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Preface

Human-Computer Interaction (HCI) research used to be about the ergonomics of
interfaces and, interfaces used to consist of a keyboard, a mouse and whatever could
be displayed on the screen of a monitor, that is, the graphical user interface. Nowa-
days, when we talk about Human-Computer Interaction research, we are talking
about multimodal interaction in environments where we research natural human
behavior characteristics in general, rather than looking at keyboard and mouse in-
teraction. The environments we live in support us in our activities. Sensor-equipped
environments know about us, our activities, our preferences, and about our interac-
tions in the past. This knowledge is obtained from our interaction behavior, behavior
that can be observed and interpreted using knowledge that becomes available and
that can be fused from cameras, microphones, and position sensors. This allows
the environment to not only be reactive, but also proactive, anticipating the user’s
activities, needs and preferences.

Less traditional sensors are now being introduced in the Human-Computer Inter-
action field. The aim is to gather as much information as possible from the human
interaction partner and the context, including the interaction history, that can be
sensed, interpreted, and stored. This information makes it possible for the environ-
ment to improve its performance when supporting its users or inhabitants in their
daily activities. These sensors detect our activities, whether we move and how we
move and they can be embedded in our clothes and in devices we carry with us. In
the past, physiological sensors have been used to evaluate user interfaces. How does
the user experience a particular user interface? What can we learn from information
about heart rate, blood pressure and skin conductivity about how a user experiences
a particular interface? Such information can help in improving the design of an inter-
face. At present we see the introduction of these physiological sensors in devices we
carry with us or that are embedded in devices that allow explicit control of computer
or computer controlled environments. Hence, this information can be used ‘on-line’,
that is, to improve the real-time interaction, rather than ‘off-line’, that is, to improve
the quality of the interface. This information gives insight in the user’s affective and
cognitive state and it helps us to understand the utterances and activities of the user.
It can be used to provide appropriate feedback or to adapt the interface to the user.

v
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Now we see the introduction of sensors that provide us with information that
comes directly from the human brain. As in the case of the physiological sensors
mentioned above, information from these neuro-physiological sensors can be used
to provide more context that helps us to interpret a user’s activities and desires. In
addition, brain activity can be controlled by the user and it can be used to control an
application. Hence, a user can decide to use his or her brain activity to issue com-
mands. One example is motor imagery, where the user imagines a certain movement
in order to, for example, navigate in a virtual or physical environment. On the other
hand, an environment can attempt to issue signals from which it can become clear,
by looking at the initiated brain activity, what the user is interested in or wants to
achieve.

The advances in cognitive neuroscience and brain imaging technologies provide
us with the increasing ability to interface directly with activity in the brain. Re-
searchers have begun to use these technologies to build brain-computer interfaces.
Originally, these interfaces were meant to allow patients with severe motor disabil-
ities to communicate and to control devices by thought alone. Removing the need
for motor movements in computer interfaces is challenging and rewarding, but there
is also the potential of brain sensing technologies as input mechanisms that give
access to extremely rich information about the state of the user. Having access to
this information is valuable to Human-Computer Interaction researchers and opens
up at least three distinct areas of research: controlling computers by using thought
alone or as a complementary input modality, evaluating systems and interfaces, and
building adaptive user interfaces.

Specifically, this book aims to identify and discuss

• Brain-computer interface applications for users with permanent and situational
physical disabilities, as well as for able-bodied users; this includes application in
domains such as traditional communication and productivity tasks, as well as in
games and entertainment computing;

• Sensing technologies and data processing techniques that apply well to the suite
of applications in which HCI researchers are interested;

• Techniques for integrating brain activity, whether induced by thought or by
performing a task, in the palette of input modalities for (multimodal) Human-
Computer Interaction

The Human-Computer Interaction field has matured much in the last several
decades. It is now firmly rooted as a field that connects more traditional fields such
as computer science, design, and psychology in such a way as to allow us to lever-
age and synthesize work in these spaces to build technologies that augment our lives
in some way. The field has also built up well-defined methodologies for repeating
this work across a series of disciplines. Simultaneously, neuroscience continues to
advance sufficiently fast and brain-computer interfaces are starting to gain enough
traction so that we believe it is a field ripe for collaboration with others such as
HCI. In fact, we argue that the specific properties of the two fields make them ex-
tremely well suited to cross-fertilization, and that is the intent of this book. That
said, we hope that the specific way we have crafted this book will also provide brain-
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computer interface researchers with the appropriate background to engage with HCI
researchers in their work.

Acknowledgements The editors are grateful to Hendri Hondorp for his help with editing this
book.
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Chapter 1
Brain-Computer Interfaces
and Human-Computer Interaction

Desney Tan and Anton Nijholt

Abstract Advances in cognitive neuroscience and brain imaging technologies have
started to provide us with the ability to interface directly with the human brain. This
ability is made possible through the use of sensors that can monitor some of the
physical processes that occur within the brain that correspond with certain forms
of thought. Researchers have used these technologies to build brain-computer in-
terfaces (BCIs), communication systems that do not depend on the brain’s normal
output pathways of peripheral nerves and muscles. In these systems, users explicitly
manipulate their brain activity instead of using motor movements to produce signals
that can be used to control computers or communication devices.

Human-Computer Interaction (HCI) researchers explore possibilities that allow
computers to use as many sensory channels as possible. Additionally, researchers
have started to consider implicit forms of input, that is, input that is not explicitly
performed to direct a computer to do something. Researchers attempt to infer infor-
mation about user state and intent by observing their physiology, behavior, or the
environment in which they operate. Using this information, systems can dynami-
cally adapt themselves in order to support the user in the task at hand.

BCIs are now mature enough that HCI researchers must add them to their tool
belt when designing novel input techniques. In this introductory chapter to the book
we present the novice reader with an overview of relevant aspects of BCI and HCI,
so that hopefully they are inspired by the opportunities that remain.

D. Tan (�)
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1.1 Introduction

For generations, humans have fantasized about the ability to communicate and inter-
act with machines through thought alone or to create devices that can peer into per-
son’s mind and thoughts. These ideas have captured the imagination of humankind
in the form of ancient myths and modern science fiction stories. However, it is only
recently that advances in cognitive neuroscience and brain imaging technologies
have started to provide us with the ability to interface directly with the human brain.
This ability is made possible through the use of sensors that can monitor some of
the physical processes that occur within the brain that correspond with certain forms
of thought.

Primarily driven by growing societal recognition for the needs of people with
physical disabilities, researchers have used these technologies to build brain-
computer interfaces (BCIs), communication systems that do not depend on the
brain’s normal output pathways of peripheral nerves and muscles. In these systems,
users explicitly manipulate their brain activity instead of using motor movements to
produce signals that can be used to control computers or communication devices.
The impact of this work is extremely high, especially to those who suffer from
devastating neuromuscular injuries and neurodegenerative diseases such as amy-
otrophic lateral sclerosis, which eventually strips individuals of voluntary muscular
activity while leaving cognitive function intact.

Meanwhile, and largely independent of these efforts, Human-Computer Interac-
tion (HCI) researchers continually work to increase the communication bandwidth
and quality between humans and computers. They have explored visualizations and
multimodal presentations so that computers may use as many sensory channels as
possible to send information to a human. Similarly, they have devised hardware and
software innovations to increase the information a human can quickly input into
the computer. Since we have traditionally interacted with the external world only
through our physical bodies, these input mechanisms have mostly required perform-
ing some form of motor activity, be it moving a mouse, hitting buttons, using hand
gestures, or speaking.

Additionally, these researchers have started to consider implicit forms of input,
that is, input that is not explicitly performed to direct a computer to do some-
thing. In an area of exploration referred to by names such as perceptual com-
puting or contextual computing, researchers attempt to infer information about
user state and intent by observing their physiology, behavior, or even the envi-
ronment in which they operate. Using this information, systems can dynamically
adapt themselves in useful ways in order to better support the user in the task at
hand.

We believe that there exists a large opportunity to bridge the burgeoning research
in Brain-Computer Interfaces and Human Computer Interaction, and this book at-
tempts to do just that. We believe that BCI researchers would benefit greatly from
the body of expertise built in the HCI field as they construct systems that rely solely
on interfacing with the brain as the control mechanism. Likewise, BCIs are now
mature enough that HCI researchers must add them to our tool belt when designing
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novel input techniques (especially in environments with constraints on normal motor
movement), when measuring traditionally elusive cognitive or emotional phenom-
ena in evaluating our interfaces, or when trying to infer user state to build adaptive
systems. Each chapter in this book was selected to present the novice reader with
an overview of some aspect of BCI or HCI, and in many cases the union of the two,
so that they not only get a flavor of work that currently exists, but are hopefully
inspired by the opportunities that remain.

1.1.1 The Evolution of BCIs and the Bridge with Human
Computer Interaction

The evolution of any technology can generally be broken into three phases. The
initial phase, or proof-of-concept, demonstrates the basic functionality of a technol-
ogy. In this phase, even trivially functional systems are impressive and stimulate
imagination. They are also sometimes misunderstood and doubted. As an example,
when moving pictures were first developed, people were amazed by simple footage
shot with stationary cameras of flowers blowing in the wind or waves crashing on
the beach. Similarly, when the computer mouse was first invented, people were in-
trigued by the ability to move a physical device small distances on a tabletop in
order to control a pointer in two dimensions on a computer screen. In brain sensing
work, this represents the ability to extract any bit of information directly from the
brain without utilizing normal muscular channels.

In the second phase, or emulation, the technology is used to mimic existing tech-
nologies. The first movies were simply recorded stage plays, and computer mice
were used to select from lists of items much as they would have been with the nu-
meric pad on a keyboard. Similarly, early brain-computer interfaces have aimed to
emulate functionality of mice and keyboards, with very few fundamental changes to
the interfaces on which they operated. It is in this phase that the technology starts to
be driven less by its novelty and starts to interest a wider audience interested by the
science of understanding and developing it more deeply.

Finally, the technology hits the third phase, in which it attains maturity in its
own right. In this phase, designers understand and exploit the intricacies of the new
technology to build unique experiences that provide us with capabilities never be-
fore available. For example, the flashback and crosscut, as well as “bullet-time”
introduced more recently by the movie the Matrix have become well-acknowledged
idioms of the medium of film. Similarly, the mouse has become so well integrated
into our notions of computing that it is extremely hard to imagine using current in-
terfaces without such a device attached. It should be noted that in both these cases,
more than forty years passed between the introduction of the technology and the
widespread development and usage of these methods.

We believe that brain-computer interface work is just now coming out of its in-
fancy, and that the opportunity exists to move it from the proof-of-concept and em-
ulation stages into maturity. However, to do this, we will have not only have to
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continue the discovery and invention within the domain itself, but also start to build
bridges and leverage researchers and work in other fields. Meanwhile, the human
computer interaction field continues to work toward expanding the effective infor-
mation bandwidth between human and machine, and more importantly to design
technologies that integrate seamlessly into our everyday tasks. Specifically, we be-
lieve there are several opportunities, though we believe our views are necessarily
constrained and hope that this book inspires further crossover and discussion. For
example:

• While the BCI community has largely focused on the very difficult mechanics
of acquiring data from the brain, HCI researchers could add experience design-
ing interfaces that make the most out of the scanty bits of information they have
about the user and their intent. They also bring in a slightly different viewpoint
which may result in interesting innovation on the existing applications of interest.
For example, while BCI researchers maintain admirable focus on providing pa-
tients who have lost muscular control an alternate input device, HCI researchers
might complement the efforts by considering the entire locked-in experience, in-
cluding such factors as preparation, communication, isolation, and awareness,
etc.

• Beyond the traditional definition of Brain-Computer Interfaces, HCI researchers
have already started to push the boundaries of what we can do if we can peer into
the user’s brain, if even ever so roughly. Considering how these devices apply
to healthy users in addition to the physically disabled, and how adaptive system
may take advantage of them could push analysis methods as well as application
areas.

• The HCI community has also been particularly successful at systematically ex-
ploring and creating whole new application areas. In addition to thinking about
using technology to fix existing pain points, or to alleviate difficult work, this
community has sought scenarios in which technology can augment everyday hu-
man life in some way. We believe that we have only begun to scratch the surface
of the set of applications that brain sensing technologies open, and hope that
this book stimulates a much wider audience to being considering these scenar-
ios.

The specific goals of this book are three-fold. First, we would like to provide back-
ground for researchers that have little (or no) expertise in neuroscience or brain
sensing so that they gain appreciation for the domain, and are equipped not only
to read and understand articles, but also ideally to engage in work. Second, we
will present a broad survey of representative work within the domain, written by
key researchers. Third, because the intersection of HCI/BCI is relatively new, we
use the book to articulate some of the challenges and opportunities for using brain
sensing in HCI work, as well as applying HCI solutions to brain sensing work. We
provide a quick overview and outline in the remainder of this introductory chap-
ter.
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1.2 Brain Imaging Primer

1.2.1 Architecture of the Brain

Contrary to popular simplifications, the brain is not a general-purpose computer
with a unified central processor. Rather, it is a complex assemblage of competing
sub-systems, each highly specialized for particular tasks (Carey 2002). By studying
the effects of brain injuries and, more recently, by using new brain imaging tech-
nologies, neuroscientists have built detailed topographical maps associating differ-
ent parts of the physical brain with distinct cognitive functions.

The brain can be roughly divided into two main parts: the cerebral cortex and
sub-cortical regions. Sub-cortical regions are phylogenetically older and include a
areas associated with controlling basic functions including vital functions such as
respiration, heart rate, and temperature regulation, basic emotional and instinctive
responses such as fear and reward, reflexes, as well as learning and memory. The
cerebral cortex is evolutionarily much newer. Since this is the largest and most com-
plex part of the brain in the human, this is usually the part of the brain people
notice in pictures. The cortex supports most sensory and motor processing as well
as “higher” level functions including reasoning, planning, language processing, and
pattern recognition. This is the region that current BCI work has largely focused on.

1.2.2 Geography of Thought

The cerebral cortex is split into two hemispheres that often have very different func-
tions. For instance, most language functions lie primarily in the left hemisphere,
while the right hemisphere controls many abstract and spatial reasoning skills. Also,
most motor and sensory signals to and from the brain cross hemispheres, meaning
that the right brain senses and controls the left side of the body and vice versa.
The brain can be further divided into separate regions specialized for different func-
tions. For example, occipital regions at the very back of the head are largely devoted
to processing of visual information. Areas in the temporal regions, roughly along
the sides and lower areas of the cortex, are involved in memory, pattern matching,
language processing, and auditory processing. Still other areas of the cortex are de-
voted to diverse functions such as spatial representation and processing, attention
orienting, arithmetic, voluntary muscle movement, planning, reasoning and even
enigmatic aspects of human behavior such as moral sense and ambition.

We should emphasize that our understanding of brain structure and activity is still
fairly shallow. These topographical maps are not definitive assignments of location
to function. In fact, some areas process multiple functions, and many functions are
processed in more than one area.
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1.2.3 Measuring Thought with Brain Imaging

Regardless of function, each part of the brain is made up of nerve cells called neu-
rons. As a whole, the brain is a dense network consisting of about 100 billion neu-
rons. Each of these neurons communicates with thousands of others in order to
regulate physical processes and to produce thought. Neurons communicate either
by sending electrical signals to other neurons through physical connections or by
exchanging chemicals called neurotransmitters. When they communicate, neurons
need more oxygen and glucose to function and cause an increase in blood flow to
active regions of the brain.

Advances in brain imaging technologies enable us to observe the electric, chem-
ical, or blood flow changes as the brain processes information or responds to var-
ious stimuli. Using these techniques we can produce remarkable images of brain
structure and activity. By inspecting these images, we can infer specific cognitive
processes occurring in the brain at any given time.

Again, we should emphasize that with our current understanding, brain imaging
allows us only to sense general cognitive processes and not the full semantics of our
thoughts. Brain imaging is, in general, not mind reading. For example, although we
can probably tell if a user is processing language, we cannot easily determine the se-
mantics of the content. We hope that the resolution at which we are able to decipher
thoughts grows as we increase our understanding of the human brain and abstract
thought, but none of the work in this book is predicated on these improvements
happening.

1.2.4 Brain Imaging Technologies

There are two general classes of brain imaging technologies: invasive technologies,
in which sensors are implanted directly on or in the brain, and non-invasive tech-
nologies, which measure brain activity using external sensors. Although invasive
technologies provide high temporal and spatial resolution, they usually cover only
very small regions of the brain. Additionally, these techniques require surgical pro-
cedures that often lead to medical complications as the body adapts, or does not
adapt, to the implants. Furthermore, once implanted, these technologies cannot be
moved to measure different regions of the brain. While many researchers are experi-
menting with such implants (e.g. Lal et al. 2004), we will not review this research in
detail as we believe these techniques are unsuitable for human-computer interaction
work and general consumer use.

We summarize and compare the many non-invasive technologies that use only
external sensors in Fig. 1.1 (see the Appendix of this Chapter). While the list may
seem lengthy, only Electroencephalography (EEG) and Functional Near Infrared
Spectroscopy (fNIRS) present the opportunity for inexpensive, portable, and safe
devices, properties we believe are important for brain-computer interface applica-
tions in HCI work.
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1.2.4.1 Electroencephalography (EEG)

EEG uses electrodes placed directly on the scalp to measure the weak (5–100 µV)
electrical potentials generated by activity in the brain (for a detailed discussion of
EEG, see Smith 2004). Because of the fluid, bone, and skin that separate the elec-
trodes from the actual electrical activity, signals tend to be smoothed and rather
noisy. Hence, while EEG measurements have good temporal resolution with delays
in the tens of milliseconds, spatial resolution tends to be poor, ranging about 2–3 cm
accuracy at best, but usually worse. Two centimeters on the cerebral cortex could be
the difference between inferring that the user is listening to music when they are in
fact moving their hands. We should note that this is the predominant technology in
BCI work, as well as work described in this book.

1.2.4.2 Functional Near Infrared Spectroscopy (fNIRS)

fNIRS technology, on the other hand, works by projecting near infrared light into
the brain from the surface of the scalp and measuring optical changes at various
wavelengths as the light is reflected back out (for a detailed discussion of fNIRS, see
Coyle et al. 2004). The NIR response of the brain measures cerebral hemodynamics
and detects localized blood volume and oxygenation changes (Chance et al. 1998).

Since changes in tissue oxygenation associated with brain activity modulate the
absorption and scattering of the near infrared light photons to varying amounts,
fNIRS can be used to build functional maps of brain activity. This generates images
similar to those produced by traditional Functional Magnetic Resonance Imaging
(fMRI) measurement. Much like fMRI, images have relatively high spatial resolu-
tion (<1 cm) at the expense of lower temporal resolution (>2–5 seconds), limited
by the time required for blood to flow into the region.

In brain-computer interface research aimed at directly controlling computers,
temporal resolution is of utmost importance, since users have to adapt their brain
activity based on immediate feedback provided by the system. For instance, it would
be difficult to control a cursor without having interactive input rates. Hence, even
though the low spatial resolution of these devices leads to low information trans-
fer rate and poor localization of brain activity, most researchers currently adopt
EEG because of the high temporal resolution it offers. However, in more recent
attempts to use brain sensing technologies to passively measure user state, good
functional localization is crucial for modeling the users’ cognitive activities as accu-
rately as possible. The two technologies are nicely complementary and researchers
must carefully select the right tool for their particular work. We also believe that
there are opportunities for combining various modalities, though this is currently
underexplored.
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1.3 Brain Imaging to Directly Control Devices

1.3.1 Bypassing Physical Movement to Specify Intent

Most current brain-computer interface work has grown out of the neuroscience and
medical fields, and satisfying patient needs has been a prime motivating force. Much
of this work aims to improve the lives of patients with severe neuromuscular dis-
orders such as amyotrophic lateral sclerosis (ALS), also popularly known as Lou
Gerig’s disease, brainstem stroke, or spinal cord injury. In the latter stages of these
disorders, many patients lose all control of their physical bodies, including sim-
ple functions such as eye-gaze. Some even need help with vital functions such as
breathing. However, many of these patients retain full control of their higher level
cognitive abilities.

While medical technologies that augment vital bodily functions have drastically
extended the lifespan of these patients, these technologies do not alleviate the men-
tal frustration or social isolation caused by having no way to communicate with
the external world. Providing these patients with brain-computer interfaces that al-
low them to control computers directly with their brain signals could dramatically
increase their quality of life. The complexity of this control ranges from simple
binary decisions, to moving a cursor on the screen, to more ambitious control of
mechanical prosthetic devices.

Most current brain-computer interface research has been a logical extension of
assistive methods in which one input modality is substituted for another (for detailed
reviews of this work, see Coyle et al. 2003; Vaughan 2003). When users lose the use
of their arms, they typically move to eye or head tracking, or even speech, to control
their computers. However, when they lose control of their physical movement, the
physiological function they have the most and sometimes only control over is their
brain activity.

1.3.2 Learning to Control Brain Signals

To successfully use current direct control brain-computer interfaces, users have to
learn to intentionally manipulate their brain signals. To date, there have been two
approaches for training users to control their brain signals (Curran and Stokes 2003).
In the first, users are given specific cognitive tasks such as motor imagery to generate
measurable brain activity. Using this technique the user can send a binary signal to
the computer, for example, by imagining sequences of rest and physical activity
such as moving their arms or doing high kicks. The second approach, called operant
conditioning, provides users with continuous feedback as they try to control the
interface. Users may think about anything (or nothing) so long as they achieve the
desired outcome. Over many sessions, users acquire control of the interface without
being consciously aware of how they are performing the task. Unfortunately, many
users find this technique hard to master.
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Other researchers have designed interfaces that exploit the specific affordances
of brain control. One such interface presents a grid of keys, each representing a
letter or command (Sutter 1992). Each row or column of the grid flashes in rapid
succession, and the user is asked to count the number of flashes that occur over the
desired key. The system determines the row and column of interest by detecting an
event-related signal called the P300 response, which occurs in the parietal cortex
about 300 milliseconds after the onset of a significant stimulus.

We believe that there remains much work to be done in designing interfaces that
exploit our understanding of cognitive neuroscience and that provide the maximum
amount of control using the lowest possible bit rate (for discussion of this and other
research challenges in this area, see Wolpaw et al. 2002). We believe that expertise
in human-computer interaction can be leveraged to design novel interfaces that may
be generally applicable to brain-computer interfaces and low bit rate interactions.

1.3.3 Evaluation of Potential Impact

We are still at a very early stage in brain-computer interface research. Because cur-
rent systems require so much cognitive effort and produce such small amounts of
control information (the best systems now get 25 bits/minute), they remain useful
mainly in carefully controlled scenarios and only to users who have no motor alter-
natives. Much work has to be done before we are able to successfully replace motor
movement with brain signals, even in the simplest of scenarios.

While researchers believe that these interfaces will get good enough to vastly
improve the lives of disabled users, not all are certain that brain-computer interfaces
will eventually be good enough to completely replace motor movement even for
able-bodied users. In fact, many researchers have mixed feelings on whether or not
this is useful or advisable in many situations. However, we do foresee niche appli-
cations in which brain-computer interfaces might be useful for able-bodied people.

For example, since these interfaces could potentially bypass the lag in mentally
generating and executing motor movements, they would work well in applications
for which response times are crucial. Additionally, they could be useful in scenarios
where it is physically difficult to move. Safety mechanisms on airplanes or space-
craft could benefit from such interfaces. In these scenarios, pilots experiencing large
physical forces do not have much time to react to impending disasters, and even
with limited bandwidth brain control could be valuable. Also, since brain control
is intrinsically less observable than physical movement, brain-computer interfaces
may be useful for covert operation, such as in command and control or surveillance
applications for military personnel.

Brain-computer interfaces could also be successful in games and entertainment
applications. In fact, researchers have already begun to explore this lucrative area
to exploit the novelty of such an input device in this large and growing market.
One interesting example of such a game is Brainball, developed at the Interactive
Studio in Sweden (Hjelm and Browall 2000). In this game, two players equipped
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with EEG are seated on opposite sides of a table. Players score simply by moving
a ball on the table into the opponent’s goal. The unusual twist to this game is that
users move the ball by relaxing. The more relaxed the EEG senses the user to be,
the more the ball moves. Hence, rather than strategic thoughts and intense actions,
the successful player must learn to achieve calmness and inactivity. At the time this
book was written, various game companies (such as Mattel) have already released
consumer devices (toys) that claim some form of EEG control, with multiple others
pending release.

1.4 Brain Imaging as an Indirect Communication Channel

1.4.1 Exploring Brain Imaging for End-User Applications

As HCI researchers, we are in the unique position to think about the opportunities
offered by widespread adoption of brain-computer interfaces. While it is a remark-
able endeavor to use brain activity as a novel replacement for motor movement, we
think that brain-computer interfaces used in this capacity will probably remain teth-
ered to a fairly niche market. Hence, in this book, we look beyond current research
approaches for the potential to make brain imaging useful to the general end-user
population in a wide range of scenarios.

These considerations have led to very different approaches in using brain imag-
ing and brain-computer interfaces. Rather than building systems in which users in-
tentionally generate brain signals to directly control computers, researchers have
also sought to passively sense and model some notion of the user’s internal cogni-
tive state as they perform useful tasks in the real world. This approach is similar
to efforts aimed at measuring emotional state with physiological sensors (e.g. Pi-
card and Klein 2002). Like emotional state, cognitive state is a signal that we would
never want the user to intentionally control, either because it would distract them
from performing their tasks or because they are not able to articulate the informa-
tion.

People are notoriously good at modeling the approximate cognitive state of other
people using only external cues. For example, most people have little trouble de-
termining that someone is deep in thought simply by looking at them. This ability
mediates our social interactions and communication, and is something that is no-
tably lacking in our interactions with computers. While we have attempted to build
computer systems that make similar inferences, current models and sensors are not
sensitive enough to pick up on subtle external cues that represent internal cognitive
state. With brain imaging, we can now directly measure what is going on in a user’s
brain, presumably making it easier for a computer to model this state.

Researchers have been using this information either as feedback to the user, as
awareness information for other users, or as supplementary input to the computer
so that it can mediate its interactions accordingly. In the following subsections, we
describe threads that run through the various chapters, consisting of understanding
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human cognition in the real world, using cognitive state as an evaluation metric for
interface design, as well as building interfaces that adapt based on cognitive state.
We think that this exploration will allow brain imaging, even in its current state, to
fundamentally change the richness of our interactions with computers. In fact, much
like the mouse and keyboard were pivotal in the development of direct manipulation
interfaces, brain imaging could revolutionize our next generation contextually aware
computing interfaces.

1.4.2 Understanding Cognition in the Real World

Early neuroscience and cognitive psychology research was largely built upon case
studies of neurological syndromes that damaged small parts of the brain. By study-
ing the selective loss of cognitive functions caused by the damage, researchers were
able to understand how specific parts of the brain mediated different functions. More
recently, with improvements in brain imaging technologies, researchers have used
controlled experiments to observe specific brain activations that happen as a result
of particular cognitive activities. In both these approaches, the cognitive activities
tested are carefully constructed and studied in an isolated manner.

While isolating cognitive activities has its merits, we believe that measuring brain
activity as the user operates in the real world could lead to new insights. Researchers
are already building wearable brain imaging systems that are suitable for use outside
of the laboratory. These systems can be coupled with existing sensors that measure
external context so that we can correlate brain activity with the tasks that elicit this
activity. While the brain imaging device can be seen as a powerful sensor that in-
forms existing context sensing systems, context sensing systems can also be viewed
as an important augmentation to brain imaging devices.

Again, we believe that there are opportunities here that are currently underex-
plored. Using this approach, we are able not only to measure cognitive activity in
more complex scenarios than we can construct in the laboratory, but also to study
processes that take long periods of time. This is useful in tasks for which the brain
adapts slowly or for tasks that cannot be performed on demand in sterile labora-
tory environments, such as idea generation or the storage of contextual memory
cues as information is learned. Also, while neuroscience studies have focused on
the dichotomy between neurologically disabled and normal patients, we now have
the opportunity to study other individual differences, perhaps due to factors such
as gender, expertise on a given task, or traditional assessment levels of cognitive
ability. Finally, we believe that there exists the opportunity to study people as they
interact with one another. This can be used to explore the neural basis of social
dynamics, or to attempt to perform dynamic workload distribution between people
collaborating on a project. Furthermore, having data from multiple people operating
in the real world over long periods of time might allow us to find patterns and build
robust cognitive models that bridge the gap between current cognitive science and
neuroscience theory.
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1.4.3 Cognitive State as an Evaluation Metric

In a more controlled and applied setting, the cognitive state derived from brain imag-
ing could be used as an evaluation metric for either the user or for computer systems.
Since we can measure the intensity of cognitive activity as a user performs certain
tasks, we could potentially use brain imaging to assess cognitive aptitude based on
how hard someone has to work on a particular set of tasks. With proper task and
cognitive models, we might use these results to generalize performance predictions
in a much broader range of scenarios.

For example, using current testing methods, a user who spends a huge amount of
cognitive effort working on test problems may rate similarly to someone who spent
half the test time daydreaming so long as they ended up with the same number of
correct answers. However, it might be useful to know that the second user might
perform better if the test got harder or if the testing scenario got more stressful.
In entertainment scenarios such as games, it may be possible to quantify a user’s
immersion and attentional load. Some of the work in this book is aimed at validating
brain imaging as a cognitive evaluation method and examine how it can be used to
augment traditional methods.

Rather than evaluating the human, a large part of human-computer interaction
research is centered on the ability to evaluate computer hardware or software in-
terfaces. This allows us not only to measure the effectiveness of these interfaces,
but more importantly to understand how users and computers interact so that we
can improve our computing systems. Thus far, researchers have been only partially
successful in learning from performance metrics such as task completion times and
error rates. They have also used behavioral and physiological measures to infer cog-
nitive processes, such as mouse movement and eye gaze as a measure of attention,
or heart rate and galvanic skin response as measures of arousal and fatigue. How-
ever, there remain many cognitive processes that are hard to measure externally.
For these, they typically resort to clever experimental design or subjective ques-
tionnaires which give them indirect metrics for specific cognitive phenomena. For
example, it is still extremely difficult to accurately ascertain cognitive workloads or
particular cognitive strategies used, such as verbal versus spatial memory encoding.

Brain sensing provides the promise of a measure that more directly quantifies the
cognitive utility of our interfaces. This could potentially provide powerful measures
that either corroborate external measures, or more interestingly, shed light on the
interactions that we would have never derived from external measures alone. Var-
ious researchers are working to generalize these techniques and provide a suite of
cognitive measures that brain imaging provides.

1.4.4 Adaptive Interfaces Based on Cognitive State

If we take this idea to the limit and tighten the iteration between measurement, eval-
uation, and redesign, we could design interfaces that automatically adapt depending
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on the cognitive state of the user. Interfaces that adapt themselves to available re-
sources in order to provide pleasant and optimal user experiences are not a new con-
cept. In fact, researchers have put quite a bit of thought into dynamically adapting
interfaces to best utilize such things as display space, available input mechanisms,
device processing capabilities, and even user task or context.

For example, web mechanisms such as hypertext markup language (HTML) and
cascading style sheets (CSS) were implemented such that authors would specify
content, but leave specific layout to the browsers. This allows the content to reflow
and re-layout based on the affordances of the client application. As another example,
researchers have built systems that model the user, their surroundings, and their
tasks using machine learning techniques in order to determine how and when to
best interrupt them with important notifications (Horvitz et al. 1998). In their work,
they aim to exploit the computing environment in a manner that best supports user
action.

Adapting to users’ limited cognitive resources is at least as important as adapting
to specific computing affordances. One simple way in which interfaces may adapt
based on cognitive state is to adjust information flow. For example, verbal and spa-
tial tasks are processed by different areas of the brain, and cognitive psychologists
have shown that processing capabilities in each of these areas is largely independent
(Baddeley 1986). Hence, even though a person may be verbally overloaded and not
able to attend to any more verbal information, their spatial modules might be capable
of processing more data. Sensory processes such as hearing and seeing, have similar
loosely independent capabilities. Using brain imaging, the system knows approxi-
mately how the user’s attentional and cognitive resources are allocated, and could
tailor information presentation to attain the largest communication bandwidth pos-
sible. For example, if the user is verbally overloaded, additional information could
be transformed and presented in a spatial modality, and vice versa. Alternatively, if
the user is completely cognitively overloaded while they work on a task or tasks, the
system could present less information until the user has free brain cycles to better
deal with the details.

Another way interfaces might adapt is to manage interruptions based on the user’s
cognitive state. Researchers have shown that interruptions disrupt thought processes
and can lead to frustration and significantly degraded task performance (Cutrell et
al. 2001). For example, if a user is thinking really hard, the system could detect
this and manage pending interruptions such as e-mail alerts and phone calls ac-
cordingly. This is true even if the user is staring blankly at the wall and there are
no external cues that allow the system to easily differentiate between deep thought
and no thought. The system could also act to minimize distractions, which include
secondary tasks or background noise. For example, a system sensing a user getting
verbally overloaded could attempt to turn down the music, since musical lyrics get
subconsciously processed and consume valuable verbal resources. Or perhaps the
cell phone could alert the remote speaker and pause the phone call if the driver has
to suddenly focus on the road.

Finally, if we can sense higher level cognitive events like confusion and frus-
tration or satisfaction and realization (the “aha” moment), we could tailor inter-
faces that provide feedback or guidance on task focus and strategy usage in training
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scenarios. This could lead to interfaces that drastically increase information under-
standing and retention.

1.5 The Rest of the Book

The chapters in this book are divided into four sections, which loosely parallel the
goals of the book:

Part I, Overview and Techniques.

Chapter 2 (Neural Control Interfaces) opens the book by outlining some of the
unique challenges and opportunities for designing BCI control interfaces. It presents
a loose taxonomy of different factors that should be considered and provides a nice
framework for pursuing work in this space. Chapter 3 (Could Anyone Use a BCI?)
explores the phenomenon of “BCI illiteracy”, the observation that most BCI systems
do not typically work for all users. It uses this as grounding for discussion around
standardized lingo and measurement metrics to facilitate discussions and compar-
isons across systems. Chapter 4 (Using Rest Class and Control Paradigms for Brain
Computer Interfacing) addresses one specific technical challenge in BCI work, the
Midas Touch problem. This is a classic HCI problem in which the control system
must distinguish between intended commands and everyday actions, in this case
thoughts. Chapter 5 (EEG-Based Navigation from a Human Factors Perspective)
presents the analogy between designing BCIs and navigation devices, which include
components of planning (cognition), steering (perception), and control (sensation).
This provides an interesting way of considering the integration between human fac-
tors and BCI work.

Part II, Applications.

Chapter 6 (Applications for Brain-Computer Interfaces) presents a broad survey of
applications for BCI systems and characterizes the range of possibilities for neural
control. Among these are applications for assistive technologies, recreation, cog-
nitive diagnostics and augmented cognition, as well as rehabilitation and prosthet-
ics. Chapter 7 (Direct Neural Control of Anatomically Correct Robotic Hands) de-
scribes the potential to achieve dexterous control of prosthetic hands using BCIs.
The chapter describes both the requirements for the BCI, as well as the match with a
fully anthropomorphic robot hand that the authors have developed. Chapter 8 (Func-
tional Near-Infrared Sensing and Environmental Control Applications) describes the
relatively young fNIRS technology, as well as potential benefits in environmental-
control BCIs. Chapter 9 (Cortically-Coupled Computer Vision) complements stan-
dard control work with a novel paradigm that extracts useful information processing
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using brain sensing technologies. Specifically, authors present visual search and im-
age retrieval applications that use EEG to automatically decode whether an image
is relevant or grabs a user’s attention. Chapter 10 (Brain-Computer Interfaces and
Games) surveys the state of the art of BCI in games and discusses factors such as
learnability, memorability, efficiency, as well as user experience and satisfaction in
this context.

Part III, Brain-Sensing in Adaptive User Interfaces.

Chapter 11 (Brain-based Indices for User System Symbiosis) introduces the concept
of operator models and the usefulness of brain-based indices in creating computer
systems that respond more symbiotically to human needs. Chapter 12 (Enhancing
Human-Computer Interaction with Input from Active and Passive Brain-Computer
Interfaces) describes the transition from direct control BCIs that provide explicit
commands to passive BCIs that implicitly model user state as secondary input to
adaptive systems. Chapter 13 (From Brain Signals to Adaptive Interfaces: Using
fNIRS in HCI) ties several of the previous chapters together (e.g. Chapter 8 and 10)
and describes details of fNIRS technology that are critical in considering the design
of BCI-based adaptive systems.

Part IV, Tools.

Chapter 14 (Matlab-Based Tools for BCI Research) reviews freely available stan-
dalone Matlab-based software, and drills into BCI-Lab as well as the Fieldtrip and
Datasuite environments. Chapter 15 (Using BCI2000 for HCI-Centered BCI Re-
search) rounds the book up with an overview of the BCI2000 system, a popular
framework for implementing general-purpose BCIs and one that HCI researchers
getting into the field could benefit from.
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Chapter 2
Neural Control Interfaces

Melody Moore Jackson and Rudolph Mappus

Abstract The control interface is the primary component of a Brain-Computer In-
terface (BCI) system that provides user interaction. The control interface supplies
cues for performing mental tasks, reports system status and task feedback, and often
displays representations of the user’s brain signals. Control interfaces play a signif-
icant role in determining the usability of a BCI, and some of the traditional human-
computer interaction design methods apply. However, the very specialized input
methods and display paradigms of a BCI require consideration to create optimal
usability for a BCI system. This chapter outlines some of the issues and challenges
that make designing control interfaces for BCIs unique.

2.1 Introduction

The Control Interface of a Brain-Computer Interface (BCI) system is described in
(Mason and Birch 2003) as the component that translates the logical control signals
produced by a neural signal classifier into semantic control signals to operate a
device. Put more simply, the Control Interface (CI) is the component of the BCI
system that the user observes during interaction to perform mental tasks and obtain
performance feedback. Control Interfaces serve three main functions:

1. Making the state of the controlled device or application visible with a Control
Display

2. Making the state of the user’s neural signals visible via a Neural Display
3. Providing a representation of control tasks for the BCI
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Fig. 2.1 A binary speller
Control Display

A control display provides visual and/or auditory cues for a control task as well
as performance feedback for a BCI user. Control displays reflect the current state of
the application or the device; for example, in a spelling program the control display
contains the letters available for selection, and typically lists letters already selected.
Figure 2.1 shows a binary speller such as described in Vaughan et al. (2001) and
similar to Perelmouter and Birbaumer (2000). The two target alphabet ranges on
the right side of the screen represent the control task (to select one of the ranges).
The vertical position of the small square represents the normalized instantaneous
amplitude of the targeted brain signal as the “cursor” moves horizontally across the
screen at a constant rate. The selection occurs when the “cursor” reaches one of
the targets, and the chosen target flashes to confirm. This simple control interface
incorporates the control task, the state of the application, and a representation of
neural activity for performance feedback.

This chapter provides an overview of control interface approaches, beginning
with control tasks and their associated control and neural displays. We propose a
classification of control interfaces and the types of information used to improve
usability and performance in BCIs. We discuss traditional models of measuring us-
ability of graphical interfaces and how they can apply in the context of BCI. The
chapter concludes with the implications for designing control interfaces for general-
use BCIs.

2.2 Background-Biofeedback

Control interface research began over a decade ago as biofeedback research; testing
the hypothesis that operant conditioning of autonomic processes could be accom-
plished by providing physiological process information. The motivation for early
biofeedback research was to explore whether displaying real-time physiological
information such as blood pressure and heart rate would be sufficient to condi-
tion physiological processes. Controlling autonomic processes through conditioning
suggested that behavioral therapies could be effective in treating chronic illnesses
such as migraine headaches and hypertension.

While initial experiments showed great promise, validation studies were never
successful, and biofeedback as the sole instrument for therapy was abandoned
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(Roberts 1985). Today, BCIs routinely incorporate biofeedback in the form of neu-
ral signal representations. This neural biofeedback is essential for BCIs that require
a user to learn to alter a particular brain signal (such as increasing the amplitude
of motor cortical signals, Wolpaw et al. 2003) or to indicate the relative status of
a brain signal (such as with functional Near Infrared based systems (Naito et al.
2007)).

Recent work has shown that biofeedback displays incorporated with BCIs show
promise for new rehabilitation therapies. The barrier between autonomic and vol-
untary responses using respondent and operant conditioning is being challenged in
areas like stroke rehabilitation and seizure management (Birbaumer 2006).

2.3 Control Tasks

A control task is a mental effort performed by a BCI user to voluntarily produce
changes in brain signals. Control tasks take many forms, including imagined or
physical movement, object visualization, focused attention, silent singing or count-
ing, or calming thoughts. Control tasks can be divided into two main categories:

1. Exogenous (evoked) paradigms—the user focuses attention on a set of stimuli,
which produce an autonomic response that can be detected by a BCI, and

2. Endogenous (self-generated) paradigms—the user performs a mental task, such
as imagined movement or sub-vocal counting, to create changes in brain signals
that can be detected by a BCI.

2.3.1 Exogenous Control Task Paradigms

In exogenous or evoked-response control, an external stimulus is required to cause
brain signal changes. For example, the P300 response is activated in the parietal
region of the brain 300 ms after the presentation of a visual or auditory stimulus
(such as flashing the letters of the alphabet). The activation of the P300 response
depends on attention, and a user indicates intent by attending to a particular stimu-
lus (target letter) from a set of stimuli (the entire character set). The original inter-
face paradigm for evoked responses that is still dominant in P300-based BCIs today
is the Farwell and Donchin matrix for spelling (Farwell and Donchin 1988). The
Farwell-Donchin BCI presents a user with an alphabet arranged in a square matrix.
The system evokes a P300 response by randomly highlighting rows and columns
of the matrix while measuring parietal responses. The user focuses attention on the
desired letter, and each time the row or column containing that letter flashes, the
P300 response occurs. At the end of a number of flashes, the intersection of the
row and column in the matrix with the highest P300 response will indicate the de-
sired target. P300-based BCI accuracies can reach 100% and many research groups
have explored the nuances of optimally presenting stimuli (Allison and Pineda 2006;
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Sellers and Donchin 2006). Current research in processing P300 aims to recognize
single-trial P300 responses to decrease selection time (Salvaris and Sepulveda 2009;
Solis-Escalante et al. 2006).

Another evoked-response approach for BCIs is Steady-state evoked potentials
(SSVEPs). The SSVEP response is measured over visual cortex in response to
steadily flashing stimuli. For example, an SSVEP control interface might con-
sist of two checkerboxes displayed on a computer screen, one flashing at 10 Hz
(representing the response “yes”) and one flashing at 15 Hz (representing the re-
sponse “no”). The user focuses attention on the checkerbox representing the de-
sired response, and the corresponding oscillation can be detected in visual cor-
tex. If the user attends to the 10 Hz checkerbox, after a number of samples the
BCI will recognize the 10 Hz oscillations in visual cortex and choose the response
“yes”. Control interfaces using steady-state evoked potentials benefit from more
differentiable states than the P300 response (Allison and Moore Jackson 2005;
Bin et al. 2009) and have been applied to interfaces requiring multiple degrees of
freedom such as gaming (Lalor et al. 2005; Moore Jackson et al. 2009).

Exogenous systems typically do not need to display any biofeedback; they typ-
ically only report task performance (i.e. the control outcome or selection itself).
Sensory responses are autonomic, and therefore operant conditioning does not im-
prove performance. Learned effects in exogenous control interfaces are usually a re-
sult of experience with the interface itself rather than a modulation of the observed
response potentials.

2.3.2 Endogenous Control Task Paradigms

In an endogenous control interface, the user voluntarily performs a mental task that
activates a particular part of the brain, such as silently singing or imagining hand
movements. Endogenous responses do not require a stimulus, although prompts and
cues may be used to improve response characteristics. Users can learn to improve
brain signal responses; conditioning these voluntary responses is accomplished with
biofeedback mechanisms.

Two of the first and most thoroughly studied endogenous control interface
paradigms are Slow Cortical Potentials (SCPs) (Birbaumer 2006) and the mu-
rhythm response (Wolpaw et al. 2003). These endogenous BCIs are based on vol-
untary, conditioned responses from users. SCP-based systems rely on operant con-
ditioning to train users to shift the polarity (positive or negative) of their SCPs.
Mu-based systems operate on actual or imagined movement reflected in the mo-
tor cortex; a mu-based BCI system measures the amplitude of the mu-band signal
to effect control. Both SCP based and Mu-rhythm based BCIs have been demon-
strated for cursor control and target selection (Birbaumer 2006; Schalk et al. 2008;
Wolpaw et al. 2003). SCP and Mu-based BCIs are often used for target selection,
such as spelling. In visual target acquisition tasks, the position of a pointer or cursor
is manipulated using the endogenous input (such as a user imagining hand move-
ment). The “right justified box” (RJB) task illustrated in Fig. 2.1 is a well-studied
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paradigm of target acquisition control used both for screening and testing (Schalk
et al. 2004). In the one-dimensional case, the cursor moves across the screen at a
constant rate of speed. Target areas are discretized regions of the right edge of the
screen, each representing a selection alternative. The BCI user either performs or
imagines movements such as finger tapping, which influences the y-position (height)
of the cursor on the screen. The trial concludes when the cursor reaches the end of
the screen, completing the selection based on the y-position of the cursor. Several
manipulations of the task are regularly used in research. A similar paradigm allows
selection in two and three dimensions, employing different imagined movement
tasks. The size and number of targets can be manipulated as well. The effective-
ness of the selection interface is also influenced by the relative sizes of the cursor
and the targets, where Fitts’s law appears to predict task performance (Felton et al.
2009). In the one-dimensional case, performance is affected by the rate of motion
in the fixed x-direction as well as the target and cursor size. In the two-dimensional
case, accuracy is determined by target and cursor size.

The mental task for indicating intent can also be varied. In a mu-rhythm motor
imagery control setting, users may be instructed to imagine left hand movement to
move the cursor left and right hand movement to move the cursor right. There are
several aspects of an endogenous control interface that influence performance. Tar-
get regions may be placed in the middle of the screen, and the task is to maintain a
cursor within a target for a predetermined time interval to indicate selection (a dwell
task). The design of these interfaces has significant impact on performance (Felton
et al. 2009). In the RJB task, the cursor moves across the screen; when the cursor
reaches the end of the screen, the position of the cursor indicates the selection. The
relative size of the destination regions affects the performance: smaller objective re-
gions reduce overall performance but can provide higher confidence in ascertaining
user intent.

Biofeedback plays a large role in shaping response performance in endogenous
control interfaces. Operant conditioning of these responses determines performance
accuracy for voluntary responses, and biofeedback positively affects training time.
Feedback in these cases consists of performance information, task-related neural
activity, and a reinforcement signal. Behavioral theory predicts the optimal schedule
of reinforcement signals for training to improve task performance.

2.4 Cognitive Models of Interaction

How can we quantify the usability of a BCI? For graphical interfaces, cognitive
models offer a means of assessing and predicting usability. Cognitive models pre-
dict the difficulty of interaction tasks by decomposing an interaction task into cog-
nitive process components. For graphical interface interactions, component cogni-
tive processes are measured in terms of response time. These components are well
studied; their individual response times have relatively low between-subject vari-
ance, and therefore the sum of components represents total interaction response
time and serves as a predictor for interaction difficulty where higher response time
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is positively correlated with task difficulty. Several task decomposition approaches
exist today: the Human Information Processor (Card et al. 1986), activity theory
(Nardi 1996), situated cognition (Clancey 1997), and goals, operators, methods,
selection (GOMS) (John and Kieras 1996). While there is considerable empirical
evidence for these approaches in traditional mouse-and-keyboard interaction assess-
ment, there has been little validation of these methods in brain-computer interfaces.
Perhaps the largest barrier to applying these methods to interface assessment is find-
ing representations of component cognitive tasks in the sensing modality of the in-
terface.

Consider the human information processor model of interaction, where the model
of the brain is conceptually a collection of independent, task-specialized proces-
sors: cognitive, perceptual, and motor. These processors receive information from
the visual image, working memory and long-term memory stores as they execute
tasks. For example, the perceptual processor uses the visual image, which is infor-
mation obtained from the visual sensory system. During task execution, processors
access information from the information sources. Each processor has a cycle time
and information stores each have a decay time. In the context of this model, BCIs
directly measure these processors, so the task decomposition should provide predic-
tions about the measurable differences in how these processors handle information.
The problem with this model is that these processors are task-defined; a functional
definition is required in terms of a BCI sensing modality. Anatomically, these pro-
cessors represent integrations of disparate brain regions and therefore represent too
coarse a model for BCI.

The GOMS model of interaction uses Goals, Operators, Methods and Selection to
derive a response-time based representation of usability. In this method, the response
times of tasks are gathered from population studies of activities. For instance, typing
is a skill where the mean time to press a key depends on the relative skill level of the
typist, and there is large variance between groups. “Typing” with a BCI may require
a series of tasks, such as a binary selection, which could take up to five steps. The
GOMS method represents too coarse of a level of model with respect to BCI, and
therefore has little predictive power in the context of BCI usability.

2.5 Interaction Task Frameworks

A classic approach to classifying interaction tasks is rooted in differentiating the
interaction tasks themselves. For graphical interfaces, Foley groups graphical inter-
actions into basic interaction tasks and compound interaction tasks (Foley and Van
Dam 1982). The basic interaction tasks are selection, text, quantify, and position.
For graphical interfaces, these represent the set of possible actions a user can make
with traditional input devices such as mice and keyboards.
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2.5.1 Selection

Selection represents discrete choices from a set of possibilities. Typically, these pos-
sibilities are grouped and presented simultaneously, and the user interacts with the
interface to select one of the finite set. In BCIs, selection is the most ubiquitous
interaction task; selection is often employed to implement the other three interac-
tion tasks. The most basic control tasks are the binary selection, which is a choice
between one of two alternatives, and n-ary selection, a choice from several alter-
natives. In BCIs there are two common control tasks for binary selection. The first
takes advantage of two spatially separate mental tasks causing differentiable activity
in the brain. The second measures the activity level over one area of the brain, such
as motor cortex, which can be increased and decreased with motor imagery. The
second method can also be used for n-ary selection.

In the first approach, one of the mental tasks evokes brain activity in a target
region of observation; the other task evokes activity in a spatially separate region,
where the second task does not overlap activity with the first. A typical example
of this design is language production versus mental rotation. Language production,
while evoking activity in many cortical regions, is best measured over Broca’s area
(usually near the left temple). This activation pattern is contrasted with mental ro-
tation, best measured over the parietal region on the top of the head. Users perform
a sequence of these two tasks to indicate yes/no decisions. To indicate a positive
response, the user performs a language production task such as sub-vocal counting
or silently singing. To indicate a negative response, the user envisions a shape such
as a Rubik’s cube rotating in space. Each of these tasks is performed for a fixed time
interval, sufficient to capture the activation patterns of the two tasks given the sens-
ing modality. Typically, first order properties of the activation signals are used to
determine which pattern is executed, and therefore which response the user makes.

There are several drawbacks to the binary selection method. First, the binary
nature of the response sequence does not scale to more sophisticated communica-
tion. A user may indicate a number of symbols with these alternating sequences, but
longer sequences are required to indicate intent. The symbol set must also have an
ordering so that it can be predictably divided (a set of icons for, say, web browser
controls would not work well in a binary selection interface). The fixed task time in-
tervals themselves limit the speed with which a user may generate a symbol. These
simple interfaces are often used with single channel sensor arrays.

N -ary selection can be implemented by measuring the amplitude of a signal (such
as the mu signal generated by movement imagery), discretizing the signal with a
number of progressive thresholds. This approach requires the user to be much more
accurate with signal production, and relies heavily on biofeedback. However, the
increased efficiency of selection makes this method more appealing than binary se-
lection (Schalk et al. 2008).

Selections with evoked response BCIs such as P300 and SSVEP are similar to
selections on a touch screen; by definition they require one selection step and there-
fore are more efficient than endogenous-response systems. Another advantage is
that the entire selection space is displayed at once; no ordering is required as in
binary selections.
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2.5.2 Text and Quantify

Text and quantify in a BCI are both subsets of selection, where each alphanumeric
character entered is a discrete choice of the character set represented on the input
device. For graphical interfaces, typically the keyboard is the input device used to
enter text or numeric values. Graphical controls for quantification are typically dials
or sliders and often augmented with selection and text controls. Because there is
no “typing” with a BCI, the methods for selection described above are employed
to enter selections from an alphanumeric character set to implement text entry and
quantify tasks.

2.5.3 Position

Position in a graphical interface means to move a cursor to a desired position. Po-
sition is used to implement drawing and other continuous (non-selection) tasks.
In BCI systems, the position task could translate to more esoteric tasks, such as
driving a wheelchair. The position interaction task for BCIs has not been fully ex-
plored. Although arguments can be made that evoked-response systems selection
mechanism such as a Farwell-Donchin matrix indicates a position on a screen, the
P300 paradigm cannot be used for drawing. The SSVEP response has been incor-
porated into a continuous-control BCI for a gaming environment (Moore Jackson et
al. 2009) where the user positions an avatar by focusing attention on flashing stimuli
in the desired direction of movement. A simple drawing system based on functional
Near Infrared (fNIR) imaging provided positional control in a letter-drawing study
(Mappus et al. 2009). More exploration of this control task for BCIs is needed to
implement position requirements for creative expression and navigation.

2.6 Dialog Initiative

In user interface design, the dialog initiative determines whether the system initi-
ates a control interaction, or the user does. Most command-line systems are system-
initiated (the system prompts the user for a response); most graphical user inter-
faces are user-initiated (the user clicks on an icon to open an application). BCI
systems have an additional issue: the brain generates signals constantly, such as the
mu rhythm, and therefore a BCI system must know when the user intends to control
the system. This issue is known as the “Midas touch problem”; as with King Mi-
das, who turned everything to gold on his touch, BCIs interpret all brain signals in
a specified domain as user intent. The ability to turn off neural input when the user
does not wish to interact is a primary challenge in the field of BCI research.

In order to address this challenge, the BCI field makes a distinction between
synchronous and asynchronous interaction. This differentiates systems that allow



2 Neural Control Interfaces 29

interaction in consistent, fixed time windows and those that are “interrupt driven”
(initiated by the user). The distinction parallels the distinctions between exogenous
and endogenous inputs.

2.6.1 Synchronous Interfaces

A synchronous interface allows interactions only in fixed time windows determined
by the BCI system (system initiation). Exogenous control interfaces fit well in syn-
chronous paradigms; evoking activity from a stimulus implies that the stimulus on-
set time is known and correlated with brain activity. Most BCI systems using evoked
responses rely on this correlation, implementing synchronous paradigms where the
stimulus onset times and display durations are fixed. This is not always the case
for evoked responses, as animated stimuli can be displayed continuously and by at-
tending to the animation the user evokes a response. Endogenous inputs may also
be used in synchronous paradigms where precise event correlation is not needed.
For example, the RJB paradigm requires the user to perform a mental task within a
time window in order to make a selection, although the mu response is endogenous.
Heuristically, synchronized interfaces are best suited for interactions involving se-
lection; where a discrete choice from a set of possibilities is made within a time
frame.

2.6.2 Asynchronous Interfaces

An asynchronous interface does not impose time windows for interaction; the user
performs a mental task that initiates the interaction (user-initiation). Endogenous in-
puts fit well in asynchronous paradigms, where self-paced interaction is needed. In
these cases, endogenous inputs with high recognition rates are critical. The mental
task must be unique enough that it is unlikely to be detected by the BCI accidentally
(such as imagining a rotating Rubik’s cube). Mental tasks such as language produc-
tion are poor for asynchronous control because of the likelihood of language pro-
cessing evoked by the environment. Asynchronous paradigms are showing promise
in general-purpose problems (Mason et al. 2006). Research focusing on BCI in the
wild relies on asynchronous interaction; initiating and concluding interaction as well
as eliminating “false positive” errors are essential for acceptable use.

2.6.3 User Autonomy

One barrier to adoption of BCI in general-use situations has to do with auton-
omy; for the user, this means when and at what rate to interact with the system.
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In a setting where a sensor array is constantly sampling brain state and there is
no fixed time course of interaction, the BCI must be able to differentiate intent-
ful interaction from no interaction. Asynchronous interfaces address the problem
of variable periods of inactivity during an interaction session (Borisoff et al. 2006;
Scherer et al. 2008). Asynchronous interfaces improve BCI autonomy; as more so-
phisticated applications are adapted to BCI usage constraints and as BCI developers
target more assistive technology settings, asynchronous interfacing becomes higher
demand (Scherer et al. 2007).

Synchronous interfaces do not necessarily address the issue of indicating the be-
ginning of interaction (i.e. turning on the system to begin with) or indicating the
end of an interactive session. Two primary means of addressing this problem are us-
ing additional sensing channels and orthogonal mental tasks to recognize initiation
and termination sequences of activity. Additional channels of interaction directly
address asynchronous activity, but add complexity to the sensing system as well as
cognitive load to the user. Work with asynchronous interfaces focuses on recogniz-
ing patterns of activity designated as initiation and termination sequences (Mason
and Birch 2000).

Both cases improve autonomy; however, there is growing evidence from usability
surveys and studies that these asynchronous switches must be accurate to be useful;
users will not tolerate more than one false positive over several hours and will not
use a system that makes it difficult to initiate interactions (high false negative rate)
(Mason et al. 2006; Millán and Mouriño 2003; Scherer et al. 2007, 2008).

2.7 Improving BCI Control Interface Usability

Control interface design can be a critical factor in increasing the throughput of BCIs
(Van Gerven et al. 2009). In a character selection task, character layout in conjunc-
tion with auto-completion and spell checking improves accuracy and lowers the key
selection count for words (Felton et al. 2007). In target acquisition, relative area of
cursor and target as well as rates of motion all affect task performance, particularly
in dwell selection cases (McFarland et al. 2003).

