
Dirk deRoos is the technical sales lead for IBM’s InfoSphere BigInsights.
Paul C. Zikopoulos is the vice president of big data in the IBM Information
Management division. Roman B. Melnyk, PhD is a senior member of
the DB2 Information Development team. Bruce Brown and Rafael
Coss work with big data with IBM.

Cover image: © iStockphoto.com/JuanDarien

Go to Dummies.com®
for videos, step-by-step photos,

how-to articles, or to shop!

 Open the book and find:

•	Coverage of the Hadoop 2
ecosystem and Yarn

•	Real-world use cases to help
you get started

•	Details on Hadoop distributions
and cluster setup

•	How to use Oozie for scheduling
workflows

•	How to add structure with Hive
and HBase

•	Details on running native SQL
queries on Hive

•	On-premise and cloud
deployment options
for Hadoop

•	The challenges faced by
administrators

Computers/Enterprise Applications/General

The easy-to-use, practical guide
to using Hadoop for big data
With most of the world’s data created in only the past two
years, Hadoop has emerged as the definitive computing
paradigm to handle big data. This comprehensive guide from
IBM big data experts provides a hands-on resource for those
who want to dig into the details of HDFS and MapReduce
to take data storage and processing to the next level.

•	Get	started	with	Hadoop	—	discover	the	origins	of	Hadoop,	the	
realities	of	worldwide	data	growth,	and	practical	use	cases	for	
this	revolutionary	platform	

•	Under	the	Hadoop	hood	—	dig	into	Hadoop’s	distributed	framework,	
including	HDFS	and	MapReduce	and	the	best	tools	for	working	with	
data	in	Hadoop	

•	Hadoop	and	structured	data	—	modernize	data	warehouses	with	
Hadoop	and	discover	data	utilities	like	HBase,	Hive,	and	Sqoop	

•	Hands	on	with	Hadoop	—	get	your	hands	dirty	with	details	on	
configuring	Hadoop	clusters	and	an	overview	of	day-to-day	
Hadoop	administration

•	Take	your	Hadoop	knowledge	to	the	next	level	—	use	additional	
Hadoop	resources	to	understand	the	technology	at	a	deeper	level

$29.99 USA / $35.99 CAN / £21.99 UK

9 781118 607558

52999

ISBN:978-1-118-60755-8
H
adoop

®

deRoos et al.

Dirk deRoos
Paul C. Zikopoulos
Roman B. Melnyk, PhD
Bruce Brown
Rafael Coss

Learn	to:
•	Understand the value of big data

and how Hadoop can help manage it

•	Navigate the Hadoop 2 ecosystem
and create clusters

•	Use applications for data mining,
problem-solving, analytics, and more

Hadoop®

Making	Everything	Eas
ier!™

www.allitebooks.com

http://www.allitebooks.org

Start with FREE Cheat Sheets
Cheat Sheets include
	 •	Checklists
	 •	Charts
	 •	Common	Instructions
	 •	And	Other	Good	Stuff!

Get Smart at Dummies.com
Dummies.com makes your life easier with 1,000s
of answers on everything from removing wallpaper
to using the latest version of Windows.

Check out our
	 •	Videos
	 •	Illustrated	Articles
	 •	Step-by-Step	Instructions

Plus, each month you can win valuable prizes by entering
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
	 •	Digital	Photography
	 •	Microsoft	Windows	&	Office
	 •	Personal	Finance	&	Investing
	 •	Health	&	Wellness
	 •	Computing,	iPods	&	Cell	Phones
	 •	eBay
	 •	Internet
	 •	Food,	Home	&	Garden

Find out “HOW” at Dummies.com

*Sweepstakes not currently available in all countries; visit Dummies.com for official rules.

Get More and Do More at Dummies.com®

To access the Cheat Sheet created specifically for this book, go to
www.dummies.com/cheatsheet/hadoop

www.facebook.com/fordummies
www.twitter.com/fordummies

From eLearning to e-books, test prep to test banks,
language learning to video training, mobile apps, and more,

Dummies makes learning easier.

At home, at work, or on the go,
Dummies is here to help you
go digital!

www.allitebooks.com

http://www.allitebooks.org

Hadoop®

by Dirk deRoos, Paul C. Zikopoulos, Bruce Brown,
Rafael Coss, and Roman B. Melnyk

www.allitebooks.com

http://www.allitebooks.org

Hadoop® For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2014 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission
of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-
6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be
used without written permission. Hadoop is a registered trademark of the Apache Software Foundation. All
other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated
with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE
INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY
MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK
MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT
IS READ.

For general information on our other products and services, please contact our Customer Care Department
within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support,
please visit www.wiley.com/techsupport.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-demand. If
this book refers to media such as a CD or DVD that is not included in the version you purchased, you may
download this material at http://booksupport.wiley.com. For more information about Wiley prod-
ucts, visit www.wiley.com.

Library of Congress Control Number: 2013954209

ISBN: 978-1-118-60755-8 (pbk); ISBN 978-1-118-65220-6 (ebk); ISBN 978-1-118-70503-2 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

www.allitebooks.com

http://www.allitebooks.org

Contents at a Glance
Introduction .. 1

Part I: Getting Started with Hadoop 7
Chapter 1: Introducing Hadoop and Seeing What It’s Good For 9
Chapter 2: Common Use Cases for Big Data in Hadoop.. 23
Chapter 3: Setting Up Your Hadoop Environment... 41

Part II: How Hadoop Works .. 51
Chapter 4: Storing Data in Hadoop: The Hadoop Distributed File System 53
Chapter 5: Reading and Writing Data .. 69
Chapter 6: MapReduce Programming ... 83
Chapter 7: Frameworks for Processing Data in Hadoop:

YARN and MapReduce .. 103
Chapter 8: Pig: Hadoop Programming Made Easier .. 117
Chapter 9: Statistical Analysis in Hadoop... 129
Chapter 10: Developing and Scheduling Application Workflows with Oozie 139

Part III: Hadoop and Structured Data 155
Chapter 11: Hadoop and the Data Warehouse: Friends or Foes? 157
Chapter 12: Extremely Big Tables: Storing Data in HBase .. 179
Chapter 13: Applying Structure to Hadoop Data with Hive...................................... 227
Chapter 14: Integrating Hadoop with Relational Databases Using Sqoop 269
Chapter 15: The Holy Grail: Native SQL Access to Hadoop Data 303

Part IV: Administering and Configuring Hadoop 313
Chapter 16: Deploying Hadoop .. 315
Chapter 17: Administering Your Hadoop Cluster .. 335

Part V: The Part of Tens ... 359
Chapter 18: Ten Hadoop Resources Worthy of a Bookmark 361
Chapter 19: Ten Reasons to Adopt Hadoop ... 371

Index .. 379

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Introduction ... 1

About this Book ... 1
Foolish Assumptions ... 2
How This Book Is Organized .. 2

Part I: Getting Started With Hadoop .. 2
Part II: How Hadoop Works .. 2
Part III: Hadoop and Structured Data .. 3
Part IV: Administering and Configuring Hadoop 3
Part V: The Part Of Tens: Getting More Out of Your

Hadoop Cluster ... 3
Icons Used in This Book ... 3
Beyond the Book ... 4
Where to Go from Here ... 5

Part I:Getting Started with Hadoop 7

Chapter 1: Introducing Hadoop and Seeing What It’s Good For 9
Big Data and the Need for Hadoop .. 10

Exploding data volumes .. 11
Varying data structures .. 12
A playground for data scientists .. 12

The Origin and Design of Hadoop ... 13
Distributed processing with MapReduce ... 13
Apache Hadoop ecosystem .. 15

Examining the Various Hadoop Offerings .. 17
Comparing distributions ... 18
Working with in-database MapReduce.. 21
Looking at the Hadoop toolbox ... 21

Chapter 2: Common Use Cases for Big Data in Hadoop 23
The Keys to Successfully Adopting Hadoop (Or, “Please,

Can We Keep Him?”) .. 23
Log Data Analysis .. 24
Data Warehouse Modernization .. 27
Fraud Detection ... 29
Risk Modeling ... 31
Social Sentiment Analysis ... 32
Image Classification ... 36
Graph Analysis ... 38
To Infinity and Beyond .. 39

www.allitebooks.com

http://www.allitebooks.org

Hadoop For Dummies vi

Chapter 3: Setting Up Your Hadoop Environment 41
Choosing a Hadoop Distribution ... 41
Choosing a Hadoop Cluster Architecture .. 44

Pseudo-distributed mode (single node) ... 44
Fully distributed mode (a cluster of nodes) 44

The Hadoop For Dummies Environment .. 44
The Hadoop For Dummies distribution: Apache Bigtop................. 45
Setting up the Hadoop For Dummies environment 46
The Hadoop For Dummies Sample Data Set:

Airline on-time performance ... 48
Your First Hadoop Program: Hello Hadoop! .. 49

Part II: How Hadoop Works ... 51

Chapter 4: Storing Data in Hadoop: The Hadoop
Distributed File System . 53

Data Storage in HDFS ... 54
Taking a closer look at data blocks ... 55
Replicating data blocks ... 56
Slave node and disk failures ... 57

Sketching Out the HDFS Architecture ... 57
Looking at slave nodes .. 58
Keeping track of data blocks with NameNode 60
Checkpointing updates ... 63

HDFS Federation .. 65
HDFS High Availability .. 66

Chapter 5: Reading and Writing Data . 69
Compressing Data ... 69
Managing Files with the Hadoop File System Commands 72
Ingesting Log Data with Flume ... 80

Chapter 6: MapReduce Programming . 83
Thinking in Parallel .. 83
Seeing the Importance of MapReduce .. 85
Doing Things in Parallel: Breaking Big Problems into

Many Bite-Size Pieces .. 86
Looking at MapReduce application flow ... 87
Understanding input splits ... 87
Seeing how key/value pairs fit into the

MapReduce application flow .. 89
Writing MapReduce Applications .. 94

www.allitebooks.com

http://www.allitebooks.org

vii Table of Contents

Getting Your Feet Wet: Writing a Simple MapReduce Application 96
The FlightsByCarrier driver application ... 96
The FlightsByCarrier mapper ... 98
The FlightsByCarrier reducer... 99
Running the FlightsByCarrier application 100

Chapter 7: Frameworks for Processing Data in Hadoop:
YARN and MapReduce . 103

Running Applications Before Hadoop 2 .. 104
Tracking JobTracker ... 105
Tracking TaskTracker ... 105
Launching a MapReduce application .. 106

Seeing a World beyond MapReduce .. 107
Scouting out the YARN architecture ... 108
Launching a YARN-based application ... 111

Real-Time and Streaming Applications ... 113

Chapter 8: Pig: Hadoop Programming Made Easier 115
Admiring the Pig Architecture ... 116
Going with the Pig Latin Application Flow ... 117
Working through the ABCs of Pig Latin .. 119

Uncovering Pig Latin structures .. 120
Looking at Pig data types and syntax .. 121

Evaluating Local and Distributed Modes of Running Pig scripts 125
Checking Out the Pig Script Interfaces ... 126
Scripting with Pig Latin ... 127

Chapter 9: Statistical Analysis in Hadoop . 129
Pumping Up Your Statistical Analysis .. 129

The limitations of sampling .. 130
Factors that increase the scale of statistical analysis................... 130
Running statistical models in MapReduce 131

Machine Learning with Mahout ... 131
Collaborative filtering.. 133
Clustering .. 133
Classifications .. 134

R on Hadoop ... 135
The R language ... 135
Hadoop Integration with R.. 136

Chapter 10: Developing and Scheduling Application
Workflows with Oozie . 139

Getting Oozie in Place ... 140
Developing and Running an Oozie Workflow ... 142

Writing Oozie workflow definitions ... 143
Configuring Oozie workflows ... 151
Running Oozie workflows ... 151

www.allitebooks.com

http://www.allitebooks.org

Hadoop For Dummies viii
Scheduling and Coordinating Oozie Workflows 152

Time-based scheduling for Oozie coordinator jobs 152
Time and data availability-based scheduling for Oozie

coordinator jobs ... 153
Running Oozie coordinator jobs .. 154

Part III: Hadoop and Structured Data 155

Chapter 11: Hadoop and the Data Warehouse: Friends or Foes? . . . 157
Comparing and Contrasting Hadoop with Relational Databases 158

NoSQL data stores ... 159
ACID versus BASE data stores.. 160
Structured data storage and processing in Hadoop 163

Modernizing the Warehouse with Hadoop ... 166
The landing zone .. 166
A queryable archive of cold warehouse data 168
Hadoop as a data preprocessing engine ... 172
Data discovery and sandboxes .. 175

Chapter 12: Extremely Big Tables: Storing Data in HBase 179
Say Hello to HBase ... 180

Sparse .. 180
It’s distributed and persistent .. 181
It has a multidimensional sorted map ... 182

Understanding the HBase Data Model .. 182
Understanding the HBase Architecture .. 186

RegionServers .. 187
MasterServer .. 190
Zookeeper and HBase reliability .. 192

Taking HBase for a Test Run .. 195
Creating a table .. 199
Working with Zookeeper ... 202

Getting Things Done with HBase ... 203
Working with an HBase Java API client example 206

HBase and the RDBMS world ... 209
Knowing when HBase makes sense for you? 210
ACID Properties in HBase ... 210
Transitioning from an RDBMS model to HBase 211

Deploying and Tuning HBase ... 214
Hardware requirements .. 215
Deployment Considerations ... 217
Tuning prerequisites ... 218
Understanding your data access patterns...................................... 220
Pre-Splitting your regions ... 222
The importance of row key design .. 223
Tuning major compactions ... 225

www.allitebooks.com

http://www.allitebooks.org

ix Table of Contents

Chapter 13: Applying Structure to Hadoop Data with Hive 227
Saying Hello to Hive .. 228
Seeing How the Hive is Put Together .. 229
Getting Started with Apache Hive ... 231
Examining the Hive Clients ... 234

The Hive CLI client ... 234
The web browser as Hive client ... 236
SQuirreL as Hive client with the JDBC Driver 238

Working with Hive Data Types .. 240
Creating and Managing Databases and Tables .. 242

Managing Hive databases ... 243
Creating and managing tables with Hive .. 244

Seeing How the Hive Data Manipulation Language Works 251
LOAD DATA examples ... 251
INSERT examples ... 255
Create Table As Select (CTAS) examples 258

Querying and Analyzing Data ... 259
Joining tables with Hive .. 260
Improving your Hive queries with indexes..................................... 262
Windowing in HiveQL .. 264
Other key HiveQL features ... 267

Chapter 14: Integrating Hadoop with Relational
Databases Using Sqoop . 269

The Principles of Sqoop Design ... 270
Scooping Up Data with Sqoop .. 271

Connectors and Drivers .. 271
Importing Data with Sqoop ... 272
Importing data into HDFS.. 273
Importing data into Hive ... 280
Importing data into HBase .. 281
Importing incrementally .. 285
Benefiting from additional Sqoop import features 288

Sending Data Elsewhere with Sqoop ... 290
Exporting data from HDFS .. 291
Sqoop exports using the Insert approach 293
Sqoop exports using the Update and Update Insert approach ... 295
Sqoop exports using call stored procedures 295
Sqoop exports and transactions .. 296

Looking at Your Sqoop Input and Output Formatting Options 296
Getting down to brass tacks: An example of output

line-formatting and input-parsing ... 298
Sqoop 2.0 Preview ... 301

Hadoop For Dummies x
Chapter 15: The Holy Grail: Native SQL Access to Hadoop Data . . . 303

SQL’s Importance for Hadoop .. 303
Looking at What SQL Access Actually Means .. 304
SQL Access and Apache Hive ... 305
Solutions Inspired by Google Dremel ... 307

Apache Drill .. 308
Cloudera Impala ... 309

IBM Big SQL .. 309
Pivotal HAWQ ... 311
Hadapt ... 311
The SQL Access Big Picture ... 312

Part IV: Administering and Configuring Hadoop 313

Chapter 16: Deploying Hadoop . 315
Working with Hadoop Cluster Components .. 315

Rack considerations .. 316
Master nodes .. 318
Slave nodes ... 321
Edge nodes.. 326
Networking.. 328

Hadoop Cluster Configurations ... 328
Small .. 329
Medium ... 329
Large .. 330

Alternate Deployment Form Factors ... 331
Virtualized servers... 331
Cloud deployments .. 332

Sizing Your Hadoop Cluster ... 332

Chapter 17: Administering Your Hadoop Cluster 335
Achieving Balance: A Big Factor in Cluster Health 335
Mastering the Hadoop Administration Commands 336
Understanding Factors for Performance .. 342

Hardware... 342
MapReduce ... 342
Benchmarking .. 343

Tolerating Faults and Data Reliability ... 344
Putting Apache Hadoop’s Capacity Scheduler to Good Use 346
Setting Security: The Kerberos Protocol .. 348
Expanding Your Toolset Options .. 349

Hue ... 349
Ambari ... 351
Hadoop User Experience (Hue) ... 352
The Hadoop shell ... 354

Basic Hadoop Configuration Details ... 355

xi Table of Contents

Part V: The Part of Tens .. 359

Chapter 18: Ten Hadoop Resources Worthy of a Bookmark 361
Central Nervous System: Apache.org ... 362
Tweet This .. 362
Hortonworks University ... 363
Cloudera University .. 363
BigDataUniversity.com ... 365
planet Big Data Blog Aggregator .. 366
Quora’s Apache Hadoop Forum .. 367
The IBM Big Data Hub ... 367
Conferences Not to Be Missed ... 367
The Google Papers That Started It All .. 368
The Bonus Resource: What Did We Ever Do B.G.? 369

Chapter 19: Ten Reasons to Adopt Hadoop . 371
Hadoop Is Relatively Inexpensive .. 372
Hadoop Has an Active Open Source Community 373
Hadoop Is Being Widely Adopted in Every Industry 374
Hadoop Can Easily Scale Out As Your Data Grows 374
Traditional Tools Are Integrating with Hadoop 375
Hadoop Can Store Data in Any Format ... 375
Hadoop Is Designed to Run Complex Analytics 376
Hadoop Can Process a Full Data Set (As Opposed to Sampling) 376
Hardware Is Being Optimized for Hadoop .. 376
Hadoop Can Increasingly Handle Flexible Workloads

(No Longer Just Batch) ... 377

Index ... 379

Hadoop For Dummies xii

Introduction

W
elcome to Hadoop for Dummies! Hadoop is an exciting technology,
and this book will help you cut through the hype and wrap your

head around what it’s good for and how it works. We’ve included examples
and plenty of practical advice so you can get started with your own Hadoop
cluster.

About this Book
In our own Hadoop learning activities, we’re constantly struck by how little
beginner-level content is available. For almost any topic, we see two things:
high-level marketing blurbs with pretty pictures; and dense, low-level, nar-
rowly focused descriptions. What are missing are solid entry-level explanations
that add substance to the marketing fluff and help someone with little or no
background knowledge bridge the gap to the more advanced material. Every
chapter in this book was written with this goal in mind: to clearly explain the
chapter’s concept, explain why it’s significant in the Hadoop universe, and
show how you can get started with it.

No matter how much (or how little) you know about Hadoop, getting started
with the technology is not exactly easy for a number of reasons. In addition
to the lack of entry-level content, the rapid pace of change in the Hadoop eco-
system makes it difficult to keep on top of standards. We find that most dis-
cussions on Hadoop either cover the older interfaces, and are never updated;
or they cover the newer interfaces with little insight into how to bridge the
gap from the old technology. In this book, we’ve taken care to describe the
current interfaces, but we also discuss previous standards, which are still
commonly used in environments where some of the older interfaces are
entrenched.

Here are a few things to keep in mind as you read this book:

 ✓ Bold text means that you’re meant to type the text just as it appears in
the book. The exception is when you’re working through a steps list:
Because each step is bold, the text to type is not bold.

 ✓ Web addresses and programming code appear in monofont. If you’re
reading a digital version of this book on a device connected to the
Internet, note that you can click the web address to visit that website,
like this: www.dummies.com

2 Hadoop For Dummies

Foolish Assumptions
We’ve written this book so that anyone with a basic understanding of com-
puters and IT can learn about Hadoop. But that said, some experience with
databases, programming, and working with Linux would be helpful.

There are some parts of this book that require deeper skills, like the Java
coverage in Chapter 6 on MapReduce; but if you haven’t programmed in Java
before, don’t worry. The explanations of how MapReduce works don’t require
you to be a Java programmer. The Java code is there for people who’ll want
to try writing their own MapReduce applications. In Part 3, a database back-
ground would certainly help you understand the significance of the various
Hadoop components you can use to integrate with existing databases and
work with relational data. But again, we’ve written in a lot of background to
help provide context for the Hadoop concepts we’re describing.

How This Book Is Organized
This book is composed of five parts, with each part telling a major chunk
of the Hadoop story. Every part and every chapter was written to be a self-
contained unit, so you can pick and choose whatever you want to concentrate
on. Because many Hadoop concepts are intertwined, we’ve taken care to refer
to whatever background concepts you might need so you can catch up from
other chapters, if needed. To give you an idea of the book’s layout, here are
the parts of the book and what they’re about:

Part I: Getting Started With Hadoop
As the beginning of the book, this part gives a rundown of Hadoop and its
ecosystem and the most common ways Hadoop’s being used. We also show
you how you can set up your own Hadoop environment and run the example
code we’ve included in this book.

Part II: How Hadoop Works
This is the meat of the book, with lots of coverage designed to help you under-
stand the nuts and bolts of Hadoop. We explain the storage and processing
architecture, and also how you can write your own applications.

3 Introduction

Part III: Hadoop and Structured Data
How Hadoop deals with structured data is arguably the most important
debate happening in the Hadoop community today. There are many competing
SQL-on-Hadoop technologies, which we survey, but we also take a deep look
at the more established Hadoop community projects dedicated to structured
data: HBase, Hive, and Sqoop.

Part IV: Administering and
Configuring Hadoop
When you’re ready to get down to brass tacks and deploy a cluster, this part
is a great starting point. Hadoop clusters sink or swim depending on how
they’re configured and deployed, and we’ve got loads of experience-based
advice here.

Part V: The Part Of Tens: Getting More
Out of Your Hadoop Cluster
To cap off the book, we’ve given you a list of additional places where you can
bone up on your Hadoop skills. We’ve also provided you an additional set of
reasons to adopt Hadoop, just in case you weren’t convinced already.

Icons Used in This Book
 The Tip icon marks tips (duh!) and shortcuts that you can use to make working

with Hadoop easier.

 Remember icons mark the information that’s especially important to know.
To siphon off the most important information in each chapter, just skim
through these icons.

4 Hadoop For Dummies

 The Technical Stuff icon marks information of a highly technical nature that
you can normally skip over.

 The Warning icon tells you to watch out! It marks important information that
may save you headaches.

Beyond the Book
We have written a lot of extra content that you won’t find in this book. Go
online to find the following:

 ✓ The Cheat Sheet for this book is at

www.dummies.com/cheatsheet/hadoop

 Here you’ll find quick references for useful Hadoop information we’ve
brought together and keep up to date. For instance, a handy list of the
most common Hadoop commands and their syntax, a map of the various
Hadoop ecosystem components, and what they’re good for, and listings
of the various Hadoop distributions available in the market and their
unique offerings. Since the Hadoop ecosystem is continually evolving,
we’ve also got instructions on how to set up the Hadoop for Dummies
environment with the newest production-ready versions of the Hadoop
and its components.

 ✓ Updates to this book, if we have any, are at

www.dummies.com/extras/hadoop

 ✓ Code samples used in this book are also at

www.dummies.com/extras/hadoop

 All the code samples in this book are posted to the website in Zip format;
just download and unzip them and they’re ready to use with the Hadoop
for Dummies environment described in Chapter 3. The Zip files, which are
named according to chapter, contain one or more files. Some files have
application code (Java, Pig, and Hive) and others have series of com-
mands or scripts. (Refer to the downloadable Read Me file for a detailed
description of the files.) Note that not all chapters have associated code
sample files.

5 Introduction

Where to Go from Here
If you’re starting from scratch with Hadoop, we recommend you start at the
beginning and truck your way on through the whole book. But Hadoop does
a lot of different things, so if you come to a chapter or section that covers an
area you won’t be using, feel free to skip it. Or if you’re not a total newbie,
you can bypass the parts you’re familiar with. We wrote this book so that you
can dive in anywhere.

