is defined as follows:

The coflow system of inequalities Q(G, a, b, c), where G = (V, E) is a digraph,
a, b : V (G) → ZZ, c : E → ZZ is the following system in n := |V | variables xv

(v ∈ V ):

x(VC) ≤ c(EC) for every cycle C with vertex-set VC and edge-set EC ,

a ≤ x ≤ b.

The set of points x ∈ IRV satisfying the coflow inequalities Q(G, a, b, c) is
called the coflow polyhedron, and is denoted by Q(G, a, b, c). The coflow (primal)
problem P (G, a, b, c, w), where G, a, b, c are as before, and w : V (G)→ ZZ, is the
following:

max{w�x : x ∈ Q(G, a, b, c)}

D(G, a, b, c, w) will denote the dual linear program, and opt(G, a, b, c, w) the
common optimum of the primal and the dual (which can also be infinite).

In [31] the coflow approach is followed by applying the splitting of vertices
case by case, without stating any general theorem. (Coflows have been so far
absent from books and surveys - we hope to contribute to their inclusion.) Both
in [11] and [31], primal integrality is deduced from the TDI property (the above
Lemma) through Edmonds and Giles’ theorem. However, [11] observes that pri-
mal integrality can be directly deduced proving that the coflow polyhedron is
the projection of the dual of a circulation problem, and in [31] the dual of the
stated flow problem provides an integer primal solution to coflows.

We express all this in a slightly simpler way using Charbit’s matrix from [13],
which is smaller and simpler than the network matrices from [11] (or [31]) :

Given a digraph G = (V, E), n := |V |, m := |E|, let A denote the 2n × m
matrix whose first n rows consist of the usual incidence matrix of G (one +1
and one −1 per column, the rest is 0) and the second m rows the same, except
that the +1 are replaced by 0. It is easy to see that this matrix A is totally
unimodular (as a submatrix of a network matrix, or see [13] end of Section 3.2).

Lemma 1. The coflow polyhedron Q(G, a, b, c) can be written as

Q(G, a, b, c) = {(yn+1, . . . , y2n) : y ∈ IR2n, yA ≤ c}. (1)
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Proof. (see [13] proof of Theorem 3.3 Claim 2, but our context here is sim-
pler.) Indeed, (y1, . . . , yn) is a potential for the weight function ce −

∑{yn+i :
vertex i is the tail of edge e}. However, a potential exists if and only if there is

no negative cycle, that is, along every negative cycle the sum of the yn+i does
not exceed the sum of the ce on the same cycle. 	

Lemma 2 (Coflow Theorem [9],[11]). Any system of coflow inequalities Q(G, a,
b, c) is TDI.

Proof. First proof: For every w : V (G) → ZZ the dual problem D(G, a, b, c, w)
is a problem of covering vertices by cycles which is a flow problem with w as
lower capacities on the vertices. Second proof: The dual solutions are the same
as the primal solutions of the LP with TU coefficient matrix in the preceding
lemma. 	

Surprisingly, these two three-line proofs are sufficient for getting our general
graph theory results in a straightforward way.

Lemma 3 (Baum, Trotter [3]). If A is totally unimodular, {y : yA ≤ c} has the
integer decomposition property.

Proof. Indeed, suppose ȳA ≤ kc. We have to show an integer vector yk, ykA ≤ c
for which

(ȳ − yk)A ≤ (k − 1)c.

Then the statement follows by induction on k. We have to find a linear solution
to

ȳA− (k − 1)c ≤ ykA ≤ c,

where ȳ, A, k, c are fixed and the entries of yk are the variables. This system
of linear inequalities has a solution, since yk := (1/k)ȳ is a solution. Since A is
unimodular, then it also has an integer solution, and the claim is proved. 	

We mimic now the same proof once more for handling projections:

Lemma 4. If Q ⊆ IRm′
, Q = {y : yA ≤ c} where A is totally unimodular, and

m < m′, then
P := {(y1, . . . , ym) : y ∈ Q}

has the integer decomposition property.

Proof. Let x ∈ kP ∩ZZm, that is, x/k ∈ P . By definition there exists (xm+1, . . . ,
xm′ , so that (x/k, xm+1, . . . , xm′) ∈ Q. So So (x, kxm+1, ...kxm′) ∈ kQ. It is
sufficient to show that x′ := (kxm+1, ...kxm′) can be chosen to be integer, because
then by the integer decomposition property of Q:

(x, x′) = y1 + . . . + yk, yi ∈ Q, and yi is an integer vector,

and letting xi be the vector formed by the first m entries of yi, we get

x = x1 + . . . + xk, xi ∈ P ∩ ZZm (i = 1, . . . k).
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Now x′ is a feasible solution of the equation xB + x′A′ ≤ c, where B is the
matrix formed by the first n rows of A, and where A′ is the rest of A. Since A
is totally unimodular, A′ is also totally unimodular, so the equation

x′A′ ≤ kc− xB,

– where k, c, x, B are fixed, all integer, and x′ is variable –, also has an integer
solution x′ (it does have a feasible solution x′, A′ is totally unimodular, and the
right hand side is integer). 	

In [31] flows are applied in each special case separatly: c takes there only two
different values in all of these– 0 and k ∈ IIN, which makes the proofs and
algorithms simpler. The integer decomposition property of Q(G, a, b, c) is also
proved for a special case, and turns out to be crucial for proving Theorem 11
and 12.

Integer decomposition makes possible the inclusion of unions of vertices of 0−
1 coflow polyhedra, establishing that these also form coflow polyhedra, analogously
with a similar matroid property.

It is unfortunate that these special cases were proved one by one in [31],
[13], without knowing about coflows. Several colleagues advised a similar unified
treatment – Attila Bernáth made a very concrete suggestion. Then I learned
about coflows from Irith Hartman, but the nontrivial graph theoretic proof of
the integer decomposition property in particular cases – where the tree is hiding
the forest – persisted. I have realized Lemma 4 only recently, and that proving
this property for coflows in general provides a much simpler proof of Theorem 15
than the proof we followed in [31]:

Theorem 13 (Coflow ID). Coflow polyhedra have the integer decomposition
property.

Proof. By Lemma 3, coflow polyhedra are of the form of the condition of
Lemma 4, therefore, by this latter Lemma, they have the integer decomposi-
tion property. 	


3.2 Coherence

Graph theory courses characterize strongly connected graphs with the existence
of an “ear decomposition” [33, Theorem 6.9]. Knuth’s characterization is then
at hand, and provides considerably more information:

Theorem 14 (Knuth). Let G = (V, E) be a strong digraph. Then for every
v ∈ V there exists an order v1, . . . , vn on V such that v1 = v, and

(i) Every e ∈ E is contained in a cycle C with at most one backward arc.
(ii) Every v ∈ V can be reached from v1 using only forward arcs.

A backward arc (with respect to a given order of the vertices) is an arc vivj ∈ E,
i > j, the other arcs are forward arcs.
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Bessy and Thomassé [7] found the relevant part (i) independently, and de-
veloped it as a key to their proof of Gallai’s conjecture Theorem 4. (A sec-
ond ingredient was Dilworth’s theorem that has been traded for circulations
in [31].) Following them we call an order satisfying (i) coherent. They proved,
equivalently to (i), that every strong digraph has a coherent order. The
equivalence of this fact with Knuth’s theorem has been realized by Iwata and
Matsuda [23].

Four simple proofs of the existence of coherent orders in strongly connected
graphs, each providing its own insight, can be found in [7], [23], [24], [31].

Knuth proved this theorem as an application of his “Wheels within Wheels”
theorem [24]. Iwata and Matsuda found Knuth’s theorem in the archives, and
proved it shortly and constructively using the ear decomposition of strongly
connected graphs providing a measurable computational progress as well: it takes
O(nm) time to construct the order in Theorem 14, whereas a construction in
[31] based on different ideas takes O(n2m2) time. To prove the statement by
induction (ii) is useful.

Fixing an order, the index (or winding) ind(C) of a cycle C is the number of
its backward arcs, except for cycles {v} (v ∈ V ) for which we define ind({v}) = 1
(like if it had one “backward loop”). If C is a set of cycles, we denote

ind(C) :=
∑

C∈C
ind(C).

For any cycle C in any graph with any order, ind(C) ≥ 1, so for any set of cycles
C, we have ind(C) ≥ |C|.

3.3 Topping

At the end of Section 2 we deduced the Greene-Kleitman theorem, and well-
known results on cycle-covers, from Theorem 12. It is now the turn of Theorem 12
itself, completed by the following topping:

Given a graph G = (V, E) with an order on the vertex set, let us call a set S
satisfying

(COMB) |S ∩ C| ≤ ind(C), (i = 1, . . . k).

a cyclic stable set. (This notion is equivalent to a geometric notion of Bessy and
Thomassé [7]. The equivalence is proved in [31, (5)].)

The only thing we need here about cyclic stable sets though is that they are
indeed stable sets provided G = (V, E) with the given order is coherent. This
is true, because by coherence every arc e = ab ∈ E (a, b ∈ V ) is contained
in a cycle C with ind(C) = 1, so we get for the sets S satisfying (COMB):
|S ∩ {a, b}| ≤ |S ∩C| = 1. So for every arc ab ∈ E, S can contain at most one of
a and b.

Theorem 15 ([31] Theorem 3.1). Let G be a strong digraph given with a co-
herent order.



192 A. Sebő

max{|S1 ∪ . . . ∪ Sk| : Si (i=1,. . . k) is a cyclic stable set } =

= min{|R(C)|+ k ind(C) : C is a set of cycles}.

Proof. Let G = (V, E) be strong and k ∈ ZZ. Apply Theorem 14 to G and fix
the coherent order it provides. Let B be the set of backward arcs, and define
cB,k(e) := k if e ∈ B, and 0 otherwise a := 0 ∈ ZZn, b := w := 1 ∈ ZZn

(constant 0 and constant 1 vectors, that we will simply denote by 0 and 1).
Then Q(G, 0, 1, cB,k) is the following system:

(kBT ) x(VC) ≤ k ind(C) for every cycle C with vertex-set VC , 0 ≤ x ≤ 1.

Claim 1: The optimum of P (G, 0, 1, cB,k, 1) is max |S1 ∪ . . . ∪ Sk|, Si ⊆ V
(i = 1, . . . k) satisfies (COMB).

Such a union defines a primal solution, so the optimum is at least this quan-
tity. To prove the equality, we show that the optimum xopt of P (G, 0, 1, cB,k, 1)
can be written in this form. Note Q(G, 0,∞, cB,k) = kQ(G, 0,∞, cB,1), so
P (G, 0, 1, cB,k, 1) is the problem

max 1�x, subject to x = (x1, . . . , xn) ∈ kQ(G, 0,∞, cB,1), x ≤ 1.

Because of Theorem 13 applied to Q(G, 0,∞, cB,1):

xopt = x1 + . . . + xk, xi ∈ Q(G, 0,∞, cB,1) for all i = 1, . . . k,

and because of xopt ∈ {0, 1}n and xi ≥ 0 (i = 1, . . . k) we have xi ∈ {0, 1}n,
that is, xi is the incidence vector of a set Si satisfying (COMB).

Claim 2: The optimum of D(G, 0, 1, cB,k, 1) is

min{|R(C)|+ k ind(C) : C is a set of cycles}.
Indeed, (kBT) is a TDI system (Lemma 2), and therefore the optimum of

D(G, 0, 1, cB,k, 1) is a 0− 1 vector. Since for a given dual solution R(C) := {v ∈
V : the dual variable for v is 1 }, the dual optimum of (kBT) is as claimed.