McFarland and Wolpaw studied considerations between speed and accuracy
tradeoffs in BCIs (McFarland and Wolpaw 2003). In this study, five participants
manipulated a cursor in one- or two-dimensions. Target locations were one of four
boxes arranged in a horizontal line. The task was to manipulate the cursor to the tar-
get box (bold outlined, while other boxes were light gray outlined) and dwell within
the target for a fixed amount of time. The results of the study indicate performance
in terms of achieving target locations is optimal when the distribution of target box
selections is uniform.

Adaptive interfaces represent a novel approach to addressing BCI system
throughput (Shenoy et al. 2006). By adaptively learning users’ response charac-
teristics, the BCI is able to better maintain a high level of performance accuracy.
The drawback of adaptive systems is that they require repeated calibration sessions
with a guided task, because in order to automatically “tune” the BCI system, perfect
knowledge of the user’s intent is required.
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2.7.1 User Training

A subject-specific factor that affects user performance is the type and amount of
training they receive (McFarland et al. 2005). The training process serves two pur-
poses; first to make users aware of the interface dynamics and introduce them to the
control paradigm, second to provide sufficient training data for a supervised learn-
ing method to classify input with sufficient accuracy to be a responsive interface
for users. Conditioning in asynchronous, endogenous interfaces has a positive ef-
fect on enhancing generative responses. Finally, a converging set of evidence seems
to indicate that directed conditioning affects synaptic plasticity in certain tasks and
under certain neural conditions. The results of this work are challenging previous
notions of the separation between operant and respondent conditioning. Achtman
et al. presents usability results for Electrocorticographic (ECoG) data in an asyn-
chronous task (Achtman et al. 2007). BCI applications in stroke rehabilitation show
that BCI training produces lasting changes in neural responses where functionality
is limited (Daly and Wolpaw 2008). In these cases the interface links brain activity
with robotic control that serves as an assistive trainer for rehabilitation.

2.8 Conclusions

Control interfaces are a critical area of research in order for BCIs to be viable as
general-purpose interaction methods. Studies have shown that the design and orga-
nization of a BCI control interface can significantly impact the usability of a BCI
system. Many of the traditional design paradigms for interactive graphical systems
have relevance to BCI control interfaces; however BCIs have additional unique chal-
lenges that make their control interfaces difficult to design. More studies are needed
to solidify methods of user initiation for BCI interaction, and to solve the “Midas
Touch” problem. More accurate classifiers are needed to improve selection accu-
racy. The area of continuous control needs much more work in order for BCIs to
implement applications such as drawing or driving a vehicle. BCI control interfaces
are even projected to impact rehabilitation by directing neural plasticity to “re-wire”
the brain. BCIs have significantly improved the quality of life for people with se-
vere physical disabilities by allowing them to communicate and control their envi-
ronments. BCIs also have great potential as the ultimate hands-free control interface
for mainstream applications. Although the BCI field has enjoyed dramatic progress
in the last two decades, there is great promise and much work to be accomplished in
the future as we strive to perfect our interaction methods through control interface
research.
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Chapter 3
Could Anyone Use a BCI?

Brendan Z. Allison and Christa Neuper

Abstract Brain-computer interface (BCI) systems can provide communication and
control for many users, but not all users. This problem exists across different BCI
approaches; a “universal” BCI that works for everyone has never been developed.
Instead, about 20% of subjects are not proficient with a typical BCI system. Some
groups have called this phenomenon “BCI illiteracy”. Some possible solutions have
been explored, such as improved signal processing, training, and new tasks or in-
structions. These approaches have not resulted in a BCI that works for all users,
probably because a small minority of users cannot produce detectable patterns of
brain activity necessary to a particular BCI approach. We also discuss an underap-
preciated solution: switching to a different BCI approach. While the term “BCI illit-
eracy” elicits interesting comparisons between BCIs and natural languages, many
issues are unclear. For example, comparisons across different studies have been
problematic since different groups use different performance thresholds, and do not
account for key factors such as the number of trials or size of the BCI’s alphabet. We
also discuss challenges inherent in establishing widely used terms, definitions, and
measurement approaches to facilitate discussions and comparisons among different
groups.

3.1 Why BCIs (Sometimes) Don’t Work

Brain-computer interface (BCI) research has made great progress recently. Ini-
tial BCI research efforts focused primarily on validating proof of concept, usu-
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ally by testing BCIs with healthy subjects in laboratories instead of target users
in home or hospital settings (Pfurtscheller et al. 2000; Kübler et al. 2001; Wol-
paw et al. 2002). BCIs have since provided practical communication for severely
disabled users with no other way to communicate, and many new applications, sig-
nal processing approaches, and displays have been explored. Patients and healthy
people have successfully used BCIs based on all three major noninvasive BCI
approaches—P300 BCIs based on intermittent flashes, Steady State Visual Evoked
Potential (SSVEP) BCIs based on oscillating lights, and Event Related Desynchro-
nization (ERD) BCIs based on imagined movement. This progress and enthusi-
asm is reflected in the dramatic increase in peer reviewed publications, confer-
ence presentations and symposia, and media attention (Pfurtscheller et al. 2006,
2008; Allison et al. 2007; Nijholt et al. 2008). Amidst these positive devel-
opments, one major problem is becoming apparent: BCIs do not work for all
users.

Ideally, any interface should work for any user. However, across the three ma-
jor noninvasive BCI approaches, numerous labs report that very roughly 20% of
subjects cannot attain control. This problem has been called “BCI illiteracy” e.g.,
Kübler and Müller (2007), Blankertz et al. (2008), Nijholt et al. (2008). Extensive
efforts have been made to overcome this problem through various mechanisms, such
as extensively training the subject and/or classifier, alternate displays or instructions,
improved signal processing efforts, and error correction. They have only been partly
successful. While these options can make BCIs work for some previously “illiter-
ate” users, some people remain unable to use any particular BCI system (Allison et
al. 2010b). There is no “universal BCI”.

This problem may result from a possible reason why some users cannot gen-
erate the brain activity necessary to control a particular BCI. A small minor-
ity of subjects will probably never attain control with a given approach due
to the structure of their brains. While all people’s brains have the same corti-
cal processing systems, in roughly the same locations, with similar functional
subdivisions, there are individual variations in brain structure. In some users,
neuronal systems needed for control might not produce electrical activity de-
tectable on the scalp. This is not because of any problem with the user. The
necessary neural populations are presumably healthy and active, but the activity
they produce is not detectable to a particular neuroimaging methodology, such
as EEG. The key neural populations may be located in a sulcus, or too deep
for EEG electrodes, or too close to another, louder group of neurons. For ex-
ample, about 10% of seemingly normal subjects do not produce a robust P300
(Polich 1986; Conroy and Polich 2007). These users would probably not ben-
efit from training, alternate P300 tasks, or improved signal processing; their
best hope is to switch to a BCI that relies on another signal, such as ERD or
SSVEP.

There are other reasons why some users cannot use some BCIs. Some subjects
produce excessive muscle artifact, or misunderstand or ignore the instructions on
how to use a BCI. BCIs might fail because the people responsible for getting the BCI
to work made mistakes resulting from inexperience, such as misusing the software
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or mounting the electrodes incorrectly. Some environments may produce excessive
electrical noise that can impair signal quality.

These problems are generally surmountable, whereas individual variations in
brain structure are quite difficult to change. This chapter does not address prob-
lems resulting from fundamental mistakes by subjects or BCI practitioners. That is,
we assume subjects are following instructions, with properly prepared hardware and
software, in a reasonable setting.

3.2 Illiteracy in Different BCI Approaches

What does it mean to say that some users “cannot use” some BCIs? As noted below,
comparing illiteracy across different BCI articles is difficult because no standards
exist, and various factors must be considered. Recent work that assessed the rela-
tionship between illiteracy and the severity of motor impairment used a threshold
of 70% or other values (Kübler and Birbaumer 2008). This was an excellent arti-
cle, and this threshold was adequate for establishing that the severity of impairment
was not correlated with illiteracy, except in completely locked-in patients. How-
ever, a thorough and parametric assessment of illiteracy across the three major BCI
approaches may be premature before some standards to assess illiteracy are devel-
oped.

BCI illiteracy is clearly not limited to any one research group or BCI approach.
Anecdotal evidence suggests that ERD BCIs may entail greater illiteracy than BCIs
based on evoked potentials (P300 and SSVEP). However, Kübler and Birbaumer
(2008) (which did not assess SSVEP BCIs) did not find that ERD BCIs entailed
higher illiteracy than P300 BCIs.

3.2.1 Illiteracy in ERD BCIs

ERD BCIs rely on EEG activity associated with different imagined movements.
Some approaches rely on specific imagined movements, such as moving the left
hand, right hand, or both feet (Pfurtscheller et al., 2006; Leeb et al., 2007; Blankertz
et al., 2008; Scherer et al., 2004, 2008). Other approaches train users to explore
different, often less specific, imagined movements until they find imagery that yields
good results (Friedrich et al. 2009).

Hence, ERD BCIs can only function well if subjects can produce brain activity
patterns that differ across different types of imagined movements. ERD BCIs rely
on time frequency analysis; the raw EEG is transformed into an estimate of power at
different frequencies by a mechanism such as a Fourier transform or autoregressive
analysis. If the different movement classes (such as left hand vs. right hand) do
not produce reliable and reasonably robust differences in power, at least at one or
more frequencies and/or electrode sites, then effective communication will not be
possible.
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Fig. 3.1 These four panels present data from subject A, who attained very good control with an
ERD BCI. In all panels, the x-axis represents the time from the beginning of the trial. A cue,
which appeared 2 seconds after the beginning of the trial, instructed the subject to imagine either
left or right hand movement. The y-axis shows the frequency. Blue reflects an increase in power,
and red reflects a decrease in power, also called ERD. The two left images show activity over site
C3, located over the left sensorimotor area, and the two right images show activity over site C4,
located over the right sensorimotor area. The top two images reflect trials with imagined left hand
movement, and the bottom two images present trials with imagined right hand movement. Images
courtesy of Dr. Clemens Brunner

Figure 3.1 presents data from subject A, who could use an ERD BCI. The top
two panels show activity over electrode sites C3 (top left panel) and C4 (top right
panel) while the subject imagined left hand movement. In the top right panel, ERD
is apparent at about 10 Hz, while there is no strong ERD in the top left panel. These
top two panels show that left hand movement imagery reduced power at about 10 Hz
over the right sensorimotor area, which occurs in most people (Pfurtscheller et al.
2006; Pfurtscheller and Neuper in press).

The bottom two panels of Fig. 3.1 show activity over sites C3 and C4 while
the subject imagined right hand movement. These two panels instead show ERD
over the left sensorimotor area. Therefore, an ERD BCI could determine whether
the subject was imagining left or right hand movement by identifying characteristic
activity in sites C3 and C4.

Figure 3.2 presents data from subject B, who could not use an ERD BCI. The
top two panels do not differ very much from the bottom two panels. Hence, the
classifier did not have any way to determine which hand the subject was thinking
about moving.
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Fig. 3.2 These four panels present data from subject B, who was illiterate with an ERD BCI. The
axes and shading are the as in Fig. 3.1. The two left images show activity over site C3, over the left
sensorimotor area, and the two right images show over site C4, located over the right sensorimotor
area. The top two images reflect trials with imagined left hand movement, and the bottom two
images present trials with imagined right hand movement. Courtesy of Dr. Clemens Brunner

3.2.2 Illiteracy in SSVEP BCIs

SSVEP BCIs require subjects to focus their attention on one of (usually) two or
more stimuli that each oscillate at different frequencies. This produces oscillations
over visual areas at the same frequency as the oscillating stimulus, and often at one
or more harmonics of that frequency as well (Pfurtscheller et al. 2006; Allison et al.
2008; Faller et al. 2010).

In an SSVEP BCI, the raw EEG is translated into an estimate of power at dif-
ferent frequencies, much like the procedure in an ERD BCI. The resulting spikes
at specific frequencies can be used to determine which stimulus occupied the sub-
ject’s attention. Therefore, SSVEP BCIs also depend on clear spikes in the power
spectrum at specific frequencies. If these spikes are not apparent, or are too weak
to distinguish from background noise, then the SSVEP BCI will not function accu-
rately.

Figure 3.3 presents one literate subject (top 2 panels) and one illiterate subject
(bottom two panels) who tried to use an SSVEP BCI. The left and right panels reflect
the subject’s desired to communicate left and right movement, respectively. There is
a clear difference between the top two panels, and hence this subject attained almost
perfect accuracy with an SSVEP BCI. However, there is no clear difference between
the bottom two panels, and hence this subject could not attain performance above
chance with this SSVEP BCI.
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Fig. 3.3 These four panels present data from two subjects who tried to use an SSVEP BCI. All
panels show data from electrode site O1, over the primary visual cortex. In all panels, the x-axis
represents the time from the beginning of the trial. The cue that instructed the subject to focus on
the 8 or 13 Hz LED appeared after 2 seconds. The y-axis shows the frequency. The horizontal
blue lines reflect an increase in power. The top two images are from subject B, and the bottom two
images are from subject A. The two left images were recorded when the subject focused on an
8 Hz LED (which could be used to move left), and the two right images were recorded when the
subject focused on a 13 Hz LED (which could be used to move right). In the top left panel, there
are clear power increases at 8 Hz and its harmonics of 16, 24, and 32 Hz. In the top right panel,
there are clear power increases at 13 Hz and its harmonics of 26 and 39 Hz. Since there are very
clear differences between the top 2 panels, subject B showed excellent control with this SSVEP
BCI. However, neither of the bottom two panels shows these changes, and hence subject A was
illiterate with this SSVEP BCI. Images courtesy of Dr. Clemens Brunner

Noteworthily, the two subjects shown in Fig. 3.3 are the same two subjects shown
in Figs. 3.1 and 3.2. Subject A was literate with an ERD BCI, but illiterate with an
SSVEP BCI. Subject B was literate with an SSVEP BCI, but illiterate with an ERD
BCI.

3.2.3 Illiteracy in P300 BCIs

Like SSVEP BCIs, P300 BCIs rely on selective attention to visual stimuli (Allison
and Pineda 2006; Sellers and Donchin 2006; Lenhardt et al. 2008; Kübler et al.
2009; Jing et al. 2010). However, in a P300 BCI, the stimuli flash instead of oscillate.
Whenever a user focuses attention on a specific stimulus, a brainwave called the
P300 may occur, whereas the P300 to ignored stimuli is much weaker.

P300 BCIs do not rely on time frequency analyses like ERD and SSVEP BCIs do.
Instead, the raw EEG is time-locked to the onset of each flash, producing an event
related potential or ERP. ERPs from several trials are usually averaged together to
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Fig. 3.4 ERP activity from three subjects who tried to use a P300 BCI. In all three panels, the
x-axis reflects the time after the flash began, and the y-axis reflects the amplitude of the ERP. Each
panel presents ERPs that were averaged over many trials; the solid and dashed lines are much
harder to distinguish on a single trial basis. The top left panel shows a subject who did not have a
strong P300. The solid and dashed lines look similar in the time window when the P300 is typically
prominent, which is about 300–500 ms after the flash. However, these two lines did differ during
an earlier time window. The top right panel shows a subject who did have a strong P300. The
bottom panel shows a subject whose ERPs look similar for target and nontarget flashes throughout
the time window. This subject was illiterate with a P300 BCI. Images courtesy of Dr. Jin Jing

improve accuracy. The classifier tries to identify which flash elicited a robust P300,
sometimes incorporating other ERPs as well. Ideally, only the target stimulus—
that is, the stimulus that the user is attending—elicits a robust P300. If none of
the flashes elicit an ERP that is reliably different from other ERPs, then effective
communication is not possible with that P300 BCI system.

Figure 3.4 contains ERPs for three subjects who tried to use a P300 BCI. In all
three panels, the solid line shows the ERP to a target flash, and the dashed line
shows the ERP to a nontarget flash. The top left panel shows a subject who had a
weak P300, although the target and nontarget flashes did vary earlier in the time
window. The right panel shows data from a literate subject. This subject’s P300 is
clearly visible after only target flashes. The bottom panel shows an illiterate subject,
whose ERPs to target and nontarget flashes look similar.
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3.3 Improving BCI Functionality

What can you do if someone cannot use a BCI? As noted, BCI illiteracy is essen-
tially a problem of accuracy. The methods for improving accuracy presented here
could make the difference between an ineffective system and a functional communi-
cation tool. Of course, improving accuracy could benefit literate users as well; since
BCIs very rarely allow sustained communication at 100% accuracy, the approaches
below could be useful to almost any BCI system. Again, we do not consider basic
problems that may result from simple mistakes in BCI setup or a noisy environment.
Four possible solutions to other problems are discussed:

1. Improve selection and/or classification of existing brain signals through im-
proved algorithms

2. Use sensor systems that provide richer information
a. Different neuroimaging technologies
b. More or better sensors

3. Incorporate error correction or reduction
a. Improved interfaces that make errors less likely and/or allow error correction
b. Additional signals, from the EEG or elsewhere, that convey error

4. Generate brain signals that are easier to categorize
a. Within existing BCI approaches
b. Using novel BCI approaches
c. By switching to a different approach
d. By combining different approaches

3.3.1 Improve Selection and/or Classification Algorithms

Option 1 (improved algorithms) is by far the most heavily pursued. There have
been four major data analysis competitions (e.g. Blankertz et al. 2004), but no
competitions to (for example) produce the strongest ERD or develop the most
discerning sensor system. Signal processing is the easiest component of a BCI
to improve, since it requires no special equipment, data collection, device de-
velopment, etc. Improved signal processing merits further study, and will proba-
bly continue to reduce but not eliminate “BCI illiteracy” (Blankertz et al. 2008;
Brunner et al. 2010). Improved signal processing cannot help if the subject is not
producing any detectable activity that could distinguish different mental states.

Since different people have different brain activity, customizing the classification
algorithms for each user can dramatically improve accuracy with some subjects.
This customization is now common; relatively few BCIs use the same parameters
for all subjects. Hence, an emerging challenge is finding ways to automate this cus-
tomization process, since a BCI could then customize itself without human inter-
vention. As BCIs move outside the laboratory, and hence further away from experts
who can customize BCIs for each user, software that can automatically configure
classification algorithms and other parameters becomes increasingly important.
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The top left panel of Fig. 3.3 presents a simple example of how a customized
signal processing algorithm can improve performance, perhaps enough to make this
subject literate. Some P300 BCIs use a linear classification technique that focuses
on specific time periods after the flash, such as Stepwise Discriminant Analysis
(SWDA). An SWDA classifier that used generic settings for all users would prob-
ably only evaluate time periods when the P300 is typically apparent, such as 300–
500 ms after the flash. However, software might examine each subject’s ERP, deter-
mine which time periods exhibit a strong difference between target and nontarget
flashes, and adjust the classifier settings accordingly. In this example, the classi-
fier could be automatically reprogrammed to focus more heavily on the time period
about 200 ms after each flash.

The subject shown in the top left panel is not especially unusual. She shows a
strong P200, which is a well-known ERP component that often precedes the P300
and can differ with selective attention (Allison and Pineda 2006). Indeed, the subject
in the top right panel also has a strong P200, in addition to a strong P300. However,
the subject in the bottom panel has a weak P200 and a weak P300. We could not
identify any classifier settings that would make this subject proficient with a “P300”
BCI.

3.3.2 Explore Different Neuroimaging Technologies

Option 2a (different neuroimaging technologies) needs more attention; no articles
have thoroughly explored whether someone who cannot attain literacy with a BCI
based on one neuroimaging approach might perform better with a different ap-
proach. This article focuses primarily on EEG-based BCIs, since over 80% of BCIs
rely on the EEG (Mason et al. 2007). Other noninvasive methods might be effec-
tive when EEG based methods are not, but have other drawbacks such as cost or
portability (Wolpaw et al. 2006; Allison et al. 2007).

Invasive BCIs can also be effective communication tools (Hochberg et al. 2006;
Schalk et al. 2008; Blakely et al. 2009) and might also work when other methods do
not. The brain’s electrical activity is filtered, smeared, and diminished as it travels
from the brain to the outer surface of the scalp. Signals recorded from sensors fixed
on or in the brain might be easier to categorize, but entail neurosurgery, scarring, risk
of infection, and ethical concerns that vary considerably across different users and
their needs. Since some invasive BCIs may be able to detect activity from neurons
within a sulcus, people who cannot use a noninvasive BCI because of their brain
structure might attain better results with an invasive approach. This prospect merits
further study, along with the possible benefits of combining noninvasive and invasive
approaches (Wolpaw et al. 2002).

Option 2b (more or better sensors) has been heavily pursued, with little suc-
cess. The conventional Ag/AgCl electrode, with electrode gel and skin abrasion,
has not changed much in decades despite many efforts from academic and commer-
cial groups. Dry electrodes might make caps more convenient (Popescu et al. 2007;
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Sullivan et al. 2008), but even the most enthusiastic developers agree that the sig-
nals are at the very best comparable to gel based electrodes. The prospects of using
additional electrodes and optimizing electrode locations are not new (Pfurtscheller
et al., 1996, 2006). Furthermore, there are many drawbacks to adding more sensors,
such as increased cost and preparation time.

3.3.3 Apply Error Correction or Reduction

Option 3 (error correction or reduction) could help improve BCIs in many ways.
Since BCIs have generally failed to capitalize on fundamental principles from
HCI research, there are many unexplored opportunities for improvement (Allison
in press). However, like the two options already discussed, error reduction and cor-
rection cannot make all subjects proficient. Error related activity can be detected
in the EEG, as well as other signals based on eye, heart, or other physiological
signals (Schalk et al. 2000; Buttfield et al. 2006; Ferrez and Millán 2008). It can
improve performance when a signal is poor but sometimes usable, but is useless if
the subject cannot effect control at all. Similarly, software that prevents people from
spelling impossible words or sending meaningless commands cannot help a subject
who cannot convey anything in the first place (Allison in press).

3.3.4 Generate Brain Signals that are Easier to Categorize

Option 4a (clearer signals within a BCI approach) has been most heavily pursued
within ERD BCIs, with considerable success. Many ERD BCI improvements from
the Wolpaw lab stem from training subjects to produce more actionable informa-
tion via ERD BCIs. Neuper et al. (2005) showed that instructing subjects to focus
on first-person motor imagery (that is, imagining their own hand moving) could im-
prove performance relative to third-person motor imagery (that is, imagining watch-
ing a hand move). Nikulin et al. (2008) claimed that a novel type of motor imagery
based on “quasi-movements” could yield better performance than conventional ERD
tasks.

Unlike ERD BCIs, there has been little success in generating clearer EEG signals
with P300 or SSVEP BCIs. The original paradigm used in Farwell and Donchin
(1988) already produced P300s that are about as big as some of the larger P300s
in the literature. It is unlikely that a new paradigm to produce huge P3s will be
developed, although novel displays, tasks, or other parameters might enhance other
features such as the CNV (Farwell and Donchin 1988; Allison and Pineda 2006).

Paradoxically, some approaches to improve information transfer rate (ITR, also
called bit rate or information throughput) in P300 BCIs might increase illiteracy. For
example, changing the number or distribution of characters illuminated with each
flash can improve P300 BCI ITR in some subjects—not by eliciting larger P300s,
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but by reducing the number of flashes required to identify each target character
(Guger et al. 2009; Jing et al. 2010). However, methods that reduce the number of
flashes also entail a shorter target to target interval (TTI), which can reduce P300
amplitude and potentially increase illiteracy (Gonsalvez and Polich 2002).

Conventional SSVEP BCIs already yield SSVEPs that differ considerably be-
tween target and nontarget events in most subjects. There seems to be no easy
way to create SSVEP differences that are easier to recognize, though the number
of events required to identify each target could be reduced. Other work showed
that better displays or other parameters could create more recognizable SSVEPs
and similar VEPs (Cheng et al. 2002; Wang et al. 2006; Allison et al. 2008;
Bin et al. 2009).

Option 4a could also entail configuring a BCI to rely more heavily on the signals
within a BCI approach that are easiest to categorize. This option has been explored
with some BCIs that rely on imagination of different conventional mental tasks.
For example, Millán and Mouriño (2003) first explored which of six mental tasks
yielded the most discriminable EEG signals for each subject, and then configured a
BCI system to control a robot using the three tasks that yielded the clearest signals.

A similar solution might work with ERD BCIs. Consider a BCI that detects foot
imagery very poorly, but reliably detects hand imagery. This BCI might be only
10% accurate if the user usually tries to communicate via foot imagery, but 100%
accurate if the user only uses hand imagery. Such a BCI should thus be configured
to rely more heavily on hand imagery. This solution would reduce errors, but not
eliminate them, unless the BCI is configured to operate without foot movement
imagery, which limits its alphabet. There might be other reasons why the BCI was
designed to include foot imagery. For example, foot movement might seem more
natural if the goal is to walk forward (Leeb et al. 2007; Scherer et al. 2008) or
control vertically scrolling letters (Scherer et al. 2004). On the other hand, keyboards
are highly unnatural interfaces, since moving fingers across a keyboard has little
intuitive connection to the message being sent, or indeed any natural activity. Further
research should explore the importance of a congruent, literal mapping between
mental task and desired outcome.

Improved feedback could make subjects more motivated and involved (Neuper
and Pfurtscheller in press). Subjects might find immersive virtual feedback more
absorbing than conventional feedback (Leeb et al. 2007; Scherer et al. 2008; Faller
et al. 2010). Subjects who are more motivated or engaged could produce clearer
brain signals (Nijboer et al. 2008; Nijboer and Broermann in press).

Presenting feedback through different modalities could also result in clearer brain
signals. While most BCIs rely on visual stimuli, BCIs have also been developed
based on auditory (Kübler et al. 2009) and tactile (Müller-Putz et al. 2006) stimuli.
In healthy subjects, visual stimuli usually produce clearer brain signals. However,
subjects who have trouble seeing might attain better results with a BCI based on
auditory or tactile modalities. It may seem easy to determine whether a user can
see, but this is not always true. Subjects who are locked in and cannot communicate
have no way to report that they have trouble seeing the visual stimuli used in a BCI.
Hence, if a subject who cannot communicate seems illiterate with a BCI based on
visual stimuli, experimenters should consider an auditory or tactile BCI.
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Option 4b (clearer signals with a novel BCI approach) is receiving more atten-
tion. Possibilities such as auditory streaming, imagined music, phoneme imagina-
tion, or conventional mental tasks like math or singing have not been tested across
many subjects. A previously unknown or underappreciated task probably won’t lead
to a BCI that works for all users. Hence, all of the options presented so far should
reduce but not eliminate illiteracy.

Option 4c is very rarely considered: give up on the current BCI approach and try
another one. Many labs and researchers focus on only one approach, and thus lack
both the tools and cognitive flexibility to explore other options. This option hinges
on our belief that there will always be a small minority of users who can never use
a specific approach, even after any or all of the above options have been imple-
mented. This prospect was recently explored in the first controlled study devoted to
comparing different BCI approaches within subjects. Our team at TU Graz recently
compared data from offline simulations of SSVEP vs. ERD BCIs, which suggested
that some subjects who could not effectively use an SSVEP BCI could use an ERD
BCI, and vice versa (Allison et al. 2010b).

We have also confirmed this result with online BCIs. Figures 3.1–3.3 present
clear examples of two subjects who were literate with only one of these two BCI
approaches. Subject A was literate with an ERD BCI, but not an SSVEP BCI. Sub-
ject B was literate with an SSVEP BCI, but not an ERD BCI.

Allison et al. (2010b) also introduced a potential hybrid BCI that combines two
BCI approaches (SSVEP and ERD), which addresses option 4d. A hybrid BCI
would ideally have an adaptive classifier to learn how to appropriately weigh con-
tributions from different signals. That is, with training, a hybrid BCI using signals
X and Y would become the same as a BCI using signal X only if signal Y was
uninformative. If subjects could use both signals, then X and Y could be combined
to increase the dimensionality of control or improve the accuracy/speed tradeoff.
Subjects A and B were both literate with our hybrid ERD/SSVEP BCI.

Options 4c and 4d, which both involve a different BCI approach, are underappre-
ciated opportunities to provide communication for subjects who are not successful
with the first approach they try. A new approach does not mean the subject cannot
attain the same goals, such as spelling, moving a cursor, or controlling a robotic de-
vice. Major changes to display and feedback parameters may not be needed either.
The subject must simply perform different mental tasks, such as paying attention to
letters that flash instead of oscillate.

3.3.5 Predicting Illiteracy

There is currently no way to predict whether someone will be illiterate with a cer-
tain BCI approach. Illiteracy is only apparent after a subject tries to use a BCI.
Researchers, carers, or others may also try to get the BCI working through some of
the methods described above, and/or trial and error with additional BCI sessions.
Therefore, considerable time and effort is necessary to diagnose illiteracy.
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Additional research into BCI demographics might help identify factors that could
predict whether someone will be proficient with a certain BCI approach, and could
also help predict the best parameters for each user. Age, gender, personality traits,
lifestyle and background, and other factors could help developers and other people
find the best BCI for each user. People with a strong history of sports, dance, martial
arts, or other movement oriented hobbies might perform better with BCIs based on
imagined movement. People who play some types of computer games, or perform
well on simple tests of visual attention, might perform better with BCIs that rely on
visual attention.

Temporary factors like time of day, fatigue, or recent consumption of food, al-
cohol, caffeine, or drugs may be relevant. For example, Guger et al. (2009) found
that people who reported less sleep the previous night performed better with P300
BCIs—a surprising finding that suggests a rather easy way to temporarily improve
P300 BCI performance. Another study found that older subjects performed worse
with SSVEP BCIs, but otherwise found no correlation between performance and
many other factors (Allison et al. 2010a).

3.4 Towards Standardized Terms, Definitions, and Measurement
Metrics

The term “BCI illiteracy” implies a connection between BCIs and language. BCI
illiteracy is not limited to any alphabet of mental signals. That is, just as someone
illiterate in German might be fluent in English, a person who cannot use an ERD BCI
might communicate effectively through a SSVEP BCI. The graphemes or phonemes
in written or spoken Japanese are incomprehensible to someone who only knows
Arabic, and the mental tasks (also called “cognemes”) in ERD BCIs are useless in
SSVEP BCIs (Allison and Pineda 2006).

Like conventional illiteracy, BCI illiteracy is essentially a problem of accuracy.
An illiterate reader or listener is someone who cannot interpret text or speech accu-
rately. Also like conventional illiteracy, BCI illiteracy is a problem of scale that de-
pends on the likelihood of correct communication by chance. A conventional illiter-
ate is someone who can accurately communicate with about 0% accuracy, since the
likelihood of correctly guessing the right word is very low because natural language
vocabularies typically have tens of thousands of options. A person who can under-
stand half the common words in a natural language might be considered reasonably
competent. However, a BCI that correctly interprets the user’s intended message
only half the time is probably inadequate, since BCIs have smaller alphabets, per-
haps as few as two elements.

This point underscores the first of many concerns with the term “BCI illiter-
acy”: there is no accepted literacy threshold. That is, there are no guidelines that
specify which accuracy threshold must be crossed before a subject is considered
literate. For example, among BCIs that allow two choices, different articles use dif-
ferent thresholds (e.g. Perelmouter and Birbaumer 2000; Guger et al. 2003; Allison
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et al. 2008; Kübler and Birbaumer 2008). We used a threshold of 70% in two re-
cent articles involving tasks that simulated a two choice BCI (Allison et al. 2010b;
Brunner et al. 2010). Guger et al. (2003) was written before the term “BCI illit-
eracy” was coined, but refers to the 6.7% of subjects who attained less than 60%
accuracy in a two-choice ERD task as “marginal.” The article assumes that the
93.3% of subjects who attained better performance would be effectively literate.
Had a threshold of 70% been used instead, the number of “marginal” (aka illiter-
ate) subjects would have increased to 48.7%. Therefore, fairly small changes in the
threshold can dramatically affect the percentage of subjects who are deemed liter-
ate.

This threshold depends on the number of choices in the BCI’s alphabet, which
is called N (Wolpaw et al. 2002). 65% accuracy is probably unacceptable in a BCI
with two choices, but might be tolerable in a BCI with many more choices. How-
ever, regardless of N, there is no agreement on the best proficiency threshold. Sellers
and Donchin (2006) criticized an earlier article for implying that a 36-choice BCI
with almost 50% accuracy was a reasonable communication system. Only two of
ten subjects in Friedrich et al. (2009) were considered illiterate by that paper’s first
author (Friedrich, personal communication, April 2009), although six subjects at-
tained accuracy below 50% in a four-choice task.

Furthermore, the true “chance level” also depends on the length of the message
or sequence of commands (Müller-Putz et al. 2008). While it may seem that chance
performance with a two-choice BCI is 50%, this is effectively true only with infinity
trials. The proficiency threshold should be higher if the user can only send one very
short message.

Similarly, “BCI illiteracy” does not account for the possibility of improving ac-
curacy by allowing more time for selections. In some cases, increasing the num-
ber of trials or the duration of each trial can improve accuracy, perhaps above the
proficiency threshold. For example, P300 BCI articles often note that performance
with single trials is typically below any reasonable proficiency threshold, but per-
formance improves if data from many trials are averaged together (Farwell and
Donchin 1988; Jing et al. 2010).

In summary, proficiency thresholds might not best be represented by a single
number, but rather a formula that includes the number of choices, the number of
trials, and the time allowed for each selection (Allison in press). Unfortunately, even
after considering these factors, other challenges remain.

Some challenges with developing a standardized proficiency threshold are harder
to address. A single formula cannot easily account for different types of errors,
such as false positives or misses. Errors of omission or commission may be more
or less confusing or frustrating for the user, designer, and/or listener. A proficiency
threshold formula might be further complicated because some errors are more likely
with certain signals, which was discussed in problem 4a above. Certain choices may
be selected more often than others, which can complicate the standard formula for
ITR (Wolpaw et al. 2002) and a standardized threshold approach.
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A proficiency threshold is harder to determine with asynchronous BCI systems.
In asynchronous BCI, the BCI system determines when messages or commands
must be sent. This characteristic makes it relatively easy to determine whether a
user correctly sent a message within the allotted time. However, in an asynchronous
BCIs, users may communicate (or not) at their leisure (Millán and Mouriño 2003;
Pfurtscheller et al. 2006). There might also be many different ways to accomplish a
goal. For example, one user may navigate through a slalom course by turning after
every step, while another might only turn once for each obstacle. Either solution
would be correct. Any proficiency test for an asynchronous BCI should also ensure
that a subject can avoid sending signals at certain times, which reflects effective
communication of the “no control” state (Leeb et al. 2007; Scherer et al. 2008;
Faller et al. 2010).

Further complicating the discussion, an “effective proficiency threshold” also de-
pends on subjective factors. A subject who attains 69% accuracy with a two choice
system might be classified as illiterate, but could still communicate if persistent and
patient. A different subject might consider a two choice BCI useless if it does not
provide at least 90% accuracy. That would be effectively illiterate, just like a decent
French speaker who is so embarrassed by his accent, and/or by his periodic errors in
French grammar, that he never speaks French. Other authors have noted that users
may prefer a more accurate system over one that maximizes ITR (Kübler et al. 2001;
Wolpaw et al. 2002; Allison et al. 2007).

Finally, illiteracy may vary within subjects with factors like time of day, mood,
motivation, lighting, distraction, and testing environment. How should this be ad-
dressed? Can someone be literate in one setting, and illiterate in another?

3.4.1 The Relative Severity of Illiteracy

The discussion so far might suggest that “BCI illiteracy” is a fatal problem in BCI
research. The severity of “BCI illiteracy” should also be considered in relation to
other interfaces. Conventional interfaces are not universal either. Many millions of
people cannot use keyboards, mice, cell phone keypads, and other conventional in-
terfaces due to physical or other disability. This serious drawback has not prevented
these interfaces from becoming mainstream communication tools. BCIs may also
attain wider acceptance among disabled and healthy users even if they do not pro-
vide control for some people (Nijholt et al. 2008).

Similarly, ITR is a problematic way to compare BCIs, with many of the same
problems as BCI illiteracy. For example, the formula for ITR does not account for
types of errors, frequency of certain selections, subjective factors, preferences for
higher accuracy over ITR, “extra time” such as the time between selections and
breaks, and other issues. These concerns have been widely noted (e.g. Kübler et al.,
2001; Wolpaw et al., 2002; Sellers and Donchin, 2006; Allison et al., 2007), yet ITR
is still widely used in BCI articles.
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3.4.2 (Re) Defining “BCI Illiteracy”

In addition to the problems with measuring illiteracy, there is no widespread agree-
ment on the term itself. The term “BCI illiteracy” is still quite new. Its first publi-
cation outside of a conference presentation was in Kübler and Müller (2007). The
Berlin group used the term “BCI aphasia” in prior conference presentations. Other
terms that might be used include proficiency, reliability, or universality. Authors
have described subjects’ unacceptable performance as “bad” (Cheng et al. 2002),
“marginal” (Guger et al. 2003), “low” (Allison et al. 2008) or “poor” (Leeb et al.
2007).

Extending the word “illiteracy” from natural languages to BCIs leads to intrigu-
ing comparisons, but can also be confusing. Since the word “illiteracy” refers to
trouble reading or writing, it is unclear whether illiteracy results from the subject,
classifier, or other factors. This distinction may be meaningful. As discussed above,
different problems suggest different possible solutions.

“BCI illiteracy” implies that failure to use a BCI results from inadequate effort
by the user, which is generally not true. Conventional illiteracy can typically be
overcome by (for example) taking German classes. Hence, if someone cannot speak
German, one might assume he is lazy, uninterested, or overly focused on other pri-
orities (such as writing articles about BCIs). On the other hand, some subjects could
never learn to use a particular BCI.

“Illiteracy” really reflects a problem connecting the different letters in an alpha-
bet into meaningful communication. English, French, Spanish, Dutch, Flemish, Ital-
ian, and other languages have alphabets similar to the German alphabet, and native
German speakers can recognize most letters in other Romance languages. Similarly,
a native German speaker can produce the sounds used in most Romance languages.
However, proficiency with the alphabet is only a precursor to literacy with a natural
language. With BCIs, the real challenge is mastering the alphabet—the basic signals
that convey information. Combining these signals into a vocabulary of messages or
commands is then straightforward. There may be some cases when an individual
signal can convey meaning (Allison et al. 2007), just as “I” or “a” are letters that are
also English words, but such cases are rare.

3.5 Summary

The rapid increase in BCI research has exposed a problem that remains underap-
preciated: BCI illiteracy. This problem exists across the three prominent BCI ap-
proaches (P300, SSVEP, and ERD) and across different implementations of these
approaches in different labs. Many options to reduce illiteracy have been explored.
While these have been somewhat successful, some subjects will be unable to use a
particular BCI approach, and these subjects might only attain proficiency by switch-
ing to another approach. Although we focused on EEG BCIs, BCI illiterates might
benefit from switching to another imaging approach, and many of the problems,
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solutions, and terminological issues discussed here could be extended to non-EEG
BCIs.

Hence, the answer to the question “Can anyone use a BCI?” depends on the
interpretation of the question. For a specific BCI system, the answer is probably
no. A “universal BCI” is unlikely in the near future; at least a minority of subjects
will not be proficient any particular system. Fortunately, the answer becomes “prob-
ably” if the question is interpreted as: “Can anyone use at least one BCI?” It is
unlikely that anyone would be unable to use all BCI approaches, so long as s/he is
mentally capable of goal-directed action, receiving and understanding instructions
and feedback, and forming messages or commands (Kübler and Birbaumer 2008).
Therefore, while all the options presented above should be explored, more attention
should be devoted to exploring different BCI approaches, especially hybrid BCIs,
within subjects in real-world settings.

There are also many concerns with defining “BCI illiteracy”. Some of these prob-
lems are unique to the term itself, while other problems create challenges in es-
tablishing any standards to assess this phenomenon. Ultimately, standards need to
be established through discussion among established BCI research groups. Widely
agreed terms, definitions, and measurement metrics will help future developers, au-
thors, carers, users, and others unequivocally identify how to distinguish effective
communication from illiteracy.
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Chapter 4
Using Rest Class and Control Paradigms
for Brain Computer Interfacing
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Benjamin Blankertz, and Klaus-Robert Müller

Abstract The use of Electroencephalography (EEG) for Brain Computer Interface
(BCI) provides a cost-efficient, safe, portable and easy to use BCI for both healthy
users and the disabled. This chapter will first briefly review some of the current
challenges in BCI research and then discuss two of them in more detail, namely
modeling the “no command” (rest) state and the use of control paradigms in BCI.
For effective prosthetic control of a BCI system or when employing BCI as an addi-
tional control-channel for gaming or other generic man machine interfacing, a user
should not be required to be continuously in an active state, as is current practice.
In our approach, the signals are first transduced by computing Gaussian probabil-
ity distributions of signal features for each mental state, then a prior distribution of
idle-state is inferred and subsequently adapted during use of the BCI. We further-
more investigate the effectiveness of introducing an intermediary state between state

This chapter is a slightly revised version of: S. Fazli, M. Danóczy, F. Popescu, B. Blankertz,
K.-R. Müller: Using Rest Class and Control Paradigms for Brain Computer Interfacing. IWANN
(1) 2009: 651–665.

S. Fazli (�) · M. Danóczy · B. Blankertz · K.-R. Müller
Berlin Institute of Technology, Franklinstr. 28/29, Berlin, Germany
e-mail: fazli@cs.tu-berlin.de

M. Danóczy
e-mail: marton@cs.tu-berlin.de

B. Blankertz
e-mail: blanker@cs.tu-berlin.de

K.-R. Müller
e-mail: krm@cs.tu-berlin.de

F. Popescu · B. Blankertz
Fraunhofer FIRST, Kekuléstr. 7, Berlin, Germany

F. Popescu
e-mail: florin.popescu@first.fraunhofer.de

D.S. Tan, A. Nijholt (eds.), Brain-Computer Interfaces,
Human-Computer Interaction Series,
DOI 10.1007/978-1-84996-272-8_4, © Springer-Verlag London Limited 2010

55



56 S. Fazli et al.

probabilities and interface command, driven by a dynamic control law, and outline
the strategies used by two subjects to achieve idle state BCI control.

4.1 Introduction

Non-invasive Brain Computer Interfacing (BCI) has recently become a hot topic
with research activities outside its traditional fields medicine, psychology, neuro-
science and rehabilitation engineering (Dornhege et al. 2007; Wolpaw et al. 2002;
Kübler et al. 2001). As many novel applications beyond rehabilitation have emerged
(Müller et al. 2008; Dornhege et al. 2007; Krepki et al. 2007) also other disciplines
such as computer science have started to contribute with novel signal processing,
machine learning, software and man machine interaction concepts (Blankertz et al.
2007b; Solovey et al. 2009). Furthermore novel sensors, amplifiers and open source
software (Schalk et al. 2004; Sonnenburg et al. 2007) have increased the ease of
handling BCIs and have therefore lowered the overall threshold for new groups to
enter this highly interdisciplinary field of neuro-technology. In particular employing
machine learning techniques allows a successful BCI communication for novices
even from the first session (Tomioka and Müller, 2010; Blankertz et al., 2007a,
2008a): instead of several hundred hours of subject training now the machine learns
to decode the brain states of BCI users individually (Blankertz et al., 2007a, 2008a;
Dornhege et al., 2007). This concept of ‘letting the machine learn’ (instead of the
subjects) was introduced by the Berlin Brain Computer Interface, adapting feature
extraction and classification to data acquired in a so-called brief calibration phase
(less than 5 minutes) where the subject is focussing to reproducibly generate certain
brain states, e.g. imagery movements. The learning machine computes a statistical
estimator from this calibration data which then allows to discriminate these learned
brain states during the feedback part of the experiment where the subject can com-
municate with the machine by power of thought alone (see Blankertz et al. 2008a;
Krauledat et al. 2006).

The practical versatility of BCI—this novel additional modality of interaction
between man and machine—is yet far from explored (Dornhege et al. 2007; Müller
et al. 2008; Blankertz et al. 2007b; Krepki et al. 2007). Note however that despite
its bright future perspectives EEG based BCI faces a number of challenges that we
would like to discuss following (Nijholt et al. 2008; Dornhege et al. 2007).

4.1.1 Challenges in BCI

First of all, the information transfer rate (ITR) achievable through EEG is approx-
imately one order of magnitude lower than the one observed by invasive methods
in monkey studies (Santhanam et al. 2006; Nicolelis 2001; Taylor et al. 2002). That
said, the potential benefits of brain implant based BCI has so far not been demon-
strated to be worth the associated cost and risk in the most disabled of patients, let
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alone in healthy users (Hochberg et al. 2006). EEG seems for now the only practi-
cal brain-machine interaction (BMI) choice (cost and ITR limitations hamper other
non-invasive methods).

The most elementary of EEG-BCI challenges for healthy users is not—at first
glance—a computational one. Standard EEG practice involves the tedious applica-
tion of conductive gel on EEG electrodes in order to provide for accurate measure-
ments of the micro-volt level scalp potentials that constitute EEG signals. Without
“dry-cap” technology the proper set-up of BCI sessions in, say, a home environment,
is too tedious, messy and therefore impractical. Marketing promises of impending
“dry-cap” EEG have already made some media impact, while we have also pre-
sented “dry-cap” EEG-BCI design and performance in a controlled study (Popescu
et al. 2007). All foreseeable systems, for reasons of ease-of-use and cost, use fewer
electrodes than found on standard EEG caps. The computational challenges which
we have addressed are (1) optimal placement of the reduced number of electrodes
and (2) robustness of BCI algorithms to the smaller set of recording sites. With only
6 uni-polar electrodes we can achieve about 70% of full gel cap BCI performance
at sites above the motor cortex, while being able to discount any potential influence
of muscle and eye movement artifacts. Most other dry-cap challenges remaining are
of an engineering design nature, excluding perhaps the computational reduction of
artifacts produced not by unrelated electro-physiological activity but by measured
low-frequency voltage variations caused by the physical movement of the head.

A long-standing problem of BCI designs which detect EEG patterns related to
some voluntarily produced brain state is that such paradigms work with varying
success among subjects/patients. We distinguish mental task based BCI such as
“movement imagination” BCI from paradigms based on involuntary stimulus re-
lated potentials such as P300 which are limited to very specific applications such
as typing for locked-in patients and require constant focus on stimuli extraneous
to the task at hand. The peak performance to be achieved even after multiple ses-
sions, varies greatly among subjects. Using a recent study (Blankertz et al. 2010)
and other unreported data by many research groups, we estimate that about 20% of
subjects do not show strong enough motor related mu-rhythm variations for effec-
tive asynchronous motor imagery BCI, that for another 30% performance is slow
(<20 bits/min) and for up to 50% it is moderate to high (20–35 bits/min). It is
still a matter of debate as to why BCI systems exhibit “illiteracy” in a significant
minority of subjects and what in terms of signal processing and machine learning
algorithms can be done about it. Our first steps using a fully adaptive approach for
calibration seem promising.

So far most BCI systems are capable of performing asynchronously (self-paced),
say, cursor control, however this can become tiring since the user is required to con-
tinuously imagine one of the two classes. Often the user does not intend to control
anything but rather leave the BCI inactive, thus BCI usability would benefit from an
“idle” or “rest” class where the cursor does not respond when no active class (from
a set of two or more) is activated, on top the BCI being self-paced. The “idle” state
may take one of two forms: a “relax” state where the subject stays still and tries to
“think of nothing”, or can do almost any other mental task than those which belong
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to the active classes, but the latter may not be intuitive. Remaining challenges are
to find a classifier that can induce rest state without a “relax” cue and to optimize
the relationship between classifier output and BCI command. Due to physiological
variations in background EEG activity, where a main factor is fatigue, we believe
that the introduction of a controller layer is necessary for maximal performance.

The remainder of the paper will discuss both rest class and control strategies in
more detail. Note that we are well aware to only report first conceptual steps in
this paper and empirical evidence drawn from two subjects only. Clearly, a broader
exploration of this interesting direction will still have to come, along with larger
subject studies.

4.1.2 Background on Rest Class and Controller Concepts

Relatively few results showing idle-state asynchronous BCI exist. Early neuro-
feedback studies did feature an “idle” state, but required months of training on the
part of subject to learn to modulate the slow cortical potentials required for classifi-
cation and exhibited relatively low ITR (Birbaumer et al. 2003).

Among “rest-class” studies based on movement imagination, which offers intu-
itive control for gaming and prosthetics, the important measures of interface quality
are the false positive (FP) rate, which is the probability of choosing an active class
during “rest”, the true positive rate (TP), meaning the probability of detecting the
correct active class when movement imagination occurs or should occur. Other than
accuracy measures, speed related measures of interest are the maximal time duration
of correct idle state detection and the latency of correct responses to active states.
Borisoff et al. (2004), Mason and Birch (2000) used a single active class vs. rest
paradigm with FP rates of 3%, TP rates of 70%, and idle state lengths of 7 s in
multiple normal subjects, and more limited success in spinal-cord injury patients,
using nearest-neighbor classifiers on windowed band-power features. Also Millán
and Mouriño (2003), Millán et al. (2006) have implemented a 2-active class rest-
class interface based on Malahobnis distance classification of band-power features.
After an earlier study in which rest-state was performed with eyes closed (doing so
produces distinctive alpha wave EEG modulation), a follow-up study used “active
relaxation” (Millán et al. 2006) and showed FP of 2%, TP of 70%, and 1.5 s of
relax state. In the last specialized BCI data competition (Blankertz et al. 2006) a
synchronous “relax”-vs.-active data set was addressed by the winning submission
described in Wang et al. (2004).

The type of classifiers currently employed in BCI (linear discriminants (LDA)
and combinations thereof, cf. Müller et al. (2001)) may partition the feature space
in an overly simple manner, not allowing for “rest” class to be separated from active
class regions with appropriate efficiency. To take a first step beyond linear methods
we assigned continuous class membership probabilities, using compact principal
component bandpower features instead of channel bandpower features as in Millán
et al. (2006), and added an intermediate, continuously moving state which is driven
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by classifier output via a differential equation, which we call a “control law”, such
that when that intermediate state reaches a threshold, the output of the BCI interface
changes. In the current approach, the classifier outputs a set of distances from each
active class mean (or equivalently, a probability measure centered on the mean). We
present feedback data using two active classes (left hand vs. right hand—or foot—
movement imagination, “L” and “R”) and an idle state. For the “active” classes the
probabilities are of elliptical, Gaussian shapes. A given state (set of features) is ei-
ther of higher probability (i.e. closer) to state L or R or far from both. Outside of
both volumes is an outlier class, or the idle state. Stipulating that the idle state itself
can be anywhere outside the “active” zones but also knowing where it lies preferen-
tially, we place a “prior” on it as well—in between the active class zones, based on
training data for “active” classes only. Training trials are recorded during cues to the
subject to imagine “left” or “right” hand movements: no “idle” or “relax” trials are
cued or recorded, and therefore the paradigm was not tuned to active relaxation. In
subsequent feedback trials, i.e. actual asynchronous BCI control that is cued so that
performance can be measured, all three probability distributions adapt and overlap,
and the resulting posterior probabilities are fed into the “control law”. Thus the sub-
jects adapt their strategies based on feedback they receive while the classifier adapts
also.

Post-hoc analysis was performed and is presented which outlines more efficient
extraction of control signals could be achieved, for “rest” class inference as well
as multi-class classification (i.e. for more than two mental tasks) by optimizing the
control law on collected data. Also, we investigate the role of occipital alpha band
power (a frequency range of 8–12 Hz around the cortical location related to visual
processing) in the strategies used by two different subjects in achieving rest-class
control. An increase in occipital alpha activity is traditionally associated with lack
of attention to visual stimuli (Plotkin 1976), be it because of closing of the eyes
while awake, in some phases of sleep, during a state of drowsiness, or during a
general lack of focus on sensory stimuli, which occurs when subjects actively relax
or do not perform any cognitive tasks (Plotkin 1976; Williamson et al. 1997). We
used this phenomenon to help determine if the subjects “actively relaxed” or tried
to modulate their active state EEG patterns more discernibly.

4.2 Methods

4.2.1 Experimental Paradigm

A 1D cursor control paradigm was reproduced in this study with two healthy volun-
teer subjects (both male). A standard DC amplifier set-up (BrainAmp128DC, Mu-
nich, Germany) was used (64 EEG channels, 4 bipolar EMG/EOG channels). In the
first part of the experiment (“calibration session”), a sequence of 70 left/right cues
was presented visually by means of a letter which appears in the middle of the com-
puter screen. The subject was asked to imagine the cued class without moving either
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limbs or eyes. Apart from off-line checks, electromyograms and electro-oculograms
were monitored.

In a second part of the experiment subjects were asked to move a cross dis-
played on the screen to a target represented by a bar on either the right or left side
of the screen by imagining the corresponding class. The cross movement provided
continuous performance feedback to the subjects. After training, 70 trials of nor-
mal, synchronous left/right target feedback trials were performed (no rest state, cur-
sor moved as soon as the target was presented): this was done to ensure quality of
common spatial patterns as well as to compare “usual” BCI performance to asyn-
chronous performance. Cross-validation with LDA classifiers was used on the re-
sulting Common Spatial Patterns (CSP) (Blankertz et al. 2008b; Lemm et al. 2005;
Koles 1991) only on training trials.

The subject then performed 80 idle-to-active feedback trial attempts, in 4 blocks
of 20 trials each. Each trial within the feedback phase consists of two separate parts.
Within the first part no cue is presented to the subject for a period randomly varying
(first subject: 8–12 sec, second subject: 10–20 sec), while the subject is instructed
to relax. During this period the cursor is free to move, but not shown to the subject.

In general the cursor moves on a horizontal line, the center representing the re-
laxed state and respective edges active classes, e.g. left and right or left and foot.
Not providing cursor feedback to the subject during this first part prevents the sub-
ject from steering the cursor stably into the middle by imagining movements. If
during this “relax” period the subject reaches any target—without being aware of
it—, an error is recorded and a new trial attempt begins. If neither of the two active
classes are selected during the “relax” cue, the feedback progresses to the second
part, where a visual cue (target on the left or right edge of the window) is presented,
indicating the desired active class. In this second part the cursor is made visible to
the subject. There is no time limit as to when a class has to be selected, but the sub-
ject is instructed to reach the cued target as fast as possible. After selection of any
of the two active classes (the correct one or incorrect one) a new trial begins. The
cursor does not represent an object whose position the subject is trying to control, it
is merely a 1-D intermediate “state” which allows the subject to output a command
when its position reaches the “left” or “right” boundaries.

4.2.2 Feature Extraction

A semi-automatic search for the time interval of the event-related desynchronization
(ERDs) and frequency band whose power discriminates most between classes for
each subjects generally selects the so-called mu- and beta-rhythms (10–25 Hz) in the
motor cortex (Blankertz et al. 2007a; Pfurtscheller et al. 2006). Note that the lower
part of this frequency range (the mu range) slightly overlaps the alpha range (8–
12) Hz and that due to brain and scalp electrical conductivity EEG signals are known
to be spatially “mixed”, that is, a single source of electrical activity in the cortex
can be recorded at multiple locations on the scalp, albeit with higher amplitudes at
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electrodes close to that cortical location. The discriminating frequency band search
determined a band-pass filter which attenuated signal amplitude outside these bands
thereby accomplishing a temporal “demixing”. The resulting filtered multivariate
signals, segmented in the ERDs time interval, are used to compute two covariance
matrices �1 and �2 from the calibration data. The CSP algorithm (see e.g. Blankertz
et al. 2007a; Lemm et al. 2005; Koles 1991) searches for a matrix W and a vector
of n values 0 ≤ di ≤ 1 which achieves:

W�1W
� = D and W�2W

� = I − D, (4.1)

where n is the number of channels and D is a diagonal matrix with entries di . Using
z-transform notation for digital signals, for any trial, the spatio-temporally de-mixed
data is:

f (z) = WH(z)s(z). (4.2)

Where x is the raw EEG signal and H(z) is a diagonal matrix of identical band-pass
filter transforms. The columns of the source to signal transform W−1 are called the
Common Spatial Patterns (CSPs). The CSP decomposition can be thought of as
a coupled decomposition of two matrices (for two classes) similar to a principal
components analysis yielding eigenvectors and eigenvalues. As the eigenvalues di

are equal to the power ratio of signals of class 1 by class 2 in the corresponding CSP
filter (eigenvector in i-th column of matrix W ), best discrimination is provided by
filters with very high (i.e. near 1) or very low (i.e. near 0) eigenvalues. Accordingly
CSP projections with the highest two and lowest two eigenvalues were chosen as
features (n = 4).

4.2.3 Feature Processing

Let x ∈ R
n the input feature vector as determined by CSP (n = 4) and y ∈ {1,0,−1}

be the class label. The prior distributions p(x|y = i,μi ,�i) for each class i are
modelled as:

p(x|y = i,μi ,�i) = N (x|μi ,�i) ∀i, (4.3)

where N (x|μ,�) is the Gaussian density function with mean μ and variance �.
We chose the distributions’ parameters � = {μi ,�i} by maximizing the logarithm
of the data’s joint likelihood:

log L =
∑

t

log P(yt ,xt |�) =
∑

t

log
p(xt |yt ,�)P(yt )

p(xt )
. (4.4)

The maximum likelihood estimators for the parameters of a Gaussian probability
density function are given by the empirical mean μ̂ and the empirical covariance
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Fig. 4.1 Prior and posterior class membership probabilities during adaptation; after training, after
12, 24 and 36 trials, from left to right. In each panel, the top white ellipse is left class, the middle
ellipse is rest class and the bottom ellipse is right class 68% confidence region. The classifier output
[1 − P(y = 0|x)][P(y = +1|x)− P(y = −1|x)], see (4.11), is encoded as gray-scale, with the light
area having a high probability for “rest” and dark (top and right) areas having high probabilities
for “left” or “right”. Only the largest and smallest CSP projections (the x and y axes of the plots
above) are shown for visualization purposes, as they are the two most relevant of the four features.
The two right-angled lines on the leftmost panel indicate the method of selecting the rest class prior
mean: the minimum of movement class means in each CSP projection, corresponding to minimal
bandpower difference

matrix �̂:

μ̂ = 1

n

n∑

t=1

xt and �̂ = 1

n

n∑

t=1

(xt − μ̂)(xt − μ̂)�. (4.5)

Training data give us the CSPs which decompose each training trial, yielding a
population of 4-dimensional vectors x for each of the two movement (i.e. active)
classes, by taking the logarithm of the variance of each of the 4 chosen CSP projec-
tions over a (moving) time window of 800 ms.