If you’re a selective reader and you just want to try out the examples in the
book, we strongly recommend looking at Chapter 3. It’s here that we describe
how to set up your own Hadoop environment in a Virtual Machine (VM) that
you can run on your own computer. All the examples and code samples were
tested using this environment, and we’ve laid out all the steps you need to
download, install, and configure Hadoop.

6 Hadoop For Dummies

www.allitebooks.com

http://www.allitebooks.org

Part I
Getting Started

with Hadoop

 Visit www.dummies.com for great Dummies content online.

In this part . . .
 ✓ See what makes Hadoop-sense — and what doesn’t.

 ✓ Look at what Hadoop is doing to raise productivity in the real
world.

 ✓ See what’s involved in setting up a Hadoop environment

 ✓ Visit www.dummies.com for great Dummies content
online.

Chapter 1

Introducing Hadoop and Seeing
What It’s Good For

In This Chapter
▶ Seeing how Hadoop fills a need

▶ Digging (a bit) into Hadoop’s history

▶ Getting Hadoop for yourself

▶ Looking at Hadoop application offerings

O
rganizations are flooded with data. Not only that, but in an era of incred-
ibly cheap storage where everyone and everything are interconnected,

the nature of the data we’re collecting is also changing. For many businesses,
their critical data used to be limited to their transactional databases and data
warehouses. In these kinds of systems, data was organized into orderly rows
and columns, where every byte of information was well understood in terms
of its nature and its business value. These databases and warehouses are still
extremely important, but businesses are now differentiating themselves by
how they’re finding value in the large volumes of data that are not stored in a
tidy database.

The variety of data that’s available now to organizations is incredible:
Internally, you have website clickstream data, typed notes from call center
operators, e-mail and instant messaging repositories; externally, open data
initiatives from public and private entities have made massive troves of raw
data available for analysis. The challenge here is that traditional tools are
poorly equipped to deal with the scale and complexity of much of this data.
That’s where Hadoop comes in. It’s tailor-made to deal with all sorts of messi-
ness. CIOs everywhere have taken notice, and Hadoop is rapidly becoming an
established platform in any serious IT department.

This chapter is a newcomer’s welcome to the wonderful world of Hadoop — its
design, capabilities, and uses. If you’re new to big data, you’ll also find impor-
tant background information that applies to Hadoop and other solutions.

10 Part I: Getting Started with Hadoop

Big Data and the Need for Hadoop
Like many buzzwords, what people mean when they say “big data” is not
always clear. This lack of clarity is made worse by IT people trying to attract
attention to their own projects by labeling them as “big data,” even though
there’s nothing big about them.

At its core, big data is simply a way of describing data problems that are
unsolvable using traditional tools. To help understand the nature of big data
problems, we like the “the three Vs of big data,” which are a widely accepted
characterization for the factors behind what makes a data challenge “big”:

 ✓ Volume: High volumes of data ranging from dozens of terabytes, and
even petabytes.

 ✓ Variety: Data that’s organized in multiple structures, ranging from raw
text (which, from a computer’s perspective, has little or no discernible
structure — many people call this unstructured data) to log files (com-
monly referred to as being semistructured) to data ordered in strongly
typed rows and columns (structured data). To make things even more
confusing, some data sets even include portions of all three kinds of
data. (This is known as multistructured data.)

 ✓ Velocity: Data that enters your organization and has some kind of value
for a limited window of time — a window that usually shuts well before
the data has been transformed and loaded into a data warehouse for
deeper analysis (for example, financial securities ticker data, which may
reveal a buying opportunity, but only for a short while). The higher the
volumes of data entering your organization per second, the bigger your
velocity challenge.

Each of these criteria clearly poses its own, distinct challenge to someone
wanting to analyze the information. As such, these three criteria are an easy
way to assess big data problems and provide clarity to what has become a
vague buzzword. The commonly held rule of thumb is that if your data stor-
age and analysis work exhibits any of these three characteristics, chances are
that you’ve got yourself a big data challenge.

Failed attempts at coolness: Naming technologies
The co-opting of the big data label reminds
us when Java was first becoming popular
in the early 1990s and every IT project had to
have Java support or something to do with
Java. At the same time, web site application

development was becoming popular and
Netscape named their scripting language
“JavaScript,” even though it had nothing to do
with Java. To this day, people are confused by
this shallow naming choice.

11 Chapter 1: Introducing Hadoop and Seeing What It’s Good For

As you’ll see in this book, Hadoop is anything but a traditional information
technology tool, and it is well suited to meet many big data challenges, espe-
cially (as you’ll soon see) with high volumes of data and data with a variety
of structures. But there are also big data challenges where Hadoop isn’t well
suited — in particular, analyzing high-velocity data the instant it enters an
organization. Data velocity challenges involve the analysis of data while it’s
in motion, whereas Hadoop is tailored to analyze data when it’s at rest. The
lesson to draw from this is that although Hadoop is an important tool for big
data analysis, it will by no means solve all your big data problems. Unlike
some of the buzz and hype, the entire big data domain isn’t synonymous with
Hadoop.

Exploding data volumes
It is by now obvious that we live in an advanced state of the information age.
Data is being generated and captured electronically by networked sensors at
tremendous volumes, in ever-increasing velocities and in mind-boggling vari-
eties. Devices such as mobile telephones, cameras, automobiles, televisions,
and machines in industry and health care all contribute to the exploding data
volumes that we see today. This data can be browsed, stored, and shared, but
its greatest value remains largely untapped. That value lies in its potential to
provide insight that can solve vexing business problems, open new markets,
reduce costs, and improve the overall health of our societies.

In the early 2000s (we like to say “the oughties”), companies such as Yahoo!
and Google were looking for a new approach to analyzing the huge amounts
of data that their search engines were collecting. Hadoop is the result of that
effort, representing an efficient and cost-effective way of reducing huge ana-
lytical challenges to small, manageable tasks.

Origin of the “3 Vs”
In 2001, years before marketing people got
ahold of the term “big data,” the analyst firm
META Group published a report titled 3-D
Data Management: Controlling Data Volume,
Velocity and Variety. This paper was all about
data warehousing challenges, and ways to use

relational technologies to overcome them. So
while the definitions of the 3Vs in this paper
are quite different from the big data 3Vs, this
paper does deserve a footnote in the history
of big data, since it originated a catchy way to
describe a problem.

12 Part I: Getting Started with Hadoop

Varying data structures
Structured data is characterized by a high degree of organization and is typi-
cally the kind of data you see in relational databases or spreadsheets. Because
of its defined structure, it maps easily to one of the standard data types (or
user-defined types that are based on those standard types). It can be searched
using standard search algorithms and manipulated in well-defined ways.

Semistructured data (such as what you might see in log files) is a bit more diffi-
cult to understand than structured data. Normally, this kind of data is stored in
the form of text files, where there is some degree of order — for example, tab-
delimited files, where columns are separated by a tab character. So instead of
being able to issue a database query for a certain column and knowing exactly
what you’re getting back, users typically need to explicitly assign data types to
any data elements extracted from semistructured data sets.

Unstructured data has none of the advantages of having structure coded into
a data set. (To be fair, the unstructured label is a bit strong — all data stored
in a computer has some degree of structure. When it comes to so-called
unstructured data, there’s simply too little structure in order to make much
sense of it.) Its analysis by way of more traditional approaches is difficult
and costly at best, and logistically impossible at worst. Just imagine having
many years’ worth of notes typed by call center operators that describe cus-
tomer observations. Without a robust set of text analytics tools, it would be
extremely tedious to determine any interesting behavior patterns. Moreover,
the sheer volume of data in many cases poses virtually insurmountable chal-
lenges to traditional data mining techniques, which, even when conditions
are good, can handle only a fraction of the valuable data that’s available.

A playground for data scientists
A data scientist is a computer scientist who loves data (lots of data) and the
sublime challenge of figuring out ways to squeeze every drop of value out
of that abundant data. A data playground is an enterprise store of many tera-
bytes (or even petabytes) of data that data scientists can use to develop,
test, and enhance their analytical “toys.”

Now that you know what big data is all about, what it is, and why it’s impor-
tant, it’s time to introduce Hadoop, the granddaddy of these nontraditional
analytical toys. Understanding how this amazing platform for the analysis of
big data came to be, and acquiring some basic principles about how it works,
will help you to master the details we provide in the remainder of this book.

13 Chapter 1: Introducing Hadoop and Seeing What It’s Good For

The Origin and Design of Hadoop
So what exactly is this thing with the funny name — Hadoop? At its core,
Hadoop is a framework for storing data on large clusters of commodity
 hardware — everyday computer hardware that is affordable and easily
 available — and running applications against that data. A cluster is a group of
interconnected computers (known as nodes) that can work together on the
same problem. Using networks of affordable compute resources to acquire
business insight is the key value proposition of Hadoop.

As for that name, Hadoop, don’t look for any major significance there; it’s
simply the name that Doug Cutting’s son gave to his stuffed elephant. (Doug
Cutting is, of course, the co-creator of Hadoop.) The name is unique and easy
to remember — characteristics that made it a great choice.

Hadoop consists of two main components: a distributed processing frame-
work named MapReduce (which is now supported by a component called
YARN, which we describe a little later) and a distributed file system known
as the Hadoop distributed file system, or HDFS.

An application that is running on Hadoop gets its work divided among the
nodes (machines) in the cluster, and HDFS stores the data that will be pro-
cessed. A Hadoop cluster can span thousands of machines, where HDFS
stores data, and MapReduce jobs do their processing near the data, which
keeps I/O costs low. MapReduce is extremely flexible, and enables the devel-
opment of a wide variety of applications.

 As you might have surmised, a Hadoop cluster is a form of compute cluster, a
type of cluster that’s used mainly for computational purposes. In a compute
cluster, many computers (compute nodes) can share computational workloads
and take advantage of a very large aggregate bandwidth across the cluster.
Hadoop clusters typically consist of a few master nodes, which control the
storage and processing systems in Hadoop, and many slave nodes, which store
all the cluster’s data and is also where the data gets processed.

Distributed processing with MapReduce
MapReduce involves the processing of a sequence of operations on distributed
data sets. The data consists of key-value pairs, and the computations have
only two phases: a map phase and a reduce phase. User-defined MapReduce
jobs run on the compute nodes in the cluster.

14 Part I: Getting Started with Hadoop

Generally speaking, a MapReduce job runs as follows:

 1. During the Map phase, input data is split into a large number of fragments,
each of which is assigned to a map task.

 2. These map tasks are distributed across the cluster.

 3. Each map task processes the key-value pairs from its assigned fragment
and produces a set of intermediate key-value pairs.

 4. The intermediate data set is sorted by key, and the sorted data is parti-
tioned into a number of fragments that matches the number of reduce
tasks.

 5. During the Reduce phase, each reduce task processes the data fragment
that was assigned to it and produces an output key-value pair.

 6. These reduce tasks are also distributed across the cluster and write
their output to HDFS when finished.

The Hadoop MapReduce framework in earlier (pre-version 2) Hadoop
releases has a single master service called a JobTracker and several slave
services called TaskTrackers, one per node in the cluster. When you submit
a MapReduce job to the JobTracker, the job is placed into a queue and then
runs according to the scheduling rules defined by an administrator. As you
might expect, the JobTracker manages the assignment of map-and-reduce
tasks to the TaskTrackers.

A look at the history books
Hadoop was originally intended to serve as the
infrastructure for the Apache Nutch project,
which started in 2002. Nutch, an open source
web search engine, is a part of the Lucene proj-
ect. What are these projects? Apache projects
are created to develop open source software
and are supported by the Apache Software
Foundation (ASF), a nonprofit corporation made
up of a decentralized community of developers.
Open source software, which is usually devel-
oped in a public and collaborative way, is soft-
ware whose source code is freely available to
anyone for study, modification, and distribution.

Nutch needed an architecture that could scale
to billions of web pages, and the needed archi-
tecture was inspired by the Google file system

(GFS), and would ultimately become HDFS. In
2004, Google published a paper that introduced
MapReduce, and by the middle of 2005 Nutch
was using both MapReduce and HDFS.

In early 2006, MapReduce and HDFS became
part of the Lucene subproject named Hadoop,
and by February 2008, the Yahoo! search index
was being generated by a Hadoop cluster. By
the beginning of 2008, Hadoop was a top-level
project at Apache and was being used by many
companies. In April 2008, Hadoop broke a world
record by sorting a terabyte of data in 209 sec-
onds, running on a 910-node cluster. By May
2009, Yahoo! was able to use Hadoop to sort 1
terabyte in 62 seconds!

15 Chapter 1: Introducing Hadoop and Seeing What It’s Good For

With Hadoop 2, a new resource management system is in place called YARN
(short for Yet Another Resource Manager). YARN provides generic scheduling
and resource management services so that you can run more than just Map
Reduce applications on your Hadoop cluster. The JobTracker/TaskTracker
architecture could only run MapReduce.

We describe YARN and the JobTracker/TaskTracker architectures in Chapter 7.

HDFS also has a master/slave architecture:

 ✓ Master service: Called a NameNode, it controls access to data files.

 ✓ Slave services: Called DataNodes, they’re distributed one per node in
the cluster. DataNodes manage the storage that’s associated with the
nodes on which they run, serving client read and write requests, among
other tasks.

For more information on HDFS, see Chapter 4.

Apache Hadoop ecosystem
This section introduces other open source components that are typically
seen in a Hadoop deployment. Hadoop is more than MapReduce and HDFS:
It’s also a family of related projects (an ecosystem, really) for distributed
computing and large-scale data processing. Most (but not all) of these proj-
ects are hosted by the Apache Software Foundation. Table 1-1 lists some of
these projects.

Table 1-1 Related Hadoop Projects
Project
Name

Description

Ambari An integrated set of Hadoop administration tools for installing, mon-
itoring, and maintaining a Hadoop cluster. Also included are tools to
add or remove slave nodes.

Avro A framework for the efficient serialization (a kind of transformation)
of data into a compact binary format

Flume A data flow service for the movement of large volumes of log data
into Hadoop

HBase A distributed columnar database that uses HDFS for its underlying
storage. With HBase, you can store data in extremely large tables
with variable column structures

HCatalog A service for providing a relational view of data stored in Hadoop,
including a standard approach for tabular data

(continued)

16 Part I: Getting Started with Hadoop

Project
Name

Description

Hive A distributed data warehouse for data that is stored in HDFS; also
provides a query language that’s based on SQL (HiveQL)

Hue A Hadoop administration interface with handy GUI tools for browsing
files, issuing Hive and Pig queries, and developing Oozie workflows

Mahout A library of machine learning statistical algorithms that were imple-
mented in MapReduce and can run natively on Hadoop

Oozie A workflow management tool that can handle the scheduling and
chaining together of Hadoop applications

Pig A platform for the analysis of very large data sets that runs on HDFS
and with an infrastructure layer consisting of a compiler that produces
sequences of MapReduce programs and a language layer consist-
ing of the query language named Pig Latin

Sqoop A tool for efficiently moving large amounts of data between rela-
tional databases and HDFS

ZooKeeper A simple interface to the centralized coordination of services (such
as naming, configuration, and synchronization) used by distributed
applications

The Hadoop ecosystem and its commercial distributions (see the “Comparing
distributions” section, later in this chapter) continue to evolve, with new or
improved technologies and tools emerging all the time.

Figure 1-1 shows the various Hadoop ecosystem projects and how they relate
to one-another:

Figure 1-1:
Hadoop

ecosystem
components.

Table 1-1 (continued)

www.allitebooks.com

http://www.allitebooks.org

17 Chapter 1: Introducing Hadoop and Seeing What It’s Good For

Examining the Various Hadoop Offerings
Hadoop is available from either the Apache Software Foundation or from
companies that offer their own Hadoop distributions.

 Only products that are available directly from the Apache Software Foundation
can be called Hadoop releases. Products from other companies can include
the official Apache Hadoop release files, but products that are “forked” from
(and represent modified or extended versions of) the Apache Hadoop source
tree are not supported by the Apache Software Foundation.

Apache Hadoop has two important release series:

 ✓ 1.x: At the time of writing, this release is the most stable version of
Hadoop available (1.2.1).

 Even after the 2.x release branch became available, this is still commonly
found in production systems. All major Hadoop distributions include
solutions for providing high availability for the NameNode service,
which first appears in the 2.x release branch of Hadoop.

 ✓ 2.x: At the time of writing, this is the current version of Apache
Hadoop (2.2.0), including these features:

	 •	A MapReduce architecture, named MapReduce 2 or YARN (Yet
Another Resource Negotiator): It divides the two major functions of
the JobTracker (resource management and job life-cycle manage-
ment) into separate components.

	 •	HDFS availability and scalability: The major limitation in Hadoop 1
was that the NameNode was a single point of failure. Hadoop 2 pro-
vides the ability for the NameNode service to fail over to an active
standby NameNode. The NameNode is also enhanced to scale out
to support clusters with very large numbers of files. In Hadoop 1,
clusters could typically not expand beyond roughly 5000 nodes. By
adding multiple active NameNode services, with each one respon-
sible for managing specific partitions of data, you can scale out to
a much greater degree.

 Some descriptions around the versioning of Hadoop are confusing because
both Hadoop 1.x and 2.x are at times referenced using different version num-
bers: Hadoop 1.0 is occasionally known as Hadoop 0.20.205, while Hadoop 2.x
is sometimes referred to as Hadoop 0.23. As of December 2011, the Apache
Hadoop project was deemed to be production-ready by the open source com-
munity, and the Hadoop 0.20.205 version number was officially changed to
1.0.0. Since then, legacy version numbering (below version 1.0) has persisted,
partially because work on Hadoop 2.x was started well before the version
numbering jump to 1.0 was made, and the Hadoop 0.23 branch was already
created. Now that Hadoop 2.2.0 is production-ready, we’re seeing the old num-
bering less and less, but it still surfaces every now and then.

18 Part I: Getting Started with Hadoop

Comparing distributions
You’ll find that the Hadoop ecosystem has many component parts, all of
which exist as their own Apache projects. (See the previous section for more
about them.) Because Hadoop has grown considerably, and faces some sig-
nificant further changes, different versions of these open source community
components might not be fully compatible with other components. This
poses considerable difficulties for people looking to get an independent start
with Hadoop by downloading and compiling projects directly from Apache.

Red Hat is, for many people, the model of how to successfully make money in
the open source software market. What Red Hat has done is to take Linux (an
open source operating system), bundle all its required components, build a
simple installer, and provide paid support to any customers. In the same way
that Red Hat has provided a handy packaging for Linux, a number of com-
panies have bundled Hadoop and some related technologies into their own
Hadoop distributions. This list describes the more prominent ones:

 ✓ Cloudera (www.cloudera.com/): Perhaps the best-known player in the
field, Cloudera is able to claim Doug Cutting, Hadoop’s co-founder, as its
chief architect. Cloudera is seen by many people as the market leader in the
Hadoop space because it released the first commercial Hadoop distribution
and it is a highly active contributor of code to the Hadoop ecosystem.

 Cloudera Enterprise, a product positioned by Cloudera at the center of
what it calls the “Enterprise Data Hub,” includes the Cloudera Distribution
for Hadoop (CDH), an open-source-based distribution of Hadoop and
its related projects as well as its proprietary Cloudera Manager. Also
included is a technical support subscription for the core components
of CDH.

 Cloudera’s primary business model has long been based on its ability to
leverage its popular CDH distribution and provide paid services and sup-
port. In the fall of 2013, Cloudera formally announced that it is focusing
on adding proprietary value-added components on top of open source
Hadoop to act as a differentiator. Also, Cloudera has made it a common
practice to accelerate the adoption of alpha- and beta-level open source
code for the newer Hadoop releases. Its approach is to take components
it deems to be mature and retrofit them into the existing production-
ready open source libraries that are included in its distribution.

 ✓ EMC (www.gopivotal.com): Pivotal HD, the Apache Hadoop distribu-
tion from EMC, natively integrates EMC’s massively parallel processing
(MPP) database technology (formerly known as Greenplum, and now
known as HAWQ) with Apache Hadoop. The result is a high-performance
Hadoop distribution with true SQL processing for Hadoop. SQL-based
queries and other business intelligence tools can be used to analyze
data that is stored in HDFS.

19 Chapter 1: Introducing Hadoop and Seeing What It’s Good For

 ✓ Hortonworks (www.hortonworks.com): Another major player in the
Hadoop market, Hortonworks has the largest number of committers and
code contributors for the Hadoop ecosystem components. (Committers
are the gatekeepers of Apache projects and have the power to approve
code changes.) Hortonworks is a spin-off from Yahoo!, which was the
original corporate driver of the Hadoop project because it needed a
large-scale platform to support its search engine business. Of all the
Hadoop distribution vendors, Hortonworks is the most committed to the
open source movement, based on the sheer volume of the development
work it contributes to the community, and because all its development
efforts are (eventually) folded into the open source codebase.

 The Hortonworks business model is based on its ability to leverage its
popular HDP distribution and provide paid services and support. However,
it does not sell proprietary software. Rather, the company enthusiasti-
cally supports the idea of working within the open source community
to develop solutions that address enterprise feature requirements (for
example, faster query processing with Hive).

 Hortonworks has forged a number of relationships with established
companies in the data management industry: Teradata, Microsoft,
Informatica, and SAS, for example. Though these companies don’t
have their own, in-house Hadoop offerings, they collaborate with
Hortonworks to provide integrated Hadoop solutions with their own
product sets.

 The Hortonworks Hadoop offering is the Hortonworks Data Platform (HDP),
which includes Hadoop as well as related tooling and projects. Also
unlike Cloudera, Hortonworks releases only HDP versions with produc-
tion-level code from the open source community.

 ✓ IBM (www.ibm.com/software/data/infosphere/biginsights):
Big Blue offers a range of Hadoop offerings, with the focus around value
added on top of the open source Hadoop stack:

 InfoSphere BigInsights: This software-based offering includes a
number of Apache Hadoop ecosystem projects, along with addi-
tional software to provide additional capability. The focus of
InfoSphere BigInsights is on making Hadoop more readily consum-
able for businesses. As such, the proprietary enhancements are
focused on standards-based SQL support, data security and gover-
nance, spreadsheet-style analysis for business users, text analytics,
workload management, and the application development life cycle.

 PureData System for Hadoop: This hardware- and software-based
appliance is designed to reduce complexity, the time it takes to
start analyzing data, as well as IT costs. It integrates InfoSphere
BigInsights (Hadoop-based software), hardware, and storage into a
single, easy-to-manage system.

20 Part I: Getting Started with Hadoop

 ✓ Intel (hadoop.intel.com): The Intel Distribution for Apache Hadoop
(Intel Distribution) provides distributed processing and data manage-
ment for enterprise applications that analyze big data. Key features
include excellent performance with optimizations for Intel Xeon proces-
sors, Intel SSD storage, and Intel 10GbE networking; data security via
encryption and decryption in HDFS, and role-based access control with
cell-level granularity in HBase (you can control who’s allowed to see
what data down to the cell level, in other words); improved Hive query
performance; support for statistical analysis with a connector for R, the
popular open source statistical package; and analytical graphics through
Intel Graph Builder.

 It may come as a surprise to see Intel here among a list of software compa-
nies that have Hadoop distributions. The motivations for Intel are simple,
though: Hadoop is a strategic platform, and it will require significant
hardware investment, especially for larger deployments. Though much
of the initial discussion around hardware reference architectures for
Hadoop — the recommended patterns for deploying hardware for Hadoop
clusters — have focused on commodity hardware, increasingly we are
seeing use cases where more expensive hardware can provide significantly
better value. It’s with this situation in mind that Intel is keenly interested in
Hadoop. It’s in Intel’s best interest to ensure that Hadoop is optimized for
Intel hardware, on both the higher end and commodity lines.

 The Intel Distribution comes with a management console designed to
simplify the configuration, monitoring, tuning, and security of Hadoop
deployments. This console includes automated configuration with Intel
Active Tuner; simplified cluster management; comprehensive system
monitoring and logging; and systematic health checking across clusters.

 ✓ MapR (www.mapr.com): For a complete distribution for Apache Hadoop
and related projects that’s independent of the Apache Software
Foundation, look no further than MapR. Boasting no Java dependencies
or reliance on the Linux file system, MapR is being promoted as the only
Hadoop distribution that provides full data protection, no single points
of failure, and significant ease-of-use advantages. Three MapR editions
are available: M3, M5, and M7. The M3 Edition is free and available for
unlimited production use; MapR M5 is an intermediate-level subscription
software offering; and MapR M7 is a complete distribution for Apache
Hadoop and HBase that includes Pig, Hive, Sqoop, and much more.