We have arrived at the end of the proof now: by the duality theorem of linear
programming OPT(G, 0, 1, cB,k, 1) is equal to both the quantities in Claim 1 and
Claim 2, and by (COMB) the sets Si (i = 1, . . . , k) are all cyclic stable sets. 	

Theorem 11 is an immediate corollary since ind(C) ≥ |C|.

The stable sets Si (i = 1, . . . k) and the set of cycles C provided by the theorem
satisfy by complementary slackness (get it directly from the equalities of the
theorem or in its proof) : |Si ∩ C| = ind(C) ≥ 1 (i = 1, . . . k), C ∈ C, so we can
delete from each Si all but one of the elements of Si ∩ C, finishing the proof of
Theorem 12 as well.

The original proof of theorems 15, 11, 12 was quite tedious – the integer de-
composition property was proved through a complicated graph theory argument
using potentials (arriving at a geometric surplus though). Theorem 13 provides
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a shorter way. (Which can also be converted into an algorithm.) Theorem 15 is
actually the most general result we can prove for the union of k stable sets. It is
similar to sums of matroids.

Let us finally deduce from Theorem 15 the two fundamental results of Bessy
and Thomassé [7] originally proved with two entirely different methods. They
are both minmax theorems, so “structural versions” follow by complementary
slackness.

Corollary 2 ([7] Theorem 1). Let G be a strong digraph given with a coherent
order.

max{|S| : S is a cyclic stable set } = min{ind(C) : C covers V }.
Proof. Apply Theorem 15 to k = 1, noting that the one-element subsets of X
can be replaced by a cycle of index 1. 	

For k = 1 the integer decomposition actually becomes simply flow integrality and
we get back the simple proof of Theorem 6 in the introduction of [31] (Subsection
0.3).

Corollary 3 ([7], combination of Lemma 3 and Theorem 3). The minimum of
k such that G can be colored with k cyclic stable sets is equal to the maximum
of |C|/ ind(C)� over all cycles of C.

Proof. Apply Theorem 15 to k := max{|C|/ ind(C)� : C is a cycle of G }.
Then k ind(C) ≥ |C| for every cycle, and therefore the right hand side in Theo-
rem 15 is n. Less cyclic stable sets are not enough, since k − 1 cyclic stable sets
meet each cycle C in at most (k − 1) ind(C) elements, which is less than |C| for
the cycles for which the above maximum is reached. 	

These two corollaries showed the way: they are the two ice-cream balls, the
theorem is the topping.

4 Path Partitions

We prove Berge’s conjecture in the following cases:

4.1 Long Paths

Theorem 16. Let G = (V, E) be a digraph, k, m ∈ IIN and P = {P1, . . . , Pm} a
path partition. Then there exists

(i) either k disjoint stable sets orthogonal to P,
(ii) or a subpartition Q = {Q1, . . . , Qm−1} of paths s.t. ini(Q) ⊆ ini(P), ter

(Q) ⊆ ter(P), and
|R(Q)| ≤ k − 1.

Proof. We prove the statement by induction on n := |V |. Suppose it holds for
all n′ < n with all values of m and k, and prove it for G.
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We can suppose that |P | ≥ k for all P ∈ P , because if say |Pm| < k, define
Qi := Pi for all i = 1, . . . , m−1. We see that (ii) holds: |V \ (Q1∪ . . .∪Qm−1)| =
|Pm| ≤ k − 1.

Let ai := ini(Pi), and let a′
i be the second vertex of Pi, and P ′

i := Pi \ {ai},
that is, ini(P ′

i ) = a′
i (i = 1, . . . , m).

We distinguish now two cases:

Case 1: ini(P) is not a stable set, that is, say a1a2 ∈ E.
If |P1| = k, we can replace P by P \ {P1}, and add a1 to P2 as first vertex:

we see that (ii) holds then.
So suppose |P1| ≥ k + 1, and apply the induction hypothesis to G − a1 and

the same path partition restricted to V \ {a1}, that is, with the only change of
replacing P1 by P1\{a1}. If now (i) holds, then, using also that |P1\{a1}| ≥ k, (i)
also holds for G. So suppose (ii) holds for G− a1, and let Q′ = {Q′

1, . . . , Q
′
m−1}

be the path partition satisfying (ii). Since ini(Q′) is an m − 1 element subset
of {a′

1, a2, . . . , am}, it contains a path Q′
1 with ini(Q′

1) = a′
1 or ini(Q′

1) = a2.
Adding a1 as a first vertex to Q′

1 we get a path partition of G that satisfies (ii).

Case 2: ini(P) is a stable set.
Apply the statement to G′ := G− ini(P), k′ := k − 1.
If then (i) holds, then adding the stable set ini(Q) to the provided k−1 stable

sets, we get that (i) holds for G and P with parameter k.
Otherwise alternative (ii) holds for G′ = (V ′, E′) with P ′ and k′, that is, we

have a subpartition of paths Q′ = {Q′
1, . . . , Q

′
m−1}, in G′ such that ini(Q′) ⊆

ini(P ′) (and ter(Q′) ⊆ ter(P ′) = ter(P)), that is, with an appropriate choice
of the notation ini(Q′) = {a′

1, . . . , a
′
m−1}, furthermore ini(Q′

i) = {a′
i} for all

i = 1, . . . , m− 1, and

|R(Q′)| = |V ′ \ (Q′
1 ∪ . . . ∪Q′

m−1)| ≤ k − 2.

Define now Qi := Q′
i ∪ ai (i = 1, . . . , m− 1). Clearly, Q := {Q1, . . . , Qm−1} is a

subpartition of paths in G, and

|R(Q)| = |V \ (Q1 ∪ . . . ∪Qm−1)| = |V ′ \ (Q′
1 ∪ . . . ∪Q′

m−1)|+ 1 ≤ k − 1,

since V \ (Q1 ∪ . . . ∪ Qm−1) = (V ′ \ (Q′
1 ∪ . . . ∪ Q′

m−1)) ∪ {am}, proving that
alternative (ii) holds for G with P and k. 	

This implies Berge’s conjecture when there exists an optimal path partition with
only paths of length at least k, which turns out to be equivalent to a result of
Aharoni, Hartman and Hoffman [2]. Their proof is based on improving paths,
and probably implies all the claims of the Theorem, in a more involved way
though.

Corollary 4. [2] If G is a digraph and P is a path partition where k|P| =
min{|X |+kπ(V \X) : X ⊂ V }, then there exist k disjoint stable sets orthogonal
to P.
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4.2 Acyclic Digraphs

For acyclic digraphs Berge’s and Linial’s conjectures are consequences of The-
orem 13 on the lines of, and more simply than the proof of Theorem 15, but
I do not see how to deduce them directly from the statement of Theorem 15.
The results have been proved in [1], [2], [10], [14], [26], [30]. Let us show how
Theorem 13 replaces all the difficulties:

Let G be acyclic, and 1, . . . , n an order of the vertices with only forward arcs.
Add all backward arcs, that is Ĝ := G ∪ B, B := {ij, i > j}. Note that this
order is coherent for Ĝ, and a cycle with β backward arcs is the disjoint union
of vertex-sets of β cycles each having 1 backward arc.

Consider now the polyhedron Q(Ĝ,−∞, 1, cB,k) ⊆ kQ(Ĝ,−∞,∞, cB,1). It
can have negative vertices! (We cannot avoid this, since since we want equality
constraints for the dual problem.) By Theorem 13 Q(Ĝ,−∞,∞, cB,1) – which
is now simply {x ∈ IRn : x(P ) ≤ 1 for every path P } – has the integer decom-
position property again, and by Theorem ?? Q(G,−∞, 1, cB,k) is TDI. Now we
can finish using Theorem 13 exactly like in the proof of Theorem 15. (Negative
variables do not disturb, since by complementary slackness a primal optimal
solution x ∈ Q(Ĝ,−∞, 1, cB,k) satisfies x(P ) = k for all paths P of an optimal
path partition; because of x ≤ 1, x has at least k different 1 entries; because
of Theorem 13 we have x = x1 + . . . + xk, xi ∈ Q(Ĝ,−∞,∞, cB,1), and then
the positive coordinates of the xi meet every path, and in different vertices for
i �= j = 1, . . . , n.)

4.3 Corollaries for Path Partitions

Berger and Hartman studied the two next-to-extreme cases of Berge’s conjecture
[5], [6]:“k = 2” and “k = λ − 1” – the k = 1 and k = λ cases being completely
settled, see the subsections 2.2, 2.3, 2.4, 2.5. It is somewhat discouraging for
the continuation that the path partition and cycle cover versions are so far
completely unrelated even in the Gallai-Milgram case k = 1.

However, the following theorems show some connections at the other extreme,
and for strongly connected graphs a larger interval can be allowed for k. These
are the starting steps of a research with Irith Hartman in the frame of the
French-Israeli collaboration project, intending to prove Berge’s conjecture.

The following result is a direct corollary of Theorem 15, and it provides a
common statement and proof of the Gallai-Roy theorem, and a theorem of Berger
and Hartman [6] according to which Berge’s strongest conjecture (and therefore
Linial’s conjecture as well) is true if k = λ − 1. Their original proof is quite
involved. Note that we prove only the version Conjecture 3 ignoring short (< k)
paths that are not singletons, still implying Linial’s conjecture.

Theorem 17. Let G = (V, E) be a digraph, and k ∈ IIN, k ≥ λ − 1. For any
subpartition P of paths minimizing |R(P)| + k|P|, there exists k disjoint stable
sets orthogonal to P whose union contains R(P).
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Proof. Let P satisfy the condition. The number |R(P)| + k|P| is called the
k-norm of P [22].

Add a new vertex v0 to the graph, a cycle C0 through v0 with k+1 new vertices
besides v0, and add all the edges v0v, vv0 (v ∈ V ). Denote V̂ := V ∪V (C0). Order
V starting with v0, continuing on C0 until the vertex before v0, then continuing
with the other members of P in some order, from the sources to the sinks, and
finally adding the vertices of R(P) in arbitrary order. Let Ĝ = (V̂ , Ê) be the
constructed graph.
Note: C0 serves the goal of covering v0 in a predictable way, and the presence
of C0 will also have the useful consequence that we will never color v0. Adding
v0 without adding C0 may slightly change the problem and cause technical dif-
ficulties. Let C := {C0} ∪ {v0 ∪ P : P ∈ P}.

The defined order is coherent, since for all uv ∈ E : v0, u, v is a cycle with one
backward arc, and C0 is also a cycle that has one backward arc.

All cycles in C have one backward arc, so ind(C) = |C| = |P|+1. We show that
C minimizes the right hand side of Theorem 15 (see after Claim 2), and then
this theorem will provide the statement. Let Q = {Q0, . . . , Qm} (Q0, . . . , Qm are
cycles) minimize the right hand side of this theorem, and among the possible
choices R(Q) be maximum. In fact we will show

|R(C)|+ k ind(C) ≤ |R(Q)|+ k ind(Q), (1)

by showing through claims 1, 2 a path partition P ′ in G, R(P ′) = R(Q), |P ′| =
|Q| − 1, and then by the minimality of the k-norm of P we have

|R(P)|+ k|P| ≤ |R(P ′)|+ k|P ′|, (2)

implying (1): indeed, the left hand side of (1) is k plus the left hand side of (2),
and according to the following, the right hand side of (1) is at least k plus the
right hand side of (2):

|R(P ′)|+ k|P ′|+ k = |R(Q)|+ k|Q| ≤ |R(Q)|+ k| ind(Q)|.

