
USING NEURAL NETWORKS AND GENETIC ALGORITHMS AS
HEURISTICS FOR NP-COMPLETE PROBLEMS

by

William McDuff Spears
A Thesis Submitted to the

Faculty of the Graduate School
of

George Mason University
in Partial Fulfillment of

the Requirements for the Degree
of

Masters of Science in
Computer Science

Committee:

________________________________ Director

________________________________ Department Chairperson

________________________________ Dean of the Graduate School

Date: __________________

Fall 1989

George Mason University

Fairfax, Virginia

Using Neural Networks and Genetic Algorithms as
Heuristics for NP-Complete Problems

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science at George Mason University.

By

William McDuff Spears
Bachelor of Arts in Mathematics

Johns Hopkins University, May 1984.

Director: Kenneth A. De Jong
Associate Professor

Department of Computer Science

Fall 1989
George Mason University

Fairfax, Virginia

ii

Acknowledgements

There are a number of people who deserve thanks for making this thesis pos-

sible. I especially wish to thank my parents, for encouraging and supporting my

education throughout my life; Ken De Jong, for suggesting this project and for his

sound advice; my committee members, Henry Hamburger and Eugene Norris, for

their time and interest; and my friend Diana Gordon for the numerous hours she

spent correcting every aspect of my work. Finally, I wish to thank Frank Pipitone,

Dan Hoey and the Machine Learning Group at the Naval Research Laboratory,

for many valuable discussions. Any remaining flaws are the sole responsibility of

the author.

iii

Table of Contents

Introduction ... 1

Genetic Algorithms ... 4

Overview ... 4

Representation .. 5

Genetic Operators ... 6

Evaluation Function .. 7

Selection .. 8

Analysis ... 9

Applications .. 10

Domain Knowledge .. 11

Implementation/Connectionism ... 12

Summary ... 13

GAs and SAT .. 13

Representation/Choosing a Payoff Function ... 13

Possible Improvements to the Payoff Function ... 18

Results ... 19

Neural Networks ... 27

Overview ... 28

NNs and SAT .. 32

Representation/System of Constraints .. 32

Paradigm I ... 35

Problems with Paradigm I .. 38

Paradigm II .. 42

Results ... 45

NP-Completeness ... 49

Hamiltonian Circuit Problems ... 49

Results ... 51

Summary and Future Work .. 58

iii

iv

List of Tables

Table page

1. Sample Payoff Function ... 15

2. Violation of Truth Invariance .. 17

3. Performance of GAs on the Two Peak Problems ... 20

4. Performance of GAs on the False Peak Problems .. 22

5. Energy of Satisfied System .. 40

6. Energy of Non-Satisfied System .. 40

7. Performance of NNs on the Two Peak Problems ... 46

8. Performance of NNs on the False Peak Problems .. 47

9: Performance of GAs on HC Problems .. 53

10: Performance of NNs on HC Problems .. 55

11: GA Performance (AVEˆp, p = 1) ... 69

12: GA Performance (AVEˆp, p = 2) ... 70

13: GA Performance (AVEˆp, p = 3) ... 71

14: GA Performance (AVEˆp, p = 4) ... 72

15: GA Performance (AVEˆp, p = 5) ... 73

16: NN Performance .. 74

v

List of Figures

Figure page

1. Performance of GAs on the Two Peak Problems ... 21

2. Performance of GAs on the False Peak Problems .. 23

3. Performance of GAs using AVEˆp .. 24

4. Summary Performance of GAs using AVEˆ2 ... 25

5. Example Parse Tree .. 33

6. Performance of NN on the Two Peak Problems ... 47

7. Performance of NN on the False Peak Problems .. 48

8. Sample Hamiltonian Circuit Problem ... 50

9. Another Hamiltonian Circuit Problem .. 51

10. Graph of HC7 Payoff Function for the GA ... 53

11. Performance of GAs on the HC Problems .. 54

12. Performance of GAs using AVEˆp .. 55

13. Comparison of GAs and NNs on the HC Problems 56

Abstract

USING NEURAL NETWORKS AND GENETIC ALGORITHMS

AS HEURISTICS FOR NP-COMPLETE PROBLEMS

William M. Spears, M.S.

George Mason University, 1989

Thesis Director: Dr. Kenneth A. De Jong

Paradigms for using neural networks (NNs) and genetic algorithms (GAs) to

heuristically solve boolean satisfiability (SAT) problems are presented. Results

are presented for two-peak and false-peak SAT problems. Since SAT is NP-

Complete, any other NP-Complete problem can be transformed into an equivalent

SAT problem in polynomial time, and solved via either paradigm. This technique

is illustrated for hamiltonian circuit (HC) problems.

INTRODUCTION

One approach to discussing and comparing AI problem solving methods is to

categorize them using the terms strong or weak. Generally, a weak method is one

that has the property of wide applicability but, because it makes few assumptions

about the problem domain, can suffer from combinatorially explosive solution

costs when scaling to larger problems. State space search algorithms and random

search are familiar examples of weak methods.

Frequently, scaling problems can be avoided by making sufficiently strong

assumptions about the problem domain and exploiting these assumptions in the

problem solving method. Many expert systems fall into this category in that they

require and use large amounts of domain- and problem-specific knowledge in

order to efficiently find solutions in enormously complex spaces. The difficulty

with strong methods, of course, is their limited domain of applicability leading,

generally, to significant redesign even when applying them to related problems.

These characterizations tend to make one feel trapped in the sense that one

has to give up significant performance to achieve generality, and vice versa.

However, it is becoming increasingly clear that there are two methodologies that

fall in between these two extremes and offer in similar ways the possibility of

powerful, yet general problem solving methods. These two methods are neural

networks (NNs) and genetic algorithms (GAs).

Neural networks and genetic algorithms are similar in the sense that they

achieve both power and generality by demanding that problems be mapped into

their own particular representation in order to be solved. If a fairly natural map-

ping exists, impressive robust performance results. On the other hand, if the map-

ping is awkward and strained, both approaches behave much like the more tradi-

tional weak methods, yielding mediocre, unsatisfying results when scaling.

1

2

These observations suggest two general issues that deserve further study.

First, we need to understand how severe the mapping problem is. Are there large

classes of problems for which effective mappings exist? Clearly, if we have to

spend a large amount of time and effort constructing a mapping for each new

problem, we are not any better off than we would be if we used the more tradi-

tional, strong methods. The second major issue involves achieving a better under-

standing of the relationship between NNs and GAs. Are the representation issues

and/or performance characteristics significantly different? Are there classes of

problems handled much more effectively by one approach than the other?

This thesis is a first step in exploring these issues. It focuses on the applica-

tion of GAs and NNs to a large, well-known class of combinatorially explosive

problems: NP-complete problems. NP-Complete problems are problems that are

not currently solvable in polynomial time. However, they are polynomially

equivalent in the sense that any NP-Complete problem can be transformed into

any other in polynomial time. Thus, if any NP-Complete problem can be solved in

polynomial time, they all can [Garey79]. An example of an NP-Complete prob-

lem is the boolean satisfiability (SAT) problem: given an arbitrary boolean

expression of n variables, does there exist an assignment to those variables such

that the expression is true? Other familiar examples include job shop scheduling,

bin packing, and traveling salesman (TSP) problems.

GAs and NNs have been used as heuristics for some NP-Complete problems

[Goldberg89, Tagliarini87]. Unfortunately, the results have been mixed because

although NP-complete problems are computationally equivalent in the complex-

ity theoretic sense, they do not appear to be equivalent at all with respect to how

well they map onto NN or GA representations. The TSP is a classic example of a

problem that does not map naturally to either NNs [Gutzmann87] or GAs [De

Jong89].

3

These observations suggest the following intriguing technique. Suppose we

are able to identify an NP-complete problem that has an effective representation

in the methodology of interest (GAs or NNs) and develop an efficient problem

solver for that particular case. Other NP-complete problems that do not have

effective representations can then be solved by transforming them into the canoni-

cal problem, solving it, and transforming the solution back to the original one.

This thesis outlines GA and NN paradigms that solve SAT problems, and

uses hamiltonian circuit (HC) problems to illustrate how either paradigm can be

used to solve other NP-Complete problems after they are transformed into

equivalent SAT problems.† The remainder of the thesis is divided into four sec-

tions. The first section discusses the GA paradigm. The second section discusses

the NN paradigm. The third section discusses the technique of solving HC prob-

lems using either paradigm after polynomial transformation into equivalent SAT

problems. The final section summarizes the thesis.

† Note, this thesis does not show that P = NP. For a discussion on P and NP problems, see
[Garey79].

4

1. GENETIC ALGORITHMS

In the book "Adaptation in Natural and Artificial Systems" [Holland75],

John Holland lays the groundwork for GAs. GAs are based on a process of nature,

namely, Darwinian evolution. In GAs, a population of individuals reproduce

according to their fitness in an environment. The population of individuals, cou-

pled with stochastic recombination operators, combine to perform an efficient

domain-independent search strategy that makes few assumptions about the search

space.

This section is divided into three subsections. First, an overview and survey

of GAs is presented. Second, the application of GAs to SAT problems is

described. The final subsection provides experimental results.

1.1. Overview

GAs consist of a population of individuals competing on a survival-of-the-

fittest basis in an environment. The algorithm proceeds in steps called genera-

tions. During each generation, a new population of individuals (the offspring) is

created from the old via application of genetic operators (crossover, mutation,

and inversion), and evaluated as solutions to a given problem (the environment).

Due to selective pressure, the population adapts to the environment over succeed-

ing generations, evolving better solutions [Goldberg89]. If the environment is a

function, GAs can be used for function optimization. In this case, each individual

in a population is a sample point in the function space.

Over the years, GAs have been subject to extensive experimentation and

theoretical analysis. The following subsections summarize important issues and

indicate where future research may lead.

5

1.1.1. Representation

Historically, an individual in a GA is represented as a bit string of some

length n. Each individual thus represents one sample point in a space of size 2n .

Analytical results are also typically based on these assumptions. Furthermore, the

bit positions are assumed to be independent and context insensitive. While certain

problems map well to such representations, many do not. Current research is

exploring strings with non-binary alphabets, variable length strings, violations of

independence, and tree representations [Bickel87].

These representations are all single-stranded in the sense that one piece of

genetic material represents an individual. Such representations are termed

haploid.† However, natural genetics makes use of double stranded chromosomes

(diploid) as well. For example, suppose an individual is represented by two bit

strings:

1010001010

0010101001

These double strands can contain different and possibly conflicting informa-

tion. In nature, dominance is the primary mechanism for conflict resolution. Sup-

posing 1 to dominate 0, the individual phenotype can be expressed as:

1010101011

Suppose the first bit represents eye color, with a 1 denoting brown eyes and

a 0 denoting blue eyes. Then the 0 is a recessive gene, expressed only if both first

bits are 0. Goldberg has shown that diploidy and dominance can be used in GAs

to improve performance over time varying environments [Goldberg87].

† We only use the haploid representation in this thesis.

6

1.1.2. Genetic Operators

The standard genetic operators are mutation, crossover, and inversion.

Mutation operates at the bit level. The population of individuals over generations

represents a vast sea of bits that can be mutated at random. As an example, con-

sider the individual:

1010101010

If the first bit is randomly chosen for mutation, the new individual is:

0010101010

Mutation rates are low, generally around one per thousand. Higher mutation

rates are usually disruptive.

Crossover operates at the individual level. It swaps portions of genetic

material between two individuals. This encourages the formation of genetic build-

ing blocks. This formation is a key to the power of the GA. As an example of

crossover, consider the two individuals:

Individual 1: 1010101010

Individual 2: 1000010000

Suppose the crossover point randomly occurs after the fifth bit.† Then each

new individual receives one half of the original individual’s genetic material:

Individual 1: 1010110000

Individual 2: 1000001010

Recent work has concentrated on improving the effectiveness of crossover

[Booker87]. Schaffer has experimented with adaptive crossover, where the GA

itself learns the good crossover points [Schaffer87]. Finally, some conjectures

about the best number of crossover points have been made and need to be exam-

ined [De Jong85].