 The MapR distribution for Hadoop is most well-known for its file system,
which has a number of enhancements not included in HDFS, such as
NFS access and POSIX compliance (long story short, this means you can
mount the MapR file system like it’s any other storage device in your
Linux instance and interact with data stored in it with any standard file
applications or commands), storage volumes for specialized manage-
ment of data policies, and advanced data replication tools. MapR also
ships a specialized version of HBase, which claims higher reliability,
security, and performance than Apache HBase.

21 Chapter 1: Introducing Hadoop and Seeing What It’s Good For

Working with in-database MapReduce
When MapReduce processing occurs on structured data in a relational
database, the process is referred to as in-database MapReduce. One imple-
mentation of a hybrid technology that combines MapReduce and relational
databases for the analysis of analytical workloads is HadoopDB, a research
project that originated a few years ago at Yale University. HadoopDB was
designed to be a free, highly scalable, open source, parallel database manage-
ment system. Tests at Yale showed that HadoopDB could achieve the per-
formance of parallel databases, but with the scalability, fault tolerance, and
flexibility of Hadoop-based systems.

More recently, Oracle has developed an in-database Hadoop prototype that
makes it possible to run Hadoop programs written in Java naturally from SQL.
Users with an existing database infrastructure can avoid setting up a Hadoop
cluster and can execute Hadoop jobs within their relational databases.

Looking at the Hadoop toolbox
A number of companies offer tools designed to help you get the most out of
your Hadoop implementation. Here’s a sampling:

 ✓ Amazon (aws.amazon.com/ec2): The Amazon Elastic MapReduce
(Amazon EMR) web service enables you to easily process vast amounts
of data by provisioning as much capacity as you need. Amazon EMR
uses a hosted Hadoop framework running on the web-scale infrastruc-
ture of Amazon Elastic Compute Cloud (Amazon EC2) and Amazon
Simple Storage Service (Amazon S3). Amazon EMR lets you analyze data
without having to worry about setting up, managing, or tuning Hadoop
clusters.

 Cloud-based deployments of Hadoop applications like those offered by
Amazon EMR are somewhat different from on-premise deployments. You
would follow these steps to deploy an application on Amazon EMR:

 1. Script a job flow in your language of choice, including a SQL-like
language such as Hive or Pig.

 2. Upload your data and application to Amazon S3, which provides
reliable storage for your data.

 3. Log in to the AWS Management Console to start an Amazon EMR job
flow by specifying the number and type of Amazon EC2 instances
that you want, as well as the location of the data on Amazon S3.

 4. Monitor the progress of your job flow, and then retrieve the output
from Amazon S3 using the AWS management console, paying only
for the resources that you consume.

22 Part I: Getting Started with Hadoop

 Though Hadoop is an attractive platform for many kinds of workloads,
it needs a significant hardware footprint, especially when your data
approaches scales of hundreds of terabytes and beyond. This is where
Amazon EMR is most practical: as a platform for short term, Hadoop-
based analysis or for testing the viability of a Hadoop-based solution
before committing to an investment in on-premise hardware.

 ✓ Hadapt (www.hadapt.com): Look for the product Adaptive Analytical
Platform, which delivers an ANSI SQL compliant query engine to
Hadoop. Hadapt enables interactive query processing on huge data sets
(Hadapt Interactive Query), and the Hadapt Development Kit (HDK) lets
you create advanced SQL analytic functions for marketing campaign
analysis, full text search, customer sentiment analysis (seeing whether
comments are happy or sad, for example), pattern matching, and pre-
dictive modeling. Hadapt uses Hadoop as the parallelization layer for
query processing. Structured data is stored in relational databases, and
unstructured data is stored in HDFS. Consolidating multistructured data
into a single platform facilitates more efficient, richer analytics.

 ✓ Karmasphere (www.karmasphere.com): Karmasphere provides a col-
laborative work environment for the analysis of big data that includes an
easy-to-use interface with self-service access. The environment enables
you to create projects that other authorized users can access. You can
use a personalized home page to manage projects, monitor activities,
schedule queries, view results, and create visualizations. Karmasphere
has self-service wizards that help you to quickly transform and ana-
lyze data. You can take advantage of SQL syntax highlighting and code
completion features to ensure that only valid queries are submitted to
the Hadoop cluster. And you can write SQL scripts that call ready-to-use
analytic models, algorithms, and functions developed in MapReduce,
SPSS, SAS, and other analytic languages. Karmasphere also provides an
administrative console for system-wide management and configuration,
user management, Hadoop connection management, database connec-
tion management, and analytics asset management.

 ✓ WANdisco (www.wandisco.com): The WANdisco Non-Stop NameNode
solution enables multiple active NameNode servers to act as synchro-
nized peers that simultaneously support client access for batch applica-
tions (using MapReduce) and real-time applications (using HBase). If one
NameNode server fails, another server takes over automatically with no
downtime. Also, WANdisco Hadoop Console is a comprehensive, easy-to-
use management dashboard that lets you deploy, monitor, manage, and
scale a Hadoop implementation

 ✓ Zettaset (www.zettaset.com): Its Orchestrator platform automates,
accelerates, and simplifies Hadoop installation and cluster management.
It is an independent management layer that sits on top of an Apache
Hadoop distribution. As well as simplifying Hadoop deployment and
cluster management, Orchestrator is designed to meet enterprise secu-
rity, high availability, and performance requirements.

Chapter 2

Common Use Cases for
Big Data in Hadoop

In This Chapter
▶ Extracting business value from Hadoop

▶ Digging into log data

▶ Moving the (data) warehouse into the 21st century

▶ Taking a bite out of fraud

▶ Modeling risk

▶ Seeing what’s causing a social media stir

▶ Classifying images on a massive scale

▶ Using graphs effectively

▶ Looking toward the future

B
y writing this book, we want to help our readers answer the questions
“What is Hadoop?” and “How do I use Hadoop?” Before we delve too

deeply into the answers to these questions, though, we want to get you
excited about some of the tasks that Hadoop excels at. In other words, we
want to provide answers to the eternal question “What should I use Hadoop
for?” In this chapter, we cover some of the most popular use cases we’ve
seen in the Hadoop space, but first we have a couple thoughts on how you
can make your Hadoop project successful.

The Keys to Successfully Adopting Hadoop
(Or, “Please, Can We Keep Him?”)

We strongly encourage you not to go looking for a “science project” when you’re
getting started with Hadoop. By that, we mean that you shouldn’t try to find an
open-ended problem that, despite being interesting, has neither clearly defined
milestones nor measurable business value. We’ve seen some shops set up nifty,
100-node Hadoop clusters, but all that effort did little or nothing to add value to

24 Part I: Getting Started with Hadoop

their businesses (though its implementers still seemed proud of themselves).
Businesses want to see value from their IT investments, and with Hadoop it may
come in a variety of ways. For example, you may pursue a project whose goal is
to create lower licensing and storage costs for warehouse data or to find insight
from large-scale data analysis. The best way to request resources to fund inter-
esting Hadoop projects is by working with your business’s leaders. In any serious
Hadoop project, you should start by teaming IT with business leaders from VPs
on down to help solve your business’s pain points — those problems (real or
perceived) that loom large in everyone’s mind.

Also examine the perspectives of people and processes that are adopting
Hadoop in your organization. Hadoop deployments tend to be most success-
ful when adopters make the effort to create a culture that’s supportive of data
science by fostering experimentation and data exploration. Quite simply, after
you’ve created a Hadoop cluster, you still have work to do — you still need to
enable people to experiment in a hands-on manner. Practically speaking, you
should keep an eye on these three important goals:

 ✓ Ensure that your business users and analysts have access to as much
data as possible. Of course, you still have to respect regulatory require-
ments for criteria such as data privacy.

 ✓ Mandate that your Hadoop developers expose their logic so that
results are accessible through standard tools in your organization.
The logic and any results must remain easily consumed and reusable.

 ✓ Recognize the governance requirements for the data you plan to store
in Hadoop. Any data under governance control in a relational database
management system (RDBMS) also needs to be under the same controls
in Hadoop. After all, personally identifiable information has the same pri-
vacy requirements no matter where it’s stored. Quite simply, you should
ensure that you can pass a data audit for both RDBMS and Hadoop!

All the uses cases we cover in this chapter have Hadoop at their core, but it’s
when you combine it with the broader business and its repositories like data-
bases and document stores that you can build a more complete picture of what’s
happening in your business. For example, social sentiment analysis performed in
Hadoop might alert you to what people are saying, but do you know why they’re
saying it? This concept requires thinking beyond Hadoop and linking your com-
pany’s systems of record (sales, for example) with its systems of engagement
(like call center records — the data where you may draw the sentiment from).

Log Data Analysis
Log analysis is a common use case for an inaugural Hadoop project. Indeed,
the earliest uses of Hadoop were for the large-scale analysis of clickstream
logs — logs that record data about the web pages that people visit and in which
order they visit them. We often refer to all the logs of data generated by your
IT infrastructure as data exhaust. A log is a by-product of a functioning server,

25 Chapter 2: Common Use Cases for Big Data in Hadoop

much like smoke coming from a working engine’s exhaust pipe. Data exhaust
has the connotation of pollution or waste, and many enterprises undoubtedly
approach this kind of data with that thought in mind. Log data often grows
quickly, and because of the high volumes produced, it can be tedious to ana-
lyze. And, the potential value of this data is often unclear. So the temptation in
IT departments is to store this log data for as little time as reasonably possible.
(After all, it costs money to retain data, and if there’s no perceived business
value, why store it?) But Hadoop changes the math: The cost of storing data is
comparatively inexpensive, and Hadoop was originally developed especially for
the large-scale batch processing of log data.

 The log data analysis use case is a useful place to start your Hadoop journey
because the chances are good that the data you work with is being deleted, or
“dropped to the floor.” We’ve worked with companies that consistently record
a terabyte (TB) or more of customer web activity per week, only to discard the
data with no analysis (which makes you wonder why they bothered to collect
it). For getting started quickly, the data in this use case is likely easy to get
and generally doesn’t encompass the same issues you’ll encounter if you start
your Hadoop journey with other (governed) data.

When industry analysts discuss the rapidly increasing volumes of data that
exist (4.1 exabytes as of 2014 — more than 4 million 1TB hard drives), log data
accounts for much of this growth. And no wonder: Almost every aspect of life
now results in the generation of data. A smartphone can generate hundreds
of log entries per day for an active user, tracking not only voice, text, and data
transfer but also geolocation data. Most households now have smart meters
that log their electricity use. Newer cars have thousands of sensors that
record aspects of their condition and use. Every click and mouse movement
we make while browsing the Internet causes a cascade of log entries to be
generated. Every time we buy something — even without using a credit card
or debit card — systems record the activity in databases — and in logs. You
can see some of the more common sources of log data: IT servers, web click-
streams, sensors, and transaction systems.

Every industry (as well as all the log types just described) have the huge potential
for valuable analysis — especially when you can zero in on a specific kind of activ-
ity and then correlate your findings with another data set to provide context.

As an example, consider this typical web-based browsing and buying experience:

 1. You surf the site, looking for items to buy.

 2. You click to read descriptions of a product that catches your eye.

 3. Eventually, you add an item to your shopping cart and proceed to the
checkout (the buying action).

After seeing the cost of shipping, however, you decide that the item isn’t
worth the price and you close the browser window. Every click you’ve
made — and then stopped making — has the potential to offer valuable
insight to the company behind this e-commerce site.

26 Part I: Getting Started with Hadoop

In this example, assume that this business collects clickstream data (data about
every mouse click and page view that a visitor “touches”) with the aim of under-
standing how to better serve its customers. One common challenge among
e-commerce businesses is to recognize the key factors behind abandoned
shopping carts. When you perform deeper analysis on the clickstream data and
examine user behavior on the site, patterns are bound to emerge.

Does your company know the answer to the seemingly simple question, “Are
certain products abandoned more than others?” Or the answer to the ques-
tion, “How much revenue can be recaptured if you decrease cart abandonment
by 10 percent?” Figure 2-1 gives an example of the kind of reports you can show
to your business leaders to seek their investment in your Hadoop cause.

Figure 2-1:
Reporting
on aban-

doned carts.

To get to the point where you can generate the data to build the graphs shown
in Figure 2-1, you isolate the web browsing sessions of individual users (a pro-
cess known as sessionization), identify the contents of their shopping carts,
and then establish the state of the transaction at the end of the session — all
by examining the clickstream data.

In Figure 2-2, we give you an example of how to assemble users’ web brows-
ing sessions by grouping all clicks and URL addresses by IP address. (The
example is a simple one in order to illustrate the point.) Remember: In a
Hadoop context, you’re always working with keys and values — each phase
of MapReduce inputs and outputs data in sets of keys and values. (We discuss
this in greater detail in Chapter 6.) In Figure 2-2, the key is the IP address, and
the value consists of the timestamp and the URL. During the map phase, user
sessions are assembled in parallel for all file blocks of the clickstream data
set that’s stored in your Hadoop cluster.

www.allitebooks.com

http://www.allitebooks.org

27 Chapter 2: Common Use Cases for Big Data in Hadoop

Figure 2-2:
Building

user ses-
sions from

clickstream
log data and

calculat-
ing the last

page visited
for sessions

where a
shopping

cart is
abandoned.

The map phase returns these elements:

 ✓ The final page that’s visited

 ✓ A list of items in the shopping cart

 ✓ The state of the transaction for each user session (indexed by the IP
address key)

The reducer picks up these records and performs aggregations to total the
number and value of carts abandoned per month and to provide totals of
the most common final pages that someone viewed before ending the user
session.

This single example illustrates why Hadoop is a great fit for analyzing log
data. The range of possibilities is limitless, and by leveraging some of the
simpler interfaces such as Pig and Hive, basic log analysis makes for a simple
initial Hadoop project.

Data Warehouse Modernization
Data warehouses are now under stress, trying to cope with increased demands
on their finite resources. The rapid rise in the amount of data generated in the
world has also affected data warehouses because the volumes of data they
manage are increasing — partly because more structured data — the kind of
data that is strongly typed and slotted into rows and columns — is generated
but also because you often have to deal with regulatory requirements designed

28 Part I: Getting Started with Hadoop

to maintain queryable access to historical data. In addition, the processing
power in data warehouses is often used to perform transformations of the
relational data as it either enters the warehouse itself or is loaded into a child
data mart (a separate subset of the data warehouse) for a specific analytics
application. In addition, the need is increasing for analysts to issue new queries
against the structured data stored in warehouses, and these ad hoc queries
can often use significant data processing resources. Sometimes a one-time
report may suffice, and sometimes an exploratory analysis is necessary to
find questions that haven’t been asked yet that may yield significant business
value. The bottom line is that data warehouses are often being used for pur-
poses beyond their original design.

Hadoop can provide significant relief in this situation. Figure 2-3 shows, using
high-level architecture, how Hadoop can live alongside data warehouses and
fulfill some of the purposes that they aren’t designed for.

Figure 2-3:
Using

Hadoop to
modernize

a traditional
relational

data
warehouse.

Our view is that Hadoop is a warehouse helper, not a warehouse replacement.
Later, in Chapter 11, we describe four ways that Hadoop can modernize a
data warehousing ecosystem, here they are in summary:

 ✓ Provide a landing zone for all data.

 ✓ Persist the data to provide a queryable archive of cold data.

 ✓ Leverage Hadoop’s large-scale batch processing efficiencies to prepro-
cess and transform data for the warehouse.

 ✓ Enable an environment for ad hoc data discovery.

29 Chapter 2: Common Use Cases for Big Data in Hadoop

Fraud Detection
Fraud is a major concern across all industries. You name the industry (bank-
ing, insurance, government, health care, or retail, for example) and you’ll find
fraud. At the same time, you’ll find folks who are willing to invest an incredible
amount of time and money to try to prevent fraud. After all, if fraud were easy
to detect, there wouldn’t be so much investment around it. In today’s inter-
connected world, the sheer volume and complexity of transactions makes it
harder than ever to find fraud. What used to be called “finding a needle in a
haystack” has become the task of “finding a specific needle in stacks of nee-
dles.” Though the sheer volume of transactions makes it harder to spot fraud
because of the volume of data, ironically, this same challenge can help create
better fraud predictive models — an area where Hadoop shines. (We tell you
more about statistical analysis in Chapter 9.)

Traditional approaches to fraud prevention aren’t particularly efficient. For
example, the management of improper payments is often managed by ana-
lysts auditing what amounts to a very small sample of claims paired with
requesting medical documentation from targeted submitters. The industry
term for this model is pay and chase: Claims are accepted and paid out and
processes look for intentional or unintentional overpayments by way of post-
payment review of those claims. (The U.S. Internal Revenue Service (IRS)
operation uses the pay-and-chase approach on tax returns.)

Of course, you may wonder why businesses don’t simply apply extra due dili-
gence to every transaction proactively. They don’t do so because it’s a balancing
act. Fraud detection can’t focus only on stopping fraud when it happens, or
on detecting it quickly, because of the customer satisfaction component. For
example, traveling outside your home country and finding that your credit
card has been invalidated because the transactions originated from a geo-
graphical location that doesn’t match your purchase patterns can place you in
a bad position, so vendors try to avoid false-positive results. They don’t want
to anger clients by stopping transactions that seem suspicious but turn out to
be legitimate.

So how is fraud detection done now? Because of the limitations of traditional
technologies, fraud models are built by sampling data and using the sample
to build a set of fraud-prediction and -detection models. When you contrast
this model with a Hadoop-anchored fraud department that uses the full data
set — no sampling — to build out the models, you can see the difference.

The most common recurring theme you see across most Hadoop use cases is
that it assists business in breaking through the glass ceiling on the volume and
variety of data that can be incorporated into decision analytics. The more data
you have (and the more history you store), the better your models can be.

30 Part I: Getting Started with Hadoop

Mixing nontraditional forms of data with your set of historical transactions can
make your fraud models even more robust. For example, if a worker makes
a worker’s compensation claim for a bad back from a slip-and-fall incident,
having a pool of millions of patient outcome cases that detail treatment and
length of recovery helps create a detection pattern for fraud.

As an example of how this model can work, imagine trying to find out
whether patients in rural areas recover more slowly than those in urban
areas. You can start by examining the proximity to physiotherapy services.
Is there a pattern correlation between recovery times and geographical loca-
tion? If your fraud department determines that a certain injury takes three
weeks of recovery but that a farmer with the same diagnosis lives one hour
from a physiotherapist and the office worker has a practitioner in her office,
that’s another variable to add to the fraud-detection pattern. When you har-
vest social network data for claimants and find a patient who claims to be
suffering from whiplash is boasting about completing the rugged series of
endurance events known as Tough Mudder, it’s an example of mixing new
kinds of data with traditional data forms to spot fraud.

If you want to kick your fraud-detection efforts into a higher gear, your orga-
nization can work to move away from market segment modeling and move
toward at-transaction or at-person level modeling. Quite simply, making a
forecast based on a segment is helpful, but making a decision based on par-
ticular information about an individual transaction is (obviously) better. To
do this, you work up a larger set of data than is conventionally possible in
the traditional approach. In our experiences with customers, we estimate
that only (a maximum of) 30 percent of the available information that may be
useful for fraud modeling is being used.

For creating fraud-detection models, Hadoop is well suited to

 ✓ Handle volume: That means processing the full data set — no data
sampling.

 ✓ Manage new varieties of data: Examples are the inclusion of proximity-
to-care-services and social circles to decorate the fraud model.

 ✓ Maintain an agile environment: Enable different kinds of analysis and
changes to existing models.

Fraud modelers can add and test new variables to the model without having to
make a proposal to your database administrator team and then wait a couple
of weeks to approve a schema change and place it into their environment. This
process is critical to fraud detection because dynamic environments com-
monly have cyclical fraud patterns that come and go in hours, days, or weeks.
If the data used to identify or bolster new fraud-detection models isn’t available
at a moment’s notice, by the time you discover these new patterns, it could be
too late to prevent damage. Evaluate the benefit to your business of not only
building out more comprehensive models with more types of data but also

31 Chapter 2: Common Use Cases for Big Data in Hadoop

being able to refresh and enhance those models faster than ever. We’d bet that
the company that can refresh and enhance models daily will fare better than
those that do it quarterly.

You may believe that this problem has a simple answer — just ask your CIO
for operational expenditure (OPEX) and capital expenditure (CAPEX) approv-
als to accommodate more data to make better models and load the other
70 percent of the data into your decision models. You may even believe that this
investment will pay for itself with better fraud detection; however, the prob-
lem with this approach is the high up-front costs that need to be sunk into
unknown data, where you don’t know whether it contains any truly valuable
insight. Sure, tripling the size of your data warehouse, for example, will give
you more access to structured historical data to fine-tune your models, but
they can’t accommodate social media bursts. As we mention earlier in this
chapter, traditional technologies aren’t as agile, either. Hadoop makes it easy
to introduce new variables into the model, and if they turn out not to yield
improvements to the model, you can simply discard the data and move on.

Risk Modeling
Risk modeling is another major use case that’s energized by Hadoop. We think
you’ll find that it closely matches the use case of fraud detection in that it’s a
model-based discipline. The more data you have and the more you can “connect
the dots,” the more often your results will yield better risk-prediction models.

The all-encompassing word risk can take on a lot of meanings. For example, cus-
tomer churn prediction is the risk of a client moving to a competitor; the risk of
a loan book relates to the risk of default; risk in health care spans the gamut from
outbreak containment to food safety to the probability of reinfection and more.

The financial services sector (FSS) is now investing heavily in Hadoop-based
risk modeling. This sector seeks to increase the automation and accuracy
of its risk assessment and exposure modeling. Hadoop offers participants
the opportunity to extend the data sets that are used in their risk models to
include underutilized sources (or sources that are never utilized), such as
e-mail, instant messaging, social media, and interactions with customer ser-
vice representatives, among other data sources. Risk models in FSS pop up
everywhere. They’re used for customer churn prevention, trade manipulation
modeling, corporate risk and exposure analytics, and more.

When a company issues an insurance policy against natural disasters at home,
one challenge is clearly seeing how much money is potentially at risk. If the
insurer fails to reserve money for possible payouts, regulators will intervene
(the insurer doesn’t want that); if the insurer puts too much money into its
reserves to pay out future policy claims, they can’t then invest your premium
money and make a profit (the insurer doesn’t want that, either). We know
of companies that are “blind” to the risk they face because they have been

32 Part I: Getting Started with Hadoop

unable to run an adequate amount of catastrophic simulations pertaining to
variance in wind speed or precipitation rates (among other variables) as they
relate to their exposure. Quite simply, these companies have difficulty stress-
testing their risk models. The ability to fold in more data — for example,
weather patterns or the ever-changing socioeconomic distribution of their
client base — gives them a lot more insight and capability when it comes to
building better risk models.

Building and stress-testing risk models like the one just described is an ideal
task for Hadoop. These operations are often computationally expensive and,
when you’re building a risk model, likely impractical to run against a data
warehouse, for these reasons:

 ✓ The warehouse probably isn’t optimized for the kinds of queries issued
by the risk model. (Hadoop isn’t bound by the data models used in data
warehouses.)

 ✓ A large, ad hoc batch job such as an evolving risk model would add load
to the warehouse, influencing existing analytic applications. (Hadoop
can assume this workload, freeing up the warehouse for regular business
reporting.)

 ✓ More advanced risk models may need to factor in unstructured data,
such as raw text. (Hadoop can handle that task efficiently.)

Social Sentiment Analysis
Social sentiment analysis is easily the most overhyped of the Hadoop use
cases we present, which should be no surprise, given that we live in a world
with a constantly connected and expressive population. This use case
leverages content from forums, blogs, and other social media resources to
develop a sense of what people are doing (for example, life events) and how
they’re reacting to the world around them (sentiment). Because text-based
data doesn’t naturally fit into a relational database, Hadoop is a practical
place to explore and run analytics on this data.

Language is difficult to interpret, even for human beings at times — especially
if you’re reading text written by people in a social group that’s different from
your own. This group of people may be speaking your language, but their
expressions and style are completely foreign, so you have no idea whether
they’re talking about a good experience or a bad one. For example, if you hear
the word bomb in reference to a movie, it might mean that the movie was bad
(or good, if you’re part of the youth movement that interprets “It’s da bomb”
as a compliment); of course, if you’re in the airline security business, the word
bomb has quite a different meaning. The point is that language is used in many
variable ways and is constantly evolving.