Claim 1: There exists i ∈ {1, . . . , m} so that Qi = C0, and therefore Q0 = C0

can be supposed.
Indeed, if C0 does not occur, then the vertices of C0 different of v0 cannot

occur in Q at all. Since their number is k + 1, by adding C0 to Q we decrease
|R(Q)| by k + 1 and k|Q| increases only by k (|Q| increases by 1), contradicting
the optimal choice of Q.

Claim 2: P ′
i := Qi \ v0 (i = 0, 1, . . . , m) are pairwise disjoint.

Indeed, Qi \ v0 ≤ λ ≤ k + 1, so if it meets Qj \ v0 (j �= i), then Q \ {Qi}
contradicts the choice of Q, because |R(Q \ {Qi})| ≤ |R(Q)|+ k: v0 /∈ R(Q) by
Claim 1, and the possible other common point is not in R(Q) either. On the
other hand k ind(Q \ {Qi}) = k ind(Q)− k ind(Qi) ≤ k ind(Q)− k, so the right
hand side of the formula of Theorem 15 does not increase, R(Q) increases, again
contradicting the choice of Q.
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Now by Claim 2, P ′ := {P ′
1, . . . , P

′
m} is a set of disjoint paths satisfying the

promised relations R(P ′) = R(Q), |P ′| = |Q| − 1, so (1) is satisfied and C is an
optimal set of cycles in Theorem 15.

Theorem 15 provides now exactly what we want, unless v0 is a colored vertex.
However, one can suppose that v0 is contained in at least 2 members of C, since
in case of C = {C0} the set C′ = {C0, {v0} ∪ P}, where P is a longest path is a
set of cycles which also minimizes the right hand side. Then by complementary
slackness in Theorem 15, v0 is not contained in any of the sets Si provided by
the theorem. 	


For k = λ− 1 the theorem can be restated as follows:

Corollary 5. Let G = (V, E) be a directed graph. If P is a maximum number
of disjoint maximum paths of G, there exists a set U ⊆ V consisting of exactly
one vertex of each P ∈ P, and a (complete) coloring of G− U where each color
class is orthogonal to P.

Indeed, |R(P)|+(λ−1)|P| is minimum provided P is a maximum set of disjoint
maximum paths.

Applying the theorem to k = λ we can reformulate it into the following very
similar form where U can in addition be chosen to be a cyclic stable set (it is one
of the colors) the paths are not necessarily part of a maximum packing, however
all of the colors may have to meet R(P) (while U did not). Both corollaries
extend the Gallai-Roy theorem.

Corollary 6. Let G = (V, E) be a directed graph. If P is any number of disjoint
maximum paths of G, there exists a coloring of G where the color classes are
orthogonal to P.

The following result exploits some simple properties of paths, but the application
of these prevents to use the gadget reductions of the previous proof and we cannot
avoid assuming strong connectivity.

Theorem 18. Conjecture 3 is true provided G is strongly connected and k ≥
λ−√λ.

Proof. Let G be strongly connected, k ≥ λ − √λ, and choose a coherent order.
Apply Theorem 15 and let S1, . . . , Sk the stable sets in the maximum, X and
C the set and cycle cover in the minimum, moreover, suppose that among the
possible choices, |X | is biggest possible. As in the previous proof, k ≥ λ/2 easily
implies that ind(C) = 1 for all C ∈ C. The problem is that the cycles in C are
not necessarily disjoint.

If a cycle has at most λ− �√λ� vertices not covered by any other cycle, then
delete it from C and add to X the vertices that get now uncovered, contradicting
the choice of X . So the difference of any two cycles has size larger than λ−�√λ�.
If for two intersecting cycles C1, C2 we have |C1 \C2|, |C2 \C1| > λ−�√λ�, then
their union contains a path with more than λ vertices. (This bound is essentially
tight.)
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Indeed, we have then |C1 ∩ C2| ≤ �
√

λ�. But then C1 ∩ C2 divides both
cycles into paths, and one of these paths has at least �√λ� vertices outside C1,
say. (If all these subpaths of C2 have at most

√
λ − 1 vertices outside C1, then

|C2 \ C1| ≤
√

λ(
√

λ − 1) = λ − √λ.) Take such a path P for instance in C2.
Then |C1 ∪ P | > λ− �√λ�+ �√λ� = λ. It is easy to see that |C1 ∪ P | contains
a Hamiltonian path, that is, a path of length larger than λ, contradicting the
definition of λ.

So the cycles in C are pairwise disjoint and then we are done again by com-
plementary slackness. 	


Acknowledgment. Many thanks are due to Irith Hartman and an anonymous
referee for a very thorough reading of the originally submitted manuscript and
a lot of helpful corrections.
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Abstract. In this paper, we consider a number of results and six con-
jectures on properly coloured (PC) paths and cycles in edge-coloured
multigraphs. We overview some known results and prove new ones. In
particular, we consider a family of transformations of an edge-coloured
multigraph G into an ordinary graph that allow us to check the exis-
tence of PC cycles and PC (s, t)-paths in G and, if they exist, to find
shortest ones among them. We raise a problem of finding the optimal
transformation and consider a possible solution to the problem.

1 Introduction

The class of edge-coloured multigraphs generalize directed graphs. There are
several other generalizations of directed graphs such as arc-coloured digraphs,
hypertournaments and star hypergraphs, but the class of edge-coloured multi-
graphs has been given the main attention in graph theory literature because
many concepts and results on directed graphs can be extended to edge-coloured
multigraphs and there are several important applications of edge-coloured multi-
graphs. For instance, in [10, 11] Dorninger considers chromosome arrangement
in a cell of an eukaryotic organism by using the 2-edge-coloured multigraphs.
For a more extensive treatment of this topic, see [6, 7].

In this paper we overview some known results on properly coloured (PC)
cycles and paths in edge-coloured multigraphs, prove new ones and consider sev-
eral open problems on the topic. In Section 2 we briefly consider a problem of
whether an edge-coloured graph has a PC cycle. In Sections 3 and 4, we offer
a useful tool to study edge-coloured multigraphs. In investigating problems on
PC subgraphs of edge-coloured multigraphs, it is convenient to transform an
edge-coloured graph into an ordinary graph. We suggest a new technique that
somewhat automates this transformation. Moreover, by proving some new re-
sults, we illustrate how the proposed technique allows us to obtain more efficient
algorithms for PC cycle and PC (s, t)-path problems by reducing the order and
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size of the transformed graph. We raise a problem of determining the minimum
order and size of the transformed graph, and describe the family of graphs that
may be the solution to the problem.

In Section 5 we study long PC cycles and paths in arbitrary edge-coloured
multigraphs and Section 6 is devoted to longest (mostly Hamilton) PC cycles in
edge-coloured complete graphs.

An m-path-cycle subgraph F of a multigraph G is a vertex-disjoint union
of m paths and a number of cycles in G (some cycles can be of length 2). If
m = 0, we call F a cycle subgraph of G. For a vertex set X of a multigraph
G, G〈X〉 denotes the subgraph of G induced by X. For a pair s, t of distinct
vertices of G, a path between s and t is called an (s, t)-path.

We consider edge-coloured multigraphs, i.e., undirected multigraphs in
which each edge has a colour, but no parallel edges have the same colour. If
an edge-coloured multigraph G has c colours, we assume that the colours are
1, 2, . . . , c and we call G a c-edge-coloured multigraph. We denote the colour
of an edge e of an edge-coloured multigraph G by χ(e). When G has no parallel
edges, we call G an edge-coloured graph.

Let G be a c-edge-coloured multigraph and let v ∈ V (G). By Ni(v) we denote
the set of neighbours of v adjacent to v by an edge of colour i; let di(x) =
|Ni(x)|. The maximum (minimum) monochromatic degree of G = (V, E) is
defined by

Δmon(G) = max{dj(v) : v ∈ V, 1 ≤ j ≤ c}
(δmon(G) = min{dj(v) : v ∈ V, 1 ≤ j ≤ c}).

Let χ(v) = {i : 1 ≤ i ≤ c, Ni(v) �= ∅}. A path or cycle Q of G is properly
coloured (PC) if every two adjacent edges of Q are of different colours.

2 Existence of PC Cycles

Since a pair of parallel edges in a c-edge-coloured multigraph (c ≥ 2) forms a
PC cycle, in this section, we consider only c-edge-coloured graphs.

It is easy to see that the problem of checking whether a c-edge-coloured graph
has a PC cycle is more general (even for c = 2) than the simple problem of
verifying whether a digraph contains a directed cycle. Indeed, consider a digraph
D and, to obtain a 2-edge-coloured graph G from D, replace each arc xy of
D with edges xzxy and zxyy of colours 1 and 2, where zxy is a new vertex
(zxy �= zx′y′ provided xy �= x′y′). Observe that G has a PC cycle if and only if
D has a directed cycle.

The following theorem by Yeo [21] provides a simple recursive way of checking
whether a c-edge-coloured graph has a PC cycle. (For c = 2, Theorem 2.1 was
first proved by Grossman and Häggkvist [14].)

Theorem 2.1. Let G be a c-edge-coloured graph, c ≥ 2, with no PC cycle. Then,
G has a vertex z ∈ V (G) such that no connected component of G − z is joined
to z with edges of more than one colour.
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Let us consider the following function introduced by Gutin [15]: d(n, c), the min-
imum number k such that every c-edge-coloured graph of order n and minimum
monochromatic degree at least k has a PC cycle. It was proved in [15] that d(n, c)
exists and that

d(n, c) ≤ 1
	c/2
(log2 n− 1

3
log2 log2 n + Θ(1)). (1)

Abouelaoualim et al. [1] stated a conjecture which implies that d(n, c) = 1 for
each c ≥ 2. Using a recursive construction inspired by Theorem 2.1 of c-edge-
coloured graphs with minimum monochromatic degree p and without PC cycles,
Gutin [15] showed that

d(n, c) ≥ 1
c
(logc n− logc logc n) (2)

and, thus, the conjecture does not hold. The bounds (1) and (2) imply that
d(n, c) = Θ(log2 n) for every fixed c ≥ 2.

Conjecture 2.2. [15] There is a function s(c) dependent only on c such that
d(n, c) = s(c) log2 n(1 + o(1)).

In particular, it would be interesting to determine s(2).

3 P-Gadgets

We consider gadget constructions which generalize some known constructions
mentioned below. The P-gadget graphs G∗ and G∗∗ of an edge-coloured multi-
graph G described in the next section allow one to transform several problems
on properly coloured subgraphs of G into perfect matching problems in
G∗ or G∗∗.

Let G be an edge-coloured multigraph and let G′ = G−{x ∈ V (G) : |χ(x)| =
1}. For each x ∈ V (G′) let Gx be an arbitrary (non-edge-coloured) graph with
the following four properties:

P1 {xq : q ∈ χ(x)} ⊆ V (Gx);
P2 Gx has a perfect matching;
P3 For each p �= q ∈ χ(x), if the graph Gx − {xp, xq} is not empty, it has a

perfect matching;
P4 For each set L ⊆ χ(x) with at least 3 elements; if the graph Gx−{xl : l ∈ L}

is not empty, it has no perfect matching.