As we have chosen not to collect training data for the rest class, we must instead
initialize the parameters of its probability distribution heuristically. If in rest state,
we expect both hemispheres to generate roughly the same power in the alpha and
beta band. We therefore initialize each component of the rest state’s mean at the
minimum of the respective means of the two active classes for each CSP component
(see Fig. 4.1, leftmost panel). The rest state’s initial covariance matrix is set to the
average of the covariance matrix of the two active classes.

4.2.4 Adaptation

In order to track non-stationarities in feedback BCI performance, we adapt by iter-
atively adding each new data point to the empirical means and covariance matrices.
We make use of the sequential formulas for updating means:

μn+1 = 1

n + 1

n∑

t=1

xt + 1

n + 1
xn+1 = n

n + 1
μn + 1

n + 1
xn+1 (4.6)
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Substituting the fraction 1/(n+1) by the constant α we introduce a forgetting factor
(i.e. we compute leaky average):

μn+1 = (1 − α)μn + αxn+1. (4.7)

For the covariance matrix �, we implement a similar procedure (covariance esti-
mation with forgetting factor). In the following, the notation x2� = x x� signifies a
vector’s outer product with itself.

�n+1 = 1

n + 1

n∑

t=1

(xt − μn+1)
2� + 1

n + 1
(xn+1 − μn+1)

2�. (4.8)

Substituting the leaky mean estimate for μn+1 from (4.7) yields:

�n+1 = n

n + 1
�n + (xn+1 − μn)

2� ×
[
α2 n

n + 1
+ (1 − α)2 1

n + 1

]
. (4.9)

For the sequential estimation of �, too, we introduce a constant β for 1/(n + 1),
thereby weighting data points with a possibly different forgetting factor as above:

�n+1 = (1 − β)�n + (xn+1 − μn)
2� × [α2(1 − β) + (1 − α)2β]. (4.10)

Thus the probability density functions of the active classes adapt to feedback
trials in a straightforward fashion. The prior for the rest class (i.e the outlier class)
is formed by choosing the mean as a combination of the active class means (see
Fig. 4.1) while the covariance is the mean of the two active class covariances. The
adaptation proceeds similarly as for the active classes, described above.

4.2.5 Determination of Cursor Speed

The (left/right) cursor position c, which is also the “cross” sometimes presented to
the subject and is the “intermediate state” given by the control law, is calculated
by numerically integrating its time derivative, the cursor speed ċ. The cursor speed
depends directly on the current class membership probabilities:

ċ = (1 − p0)s(p+1 − p−1) − p0
c

τ
, (4.11)

where pi = P(y = i|x).
This reduces to the simple rate control law ċ = s(p+1 − p−1) with the speed

constant s if the probability of the rest state is zero. However, if the rest-state prob-
ability is non-zero, the exponential decay term −p0 1/τ c pulls back the cursor to
its middle position c = 0 with the time constant τ , thereby effectively avoiding the
accumulation of small movements to either side.
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Table 4.1 Main
classification results for 1D
feedback. Band stands for the
frequency band, selected by a
heuristic. xval stands for
cross-validation error of
training trials and TP is the
accuracy of the two active
classes

Subject A B

classes left-right left-foot

band [Hz] [9 22.5] [11 13]

xval [%] 1.5 ± 4.2 6.4 ± 5.6

time/trial [s] 2.23 2.98

TP [%] 94.3 88.9

ITR [bit/min] 11.7 7.04

Table 4.2 Idle state feedback results. Idle state timeout stands for the time the subject was required
to stay in the idle state without activating any classes, FP stands for the percentage of trials, where
an active class was selected during the required idle-state period. To illustrate effectiveness of
adaptivity in our classifier, in FP∗ the first 5 trials were disregarded, showing higher performance
after most of the adaptation occurred

Subject A B

Idle state timeout [s] 10 ± 2 15 ± 5

FP [%] 11.2 18.7

FP∗ [%] 7.8 13.7

TP [%] 100 96.9

Activation time [s] 6.00 17.24

Under 10 sec [%] 91.3 55.3

4.3 Results

The accuracy of classification for synchronous feedback is given in Table 4.1. ITRs
of 11.7 and 7 bits/min were achieved by the two subjects. Table 4.2 summarizes the
average results of the 4 individual asynchronous feedback sessions. Note that most
asynchronous trials reach target under 5 s for Subject A. The shape and adaptive
response of the classifier are shown in Fig. 4.1.

4.3.1 Alpha Power

Alpha power was calculated from raw EEG data sampled at 100 Hz from the six
occipital electrodes PO3, POz, PO4, O1, Oz, O2. After applying a band-pass but-
terworth filter in the alpha band ranging between 8–12 Hz, the log variance of the
resulting signal was calculated and averaged over channels over shifting causal time
windows of 800 ms (same windowing as in CSP calculation fed into the classifier).
Then, mean and standard deviation of the average alpha power per trial was evalu-
ated for each class (Table 4.3). The p-values shown for the t-test of the mean dif-
ference show no statistical difference between either active class and the rest class.
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Table 4.3 Per-class alpha power for both subjects. The column pVal shows the p-Value for the
hypothesis that the alpha powers of each active class and the rest class are distributed with the
same mean. The hypothesis can not be rejected at the 5% level for any of the classes and subjects

Subject A Subject B

class Ntrials mean stdev pVal class Ntrials mean stdev pVal

left 34 4.63 0.69 0.36 left 32 1.70 0.89 0.64

right 37 4.59 0.68 0.23 right 33 2.00 1.31 0.03

rest 80 4.74 0.59 – rest 80 1.63 0.52 –

Fig. 4.2 Trace of occipital alpha for a sample experimental session. Vertical bars are cued rest
(light grey) left (dark grey) and right (medium grey) states

Figure 4.2 shows actual traces of alpha power along with labeled bars indicating
detected states for a typical session. The spaces between bars correspond to time
between cued trials. Although alpha power is being modulated it is not significantly
higher in the rest state than active states.

4.3.2 Post-hoc Optimization of Meta-Parameters

We investigate whether we could have attained higher performance if we had chosen
other meta-parameters, these being the decay time constant τ , the moving window
size w and cursor speed constant s. For this the EEG recordings, transduced into
CSP component traces, were fed off-line into a simulated controller and adaptive
classifier having different meta-parameter values. Through a combination of brute-
force parameter search followed by downhill-simplex minimization, the following
two performance cost functions were evaluated:

cost ∼
∑

i

⎧
⎪⎨

⎪⎩

v|c|eX if yi = 0 (i.e. state ‘X’),

�(θ + c)(θ + c)eLR if yi = −1 (i.e. state ‘L’),

�(θ − c)(θ − c)eLR if yi = +1 (i.e. state ‘R’).

(4.12)

Optimization variables v, eX and eLR control the trade-off between accuracy and
speed, � is the Heaviside step function (see Fig. 4.3)
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Fig. 4.3 The two cost functions used for optimization. A weighted integral of trajectory over time
is computed with weights as functions of cursor state as shown for each class. The sum over all
trials is minimized. Left “slow but accurate” cost function (eX = 10, eLR = 1), right panel “fast but
less accurate” (eX = 1, eLR = 1) cost function for each of the three classes (left: dark grey, right:
medium grey, rest: light grey). Vertical scaling is arbitrary. The variable v (see (4.12)) is selected
to scale the function at the threshold to equal values

Fig. 4.4 (Data in Table 4.4) Top: original trajectories for one subject. Middle: “slow but accurate”
optimized trajectories. Bottom: “fast but less accurate” optimized trajectories. The vertical bars
indicate average time to hit in each class. Light grey: rest, medium grey: right, dark grey: left. Note
that in the middle panel there are no false positives, the rest trajectory which seems to hit threshold
is in fact slightly below it

The resulting traces, before and after optimization, for Subject A are shown in
Fig. 4.4. The traces shown correspond to the intermediate state (the cursor). Inter-
section of threshold (θ ) means that a L or R command is given. First note that one
of the active states is detected much faster than the other, within 2 s. This is con-
sistent with both subjects reporting that they had less difficulty moving the cursor
in one direction than another. The hypothetical trajectories that “would have been”
from parameters optimized by the different cost functions differ. In one case (the
first cost function) the rest state is more robust (i.e. the cursor trajectories are further
from the threshold and the FP rate is lower) and using the second cost function the
active classes would have responded faster, but with a rest class that is less robust.
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Table 4.4 (Data for Fig. 4.4) Control law parameters and results for original experiment (orig) and
after the two optimizations, for accuracy (slow) and for speed (fast). The control law parameters
are: Window size w [msec], speed constant (s), decay rate (1/τ ), TP rate, FP rate, activation time
tAct [sec] and rest state duration tRst [sec]

Subject A

w s 1/τ TP FP tAct tRst

orig 1000 0.70 0.20 100% 10% 2.30 8.56

slow 546 0.31 0.14 100% 0% 2.81 9.19

fast 1547 1.14 0.50 100% 20% 1.45 8.02

4.4 Conclusion and Outlook

The study reported success in an asynchronous feedback BCI paradigm using min-
imal subject training involving a “rest” class. It incorporated several features pos-
tulated to be important in “switch” type classification. One was the classifier type:
adaptive as to account for rest state non-stationarities (see also von Bünau et al.
2009; Shenoy et al. 2006; Sugiyama et al. 2007), and distance-based rather than
linear-partition based such that it could classify “rest” state as outlier (distant) from
either active state. Although the adaptation scheme used involves merely a leaky av-
erage of covariance and mean of class-conditional probability densities, our results
show that performance increases quickly with practice. The free design parameters
of this transduction algorithm are the coefficients of the implemented control law
and the learning rates of the leaky running average.

Fortunately, the current heuristic search for the initial adaptability meta-
parameters was rather quick: an adaptive system needs to be neither excessively
adaptive or inert with respect to the process it needs to track (in this case, the behav-
ior of the subject), and for the control law, the cursor needed to be responsive but
not so fast as to reach thresholds in less than 2–3 sec: data from prior experiments
was used to choose these. Post-hoc analysis revealed that optimizing control law pa-
rameters for each subject could be useful, however there is a fundamental trade-off
that is due to the integrative nature of the control law: one can make the interface
more responsive but at a higher risk of sending inadvertent commands. Furthermore,
the off-line analysis must be interpreted with caution: as users are active learners
their behavior would adapt if the meta-parameters changed. Thus in future studies
we aim to make this optimization run on-line, adaptively, such that the interface
changes behavior gradually, allowing stable convergence of combined user and in-
terface performance. Long term adaptation, over many sessions and many days, is
also a future direction of research. An anecdotal note: the classifier was robust to the
subject sometimes moving, or talking during the “rest” state, which suggests that
this is in part an “idle” state.

The classification scheme we have employed makes “anything other than active
state” detection possible, as it is based on “distance” from a particular mental state
and an “outlier” cutoff or competition between distances. Future studies will there-
fore consider also non-parametric outlier models (e.g. Müller et al. 2001).
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The benefit of adaptation and lack of explicit rest class training is the following:
instead of collecting training data by instructing the subject to relax, or recording
the other mental tasks which do not correspond to commands but which the subject
may otherwise perform during BCI use, we only train the active classes, and through
cued performance which provides feedback or performance, we allow the subject
to find the approach that works best for him/her. The classifier then adapts to the
strategy chosen or changes therein. Although they could have chosen to “think of
nothing”, and one of the subjects reported that he sometimes attempted to do so,
this was not evidenced by the available physiological measure of active relaxation,
namely occipital alpha-band EEG activity. This could be seen as further evidence
that the rest state detected was an idle state and not a relaxation state—without
objective measures, no matter what the subjects report it is difficult to tell between
the two. It remains to be seen whether the optimized control law, then placed in
an un-cued “real-world” BCI use environment translates to effective rest-state BCI
control which allows the subject to attend to other tasks than BCI commands. As
such, new paradigms must be designed in which the BCI performance is quantified
against various levels of background cognitive workload.

Concluding, we envisage an EEG BCI scenario in which users purchase an af-
fordable computer peripheral which is simply placed on the head and requires no
gel. Novel users undergo a one-time calibration procedure which takes maximally 5
minutes, ideally even less (Krauledat et al. 2008; Fazli et al. 2009). They then pro-
ceed to use the BCI system in a game environment, to control a robot or wheelchair,
and the performance of the system slowly adapts to the users’ brain patterns, react-
ing only when they intend to control it. At each repeated use, parameters from previ-
ous sessions are recalled and re-calibration is rarely, if ever, necessary. We strongly
believe such a system, capable of an average performance of about >20 bits/min,
is achievable within the next few years. Clearly, challenges as the ones discussed
above need to be met, in order to bring EEG BCI technology closer to becoming a
commonplace computer peripheral.
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Chapter 5
EEG-Based Navigation from a Human Factors
Perspective

Marieke E. Thurlings, Jan B.F. van Erp,
Anne-Marie Brouwer, and Peter J. Werkhoven

Abstract In this chapter we discuss Brain-Computer Interfaces (BCIs) as naviga-
tion devices from a Human Factors point of view. We argue that navigation is more
than only steering a car or a wheelchair. It involves three levels: planning, steering
and control, linked to cognition, perception and sensation, respectively. We struc-
ture the existing BCIs along those three levels. Most existing BCIs focus on the
steering level of navigation. This is a remarkable observation from a Human Fac-
tors perspective because steering requires a very specific subclass of control devices
that have a high bandwidth and a very low latency like joysticks or steering wheels;
requirements that can not be met with current BCIs. We recommend exploring the
potential of BCIs for the planning level, e.g. to select a route, and for the control
level, e.g. based on possible collision-related potentials.

5.1 Introduction

The field of Brain-Computer Interfacing (BCI) has its origin in the medical domain
and is a relatively young research area. However, over the last few years, some re-
markable achievements have been obtained. For instance, a study from the Univer-
sity of Pittsburg shows that monkeys can get cortical control over a prosthetic arm
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Fig. 5.1 The picture shows a
typical situation when we are
coming hands short and our
eyes and ears are
over-occupied

for self-feeding (Velliste et al. 2008). The corresponding video of one of the mon-
keys feeding itself via this invasive BCI (electrodes are implanted into the brain) has
impressed many.

In recent years, the developed knowledge and techniques in the original BCI field
has resulted in spin-offs outside medical applications. For instance, research has
started for applications in space shuttles (Trejo et al. 2006), for the air force (Mid-
dendorf et al. 2000) and in gaming (see Chapter 10 of this Volume). BCI research
is pre-eminently a multidisciplinary field: Neuro-science, medical disciplines, com-
puter science, signal processing, machine-learning, engineering and psychology are
all involved. Slightly neglected is the field of Human Factors, even though its ex-
pertise on how to facilitate the interaction between humans and machines could
potentially be of great benefit to the development of BCIs (Van Erp and Werkhoven
2006). In this chapter we take a Human Factors perspective on human navigation
processes and discuss how BCIs are, and can be used as alternative input devices.
Navigation in the real or in the virtual world is an example of an interaction that
is often complex. Especially when our eyes and ears are over-occupied or when
both our hands are involved in other tasks (e.g. when driving through an unknown
town while answering a telephone call) navigation can be a challenging feat (see
Fig. 5.1).

5.1.1 Human Navigation Models

Navigation is more than steering a car or a wheelchair. This is illustrated by sev-
eral navigation models and theories. One of them is Prenav (Van Erp et al. 2006)
which aims to describe human behaviour in navigation and control (see Fig. 5.2 for
a simplified version). This model focuses on the classic information-processing loop
from sensation to perception to decision and finally to action; with a feedback loop
to sensation via the environment. Sensation is the low-level processing of input via
the senses, the stage before our brain interprets the input and attributes meaning to
it, which is called perception.

According to Prenav, two shortcuts can break the serial order of these steps. The
first is the sensation-action shortcut. This shortcut concerns reflexive action and
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Fig. 5.2 A simplified version of the model Prenav. This model explains human behaviour in nav-
igation and control. The dashed lines reflect the possible shortcuts as described in the text

completely sidesteps the need for cognitive resources (e.g. we immediately dive
away if someone throws a rock at us). The second shortcut goes from perception
directly to action, therewith bypassing the decision process. Behaviour on that level
is also stimulus driven but not reflexive as described above. This shortcut links to
trained behaviour that occurs without our full attention, for example shifting gears,
stopping for a traffic light. The loop and its shortcuts are related to three levels of
navigation that we call planning, steering and control:

• Planning corresponds to knowledge-based behaviour (Rasmussen 1983), leading
to the choice of a goal and planning a route. It requires conscious analytic de-
cisions, information on the environment, landmarks, etc. Operating GPS-based
navigation devices is an example of the planning level.

• Steering is linked to pursuit tracking and rule-based behaviour, for example set-
ting a specific course, speed or lead distance, stopping for a red traffic light or
changing lanes on the highway. It is conscious behaviour requiring cognitive pro-
cessing but without the results having to be stored in memory.

• Control refers to compensatory tracking and skill-based behaviour, for example
maintaining a chosen course, speed or lead distance. It represents sensory motor
performance and is linked to reflexive behaviour and (highly trained) skills. It
for example enables one to ride a bike in the presence of sudden wind blows,
to drive between road markings sheer effortless and to break hard for crossing
children.

The Prenav model helps to assess the intuitiveness of a navigation device or dis-
play. According to Prenav intuitive refers to minimal use of cognitive resources,
i.e. in navigation a device or display that automatically triggers the required reac-
tion and uses the sensation-action or perception-action shortcut. As will become
clear in the next sections, many BCI applications in navigation are not based on
an intuitive mapping between for instance required navigation input and mental
task.
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5.1.2 BCI as a Navigation Device

For patients who lack control over their limbs, the usefulness of a navigation BCI is
evident (Birbaumer and Cohen 2007). However, also for healthy users an alternative
or additional navigation device may be of interest. Most of the time we interact with
systems using our hands, but in certain situations it may be convenient to have an
additional control channel as illustrated by the development of eye movement and
voice based control devices (see also Fig. 5.1). Situations where an extra control
channel may be convenient include flying a plane, where pilots need their hands not
only for navigating but also for assessing flight information, and driving a car, where
we need our hands to steer, shift gears, control the navigation device, adjust the
car radio and answer the phone. Preferably, an alternative input device is intuitive,
thereby alleviating the demand for cognitive resources. The Nintendo Wii® is a good
example of this. With respect to our discussion of navigation levels in the previous
section, note that the requirements of a navigation device depend on the level of
navigation that it is used for.

In this chapter we will make an inventory of existing EEG-based BCIs according
to the navigation level they apply to. To further structure this endeavour, we make
use of the three categories of BCIs as defined by Zander (Zander et al. 2008, see
also Chapter 11 of this Volume): active, reactive and passive.

These categories are based on the user’s effort and task to control the BCI. In
active BCIs users actively manipulate their brain signals in order to control the BCI.
In the reactive type, users can give a command by modulating attention to external
stimuli, so-called probe stimuli. A passive BCI analyses brain signals without the
user needing to perform specific mental tasks. Table 5.1 outlines the structure of
our inventory, providing examples of BCIs that would fit in the different cells. Our
overview aims to give an insight into the current focus and white spots in BCI re-
search and to outline directions for future research to broaden the applications. First,
we will start by devoting a few more words to the different categories of BCIs.

5.1.3 A Short Overview of the Different Types of BCIs

5.1.3.1 Active BCIs

Active BCIs are based on users actively performing cognitive tasks, such as motor
imagery (e.g. imagined movement of the left hand or the right foot), imagined word
association and mental calculation. Usually participants have to train to be able to
perform the mental tasks in such a way that the system can correctly classify them.
To achieve optimal performance, this training period may take months. After the
brain signals have been classified, they are translated into a system command, such
as turn left or right, stop or continue. The match between mental task and result-
ing navigation action is often arbitrary, violating the aim for intuitive navigation
controls.
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Table 5.1 Nine navigation BCIs based on matching BCI type with navigation level including a
conceivable example

Planning level Steering level Control level

Active planning BCIs Active Steering BCIs Active control BCIs

Active
BCIs

Motor imagery to select a
destination from a list

Mental calculations for
leftright decisions at
junction

Motor imagery to correct
for course deviations or
collision threats

Reactive planning BCIs Reactive steering BCIs Reactive control BCIs

Reactive
BCIs

A P300 speller to enter a
destination in a
navigation system

A SS(V)EPa-BCI with
four flickering checker-
boards around an avatar
to stear it left, right, back
and straight ahead in a
virtual environment

A BCI that corrects for
deviations in a path by
utilizing P300s, evoked
by attention modulation
to P300-stimuli

Passive planning BCIs Passive steering BCIs Passive control BCIs

Passive
BCIs

Distilling and using the
neural correlates of the
brain’s goal selection and
route planning processesb

Distilling and using left
versus right decisions
from the brain

Utilizing possible ERPsc

evoked by relevant events
such as impeding
collisions and line
crossings

aSteady State (Visual) Evoked Potential
bSee Section 5.1.4.1 for discussion on this type of BCI
cEvent Related Potential

5.1.4 Reactive BCIs

Reactive BCIs in general are event driven and measure brain responses to visual,
tactile or auditory (probe) stimuli. These responses can be modulated by the user
through focussing attention to the stimulus of interest. In contrast to active BCIs, the
advantage of reactive BCIs is that they do not require user training. The disadvantage
is that the user depends on external cues to give a command. The P300 and SSEP
are both features that can be elicited in the EEG by focusing attention to a specific
stimulus.

The P300, also referred to as the P3, is the third positive peak in the EEG that
occurs approximately 300 ms after the onset of a stimulus that stands out from
other stimuli. The stimulus can stand out because it is physically different from
other stimuli (stimulus driven, as in an oddball-paradigm), or because the observer
attends to that particular stimulus (task driven). The ERP that is elicited in the first
paradigm is also referred to as the P3a, while the one elicited by the second type of
paradigm is referred to as the P3b (Polich 2007). In general P3s are measured most
clearly at Fz, Cz and Pz as defined by the 10-20 system.

With the P300-matrix speller, (Farwell and Donchin 1988) exploited the P300 for
the first time in a BCI. In this P300-matrix speller, letters and numbers are placed in
a 6×6 matrix. Rows and columns flash after each other in random order. Every time
a row or column flashes that contains the symbol the user is focusing on, a P300 is
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(potentially) elicited. In this way, users can spell words and communicate with their
environment.

The SSEP is a feature in the EEG that can be elicited by focusing on a stimulus
that is presented with a certain constant flicker frequency. The fundamental fre-
quency of the initiating source can be found in the EEG (Regan 1989) as well as its
harmonics (Müller-Putz et al. 2005). If multiple stimuli are provided simultaneously
with different frequencies, the attended frequency will dominate the unattended fre-
quency in the observer’s EEG. This is of particular interest for BCI applications.
A commonly used method to detect a SSEP response is to apply a Fast Fourier
Transformation on the EEG signal and search for high amplitudes in the frequency
bins corresponding to the frequencies of the stimuli provided. If a SSEP is detected,
a command signal can be issued.

In principle, the SSEP can be elicited by stimuli in the visual, tactile and audi-
tory modality. SSVEPs are recorded over the visual cortex. In the visual domain,
frequencies between 5–20 Hz elicit the highest SSVEPs (Herrmann 2001). SSVEPs
have been used in several BCI studies, the main reasons being that the signal is ro-
bust and that no training is required. Drawbacks mentioned are that SSVEPs depend
on gaze, which means that users should be able to move their eyes or heads to control
a SSVEP-BCI, and that the task environment should allow to do so. Some studies
have shown that adjusting gaze is not required, because SSVEPs are (also) spa-
tial attention modulated (Morgan et al. 1996; Müller et al. 1998; Kelly et al. 2005;
Allison et al. 2008). However, recent data from our own lab (Thurlings et al. 2009)
suggest that covert attention to visual stimuli presented at an angle larger than three
degrees does not elicit robust SSVEPs. This leaves a SSVEP-BCI application with
covert attention rather unlikely. Because most BCI research aims to improve the
quality of life of patients, of whom many cannot control their muscles, this can be a
problem.

5.1.4.1 Passive BCIs

Traditionally, passive BCIs are aimed at detecting changes in a cognitive state or
an (affective) user state that spontaneously occurs during task execution (see Chap-
ter 12 of this Volume). This type of BCI is mainly applied to enhance or facilitate
other tasks or interactions and not so much for voluntary control. However, these
latter applications are under development, for instance game control based on alpha
activity in neuro-feedback therapies.

In navigation, this type of BCI might use the (spontaneous) brain signals that oc-
cur when the user decides on the preferred route to take (planning level) or whether
to turn left or right at a junction (steering level). One other kind of passive signal that
can be useful in navigation is the error potential. It occurs whenever a non-intended
outcome is detected as a result of a self-generated or machine-generated error. Note
that according to Zander, even though this signal needs an external stimulus (i.e.,
‘an error’), it is passive rather than reactive because this signal is generated without
effort (Zander et al. 2008), see Chapter 11 of this Volume. One can speculate about
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the existence of ERPs similar to the error potential that are linked to (the control
level of) navigation events such as line crossings or impeding collisions.

5.2 BCIs Operating on a Planning Level of Navigation

5.2.1 Active Planning BCIs

No studies were found that investigate the use of active BCIs for planning tasks. An
example of such a BCI is a system that allows one to select the kitchen as a goal
by imagining tongue movement, the study room by performing a mental calculation
task and the living room by performing mental word association.

5.2.2 Reactive Planning BCIs

A few reactive BCI navigation applications operate on a planning level. We distin-
guish P300-based and SSEP-based applications. A reactive BCI for planning is the
P300-BCI for control in a virtual apartment by Bayliss (2003). Five semitranspar-
ent spheres superimposed five controllable objects, such as a lamp and a television.
These spheres flashed sequentially while observers focussed their attention on the
sphere associated with the to-be-manipulated object. In addition to the basic con-
cept, it was investigated whether there is an effect of viewing the environment on
a computer monitor or in a virtual environment. No effect on the P300 was found,
although the subjective experiences did differ in the two different settings.

Bell et al. (2008) described an interesting system that allows a person to give a
goal-oriented command, such as ‘pour a drink’. This was accomplished through a
humanoid robot that took pictures of possible ‘goals’ in the environment. The pic-
tures were presented on a screen, and the borders flashed up sequentially, eliciting
P300s when the focused option was flashed. After the selection, the robot could
hypothetically carry out the command. The system enabled the user to select a com-
mand from four options in 5 sec with 95% accuracy and it achieved a bit rate of
24 bits/min. An additional finding was that the system’s performance was the same
for four or six pictures presented on the screen.

Valbuena et al. (2007) studied a SSVEP-BCI that operates on a planning level,
with seven possible choices. With this application, navigation in a menu system
containing certain goal-oriented tasks, such as ‘pour a drink’, was explored. To this
end, four flickering stimuli were used, which were linked to navigation commands
through the folders in a window like the arrow keys on a keyboard. By navigating
through the folders, in total seven goals could be selected. Average classification
accuracy was 96% and it took 2.38 sec per command.



78 M.E. Thurlings et al.

5.2.3 Passive Planning BCIs

Future passive planning BCIs might be able to distil the neural correlates of the
brain’s goal selection and route planning processes. Please note that of the going
definitions of BCI categories, such a BCI could be classified both as active and
as passive. We consider passive the most appropriate categorization since there is
no arbitrarily chosen mental task involved as a means to communicate planning,
instead the BCI is tapping into the naturally occurring brain signals during planning
and decision making. We are not aware of any group currently pursuing such a BCI.

5.3 BCIs Operating on a Steering Level of Navigation

5.3.1 Active Steering BCIs

Imagining motor movement is a mental task that has been intensively studied in
the context of BCI. Both the Wadsworth BCI (Wolpaw et al. 2003) and the Graz
BCI (Pfurtscheller et al. 2003) make use of mu and beta rhythms in the EEG. The
maximum amplitude of these rhythms can be modified when well-trained partici-
pants are actively imagining motor movement. Imagined right and left limb move-
ments can be distinguished, as can imagined foot and hand movements. The mo-
tor imagery principle has been used to drive a cursor on a screen (usually 1D,
but 2D is also possible) or a neuro-prosthetic device. Well-trained participants can
obtain information transfer rates of about 20–25 bits/minute. The examples men-
tioned so far link one type of imagined movement to one direction of motion while
another type of imagined movement results in another direction of motion. How-
ever, 1D movement in a virtual environment is also possible by using one type
of motor imagery for moving and another type for stopping (Leeb et al. 2006;
Pfurtscheller et al. 2006). In these studies, foot movement imagery resulted in
moving forward with constant speed in a projected virtual street. The motion was
stopped when participants imagined moving their hands. The participants had at
least four months experience in using the Graz BCI preceding the experiment. Each
of them went through a number of training sessions with the goal to set up a per-
sonal classifier able to discriminate online and in real-time between two mental
states. Training required focussing attention to the task-relevant parts of the body
and away from task-irrelevant parts of the body.

Besides moving one’s own body within a real or virtual environment, moving a
cursor is a widely investigated task within active navigation BCIs. An appealing ex-
ample is Brain Pong, where each user moves his or her own cursor ‘bat’ up and down
using motor imagery in order to block an approaching ball (Müller and Blankertz
2006). It has even been shown that all functions of a mouse can be replicated by
an active BCI, using three sets of sensorimotor rhythm features (McFarland et al.
2008).
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In most active BCI studies, participants are cued when to perform certain tasks.
These BCIs are called synchronous. Asynchronous BCIs do not require allotted
time intervals for performing mental tasks. Millán and colleagues have done many
studies on asynchronous brain-controlled robots based on mental tasks. In one study
they enabled a robot to execute six possible navigation tasks, taking three mental
states supplemented with four perceptual states of the environment as determined
by the robots sensory reading (Millán et al. 2004). In another study, they built an
asynchronous active BCI to control a wheelchair. Participants were asked to drive a
simulated wheelchair from a starting point to a goal following a pre-specified path.
They imagined left hand movement to turn left, they relaxed to go forward and
performed a word association task to turn right (Galán et al. 2008).

One final example, though originally designed for communication rather than
navigation, is the Hex-o-Spell by the Berlin BCI group (Blankertz et al. 2007). In
the Hex-o-Spell application, users select letters by means of motor imagery. Inter-
esting and relevant for navigation, is the fact that the Hex-o-Spell paradigm is not
based on Cartesian coordinates but on polar coordinates. This setup allows the selec-
tion of options in fewer steps: Six hexagons containing five letters (or symbols) are
each positioned around a circle that contains an arrow. Two motor imagery states as
classified by the system control the rotation and the length of the arrow. A hexagon
is selected when an arrow of sufficient length points towards it. After the selection
of a hexagon, the letters that it contains move individually to the different hexagons.
They take the place of the groups of letters and offer a new choice to the user.
A similar principle was applied to a navigation task in a virtual environment (Ron-
Angevin et al. 2009). At each junction in a virtual labyrinth a circle was presented
with a rotating bar in the middle. Instead of a hexagon with letters, directions were
selected.

5.3.2 Reactive Steering BCIs

Besides using P300s for communication, several groups work on applications to
control cursor movement with a P300-BCI. Ma et al. (2007) investigated the fea-
sibility of a BCI that uses four sequentially flashing probe stimuli around a cursor.
Participants had to focus on the stimulus that corresponded with the desired direc-
tion of motion of the cursor. Offline analyses resulted in an information transfer
rate of 5.4 bit/min for high intensity stimuli and 4.6 bit/min for low intensity stim-
uli. The difference in information transfer between high and low intensity stimuli
corresponded to a high, respectively low P300 amplitude (Ma et al. 2007).

Another navigation application of a P300-BCI, is the wheelchair reported by
Pires et al. (2008). For this application, a screen is fixed on a wheelchair, showing
eight arrows that present the possible directions the user can choose. A ninth cue in
the middle of the arrows, corresponded with ‘no movement’. Pires and colleagues
mention the importance of evaluating such a BCI not just by error rate, but also by
the amount of false positives and false negatives. A false positive would cause the
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wheelchair to move into the wrong direction, while a false negative only slows down
the system. Obviously the first has much more impact and should be avoided. Per-
formance was seven commands/min, although it was only tested with two persons.

For reactive BCIs, tactile probe stimuli can be an interesting alternative to vi-
sual and auditory ones. The auditory and visual channels are often already in use
for other purposes. With tactile stimuli, control of gaze is not required and tactile
stimuli can be delivered by a device that is invisible and inaudible to others. For
navigation, tactile stimuli have the advantage that they correspond naturally with
spatial information, e.g. with movement directions when applied around the waist
(Van Erp 2005). Users can focus their attention on the tactile stimulus that corre-
sponds to the direction in which they want to move, possibly eliciting a useful P300
signal. This idea was tested in the TNO tactile P300 BCI (Brouwer and Van Erp
2008). An online classification algorithm was able to classify the attended location
reliably, irrespective of the number of tactile devices worn around the waist (2, 4
or 6).

Trejo et al. (2006) demonstrate with the ‘Think Pointer BCI System’ the pos-
sibility of 2D cursor control, allowing navigation over a moving map. Participants
selected a desired movement direction by focusing on one of four flickering checker-
boards that corresponded with the commands up, down, left and right. Obtained
accuracies were between 80 and 100%.

Martinez et al. (2007) also show the feasibility of an online SSVEP navigation
BCI. In a game, four flickering checkerboards were located at each side of a car and
moved along with it. The car was on a fixed path. A direction command could be
given by focussing on one of the stimuli (left, right, up and down). An average of
96.5% success rate with a bit rate of 30 bits/min was achieved.

5.3.3 Passive Steering BCIs

As with passive planning BCIs, we are not aware of work on passive steering BCIs.
An example of employing a passive BCI for subtasks of the planning level would
be a BCI that utilizes error potentials for correcting wrong selections. The work by
Schalk et al. (2000) is a step towards such a BCI. They explored a BCI using motor
imagery to move a cursor to a word (in this case, ‘YES’ or ‘NO’, but LEFT and
RIGHT would be similar). This part of the BCI is active. As BCIs typically cannot
obtain 100% classification accuracy, participants using this system did not always
select the target they intended. Results showed that such a mistake was followed by
an error potential. It was suggested that these error potentials could be used to im-
prove the accuracy and communication speed of the system. Zander and colleagues
used error potentials to enhance performance in a game where players had to rotate a
letter presented on a monitor into a desired orientation using buttons on a keyboard
(i.e. this part is not a BCI). In some cases, the button command was followed by
an incorrect response of the computer, eliciting an error potential. When the error
potential was used to correct the movement of the letter (even though the classifier
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detecting errors did not work 100% correct) total performance was better than when
players had to correct for the errors manually (Zander et al. 2008) It was demon-
strated in a similar task where participants had to steer a tactile cursor to a tactile
target that tactile error potentials show up in the EEG as well, both for self-generated
and computer-generated errors (Lehne et al. 2009).

5.4 BCIs Operating on a Control Level of Navigation

No papers were found that describe a system that works on a control level of navi-
gation (e.g. keeping a chosen course or speed). For this level we have searched for
BCI studies that investigate the use of low level compensatory tracking behaviour,
or reflexive behaviour caused by for instance impeding collisions.

5.5 Discussion

In the introduction we explained the three levels involved in the process of naviga-
tion: planning, steering and control. We also described three types of BCIs: active,
reactive and passive. In the previous sections, we gave an overview of navigation
BCIs ordered along navigation level and BCI type. Table 5.2 summarises the re-
sults. This table reflects the existing concentration of BCIs on the steering level of
navigation. Striking is the lack of navigation BCIs on the control level, therefore we
will start the discussion with that level.

For this categorization we focussed on BCI applications developed for naviga-
tion. In principle BCI applications can be used also for other purposes than the
reason they were created. As we mentioned, a communication BCI can also be used
as a navigation BCI.

5.5.1 Control Level

As Table 5.2 illustrates, no work has been done yet on the control level of naviga-
tion (i.e. the level where perception and cognition are not involved). The automated
corrections at this level are an important part of the navigation process and ensure
that we hit the brakes in a split second and that we can keep our car neatly on course
while thinking about something completely different. One could argue that a BCI
that can tap into this automatic sensation-action loop could be of large value to user
groups that require an alternative control device and can benefit from these auto-
mated or reflexive corrections. If these corrections can not take place at the level of
the sensation-action loop, disturbances will increase until they are large enough to
be corrected at the steering level. However, this level includes a cognitive compo-
nent and the latency will be larger.
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Table 5.2 Overview of the current navigation BCIs categorised into the nine types described in
Table 5.1

Planning level Steering level Control level

Active planning BCIs Active steering BCIs Active control BCIs

Active
BCIs

None Leeb et al. (2006);
Pfurtscheller et al. (2006);
Millán et al. (2004);
Galán et al. (2008);
McFarland et al. (2008);
Ron-Angevin et al. (2009)

None

Reactive planning BCIs Reactive steering BCIs Reactive control BCIs

Reactive
BCIs

P3:
Bell et al. (2008)
SSVEP:
Valbuena et al. (2007)

Visual P3:
Ma et al. (2007);
Pires et al. (2008);
SSVEP:
Trejo et al. (2006);
Martinez et al. (2007)
TactileP3:
Brouwer and Van Erp (2008)

Passive planning BCIs Passive steering BCIs Passive control BCIs

Passive
BCIs

None Nonea None

aWith the exception of using ERN signals to correct wrongly interpreted steering inputs

An interesting research question is whether brain responses to for instance near
collisions or other events related to the control level of navigation can be detected
and interpreted by a BCI. These BCIs will be of the passive kind since they use
brain signals that are automatically generated and in normal circumstances used to
execute corrective actions.

5.5.2 Steering Level

Most navigation BCIs operate on a steering level of navigation. This is a remark-
able observation from a Human Factors perspective because this level of navigation
requires a very specific subclass of control devices that have a high bandwidth and
a very low latency like joysticks or steering wheels. Designing alternative input de-
vices for this level is challenging and many devices including for instance BCIs,
keyboards and voice operated devices seem not very well suited for the job. When
these devices are used at the steering level, the lack of bandwidth and/or the large
delays result(s) in a stepwise steering pattern also known as bang-bang control, i.e.,
moving a cursor step by step to reach an end goal. This makes the process slow
and complex, requiring the user to think about each step and unnecessarily using
cognitive resources.

If we take a closer look at the steering level, we see that decisions are mainly
event driven (e.g., turn right at a specific landmark, cross the street at the traffic
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light, change lanes when you are close to the car in front of you, etc.), or in terms
of BCIs: reactive. It would be an interesting endeavour to look for the event driven
neural correlates in the brain that actually control our steering behaviour to see if
these can be used in a reactive BCI.

5.5.3 Planning Level

On the planning level of navigation, we actively think and make a decision to set a
goal and choose a route. If we could communicate this goal and decisions directly
with a BCI this would lead to more intuitive interaction. It is not immediately clear
whether such a BCI should be called active or passive. Because it would not require
specific mental activity in order to generate the proper brain signals, we prefer to
call such a BCI passive.

Although distilling the navigation goal without additional user effort from the
brain will probably not happen in the next decades, some studies started the explo-
ration of reactive goal-oriented navigation interfaces in contrast to the steering in-
terfaces. Actually, all existing BCIs used at a planning level are reactive BCIs: With
an additional task (focussing on an external stimulus) one can select the navigation
goal. Current technology would also be suited to implement an active planning BCI,
for instance one in which motor imagery is used for goal selection: Imagine tongue
movement to go to the kitchen.

5.5.4 Sensory Modalities

Reactive BCIs rely on probe stimuli, usually presented visually and sometimes au-
ditory. However the risk of sensory overload is eminent for the visual and auditory
channel, especially when navigation is part of a multi-task environment (Van Erp
and Padmos 2003, see also Fig. 5.1). As mentioned earlier, an interesting alternative
is to use the tactile channel. This is barely explored yet, although it is an appeal-
ing option for both healthy users and patients since it does not require control of
eye movements. Interesting in the context of navigation is that tactile displays have
widely proven their usefulness, predominantly because information coded by lo-
cation on the body translates itself easily into spatial information (Van Erp 2005;
Van Erp and Van Veen 2004; Van Erp et al. 2007).

5.6 Conclusion and Recommendations

As we argued in this chapter, navigation from a Human Factors perspective is more
than steering a car or a wheelchair. Navigation comprises three levels, planning,
steering and control involving respectively cognition, perception and sensation. This
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is reflected by the different control devices, ranging from a steering wheel and joy-
stick at the control level to a keyboard or touch screen to program a navigation
system at the planning level. A BCI-based navigation device could also be imple-
mented at these levels. Interestingly enough, the vast majority of the navigation
BCIs replaces traditional control devices at the steering level of navigation, a level
that puts high demands on the bandwidth and latency of the control device. We rec-
ommend aiming for automating tasks at the steering level and exploring BCIs for
the planning level and for the control level. This would result in a navigation BCI
in which the user enters the destination and only corrects anomalies (i.e. course de-
viations) or emergency situations (impeding collisions) but leaves the steering level
(turn at junctions) to the automat. The usefulness of the first part (a goal-oriented
approach) is also being recognised by researchers focussing on patient applications
(Wolpaw 2007). The second part requires a whole new approach and must be aimed
at identifying brain signals that are based on: ERPs related to course deviations or
collisions etc, or any other pattern related to the control level of navigation.

If navigation BCIs are used as additional input devices, another issue that should
be resolved is the relation between cognitive effort and type of BCI (especially active
versus reactive). It is hypothesised that reactive BCIs use less cognitive resources
than active BCIs but future studies should compare these two types in combination
with performing other tasks.

We believe that expanding BCI based navigation beyond the steering level will
be of benefit to both patients and healthy user groups.
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Chapter 6
Applications for Brain-Computer Interfaces

Melody Moore Jackson and Rudolph Mappus

Abstract Brain-computer Interfaces (BCIs) have been studied for nearly thirty
years, with the primary motivation of providing assistive technologies for people
with very severe motor disabilities. The slow speeds, high error rate, susceptibility
to artifact, and complexity of BCI systems have been challenges for implement-
ing workable real-world systems. However, recent advances in computing and bio-
sensing technologies have improved the outlook for BCI applications, making them
promising not only as assistive technologies but also for mainstream applications.
This chapter presents a survey of applications for BCI systems, both historical and
recent, in order to characterize the broad range of possibilities for neural control.

6.1 Introduction

The original and still prevalent motivation for Brain-computer Interface (BCI) re-
search has been to provide assistive technology for people with severe physical dis-
abilities, particularly locked-in syndrome (complete paralysis and inability to speak)
caused by strokes or chronic diseases such as Amyotrophic Lateral Sclerosis (ALS).
The explosion of computing power in recent years and the evolution of technologies
providing better classification and more effective interactions has led to greatly ex-
panded possibilities for neural control. While not comprehensive because of space
constraints, this chapter provides an overview and examples of applications that
have been developed and studied for brain-computer interface control, categorizing
them into four main areas. We begin with an overview of BCI applications in assis-
tive technology, including communication, environmental control, mobility (includ-
ing robotics). We then cover BCIs for recreation, including gaming, virtual reality,
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and creative expression. The next category revolves around cognitive diagnostics
and augmentation, including computational user experience and attention monitor-
ing, among others. The last category surveys the exciting possibilities for BCI in
rehabilitation and prosthetic control.

6.2 BCIs for Assistive Technology

Restoring the ability to communicate, controlling the environment, and providing
mobility are critical concerns for people with severe physical disabilities. These
three areas have been the focus of the majority of BCI research.

6.2.1 Communication

One of the most critical needs for people with severe physical disabilities is restoring
the ability to communicate. Perelmouter and Birbaumer (2000) showed that even
people with total locked-in syndrome (TLS) report having a good quality of life if
they can communicate with family, friends, and caregivers.

6.2.1.1 Yes/No Communication

The most rudimentary communication is the ability to reliably say “yes” or “no”.
Many early BCI communication systems were based on users learning to regulate
aspects of brain rhythms with mental tasks. One of the earliest BCIs for communi-
cation was the Wadsworth Center’s “Right Justified Box” paradigm in which users
learned to modulate their mu rhythm using motor imagery to select one of two tar-
gets (Vaughan et al. 2001). The EEG-based Thought Translation Device (Kubler
et al. 2001) was based on regulating Slow Cortical Potentials to move a cursor up
or down, which could be interpreted as “yes” or “no”. More recently, Naito et al.
(2007) describes a study in which more than 40 locked-in ALS patients tested a
brain-computer interface based on functional near infra-red imaging (fNIR) in order
to communicate. Their “Kokoro Gatari” (“teller of hearts” in Japanese, see Fig. 6.1)
system measures changes in blood oxygenation over Broca’s area, the language cen-
ter of the brain, in response to language imagery such as sub-vocal counting.

6.2.1.2 Spellers

Spelling is an essential part of communicating, and there have been a myriad of
speller implementations with brain-computer interfaces. A simple strategy is to im-
plement a binary speller with the yes/no systems described above, dividing the al-
phabet selection space in half progressively until the desired letter is attained, re-
sulting in an average speed of one character every two minutes (Perelmouter and
Birbaumer 2000), see Fig. 6.2.
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Fig. 6.1 The Kokoro Gatari
fNIR-based BCI display
(Naito et al. 2007) showing
biofeedback of the
hemodyamic response to
mental tasks, resulting in a
“yes”

Fig. 6.2 A binary speller
using the “Right Justified
Box” paradigm as described
in Vaughan et al. (2001). The
cursor on the left travels at a
constant rate across the
screen; the user modulates
mu rhythm with motor
imagery to move the cursor
up or down to select letters or
letter ranges

The Hex-o-Spell application (Blankertz et al. 2006) employs a dial to select
one of six target letters, attaining typing speeds of more than seven characters
per minute. Another early approach that has now been studied extensively is the
“Farwell-Donchin Matrix” (Farwell and Donchin 1988), which measures the P300
evoked response when letters of the alphabet arranged in a matrix are flashed in ran-
dom order, originally achieving 2.3 characters per minute with up to 95% accuracy
(Fig. 6.3). Current research in this area is exploring methods to reduce the number of
flashes needed to make a selection, with the goal of achieving single-stimulus (one
flash) selection (Li et al. 2009). Integrating predictive spellers such as Dasher with
BCIs (Blankertz et al. 2007) has been proposed to significantly improve spelling
speed.

6.2.1.3 Web Browsers

Access to the Internet could be life-changing for people with severe physical dis-
abilities. The web provides capabilities for education, financial management, com-
munication, and even employment. Several research groups have explored BCI-
controlled web browsers. The BrainBrowser (Fig. 6.4) described in Moore et al.
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Fig. 6.3 An example of a
Farwell-Donchin Matrix for
spelling with the P300 evoked
response as described in
Farwell and Donchin (1988).
The highlighted column is
currently being flashed

Fig. 6.4 The BrainBrowser
neurally controlled web
browser

(2004) was based on modulating mu rhythms over motor cortex to select browsing
commands such as “next” and “previous”. Users selected links by increasing their
mu amplitude with motor imagery to move to the next link, and using a dwell select
(pause for a dwell interval of two seconds) to traverse the link. A more recent ver-
sion of the BrainBrowser currently in experiments utilizes P300-based BCIs, flash-
ing the controls and links in random order for direct selection. Karim et al. (2006)
detail a study with the Descartes web browser, first developed in 1999, which is
based on users regulating Slow Cortical Potentials (SCPs). The browser incorpo-
rated biofeedback of a yellow ball that moved to indicate the level of SCP amplitude.
Browser control was implemented as a binary decision tree with choices between
commands such as writing an email or surfing the net. Links were selected in a
similar manner, arranging them in a list that could be traversed with SCP modula-
tion.



6 Applications for Brain-Computer Interfaces 93

6.2.2 Environmental Control

Another important challenge for people with severe physical disabilities is control-
ling devices in the environment, for example, a television, a thermostat, or video
recorder. Cheng et al. (2002) describes an SSVEP-based BCI that allows users to
employ the discrete selection capabilities of an SSVEP control interface to dial num-
bers to place a phone call. Adams et al. (2003) describes the Aware ‘Chair project,
which focused on integrating environmental control such as radio, lights, and tele-
vision into a communication device mounted on a wheelchair.

6.2.3 Mobility

Naturally, one of the most profound assistive technologies BCI systems could pro-
vide to people with severe motor disability is restoring movement. The BCI research
community has devoted significant effort to developing methods for controlling mo-
bility applications, such as driving wheel-chairs and manipulating remote robots.

6.2.3.1 Wheelchair Control

Early work in mobility employed small mobile robots to simulate wheelchair nav-
igation tasks. Millán et al. (2004) describe a mental-task based BCI that operated
a mobile robot to navigate in a home environment. Blatt et al. (2008) details the
LURCH project, studying a “smart wheelchair” with gross-grain neural navigation
capabilities (selecting “go to the kitchen” rather than specifying individual turns or
movements).

The ongoing Aware ‘Chair project (see Fig. 6.5, described in Adams et al. 2003)
incorporates similar gross-grain navigational capabilities plus temporal and spatial
contextual prediction based on user habits and preferences. For example, the Aware
‘Chair can present the user with an option to navigate to the living room just before
the time of the user’s favorite television show.

More recently, Toyota Central R&D labs has created a neurally-controlled
wheelchair that operates in near real-time to process discrete navigation commands,
with accuracy up to 95% (Toyota 2009). Iturrate et al. (2009) describe a P300-based
BCI that sends discrete movement commands to a wheelchair that has autonomous
navigation and obstacle avoidance systems.

6.2.3.2 Robotics

Controlling robots with thought has long been a popular science fiction concept.
Recent work with BCIs, however, has shown that robotic control is indeed possible
with brain signals. Applications for neurally-controlled robots currently center on
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Fig. 6.5 The Aware ‘Chair as
described in Adams et al.
(2003), integrating
communication, navigation,
and environmental control.
Photo credit: Stanley Leary

Fig. 6.6 A coffee-making
robot controlled by P300
signals, described in Vora et
al. (2005). Photo: Stanley
Leary

assistive technologies—“helper” robots—but BCI control has been proposed for
military and industrial applications as well. One of the earliest BCI-controlled robots
is described in Vora et al. (2005). The experiment explored the effects of real-world
feedback (the movement of the robot) in conjunction with a P300-based BCI, which
depends on user attention. The robot was configured to perform the steps to make
coffee, such as getting powdered coffee, sugar, and cream, and stirring the mixture
with a spoon, see Fig. 6.6. The results showed that users can effectively attend to
real-world feedback while operating an attention-based BCI.

Bell et al. (2008) describe a humanoid robot controlled by a similar P300-based
BCI. Users select discrete commands via the BCI to cause the robot to perform sim-
ple tasks, such as picking up an object and moving it to another location. Selection
accuracy for a user-specific classifier was reported to be 95%.
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6.3 BCIs for Recreation

As BCIs became more effective and new systems provided higher bandwidth, BCI
control for mainstream applications such as games, virtual reality, and creative ex-
pression became possible. Originally recreational applications for BCIs were tar-
geted at people with motor disabilities, and there is still considerable interest in this
area in the BCI community. However, recently a number of simple mainstream game
controllers primarily based on BCIs have become available on the market. While it
is generally accepted that BCIs in their current state cannot replace traditional con-
trollers such as joysticks or control buttons, BCIs have been incorporated into games
as auxiliary hands-free control channels as well.

6.3.1 Games

A recent comprehensive survey of the capabilities and challenges of BCIs for game
control may be found in Nijholt et al. (2009). As stated in the survey, early BCI-
controlled games focused on diagnostic brain signal detection, such as measuring
a user’s attention or relaxation to affect game components. More recently, games
employing BCI in a more active control modality have gained popularity. One of
the early systems to implement brain signal control for gaming was the Berlin
BCI (Krepki et al. 2003) which later included a simple “Brain Pong” game and
a “Pacman”-style game, controlled by modulating Slow Cortical Potentials (Krepki
et al. 2007). Lalor et al. (2005) describe the 3D immersive game “Mindbalance”, a
simulation of a character walking a tightrope, controlled by SSVEP with flashing
checkerboard stimuli. Mason et al. (2004) incorporate the LF/ASD asynchronous
switch BCI into a maze-following game in which the player activates the BCI at
decision points in the game to determine the navigation path.

The “BrainBasher” game (Oude Bos and Reuderink 2008), also described in Sec-
tion 10.4.1 in this Volume, compared the motor-imagery BCI control with a physi-
cal keyboard version of the game, employing a user-satisfaction survey to discover
that users found the BCI-based game to be more engaging and interesting than the
traditional-input version. Another motor-imagery game, called “RLR” (Zander et
al. 2008) requires the user to rotate a shape until it matches a template.

BCIs that detect attention and relaxation (typically alpha rhythms over frontal
cortex) are popular for game control. The “LazyBrains” game (Bohenick and Bor-
den 2008) combines a simple BCI with a game engine to allow users to navigate
a virtual world. “BrainBall” (Moberg Research 2009) uses a similar paradigm in
a competitive scenario where multiple players attempt to raise their alpha rhythm
amplitude by relaxing.

Often games are incorporated into BCI systems as training programs. The “Dol-
phin Trainer” from Archinoetics, Inc. (Rapoport et al. 2008) teaches users to mod-
ulate their hemodynamic response to raise or lower a dolphin avatar controlled by
an fNIR-based BCI. The dolphin targets goldfish, which are introduced at varying
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Fig. 6.7 The “Epoc” headset
from Emotiv Inc. (2009)
implementing “virtual
telekenesis”

Fig. 6.8 The ReaCTor Cave
virtual environment
(Pfurtscheller et al. 2006)

height levels. The user moves the vertical position of the dolphin to the height of the
next target goldfish swimming across the screen, with the objective of steering the
dolphin to intersect the path of the oncoming goldfish.

Commercial organizations such as NeuroSky (NeuroSky Inc. 2009) offer prod-
ucts such as the “Mindset”, a simple EEG-based BCI device. The Mindset controls
a variety of applications, including a brainwave visualizer and a game called “Neu-
roBoy”, a virtual world in which the player can focus or relax to achieve goals in
the game. Emotiv (Emotiv Inc. 2009) is another commercial company that markets
a simple device, the “Epoc”, based on EEG, EOG, and facial EMG to control ap-
plications (see Fig. 6.7). Their “Stonehenge” game challenges users to reassemble
fallen pieces of Stonehenge using motor movements.

6.3.2 Virtual Reality

Virtual Environments are often placed in the category of games; however there are
several in the BCI research world that have more practical purposes. The early work
in virtual environments is described in Bayliss and Ballard (2000), which details a
study of a P300 BCI controlling a virtual apartment and a virtual driving simulator.

Subsequent work as detailed in Pfurtscheller et al. (2006) incorporates the ReaC-
Tor “cave” environment, an immersive virtual world which the user navigates using
a BCI (see Fig. 6.8). The subject can “walk” through the virtual world by imagining
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foot movement, and can “touch” things in the virtual world by imagining reaching
and hand movement.

6.3.3 Creative Expression

Another goal in assistive technology beyond restoring basic communication and
environmental control capabilities is to improve quality of life by providing outlets
for creative expression. BCIs have been studied in the contexts of both music and
visual art.

6.3.3.1 Music

The Plymouth Brain-Computer Music Interface (BCMI) project (Miranda et al.
2005) provides a control interface to generate music from EEG signals. The BCMI
piano study incorporates a BCI with a music engine, which is influenced by the
output of a classifier that identifies the most prominent frequency in the brain sig-
nal. Different dominant frequencies control the musical output in different ways.
The study reports efforts towards training users to produce specific EEG patterns to
further control music production.

6.3.3.2 Visual Art

Rapoport et al. (2008) describes an fNIR-based BCI with training program that
assists users in learning how to control their hemodynamic response for creative
expression. The BrainPainting application (Archinoetics 2009) was originally de-
veloped for an artist who was locked in as a result of ALS. She was able to create
visual art by imagining language tasks (silently singing to increase the response, or
reciting nonsense syllables to decrease response) to influence the colors and shading
of abstract art with a painting program. (See the BrainPainting “Navajo Nightfall”,
by Peggy Chun (Archinoetics 2009) in Chapter 8, Fig. 8.7 of this Volume).

6.4 BCIs for Cognitive Diagnostics and Augmented Cognition

In addition to assistive technology and rehabilitation therapies, BCIs have been de-
veloped to aid in diagnosing, influencing, and augmenting cognitive function. Often
neurofeedback, representations of a user’s brain signals or brain state, have been in-
corporated into applications to give insight into cognitive processes. From detecting
comas to monitoring attention for safety-critical tasks, diagnostic BCIs have played
a role in recent research.
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Mainstream applications for BCIs have led to new frontiers in the fields of aug-
mented cognition (AugCog) and the subfield of computational user experience.
AugCog research studies real-time assessment of a user’s cognitive state and work-
load in order to adjust work tasks to accommodate the user’s mental capacity
(Schmorrow et al. 2009). AugCog also includes “intelligence amplification”, pro-
viding information to augment human reasoning or problem solving abilities.

6.4.1 Coma Detection

The Thought Translation Device (Birbaumer et al. 2003) described above has also
been proposed as a diagnostic tool for people who appear to be in a vegetative state
or coma. The TTD can assess cognitive function by measuring the event related
brain potentials (ERPs) of various stimuli. Cognitive function is present if there is a
response to the ERP stimuli (ERP differentiation can be achieved). The chances of
regaining consciousness and recovering from a coma may be assessed by a patient’s
ERP response which could provide critical information to families and caregivers of
people in a locked-in state.

6.4.2 Meditation Training

Eskandari and Erfanian (2008) describes a BCI that teaches users to control changes
in their EEG rhythms by meditating during mental task exercises. Analyzing the
EEG time-frequency signals for subjects in the meditation group showed an event-
related desynchronization (ERD) of beta rhythm during the resting state. The control
group did not display this ERD. Learning to meditate improved BCI classification
accuracy from 70% in the control group to accuracies as high as 98% in the medita-
tion group.