33 Chapter 2: Common Use Cases for Big Data in Hadoop

 When you analyze sentiment on social media, you can choose from multiple
approaches. The basic method programmatically parses the text, extracts
strings, and applies rules. In simple situations, this approach is reasonable.
But as requirements evolve and rules become more complex, manually
coding text-extractions quickly becomes no longer feasible from the per-
spective of code maintenance, especially for performance optimization.
Grammar- and rules-based approaches to text processing are computa-
tionally expensive, which is an important consideration in large-scale
extraction in Hadoop. The more involved the rules (which is inevitable
for complex purposes such as sentiment extraction), the more processing
that’s needed.

Alternatively, a statistics-based approach is becoming increasingly common
for sentiment analysis. Rather than manually write complex rules, you can
use the classification-oriented machine-learning models in Apache Mahout.
(See Chapter 9 for more on these models.) The catch here is that you’ll need
to train your models with examples of positive and negative sentiment. The
more training data you provide (for example, text from tweets and your classi-
fication), the more accurate your results.

Like the other use cases in this chapter, the one for social sentiment analysis
can be applied across a wide range of industries. For example, consider food
safety: Trying to predict or identify the outbreak of foodborne illnesses as

Social sentiment analysis is,
in reality, text analysis

Though this section focuses on the “fun” aspects
of using social media, the ability to extract under-
standing and meaning from unstructured text is
an important use case. For example, corporate
earnings are published to the web, and the same
techniques that you use to build social sentiment
extractors may be used to try to extract meaning
from financial disclosures or to auto-assemble
intrasegment earnings reports that compare the
services revenue in a specific sector. In fact, some
hedge fund management teams are now doing
this to try to get a leg up on their competition.

Perhaps your entertainment company wants to
crack down on violations of intellectual prop-
erty on your event’s video footage. You can

use the same techniques outlined in this use
case to extract textual clues from various web
postings and teasers such as Watch for free
or Free on your PC. You can use a library of
custom-built text extractors (built and refined
on data stored in Hadoop) to crawl the web to
generate a list of links to pirated video feeds of
your company’s content.

These two examples don’t demonstrate senti-
ment analysis; however, they do a good job of
illustrating how social text analytics doesn’t
focus only on sentiment, despite the fun in illus-
trating the text analytics domain using senti-
ment analysis.

34 Part I: Getting Started with Hadoop

quickly as possible is extremely important to health officials. Figure 2-4 shows
a Hadoop-anchored application that ingests tweets using extractors based on
the potential illness: FLU or FOOD POISONING. (We’ve anonymized the tweets
so that you don’t send a message asking how they’re doing; we didn’t clean up
the grammar, either.)

Figure 2-4:
Using

Hadoop
to analyze

and classify
tweets in

an attempt
to classify
a potential

outbreak
of the flu

or food
poisoning.

Do you see the generated heat map that shows the geographical location of
the tweets? One characteristic of data in a world of big data is that most of it
is spatially enriched: It has locality information (and temporal attributes, too).
In this case, we reverse-engineered the Twitter profile by looking up the pub-
lished location. As it turns out, lots of Twitter accounts have geographic loca-
tions as part of their public profiles (as well as disclaimers clearly stating that
their thoughts are their own as opposed to speaking for their employers).

How good of a prediction engine can social media be for the outbreak of the flu
or a food poisoning incident? Consider the anonymized sample data shown in
Figure 2-5.

You can see that social media signals trumped all other indicators for predicting
a flu outbreak in a specific U.S. county during the late summer and into early fall.

35 Chapter 2: Common Use Cases for Big Data in Hadoop

Figure 2-5:
Chances are

good that
social media
can tell you
about a flu

outbreak
before

traditional
indicators

can.

This example shows another benefit that accrues from analyzing social
media: It gives you an unprecedented opportunity to look at attribute infor-
mation in posters’ profiles. Granted, what people say about themselves in
their Twitter profiles is often incomplete (for example, the location code isn’t
filled in) or not meaningful (the location code might say cloud nine). But you
can learn a lot about people over time, based on what they say. For example,
a client may have tweeted (posted on Twitter) the announcement of the
birth of her baby, an Instagram picture of her latest painting, or a Facebook
posting stating that she can’t believe Walter White’s behavior in last night’s
Breaking Bad finale. (Now that many people watch TV series in their entirety,
even long after they’ve ended, we wouldn’t want to spoil the ending for
you.) In this ubiquitous example, your company can extract a life event
that populates a family-graph (a new child is a valuable update for a person-
based Master Data Management profile), a hobby (painting), and an interest
attribute (you love the show Breaking Bad). By analyzing social data in this
way, you have the opportunity to flesh out personal attributes with informa-
tion such as hobbies, birthdays, life events, geographical locations (country,
state, and city, for example), employer, gender, marital status, and more.

Assume for a minute that you’re the CIO of an airline. You can use the post-
ings of happy or angry frequent travelers to not only ascertain sentiment but
also round out customer profiles for your loyalty program using social media
information. Imagine how much better you could target potential customers
with the information that was just shared — for example, an e-mail telling the
client that Season 5 of Breaking Bad is now available on the plane’s media
system or announcing that children under the age of two fly for free. It’s also
a good example of how systems of record (say, sales or subscription data-
bases) can meet systems of engagement (say, support channels). Though the
loyalty members’ redemption and travel history is in a relational database, the
system of engagement can update records (for example, a HAS_KIDS column).

36 Part I: Getting Started with Hadoop

Image Classification
Image classification starts with the notion that you build a training set and
that computers learn to identify and classify what they’re looking at. In the
same way that having more data helps build better fraud detection and risk
models, it also helps systems to better classify images. This requires a sig-
nificant amount of data processing resources, however, which has limited
the scale of deployments. Image classification is a hot topic in the Hadoop
world because no mainstream technology was capable — until Hadoop came
along — of opening doors for this kind of expensive processing on such a
massive and efficient scale.

In this use case, the data is referred to as the training set as well as the
models are classifiers. Classifiers recognize features or patterns within sound,
image, or video and classify them appropriately. Classifiers are built and
iteratively refined from training sets so that their precision scores (a measure
of exactness) and recall scores (a measure of coverage) are high. Hadoop is
well suited for image classification because it provides a massively parallel
processing environment to not only create classifier models (iterating over
training sets) but also provide nearly limitless scalability to process and run
those classifiers across massive sets of unstructured data volumes. Consider
multimedia sources such as YouTube, Facebook, Instagram, and Flickr — all
are sources of unstructured binary data. Figure 2-6 shows one way you can
use Hadoop to scale the processing of large volumes of stored images and
video for multimedia semantic classification.

Figure 2-6:
Using

Hadoop to
semantically

classify
video and

images from
social media

sites.

www.allitebooks.com

http://www.allitebooks.org

37 Chapter 2: Common Use Cases for Big Data in Hadoop

In Figure 2-6, you can see how all the concepts relating to the Hadoop pro-
cessing framework that are outlined in this book are applied to this data.
Notice how images are loaded into HDFS. The classifier models, built over
time, are now applied to the extra image-feature components in the Map
phase of this solution. As you can see in the lower-right corner of Figure 2-6,
the output of this processing consists of image classifications that range from
cartoons to sports and locations, among others.

 Though this section focuses on image analysis, Hadoop can be used for audio or
voice analytics, too. One security industry client we work with creates an audio
classification system to classify sounds that are heard via acoustic-enriched
fiber optic cables laid around the perimeter of nuclear reactors. For example,
this system knows how to nearly instantaneously classify the whisper of the
wind as compared to the whisper of a human voice or to distinguish the sound
of human footsteps running in the perimeter parklands from that of wildlife.

We realize that this description may have sort of a Star Trek feel to it, but you
can now see live examples. In fact, IBM makes public one of the largest image-
classification systems in the world, via the IBM Multimedia Analysis and
Retrieval System (IMARS). Try it for yourself at

http://researcher.watson.ibm.com/researcher/view_project.
php?id=877

Figure 2-7 shows the result of an IMARS search for the term alpine skiing.
At the top of the figure, you can see the results of the classifiers mapped to
the image set that was processed by Hadoop, along with an associated tag
cloud. Note the more coarsely defined parent classifier Wintersports, as
opposed to the more granular Sailing. In fact, notice the multiple clas-
sification tiers: Alpine_Skiing rolls into Snow_Sports, which rolls into
Wintersports — all generated automatically by the classifier model, built
and scored using Hadoop.

Figure 2-7:
The result of

an IMARS
search.

38 Part I: Getting Started with Hadoop

 None of these pictures has any added metadata. No one has opened iPhoto
and tagged an image as a winter sport to make it show up in this classification.
It’s the winter sport classifier that was built to recognize image attributes and
characteristics of sports that are played in a winter setting.

Image classification has many applications, and being able to perform this
classification at a massive scale using Hadoop opens up more possibilities
for analysis as other applications can use the classification information
generated for the images. To see what we mean, look at this example from
the health industry. We worked with a large health agency in Asia that was
focused on delivering health care via mobile clinics to a rural population
distributed across a large land mass. A significant problem that the agency
faced was the logistical challenge of analyzing the medical imaging data that
was generated in its mobile clinics. A radiologist is a scarce resource in this
part of the world, so it made sense to electronically transmit the medical
images to a central point and have an army of doctors examine them. The
doctors examining the images were quickly overloaded, however. The agency
is now working on a classification system to help identify possible conditions
to effectively provide suggestions for the doctors to verify. Early testing has
shown this strategy to help reduce the number of missed or inaccurate diag-
noses, saving time, money, and — most of all — lives.

Graph Analysis
Elsewhere in this chapter, we talk about log data, relational data, text data,
and binary data, but you’ll soon hear about another form of information:
graph data. In its simplest form, a graph is simply a collection of nodes (an
entity, for example — a person, a department, or a company), and the lines
connecting them are edges (this represents a relationship between two enti-
ties, for example two people who know each other). What makes graphs
interesting is that they can be used to represent concepts such as relation-
ships in a much more efficient way than, say, a relational database. Social
media is an application that immediately comes to mind — indeed, today’s
leading social networks (Facebook, Twitter, LinkedIn, and Pinterest) are all
making heavy use of graph stores and processing engines to map the connec-
tions and relationships between their subscribers.

In Chapter 11, we discuss the NoSQL movement, and the graph database is
one major category of alternative data-storage technologies. Initially, the
predominant graph store was Neo4j, an open source graph database. But
now the use of Apache Giraph, a graph processing engine designed to work
in Hadoop, is increasing rapidly. Using YARN, we expect Giraph adoption to
increase even more because graph processing is no longer tied to the tradi-
tional MapReduce model, which was inefficient for this purpose. Facebook is
reportedly the world’s largest Giraph shop, with a massive trillion-edge graph.
(It’s the Six Degrees of Kevin Bacon game on steroids.)

39 Chapter 2: Common Use Cases for Big Data in Hadoop

Graphs can represent any kind of relationship — not just people. One of the
most common applications for graph processing now is mapping the Internet.
When you think about it, a graph is the perfect way to store this kind of data,
because the web itself is essentially a graph, where its websites are nodes
and the hyperlinks between them are edges. Most PageRank algorithms use a
form of graph processing to calculate the weightings of each page, which is a
function of how many other pages point to it.

To Infinity and Beyond
This chapter easily could have been expanded into an entire book — there are
that many places where Hadoop is a game changer. Before you apply one of
the use cases from this chapter to your own first project and start seeing how
to use Hadoop in Chapter 3, we want to reiterate some repeating patterns that
we’ve noticed when organizations start taking advantage of the potential value
of Hadoop:

 ✓ When you use more data, you can make better decisions and predictions
and guide better outcomes.

 ✓ In cases where you need to retain data for regulatory purposes and pro-
vide a level of query access, Hadoop is a cost-effective solution.

 ✓ The more a business depends on new and valuable analytics that are
discovered in Hadoop, the more it wants. When you initiate successful
Hadoop projects, your clusters will find new purposes and grow!

40 Part I: Getting Started with Hadoop

Chapter 3

Setting Up Your Hadoop
Environment

In This Chapter
▶ Deciding on a Hadoop distribution

▶ Checking out the Hadoop For Dummies environment

▶ Creating your first Hadoop program: Hello Hadoop!

T
his chapter is an overview of the steps involved in actually getting
started with Hadoop. We start with some of the things you need to con-

sider when deciding which Hadoop distribution to use. It turns out that you
have quite a few distributions to choose from, and any of them will make it
easier for you to set up your Hadoop environment than if you were to go it
alone, assembling the various components that make up the Hadoop eco-
system and then getting them to “play nice with one another.” Nevertheless,
the various distributions that are available do differ in the features that they
offer, and the trick is to figure out which one is best for you.

This chapter also introduces you to the Hadoop For Dummies environment
that we used to create and test all examples in this book. (If you’re curious,
we based our environment on Apache Bigtop.)

We round out this chapter with information you can use to create your first
MapReduce program, after your Hadoop cluster is installed and running.

Choosing a Hadoop Distribution
Commercial Hadoop distributions offer various combinations of open source
components from the Apache Software Foundation and elsewhere — the idea
is that the various components have been integrated into a single product,
saving you the effort of having to assemble your own set of integrated com-
ponents. In addition to open source software, vendors typically offer propri-
etary software, support, consulting services, and training.

42 Part I: Getting Started with Hadoop

How do you go about choosing a Hadoop distribution from the numerous
options that are available? We provide an overview in Chapter 1 of the more
prominent distributions, but when it comes to setting up your own environ-
ment, you’re the one who has to choose, and that choice should be based on
a set of criteria designed to help you make the best decision possible.

 Not all Hadoop distributions have the same components (although they all
have Hadoop’s core capabilities), and not all components in one particular
distribution are compatible with other distributions.

The criteria for selecting the most appropriate distribution can be articulated
as this set of important questions:

 ✓ What do you want to achieve with Hadoop?

 ✓ How can you use Hadoop to gain business insight?

 ✓ What business problems do you want to solve?

 ✓ What data will be analyzed?

 ✓ Are you willing to use proprietary components, or do you prefer open
source offerings?

 ✓ Is the Hadoop infrastructure that you’re considering flexible enough for
all your use cases?

 ✓ What existing tools will you want to integrate with Hadoop?

 ✓ Do your administrators need management tools? (Hadoop’s core distri-
bution doesn’t include administrative tools.)

 ✓ Will the offering you choose allow you to move to a different product
without obstacles such as vendor lock-in? (Application code that’s not
transferrable to other distributions or data stored in proprietary formats
represent good examples of lock-in.)

 ✓ Will the distribution you’re considering meet your future needs, insofar
as you’re able to anticipate those needs?

One approach to comparing distributions is to create a feature matrix — a table
that details the specifications and features of each distribution you’re consid-
ering. Your choice can then depend on the set of features and specs that best
addresses the requirements around your specific business problems.

On the other hand, if your requirements include prototyping and experimen-
tation, choosing the latest official Apache Hadoop distribution might prove
to be the best approach. The most recent releases certainly have the newest
most exciting features, but if you want stability you don’t want excitement.
For stability, look for an older release branch that’s been available long
enough to have some incremental releases (these typically include bug fixes
and minor features).

43 Chapter 3: Setting Up Your Hadoop Environment

Whenever you think about open source Hadoop distributions, give a
moment’s thought (or perhaps many moments’ thought) to the concept of
open source fidelity — the degree to which a particular distribution is com-
patible with the open source components on which it depends. High fidelity
facilitates integration with other products that are designed to be compatible
with those open source components. Low fidelity? Not so much.

 The open source approach to software development itself is an important part
of your Hadoop plans because it promotes compatibility with a host of third-
party tools that you can leverage in your own Hadoop deployment. The open
source approach also enables engagement with the Apache Hadoop com-
munity, which gives you, in turn, the opportunity to tap into a deeper pool of
skills and innovation to enrich your Hadoop experience.

Because Hadoop is a fast-growing ecosystem, some parts continue to mature
as the community develops tooling to meet industry demands. One aspect
of this evolution is known as backporting, where you apply a new software
modification or patch to a version of the software that’s older than the ver-
sion to which the patch is applicable. An example is NameNode failover: This
capability is a part of Hadoop 2 but was backported (in its beta form) by a
number of distributions into their Hadoop-1-based offerings for as much as a
year before Hadoop 2 became generally available.

 Not every distribution engages actively in backporting new content to the
same degree, although most do it for items such as bug fixes. If you want a
production license for bleeding-edge technology, this is certainly an option;
for stability, however, it’s not a good idea.

The majority of Hadoop distributions include proprietary code of some kind,
which frequently comes in the form of installers and a set of management
tools. These distributions usually emerge from different business models. For
example, one business model can be summarized this way: “Establish yourself
as an open source leader and pioneer, market your company as having the best
expertise, and sell that expertise as a service.” Red Hat, Inc. is an example of
a vendor that uses this model. In contrast to this approach, the embrace-and-
extend business model has vendors building capabilities that extend the capa-
bilities of open source software. MapR and IBM, which both offer alternative
file systems to the Hadoop Distributed File System (HDFS), are good examples.

 People sometimes mistakenly throw the “fork” label at these innovations, making
use of jargon used by software programmers to describe situations where some-
one takes a copy of an open source program as the starting point for their own
(independent) development. The alternative file systems offered by MapR and
IBM are completely different file systems, not a fork of the open source HDFS.
Both companies enable their customers to choose either their proprietary dis-
tributed file system or HDFS. Nevertheless, in this approach, compatibility is
critical, and the vendor must stay up to date with evolving interfaces. Customers
need to know that vendors can be relied on to support their extensions.

44 Part I: Getting Started with Hadoop

Choosing a Hadoop Cluster Architecture
Hadoop is designed to be deployed on a large cluster of networked comput-
ers, featuring master nodes (which host the services that control Hadoop’s
storage and processing) and slave nodes (where the data is stored and pro-
cessed). You can, however, run Hadoop on a single computer, which is a great
way to learn the basics of Hadoop by experimenting in a controlled space.

Hadoop has two deployment modes: pseudo-distributed mode and fully dis-
tributed mode, both of which are described below.

Pseudo-distributed mode (single node)
A single-node Hadoop deployment is referred to as running Hadoop in pseudo-
distributed mode, where all the Hadoop services, including the master and slave
services, all run on a single compute node. This kind of deployment is useful
for quickly testing applications while you’re developing them without having to
worry about using Hadoop cluster resources someone else might need. It’s also
a convenient way to experiment with Hadoop, as most of us don’t have clusters
of computers at our disposal. With this in mind, the Hadoop for Dummies envi-
ronment is designed to work in pseudo-distributed mode.

Fully distributed mode
 (a cluster of nodes)
A Hadoop deployment where the Hadoop master and slave services run on
a cluster of computers is running in what’s known as fully distributed mode.
This is an appropriate mode for production clusters and development clus-
ters. A further distinction can be made here: a development cluster usually
has a small number of nodes and is used to prototype the workloads that will
eventually run on a production cluster.

Chapter 16 provides extensive guidance on the hardware requirements for
fully distributed Hadoop clusters with special considerations for both master
and slave nodes as they have different requirements.

The Hadoop For Dummies Environment
To help you get started with Hadoop, we’re providing instructions on how to
quickly download and set up Hadoop on your own laptop computer. As we men-
tion earlier in the chapter, your cluster will be running in pseudo-distributed
mode on a virtual machine, so you won’t need special hardware.

45 Chapter 3: Setting Up Your Hadoop Environment

A virtual machine (VM) is a simulated computer that you can run on a real
computer. For example, you can run a program on your laptop that “plays” a
VM, which opens a window that looks like it’s running another computer. In
effect, a pretend computer is running inside your real computer.

We’ll be downloading a VM, and while running it, we’ll install Hadoop.

 As you make your way through this book, enhance your learning by trying
the examples and experimenting on your own!

The Hadoop For Dummies distribution:
Apache Bigtop
We’ve done our best to provide a vendor-agnostic view of Hadoop with this
book. It’s with this in mind that we built the Hadoop For Dummies environ-
ment using Apache Bigtop, a great alternative if you want to assemble your
own Hadoop components. Bigtop gathers the core Hadoop components for
you and ensures that your configuration works. Apache Bigtop is a 100 percent
open source distribution.

The primary goal of Bigtop — itself an Apache project, just like Hadoop — is
to build a community around the packaging, deployment, and integration of
projects in the Apache Hadoop ecosystem. The focus is on the system as a
whole rather than on individual projects.

Using Bigtop, you can easily install and deploy Hadoop components with-
out having to track them down in a specific distribution and match them
with a specific Hadoop version. As new versions of Hadoop components are
released, they sometimes do not work with the newest releases of other proj-
ects. If you’re on your own, significant testing is required. With Bigtop (or a
commercial Hadoop release) you can trust that Hadoop experts have done
this testing for you. To give you an idea of how expansive Bigtop has gotten,
see the following list of all the components included in Bigtop:

 ✓ Apache Crunch

 ✓ Apache Flume

 ✓ Apache Giraph

 ✓ Apache HBase

 ✓ Apache HCatalog

 ✓ Apache Hive

 ✓ Apache Mahout

 ✓ Apache Oozie

46 Part I: Getting Started with Hadoop

 ✓ Apache Pig

 ✓ Apache Solr

 ✓ Apache Sqoop

 ✓ Apache Whirr

 ✓ Apache Zookeeper

 ✓ Cloudera Hue

 ✓ LinkedIn DataFu

This collection of Hadoop ecosystem projects is about as expansive as it
gets, as both major and minor projects are included. See Chapter 1 for sum-
mary descriptions of the more prominent projects.

Apache Bigtop is continuously evolving, so the list that’s presented here was
current at the time of writing. For the latest release information about Bigtop,
visit http://blogs.apache.org/bigtop.

Setting up the Hadoop For
Dummies environment
This section describes all the steps involved in creating your own Hadoop For
Dummies working environment. If you’re comfortable working with VMs and
Linux, feel free to install Bigtop on a different VM than what we recommend. If
you’re really bold and have the hardware, go ahead and try installing Bigtop
on a cluster of machines in fully distributed mode!

Step 1: Downloading a VM
Hadoop runs on all popular Linux distributions, so we need a Linux VM.
There is a freely available (and legal!) CentOS 6 image available here:

http://sourceforge.net/projects/centos-6-vmware

 You will need a 64-bit operating system on your laptop in order to run this VM.
Hadoop needs a 64-bit environment.

After you’ve downloaded the VM, extract it from the downloaded Zip file into
the destination directory. Do ensure you have around 50GB of space available
as Hadoop and your sample data will need it.

If you don’t already have a VM player, you can download one for free from here:

https://www.vmware.com/go/downloadplayer

www.allitebooks.com

http://www.allitebooks.org

47 Chapter 3: Setting Up Your Hadoop Environment

After you have your VM player set up, open the player, go to File➪Open, then
go to the directory where you extracted your Linux VM. Look for a file called
centos-6.2-x64-virtual-machine-org.vmx and select it. You’ll see
information on how many processors and how much memory it will use. Find
out how much memory your computer has, and allocate half of it for the VM
to use. Hadoop needs lots of memory.

Once you’re ready, click the Play button, and your Linux instance will start
up. You’ll see lots of messages fly by as Linux is booting and you’ll come to a
login screen. The user name is already set to “Tom.” Specify the password as
“tomtom” and log in.

Step 2: Downloading Bigtop
From within your Linux VM, right-click on the screen and select Open in
Terminal from the contextual menu that appears. This opens a Linux termi-
nal, where you can run commands. Click inside the terminal so you can see
the cursor blinking and enter the following command:

su -

You’ll be asked for your password, so type “tomtom” like you did earlier. This
command switches the user to root, which is the master account for a Linux
computer — we’ll need this in order to install Hadoop.

With your root access (don’t let the power get to your head), run the follow-
ing command:

wget -O /etc/yum.repos.d/bigtop.repo \

 http://www.apache.org/dist/bigtop/bigtop-0.7.0/repos/centos6/bigtop.repo

The wget command is essentially a web request, which requests a specific
file in the URL we can see and writes it to a specific path — in our case, that’s
/etc/yum.repos.d/bigtop.repo.