Each Gx with the properties P1-P4 is called a P-gadget. Let us consider the
following three P-gadgets; the first two are known in the literature and the third
one is new.
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1. One P-gadget is due to Szeider [19]:

V (Gx) = {xi, x
′
i : i ∈ χ(x)} ∪ {x′′

a , x′′
b } and

E(Gx) = {x′
ix

′′
a , x′

ix
′′
b , xix

′
i : i ∈ χ(x)} ∪ {x′′

ax′′
b }.

We will call this the SP-gadget.
2. Another gadget is due to Bang-Jensen and Gutin [4]:

V (Gx) = {xj : j ∈ χ(x)} ∪ {yj : j ∈ χ(x) \ {m, M}},
where m = min χ(x), M = maxχ(x), and

E(Gx) = {xjyk : j ∈ χ(x), k ∈ χ(x) \ {m, M}} ∪ {xjxk : j �= k ∈ χ(x)}.
We will call this the BJGP-gadget.

3. The following new gadget is a sort of crossover of the above two and is called
the XP-gadget:

V (Gx) = {xj : j ∈ χ(x)} ∪ {yj : j ∈ χ(x) \ {m, M}},
where m and M are defined above, and

E(Gx) = {xmxM} ∪ {xjyj, xmyj, xMyj : j ∈ χ(x) \ {m, M}}.
It is not difficult to verify that the three P-gadgets indeed satisfy P1-P4. Let

z = χ(x). Observe that the SP-gadget has 2z + 2 vertices and 3z + 1 edges, the
BJGP-gadget 2z−2 vertices and z(3z−5)/2 edges, the XP-gadget 2z−2 vertices
and 3z−5 edges. Thus, the XP-gadget has the minimum number of vertices and
edges among the three P-gadgets. It is not difficult to verify that the XP-gadget
has the minimum number of vertices and edges among all possible P-gadgets for
z = 2, 3, 4. Perhaps, this is true for any z.

Conjecture 3.1. The XP-gadget has the minimum number of vertices and edges
among all possible P-gadgets for every z ≥ 2.

We will see in the next section why minimizing the numbers of vertices
and edges in P-gadgets is important for speeding up some algorithms on edge-
coloured multigraphs.

4 P-Gadget Graphs

Let G be a c-edge-coloured multigraph and let Gx be a P-gadget for x ∈ V (G′).
The graph G∗ is defined as follows: V (G∗) = ∪x∈V (G′)V (Gx) and E(G∗) =
E1 ∪ E2, where E1 = ∪x∈V (G′)E(Gx) and E2 = {yqzq : y, z ∈ V (G′), yz ∈
E(G), χ(yz) = q, 1 ≤ q ≤ c}.

Let s, t be a pair of distinct vertices of G and let H = G−{s, t}. Let G∗∗ be con-
structed from H∗ by adding s and t and edges E3 = {sxi : sx ∈ E(G), χ(sx) =
i} ∪ {txi : tx ∈ E(G), χ(tx) = i}.
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We will denote the number of vertices and edges in multigraphs G, G∗ and
G∗∗ by n, m, n∗, m∗, n∗∗ and m∗∗, respectively.

The following result relates perfect matchings of G∗ with PC cycle subgraphs
of G. PC cycle subgraphs are important in several problems on edge-coloured
multigraphs (for example, for the PC Hamilton cycle problem described in Sec-
tion 6), see [6]. Recall that G′ = G− {x ∈ V (G) : |χ(x)| = 1}.
Theorem 4.1. Let G be a connected edge-coloured multigraph such that G′ is
non-empty. Then G has a PC cycle subgraph with r edges if and only if G∗ has
a perfect matching with exactly r edges in E2.

Proof: Let M be a perfect matching of G∗ with exactly edges

x1
p1

y1
q1

, . . . , xr
pr

yr
qr

in E2. For a vertex x of G′, let Qx be the set of edges in E2 adjacent to Gx. By
P2, each Gx has even number of vertices (x ∈ V (G′)) and since M is a perfect
matching in G∗, there is even number of edges in Qx. By P4, Qx has either no
edges or two edges for each x ∈ V (G′). Let X be the set of all vertices x ∈ V (G′)
such that |Qx| = 2. Then, by the definition of G∗, G〈X〉 contains a PC cycle
factor. It remains to observe that |X | = r.

Now let F be a PC cycle subgraph of G with r edges. Observe that the edges
of F correspond to a set Q of r independent edges of G∗ and that either no
edges or two edges of Q are adjacent to Gx for each x ∈ V (G′). Now delete
the vertices adjacent with Q from each Gx and observe that each remaining
non-empty gadget has a perfect matching by P2 and P3. Combining the perfect
matchings of the non-empty gadgets with Q, we get a perfect matching of G∗

with exactly r edges from E2. �

The first part of the next assertion generalizes a result from [4]. The second part
is based on an approach which leads to a more efficient algorithm than in [2].

Corollary 4.2. One can check whether an edge-coloured multigraph G has a
PC cycle and, if it does, find a maximum PC cycle subgraph of G in time
O(n∗ · (m∗ + n∗ log n∗)). Moreover one can find a shortest PC cycle in G in
time O(n · n∗ · (m∗ + n∗ log n∗)).

Proof: We may assume that G is connected and that G′ is not empty. By The-
orem 4.1, it is enough to find a perfect matching of G∗ containing the maximum
number of edges from E2. Assign weight 0 (1, respectively) to edges of G∗ in E1

(E2, respectively). Now we need to find a maximum weight perfect matching of
G∗ which can be done in time O(n∗ · (m∗ + n∗ log n∗)) by a matching algorithm
in [13].

To find a shortest PC cycle in G, choose a vertex x ∈ V (G′). We will find
a shortest PC cycle in G traversing x. By Theorem 4.1, it is enough to find a
perfect matching of G∗ containing the minimum number of edges from E2 while
containing at least one edge from E2 so that the corresponding PC cycle in G
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should be non-trivial. We define the weights on edges of G∗ as follows. Assign
M , where M is a sufficiently large number, to each edge in E2 incident with
Gx. For all other edges, assign weight 1 (0, respectively) to edges of G∗ in E1

(E2, respectively). A maximum weight perfect matching of G∗ contains exactly
two edges of weight M by P4, and contains the minimum number of edges in
E2. Finding a maximum weight perfect matching of G∗ can be done in time
O(n∗ · (m∗ + n∗ log n∗)) and we iterate the process for each x ∈ V (G′). �
The proof of the following result is analogous to the proof of Theorem 4.1.

Theorem 4.3. Let G be an edge-coloured multigraph and let s, t be a pair of
distinct vertices of G. If G∗∗ is non-empty, then G has a PC 1-path-cycle sub-
graph with r edges in which the path is between s and t if and only if G∗∗ has a
perfect matching with exactly r edges not in E1.

The next assertion generalizes a result from [2].

Corollary 4.4. Let G be an edge-coloured multigraph. One can check whether
there is a PC (s, t)-path in G in time O(m∗∗) and if G has one, a shortest PC
(s, t)-path can be found in time O(n∗∗ · (m∗∗ + n∗∗ log n∗∗)).

Proof: Let L be a graph. Given a matching M in L, a path P in L is
M−augmenting if, for any pair of adjacent edges in P , exactly one of them
belongs to M and the first and last edges of P do not belong to M . Consider a
perfect matching M of H∗, where H = G−{s, t}, which is a collection of perfect
matchings of Gx for all x ∈ V (G′). The existence of a perfect matching in Gx is
guaranteed by P2. Observe that G has a PC (s, t)-path if and only if there is an
M−augmenting (s, t)-path P in G∗∗. Since an M−augmenting path P can be
found in time O(m∗∗) (see [20]), we can find a PC (s, t)-path in G, if one exists,
in time O(m∗∗).

To find a shortest PC (s, t)-path, we assign each edge in
⋃

x∈V (G′) E(Gx)
weight 0 and every other edge of G∗∗ weight 1. Observe that a minimum weight
perfect matching Q in the weighted graph G∗∗ corresponds to a shortest PC
(s, t)-path. Finding a minimum weight perfect matching can be done in time
O(n∗∗ · (m∗∗ + n∗∗ log n∗∗)). �

5 Long PC Cycles and Paths

The following interesting result and conjecture were obtained by Abouelaoualim,
Das, Fernandez de la Vega, Karpinski, Manoussakis, Martinhon and Saad [1].

Theorem 5.1. [1] Let G be a c-edge-coloured multigraph G with n vertices and
with δmon(G) ≥ �n+1

2 �. If c ≥ 3 or c = 2 and n is even, then G has a Hamilton
PC cycle. If c = 2 and n is odd, then G has a PC cycle of length n− 1.

Conjecture 5.2. [1] Theorem 5.1 holds if we replace δmon(G) ≥ �n+1
2 � by

δmon(G) ≥ �n
2 �.
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We cannot replace δmon(G) ≥ �n+1
2 � by δmon(G) ≥ �n−1

2 � due to the following
example. Let H1 and H2 be c-edge-coloured complete multigraphs (for each pair
x, y of vertices and each i ∈ {1, 2, . . . , c} and j ∈ {1, 2}, Hj has a edge between
x and y of colour i) of order p + 1 that have precisely one vertex in common.
Clearly, a longest PC cycle in H1 ∪H2 is of length p + 1.

Since the longest PC path problem is NP-hard, it makes sense to study lower
bounds on the length of a longest PC path. The following result was proved by
Abouelaoualim et al. [1].

Theorem 5.3. Let G be a c-edge-coloured graph of order n with δmon(G) = d ≥
1. Then G has a PC path of length at least min{n− 1, 2	 c

2
d}.
The authors of [1] raised the following two conjectures.

Conjecture 5.4. Let G be a c-edge-coloured graph of order n and let d =
δmon(G) ≥ 1. Then G has a PC path of length at least min{n− 1, 2cd}.

They also conjectured the following analog of Theorem 5.3 for multigraphs:

Conjecture 5.5. Let G be a c-edge-coloured multigraph of order n with
δmon(G) = d ≥ 1. Then G has a PC path of length at least min{n− 1, 2d}.

6 Longest PC Cycles and Paths in Edge-Coloured
Complete Graphs

Let Kc
n denote a c-edge-coloured complete graph with n vertices.

Feng, Giesen, Guo, Gutin, Jensen and Rafiey [12] proved the following:

Theorem 6.1. A Kc
n (c ≥ 2) has a PC Hamilton path if and only if Kc

n contains
a PC spanning 1-path-cycle subgraph.

This theorem was first proved by Bang-Jensen and Gutin [4] for the case c = 2
and they conjectured that Theorem 6.1 holds for each c ≥ 2. Theorem 6.1 implies
that the maximum order of a PC path in Kc

n equals the maximum order of a
PC 1-path-cycle subgraph of Kc

n.
As a result, the problem of finding a longest PC path in Kc

n is polynomial-time
solvable for arbitrary c ≥ 2. To see that a PC 1-path-cycle subgraph of Kc

n can
be found in polynomial time, add a pair x, y of new vertices to Kc

n together with
all edges needed to have a complete graph on n+2 vertices. Let the colour of all
edges between x and y, and Kc

n be c+1 and let the colour of xy be c+2. Observe
that the maximum order of a PC 1-path-cycle subgraph of Kc

n is less by exactly
two than the maximum order of a PC cycle subgraph of the c + 2-edge-coloured
complete graph described above. It remains to apply Corollary 4.2.