6.4.3 Computational User Experience

Computational user experience involves classifying mental workload as a usability
testing method for human-computer interaction designs. Studies have shown that
mental workload during HCI usability tests can be classified with a BCI resulting in
up to 99% accuracy (Grimes et al. 2007). Cutrell and Tan (2008) describes a system
for assessing “passive input”, collecting and classifying the cognitive state of the
user. This cognitive state can provide a wealth of information about the user, from
mental workload to interest in a task or even emotional state (such as frustration
or satisfaction). Cutrell and Tan propose that this cognitive state information could
be used to perform automated adaptation of system interfaces to accommodate the
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Fig. 6.9 The MEG-based
BCI described in Birbaumer
and Cohen (2007) controlling
a hand prosthetic

user’s current mental abilities. Tan (2006) describes work with a simple EEG-based
BCI that classifies mental tasks, including differentiating components of playing
the video game Halo (rest, navigation, and engaging another player). The results of
this work are intended to advance the state of the art in usability testing for human
computer interaction.

6.4.4 Visual Image Classification

Another diagnostic BCI application developed in recent years is employing EEG-
based BCIs for automatically classifying visual images by measuring human brain
signal responses to visual stimuli. Rather than asking subjects to explicitly sort
through images to locate a specific target image, a BCI measures brain response
while subjects passively view images. Studies have shown that target images can
be identified with BCIs with greater than 90% accuracy (Gerson et al. 2006;
Nijholt et al. 2008). Another study described in Kapoor et al. (2008) showed that
images of objects in specific categories—animals, faces, or inanimate objects—
can be automatically categorized by an EEG-based BCI as a human subject pas-
sively views the visual stimuli. This system achieved classification accuracy of
over 90%.

6.4.5 Attention Monitoring

Measuring alertness in safety-critical jobs requiring intense, prolonged concentra-
tion such as air traffic control and long-haul truck driving can prevent accidents
and save lives. Nijholt et al. (2008) report that BCI monitoring of alpha rhythms
are more effective as a measure of alertness than behavioral measures, and pro-
poses BCI monitoring to assess drowsiness. Systems that detect user drowsiness
could automatically revise workload or inform the user that he or she should
rest.
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6.5 Rehabilitation and Prosthetics

Perhaps one of the most significant and promising applications for BCIs currently
under study involves creating therapies to regain motor control lost from diseases
such as stroke. Neural control of rehabilitation robots, for example, could provide
treatments for people whose paralysis is too extensive for traditional therapies. Clan-
ton et al. (2005) describe efforts to model hand and arm movement in preparation
for integrating with neural control. Matsuoka et al. (2006) details the design of a
brain-controlled robotic hand. Several research groups are exploring the possibility
of directing neural plasticity with BCIs to “re-wire” the brain. Daly and Wolpaw
(2008) describes two strategies for restoring movement in paralyzed patients with
BCIs: to train the patient to produce more “normal” motor brain signals, and to
train the patient to control a device that implements movement. The earliest work
in the latter area is described in Pfurtscheller et al. (2005). A subject paralyzed
from spinal cord injury learned to regulate sensorimotor rhythms to control func-
tional electrical stimulation (FES) of arm and hand muscles to perform simple tasks
such as grasping a glass. Birbaumer and Cohen (2007) describes a system based
on magnetoencephalography (MEG) that allows a user to imagine movement of a
hand, increasing or decreasing sensorimotor rhythm amplitudes (Fig. 6.9). The BCI
responds by opening or closing the user’s hand, which is resting in a simple pros-
thetic. Four of five paralyzed stroke patients were able to open and close their hand
voluntarily with the MEG BCI.

Preliminary work in progress described in Moore Jackson (2008) centers on a
BCI interface to a rehabilitation robot, the KINARM (BKIN Technologies). Able-
bodied subjects wearing an EEG-based BCI train a classifier to recognize arm-
reaching tasks with a variety of targets in a 2-dimensional plane (Fig. 6.10). When
the classifier is trained, users move the robot (and consequently, the user’s arm)
by imagining reaching for targets; the BCI adapts to the subjects’ brain signals to
implement the movement of the robot.

Research in the area of BCI and rehabilitation is promising both for neural pros-
thetics, and for understanding neuro-plastic effects of BCIs.

Fig. 6.10 The KINARM™

robot for upper limb
movement controlled by a
BCI as described in Moore
Jackson (2008)
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6.6 Conclusions

Research and development in Brain Computer Interfaces has exploded in the last ten
years, both in the technologies available and the number of organizations involved
in the field. BCIs have now evolved beyond laboratory experimental systems and
some are now offered as commercial products. No longer the realm of science fic-
tion, BCIs are becoming a viable and effective alternative for assistive technology
and a plethora of mainstream applications. New paradigms of interaction open even
more possibilities for BCI and create new fields of study, such as neural imaging for
computational user experience.

However, many obstacles remain for BCI researchers. BCIs are still notoriously
slow and error-prone compared to traditional input technologies. More research is
essential in order to develop techniques to reduce both neural and environmental
artifacts, to reduce error rates, and to increase accuracy. For BCI systems to be
feasible for mainstream real-world use in the home and office, they must be sim-
ple, small, wearable, and unobtrusive. New sensor technologies such as dry EEG
electrodes and fNIR emitter/detectors must be perfected. Adaptive systems must be
sufficient to automatically calibrate and “tune” BCIs to an individual’s brain signal
patterns without expert assistance. These are daunting challenges, but as the BCI
field matures, effectiveness and accuracy are increasing. The BCI field is rapidly
approaching critical mass to develop the human-computer interaction methods of
the future.
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Chapter 7
Direct Neural Control of Anatomically Correct
Robotic Hands

Alik S. Widge, Chet T. Moritz,
and Yoky Matsuoka

Abstract This chapter presents a potential method of achieving dexterous control
of a prosthetic hand using a brain-computer interface (BCI). Major control suc-
cesses with invasive BCIs have been achieved by recording the activity of small
populations of neurons in motor areas of the cortex. Even the activity of single neu-
rons can be used to directly control computer cursors or muscle stimulators. The
combination of this direct neural control with anthropomorphic hand prostheses has
great promise for the restoration of dexterity. Based on users’ requirements for a
functional hand prosthesis, a fully anthropomorphic robot hand is required. Recent
work in our laboratories has developed two new technologies, the Neurochip and the
Anatomically Correct Testbed (ACT) Hand. These technologies are described and
some examples of their performance are given. We conclude by describing the ad-
vantages of merging these approaches, with the goal of achieving dexterous control
of a prosthetic hand.

7.1 Introduction

As described elsewhere in this book, brain-computer interfaces (BCIs) have a wide
range of future possibilities for improving quality of life after nervous system in-
sults. Perhaps the earliest example of invasive BCIs occurred over 40 years ago,
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when monkeys were trained to drive an electrical meter with the activity of sin-
gle neurons recorded from motor cortex (Fetz 1969). With the invention of desktop
computers and improved electrode technology, the field re-emerged in its present
form. Impressive demonstrations of rodents and primates using neural activity to
control external devices rapidly followed (Chapin et al. 1999; Serruya et al. 2002;
Taylor et al. 2002). Monkeys could be trained to control the movement of a cursor
on a computer screen using the activity of groups of single neurons (Santhanam
et al. 2006; Serruya et al. 2002; Taylor et al. 2002). This rapidly progressed to
demonstrations of reaching and grasping movements of neurally-controlled robot
arms (Carmena et al. 2003; Velliste et al. 2008) and of primates controlling muscu-
lar functional electrical stimulation (FES) using cortical signals (Moritz et al. 2008;
Pohlmeyer et al. 2009).

Neural control of computer cursors and interfaces has now advanced into human
clinical trials (Hochberg et al. 2006). There remain significant challenges, however,
in creating a clinically useful invasive BCI. Based on animal experiments, we can
reasonably expect a subject to smoothly control a cursor or position a robotic manip-
ulator in 3D space and achieve basic grasp (Velliste et al. 2008). While this demon-
strates control of three to four degrees of freedom (DOFs), achieving dexterous,
22-DOF hand movement may be a challenge. If we hope to reach full human-level
dexterity with BCI, developing actuators that can explore this full control space, as
well as BCI controllers that can drive those actuators, remains a valuable endeavor.

In this chapter we suggest a direct neural control strategy for a biologically-
inspired robotic manipulator that may achieve human-level dexterity. Our thesis is
that there are advantages to simultaneously leveraging the learning capacity of the
brain and the mechanical properties of anthropomorphic actuators (human-like ar-
tificial hands). By designing a maximally anthropomorphic system, we believe that
more effective BCIs can be realized, bringing greater clinical benefit to patients with
nervous/musculoskeletal injuries. Here we summarize key aspects of the field and
argue in favor of our proposed BCI/prosthesis platform, providing specific examples
of technologies from our laboratories that can serve as a testbed for this hypothesis.

7.2 Cortical Interface Technology and Control Strategies

To control any prosthetic with BCI, neural signals must reliably be extracted from
the cortex and converted into control signals for the actuator. As the number of us-
able signals is limited, a high-DOF BCI must make efficient use of available data.
Two main strategies exist for BCI control of motor prostheses: population decoding
(extracting each controlled variable from the activity of the entire neural popula-
tion) and direct control (mapping each recorded neuron directly to one controlled
variable). In this section, we present the advantages and limitations of each strategy,
concluding with an argument that direct control may be preferable when controlling
high-DOF actuators such as hands.
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7.2.1 Interface Technologies

We concern ourselves here with BCI techniques involving invasive recording of in-
dividual neurons (single units). There are many BCI designs (see previous Chapters
of this Volume) that utilize either the electroencephalogram (EEG) or electrocor-
ticogram (ECoG), particularly for cursor control. While these less invasive tech-
nologies show good results, to date single unit recording provides a greater number
of independent control signals. Invasive BCIs are thus the most relevant technology
to discuss when considering control of high-DOF actuators.

Stable, long-term recording of single neuron activity has become easier with
the advent of high-density (up to 100 recording sites) microelectrode arrays cre-
ated with silicon microfabrication technology (Maynard et al. 1997; Vetter et al.
2004). However, the number of electrodes recording stable neural signals can
vary greatly, anywhere from about 10 to over 100 (Ganguly and Carmena 2009;
Truccolo et al. 2008), and usually decreases over time (Kim et al. 2008). The un-
derlying mechanism remains under investigation (Biran et al. 2005; McConnell et
al. 2009), and there are many efforts underway to mitigate this effect. Particularly
promising strategies include drug-releasing electrodes (Papageorgiou et al. 2006),
biomolecular coatings that “fool” the host rejection/foreign-body response (Azemi
et al. 2008), and conductive polymer electrodes that modulate the local immune re-
sponse while also providing improved electrical properties (Cui and Zhou, 2007;
Widge et al., 2007a, 2007b).

7.2.2 Control Strategies: Population Decoding

In multiple areas of the cortex, subpopulations of cells are preferentially active when
movements are made in a particular (“preferred”) direction. This was originally de-
scribed by Georgopoulos and colleagues, who further found that recording of mul-
tiple cells with varying preferred directions could then be used to construct a “pop-
ulation vector” reflecting a monkey’s arm movement (Georgopoulos et al. 1986).
Population decoding BCIs extend this concept to predict a subject’s movement in-
tention from populations of neural activity. Typically the decoder is “trained” or
calibrated during actual or imagined movements before BCI control by monitoring
neural activity during pre-specified movements and deducing appropriate weights.
Some decoders are subsequently updated on-line during BCI control to compen-
sate for changes in neural activity as the brain learns the task (Carmena et al. 2003;
Serruya et al. 2002).

Population decoding provides an “instant” and effective method of convert-
ing stochastic neural activity into useful BCI control. The activity and direction
tuning of any individual neuron can be quite noisy, and thus a combination of
many cells is used to “average out” the noise (Nicolelis and Lebedev 2009).
Present decoders can predict motor intention with an accuracy of about 60–86%
(as shown in Fig. 7.1) (Carmena et al. 2003; Kim et al. 2008). Such decoders
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Fig. 7.1 Contributions of greater numbers of isolated neurons (units) or multi-unit neural activ-
ity to predictions of hand position, velocity, and gripping force. Random neuron dropping curves
represent the average prediction accuracy (R2 a function of number of neurons used for decoding.
Typically, performance does not improve nearly as fast once at least 20 neurons are in the pop-
ulation. Well-isolated single-units predict movement parameters approximately 20% better than
multi-unit admixtures. Figure modified and reproduced with permission of author and under Cre-
ative Commons attribution license from Carmena et al. (2003)

underlie many recent achievements in invasive BCIs, including primates mak-
ing skilled reaches/grasps with neurally-controlled robot arms (Kim et al. 2006;
Velliste et al. 2008) and tetraplegic human patients successfully controlling cursors
and assistive devices (Hochberg et al. 2006; Truccolo et al. 2008).

Despite these impressive examples, population decoding may have limitations
when scaling to higher dimensions (cf. Fetz 2007). First, even large populations of
neurons do not perfectly predict movement intentions. Prediction accuracy seems to
asymptote around 60–80%, suggesting that adding additional neurons will not im-
prove control (Fig. 7.1, adapted from Carmena et al. 2003). Second, large popula-
tions of neurons likely contribute redundant information to the decoder. The neuron
dropping curves of Fig. 7.1 also illustrate that performance does not begin to decline
steeply until only 10–20 randomly selected neurons remain. Third, information may
be lost when averaging together large numbers of neurons to drive a small number
of variables. Finally, population decoders use only neurons that exhibit directional
tuning, which represents only a subset of the population. Data from un-tuned neu-
rons is effectively discarded. Thus, population decoding may not make the most
efficient use of available data, which could pose a challenge when greater numbers
of control channels are needed to drive complex actuators. While multiple param-
eters (e.g., endpoint position, velocity and grasp aperture) can be simultaneously
decoded from the same population of neurons, significant interference will likely
occur when controlling the many degrees of freedom required for a hand prosthesis.

7.2.3 Control Strategies: Direct Control

An alternative to population decoding is direct control, a strategy that may leverage
the substantial learning capacity of the brain for control of high-DOF BCIs. In a
direct control system, activity from a single neuron or small group of neurons is di-
rectly linked to the control of a single degree of freedom, such as a muscle group or
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joint of a robotic actuator. Renewed interest in direct control has recently arisen, as
studies of population decoding demonstrated the role of brain remapping/learning
in the successful operation of such prostheses. As performance improved in mon-
keys performing a BCI cursor control task, cortical neurons were found to alter
their directional tuning to better fit the fixed decoder (Taylor et al. 2002). Further-
more, when a similar decoder’s parameters were randomly perturbed, cells within
the population could be observed altering their tuning direction and degree of tuning
to restore good performance (Jarosiewicz et al. 2008).

Thus, direct control may offer a solution to the redundancy challenges described
above for population decoding, opening the way for control of more degrees of
freedom. The fundamental advantage is that while population decoding depends on
the use of directionally tuned neurons, direct control BCIs can begin with any ac-
tive neuron and train that cell to the task at hand. We have recently demonstrated
this paradigm using a cortically-controlled muscle stimulation task (Fig. 7.2(A)).
Macaques were first trained to control a cursor on a computer screen using activity
from cells recorded from motor cortex, but whose activity was not necessarily cor-
related with limb movements. Motor and sensory signals between the subjects’ arms
and the brain were then blocked by infusion of local anesthetic through a perineu-
ral catheter. With the arm effectively paralyzed, activity from the previously-trained
cortical cells was used to drive functional electrical stimulation (FES) delivered to
the wrist muscles. Despite no prior correlation between many of these cells and the
desired wrist movements, the monkeys were able to modulate cell activity to control
FES and produce the necessary wrist torques to match targets presented on a screen
(Moritz et al. 2008). Monkeys could also simultaneously control multiple cells con-

Fig. 7.2 Direct control of paralyzed muscles by cortical neurons. (A) Schematic of experiment
where monkeys learned to volitionally modulate arbitrary neurons in motor cortex to control stim-
ulation delivered to paralyzed wrist muscles after nerve block. (B) Monkeys learned to control both
directionally tuned and un-tuned neurons equally well to restore functional torques to a paralyzed
wrist. Adapted from Moritz et al. (2008) with permission of Nature Publishing Group



110 A.S. Widge et al.

nected to antagonist muscles about the wrist. Importantly, nearly all neurons tested
could be trained to control FES equally well regardless of their original association
to movement (Fig. 7.2(B)).

Based on this finding, we believe that direct control strategies may be able to
maximize information recorded from neurons available on chronic arrays. Only
about one-third of primary motor cortex neurons show strong direction tuning
(Evarts 1968), and thus a population decoder may effectively discard up to two-
thirds of its recordable cells. Direct control is able to use nearly all recorded neurons,
even those that exhibit no directional tuning.

A key feature of direct control is improving performance through the use of
feedback. Monkeys viewing the activity of single neurons readily learn to differ-
entially modulate their activity (Fetz and Baker 1973). Similarly, a tetraplegic hu-
man can control the activity of a single neuron when provided with visual feed-
back (Hochberg et al. 2006). Further, when human subjects were asked to control
an on-screen cursor using forearm EMG activity, they rapidly achieved accurate
performance regardless of whether the linkage between specific muscles and cursor
directions was intuitive or perversely non-intuitive (Radhakrishnan et al. 2008). Fig-
ure 7.3 shows the fairly smooth trajectories reached with this non-intuitive mapping
after only an hour of practice.

The nature of neural feedback under direct control may also make training eas-
ier for a BCI user. During population decoding, it may be difficult for individual
neurons to reshape their activity based on task performance, because each cell’s
contribution to the movement is masked and diffused through the decoder’s averag-
ing (Fetz 2007). Furthermore, because advanced decoders update their weightings
often, the brain is not able to discover a consistent mapping between neuronal firing
and actuator behavior. Conversely, in a direct control strategy, individual neurons

Fig. 7.3 Control of a computer cursor using myoelectric (EMG) signals under direct control with
a non-intuitive mapping. (A), trajectories from first 12 and last 12 trials from a block of 192 trials
with a non-natural mapping between arm surface EMGs and cursor direction. Note the substantial
improvement in shape of trajectories (and thus time to target) in a short time even in this difficult
task. (B), comparison of performance in intuitive and non-intuitive mappings. Although perfor-
mance was initially much worse using non-intuitive control, subjects rapidly learned the novel
transform to achieve similar control within a single session. Figures reprinted with permission
from Radhakrishnan et al. (2008)
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are directly linked to specific actuators or DOFs, which may allow the brain to en-
gage in very naturalistic feedback learning. Since the mapping is fixed, cells are also
free to maximize their modulation without having to compensate for changes in the
decoder. This stable substrate should not be undervalued—a recent study demon-
strated that when a population decoder’s parameters were held constant and linked
only to a set of stably recordable neurons across several days, performance on a
cursor-control task reached nearly 100% (Ganguly and Carmena 2009). Most no-
tably, the same level of performance was achieved even when the decoder weights
were randomized, demonstrating that a consistent transform is far more important
than the neuron’s original direction or depth of tuning.

Despite these advantages, direct control also has several limitations. Perhaps the
most notable is a high vulnerability to instability in individual neuron recordings,
since each control variable is linked to one or a small group of neurons. Recent
advances in electrode technology permit the same neurons to be recorded for sev-
eral weeks (Jackson et al. 2007), but unstable recordings remain a challenge for
all invasive BCI. We propose to buffer against the loss of any single neuron by
taking advantage of the redundancy of the neuromuscular system. For example,
if four single neurons each directly control one of four synergist flexors (in ei-
ther a biological or robotic hand), loss of one or two neurons would be tolera-
ble. The remaining neurons could compensate while new cells were isolated and
trained. Monkeys and humans can learn to volitionally control isolated neurons
within several minutes (Hochberg et al. 2006; Moritz et al. 2008), suggesting that
new neurons could be easily added to replace those lost due to recording instabil-
ity.

Another criticism of the direct control approach is the stochastic variability of
single neuron action potentials, or neural noise. Single neurons’ activity may re-
quire some filtering or averaging across time to reduce this variability. The mechan-
ical properties of the output actuator (e.g., stimulated muscles or robotic motors)
may act as a filter to reduce neural noise. For example, the slow time-constants of
muscle effectively smooth the resulting force when single neurons are used to con-
trol stimulation (Moritz et al. 2008). The mechanical properties of biologically in-
spired robots may similarly filter stochastic neural activity to achieve smooth move-
ments.

While population decoding controlling a simple prosthetic gripper will likely be
the first BCI-based prosthetic hand, we believe that direct control may provide more
robust BCI control of high-DOF prostheses. We suggest that the best solution in-
volves direct control of an actuator that mimics the mechanical properties of human
anatomy. Such an anatomically accurate prosthesis is ideal for direct control, as
neurons can be used to directly control the many (and partially redundant) “mus-
cle motors”, and the mechanics of the hand will in turn act to filter this potentially
noisy control signal. Our labs have developed two key technologies, the Neurochip
and the Anatomically Correct Testbed (ACT) hand, that we are in the process of
combining to demonstrate this approach.
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7.3 Neurochip: A Flexible Platform for Direct Control

Exploration of direct control as a BCI strategy has been limited by suboptimal hard-
ware. The basic need is for a “neural router” that acquires signals from cortical neu-
rons and routes them to arbitrary effectors (motors, stimulators, etc.). Rack-mounted
hardware does the job, but tethers the subject to the experimental rig. To implement
direct control for free-roaming subjects, a fully integrated and wireless system is
required. We have developed a miniaturized, battery-powered, autonomous system,
the “Neurochip”, partly as a platform for direct control BCI experimentation.

The original Neurochip is described in Mavoori et al. (2005), while the next-
generation version is presented in Zanos et al. (2009) and shown in Fig. 7.4. Briefly,
input from implanted electrodes (microwires, silicon arrays, ECoG or EMG) is
bandpass filtered, preamplified, and passed to a Programmable System-on-a-Chip
(PSoC) for digitization and processing. The PSoC includes a dual time-amplitude
window spike discriminator to detect consistent spike waveforms. The Neurochip
can be programmed with stimulation contingencies such that a detected event (ac-
tion potential or other activity) triggers real-time stimulation delivered to another
site, or a signal delivered to an external device. Onboard memory stores both raw
neural signals and average activity, recording more than 24 hours of data at moder-
ate sampling rates or when utilizing the real-time discriminator to compress neural
data to spike times and waveforms.

An infra-red interface permits two-way communication and configuration. By
using a “smart” microprocessor that can automatically adjust clock speed and turn
modules off when not needed, the Neurochip is able to maximize battery life. Au-
tonomous stimulation experiments, with the neuro-stimulator continuously avail-
able, may be run for over 24 hours; extension of the run requires only a quick battery
change. When only recording is required, we have achieved 60 hours of un-tethered
operation in freely-behaving primates. Each device is primarily constructed from
off-the-shelf components, lowering both development time and unit cost. Although
the current version is limited to three parallel channels, it could relatively simply be
scaled up as needed for direct control of a high-DOF robot limb.

Fig. 7.4 The Neurochip 2, able to autonomously and simultaneously process three input channels
and drive three stimulation channels for 24 hours using only on-board power (battery not shown)
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7.4 Anatomical Prosthetic Design

During the past century, artificial limbs have advanced in both appearance and func-
tionality. However, artificial upper extremities still do not meet patients’ needs.
Commercial myoelectrically-controlled prosthetic arms, effectively the “state of the
art”, are basically unused by 50% of their owners (Silcox et al. 1993). Furthermore,
they do not offer nearly the same breadth of control space as a human hand/arm.
To achieve widespread acceptability, a prosthetic must succeed in three domains:
cosmesis, comfort, and control.

Cosmesis refers to the overall appearance of a prosthetic device. There is strong
societal pressure to be “normal”, a large part of which is looking “normal”. Unless
an upper limb prosthesis is extremely close to the original anatomy, it cannot be hid-
den with sleeves or gloves. Thus, patients often eschew unappealing hook or claw
prostheses in favor of pleasing but immobile silicone hands. Current prostheses also
move in an “unnatural” fashion, which many observers find uncanny and discon-
certing. The ideal upper extremity prosthesis thus should look, feel, and move as
much as possible like an actual human hand.

Comfort refers to the burden of use. While problems can arise in donning and
doffing the prosthesis, ease of connection to the control interface, protection against
dirt and environmental hazards, and heat/noise from mechanical components, the
greatest difficulty is usually with weight. A standard robot hand/arm design might
put motors directly at the actuated joints. While simple in terms of power train, such
a design places much of the weight at the end of a lever arm, thus increasing the sub-
jective burden and the user’s fatigue. A better design would attempt to mimic human
anatomy, in which force-generating components (i.e., muscles) are kept closer to the
torso, and distal actuators (i.e., fingers) are driven through a system of tendons.

Most important is controllability, the ability to perform daily tasks. Existing pros-
theses often use non-paralyzed muscles/joints to generate control signals (Kilgore et
al. 2008; Kuiken et al. 2007). As this only affords a few control signals, prostheses
generally compensate by permitting the user to select from a few “primitive” hand
postures, rather than attempting to reach the entirety of hand configuration space.
Such a strategy leaves the user unable to truly control how he/she interacts with
objects. Furthermore, if the prosthesis takes a form different from the human hand,
a patient must re-learn strategies for grasping and manipulating. While some moti-
vated and resourceful users can be quite functional, others find themselves unable
to adapt, and ultimately give up on their prosthesis.

We therefore propose that an ideal upper extremity motor prosthesis will be an-
thropomorphic, i.e. contain salient features of the human anatomy that produce the
appearance, movements, and function of a human hand. This naturally leads to im-
proved cosmesis, since a human-like hand will move in more human-like ways.
If the prosthesis follows human anatomy, motors will be located more proximally,
leading to greater comfort. Finally, although an anthropomorphic hand has many
more DOFs to master, it may ultimately improve controllability.

Several hands have been designed to attempt this goal. The Robonaut (Blueth-
mann et al. 2003), Cog (Matsuoka 1997), JPL/Stanford (Salisbury and Craig 1982),
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and Utah/MIT (Jacobsen et al. 1986) hands all offer some anthropomorphic qual-
ities. While these hands are anthropomorphic in many ways, there is no natural
mapping from the muscles. Furthermore, they have the correct number of joints and
fingers, but it is not clear if those are the salient features of human hands which
enable dexterous behavior. Further development was needed to create a device that
is truly able to replicate the critical properties of a human hand.

Another advantage of anthropomorphic design is that biological limbs include
substantial non-linearities arising from the mechanical properties of muscle and ten-
don, as well as from transforms applied to neural signals as they pass from brain to
muscle. Motor control signals from the brain are optimized for the filtering and am-
plifying properties of the complete musculoskeletal system. When designing a BCI
prosthetic arm/hand, one must create software that accounts for these expectations
and effectively decodes the brain’s intent. If the actuator instead reproduces the me-
chanical properties of human tissue, it may be better suited to the control signals
being generated in motor cortex, and the decoding algorithm can be simpler.

7.5 The Anatomically Correct Testbed (ACT) Hand

7.5.1 General Overview

We have worked to develop a new anthropomorphic robotic hand as a platform for
both prostheses and studies of manipulation. While not all anatomical details may
be necessary for prosthetic applications, we are learning many salient features that
should be useful to achieve natural cortical control of a high-DOF hand. The current
version of the ACT Hand is shown in Fig. 7.5, demonstrating both its humanoid
appearance and ability to grasp a wide variety of objects. The ACT Hand is the only
artificial hand to date that mimics, accurately and in detail, the anatomy of a human
hand.

The mechanics of the ACT Hand are described in detail in Matsuoka et al. (2006),
whereas control, kinematics, and sensing systems are elsewhere (Deshpande et al.
2009; Koterba and Matsuoka 2006). To construct the initial prototype and mimic
anatomy faithfully, a cadaver hand was studied and each bone reconstructed using
computer-aided design. Subtle bumps and asymmetry on the bone surface have been
shown to matter for efficient control (Deshpande et al. 2008). Joints between the arti-
ficial bones have also been matched in size to the original joint spaces, range of mo-
tion, and placement and number of kinematic axes (Vande Weghe et al. 2004). Simi-
larly, extensive studies were undertaken of the precise anatomy and spring properties
of the human tendon web, with careful choice of materials to match these proper-
ties (Wilkinson et al. 2003). In system identification experiments and computational
simulations of the actuated mechanism, the ACT Hand data remained within one
standard deviation of (and often almost identical to) measurements from a cadaver
hand (Deshpande et al. 2008).
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Fig. 7.5 Example postures illustrating the ACT Hand grasping several household objects. Partic-
ular attention was paid to the replication of human bone structure, including the weight of each
finger element, and to the anatomy of the flexor/extensor tendon web. Note the natural appearance
of each grasp posture, a consequence of faithfully modeling actual hand kinematics

Human motor control exploits the passive dynamics of the actuator to achieve
more dexterous movements, and involves strategies (such as co-contraction of an-
tagonist muscles to increase joint stiffness) that require a specific motor architec-
ture. By replicating some of those features, we believe that prosthesis control will
be simplified and will feel more natural to the user, because cortical neural signals
are optimized to drive the human hand structure. Some evidence for this hypoth-
esis has already emerged from simulations. When increasingly more complicated
aspects of the low-level muscular system were taken into account, a simulated limb
was able to maintain more stability in the face of perturbations (Loeb et al. 1999).
Our own experiments found similar results when we attempted to predict human
index finger joint angle. Predictors using raw EMG activity (as a proxy for neural
activity) were inferior to those that first estimated joint torques by filtering EMG
activity with a model of musculoskeletal mechanics (Afshar and Matsuoka 2004).
The ACT Hand implements those same filters implicitly in its structure and me-
chanics, and thus should offer more stability and functionality than existing pros-
theses.

7.5.2 Anatomically Correct Hands Under Direct Neural Control

It is relatively easy to imagine connecting a fully anthropomorphic hand to a direct
control BCI. Assuming that one has a set of cortical electrodes capable of recording
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at least 22 single neurons, the output of each can be connected to an arbitrarily-
chosen muscle motor actuating one hand/finger DOF. If the damping and non-linear
force generation properties of human muscles are faithfully replicated in the arti-
ficial hand, they will act as inbuilt filters to reduce the effects of noise/variability
in the neural activity. Redundancy between motors in an anatomically correct pros-
thetic would allow the user to continue being functional in daily activities even if
one of the controlling neurons is temporarily lost due to electrode instability. Finally,
if pairs of single neurons are directly connected to antagonist muscle motors, joint
stiffness can be modulated by co-contraction about the joint. Thus, direct control
of muscle-like elements provides precise force and position control, but also allows
the user to change joint impedance to resist external perturbations (a critical aspect
of normal human motor control in uncertain situations).

In contrast, controlling an anthropomorphic hand with a population decoding
BCI may prove quite difficult. Although there will be robustness to electrode issues,
the challenge is generating many independent control signals from the recorded pop-
ulation. To date, strategies for controlling reach-and-grasp systems involve training
at least two decoders, one to control actuator position/velocity and another to control
gripper actuation (Carmena et al. 2003; Velliste et al. 2008). While a population may
be able to drive two decoders simultaneously, it is unclear whether this would scale
to 20 or more, particularly when some of those decoders would be controlling func-
tionally antagonistic actuators. An additional group of decoders would be needed to
control joint stiffness. One might expect that each decoder would be driven primarily
by a small subpopulation that happens to correlate highly with that decoder’s DOF.
Such decoders may work fairly well, but are effectively a direct control strategy in
disguise.

7.6 Synthesis: Visions for BCI-Based Prosthetics

We have described recent progress in the development of single unit-based BCI
systems and anthropomorphic hand prostheses. Each of these technologies indepen-
dently represents a major step forward. Both population decoding and direct control
BCIs have achieved significant results in the laboratory, and population decoding
has reached human users. We hypothesize that direct control may eventually offer
full human-level dexterity, because it can make more efficient use of neural data
and may scale better for high-DOF actuators. By leveraging the brain’s tremendous
capacity for learning, direct control designs may allow more rapid development and
deployment of novel BCIs. Anthropomorphic prostheses, particularly in the upper
limb/hand domain, offer improved cosmetic appearance and greater user comfort.
By incorporating the passive mechanical properties and mimicking the salient kine-
matic features of the human hand, they are expected to be easier to control.

The true value of these two lines of research becomes more apparent when they
are linked together such that cortical signals are used to directly control the motors
of an anatomically correct hand. Under direct control, the user’s brain can learning



7 Direct Neural Control of Anatomically Correct Robotic Hands 117

optimal mappings between each hand muscle-motor and the activity of each con-
trolling neuron. This can be done implicitly, without the need to carefully design
a decoder. Based on existing data, it seems feasible that subjects can rapidly learn
to modulate individual cells to control individual motors, even though the cells be-
ing employed need not have a prior relation to hand control. At the same time, the
passive behavior of the actuator will enhance stability and filter out some of the
noise inherent to direct control signals, producing more natural movements. Thus,
the combination of a direct control with the ACT Hand has the potential to restore
full dexterous capability to a BCI prosthesis user.

Even as we move towards high-functionality, high-DOF prostheses, the solutions
to today’s problems also create new research challenges. There remains a question
of how to further design interfaces to be more “natural” for the user. The ACT Hand
represents one example of how, by optimizing the design of the actuator, a prosthesis
can be made easier for the subject to use. “Unnatural” mappings can be learned for
simple 2D cursor-control tasks (Radhakrishnan et al. 2008), but the same data (seen
in Fig. 7.3) suggest that logical neuron-actuator mapping may help learning speed.
This, in turn, has implications for scaling BCIs to higher-DOF actuators. Thus, the
human-computer interaction community may be able to suggest further strategies to
make prosthetic use as naturalistic and intuitive as possible. We are hopeful that the
use of these intuitive and direct control signals to drive biomimetic prostheses will
restore dexterous movements to individuals following limb-loss or nervous system
injury.
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Chapter 8
Functional Near-Infrared Sensing (fNIR)
and Environmental Control Applications

Erin M. Nishimura, Evan D. Rapoport,
Peter M. Wubbels, Traci H. Downs,
and J. Hunter Downs III

Abstract Functional near-infrared (fNIR) sensing is a relatively young brain imag-
ing technique, yet one that holds great promise for brain-computer interfaces.
Measuring essentially the same signals as functional magnetic resonance imaging
(fMRI), fNIR acts as a single-point monitor of oxy- and deoxy-hemoglobin concen-
trations for localized sensing with greatly lowered costs and hardware requirements.
As an optical sensing technique, fNIR is more robust to ambient electrical noise that
affects the electroencephalogram (EEG) signal. The reduced hardware requirements
and robustness in noisy environments make fNIR well-suited for brain-computer
interface systems as it poses few physical restrictions on the operator and can be
implemented in a wide range of applications and scenarios.

8.1 Near Infrared Sensing Technology

Relying on the known optical properties of the interaction between near-infrared
(NIR) light and oxy- and deoxy-hemoglobin, near-infrared sensing is a non-invasive
technology that monitors even minute fluctuations in tissue oxygenation (Cope
1991). In between visible and infrared light, NIR light (750 nm–2500 nm) is rela-
tively weakly absorbed and scattered (Schmidt 1999). Oxy- and deoxy-hemoglobin,
present in all living human tissue, have distinct absorption spectra of near-infrared
light. It is these distinct properties that are used to calculate the concentrations of
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oxy- and deoxy-hemoglobin in tissue based on the differential changes in received
NIR light passed through this tissue.

For continuous wave or continuous intensity NIR sensing, multiple wavelengths
of NIR light are time-modulated and emitted at a constant output intensity. The
intensity of the received light after passing through tissue is a measure of the atten-
uation changes caused by the tissue for each wavelength. These received intensities
are converted to oxy- and deoxy-hemoglobin concentrations using a modified Beer-
Lambert equation (Franceschini et al. 2002).

Near-infrared sensing, while promising as a non-invasive and relatively inexpen-
sive monitor of oxy- and deoxy-hemoglobin, is a relatively young technology. There
exist known problems when fielded that have yet to be adequately addressed, namely
motion artifacts that distort the optical signal. However, as a relatively young tech-
nology, the possibilities for near-infrared sensing and potential applications, as well
as its shortcomings, have not yet been fully explored.

Outputting relative regional oxy- and deoxy-hemoglobin, near-infrared sensing
can provide a means for continuous physiological monitoring or can be applied to
the cortical surface for relatively inexpensive, portable functional brain imaging.

8.1.1 Physiological Monitoring

As a monitor of tissue oxy- and deoxy-hemoglobin fluctuations, near-infrared sens-
ing can be used as a physiologic sensor in applications that must monitor oxygena-
tion as a correlate to an event or extreme environments. A direct application is early
G-LOC (gravity-induced loss of consciousness) detection in high-speed flight. G-
LOC is believed to be caused by the reduced cerebral blood flow that results from
exposure to high G forces. This decrease in blood flow to the brain lowers the oxy-
genation level in brain tissues, contributing to the onset of G-LOC and A-LOC (al-
most loss of consciousness) (Kobayashi 2002). Brain cells function on a high uti-
lization rate of oxygen; a decreased oxygenated blood supply to the brain due to
gravitational forces leads to G-LOC within a few seconds (Glaister 1988). Monitor-
ing decreases in oxy-hemoglobin concentrations in the brain that precede the onset
of G-LOC can lead to early detection and potential prevention of this condition.

In addition to providing access to gross oxy- and deoxy-hemoglobin changes,
NIR sensing can also detect passive vital signals. These vital signs unavoidably
affect oxy- and deoxy-hemoglobin levels, with the dominant signals consisting of
oscillations from the heartbeat and respiration. The heartbeat propagates changes in
oxy- and deoxy-hemoglobin concentrations throughout the body tissue, resulting in
changes in tissue transparency for NIR wavelengths outside of the isobestic point.
Thus, the heartbeat signal is present in fNIR imaging as a pulse waveform, with the
inflection points determined by the systolic pressure wave (Gratton and Corballis
1995). The use of the NIR signal for heartbeats would enable measurement from a
single-site sensor, rather than multiple sensor sites as required by electrocardiogram
(ECG)-based measures.



8 Functional Near-Infrared Sensing (fNIR) and Environmental Control Applications 123

8.1.2 Functional Brain Imaging

Applied to the scalp, NIR sensing detects regional oxy-hemoglobin changes on
the cortical surface. Lagging several seconds after the onset of neuronal activity,
a hemodynamic and metabolic response leads to increases in blood flow and an in-
crease in the concentration of oxy- relative to deoxy-hemoglobin in the area of the
brain being used by that activity (Chance et al. 1998). These oxygenation changes in
the area of the brain being used by this neuronal activity can be monitored and de-
tected through the NIR oxy- and deoxy-hemoglobin signals. Therefore, functional
near-infrared sensing can sense cognitive activity based on rises in oxy-hemoglobin
concentrations in the area of the brain being used by that activity.

While NIR sensing measures physiologic signals that are similar to those mea-
sured by fMRI, the hardware required for near-infrared sensing can be much more
compact and less costly. Although NIR sensing does not offer the same spatial res-
olution as fMRI, the potentially portable nature of the technology lends itself to
mobile and more real-world applications in natural environments.

8.2 The OTIS System

The OTIS system is a continuous-wave near-infrared sensing system developed by
Archinoetics that monitors relative oxy- and deoxy-hemoglobin concentrations for
both physiologic and functional brain imaging applications (Nishimura et al. 2007).
Several iterations of the system have been created, with the latest system shown
below in Fig. 8.1.

This system is wireless, battery-powered, and wearable, with a focus on comfort
for long-term wear while allowing for adjustability of the optics for optimal NIR
signals. All of the optics, communications, and embedded processing are contained
within the sensor enclosure shown. Because of the small size and wireless feature
of the system, this device is suitable for flight applications, allowing for helmet

Fig. 8.1 The latest OTIS
system that is wearable,
wireless, battery powered,
and includes 3-axis
accelerometry in addition to
near-infrared sensing
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Fig. 8.2 Several generations of the OTIS system

Fig. 8.3 Custom NIR sensor
for verbal cognitive activity
detection and analysis (front
view on left, showing the slip
for a strap, and back view on
right, showing the optics that
must be placed against the
skin)

integration without compromising any safety features of the helmet. The system also
meets the safety features required for integration into a flight platform, including the
elimination of any tethering to the cockpit for communications or power (Nishimura
et al. 2009).

This most recent system iteration has evolved from past device generations,
shown in Fig. 8.2. Figure 8.2a is a two-channel system per sensor, with the pro-
cessing enclosure supporting up to two sensors. Figure 8.2b is an eight-channel
system. Figure 8.2c shows an early system design that utilized fiber optics with an
electronics enclosure.

Power minimization allows for the current system to be powered through a
rechargeable battery, eliminating the need for a connection to an external power
source. Miniaturization of the electronics led to a smaller overall profile. While
smaller in size, this latest device iteration also provides 3-axis accelerometry data
for analysis of sensor motion for motion artifact detection and/or removal and larger
scale acceleration that may be reflective of extreme environments.

An alternative form factor has been designed for making contact with the head
without a helmet. Figure 8.3 shows a design for a functional brain imaging ap-
plication, specifically for analysis of Broca’s area where hair penetration for skin
coupling is not required due to the location of that region. The enclosure holds a
strap in place to aid in the coupling the sensor to the head without a helmet.
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8.3 Basic BCI Applications

The key to applying the functional brain imaging capabilities of near-infrared sens-
ing to human-computer interfaces is the accurate detection of regional changes in
oxy-hemoglobin concentrations caused by cognitive activity controlled by the oper-
ator. Detection of these controlled cognitive activities can provide a means of non-
physical and non-vocal control.

Basic human-computer interaction through functional near-infrared sensing
(fNIR) was done through simple interfaces with cognitive activity detection algo-
rithms. While fundamental in nature, these interfaces provide binary switches that
can lead to more complex controls.

8.3.1 Hemodynamic Response Detection

The most direct approach to using the fNIR system for cognitive control is through
detection of the hemodynamic response that is the physiologic change in response
to cognitive activity. Detecting a hemodynamic response in near-real-time requires
either detection of the signal change or statistical comparison to the expected time
course of the oxy-hemoglobin concentration response to tasks that are associated
with the region of the brain being monitored (active tasks) and to tasks that are
not associated with this region (inactive tasks). An estimate of the expected time
course can be created by applying hemodynamic response modeling techniques used
in fMRI, given the timing of the active and inactive tasks used (Rajapakse et al.
1998). However, differences in responses between individuals and even between
trials within the same individual affect the robustness of these detection techniques
in practice.

8.3.2 Yes/No Response

A more robust technique for accurately interpreting operator intent is a comparison
between two task periods, one in which the operator is performing an “active” task,
and one in which the operator is performing an “inactive” task. By comparing these
two periods to determine which is the “active” task period, a more accurate determi-
nation of user intent can be made, rather than change detection in a relative signal
that is required for direct hemodynamic response detection.

A confidence score, between 0 and 1, is calculated based on the comparison
between the fNIR signal for the two periods. If the two periods are too similar for a
determination, the confidence score is near 0.5 and an “unsure” output is displayed.

Applying this approach to BCI’s, the result is a reliable on/off switch for transla-
tion into cognitively-controlled communication or environmental manipulation. Fig-
ure 8.4 illustrates an “active” task period followed by an “inactive” task period (a)
and an “inactive” task period followed by an “active” task period (b) with high con-
fidence.
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Fig. 8.4 The OTIS BCI application graphs oxygenation data in real-time and then provides the
state determination at the end of the trial. The “NO” screenshot on the left shows the hemodynamic
response while the subject performs the active task followed by the inactive task (the order is
reversed in the “YES” screenshot on the right). The scores at the top reflect the confidence in the
yes/no determination, where 0 is a strong “NO”, 1 is a strong “YES”, and 0.5 is inconclusive

8.4 Environmental Control with fNIR

Basic fNIR applications can be extended for more complex environmental con-
trol and communications using a non-vocal and non-physical means of control,
namely control through modulated cognitive tasks. This is ideal for individuals
with locked-in syndrome. Chronic locked-in syndrome is a severe neurological
condition that results in varying degrees of paralysis, yet often there may be lit-
tle or no effect on cognitive function. There are several known causes of locked-in
syndrome, including brainstem injury, stroke, or ALS (amyotrophic lateral sclero-
sis), commonly known as Lou Gehrig’s Disease. Individuals afflicted with locked-
in syndrome vary in their range of motor functions, from voluntary eye move-
ments to involuntary movements to complete paralysis (Leon-Carrion et al. 2002;
Feldman 1971).

Interfaces that rely on fNIR as the means for control can be used by locked-
in individuals for applications ranging from basic control of electronics to creative
expression. Several are described in the sections to follow, in addition to the software
that enables such applications. Many of these applications are based on the real-
time cognitive activation level detected by the fNIR signal that is controllable by the
cognitive activity of the operator.

8.4.1 Software Framework for Control Applications

These more advanced brain-computer interfaces that rely on the fNIR signal are
enabled by a custom, modular software application (BIRT) that offers an interface
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to the Archinoetics’ OTIS system and XML-based pipeline configuration. Several
environmental control applications have been created as BIRT modules for use with
fNIR through an add-on platform for integration of 3rd-party applications.

8.4.1.1 BIRT

The primary software for acquiring and utilizing data from the fNIR system is the
Windows-based Brain-Interface Runtime (BIRT) application. BIRT is a highly con-
figurable tool that loads XML-based pipeline files that dynamically (at run-time)
load modules, filters, or user interfaces for handling data that is received from the
fNIR system. This modular architecture facilitates both in-house and third-party de-
velopment because the different components can be developed in isolation and then
incorporated with only a minimal amount of additional code (required for the mod-
ule to acquire and distribute data).

The pipelines that BIRT loads can be easily created through a graphical user
interface by non-technical personnel who wish to modify how the data will be pro-
cessed or utilized. This feature enables experimental psychologists on the different
teams to make changes to the BIRT process chain without requiring software mod-
ifications or assistance from a software engineer. Similar applications can be devel-
oped for use with other fNIR systems by modifying the data acquisition modules
based on the raw data output format of the system to be used.

8.4.1.2 Platform for 3rd Party Interfacing

With the goal of facilitating collaborative software development, BIRT also includes
functionality that allows developers to program in languages other than those in the
.NET framework. Through making a socket connection to the BIRT, any application
on any operating system can easily consume fNIR data in real-time.

In order to facilitate community development of rich, animated brain-computer
interfaces, BIRT also provides the ability for people to create applications in Adobe
Flash. By loading a Flash template that already contains all the necessary Action-
Script to connect to BIRT, animators and other non-programmers can easily create
BCI games and rich media in the most ubiquitous platform for this type of me-
dia. Since BIRT integrates with Flash, people with artistic and design talents, who
might not otherwise be able to develop BCIs, are able to contribute to the software
development process.

An additional benefit of providing Flash integration is that, teamed with basic
knowledge of ActionScript, it is a good platform for rapid prototyping, particularly
for user interfaces requiring animation. Full-scale applications can be built without
extensive time commitment and by people with relatively little programming ex-
perience. This allows undergraduate students in computer science classes or other
novice programmers to build BCIs while providing them an understanding of the
challenges and opportunities in building assistive technologies for disabled individ-
uals.
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For Flash interfaces to work as BCIs, processed fNIR data is sent from the BIRT
processing chain into Flash. A BIRT module, included with the application, allows
pipeline creators to load any Flash application to consume the data. A working Flash
application template with full source code is also included to show Flash developers
how to use the fNIR signal to control visual objects and numeric variables within
Flash. For example, the relative strength of cognitive activity determines the depth
of a swimming dolphin (please see the “Dolphin Trainer” section for a screenshot
and more in-depth description).

A custom algorithm is used to convert the relative oxy-hemoglobin concentration
from the fNIR system to a measure of cognitive activation, normalized to a value
between zero and one (with higher numbers reflecting higher levels of cognitive ac-
tivity in the cortical region of interest). This normalized output from the fNIR signal
provides a consistent input for the Flash programmer and eliminates any require-
ments for any advanced understanding of the fNIR technology. All this serves to
simplify the development process for the Flash developer, enabling development by
a wider range of programmers and designers.

8.4.2 Electronics/Appliance Control

An interface that links the fNIR system output to its surroundings for environmen-
tal interaction can offer paralyzed and disabled operators more control over their
lives, and also enrich the way able-bodied users manipulate their world. This was
developed using home automation transmitters and receivers that allow control over
nearly any electronic device. A module was created that translates an fNIR-based
switch, based on the yes/no responses described previously, into controls for the
electronics, such as turning on a lamp.

Interfacing with more complex home automation transmitters and receivers, op-
erators are able to activate saved sequences of commands through the fNIR inter-
face, such as dimming the ambient lights, turning on their TV, turning up the vol-
ume, then switching to their favorite channel. By combining multiple transmitters
and receivers, the system provides the flexibility to control an unlimited number
of IR devices with everything from simple on/off commands, to more complicated
sequences.

8.4.3 Dolphin Trainer

An application called the “Dolphin Trainer” was developed to demonstrate inte-
gration with Flash and the potential for engaging users with rich, animated BCIs
(Fig. 8.5). Any cognitive task can be used to control the dolphin, as long as the
placement of the sensor corresponds to the cortical area that is activated by that task.
Dolphin Trainer provides a video game-like experience in which the user raises and
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Fig. 8.5 The Dolphin Trainer
application, demonstrating a
more enjoyable,
goal-oriented, video game
application that enables
flexible scripting to train and
evaluate subjects’ abilities to
control BCIs

lowers the dolphin to eat the fish as they move from right-to-left across the screen.
The fish may be added randomly, manually, or via scripting. The overall score is
displayed and the difficulty can be adjusted. In the scripting method, patterns of fish
can be created to train or test the subject’s ability to control the BCI. For example, by
placing repeating sets of three fish (displayed in a vertical column) and instructing
the user to always select the green fish, an experimenter could assess how well the
subject could manipulate the BCI’s signal to reach each of the three corresponding
levels.

8.4.4 Dolphin Interface for Communication/Control

Taking the Dolphin Trainer one step further, the selection of a fish can also launch a
developer-specified action. At the basic level, some fish have words trailing behind
them, enabling a subject to answer a multiple choice question or spell out a sentence.
Additionally, fish can be associated with commands that are sent to other software
applications or to objects in the real-world environment (see Fig. 8.6). For example,
in one instantiation, the selection of a colored fish triggers a robotic arm to pick up
a board game piece of the corresponding color. This could be expanded to allow
a BCI user to play checkers with a friend on an actual game board, use a set of
paint-brushes, or manipulate other objects typically requiring hands.

8.4.5 Brain Painting for Creative Expression

Another example of an engaging BCI is a painting program, which also simulta-
neously trained people on the skills required to use a BCI for communication and
environmental control. The program allows a user to create complex color gradi-
ents that were directly mapped to the relative level of activity in the brain area of
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Fig. 8.6 The Dolphin Trainer
application being used in
conjunction with a robot that
can manipulate pieces on a
board game. The user raises
and lowers the dolphin to eat
a fish causing the robot moves
the game piece of that color

Fig. 8.7 Some of the first brain painting by world famous watercolor artist Peggy Chun (who has
ALS and is fully paralyzed except for her eyes)

interest. A high level of activity is mapped to one color and a low level to another
(colors are chosen by the user prior to data collection). The canvas is filled line by
line, from top to bottom. The speed and sensitivity of the program can by varied
to achieve different effects, with a single painting taking from ten seconds through
several minutes (or even hours).

The first regular user of Brain Painting was the late watercolor painter, Peggy
Chun, who was a world famous artist who had ALS and yet continued to paint even
after she became paralyzed. The software was refined and enhanced through con-
sultations with Mrs. Chun, who assisted in developing strategies for maximizing the
artistic appeal of the resulting works. She also painted the first set of brain paintings
(Fig. 8.7).

To create these paintings, Mrs. Chun first selected two colors, then designated
one color as the “active” color that is displayed when she performs the cognitive
task that activates the fNIR signal. In this case, the sensor was placed over Broca’s
Area, so her active task was subvocal singing. The other color was designated as
the “inactive” color for display when performing a task that doesn’t activate Broca’s
Area (cloud visualization). Mrs. Chun then controlled the color gradient, from the
top of the digital canvas to the bottom, through modulating between the active and
inactive tasks.
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As Brain Painting users practice they often become better able to control the BCI
and have a greater ability to produce the painting they intend. Mrs. Chun’s talents
as a watercolor artist certainly helped her envision an attractive composition, but
she would not have been able to achieve her vision without practice using the BCI.
Considering the target population for BCIs are often locked-in and severely disabled
people who would otherwise not have any ability to express themselves creatively
or do anything actively enjoyable, there is tremendous inherent value in providing
these sorts of applications.

8.5 Conclusion

Near-infrared sensing, monitoring oxy- and deoxy-hemoglobin concentrations, can
provide an effective means for control in a brain-computer interface without requir-
ing any physical or vocal action. The gradient cognitive activation levels it can pro-
vide allows for higher resolution control interfaces. Because it is both non-invasive
and portable, the Archinoetics’ OTIS fNIR sensing system is ideal for BCI applica-
tions ranging from in-flight use to creating brain-controlled digital painting. Such a
variety of applications benefit the warfighter as well as the locked-in operator.

As a relatively immature and emerging technology, there is considerable research
that must still be done in the areas of artifact removal and reliable cognitive activity
detection for robust use in real-world environments. However, the newness of the
technology also leaves opportunity for innovative exploration. There is much room
for refinement and discovery with fNIR technology and applications, especially as
a means for non-vocal and non-physical human-computer interaction.
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Chapter 9
Cortically-Coupled Computer Vision

Paul Sajda, Eric Pohlmeyer, Jun Wang,
Barbara Hanna, Lucas C. Parra,
and Shih-Fu Chang

Abstract We have developed EEG-based BCI systems which couple human vi-
sion and computer vision for speeding the search of large images and image/video
databases. We term these types of BCI systems “cortically-coupled computer vi-
sion” (C3Vision). C3Vision exploits (1) the ability of the human visual system to
get the “gist” of a scene with brief (10’s–100’s of ms) and rapid serial (10 Hz) image
presentations and (2) our ability to decode from the EEG whether, based on the gist,
the scene is relevant, informative and/or grabs the user’s attention. In this chapter
we describe two system architectures for C3Vision that we have developed. The sys-
tems are designed to leverage the relative advantages, in both speed and recognition
capabilities, of human and computer, with brain signals serving as the medium of
communication of the user’s intentions and cognitive state.
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9.1 Introduction

Today we are faced with more information on a daily basis than ever before. Con-
stantly evolving digital recording devices that can capture large amounts of spatial
and/or temporal data, ever increasing digital storage capacities and multitudes of
multimedia applications are just a few factors that create this “information tsunami”.
Searching for something of interest, making rapid decisions and being attentive to
relevant information are becoming increasingly complex tasks.

Various technologies, driven by diverse fields of research, have been developed
to assist us in consuming information. Yet the fact is that the human capacity to an-
alyze information and make inferences about our surrounding environment remains
unsurpassed. For example, our ability to recognize objects is extraordinarily robust,
and with trillions of neuronal connections, our brain can react extremely fast to an
external stimulus: we respond to the information we receive in the “blink of an eye”
(Gladwell 2005), before we are even aware of it.

Recently we, as well as others, have been investigating the application of brain
computer interfaces (BCI) for dealing with issues in image search, retrieval and
triage (Gerson et al. 2006; Parra et al. 2008; Kapoor et al. 2008; Bigdely-Shamlo et
al. 2008). Our group has developed an approach which we term cortically coupled
computer vision (C3Vision) where the goal is to synergistically couple computer
vision with human vision, via on-line real-time decoding of EEG while users’ view
images as a rapid serial visual presentation (RSVP) (Gerson et al. 2006). As well
as being a method for maximizing throughput, the use of RSVP is motivated by our
ability to make very rapid and accurate decisions. The ability of the human visual
system to do this has sometimes been characterized as getting the “gist” of a scene
(Oliva 2005) in a few hundred milliseconds. The C3Vision approach exploits our
ability to decode EEG signals that are related to detection and recognition in rapidly
shown images (Thorpe et al. 1996; Keysers et al. 2001; Gerson et al. 2006). One of
the key signals we exploit in our system is the P300. The P300 is an evoked response
in the EEG which reflects perceptual “orienting” or shift of attention which can be
driven by the content of the sensory input stream (Linden 2005).

In this chapter we review our work in C3Vision, focusing on two architectures we
have developed. The first architecture is tailored to a visual search problem, where
a user must find targets in an extremely large image (on the order of 30 K × 30 K
pixels). For this case computer vision serves as a pre-processor to select potential
areas of interest, creating chips (or regions of interest—ROIs) of these areas which
are subsequently presented to the user via RSVP while the user’s EEG is decoded
to generate an “interest score” used to rank or prioritize the ROIs (see Fig. 9.1A).
Given this first step “triage”, the user can proceed to search the large image with
the added capability of jumping to locations in the scene which grabbed his/her’s
attention during the RSVP EEG decoding phase. In Section 9.3 we describe this
system and demonstrate results for remote sensing.