Step 3: Installing Bigtop
The geniuses behind Linux have made life quite easy for people like us who
need to install big software packages like Hadoop. What we downloaded in
the last step wasn’t the entire Bigtop package and all its dependencies. It
was just a repository file (with the extension .repo), which tells an installer
 program which software packages are needed for the Bigtop installation.

Like any big software product, Hadoop has lots of prerequisites, but you
don’t need to worry. A well-designed .repo file will point to any dependen-
cies, and the installer is smart enough to see if they’re missing on your
 computer and then download and install them.

48 Part I: Getting Started with Hadoop

The installer we’re using is called yum, which you get to see in action now:

yum install hadoop* mahout* oozie* hbase* hive* hue* pig* zookeeper*

Notice that we’re picking and choosing the Hadoop components to install.
There are a number of other components available in Bigtop, but these are
the only ones we’ll be using in this book. Since the VM we’re using is a fresh
Linux install, we’ll need many dependencies, so you’ll need to wait a bit. The
yum installer is quite verbose, so you can watch exactly what’s being down-
loaded and installed to pass the time. When the install process is done, you
should see a message that says “Complete!”

Step 4: Starting Hadoop
Before we start running applications on Hadoop, there are a few basic con-
figuration and setup things we need to do. Here they are in order:

 1. Download and install Java:

yum install java-1.7.0-openjdk-devel.x86_64

 2. Format the NameNode:

sudo /etc/init.d/hadoop-hdfs-namenode init

 3. Start the Hadoop services for your pseudodistributed cluster:

for i in hadoop-hdfs-namenode hadoop-hdfs-datanode ; \
 do sudo service $i start ; done

 4. Create a sub-directory structure in HDFS:

sudo /usr/lib/hadoop/libexec/init-hdfs.sh

 5. Start the YARN daemons:

sudo service hadoop-yarn-resourcemanager start
sudo service hadoop-yarn-nodemanager start

And with that, you’re done. Congratulations! You’ve installed a working
Hadoop deployment!

The Hadoop For Dummies Sample Data
Set: Airline on-time performance
Throughout this book, we’ll be running examples based on the Airline On-time
Performance data set — we call it the flight data set for short. This data set
is a collection of all the logs of domestic flights from the period of October
1987 to April 2008. Each record represents an individual flight, where various

49 Chapter 3: Setting Up Your Hadoop Environment

details are captured, such as the time and date of arrival and departure, the
originating and destination airports, and the amount of time taken to taxi
from the runway to the gate. For more information about this data set see this
page: http://stat-computing.org/dataexpo/2009/.

Many of us on the author team for this book spend a lot of time on planes, so
this example data set is close to our hearts.

Step 5: Downloading the sample data set
To download the sample data set, open the Firefox browser from within
the VM, and go to the following page: http://stat-computing.org/
dataexpo/2009/the-data.html.

You won’t need the entire data set, so we recommend you start with a single
year, so select 1987. When you’re about to download, select the Open with
Archive Manager option.

After your file has downloaded, extract the 1987.csv file into your home
directory where you’ll easily be able to find it. Click on the Extract button,
and then select the Desktop directory.

Step 6: Copying the sample data set into HDFS
Remember that your Hadoop programs can only work with data once it’s
stored in HDFS. So what we’re going to do now is copy the flight data file for
1987 into HDFS. Enter the following command:

hdfs dfs -copyFromLocal 1987.csv /user/root

Your First Hadoop Program:
Hello Hadoop!

After the Hadoop cluster is installed and running, you can run your first
Hadoop program.

This application is very simple, and calculates the total miles flown for all
flights flown in one year. The year is defined by the data file you read in your
application. We will look at MapReduce programs in more detail in Chapter 6,
but to keep things a bit simpler here, we’ll run a Pig script to calculate the
total miles flown. You will see the map and reduce phases fly by in the output.

50 Part I: Getting Started with Hadoop

Here is the code for this Pig script:

records = LOAD '2013_subset.csv' USING PigStorage(',') AS
 (Year,Month,DayofMonth,DayOfWeek,DepTime,CRSDepTime,ArrTime,\
 CRSArrTime,UniqueCarrier,FlightNum,TailNum,ActualElapsedTime,\
 CRSElapsedTime,AirTime,ArrDelay,DepDelay,Origin,Dest,\
 Distance:int,TaxiIn,TaxiOut,Cancelled,CancellationCode,\
 Diverted,CarrierDelay,WeatherDelay,NASDelay,SecurityDelay,\
 LateAircraftDelay);
milage_recs = GROUP records ALL;
tot_miles = FOREACH milage_recs GENERATE SUM(records.Distance);
STORE tot_miles INTO /user/root/totalmiles;

We want to put this code in a file on our VM, so let’s first create a file. Right-
click on the desktop of your VM and select Create Document from the con-
textual menu that appears and name the document totalmiles.pig. Then
open the document in an editor, paste in the above code, and save the file.

From the command line, run the following command to run the Pig script:

pig totalmiles.pig

You will see many lines of output, and then finally a “Success!” message, fol-
lowed by more statistics, and then finally the command prompt. After your
Pig job has completed, you can see your output:

hdfs dfs -cat /user/root/totalmiles/part-r-00000

Drumroll, please. . . And the answer is:

775009272

And with that, you’ve run your first Hadoop application! The examples in this
book use the flight data set, and will work in this environment, so do be sure
to try them out yourself.

Part II
How Hadoop Works

 Check out the article “Securing your data in Hadoop” (and more) online at
www.dummies.com/extras/hadoop.

In this part . . .
 ✓ Find out why folks are excited about HDFS.

 ✓ See how file management works in HDFS.

 ✓ Explore the mysteries of MapReduce.

 ✓ Discover how funny names like YARN and Pig can make your
Hadoop world a lot easier.

 ✓ Master statistical analysis in a Hadoop environment

 ✓ Work on workflows with Oozie

 ✓ Check out the article “Securing your data in Hadoop” (and more)
online at www.dummies.com/extras/hadoop.

Chapter 4

Storing Data in Hadoop: The Hadoop
Distributed File System

In This Chapter
▶ Seeing how HDFS stores files in blocks

▶ Looking at HDFS components and architecture

▶ Scaling out HDFS

▶ Working with checkpoints

▶ Federating your NameNode

▶ Putting HDFS to the availability test

W
hen it comes to the core Hadoop infrastructure, you have two
 components: storage and processing. The Hadoop Distributed

File System (HDFS) is the storage component. In short, HDFS provides a
 distributed architecture for extremely large scale storage, which can easily
be extended by scaling out.

Let us remind you why this is a big deal. In the late 1990s, after the Internet
established itself as a fixture in society, Google was facing the major challenge of
having to be able to store and process not only all the pages on the Internet but
also Google users’ web log data. Google’s major claim to fame, then and now,
was its expansive and current index of the Internet’s many pages, and its ability
to return highly relevant search results to its users. The key to its success was
being able to process and analyze both the Internet data and its user data. At
the time, Google was using a scale-up architecture model — a model where you
increase system capacity by adding CPU cores, RAM, and disk to an existing
server — and it had two major problems:

 ✓ Expense: Scaling up the hardware by using increasingly bigger servers
with more storage was becoming incredibly expensive. As computer
systems increased in their size, their cost increased at an even higher
rate. In addition, Google needed a highly available environment — one
that would ensure its mission critical workloads could continue running
in the event of a failure — so a failover system was also needed, doubling
the IT expense.

54 Part II: How Hadoop Works

 ✓ Structural limitations: Google engineers were reaching the limits of
what a scale-up architecture could sustain. For example, with the
increasing data volumes Google was seeing, it was taking much longer
for data sets to be transferred from SANs to the CPUs for processing.
And all the while, the Internet’s growth and usage showed no sign of
slowing down.

Rather than scale up, Google engineers decided to scale out by using a cluster
of smaller servers they could continually add to if they needed more power or
capacity. To enable a scale-out model, they developed the Google File System
(GFS), which was the inspiration for the engineers who first developed HDFS.
The early use cases, for both the Google and HDFS engineers, were solely based
on the batch processing of large data sets. This concept is reflected in the
design of HDFS, which is optimized for large-scale batch processing workloads.
Since Hadoop came on the scene in 2005, it has emerged as the premier platform
for large-scale data storage and processing. There’s a growing demand for the
optimization of interactive workloads as well, which involve queries that involve
small subsets of the data. Though today’s HDFS still works best for batch
workloads, features are being added to improve the performance of interactive
workloads.

Data Storage in HDFS
Just to be clear, storing data in HDFS is not entirely the same as saving
files on your personal computer. In fact, quite a number of differences
exist — most having to do with optimizations that make HDFS able to scale
out easily across thousands of slave nodes and perform well with batch
workloads.

The most noticeable difference initially is the size of files. Hadoop is designed
to work best with a modest number of extremely large files. Average file sizes
that are larger than 500MB are the norm.

Here’s an additional bit of background information on how data is stored:
HDFS has a Write Once, Read Often model of data access. That means the
contents of individual files cannot be modified, other than appending new
data to the end of the file.

Don’t worry, though: There’s still lots you can do with HDFS files, including

 ✓ Create a new file

 ✓ Append content to the end of a file

 ✓ Delete a file

 ✓ Rename a file

 ✓ Modify file attributes like owner

55 Chapter 4: Storing Data in Hadoop: The Hadoop Distributed File System

Taking a closer look at data blocks
When you store a file in HDFS, the system breaks it down into a set of
 individual blocks and stores these blocks in various slave nodes in the
Hadoop cluster, as shown in Figure 4-1. This is an entirely normal thing to do,
as all file systems break files down into blocks before storing them to disk.
HDFS has no idea (and doesn’t care) what’s stored inside the file, so raw files
are not split in accordance with rules that we humans would understand.
Humans, for example, would want record boundaries — the lines showing
where a record begins and ends — to be respected. HDFS is often blissfully
unaware that the final record in one block may be only a partial record, with
the rest of its content shunted off to the following block. HDFS only wants
to make sure that files are split into evenly sized blocks that match the
predefined block size for the Hadoop instance (unless a custom value was
entered for the file being stored). In Figure 4-1, that block size is 128MB.

Figure 4-1:
A file being
divided into

blocks of
data.

 Not every file you need to store is an exact multiple of your system’s block
size, so the final data block for a file uses only as much space as is needed. In
the case of Figure 4-1, the final block of data is 1MB.

The concept of storing a file as a collection of blocks is entirely consistent
with how file systems normally work. But what’s different about HDFS is the
scale. A typical block size that you’d see in a file system under Linux is 4KB,
whereas a typical block size in Hadoop is 128MB. This value is configurable,
and it can be customized, as both a new system default and a custom value
for individual files.

Hadoop was designed to store data at the petabyte scale, where any
 potential limitations to scaling out are minimized. The high block size is a
direct consequence of this need to store data on a massive scale. First of
all, every data block stored in HDFS has its own metadata and needs to be
tracked by a central server so that applications needing to access a specific
file can be directed to wherever all the file’s blocks are stored. If the block
size were in the kilobyte range, even modest volumes of data in the terabyte
scale would overwhelm the metadata server with too many blocks to track.
Second, HDFS is designed to enable high throughput so that the parallel
processing of these large data sets happens as quickly as possible. The key
to Hadoop’s scalability on the data processing side is, and always will be,

56 Part II: How Hadoop Works

parallelism — the ability to process the individual blocks of these large files
in parallel. To enable efficient processing, a balance needs to be struck. On
one hand, the block size needs to be large enough to warrant the resources
dedicated to an individual unit of data processing (for instance, a map or
reduce task, which we look at in Chapter 6). On the other hand, the block
size can’t be so large that the system is waiting a very long time for one last
unit of data processing to finish its work. These two considerations obviously
depend on the kinds of work being done on the data blocks.

Replicating data blocks
HDFS is designed to store data on inexpensive, and more unreliable, hardware.
(We say more on that topic later in this chapter.) Inexpensive has an attractive
ring to it, but it does raise concerns about the reliability of the system as a
whole, especially for ensuring the high availability of the data. Planning ahead
for disaster, the brains behind HDFS made the decision to set up the system
so that it would store three (count ’em — three) copies of every data block.

HDFS assumes that every disk drive and every slave node is inherently
 unreliable, so, clearly, care must be taken in choosing where the three copies
of the data blocks are stored. Figure 4-2 shows how data blocks from the
earlier file are striped across the Hadoop cluster — meaning they are evenly
distributed between the slave nodes so that a copy of the block will still be
available regardless of disk, node, or rack failures.

Figure 4-2:
Replication
patterns of

data blocks
in HDFS.

The file shown in Figure 4-2 has five data blocks, labeled a, b, c, d, and e. If
you take a closer look, you can see this particular cluster is made up of two
racks with two nodes apiece, and that the three copies of each data block
have been spread out across the various slave nodes.

www.allitebooks.com

http://www.allitebooks.org

57 Chapter 4: Storing Data in Hadoop: The Hadoop Distributed File System

Every component in the Hadoop cluster is seen as a potential failure point,
so when HDFS stores the replicas of the original blocks across the Hadoop
cluster, it tries to ensure that the block replicas are stored in different failure
points. For example, take a look at Block A. At the time it needed to be stored,
Slave Node 3 was chosen, and the first copy of Block A was stored there. For
multiple rack systems, HDFS then determines that the remaining two copies
of block A need to be stored in a different rack. So the second copy of block
A is stored on Slave Node 1. The final copy can be stored on the same rack as
the second copy, but not on the same slave node, so it gets stored on Slave
Node 2.

Slave node and disk failures
Like death and taxes, disk failures (and given enough time, even node or rack
failures), are inevitable. Given the example in Figure 4-2, even if one rack
were to fail, the cluster could continue functioning. Performance would suffer
because you’ve lost half your processing resources, but the system is still
online and all data is still available.

In a scenario where a disk drive or a slave node fails, the central metadata
server for HDFS (called the NameNode) eventually finds out that the file
blocks stored on the failed resource are no longer available. For example,
if Slave Node 3 in Figure 4-2 fails, it would mean that Blocks A, C, and D are
underreplicated. In other words, too few copies of these blocks are available in
HDFS. When HDFS senses that a block is underreplicated, it orders a new copy.

To continue the example, let’s say that Slave Node 3 comes back online after
a few hours. Meanwhile, HDFS has ensured that there are three copies of all
the file blocks. So now, Blocks A, C, and D have four copies apiece and are
overreplicated. As with underreplicated blocks, the HDFS central metadata
server will find out about this as well, and will order one copy of every file to
be deleted.

One nice result of the availability of data is that when disk failures do occur,
there’s no need to immediately replace failed hard drives. This can more
effectively be done at regularly scheduled intervals.

Sketching Out the HDFS Architecture
The core concept of HDFS is that it can be made up of dozens, hundreds, or
even thousands of individual computers, where the system’s files are stored
in directly attached disk drives. Each of these individual computers is a

58 Part II: How Hadoop Works

self-contained server with its own memory, CPU, disk storage, and installed
operating system (typically Linux, though Windows is also supported).
Technically speaking, HDFS is a user-space-level file system because it lives
on top of the file systems that are installed on all individual computers that
make up the Hadoop cluster. Figure 4-3 illustrates this concept.

Figure 4-3:
HDFS as a

user-space-
level file
system.

Figure 4-3 shows that a Hadoop cluster is made up of two classes of servers:
slave nodes, where the data is stored and processed, and master nodes, which
govern the management of the Hadoop cluster. On each of the master nodes
and slave nodes, HDFS runs special services and stores raw data to capture
the state of the file system. In the case of the slave nodes, the raw data con-
sists of the blocks stored on the node, and with the master nodes, the raw
data consists of metadata that maps data blocks to the files stored in HDFS.

Looking at slave nodes
In a Hadoop cluster, each data node (also known as a slave node) runs a
background process named DataNode. This background process (also known
as a daemon) keeps track of the slices of data that the system stores on its
computer. It regularly talks to the master server for HDFS (known as the
NameNode) to report on the health and status of the locally stored data.

 Data blocks are stored as raw files in the local file system. From the perspective
of a Hadoop user, you have no idea which of the slave nodes has the pieces of
the file you need to process. From within Hadoop, you don’t see data blocks or
how they’re distributed across the cluster — all you see is a listing of files in
HDFS. The complexity of how the file blocks are distributed across the cluster

59 Chapter 4: Storing Data in Hadoop: The Hadoop Distributed File System

is hidden from you — you don’t know how complicated it all is, and you don’t
need to know. Actually, the slave nodes themselves don’t even know what’s
inside the data blocks they’re storing. It’s the NameNode server that knows the
mappings of which data blocks compose the files stored in HDFS.

Better living through redundancy
One core design principle of HDFS is the concept of minimizing the cost of
the individual slave nodes by using commodity hardware components. For
massively scalable systems, this idea is a sensible one because costs escalate
quickly when you need hundreds or thousands of slave nodes. Using lower-cost
hardware has a consequence, though, in that individual components aren’t as
reliable as more expensive hardware.

When you’re choosing storage options, consider the impact of using commodity
drives rather than more expensive enterprise-quality drives. Imagine that you
have a 750-node cluster, where each node has 12 hard disk drives dedicated to
HDFS storage. Based on an annual failure rate (AFR) of 4 percent for commodity
disk drives (a given hard disk drive has a 4 percent likelihood of failing in a given
year, in other words), your cluster will likely experience a hard disk failure every
day of the year.

Because there can be so many slave nodes, their failure is also a common
occurrence in larger clusters with hundreds or more nodes. With this
information in mind, HDFS has been engineered on the assumption that all
hardware components, even at the slave node level, are unreliable. HDFS
overcomes the unreliability of individual hardware components by way of
redundancy: That’s the idea behind those three copies of every file stored in
HDFS, distributed throughout the system. More specifically, each file block
stored in HDFS has a total of three replicas. If one system breaks with a
 specific file block that you need, you can turn to the other two.

Sketching out slave node server design
To balance such important factors as total cost of ownership, storage capacity,
and performance, you need to carefully plan the design of your slave nodes.
Chapter 16 covers this topic in greater detail, but we want to take a quick look
in this section at what a typical slave node looks like.

We commonly see slave nodes now where each node typically has between
12 and 16 locally attached 3TB hard disk drives. Slave nodes use moderately
fast dual-socket CPUs with six to eight cores each — no speed demons, in
other words. This is accompanied by 48GB of RAM. In short, this server is
optimized for dense storage.

60 Part II: How Hadoop Works

Because HDFS is a user-space-level file system, it’s important to optimize the
local file system on the slave nodes to work with HDFS. In this regard, one
high-impact decision when setting up your servers is choosing a file system
for the Linux installation on the slave nodes. Ext3 is the most commonly
deployed file system because it has been the most stable option for a number
of years. Take a look at Ext4, however. It’s the next version of Ext3, and it has
been available long enough to be widely considered stable and reliable. More
importantly for our purposes, it has a number of optimizations for handling
large files, which makes it an ideal choice for HDFS slave node servers.

 Don’t use the Linux Logical Volume Manager (LVM) — it represents an
 additional layer between the Linux file system and HDFS, which prevents
Hadoop from optimizing its performance. Specifically, LVM aggregates disks,
which hampers the resource management that HDFS and YARN do, based on
how files are distributed on the physical drives.

Keeping track of data blocks
with NameNode
When a user stores a file in HDFS, the file is divided into data blocks, and
three copies of these data blocks are stored in slave nodes throughout the
Hadoop cluster. That’s a lot of data blocks to keep track of. The NameNode
acts as the address book for HDFS because it knows not only which blocks
make up individual files but also where each of these blocks and their replicas
are stored. As you might expect, knowing where the bodies are buried makes
the NameNode a critically important component in a Hadoop cluster. If the
NameNode is unavailable, applications cannot access any data stored in HDFS.

If you take another look at Figure 4-3, you can see the NameNode daemon
 running on a master node server. All mapping information dealing with the
data blocks and their corresponding files is stored in a file named fsimage.
HDFS is a journaling file system, which means that any data changes are
logged in an edit journal that tracks events since the last checkpoint — the
last time when the edit log was merged with fsimage. In HDFS, the edit
 journal is maintained in a file named edits that’s stored on the NameNode.

NameNode startup and operation
To understand how the NameNode works, it’s helpful to take a look at how
it starts up. Because the purpose of the NameNode is to inform applications
of how many data blocks they need to process and to keep track of the exact
location where they’re stored, it needs all the block locations and block-to-file

61 Chapter 4: Storing Data in Hadoop: The Hadoop Distributed File System

mappings that are available in RAM. These are the steps the NameNode
takes. To load all the information that the NameNode needs after it starts up,
the following happens:

 1. The NameNode loads the fsimage file into memory.

 2. The NameNode loads the edits file and re-plays the journaled changes
to update the block metadata that’s already in memory.

 3. The DataNode daemons send the NameNode block reports.

 For each slave node, there’s a block report that lists all the data blocks
stored there and describes the health of each one.

After the startup process is completed, the NameNode has a complete
picture of all the data stored in HDFS, and it’s ready to receive application
requests from Hadoop clients. As data files are added and removed based
on client requests, the changes are written to the slave node’s disk volumes,
journal updates are made to the edits file, and the changes are reflected in
the block locations and metadata stored in the NameNode’s memory (see
Figure 4-4).

Figure 4-4:
Interaction

between
HDFS

components.

Throughout the life of the cluster, the DataNode daemons send the NameNode
heartbeats (a quick signal) every three seconds, indicating they’re active.
(This default value is configurable.) Every six hours (again, a configurable
default), the DataNodes send the NameNode a block report outlining which
file blocks are on their nodes. This way, the NameNode always has a current
view of the available resources in the cluster.

62 Part II: How Hadoop Works

Writing data
To create new files in HDFS, the following process would have to take place
(refer to Figure 4-4 to see the components involved):

 1. The client sends a request to the NameNode to create a new file.

 The NameNode determines how many blocks are needed, and the client
is granted a lease for creating these new file blocks in the cluster. As part
of this lease, the client has a time limit to complete the creation task.
(This time limit ensures that storage space isn’t taken up by failed client
applications.)

 2. The client then writes the first copies of the file blocks to the slave
nodes using the lease assigned by the NameNode.

 The NameNode handles write requests and determines where the file
blocks and their replicas need to be written, balancing availability and
performance. The first copy of a file block is written in one rack, and
the second and third copies are written on a different rack than the first
copy, but in different slave nodes in the same rack. This arrangement
minimizes network traffic while ensuring that no data blocks are on the
same failure point.

 3. As each block is written to HDFS, a special process writes the remaining
replicas to the other slave nodes identified by the NameNode.

 4. After the DataNode daemons acknowledge the file block replicas have
been created, the client application closes the file and notifies the
NameNode, which then closes the open lease.

Reading Data
To read files from HDFS, the following process would have to take place
(again, refer to Figure 4-4 for the components involved):

 1. The client sends a request to the NameNode for a file.

 The NameNode determines which blocks are involved and chooses,
based on overall proximity of the blocks to one another and to the
client, the most efficient access path.

 2. The client then accesses the blocks using the addresses given by the
NameNode.

Balancing data in the Hadoop cluster
Over time, with combinations of uneven data-ingestion patterns (where some
slave nodes might have more data written to them) or node failures, data is
likely to become unevenly distributed across the racks and slave nodes in
your Hadoop cluster. This uneven distribution can have a detrimental impact
on performance because the demand on individual slave nodes will become
unbalanced; nodes with little data won’t be fully used; and nodes with many

63 Chapter 4: Storing Data in Hadoop: The Hadoop Distributed File System

blocks will be overused. (Note: The overuse and underuse are based on disk
activity, not on CPU or RAM.) HDFS includes a balancer utility to redistribute
blocks from overused slave nodes to underused ones while maintaining
the policy of putting blocks on different slave nodes and racks. Hadoop
 administrators should regularly check HDFS health, and if data becomes
unevenly distributed, they should invoke the balancer utility.

NameNode master server design
Because of its mission-critical nature, the master server running the NameNode
daemon needs markedly different hardware requirements than the ones for a
slave node. Most significantly, enterprise-level components need to be used
to minimize the probability of an outage. Also, you’ll need enough RAM to
load into memory all the metadata and location data about all the data blocks
stored in HDFS. See Chapter 16 for a full discussion on this topic.

Checkpointing updates
Earlier in this chapter, we say that HDFS is a journaled file system, where
new changes to files in HDFS are captured in an edit log that’s stored on the
NameNode in a file named edits. Periodically, when the edits file reaches
a certain threshold or after a certain period has elapsed, the journaled
entries need to be committed to the master fsimage file. The NameNode
itself doesn’t do this, because it’s designed to answer application requests as
quickly as possible. More importantly, considerable risk is involved in having
this metadata update operation managed by a single master server.