The problem of finding a longest PC cycle Kc
n has not been solved yet for

c ≥ 3 as we will see below. For c = 2, Saad [17] found a characterization for
longest PC cycles using the following notions. A pair of distinct vertices x, y
of G are colour-connected if there exist PC (x, y)-paths P and Q such that
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χ(fP ) �= χ(fQ) and χ(�P ) �= χ(�Q), where fP and fQ are the first edges of P
and Q, respectively, and �P and �Q are the last edges of P and Q, respectively.
We say that G is colour-connected if every pair of distinct vertices of G is
colour-connected. Saad’s characterization is as follows.

Theorem 6.2. The length of a longest PC cycle in a colour-connected K2
n is

equal to the maximum order of a PC cycle subgraph of K2
n.

Colour-connectivity for Kc
n is an an equivalence relation (see [6]). Using Theorem

6.2, Saad [17] showed that the problem of finding a longest PC cycle in K2
n has

a polynomial-time randomized algorithm. Using a special case of Corollary 4.2,
Bang-Jensen and Gutin [5] proved that the problem is, in fact, polynomial-time
solvable. Theorem 6.2 implies the following:

Corollary 6.3. [17] A K2
n has a PC Hamilton cycle if and only if K2

n is colour-
connected and contains a PC cycle factor.

There is another characterization of K2
n with a PC Hamilton cycle due to Bank-

falvi and Bankfalvi, see [6]. The straightforward extension of Corollary 6.3 is not
true for any c ≥ 3 [6]. In fact, no characterization of Kc

n with a PC Hamilton
cycle is known for any fixed c ≥ 3 and it is a very interesting problem to obtain
such a characterization. Even the following problem by Benkouar, Manoussakis,
Paschos and Saad [8] is still open.

Problem 6.4 Determine the complexity of the PC Hamilton cycle problem for
c-edge-coloured complete graphs when c ≥ 3.

We conjecture that the PC Hamilton cycle problem for c-edge-coloured com-
plete graphs when c ≥ 3 is polynomial-time solvable.

In absence of characterization of Kc
n with a PC Hamilton cycle, sufficient

conditions are interest. Manoussakis, Spyratos, Tuza and Voigt [16] proved the
next result.

Proposition 6.5. If c ≥ 1
2 (n−1)(n−2)+2, then every Kc

n has a PC Hamilton
cycle.

Let Δmon(Kc
n) denote the largest monochromatic degree of Kc

n. Bollobás and
Erdős [9] posed the following:

Conjecture 6.6. Every Kc
n with Δmon(Kc

n) ≤ 	n/2
 − 1 has a PC Hamilton
cycle.

Improving some previous results on this conjecture, Shearer [18] showed that if
7Δmon(Kc

n) < n, then Kc
n has a PC Hamilton cycle. So far, the best asymptotic

estimate was obtained by Alon and Gutin [3].

Theorem 6.7. [3] For every ε > 0 there exists an n0 = n0(ε) so that for each
n > n0, every Kc

n satisfying Δmon(Kc
n) ≤ (1− 1√

2
− ε)n contains a PC Hamilton

cycle.
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[9] Bollobás, B., Erdős, P.: Alternating Hamiltonian cycles. Israel J. Math. 23,
126–131 (1976)

[10] Dorninger, D.: On permultations of chromesomes, Contributions to General Alge-
bra, vol. 5, pp. 95–103. Teubner-Verlag, Stuttgart (1987)

[11] Dorninger, D.: Hamiltonian circuits determining the order of chromosomes. Dis-
crete Appl. Math. 50, 159–168 (1994)

[12] Feng, J., Giesen, H.-E., Guo, Y., Gutin, G., Jensen, T., Rafiey, A.: Characteriza-
tion of edge-colored complete graph s with properly colored Hamilton paths. J.
Graph Theory 53, 333–346 (2006)

[13] Gabow, H.N.: Data structures for weighted matching and nearest common ances-
tors with linking. In: Proc. SODA 1990, pp. 434–443 (1990)
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Abstract. The notion of ”antimatroid with repetition” was conceived
by Bjorner, Lovasz and Shor in 1991 as a multiset extension of the no-
tion of antimatroid [2]. When the underlying set consists of only two
elements, such two-dimensional antimatroids correspond to point sets in
the plane. In this research we concentrate on efficient representation of
antimatroidal point sets. We define a set of corner points that concisely
represents a given antimatroidal point set and show how to reconstruct
the antimatroidal point set from a proper set of corner points. We also
present an algorithm allowing the given set of points to be recognized as
a set of corner points of some antimatroidal point set.

1 Preliminaries

An antimatroid is an accessible set system closed under union [3]. An algorithmic
characterization of antimatroids based on the language definition was introduced
in [4]. Another algorithmic characterization of antimatroids that depicted them
as set systems was developed in [6].

While classical examples of antimatroids connect them with posets, chordal
graphs, convex geometries, etc., game theory gives a framework in which anti-
matroids are interpreted as permission structures for coalitions [1].

There are also rich connections between antimatroids and cluster analysis [8].
Recently, in mathematical psychology, antimatroids turned out to be useful

tool for knowledge representation. Actually, antimatroids are used to describe
feasible states of knowledge of a human learner [5].

In this paper we investigate the geometry properties of antimatroidal point
sets in the plane that allows the original antimatroidal point set to be recon-
structed from the compressed data. We show that antimatroidal point sets are
defined by a pair of monotone paths made only with north and east steps. More-
over, it is enough to know only some extreme points on these paths to reconstruct
a given antimatroidal point set.

Let E be a finite set. A set system over E is a pair (E,F), where F is a family
of sets over E, called feasible sets. We will use X ∪ x for X ∪{x}, and X −x for
X − {x}.
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Definition 1. [10]A finite non-empty set system (E,F) is an antimatroid if
(A1) for each non-empty X ∈ F , there exists x ∈ X such that X − x ∈ F
(A2) for all X, Y ∈ F , and X � Y , there exists x ∈ X − Y such that

Y ∪ x ∈ F .

Any set system satisfying (A1) is called accessible.
In addition, we use the following characterization of antimatroids.

Proposition 1. [10] For an accessible set system (E,F) the following state-
ments are equivalent:

(i) (E,F) is an antimatroid
(ii) F is closed under union (X, Y ∈ F ⇒ X ∪ Y ∈ F)

A set system (E,F) satisfies the chain property if for all X, Y ∈ F , and X ⊂ Y ,
there exists a chain X = X0 ⊂ X1 ⊂ ... ⊂ Xk = Y such that Xi = Xi−1∪xi and
Xi ∈ F for 0 ≤ i ≤ k.

It is easy to see that the chain property follows from (A2), but these properties
are not equivalent.

A poly-antimatroid [11] is a generalization of the notion of the antimatroid to
multisets. A poly-antimatroid is a finite non-empty multiset system (E, S) that
satisfies the antimatroid properties (A1) and (A2).

Let E = {x, y}. In this case each point A = (xA, yA) in the digital plane Z
2

may be considered as a multiset A over E, where xA is a number of repetitions
of an element x, and yA is a number of repetitions of an element y in multiset A.
Consider a set of points in the digital plane Z

2 that satisfies the properties of an
antimatroid. That is a two-dimensional poly-antimatroid, or an antimatroidal
point set.

For example, see an antimatroidal point set in Figure 1.
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�
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� � � �

� � � � �

� � � � �
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� � � � �
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x

y

0 1 2

1

Fig. 1. An antimatroidal point set

2 Representation of Antimatroidal Point Sets

In this section we give a geometric characterization of antimatroidal point sets.
The following notation [9] is used. If A = (x, y) is a point in a digital plane, the



Recognition of Antimatroidal Point Sets 211

4-neighborhood N4(x, y) is the set of points

N4(x, y) = {(x− 1, y), (x, y − 1), (x + 1, y), (x, y + 1)}
and 8-neighborhood N8(x, y) is the set of points

N8(x, y) = {(x− 1, y), (x, y − 1), (x + 1, y), (x, y + 1), (x− 1, y − 1),

(x− 1, y + 1), (x + 1, y − 1), (x + 1, y + 1)}.

Let m be any of the numbers 4 or 8. A sequence A0, A1, ..., An is called an Nm-
path if Ai ∈ Nm(Ai−1) for each i = 1, 2, ...n. Any two points A, B ∈ S are said to
be Nm-connected in S if there exists an Nm-path A = A0, A1, ..., An = B from A
to B such that Ai ∈ S for each i = 1, 2, ...n. A digital set S is an Nm-connected
set if any two points P ,Q from S are Nm-connected in S. An Nm-connected
component of a set S is a maximal subset of S, which is Nm-connected.

An Nm-path A = A0, A1, ..., An = B from A to B is called a monotone
increasing Nm-path if Ai ⊂ Ai+1 for all 0 ≤ i < n, i.e.,

(xAi < xAi+1) ∧ (yAi ≤ yAi+1) or (xAi ≤ xAi+1) ∧ (yAi < yAi+1).

The chain property and the fact that the family of feasible sets of an antima-
troid is closed under union mean that for each two points A, B: if B ⊂ A, then
there is a monotone increasing N4-path from B to A, and if A is non-comparable
with B, then there is a monotone increasing N4-path from both A and B to
A ∪ B = (max(xA, xB), max(yA, yB)). In particular, for each A ∈ S there is
a monotone decreasing N4-path from A to 0. So, we can conclude that an anti-
matroidal point set is an N4-connected component in the digital plane Z

2.
A point set S ⊆ Z

2 is defined to be orthogonally convex if, for every line L
that is parallel to the x-axis (y = y∗) or to the y-axis (x = x∗), the intersection
of S with L is empty, a point, or a single interval

([(x1, y
∗), (x2, y

∗)] = {(x1, y
∗), (x1 + 1, y∗), ..., (x2, y

∗)}).
It follows immediately from the chain property that any antimatroidal point set
S is an orthogonally convex connected component.

Lemma 1. [7] An antimatroidal point set in the plane is closed under intersec-
tion, i.e., if two points A = (xA, yA) and B = (xB , yB) belong to an antimatroidal
point set S, then the point

A ∩B = (min(xA, xB), min(yA, yB)) ∈ S.

Lemma 1 implies that every antimatroidal point set is a union of rectangles built
on each pair of non-comparable points.

Theorem 1. [7] A set of points S in the digital plane Z
2 is an antimatroidal

point set if and only if it is an orthogonally convex N4-connected set that is
bounded by two monotone increasing N4-paths between (0, 0) and (xmax, ymax).
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To describe these two monotone increasing N4-paths between (0, 0) and
(xmax, ymax) we introduce the following notions.

A point A in set S is called an interior point in S if N8(A) ∈ S. A point in S
which is not an interior point is called a boundary point. All boundary points of
S constitute the boundary of S. We can see an antimatroidal point set with its
boundary in Figure 2.
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B0 B1 B4

B8

B18 = (xmax, ymax)

B10

Fig. 2. A boundary of an antimatroidal point set

Since antimatroidal sets in the plane are closed under union and under inter-
section, there are six types of boundary points that we divide into two sets –
lower and upper boundary:

Blower = {(x, y) ∈ S : (x + 1, y) /∈ S ∨ (x, y − 1) /∈ S ∨ (x + 1, y − 1) /∈ S}
Bupper = {(x, y) ∈ S : (x− 1, y) /∈ S ∨ (x, y + 1) /∈ S ∨ (x− 1, y + 1) /∈ S}
Note, that (0, 0) ∈ Blower ∩ Bupper , but it is possible that Blower ∩ Bupper

includes other points. For example, the point B10 in Figure 2 belongs to both
the lower and upper boundaries.