† This is referred to as one-point crossover. n-point crossover randomly chooses n crossover
points.

7

Inversion reorders the bits within an individual. Consider the individual:

1011101010

Suppose the positions after the second and sixth bits are randomly picked.

Inverting the group of bits between those two positions yields: †

1001111010

Inversion assumes that it is possible to change the physical location of the

information on an individual without changing the functional interpretation. Evi-

dence suggests that it is of little use in function optimization contexts since the

meaning of each bit is position dependent [De Jong85]. However, in order-

independent problems, Whitley has shown it to be useful when combined with

crossover and reproductive evaluation [Whitley 87].

Genetic operators are tightly coupled with representations. Researchers are

currently examining high-level operators to work with high-level list and tree

representations. As De Jong points out, however, fundamental theorems need to

be reproved in light of the change in underlying assumptions [De Jong85]. To

date, little of this work has been done.

1.1.3. Evaluation Function

Each individual in a population has a fitness assigned by a payoff function.

This payoff function represents the environment in which the population exists.

Traditionally, these environments are relatively simple. However, many complex

problems depend on statistical sampling. In this case, the payoff functions are

approximations. Grefenstette has explored the relationship between the amount of

time spent on individual evaluations and the efficiency of the genetic algorithm.

Results show that some experiments benefited from making less accurate

† The inverted group of bits are in bold type.

8

evaluations and letting the GA run for more generations [Grefenstette85].

It is also traditional to have the payoff function return a scalar value. How-

ever, this is not always appropriate if more than one objective needs to be optim-

ized. Schaffer describes a GA that performs multiple objective optimization using

vector valued payoff functions [Schaffer85].

Until recently, the payoff functions have always measured the immediate

worth of an individual’s genetic material. However, Whitley argues that in bio-

logical systems, individuals are rated by their reproductive potential [Whitley87].

He claims that a GA using reproductive evaluation and inversion on real-valued,

order-independent feature spaces, yields better solutions more efficiently.

1.1.4. Selection

During the selection phase of the genetic algorithm, the expected number of

offspring that each individual will receive is determined, based on a relative

fitness measure. The expected value is a real number indicating an average

number of offspring that individual should receive over time. A sampling algo-

rithm is used to convert the real expected values into integer numbers of

offspring. It is important to provide consistent, accurate sampling while maintain-

ing a constant population size. Previous sampling algorithms fail to minimize bias

and spread.† Baker outlines a sampling algorithm (stochastic universal sampling)

that has zero bias and minimal spread [Baker87].

Despite the improvements in sampling, finite populations still cause stochas-

tic errors to accumulate, resulting in what researchers call premature conver-

gence. Premature convergence refers to a decrease in genetic diversity before the

† Bias refers to the absolute difference between the individual’s expected value and the
sampling probability. Spread refers to the range of possible values for the number of offspring an
individual receives [Baker87].

9

optimal solution is found. This is also referred to as the exploration vs exploita-

tion problem. Global search performs exploration. Once the space has been glo-

bally sampled, local search can attempt to exploit the information already

obtained. The problem is to maintain a good balance between exploration and

exploitation. Too much exploration may result in a loss in efficiency. Too much

exploitation may cause the system to miss good solutions. Theoretically, GAs

strike a good balance between exploration and exploitation. In practice, however,

the loss of genetic diversity represents a loss in exploration.

Recent work in GAs involves both predictions of premature convergence

and possible solutions to the problem. Baker proposes using percent involvement

as a predictor. Percent involvement is the percentage of the current population

that contributes offspring to the next generation. Sudden drops in the percentage

indicate premature convergence [Baker85]. Solutions to the premature conver-

gence problem are similar in that all solutions attempt to maintain genetic diver-

sity. Some proposed solutions use crowding factors [De Jong75], subpopulations

[Schaffer85], sharing functions [Goldberg87], improved crossover [Booker87],

selection by rank, and dynamic population size [Baker85].

1.1.5. Analysis

In a standard, fixed-length, binary string representation, each bit position

represents a first-order hyperplane in the solution space. Analysis shows that all

first-order hyperplanes are being sampled in parallel by the GA population. Furth-

ermore, higher-order hyperplanes are sampled in parallel as well, although to

lesser degrees of accuracy. The evaluation of individuals produces differential in

payoff that increases sampling in the appropriate hyperplanes. Comparison of

these sampling techniques with K-armed bandit problems shows the sampling to

be near-optimal [Holland75]. This analysis results in the fundamental theorem of

genetic algorithms that indicates a lower bound on the expected number of

10

representatives of a hyperplane in successive generations.

Recent work attempts to extend GA analysis and to define GA-Hard prob-

lems (in the sense that the GA is intentionally mislead). Bridges has given an

exact expression for the expected number of representatives of a hyperplane in

successive generations, given some simplifying assumptions [Bridges87]. Both

Goldberg and Bethke have attempted to construct deliberately misleading prob-

lems for GAs [Bethke81, Goldberg87]. Such problems turn out to be hard to con-

struct. Goldberg also extends De Jong’s Markov chain analysis of "genetic drift"

to include preferential selection (instead of random selection) [Goldberg87].

1.1.6. Applications

Early work in GA applications concentrated on N-dimensional function

optimization of numerical parameters [De Jong75]. Such work indicated that

parameter optimization was conceptually identical to optimizing parameterized

task programs. This has led to the application of GAs to searching program spaces

[Smith80]. Also, genetic algorithms have been applied to gas pipeline control

[Goldberg85], semiconductor layout [Fourman85], keyboard configuration prob-

lems [Glover87], the Prisoner’s Dilemma problem [Fujiko87], communication

link speed design [Davis87], and battle management systems control [Kuchin-

ski85].

GAs work well when the values for the parameters can be selected indepen-

dently. This implies that the solution space consists of all combinations of param-

eter values. Recent applications of GAs to NP-Complete problems (job shop

scheduling, bin packing, and the traveling salesman problem) violate the indepen-

dence assumption. In these cases, the solution space consists of all permutations

of parameter values. Such problems are considered GA-Hard in the sense that

they do not map well to the standard genetic algorithm paradigm. Without

modification, standard GAs perform poorly on permutation spaces. Current

11

research attempts to improve performance by adding domain knowledge to the

genetic algorithm.

1.1.7. Domain Knowledge

Genetic algorithms are applicable to problems where little domain

knowledge is known. However, Grefenstette points out that many opportunities

exist for incorporating problem specific heuristics into GAs [Grefenstette87]. This

knowledge can influence population initialization, evaluation, recombination

operators, and local search.

In research, populations are usually initialized randomly. This provides a

good test of the algorithm. In applications, however, reasonable solutions are

often known. Judicious seeding of the population with good solutions is often

advantageous. Care must be taken to ensure that the population is not biased

away from even better solutions.

Considerable knowledge can be incorporated into the payoff function. In

highly constrained problems, it is common to allow the payoff function to be a

heuristic routine for constructing explicit, legal solutions from individuals.

[Smith85] provides an example in which a heuristic payoff function produces

legal bin packings from individuals that represent a set of objects. In such cases,

the GAs are searching a space of constraints.

Recombination operators can also be a good source of problem specific

knowledge. For example, a heuristic crossover is used to perform apportionment

of credit at the level of genes in the traveling salesman problem [Grefenstette85].

Other examples of heuristic operators include creep [Davis87], scramble, and flip

[Smith85].

Finally, although GAs often find good solutions quickly, they are not well

suited for local search. Domain knowledge can often be used to improve the

12

search characteristics of GAs in local domains. As an example, it is known that

the optimal tour in a TSP can not cross itself. The addition of a local search

heuristic can greatly reduce the probability of a GA becoming stuck on these

local minima [Grefenstette87].

1.1.8. Implementation

Until recently, GAs have been implemented on sequential computers. This

has limited researchers to small populations, few generations, and simple payoff

functions. However, GAs are inherently parallel in the sense that each individual

in a population can be independently evaluated. This has led to parallel imple-

mentations of GAs on SIMD machines [Robertson87]. Further thought has also

indicated that subpopulations may exist on complex processors, with a GA run-

ning on each. This has resulted in GA implementations on MIMD machines [Pet-

tey87]. The theory of Punctuated Equilibria provides evolutionary support for the

MIMD implementations [Cohoon87]. In either case, nearly linear decreases in

execution time can result from the use of parallel architectures.

1.1.9. Connectionism

Recent enthusiasm for neural networks has led many researchers to combine

GAs and connectionism in some fashion. Since GAs are evolutionary in nature,

and neural networks are cognitive models, it is natural to wonder if GAs can con-

struct good neural networks [Dolan87]. It may also be possible to merge the two

paradigms [Ackley85] or to use thermodynamic operators in GAs [Sirag87]. At

this time, the work is highly speculative and ad hoc, with little theoretical

justification.

13

1.1.10. Summary

The preceding sections outline the current state of GA research and indicate

possible future research interests. The next section discusses the application of

GAs to one particular problem domain: boolean satisfiability.

1.2. GAs and SAT

In order to apply GAs to a particular problem, one must select an internal

string representation for the solution space and define an external payoff function

that assigns payoff to candidate solutions. Both components are critical to the

success/failure of the GAs on the problem of interest.

1.2.1. Representation

SAT is a good choice for a canonical NP-complete problem because it

appears to have a highly desirable GA string representation. Each individual in

the population is a binary string of length N in which the i-th bit represents the

truth value of the i-th boolean variable of the N boolean variables present in the

boolean expression. It is hard to imagine a representation much better suited for

use with GAs: it is fixed-length, binary, and context independent in the sense that

the meaning of one bit is unaffected by changing the value of other bits [De

Jong85].

1.2.2. Choosing a Payoff Function

After choosing a representation, the next step is to select an appropriate

payoff function. The simplest and most natural function assigns a payoff of 1 to a

candidate solution (string) if the values specified by that string result in the

boolean expression evaluating to true, and 0 otherwise. However, for problems

of interest, this payoff function would be 0 almost everywhere and would not sup-

port the formation of useful intermediate building blocks. Even though in the real

14

problem domain, partial solutions to SAT are not of much interest, they are criti-

cal components of a GA approach.

One approach to providing intermediate feedback would be to transform a

given boolean expression into conjunctive normal form (CNF) and define the

payoff to be the total number of top level conjuncts that evaluate to true. While

this makes some intuitive sense, one cannot in general perform such transforma-

tions in polynomial time without introducing a large number of additional

boolean variables that, in turn, combinatorially increase the size of the search

space.

An alternative would be to assign payoff to individual subexpressions in the

original expression and combine them in some way to generate a total payoff

value. In this context the most natural approach is to define the value of true to

be 1, the value of false to be 0, and to define the value of simple expressions as

follows:

value (NOT expr) = 1 − value (expr)

value (AND expr 1 . . . exprn) = MIN (value (expr 1) . . . value (exprn))

value (OR expr 1 . . . exprn) = MAX (value (expr 1) . . . value (exprn))

Since any boolean expression can be broken down (parsed) into these basic

elements, one has a systematic mechanism for assigning payoff. Unfortunately,

this mechanism is no better than the original one since it still only assigns payoff

values of 0 and 1 to both individual clauses and the entire expression.

However, a minor change to this mechanism can generate differential

payoffs, namely:

value (AND expr 1 . . . exprn) = AVERAGE (value (expr 1) . . . value (exprn))

This suggestion was made first by Smith [Smith79] and intuitively justified

by arguing that this would reward ‘‘more nearly true’’ AND clauses. So, for

15

example, solutions to the boolean expression

X 1 AND (X1 OR X2

)

would be assigned payoffs as follows:

__

X1 X 2 PAYOFF
__

0 0 (AVERAGE 0 (MAX (0 (1 - 0))) = 0.5

0 1 (AVERAGE 0 (MAX (0 (1 - 1))) = 0.0

1 0 (AVERAGE 1 (MAX (1 (1 - 0))) = 1.0

1 1 (AVERAGE 1 (MAX (1 (1 - 1))) = 1.0
__

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

Table 1: Sample Payoff Function

Notice that both of the correct solutions (lines 3 and 4) are assigned a payoff of 1

and, of the incorrect solutions (lines 1 and 2), line 1 gets higher payoff because it

got half of the AND right.