 If the metadata describing the mappings between the data blocks and their
corresponding files becomes corrupted, the original data is as good as lost.

Checkpointing services for a Hadoop cluster are handled by one of four
 possible daemons, which need to run on their own dedicated master node
alongside the NameNode daemon’s master node:

 ✓ Secondary NameNode: Prior to Hadoop 2, this was the only checkpointing
daemon, performing the checkpointing process described in this section.
The Secondary NameNode has a notoriously inaccurate name because it
is in no way “secondary” or a “standby” for the NameNode.

 ✓ Checkpoint Node: The Checkpoint Node is the replacement for the
Secondary NameNode. It performs checkpointing and nothing more.

 ✓ Backup Node: Provides checkpointing service, but also maintains a
backup of the fsimage and edits file.

 ✓ Standby NameNode: Performs checkpointing service and, unlike the old
Secondary NameNode, the Standby NameNode is a true standby server,
enabling a hot-swap of the NameNode process to avoid any downtime.

64 Part II: How Hadoop Works

The checkpointing process
The following steps, depicted in Figure 4-5, describe the checkpointing process
as it’s carried out by the NameNode and the checkpointing service (note that
four possible daemons can be used for checkpointing — see above):

 1. When it’s time to perform the checkpoint, the NameNode creates a new
file to accept the journaled file system changes.

 It names the new file edits.new.

 2. As a result, the edits file accepts no further changes and is copied to
the checkpointing service, along with the fsimage file.

 3. The checkpointing service merges these two files, creating a file named
fsimage.ckpt.

 4. The checkpointing service copies the fsimage.ckpt file to the
NameNode.

 5. The NameNode overwrites the file fsimage with fsimage.ckpt.

 6. The NameNode renames the edits.new file to edits.

Figure 4-5:
Check-

pointing the
HDFS edit

journal.

65 Chapter 4: Storing Data in Hadoop: The Hadoop Distributed File System

Backup Node considerations
In addition to providing checkpointing functionality, the Backup Node
 maintains the current state of all the HDFS block metadata in memory, just
like the NameNode. In this sense, it maintains a real-time backup of the
NameNode’s state. As a result of keeping the block metadata in memory, the
Backup Node is far more efficient than the Checkpoint Node at performing
the checkpointing task, because the fsimage and edits files don’t need
to be transferred and then merged. These changes are already merged in
memory.

 Another benefit of using the Backup Node is that the NameNode can be
 configured to delegate the Backup Node so that it persists journal data to disk.

If you’re using the Backup Node, you can’t run the Checkpoint Node. There’s
no need to do so, because the checkpointing process is already being taken
care of.

Standby NameNode considerations
The Standby NameNode is the designated hot standby master server for the
NameNode. While serving as standby, it also performs the checkpointing
 process. As such, you can’t run the Backup Node or Standby Node.

Secondary NameNode, Checkpoint Node, Backup Node,
and Standby NameNode Master server design
The master server running the Secondary NameNode, Checkpoint Node,
Backup Node, or Standby NameNode daemons have the same hardware
requirements as the ones deployed for the NameNode master server. The
reason is that these servers also load into memory all the metadata and
 location data about all the data blocks stored in HDFS. See Chapter 16 for
a full discussion on this topic.

HDFS Federation
Before Hadoop 2 entered the scene, Hadoop clusters had to live with the fact
that NameNode placed limits on the degree to which they could scale. Few
clusters were able to scale beyond 3,000 or 4,000 nodes. NameNode’s need to
maintain records for every block of data stored in the cluster turned out to
be the most significant factor restricting greater cluster growth. When you
have too many blocks, it becomes increasingly difficult for the NameNode to
scale up as the Hadoop cluster scales out.

66 Part II: How Hadoop Works

The solution to expanding Hadoop clusters indefinitely is to federate the
NameNode. Specifically, you must set it up so that you have multiple NameNode
instances running on their own, dedicated master nodes and then making
each NameNode responsible only for the file blocks in its own name space. In
Figure 4-6, you can see a Hadoop cluster with two NameNodes serving a single
cluster. The slave nodes all contain blocks from both name spaces.

Figure 4-6:
Replication
patterns of

data blocks
in HDFS.

HDFS High Availability
Often in Hadoop’s infancy, a great amount of discussion was centered on the
NameNode’s representation of a single point of failure. Hadoop, overall, has
always had a robust and failure-tolerant architecture, with the exception of
this key area. As we mention earlier in this chapter, without the NameNode,
there’s no Hadoop cluster.

Using Hadoop 2, you can configure HDFS so that there’s an Active NameNode
and a Standby NameNode (see Figure 4-7). The Standby NameNode needs
to be on a dedicated master node that’s configured identically to the master
node used by the Active NameNode (refer to Figure 4-7).

The Standby NameNode isn’t sitting idly by while the NameNode handles all
the block address requests. The Standby NameNode, charged with the task
of keeping the state of the block locations and block metadata in memory,
handles the HDFS checkpointing responsibilities. The Active NameNode
writes journal entries on file changes to the majority of the JournalNode
services, which run on the master nodes. (Note: The HDFS high availability
solution requires at least three master nodes, and if there are more, there can
be only an odd number.) If a failure occurs, the Standby Node first reads all
completed journal entries (where a majority of Journal Nodes have an entry,
in other words), to ensure that the new Active NameNode is fully consistent
with the state of the cluster.

67 Chapter 4: Storing Data in Hadoop: The Hadoop Distributed File System

Figure 4-7:
High

 availability
of the

NameNode.

Zookeeper is used to monitor the Active NameNode and to handle the
failover logistics if the Active NameNode becomes unavailable. Both
the Active and Standby NameNodes have dedicated Zookeeper Failover
Controllers (ZFC) that perform the monitoring and failover tasks. In the event
of a failure, the ZFC informs the Zookeeper instances on the cluster, which
then elect a new Active NameNode.

 Apache Zookeeper provides coordination and configuration services for
 distributed systems, so it’s no wonder we see it used all over the place in
Hadoop. See Chapter 12 for more information about Zookeeper.

68 Part II: How Hadoop Works

Chapter 5

Reading and Writing Data
In This Chapter
▶ Compressing data

▶ Managing files with the Hadoop file system commands

▶ Ingesting log data with Flume

T
his chapter tells you all about getting data in and out of Hadoop, which
are basic operations along the path of big data discovery.

We begin by describing the importance of data compression for optimizing
the performance of your Hadoop installation, and we briefly outline some
of the available compression utilities that are supported by Hadoop. We
also give you an overview of the Hadoop file system (FS) shell (a command-
line interface), which includes a number of shell-like commands that you
can use to directly interact with the Hadoop Distributed File System (HDFS)
and other file systems that Hadoop supports. Finally, we describe how you
can use Apache Flume — the Hadoop community technology for collecting
large volumes of log files and storing them in Hadoop — to efficiently ingest
huge volumes of log data.

 We use the word “ingest” all over this chapter and this book. In short, ingest-
ing data simply means to accept data from an outside source and store it in
Hadoop. With Hadoop’s scalable, reliable, and inexpensive storage, we think
you’ll understand why people are so keen on this.

Compressing Data
The huge data volumes that are realities in a typical Hadoop deployment
make compression a necessity. Data compression definitely saves you a great
deal of storage space and is sure to speed up the movement of that data
throughout your cluster. Not surprisingly, a number of available compression
schemes, called codecs, are out there for you to consider.

70 Part II: How Hadoop Works

 In a Hadoop deployment, you’re dealing (potentially) with quite a large
number of individual slave nodes, each of which has a number of large disk
drives. It’s not uncommon for an individual slave node to have upwards of
45TB of raw storage space available for HDFS. Even though Hadoop slave
nodes are designed to be inexpensive, they’re not free, and with large volumes
of data that have a tendency to grow at increasing rates, compression is an
obvious tool to control extreme data volumes.

First, some basic terms: A codec, which is a shortened form of compressor/
decompressor, is technology (software or hardware, or both) for compressing
and decompressing data; it’s the implementation of a compression/decom-
pression algorithm. You need to know that some codecs support something
called splittable compression and that codecs differ in both the speed with
which they can compress and decompress data and the degree to which they
can compress it.

Splittable compression is an important concept in a Hadoop context. The way
Hadoop works is that files are split if they’re larger than the file’s block size
setting, and individual file splits can be processed in parallel by different
mappers. With most codecs, text file splits cannot be decompressed indepen-
dently of other splits from the same file, so those codecs are said to be non-
splittable, so MapReduce processing is limited to a single mapper. Because
the file can be decompressed only as a whole, and not as individual parts
based on splits, there can be no parallel processing of such a file, and per-
formance might take a huge hit as a job waits for a single mapper to process
multiple data blocks that can’t be decompressed independently. (For more
on how MapReduce processing works, see Chapter 6.)

 Splittable compression is only a factor for text files. For binary files, Hadoop
compression codecs compress data within a binary-encoded container,
 depending on the file type (for example, a SequenceFile, Avro, or ProtocolBuffer).

 Speaking of performance, there’s a cost (in terms of processing resources
and time) associated with compressing the data that is being written to your
Hadoop cluster. With computers, as with life, nothing is free. When compress-
ing data, you’re exchanging processing cycles for disk space. And when that
data is being read, there’s a cost associated with decompressing the data as
well. Be sure to weigh the advantages of storage savings against the additional
performance overhead.

If the input file to a MapReduce job contains compressed data, the time that
is needed to read that data from HDFS is reduced and job performance is
enhanced. The input data is decompressed automatically when it is being read
by MapReduce. The input filename extension determines which supported
codec is used to automatically decompress the data. For example, a .gz exten-
sion identifies the file as a gzip-compressed file.

71 Chapter 5: Reading and Writing Data

It can also be useful to compress the intermediate output of the map phase
in the MapReduce processing flow. Because map function output is written
to disk and shipped across the network to the reduce tasks, compressing the
output can result in significant performance improvements. And if you want
to store the MapReduce output as history files for future use, compressing
this data can significantly reduce the amount of needed space in HDFS.

There are many different compression algorithms and tools, and their char-
acteristics and strengths vary. The most common trade-off is between com-
pression ratios (the degree to which a file is compressed) and compress/
decompress speeds. The Hadoop framework supports several codecs. The
framework transparently compresses and decompresses most input and
output file formats.

The following list identifies some common codecs that are supported by the
Hadoop framework. Be sure to choose the codec that most closely matches
the demands of your particular use case (for example, with workloads where
the speed of processing is important, choose a codec with high decompres-
sion speeds):

 ✓ Gzip: A compression utility that was adopted by the GNU project, Gzip
(short for GNU zip) generates compressed files that have a .gz exten-
sion. You can use the gunzip command to decompress files that were
created by a number of compression utilities, including Gzip.

 ✓ Bzip2: From a usability standpoint, Bzip2 and Gzip are similar. Bzip2 gen-
erates a better compression ratio than does Gzip, but it’s much slower.
In fact, of all the available compression codecs in Hadoop, Bzip2 is by
far the slowest. If you’re setting up an archive that you’ll rarely need
to query and space is at a high premium, then maybe would Bzip2 be
worth considering. (The B in Bzip comes from its use of the Burrows-
Wheeler algorithm, in case you’re curious.)

 ✓ Snappy: The Snappy codec from Google provides modest compression
ratios, but fast compression and decompression speeds. (In fact, it has
the fastest decompression speeds, which makes it highly desirable for
data sets that are likely to be queried often.) The Snappy codec is inte-
grated into Hadoop Common, a set of common utilities that supports
other Hadoop subprojects. You can use Snappy as an add-on for more
recent versions of Hadoop that do not yet provide Snappy codec support.

 ✓ LZO: Similar to Snappy, LZO (short for Lempel-Ziv-Oberhumer, the trio of
computer scientists who came up with the algorithm) provides modest
compression ratios, but fast compression and decompression speeds.
LZO is licensed under the GNU Public License (GPL). This license is
incompatible with the Apache license, and as a result, LZO has been
removed from some distributions. (Some distributions, such as IBM’s
BigInsights, have made an end run around this restriction by releasing
GPL-free versions of LZO.)

72 Part II: How Hadoop Works

 LZO supports splittable compression, which, as we mention earlier in
this chapter, enables the parallel processing of compressed text file
splits by your MapReduce jobs. LZO needs to create an index when it
compresses a file, because with variable-length compression blocks, an
index is required to tell the mapper where it can safely split the com-
pressed file. LZO is only really desirable if you need to compress text
files. For binary files, which are not impacted by non-splittable codecs,
Snappy is your best option.

Table 5-1 summarizes the common characteristics of some of the codecs that
are supported by the Hadoop framework.

Table 5-1 Hadoop Codecs
Codec File

Extension
Splittable? Degree of

Compression
Compression
Speed

Gzip .gz No Medium Medium

Bzip2 .bz2 Yes High Slow

Snappy .snappy No Medium Fast

LZO .lzo No, unless
indexed

Medium Fast

All compression algorithms must make trade-offs between the degree of com-
pression and the speed of compression that they can achieve. The codecs
that are listed in Table 5-1 provide you with some control over what the
balance between the compression ratio and speed should be at compres-
sion time. For example, Gzip lets you regulate the speed of compression by
specifying a negative integer (or keyword), where –1 (or --fast) indicates
the fastest compression level, and –9 (or --best) indicates the slowest com-
pression level. The default compression level is –6.

Managing Files with the Hadoop
File System Commands

HDFS is one of the two main components of the Hadoop framework; the other
is the computational paradigm known as MapReduce. A distributed file system
is a file system that manages storage across a networked cluster of machines.

73 Chapter 5: Reading and Writing Data

HDFS stores data in blocks, units whose default size is 64MB. Files that you
want stored in HDFS need to be broken into block-size chunks that are then
stored independently throughout the cluster. You can use the fsck line com-
mand to list the blocks that make up each file in HDFS, as follows:

% hadoop fsck / -files -blocks

 Because Hadoop is written in Java, all interactions with HDFS are managed via
the Java API. Keep in mind, though, that you don’t need to be a Java guru to
work with files in HDFS. Several Hadoop interfaces built on top of the Java API
are now in common use (and hide Java), but the simplest one is the command-
line interface; we use the command line to interact with HDFS in the examples
we provide in this chapter.

You access the Hadoop file system shell by running one form of the hadoop
command. (We tell you more about that topic later.) All hadoop commands are
invoked by the bin/hadoop script. (To retrieve a description of all hadoop
commands, run the hadoop script without specifying any arguments.) The
hadoop command has the syntax

hadoop [--config confdir] [COMMAND] [GENERIC_OPTIONS]
[COMMAND_OPTIONS]

The --config confdir option overwrites the default configuration
directory ($HADOOP_HOME/conf), so you can easily customize your Hadoop
environment configuration. The generic options and command options are a
common set of options that are supported by several commands.

Hadoop file system shell commands (for command line interfaces) take uni-
form resource identifiers (URIs) as arguments. A URI is a string of characters
that’s used to identify a name or a web resource. The string can include a
scheme name — a qualifier for the nature of the data source. For HDFS, the
scheme name is hdfs, and for the local file system, the scheme name is
file. If you don’t specify a scheme name, the default is the scheme name
that’s specified in the configuration file. A file or directory in HDFS can be
specified in a fully qualified way, such as in this example:

hdfs://namenodehost/parent/child

74 Part II: How Hadoop Works

Or it can simply be /parent/child if the configuration file points to
hdfs://namenodehost.

The Hadoop file system shell commands, which are similar to Linux file com-
mands, have the following general syntax:

hadoop hdfs -file_cmd

 Readers with some prior Hadoop experience might ask, “But what about the
hadoop fs command?” The fs command is deprecated in the Hadoop 0.2
release series, but it does still work in Hadoop 2. We recommend that you use
hdfs dfs instead.

As you might expect, you use the mkdir command to create a directory in
HDFS, just as you would do on Linux or on Unix-based operating systems.
Though HDFS has a default working directory, /user/$USER, where $USER is
your login username, you need to create it yourself by using the syntax

$ hadoop hdfs dfs -mkdir /user/login_user_name

For example, to create a directory named “joanna”, run this mkdir command:

$ hadoop hdfs dfs -mkdir /user/joanna

Use the Hadoop put command to copy a file from your local file system to
HDFS:

$ hadoop hdfs dfs -put file_name /user/login_user_name

For example, to copy a file named data.txt to this new directory, run the
following put command:

$ hadoop hdfs dfs -put data.txt /user/joanna

Run the ls command to get an HDFS file listing:

$ hadoop hdfs dfs -ls .
Found 2 items
drwxr-xr-x - joanna supergroup 0 2013-06-30 12:25 /user/joanna
-rw-r--r-- 1 joanna supergroup 118 2013-06-30 12:15 /user/joanna/data.txt

75 Chapter 5: Reading and Writing Data

The file listing itself breaks down as described in this list:

 ✓ Column 1 shows the file mode (“d” for directory and “–” for normal
file, followed by the permissions). The three permission types — read
(r), write (w), and execute (x) — are the same as you find on Linux- and
Unix-based systems. The execute permission for a file is ignored because
you cannot execute a file on HDFS. The permissions are grouped by
owner, group, and public (everyone else).

 ✓ Column 2 shows the replication factor for files. (The concept of rep-
lication doesn’t apply to directories.) The blocks that make up a file in
HDFS are replicated to ensure fault tolerance. The replication factor, or
the number of replicas that are kept for a specific file, is configurable.
You can specify the replication factor when the file is created or later, via
your application.

 ✓ Columns 3 and 4 show the file owner and group. Supergroup is the
name of the group of superusers, and a superuser is the user with the
same identity as the NameNode process. If you start the NameNode,
you’re the superuser for now. This is a special group – regular users will
have their userids belong to a group without special characteristics — a
group that’s simply defined by a Hadoop administrator.

 ✓ Column 5 shows the size of the file, in bytes, or 0 if it’s a directory.

 ✓ Columns 6 and 7 show the date and time of the last modification,
respectively.

 ✓ Column 8 shows the unqualified name (meaning that the scheme
name isn’t specified) of the file or directory.

Use the Hadoop get command to copy a file from HDFS to your local file
system:

$ hadoop hdfs dfs -get file_name /user/login_user_name

Use the Hadoop rm command to delete a file or an empty directory:

$ hadoop hdfs dfs -rm file_name /user/login_user_name

 Use the hadoop hdfs dfs -help command to get detailed help for every
option.

Table 5-2 summarizes the Hadoop file system shell commands.

76 Part II: How Hadoop Works

Table 5-2 File System Shell Commands
Command What It Does Usage Examples

dcat Copies source paths to
stdout.

hdfs dfs -cat
URI [URI ...]

hdfs dfs -cat
hdfs://<path>/
file1; hdfs dfs
-cat file:///
file2 /user/
hadoop/file3

chgrp Changes the group
association of files. With
-R, makes the change
recursively by way of the
directory structure. The
user must be the file owner
or the superuser.

hdfs dfs -chgrp
[-R] GROUP URI
[URI ...]

hdfs dfs -chgrp
analysts test/
data1.txt

chmod Changes the permissions
of files. With -R, makes
the change recursively
by way of the directory
structure. The user must
be the file owner or the
superuser.

hdfs dfs
-chmod [-R]
<MODE[,MODE]...
| OCTALMODE>
URI [URI ...]

hdfs dfs
-chmod 777
test/data1.txt

chown Changes the owner of
files. With -R, makes the
change recursively by way
of the directory structure.
The user must be the
superuser.

hdfs dfs -chown
[-R] [OWNER]
[:[GROUP]] URI
[URI]

hdfs dfs -chown
-R hduser2
/opt/hadoop/
logs

copyFrom
Local

Works similarly to the put
command, except that the
source is restricted to a
local file reference.

hdfs dfs
-copyFromLocal
<localsrc> URI

hdfs dfs
-copyFrom Local
input/docs/
data2.txt
hdfs://
localhost/
user/rosemary/
data2.txt

copyTo
Local

Works similarly to the get
command, except that the
destination is restricted to
a local file reference.

hdfs dfs
-copyToLocal
[-ignorecrc]
[-crc] URI
<localdst>

hdfs dfs
-copyToLocal
data2.txt
data2.copy.txt

count Counts the number of
directories, files, and bytes
under the paths that match
the specified file pattern.

hdfs dfs -count
[-q] <paths>

hdfs dfs -count
hdfs://nn1.
example.com/
file1 hdfs://
nn2.example
.com/file2

77 Chapter 5: Reading and Writing Data

cp Copies one or more files
from a specified source
to a specified destination.
If you specify multiple
sources, the specified
destination must be a
directory.

hdfs dfs -cp
URI [URI ...]
<dest>

hdfs dfs -cp
/user/hadoop/
file1 /user/
hadoop/file2
/user/hadoop/
dir

du Displays the size of the
specified file, or the sizes
of files and directories
that are contained in the
 specified directory. If you
specify the -s option,
displays an aggregate
summary of file sizes rather
than individual file sizes. If
you specify the -h option,
formats the file sizes in a
"human-readable" way.

hdfs dfs -du
[-s] [-h] URI
[URI ...]

hdfs dfs -du
/user/hadoop/
dir1 /user/
hadoop/file1

expunge Empties the trash. When
you delete a file, it isn’t
removed immediately from
HDFS, but is renamed
to a file in the /trash
 directory. As long as the
file remains there, you can
undelete it if you change
your mind, though only the
latest copy of the deleted
file can be restored.

hdfs dfs
–expunge

hdfs dfs
–expunge

get Copies files to the local
file system. Files that
fail a cyclic redundancy
check (CRC) can still be
copied if you specify the
-ignorecrc option.
The CRC is a common
technique for detecting
data transmission errors.
CRC checksum files have
the .crc extension and
are used to verify the data
integrity of another file.
These files are copied
if you specify the -crc
option.

hdfs dfs -get
[-ignorecrc]
[-crc] <src>
<localdst>

hdfs dfs -get
/user/hadoop/
file3 localfile

(continued)

78 Part II: How Hadoop Works

getmerge Concatenates the files in
src and writes the result
to the specified local
destination file. To add a
newline character at the
end of each file, specify the
addnl option.

hdfs dfs
-getmerge <src>
<localdst>
[addnl]

hdfs dfs
-getmerge/
user/hadoop/
mydir/
~/result_file
addnl

ls Returns statistics for
the specified files or
directories.

hdfs dfs -ls
<args>

hdfs dfs -ls
/user/hadoop/
file1

lsr Serves as the recursive
version of ls; similar to
the Unix command ls -R.

hdfs dfs -lsr
<args>

hdfs dfs -lsr
/user/hadoop

mkdir Creates directories on one
or more specified paths.
Its behavior is similar to
the Unix mkdir -p com-
mand, which creates all
directories that lead up to
the specified directory if
they don’t exist already.

hdfs dfs -mkdir
<paths>

hdfs dfs -mkdir
/user/hadoop/
dir5/temp

moveFrom
Local

Works similarly to the put
command, except that the
source is deleted after it is
copied.

hdfs dfs
-moveFromLocal
<localsrc>
<dest>

hdfs dfs
-moveFromLocal
localfile1
localfile2
/user/hadoop/
hadoopdir

mv Moves one or more files
from a specified source
to a specified destination.
If you specify multiple
sources, the specified des-
tination must be a direc-
tory. Moving files across
file systems isn’t permitted.

hdfs dfs -mv
URI [URI ...]
<dest>

hdfs dfs -mv
/user/hadoop/
file1 /user/
hadoop/file2

put Copies files from the local
file system to the destina-
tion file system. This com-
mand can also read input
from stdin and write to
the destination file system.

hdfs dfs -put
<localsrc> ...
<dest>

hdfs dfs -put
localfile1
localfile2
/user/hadoop/
hadoopdir; hdfs
dfs -put -
/user/hadoop/
hadoopdir
(reads input from
stdin)

Table 5-2 (continued)
Command What It Does Usage Examples

79 Chapter 5: Reading and Writing Data

rm Deletes one or more speci-
fied files. This command
doesn’t delete empty direc-
tories or files. To bypass
the trash (if it’s enabled)
and delete the specified
files immediately, specify
the -skipTrash option.

hdfs dfs -rm
[-skipTrash]
URI [URI ...]

hdfs dfs -rm
hdfs://nn.
example.com/
file9

rmr Serves as the recursive
version of –rm.

hdfs dfs -rmr
[-skipTrash]
URI [URI ...]

hdfs dfs -rmr
/user/hadoop/
dir

setrep Changes the replication
factor for a specified file or
directory. With -R, makes
the change recursively
by way of the directory
structure.

hdfs dfs
-setrep <rep>
[-R] <path>

hdfs dfs
-setrep 3 -R
/user/hadoop/
dir1

stat Displays information about
the specified path.

hdfs dfs -stat
URI [URI ...]

hdfs dfs -stat
/user/hadoop/
dir1

tail Displays the last kilobyte of
a specified file to stdout.
The syntax supports the
Unix -f option, which
enables the specified file
to be monitored. As new
lines are added to the file
by another process, tail
updates the display.

hdfs dfs -tail
[-f] URI

hdfs dfs -tail
/user/hadoop/
dir1

test Returns attributes of the
specified file or directory.
Specifies -e to determine
whether the file or direc-
tory exists; -z to deter-
mine whether the file or
directory is empty; and -d
to determine whether the
URI is a directory.

hdfs dfs -test
-[ezd] URI

hdfs dfs -test
/user/hadoop/
dir1

text Outputs a specified source
file in text format. Valid
input file formats are zip
and TextRecord
InputStream.

hdfs dfs -text
<src>

hdfs dfs -text
/user/hadoop/
file8.zip

touchz Creates a new, empty file
of size 0 in the specified
path.

hdfs dfs
-touchz <path>

hdfs dfs
-touchz /user/
hadoop/file12

80 Part II: How Hadoop Works

Ingesting Log Data with Flume
Some of the data that ends up in HDFS might land there via database load
operations or other types of batch processes, but what if you want to capture
the data that’s flowing in high-throughput data streams, such as application
log data? Apache Flume is the current standard way to do that easily, effi-
ciently, and safely.