The second architecture, presented in Section 9.4, addresses an image retrieval
application, using EEG decoded during RSVP presentation to generate an interest
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Fig. 9.1 Strategies for integrating computer vision with EEG-based image triage. The goal is to
re-rank images in a database so that the result is a dense ranking, with images of interest at the
front of the database, given an initial ranking that is sparse. In system A a very large database is
processed by model based computer vision to generate a candidate set of images that might be of
interest to the user. The computer vision model is tuned to have a high sensitivity at the cost of
specificity. The user is presented with rapid sequences of images labeled as potentially interesting
by computer vision while high-spatial density EEG (≈64 channels) is recorded. An EEG decoder
is trained on data collected from subjects while they look at imagery from an unrelated database
and pay attention for target specific or “interesting” imagery in the rapid sequences. The trained
EEG decoder is used to process EEG signals while the user observes the barrage of images in
the sequence, with the result being an interest score used to re-rank the database. This leads to a
dense ranking of the database (note dark gray vs light gray, indicating the database has become
more dense in term of the “concentration” of interesting images). System B starts by randomly
sampling the database and passing on the samples as rapid sequences to a human user. Note that
in this case, the volume of imagery assessed by the human is small, compared with the computer
vision in System A, due to speed and fatigue limitations. However an advantage of System B is
that the human is able to look for images which are specifically of interest to him/her and which
might be difficult to define in terms of a prior model for computer vision. The EEG interest score
is used to re-rank images and pass labels to an exemplar based computer vision system which then
propagates predicted labels into the database and returns a re-ranking based on the propagated
labels. System C combines systems A and B so that computer vision operates both at the front end
and back end of the system

score usable for training a feature based computer vision system (see Fig. 9.1B).
The computer vision system derives training labels from the EEG interest score and
propagates them to re-rank the image database and retrieve for the user those images
which match what grabbed his/her attention. Below we begin by describing how we
decode the EEG and map it to an “interest score”. For additional technical details
readers are referred to Gerson et al. (2006), Parra et al. (2008), Wang et al. (2009b),
Sajda et al. (2010).
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9.2 The EEG Interest Score

Given an RSVP paradigm for presenting a rapid sequence of images to the subject,
we simultaneously record EEG, using 64 scalp electrodes, and map the activity to an
“interest score” for each image. The interest score is meant to reflect how much of
a user’s attention was directed toward an image. From a neuro-science perspective
it can be seen as the single-trial correlate of the P300-related orienting response,
though as can be seen in Fig. 9.2 we allow for flexibility in this definition. The
algorithm we use for decoding the EEG, and ultimately mapping it to an interest
score, has been described previously (Gerson et al. 2006; Parra et al. 2008). Briefly,
our approach begins with the linear model,

yt =
∑

i

wixit (9.1)

Fig. 9.2 Using hierarchical discriminant component analysis to construct EEG interest scores.
Shown is the forward model for the discriminating component at each time window, which can
also be seen as the normalized correlation between the component activity in that window and
the data (Parra et al. 2005). The series of 10 spatial maps thus shows that the spatial distribution
of the forward model of the discriminant activity changes across time. Activity at 300–400 ms
has a spatial distribution which is characteristic of a P3f, which has been previously identified by
our group and others (Gerson et al. 2005; Makeig et al. 1999) during visual oddball and RSVP
paradigms. In addition, the parietal activity from 500–700 ms is consistent with the P3b (or P300)
indicative of attentional orienting. Other significant discriminant signals can be found at earlier and
later time and often vary from subject to subject and the specifics of the experimental paradigm,
e.g. presentation speed. The 10 components characterized by the scalp maps are linearly integrated
to form a single classification score, which can be represented via the class-conditional histograms.
This classification score is used as the “interest score” in our C3Vision systems
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where xit represents the electrical potential measured at time t for electrode i on the
scalp surface, while wi represents the spatial weights which will be learned based
on a set of training data. The goal is to combine voltages in the electrodes linearly
such that the sum y is maximally different between two conditions—e.g. “target of
interest” vs “distractor”. We also assume that this maximally discriminant activity
is not constant but changes its spatial distribution within the second that follows the
presentation of an image—i.e. we assume a stationarity time T of approximately
100 ms. Thus we find distinct optimal weight vectors, wki for each 100 ms window
following the presentation of the image (index k labels the time window):

ykt =
∑

i

wkixit , t = T ,2T , . . . , (k − 1)T , kT . (9.2)

These different ykt are then combined in an average over time to provide the
optimal discriminant activity over the entire second of data, with the result being
our “interest score”, yIS for the image

yIS =
∑

t

∑

k

vkytk. (9.3)

For on-line implementation purposes we use the method of Fisher Linear Dis-
criminants to train coefficients wik within each time window of time. The coeffi-
cients vk are learned using penalized logistic regression after all exemplars have
been observed. Because of the two step process of first combining activity in space,
and then again in time, we have termed this algorithm “Hierarchical Discriminant
Component Analysis”. Figure 9.2 plots the spatial filters that are learned for each
time window and shows the subsequent hierarchical integration which enables us to
construct interest scores, based on the classifier output. Note in the figure that the
scores distribute as a function of whether the image was a target of interest or not.

9.3 C3Vision for Remote Sensing

We first consider architecture A in Fig. 9.1 with computer vision followed by RSVP
and EEG decoding. The application we will consider is for remote sensing. In re-
mote sensing, analysts must search images that are several hundreds of giga-pixels
in size. In particular, intelligence analysts routinely search very large satellite images
in order to find and monitor objects and regions of interest (Fig. 9.3A). As part of
their work-flow, analysts use specialized software (e.g. Remoteview, by Overwatch
Systems) that lets them rapidly load, display and zoom/pan such images. They con-
duct their searches using various strategies depending on their level of experience
and expertise. Figure 9.3B shows for example the raster scanning search pattern
followed by an image analyst during a test. Given the size of the images, this typi-
cal search process can be lengthy and inefficient. For example a trained analyst may
need 60 minutes to complete the review of a 30 K×30 K image, and may only iden-
tify the targets of interest in the last few minutes of the review. However, searches
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Fig. 9.3 A. Satellite image to be searched. B. Traditional search approach shows a smooth and
continuous path. C. Search in which areas are prioritized by EEG triage. Shaded areas in B & C
represent regions analyzed by the analyst

could be significantly enhanced and accelerated with means to prioritize the search,
and help analysts focus their attention on regions with high target probability.

Leveraging the high sensitivity of computer vision with the high specificity of
human visual recognition, we have developed a C3Vision Remote Sensing System,
based on the architecture of Fig. 9.1A. In this system potential target regions are
automatically identified by computer vision and image chips centered on potential
targets are generated and then presented as RSVP to the user. Centering the image
chips on potential targets improves the detection performance during the triage, as
targets are better foveated when presented to the analysts at a rapid pace. The EEG
scores computed during the RSVP are used to prioritize which regions of the image
should be searched first, leading to search patterns like those shown in Fig. 9.3C.

Using C3Vision in this way improves on the analysts’ typical work-flow by of-
fering a first pass in which they can very rapidly review thousands of image chips
extracted from the large satellite image and identify those that will be of most in-
terest to them, as shown in Fig. 9.4. They can then move to a more in-depth second
pass during which they can review high priority areas first, thus accelerating and
managing their search more efficiently.

This architecture combines three major components: 1. computer vision based
automated region selection and target detection; 2. real-time recording and decoding
of EEG signals and 3. the interface used to exploit the prioritized image analysts.
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Fig. 9.4 Analyst work-flow with the C3Vision architecture. Potential target regions are automat-
ically identified, and image chips constructed with potential targets centered on those regions.
Image chips are triaged using rapid image presentation and classification of neural activity. The
results are then reviewed by order of priority in existing specialized software with the help of a
dedicated visualization interface

While there is a vast body of computer vision research on object/region detec-
tion, the C3Vision architecture itself is agnostic to the choice of a particular method.
Such a choice is best guided by the task for which the system is used. The scenario
presented here involves targets classes that are known a priori, enabling the use
of a model based approach. In particular, we have implemented and tested a frame-
work that extracts low-level features specific to aerial object classes. The framework
then infers object classes with a grammar-based reasoning engine that uses domain
knowledge and the relationship between object features (see Sajda et al. 2010 for
more details). As the image size is typically large and the target detection needs
only to be within a few pixels, target detection is only performed on a subsample of
image pixels, for example a uniform grid with user specified density. The detection
framework associates a confidence score with each pixel in the subsample. Image
chips are generated based on those detections with a score exceeding a predefined,
task-based threshold.
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The image chips are then presented to the analyst as RSVP, using a pace of 5
to 10 Hz (i.e. 200–100 ms per image). While they are presented, EEG signals are
recorded using a 64 electrode EEG recording system (ActiveTwo, Biosemi, Ger-
many) in a standard 10–20 montage and at a 2048 Hz sampling rate. Image chips
are presented in blocks, typically 100 image chips long. Since detection perfor-
mance can degrade when target occurrences are too seldom or too frequent, each
block is constructed to satisfy a certain target prevalence. In particular, for each
block, a number of image chips are randomly drawn from the computer vision
list, based on expected true and false positive rates, and additional chips are drawn
from a pool of “distractors” in order to achieve the desired block size and preva-
lence.

As the EEG stream is acquired, a classifier based on the hierarchical discriminant
component analysis, described above, assigns an EEG interest score to each image
chip in real time. The EEG classifier is trained at the beginning of a presentation
session, with 20 to 30 blocks each containing two known but randomly placed (in
the sequence) targets. The content of the training sequences can be related to the
content of the test sequences to better familiarize the user to the paradigm and tar-
gets. However, from a neuro-physiological perspective, training is not dependent on
the choice of imagery, since the classifier is in fact tuned to P300 events. To fur-
ther help users modulate their responses and obtain better training, feedback can be
given at the end of each block, for example by providing a visual indication of how
the classifier can re-order the target images within a block based on the EEG interest
scores.

The list of prioritized chips is reviewed for validation via a dedicated visualiza-
tion interface that interacts directly with the analysts’ dedicated software. Analysts
validate target locations by clicking on corresponding x, y coordinates, which can
then be saved in analyst specific products such as shape files. The visualization in-
terface controls the software’s viewport, forcing it to show areas centered on the x, y

coordinates of the original large image corresponding to the centers of the chips by
descending order of EEG interest. Those “jumps” can be triggered by user inputs
(e.g. pressing a next button) or be automatically paced. Analysts experimenting with
the system have provided positive feedback on both approaches, reporting that the
latter helps them rapidly focus their decisions, while the former gives them greater
control over the review process.

The architecture has been tested in the course of four semi-operational tests, in-
volving a minimum of 4 image analysts each and imagery from a variety of sen-
sors: EO-gray-scale cameras, EO-color cameras and SAR. Here we show the results
of tests where each analyst had to perform three search tasks: 1. look for POLs
(Petroleum Oil Lubricant storage); 2. look for airfields in a SAR image; 3. look for
buildings in a large EO gray-scale image. For each search task, the times at which
image analysts had clicked on a target pixel location was recorded for both baseline
and image assisted searches. As a result, several metrics were computed to compare
baseline and assisted searches: area throughput at matched sensitivity, i.e. the num-
ber of pixels searched per unit time while keeping the baseline and assisted number
of targets found the same, detection rate, i.e. the number of targets found over time,
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Table 9.1 Throughput comparison between baseline search and C3Vision for the remote sensing
application

Task 1
(POLs—MSI)

Task 2
(Airfields—SAR)

Task 3
(Buildings—EO)

Avg throughput improvement 3.21 11.01 3.16

Standard deviation 0.42 3.48 0.52

Fig. 9.5 Average number of target detections as a function of time across subjects and for each
task. Dashed lines are for baseline and solid lines are using C3Vision

and sensitivity. For each task, the system was shown to improve on the baseline area
throughput by at least 300% on average (see Table 9.1), as well as on the baseline
detection rates (see Fig. 9.5). At the same time, the overall sensitivity and number
of false positives were kept the same or moderately improved upon, highlighting the
capacity of the system to drastically accelerate search without degrading detection
performance.
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9.4 C3Vision for Image Retrieval

Due to explosive growth of visual content on the Web, such as personal photographs
and video, there is an emerging need for efficient and accurate systems to rapidly an-
alyze visual information. One of the ultimate goals for automated computer vision or
media content analysis is to detect and recognize objects, scenes, people, and events
in images or videos. A common framework used in such efforts is to learn object
models from a pool of training data, which may have been wholly or partly anno-
tated over pre-defined object classes. Such a learning framework has been shown to
be powerful. However, it is limited in its scalability to large-scale applications. One
of the main barriers is the dependence on the manual annotation process, which is
laborious and time consuming. To overcome this, efforts have been reported using
interactive annotation with relevance feedback and active learning in order to reduce
the required manual input.

We consider a C3Vision system for image retrieval using the architecture shown
in Fig. 9.1B (and more specifically in Fig. 9.6A). In this architecture, neural signals
measured via EEG are used to detect generic objects of interest (OOI) presented
in a series of images, while computer vision exploits the EEG labels within the
context of a graph-based visual pattern mining algorithm. For the EEG-based OOI
detection, only a relatively small subset of images (on the order of few hundred) is
first randomly sampled from a larger image database and presented as visual stimuli
to the subject. From this window into the larger image collection, the EEG interest
detector can identify a small set of highly ranked images to be used as a group of
‘pseudo positive’ labels for the pattern discovery module. This module then refines
and propagates the labels throughout the entire database of images, returning a larger
set of images related to those to which the subject showed the greatest interest. In
this way, subject participation is minimized, yielding just sufficient information for
the neural state decoder and the pattern mining module to effectively infer objects
that have attracted a users attention and generate labels for all the images in the
collection. Thus, while subjects are only required to review a small subset of the
database (avoiding long EEG recording sessions and fatigue), they can still obtain
access to a large number of images that interest them.

The imagery used to test the image retrieval architecture was taken from the Cal-
tech 101 database. This database is a well known set of images that are commonly
used to evaluate object detection and recognition algorithms (Fei-Fei et al. 2004).
It is composed of 101 different image categories, with all the images having been
taken from the web. As the categories have large intra class variation and represent a
diverse set of image types, while still only consisting of images that have been well-
defined, it provides a good testbed for the image retrieval architecture. The Caltech
images do vary considerably in both resolution in scale, however. To control for any
such fluctuations in image size impacting the subjects’ visual responses and fixation
capabilities during the RSVP, we selected a subset of categories from the Caltech
101 database to serve as the experimental database. These categories all contained
images of similar scale and resolutions, and the images could easily be re-scaled to
a consistent size (with negligible distortion) to provide the desired uniformity in the
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Fig. 9.6 System design for image retrieval. (A) Images are sampled from the image database and
presented as RSVP to the user while EEG is simultaneously recorded. EEG interest scores are cal-
culated and used to rank the samples based on their score. Concurrently, the entire image database
is mapped to a graph structure based on image-based feature similarity. The graph structure is than
provided labels derived from the EEG interest scores and these labels are propagated in the graph
to re-rank the entire image database. Since the labels derived from EEG interest scores are con-
sidered noisy, there is a label refinement/sensitivity analysis step which is used to maximize the
value of the labels. (B) From the perspective of the graph based model, the interest scores derived
from EEG during the RSVP presentation of images can be seen as improving the discovery of
manifolds in the feature space of the images. These manifolds represent object categories which
are of interest to the user and which are similar in terms of the feature space in which they reside

visual input during the RSVP. The experimental database thus consisted of 62 of the
Caltech 101 database categories for a total of 3798 images (42% of the total Caltech
101 images).

Each test sequence involved the users being presented with 1000 images ran-
domly selected from the 62 categories. The images were shown in 10 blocks of 100
images each, with the images within each block being shown at 6 Hz for the RSVP.
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During each test sequence, the users were instructed to look for images from one of
three target categories: Starfish, Chandeliers, and Dalmatians. The RSVP sequence
of 1000 images were then repeated (in a random order) with the participant being in-
structed to attend to images from the next target category. The ordering of the target
categories was varied between subjects. All EEG data from four subjects (who were
familiar with EEG work, but who had not been exposed to this experiment), were
again recorded during these tests using a 64 channel system (ActiveTwo, Biosemi,
Germany) in a standard 10–20 montage, with a sampling rate of 2048 Hz.

The hierarchical discriminate component analysis algorithm was used to create
the interest detector component of the image retrieval architecture, see Fig. 9.6A.
The format of the training data used to create the detector matched the test data
(blocks of 100 images, shown at 6 Hz), with the training images being taken from
the Caltech 256 database to differentiate the training and testing data. Similarly
to the testing data though, only a subset of relatively similarly sized Caltech 256
images were used for the training database, with several 101 categories that are
typically part of the 256 database also having been removed. Typically 25–30 blocks
of images (with exactly 2 target images randomly positioned within each block)
were presented during the training session, with the subjects being instructed to
attend to either soccer balls or baseball gloves as the training target category. The
20 images ranked most highly by the interest detector were then given to the pattern
discovery module so that other images similar to those could be identified from the
full image database.

The pattern discovery subsystem starts with construction of an affinity graph,
which captures the pairwise visual content similarity among nodes (corresponding
to images) and the underlying subspace structures in the high dimensional space
(as shown in the right part of Fig. 9.6B). Such a construction process is done offline
before user interaction. The small set of pseudo positive labels generated by the EEG
based interest detector is fed to the initially unlabeled graph as assigned labels for
a small number of nodes, which are used to drive the subsequent processes of label
identification, refinement, and propagation. Graph based semi-supervised learning
techniques (Wang et al. 2008) play a critical role here since we will rely on both
the initial labels and the large pool of unlabeled data points throughout the diffusion
process.

Assume that the generic interest detector outputs the EEG score
e = {e1, e2, . . . , en} from a RSVP sequence X = {x1,x2, . . . ,xn} shown to the sub-
ject.1 Previous work has shown that the existing semi-supervised methods cannot
handle cases with extremely noisy labels (Wang et al. 2009a). In order to refine the
noisy EEG scores, our method first extracts the salient image pattern and recovers
the visual consistency among the top ranked images. In other words, an improved
interest measurement f is estimated using an image based representation and ini-
tial EEG scores as {X , e} → f. We formulate the following process of EEG label
refinement and visual pattern mining.

1For an RSVP image sequence, the decoded EEG score vector e = {e1, e2, . . . , en} is usually nor-
malized as ei ∈ [0,1], i = 1, . . . , n.



9 Cortically-Coupled Computer Vision 145

1. Convert the image representation to a visual similarity graph X → G =
{V,E,W }, where vertices V are the image samples X and the edges E with
weights W measure the pairwise similarity of images.

2. Transfer the interest scores to pseudo EEG labels e = {e1, e2, . . . , en} → y =
{y1, y2, . . . , yn}. In other words, a binarization function g(·) is applied to convert
EEG scores to EEG labels as y = g(e), where yi ∈ {1,0} and yi = 1 for ei > ε,
otherwise yi = 0. The value ε is called interest level for discretizing the EEG
scores.2

3. Apply the bivariate regularization framework to define the following risk func-
tion

Eγ (f,y) = Q(f,y) + γ V G (f) (9.4)

which imposes the tradeoff between the smoothness measurement V G (f) of func-
tion f and empirical error Q(f,y). Specifically, the function smoothness is evalu-
ated over the undirected graph G .

4. Alternatively minimize the above risk function with respect to f and y to finally
achieve the optimal f∗

f∗ = arg min
f,y

Eγ (f,y). (9.5)

Finally, the propagated label predictions over the entire graph can be used to gen-
erate annotations for every single image in the collection, or to re-rank the images
based on the detection scores. The top ranked results, as shown in Fig. 9.7B, are ex-
pected to be more accurate (in terms of both precision and recall) than the baseline
of using EEG based detection alone.

The Caltech 101 image search experiments clearly demonstrated how the
C3Vision architecture was able to improve on image identification over chance or
even just using EEG detection alone (Wang et al. 2009b). The results were quanti-
fied in terms of their average precision (AP), a metric commonly used in information
retrieval, and which approximates the area under the precision recall curve (Wang
et al. 2009b). For example, the full system achieved 69.1% AP for one subject
searching for Dalmatians, as compared to 33.73% when using EEG interest detec-
tion alone, and 1.76% for chance. The precision recall curves for this particular
case are shown in Fig. 9.7A, with Fig. 9.7B illustrating how the density of target
images was increased using the full architecture (bottom panel) versus simply using
the EEG scoring (top panel). Overall, the combined EEG-pattern discovery module
showed significant improvement in eight of the twelve trials (4 subjects searching
for 3 target categories), with AP’s in those cases ranging between 25–69% (mean:
42.5%). By comparison, chance levels were 1.76% (Dalmatian), 2.26% (Starfish),
5.11% (Chandelier/Menorah), and the average APs for the EEG detection alone was
15.7%. Furthermore, even in cases where the EEG detection was below 10% AP, the
label refinement process was still able to significantly improve the image annotation
accuracy.

2In practice, the value of ε is set dynamically to achieve a fixed-number l of EEG positive labels,
i.e.

∑
i yi = l.
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Fig. 9.7 Results for image retrieval for the object class “Dalmatian” in the Caltech 101 database.
(A) Precision-recall curves for random sampling, retrieval using the EEG interest score alone and
the results using EEG + the computer vision based transductive graph (i.e. C3Vision). Note that
the C3Vision case results in a >5× increase in recall while maintaining a 100% precision, over the
EEG score ranking alone. (B) Top 20 images for one subject, showing (a) ranking by interest scores
from EEG detector; (b) ranking by scores after label refinement in transductive graph. Adapted
from Wang et al. (2009b)

9.5 Conclusions

The C3Vision framework we describe has potentially many applications in mul-
timedia search and image retrieval. However there are several technical challenges
that remain. The results we have described have investigated essentially feedforward
one-pass processing, namely there is no feedback between the computer vision sys-
tem and human (or vice versa). However more recent work by our group has shown
that feedback can be used to improve the precision of retrieval, though this comes at
the cost of also changing the prevalence of objects of interest in the sample and thus
the potential magnitude of the neural target related signal (e.g. P300). More gen-
erally, the issue of feedback brings up the interesting problem of co-learning. The
human subject, the computer vision system and the EEG decoder can all potentially
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adapt in a feedback loop and we are currently investigating co-learning strategies
which will improve convergence to high precision recall.

Our approach in developing C3Vision has been to leverage the complementary
strengths of rapid, general-purpose scene analysis by humans and the ability of com-
puters to process vast amounts of information. Unique to our approach is that we
create an interface between the two vision systems via real-time EEG-based com-
munication channel. A current challenge in BCI system design is that state-of-the-
art decoding enables relatively low bit rates—40–60 bits per minute—far below
what other communication mediums might offer. For BCI’s which focus on assist-
ing those with neurological disease and disability, particularly those that look to
assist people that are “locked-in”, such a low bandwidth channel is better than no
channel at all and thus can substantially improve quality of life. However if BCI
systems are going to make an impact in applications in which users are essentially
neurologically healthy individuals, then the low bit rate channel of EEG must be ex-
ploited with some ingenuity. For example, in our BCI applications, we are looking
at ways in which the bits that we can obtain via the EEG channel are very diffi-
cult to measure from other channels, for example by monitoring behavior via eye-
tracking and/or button/keyboard responses. Future work will continue to investigate
approaches that exploit this low bandwidth channel in ways that give us access to
information about otherwise latent cognitive states of the user.
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Chapter 10
Brain-Computer Interfacing and Games

Danny Plass-Oude Bos, Boris Reuderink, Bram van de Laar,
Hayrettin Gürkök, Christian Mühl, Mannes Poel, Anton Nijholt,
and Dirk Heylen

Abstract Recently research into Brain-Computer Interfacing (BCI) applications for
healthy users, such as games, has been initiated. But why would a healthy person
use a still-unproven technology such as BCI for game interaction? BCI provides a
combination of information and features that no other input modality can offer. But
for general acceptance of this technology, usability and user experience will need to
be taken into account when designing such systems. Therefore, this chapter gives
an overview of the state of the art of BCI in games and discusses the consequences
of applying knowledge from Human-Computer Interaction (HCI) to the design of
BCI for games. The integration of HCI with BCI is illustrated by research examples
and showcases, intended to take this promising technology out of the lab. Future
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research needs to move beyond feasibility tests, to prove that BCI is also applicable
in realistic, real-world settings.

10.1 Introduction

Brain-computer interfacing (BCI) research has been motivated for years by the wish
to provide paralyzed people with new communication and motor abilities, so that
they can once again interact with the outside world. During the last couple of years,
BCI research has been moving into applications for healthy people. Reasons for
this range from providing applications to increase quality of life to the commercial
benefits of such a large target group (Nijholt et al. 2008a). The area of games, espe-
cially, receives a lot of interest, as gamers are often among the first to adopt any new
technology (Nijholt and Tan 2007). They are willing to put the effort into learning
to work with it, if it may eventually provide some advantage. Besides, a large part
of the general population plays games, little though it may be. As these abled users
have many other interaction modalities at their command, they have a lot more re-
quirements for such an interface than the people for which this is the only option
to interact with the external world. Brain-computer interaction is slower and less
accurate than most modalities that are currently available. Furthermore, BCIs often
require a lot of training. Why would a healthy person want to use BCI in games?

Current BCI games are often just proofs of concept, where a single BCI paradigm
is the only possible means of control, such as moving a paddle in the game Pong
to the left or right with imaginary movement of the hands (Krepki et al. 2007).
These BCIs are weak replacements for traditional input devices such as the mouse
and keyboard: they cannot achieve the same speed and precision. The information
transfer rate (ITR) of BCIs is still around up to 25 bits per minute (Wolpaw et
al. 2002), which is incomparable with keyboard speeds of over 300 characters per
minute.1 Due to these limitations, there is still a big gap between these research
games and games developed by the games industry at this time.

Current (commercial) games provide a wide range of interactions: with your
avatar in the virtual world, with other gamers and non-player characters, as well as
with objects in the game environment. This is also reflected in the game controllers
for popular consoles. For example, the PlayStation® DualShock™ 3 controller has
fourteen buttons, two analog thumb-controlled mini-joysticks plus motion-sensing
functionality. The Nintendo® Wiimote™ has ten buttons, can sense acceleration
along three axes and contains an optical sensor for pointing. Apparently this still
provides too few interaction possibilities, as this controller is often combined with
a nunchuck, which has an analog stick, two additional buttons, and another ac-
celerometer.

1Due to different ITR measures used in BCI, a comparison between keyboard and BCI is hard to
make. The entropy of written English text is estimated to be as low as 1.3 bit per symbol (Cover
and Thomas, 2006, page 174). A rate of 300 characters per minute would therefore correspond to
roughly 400 bits per minute.
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Although a large number of inputs is needed for interaction with games nowa-
days, this also poses a problem. The more input options you have, the more of an
effort it is to learn and remember what each input is for. Even the options that are
currently provided may not be sufficient for what developers envision for rich in-
teraction in future games. To make it easier for the gamer, companies and research
groups are very interested in more natural methods of interaction. If the gamer can
interact with the game world in a way similar to the real world, then learnability
and memorability may no longer be an issue. The popularity of motion sensors in
current game controllers reflects this, as they enable gamers to make gestures that
should come naturally with whatever it is that they would like to do in the game.
Microsoft®’s Project Natal is a prime example of this movement towards natural
interaction, using gestures, speech, and even real-world objects (Microsoft® 2009).

We can take this trend towards natural interaction one step further. Like our
thoughts, computer games do not take place in the real world, and are not con-
strained to what is physically possible. Therefore, it would make sense to express
ourselves directly in the game world, without mediation of physically limited bodily
actions. The BCI can bypass this bodily mediation—a fact well appreciated by those
Amyotrophic Lateral Sclerosis (ALS) patients who now have the ability to commu-
nicate with others and their environment despite their full paralysis—enabling the
gamers to express themselves more directly, and more naturally given a game con-
text.

As an example, consider the following. Even though we know there is no such
thing as magic, in a game world we have no problem with the idea and possibility of
casting spells. Although our minds readily accept these new abilities because we are
confined to interacting via the real world, we have to press buttons to make things
happen in the super-realistic world of the game. If, however, the game were to have
access to our brain activity, then perhaps it would be possible to interact with the
game world in ways that would be realistic considering the rules of that particular
environment. Being able to merge in such a way with the super-realism of the game
world should increase presence (Witmer and Singer 1998), but also memorability as
the relations between user action and in-game action become more direct. However,
using a BCI to bypass physical interaction may seem unnatural, as we are used
to converting our thoughts into bodily actions. The implication is that when using
brain activity directly, one needs to be more aware of this activity and to develop
new levels of control.

Developing control over brain signals is as necessary when signals are used pas-
sively to enhance the game experience, for example, by guiding the player towards
a state of flow (Csikszentmihalyi 1990). From brain activity the user’s mental state
can be derived, which makes it possible for applications to respond to this state.
When the mental state is known, it can be manipulated via the game to keep the user
in equilibrium, where skill and challenge are well matched (see Fig. 10.1). Alterna-
tively, the game could incorporate the user’s mood into the story, for example by the
appropriate adaptation of interactions with non-player characters (NPCs).

Summarized, to make BCI an acceptable interaction modality for healthy users,
it should enhance the user experience by offering something that current interac-
tion modalities do not. Brain activity can provide information that no other input
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Fig. 10.1 Flow diagram,
based on Csikszentmihalyi
(1990)

modality can, in a way that comes with its own unique features. Like speech it is
hands-free, but as no external expression is required, the interaction is private. And
similar to the way in which exertion interfaces that require physical effort will make
you more fit, the use of specific BCI paradigms could make you more relaxed and
focused. This, in turn, could result in higher intelligence, and better coping with
stress (Doppelmayr et al. 2002; Tyson 1987). The following sections will discuss
what can be learned from current BCI research prototypes and commercial applica-
tions and how BCI can be applied in such a way that it does not violate the usability
of the system but actually improves the interaction. Cases and ideas from our own
research at the Human Media Interaction (HMI) group at the University of Twente
will be provided as concrete examples.

10.2 The State of the Art

The first BCI game was created by Vidal (1977). In this game, the user can move in
four directions in a maze, by fixating on one of four fixation points displayed off-
screen. A diamond-shaped checkerboard is periodically flashed between the four
points, resulting in neural activity on different sites of the primary visual cortex.
Using an online classification method, this visually evoked potential (VEP) is rec-
ognized, and used to move in the maze. Despite being the first game, its performance
is remarkable with an information transfer rate (ITR) of above 170 bits/min on av-
erage. Using online artifact rejection and adaptive classification, the approach used
by Vidal was far ahead of its time. Much lower ITRs of 10–25 bits per minute are
often reported as the state of the art in reviews (Wolpaw et al. 2002). One reason to
not include Vidal in these overviews could be that the operation of this BCI depends
the ability to make eye movements.

A much simpler approach to integrate brain signals in games is based on
the interpretation of broadband frequency power of the brain, such as the alpha,
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beta, gamma and mu-rhythm. A classic example is Brainball (Hjelm et al. 2000;
Hjelm 2003), a game that can be best described as an anti-game. Using a headband,
the EEGs of the two players is measured and a relaxation score is derived from the
ratio between the alpha and beta activity in the EEG signal. The relaxation score
is used to move a steel ball across the table away from the most relaxed player;
when the ball is almost at the opponent’s side, and players realize they are winning,
then get excited and lose. Another example we would like to mention is the experi-
ment of Pope and Palsson (2001), in which children with attention deficit hyperac-
tive disorder (ADHD) were treated using neurofeedback. One group used standard
neurofeedback, another group played Sony Playstation™ video games where the
controller input was modulated by a neurofeedback system developed by NASA;
correct brain-wave patterns were rewarded with a more responsive controller. Other
neurofeedback games are listed in the overview in Table 10.1. Characteristic of these
neurofeedback games is that the player has to discover how to control aspects of
brain activity to play the game. Mastering control over brain signals is often the
goal of the game, as opposed to using a BCI as an input device similar to a gamepad
or a joystick. While conceptually simple, neurofeedback games do aim at providing
a user experience that cannot be provided using other modalities.

In contrast to neurofeedback games, motor-control based BCIs are often used
as (traditional) input devices. For example, Pineda et al. (2003) used the mu-
rhythm power on the motor cortices to steer a first person shooter game, while
forward/backward movement was controlled using physical buttons. No machine
learning was involved; the four subjects were trained for 10 hours over the course
of five weeks, and learned to control their mu-power. Another movement controlled
BCI game is the Pacman game by Krepki et al. (2007). The detection of movement
is based on the lateralized readiness potential (LRP), a slow negative shift in the
electroencephalogram (EEG) that develops over the activated motor cortex start-
ing some time before the actual movement onset. In this game, Pacman makes one
step each 1.5–2 seconds, and moves straight until it reaches a wall or receives a
turn command. Users report they sometimes had the feeling that Pacman moves in
the correct direction before the user was consciously aware of this decision. This
indicates a new level of interaction that can be enabled only by a BCI.

Both the neurofeedback and the motor controlled games use BCIs based on in-
duced activations, meaning that the user can initiate actions without depending on
stimuli from the game. Evoked responses, on the other hand, where the application
measures the response to a stimulus, require a tight coupling between the game that
presents the stimuli and the BCI.

An example of a evoked response is the P300, an event related potential
(ERP) that occurs after a rare, task-relevant stimulus is presented. Bayliss used
a P300 BCI in both a virtual driving task and a virtual apartment (Bayliss 2003;
Bayliss et al. 2004). In the virtual apartment, objects were highlighted using a red
translucent sphere, evoking a P300 when the object the user wanted to select was
highlighted. A more low-level evoked paradigm is based on steady-state visually
evoked potentials (SSVEPs), where attention to a visual stimulus with a certain fre-
quency is measured as a modulation of the same frequency in the visual cortex. In
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Table 10.1 Overview of BCI games. Work is sorted by paradigm: F represents feedback games, in
which the user has to adapt the power of the different rhythms of his brain, M stands for recognition
of motor tasks, including motor planning, imaginary and real movement, P300 is the P300 response
to task relevant stimuli and VEPs are visually evoked potentials. In the sensors column, E indicates
EEG sensors, O indicates the use of EOG measurements, and M indicates EMG measurements.
The number of (EEG) sensors is indicated in column NS, the number of classes for control is listed
in the NC column. The last column contains the accuracy of recognition. Due to differences in the
number of classes and trial lengths, these accuracies cannot be used to compare individual studies

Work Type Paradigm Sensors NS NC A

Lee et al. (2006) Game ? invasive
Wang et al. (2007) Game ? E

Sobell and Trivich (1989) Visualization F E
Nelson et al. (1997) Game F E, M
Allanson and Mariani (1999) Game F E
Cho et al. (2002) Virtual reality F E 3 2
Tschuor (2002) Visualization F E 32 2 85%
Hjelm (2003), Hjelm et al. (2000) Game F E
Palke (2004) Game F E 1
Mingyu et al. (2005) Game F E 3 1D
Kaul (2006) Visualization F E, M, O 3
Lin and John (2006) Game F E 1
Shim et al. (2007) Game F E 4 2
Lotte et al. (2008) Game F/M E 1 2

Vidal (1977) Game VEP E 5 5 80%
Middendorf et al. (2000) Game VEP E 2 3 88%
Bayliss and Ballard (2000) Virtual reality P300 E 2 85%
Bayliss (2003) Virtual reality P300 E 5 2
Bayliss et al. (2004) Virtual reality P300 E 7 2 85%
Lalor et al. (2004, 2005) Game VEP E 2 2 80%
Martinez et al. (2007) Game VEP E 6 5 96%
Finke et al. (2009) Game P300 E 10 2 66%
Jackson et al. (2009) Game VEP E 2 4 50%

Pineda et al. (2003) Game M E 3 1D
Leeb et al. (2004) Virtual reality M E 4 2 98%
Leeb and Pfurtscheller (2004) Virtual reality M E 2
Mason et al. (2004) Game M E 12 2 97%
Leeb et al. (2005) Virtual reality M E 6 2 92%
Kayagil et al. (2007) Game M E 1 4 77%
Krepki et al. (2007) Game M E 128 2 100%
Scherer et al. (2007) Game M E, M, O 3 2 + 2
Bussink (2008) Game M E 32 4 45%
Lehtonen et al. (2008) Game M E 6 2 74%
Oude Bos and Reuderink (2008) Game M E 32 3
Zhao et al. (2009) Game M E 5 4 75%
Tangermann et al. (2009) Game M E 64 2
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the MindBalance game by Lalor et al. (2004, 2005), a SSVEP is evoked by two dif-
ferent checkerboards, inverting at 17 Hz and 20 Hz. The attention focused on one of
the checkerboards is used to balance an avatar on a cord in a complex 3D environ-
ment. One advantage of the evoked responses over induced BCI paradigms is that
it allows easy selection of one out of multiple options by focussing attention on a
stimulus. For example, a 2D racing game with four different directional controls us-
ing SSVEP was created by Martinez et al. (2007), and in a similar fashion a shooter
was controlled in Jackson et al. (2009).

We have seen a series of games based on neurofeedback, games based on the
imagination of movement, and games based on evoked potentials. Of these BCI
paradigms, the neurofeedback games exploit the unique information a BCI can pro-
vide best. For example, Brainball uses relaxation both as game goal, and as means
of interaction. Using traditional input modalities this game simply could not exist.
In contrast, BCI games that are based on evoked potentials replace physical buttons
with virtual, attention activated triggers which do not change the game mechanics
significantly. These games could be improved by using evoked potentials to measure
the state of the user, and use the state as new information source as opposed to as
a button. By assigning a meaning to the mental action of concentrating on a game
element, for example devouring a bacteria in Bacteria Hunt (Mühl et al. 2010), the
user state itself becomes part of the game mechanics. The same holds for games
using imagined movement. These games replace movement to interact with buttons
with (slow) imagined movement, without adding much other than novelty.

While interesting, most of the BCI games are proofs of concept. The speed of
these games is often decreased to allow for BCI control, reducing fast-paced games
into turn-based games. In recent publications we see a trend towards more fine-
grained control in games using BCI interfaces, Zhao et al. (2009) and Jackson et al.
(2009) focus on smooth, application specific interpretation of BCI control signals.
The role of precise timing is also gaining attention, as shown in a pinball experiment
of Tangermann et al. (2009). We now need to continue this trend to move beyond
feasibility tests, and focus on the role that BCI can play in improving the gaming
experience.

10.3 Human-Computer Interaction for BCI

While BCI has until recently been an exploratory field of research, it might be prof-
itable to take some insights from Human Computer Interaction (HCI) into account.
Of course, fundamental research on hardware, signal processing, machine learning
and neurophysiology are a prerequisite for a BCI. However, advances in the usabil-
ity area are a direction of research that might be just as important for the acceptance
and widespread usage of BCIs. In this section we will look at learnability, memo-
rability, efficiency and effectiveness, error handling, and satisfaction, which are the
main concepts of usability according to Nielsen (1993). We will look at the most
relevant guidelines in these concepts and elaborate on them in the context of BCI
games.



156 D. Plass-Oude Bos et al.

10.3.1 Learnability and Memorability

In HCI, one of the most important aspects of a software program or interface is
how intuitive it is in its usage. Learnability is defined by ISO 9126 as the effort that
is required to learn the application (International Organization for Standardization
1991). Is a user able to use it straight out of the box, or is training needed to use the
interface? Memorability is closely related to learnability and deals with remember-
ing an interface (Nielsen 1996). Obviously, when an interface is intuitive and easier
to learn, the user will also remember the interface better.

Concerning BCIs, one needs to separate different forms of training that are often
needed for use of the BCI, namely training the user to use the right mental task
to control the game (interface training), training the user to reliably perform the
mental tasks (user training), and training a BCI system to recognize user specific
brain signals (system training).

User training is an important factor for getting users to start working with a BCI.
As performing a mental task to communicate with a computer is new for most peo-
ple and as the mental tasks are also new for everybody, it has to be made clear to
the users what is expected of them if they want to use a BCI. One illustrative ex-
ample of this is when using a Motor-Imagery-based BCI. A user is told to imagine
movements of his hands for example. But to a lot of naive users it is unclear what
is actually meant by imagining. Should they visualize the movement? Should they
feel their hand moving? Or should they see someone else’s hand moving? Most of
the time the sensation of moving ones hand is preferred, as this elicits the event-
related desynchronization (ERD) often used as a feature for detecting this mental
task (McFarland et al. 2000).

It is certain that for research and comparison of BCIs, all users need to perform
the mental task in the same way, id est, they need to be thoroughly and consistently
instructed. For more practical applications, this may as well be important. Users
might not overcome the first step of performing the mental task in the right way
and lose motivation because the BCI is not working properly. It is known from
literature that some users are unable to use certain paradigms—this is called BCI
illiteracy (Guger et al. 2003), see also Chapter 3 of this Volume. One reason for
this problem might be the way in which the relevant part of the cortex is folded in
relation to the scalp (Nijholt et al. 2008b). However, user training can be used to
overcome some types of BCI illiteracy, namely, those related to incorrect execution
of the task by the user. Training to perform the wanted brain activity consistently, for
example using feedback, can help to improve performance (Hwang et al. 2009). Of
course user training can be a tedious process, especially because performance can
sometimes decrease instead of increase (Galán et al. 2007). Moreover, it is important
to keep the user motivated through the process. To keep the user motivation high
and the task clear, an intuitive mapping from mental task to in-game action is vital.
One example of such an intuitive mapping is explained on page 168. The intuitive
mapping of the state of relaxation to the shape of the player’s avatar is helping the
users use this modality to their advantage. This type of BCI is of a more passive
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one. Very little or no training at all is needed to use the system. This is often the
case with passive BCI’s as opposed to active BCI’s (see also Chapter 11 of this
Volume).

One promising way to combine different techniques is the so-called online “on-
the-job” training (Vidaurre et al. 2006). Users get clear instructions how to perform a
certain task while at the same time the BCI system gathers data to train its classifier.
For games, this online training might consist of some tutorial in which the game
itself is explained, or in which the users play some kind of minigame.

10.3.2 Efficiency and Effectiveness

As seen in Sections 10.1 and 10.2, the speed and accuracy of active BCIs (the user
intentionally makes an action) does not yet even approach that of traditional game
controllers. The advantage of using a BCI for direct control should then be in some-
thing other than efficiency (doing things with the least amount of effort). In this case
the BCI should not be a replacement for using the keyboard and/or mouse. So if the
efficiency cannot be high enough because of technical limitations, the effectiveness
(doing the right things) could be higher. In other words: a BCI application should
give the user the feeling that the BCI has an added value. In the design of a game,
one could think of certain bonuses when using a BCI, or relieving the user of some
extra buttons to push by performing this task through the BCI.

However, the low transfer and high error rates are not so much a problem for
passive BCIs that try to estimate the user state (Zander et al. 2009). This information
is acquired without the active participation of the user and can be used to derive
meta-information about the context in which the HCI takes place. Applications can
adapt the way they present information or react to user input depending on the users’
psychological state in terms of attention, workload, or emotion. A specific example
of such a user state sensed by passive BCIs is reaction on machine or user errors, as
we will see in the next section.

10.3.3 Error Handling

As with the majority of modalities in HCI that try to extract information from the
human body, BCI is one of the modalities that has a fairly high level of error rates.
As can be seen in Section 10.2, error rates are typically around 25% and more. When
we also consider users that can make errors, error handling becomes an important
factor in designing games which use BCI.

Error handling consists of two parts: error prevention and error correction. Error
prevention consists of taking measures to prevent an error of ever happening. Within
the context of BCI this can be done by applying better classification algorithms,
smoothing, hysteresis and artifact filtering (see page 169).
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For this section error, correction is of particular interest. With the use of error
related negativity (ERN) it is possible to detect that a user is conscious of his error
and undo the previous movement (Ferrez and Millán 2008). One way to implement
this in the design of a game is to use it as a “rewind” function which breaks the
strict timeline often incorporated into games. This calls for creative game design
but can also lead to more immersive games. The user can interact with the game in
a completely different way. This kind of interaction might even be applied without
the user being aware of it: at some point the user will be conscious of his fault and
the BCI will have recognized it already. In other applications it can be used as a
more classical method of error correction and/or improve the system’s perceived
accuracy.

10.3.4 Satisfaction

Satisfaction is often said to be heavily influenced by acceptance and success of the
system (Rushinek and Rushinek 1986; Goodwin 1987) which can be attributed to
the system’s effectiveness and efficiency. Of course, there are also social aspects
and the personal preferences of the user involved (Lucas 1975; Ives et al. 1983;
Hiltz and Johnson 1990).

In the context of BCI games we can consider satisfaction to be the end result
of all of the design choices that were made, the functionality of the game, the ease
with which the user could learn and memorize the control of the BCI and with what
accuracy they could control the game. In other words, satisfaction can be seen as
everything the user experienced during the game.

The user satisfaction after playing a game can be measured, for example, by using
a post-game questionnaire (IJsselsteijn et al. 2008) for quantitative, or by interview-
ing the user for a more qualitative, analysis. Both can lead to interesting findings on
the BCI game. For an example of a quantitative analysis, in van de Laar et al. (2009)
it was found that users liked the challenge of imagining movements, but were also
quickly mentally tired by performing this task.

Besides using the quite reliable method of administering questionnaires to mea-
sure the user experience, an interesting possibility to measure certain parts of the
user experience is to let the BCI itself measure whether the user is satisfied or
not. In Garcia Molina et al. (2009) it is shown that certain moods can be recog-
nized. Especially if the system then adapts itself, depending on what the user feels,
such a kind of feedback loops can be helpful in creating a satisfying user experi-
ence. This system might be able to make certain choices in HCI design or in the
machine learning and classifying techniques it uses, specific for every user. This
might open up completely new ways of playing and interacting with games. In
turn, this would lead to user-specific games with fine-tuned parameters for differ-
ent aspects of the game. With such a great feature implemented, BCI games will
have an advantage over traditional games which will boost acceptance and popular-
ity.
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10.4 BCI for Controlling and Adapting Games

So far in this chapter we have discussed BCI games generally in the context of HCI
research. In this section we would like to narrow the focus down to the research
conducted and applications developed within our research team at the Human Me-
dia Interaction research group of the University of Twente. We will touch on the
critical issues of user experience, affective BCI games, BCI for controlling games,
intuitiveness and multi-modality in BCI games.

10.4.1 User Experience

Today, BCI research is still investigating the extent of the performance this tech-
nique can achieve. A lot of research effort is spent on improving speed and accuracy,
but in spite of the many BCI applications created for healthy people, the HCI aspect
of them is still often overlooked. As already stated in the previous section, how the
user feels about using a particular BCI paradigm, and about using it for a particular
task, can have a great influence on the acceptance of this new technology.

BCIs for healthy users have to deal with a different environment, and therefore
different challenges, different from BCIs for patients. Differences in the environ-
ment can be split into the effect the environment has on external user behaviour
during gameplay (moving, shouting, sweating), and more internal effects (changes
in the user state due to the game, such as, frustration, boredom or anger).

In our research group, a simple platform has been developed to test and demon-
strate BCI in a game environment. BrainBasher, as this setup is called, was ini-
tially used to compare the user experience for keyboard interaction with imaginary-
movement control (Oude Bos and Reuderink 2008). More recently, it was used to
compare imaginary and actual movement as paradigms to control the game (van de
Laar et al. 2009). See the case description below:

10.4.1.1 Application: BrainBasher

In 2008, we conducted research to find out what the differences were in user experience
and in performance, between real and imagined movement in a BCI game. This was one
of the first BCI studies in which not only the speed and accuracy of the paradigms used
was considered, but also the user’s affect through the use of a post-game questionnaire.
The BCI game used for this research was BrainBasher (Oude Bos and Reuderink 2008).
The goal of this game is to perform specific brain actions as quickly as possible. For
each correct and detected action you score a point.

The goal is to score as many points as possible within the limited amount of time. For
the actual-movement task users must lay both hands on the desk in front of them. When
the appropriate stimulus appears they have to perform a simple tapping movement with
their whole hand. When performing the imagined movement task, users are instructed
to imagine (feeling) the same movement, without actually using any of their muscles.
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A screen capture of a BrainBasher game session, showing the score, the current
target task, and feedback on previous and current brain activity.

Twenty healthy persons participated as test subjects in this study. The average age across
the group was 26.8 years, 50% was male and 50% was female.

Our experiment consisted of two conditions: actual movement and imagined move-
ment. The order of performing actual and imagined movement was randomly assigned
for each subject respecting equal groups for each order. Each part consisted of one train-
ing session, in order to create a user-specific classifier, followed by one game session,
after which the subject filled in a user experience questionnaire. This questionnaire was
designed based on the Game Experience Questionnaire (GEQ) developed at the Game
Experience Lab in Eindhoven (IJsselsteijn et al. 2008).

Results show that differences in user experience and in performance between actual
and imagined movement in BCI gaming do exist. Actual movement produces a more
reliable signal while the user stays more alert. On the other hand, imagined movement
is more challenging.

10.4.2 Passive BCI and Affect-Based Game Adaptation

Despite the increasing numbers of controller buttons and various ways to provide in-
put to the computer, HCI in its common form is a highly asymmetrical exchange of
information between user and machine (Hettinger et al. 2003). While the computer
is able to convey a multitude of information, users are rather limited in their pos-
sibilities to provide input. Specifically, the flexible incorporation of information on
contextual factors, such as the users’ affective or cognitive states, into the interaction
remains difficult. Such flexibility might be seen as one of the hallmarks of a natural
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interaction between humans, and would add great value when available in HCI, in
particular to improve the user experience. For example, when humans are playing
together, one can realize that the other is bored or frustrated and subsequently adapt
their behaviour accordingly to motivate the other player again.

There are multiple ways to optimize user experience in games. Saari et al. (2009)
introduce the term “psychological customization” and suggest the manipulation of
the story line or the presentation of games to realize a user-specific affective adapta-
tion. Knowledge about the user profile, task and context can be used to regulate the
flow of emotions as narrative experiences, to avoid or limit negative emotions harm-
ful to user experience (or health), to respond to observed emotional states (e.g., to
maintain challenge), or to deliberately create new combinations of emotional, psy-
chological states and behaviour. For the online adaptation to the user during the
game, however, a reliable and robust estimation of the affective user state is imper-
ative. Unfortunately, despite their increasing computational capacities and sensory
equipment (camera and microphone), modern computers are limited in their capa-
bility to identify and to respond appropriately to the user state.

Some applications try to take user states into account using indirect measures,
mostly behavioural indicators of efficiency. Examples are speed boosts for players
that are fallen behind in racing games (“rubber banding”), to keep them engaged,
or the adaptation of number and strength of opponents in first person shooter games
according to the performance of the player. These techniques make assumptions
about the relation between in-game performance and user states. And while these
assumptions might hold most of the time and for most of the users, they are only
rough estimations and can lead to misinterpretations of user states. Such behavioural
estimates could be complemented by more direct methods of user state estimation.

10.4.2.1 User State Estimation

The automatic recognition of affective user states is one of the main goals of the
field of affective computing (Picard 1997), and great efforts have led to promis-
ing results for user state estimation via behavioural and physiological signals. The
principal possibility of deriving information about affective user states was shown
for visible and audible behaviour (Zeng et al. 2007). Alternatively, and especially
in the absence of overt behaviour, one can observe physiological responses of the
user, for example heart rate, respiration, or perspiration to derive the user’s affec-
tive state (Picard et al. 2001; Benovoy et al. 2008; Kim and André 2008). Inter-
estingly, it was shown that game-related user states, such as boredom, flow, and
frustration, can be differentiated via physiological sensors (van Reekum et al. 2004;
Mandryk et al. 2006; Chanel et al. 2008; Nacke and Lindley 2008; Tijs et al. 2009).
However, all of those measurements are indirect and thus potentially modulated by a
number of factors. Behaviour, for example, can be scarce in HCI or biased due to the
(social) context. Physiological signals are influenced by exercise, caffeine and other
factors. Neuro-physiological sensor modalities on the other hand, while not being
free of those influences, enable a more direct recording of affective experience.
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Affective neuro-science has shown the capability of EEG to discriminate be-
tween affective states (Davidson 1992; Müller et al. 1999; Keil et al. 2001;
Marosi et al. 2002; Aftanas et al. 2004). These neural correlates of affective pro-
cesses are explained and predicted by cognitive appraisal theories (e.g. Sander et
al. 2005). These associations between EEG and affective processes suggest the vi-
ability of neurophysiology-based affect classification. Accordingly, several studies
showed that such a classification is in principle possible (Chanel et al. 2006, 2009;
Lin et al. 2009). Chanel et al. (2006) even showed that EEG contributes additional
information about the affective state to physiological sensor modalities, and that a
fusion of both sensor modalities delivers the best classification performance.

It has to be noted that many of those (neuro-)physiological studies are still done
in a very simple and controlled context. This has implications for the applicability
of the techniques in a real-life context. As in other BCI fields, affective BCI also has
to deal with artifacts and other noise sources in order to deliver robust and reliable
measurements. Additionally, the complexity of affective and cognitive processes
requires special care in design and analysis of such experiments inducing specific
user states to ensure the validity of the induced states (van den Broek et al. 2009;
Fairclough 2009). So, if measurements are to be collected in more realistic scenar-
ios, the risk of possible confounds increases and endangers the reliability of the
psychophysiological inferences intended.

Two fundamental issues associated with the reliability of affect classification are
those of specificity and generality. That is, it is important to identify physiologi-
cal markers or patterns that are specific to the target emotions (e.g., independent of
the method of elicitation), but that general over different contexts (e.g., laboratory
versus real world). Especially for neuro-physiological measures, the independence
of measurements from a specific elicitation or the tasks participants are performing
cannot be assumed. To test it, experiments could use carefully constructed multi-
modal stimuli (Mühl and Heylen 2009) to manipulate affective states via different
stimulus modalities. On the other hand, a measurement of physiological correlates
in the context of different tasks and environments might provide evidence for their
context-independence. In this respect, computer games offer an interesting research
tool to induce affective states, as they have the potential to immerse players into
their world, leading to affective reactions.

10.4.2.2 Application: AlphaWoW

In Alpha-World of Warcraft (alphaWoW) affective signals couple the mood of the player
to her avatar in an immersive game environment. Alpha activity recorded over the pari-
etal lobe is used to control one aspect of the game character, while conventional controls
are still used for the rest.

World of Warcraft® is a very popular massively-multiplayer online roleplaying game
(Blizzard Entertainment®, Inc 2008). For our application, the user plays a druid who
can shape-shift into animal forms. In bear form, with its thick skin, the druid is better
protected from physical attacks, and is also quite the fighter with sharp claws and teeth.
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In her normal elf form, she is much more fragile, but can cast effective spells for damage
to knock out enemies from a distance as well as to heal herself. In alphaWoW, the
shifting between these shapes is controlled by the user’s alpha activity.

A user playing World of Warcraft using both conventional controls and brain activity
to control her character in the game.

How changes in alpha activity are experienced by the user, depends on the location
where the activity is measured. According to Cantero et al. (1999), high alpha activity
measured over the parietal lobe is related to a relaxed alertness. This seems a benefi-
cial state of mind for gaming, especially compared to drowsiness, which is said to be
measured frontally. The premises for mapping alpha to shape-shifting in the game was
that the opposite of this relaxed state would be some kind of sense of stress or agitation.
Agitation would have a natural relation to the bear form, as the bear is eager to fight,
whereas the relaxed alertness would be a good match for the mentally-adept night elf.

An example of a game that is used to induce mental states is the Affective Pac-
man game (Reuderink et al. 2009). This games induces frustration in users by ma-
nipulating the keyboard input and the visual output. During the experiment, users
regularly rate their emotions on the valence, arousal and dominance dimensions
(Morris 1995). In addition to these ratings, important events in the game—such as
dying, scoring points and advancing a level—are all stored, and can be analyzed for
correlations with the EEG and physiological sensors.

10.4.2.3 The Application of User State Estimates

Once the measurability and classifiability of specific psychological concepts, for
example boredom, engagement and frustration, are shown in a context related to
a specific application, the recognition technique can be integrated in a cybernetic
control loop. The determination of the reaction of the application now allows the
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incorporation of the current user state. With models guiding the dynamic behaviour
of the application according to the effect aimed for (potentially a specific user state
or positive experiences in general), affective-BCI-enriched interaction could be a
more natural, efficient, and enjoyable activity.

Combining behaviour dependent and independent indicators of user state might
lead to more robust and more reliable state recognition and thus to more effec-
tive game adaptations. Affective BCI could qualify for such a system as a fast and
sensitive method to directly measure affective states. Evidence for the value of the
adaptation of game difficulty based on physiologically determined anxiety level was
found by Liu et al. (2009) in the form of a reduced anxiety level, higher user sat-
isfaction, increased feeling of challenge, and higher performance. A similar result
was found in a study monitoring facial expressions to discriminate between positive
and negative affective states (Obaid et al. 2008).

The neuro-physiological inference of the user’s affective and cognitive state
might also help to increase safety and efficiency in work environments. This par-
ticular perspective will be discussed in Chapter 12 of this Volume.

10.4.3 BCI as Game Controller

While using a BCI to measure mental state is the most valuable way to integrate
BCIs in games—a new information source is tapped—a BCI can be useful as a
traditional game controller. To act as a game controller, the predictions of the BCI
need to be translated into meaningful commands in a way that enables fluent game
play. This implies that commands have to operate at the correct time scale, are issued
with minimal delays, and are invariant to changes in user state. We will now explore
these implications in more detail.

10.4.3.1 The Time Scale of a BCI

The time scale on which commands are issued needs to be congruent with the game.
For example, in slow-paced games, fewer commands are issued during a unit of
time, and the BCI output can be interpreted in a similar slow fashion by filtering
out the fast changes in the BCI output. A faster-paced game might require quick re-
sponses, and hence short spikes in output are required for control. The slow changes
in the output would work counter-productively, as they would make the game bi-
ased to a specific action. Some BCI paradigms are inherently more suitable for slow
games (sensorimotor-cortex rhythms), others are more suitable for fast-paced action
(the lateralized readiness potential, LRP). See Table 10.2.

An example of a game that requires operation on a small timescale is Affec-
tive Pacman (see Application: Affective Pacman). Control in our Affective Pacman
game is analyzed using the lateralized readiness potential (LRP). For this game,
multiple commands are usually issued within one second. This requires a BCI that
can respond quickly but is insensitive to changes that take place on the minute scale.
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Table 10.2 Overview of BCI paradigms information transfer rates (ITR), and the timescale they
operate on, sorted on latency. This table is based on the median values for the ITR and the latency
from Tonet et al. (2008, Table 2). As LRP was not presented in the overview of Tonet et al.,
we used numbers from Krepki et al. (2007) to illustrate negative latencies. EMG was added as
reference modality

Paradigm ITR (bits/min) Latency (sec)

LRP 20. −0.120
P300 28.2 1.58
ERD/ERS 28.8 1.5
SSVEP 26.4 2.10
Sensorimotor cortex rhythms 16.8 2.20
SCP 3.6 65.75
(EMG) (99.6) (0.96)

Alternatively, AlphaWoW (see Application: AlphaWoW) is an example of a
game that operates on a large time scale. Alpha power requires at least a few seconds
to be measured accurately. Therefore the game is most sensitive to changes in this
time range; faster and slower changes are attenuated. Due to its time scale, alpha
activity is less fit for fast-paced commands.