This approach was used successfully by Smith and was initially adopted in

the experiments. However, careful examination of this form of payoff function

indicates some potential problems.

The first and fairly obvious property of using AVERAGE to evaluate AND

clauses is that the payoff function is not invariant under standard boolean

equivalency transformations. For example, it violates the associativity law:

value ((X 1 AND X2) AND X3) ≠ value (X 1 AND (X2 AND X3))

since

(AVE (AVE X1 X2) X3) ≠ (AVE X1 (AVE X2 X3))

Attempts to construct alternative differential payoff functions that have this ideal

16

property of payoff invariance have had no success. However, one could argue

that a weaker form of invariance might be adequate for use with GAs, namely,

truth invariance. In other words, the payoff function should assign the same value

(typically 1, but could even be a set of values) to all correct solutions of the given

boolean expression, and should map all incorrect solutions into a set of values

(typically 0 ≤ value < 1) that is distinct and lower than the correct ones. Since

boolean transformations do not occur while the GAs are searching for solutions,

the actual values assigned non-solutions would seem to be of much less impor-

tance than the fact that they are useful as a differential payoff to support the con-

struction of partial solutions.

Unfortunately, the proposed payoff function does not even guarantee this

second and weaker property of truth invariance as the following example shows:

X1 OR X2 = (X1

 AND X2

)

 by De Morgan

However,

(MAX X1 X2) ≠ 1 −
2

((1 − X1) + (1 − X2))__________________

as can be seen in the following table:

17

X1 X 2 Left side Right side

0 0 0 0

0 1 1 1/2

1 0 1 1/2

1 1 1 1

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

Table 2: Violation of Truth Invariance

Notice that lines 2-4 are all solutions, but lines 2 and 3 are assigned a payoff of

1/2 after De Morgan’s law has been applied.

In general, it can be shown that, although the payoff does not assign the

value of 1 to non-solutions, it frequently assigns values less than 1 to perfectly

good solutions and can potentially give higher payoff to non-solutions!

A careful analysis of boolean transformations, however, indicates that these

problems only arise when De Morgan’s laws are involved in introducing terms of

the form (AND . . .)

. This suggests a simple fix: preprocess each boolean

expression by systematically applying De Morgan’s laws to remove such con-

structs. It also suggests another interesting opportunity. Constructs of the form

(OR . . .)

are computed correctly, but only take on 0/1 values. By using De

Morgan’s laws to convert these to AND constructs, additional differential payoff is

introduced. Converting both forms is equivalent to reducing the scope of all

NOTs to simple variables. Fortunately, unlike the conversion to CNF, this process

has only linear complexity and can be done quickly and efficiently.

In summary, with the addition of this preprocessing step, an effective payoff

function for applying GAs to boolean satisfiability problems results. This payoff

function has the following properties: 1) it assigns a payoff value of 1 if and only

18

if the candidate solution is an actual solution; 2) it assigns values in the range 0 ≤

value < 1 to all non-solutions; and 3) non-solutions receive differential payoff on

the basis of how near their AND clauses are to being satisfied.

1.2.3. Possible Improvements to the Payoff Function

One way to view the problems discussed in the previous section is to note

that many of the undesirable effects are due to the fact that, by choosing to evalu-

ate AND /OR clauses with AVERAGE/MAX, the natural symmetry between AND

and OR has been broken in the sense that AND clauses will have differential

payoffs assigned to them while OR clauses will only be assigned 0/1. However,

suppose that an AND node is evaluated by raising AVERAGE to some integer

power p. This operator is still truth preserving (assuming the preprocessing step

described above) and has several additional beneficial effects. First, it has the

effect of reducing the AND /OR asymmetry by reducing the average score

assigned to a false AND clause. In addition, it increases the differential between

the payoff for AND clauses with only a few 1s and those that are nearly true.

On the other hand, as p approaches infinity, the function AVE p behaves

more and more like MIN, which means that the differential payoff property has

been lost. This behavior suggests an interesting optimization experiment to deter-

mine a useful value for p. An experiment for determining p is described in the

next section.

The previous sections describe an effective GA representation for SAT prob-

lems. The individual bit string naturally represents the 2n possible assignments to

the boolean variables. The payoff function, after applying De Morgan’s laws,

reflects the structure of the SAT problem and has appropriate properties. Finally,

possible improvements to the payoff function are outlined. The next section

presents initial results.

19

1.3. Results

All of the experiments described in this section have been performed using a

Lucid Common Lisp implementation of the GAs. In all cases, the population size

has been held fixed at 100, the standard two-point crossover operator has been

applied at a 60% rate, the mutation rate is 0.1%, and selection is performed via

Baker’s SUS algorithm [Baker87].

After formulating SAT as an optimization problem, there appear to be some

interesting issues concerning convergence to a solution. First of all, whenever a

candidate evaluates to 1, a solution has been found and the search can be ter-

minated. Conversely, there is strong motivation to continue the search until a

solution is found (since nearly true expressions are not generally of much interest

to the person formulating the problem). The difficulty, of course, is that on any

particular run there is no guarantee that a solution will be found in a reasonable

amount of time due to the increasing homogeneity (premature convergence) of

the population as the search proceeds.

One approach would be to take extra measures to continue exploration by

guaranteeing continuing diversity. Such measures as described in the earlier sec-

tion on selection (See page 9). Unfortunately, these all have additional side

effects that would need to be studied and controlled as well. A simpler approach

using De Jong’s measure of population homogeneity based on allele convergence

[De Jong75] has been taken. When that measure exceeds 90%, the GA is restarted

with a new random population. Consequently, in the experimental data presented

in the subsequent sections, the evaluation counts reflect all of the GA restarts.

Although this technique might seem a bit drastic, it appears to work quite well in

practice.

Since the number of evaluations (trials) required to find a solution can vary

quite a bit from one run to the next due to stochastic effects, all of the results

presented here represent data averaged over at least 10 independent runs.

20

The first set of experiments involves constructing two families of boolean

expressions for which the size and the difficulty of the problem can be controlled.

The first family selected consists of two-peak (TP) expressions of the form:

(AND X1 . . . Xn) OR (AND X1

 . . . Xn

__
)

that have exactly two solutions (all false and all true). By varying the number n

of boolean variables, one can observe how the GAs perform as the size of the

search space increases exponentially while the number of solutions remains fixed.

The following table indicates the number of evaluations needed for the GA (using

AVEp , where p = 1). Both the mean number of evaluations and the standard devi-

ation is reported. See Appendix 1 for complete data.

__

n 30 40 50 60 70 80 90
__

mean 1753 2855 4216 5485 7095 11167 13080

sd 360 676 641 947 1077 4977 5491
__

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

Table 3: Performance of GAs on the Two Peak Problems

Figure 1 presents a graph of the results, where the number of variables (bits)

is plotted against both the mean number of evaluations (evals) and the log of the

mean. It is clear that the differential payoff function is working as intended, and

that the GAs can locate solutions to TP problems without much difficulty.

To make things a bit more difficult, the problem was modified slightly by

turning one of the solutions into a false peak (FP) as follows:

(AND X1 . . . Xn) OR (AND X1 X1

 . . . Xn

__
)

so that the previous all false solution is now almost correct and the only correct

solution is that of all true. The following table indicates the number of

21

-0 20 40 60 80
-0

5000

10000

15000

20000

Evals

Variables = log(Search Space)

-0 20 40 60 80
1

2

3

4

5

log(Evals)

Variables = log(Search Space)

Figure 1: Performance of GAs on the Two Peak (TP) Problems

evaluations needed for the GA (using AVEp , where p = 1).

22

n 30 40 50 60 70 80 90
__

mean 4805 8031 12167 18387 15617 18605 35153

sd 5289 8039 12797 21268 13390 16209 31731

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

Table 4: Performance of GAs on the False Peak Problems

Figure 2 presents a graph of the results of applying GAs to the FP family.

As before, the GAs have no difficulty in finding the correct solution even in the

presence of false peaks.

Since NP-Complete problems have no known polynomial-time algorithms,

the log-log graphs are particularly interesting. Notice that, for both the TP and

FP problems, a sub-linear curve is generated, indicating (as expected) a substan-

tial improvement over systematic search. The form that these sub-linear curves

take give some indication of the speedup (over systematic exhaustive search)

obtained by using GAs. If, for example, these curves are all logarithmic in form,

we have a polynomial-time algorithm for SAT! † Additional discussion of these

curves occur in section 3.2.

Although the results so far have been satisfying, it is natural to investigate

the effects of using AVE p in the payoff function for integer values of p > 1. The

hypothesis is that initial increases in the value of p will improve performance, but

that beyond a certain point performance will actually drop off as AVE p begins to

more closely approximate MIN.

† Again, it has not been shown that P = NP.

23

-0 20 40 60 80
-0

10000

20000

30000

40000

50000

Evals

Variables = log(Search Space)

-0 20 40 60 80
1

2

3

4

5

log(Evals)

Variables = log(Search Space)

Figure 2: Performance of GAs on the False Peak (FP) Problems

The hypothesis was tested by re-running the GAs on the two families of

problems (TP and FP) varying p from 2 to 5, and comparing their performance

with the original results (p = 1). Figure 3 presents the results of the experiments.

See Appendix 1 for a complete table of all data. Somewhat surprisingly, an

optimum appears at p = 2.

24

-0 20 40 60 80
-0

5000

10000

15000

20000

Evals

Variables = log(Search Space)

..............
.........

...........
........

...
...

....
...

...
....

...
...

...
..TP Problems

AVEˆ5

AVEˆ4

AVEˆ3

AVEˆ1

AVEˆ2

-0 20 40 60 80
-0

10000

20000

30000

40000

50000

Evals

Variables = log(Search Space)

.................
...........

......
.....

............
...
...
...
...........

FP Problems

AVEˆ5

AVEˆ1

AVEˆ4

AVEˆ2
AVEˆ3

Figure 3: Performance of GAs using AVE p

Figure 4 summarizes the performance of the GAs on the two families of

SAT problems using AVE2 in the payoff function. As noted earlier, the log-log

curves appear to be sub-linear. To get a better feeling for the form of these

curves, both linear and quadratic curve fits were attempted. For both of the fami-

lies of SAT problems, a quadratic form produces a better fit and, by using the

coefficients of the quadratic form, the observed speedup can be calculated. The

results are as follows:

25

-0 20 40 60 80
1

2

3

4

5

6

Log(Evals)

Variables = log(Search Space)

TP Problems

-0 20 40 60 80
1

2

3

4

5

6

Log(Evals)

Variables = log(Search Space)

FP Problems

Figure 4: Summary Performance of GAs using AVE2

TP speedup: N 7.28

FP speedup: N 6.25

One of the nice theoretical results in Holland’s original analysis of the

power of GAs is the implicit parallelism theorem that sets a lower bound of an N 3

speedup over systematic exhaustive search [Holland75]. This suggests that, in the

worst case, GAs should not have to search more than the cube root of the search

26

space in order to find a solution and, in general, should do much better. One of

the unexpected benefits of the experimental results presented here is substantial

empirical evidence of just such speedups on SAT problems. Clearly, on the TP

and FP problems the GA is performing better than the theoretical lower bound.

This section on GAs has outlined current GA research and possible future

directions. The application of GAs to boolean satisfiability problems is fully

described. Finally, experimental results are presented. With these initial

encouraging results, it is natural to test the GAs on more naturally arising boolean

expressions. The family of hamiltonian circuit problems provide a good source of

interesting and hard SAT problems. The details and results of this work will be

presented in Section 3.

As mentioned earlier, NNs are also used to heuristically solve NP-Complete

problems. The next section describes a NN paradigm for solving boolean

satisfiability problems.