Lemma 2. [7] The boundaries Blower and Bupper are monotone increasing N4-
paths between (0, 0) and (xmax, ymax) that bound an antimatroidal point set.

Corollary 1. Any antimatroidal point set S may be represented by its boundary
in the following form:

S = Blower ∨ Bupper = {X ∪ Y : X ∈ Blower, Y ∈ Bupper}

This result shows that the convex dimension of a two-dimensional poly-
antimatroid is two. Convex dimension [10] c dim(S) of any antimatroid S is
the minimum number of maximal chains ∅ = X0 ⊂ X1 ⊂ ... ⊂ Xk = Xmax with
Xi = Xi−1 ∪ xi whose union gives the antimatroid S.

Since an antimatroidal point set is closed under union, it can be obtained as
a union of all its irreducible elements. A multiset A ∈ S is called irreducible if
A = X ∪ Y , where X, Y ∈ S, implies A = X or A = Y . It is easy to see that
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each interior point A = (x, y) ∈ S is not irreducible, since from N8(A) ∈ S it
follows that A = (x − 1, y) ∪ (x, y − 1). There exist both irreducible boundary
points (see B4 and B8 in Fig. 2) and non-irrreducible boundary points (see B18

in Fig. 2).
A particular case of the Krein-Milman theorem states that given a convex

polygon, one needs to know only the corners (extreme points) of the polygon to
recover its shape. A straightforward analogy can be made between irreducible
points and extreme points. Our observation is that the geometrical structure of
antimatroidal point sets motivates another notion of the extreme point, which
is based on the definition of extreme points in convex geometry. In the following
we define an extreme point of an antimatroidal point set S as a point X ∈ S
such that S −X is an antimatroidal point set as well.

For example, in Fig. 2 the boundary points B4 and B8 are extreme, while
the boundary points B1 and B10 are not extreme. In the general case, extreme
points do not allow us to reconstruct an antimatroidal point set. For instance,
the antimatroidal point set in Fig. 2 can not be reconstructed without the point
B10, which is not extreme.

A corner point of an antimatroidal point set S is a point (x, y) ∈ S such that
either (x, y − 1), (x + 1, y) /∈ S or (x− 1, y), (x, y + 1) /∈ S.

Now, B10 is a corner point. Clearly, the set of corner points includes the set
of extreme points. Moreover, each corner point is irreducible as well.

It easy to see that a corner point (x, y) with (x, y − 1), (x + 1, y) /∈ S belongs
to Blower, and a corner point (x, y) with (x − 1, y), (x, y + 1) /∈ S belongs to
Bupper.

We call the corner points of the first group the lower corner points, and the
corner points of the second group - the upper corner points.

Theorem 2. Any poly-antimatroid is uniquely determined by its set of corner
points.

Proof. Given a set of corner points, our intention is to reconstruct the boundaries
Blower and Bupper .

Let C1 = (x1, y1), C2 = (x2, y2), ..., CL = (xL, yL) be the sequence of lower
corner points ordered by value of x.

Consider two neighboring points Ci and Ci+1with i > 0. Let

B = min
x

max
y

(Ci, Ci+1) = (xi, yi+1),

then the monotone increasing N4-path CiBCi+1 belongs to Blower. Indeed, since
(xi+1, yi+1−1) /∈ S, by accessibility, the point (xi+1−1, yi+1) ∈ S. If xi+1−1 >
xi, then the point (xi+1−1, yi+1−1) /∈ S. If not, then there is a corner point with
x = xi+1−1, i.e., there is a corner point between Ci and Ci+1. This implies that
the point (xi+1− 1, yi+1) ∈ Blower and the point (xi+1− 2, yi+1) ∈ S. Repeating
this process, we obtain the monotone increasing N4-path BCi+1 belonging to
Blower. Hence, the monotone increasing N4-path CiB also belongs to Blower.

Note that xL = xmax. Suppose CL �= (xmax, ymax) then since Amax = (xmax,
ymax) is not a lower corner point, the point (xmax, ymax − 1) ∈ S. So, there is
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a maximal k for which a point (xmax, ymax − k) ∈ S. Then, this point is the
last lower corner point, i.e., it is the point CL. Hence the monotone increasing
N4-path CLAmax is the last segment of the lower boundary.

Similarly, if C1 �= (0, 0) then the monotone increasing N4-path (0, 0)C1 com-
pletes the building of the lower boundary.

In the same way the set of upper corner points determines the Bupper .

The boundary and corner points of any antimatroidal point set may be found
with the use of the Upper and Lower boundary tracing algorithms.

Algorithm 3. Upper boundary tracing algorithm

1. i := 0; j := 0; x := xmax; y := ymax;
2. Bi := (x, y);
3. do

3.1 if (x− 1, y) ∈ S then x := x− 1
else

j := j + 1;
Cj := (x, y);
y := y − 1;

3.2 i := i + 1;
3.3 Bi := (x, y);

until Bi = (0, 0)
4. Return the sequence B = Bi, Bi−1, ..., B0

and the sequence C = Cj , Cj−1, ..., C1.

It is easy to check that Algorithm 3 returns a monotone increasing N4-
path B that passes only over the upper boundary points from Bupper. Since
each upper corner point (x, y) ∈ Bupper and characterizes by the fact that
(x − 1, y) /∈ S, the sequence C is the set of all upper corner points without
the point (0, 0). To verify if (0, 0) is an upper corner point it remains to check
if Bi−1 = (1, 0).

The Lower boundary tracing algorithm differs from Algorithm 3 in the search
order only: (y, x) instead of (x, y). Step 3.1 of Algorithm 3 reads as follows:

3.1 if (x, y − 1) ∈ S then y := y − 1, else x := x− 1.

Correspondingly, the Lower boundary tracing algorithm returns the lower
boundary of antimatroidal point sets and the set of lower corner points.

3 Recognition of Corner Points

We present a scheme of the algorithm that for a given set of points decides if
it is a set of corner points for some antimatroidal set. If there exists a proper
antimatroidal point set, then the algorithm divides the points of the given set
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into two chains: the lower corner points and the upper corner points. Now the
proof of Theorem 2 allows reconstruction of boundaries of a proper antimatroidal
point set.

The algorithm is based on the following observations.

1. Let C1 = (x1, y1), C2 = (x2, y2), ..., CL = (xL, yL) be the sequence of lower
corner points ordered by value of x, then y1 = 0. Similarly, if C1 = (x1, y1),
C2 = (x2, y2), ..., CU = (xU , yU ) is the sequence of upper corner points or-
dered by value of x, then x1 = 0.

2. The last lower corner point CL and the last upper corner point CU are
different, while (xL ≥ xU ) and (yL ≤ yU ).

Let C1 = (x1, y1), C2 = (x2, y2), ..., Cn = (xn, yn) be an {x, y}-lexicographical
order of the sequence of all corner points.

3. Let C1 = (x1, y1), C2 = (x2, y2), ..., Ck = (xk, yk) be k first points of the
ordered sequence of all corner points, Ci1 , Ci2 , ..., CiL be a subsequence of
lower corner points, and Cj1 , Cj2 , ..., CjU be a subsequence of upper corner
points. Then xk+1 > xjU , and if yk+1 > yjU , then Ck+1 ∈ Bupper .

4. Let i < j and (xi, yi), (xj , yj) be two neighboring lower corner points. If
(xm, ym) is the last upper corner point with x-coordinate not exceeding xi,
then ym ≥ yj.

Algorithm 4. Corner points recognition

Input: C=(x1, y1), (x2, y2), ..., (xn, yn) be an {x, y}-lexicographical order of
points in Z

2.
Output: if C is the set of corner points of some antimatroidal point set, the

algorithm returns the ordered sequences of lower corner points and upper corner
points, otherwise it reports on the negative result.

1. Initialization of two stacks S upper and S lower.
2. Based on Observation 1 we check the first corner point:

if it is a lower corner point we put it to S lower
and the second corner point have to be an upper corner point;

if it is an upper corner point we put it to S upper;
otherwise the algorithm returns the negative result.

3. Based on Observations 3 we check each next point
whether it is a corner point, and what boundary it belongs to.
If it is not an upper corner point we check it based on Observation 4
whether it is a lower corner point.

Otherwise the algorithm returns the negative result.
4. We check two last points CL and CU in accordance

with the condition of Observation 2.

Consider the complexity of Algorithm 4. On each step we check the next
point, but verification of observation 4 involves traversing the stack S upper,
i.e., it requires O(n) time. Thus the overall complexity of Algorithm 4 is O(n2).
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4 Conclusion

In this paper we have emphasized the importance of the two-dimensional case
as a first step in understanding the geometrical structure of poly-antimatroids.
Some progress has been made, but we would like to study in more detail both a
geometrical structure and an algorithmic description of three-dimensional anti-
matroidal point sets.
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Abstract. The notion of tree projection provides a natural generalization for var-
ious structural decomposition methods, which have been proposed in the litera-
ture in order to single out classes of nearly-acyclic (hyper)graphs. In this paper,
the mathematical properties of the notion of tree projection are surveyed, and the
complexity of the basic tree projection problem (of deciding the existence of a
tree projection) is pinpointed. In more details, a game-theoretic characterization
(in terms of the Robber and Captain game [15]) for tree projections is described,
which yields a simple argument for the membership in NP of the tree projection
problem. Eventually, the main ideas proposed in [14] and underlying the proof of
NP-hardness of the tree projection problem are discussed.

Keywords: hypergraphs, tree projections, computational complexity.

1 Introduction

Many NP-hard problems in different application areas, ranging, e.g., from AI [19] and
Database Theory [4] to Game theory [6], are known to be efficiently solvable when
restricted to instances whose underlying structures can be modeled via acyclic graphs
or hypergraphs. Indeed, on these kinds of instances, solutions can usually be computed
via dynamic programming, by incrementally processing the acyclic (hyper)graph, ac-
cording to some of its topological orderings.

Unfortunately, structures arising from real applications are hardly precisely acyclic.
Yet, they are often not very intricate and, in fact, tend to exhibit only some limited
degree of cyclicity, which suffices to retain most of the nice properties of acyclic struc-
tures. Therefore, several efforts have been made to investigate invariants that are best
suited to identify nearly-acyclic graph/hypergraphs, leading to the definition of a num-
ber of so-called structural decomposition methods. These methods aim at transforming
a given cyclic (hyper)graph into an acyclic one, by organizing its edges or its nodes
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Fig. 1. A Tree Projection Ha of H1 with respect H2; e.g., {C, D} ⊆ {A, B, C, D} ⊆
{A, B, C, D, H}

into a polynomial number of clusters, and by suitably arranging these clusters as a tree,
called decomposition tree. The original problem instance can then be evaluated over
the decomposition tree, with a cost that is usually exponential in the cardinality of the
largest cluster, also called width of the decomposition.

In fact, a number of powerful decomposition methods have been proposed for hy-
pergraphs, such as the hypertree decomposition [12], the generalized hypertree decom-
position [13], and the fractional hypertree decomposition [17]. By abstracting from the
peculiarities of the various proposals, it has been observed that decompositions com-
puted according to any of the methods above can, indeed, be viewed as solutions to a
more general kind of problem, known as the tree projection problem: Given a pair of
hypergraphs (H1,H2), a tree projection of H1 w.r.t. H2 is an acyclic hypergraph Ha

such that each hyperedge of H1 is contained in some hyperedge of Ha, that is in its
turn contained in a hyperedge of H2, which is called the resource hypergraph—see,
Figure 1 for an illustration.