Apache Flume, another top-level project from the Apache Software Foundation,
is a distributed system for aggregating and moving large amounts of stream-
ing data from different sources to a centralized data store. Put another way,
Flume is designed for the continuous ingestion of data into HDFS. The data can
be any kind of data, but Flume is particularly well-suited to handling log data,
such as the log data from web servers. Units of the data that Flume processes
are called events; an example of an event is a log record.

To understand how Flume works within a Hadoop cluster, you need to know
that Flume runs as one or more agents, and that each agent has three plug-
gable components: sources, channels, and sinks, as shown in Figure 5-1 and
described in this list:

 ✓ Sources retrieve data and send it to channels.

 ✓ Channels hold data queues and serve as conduits between sources and
sinks, which is useful when the incoming flow rate exceeds the outgoing
flow rate.

 ✓ Sinks process data that was taken from channels and deliver it to a desti-
nation, such as HDFS.

Figure 5-1:
The Flume
data flow

model.

81 Chapter 5: Reading and Writing Data

An agent must have at least one of each component to run, and each agent is
contained within its own instance of the Java Virtual Machine (JVM).

 An event that is written to a channel by a source isn’t removed from that chan-
nel until a sink removes it by way of a transaction. If a network failure occurs,
channels keep their events queued until the sinks can write them to the clus-
ter. An in-memory channel can process events quickly, but it is volatile and
cannot be recovered, whereas a file-based channel offers persistence and can
be recovered in the event of failure.

Each agent can have several sources, channels, and sinks, and although a
source can write to many channels, a sink can take data from only one channel.

An agent is just a JVM that’s running Flume, and the sinks for each agent
node in the Hadoop cluster send data to collector nodes, which aggregate the
data from many agents before writing it to HDFS, where it can be analyzed by
other Hadoop tools.

Agents can be chained together so that the sink from one agent sends data to
the source from another agent. Avro, Apache’s remote call-and-serialization
framework, is the usual way of sending data across a network with Flume,
because it serves as a useful tool for the efficient serialization or transforma-
tion of data into a compact binary format. In the context of Flume, compat-
ibility is important: An Avro event requires an Avro source, for example, and
a sink must deliver events that are appropriate to the destination.

What makes this great chain of sources, channels, and sinks work is the
Flume agent configuration, which is stored in a local text file that’s structured
like a Java properties file. You can configure multiple agents in the same file.
Let’s look at an sample file, which we name flume-agent.conf — it’s set to
configure an agent we named shaman:

Identify the components on agent shaman:
shaman.sources = netcat_s1
shaman.sinks = hdfs_w1
shaman.channels = in-mem_c1

Configure the source:
shaman.sources.netcat_s1.type = netcat
shaman.sources.netcat_s1.bind = localhost
shaman.sources.netcat_s1.port = 44444

Describe the sink:
shaman.sinks.hdfs_w1.type = hdfs
shaman.sinks.hdfs_w1.hdfs.path = hdfs://<path>
shaman.sinks.hdfs_w1.hdfs.writeFormat = Text
shaman.sinks.hdfs_w1.hdfs.fileType = DataStream

82 Part II: How Hadoop Works

Configure a channel that buffers events in memory:
shaman.channels.in-mem_c1.type = memory
shaman.channels.in-mem_c1.capacity = 20000
shaman.channels.in-mem_c1.transactionCapacity = 100

Bind the source and sink to the channel:
shaman.sources.netcat_s1.channels = in-mem_c1
shaman.sinks.hdfs_w1.channels = in-mem_c1

The configuration file includes properties for each source, channel, and sink in
the agent and specifies how they’re connected. In this example, agent shaman
has a source that listens for data (messages to netcat) on port 44444, a chan-
nel that buffers event data in memory, and a sink that logs event data to the
console. This configuration file could have been used to define several agents;
we’re configuring only one to keep things simple.

To start the agent, use a shell script called flume-ng, which is located in
the bin directory of the Flume distribution. From the command line, issue
the agent command, specifying the path to the configuration file and the
agent name.

The following sample command starts the Flume agent that we showed you
how to configure:

flume-ng agent -f /<path to flume-agent.conf> -n shaman

The Flume agent’s log should have entries verifying that the source, channel,
and sink started successfully.

To further test the configuration, you can telnet to port 44444 from another
terminal and send Flume an event by entering an arbitrary text string. If all
goes well, the original Flume terminal will output the event in a log message
that you should be able to see in the agent’s log.

Chapter 6

MapReduce Programming
In This Chapter
▶ Thinking in parallel

▶ Working with key/value pairs

▶ Tracking your application flow

▶ Running the sample MapReduce application

A
fter you’ve stored reams and reams of data in HDFS (a distributed
storage system spread over an expandable cluster of individual

slave nodes), the first question that comes to mind is “How can I analyze or
query my data?” Transferring all this data to a central node for processing
isn’t the answer, since you’ll be waiting forever for the data to transfer over
the network (not to mention waiting for everything to be processed serially).
So what’s the solution? MapReduce!

As we describe in Chapter 1, Google faced this exact problem with their
 distributed Google File System (GFS), and came up with their MapReduce data
processing model as the best possible solution. Google needed to be able to
grow their data storage and processing capacity, and the only feasible model
was a distributed system. In Chapter 4, we look at a number of the benefits
of storing data in the Hadoop Distributed File System (HDFS): low cost,
 fault-tolerant, and easily scalable, to name just a few. In Hadoop, MapReduce
integrates with HDFS to provide the exact same benefits for data processing.

At first glance, the strengths of Hadoop sound too good to be true — and overall
the strengths truly are good! But there is a cost here: writing applications for
distributed systems is completely different from writing the same code for
centralized systems. For applications to take advantage of the distributed slave
nodes in the Hadoop cluster, the application logic will need to run in parallel.

Thinking in Parallel
Let’s say you want to do something simple, like count the number of flights
for each carrier in our flight data set — this will be our example scenario
for this chapter. For a normal program that runs serially, this is a simple

84 Part II: How Hadoop Works

operation. Listing 6-1 shows the pseudocode, which is fairly straightforward:
set up the array to store the number of times you run across each carrier,
and then, as you read each record in sequence, increment the applicable
 airline’s counter.

Listing 6-1: Pseudocode for Calculating The Number of Flights
By Carrier Serially

create a two-dimensional array
 create a row for every airline carrier
 populate the first column with the carrier code
 populate the second column with the integer zero

for each line of flight data
 read the airline carrier code
 find the row in the array that matches the carrier code
 increment the counter in the second column by one

print the totals for each row in the two-dimensional array

The thing is, you would not be able to take this (elegantly simple) code and
run it successfully on flight data stored in a distributed system. Even though
this is a simple example, you need to think in parallel as you code your appli-
cation. Listing 6-2 shows the pseudocode for calculating the number of flights
by carrier in parallel.

Listing 6-2: Pesudocode for Calculating The Number of Flights
By Carrier in Parallel

Map Phase:
 for each line of flight data
 read the current record and extract the airline carrier code
 output the airline carrier code and the number one as a key/value pair

Shuffle and Sort Phase:
 read the list of key/value pairs from the map phase
 group all the values for each key together
 each key has a corresponding array of values
 sort the data by key
 output each key and its array of values

Reduce Phase:
 read the list of carriers and arrays of values from the shuffle and sort phase
 for each carrier code
 add the total number of ones in the carrier code's array of values together

print the totals for each row in the two-dimensional array

85 Chapter 6: MapReduce Programming

The code in Listing 6-2 shows a completely different way of thinking about
how to process data. Since we need totals, we had to break this application
up into phases. The first phase is the map phase, which is where every
record in the data set is processed individually. Here, we extract the carrier
code from the flight data record it’s assigned, and then export a key/value
pair, with the carrier code as the key and the value being an integer one. The
map operation is run against every record in the data set. After every record
is processed, you need to ensure that all the values (the integer ones) are
grouped together for each key, which is the airline carrier code, and then
sorted by key. This is known as the shuffle and sort phase. Finally, there is
the reduce phase, where you add the total number of ones together for each
 airline carrier, which gives you the total flights for each airline carrier.

As you can see, there is little in common between the serial version of the
code and the parallel version. Also, even though this is a simple example,
developing the parallel version requires an altogether different approach.
What’s more, as the computation problems get even a little more difficult,
they become even harder when they need to be parallelized.

Seeing the Importance of MapReduce
For most of Hadoop’s history, MapReduce has been the only game in town
when it comes to data processing. The availability of MapReduce has been
the reason for Hadoop’s success and at the same time a major factor in
 limiting further adoption.

As we’ll see later in this chapter, MapReduce enables skilled programmers to
write distributed applications without having to worry about the underlying
distributed computing infrastructure. This is a very big deal: Hadoop and
the MapReduce framework handle all sorts of complexity that application
developers don’t need to handle. For example, the ability to transparently
scale out the cluster by adding nodes and the automatic failover of both
data storage and data processing subsystems happen with zero impact on
applications.

The other side of the coin here is that although MapReduce hides a tremen-
dous amount of complexity, you can’t afford to forget what it is: an interface
for parallel programming. This is an advanced skill — and a barrier to wider
adoption. There simply aren’t yet many MapReduce programmers, and not
everyone has the skill to master it.

The goal of this chapter is to help you understand how MapReduce applica-
tions work, how to think in parallel, and to provide a basic entry point into
the world of MapReduce programming.

86 Part II: How Hadoop Works

 In Hadoop’s early days (Hadoop 1 and before), you could only run MapReduce
applications on your clusters. In Hadoop 2, the YARN component changed
all that by taking over resource management and scheduling from the
MapReduce framework, and providing a generic interface to facilitate applica-
tions to run on a Hadoop cluster. (See Chapter 7 for our discussion of YARN’s
 framework-agnostic resource management.) In short, this means MapReduce
is now just one of many application frameworks you can use to develop and
run applications on Hadoop. Though it’s certainly possible to run applications
using other frameworks on Hadoop, it doesn’t mean that we can start forget-
ting about MapReduce. At the time we wrote this book, MapReduce was still
the only production-ready data processing framework available for Hadoop.
Though other frameworks will eventually become available, MapReduce has
almost a decade of maturity under its belt (with almost 4,000 JIRA issues com-
pleted, involving hundreds of developers, if you’re keeping track). There’s no
 dispute: MapReduce is Hadoop’s most mature framework for data processing.
In addition, a significant amount of MapReduce code is now in use that’s
unlikely to go anywhere soon. Long story short: MapReduce is an important
part of the Hadoop story.

Later in this book, we cover certain programming abstractions to MapReduce,
such as Pig (see Chapter 8) and Hive (see Chapter 13), which hide the com-
plexity of parallel programming. The Apache Hive and Apache Pig projects
are highly popular because they’re easier entry points for data processing
on Hadoop. For many problems, especially the kinds that you can solve with
SQL, Hive and Pig are excellent tools. But for a wider-ranging task such
as statistical processing or text extraction, and especially for processing
unstructured data, you need to use MapReduce.

Doing Things in Parallel: Breaking
Big Problems into Many
Bite-Size Pieces

If you’re a programmer, chances are good that you’re at least aware of reddit,
a popular discussion site — perhaps you’re even a full-blown redditor. Its
Ask Me Anything subreddit features a notable person logging in to reddit
to answer redditor’s questions. In a running gag, someone inevitably asks
the question, “Would you rather fight 1 horse-sized duck or 100 duck-sized
horses?” The answers and the rationale behind them are sources of great
amusement, but they create a mental picture of what Hadoop and MapReduce
are all about: scaling out as opposed to scaling up. Of course you’d rather
defend yourself against 1 horse-sized duck — a herd of duck-sized horses
would overwhelm you in seconds!

87 Chapter 6: MapReduce Programming

Looking at MapReduce application flow
At its core, MapReduce is a programming model for processing data sets that
are stored in a distributed manner across a Hadoop cluster’s slave nodes.
The key concept here is divide and conquer. Specifically, you want to break
a large data set into many smaller pieces and process them in parallel with
the same algorithm. With the Hadoop Distributed File System (HDFS), the
files are already divided into bite-sized pieces. MapReduce is what you use
to process all the pieces.

MapReduce applications have multiple phases, as spelled out in this list:

 1. Determine the exact data sets to process from the data blocks. This
involves calculating where the records to be processed are located
within the data blocks.

 2. Run the specified algorithm against each record in the data set until all
the records are processed. The individual instance of the application
running against a block of data in a data set is known as a mapper task.
(This is the mapping part of MapReduce.)

 3. Locally perform an interim reduction of the output of each mapper.
(The outputs are provisionally combined, in other words.) This phase is
optional because, in some common cases, it isn’t desirable.

 4. Based on partitioning requirements, group the applicable partitions of
data from each mapper’s result sets.

 5. Boil down the result sets from the mappers into a single result set — the
Reduce part of MapReduce. An individual instance of the application run-
ning against mapper output data is known as a reducer task. (As strange
as it may seem, since “Reduce” is part of the MapReduce name, this phase
can be optional; applications without a reducer are known as map-only
jobs, which can be useful when there’s no need to combine the result sets
from the map tasks.)

Understanding input splits
The way HDFS has been set up, it breaks down very large files into large blocks
(for example, measuring 128MB), and stores three copies of these blocks on
different nodes in the cluster. HDFS has no awareness of the content of these
files. (If this business about HDFS doesn’t ring a bell, check out Chapter 4.)

In YARN, when a MapReduce job is started, the Resource Manager (the
 cluster resource management and job scheduling facility) creates an
Application Master daemon to look after the lifecycle of the job. (In Hadoop 1,
the JobTracker monitored individual jobs as well as handling job scheduling
and cluster resource management. For more on this, see Chapter 7.) One of

88 Part II: How Hadoop Works

the first things the Application Master does is determine which file blocks
are needed for processing. The Application Master requests details from the
NameNode on where the replicas of the needed data blocks are stored. Using
the location data for the file blocks, the Application Master makes requests to
the Resource Manager to have map tasks process specific blocks on the slave
nodes where they’re stored.

 The key to efficient MapReduce processing is that, wherever possible, data is
processed locally — on the slave node where it’s stored.

Before looking at how the data blocks are processed, you need to look more
closely at how Hadoop stores data. In Hadoop, files are composed of individual
records, which are ultimately processed one-by-one by mapper tasks. For
example, the sample data set we use in this book contains information about
completed flights within the United States between 1987 and 2008. We have one
large file for each year, and within every file, each individual line represents a
single flight. In other words, one line represents one record. Now, remember
that the block size for the Hadoop cluster is 64MB, which means that the light
data files are broken into chunks of exactly 64MB.

Do you see the problem? If each map task processes all records in a specific
data block, what happens to those records that span block boundaries?
File blocks are exactly 64MB (or whatever you set the block size to be), and
because HDFS has no conception of what’s inside the file blocks, it can’t gauge
when a record might spill over into another block. To solve this problem,
Hadoop uses a logical representation of the data stored in file blocks, known as
input splits. When a MapReduce job client calculates the input splits, it figures
out where the first whole record in a block begins and where the last record
in the block ends. In cases where the last record in a block is incomplete, the
input split includes location information for the next block and the byte offset
of the data needed to complete the record. Figure 6-1 shows this relationship
between data blocks and input splits.

Figure 6-1:
Data blocks

(HDFS)
and input

splits (Map
Reduce).

89 Chapter 6: MapReduce Programming

 You can configure the Application Master daemon (or JobTracker, if you’re in
Hadoop 1) to calculate the input splits instead of the job client, which would
be faster for jobs processing a large number of data blocks.

MapReduce data processing is driven by this concept of input splits. The
number of input splits that are calculated for a specific application determines
the number of mapper tasks. Each of these mapper tasks is assigned, where
possible, to a slave node where the input split is stored. The Resource Manager
(or JobTracker, if you’re in Hadoop 1) does its best to ensure that input splits
are processed locally.

Seeing how key/value pairs fit into the
MapReduce application flow
You may be wondering what happens in the processing of all these input splits.
To answer this question, you need to understand that a MapReduce applica-
tion processes the data in input splits on a record-by-record basis and that each
record is understood by MapReduce to be a key/value pair. (In more technical
descriptions of Hadoop, you see key/value pairs referred to as tuples.)

 Obviously, when you’re processing data, not everything needs to be repre-
sented as a key/value pair, so in cases where it isn’t needed, you can provide
a dummy key or value.

We describe the phases of a MapReduce application in the “Looking at
MapReduce application flow” section, earlier in this chapter. Figure 6-2 fills
out that description by showing how our sample MapReduce application
(complete with sample flight data) makes its way through these phases. The
next few sections of this chapter walk you through the process shown in
Figure 6-2.

Map phase
After the input splits have been calculated, the mapper tasks can start
 processing them — that is, right after the Resource Manager’s scheduling
facility assigns them their processing resources. (In Hadoop 1, the JobTracker
assigns mapper tasks to specific processing slots.) The mapper task itself
processes its input split one record at a time — in Figure 6-2, this lone record
is represented by the key/value pair (K1,V1). In the case of our flight data,
when the input splits are calculated (using the default file processing method
for text files), the assumption is that each row in the text file is a single record.
For each record, the text of the row itself represents the value, and the byte
offset of each row from the beginning of the split is considered to be the key.

90 Part II: How Hadoop Works

Figure 6-2:
Data flow

through the
MapReduce

cycle.

 You might be wondering why the row number isn’t used instead of the byte
offset. When you consider that a very large text file is broken down into many
individual data blocks, and is processed as many splits, the row number is a
risky concept. The number of lines in each split vary, so it would be impossible
to compute the number of rows preceding the one being processed. However,
with the byte offset, you can be precise, because every block has a fixed
number of bytes.

As a mapper task processes each record, it generates a new key/value pair:
(K2,V2). The key and the value here can be completely different from the
input pair. The output of the mapper task is the full collection of all these
key/value pairs. In Figure 6-2, the output is represented by list(K2,V2).

91 Chapter 6: MapReduce Programming

Before the final output file for each mapper task is written, the output is
 partitioned based on the key and sorted. This partitioning means that all
of the values for each key are grouped together, resulting in the following
output: K2, list(V2).

In the case of our fairly basic sample application, there is only a single reducer,
so all the output of the mapper task is written to a single file. But in cases with
multiple reducers, every mapper task may generate multiple output files as
well. The breakdown of these output files is based on the partitioning key. For
example, if there are only three distinct partitioning keys output for the mapper
tasks and you have configured three reducers for the job, there will be three
mapper output files. In this example, if a particular mapper task processes an
input split and it generates output with two of the three keys, there will be only
two output files.

 Always compress your mapper tasks’ output files. The biggest benefit here
is in performance gains, because writing smaller output files minimizes the
inevitable cost of transferring the mapper output to the nodes where the
reducers are running. Enable compression by setting the mapreduce.map.
output.compress property to true and assigning a compression codec to
the mapred.map.output.compress.codec property. (This property can
be found in the mapred-site.xml file, which is stored in Hadoop’s conf
 directory. For details on configuring Hadoop, see Chapter 3.)

 The default partitioner is more than adequate in most situations, but sometimes
you may want to customize how the data is partitioned before it’s processed
by the reducers. For example, you may want the data in your result sets to be
sorted by the key and their values — known as a secondary sort. To do this,
you can override the default partitioner and implement your own. This process
requires some care, however, because you’ll want to ensure that the number of
records in each partition is uniform. (If one reducer has to process much more
data than the other reducers, you’ll wait for your MapReduce job to finish while
the single overworked reducer is slogging through its disproportionally large
data set.) Using uniformly sized intermediate files, you can better take advantage
of the parallelism available in MapReduce processing.

Shuffle phase
After the Map phase and before the beginning of the Reduce phase is a hand-
off process, known as shuffle and sort. Here, data from the mapper tasks is
 prepared and moved to the nodes where the reducer tasks will be run. When
the mapper task is complete, the results are sorted by key, partitioned if there
are multiple reducers, and then written to disk. You can see this concept
in Figure 6-3, which shows the MapReduce data processing flow and its
 interaction with the physical components of the Hadoop cluster. (One quick
note about Figure 6-3: Data in memory is represented by white squares, and

92 Part II: How Hadoop Works

data stored to disk is represented by gray squares.) To speed up the overall
MapReduce process, data is immediately moved to the reducer tasks’ nodes,
to avoid a flood of network activity when the final mapper task finishes its
work. This transfer happens while the mapper task is running, as the outputs
for each record — remember (K2,V2) — are stored in the memory of a
waiting reducer task. (You can configure whether this happens — or doesn’t
happen — and also the number of threads involved.) Keep in mind that even
though a reducer task might have most of the mapper task’s output, the
reduce task’s processing cannot begin until all mapper tasks have finished.

Figure 6-3:
MapReduce

processing
flow.

 To avoid scenarios where the performance of a MapReduce job is hampered by
one straggling mapper task that’s running on a poorly performing slave node,
the MapReduce framework uses a concept called speculative execution. In case
some mapper tasks are running slower than what’s considered reasonable, the
Application Master will spawn duplicate tasks (in Hadoop 1, the JobTracker
does this). Whichever task finishes first — the duplicate or the original — its
results are stored to disk, and the other task is killed. If you’re monitoring your
jobs closely and are wondering why there are more mapper tasks running than
you expect, this is a likely reason.

The output from mapper tasks isn’t written to HDFS, but rather to local disk
on the slave node where the mapper task was run. As such, it’s not replicated
across the Hadoop cluster.

93 Chapter 6: MapReduce Programming

 Aside from compressing the output, you can potentially boost performance
by running a combiner task. This simple tactic, shown in Figure 6-4, involves
performing a local reduce of the output for individual mapper tasks. In the
majority of cases, no extra programming is needed, as you can tell the system
to use the reducer function. If you’re not using your reducer function, you
need to ensure that the combiner function’s output is identical to that of the
reducer function. It’s up to the MapReduce framework whether the combiner
function needs to be run once, multiple times, or never, so it’s critical that
the combiner’s code ensures that the final results are unaffected by multiple
runs. Running the combiner can yield a performance benefit by lessening the
amount of intermediate data that would otherwise need to be transferred
over the network. This also lowers the amount of processing the reducer
tasks would need to do. You are running an extra task here, so it is possible
that any performance gain is negligible or may even result in worse overall
 performance. Your mileage may vary, so we recommend testing this carefully.

Figure 6-4:
Reducing

intermedi
ate data
size with

combiners.

After all the results of the mapper tasks are copied to the reducer tasks’
nodes, these files are merged and sorted.