27

2. NEURAL NETWORKS

The class of neural networks (NNs) is a subclass of parallel distributed pro-

cessing (PDP) models [Rumelhart86]. These models assume that information pro-

cessing is a result of interactions between simpler processing elements (nodes).

Neural network models consist of:

a) A set of processing nodes.

b) A state of activation for each node.

c) A pattern of connectivity among nodes (a graph).

d) A propagation rule.

e) An activation rule.

Each neural network consists of a number of processing elements (nodes)

connected in a graph. Generally, each node represents some feature of the prob-

lem space being explored. Each node receives input values (from other nodes),

maintains a state of activation, and sends output values (to other nodes). Fre-

quently, the activation of a node is some real numeric quantity (usually ranging

over a set of discrete values or taking on any real value within some range). How-

ever, sometimes the activation is simply binary.

A rule of propagation determines how the outputs from nodes are combined

to form input for other nodes. Usually, this is simply a weighted sum in which the

connections between nodes are assigned weights. Positive weights can represent

excitatory connections, and negative weights inhibitory connections. Finally,

every node has an activation rule which determines a new state of activation for

the node, given a set of inputs to that node and its current state of activation.

There exists a large variety of neural networks. This work concentrates only

on those that have been used often to solve combinatorial optimization problems:

constraint satisfaction networks. This section is divided into three subsections.

First, an overview of constraint satisfaction networks is presented. Second, the

28

application of a constraint satisfaction paradigm to SAT problems is described.

The final section provides experimental results.

2.1. Overview

Hinton [Hinton77] has shown that constraint satisfaction networks can be

used to find near-optimal solutions to problems with a large set of simultaneous

constraints. In such a paradigm, each node represents a hypothesis and each con-

nection a constraint among two hypotheses.

As an example, suppose that the nodes have binary activations (1 or -1) and

are connected with symmetric weights. The sign of the weight indicates the polar-

ity constraint between two nodes. For example, a positive weight might indicate

that two nodes should have the same state. A negative weight would indicate that

two nodes should have opposite states. The magnitude of the weight is propor-

tional to the strength of the constraint.

Hopfield [Hopfield82] views such networks as "computational energy optim-

izers". In his paradigm (Hopfield networks), the activations of the nodes are

binary (1 or -1) and the weights (constraints) are symmetric and real valued. The

computational energy is the degree to which the desired constraints are satisfied.

If a connection is positive, then the constraint is satisfied if both units are in the

same state. If the connection is negative, the constraint is satisfied if both units are

in opposite states. One way to express this mathematically is:

Energyi =
j
Σ wi j ai aj

Energy =
i
Σ Energyi

The activation of node i is denoted ai . The weight from node i to node j is

denoted wi j . Energyi reflects the local energy contribution of an individual node.

Notice that if the weight is positive, the local energy will be positive only if the

29

two nodes have the same activations. If the weight is negative, the local energy

will be positive only if the two nodes have opposite activations. In this discussion,

optimization is equivalent to maximization.

Energy represents the global energy state of the system, and is the combina-

tion of local energy contributions from each node. If all constraints are satisfied,

then each local energy contribution will be positive, and the total energy of the

system will be maximized.

The preceding paragraphs have illustrated how a constraint satisfaction

problem can be expressed as a computational energy optimization problem. In

this paradigm, the weights are fixed, and only the activation states are allowed to

change. In order to actually perform the task of energy optimization, each node

must locally decide its own activation, based on neighboring information. One

way to see this is to rewrite the above equations:

Energyi = neti ai

neti=
j
Σ wi j aj

In this formulation, neti represents the net input to a node from its immediate

neighbors. If the net input is positive, then ai should be 1 in order to have a posi-

tive energy contribution. If the net input is negative, then ai should be -1. In other

words, using only local neighbor information, each node can individually decide

its own activation state. The combination of all nodes working in parallel leads to

global energy optimization.

In summary, constraint satisfaction problems can be viewed as energy

optimization problems. From this point of view, violating constraints decreases

energy, while obeying constraints increases energy. The goal is to satisfy as many

constraints as possible (and maximize energy).

30

Hopfield networks often become stuck in "local optima". In physics, this has

a direct analogy with flaws in crystal formation. Such flaws are often avoided by

heating the material and then cooling it slowly. Simulated annealing adds sto-

chastic processing to Hopfield nets in much the same way. In simulated anneal-

ing, a system is considered to be a collection of particles with energies deter-

mined by the Boltzmann distribution:

probability (A)
probability (B)_____________ = e T

(EnergyB − EnergyA)__________________

Consider two states A and B. The Boltzmann distribution indicates that the

ratio of probabilities of the two states is related to the energy difference between

the two states. At high temperatures many possible energy states exist and the

kinetic energy of the particles helps them escape from local optima. At very low

temperatures the system freezes into one state, sometimes the global optimum.

The activation of a node is computed using the net input to the node, the tempera-

ture, and the Boltzmann distribution. Mathematically:

probability (ai (t) = 1) =

1+e
(

T

−neti______)

1__________

At high temperatures, the probability goes to 1/2, indicating random choice.

As the temperature decreases, positive net input yields a probability that

approaches 1. Negative net input yields a probability that approaches 0. At very

low temperatures the system degenerates into the deterministic Hopfield para-

digm outlined earlier.

The system continues until some termination condition is satisfied. Typical

conditions include the detection of the solution, low temperature (ie., the material

freezes), or a time out.

31

The key to simulated annealing is the annealing schedule. It has been shown

that if the schedule is sufficiently long (ie, the temperature drops extremely slowly

with time) the network will find the global optimum [Geman84]. In practice, this

is not feasible and experiments are made to determine good schedules that run

quickly with reasonable results. However, this is only useful in applications

where the same network is used more than once (a common occurrence). Appli-

cation of simulated annealing to SAT will require a reasonable annealing

schedule that is determined on the fly, before the network is executed.

As mentioned earlier, constraint satisfaction neural network approaches

have been previously applied to NP-Complete problems. The IEEE First Interna-

tional Conference on Neural Networks (1987) includes a number of articles

devoted to the solution of combinatorial optimization problems. Of special

interest are the attempts to solve traveling salesman problems [Cervantes87,

Gutzmann87]. In both cases, the authors note that the number of valid states is a

decreasing fraction of the total number of states as the problem size increases.

The problem occurs because the neural network is searching a space of combina-

tions, while the valid states are permutations. Similar problems occur in other

work [Tagliarini87, Gunn89].

The previous sections have shown that certain models of neural networks

are useful for solving large systems of simultaneous constraints. Such models can

also be considered to be function optimizers. The addition of simulated annealing

introduces a stochastic element into the model that improves performance. The

remainder of this thesis investigates the application of constraint satisfaction and

simulated annealing to a canonical NP-Complete problem, boolean satisfiability.

32

2.2. NNs and SAT

Any application of a constraint satisfaction NN to some problem domain

involves a selection of an appropriate graph (representation), as well as a

specification of the domain specific constraints. Both components are critical to

the success/failure of the NN on the problem of interest.

2.2.1. Representation

In general, choosing a good representation is often difficult. For the specific

problem at hand (SAT), however, the previous work in genetic algorithms offers a

helpful insight. Recall that a parse tree of the boolean expression is used to create

a payoff function for the GA. This parse tree is also a natural NN graph represen-

tation that is easily created automatically, and is perfectly matched to the struc-

ture of the boolean expression.

2.2.2. System of Constraints

After choosing a representation, the next step is to select an appropriate sys-

tem of constraints. Figure 5 presents an example parse tree of the simple boolean

expression (x 1 and x 2) or (x 3 and x 4):

33

(x1 and x2) or (x3 and x4)

x3 and x4x1 and x2

x4x3x2x1

Figure 5: Example Parse Tree

In terms of constraint satisfaction, each node represents the hypothesis that a

particular boolean subexpression is true. Suppose true is represented by a 1 and

false by a -1. Since the goal is to satisfy the boolean expression, clearly the root

node of the parse tree must be 1. The root node, the network topology, and the

connection weights constrain the input nodes to be solutions of the original

boolean expression.

There are two differences between the proposed network and a Hopfield net.

First, since this network is based on a parse tree of a boolean expression it con-

tains AND, OR, and NOT nodes. The nodes in a Hopfield net are of one type.

Second, the graph is directed, with all edges directed toward the root (output)

node. Each AND, OR, and NOT node has parents and/or children (not just neigh-

bors). In a Hopfield net, the links are bi-directional and symmetric.

34

The asymmetries in the proposed network can be explained by a closer

analysis of the constraints inherent in a boolean network. Each node can possibly

be influenced by upstream constraints and downstream constraints. Upstream

constraints represent constraints from nodes that are closer to the root, whereas

downstream constraints represent constraints from nodes further from the root.

Downstream constraints flow from the children of a node. Suppose that

some node is a NOT node. Then its activation should be opposite that of its child.

An AND node should be true if and only if all of its children are true. An OR

node should be true if and only if any of its children is true.

Upstream constraints flow from the parent of a node. Suppose the parent of

a node is a NOT. Then the activation of the node should be opposite that of its

parent. If the parent is an AND and it is true, then the node should be true. How-

ever, if the parent is an AND and it is false, then the node should be false if all

siblings are true. Other situations are possible, but they do not constrain the node.

Finally, if the parent is an OR and it is false, then the node should be false. How-

ever, if the parent is an OR and it is true, then the node should be true if all

siblings are false. Again, other situations do not constrain the node.

Note from the above that there are two types of constraints implied. In the

NOT example, nodes are constrained to be different. In the AND and OR exam-

ples, nodes are constrained to be similar. One interpretation of this is that:

If a connection between two nodes is positive, the

constraint is satisfied if both nodes are true or both

nodes are false.

If a connection between two nodes is negative, the

constraint is satisfied if the nodes are in opposite states.

35

In other words, a positive connection enforces the idea that two nodes are

both true or both false. A negative connection enforces the idea that both nodes

are not the same. Note that this latter situation occurs only with NOT nodes. In

fact, a NOT node and a negative connection are equivalent. Only AND, OR, and

input nodes are necessary in this system. The asymmetries in direction of con-

straint can be formalized in the choice of net energy functions that are used to

help compute node activations. The net energy functions are defined in the next

section.

The previous paragraphs have shown how to express SAT problems as con-

straint satisfaction problems. The following subsections show how the constraint

satisfaction problem can be viewed in an energy optimization framework. Para-

digm I describes a first, but flawed attempt. Paradigm II corrects the flaws in

Paradigm I.

2.2.3. Paradigm I

Given the set of boolean constraints outlined above, the task is to show how

they can be expressed from an energy optimization viewpoint. Rules for calculat-

ing local net input and local energy contributions are presented.

As mentioned above, the neural network graph is based on the parse tree of

the boolean expression. It is not a tree, however, because each instance of the

same boolean variable is represented by only one node. Each leaf node, then, may

have multiple parents. The resulting structure is a rooted, directed, acyclic graph.

All edges in the graph are directed toward the root node.

Each node has a local energy based on its downstream net input, its

upstream net input, and an external bias. Mathematically,

Energyi = neti ai

neti = (
j
Σ Uneti j) + Dneti + Biasi

36

In this formulation, the net input to node i, neti , is broken into three contri-

butions. Uneti j represents the net upstream input of node i from parent j. Since

some nodes may have multiple parents, the contribution from each must be

summed. Dneti represents the net downstream input of node i from its children.

Biasi is an external bias to node i. Again, ai can be 1 or -1, and denotes the

activation of node i.

There is a one-to-one correspondence between the three net input contribu-

tions and the system of constraints that was outlined earlier. The bias is used to

force the root node to be 1, since the primary external constraint is one of boolean

satisfiability. The downstream/upstream net inputs are based on the

downstream/upstream constraints. Before the definitions can be presented, how-

ever, some additional notation is necessary.