The importance of tree projections for database theory is well known since many
years [11,22]. For instance, it has been shown that if a (natural-join) query is answered
by a database program (consisting of joins, semijoins, and projections), then this pro-
gram induces a tree projection of the original query with respect to the resource hyper-
graph consisting of all relations (schemas) computed by the program. And, vice versa, if
there is a tree projection then the query may be correctly answered by the program com-
puting such resources, suitably augmented with a linear number of semijoins [11]. Note
that this result considers programs that are independent of the database size. Whether it
holds or not for arbitrary programs (possibly with cycles) is an intriguing long-standing
open question.

Notwithstanding its interest, many aspects of tree projections were obscure for long
time, and some are still unknown, at the moment. In particular, the precise complexity of
deciding the existence of a tree projection was not known. Neither there existed a game-
theoretic characterization comparable to the robber-and-cops or robber-and-marshals
game for tree decompositions and hypertree decompositions, respectively.
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In this paper, we focus on the latter questions about tree projections. In more de-
tails, we describe a game-theoretic characterization (in terms of the Robber and Captain
game) for tree projections, which has recently been presented in [15]. This characteriza-
tion provides also a simple argument to show that the tree projection problem is actually
in NP. In addition, the main ideas underlying the proof of intractability (NP-hardness)
in [14] are also overviewed, to complete the complexity picture. We believe that these
recent contributions may be very helpful for proving further results on tree projections,
possibly sheding some light on some aspects that are still obscure, and may be relevant
for applications in database theory and other related fields.

2 Preliminaries

Hypergraphs and Acyclicity. A hypergraph H is a pair (V, H), where V is a finite
set of nodes and H is a set of hyperedges such that, for each h ∈ H , h ⊆ V . For the
sake of clarity, we always denote V and H by N (H) and E(H), respectively. For any
set of nodes X ⊆ V , the sub-hypergraph ofH induced by X is the hypergraph (X, H ′)
where H ′ = {h ∩X | h ∈ H}.

A hypergraphH is acyclic iff it has a join tree [4]. A join tree JT (H) for a hypergraph
H is a tree whose vertices are the hyperedges of H such that, whenever the same node
X ∈ V occurs in two hyperedges h1 and h2 of H, then h1 and h2 are connected in
JT (H), and X occurs in each vertex on the unique path linking h1 and h2 in JT (H).

(Generalized) Hypertree Decomposition. A hypertree for a hypergraphH is a triple
〈T, χ, λ〉, where T = (N, E) is a rooted tree, and χ and λ are labeling functions which
associate each vertex p ∈ N with two sets χ(p) ⊆ N (H) and λ(p) ⊆ E(H). If T ′ =
(N ′, E′) is a subtree of T , we define χ(T ′) =

⋃

v∈N ′ χ(v). In the following, for any
rooted tree T , we denote the set of vertices N of T by vertices(T ), and the root of T
by root(T ). Moreover, for any p ∈ N , Tp denotes the subtree of T rooted at p.

A generalized hypertree decomposition of a hypergraph H is a hypertree HD =
〈T, χ, λ〉 for H such that: (1) for each edge h ∈ E(H), there exists p ∈ vertices(T )
such that h ⊆ χ(p); (2) for each node Y ∈ N (H), the set {p ∈ vertices(T ) |
Y ∈ χ(p)} induces a (connected) subtree of T ; and (3) for each p ∈ vertices(T ),
χ(p) ⊆ N (λ(p)). The width of a generalized hypertree decomposition 〈T, χ, λ〉 is
maxp∈vertices(T )|λ(p)|. The generalized hypertree width ghw(H) of H is the mini-
mum width over all its generalized hypertree decompositions.

A hypertree decomposition [12] of H is a generalized hypertree decomposition
HD = 〈T, χ, λ〉 where: (4) for each p ∈ vertices(T ), N (λ(p)) ∩ χ(Tp) ⊆ χ(p).
The hypertree width hw(H) of H is the minimum width over all its hypertree decom-
positions. Note that, for any hypergraph H, it is the case that ghw(H) ≤ hw(H) ≤
3× ghw(H) + 1 [3]. Moreover, for any fixed natural number k > 0, deciding whether
hw(H) ≤ k is feasible in polynomial time (and, actually, is highly-parallelizable) [12],
while deciding whether ghw(H) ≤ k is NP-complete (for k > 2) [14].

Tree Projections. For two hypergraphs H1 and H2 over the same set of nodes, we
write H1 ≤ H2 iff each hyperedge of H1 is contained in some hyperedge of H2. Let
H1 ≤ H2; then, a tree projection (short: TP) of H1 with respect to H2 is an acyclic
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hypergraphHa such thatH1 ≤ Ha ≤ H2. Whenever such a hypergraphHa exists, we
say that the pair of hypergraphs (H1,H2) has a TP. The problem of deciding whether
a pair of hypergraphs has a TP is called the tree projection problem, and it has recently
been proven to be NP-complete [14].

Note that the notion of tree projection is more general than every structural de-
composition method. For instance, consider the generalized hypertree decomposition
approach: given a hypergraphH and a natural number k > 0, letHk denote the hyper-
graph over the same set of nodes asH, and whose set of hyperedges is given by all possi-
ble unions of k hyperedges inH, i.e., E(Hk) = {h1∪h2∪· · ·∪hk | {h1, h2, . . . , hk} ⊆
E(H)}. Then, it is well-known and easy to see that H has generalized hypertree width
at most k if and only if there is a TP ofH with respect to Hk.

Similarly, for fractional hypertree decomposition (the most general known decompo-
sition approach) [17], we may define a hypergraphHfk over the same set of nodes asH,
and whose set of hyperedges is given by all possible unions of hyperedges inH having
fractional width at most k, i.e., E(Hfk ) = {⋃h∈H h | H ⊆ E(H) and fw(H) ≤ k}.
Again, it is easy to see that H has fractional hypertree width at most k iff there is a TP
ofH with respect toHfk.

3 The Robber and Captain Game

In this section, we overview the game-theoretic characterization of tree projections,
recently introduced in [15]. This characterization is based on the Robber and Captain
game that is played on a pair of hypergraphs (H1,H2) over the same set of vertices
N (H1) = N (H2) = V , by a Robber and a Captain controlling some squads of cops,
in charge of the surveillance of a number of strategic targets. The Robber stands on
a vertex and can run at great speed along the hyperedges of H1; however, he is not
permitted to run trough a vertex that is controlled by a cop. Each move of the Captain
involves one squad of cops, which is encoded as a hyperedge h ∈ E(H2). The Captain
may ask any cops in the squad h to run in action, as long as they occupy vertices that
are currently reachable by the Robber, thereby blocking an escape path for the Robber.
Thus, “second-lines” cops cannot be activated by the Captain. Note that the Robber
is fast and may see cops that are entering in action. Therefore, while cops move, the
Robber may run trough those positions that are left by cops or not yet occupied. The
goal of the Captain is to place a cop on the vertex occupied by the Robber, while the
Robber tries to avoid her capture.

For comparison, observe that this game is somewhere between the Robber and Mar-
shals game of [13], where the marshals occupy a full hyperedge at each move, and the
Robber and Cops game of [23], where each cop stands on a vertex and thus, if there are
enough cops, any subset of any hyperedge can be blocked at each move. Instead, the
Captain cannot employ “second-lines” cops, but only cops in charge of positions under
possible Robber attacks.

To define the Robber and Captain game more formally, we need some notation. Let
V and W two sets of nodes, and X, Y ∈ V . Then, X is called [V ]-adjacent to Y if
there exists a hyperedge h1 ∈ E(H1) such that {X, Y } ⊆ (h1 − V ). Thus, here and
in the following, the prefix [V ]- indicates a graph property that holds after removing V .
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A [V ]-path from X to Y is a sequence X = X0, . . . , X� = Y of nodes such that Xi

is [V ]-adjacent to Xi+1, for each i ∈ [0...�-1]. We say that X [V ]-touches Y if X is
[∅]-adjacent to Z ∈ V , and there is a [V ]-path from Z to Y ; similarly, X [V ]-touches
the set W if X [V ]-touches some node Y ∈ W . We say that W is [V ]-connected if for
all X, Y ∈ W there is a [V ]-path from X to Y . A [V ]-component of H1 is a maximal
[V ]-connected non-empty set of nodes U ⊆ (V − V ). For any [V ]-component C, let
E(C) = {h ∈ E(H1) | h∩C 
= ∅}, and for a set of hyperedges H ⊆ E(H1), letN (H)
denote the set of nodes occurring in H , that is N (H) =

⋃

h∈H h.

Definition 1 (R&C Game). The Robber and Captain game on (H1,H2) (short:
R&C(H1,H2) game) is formalized as follows. A position for the Captain is a set M of
vertices such that M ⊆ h2, for some hyperedge (squad) h2 ∈ E(H2). A configuration
is a pair (M, v), where M is a position for the Captain, and v ∈ V is the vertex where
the Robber stands. The initial configuration is (∅, v0), where v0 is a vertex arbitrarily
picked by the Robber.

Let (Mi, vi) be the configuration at step i. This is a capture configuration, where the
Captain wins, if vi ∈ Mi. Otherwise, the Captain activates the cops in a novel position
Mi+1 such that: for every X ∈ Mi+1, the node X [Mi]-touches vi; afterwards, the
Robber selects a node vi+1 such that there is a [Mi ∩Mi+1]-path from vi to vi+1. If
the game continues forever, the Robber wins. �

Note that it does not make sense for the Captain to assume that the Robber is on a
particular vertex, given the ability of the Robber of changing her positions before the
cops land. Thus, given a configuration (Mi, vi), we may assume w.l.o.g. that the next
Captain’s move is only determined by the [Mi]-component that contains vi, rather than
by vi itself. Accordingly, positions can equivalently be written as (Mi, Ci), where Ci is
an [Mi]-component. In this case, capture configurations have the form (M, ∅), and the
initial configuration has the form (∅,V).

Definition 2 (Strategies). A strategy σ (for R&C(H1,H2)) is a function σ that en-
codes the moves of the Captain, i.e., given a configuration (Mi, Ci), with Ci 
= ∅, σ
returns a position Mi+1 such that X [Mi]-touches Ci, for every X in Mi+1.

A game-tree for σ is a rooted tree T (σ) defined over configurations as fol-
lows. Its root is the configuration (∅,V). Let (Mi, Ci) be a node in T (σ) and let
Mi+1 = σ(Mi, Ci). Then, (Mi, Ci) contains exactly one child (Mi+1, Ci+1), for each
[Mi+1]-component Ci+1 such that Ci ∪Ci+1 is [Mi ∩Mi+1]-connected; we call such
a Ci+1 an [(Mi, Ci), Mi+1]-option for the Robber. No further edge or node is in T (σ).

Then, σ is said a winning strategy if T (σ) is a finite tree. Moreover, define
a position Mi+1 to be a monotone move of the Captain in (Mi, Ci), if for each
[(Mi, Ci), Mi+1]-option Ci+1, Ci+1 ⊆ Ci. We say that σ is a monotone strategy if
it only involves monotone moves. �

It has been observed in [15] that tree projections enjoy two fundamental properties,
which are briefly discussed below.