In order to adapt the system to changes in brain activity that occur over a longer
period of use, and also to individual differences in brain activity, z-score normal-
ization is applied to the measured alpha band power values. As a result, even if a
user has a tendency for, for example, high alpha values, they will still be able to
change into a bear. This is because the system looks at changes relative to the ob-
served situation. The game is sensitive to medium-term changes, and adjusts itself
for long-term changes and differences between subjects.

In addition, short term changes—due to noise and artifacts—could result in fre-
quent, involuntary shape shifting. In alphaWoW, three methods are applied to deal
with this issue and make the interaction more deliberate: smoothing, hysteresis, and
dwelling. With smoothing, the current value of alpha power is not only dependant
on the latest measurement, but also on the two previous ones. However, the most
recent band power value is still the most influential. This attenuates peaks caused
by outliers. Hysteresis is applied to the mapping from alpha value to changing into
elf or bear form. Alpha below a certain threshold results in a change to bear, and
alpha above a certain level transforms the user into elf form. In between these levels
no change occurs, giving the user some leeway, and only letting the more extreme
values have an effect. Finally, the user also has to stay in the range of effect for a
little while for the shape-shift to occur. This dwelling also reduces the effect of un-
intentional peaks in the values. Dwelling has not been applied to BCI before, but is
not an unknown method for other interaction modalities, such as for pointing in ges-
ture recognition (Müller-Tomfelde 2007). The combination of these measures make
alphaWoW sensitive to intended changes, and robust against unintended short-term
changes in the BCI output.

With alphaWoW, we have seen a few ways to adapt the time scale of the BCI to a
game. Due to the nature of shape-shifting, small delays are not much of a problem in
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alphaWoW. But for other games, the latency will have a huge impact on gameplay.
Some latency is inherent in BCI control, as the brain signals need to be observed
over a period before they can be analyzed. But in some paradigms, such as the
LRP for actual movement, preparation can be observed before the actual action
takes place. These characteristics could be exploited for fluent gameplay, resulting
in potentially negative latencies (Krepki et al. 2007). For slower paradigms, the
only solution may be to backfit the command in the game history, resulting in only a
visual delay, and not a semantic one. The translation of a working BCI to meaningful
game commands will be the most challenging, and most import, aspect of building
BCIs for games.

10.4.3.2 Influence of Mental State on BCI

A more complex challenge for BCI control is posed by the influence the content of
the game can have on the mind of the player. It is very likely that the mental state of
the player changes, as players often play games to relax, or are frustrated when they
cannot win. This variability in user state cannot be eliminated, as it is the core of ex-
periencing video games. The influence of mental state on BCIs is well known in the
BCI community; changes in the ongoing EEG signal are often attributed to boredom
(Blankertz et al. 2007). Boredom during training can be eliminated to a degree by
making training part of the game environment. Frustration is another mental state
that will occur frequently during game-play, for example, caused by a challenge
that is too difficult, or due to a BCI controller that malfunctions. This makes the
influence frustration has on the EEG signal a very relevant and interesting topic. It
has also been proposed to use the influence emotions might have on measured brain
activity to enhance BCI operation, for example, by using emotion-eliciting pictures
as SSVEP stimuli (Garcia Molina et al. 2009).

10.4.3.3 Application: Affective Pacman

Affective Pacman is a Pacman clone, controlled using only two buttons; one to turn
clockwise, and one to turn counter clockwise. For short periods, the buttons act unreli-
able to induce frustration.
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In our Affective Pacman game (Reuderink et al. 2009), we induced frustration in a
Pacman game to measure the potential influence of frustration on BCI performance.
Frustration was induced by simulating a malfunctioning keyboard for a few minutes,
interspersed with periods of normal game control. Self assessments indicate more neg-
ative mental states during the frustration condition.

Results indicate increased BCI accuracy during the frustration condition for
ERD/ERS based classification.2 For the (better performing) LRP classification, no in-
fluence of frustration was found. User frustration does not seem to pose a problem for
BCI operation, but more research is needed to investigate if this generalizes to other
context and other BCI paradigms.

To counter the effect of boredom on the (necessary) training of BCI systems, the
training can be made part of the game (Nijholt et al. 2009). During the start-up phase
of the game, players can start playing using more traditional modalities such as key-
board and mouse. During this phase, the BCI collects training data, with ground-
truth based on events in the game. A simple approach would be to use the key presses
as ground truth for an actual-movement paradigm. The computer collects training
data until a BCI can be trained with sufficient performance. BCI control is then en-
abled, while still allowing the user to continue playing with the keyboard. Slowly
the influence of the keyboard can be decreased, until the player is playing using
only the BCI. This approach keeps the online situation very similar to the training
period, reducing the surface for generalization errors. More interesting game events
can be used as well, for example, when the user casts spells by imagining (an EEG
recognizable) spell, and subsequently presses the relevant button. This creates train-
ing data in a similar fashion, with EEG examples tied to ground truth (the button).
When the BCI recognizes the spell successfully, the spell is cast before the button is
pressed, again allowing a gentle transition from training to online performance.

10.4.4 Intuitive BCI

There are many BCI prototype examples where the mapping between mental task
and the in-game action are not intuitive. Lotte et al. (2008) map the task of imaginary
foot movement to floating an object in the air. The Berlin BCI selects the best pair
of mental tasks to map to two controls in the applications—without any respect to
what actions it might actually get mapped to (Blankertz et al. 2008). This lack of
logic in the mapping may reduce the measured performance, as the subjects will
have to mentally translate what they want to do into the mental action they have to
perform. The less natural this translation, the more time and effort it will take to
actually perform the task. It does not help with the memorability of the mapping
either.

2To be published.
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The BCI paradigms that are currently most common have only a limited applica-
bility when one is trying to find intuitive mappings between the task and the in-game
action. P300 and SSVEP are intuitive for visual, auditory, or haptic selection. Imag-
inary movement of the left hand is easily mapped onto moving your avatar to the
left, and movement of the right hand to the right. But at the moment, there are not
many alternatives. This means that it is important to keep our eyes open to possible
new paradigms that might match all kinds of game interactions.

Beyond waiting for neuro-scientists to come up with the next best thing based on
knowledge from cognition and neurophysiology, another option is to look at it from
the user point of view. What would the user like to map to certain in-game actions,
and is that perhaps something that can be recognized from EEG measurements?
As users will not have knowledge about the neurophysiology that would help in
choosing mental tasks that might be detectable, many of the ideas that they come up
with may not work. On the other hand, when something does work, it will probably
be more natural to use, considering the source.

Although people do take suitability of the task for the in-game action into ac-
count, the effort it takes to perform the task adds more weight to their preference.
When the participant is given feedback as to how well the system can detect the
mental task, that information outweighs all other considerations. One can imagine
however that there is a break-even point from where the task takes more effort than
users are willing to spend, even if the detection was certain to be correct. And even
though the detection is this important to the user, one has to realize that although
the detection can be improved with better hardware and better software, the mental
task will remain the same.

10.4.4.1 Application: IntuiWoW

Based on some informal, open discussions we have had with a small selection of World
of Warcraft® players, we decided to try the following three paradigms, to be applied to
the same shape-shifting action as used in alphaWoW:

1. Inner speech: the user casts a spell in their mind, e.g. “I call upon the great bear
spirit” to change into bear form, and “Let the balance be restored” to change back
into the basic elf form.

2. Association: to change into a bear, the user tries to feel like a bear. To change into
an elf, the user tries to feel like an elf.

3. Mental state: the user goes into bear form, they stress themselves out, and to return
to elf form they relax. This task is similar to the tasks used in AlphaWoW, but this
time it is not explicitly related to alpha power.

A series of experiments with these three paradigms was run for five weeks, with
fourteen participants returning each week. The first week all participants were asked
to just perform the tasks, without getting any feedback as to how well the system was
recognizing any of it. In the last week everybody was given feedback, and in between
half the group was given feedback and half was not.
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Results indicate interesting differences between the feedback and non-feedback
groups. The mental state paradigm was well-liked by the feedback group, because of
the accurate recognition by the system, but disliked by the non-feedback group because
of the effort it took to perform this task. Also, people did not like to put themselves into a
stressed state voluntarily. On the other hand, inner speech was liked by the non-feedback
group as it was most like a magic spell, and took very little effort and concentration to
do. Participants also considered this task to be the most easy to interpret. However, the
feedback group quickly discovered that the current system was not well-equipped to
detect this task, quickly moving this paradigm to the bottom of their list of preference.
The association task set seemed generally well-liked, as people felt it fitted well with
the game. It encourages the player to become one with the character they are playing,
and to immerse in the game world.

10.4.5 Multimodal Signals, or Artifacts?

In order to measure clean brain signals, BCI experiments are usually conducted in
isolated rooms, where the subjects are shielded from electrical noise and distrac-
tions. Healthy subjects are instructed to behave like ALS patients; they are not al-
lowed to talk, to move or blink their eyes, as these activities would interfere with the
brain signals and the cognitive processes being studied. But such laboratory-based
controlled setups are far from a natural environment for gamers (Nijholt et al. 2009).
To realize the ultimate automatic intuitive “think & play” game console (Lécuyer et
al. 2008), experiments should be conducted in a realistic HCI setting, which implies
first a natural game environment, such as a private home or even outdoor public
place, and second natural behaviour of the user.

In an ordinary computer game, the players would be situated in a home environ-
ment and express themselves—willingly or not—through mimics, gestures, speech
and in other ways. The increase in body movement imposed or allowed by the game
results in an increase in the player’s engagement level (Bianchi-Berthouze et al.
2007), so the reactions and movements would become more intense as the game
gets immersive. Players would regularly receive auditory or visual feedback from
the game. Additionally, in multi-player games, players interact with each other by
means of talking, listening, and the like.

10.4.5.1 Application: Bacteria Hunt

During the eNTERFACE’09 Summer Workshop on Multimodal Interfaces, we started
a project to build a multi-modal, multi-paradigm, multi-player BCI game. The project
resulted in the Bacteria Hunt game in which the aim is to control an amoeba using arrow
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keys and to eat as many bacteria as possible. Three versions of the game were imple-
mented. In the basic non-BCI version, eating is accomplished by moving the amoeba on
a bacterium and pressing the space key. In the second version, the relative alpha power
of the player is also used. The high alpha measured at the parietal lobe is related to a
relaxed alertness (Cantero et al. 1999). In the game, the more relaxed the player is, the
easier it is to control the amoeba. The third version adds a second BCI paradigm into
the game: SSVEP. Eating is now performed by concentrating on a flickering circle that
appears when the amoeba is on a bacterium.

A screen shot of the Bacteria Hunt game

The non-BCI version of the game allows the comparison of BCI and other modali-
ties with respect to features such as enjoyment, ease, and exertion. The second version
enables exploration of how well BCI can be used together with another modality—
keyboard in this case—and what implications this might have on concentration and
performance matters. And by the third version of the game the critical issues that may
arise due to using different BCI paradigms together—namely, the alpha power and the
SSVEP—such as overlapping measurement sites and frequencies, ability to extract and
decode information produced by complex brain activity can be investigated.

The feasibility of using BCI technology has already been proven with many ap-
plications (Section 10.2). The time has come to explore how BCIs can function in
combination with other modalities, and whether it is realizable to use BCIs in real
HCI environments. Recently, there was a study defining a set of guidelines to em-
ploy fNIRS in realistic HCI settings (Solovey et al. 2009). Another attempt was
Bacteria Hunt, a multi-modal, multi-paradigm BCI game utilizing EEG, built and
demonstrated during the eNTERFACE’09 workshop (Mühl et al. 2010). We argue
that this kind of research needs to be extended to cover multiple users, different
modalities, different contexts, and different BCI paradigms and signal types.

Using EEG-based BCIs in combination with other modalities poses a few extra
challenges due to the nature of EEG. One of these problems is that EEG sensors
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tend to pick up other electrical signals as well, such as electrical activity caused by
eye movements (electrooculogram, EOG), and electrical activity from muscle con-
traction (electromyogram, EMG). Especially BCI based on potentials, as opposed
to BCIs based on band power (such as ERD/ERS based BCIs) can suffer from the
big amplitude change caused by eye movements and eye blinks. As we cannot ask
that a player stops eye movement and blinking altogether, the negative impact of
eye movements has to be removed from the signals. In contrast to medical BCIs, we
do not have to remove all eye movement in our recordings, decreasing the negative
influence should be enough.

There are two main approaches when dealing with occular artifacts. The first
is to simply remove EEG episodes contaminated with eye movements. For some
games, where the BCI is applied to detect long-term changes, such as mental state,
this method can be applied. As a result, the game then needs to be able to deal with
missing episodes. The other approach, filtering, is applicable to a wider range of ap-
plications. Removing the EOG signal has an additional benefit; consciously blink-
ing, or even suppressing movement is known to cause a Readiness Potential (RP).3

Allowing the user to move their eyes freely could potentially reduce the number of
non-task related RPs, making the EOG movements simpler to interpret and remove.
One huge drawback associated with filtering the EOG artifacts is the need for addi-
tional sensors to record the activity of the eyes. EEG headsets designed for gamers
often do not contain sensors specifically placed at traditional EOG locations. This
poses the technical challenge of removing EOG influence without the use of these
sensors.

Another challenge that BCIs will face when applied to games is the influence
of speech, facial expressions and movement. The EMG signal, characterized by a
high-power signal in a broad frequency range, has a profound impact on the EEG
recordings. While speech and facial expressions are easier to suppress during game
play than eye movements, a BCI that can work robustly while the player laughs and
talks is preferable.

So far we have approached the EOG and EMG signals as noise, that has to be
removed from the EEG signal. But if we can identify the influence of EOG and
EMG signals, as is required to perform filtering, these signals can be isolated, and
used as a separate eye gaze or muscle modality. In this context, the artifact becomes
another signal, and can be used as an additional source of information.

In IntuiWoW, one of the reasons mental state is so easy to recognize, is because
many users tense up facial and neck muscles to enter a more stressed state, and re-
lax these for the relaxed state. The EEG system is sensitive to this muscle activity,
and as a result the BCI pipeline can easily classify these clear muscle tensions into
the two states. For these users, the actual brain activity related to these states will
mostly be ignored. In medical BCI, often aimed at paralyzed people, a system that
uses muscle activity in order to distinguish different user states is considered use-
less. The patients who might end up using the system will not be able to produce

3Whether automatic eye movements and blinks also display a RP remains to be seen (Shibasaki
and Hallett 2006).
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this muscle activity, so the system will not work for them. The healthy subjects in
our experiment did not experience this as a problem, however. The system recog-
nized their mental state, even though it may have been an external expression of it.
They were just amazed that they could control their avatar by changing their mental
state, and did not care about whether it was a “pure BCI” or not. We propose that
the usability and user experience are more important when looking at the general
population as a user group, than the consideration of only using brain activity for
the interaction.

10.5 Conclusions

Applications for healthy people are becoming more and more important in BCI re-
search. Gamers are a large potential target group, but why would a healthy person
want to use BCI when it has still so many issues (delays, bad recognition, long train-
ing time, cumbersome hardware)? BCI needs to prove it can be used in distinctive
new ways that will make it a valuable addition to current input modalities with a
combination of features that no other modality can offer. Unconstrained by what is
physically possible, it might also be a very natural interaction modality, allowing
gamers to express themselves in their own unique way.

Some of such valuable features have already been uncovered. In human computer
interaction the amount of information the user can provide is limited. In addition
to control commands, BCI can provide new kinds of information, specifically on
the user’s mental state. There have been reports by users that the system seems to
recognize a decision before they were consciously aware of it themselves. As with
LRP, it may also be possible to detect actions before they are actually executed.

The medical research that lies at the foundation of current BCI research has been
and still is very important. However, to move BCI forward as a viable interaction
modality for everybody, the human element has to be given a more prominent place
in the research. Whether the system is a ‘pure BCI’ is of secondary importance
to healthy users. Usability and user experience, which lie at the core of human-
computer interaction, should be considered when designing systems and applica-
tions, in order to increase the user satisfaction and acceptance of this new technol-
ogy.

We believe that BCI could be seamlessly integrated with traditional modalities,
taking over those actions which it can detect with sufficiently reliable accuracy. For
game adaptation, affective BCI could be a fast and sensitive method on its own, or
combined with other user state indicators it could help to create more robust and
reliable systems. Timing and fine-grained control are important topics to look into,
as these features are important for many applications. Artifacts and noise that are
inherent to using BCI in a real-world environment should be dealt with or even
better, used as additional information about the user.

We need to move beyond feasibility tests, to prove that BCI is also applicable
in realistic, real-world settings. Only the study of BCI under ecologically valid



10 Brain-Computer Interfacing and Games 173

conditions—that is within realistic HCI settings and with behaving users naturally—
will reveal the actual potential, and also the real challenges, of this promising new
technology. Another way of thinking is required to make BCI part of HCI. ‘The
subject’ should become ‘the user’. The first steps have already been taken.
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Chapter 11
Enhancing Human-Computer Interaction
with Input from Active and Passive
Brain-Computer Interfaces

Thorsten O. Zander, Christian Kothe,
Sabine Jatzev, and Matti Gaertner

Abstract This chapter introduces a formal categorization of BCIs, according to
their key characteristics within HCI scenarios. This comprises classical approaches,
which we group into active and reactive BCIs, and the new group of passive BCIs.
Passive BCIs provide easily applicable and yet efficient interaction channels car-
rying information on covert aspects of user state, while adding little further usage
cost. All of these systems can also be set up as hybrid BCIs, by incorporating infor-
mation from outside the brain to make predictions, allowing for enhanced robust-
ness over conventional approaches. With these properties, passive and hybrid BCIs
are particularly useful in HCI. When any BCI is transferred from the laboratory
to real-world situations, one faces new types of problems resulting from uncon-
trolled environmental factors—mostly leading to artifacts contaminating data and
results. The handling of these situations is treated in a brief review of training and
calibration strategies. The presented theory is then underpinned by two concrete
examples. First, a combination of Event Related Desynchronization (ERD)-based
active BCI with gaze control, defining a hybrid BCI as solution for the midas touch
problem. And second, a passive BCI based on human error processing, leading to
new forms of automated adaptation in HCI. This is in line with the results from
other recent studies of passive BCI technology and shows the broad potential of this
approach.
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11.1 Accessing and Utilizing User State for Human-Computer
Interaction

Today’s interaction between machines and human beings in general is dominated
by discrete and overt events, demanding a high degree of awareness from the user.
Commands are messaged by explicit manual actions, like button presses, or speech
control, and information is fed back from the machine through visual, auditory
and/or tactile displays. Further, in the last decades—especially in Human-Computer
Interaction (HCI)—a strong development towards increasing diversity in informa-
tion flow could be observed, approaching a complexity of interaction which can sat-
urate the user’s capabilities. User-friendly design of HCI has therefore become an
important part of current research. New approaches evolved such as adaptive or in-
terpretative HCI heading for optimal support of the user (Chen and Vertegaal 2004;
Rötting et al. 2009). With that, context-sensitivity is added to already existing
human-machine systems. The key information for the design of such systems is
knowledge about the current user state within the interaction.

11.1.1 Utilizing User State for Human-Computer Interaction

Relevant information in human-computer interaction comprises state of the tech-
nical system and of the system environment, as well as state of the user, In
particular, cognitive processes like the user’s internal interpretation of the situ-
ation are of high interest. This can be made clear by taking a look at another
type of interaction—that between humans. One fraction of social interaction is
explicit—by intentionally sending a message to another actor. In addition, there
is an implicit information flow. By observing aspects of user state accompany-
ing the explicit interaction, such as gestures, mimics, or body posture, actors
gain access to information about inner states of each other. Reading interpreta-
tions and intentions of others is an important ability that involves representing
and embedding the mental states of others in one’s own mind, as, for example,
postulated by the “theory of mind” (Premack and Woodruff 1978). Such infor-
mation might also be relevant for a more intuitive HCI (Asteriadis et al. 2009;
Moldt and von Scheve 2002). Consequently, integrating information on aspects of
user state into HCI could lead to a more natural way of interaction between human
and machine. Here cognitive aspects are of special interest, as they might reflect
highly complex information of the current user state—which is mainly encoded in
the human brain.

One can divide these aspects of user state into two roughly distinct groups, both
of which can carry relevant (and implicit) information. First, there are latent cog-
nitive processes, such as arousal, fatigue and more complex examples like the per-
ceived loss of control (Jatzev et al. 2008). And second, there are time-bounded cog-
nitive processes, known as cognitive events from neuro-science. First investigated
examples from this area are perception and processing of errors (Blankertz et al.
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2002; Zander et al. 2008; Ferrez and del Millán 2008), moments of bluffing in a
game context (Reissland and Zander 2009) or surprise (Farwell and Donchin 1988).

In a system which captures user state for implicit communication, this infor-
mation flow can be seen as input from the user to the machine which is not sent
intentionally—hence as implicit commands. Due to the fact that such implicit com-
mands are generated automatically in the course of interaction, there is an increase
of information flow, while the effort of the user is not increasing. Hence, the use of
information on cognitive user state is a highly efficient way for enhancing HCI.
But—unfortunately—especially these aspects are hard to observe with technical
systems, as will be explored next.

11.1.2 Accessing User State with Psycho-Physiological Measures

User state has covert parts, which are hard to access from the outside. Examples
for these parts are physiological processes within the human body or the aforemen-
tioned processes of cognition. There are approaches to utilize overt measures, like
the users behavior, and of extracting information correlated to aspects of user state
(Becker et al. 2007). Further, physiological measures like haptic data (Park et al.
2005) or eye gaze (Asteriadis et al. 2009; Rötting et al. 2009) have been shown to
provide useful information on user state. Yet, the scope of these methods is limited,
as they can only generate information which is weakly correlated to the actual user
state (Müller et al. 2008). This gives the basis to define these parts as covert aspects
of user state (CAUS), analogously to covert attention (Posner and Cohen 1984).

11.1.3 Covert Aspects of User State

A covert aspect of user state is a process occurring within the user which can only
be detected with weak reliability by using overt measures. As the user’s cognition
is inherently hard to access by overt measures, a big portion of cognitive processes
are CAUS. Hence, we need an elaborate and continuous measure of accessing and
providing those as input to HCI like proposed in the previous section. Since the
electroencephalogram (EEG) gives insight into the processes of the human brain,
the source of all cognition, in high temporal resolution, it is a potentially suitable
measure. In the field of Brain-Computer Interfacing EEG has been used for online
detection and interpretation of distinct cognitive processes. Applied in a broader
context, such BCIs provide a powerful tool for enriching HCI in general with infor-
mation on CAUS like cognitive events and conditions. In the next section, a view
on classical BCI technology from an HCI perspective will be given, followed by an
overview of broader definitions of the term Brain-Computer Interfaces, including
passive and hybrid BCIs, and extending them from medical applications to HCI in
general.
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11.2 Classical BCIs from an HCI Viewpoint

BCIs are primarily considered to be means of communication and control for their
users (Wolpaw et al. 2002). These “classical” BCIs can be divided into two sub-
groups, which we now summarize from the perspective of HCI.

• Directly controlled BCIs Some BCIs allow for direct communication with a tech-
nical system, by mapping consciously controlled mental activity onto a new ar-
tificial output channel. Thereby, they can bypass the natural outputs of the brain,
which is integral for their clinical applications. Examples are BCIs based on sen-
sorimotor imagery (Blankertz et al. 2007), where the type of mental imagery is
mapped to a multi-valued control signal. Despite its power and novelty, apply-
ing this type of control to general Human-Computer Interfaces is a challenge.
Complementing conventional (e.g. manual) means of human-computer interac-
tion with it faces the problem that the user’s resources for parallel conscious
communication are limited, creating a conflict between BCI and conventional
control. Second, brain activity which can be both consciously controlled and at
the same time measured with present non-invasive equipment largely overlaps
with the brain’s primary output modality—muscular control—creating another
resource conflict. This limitation may eventually vanish with further advances in
detecting more subtle cognitive processes and commands. Finally, if taken as a re-
placement to manual control instead of a complement, BCIs are currently slower,
more prone to errors, and more difficult to use.

• Indirectly controlled BCIs BCIs in the second group rely on conscious modula-
tion of brain activity, as it arises in response to external stimulation. In these, the
modulated activity is mapped to an artificial control signal. Examples are P300
spellers (Farwell and Donchin 1988): systems which detect a characteristic brain
response, the P300, which is elicited whenever an on-screen letter focused by the
user lights up. Thus, brain activity is indirectly controlled by shifting attention.
In this interaction technique, another resource of the user—the attention focus in
visual, auditory, or tactile perception—is modulated for the purpose of commu-
nication, and thereby occupied. For this reason, this subgroup of BCIs, as well, is
not easily applied meaningfully in Human-Computer Interfaces.

11.3 Generalized Notions of BCIs

We can re-express the previously identified groups in a framework which captures
additional types of BCIs, by shifting the perspective from the user side to the appli-
cation side. This shift allows for the following definition of BCIs, which covers a
broader spectrum of human-computer interaction.

A BCI is a system to provide computer applications with access to real-time
information about cognitive state, on the basis of measured brain activity.
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Further, in this context, it is beneficial to not restrict the information available to
BCIs to brain activity alone. Instead, context parameters may be used by BCIs to
help improve the accuracy of their predictions, leading to hybrid BCIs (Pfurtscheller
et al. 2006). Specifically, when moving from controlled laboratory conditions to
highly varying real-world situations, context parameters help factoring out varia-
tions in brain activity which could otherwise bury features of interest under noise.
These parameters may include state of the application, such as program events, state
of the environment, or state of the user as acquired by other physiological measures,
such as body posture, voice tone, or gaze direction. Section 11.5 gives a complete
example of how careful hybridization can allow to successfully integrate otherwise
impractical BCI control into HCIs.

The classical BCI occupies, in the framework of the above definition, the role
of providing information which is actively messaged or modulated by the user in
order to control the application. What is not covered by classical notions, however,
is information which is not consciously sent by the user, spanning a large fraction
of implicit user state. BCIs which sidestep voluntary control are clearly restricted,
but they have several benefits which are critical for their effective use in Human-
Computer Interfaces. These will be outlined in the following.

11.3.1 BCI Categories

We have proposed a categorization of BCIs into three types (Zander et al. 2008).

• Active BCI An active BCI is a BCI which derives its outputs from brain activity
which is directly consciously controlled by the user, independently from external
events, for controlling an application.

• Reactive BCI A reactive BCI is a BCI which derives its outputs from brain activity
arising in reaction to external stimulation, which is indirectly modulated by the
user for controlling an application.

• Passive BCI A passive BCI is a BCI which derives its outputs from arbitrary brain
activity without the purpose of voluntary control, for enriching a human-computer
interaction with implicit information.

Active and reactive BCIs match the subgroups of classical BCIs for direct and
indirect control, respectively, and passive BCIs account for all other BCIs. These
categories form a partition of the space of BCIs, since first, conscious control does
either depend on external influences, rendering it reactive, or works independently
from it, making it active, and second, passive BCIs are defined as complementary,
in purpose, to this conscious control. The inter-category boundaries are smooth.

11.3.2 Passive BCIs

Restricted forms of passive BCIs predating these notions have been proposed in
the past, for example for detecting forms of mental workload (Kohlmorgen et al.
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2007) and perception of self-induced errors (Blankertz et al. 2002). Such applica-
tions have been referred to as “BCI as a measure” by some, since they give rise to
physiological measures of the user’s cognitive state (specifically of CAUS). They
have, however, not been analyzed and evaluated with respect to an ongoing Human-
Computer Interaction, and focus on user-state detection alone. More recent cases
include measuring working memory load (Grimes et al. 2008), and detecting and
correcting machine-induced errors (Zander et al. 2008). A complete example, one
of the first cases of using passive BCIs to enhance human-computer interaction,
is found in Section 11.6. Passive BCIs can be seen as secondary communication
channels in Human-Machine Systems: a Human-Machine System linked by some
primary communication channel (e.g. manual input) can be complemented by an
optional secondary channel formed by a passive BCI, influencing and enriching
the ongoing primary interaction with implicit user information (Zander and Jatzev
2009). The performance of passive BCIs is therefore best measured by the cost or
benefit of their use in a particular scenario, rather than in terms of their bitrate.

11.3.2.1 Key Properties

Passive BCIs have the following three distinguishing aspects which account for their
practical prospects in Human-Computer Interfaces:

• Complementarity The concept of passive BCI is complementary to other means
of Human-Machine Interaction, in the sense that it does not interfere with it, in
contrast to most forms of active or reactive BCIs, for reasons mentioned earlier.
A passive BCI can be reliant on either the presence or the absence of an ongoing
conventional Human-Computer Interaction, or be invariant under it.

• Composability An application can make use of arbitrarily many passive BCI de-
tectors in parallel with no conflicts, which is more difficult for active and reactive
BCIs due to the user’s limited ability of consciously interacting with them.

• Controlled Cost Since no conscious effort is needed for the use of passive BCIs
(besides preparation), their operational cost is determined by the cost of their
mis-predictions. Passive BCIs producing probabilistic estimates, together with
the a priori probability of predicting correctly, are sufficient for arbitrary cost-
optimal decision making at the application level, with zero benefit in the worst
case.

Since passive BCIs are so easily applicable in real-world systems, the only re-
maining cost factors of preparation and calibration come much more into focus.
Therefore, calibration and related issues are given a treatment in Section 11.4.

11.3.2.2 Accessible State and Potential Applications

A broad spectrum of cognitive state can be accessed with passive BCIs. This in-
cludes latent cognitive state such as arousal (Chanel et al. 2006), fatigue (Cajochen
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et al. 1996), vigilance (Schmidt et al. 2009), working memory load (Grimes et
al. 2008), visual/auditory/tactile/cross-modality attention focus (Kelly et al. 2005),
and possibly some emotional state, etc. on one hand, and temporary cognitive
events such as surprise, perception of user/machine errors (Blankertz et al. 2002;
Zander et al. 2008; Ferrez and del Millán 2008), or decision-making load (Heekeren
et al. 2008), etc. on the other hand. Significantly more subtle state could be ac-
cessed with better, but not easily deployable, measurement equipment (Shinkareva
et al. 2008). For EEG or Near Infrared Spectroscopy, a simple rule of thumb is:
what is represented in a large and compact area of the cortex and is close to the
scalp should also be detectable. Thus, brain atlases (Toga and Mazziotta 2000) give
a useful overview of what could potentially be accessed by passive BCIs.

Various potential applications arise from this data, such as for augmenting or
improving existing systems, e.g. by improving safety and usability via operator
monitoring. In this role, they allow to better respect the human factor in a Human-
Machine System. Another application is for creating highly interactive and sensitive
Human-Machine Interfaces: having information about the ongoing activity profile
of the user, the system can adapt to avoid cognitive overload, and further, informa-
tion about the interpretation of events by users can serve as a better basis for making
decisions. As a third example, passive BCIs can help better connect multiple users
by accounting for more aspects of user state, both in professional multi-operator
scenarios as well as in recreation environments.

11.4 Refining the BCI Training Sequence

Applying BCI technology as proposed in the previous sections poses new chal-
lenges—especially regarding the acceptance by healthy users. The time-consuming
preparation phase of EEG systems and the calibration of BCI detectors limit the
scope of possible applications. The calibration phase can be optimized in several
ways, though.

First, in spite of the strong variability between EEG sessions, there are ap-
proaches for porting information between sessions (Krauledat 2008). In line with
this thought, there might even be the possibility of defining universal detectors ap-
plicable to users or groups of users with short or no re-calibration. However, a pre-
requisite for that would be the existence of an aspect of cognitive state which is con-
sistent and represented invariantly across subjects. Beyond these problems, there are
still other hurdles to take. Shifting BCI applications into the context of general HCI
leads to a more complex, and hence noisier, environment, and diversified user state
induced by rich forms of interaction. Also, applications will not only be controlled
by BCI input but will still rely on standard input forms, like mouse or keyboard, and
other input methods may be combined with BCI input into a hybrid BCI. Another
problem is defined by the increasing number of artifacts recorded in the EEG data in
a more complex context. These can be divided into parts resulting from the environ-
ment or uncorrelated user state and those resulting from correlated user state, such
as correlated eye blinks and other types of behavior. As the first category of artifacts
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always decreases the signal to noise ratio, these should be filtered out for BCI appli-
cations. In contrast, artifacts from the second category may be used as features, but
it is unclear whether these signals are as robust as cognitive events and states, with
respect to context variation.

As there is a high variability in the signals recorded between sessions or between
subjects, and even within sessions (mostly due to changes in context), an initial sys-
tem calibration used for detecting patterns in brain activity is necessary. In classical
BCI applications, this calibration and the user’s learning of the task in the appli-
cation are the only methods of learning about the state of the interacting system.
This defines the first stage of adaptation. With that, we address the adaptation of
the machine to the user as well as the adaptation of the user to the machine. But it
is very likely that the user still will be learning while interacting within the appli-
cation. Hence, the user state will change in time which might lead to later perfor-
mance drops. Then, a readaptation of the classifier can be of use (Shenoy et al. 2006;
Jatzev et al. 2008), defining the second stage of adaptation. In general, one faces the
problem of two adaptive systems which may diverge in time. Both machine and
user have to be trained to let their adaptations converge. To cope with the previously
defined problems, the definition of procedures defining BCI applications has to be
more elaborate. Therefore, we propose the following sequence consisting of five
stages, for structuring a BCI session:

• User Training
In this stage the user gets familiar with the task of the Machine Training stage.
This task could be generating BCI detectable signals, mostly in active or reactive
BCIs, or a predefined Human-Computer Interaction usually independent from
BCI input, for generating passive signals.

• Machine Training
In a standardized paradigm the user is guided to generate prototypes of brain
activity which can be used as input for the proposed BCI application. In this stage
all artifacts should be controlled. The outcome of this stage is a system, usually a
combination of feature extraction and classifier, able to distinguish the intended
commands or to infer an aspect of cognitive state. We call this system a detector.

• Confluence Stage
Here, a simple BCI application is defined which can be controlled by the outcome
of the previously defined detector. Depending on the performance of the detector
in the initial application, parameters of the detector might be adjusted or, in active
BCIs, the user can learn how to interact with the system.

• Validation Stage
This stage is the first test of the intended BCI application. Its outcome is a perfor-
mance estimate of the defined detector. Depending on this, it can be decided to
repeat some of the previous three stages to obtain better results.

• Application Stage
The defined and validated detector is applied for generating input to the techni-
cal system resulting from brain activity of the user. Methods capable of online
adaptation might be used to (continuously) adjust parameters of the detector to
relevant changes of user state.
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11.5 An Active and Hybrid BCI: Combining Eye Gaze Input
with BCI for Touchless Interaction

The integration of new input modalities into HCI has been pursued by various re-
searchers. Already in 1982 Bolt and others investigated eye movements as an al-
ternative input modality to improve efficiency in HCI (Bolt 1982). Moving the
mouse cursor via eye movements has been shown to be intuitive and facilitate
search (Engell-Nielsen et al. 2003; Nilsson et al. 2007; Jacob 1993; Murata 2006;
Hutchinson 1993). However, defining adequate mechanisms for the selection com-
mand or click operation remained a challenge. The prevalent solution for Gaze-
controlled User Interfaces are dwell times, where items are selected when they are
fixated by the user for a pre-defined duration. This allows for a faster interaction
than using a mouse (Sibert and Jacob 2000), but creates the problem of finding the
appropriate dwell times for complex stimuli or icons. The user cannot rest the gaze
anywhere without making a selection (Jacob et al. 1993), which is stressful when
complex icons must be understood, leading to the “Midas Touch” problem (Pierce
et al. 1999). In real-world scenarios this problem is amplified by unpredictable vari-
ations in stimulus complexity, making it almost impossible to define an appropriate
dwell time.

11.5.1 A Hybrid BCI Solution

In this study, an active Brain-Computer Interface (BCI) is added as a second input
modality, serving as an action selection device within an eye gaze controlled envi-
ronment (Vilimek and Zander 2009). A two-dimensional cursor control is realized
by tracking the user’s gaze and a BCI-detectable mental gesture, an imagination of
a two-handed movement, serves as the selection command. The integration of an
active BCI application within HCI allows for direct conscious control and commu-
nication via BCI. This way, disadvantages of the two modalities can be counterbal-
anced: the Eye Gaze based system compensates for the BCI restriction to binary
inputs, not suitable for cursor movements, while the BCI enables a natural and se-
lection command under complete user control.

For an application, the hybrid BCI system must not be significantly slower than
dwell times, but large speed gains can not be expected either, since the activation
thought and BCI processing add their own latency. Secondly the BCI-based solu-
tion should result in lower error rates (false selections), especially in the presence
of complex stimuli, since it is based on an explicit conscious action. It was investi-
gated whether this hybrid BCI provides a successful solution to the “Midas Touch”
problem, not dependent on stimulus complexity.

11.5.1.1 Experimental Task

The proposed BCI-based target selection was compared against two dwell time so-
lutions on two stimulus complexities. Ten participants (five female, five male) took
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Fig. 11.1 Examples for easy (left) and difficult (right) search tasks

part in the study, performing a search-and-select task. Within a circular arrange-
ment of 11 similar distractor strings, subjects had to find the string identical to the
target string, which was presented in the middle of the circle (see Fig. 11.1). The
task included two levels of difficulty: an “easy” condition presenting strings of four
characters and a “difficult” one (seven characters), at the upper boundary of working
memory capacity (Miller 1994), where the user is forced to rest gaze for encoding.
The appropriate dwell times were found in pre-experiments: a long, well control-
lable dwell time of 1.300 ms and a short dwell time of 1.000 ms, not perceived as
slowing down performance.

11.5.1.2 Experimental Design

The structure of the experimental blocks was chosen in accordance with the train-
ing sequence described in Section 11.4. During the user training phase, participants
were assisted to imagine the hand movement, followed by a 15 minute machine
training phase. Subsequently, the BCI command was practiced during the conflu-
ence stage, enabling readjustments of the threshold probability for selection. The
mental gesture chosen for the BCI activation thought was: “imagine wringing a
towel with both hands into opposite directions”. Then, during the application stage,
the main task was performed by the participants, using the three activation modes
for each of the two levels of task difficulty. To ensure robustness of the detector, the
user training task was a variant of the application stage, with the difference that a
grey box containing the word “search” was occluding strings from the circle at ran-
dom. Participants were to follow the box until the word “select” appeared. In this
case, they had to perform the imagined hand movement. This training elicits pro-
totypes for two mental conditions or BCI classes. One class was characterized by
search (following the “search box”), the other one was characterized by the selection
command (motor imagery).
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Fig. 11.2 Grand averages of electrode and frequency weighting calculated by the Spec-CSP algo-
rithm. Units of all weights are arbitrary. Features show evidence for ERD during selection

11.5.1.3 BCI Control

For BCI analysis, 32 EEG channels were used, with a focus on sensorimotor areas
around the C3/C4 locations. BCI feature extraction focused on sensorimotor syn-
chronization/desynchronization (Pfurtscheller et al. 1997). The Spec-CSP (Tomioka
et al. 2006) feature extractor was used to find optimal linear combinations of weights
for each electrode and frequency.

11.5.1.4 Results

Advantages of the hybrid BCI were investigated by measuring effectiveness, ef-
ficiency, cognitive demand (mental workload) and user acceptance. Effectiveness
of task performance was measured by errors (false target selections), and accu-
racy of target selection, respectively, or the “easy” condition, the subject’s accu-
racy using the BCI-based solution was slightly lower (88%) compared to the long
dwell times (93%), with short dwell times resulting in the lowest accuracy (83.3%)
(see Fig. 11.3). Remarkably, the BCI achieves the best results in accuracy for the
“difficult” condition (78.7% correct), but only the difference to the short dwell
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Fig. 11.3 Left: Percentage of correct selection: Brain-Computer Interface (BCI), long dwell times
(DTL) and short dwell times (DTS). Right: Task completion times for the respective conditions

time (51.1% correct) was significant. With respect to efficiency, indicated by time
needed for task completion, the BCI solution was significantly the slowest activation
method over both conditions (5.90 s; 8.84 s) (see Fig. 11.3). Overall mental work-
load effects, measured via NASA task Load Index, showed no differences, except for
one subscale: ‘amount of frustration’. Here, the BCI method was rated significantly
lower (p < 0.05) than dwell time solutions. In addition, nine out of ten participants
preferred using the combined BCI/Eye Gaze Interface. Many participants stated to
use a strategy to avoid mis-selection by dwell times, moving their eyes shortly to
an item and then quickly to a ‘safe area’. With respect to BCI classification, the
mean cross-validation accuracy was 89% (standerd deviation of 10.1%). Spec-CSP
showed highest electrode weights over motor cortex (see Fig. 11.2) and highest
weights for frequency range was in the alpha band, characteristic for sensorimotor
rhythm (SMR).

11.5.1.5 Discussion

The more accurate interaction regarding the ‘difficult’ stimuli, a strong user prefer-
ence and low frustration ratings support the idea of applying a BCI as an additional
input modality in Eye Gaze based systems. This study demonstrates that an active
BCI can be successfully integrated into HCI by hybridization, ensuring an accu-
rate selection command for Gaze-controlled User Interfaces, which is, in contrast to
dwell time based solutions, independent from stimulus complexity.

11.6 A Passive BCI: Automated Error Detection to Enhance
Human-Computer Interaction via Secondary Input

The example for passive BCIs is taken from the domain of erroneous human-
computer interaction. The recent rapid development of automation technology has
increased the precision and efficiency of HCI, but has also been shown to be a source
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of errors in such systems. Sometimes, these systems are even referred to as “clumsy
automation” (Wiener 1989), causing additional cognitive workload for the human
instead of reducing it. We developed an Error-BCI (Zander et al. 2008) that enables
single trial detection of brain responses to machine errors as caused by such automa-
tion processes, but is not restricted to them. Errors, as perceived by the user, are fed
back to the system and thus enable a correction or adaptation. The direct access to
the cognitive state results in a more suitable and context-sensitive adaptation com-
pared to other automation technologies which have to rely on behavioural or other
implicit data (Wiener 1989). Since BCI error detection is based on a non-intended
and automatic reaction of the brain to the environmental context, this defines a pas-
sive BCI, with no additional cognitive effort for the user, and no conflict with the
primary mode of interaction.

11.6.1 Experimental Design

The applicability of the Error-BCI to enhance HCI efficiency was investigated by
utilizing a game as experimental task, in order to simulate a real-world-like situation
and to ensure proper user motivation. The goal of the player is to rotate one of two
letters, drawn randomly from the set {L,R} and presented in front of a circle, until
a given target configuration is reached. Reaching the target completes a round of
the game. The letter L can be rotated clockwise by a left key press and the letter R
counter-clockwise by a right key press (see Fig. 11.4). The letters are automatically

Fig. 11.4 Example for single trial of the RLR-Design
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changing colors in 1000 ms intervals, where color indicates the angle of rotation
upon key press. The following mapping rules hold: red indicates rotation by 90
degrees and green indicates rotation by 30 degrees upon key press. Only one press
is possible per color phase, and there is an intermittent grey phase, where no rotation
is possible. Players are free to choose the time point of the key press, and therefore
can build up an efficient strategy in order to achieve the goal: be as fast as possible
without making mistakes, such as over-rotating or pressing the wrong key.

The game is played in two modes: in the first mode, the subject has full con-
trol over the game (Full Control Mode). During the second mode (Reduced Control
Mode) false rotation angles (machine errors) appear randomly. In these, rotation an-
gles are smaller than expected: in 30% of all key presses, red letters would rotate by
30 degrees instead of 90 degrees and the green letter would not rotate by 30 degrees,
but not at all. To build up motivation for the task, a second player competing in speed
to the first one is participating in the RLR game. Performance is measured and fed
back to both players, by presenting the score after each round. The artificially in-
duced machine errors have a negative valence for the user, since they decrease the
performance and also lead to frustration.

11.6.2 Offline Experiment

The first of two experiments took place under controlled laboratory conditions, in-
volving 14 participants (6 F/8 M, age: 21–30 years). During two initial user training
sessions (40 rounds each), participants learned the rules of the game by practicing
it without an opponent. The first session was in Full Control Mode, and the second
session was in Reduced Control Mode. In the subsequent machine training session,
participants played against a trained opponent in the Reduced Control Mode. No
online feedback by BCI was given, but 54 EEG channels were recorded for later
analysis. The Error-BCI, evaluated offline here, discriminates two classes of condi-
tions: (1) erroneous rotations and (2) correct rotations. The classification scheme is
designed to detect event related potentials (ERP), since the EEG pattern of interest
is an ERP. The grand average ERP for the Error condition is characterized by a neg-
ative wave with a peak latency of 350 ms and a positive wave 100 ms later, very
similar to the feedback Error Related Negativity (f-ERN) as described by Holroyd
(2004). The f-ERN occurs in response to a negative feedback referring to incorrect
performance, a punishment or negative reward (Nieuwenhuis et al. 2004). The ERP
related with the machine error response is also present for the respective difference
wave (error minus correct) as it has been reported for the f-ERN (Holroyd 2004).

The machine training data was re-sampled at 100 Hz, epoched from 0–800 ms
relative to stimulus rotation and bandpass-filtered at 0.1–15 Hz. Subsequently, a
pattern matching method was applied (Blankertz et al. 2002), using six consecu-
tive time windows of 50 ms each, yielding 6 × 54 features per trial. A regularized
Linear Discriminant Analysis classifier was trained on these features. Performance
evaluation was done offline by 10-fold outer and 8-fold nested cross validation.
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The mean classification error for the automated error detection was 11.8% with a
mean standard deviation of 5.0%. The false positive (FP) and false negative (FN)
rates were moderately balanced with a mean FP rate of 9.54% and a mean FN rate
of 16.42%.

11.6.3 Online Experiment

The second experiment was conducted at the Open House of the Berlin Institute
of Technology (LNdW 2007). Four times two different players from the audience
played the RLR game against each other. The setting at the LNdW served as an
uncontrolled environment to test whether the classifier is robust enough to work
properly in such situations. Each pair played three sessions, consisting of 40 trials
per class, and lasting for about 15 minutes. First, the user training included one
session without error states. The machine training followed introducing machine
error trials with a probability of 30%. A classifier was trained based on the sample
trials of the machine training phase.

For BCI classification, the same pattern matching method as in the offline ex-
periment was utilized. Automatic error detection and adaptation via Error-BCI was
applied in the last session, but only for one player. While points were equally dis-
tributed between session 1 and 2, the performance of all BCI-supported players
increased significantly during the third passive BCI session. This is indicated by a
substantially higher score of the BCI-supported player, compared to the opponent
and to his own former sessions, plotted in Fig. 11.5 as difference in points between
players. The classifier had an accuracy of 81.2% with error rates equally distributed
over the two classes.

Fig. 11.5 Results of the
LNdW 2007. The bars
indicate difference in points
of Player A (up if better) and
Player B (down if better).
Horizontally striped bars
show the results from the user
training (no machine errors).
Results from the machine
training (machine errors
included) are represented by
the diagonally striped bars.
In the application stage,
results shown in black, BCI
support was given to Player A
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11.6.4 Discussion

The studies presented in this part show that it is possible to enhance the efficiency
of HCI via passive BCI, constituting an additional information channel. By provid-
ing the technical system with information about the perceived errors, the system
was able to adapt the actions to the user’s covert cognitive state of perceiving an er-
ror. Especially the second study shows that this significantly optimizes the Human-
Machine Interaction in real-world environments.

11.7 Conclusion

In this chapter, BCIs have been identified as possible means to access a particularly
interesting portion of a human-computer system’s state—Covert Aspects of User
State—which holds promise to enable a more intuitive and context-sensitive HCI.
The canonical notion of BCI as control device was revisited from an HCI standpoint
and its two main categories have been integrated into the definitions of active and
reactive BCI. A third distinct type of BCI has been defined as passive BCI, whose
applications are potentially far-reaching, only limited by present preparation and
calibration procedures. As a way forward, a sequential structure for the entire pro-
cess of BCI usage was proposed, followed by two complete examples of (B+H)CIs
from the newly defined categories: a passive one, and an active hybrid one. The
question whether BCI technology could be applied in a useful way for a broader
sense of HCI can thus be answered positively. At least the here presented framework
of passive and hybrid BCIs embedded in an elaborated training sequence leads to
new and more efficient ways of interaction between human and machine. Adding
BCI-Technology to a given gaze-based interaction system leads to a more natural
and less erroneous way of interaction (see 11.5). Access to the users situational in-
terpretation (see 11.5) allows for higher levels of automated adaptation and, hence,
to highly efficient HCI. This approach finds an application also in navigation (see
Chapter 4), computer games (see Chapter 10) and task balancing (see Chapter 13).
Also, it is not restricted to EEG signals (see Chapter 9). As these studies show, it is
only the starting point of the new and highly interdisciplinary field of (B+H)CI.
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Chapter 12
Brain-Based Indices for User System Symbiosis

Jan B.F. van Erp, Hans (J.A.) Veltman,
and Marc Grootjen

Abstract The future generation user system interfaces need to be user-centric
which goes beyond user-friendly and includes understanding and anticipating user
intentions. We introduce the concept of operator models, their role in implementing
user-system symbiosis, and the usefulness of brain-based indices on for instance
effort, vigilance, workload and engagement to continuously update the operator
model. Currently, the best understood parameters in the operator model are vigi-
lance and workload. An overview of the currently employed brain-based indices
showed that indices for the lower workload levels (often based on power in the al-
pha and theta band of the EEG) are quite reliable, but good indices for the higher
workload spectrum are still missing. We argue that this is due to the complex sit-
uation when performance stays optimal despite increasing task demands because
the operator invests more effort. We introduce a model based on perceptual control
theory that provides insight into what happens in this situations and how this affects
physiological and brain-based indices. We argue that a symbiotic system only needs
to intervene directly in situations of under and overload, but not in a high workload
situation. Here, the system must leave the option to adapt on a short notice exclu-
sively to the operator. The system should lower task demands only in the long run
to reduce the risk of fatigue or long recovery times. We end by indicating future
operator model parameters that can be reflected by brain-based indices.
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12.1 Introduction

Since the era of the industrial revolution, the interaction between human and ma-
chine changed drastically. At first, machines were only capable of replacing human
physical labor, which made the interaction between both purely physical. Later, in-
troduction of computing systems and the personal computer suddenly opened up
the possibility to allocate cognitive tasks to a system. These developments caused a
paradigm shift in Human-Computer Interaction (HCI).

In 2006, Nature predicted that the achievements of computing power, networks
and humans will grow beyond human creativity within the next 15 years (Vinge
2006). This prediction illustrates the skills that computing systems are developing,
inevitably leading to a new paradigm shift from an HCI perspective. System and
user will not remain separate entities but will confluent into a symbiotic coopera-
tion; or as Boff (2006) foresees: how systems can collaborate symbiotically with
humans to enhance human capabilities “. . . well outside the range of normal biolog-
ical variation thereby altering traditional boundary constraints on the adaptability
of humans in complex system design. . . ” The symbiosis Boff refers to requires ade-
quate knowledge about the user’s capacities, emotions and intentions and is an ex-
tension of human-centered design which should still be central in the development
of new technologies in order to make human machine symbioses a success (Han-
cock 2009). This chapter is about the importance of brain measures in the endeavour
of reaching user-system symbiosis.

12.1.1 Evolution of Human Computer Interaction

Before the introduction of computing systems, the interaction between a human
and a machine was purely physical. Optimizing performance of the total human-
machine system meant improving the machine or automated component, for ex-
ample by automation of any task that could be done faster, cheaper or more ac-
curate by the machine. With the introduction of the computer this changed. Fitts
(1951) was one of the first to acknowledge that both entities have different apti-
tudes and he crafted a list describing where each entity excels. Following this ap-
proach, allocation of tasks was based on the aptitudes of each entity, leading to a
categorized list of whether the human, machine, or a combination of both should
implement a function (Sheridan 1997). However, the Fitts list assumed the aptitudes
to be static and was not intended to incorporate dynamic situations (Dongen and
Maanen 2005). In reality, the environment or context can change rapidly creating a
different demand for aptitudes. This leads to the conception that function allocation
should also be dynamic. Adaptive automation takes the dynamic division of labour
between man and machine as a starting point. The terms adaptive automation, dy-
namic task allocation, dynamic function allocation, or adaptive aiding (Rouse 1988;
Scerbo 1996) all reflect the real-time dynamic reallocation of work in order to opti-
mize performance. They are based on the conception of actively aiding the operator
only when human information processing limitations emerge.
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In the last decades, a number of different dynamic function allocation taxonomies
have been proposed (Sheridan and Verplank 1978; Endsley 1987; Endsley and
Kaber 1999). The latest and widely accepted taxonomy by Parasuraman et al. (2000)
suggests to apply automation to four broad classes of functions: information acquisi-
tion, information analysis, decision support and action implementation. Within each
of these types, automation can be applied across a continuum of levels (i.e. from
fully manual to fully automatic) depending on the cognitive state of the human.

However, ongoing automation and the application of new sensor and information
technologies give rise to new challenges for the human. The increase in system com-
plexity, information volume, autonomy, and task integration from different domains
cause extreme differences in human demands, for example between normal work-
ing conditions and emergency situations. These challenges ask for new paradigms
in HCI to ensure that performance is continually optimized. The concept of aug-
mented cognition extends the adaptive aiding paradigm by integration of user and
system in a closed-loop system whereby the operator’s cognitive state and the oper-
ational context have to be taken into account by the system (Kruse and Schmorrow
2005). One of the challenging factors in the development of a successful closed-loop
system concerns the question of when optimization must be effectuated. Currently,
workload1 is generally considered as the key concept to invoke such a change of
authority, but most researchers agree that “workload is a multidimensional, mul-
tifaceted concept that is difficult to define. It is generally agreed that attempts to
measure workload relying on a single representative measure are unlikely to be of
use” (Gopher and Donchin 1986). The next section looks more closely at the vari-
ables necessary for future symbioses.

12.1.2 Information Models for Future Symbiosis

To deal with the challenges of today, the future generation interfaces need to be
user-centric and include understanding and anticipating user intentions. These inter-
faces will move away from the static keyboard and monitor, must be personalized,
and may have a human like appearance and communication channels that resem-
ble those used by people interacting with each other. To achieve this new human-
computer symbiosis, integration of an operator model (i.e. the user’s capacity and
task demands) with other information models is required. Literature shows a large
variety of models, for example Schneider-Hufschmidt et al. (1993) describe 13 el-
ementary models which focus on the various functional aspects relevant to adap-
tive interaction. However, to keep the system controllable, we select the following
models: (1) operator model (or user model), (2) task model, (3) system model, and
(4) context model (or domain model). All of this information is combined in (5) an
Adaptation Model (see Fig. 12.1).

1We consider workload here as the experienced load as function of task demands and user effort,
see Section 12.3.1 for more details.
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Fig. 12.1 Required
information models for
human-computer symbiosis

• Task model. The task model is a static representation of the possible tasks for an
operator (e.g., a goal hierarchy for solving specific error messages), containing
information on the task demands that affect human operator performance and
effort. The task model is not a definition of the operator’s cognitive state: The
effects these tasks have on the operator depends on the interaction between the
tasks and the operator model (Neerincx 2003). For some operators a certain level
of task demands results in low workload, whereas for other (less experienced)
operators this will result in high workload.

• System model. The system model contains technical information about the dif-
ferent system components (e.g. layout, software applications and dependencies).
Special cases of system models are for example application models and dialogue
(interaction) models (Brown et al. 1990).

• Context model. The context model (or domain model) contains high level infor-
mation of the human in its environment, such as information about the importance
of tasks, the hierarchy of events and organisational context (e.g. is a system part
of another system). The context model is dynamic.

• Operator model. The operator model can contain a large variety of information of
the individual operator, for instance general performance, preferences and capaci-
ties (and in the future possibly data on affective processes: emotions, engagement,
frustration, surprise, intention, and boredom). The operator model also contains
information about the current active task from the task model. Information about
the task load, that comes from the task model and the static information about
the capacity of the operator, result to an expected workload level. This should be
supplemented by an indication about the actual workload level. The system will
require every data source available for continuous updating of information, espe-
cially when in-the-loop adaptation is implemented. Examples of data sources are:
gestures, facial expression, emotion from voice, and more than ever: physiologi-
cal measures including brain-based indices to indicate the momentary workload
level.

This chapter focuses mainly on the role of brain-based indices as an element of
an operator model. However, it should be kept in mind that the integration of infor-
mation is essential in our human-system symbiosis. Isolated information from only
one of the models provides insufficient data for an accurate and useful interpretation.
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12.1.3 This Chapter

From the five models mentioned above, we focus on the operator model. The de-
velopment of adaptive automation in the last 15 years gave an impulse to mea-
sure physiological parameters to drive the dynamic allocation of tasks. It will not
come as a surprise that neurophysiological signals are generally seen as very rele-
vant for the implementation of adaptive automation and the realization of (future)
human system symbiosis. In Section 12.2, we present an overview of the current
state of brain-based indices useful for adaptive interaction, restricting ourselves to
indices related to workload (being the key concept to adapt the user-system inter-
action). In Section 12.3, we introduce a state regulation model and discuss how
these brain-based indices fit into an operator model. We conclude by identifying
the potential and restrictions of using brain-based indices in the endeavour of de-
veloping user-system symbiosis and what needs to be done to achieve this symbio-
sis.

12.2 Brain-Based Indices for Adaptive Interfaces

As stated above, workload is considered a key parameter in adaptive automation
and the majority of the physiological measures deal with workload. In this section,
we will further look into the possibilities of using brain signals as real time indica-
tors, possibly in combination with other (subjective, performance or physiological)
indictors (Byrne and Parasuraman 1996; Parasuraman and Wilson 2008). We dis-
cuss workload indices separately from indices for vigilance. We categorize the EEG
measures in reactive and passive measures according to the nomenclature intro-
duced by Zander (see Chapter 11 of this Volume). Reactive measures are based on
the brain response (e.g., Event Related Potentials—ERPs) to specific probe stimuli
while passive measures are based on brain patterns that occur during task execu-
tion.