Denote <i, j > as the directed edge from node i to node j. E is the set of

edges in the graph. Let wi j be the weight of that directed edge. We restrict wi j to

be 1 or -1. If wi j is -1, this reflects the presence of a NOT constraint. If there is no

NOT constraint, wi j is 1. Furthermore, define AND (i) and OR (i) as predicates

that return true if node i is an AND or OR. It is now possible to define the down-

stream constraint, D (i), as:

D (i) = [(AND (i) & (∀ j)((<j,i > ∈ E)→(a jw ji = 1))) v

(OR (i) & (∃ j)((<j,i > ∈ E)→(a jw ji = 1)))]

D (i) returns true if an AND has all children true, or an OR has at least one

child true. The truth of a child is the product of the activation of the child and the

weight. If the weight is -1, a NOT constraint is implied, reversing the truth value

of the child. Given this definition, the rules for Dneti can then be expressed pre-

cisely:

(∀i)[(Dneti = 1) →← D (i)]

(∀i)[(Dneti = −1) →← D (i)

]

37

In a similar fashion, define the upstream constraint U (i, j) of a node i from a

parent j:

U (i, j) = [(AND (j) &

((a j = 1) v [(a j = −1) & (∀k)(((<k, j > ∈ E)&(k≠i)) → (akwk j = 1))])) v

(OR (j) &

((a j = −1) v [(a j = 1) & (∀k)(((<k, j > ∈ E)&(k≠i)) → (akwk j = −1))]))]

Given this definition, the rules for Uneti j can then be expressed precisely:

(∀i)(∀ j)[Uneti j = ajwi j →← U (i, j)]

(∀i)(∀ j)[Uneti j = 0 →← U (i, j)

]

Again, these rules correspond with the upstream constraints defined earlier.†

A constraint can occur if the parent is an AND or an OR. If it is an AND, and

aj = 1, then node i should have an activation ai = ajwi j = wi j . If aj = −1 and all

siblings are true (akwkj = 1), then node i should have an activation

ai = ajwi j = −wi j . As before, the truth of children of the parent is a product of the

child’s activation and the weight. Similar constraints occur when the parent is an

OR.

It is important to note a difference between the downstream constraint and

upstream constraint definitions. If D (i) is true or false, a real logical constraint is

implied. This occurs due to the direction of flow of information. Regardless of the

states of the children, the state of the node can be determined unambiguously.

However, upstream constraints are dynamic, and only occur in certain cir-

cumstances, namely those situations when U (i, j) is true. Unfortunately, there are

other circumstances when there are no upstream constraints. In this case, U (i, j) is

false. Given no upstream constraints, then, what is the upstream net input to a

† For a complete explanation, please see the earlier discussion of upstream constraints on page
34.

38

node? Intuitively, if there is no constraint, there is also no reason to suspect any

particular activation for a node. For this reason, Uneti j is 0 when U (i, j) is false.

As mentioned earlier, Biasi is used to force the root node to 1, since the goal

is to satisfy the boolean expression. The rules for bias can be expressed simply as:

(∀i)[Root (i) →← (Biasi = 100)]

(∀i)[Root (i)

 →← (Biasi = 0)]

Root (i) is a predicate that returns true if and only if node i is the root node.

High bias results in high net input, which in turn implies a high probability that

the node will be on (ai = 1). The choice of 100 is completely arbitrary. Any large

number will do. More will be said on bias later.

This section has shown how to map SAT problems into an energy optimiza-

tion paradigm. The next section presents some problems with this approach.

2.2.4. Problems with Paradigm I

An ideal energy definition should possess two qualities. First, solutions

should have the highest energy. This energy should be predictable. Second, all

non-solutions should have low energy, with better non-solutions having progres-

sively higher energy. Unfortunately, the formulation given above does not pos-

sess these two qualities, although on the whole a system based on the outlined

definitions performs quite well.

Some analysis indicates that several problems exist, all related to the treat-

ment of non-existent upstream constraints. As mentioned above, intuitively it

seems reasonable to let Uneti j be 0 when there are no upstream constraints

(U (i, j) is false), since there is no reason to suspect any particular activation for a

node with no constraints. However, suppose a leaf node has no upstream con-

straints and no external bias. Since it does not have children it has no downstream

39

constraint. In this case, a node has no net input. Furthermore:

Energyi = neti ai = 0

Although this seems reasonable, it can be seen that the node is contributing

no local energy, despite the fact that it is not violating any constraints. The system

will only contribute local energy if it satisfies some constraint, but will not contri-

bute local energy if no constraint exists (although either situation is equally desir-

able). Since the presence of upstream constraints is a dynamic situation, depen-

dent on the activations of neighboring nodes (siblings), it is impossible to predict

ahead of time the energy of a solution.

This problem illustrates an even deeper flaw. The outlined paradigm makes

a distinction between systems that satisfy all constraints and those that have no

constraints. In reality, either situation is equally worthwhile, for both do not

violate any constraints. As mentioned earlier, a node that has no constraints con-

tributes no local energy, while a node that satisfies a constraint contributes local

energy. Recall that:

neti = (
j
Σ Uneti j) + Dneti + Biasi

Denote Uneti as the summation of the Uneti j . Uneti is the only place where

it is possible to have non-existent constraints (since they only appear in upstream

situations). However, the summation rewards systems that have no constraints

differently from systems that have satisfied constraints. In fact, it is possible for

systems to achieve higher energy by creating a few more constraints dynamically,

violating a few, and satisfying the rest. The result is a non-satisfied system with

higher energy than a previous satisfied system. For example, suppose there is an

AND node with six children (each weight is 1). The following table summarizes

the activations of the children, their net inputs, and their local energy contribu-

tions.

40

Node Activation Net Input Energy_______________________________________
Child 1 1 0 0

Child 2 1 0 0

Child 3 1 0 0

Child 4 1 0 0

Child 5 1 0 0

Child 6 -1 -1 1

AND -1 -1 1_______________________________________
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

Table 5: Energy of Satisfied System

This system of activations violates no constraints and has a global energy of

2. However, by simply switching the AND from -1 to 1, we can increase the glo-

bal energy.

Node Activation Net Input Energy_______________________________________
Child 1 1 1 1

Child 2 1 1 1

Child 3 1 1 1

Child 4 1 1 1

Child 5 1 1 1

Child 6 -1 1 -1

AND 1 -1 -1_______________________________________
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

Table 6: Energy of Non-Satisfied System

This system has a global energy of 3. However, this system violates constraints.

This example illustrates how dynamically changing constraints can be played off

one another to increase energy in a less desirable situation.

41

Finally, notice that Uneti can increase as the number of parents to node i

increases. This implies that, for any node in some graph, the maximum Uneti

depends on the graph itself. Furthermore, each node is likely to have differing

maximums. Recall that:

probability (ai (t) = 1) =

1+e
(

T

−neti______)

1__________

A reasonable annealing schedule will start at some maximum temperature,

and slowly decrease to some minimum temperature. The maximum temperature

should allow for a fair amount of random noise in the system (exploration), while

the minimum temperature will signify determinism (exploitation). Ideally, the

maximum and minimum temperatures should be chosen to yield reasonable pro-

bability distributions.† However, these distributions are also functions of the net

input. Since each node may have different maximum net inputs, given some glo-

bal temperature, the probability distribution varies from node to node. As a

result, the search is performed with varying levels of noise across the nodes. This

is a source of inefficiency, since it is likely that some nodes are operating with too

much noise.

In summary, the outlined paradigm, although reasonable in practice, can

lead to anomalies in energy computation. First, it is difficult to predict the energy

of a solution. Second, the anomalies create an energy surface that is less than

ideal, since non-solutions may have higher energy than solutions. Another

difficulty with the paradigm is that, for some global temperature, the probability

distribution varies across the nodes. This makes it hard to choose a reasonable

annealing schedule. Fortunately, these problems can be fixed with minimal effort.

† A reasonable probability distribution will provide a good balance between exploration and
exploitation.

42

2.2.5. Paradigm II

It is clear from the previous discussion that some changes are needed in the

rules for determining net input and local energy contributions. Each problem

stems from the manner in which the upstream net input is calculated. These prob-

lems can be fixed by monitoring the number of upstream constraints as they occur

dynamically, and normalizing the net input based on these constraints.

We define ci as the number of upstream constraints on node i at some partic-

ular time. More precisely:

ci = � {j | (<i, j > ∈ E) & U (i, j)} �

Given the number of constraints, the rules for computing the total upstream

net input Uneti can be rewritten:

(∀i)[ci = 0 → Uneti = ai]

(∀i)[ci ≠ 0 → Uneti =
ci

j
Σ Uneti j
________]

Suppose that a leaf node has no upstream constraints (ci = 0). Then

Uneti = ai. We assume that it has no bias. Since it also has no downstream net

input, Energyi = aiai = 1. Unlike the previous paradigm, the system is now

rewarded for having no upstream constraints by allowing it to contribute local

energy. We also justify this change intuitively as a form of Occam’s razor. If there

are no upstream constraints, there is no need to change the activation.

Note also that Uneti has been normalized to fall within -1 and 1. In order to

fully normalize the net input neti , the following is rewritten:

(∀i)[(INTERIOR (i) & (ci = 0)) → (neti = Dneti + Biasi)]

(∀i)[(INTERIOR (i) & (ci ≠ 0)) → (neti =
2

Dneti + Uneti____________ + Biasi)]

43

The predicate INTERIOR (i) is true if i is not the root node or a leaf node. If

a node is an interior node, and there are no upstream constraints, we simply con-

sider the downstream constraint and the bias. If, however, there are upstream con-

straints, they are treated equally with the downstream constraint.

Neglecting the bias, several points can be made. First, neti has been normal-

ized to lie between -1 and 1. This solves the problem associated with determining

a good annealing schedule, since for a given temperature, each node has an ident-

ical probability distribution. Second, Energyi = aiai = 1 if and only if either all

constraints are satisfied or there are no constraints. If the node violates all con-

straints, then Ei = −aiai = −1. With these changes, it becomes impossible to

dynamically create new constraints, violate a few, and increase energy. The sys-

tem can only achieve maximum energy if it satisfies all constraints. Finally, the

energy of a solution can be determined (including bias):

Energy = n +
i
Σ Biasi

where n is the number of nodes in the system. This solves the energy anomaly

problems, since it is now easy to determine the energy of a solution, all solutions

have this energy, and all non-solutions have lower energy.

Until this point, very little mention has been made of Biasi. In fact, it is only

used to bias the root node to 1. Depending on the format of the boolean expres-

sion, however, it is sometimes possible to be sure of the activations of nodes other

than the root. For example, since the boolean expression (A AND (B OR C)

)

must be true, it is a trivial task to deduce that A must be true, while B and C are

false. The previous rules for bias are inadequate for expressing these new bias

constraints.

More precisely, denote B (i, j) as a predicate that is true if and only if there is

a bias constraint from parent j to node i.

44

B (i, j) = [(AND (j) & (<i, j > ∈ E) & (Biasj = 100)) v

(OR (j) & (<i, j > ∈ E) & (Biasj = −100))]

We further denote Biasij as the bias value contributed from parent j to node

i. We can rewrite the rules for bias as:

(∀i)[Root (i) → (Biasi = 100)]

(∀i)(∀ j)[(Root (i)

& B (i, j) → (Biasi j = Biasjwi j)]

(∀i)(∀ j)[(Root (i)

& B (i, j)

→← (Biasij = 0)]

The root node still has a bias of 100. The second rule states that a node’s bias

is influenced by its parent. If the parent is an AND with high bias (and wi j = 1),

then the node should have high bias. If the parent is an OR with low bias (and

wi j = 1), the node should have low bias. The bias is reversed when wi j = −1. The

third rule states that there is no bias contribution if B (i, j) is false. Here, high bias

is denoted with 100 and low bias with −100, although the system is relatively

insensitive to the choice of numbers.