Monotonicity. Firstly, there is no incentive for the Captain to play a strategy σ that
is not monotone, since it is always possible for her to construct and play a monotone
strategy σ′ that is equivalent to σ, i.e., such that σ′ is winning if and only if σ is winning.
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This crucial property conceptually relates this game with the Robber and Cops game
characterizing the treewidth [23], and differentiates it from most of the hypergraph-
based games in the literature, in particular, from the Robber and Marshals game, whose
monotone strategies characterize hypertree decompositions [13], while non-monotone
strategies do not correspond with valid decompositions [1].

Theorem 1 ([15]). On the R&C(H1,H2) game, the existence of a winning strategy
implies the existences of a monotone winning strategy.

Normal Forms. The second important property pertains minimal tree projections. For-
mally, a tree projection Ha of H1 with respect to H2 is minimal if there is no tree
projection H′

a 
= Ha where for each hyperedge h′ ∈ E(H′
a) − E(Ha), a hyperedge

h ∈ E(Ha) − E(H′
a) exists with h′ ⊆ h. In fact, it turns out that minimal tree projec-

tions enjoy some properties that are usually required for normal form decompositions
in various notions of structural decomposition methods (see, e.g., [12]). In particular,
there is a one-to-one correspondence between components and subtrees of the join tree.

For any hyperedge h ∈ E(H), let JT [h] denote the rooted tree obtained by rooting
JT at the vertex h, let JT [h]h′ denote the subtree of JT [h] rooted at h′ ∈ E(H), and let
N (JT [h]h′) denote the set of nodes occurring in the vertices of JT [h]h′ .

Theorem 2 ([15]). LetH be a minimal TP for (H1,H2), and let h ∈ E(H). Then, there
is a join tree JT forH having the following properties:

(subtrees �→ components). For each pair hr, hs ∈ E(H) with hs child of hr in JT [h],
there is exactly one [hr]-component comp↑(hs) in H with N (JT [h]hs) = Cr ∪
(hs ∩ hr). In addition, hs ∩ comp↑(hs) 
= ∅ and hs ⊆ N (E(comp↑(hs))).

(components �→ subtrees). For each vertex hr in JT [h] and for each [hr]-component
Cr in H such that Cr ⊆ comp↑(hr) (with comp↑(h) ≡ N (H)), there is exactly
one child hs of hr such that: N (JT [h]hs) = Cr ∪ (hs ∩ hr), hs ∩ Cr 
= ∅, and
hs ⊆ Fr(Cr).

3.1 Tree Projections and the C&R Game

The two properties above have been used in [15] to show that the Captain and Robber
game R&C(H1,H2) precisely characterizes the tree projection problem (H1,H2), in
the sense that a winning strategy for R&C(H1,H2) exists if and only if (H1,H2) has a
TP. Hence, any decomposition technique that can be restated in terms of tree projections
is in turn characterized by R&C games.

Theorem 3 ([15]). A winning strategy exists in R&C(H1,H2) iff (H1,H2) has a TP.

Proof (Idea). (only-if part) Let σ be a winning strategy. W.l.o.g., σ can be assumed
to be monotone (cf. Theorem 1). Based on σ we can build a hypergraphHa(σ), where
for each vertex (M, C) in T (σ), E(Ha(σ)) contains the hyperedge M ; and, no further
hyperedge is in E(Ha(σ)). Note that, by construction,Ha(σ) ≤ H2, since each position
M is such that M ⊆ h2 for some hyperedge h2 ∈ E(H2).
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Let h1 be a hyperedge in E(H1). Since σ is a winning strategy, we may conclude
that the Captain has necessarily covered in a complete form h1 in some position. Thus,
H1 ≤ Ha(σ). Eventually, the fact thatHa(σ) is a tree projection follows after observ-
ing that by constructionHa(σ) is acyclic.

(if-part) W.l.o.g., let Ha be a minimal tree projection. Let us build a strategy σ as
follows. Let JT [h] be a join tree for Ha rooted at an arbitrary hyperedge h, satisfying
conditions in Theorem 2. The Captain initially selects the hyperedge h that is the root
of JT [h], and at any times moves on the hyperedges in Ha. Let h0 = ∅ and C0 =
N (H1). Then, given the current position hi, for each [(hi−1, Ci−1), hi]-option Ci in
H1, σ(hi, Ci) coincides with the root of JT [hi]Ci . Eventually, one may observe that σ
is indeed a winning strategy, which in addition is monotone. In particular, this is firstly
based on observing that on minimal tree projections, for each hyperedge h ∈ E(Ha),
C is a [h]-component inHa ⇔ C is a [h]-component inH1. �

4 On the Complexity of the Tree Projection Problem

The complexity of the tree projection problem was raised by Goodman and Shmueli in
1984, and mentioned as an open problem in many papers [10,11,18,22].

4.1 Membership in NP

Consider the problem of deciding the existence of a tree projection of H1 w.r.t. H2.
Observe that, in principle, every subset of any edge of H2 may belong to the acyclic
hypergraph Ha we are looking for. Therefore Ha may well consist of an exponential
number of hyperedges (w.r.t. to the size ofH1 andH2).

However, recall the game-theoretic characterization of Theorem 3, and the fact that
on such a game the existence of a winning strategy implies the existences of a mono-
tone winning strategy in normal form (see Theorem 1 and Theorem 2). It is easy to
conclude from these results that the existence of a tree projection entails the existence
of a tree projection with polynomially many hyperedges (which in fact corresponds to
an efficient winning strategy).

Theorem 4. The tree projection problem is in NP.

Proof. Let H1 andH2 be two hypergraphs. A polynomial-time non-deterministic Tur-
ing machine with (H1,H2) as its input may just guess a hypergraphHa, and then check
that it is a tree projection ofH1 w.r.t.H2. Since the latter task is feasible in determinis-
tic polynomial-time, and from the discussion above a tree projection with polynomially
many hyperedges always exists, this machine correctly solves the problem. �

4.2 NP-Hardness

The hardness of the tree projection problem was recently pinpointed in [14]. In this
section, we precisely discuss the main ideas underlying the proof in [14], which relies
on a reduction from 3SAT. Let us illustrate this reduction, by preliminary introducing
some useful notation.
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Notation and Reduction. For n, m ≥ 1, we denote {1, . . . , n}×{1, . . . , m} by [n; m].
For each p ∈ [n; m], we write p ⊕ 1 for the successor of p in the usual lexicographic
order on pairs, i.e. the order (1, 1), . . . , (1, m), (2, 1), . . . , (n, 1), . . . , (n, m). We re-
fer to the first element of such a set, i.e. to (1, 1), by min and the maximum element
(n, m) by max. Then, [n; m]− denotes the set [n; m] without the maximal element, i.e.
[n; m]− = [n; m] \ {max}.

Let ϕ =
m∧

j=1

(L1
j ∨ L2

j ∨ L3
j) be a 3SAT formula with m clauses and variables

x1, . . . , xn. We construct two hypergraphsH1 = (V, E1) and H2 = (V, E2) such that
H1 has a tree projection with respect toH2 if and only if ϕ is satisfiable. The vertex set
ofH1 andH2 is as follows.

V = {yi, y
′
i | i ≤ n} ∪ {ap | p ∈ [2n + 3; m]}

We use the following notation:

Y = {y1, . . . , yn} Yi = Y − {yi}, for each i ≤ n
Y ′ = {y′

1, . . . , y
′
n} Y ′

i = Y ′ − {y′
i}, for each i ≤ n

For p = (i, j), Lk
p denotes (a copy of) the literal Lk

i,j . The hyperedges ofH1 andH2

are listed in Table 1.

Table 1. The hyperedge sets in the construction of H1 and H2. Here, ep is in E1, ∀
p ∈ [2n + 3; m]−.

E1 E2

e = {amin} ∪ Y f = {amin} ∪ Y ∪ Y ′

ei = {yi, y
′
i}, i ≤ n

ep = {ap, ap⊕1}; fk
p =

{

{ap, ap⊕1} ∪ Y ∪ Y ′
l , if p ∈ [2n + 3; m]−, Lk

p = xl

{ap, ap⊕1} ∪ Yl ∪ Y ′, if p ∈ [2n + 3; m]−, Lk
p = ¬xl

e′ = {amax} ∪ Y ′ f ′ = {amax} ∪ Y ∪ Y ′

Proof Idea. The basic idea of the proof is as follows. The join tree T for the possible
acyclic hypergraphHa betweenH1 andH2 is intended to be a path consisting of 2n+3
subpaths each of length m, corresponding to 2n + 3 copies of the sequence of m lit-
erals. We make use of elements y1, . . . , yn (corresponding to positive assignments to
x1, . . . , xn) and y′

1, . . . , y
′
n (corresponding to negative assignments to x1, . . . , xn). The

first node of the path should contain the elements y1, . . . , yn, the last node y′
1, . . . , y

′
n.

Furthermore, the hyperedges ei ensure that each yi has to co-occur with y′
i in some

node. Thus, each node on the path has to contain, for each i one of yi or y′
i. How-

ever, the nodes will be able to contain such a variable only if it does not contradict
the corresponding literal. E.g., a node corresponding to L5 can not contain y3 if ¬x3

(and not x3) occurs in L5. Thus, such a join tree will exist if and only if ϕ is satisfiable.
Armed with the intuitions above, we can now illustrate the main steps of the proof.

To show that a tree projection exists if ϕ is satisfiable let us define the set Z as
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Z = {yi | ρ(xi) = 1} ∪ {y′
i | ρ(xi) = 0}, where ρ is a satisfying truth assignment for

ϕ. LetHa be a hypergraph with the following hyperedges:

– {amin} ∪ Y ∪ Z
– {ap, ap⊕1} ∪ Z , for each p ∈ [2n + 3; m]−, and
– {amax} ∪ Y ′ ∪ Z .

One can verify that the hypergraph Ha has a join tree, thus it is acyclic and Ha is
also a tree projection ofH1 w.r.t.H2.

For the other direction, we have to show that if there exists a solution for the tree
projection problem then the formula ϕ is satisfiable. In particular:

1. Since the vertex amin is only contained in the hyperedge e ofH1 and f ofH2, any
solution must have a hyperedge ea, which is “between” e and f , i.e. e ⊆ ea ⊆ f .
(Similarly, amax is only contained in the hyperedge e′ of H1 and f ′ of H2, so any
solution must have a hyperedge, which is “between” e′ and f ′.)

2. Any join tree of Ha, if exists, must contain a path between two specific nodes,
labeled with the hyperedges mentioned above.

3. Using the connectedness condition of the join tree one can derive a satisfying truth
assignment for ϕ.

Putting it all together, the following can be proven.

Theorem 5 ([14]). The tree projection problem is NP-hard.

5 Conclusion

In this paper, we have overviewed some recent results on tree projections, namely, the
game theoretic characterization discussed in [15] and the NP-completeness of the tree
projection problem shown in [14].

As far as the complexity analysis is concerned, we remark here that the tree pro-
jection problem has some similarity to the graph and hypergraph sandwich problems
surveyed in [8,9]. However, note that the latter definitions are slightly different from the
problem considered in this paper. In particular, the definition of the acyclic hypergraph
sandwich problem assumes that the three hypergraphsH1, H2, and Ha have the same
number m of hyperedges, which may be labeled by a set of indices {1, . . . , m} such
that ei(H1) ⊆ ei(Ha) ⊆ ei(H2), for each i ∈ {1, ..., m}, whereas no such a restric-
tion exists in the tree projection problem. In fact, it is still open whether the acyclic
hypergraph sandwich problem is NP-hard or not.
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