12.2.1 Brain-Based Workload Indices

12.2.1.1 Reactive Workload Indices

An ERP is a brain response that is the result of an internal or external stimulus.
ERP components are either positive or negative deflections in the EEG (denoted
with a P or N, respectively) that occur within a certain interval after stimulus pre-
sentation (often denoted in milliseconds, e.g. the P300 component is a positive de-
flection with a peak after 300 ms, or with a single number as a simple counter,
e.g. the P3 is the third positive peak). Specific ERP components reflect different
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stages of processing. Generally speaking, the earlier components reflect percep-
tual processing while later components reflect central cognitive processing. Dur-
ing the 1970-s and 80-s, the idea arose that a user’s ERPs to (task irrelevant)
probe stimuli could serve as an indicator of workload and processing capacity.
The general hypothesis is that ERP components are delayed and/or have a lower
amplitude under high workload conditions as compared to lower workload condi-
tions.

With respect to workload measurements, mainly the P300 (or P3) has been in-
vestigated under the assumption that the P300 relates to the capacity for processing
(task relevant) stimuli (Isreal et al. 1980a; Prinzel et al. 2003). However, there has
been some controversy as to how workload affects the P300. Both the amplitude of
the peak and/or the latency may be affected. Watter et al. (2001) used the n-back
task (n0 – n-3) to study the P300. In the n-back task, observers are presented with
a continuous stream of items and have to indicate for each item whether it is the
same as the item 1, 2, or n positions back. P300 latency was constant across n-back
tasks, but P300 amplitude decreased with increasing memory load. However, lack
of sensitivity of the P300 amplitude was shown by Fowler (1994) in a simulated
visual flight rules final approach and landing scenario with different levels of work-
load. Fowler did find effects on the P300 latency reflecting the slowing of percep-
tual/cognitive processing caused by workload. Isreal et al. (1980b) had participants
perform tracking tasks with different levels of difficulty and measured P300 ampli-
tude to be counted tones and also found no effects on P300 amplitude as function
of task difficulty. After performing an extensive review on the P300 as index for
workload, Kok (2001) concludes that the utility of P300 amplitude as a sensitive
and diagnostic measure of processing capacity remains limited. Kok suggests that
in many tasks, an increase in difficulty transforms the structure or actual content
of the flow of information in the processing systems, thereby interfering with the
processes that underlie P3 generation.

Besides the P300, other ERP components have been investigated as well. For
instance, Ullsperger et al. (2001) investigated the P3 and the N1 components of an
auditory oddball task while participants performed a monitoring and mental arith-
metic task separately and together. In an oddball task, one rare item differs from
a continuous stream of similar items. The measures were found to be sensitive to
perceptual processing (N1) and central processing (P3). Allison and Polich (2008)
recently investigated ERP amplitude to tones while subjects played a first-person
shooter game at different difficulty levels and reported decreasing amplitudes with
increasing difficulty level. Much earlier work of Kramer et al. (1995) already indi-
cated that the P300 component may not be the most sensitive. In their experiment,
operators performed a low and high workload radar-monitoring task in the pres-
ence of a series of irrelevant auditory probes. P300 amplitude was sensitive only
to the introduction of the radar-monitoring task, but could not distinguish between
the low and high workload condition. Contrary to the amplitude of the N100, N200,
and early and late mismatch negativity (MMN) components. These components de-
creased from the baseline to the low load condition and from the low load to the
high load condition.
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12.2.1.2 Passive Workload Indices

A second category of EEG indicators is based on analyzing the different frequency
bands in EEG signals. Generally, EEG frequency is divided into the following bands
of which each is linked to a different state or activity: delta (<4 Hz; linked to sleep-
ing), theta (4–7 Hz; drowsy or aroused), alpha (8–12 Hz; relaxed), beta (12–30 Hz;
alert, concentrated, active) and gamma (>30 Hz; specific cognitive and motor func-
tions). As with the ERP studies, which combination of spectral bands has the highest
sensitivity and the best diagnostic value is a matter of debate. Several authors found
theta to be a good workload indicator with increasing load corresponding to increas-
ing theta (e.g Fournier et al. 1999; Gevins et al. 1998). For instance, Hankins and
Wilson (1998) found increased power in the theta band during flight segments which
required mental calculations. Alpha was also identified as sensitive to workload, but
with decreasing power corresponding to increasing workload (Gevins et al. 1998;
Fournier et al. 1999). Finally, also gamma was found to be sensitive. Laine et al.
(2002) used EEG power in the 31–40-Hz band combined with eye movement fea-
tures to obtain a classification accuracy of 87% distinguishing low and high work-
load conditions.

12.2.1.3 Discussion on Brain-Based Workload Indices

We have sketched two approaches in identifying EEG indices for workload. The
first is based on monitoring the brain’s reaction to probe stimuli, the second is based
on analysing the brain at work. In analogy to the nomenclature introduced by Zan-
der et al. (see Chapter 11 of this Volume), these approaches result in reactive and
passive indices, respectively. The presented results clearly show that there is not a
single, simple workload indicator in the brain, and the most sensitive index may
depend on tasks, environmental and individual characteristics (as already stated by
Humphrey and Kramer 1994). As reactive indices, mainly the N100 and P300 de-
lay and decreased amplitude seem of relevance. As passive indices, increased theta
and decreased alpha are most suitable (Gevins et al. 1998). Interestingly, we are not
aware of studies that directly compared these two types of indices. This is not to
say that there is no good diagnostic value in EEG workload indices. For a two-level
situation, discrimination rates above 90% correct are often reported (Fournier et al.
1999), reaching almost 100% correct when combined with physiological measures
such as eye movements and heart rate. For instance Wilson and Russell (2003) report
98% correct classification in distinguishing between acceptable load and overload
in a simulated air traffic control task. However, an important question is to what
extend we can generalise the reported results. This question has mainly been re-
searched across days and across group of individuals, but not so much over tasks
and environments. Also relevant is the question to what extend decreased theta and
increased alpha are due to other factors than workload. For instance, Smith et al.
(2001) found the same effects as function of task difficulty, which is not necessarily
the same as workload as we will show in Section 12.3.
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12.2.2 Brain-Based Vigilance and Drowsiness Indices

Experts can easily distinguish between the EEG of an alert and a drowsy individual,
and Vuckovic et al. (2002) showed that this expertise can also be formalised in an
artificial neural network (with a 95% match on average). Although from an HCI
perspective, a finer state classification is desirable it shows that EEG potentially
contains useful features, and reliable drowsiness detection may be of great value
in many (safety critical) environments e.g. (Lal and Craig 2001). Interestingly, this
research area focuses on passive indices in either the EEG or the cerebral blood flow,
but hardly on reactive indices.

12.2.2.1 Reactive Vigilance and Drowsiness Indices

We know of only a limited number of studies looking into reactive indices of drowsi-
ness. Boksem et al. (2005) used a three-hour visual attention task and compared
ERPs to relevant and irrelevant stimuli. Vigilance corresponded with a decreasing
N1 amplitude and a decreasing difference between the N2B amplitude of relevant
and irrelevant stimuli. The latter indicates that subjects encounter more difficulties
in ignoring irrelevant stimuli during a vigilance task. The authors claim that mental
fatigue results in a reduction in goal-directed attention, leaving subjects perform-
ing in a more stimulus-driven fashion. Trejo et al. (1995) used a visual display-
monitoring task (including a signal detection task) to evaluate the relation between
ERP components and performance but their experiment is not conclusive with re-
spect to vigilance effects.

12.2.2.2 Passive Vigilance and Drowsiness Indices

Similar to the spectral bands used as indices for levels of workload, indices for
vigilance are mainly based on the theta and alpha power in the EEG. Generally,
increased theta power correlates with poor performance in sleep deprived subjects
(Makeig et al. 2000), in vigilance tasks (Paus et al. 1997; Boksem et al. 2005), and
in continued video data terminal work (frontal midline theta rhythm; Yamada 1998).
Lal and Craig (2001) concluded based on an extended review that changes in theta
and delta activity are strongly linked to transition to fatigue.

Stampi et al. (1995) showed the usefulness of alpha activity as index for sleepi-
ness. More precisely, they validated the Alpha Attenuation Test (AAT) as index for
sleepiness with sleep deprived subjects. The AAT is based on the observation that
when operators get sleepier, alpha activity with eyes open increases and with eyes
closed decreases. The relation between theta, alpha and sleepiness was also reported
by Torsvall and Akerstedt (1987) who followed train drivers during night and day
drives. They report high intra-individual correlations between rated sleepiness and
alpha and theta power density.
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12.2.2.3 Blood Flow Vigilance and Drowsiness Indices

Besides EEG, cerebral blood flow (CBF) may contain correlates to vigilance or
sleepiness. Paus et al. (1997) investigated CBF as function of time on task in an au-
ditory vigilance task. Increased CBF was found in both left and right visual cortical
areas, but decreased CBF was found in the right hemisphere only in both subcortical
and cortical areas. The latter may correspond to a shift from controlled to automatic
attentional processing of the auditory stimuli, similar to the findings of Boksem et
al. (2005) on the N2B amplitude.

Schnittger et al. (1997) measured blood flow velocities in the middle cerebral
arteries during a 30-minute visual vigilance task. They found reduced velocities to
both hemispheres that corresponded with time on task and reduced performance.
However, Warm et al. (2009), Shaw et al. (2006) also measured CBF velocity for
both visual and auditory vigilance tasks. They confirm the decrease in CBF but do
find differences between left and right hemisphere.

12.2.2.4 Discussion on Brain-Based Vigilance and Drowsiness Indices

So far, vigilance indicators are mainly based on passive indices. Although there
may be diagnostic value in ERP components that signify a shift from top-down to
bottom-up processing, there are several passive EEG and CBF measures that cor-
relate well with vigilance or sleepiness. The general picture is clearer than in the
previous section on workload: power in both the theta and alpha band are the best
indices, although tools have been developed that use all major bands (Lal et al.
2003). As with the section on workload, we have to ask ourselves the question to
what extend the findings can be generalised. Interestingly, the indices seem to trans-
fer well across tasks, environments and even participants. However, Lal and Craig
(2001) mention several factors that may influence fatigue, including personality,
temperament, anxiety and mood.

12.2.3 Discussion on Brain-Based Indices

One of the things researchers have been interested in is the correlation between EEG
indices and performance. Often, high correlations are reported between for instance
EEG and rapid and slow reaction times (Besserve et al. 2008) and/or subjective mea-
sures (Prinzel et al. 2003). Although this is generally considered desirable, a valid
question is what the added value of EEG indices is in case performance measures
are available. Performance measures may be easier to obtain and more stable across
individuals than EEG data, which makes the latter useless in case there is a high
correlation with the obtained performance measures. However, we argue that work-
load and performance will correlate in specific circumstances only, so performance
indices alone cannot validate a workload index. We will further explain the relation
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between workload and performance in Section 12.3. A similar investigation should
be made between brain-based measures and other physiological measures to see to
what extend these are additional or complementary.

The presented overview also shows that indices are reasonably successful in
the lower workload range (i.e., vigilance, drowsiness), but reliable indices in high
load spectrum seem to be less reliable (see also Byrne and Parasuraman 1996). We
will also interpret these results using a model of state regulation presented in Sec-
tion 12.3.

Finally, are passive indices preferred over reactive indices? Apart from differ-
ences in diagnositcity, both have practical pros and cons. Most prominent is that
reactive indices need probe stimuli possibly disturbing task performance. However,
reactive indices may need less electrodes than passive indices, namely along the
central line versus spatially distributed (although some passive systems are based
on as few as two electrodes, e.g. Jung et al. 1997).

12.3 Input for an Operator Model

12.3.1 Relation Between Workload, Task Demand and
Performance

A complete operator model is very complex and would require knowledge of the
relation between the components of such model such as taskload, emotional state,
capacities, experience to name just a few. However, a complete operator model is
not required for all applications and also not to implement adaptive automation. In
this section we describe relations between important components of such an oper-
ator model. We describe the relation between task demands, workload, effort and
performance after which we present a model that provides insight into the dynamic
relation between effort regulation and operator state.

An operator model should contain information that is critical for the system to
be able to realize symbiosis. At this moment, workload is one of the crucial pa-
rameters of the operator model. An adaptive system may for instance apply the
following rule: under normal workload full information can be given in text and
images, while under high workload only critical information should be given using
images. Furthermore, tasks can be reallocated to the system or the user, depending
on the workload level. For example if the user’s performance degrades because of
low workload, a reallocation of tasks can bring workload levels back to normal and
optimize performance.

Figure 12.2 describes the relation between workload, task demands and oper-
ator performance. We argue that this relation is not as straightforward as is often
assumed. And therefore, information about the task demands is not sufficient.

Optimal performance can be reached under normal workload levels when the op-
erator is interacting with the system on a regular basis, and under high workload
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Fig. 12.2 Hypothetical
relation between task
demands, performance, effort
and workload

levels when the operator is able to maintain a high level of performance when addi-
tional effort is exerted. This can not be prolonged for a long time without costs. Op-
erators become more fatigued, which might result in more errors. Furthermore, the
recovery time after the work period will be longer. Suboptimal performance emerges
when the workload is low (low task demands) and the task requires little attention.
In this situation, human beings have difficulty to remain alert. Therefore, when new
information is presented, operators are likely to miss it and the performance can
decrease considerably. Suboptimal performance is also present in an overload sit-
uation. For example, when too much information must be processed, the operator
cannot get an acceptable level of performance any more (despite exerting additional
effort). It is likely that the operator will even stop to exert additional effort, because
this will not help him anymore.

Figure 12.2 provides insight into the relation between workload and task perfor-
mance. We argue that the following three conditions are undesirable and require a
symbiotic system to intervene:

• Under low workload conditions it is important to know if the operator is still in an
alert state. If not, the system should intervene, for example by adding additional
tasks to the operator. This intervention should be immediately.

• Under high workload conditions, the system should monitor the ability of the
operator to invest additional effort. Intervention does not need to be immediately,
but in due time to prevent the operator from becoming fatigued or requiring a
long recovery time.

• Under overload conditions, the system should intervene immediately to reduce
the task demands to a level where the operator can reach good performance with
additional effort and eventually reduce the task demands further to normal work-
load levels.

These conditions illustrate the importance of operator state information, or in
other words: How are these three conditions reflected in brain-based (and other
physiological) measures? In the previous section, we concluded that there are rela-
tively reliable measures to identify vigilance and drowsiness. Several experiments
show promising results for the use of brain measures for adapting the task load to
the state of the operator e.g. (Scerbo et al. 2000) in this range of low task demands.



212 J.B.F. van Erp et al.

Scerbo and his colleagues showed that overall task performance improves when the
state of the operator is used as a parameter to reallocate tasks between an operator
and a computer. They calculated the relative high frequency of an EEG spectrum
as an index of the operator state (which they called engagement index). Based on
this index, a computer algorithm decided to give the operator more or less tasks. If
the engagement index was low, providing additional tasks to the operator improved
the overall task performance. Also, detecting overload is relatively simple and can
be based on task demands and operator performance. However, the biggest chal-
lenge for a symbiotic system is to identify the high workload conditions where the
operator reaches optimal performance by adding more effort. This is the complex
situation where the operator him or herself is adapting to the task demands. To help
identify possible indices, we present a state regulation model to explain the relation
between operator state, workload and performance.

12.3.2 Operator State Regulation, Workload and Performance

The model in Fig. 12.3 is based on perceptual control theory (PCT; Powers 1973).
This model provides insight into the dynamic relation between task load and the
coping behaviour of operators. PCT is also used in similar models such as the model
of Hockey (2003) and of Hendy et al. (2001). The model of Hockey uses PCT to

Fig. 12.3 Operator state regulation model
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describe state regulation, whereas Hendy et al. use the PCT to describe information
processing. The present model combines state regulation and information process-
ing. The PCT assumes that the difference between the required situation (goal) and
the actual situation (sensor information) is crucial for the adaptive behaviour of bio-
logical systems. Adaptive changes will occur when differences exist (error signals).
According to PCT, goals can be defined at several levels and an error signal is often
a new goal for a lower order system. The model in Fig. 12.3 includes two levels:
‘subjective task goals’ at the highest level and ‘required state’ at a lower level.

The model includes an information processing loop and a state regulation loop.
The state is crucial for the information processing. There are many models of infor-
mation processing. Most of them do not include state regulation. It is well known
that it is difficult to perform a cognitively demanding task when we are in a sub-
optimal state, for example due to sleep loss or fatigue. The information-processing
loop includes the stages of information processing of an operator dealing with a
system (perception, decision making and action selection). These details are not rel-
evant for the present purposes and therefore, the model in Fig. 12.3 contains only a
single information processing box without further details.

Information to be processed can come from the environment (tasks) or from an
internal model of the system that is built up by the operator. The perceived infor-
mation, and in particular, the perceived actual performance is compared with the
required performance. As long as the perceived performance matches the required
performance, no state change is required. If there is a difference between the re-
quired and the actual state, there are two possible solutions to bring back equilib-
rium:

• Operators can invest more effort into the task. This will change the state in such
a way that information processing becomes more appropriate.

• Operators can change the task goals in such a way that the level of the required
performance is lowered (e.g. by accepting less accurate performance, take more
time to perform the tasks or by skipping less relevant sub-tasks).

The first option will result in physiological changes and can be measured by the
brain indices described in the previous section and other physiological indicators
such as blood pressure, heart rate and heart rate variability (Veltman and Gaillard
1998).

12.3.2.1 State Regulation

A state should be regarded as the result of many physiological and psychological
processes that regulate brain and body in an attempt to put an individual in an opti-
mal condition to meet the demands of the work environment (Gaillard and Kramer
2000). Figure 12.3 assumes that there is a complex relation between task demands
and task performance. By investing more effort, operators can keep the performance
at a high level for some time. The model in Fig. 12.3 goes deeper into this relation.
Effort investment changes the state of the operator to improve information process-
ing. Consequently, the difference between the actual and the required performance



214 J.B.F. van Erp et al.

will become smaller. As described above, an alternative reaction of the operator to
increased task load can be a lowering of the subjective task goals. If this option is
chosen, then an increase in task load will not result in an increase in effort invest-
ment and as a consequence no physiological changes will be measured.

The likelihood of adapting the task goals is affected by the context. For exam-
ple, in a flight simulator, reducing the task goals often does not have serious con-
sequences. In a real aircraft this can have serious consequences and therefore, the
effort investment is often much higher in a real aircraft (e.g. Wilson et al. 1987).
However, when the context of the flight simulator is a selection to become a pi-
lot, then the effort, measured with physiological measures, is the same as in a real
aircraft (Veltman 2002).

Another example of the effect of context on subjective task goals is the existence
of other goals. In many situations, the subjective task goals are just one set of goals
among many other goals such as keeping rest, going to a toilet, have a social con-
versation, going away for a cigarette etc. The context is important for keeping the
task goal the primary one. During vigilance for example, performance will often
deteriorate after some time because it is difficult to keep the task goal the primary
goal among other competing goals as getting rest or counteracting boredom.

These effects are important for the choices of physiological measures. We dis-
cussed many brain-based indicators in this chapter, most of them have been tested
as a measure for mental workload. Some of the measures provide information about
additional effort expenditure in high workload situations (such as high frequency
EEG and P300) and others provide information about the alert state or engagement
in low workload situations (e.g. low frequency EEG). There is still not enough in-
formation about how these measures can be used adequately for human computer
symbioses.

12.3.2.2 Operator Adaptation

One of the aspects that we want to make clear with the present model is that the
operator is almost continuously adapting to changing task demands. This adaptation
process can be measured with physiological measures that should not only provide
information about the workload of an operator but also about the way the operator
is adapting to changing task demands.

Based on the model in Fig. 12.3, we argue that it is not likely that simple adaptive
automation principles will work in high-workload situations in which an operator is
continuously adapting to changing task demands. If the task becomes more difficult,
the operator may adapt by investing more effort. Human beings are very efficient in
adapting to changing task demands. In fact, that is essential of all biological systems.
We favour an approach in which the system allows periods of high workload but
continuously monitors the ability of the operator to maintain an adaptive state and
reduces task demands on a longer term to prevent fatigue.
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12.4 Discussion

12.4.1 Sense and Non-sense of Brain-Based Adaptation

We argued that several models (operator, context, task and system model) are re-
quired for an efficient human computer symbioses system. The model we presented
in this chapter can not be used directly as an operator model for this purpose. How-
ever, we think that the present model provides insight into the way brain measures
can be used for human computer symbioses.

In the future, computers can take over complex tasks from human operators. In
many situations it is not desirable that computers take over all tasks. The human
operator can perform optimally when he is in the loop. It would be a huge step
forward when computer systems can take over tasks from the human operator and
still let the operator have control over the whole situation.

We argue that it is important to distinguish between high and low workload situ-
ations. In low workload situations, chances are that the operator will loose attention
and is not in the loop any more. He is then likely to make errors due to missed infor-
mation. In other words, the operator is not in an adaptive mode in such a situation.
Measuring the operator state in these situations is relevant because a computer sys-
tem can use this information to provide extra information to the operator to make
the operator more alert. We have provided data that this state can be quite accurately
identified with brain-based indices.

Information about the operator state in high workload situations can not be used
in the same straight forward way. It seems obvious that a computer system can take
away some tasks when the operator experiences high workload. However, when
brain measures and other physiological measures indicate that the operator is in-
vesting additional effort, than the operator is actually in an adaptive state. If the
computer takes away tasks from the operator directly, this may lead to undesirable
situations. In fact, both the computer system and the operator are adapting at the
same time. The operator tries to adapt to changing task demands, and the computer
system tries to adapt to the state of the operator. Adaptive systems that try to adapt
to each other will not work together.

There are several possibilities how to use the state information during high work-
load situations. One possibility is that the task model monitors the relevance of all
possible tasks that have to be performed by the operator. When the operator is in a
high workload situation, information about less relevant tasks might be postponed
until the workload level reached normal values again. Another possibility is that the
brain measures are used to monitor the effort expenditure and use this to estimate
the fatigue level of an operator. This can be used to reduce task load after some time
instead of reducing it momentarily.
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12.4.2 Opportunities for Brain-Based Indices in User-System
Symbiosis

As we sketched in the introduction, for future user-system symbiosis, an operator
model needs to contain more parameters than workload, including for instance en-
gagement, confusion, and emotional state. Recently, investigations started to iden-
tify EEG patterns that reflect some of these parameters. Several authors devel-
oped an engagement factor. For instance, Freeman et al. (1999) and Pope et al.
(1995) developed engagement indices based on patterns in the theta, alpha and
beta band to control automation. Fairclough and Venables (2006) measured sev-
eral EEG and other physiological measures and used multiple regression to ex-
plore the relation with task engagement, distress and worry, of which the first two
could be predicted quite well. However, one can argue that these (engagement) in-
dices are on the same continuum as workload and vigilance. Only very recently,
efforts are made to identify neural correlates from completely different categories
such as spatial disorientation and situational awareness (Van Orden et al. 2007;
Viirre et al. 2006) and emotions (Petrantonakis and Hadjileontiadis 2009). The lat-
ter is an interesting new field: emotions are both critical to “understand” the user
and also interact with cognitive capabilities such as attention and reasoning (Dolan
2002).
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From Brain Signals to Adaptive Interfaces:
Using fNIRS in HCI
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Abstract Functional near-infrared spectroscopy (fNIRS) is an emerging non-
invasive, lightweight imaging tool which can measure blood oxygenation levels
in the brain. In this chapter, we describe the fNIRS device and its potential within
the realm of human-computer interaction (HCI). We discuss research that explores
the kinds of states that can be measured with fNIRS, and we describe initial research
and prototypes that can use this objective, real time information about users’ states
as input to adaptive user interfaces.
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13.1 Introduction

The field of brain-computer interfaces (BCI) is beginning to expand beyond its orig-
inal clinical focus. While traditional BCIs were designed to function using the brain
as the sole means of communication for disabled patients (Millán et al. 2004), cur-
rent research investigates the brain as an additional input to the interface, designed
for a broader range of users (Grimes et al. 2008). Neural signals can act as a comple-
mentary source of information when combined with conventional computer inputs
such as the mouse or the keyboard. We present work in this chapter that illustrates
this direction in BCI and shows how to move from controlled experiments explor-
ing task-specific brain activity to a more general framework using mental activity
to guide interface response. Our work, grounded in the field of human-computer in-
teraction (HCI), suggests the practicality and feasibility of using normal untrained
brain activity to inform interfaces.

While most BCIs use the electroencephalogram (EEG) to measure brain activity,
we adopt the relatively less-explored technique of functional near-infrared spec-
troscopy (fNIRS), a non-invasive measurement of changes in blood oxygenation,
which can be used to extrapolate levels of brain activation (Fig. 13.1, see also Chap-
ter 8 of this Volume). Ideally, for HCI research, the fNIRS signals would be robust
enough to remain unaffected by other non-mental activities, such as typing, occur-
ring during the participant’s task performance. In fact, one of the main benefits of
fNIRS is that the equipment imposes few physical or behavioral restrictions on the
participant (Hoshi 2009).

We identify two research questions that shape this chapter: (1) what kind of states
can we measure using fNIRS? (2) how should we use this information as input to
an adaptive user interface?

To address our first question, we will start by discussing practicality and appli-
cability of the technology in realistic, desktop environments (Solovey et al. 2009).
We will then describe studies investigating the use of fNIRS to obtain meaningful
data related to mental workload, both with workload as an overall cognitive func-
tion (Girouard et al. 2009; Hirshfield et al. 2007), and with specific components of it

Fig. 13.1 Functional near-infrared spectroscopy: (a) typical setup with a sensor secured on fore-
head with a headband, (b) the sensor containing near-infrared light sources and a light detector
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(Hirshfield et al. 2009b). Our studies progress from very controlled experiments that
help us identify centers of brain activity, to experiments using simple user interfaces,
showing how this technique may be applied to more realistic interfaces. Throughout
all studies in this chapter, we show the use of novel machine learning techniques
applied to fNIRS, in order to classify and use the brain activity information in real
time.

Our second goal focuses on creating new interactive, real-time user interfaces,
which can adapt behavior based on brain measurements. The design challenge is to
use this information in a subtle and judicious way, as an additional, lightweight input
that could make a mouse or keyboard-driven interface more intuitive or efficient.
Specifically, we are exploring situations and interfaces that can be adapted slowly, in
a manner that is subtle and unobtrusive to the user, which could increase productivity
and decrease frustration. At the end of this chapter, we describe two early prototypes
of user interfaces that can adapt to the user’s workload profile or other brain activity
in real time.

13.2 fNIRS Background

fNIRS provides a measure of blood oxygen concentration, indicative of brain activ-
ity when measured on the head (Villringer and Chance 1997). Near-infrared light
is pulsed into the forehead where it is refracted from the tissues of the cortex up
to depths of 1–3 cm. Oxygenated and deoxygenated hemoglobin are the main ab-
sorbers of light at these wavelengths, and thus the diffusely reflected light picked
up by the detector correlates with the concentration of oxygen in the blood, as well
as the overall amount of blood in the tissue. The basic technology is common to all
systems, but the measured signal differs depending on the location of the probe and
the amount of light received.

There are many possible placements of fNIRS probes, allowing the study of
multiple brain regions. The most common placements are on the motor cor-
tex (Sitaram et al. 2007) and the prefrontal cortex (PFC) (Ehlis et al. 2008;
Mappus et al. 2009), although other regions have also been explored (Herrmann
et al. 2008). We chose to study the anterior PFC (aPFC), an active region that deals
with high-level processing such as working memory, planning, problem solving,
memory retrieval and attention (Ramnani and Owen 2004). Thus, our considera-
tions below are intended for researchers investigating the aPFC; methods that reflect
activity in other parts of the brain will vary considerably. However, we expect our
results to be valid for other experimental setups and contexts that use the PFC.

13.3 fNIRS Considerations for HCI Research

Because most brain imaging and sensing devices were developed for clinical set-
tings, they often have characteristics that make them less suitable for use in realistic
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HCI settings. For example, although functional magnetic resonance imaging (fMRI)
is effective at localizing brain activity, it is susceptible to motion artifacts, and even
slight movement (more than 3 mm) will corrupt the image. The most common tech-
nology used for brain measurement in HCI is EEG, since it is non-invasive, portable,
and relatively inexpensive compared with other brain imaging devices (Lee and Tan
2006). EEG is not ideal for HCI, either: it is susceptible to artifacts from eye and fa-
cial movement, as well as nearby electronic devices, requires gel in the participant’s
hair, and takes time to set up properly.

Recently, fNIRS has been used in HCI because it has many characteristics
that make it suitable for use outside of clinical settings (Girouard et al. 2009;
Hirshfield et al. 2009b; Mappus et al. 2009). Benefits include ease of use, short setup
time, and portability, making it a promising tool for HCI researchers. In addition,
there are no technical restrictions for using EEG and fNIRS together (Hirshfield et
al. 2009a), and the two technologies could complement one another. While EEG
measures electricity—a direct result of neuronal activity—and is thus very fast, it is
also spatially indeterminate; as previously mentioned, fNIRS measures blood oxy-
genation, an indirect measure of neuronal activity which is much slower to change
than the EEG signal.

Our goal is to observe brain signals that can be used in a relatively ordinary com-
puter task environment; so we do not expect the participant to be physically con-
strained while using the computer. In most studies using brain sensors, researchers
expend great effort to reduce the noise picked up by the sensors. Typically, partici-
pants are asked to remain still, avoid head and facial movement, and use restricted
movement when interacting with the computer. In addition, many factors cannot be
controlled, so researchers sometimes throw out data that may have been contami-
nated by environmental or behavioral noise, or they develop complex algorithms for
removing the noise from the data. By doing this, the researchers hope to achieve
higher quality brain sensor data, and therefore better estimates of cognitive state in-
formation. However, it is not clear that all of these factors contribute to problems in
fNIRS data or that these restrictions improve the signal quality, so a series of exper-
iments were conducted in order to observe directly the effect of such artifacts on the
data. Below, we identify several fNIRS considerations and explain best practices for
working with fNIRS in HCI research.

13.3.1 Head Movement

Several fNIRS researchers have brought attention to motion artifacts in fNIRS sen-
sor data, particularly those from head movement (Devaraj et al. 2004; Matthews et
al. 2008). They note that these issues are significant if the head is not restricted, and
even more so in an entirely mobile situation. However, other researchers indicate
that fNIRS systems can “monitor brain activity of freely moving subjects outside of
laboratories” (Hoshi 2009). While fNIRS data may be affected by head movements,
they only become a problem when present at a fairly gross level; this should be con-
trasted with fMRI where movement over 3 mm will blur the image. Because of the
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lack of consensus in the community, we investigated the artifacts associated with
head movements during typical computer usage to determine their effect on fNIRS
sensor data in a typical HCI setting (Solovey et al. 2009). From our experiments,
we suggest that participants minimize major head movements, although we believe
these artifacts may be corrected using filtering techniques.

13.3.2 Facial Movement

fNIRS sensors are often placed on the forehead, and as a result, it is possible that
facial movements could interfere with accurate measurements. Coyle et al. (2004)
point out that “slight movements of the optodes on the scalp can cause large changes
in the optical signal, due to variations in optical path”. These forehead movements
could be caused by talking, smiling, frowning, or by emotional states such as sur-
prise or anger, and many researchers have participants refrain from moving their
face, including talking (Chenier and Sawan 2007). However, as there is little empir-
ical evidence of this phenomenon, we examined it further (Solovey et al. 2009).

We found that frowning data could always be distinguished from non-frowning.
We also learned that if all the data includes frowns, then we cannot differentiate the
cognitive task from the rest condition. However, we found that if we combine the
data that contains frowning and that without frowning, we can then discriminate the
cognitive task, which shows interesting potential to identify which examples to re-
ject because of frowns. Those results clearly indicate that frowning is a problematic
artifact, and should be avoided as much as possible.

Because fNIRS sensors are placed on the forehead, frowning was expected to
have a large impact on this data. It is possible that other facial movements would not
have as strong of an effect. Eye movements and blinking are known to produce large
artifacts in EEG data, which leads to the rejection of trials; experimenters often ask
their participants to refrain from blinking entirely, or to blink during a specific, non-
critical period in each trial (Izzetoglu et al. 2004). In contrast to EEG, fNIRS is less
sensitive to muscle tension and researchers have reported that no artifact is produced
in nearby areas of the brain (Izzetoglu et al. 2004). It would also be unrealistic to
prevent eye blinks and movement in HCI settings. Overall, we conclude eye artifacts
and blinks should not be problematic for fNIRS, and we do not constrain participants
in our studies.

13.3.3 Ambient Light

Because fNIRS is an optical technique, light in the environment could contribute to
noise in the data. Coyle et al. (2004) advise that stray light should be prevented from
reaching the detector. Chenier and Sawan (2007) note that they use a black hat to
cover the sensors, permitting the detector to only receive light from the fNIRS light
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sources. While this is a concern for researchers currently using raw fNIRS sensors
that are still under development, we feel that future fNIRS sensors will be embedded
in a helmet or hat that properly isolates them from this source of noise. Therefore,
we have not examined how the introduction of light can affect fNIRS data. Instead
we caution that excess light should be kept to a minimum when using fNIRS, or the
sensors should be properly covered to filter out the excess light.

13.3.4 Ambient Noise

During experiments and regular computer usage, one is subjected to different sounds
in the environment. Many studies using brain sensors are conducted in sound-proof
rooms to prevent these sounds from affecting the sensor data (Morioka et al. 2008).
However, this is not a realistic setting for most HCI research. Therefore, we conduct
all of our studies in a setting similar to a normal office. It is mostly quiet (although
the room is not soundproof), and there may be occasional noise in the hallway,
or from climate control systems. We have successfully run many studies using the
fNIRS system in these conditions.

13.3.5 Respiration and Heartbeat

The fNIRS signals picks up respiration and heartbeat, by definition, as it measures
blood flow and oxygenation (Coyle et al. 2004; Matthews et al. 2008). These sys-
temic noise sources can be removed using validated filtering techniques. For a dis-
cussion of techniques, see Matthews et al. (2008) and Coyle et al. (2004).

13.3.6 Muscle Movement

In clinical settings, it is reasonable to have participants perform purely cognitive
tasks while collecting brain sensor data. This allows researchers to learn about brain
function without interference from other factors such as muscle movement. How-
ever, to move brain imaging methods into HCI settings, this constraint would have
to be relaxed, or methods for correcting the artifacts must be developed.

One of the main benefits of fNIRS is that the setup does not physically constrain
participants, allowing them to use external devices such as a keyboard or mouse.
In addition, motion artifacts are expected to have less of an effect on the resulting
brain sensor data (Girouard et al. 2009). We examined physical motions that are
common in HCI settings, typing and mouse clicking, to determine whether they are
problematic when using fNIRS (Solovey et al. 2009).

Overall, while typing artifacts could be detected when there was a cognitive task
being performed, we could still distinguish the cognitive task itself from a rest state.
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This confirms our hypothesis and validates that typing is an acceptable interaction
when using fNIRS. From this, we can also assume that simple key presses (e.g.
using arrow keys) would also be acceptable with fNIRS since it is a more limited
movement than typing with both hands.

We found that mouse clicking might affect the fNIRS signal we are collecting.
When the participant was at rest, we found a significant difference in the signal
between the presence and absence of clicking. The difference in activation is not
surprising as we did not have a “random clicking” task, but one where subject had
to reach targets, which may have activated the area being probed (the anterior pre-
frontal cortex). However, because we still were able to distinguish the cognitive task
from rest, the cognitive task may produce a different signal from clicking. Hence,
results indicate that when we want to observe a cognitive task that contains click-
ing, we need to have the rest task contain clicking as well. Overall, we believe that
mouse clicking is acceptable if the experiment is controlled.

13.3.7 Slow Hemodynamic Response

The slow hemodynamic changes measured by fNIRS occur in a time span of 6–
8 seconds (Bunce et al. 2006). This is important when designing interfaces based
on fNIRS sensor data, as the interface would have to respond in this time scale.
While the possibility of using event-related fNIRS has been explored (Herrmann et
al. 2008), most studies take advantage of the slow response to measure short term
cognitive state, instead of instantaneous ones.

13.3.8 Summary of Guidelines and Considerations

According to our research, mouse clicking and typing are not problematic, but large-
scale head and facial movements should be minimized; minor movements as well
as heartbeat and respiration can be corrected using filtering techniques. Many lim-
itations that are inherent to other brain sensing and imaging devices such as long
setup time, highly restricted position, and intolerance to movement are not factors
when using fNIRS. By using the guidelines described above, researchers can de-
tect aspects of the user’s cognitive state in realistic HCI laboratory conditions. In
our work, we have focused on mental workload, and have conducted several ex-
periments described below exploring the feasibility of recognizing mental workload
states with fNIRS.

13.4 Measuring Mental Workload

Acquiring measurements about the mental state of a computer user is valuable in
HCI, both for evaluation of interfaces and for real time input to computer systems.
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Although we can accurately measure task completion time and accuracy, measuring
factors such as mental workload, frustration and distraction are typically limited
to qualitatively observing users or administering subjective surveys. These surveys
are often taken after the completion of a task, potentially missing valuable insight
into the user’s changing experiences throughout the task. They also fail to capture
internal details of the operator’s mental state.

As HCI continues to move out of the workplace and into the real world, users’
goals and uses for computers are changing and the analysis involved in the evalua-
tion and design of new interfaces is shifting from “usability analysis to user experi-
ence analysis” (Mandryk et al. 2006). New evaluation techniques that monitor user
experiences while working with computers are increasingly necessary. To address
these evaluation issues, current research focuses on developing objective techniques
to measure in real time user states such as workload, emotion, and fatigue (Gevins
and Smith 2003; John et al. 2004; Marshall et al. 2003). Although this ongoing
research has advanced user experience measurements in the HCI field, finding accu-
rate, non-invasive tools to measure computer users’ states in real working conditions
remains a challenge. Measuring user workload with objective measures such as gal-
vanic skin response (John et al. 2004), EEG (Gevins and Smith 2003), ERP (Kok
1997), pupil dilation (Iqbal et al. 2004), and facial EMG (Fuller et al. 1995) has been
a topic of much research. It is well understood that a reliable measure of user work-
load could have a positive impact in many real life interactions (Guhe et al. 2005;
Iqbal et al. 2004; John et al. 2004).

We conducted a study to demonstrate the feasibility and potential for using fNIRS
in HCI settings (Hirshfield et al. 2007). We distinguished several discrete levels of
workload that users experienced while completing different tasks. In this experi-
ment, four subjects completed thirty tasks where they viewed all sides of a rotating
three-dimensional (3D) shape comprised of eight small cubes. The cubes could be
colored with two, three, or four colors, which we hypothesized would lead to dif-
ferent workload levels. During each task, subjects counted the number of squares of
each color displayed on the rotating shape in front of them. A blank screen repre-
sented the baseline state (no colors).

The main goal of this experiment was to establish whether fNIRS data is suffi-
cient for determining the workload level of users as they perform tasks. To accom-
plish this, a graphical interface displayed the rotating shapes.

At the completion of each task, the subject was prompted for his or her count for
each color. Then, the subject rested for thirty seconds, allowing the brain to return
to a baseline state. After completing the tasks, the subject was presented with an
additional example of each workload level and asked to fill out a NASA-Task Load
Index (Hart and Staveland 1988), administered to compare our results with an estab-
lished measure of workload. The results of the NASA-TLX assessment validate our
manipulation of workload levels: increased number of colors led to higher workload
level.

We classified the data with a multilayer perceptron classifier using the sliding
windows approach (Dietterich 2002). We tested distinguishing all four workload
levels from each other, as well as comparisons of two, three, and four workload



13 From Brain Signals to Adaptive Interfaces: Using fNIRS in HCI 229

conditions of the graphical workload level. When we consider the results comparing
workload levels 0, 2, and 4, classification accuracies range from 41.15% to 69.7%
depending on the subject. Considering that a random classifier would have 33.3%
accuracy, the results were promising. We could predict, with relatively high confi-
dence, whether the subject was experiencing no workload (level zero), low workload
(level two), or high workload (level four).

Our goal was to test the ability of the fNIRS device to detect levels of workload
in HCI, to develop classification techniques to interpret its data, and to demonstrate
the use of fNIRS in HCI. Our experiment showed several workload comparisons
with promising levels of classification accuracy.

13.5 Separating Semantic and Syntactic Workload in the Brain

In our initial work described above, we verified that fNIRS sensors provide re-
searchers with a measure of the mental workload experienced by users working on
a task with a given user interface (UI). However, detecting a high workload while
a user works with a system is not necessarily a bad thing; it could indicate that the
user is immersed in the task. How can UI evaluators and designers of adaptive sys-
tems know if a high workload measurement is due to the UI or to the underlying
task?

To solve the question, we were influenced by Shneiderman’s theory of seman-
tic and syntactic components of a user interface (Shneiderman and Plaisant 2005).
In this theory, the semantic component involves the effort expended by a user to
complete a given task. The syntactic component involves the effort required to un-
derstand and work with the interface, which includes interpreting the interface’s
feedback, and formulating and inputting commands to the interface. We propose to
conceptually separate mental workload into multiple components, where the total
workload required to perform a task using a computer is composed of a portion
attributable to the difficulty of the task itself plus a portion attributable to the com-
plexity of operating the user interface.

We designed a protocol to aid usability experts to measure workload as a depen-
dent variable while a user works with an interface and/or task. The general protocol
is as follows: Given an interface to evaluate and an underlying task, researchers con-
duct a task analysis on both the interface and task. For each subtask, they determine
the cognitive subsystems that one would use while conducting the subtasks (i.e.,
spatial working memory, visual search, etc.). Next they gather benchmark exercises
from cognitive psychology designed to elicit high and low levels of workload on
the target cognitive resources associated with the interface. Researchers then run an
experiment where users complete the benchmark cognition exercises, providing a
measure of their brain activity while they experience high and low workload levels
in their various cognitive subsystems. Users also work with the user interface that
the researchers are attempting to evaluate. Lastly, researchers use fNIRS data analy-
sis tools to find similarities and differences in the users’ brain activity while working
with the interface under evaluation and with the cognitive psychology exercises.
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Fig. 13.2 Experimental Tasks. There were two benchmark tasks from cognitive psychology:
(a) low spatial working memory: recall digits and location, and (b) high spatial working mem-
ory: use arrows to update location of digits. There were two interface exercises where participants
had to traverse a group of linked web-pages to find matching zip code, and remember current
location at all times: (c) informed UI, and (d) uninformed UI

We used this protocol while conducting an experiment to shed light on the syn-
tactic (interface) components of workload of two specially constructed interfaces
that involve users traversing through a group of web pages that are linked together
while conducting an information retrieval task (Hirshfield et al. 2009b). We kept the
retrieval task constant between the two conditions, while we varied the design of the
interface in each condition (Figs. 13.2c and 13.2d). In the first user interface, sub-
jects were continually informed about their location within the space, whereas in the
other condition, subjects were unaware of their current location. We refer to these
interface variations as the informed location UI and the uninformed location UI,
and we hypothesize that the uninformed location UI caused subjects to experience
higher loads on their spatial working memory than the informed location UI.

We chose two benchmark tasks from cognitive psychology experiments that are
known to involve both spatial and verbal working memory (Figs. 13.2a and 13.2b).
Both of these exercises had low verbal working memory demands (mirroring the
information retrieval task). However, one of these exercises had high spatial working
memory (HSWM) demands, and the other involved low spatial working memory
(LSWM) demands. We also had a controlled rest condition where subjects simply
rested, with no workload for a set period of time. We used these tasks to provide
us with benchmark brain activity for each subject where the spatial WM needed to
complete the rest task was less than that needed to complete the LSWM task, which
was less than that needed to complete the HSWM task.

A randomized block design with nine trials was used during the experiment.
Ten subjects (6 female) completed the experiment. Results indicated that we could
distinguish between the benchmark cognition tasks, the controlled rest, and the two
user interface variations conditions using analysis of variance (ANOVA) with 95%
confidence on one or both sides of subjects’ heads (Hirshfield et al. 2009b).

We expected the uninformed UI to cause higher spatial WM load than the in-
formed UI. We used hierarchical clustering with a Euclidian distance measure to
cluster our data, which helped to validate this expectation. Clustering results showed



13 From Brain Signals to Adaptive Interfaces: Using fNIRS in HCI 231

that for 90% of subjects, the uninformed UI was grouped closer to benchmark tasks
of HSWM load than the informed UI (Hirshfield et al. 2009b). Therefore, we estab-
lished that the informed UI caused a lower load on users’ spatial working memory
than the uninformed UI. This is not surprising, as web site designers are well aware
of the benefits of keeping users oriented.

We expect this novel protocol to work in a similar manner with more realistic
UIs, where the established cognitive psychology tasks may not parallel the user
interfaces as closely as they did in this experiment. However, the fNIRS analysis
algorithms will still show useful similarities and differences between brain activity
induced by the interfaces and by the cognition exercises. While separating semantic
and syntactic workload may not be possible in more complex UIs, evaluators can
make informed changes to UI designs based on the level of workload measured in
users’ various cognitive resources while they work with a user interface.

These workload levels also may be useful input to an adaptive system if classified
in real time. With this goal in mind we used a k-nearest-neighbor classifier and a
distance metric computed via dynamic time warping to make comparisons between
brain activity induced by the experiment conditions on a single trial basis. It was
possible to distinguish between the benchmark LSWM tasks and the HSWM tasks
with nearly 70% average accuracy, between each condition and the rest condition
with nearly 80% average accuracy, and between the two UI conditions with 68%
average accuracy. This shows promise for detecting workload changes in various
cognitive resources in real-time adaptive interfaces.

In this study, we did not separate semantic and syntactic workload in the brain
directly, but rather we constructed our UI and task so that the syntactic portion maps
directly onto spatial working memory, and the semantic portion maps onto verbal
working memory. We also developed an experimental protocol that merges low-
level cognition experiments with high-level usability evaluation. Our experiment
protocol and data analysis algorithms can help usability experts, or designers of
adaptive systems, to acquire information about the cognitive load placed on users’
various cognitive resources while working with a user interface.

13.6 fNIRS Sensing During Interactive Game Play

Moving away from traditional psychology experiments, where one can isolate, ma-
nipulate, and measure mental workload with great precision, we chose to apply our
brain measurements techniques to a real user interface, that of an arcade game. The
goal of the study was to distinguish between different levels of game difficulty us-
ing fNIRS data collected while subjects played a computer game (Girouard et al.
2009). This study was a step forward, as previous work only evaluated the ac-
tiveness of the user during video games using fNIRS (Matsuda and Hiraki 2006;
Nagamitsu et al. 2006). The study was designed to lead to adaptive games and other
interactive interfaces that respond to the user’s brain activity in real time, and we be-
lieve this work to be a stepping stone to using fNIRS in an adaptive user interface, in
this case a passive brain-computer interface. Passive BCIs are interfaces that detect
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brain activity that occurs naturally during task performance for use as an additional
input, in conjunction with standard devices such as keyboards and mice (Cutrell and
Tan 2007). This is in contrast with active BCIs, which use brain activity as the pri-
mary input device, often requiring the user to be trained to generate specific brain
states, which are interpreted as explicit input.

We asked participants to play the game of Pacman (Namco, Japan) for periods
of thirty seconds, and then rest for thirty seconds. They completed ten sets of two
levels of difficulty, an easy level and a hard level, during which their brain activity
was measured using fNIRS. We also collected performance data, and analysis of this
data showed a clear and significant distinction between the two levels. An objective
measure of workload was collected using NASA-TLX (Hart and Staveland 1988),
which confirmed two levels of mental workload.

We performed two analyses of the data to confirm the presence of differences
in hemoglobin concentrations for each condition: a classic statistical analysis to
establish the differences between conditions, and a more novel task classification to
show the possibility of using this data in real-time adaptive systems.

The statistical analysis revealed that we can distinguish between subjects being
active and passive in their mental state (playing versus resting), as well as between
different levels of game complexity (difficulty level). The classification was con-
sistent with those results, but indicated more difficulty at distinguishing the game
levels (94% to classify playing versus resting, while 61% for the easy versus hard
levels). This could indicate that the mental process for this activity manifests itself
at another, unmeasured location in the brain, or that the difference was simply not
strong enough to cause changes in activation.

While some might argue that performance data is sufficient to classify the dif-
ficulty level of a game and can be obtained without interference, the goal of this
study was to investigate the use of the brain measurements with fNIRS as a new
input device. In a more complex problem, performance and fNIRS brain data might
not be as related, e.g. if the user is working hard yet performing poorly at some
point. In addition, distractions may also produce workload increases that would not
obvious from monitoring game settings and performance, and thus may necessitate
brain measurements. That is, a participant playing a simple game while answer-
ing difficult questions might also show brain activity relating to increased workload
that would be incomprehensible based only on performance data (e.g. Nijholt et al.
2008). In non-gaming situations, we might not have performance data like in the
present case, as we don’t always know what to measure. The use of the brain signal
as an auxiliary input could provide better results in these situations.

13.7 Moving Towards an Adaptive fNIRS Interface

Now that we have established a foundation for fNIRS measurements, the focus shifts
to our second question: How do we use these measurements in the context of adap-
tive interfaces? How do we responsibly apply a measurement of workload in a use-
ful way? To answer these questions we first need to find a class of problems where
fNIRS may be helpful.
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Given the temporal limitations of hemodynamic response in the brain, we are
drawn towards problems where millisecond snapshots are not necessary, eliminating
activities that are instant states or extremely time-sensitive. For example, users who
are monitoring constant streams of data fit nicely into this framework.

From one perspective, the temporal limitation of fNIRS can be viewed as a
healthy one—a slow hemodynamic response pushes us towards creating interfaces
that are gentle and unobtrusive. This is important. If we aren’t careful, brain-
computer interfaces can suffer the same Midas Touch problems identified in eye
tracking research (Jacob 1993). It is a safe assumption that users do not expect an
interface to change with every whim and daydream during the course of their work-
day. We must be judicious with our design decisions.

As a general rule for implicit interfaces, any visual modifications to the interface
should be done carefully enough that the user hardly notices the change until he
or she needs to (Fairclough 2009). The eye is very sensitive to movement, and any
adaptation that robs the attention of the user will be counterproductive to the primary
task. A pop-up dialog box is a distracting response to a user in the middle of a
task, even if we occasionally guess exactly what the user wants. Fading, overlaying
information, or changing an application’s screen real estate are options that, if done
slowly enough, may impact the user’s focus in a positive way. Visually altering the
interface is just one response we can make to real-time fNIRS measurements. We
can also choose to change the underlying information of the interface while keeping
the general visualization stable.

While work in this direction is still in its infancy, we propose two prototypes to
demonstrate how real-time, lightweight adaptive interfaces may be used with fNIRS
measurements.

13.7.1 The Stockbroker Scenario

A stockbroker is writing a sensitive email to a client. At the same time, he is trying
to track critical, minute-by-minute stock information on the same screen. While his
email is of the upmost importance, he doesn’t want to completely abandon the stock
information. What if he were to miss a significant spike?

Unfortunately, the detailed visualization of stock data is mentally taxing to look
at and prevents the broker from focusing on his email. As a solution, our stockbroker
prototype gently changes the visualization of the data depending on the workload
we associate with the emailing task.

If the stockbroker is not exerting a high mental workload on his email, we show
his stock visualization as highly detailed, giving the stockbroker as much informa-
tion as possible (Fig. 13.3, left). If the stockbroker is working exceptionally hard
at his email and cannot afford to be distracted by complex stock information, we
simply lower the level of detail. The broker will still recognize major changes in the
data without getting bogged down in the details (Fig. 13.3, right).
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Fig. 13.3 An example of high detailed graph (left), and one of low detail (right)

13.7.2 Many Windows Scenario

Users are often juggling four or five windows at once—writing a paragraph in one
window, displaying a page of notes in another, glancing at an academic paper in a
third, and tracking email in a fourth. While, like the stockbroker, the user may prefer
not to get rid of any of the windows, their presence detracts from the primary task.
The user may wish that the windows were only there when needed.

While fNIRS may not be able to take on the role of both mind-reader and task-
driver, fNIRS can help us guess which windows are most important. We can monitor
the amount of workload required in each task, and fade the other windows accord-
ingly. If glancing at email is relatively low-workload, then it may not be distracting.
If keeping track of email is mentally expensive, then we can gradually fade the win-
dow. When the surrounding windows do not demand many mental resources, we
may keep them transparent. In this way, we can think of them as being cheap to
keep around.

13.7.3 Looking Ahead

These two scenarios offer a brief glimpse into brain-computer interfaces with
fNIRS. They are gentle and unobtrusive. They are more concerned with long-term
workload and trends than an immediate snapshot. Looking ahead, we can imagine
numerous situations where fNIRS is a valuable input to adaptive interfaces. What if
we could adjust teaching methods to best suit a child’s learning style? What if we
could dynamically filter streams of information (Twitter, RSS, email) to accommo-
date the current workload of the user?

13.8 Conclusion

We began this chapter by dealing with two major questions: (1) what kind of things
can we measure using fNIRS? (2) how should we use this information as input to
an adaptive user interface? Our response to the first question was three pronged:
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First, we explored the practical considerations for using fNIRS in HCI. We looked
at the impact of head, facial, and muscle movement on fNIRS readings. We also took
into account environmental factors such as ambient light and ambient noise. Next,
we investigated the feasibility of using fNIRS as a measure of workload in gen-
eral before measuring differences in syntactic and semantic workload in the brain,
a measurement that helps us separate the interface and the underlying task. Finally,
we measured a real interface, identifying a workload measurement that increased
or decreased according to the complexity of the task (in this case, a game of Pac-
man). To address our second goal, we first outlined general characteristics for the
design space of user interfaces that adapt based on fNIRS measurements. We then
described two scenarios that could take advantage of such an interface design. From
our experience, we believe that fNIRS brain sensing has great potential for both
user interface evaluation and adaptive user interfaces, and will open new doors for
human-computer interaction.
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Chapter 14
MATLAB-Based Tools for BCI Research

Arnaud Delorme, Christian Kothe, Andrey Vankov, Nima Bigdely-Shamlo,
Robert Oostenveld, Thorsten O. Zander, and Scott Makeig

Abstract We first discuss two MATLAB-centered solutions for real-time data
streaming, the environments FieldTrip (Donders Institute, Nijmegen) and DataSuite
(Data- River, Producer, MatRiver) (Swartz Center, La Jolla). We illustrate the rela-
tive simplicity of coding BCI feature extraction and classification under MATLAB
(The Mathworks, Inc.) using a minimalist BCI example, and then describe BCILAB
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(Team PhyPa, Berlin), a new BCI package that uses the data structures and extends
the capabilities of the widely used EEGLAB signal processing environment. We fi-
nally review the range of standalone and MATLAB-based software currently freely
available to BCI researchers.

14.1 Introduction

Brain-computer Interface (BCI) systems and algorithms allow the use of brain sig-
nals as volitional communication devices or more generally create some sort of
useful interconnection between the operation of a machine system and the brain
activity of a human or animal subject using, engaged with, or monitored by the
system. Because of its portability, most BCI systems use electroencephalographic
(EEG) signals recorded from one or more scalp channels. Although most of the ap-
proaches we review here are also applicable to single-channel recordings, we will
focus on software for processing multi-channel EEG data in the MATLAB comput-
ing environment (The Mathworks, Inc., Natick MA), a widely available commer-
cial platform-independent numerical computing and visualization software environ-
ment. Although, MATLAB applications are rarely used outside of research envi-
ronments, they offer a valuable tool for developing, prototyping, and testing BCI
approaches.

While freely available MATLAB-compatible software alternatives exist (e.g.,
Octave, see www.gnu.org/software/octave) and alternative open-source software is
slowly emerging (www.sagemath.org), MATLAB is presently used in most research
centers and is widely considered the tool of choice for developing and, often, ap-
plying computational methods in cognitive neuroscience and beyond. While early
versions of MATLAB 5.3 were much slower than compiled versions of the same
code, the most recent version of MATLAB has more than doubled in speed, a fact
that increasingly makes MATLAB a suitable environment for real-time processing.
As of its 2009 release, MATLAB processes may also make use of multiple cores.
MATLAB also sells a dedicated package, the Realtime target, designed to facilitate
real-time operations.

Several requirements for a research BCI software development environment arise
from the demands of the BCI research field:

• Flexibility. BCI is an active and rapidly advancing field. Thus, any BCI environ-
ment not supporting development and testing of more advanced uses than those
initially anticipated will necessarily be of limited value. BCI software environ-
ments should therefore allow, invite, and facilitate flexibility in methods extension
and re-definition.

• Ease of Use. BCI software users include psychologists, human factors experts,
human interface designers, signal processing engineers, computer scientists, and
mathematicians. All these users cannot be expected to have comprehensive
knowledge of the mathematical and neurophysiological bases of BCI operation.
While lack of relevant scientific background among a BCI project team might
impact their productivity, BCI software environments may minimize or at least
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mitigate serious errors and misunderstandings by establishing and documenting
best practices, providing reasonable default values, flagging and detailing mis-
takes in usage, and by making common tasks simple to perform.

• Efficiency. The choice of algorithms that can be applied under given conditions is
often determined by the computation time required and available. Therefore, the
computational efficiency of the BCI environment is a critical element. Moreover,
prototyping and testing of new methods and applications itself should be efficient,
because successful designs will typically require many iterations to perfect. Thus,
the BCI environment should allow users to quickly update and test new designs.

• Performance. Since current BCI system performance levels are often at best close
to the lower boundary of what is considered practical, inference performance,
or the accuracy of the predictions, is a most critical aspect of BCI system de-
sign. Higher levels of performance are reached by newer state-of-the-art methods
whose inventors may not have the resources to perform extensive testing. Ideally,
therefore, BCI software environments should include measures and methods for
fairly evaluating BCI system performance.