Since a node can have multiple parents, a node’s bias is influenced by all of

its parents. Four possible scenarios can arise. First, if there are no bias constraints

(B (i, j) is false for all parents j), then Biasi = 0. Second, if some parents constrain

the bias to be high, while no parent constrains the bias to be low, then

Biasi = 100. Third, if some parents constrain the bias to be low, while no parent

constrains the bias to be high, then Biasi = −100. Finally, if some parents con-

strain the bias to be high, while others constrain the bias to be low, the boolean

expression is unsatisfiable.

The above rules can be applied during the parse of the boolean expression.

This information, coupled with the system of constraints, constitutes the max-

imum information easily derivable from the boolean expression.

45

In summary, this section has outlined a paradigm that maps SAT problems

into an equivalent simulated annealing constraint satisfaction problem. The

energy function defined guarantees that solutions have a predictable maximum

energy, while non-solutions have lower energy. By normalizing the net input, it is

possible to have reasonable probability distributions across all nodes at some tem-

perature. Finally, introducing bias allows the system to make maximum use of all

available information. The results of applying this paradigm to the TP and FP

problems are described below.

2.3. Results

Paradigm II is fully implemented in C, with Common Lisp as a front end.

The Lisp front end takes as input a boolean expression in prefix notation and out-

puts a description of the graph structure in C. This code is then linked with C

simulated annealing code, compiled, and executed.

The program loops through trials until the solution is found. At the start of

each trial, the temperature is set to some maximum. The annealing schedule is

determined from the starting maximum temperature and a decay rate. The decay

rate provides an exponential decay of the temperature, until some minimum

(freezing) temperature is reached. Each trial, the decay rate is slightly decreased,

allowing the system to cool more slowly. If the minimum temperature is reached

within a trial, and the solution is not found, a new trial is started. If the solution is

found, the program terminates.

There are two methods for determining whether a solution has occurred.

First, since the energy of a solution can be predicted, the system energy can be

compared with the predicted solution energy. Second, it is also possible to check

the leaf nodes against the original boolean expression. If the expression is

satisfied, the problem is solved.

46

The second method is better for two reasons. First, computing the energy of

the system is expensive. Second, it is possible for the leaf nodes to satisfy the ori-

ginal boolean expression, while the interior nodes still violate some constraints. In

other words, although the highest energy state is guaranteed to be a solution, use-

ful solutions can be found at lower energy levels. The first method will not detect

these redundant solutions, while the second method will.

In summary, Paradigm II is fully implemented, and utilizes all available

boolean information. The program loops through trials until the leaf nodes satisfy

the boolean expression. During each trial, the temperature decays from some

maximum to some minimum according to a decay rate. The decay rate is slightly

decreased from trial to trial.

Paradigm II was first tested on the TP problems. For the NN, one evaluation

corresponds to updating the activation of each node in the parse tree exactly once.

Since both the GA and the NN use the parse tree for evaluation, they have

equivalent complexity. The following table indicates the number of evaluations

needed for the NN. Both the mean number of evaluations and the standard devia-

tion are reported.

n 10 20 30 40 50 60 70 80 90
__

mean 6 12 24 35 51 64 78 97 113

sd 4 6 11 14 14 15 15 18 19

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

Table 7: Performance of NNs on the Two Peak Problems

Figure 6 presents a graph of the results. It is clear that the NN can locate

solutions to TP problems without difficulty. For this simple problem, the NN

highly outperforms the GA.

47

-0 20 40 60 80 100
-0

50

100

150

200

Evals

Variables = log(Search Space)

Figure 6: Performance of NN on the Two Peak (TP) Problems

Paradigm II was then tested on the FP problems. The following table indi-

cates the number of evaluations needed for the NN. Both the mean number of

evaluations and the standard deviation are reported.

__

n 10 20 30 40 50 60 70 80 90
__

mean 49 18 31 44 76 77 90 108 126

sd 106 10 16 18 127 25 26 27 30
__

		
	
	
	
	
	
	

		
	
	
	
	
	
	

		
	
	
	
	
	
	

		
	
	
	
	
	
	

		
	
	
	
	
	
	

		
	
	
	
	
	
	

		
	
	
	
	
	
	

		
	
	
	
	
	
	

		
	
	
	
	
	
	

		
	
	
	
	
	
	

		
	
	
	
	
	
	

Table 8: Performance of NNs on the False Peak Problems

Figure 7 presents a graph of the results. As before, the NN has no difficulty

in finding the correct solution even in the presence of false peaks. Again, the GA

is highly outperformed.

48

-0 20 40 60 80 100
-0

50

100

150

200

Evals

Variables = log(Search Space)

Figure 7: Performance of the NN on the False Peak (FP) Problems

This section on NNs has outlined current NN research on combinatorial

optimization problems. An application of a NN to boolean satisfiability problems

is fully described. Finally, experimental results are presented. With these initial

encouraging results, it is natural to test the NN on more naturally arising boolean

expressions. The family of hamiltonian circuit problems provide a good source of

interesting and hard SAT problems. The details and results of this work will be

presented in the next section.

49

3. NP-COMPLETENESS

The previous sections outline GA and NN paradigms for heuristically solv-

ing SAT problems. Experiments with simple boolean expressions are encourag-

ing. Since SAT is NP-Complete, other NP-Complete problems can be transformed

into equivalent SAT problems in polynomial time, and solved via either paradigm.

Such problems can also provide more challenging tests for the GA and NN para-

digms.

This section concentrates on one family of NP-Complete problem: hamil-

tonian circuit (HC) problems. This section is divided into two subsections. The

first subsection describes hamiltonian circuit problems and the polynomial

transformation used to convert these problems into boolean satisfiability prob-

lems. The final section discusses the results of applying both the GA and NN

paradigms to some HC problems.

3.1. Hamiltonian Circuit Problems

The hamiltonian circuit (HC) problem consists of finding a tour through a

directed graph that touches all nodes exactly once. Clearly, if a graph is fully

connected, this is an easy task. However, as edges are removed the problem

becomes much more difficult, and the general problem is known to be NP-

Complete.

Attempting to solve this problem directly with GAs or NNs raises many of

the same representation issues as in the case of traveling salesman problems [De

Jong85, Grefenstette85]. However, it is possible to construct a polynomial-time

transformation from HC problems to SAT problems.

The definition of the HC problem implies that, for any solution, each node

must have exactly one input edge and one output edge. If any tour violates this

constraint, it cannot be a solution. Therefore, an equivalent boolean expression is

50

simply the conjunction of terms indicating valid edge combinations for each

node.

Figure 8 presents an example hamiltonian circuit problem. Consider node d.

Node d has two output edges and one input edge. The output edge constraints are

given by the exclusive-or, ((db and de
__

) or (db
__

 and de)). The input edge is

described simply by cd. The assignments to the edge variables indicate which

edges make up a tour, with a value of true indicating an edge is included and a

value of false if it is not. The final boolean expression is a conjunction of similar

expressions derived for each node. This transformation is computed in polyno-

mial time, and if a solution to the HC problem exists, then the boolean expression

is satisfiable.

b

c

de

a

ea dbeb

de

cd

bc

ab

Figure 8: Sample Hamiltonian Circuit Problem

Unfortunately, the above constraints are necessary but not sufficient in the

general case. In other words, if the boolean expression is satisfiable there is no

guarantee that a solution to the HC problem exists. Figure 9 provides a specific

example.

Suppose that all edges in Figure 9 are true, except for ef and bc. Then each

node has one input edge and one output edge. The boolean expression is satisfied,

51

c
ec

bf

fa

ef

de cd

bc

ab

f

e

d

b

a

Figure 9: Another Hamiltonian Circuit Problem

yet the assignments do not form a hamiltonian circuit. Fortunately, for the prob-

lems described in the next section, the constraints are necessary and sufficient.

3.2. Results

As before, the desire is to systematically study the performance of GAs and

NNs on a series of increasingly difficult problems. Clearly, the complexity in this

case is a function of both the number of nodes and the number of directed edges.

For a given number N of nodes, problems with only a small number of edges (≤

N) or nearly fully connected (approximately N 2 edges) are not very interesting.

However, problems with approximately
2

N 2____ edges would, in general, present the

most difficult problems. In addition, to achieve some degree of uniform difficulty

and to allow for a direct comparison with some of the results in the previous sec-

tion, the problems should have exactly one solution. Consequently, the following

family of HC problems have been defined for the experiments.

52

Consider a graph of N nodes, which are labeled using consecutive integers.

Suppose the first node has directed edges to all nodes with larger labels (except

for the last node). The next N−2 nodes have directed edges to all nodes with

larger labels (including the last one). The last node has a directed edge back to

the first node. A complete tour consists of following the node labels in increasing

order, until you reach the last node. From the last node you travel back to the first.

Because the edges are directed, it is clear that this is also the only legal tour.

Intuitively, such instances of HC problems should be difficult. Only one tour

exists in each instance. In addition, there are a large number of solutions that are

almost complete tours scattered throughout the search space. Figure 10 illustrates

the corresponding SAT GA payoff function for the HC problem of this type with 7

nodes. The 100... hyperplane is a first-order hyperplane. All individuals to the left

of the hyperplane start with 0. All individuals to the right of the hyperplane start

with 1. The other hyperplanes have similar interpretations. From the sampling

density it can be seen that the GA concentrated sampling to the right of the 100...

hyperplane.† The NN energy function is correspondingly complex.

In summary, the experimental framework consists of varying the number N

of nodes in the range 4 ≤ N ≤ 11 and, for each value of N, generating a directed

graph of the form described above containing approximately
2

N 2____ edges and

exactly one solution. Each of these HC problems is transformed into its

equivalent SAT problem using the transformation described earlier, generating

search space sizes ranging from 26 to 255 . GAs and NNs are then used to solve

each of the corresponding SAT problems which, in turn, describes a legal HC

tour.

† Since the solution does in fact start with a 1, the GA is concentrating on the correct
subspace.

53

Figure 10: Graph of HC7 Payoff Function for the GA

The following table indicates the number of evaluations needed for the GA

(using AVEp , where p = 1). Both the mean number of evaluations and the stan-

dard deviation are reported. The number of edges in the graph (bits) is denoted by

n.

__

n 10 15 21 28 36 45 55
__

mean 848 1022 5028 21894 70577 259876 838522

sd 2041 1083 2016 36391 49946 227254 123350
__

Table 9: Performance of GAs on HC Problems

Figure 11 presents a graph of the results. Notice that the number of evalua-

tions required to find a solution is an order of magnitude higher that the earlier TP

54

and FP problems. However, even with these difficult problems, the log-log plot is

still sub-linear.

-0 20 40 60
-0

200000

400000

600000

800000

1e+06

Evals

Variables = log(Search Space)

-0 20 40 60
1

2

3

4

5

6

log(Evals)

Variables = log(Search Space)

Figure 11: Performance of GAs on the HC Problems

The GAs were then re-run with AVEp (p > 1). Again, an optimum appears at

p = 2. Figure 12 graphs the results.

55

-0 10 20 30 40
-0

20000

40000

60000

80000

100000

Evals

Variables = log(Search Space)

.............................
.....

.....
...

...
...

...
...

...

HC Problems

AVEˆ5

AVEˆ1
AVEˆ4

AVEˆ3

AVEˆ2

Figure 12: Performance of GAs using AVE p

Finally, the NN paradigm was tested on the HC problems. The following

table indicates the number of evaluations needed for the NN. Both the mean

number of evaluations and the standard deviation are reported.

n 10 15 21 28 36 45 55
__

mean 51 169 426 1120 6698 99431 1417388

sd 34 84 265 1058 5927 100052 1341593

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

Table 10: Performance of NNs on HC Problems

Figure 13 presents a graph of the comparison between the NN and the GA

on the HC problems.

Although the NN outperforms the GA on the smaller problems, the GA

appears to win on larger, more complex problems. If we again use quadratic fits

56

-0 20 40 60
-0

500000

1e+06

1.5e+06

Evals

Variables = log(Search Space)

NN

GA

-0 20 40 60
1

2

3

4

5

6

log(Evals)

Variables = log(Search Space)

NN

GA

Figure 13: Comparison of GAs and NNs on the HC Problems

to the HC data, the NN speedup is approximately N 2.22 while the GA speedup is

N 2.94 . It is intriguing to note that the GA empirical results match the theoretical

N 3 implicit parallelism results for the HC problems, which were deliberately con-

structed to be very difficult.

This section has introduced hamiltonian circuit problems and described the

polynomial transformation used to convert each problem into an equivalent

boolean satisfiability problem. The GA and NN paradigms were tested on a series

57

of increasingly difficult single-solution HC problems, after conversion into

boolean expressions. Both paradigms exhibit substantial speedup over systematic

sequential search, although the GA appears to perform better for larger and more

complex problems.

58

4. SUMMARY AND FUTURE WORK

This thesis is a first step in exploring two issues. First, are there large classes

of problems for which effective GA and NN representations exist? Second, are

the representation/performance characteristics of GAs and NNs significantly

different?

The thesis addresses the first issue by focusing on the application of GAs

and NNs to SAT. NN and GA paradigms for heuristically solving SAT problems

are presented. Other NP-Complete problems can be solved via polynomial-time

transformation into equivalent SAT problems. This technique is illustrated for HC

problems.

It is also possible that other NP-Complete problems map naturally to GA

and NN paradigms. Recent work by [Korst89] suggests that NNs can handle NP-

Complete graph problems such as independent set, max cut, and graph coloring.

Both independent set and max cut [Anand89] appear to have natural GA

representations.

These ideas suggest that effective GA and NN representations exist for a set

of NP-Complete problems. Other NP-Complete problems may be heuristically

solved via polynomial transformation into a problem in that set. Future work

should explore both the nature of that set, and the NP-Complete problems that

will map well into members of the set.

The second issue seeks to compare the representation and performance

characteristics of GAs and NNs. This thesis addresses this issue by applying both

techniques to the same problem (SAT). It appears that creating effective

representations for GAs and NNs is not trivial. However, it is interesting to note

that the parse tree of the boolean expression formed both the GA payoff function

and the NN graph representation. A similar relationship may hold for other NP-

Complete problems.

59

From a performance viewpoint, both paradigms perform well on simple

two-peak and false-peak problems, with the NN consistently outperforming the

GA. Both paradigms exhibit substantial speedup over systematic sequential

search on the far more difficult HC problems, with the GA appearing to win on

the larger problems.

Another interpretation of the results is that the NN paradigm performs well

where local search (exploitation) is appropriate. In contrast, the GA outperforms

the NN on global search (exploration). A combination of the two paradigms, cou-

pling NN local search with GA global search, might well outperform either algo-

rithm alone by providing a good mixture of exploration and exploitation.

Future work should explore further the limitations of these paradigms by

defining even more difficult classes of SAT problems derived from other NP-

Complete problems. An example of such a problem comes from the cryptography

community. Most cryptography systems make use of prime numbers and factori-

zation [Rivest78]. Hoey has devised an algorithm for converting a factorization

decision problem into an equivalent SAT problem [Hoey89]. For example, a prob-

lem of the form:

"Does 689 have a 4 bit factor?"

can be converted to a boolean expression with 22 variables, 105 clauses, and 295

literals. Such problems are of interest to both the cryptographic and complexity

theory communities because they are generally highly intractable.

Finally, both paradigms should be compared to existing operations research

techniques for solving SAT problems [Davis60, Hammer68, Brown82, Franco86,

Van Gelder88].

In summary, this thesis presents paradigms for using neural networks and

genetic algorithms to heuristically solve boolean satisfiability problems. Results

are presented for two-peak and false-peak SAT problems. Since SAT is NP-

Complete, any other NP-Complete problem can be transformed into an equivalent

60

SAT problem in polynomial time, and solved via either paradigm. This technique

is illustrated for hamiltonian circuit (HC) problems.

61

List of References

Ackley, David H. (1985). A Connectionist Algorithm for Genetic Search, Proc.
Int’l Conference on Genetic Algorithms and their Applications.

Aho, Hopcroft, and Ullman (1974). The Design and Analysis of Computer Algo-
rithms, Addison-Wesley.

Anand, V. (1989). The Application of Genetic Algorithms to an NP-Complete
Problem, Unpublished work, Navy Center for Applied Research in Artificial
Intelligence.

Antonisse, H. J. and K. S. Keller (1987). Genetic Operators for High-Level
Knowledge Representation, Proc. Int’l Conference on Genetic Algorithms and
their Applications.

Axelrod, Robert (1987). The Evolution of Strategies in the Iterated Prisoner’s
Dilemma, Genetic Algorithms and Simulated Annealing, Lawrence Davis, ed.,
Morgan Kaufmann Publishers.

Baker, James E. (1985). Adaptive Selection Methods for Genetic Algorithms,
Proc. Int’l Conference on Genetic Algorithms and their Applications.

Baker, James E. (1987). Reducing Bias and Inefficiency in the Selection Algo-
rithm, Proc. Int’l Conference on Genetic Algorithms and their Applications.

Bethke, A. D. (1981). Genetic Algorithms as Function Optimizers, Doctoral
dissertation, University of Michigan.

62

Bickel, Arthur S. and Riva Wenig Bickel (1987). Tree Structured Rules in
Genetic Algorithms, Proc. Int’l Conference on Genetic Algorithms and their
Applications.

Booker, Lashon B. (1987). Improving Search in Genetic Algorithms, Genetic
Algorithms and Simulated Annealing, Lawrence Davis, ed., Morgan Kaufmann
Publishers.

Bridges, Clayton L. and David E. Goldberg (1987). An Analysis of Reproduction
and Crossover in a Binary-Encoded Genetic Algorithm, Proc. Int’l Conference on
Genetic Algorithms and their Applications.

Brown, C. and P. Purdom (1982). An Empirical Comparison of Backtracking
Algorithms, IEEE Trans. PAMI Vol. 4, No. 3, 309-316.

Cervantes, J. H. and Richard Hildebrant (1987). Comparison of Three Neuron-
Based Computation Schemes, IEEE First International Conference on Neural
Networks, pg III-657.

Cohoon, J. P., et. al. (1987). Punctuated Equilibria: a Parallel Genetic Algorithm,
Proc. Int’l Conference on Genetic Algorithms and their Applications.

Davis, M. and H. Putnam (1960). A Computing Procedure for Quantification
Theory, J. Assoc. Comput. Mach. 7, 201-215.

Davis, Lawrence (1985). Job Shop Scheduling with Genetic Algorithms, Proc.
Int’l Conference on Genetic Algorithms and their Applications.

Davis, Lawrence and Susan Coombs (1987). Genetic Algorithms and Communi-
cation Link Speed Design, Proc. Int’l Conference on Genetic Algorithms and
their Applications.

63

Davis, Lawrence (1987). Genetic Algorithms and Simulated Annealing, Morgan
Kaufman Publishers, Inc., Los Altos, CA.

De Jong, K. A. (1975). An Analysis of the Behavior of a Class of Genetic Adap-
tive Systems, Doctoral dissertation, Dept. Computer and Communication Sci-
ences, University of Michigan, Ann Arbor.

De Jong, K. A. (1985). Genetic Algorithms: a 10 Year Perspective, Proc. Int’l
Conference on Genetic Algorithms and their Applications.

De Jong, K. A. (1987). On Using Genetic Algorithms to Search Program Spaces,
Proc. Int’l Conference on Genetic Algorithms and their Applications.

De Jong, K. A. & William M. Spears (1989). Using Genetic Algorithms to Solve
NP-Complete Problems, Proc. Int’l Conference on Genetic Algorithms and their
Applications.

Dolan, Charles P. and Michael G. Dyer (1987). Toward the Evolution of Symbols,
Proc. Int’l Conference on Genetic Algorithms and their Applications.

Fourman, Michael P. (1985). Compaction of Symbolic Layout Using Genetic
Algorithms, Proc. Int’l Conference on Genetic Algorithms and their Applica-
tions.

Franco, John (1986). On the Probabilistic Performance of Algorithms for the
Satisfiability Problem, Information Processing Letters 23, 103-106.

Fujiko, Cory and John Dickinson (1987). Using the Genetic Algorithms to Gen-
erate LISP Source Code to Solve the Prisoner’s Dilemma, Proc. Int’l Conference
on Genetic Algorithms and their Applications.

Garey, Michael R. & David S. Johnson (1979). Computers and Intractability: A
Guide to the Theory of NP-Completeness, W. H. Freeman and Company, San

64

Francisco, CA.

Geman, S. and D. Geman (1984). Stochastic Relaxation, Gibbs Distributions, and
Bayesian Restoration of Images, IEEE Trans., Vol PAMI-6, No. 6, p. 721,
November 1984.

Glover, David E. (1987). Solving a Complex Keyboard Configuration Problem
Through Generalized Adaptive Search, Genetic Algorithms and Simulated
Annealing, Lawrence Davis, ed., Morgan Kaufmann Publishers.

Goldberg, David E. (1985). Genetic Algorithms and Rule Learning in Dynamic
Systems Control, Proc. Int’l Conference on Genetic Algorithms and their Appli-
cations.

Goldberg, David E. and Robert Lingle, Jr. (1985). Alleles, Loci, and the Traveling
Salesman Problem, Proc. Int’l Conference on Genetic Algorithms and their Appli-
cations.

Goldberg, David E. and Philip Segrest (1987). Finite Markov Chain Analysis of
Genetic Algorithms, Proc. Int’l Conference on Genetic Algorithms and their
Applications.

Goldberg, David E. and Jon Richardson (1987). Genetic Algorithms with Sharing
for Multimodal Function Optimization, Proc. Int’l Conference on Genetic Algo-
rithms and their Applications.

Goldberg, David E. and Robert E. Smith (1987). Nonstationary Function Optimi-
zation Using Genetic Algorithms with Dominance and Diploidy, Proc. Int’l
Conference on Genetic Algorithms and their Applications.

Goldberg, David E. (1987). Simple Genetic Algorithms and the Minimal, Decep-
tive Problem, Genetic Algorithms and Simulated Annealing, Lawrence Davis,
ed., Morgan Kaufmann Publishers.

65

Goldberg, David E. (1989). Genetic Algorithms in Search, Optimization &
Machine Learning, Addison-Wesley Publishing Company, Inc.

Grefenstette, John J. and J. Michael Fitzpatrick (1985). Genetic Search with
Approximate Function Evaluations, Proc. Int’l Conference on Genetic Algo-
rithms and their Applications.

Grefenstette, John J., et. al. (1985). Genetic Algorithms for the Traveling Sales-
man Problem, Proc. Int’l Conference on Genetic Algorithms and their Applica-
tions.

Grefenstette, John J. (1985). Proceedings of an International Conference on
Genetic Algorithms and their Applications, Pittsburg, PA.

Grefenstette, John J. (1987). Genetic Algorithms and Their Applications:
Proceedings of the Second International Conference on Genetic Algorithms,
Cambridge, MA.

Grefenstette, John J. (1987). Incorporating Problem Specific Knowledge into
Genetic Algorithms, Genetic Algorithms and Simulated Annealing, Lawrence
Davis, ed., Morgan Kaufmann Publishers.

Gunn, Janet P. and Robert B. Weidlich (1989). A Derivative of the Hopfield- Tank
Neural Network Model that Reliably Solves the Traveling Salesman Problem,
IJNNS, Washington, DC., June 1989.

Gutzmann, Kurt M. (1987). Combinatorial Optimization Using a Continuous
State Boltzmann Machine, IEEE First International Conference on Neural Net-
works, pg III-721.

Hammer, Peter L. and Sergiu Rudeanu (1968). Boolean Methods in Operations
Research, Springer-Verlag New York Inc. 1968.

66

Hoey, Dan J. Navy Center for Applied Research in Artificial Intelligence. Private
Communication.

Holland, John H. (1975). Adaptation in Natural and Artificial Systems, The
University of Michigan Press.