• Robustness. BCI research often involves making empirical estimates about the
performance of a given BCI design from limited amounts of training and test
data, making the problem of overfitting acute and ever present. Because of this,
current designs may not adequately model and compensate for the massive di-
versity and non-stationarity of brain EEG signals. Lack of adequate training and
testing data means that BCI systems should have a tendency to work best in the
precise subject situations and contexts in which they were developed, and may
fail to prove robust as the recording situation or context changes. Thus, perfor-
mance estimates based on limited testing data are almost always optimistic. Yet
dependability of BCI solutions must be an important goal if BCI systems are to
find uses outside the laboratory. Ideal BCI software environments should there-
fore facilitate routine collection of relatively large amounts of training and test
data.

The three main components of a BCI system are data streaming and online data
processing, plus delivery of user feedback. Data streaming includes channel selec-
tion, data filtering and buffering, and extracting epochs in real time based on event
presentation. Online data processing involves data preprocessing followed by fea-
ture extraction and classification. User feedback involves selection and promotion
of desired user interactions based on classification results. Feedback methods of
choice depend on the specific application and will not be dealt with here. Below, we
discuss first data streaming and then online data processing.

14.2 Data Streaming

Processing of EEG data in (near) real time in BCI software applications requires,
first and foremost, access to the data. Data acquired by an acquisition system must
therefore first be streamed into the BCI processing pipeline. Currently, there is no
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fundamental problem in reading data acquired by a digital recording system in near
real time using any general purpose programming language including MATLAB.
Many EEG acquisition systems provide some way to interface custom software
to their output EEG data stream. For example, Biosemi and TMSI both offer a
dynamically-linked library (dll) for interfacing with the hardware, while BrainProd-
ucts provides the specification of a TCP protocol under which data can be streamed
over a network. Under MATLAB, it is possible to directly interface this EEG data
stream by direct calls to DLL routines, by interfacing acquisition cards using the Re-
alTime Workshop (The Mathworks), or by using TCP/IP and the Instrument Control
Toolbox (The Mathworks). MATLAB may collect either one sample or one block of
data at a time, and then populate data blocks into a larger data matrix of dimensions
channels-by-samples. This data matrix may then be processed under MATLAB us-
ing feature extraction and translation algorithms.

However, since MATLAB is a single-threaded application, collecting the con-
tinuously streaming data and processing it in near-real time may be challenging.
Imagine acquiring samples of the EEG data stream and then performing a CPU-
intensive computation on those samples, e.g. overlapping fast Fourier transforms
(FFTs). During the time that MATLAB requires to compute each FFT, new data ar-
riving in the EEG stream from the acquisition system may be ignored. To allow for
full control of the timing of a processing pipeline in MATLAB, incoming data must
be buffered to avoid gaps whenever repeated computation is taking place. While
the low-level TCP/IP network stack of the operating system will buffer the data for
some time, the duration that the data remains in the network stack buffer cannot be
guaranteed.

Therefore, instead of having MATLAB itself read one sample at a time from
the data stream, another standalone application or thread should read the incoming
samples and copy them into a fixed-length or data-adaptive circular buffer. MAT-
LAB can then read new data from this buffer at any time appropriate, e.g., after
completion of each computation. Successively separating the buffering of the data
stream from computation on segments of that data stream depends on a having fast
interface between MATLAB and the buffering software, so that little time is lost in
copying data from the buffer into MATLAB memory. In the next sections we present
two MATLAB-centered solutions that use this approach: FieldTrip and DataSuite.
FieldTrip aims only to provide a usable interface to a single online data stream, while
DataSuite in addition allows synchronization of dissimilar data streams, including
streams output by online computational clients running on the same or different ma-
chines on the network, plus integrated, flexible, and if desired distributed stimulus
control.

14.2.1 FieldTrip

The FieldTrip toolbox (R. Oostenveld, www.ru.nl/neuroimaging/fieldtrip) for
EEG/MEG-analysis under MATLAB provides an open-source implementation of
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a realtime data buffering scheme. The FieldTrip buffer is implemented as a network
transparent TCP server, which allows the acquisition client to stream EEG data to it
sample by sample or in small blocks, while at the same time any data that is present
in the buffer can be retrieved and processed by another application. The buffer is
implemented as a multi-threaded application in C/C++, allowing multiple clients to
connect simultaneously to read/write data and event codes.

The FieldTrip buffer may be used more generally to communicate between sepa-
rate applications. One application program is responsible for data acquisition, writ-
ing the data (and optionally also event codes) to the buffer. Another application
can connect to the server to read some of the data and event codes (typically, the
most recent), and may optionally also write new event codes (e.g., as the output of
a classification algorithm) into the same buffer. Source code for the buffering can
be integrated into any EEG/MEG acquisition or analysis system, first writing the
header information and describing the number of channels and sampling frequency,
then delivering the stream of data and/or event codes. The TCP protocol controls
reading and writing to the buffer and can issue a flush/empty command when data
collection is restarted

The buffer code is compiled into a MATLAB ‘mex’ file. This allows processing
of small segments of streaming EEG data under MATLAB while incoming new
data is buffered in a separate thread. Since the buffer allows multiple concurrent
read connections, multiple MATLAB clients can connect to it, each analyzing a
specific aspect of the data concurrently. The MATLAB mex file can also be used
to access a remote buffer linked to the acquisition software running as a separate
program, possibly even on a separate computer, to instantiate a local buffer linked
to the MATLAB process as a separate thread.

14.2.2 DataSuite: DataRiver and MatRiver

DataSuite (www.sccn.ucsd.edu/wiki/DataSuit) is a distributed data acquisition,
synchronization, online processing, and stimulus delivery system based around
DataRiver (A. Vankov), a unique data management and synchronization real-time
engine. DataRiver is based on a real-time data management core, previously de-
veloped for the ADAPT data acquisition and analysis system and language (Adapt
© and Varieté 1987–2003). Producer (A. Vankov) is a DataRiver client for flex-
ibly controlling stimulus presentation using an original scripting language. Ma-
tRiver (N. Bigdely-Shamlo), described below, is a MATLAB client toolbox for
DataRiver. Data acquired by independent devices are by definition asynchronous,
even when they are acquired at the same nominal sampling rate, because of the
independent clocks typically used to pace data acquisition. Moreover, sampling
rates for different data sources can differ significantly: while EEG is typically
sampled between 250 Hz and 2000 Hz, concurrent body motion capture or but-
ton press data, for example, may be sampled at much lower rates. Another major
source of time delays is data acquisition hardware buffering to ensure regularity
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of the data samples. For data acquired through an IP socket connection, network
delays can also be significant. Finally, Windows (or any other multi-user) operat-
ing system itself introduces variable delays in processing of asynchronous streams
through its pre-emptive multitasking—in a multitasking scheme, typically data are
processed only when the corresponding thread is activated, not when data become
available.

14.2.3 DataRiver

DataRiver was developed to solve these synchronization issues. DataRiver is a flex-
ible and universal system for high precision synchronization of data streams, pro-
viding a dynamic, near real-time mechanism for synchronizing concurrent data
streams with designed and tested precision better than 2 ms on current worksta-
tions.

The flexibility of DataRiver derives from its modular design—data output by
a variety of hardware devices are handled by specialized device drivers that con-
vert each of them into a device-independent data stream. Those data streams are
then continuously merged together in real time into a data “river.” DataRiver de-
vice drivers, currently available for several types of data input devices and systems,
allow ready development of a wide range of interactive experimental paradigms
in a wide variety of application environments. Data in incoming data streams can
be used in real time by “stream recipient” modules for recording, online data pro-
cessing, and/or stimulus control. DataRiver has built-in support for a real-time data
exchange with one or more remote computers in a local area network (LAN), allow-
ing a distributed, cooperative experimental environment (Fig. 14.1). New DataRiver
routines can easily be added at any time, ensuring expandability to meet evolving
research goals.

14.2.4 MatRiver

MatRiver is a MATLAB toolbox that includes a MATLAB DataRiver client op-
timized for real-time data processing, buffering and visualization with emphasis
on EEG analysis. It calls DLL functions under Windows OS to communicate with
DataRiver and provides a pipeline for EEG pre-processing and classification. In
addition to performing common EEG processing steps such as channel selection,
re-referencing, frequency filtering and linear spatial filtering (ICA (Makeig et al.
1996) or other linear models), MatRiver includes simple-to-use routines for dynamic
noisy ‘bad’ channel detection and compensation (taking into account the ICA source
model if any). The preprocessed activities of channels or independent components
(ICs) are accumulated in MATLAB and may be used for event-based classification
or continuous visualization of derived EEG features such as alpha band power.
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Fig. 14.1 DataSuite data flow. Two computers each running an instance of DataRiver are pre-
sented. One acquires data (left); the other (right) uses MatRiver to perform data classification and
feedback visualization. Dashed lines indicate control signals

Event-based EEG classification is facilitated in MatRiver using MATLAB call-
back functions that are executed at predefined latencies after selected events (trig-
gers). This architecture allows for use of any classifier function accessible in MAT-
LAB, for example from other toolboxes such as BCILAB (described below). Since
MatRiver uses MATLAB timers running in the background for real-time process-
ing, it operates in a non-blocking manner—the MATLAB command line stays
available throughout the session, allowing for interactive exploration of incoming
data. Online sessions can also be simulated in MatRiver using previously recorded
data.

MatRiver is optimized for speed of computation and display; EEG preprocess-
ing and most event-related data classifications can be performed in less than 10
ms on contemporary (2010) hardware. Also, continuous visualizations of derived
EEG features (for example, alpha band power) may be rendered at more than 19
frames per second using the Open-GL based Simulink 3-D (The MathWorks, Inc.).
The computer gaming industry generally considers screen response latencies of less
than 80 ms to be imperceptible for human subjects. MatRiver can thus achieve com-
parable or better response latency in a wide range of applications. Visualization in
MatRiver also complements the C++-based DataSuite stimulus delivery environ-
ment (‘Producer’) optimized for real-time use with DataRiver. Producer clients may
also be used to visualize results of MatRiver computations that are merged via Ma-
tRiver routines to the ongoing data river.
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14.2.5 EEGLAB

EEGLAB is a general offline analysis environment for EEG and other electrophys-
iological data (Delorme and Makeig 2004) (http://www.sccn.ucsd.edu/eeglab) that
complements Datariver and Matriver. EEGLAB is an interactive menu-based and
scripting environment for processing electrophysiological data based under MAT-
LAB. EEGLAB provides command line and interactive graphic user interface (GUI)
allowing users to flexibly and interactively process their high-density electrophysio-
logical data (up to several hundred channels) or other dynamic brain data time series.
Its functions implement several methods of electroencephalographic data analysis
including independent component analysis (ICA) (Makeig et al. 1996, 2002) and
time/frequency analysis (Makeig and Inlow 1993). EEGLAB has become a widely
used platform for processing biophysical time series and sharing new techniques. At
least 28 plug-in functions have been implemented by a variety of user groups. Both
MatRiver (described below) and BCILAB (described later) use the EEG dataset
structure of EEGLAB. Thus BCI applications written in either environment may
make direct use of the many EEGLAB data processing and visualization functions.

14.2.5.1 Other Solutions

Other packages also allow performing data acquisition and processing under MAT-
LAB. rtsBCI in BIOSIG uses MATLAB Simulink and the RealTime Workshop to
interface ADC cards. Similarly, the g.tec company uses MATLAB Simulink for
high-speed online processing via specially-developed hardware interrupt-controlled
drivers. These approaches are not further discussed here.

14.3 Online Data Processing

Online BCI processing often consists of first a BCI-specific portion involving cus-
tom signal processing and/or feature extraction for which there is already quite
a large palette of published algorithms, followed by a generic machine learn-
ing/inference portion, for which many toolboxes and simple yet powerful algorithms
like Linear Discriminant Analysis (LDA) (Fisher 1936) are available. In view of the
wide range of available tools, flexibly prototyping custom data processing and clas-
sification methods is a main reason to use MATLAB for BCI research applications.

n = 300; % Number of samples
d = 10; % Number of features
labels = sign(randn(1,n)); % Labels -1 and 1
% Data (1 distributions’ distance)
data = [randn(d,n) + 0.5*randn(d,1)*labels];

for i = 1:10 % 10-fold cross-validation
% Test indices
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tst = [round(n/10)*(i-1)+1:round(n/10)*i];

% Train indices
trn = logical(ones(1,n)); trn(tst) = 0;

% Train LDA
w = inv(cov(data’))*data(:,trn)*labels(trn)’;

% Test LDA
c = w’*data(:,tst);

% Compute percentage correct
p(i) = sum(sign(c)==labels(tst))/length(tst);
end

% Result (~95% accuracy)
fprintf(’Perf.: %2.1f%%(+-%1.1f)\n’,100*mean(p),100*std(p));

MATLAB code, see figure 14.2

14.3.1 A Minimalistic BCI Script Using Native MATLAB Code

MATLAB itself allows easy prototyping of complex algorithms. For instance, the
implementation of LDA projection requires 286 lines of C++ code in the OpenViBE
toolbox, whereas in MATLAB it can essentially be implemented as the single line
� result = sign(w′ ∗ x − b),wx being the data, w the weights and b the bias factor.
This is one reason why many new computational methods are tested under MAT-
LAB before implementing them in a more structured application-oriented language.
For example, MATLAB functions can be used directly to perform learning with and
rigorous testing of Linear Discriminant Analysis (LDA), using only simple matrix
manipulation (Fisher 1936). The sample code in Fig. 14.2 above creates two classes
of Gaussian-distributed data and then performs training and testing. The script per-
forms 10 fold cross-validation (10 training repetitions on 90% of the data; testing on
the remainder) using LDA, and returns mean and std. dev. detection classification
accuracy.

Fig. 14.2 Listing above:
Minimal MATLAB code for
training and testing a simple
LDA classifier and
performing ten-fold
cross-validations. Figure
right: The test data versus
LDA solution hyperplane in
the first two dimensions
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MATLAB scripts may also perform more advanced classification. For in-
stance, the Common Spatial Pattern (CSP) algorithm for oscillatory data processing
(Ramoser et al. 1998) is used in many BCI systems. Implementations of CSP often
involve manually tuning its frequency filter and time window. Methods to automat-
ically adapt these parameters exist (e.g., Spec-CSP; Tomioka et al., 2006) but are
significantly more difficult to implement. Fig. 14.3 shows a minimalistic BCI script
performing CSP classification that would require thousands of lines of C or C++
code. Despite its simplicity, it can perform online BCI control whose performance
may rival that of much more complex BCI software.

Here, the data involved imagined left and right hand movements plus rest peri-
ods. The learned test function can also be applied in real time to a new incoming
data stream using a MATLAB timer. The only usage guideline for test_bci is that
whenever the user wants a prediction of the current mental state, he must feed it all
raw EEG samples that have been collected since the previous call to the function.

The spatiotemporal filters associated with the example from Fig. 14.3 are shown
in Fig. 14.4 above. Figure 14.4C shows the output of the model and the data labels.

14.3.2 BCILAB

BCILAB is a system for easily constructing new BCI systems with a strong focus
on advancing the state of the art. BCI systems constructed using BCILAB can be
applied online and/or evaluated offline. Many BCI designs are permitted, from the
simplest signal processing chain to advanced machine learning systems. BCILAB is
designed to become (likely in 2010) a freely available toolbox for the creation, eval-
uation, and application of BCI systems. BCILAB also provides tools to explore and
visualize datasets offline for basic research purposes. As there is no clear bound-
ary between data analysis for BCI and for neuroscience, here BCILAB blends into
EEGLAB on which it is built. BCILAB system design is based on three concepts:

• BCI Detectors. These are the fundamental component of any BCI system, the
actual methods mapping continuous EEG data measures to a control signal.
Whereas in environments such as EEGLAB, the primary object of study is the
data itself, in BCILAB the primary object of study are BCI Detectors, with one
or more Detectors forming a BCI system.

• Detector components. BCILAB provides a large collection of components that
can be used to construct BCI Detectors. Three categories exist: Signal processing,
feature extracting, and machine learning. Custom signal processors and machine
learning algorithms can also be implemented by the user, subject to framework
contracts guiding the implementation which are sufficiently general to encom-
passes most approaches.

• Detection paradigms. Detection paradigms are prototypes of commonly re-used
Detector designs consisting of multiple BCI components, usually from all three
categories.
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Fig. 14.3 A minimalistic BCI script (C. Kothe). The top function (train_bci) performs temporal
filtering and training of a CSP filter. The second function (test_bci) applies the model to incoming
blocks of raw data, and can be used for online processing. The scripts load data (here from the
BCI Competition III), perform training and testing, and display results as in Fig. 14.2. Assuming
a function “get_rawdata” allows asynchronous data collection (for example to DataRiver or Field-
trip), the fourth script performs real-time (R-T) classification and displays an evolving time course
of classification over the past 2 seconds with a refresh rate of 100 ms. Figure 14.4 shows the spatial
and temporal filters learned and used. For more details see www.sccn.ucsd.edu/minimalistBCI
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Fig. 14.4 Spatial and temporal filters associated with the code in Fig. 14.3. Left. CSP 118-channel
spatial filter weights for the best two of six CSP filters used. Topright: The temporal filter tailored
to the BCI data. This filter was learned by the Test BCI script in Fig. 14.3. BottomRight: BCI
performance over a 100 second window. The black curve indicates the output of the test_bci func-
tion. Gray plateaus indicate the detected class (1 is imagined left hand movement; 0 is rest; −1 is
imagined right hand movement)

BCILAB data processing capabilities are reviewed in Table 14.1.
BCILAB natively implements some default BCI paradigms. These allow the re-

searcher to simply provide data and designate a paradigm name: CSP for imag-
ined movements with LDA (Fisher 1936), Spec-CSP for imagined movements with
LDA (Tomioka et al. 2006) logarithmic band-power estimates with Hjorth surface
Laplacian filter (Vidaurre and Schlögl 2008), multi-segment averages with LDA (for
using the Lateralized Readiness Potential) (Blankertz et al. 2002a), adaptive autore-
gressive models on band-pass filtered channels with LDA (Schlögl 2000), common
spatial patterns for slow cortical potentials (Dornhege et al. 2003a), multi-band CSP,
ICA-decomposed logarithmic band-power estimates and, as meta-algorithms, fea-
ture combinations (Dornhege et al. 2003b) as well as multi-class classification by
panels of experts. These default detection paradigms are massively adaptable. For
example, the CSP paradigm for imagined movements can easily be parameterized
to measure aspects of mental workload or relaxation. Much BCILAB design work
amounts to re-parameterization of existing paradigms for new goals (epoch length,
filtering, etc.). In principle, the entire preprocessing chain of the paradigm can be
replaced element by element as desired. The ease of adding new components to the
toolbox has allowed ready implementation of a variety of methods from EEG and
BCI research.

Automated Parameter Search is a particularly convenient feature of the design
interface. Instead of a parameter, the special expression search(. . . ) can be given,
to specify a parameter range. This can be used, for example, to auto-determine the
best model parameters, or to regularize a classifier. The BCILAB Detector Design
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Table 14.1 Signal processing, feature extraction, and machine learning algorithms in the
BCILAB/EEGLAB framework

Signal processing Feature extraction Machine Learning Algorithms

• Channel selection
• Resampling
• Deblinking
• Envelope extraction
• Epoch extraction
• Baseline filtering
• Re-referencing
• Surface Laplacian

filteringn

• ICA methods (Infomax,
FastICA, AMIGA)p,q

• Spectral filters (FIR,
IIR)

• Spherical spline
interpolations

• Multi-window
averaging for detection
based on slow cortical
potentialsa,b

• Common Spatial
Patterns (CSP)d

• Spectrally-weighted
Common Spatial
Patternsf

• Adaptive Autoregressive
Modeling, from BioSigh

• Linear Discriminant Analysis
(LDA)c

• Quadratic Discriminant Analysis
(QDA)e

• Regularized LDA and QDAg

• Linear SVMi (implemented using
LIBLINEAR)

• Kernel SVMi (implemented using
SVMPerf, with LibSVM fallback)

• Gaussian Mixture Models (GMM
three methodsj,k,l implemented
using GMMBAYES)

• Variational Bayesian Logistic
Regressionm (contributed by
T. Klister)

• Deep Restricted Boltzmann
Machineso (contributed by
F. Bachl)

• Relevance Vector Machines
(RVM)r (implemented using
SparseBayes)

a,bBlankertz et al. (2002a, 2002b), cFisher (1936), dRamoser et al. (1998), eFriedman (2002),
fTomioka et al. (2006), gFriedman (2002), hSchlögl (2000), iSchölkopf and Smola (2002),
j,k,lBilmes (1998), Vlassis et al. (2002), Figueiredo and Jain (2002), mJaakkola and Jordan (1997),
nBabiloni et al. (1995), oHinton et al. (2006), p,qMakeig et al. (1996), Palmer et al. (2007), rTipping
(2001), sPerrin et al. (1987)

Interface (DDI) is the primary interface for configuring, training, and evaluating De-
tectors offline. There are three interface functions covering this area of BCI research.
bci_preproc, bci_train and bci_predict are command line interfaces, though a GUI
wrapper for each of them is planned. The data are first preprocessed by bci_preproc
with the help of EEGLAB functions. bci_train then finds the optimal Detector given
the paradigm; this Detector function can then be used for online data processing. The
bci_preproc function can apply customization to the whole flow, from raw data to a
final online-ready Detector, on the fly. Real-time use of the toolbox is similar to the
minimalist BCI.

When attempting new BCI applications, often not much is known about the na-
ture of the data at hand, and therefore not much about how Detector parameters
should be chosen. This is where strong visualization functions can help. It is rela-
tively easy to get a BCI running under MATLAB (cf. train_bci in Fig. 14.3), but it
involves much more work to visualize the data in time and frequency and to plot
scalp maps, tasks which are practical when tuning the parameters of these functions
and checking the neurophysiological plausibility of the learned models. BCILAB
contains a function (vis_hyperspectrum) to display accuracy-coded time/frequency
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Fig. 14.5 Illustration of estimated accuracy of a CSP-based time/frequency Detector in a two-class
imagined movement task (Kothe 2009) using Logistic Regression to classify every time/frequency
voxel during the 5 seconds after stimulus presentation. Here the spectral time windows were Hann
windows with 90% overlap. Time/frequency estimates were obtained by computing 150-sample
FFTs. The cross-validated performance of a CSP+LDA classifier was then estimated and mapped
to an oversamples and interpolated color (or here grey-scale) image

images that encode, for every time/frequency voxel, the cross-validated performance
estimates of a CSP Detector, as shown in Fig. 14.5. A variant of it allows inspec-
tion of the similarity of optimal filters over time and frequency: similar colors imply
similarly successful filters.

Another function displays class-colored distributions of slow cortical potentials
over time, thus showing at which times the slow potentials for the contrasted con-
ditions become discriminative. These functions allow quick identification of good
parameters for Detectors, using spectral power and/or (near DC) SCP classifiers.
For instance, Fig. 14.5 was used to select an optimal frequency filter for the model
implemented in the minimalistic BCI code (Fig. 14.3). A collection of additional
visualization functions display internal properties of trained Detectors, for exam-
ple showing linear classifier weights as scalp map plots using EEGLAB plotting
functions.

To summarize, the BCILAB toolbox can fit the online processing slot in most
research BCI environments. For example, it can be linked as processing node into
DataSuite, FieldTrip, BCI2000, or OpenViBE systems, or be connected to a propri-
etary acquisition and stimulus presentation system. As it is fully scriptable, when
MATLAB is available it can in principle also be embedded into research proto-
type systems for use outside the laboratory. In addition to functioning as processing
block, BCILAB has a user interface for developing, customizing, training, evalu-
ating, and tuning Detectors using a array of methods likely to grow wider before
release. Finally, BCILAB can also serve as a tool to explore discriminative ques-
tions about data, and can be viewed as a plug-in extension to EEGLAB for this
purpose.
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Table 14.2 Free and commercial classifiers running under MATLAB. The double horizontal line
separates the EEG-tailored tools from more general all-purpose classification tools. GPL refers to
software freely available under the Gnu Public Licence

Package License Content

BCILAB GPL See Table 14.1

g.BSanalyse Commercial LDA, Minimum Distance Classifier (MDC), QDA,
MultiLayer Perceptron (MLP), Radial Basis Function
(RBF), Kmean

BIOSIG GPL Various LDA, QDA/MDA, Regularized Discriminant
Analysis (RDA), MDC, Partial Least Square (PLS),
RBF, various SVM and Bayesian classifiers

NMLT GPL This toolbox is associated with FieldTrip. Currently in
development

MATLAB Commercial LDA; Minimum Distance Classifier, QDA, HMM
(Statistic Toolbox); MLP (Neural Network Toolbox),
SVM, Kmean (Bioinformatics Toolbox)

CVX GPL Logistic regression, SVM, Gaussian process regression

GPML toolbox GPL Gaussian process classification

LibSVM GPL SVM, supports multi-class

MLOSS Mostly GPL Various Machine Learning Open Source Software

14.3.3 Other MATLAB BCI Classification Tools

Various classification methods may be implemented using functions in the commer-
cial MATLAB add-on toolboxes. The classify function of the MATLAB Statistics
toolbox performs LDA, its variants Quadratic Discriminant Analysis (QDA) (Fried-
man 2002), and classification using Mahalonobis distance (MDA). The hmmtrain
function allows training of Hidden Markov Models (HMM). The Neural Network
toolbox adds Multilayer Perceptrons. The Bioinformatics toolbox adds support vec-
tor machine (SVM) and K-means classification, and also contains a user-friendly
and versatile function crossvalind to produce cross-validation indices, plus a func-
tion classperf to store and accumulate classifier performances and statistics. It is
beyond the scope of this chapter to review all the MATLAB commercial and free
tools available to perform classification and data processing, especially since these
tools are in constant evolution. Instead, in Table 14.2 we list some commonly used
tools (as of early 2010) for classifying data.

Other BCI software also offers comprehensive solutions on different platforms
and operating systems. We review them briefly below.

14.3.4 Other Existing MATLAB and Non-MATLAB BCI Tools

• BioSig (Schlögl and Brunner 2000) (www.biosig.sourceforge.net) emerged from
the original Graz BCI system as a MATLAB/Octave toolbox. This software (as of
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version 2.31), supports a wide range of functionality in statistics and time-series
analysis, with a focus on online biosignal processing. It includes the most com-
plete adaptive auto-regression implementation (Schlögl 2000) as well as blind
source separation (Bell and Sejnowski 1995), Common Spatial Patterns classi-
fication (Ramoser et al. 1998) and code to perform classification according to
a variety of methods including kernel Support Vector Machines (Schölkopf and
Smola 2002) as well as basic cross-validation methods for estimating classiffier
performance (see Table 14.1 for the list of classification algorithms suported).
Most implemented features are linked to full paper references. Online and real-
time operation is implemented in “rtsBCI”, a module based on Simulink and the
RealTime Workshop from The Mathworks. Using the BioSig software tends to
require strong programming abilities and in-depth knowledge of code internals.

• OpenViBE (www.irisa.fr/bunraku/OpenViBE) is a relatively new project devel-
oped in France quite different from BioSig. The current implementation (version
0.4.0) is a clean-slate approach to BCI written in C++ with a focus on online
processing and virtual reality integration. Most of OpenViBE is a visual pro-
gramming toolkit for low-level signal processing and higher-level classification,
implemented via building blocks that can be graphically combined, making it an
ambitious programming project. OpenViBE has been used together with a rel-
atively versatile machine learning library (BLiFF++). OpenViBE also contains
a module to run MATLAB code in real-time, although currently this only deals
with real-time data processing (or offline streaming of data). When eventually
completed, OpenViBE could become one of the easier-to-use tools for BCI sig-
nal analysis.

• BCI2000 (Schalk et al. 2004) (www.bci2000.org) is also a native C++ implemen-
tation headed by Gerwin Schalk at the Wadsworth Center (Albany NY) that fo-
cuses on online data collection, processing, and feedback. BCI2000 is a complete
research BCI toolkit including a data recording module with integrated process-
ing, a simple stimulus presentation module, an operator control module, and a
feedback module. It is a robust and sufficient tool for testing simple and estab-
lished BCI approaches such as ‘P300’-based spellers (Sellers et al. 2006) and
mu rhythm demodulation (Miner et al. 1998). In theory, it can also handle more
complex workloads such as adaptive spatiotemporal filtering, non-linear classifi-
cation, and BCI performance evaluation. The BCI2000 software is reliable and
has a large user base and several extensions are available, including an imple-
mentation of the Common Spatial Patterns algorithm. BCI2000 has support for
executing functions in MATLAB in real time, and includes some basic functions
for offline processing of data from disk in MATLAB.

• The BBCI Toolbox (www.bbci.de) is an in-house, closed-source, BCI toolkit de-
veloped by Berlin Institute of Technology, the Fraunhofer FIRST institute and
the Charité University Medicine (Berlin, Germany). Though not much is known
about its internal structure, there is reason to believe that it is flexibly designed.
Its functionality, judging by the authors’ publications (i.e. Blankertz et al., 2002a,
2002b), may make it the most complete BCI toolbox written to date. Its feed-
back system is currently being rewritten in Python and has been released as open
source software (Venthur and Blankertz 2008).
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• g.BSanalyze (www.gtec.at) is a commercial biosignal analysis toolbox developed
by the Austrian company g.tec and written in MATLAB. A feedback application
based on MATLAB’s Simulink can be obtained separately. Its documentation im-
plies that its level of BCI functionality can be compared to that of BioSig plus a
large subset of EEGLAB (Delorme and Makeig 2004). Clearly a massive amount
of work went into optimizing its GUI design and usability. However, the most
advanced classifiers and feature extractors are currently not yet implemented.

• Other projects. The EU funded Tobi project (www.tobi-project.org) is a multi-
million euro project that includes both the Graz BCI team and the BBCI teams. It
is currently developing a common software platform for BCI operation and cal-
ibration. The Dutch government funded Braingain project (www.braingain.nl) is
supporting the development of real-time FieldTrip (described above) and Brain-
Stream (www.brainstream.nu), a simplified MATLAB-based BCI environment
for non-programmers.

14.4 Conclusion

BCI research now underway has at least three objectives. First, much BCI research
attempts to identify efficient and low-latency means of obtaining volitional control
over changes in EEG features, thus forming ‘mental signals’ usable for BCI com-
munication (see Chapter 12 of this Volume). A second class of BCI systems attempt
to use modulation of brain activity in response to external stimulation, often by
volitional control of user attention. The modulated brain activity, for instance the
P300 target stimulus complex (Farwell and Donchin 1988), is mapped to an artifi-
cial control signal such as a speller that detects a characteristic brain dynamic re-
sponse elicited when an on-screen letter attended by the user is highlighted. A third
objective performs passive cognitive monitoring of user state including actions or
intention, so as to enhance overall human-system productivity, safety, enjoyment, or
equilibrium. Applications in this area are as diverse as alertness monitoring (Jung et
al. 1997), systems to detect user confusion (Zander and Jatzev 2009), neurofeedback
(Birbaumer et al. 2009), and systems proposed to automatically detect and quench
epileptic seizures.

Current BCI technology is quite young, much in flux, and is likely moving toward
eventual convergence on robust and flexible mental state inference methods. Real-
world BCI applications for healthy or disabled users can be efficiently designed
and prototyped using currently available MATLAB tools and toolboxes, but break-
through into widely-applicable methods will probably not occur until dry, wire-
less EEG systems are readily available (Lin et al. 2008), and more advanced signal
processing methods are developed based on more complete understanding of dis-
tributed brain processes. The introduction of machine learning techniques from BCI
research into cognitive neuroscience may facilitate development of more compre-
hensive models of brain function. Despite their efficiency and simplicity, many cur-
rent BCI algorithms such as Common Spatial Patterns (CSP) are not directly based
on or interpretable in terms of EEG source neurophysiology. Incorporating advances
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in understanding EEG and brain function will likely help BCI systems mature and
improve in performance.

Finally, although early work in BCI-based communication systems designed for
use with ‘locked-in’ patients took appropriate care to exclude use of potentials aris-
ing from muscle activity in normal control subjects, there is no reason that BCI
systems need rely on EEG signals alone. Rather, the prospect of using mobile
brain/body imaging (MoBI) (Makeig et al. 2009) to model concurrent motor be-
havior and psychophysiology (including body movements and muscle activities) as
well as EEG and electromyographic (EMG) data should open up a much wider
range of BCI (or perhaps brain/body computer interface) concepts (Makeig et al.
2009). Components of such systems are already being developed commercially for
computer gaming, and will likely be soon applied to much broader classes of human-
system interaction research.
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Chapter 15
Using BCI2000 for HCI-Centered BCI Research

Adam Wilson and Gerwin Schalk

Abstract BCI2000 is a general-purpose software suite designed for brain-computer
interface (BCI) and related research. BCI2000 has been in development since 2000
and is currently used in close to 500 laboratories around the world. BCI2000 can
provide stimulus presentation while simultaneously recording brain signals and sub-
ject responses from a number of data acquisition and input devices, respectively.
Furthermore, BCI2000 provides a number of services (such as a generic data format
that can accommodate any hardware or experimental setup) that can greatly facili-
tate research. In summary, BCI2000 is ideally suited to support investigations in the
area of human-computer interfaces (HCI), in particular those that include recording
and processing of brain signals. This chapter provides an overview of the BCI2000
system, and gives examples of its utility for HCI research.

15.1 Introduction

BCI2000 is a general-purpose software suite designed for brain-computer interface
(BCI) research. It can also be used for data acquisition, stimulus presentation, and
general brain monitoring applications. The core goal of the BCI2000 project is to fa-
cilitate research and development of new applications in these areas. It is designed
to be a tool to simplify the considerable challenge of setting up, configuring, and
maintaining a BCI system. It provides a consistent framework that encourages col-
laboration between labs. BCI2000 has been in development since 2000 in a col-
laboration between the Wadsworth Center of the New York State Department of
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Health in Albany, New York, and the Institute of Medical Psychology and Behav-
ioral Neurobiology at the University of Tübingen, Germany. Since its initial release
in 2001, BCI2000 has had a substantial impact on BCI research. As of late 2009,
BCI2000 has been acquired by close to 500 laboratories around the world. Be-
cause BCI2000 is available for free to academic and educational institutions, many
other individuals at different institutions around the world have contributed to this
project.

BCI2000 was designed primarily as a framework for implementing a general-
purpose BCI. However, as this chapter will show, it is also ideally suited for study-
ing human-computer interfaces (HCI). BCI2000 is capable of presenting stimuli
(e.g., visual and audio) with high temporal resolution, while simultaneously record-
ing brain signals and subject responses, such as joystick movement, button presses,
and even eye tracker data, all synchronized and stored in a generic data format.
The capability of logging data from any input device synchronized with stimulus
presentation, and requiring little or no programming should be of immediate util-
ity to many HCI-centered labs. Furthermore, since BCI2000 is designed to be a
closed-loop system, i.e., it reacts and adapts to the user’s actions, more complex
HCI experiments could be designed in which the stimulus presentations changes
based on how the user is performing. At the same time, as the basic technological,
algorithmic, and neurological concepts of BCIs have become better understood, and
BCIs have begun moving out of the realm of lab-based “proof-of-concept” projects,
there has been increased interest in the interface aspect of brain-computer inter-
faces, and finding ways to improve the BCI for the end user (Allison 2009). Since
the BCI2000 framework is so configurable, and the core applications are simple to
modify, BCI2000 is a natural platform to assist improving the interface and usability
of BCIs, without needing to worry about the system details, or whether a care-taker
is capable of running the BCI. In fact, with minimal training, it is literally possible
for the operator to run BCI2000 and press start, without any intermediate configu-
ration.

BCI2000 facilitates the implementation of different BCI systems and other psy-
chophysical experiments by substantially reducing the time that would otherwise
be spent developing the BCI software framework. It does this by providing a num-
ber of BCI and stimulus presentation paradigms that can be configured by the in-
vestigator or adapted by a software engineer. Furthermore, a number of standard
configurations are included with the software, so that if BCI2000-compatible hard-
ware is used, BCI experiments can be started within minutes of downloading the
system. Because BCI2000 is based on a system model that can describe any BCI
system, because its underlying framework is highly generic, and because execution
of BCI2000 does not require third-party components, its use is most beneficial in
large collaborative research programs with many concurrent and different experi-
ments in different locations.

In this chapter, we will introduce the reader to the BCI2000 system, outline com-
mon scenarios for its use, and provide a brief technical overview of the system.
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15.2 Advantages of Using BCI2000

In this section, the advantages of using BCI2000 are discussed, generally as it relates
to BCI applications. However, since a brain-computer interface is a specific type of
human-computer interface (i.e., the interface is with brain signals, as opposed to a
different type of input device), nearly all of the concepts discussed are just as rel-
evant for HCI research as BCI research. In fact, the BCI2000 framework already
provides methods for acquiring data from many different input devices, and there-
fore can immediately be used for HCI experiments with few if any modifications.

Many scientific articles or book chapters have described the basics of BCI sys-
tems using different brain signals (e.g., sensorimotor rhythms or evoked responses).
A student with moderate knowledge of a programming language such as Matlab and
some understanding of the necessary signal processing routines could write a BCI
demonstration in a matter of days. Why, then, is BCI2000 even necessary? Writing
“in-lab” BCI software has many disadvantages. First, it requires considerable exper-
tise, time, and thus cost to build a BCI system that is robust. That is, while it may be
possible and seem attractive to write a BCI system within a few days, perhaps using
a rapid prototyping system such as Matlab, it is likely that such a prototype will
contain bugs that may invalidate collected data when they are carefully analyzed af-
ter data collection is completed. Even more problematically, it is very complex and
difficult to verify correct system function. It is not unreasonable to assume that it
can take a technically highly competent graduate student at least a semester to have
a working system before experimental data can be collected confidently. Even in
such an optimistic scenario, the next student will need to understand how to run the
program and modify the code (which was likely undocumented), or, more typically,
simply start from scratch.

Thus, the main benefit of using BCI2000 is that it implements a standard, mod-
ular BCI framework that can describe any BCI system, and that handles many of
the system details that are secondary to the algorithms and application output but
nonetheless are critical for a successful experiment. For example, data collected
with BCI2000 are stored using a standard data format that contains all experimental
parameters (so that all details of experimental configuration can be reconstructed
offline), all experimental event markers (such as when and where stimuli are pre-
sented), and all brain signal data. This data format is the same regardless of the
specific BCI implementation, i.e., for any amplifier system, signal processing algo-
rithm, and application output, the data format is identical. Hence, offline analysis
routines can be designed to work with the same type of data irrespective of the de-
tails of the experiment. This fact alone provides a tremendous advantage for multi-
site collaborative studies, for which different institutions may not have the same
hardware configurations, or even for in-house studies that involve more than one
person. Beyond the data format, the graphical interface that allows the investiga-
tor to set up and control an experiment is the same for any hardware configuration
regardless of the specific algorithms or applications that are used. This interface is
dynamically generated based on the details of the hardware, processing, and exper-
imental paradigm. Thus, this interface does not need to be rewritten for every pos-
sible combination of these different experimental aspects. Furthermore, all of the
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necessary experimental configuration data can be saved in a textual parameter file
and distributed to other collaborators, even if different amplifiers or other hardware
are used, and the experiment will run identically at all locations.

Another advantage to using BCI2000 is that it uses a modular format that sepa-
rates the core BCI system components into completely separate programs running
simultaneously. There is a Source module that handles data acquisition from the
amplifier (and other input devices) and data storage, a Signal Processing module
that extracts brain signal features and translates them into device control signals, a
User Application module that controls the feedback to the user (e.g., a computer dis-
play), and finally an Operator module that controls the other modules and provides
configuration and a configuration interface for the investigator. These four modules
run independently of each other, meaning that the Source module can be switched
for a different amplifier system needing to modify the Signal Processing or User
Application modules; and the graphical interface in the Operator will be updated
appropriately to reflect the required parameters for the new Source module.

Finally, this framework allows BCI2000 to easily be extended beyond its core
capabilities. If a new user input device is desired, it is straightforward to insert
the acquisition code into a new logger, which is used with a Source module, and
the framework will handle all of the other details. For example, all of the neces-
sary configuration parameters required for the new input device will appear in the
BCI2000 configuration window, and will be saved in the data file. Furthermore, the
input device will automatically work with the existing applications, due to the stan-
dard data transfer protocol between the modules. Similarly, if a new experimental
feedback paradigm is desired, a new Application module can be written to display
the new paradigm, and all parameters and events introduced by the new module will
be recorded in the data file. Additionally, since the modules communicate using the
TCP/IP network protocol, new programs could be written in any programming lan-
guage such as Python or Java, and communicate with the other BCI modules using
the BCI2000 data format.

In summary, BCI2000 provides a core set of common BCI implementations
within a standard BCI framework. BCI2000 is provided with fully documented com-
ponents that have proven to work robustly in many different BCI and other experi-
ments. By its modular design, BCI2000 tries to avoid redundancies in code, and re-
uses modules and code in multiple contexts rather than re-duplicating it. One of the
advantages of this approach is that it maximizes the effect of errors that may exist in
any single component, greatly increasing the likelihood to detect such errors early.
Furthermore, because of its flexible and modular design, BCI2000 allows combina-
tion of existing software components with relatively little effort. This ranges from
simple re-combination of modules (e.g., using the same signal processing algorithm
with different feedback paradigms), to modification of the kind and order of signal
processing components, and to modification of existing components or creation of
new components. For these reasons, BCI2000 provides a distinct advantage over
BCIs written in-house.

In the following section, we will first present different scenarios with relevance to
the HCI community in which BCI2000 can be beneficial, and then give a technical
overview of the BCI2000 system.
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15.3 Usage Scenarios

15.3.1 Performing an HCI/Psychophysical Experiment

BCI2000 can be valuable for laboratories specialized in the fields of electro-
physiology and psychophysiology, including those investigating aspects of human-
computer interaction. Typical psychophysiological experiments involve visual, au-
ditory, or other types of stimulation, and simultaneous recording of brain signal
responses. They often also require recording from multiple input devices, including
mice, keyboards, joysticks, eye trackers, and motion trackers. For such experiments,
BCI2000 may be used as software system that is capable of capturing human input
from multiple devices that is synchronized with stimulus presentation and neurolog-
ical recordings.

An example of such experiments are those that investigate Fitts’s law model of
information transfer rates in human movement (Fitts 1954). These experiments mea-
sure the tradeoff between speed and accuracy with a particular input modality by
requiring the subject to move back and forth between two targets as quickly and
accurately as possible using a particular body part or input device, such as a stylus
(Fig. 15.1).

Both the width (W ) of the targets and the distance between them (D) are system-
atically altered, and assigned an index of difficulty (ID) that describes the relative
difficulty of the task (see (15.1)). The movement times for the desired IDs are mea-
sured during the experiment, and a model of the movement time as a function of the
ID is derived (see (15.2)). The equations for this model are given as:

ID = log2

(
2A

W

)
, (15.1)

MT = a + b ∗ ID. (15.2)

The regression equation (15.2) includes the expected reaction time (a) and the
information transfer rate (1/b, in bits/sec) for a given modality. In the original re-

Fig. 15.1 In the original Fitts’s law study, the subjects quickly moved a stylus back and forth
between two targets of a particular width and distance apart. By altering the target widths and dis-
tances (which determine the index of difficulty), and measuring the movement times, it is possible
to calculate the information transfer rate of the human motor system for a particular input modality
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Fig. 15.2 Fitts’s law applied
to the BCI2000 cursor
movement task. The subject
moves the cursor from the
center of the screen to the
highlighted target of width W

over a distance A. At the end
of the trial, the cursor is
returned to the center, and the
next target is presented

ciprocal tapping task, which involved moving a stylus back and forth between two
targets, the information transfer for all tasks was 10–12 bits/sec, which thus gave
the performance capacity of the human motor system for such tasks (Fitts 1954).

Using BCI2000, it is possible to design a reciprocal tapping experiment to mea-
sure the information transfer rate using multiple input modalities (e.g., mouse, joy-
stick, and brain control), as was done in Felton et al. (2009). Implementation of the
Fitts’s task paradigm in BCI2000 requires three steps. First, the Cursor Task feed-
back paradigm that comes with BCI2000 must be extended to support a dwell period
during target acquisition, so that the cursor must remain within the target region for
a short time before it is selected. Thus, the BCI2000 source code needs to be down-
loaded, and a compatible compiler installed in order to build the new customized
Cursor Task.

The second step is to configure BCI2000 to display all of the target locations;
a wide range of IDs should be tested for each dimension of control; in Felton et
al. (2009), 14 targets with an ID range of 0.58 to 3.70 were used. In BCI2000, the
targets are defined in a table called Targets that lists their positions and geometries
in the x, y, and z planes. Additionally, to ensure that all targets are presented in a
run, the NumberOfTrials parameter should be set to equal the number of targets in
the Targets table, or some may not be presented. The BCI2000 application that is
displayed to the user is shown in Fig. 15.2.

The final step is to configure BCI2000 to record from different input devices
during the experiment, and to use these devices to control cursor movement. To use
a joystick for input, pass the option -LogJoystick=1 (to the Source module) on
the command line; similarly, to enable mouse input, pass -LogMouse=1. These
will create additional BCI2000 states containing the joystick’s x and y positions,
and the mouse’s x and y positions. Finally, the ExpressionFilter can be used
to allow the joystick or mouse to move the cursor on the screen. To allow joystick
control, enter

JoystickXPos
JoystickYPos

in the ExpressionFilter table; replace these with MousePosX and Mouse-
PosY for mouse input. For brain control, BCI2000 should be configured for the
Mu/Beta rhythm task. Detailed instructions for all of the BCI2000 configuration
steps are available in the BCI2000 documentation and tutorials.



15 Using BCI2000 for HCI-Centered BCI Research 267

When the tests have been completed, an analysis environment such as Matlab
can be used to import the data and calculate the movement times as a function of
the ID for all three conditions.

15.3.2 Patient Communication System

As a real-world application of BCI technology, a patient communication system uses
a BCI as an input device similar to a computer keyboard or mouse. Once a particular
BCI system has been designed and tested in laboratory experiments, BCI researchers
may want to deploy the system to the target population—typically, severely para-
lyzed people that depend on caregivers. A BCI may improve their quality of life
by allowing communication with caregivers, loved ones, or others through email
or other electronic means, and by providing a degree of independence by allowing
control of the environment, such as turning lights on and off, controlling a television
or radio, etc.

One of the primary challenges in developing a robust patient communication sys-
tem is making it simple enough for non-expert users, such as the caregiver, to setup
and use daily. Additionally, many people with severe motor disabilities already have
some form of augmentative communication technology (e.g., a predictive speller),
which may need to be integrated with the BCI system. In these instances, the BCI es-
sentially functions as an input device, and therefore will not require many advanced
interface options.

BCI2000 facilitates implementation of such a patient communication system
mainly in two ways. First, by integration and optimization of its graphical inter-
face, i.e., its Operator module; and second, by connecting its output to external de-
vices or software. Integration of BCI2000’s graphical interface is possible through
a number of means. First, the parameter configuration dialog may be restricted to
only show those parameters that are changed by operators. Second, system behavior
can be controlled via command-line parameters. Using command-line parameters,
it is possible to automatically load parameter files, start system operation, and quit
BCI2000 at the end of a run. In addition, beginning with BCI2000 version 3, the sys-
tem will be further modularized so that the graphical interface to the operator can be
completely replaced with an application-specific (rather than a generic) interface.
BCI2000 may also be integrated with external devices or applications. One way to
accomplish this is to use BCI2000’s external application interface, which provides
a bi-directional link to exchange information with external processes running on
the same or a different machine. Via the external application interface, read/write
access to BCI2000 state information and to the control signals is possible. For ex-
ample, in a μ rhythm-based BCI, an external application may read the classification
result, control the user’s task, or get access to the control signal that is calculated by
the Signal Processing module so as to control an external output device (such as a
robotic arm or a web browser).
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Fig. 15.3 A P300 Speller-based patient communication system to enter text into a word processor

As an example of BCI2000’s inter-operability capabilities, we will discuss the
scenario of a patient control system that allows paralyzed patients to use brain activ-
ity to control a standard word processor. Such a scenario has several requirements.
First, in an initial training phase, the BCI needs to be configured and adapted to
the patient. This usually requires expert supervision. In further sessions, the sys-
tem should be operated by nursing staff, with a minimum of interactions. Next,
the system should be based on the P300 speller paradigm, and choosing individual
matrix entries should correspond to entering letters into a standard word processor
(Fig. 15.3). Finally, the system should include standard word processing commands,
including a backspace, save and load file commands, and other essential features.

In this scenario, the standard P300 speller configuration will serve as a start-
ing point. To implement the required connectivity to external devices, one would
begin by extending the existing speller system to recognize additional selection
commands, and act upon them by sending appropriate device commands. In the
present example, no software modification is necessary, since the standard P300
speller module is capable of sending information about letter selection to the same
or another computer via UDP, where it may be picked up by any external program.
Thus, to connect speller selections to a standard word processor, it is only necessary
to create a small interfacing program that reads letter selections from the speller’s
UDP port, and uses the operating system to send appropriate key-press events to the
word processing application.

Once basic functionality is established, the entire system including BCI2000,
the interfacing program, and the word processor should be packaged into a larger
system, which will use a simplified user interface to be operated by nursing staff.
The simplified user interface may request a user name at startup, and a very lim-
ited number of additional parameters. Once acquired, these parameters will then be
concatenated with a user-specific parameter file that contains the actual BCI config-
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uration. Then, the system will start up the word processor, the interfacing program,
and BCI2000. Using operator module command line parameters, it will automat-
ically load the temporarily created parameter file, and begin BCI operation. Once
the user selects a “quit” command, BCI2000 will quit automatically. By using this
configuration methodology, i.e., configuring BCI2000 using a combination of sim-
ple dialogs and command-line interfaces, it is possible to avoid all references to the
BCI2000 user interface on the operator’s screen, and to only retain the application
module’s user screen (i.e., the speller matrix).

15.3.3 Other Directions

The two experiments shown here are two simple examples of how HCI concepts
could be explored using BCI2000. However, there are many possibilities for utiliz-
ing BCI2000 for improving human-computer interaction by studying exactly how
people use various input devices, while tracking eye position using the eye tracker,
attention from the brain signals, and other physiological signals (heart rate, skin
conductance) to measure stress and frustration, for example. Thus, existing input
devices could be improved by measuring not only how the primary input device is
used, but also the mental and physiological states of the user while the device is
used.

15.4 Core Concepts

15.4.1 System Model

The BCI2000 system model (Fig. 15.4) was designed to describe any kind of BCI,
which generally consists of three components: (1) a data acquisition component
that records neural signals; (2) a signal processing algorithm that extracts signal
features that represent the user’s intent and translates them into commands for an
output device; and (3) a user application component that sends these commands
to the output device, thus providing feedback to the user. These components are
present in any BCI system, and are described in Wolpaw et al. (2002).

In BCI2000, these three components correspond to three core BCI2000 modules,
which are implemented as independent executables that exchange data and com-
municate using a network-capable protocol. These modules are called the Source
Module, the Signal Processing Module, and the User Application Module. There is
a Source module for each type of data acquisition hardware amplifier, a Signal Pro-
cessing module for each type of signal processing algorithm, and a User Application
module for each type of feedback or output device. These modules are usually in-
dependent of each other, e.g., the Source module does not require any knowledge of
the Signal Processing or User Application modules, and vice versa. Therefore, these
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Fig. 15.4 The BCI2000 system model. Acquired data are processed sequentially be three mod-
ules (i.e., Source, Signal Processing, and User Application). The modules are controlled by an
additional Operator module (from Schalk et al. 2004)

modules my be recombined by choosing a different set of executables when starting
BCI2000.

As an example, conducting sensorimotor rhythm (SMR) feedback using the g.tec
g.USBamp acquisition system will involve the g.USBamp Source module (for data
acquisition and storage), the ARSignalProcessing module (for spatial filter-
ing, autoregressive spectral estimation, linear classification, and signal normaliza-
tion), and the CursorTask module (which provides visual feedback to the user
in the form of cursor movement). If a different amplifier system is used at another
location, the appropriate Source module is simply substituted.

15.4.2 Configuration

Once BCI2000 has been started, further configuration and control is performed
through a dedicated Operator Module. That module provides the experimenters user
interface. While it may show different parameters that are specific to a particular ex-
periment, the Operator module is the same program for all possible configurations of
BCI2000. In other words, the BCI2000 graphical interface to the investigator does
not have to be rewritten for different configurations. The Operator module provides
a user interface to start, pause, and resume system operation. In addition, it is able to
display logging information, signal visualization, and a reduced copy of the user’s
screen during system operation (Fig. 15.5).

The functional details of individual modules are configured by parameters that
are requested by the individual components that make up each module. For example,
the data acquisition component of the BCI2000 Source module typically requests a
parameter that sets the device’s sampling rate. The parameters of all modules are
displayed, modified, and organized in the Operator module’s configuration dialog
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Fig. 15.5 BCI2000 Operator module, displaying source signal (top right), timing information
(bottom right), a downsampled copy of the application window (top left), and an application log
(middle bottom)

(Fig. 15.6). As mentioned before, a different configuration of BCI2000 (i.e., using
different Source, Signal Processing, or User Application modules) will result in
different parameters displayed in this dialog and written in the data file. All of these
automatic adaptations in the BCI2000 system to different configurations are handled
by the BCI2000 and are transparent to the user and even the BCI2000 programmer.

15.4.3 Software Components

Inside core modules, software components act on blocks of brain signal data in se-
quence, forming a chain of “filters” (Fig. 15.7). Module operation may be adapted
by writing new filters, modifying existing ones, or simply by rearranging them.
These filters are written in C++, so their adaptation requires the requisite program-
ming skills. However, BCI2000 provides a programming framework that is designed
to achieve slim and transparent coding inside filter components, and thus simplifies
filter modification. Also, we provide a filter that employs user-provided Matlab™
code for online data processing.

Filters usually do not have their own user interface. Rather, they typically re-
quest configuration parameters from the programming framework, which will then
be displayed and organized in the Operator module’s configuration window (e.g., in
Fig. 15.6), with no specific programming effort required. Parameters may be char-
acters or numbers, and may be single values, lists, or matrices, and do not change
during an experimental session.
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Fig. 15.6 The BCI2000 parameter configuration dialog. The “Filtering” tab is selected and reveals
the configuration details relating to signal processing. Using the sliders on the right side, individual
parameters can be assigned user levels so that only a subset of them will be visible at lower user
levels; this is useful for clinical applications of BCI systems. “Save” and “Load” buttons provide
storage and retrieval of parameters, the “Configure Save” and “Configure Load” buttons allow users
to determine a subset of parameters to store or retrieve, respectively. The “Help” button provides
instant access to parameter documentation

In addition to the concept of parameters, which are static during a defined pe-
riod of experimentation, BCI2000 also supports the concept of event markers called
states. BCI2000 states encode those aspects of the system state during an experiment
that are necessary to reconstruct the timing of events. During the experiment, state
values are changed based on the current state of the BCI system, providing a means
of recording event markers, and encoding information about stimulation or user task
for later data analysis. The values for all states are saved along with the brain sig-
nals at every sample regardless of whether the state value changed. For example,
during the P300 Speller task, the row and column that are currently being flashed
are stored in state values, which allows to reconstruct the entire experiment. Simi-
larly to parameters, states are requested by filters, and then propagated and recorded
transparently by the framework.

During operation, a filter may access parameters and states using a simple pro-
gramming interface that allows setting and obtaining parameter and state values in a
manner similar to assigning values to or from variables. The advantage of using this
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Fig. 15.7 BCI2000 Filter Chain. Inside core modules, individual filter components are indicated.
This figure demonstrates that the initial brain signals undergo several subsequent processing steps
in the three core modules prior to application output

software infrastructure is that requested parameters automatically appear in particu-
lar tabs in the configuration dialog, parameters are automatically stored in the header
of the data file (so that all aspects of system configuration can be retrieved offline),
and that state variables are automatically associated with data samples and stored in
the data file. In other words, BCI2000 system operation, data storage, and real-time
data interchange can be adapted substantially to the needs of particular situations by
only making local changes to individual BCI2000 filters within modules.

15.4.4 Getting Started with BCI2000

Getting started with BCI2000 requires appropriate hardware, which consists of a
computer system and recording equipment. The computer system may be standard
desktop or a laptop computer running Windows.1 The computer should come with
a dedicated 3D-capable video card. For most experiments, it is advantageous to
use separate video screens for the experimenter and the subject, respectively. When
using a desktop computer, this implies a two-monitor configuration; when using a
laptop computer, a separate monitor for the subject, i.e., the BCI user.

The recording equipment consists of an amplifier, a digitizer, and appropriate
sensors. Today, many amplifiers come with an integrated digitizer. For example,
this includes the g.tec™ amplifiers supported in the core distribution of BCI2000:
the 16-channel g.USBamp that connects via USB, and the 8-channel g.MOBIlab+

1We have comprehensively tested BCI2000 on Windows NT, Windows 2000, and Windows XP.
While BCI2000 operates under Windows Vista, Vista’s timing performance, in particular with
regards to audio and video output, is substantially reduced compared to Windows XP.
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that connects via Bluetooth. Many other EEG systems and digitizer boards are sup-
ported through additional Source modules that have been provided by BCI2000
users. Examples comprise EEG/ECoG recording systems by Biosemi, Brainprod-
ucts (BrainAmp, V-Amp), Neuroscan, and Tucker-Davis, as well as digitizer boards
by Data Translations, Measurement Computing, and National Instruments. In most
situations in humans, BCI systems will record from sensors placed on the scalp
(electroencephalography (EEG)). EEG caps are usually offered in conjunction with
amplifiers, or may be purchased separately.

15.5 Conclusion

BCI2000 provides a number of important capabilities useful to researchers per-
forming BCI, psychophysical, and human-computer interaction studies. Because the
BCI2000 framework handles much of the internal functions necessary for executing
and maintaining successful experiments, and can be expanded for and adapted to
a wide range of possible applications, BCI2000 allows scientists to focus on only
those aspects that are unique to their experiments. Thus, BCI2000 greatly reduces
the complexity, time, and thus cost, of creating and maintaining experiments in the
area of real-time biosignal processing and feedback.
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