Hopfield, J. J. (1982). Neural Networks and Physical Systems with Emergent Col-
lective Computational Abilities, Proceedings of the National Academy of Sci-
ences, USA, 79, 2554-2558.

Hopfield, J. J. and D. W. Tank (1985). "Neural" Computation of Decisions in
Optimization Problems, Biological Cybernetics, 52, 141-152.

Korst, Jan H. M. and Emile H. L. Aarts (1989). Combinatorial Optimization on a
Boltzmann Machine, Journal of Parallel and Distributed Computing, pg 331.

Kuchinski, M. J. (1985). Battle Management Systems Control Rule Optimization
Using Artificial Intelligence, Technical Note, Naval Surface Weapons Center,
Dahlgren, VA.

Levy, B. C. and Milton Adams (1987). Global Optimization with Stochastic
Neural Networks, IEEE First International Conference on Neural Networks, pg
III-681.

Liepins, G. E., et. al. (1987). Greedy Genetics, Proc. Int’l Conference on Genetic
Algorithms and their Applications.

McClelland, James L. and David E. Rumelhart (1988). Explorations in Parallel
Distributed Processing, The MIT Press, Cambridge, MA.

Oliver, I. M., Smith, D. J. and J. R. C. Holland (1987). A Study of Permutation
Crossover Operators on the Traveling Salesman Problem, Proc. Int’l Conference
on Genetic Algorithms and their Applications.

67

Pettey, Chrisila B., et. al.(1987). A Parallel Genetic Algorithm, Proc. Int’l
Conference on Genetic Algorithms and their Applications.

Rivest, R. L., et al (1978). A Method for Obtaining Digital Signatures and
Public-key Cryptosystems, CACM, 21, 2, 120-6.

Robertson, George G. (1987). Parallel Implementation of Genetic Algorithms in a
Classifier System, Proc. Int’l Conference on Genetic Algorithms and their Appli-
cations.

Rumelhart, David E. and James L. McClelland (1986). Parallel Distributed Pro-
cessing, The MIT Press, Cambridge, MA.

Sannier, Adrian V. II and Erik D. Goodman (1987). Genetic Learning Procedures
in Distributed Environments, Proc. Int’l Conference on Genetic Algorithms and
their Applications.

Schaffer, J. David (1985). Multiple Objective Optimization with Vector Evaluated
Genetic Algorithms, Proc. Int’l Conference on Genetic Algorithms and their
Applications.

Schaffer, J. David and Amy Morishima (1987). An Adaptive Crossover Distribu-
tion Mechanism for Genetic Algorithms, Proc. Int’l Conference on Genetic Algo-
rithms and their Applications.

Sirag, David J. and Paul T. Weisser (1987). Toward a Unified Thermodynamics
Genetic Operator, Proc. Int’l Conference on Genetic Algorithms and their Appli-
cations.

Smith, Gerald H. (1979). Adaptive Genetic Algorithms and the Boolean
Satisfiability Problem, Unpublished Work.

68

Smith, S. F. (1980). A Learning System Based on Genetic Adaptive Algorithms,
Doctoral Thesis, Department of Computer Science, University of Pittsburg.

Smith, Derek (1985). Bin Packing with Adaptive Search, Proc. Int’l Conference
on Genetic Algorithms and their Applications.

Suh, Jung Y. and Dirk Van Gucht (1987). Incorporating Heuristic Information
into Genetic Search, Proc. Int’l Conference on Genetic Algorithms and their
Applications.

Tagliarini, Gene A. and Edward W. Page (1987). Solving Constraint Satisfaction
Problems with Neural Networks, IEEE First International Conference on Neural
Networks, pg III-741.

Tanese, Reiko (1987). Parallel Genetic Algorithms for a Hypercube, Proc. Int’l
Conference on Genetic Algorithms and their Applications.

Van Gelder, Allen (1988). A Satisfiability Tester for Non-clausal Propositional
Calculus, Information and Computation 79, 1-21.

Whitley, Darrell (1987). Using Reproductive Evaluation to Improve Genetic
Search and Heuristic Discovery, Proc. Int’l Conference on Genetic Algorithms
and their Applications.

69

Appendix 1

Problem Vars Mean St. Dev Iterations Trials___

TP1 10 278 132 - 50
TP2 20 963 239 - 50
TP3 30 1753 360 - 50
TP4 40 2855 676 - 50
TP5 50 4216 641 - 50
TP6 60 5485 947 - 50
TP7 70 7095 1077 - 50
TP8 80 11167 4977 11 10
TP9 90 13080 5491 11 10___
FP1 10 439 338 12 10
FP2 20 1209 730 11 10
FP3 30 4805 5289 17 10
FP4 40 8031 8039 20 10
FP5 50 12167 12797 20 10
FP6 60 18387 21268 44 20
FP7 70 15617 13390 34 20
FP8 80 18605 16209 32 20
FP9 90 35153 31731 22 10___
HC4 6 65 24 - 10
HC5 10 848 2041 - 10
HC6 15 1022 1083 - 10
HC7 21 5028 2016 - 10
HC8 28 21894 36391 20 10
HC9 36 70577 49946 - 10
HC10 45 259876 227254 - 10
HC11 55 838522 123350 - 2___

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 11: GA Performance (AVEp , p = 1)

70

Appendix 1

Problem Vars Mean St. Dev Iterations Trials___

TP1 10 164 45 10 10
TP2 20 696 91 10 10
TP3 30 1257 294 10 10
TP4 40 2283 847 11 10
TP5 50 2741 393 10 10
TP6 60 4060 518 10 10
TP7 70 4966 2238 11 10
TP8 80 6973 2516 11 10
TP9 90 10208 7075 13 10___
FP1 10 288 157 11 10
FP2 20 1879 2110 18 10
FP3 30 3608 2155 21 10
FP4 40 4219 2065 17 10
FP5 50 6517 3197 19 10
FP6 60 10162 9649 22 10
FP7 70 12929 11687 22 10
FP8 80 17868 14615 25 10
FP9 90 17569 13706 21 10___
HC4 6 106 14 10 10
HC5 10 239 72 10 10
HC6 15 803 512 12 10
HC7 21 3559 3281 18 10
HC8 28 8680 9355 25 10
HC9 36 34417 29668 61 10

HC10 45 174706 182521 200 10
HC11 55 640478 477833 595 10___

Table 12: GA Performance (AVEp , p = 2)

71

Appendix 1

Problem Vars Mean St. Dev Iterations Trials___

TP1 10 175 74 10 10
TP2 20 687 285 12 10
TP3 30 1198 717 11 10
TP4 40 2123 1073 12 10
TP5 50 2828 1816 12 10
TP6 60 3575 2367 12 10
TP7 70 6567 4094 16 10
TP8 80 9838 5671 19 10
TP9 90 14524 9490 23 10___
FP1 10 238 153 11 10
FP2 20 987 509 15 10
FP3 30 2432 1614 19 10
FP4 40 3229 2293 17 10
FP5 50 6554 4724 22 10
FP6 60 10537 10873 28 10
FP7 70 7814 3438 19 10
FP8 80 22412 13671 39 10
FP9 90 16644 15119 26 10___
HC4 6 106 13 10 10
HC5 10 222 70 10 10
HC6 15 594 755 11 10
HC7 21 1897 1096 18 10
HC8 28 12247 8444 52 10
HC9 36 46558 51804 148 10

HC10 45 155141 138554 377 10___
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 13: GA Performance (AVEp , p = 3)

72

Appendix 1

__
Problem Vars Mean St. Dev Iterations Trials__

TP1 10 174 62 10 10
TP2 20 497 96 11 10
TP3 30 1062 478 12 10
TP4 40 1501 311 10 10
TP5 50 2930 1030 15 10
TP6 60 4566 3618 17 10
TP7 70 5649 2176 16 10
TP8 80 10601 7545 25 10
TP9 90 17426 6991 32 10__
FP1 10 314 265 12 10
FP2 20 780 450 14 10
FP3 30 1771 1021 18 10
FP4 40 3015 2786 19 10
FP5 50 5477 4165 26 10
FP6 60 11224 9881 36 10
FP7 70 9479 5374 26 10
FP8 80 13340 7674 30 10
FP9 90 31299 23323 57 10__
HC4 6 106 13 10 10
HC5 10 234 82 10 10
HC6 15 697 728 12 10
HC7 21 1993 2460 23 10
HC8 28 10506 8753 73 10
HC9 36 69114 77931 342 10__

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 14: GA Performance (AVEp , p = 4)

73

Appendix 1

__
Problem Vars Mean St. Dev Iterations Trials__

TP1 10 165 40 10 10
TP2 20 433 84 10 10
TP3 30 961 266 12 10
TP4 40 1532 875 13 10
TP5 50 2402 1060 14 10
TP6 60 6167 4738 25 10
TP7 70 8637 4914 28 10
TP8 80 11774 9073 30 10
TP9 90 18892 11420 41 10__
FP1 10 254 92 12 10
FP2 20 559 241 12 10
FP3 30 2030 1584 20 10
FP4 40 3988 2751 27 10
FP5 50 5240 4680 27 10
FP6 60 10850 5653 43 10
FP7 70 10663 6493 33 10
FP8 80 23963 23687 58 10
FP9 90 48010 34600 97 10__
HC4 6 106 13 10 10
HC5 10 221 80 10 10
HC6 15 771 798 16 10
HC7 21 1784 1543 26 10
HC8 28 10605 9259 101 10
HC9 36 97837 90413 687 10__

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 15: GA Performance (AVEp , p = 5)

74

Appendix 1

__
Problem Vars Mean St. Dev Iterations Trials__

TP1 10 6 4 50 50
TP2 20 12 6 50 50
TP3 30 24 11 50 50
TP4 40 35 14 50 50
TP5 50 51 14 50 50
TP6 60 64 15 50 50
TP7 70 78 15 50 50
TP8 80 97 18 50 50
TP9 90 113 19 50 50

TP10 100 132 23 50 50__
FP1 10 49 106 57 50
FP2 20 18 10 50 50
FP3 30 31 16 50 50
FP4 40 44 18 50 50
FP5 50 76 127 51 50
FP6 60 77 25 50 50
FP7 70 90 26 50 50
FP8 80 108 27 50 50
FP9 90 126 30 50 50

FP10 100 171 256 51 50__
HC4 6 15 10 10 10
HC5 10 51 34 10 10
HC6 15 169 84 10 10
HC7 21 426 265 10 10
HC8 28 1120 1058 12 10
HC9 36 6698 5927 26 10

HC10 45 99431 100052 99 10
HC11 55 1417388 1341593 384 10__

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 16: NN Performance

75

Vita

William M. Spears was born on April 3, 1962, in Providence, Rhode Island,
and is an American citizen. He graduated from Saratoga Springs High School,
Saratoga Springs, New York, in 1980. He received his Bachelor of Arts in
Mathematics from Johns Hopkins University, Baltimore, Maryland, in 1984. He
has been employed at the Naval Research Laboratory, Washington D.C, since
1985. His publications include:

De Jong, K.A. and W. Spears, "Using Genetic Algorithms to Solve NP-Complete
Problems", International Conference on Genetic Algorithms, George Mason
University, Fairfax, Virginia, 1989.

Pipitone, F., K.A. De Jong, and W. Spears, "An Artificial Intelligence Approach
to Analog Systems Diagnosis", NRL Report 9219, Naval Research Laboratory,
Washington D.C., 1989.

Pipitone, F., K.A. De Jong, W. Spears, and M. Marrone, "The FIS Electronic
Troubleshooting Project", Expert System Applications to Telecommunications, J.
Liebowitz, John Wiley, New York, 1988.

Spears, W. and K.A. De Jong, "Using Genetic Algorithms as a Heuristic for NP-
Complete Decision Problems", Operations Research Society of America / The
Institute of Management Sciences, New York City, New York, 1989.

Spears, W., "Using Neural Networks and Genetic Algorithms as Heuristics for
NP-Complete Problems", International Joint Conference on Neural Networks,
Washington D.C, 1990.