Reduce phase
Here’s the blow-by-blow so far: A large data set has been broken down into
smaller pieces, called input splits, and individual instances of mapper tasks have
processed each one of them. In some cases, this single phase of processing is all
that’s needed to generate the desired application output. For example, if you’re
running a basic transformation operation on the data — converting all text to
uppercase, for example, or extracting key frames from video files — the lone
phase is all you need. (This is known as a map-only job, by the way.) But in many
other cases, the job is only half-done when the mapper tasks have written their
output. The remaining task is boiling down all interim results to a single, unified
answer.

94 Part II: How Hadoop Works

The Reduce phase processes the keys and their individual lists of values so
that what’s normally returned to the client application is a set of key/value
pairs. Similar to the mapper task, which processes each record one-by-one,
the reducer processes each key individually. Back in Figure 6-2, you see this
concept represented as K2,list(V2). The whole Reduce phase returns
list(K3,V3). Normally, the reducer returns a single key/value pair for
every key it processes. However, these key/value pairs can be as expansive
or as small as you need them to be. In the code example later in this chapter,
you see a minimalist case, with a simple key/value pair with one airline code
and the corresponding total number of flights completed. But in practice,
you could expand the sample to return a nested set of values where, for
 example, you return a breakdown of the number of flights per month for
every airline code.

When the reducer tasks are finished, each of them returns a results file and
stores it in HDFS. As shown in Figure 6-3, the HDFS system then automatically
replicates these results.

 Where the Resource Manager (or JobTracker if you’re using Hadoop 1) tries
its best to assign resources to mapper tasks to ensure that input splits are
processed locally, there is no such strategy for reducer tasks. It is assumed
that mapper task result sets need to be transferred over the network to be
processed by the reducer tasks. This is a reasonable implementation because,
with hundreds or even thousands of mapper tasks, there would be no practical
way for reducer tasks to have the same locality prioritization.

Writing MapReduce Applications
The MapReduce API is written in Java, so MapReduce applications are
primarily Java-based. The following list specifies the components of a
MapReduce application that you can develop:

 ✓ Driver (mandatory): This is the application shell that’s invoked from the
client. It configures the MapReduce Job class (which you do not cus-
tomize) and submits it to the Resource Manager (or JobTracker if you’re
using Hadoop 1).

 ✓ Mapper class (mandatory): The Mapper class you implement needs to
define the formats of the key/value pairs you input and output as you
process each record. This class has only a single method, named map,
which is where you code how each record will be processed and what
key/value to output. To output key/value pairs from the mapper task,
write them to an instance of the Context class.

95 Chapter 6: MapReduce Programming

 ✓ Reducer class (optional): The reducer is optional for map-only applica-
tions where the Reduce phase isn’t needed.

 ✓ Combiner class (optional): A combiner can often be defined as a
reducer, but in some cases it needs to be different. (Remember, for
example, that a reducer may not be able to run multiple times on a data
set without mutating the results.)

 ✓ Partitioner class (optional): Customize the default partitioner to per-
form special tasks, such as a secondary sort on the values for each key
or for rare cases involving sparse data and imbalanced output files from
the mapper tasks.

 ✓ RecordReader and RecordWriter classes (optional): Hadoop has
some standard data formats (for example, text files, sequence files, and
databases), which are useful for many cases. For specifically formatted
data, implementing your own classes for reading and writing data can
greatly simplify your mapper and reducer code.

From within the driver, you can use the MapReduce API, which includes
 factory methods to create instances of all components in the preceding list.
(In case you’re not a Java person, a factory method is a tool for creating
objects.)

 A generic API named Hadoop Streaming lets you use other programming
 languages (most commonly, C, Python, and Perl). Though this API enables
organizations with non-Java skills to write MapReduce code, using it has some
disadvantages. Because of the additional abstraction layers that this stream-
ing code needs to go through in order to function, there’s a performance
 penalty and increased memory usage. Also, you can code mapper and reducer
functions only with Hadoop Streaming. Record readers and writers, as well as
all your partitioners, need to be written in Java. A direct consequence — and
additional disadvantage — of being unable to customize record readers and
writers is that Hadoop Streaming applications are well suited to handle only
text-based data.

 In this book, we’ve made two critical decisions around the libraries we’re
using and how the applications are processed on the Hadoop cluster. We’re
using the MapReduce framework in the YARN processing environment
(often referred to as MRv2), as opposed to the old JobTracker / TaskTracker
environment from before Hadoop 2 (referred to as MRv1). Also, for the code
libraries, we’re using what’s generally known as the new MapReduce API,
which belongs to the org.apache.hadoop.mapreduce package. The old
MapReduce API uses the org.apache.hadoop.mapred package. We still
see code in the wild using the old API, but it’s deprecated, and we don’t
 recommend writing new applications with it.

96 Part II: How Hadoop Works

Getting Your Feet Wet: Writing a Simple
MapReduce Application

It’s time to take a look at a simple application. As we do throughout this
book, we’ll analyze data for commercial flights in the United States. In this
MapReduce application, the goal is to simply calculate the total number of
flights flown for every carrier.

The FlightsByCarrier driver application
As a starting point for the FlightsByCarrier application, you need a client
application driver, which is what we use to launch the MapReduce code on
the Hadoop cluster. We came up with the driver application shown in Listing
6-3, which is stored in the file named FlightsByCarrier.java.

Listing 6-3: The FlightsByCarrier Driver Application

@@1
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

public class FlightsByCarrier {
 public static void main(String[] args) throws Exception {
 @@2
 Job job = new Job();
 job.setJarByClass(FlightsByCarrier.class);
 job.setJobName("FlightsByCarrier");

 @@3
 TextInputFormat.addInputPath(job, new Path(args[0]));
 job.setInputFormatClass(TextInputFormat.class);

 @@4
 job.setMapperClass(FlightsByCarrierMapper.class);
 job.setReducerClass(FlightsByCarrierReducer.class);

 @@5
 TextOutputFormat.setOutputPath(job, new Path(args[1]));
 job.setOutputFormatClass(TextOutputFormat.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);

97 Chapter 6: MapReduce Programming

 @@6
 job.waitForCompletion(true);
 }
}

The code in most MapReduce applications is more or less similar. The driver’s
job is essentially to define the structure of the MapReduce application and
invoke it on the cluster — none of the application logic is defined here.

As you walk through the code, take note of these principles:

 ✓ The import statements that follow the bold @@1 in the code pull in
all required Hadoop classes. Note that we used the new MapReduce
API, as indicated by the use of the org.apache.hadoop.mapreduce
package.

 ✓ The first instance of the Job class (see the code that follows the
bolded @@2) represents the entire MapReduce application. Here,
we’ve set the class name that will run the job and an identifier for it. By
default, job properties are read from the configuration files stored in /
etc/hadoop/conf, but you can override them by setting your Job
class properties.

 ✓ Using the input path we catch from the main method, (see the code
that follows the bolded @@3), we identify the HDFS path for the data
to be processed. We also identify the expected format of the data. The
default input format is TextInputFormat (which we’ve included for
clarity).

 ✓ After identifying the HDFS path, we want to define the overall struc-
ture of the MapReduce application. We do that by specifying both the
Mapper and Reducer classes. (See the code that follows the bolded
@@4.) If we wanted a map-only job, we would simply omit the definition
of the Reducer class and set the number of reduce tasks to zero with
the following line of code:

job.setNumReduceTasks(0)

 ✓ After specifying the app’s overall structure, we need to indicate the
HDFS path for the application’s output as well as the format of the data.
(See the code following the bolded @@5.) The data format is quite specific
here because both the key and value formats need to be identified.

 ✓ Finally, we run the job and wait. (See the code following the bolded
@@6.) The driver waits at this point until the waitForCompletion
function returns. As an alternative, if you want your driver application
to run the lines of code following the submission of the job, you can use
the submit method instead.

98 Part II: How Hadoop Works

The FlightsByCarrier mapper
Listing 6-4 shows the mapper code, which is stored in the file named
FlightsByCarrierMapper.java.

Listing 6-4: The FlightsByCarrier Mapper Code

@@1
import java.io.IOException;
import au.com.bytecode.opencsv.CSVParser;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.Mapper;

@@2
public class FlightsByCarrierMapper extends
 Mapper<LongWritable, Text, Text, IntWritable> {
 @Override
 @@3
 protected void map(LongWritable key, Text value, Context context)
 throws IOException, InterruptedException {
 @@4
 if (key.get() > 0) {
 String[] lines = new

CSVParser().parseLine(value.toString());
 @@5
 context.write(new Text(lines[8]), new IntWritable(1));
 }
 }
}

The code for mappers is where you see the most variation, though it has
standard boilerplate. Here are the high points:

 ✓ The import statements that follow the bold @@1 in the code pull in
all the required Hadoop classes. The CSVParser class isn’t a standard
Hadoop class, but we use it to simply the parsing of CSV files.

 ✓ The specification of the Mapper class (see the code after the bolded
@@2) explicitly identifies the formats of the key/value pairs that the
mapper will input and output.

 ✓ The Mapper class has a single method, named map. (See the code after
the bolded @@3.) The map method names the input key/value pair vari-
ables and the Context object, which is where output key/value pairs
are written.

99 Chapter 6: MapReduce Programming

 ✓ The block of code in the if statement is where all data processing
 happens. (See the code after the bolded @@4.) We use the if statement
to indicate that we don’t want to parse the first line in the file, because
it’s the header information describing each column. It’s also where we
parse the records using the CSVParser class’s parseLine method.

 ✓ With the array of strings that represent the values of the flight record
being processed, the ninth value is returned to the Context object as
the key. (See the code after the bolded @@5.) This value represents the
carrier that completed the flight. For the value, we return a value of one
because this represents one flight.

The FlightsByCarrier reducer
Listing 6-5 shows the reducer code, which is stored in the file named
FlightsByCarrierReducer.java.

Listing 6-5: The FlightsByCarrier Reducer Code

@@1
import java.io.IOException;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.Reducer;

@@2
public class FlightsByCarrierReducer extends
 Reducer<Text, IntWritable, Text, IntWritable> {
 @Override
 @@3
 protected void reduce(Text token, Iterable<IntWritable> counts,
 Context context) throws IOException, InterruptedException {
 int sum = 0;

 @@4
 for (IntWritable count : counts) {
 sum+= count.get();
 }
 @@5
 context.write(token, new IntWritable(sum));
 }
}

100 Part II: How Hadoop Works

The code for reducers also has a fair amount of variation, but it also has
common patterns. For example, the counting exercise is quite common.
Again, here are the high points:

 ✓ The import statements that follow the bold @@1 in the code pull in all
required Hadoop classes.

 ✓ The specification of the Reducer class (see the code after the bolded
@@2) explicitly identifies the formats of the key/value pairs that the
reducer will input and output.

 ✓ The Reducer class has a single method, named reduce. The reduce
method names the input key/value pair variables and the Context
object, which is where output key/value pairs are written. (See the code
after the bolded @@3.)

 ✓ The block of code in the for loop is where all data processing happens.
(See the code after the bolded @@4.) Remember that the reduce
 function runs on individual keys and their lists of values. So for the
 particular key, (in this case, the carrier), the for loop sums the numbers
in the list, which are all ones. This provides the total number of flights
for the particular carrier.

 ✓ This total is written to the context object as the value, and the input
key, named token, is reused as the output key. (See the code after the
bolded @@5.)

Running the FlightsByCarrier application
To run the FlightsByCarrier application, follow these steps:

 1. Go to the directory with your Java code and compile it using the
 following command:

javac -classpath $CLASSPATH MapRed/FlightsByCarrier/*.java

 2. Build a JAR file for the application by using this command:

jar cvf FlightsByCarrier.jar *.class

 3. Run the driver application by using this command:

hadoop jar FlightsByCarrier.jar FlightsByCarrier /user/root/airline-
data/2008.csv /user/root/output/flightsCount

 Note that we’re running the application against data from the year 2008.
For this application to work, we clearly need the flight data to be stored
in HDFS in the path identified in the command

101 Chapter 6: MapReduce Programming

/user/root/airline-data

 The application runs for a few minutes. (Running it on a virtual machine
on a laptop computer may take a little longer, especially if the machine
has less than 8GB of RAM and only a single processor.) Listing 6-6 shows
the status messages you can expect in your terminal window. You can
usually safely ignore the many warnings and informational messages
strewn throughout this output.

 4. Show the job’s output file from HDFS by running the command

hadoop fs -cat /user/root/output/flightsCount/part-r-00000

 You see the total counts of all flights completed for each of the carriers
in 2008:

AA 165121
AS 21406
CO 123002
DL 185813
EA 108776
HP 45399
NW 108273
PA (1) 16785
PI 116482
PS 41706
TW 69650
UA 152624
US 94814
WN 61975

Listing 6-6: The FlightsByCarrier Application Output

...
14/01/30 19:58:39 INFO mapreduce.Job: The url to track the job:
 http://localhost.localdomain:8088/proxy/application_1386752664246_0017/
14/01/30 19:58:39 INFO mapreduce.Job: Running job: job_1386752664246_0017
14/01/30 19:58:47 INFO mapreduce.Job: Job job_1386752664246_0017 running in uber

mode : false
14/01/30 19:58:47 INFO mapreduce.Job: map 0% reduce 0%
14/01/30 19:59:03 INFO mapreduce.Job: map 83% reduce 0%
14/01/30 19:59:04 INFO mapreduce.Job: map 100% reduce 0%
14/01/30 19:59:11 INFO mapreduce.Job: map 100% reduce 100%
14/01/30 19:59:11 INFO mapreduce.Job: Job job_1386752664246_0017 completed

successfully
14/01/30 19:59:11 INFO mapreduce.Job: Counters: 43
 File System Counters
 FILE: Number of bytes read=11873580
 FILE: Number of bytes written=23968326
 FILE: Number of read operations=0

(continued)

102 Part II: How Hadoop Works

 FILE: Number of large read operations=0
 FILE: Number of write operations=0
 HDFS: Number of bytes read=127167274
 HDFS: Number of bytes written=137
 HDFS: Number of read operations=9
 HDFS: Number of large read operations=0
 HDFS: Number of write operations=2
 Job Counters
 Launched map tasks=2
 Launched reduce tasks=1
 Data-local map tasks=2
 Total time spent by all maps in occupied slots (ms)=29786
 Total time spent by all reduces in occupied slots (ms)=6024
 Map-Reduce Framework
 Map input records=1311827
 Map output records=1311826
 Map output bytes=9249922
 Map output materialized bytes=11873586
 Input split bytes=236
 Combine input records=0
 Combine output records=0
 Reduce input groups=14
 Reduce shuffle bytes=11873586
 Reduce input records=1311826
 Reduce output records=14
 Spilled Records=2623652
 Shuffled Maps =2
 Failed Shuffles=0
 Merged Map outputs=2
 GC time elapsed (ms)=222
 CPU time spent (ms)=8700
 Physical memory (bytes) snapshot=641634304
 Virtual memory (bytes) snapshot=2531708928
 Total committed heap usage (bytes)=496631808
 Shuffle Errors
 BAD_ID=0
 CONNECTION=0
 IO_ERROR=0
 WRONG_LENGTH=0
 WRONG_MAP=0
 WRONG_REDUCE=0
 File Input Format Counters
 Bytes Read=127167038
 File Output Format Counters
Bytes Written=137

There you have it. You’ve just seen how to program and run a basic MapReduce
application. What we’ve done is read the flight data set and calculated the total
number of flights flown for every carrier. To make this work in MapReduce, we
had to think about how to program this calculation so that the individual pieces
of the larger data set could be processed in parallel. And, not to put too fine a
point on it, the thoughts we came up with turned out to be pretty darn good!

Listing 6-6 (continued)

Chapter 7

Frameworks for Processing
Data in Hadoop: YARN

and MapReduce
In This Chapter
▶ Examining distributed data processing in Hadoop

▶ Looking at MapReduce execution

▶ Venturing into YARN architecture

▶ Anticipating future directions for data processing on Hadoop

M
y, how time flies. If we had written this book a year (well, a few
months) earlier, this chapter on data processing would have talked

only about MapReduce, for the simple reason that MapReduce was then the
only way to process data in Hadoop. With the release of Hadoop 2, however,
YARN was introduced, ushering in a whole new world of data processing
opportunities.

YARN stands for Yet Another Resource Negotiator — a rather modest label
considering its key role in the Hadoop ecosystem. (The Yet Another label
is a long-running gag in computer science that celebrates programmers’
 propensity to be lazy about feature names.) A (Hadoop-centric) thumbnail
sketch would describe YARN as a tool that enables other data processing
frameworks to run on Hadoop. A more substantive take on YARN would
describe it as a general-purpose resource management facility that can
schedule and assign CPU cycles and memory (and in the future, other
resources, such as network bandwidth) from the Hadoop cluster to waiting
applications.

 At the time of this writing, only batch-mode MapReduce applications were
supported in production. A number of additional application frameworks
being ported to YARN are in various stages of development, however, and
many of them will soon be production ready.

104 Part II: How Hadoop Works

For us authors, as Hadoop enthusiasts, YARN raises exciting possibilities.
Singlehandedly, YARN has converted Hadoop from simply a batch processing
engine into a platform for many different modes of data processing, from
traditional batch to interactive queries to streaming analysis.

Running Applications Before Hadoop 2
Because many existing Hadoop deployments still aren’t yet using YARN, we
take a quick look at how Hadoop managed its data processing before the days
of Hadoop 2. We concentrate on the role that JobTracker master daemons
and TaskTracker slave daemons played in handling MapReduce processing.

Before tackling the daemons, however, let us back up and remind you that
the whole point of employing distributed systems is to be able to deploy
computing resources in a network of self-contained computers in a manner
that’s fault-tolerant, easy, and inexpensive. In a distributed system such
as Hadoop, where you have a cluster of self-contained compute nodes all
working in parallel, a great deal of complexity goes into ensuring that all the
pieces work together. As such, these systems typically have distinct layers
to handle different tasks to support parallel data processing. This concept,
known as the separation of concerns, ensures that if you are, for example, the
application programmer, you don’t need to worry about the specific details
for, say, the failover of map tasks. In Hadoop, the system consists of these
four distinct layers, as shown in Figure 7-1:

 ✓ Distributed storage: The Hadoop Distributed File System (HDFS) is the
storage layer where the data, interim results, and final result sets are
stored.

 ✓ Resource management: In addition to disk space, all slave nodes in the
Hadoop cluster have CPU cycles, RAM, and network bandwidth. A system
such as Hadoop needs to be able to parcel out these resources so that
multiple applications and users can share the cluster in predictable and
tunable ways. This job is done by the JobTracker daemon.

 ✓ Processing framework: The MapReduce process flow defines the
 execution of all applications in Hadoop 1. As we saw in Chapter 6, this
begins with the map phase; continues with aggregation with shuffle,
sort, or merge; and ends with the reduce phase. In Hadoop 1, this is
also managed by the JobTracker daemon, with local execution being
 managed by TaskTracker daemons running on the slave nodes.

 ✓ Application Programming Interface (API): Applications developed for
Hadoop 1 needed to be coded using the MapReduce API. In Hadoop 1,
the Hive and Pig projects provide programmers with easier interfaces
for writing Hadoop applications, and underneath the hood, their code
compiles down to MapReduce.

105Chapter 7: Frameworks for Processing Data in Hadoop: YARN and MapReduce

Figure 7-1:
Hadoop 1

data
 processing

architecture.

 In the world of Hadoop 1 (which was the only world we had until quite
recently), all data processing revolved around MapReduce.

Tracking JobTracker
MapReduce processing in Hadoop 1 is handled by the JobTracker and
TaskTracker daemons. The JobTracker maintains a view of all available
 processing resources in the Hadoop cluster and, as application requests come
in, it schedules and deploys them to the TaskTracker nodes for execution.
As applications are running, the JobTracker receives status updates from the
TaskTracker nodes to track their progress and, if necessary, coordinate the
handling of any failures. The JobTracker needs to run on a master node in the
Hadoop cluster as it coordinates the execution of all MapReduce applications
in the cluster, so it’s a mission-critical service.

Tracking TaskTracker
An instance of the TaskTracker daemon runs on every slave node in the
Hadoop cluster, which means that each slave node has a service that ties it
to the processing (TaskTracker) and the storage (DataNode), which enables
Hadoop to be a distributed system. As a slave process, the TaskTracker
receives processing requests from the JobTracker. Its primary responsibility
is to track the execution of MapReduce workloads happening locally on its
slave node and to send status updates to the JobTracker.

TaskTrackers manage the processing resources on each slave node in the
form of processing slots — the slots defined for map tasks and reduce tasks,
to be exact. The total number of map and reduce slots indicates how many
map and reduce tasks can be executed at one time on the slave node.

106 Part II: How Hadoop Works

 When it comes to tuning a Hadoop cluster, setting the optimal number of
map and reduce slots is critical. The number of slots needs to be carefully
 configured based on available memory, disk, and CPU resources on each slave
node. Memory is the most critical of these three resources from a performance
perspective. As such, the total number of task slots needs to be balanced with
the maximum amount of memory allocated to the Java heap size. Keep in mind
that every map and reduce task spawns its own Java virtual machine (JVM)
and that the heap represents the amount of memory that’s allocated for each
JVM. The ratio of map slots to reduce slots is also an important consideration.
For example, if you have too many map slots and not enough reduce slots for
your workloads, map slots will tend to sit idle, while your jobs are waiting for
reduce slots to become available.

Distinct sets of slots are defined for map tasks and reduce tasks because they
use computing resources quite differently. Map tasks are assigned based on
data locality, and they depend heavily on disk I/O and CPU. Reduce tasks are
assigned based on availability, not on locality, and they depend heavily on
network bandwidth because they need to receive output from map tasks.

Launching a MapReduce application
To see how the JobTracker and TaskTracker work together to carry out a
MapReduce action, take a look at the execution of a MapReduce application,
as shown in Figure 7-2. The figure shows the interactions, and the following
step list lays out the play-by-play:

 1. The client application submits an application request to the JobTracker.

 2. The JobTracker determines how many processing resources are needed
to execute the entire application. This is done by requesting the locations
and names of the files and data blocks that the application needs from
the NameNode, and calculating how many map tasks and reduce tasks
will be needed to process all this data.

 3. The JobTracker looks at the state of the slave nodes and queues all the
map tasks and reduce tasks for execution.

 4. As processing slots become available on the slave nodes, map tasks are
deployed to the slave nodes. Map tasks assigned to specific blocks of
data are assigned to nodes where that same data is stored.

 5. The JobTracker monitors task progress, and in the event of a task failure
or a node failure, the task is restarted on the next available slot. If the
same task fails after four attempts (which is a default value and can be
customized), the whole job will fail.

 6. After the map tasks are finished, reduce tasks process the interim result
sets from the map tasks.

 7. The result set is returned to the client application.

107Chapter 7: Frameworks for Processing Data in Hadoop: YARN and MapReduce

Figure 7-2:
Hadoop 1
 daemons

and
 application
execution.

 More complicated applications can have multiple rounds of map/reduce
phases, where the result of one round is used as input for the second round.
This is quite common with SQL-style workloads, where there are, for example,
join and group-by operations.

Seeing a World beyond MapReduce
MapReduce has been (and continues to be) a successful batch-oriented
 programming model. You need look no further than the wide adoption of
Hadoop to recognize the truth of this statement. But Hadoop itself has been
hitting a glass ceiling in terms of wider use. The most significant factor in this
regard has been Hadoop’s exclusive tie to MapReduce, which means that it
could be used only for batch-style workloads and for general-purpose analysis.
Hadoop’s success has created demand for additional data processing modes:
graph analysis, for example, or streaming data processing or message passing.
To top it all off, demand is growing for real-time and ad-hoc analysis, where
analysts ask many smaller questions against subsets of the data and need a
near-instant response. This approach, which is what analysts are accustomed
to using with relational databases, is a significant departure from the kind of
batch processing Hadoop can currently support.

When you start noticing a technology’s limitations, you’re reminded of
all its other little quirks that bother you, such as Hadoop 1’s restrictions
around scalability — the limitation of the number of data blocks that
the NameNode could track, for example. (See Chapter 4 for more on
these — and other — restrictions.) The JobTracker also has a practical limit
to the amount of processing resources and running tasks it can track – this
(like the NameNode’s limitations) is between 4,000 and 5,000 nodes.

108 Part II: How Hadoop Works

And finally, to the extent that Hadoop could support different kinds of
 workloads other than MapReduce — largely with HBase and other third-
party services running on slave nodes — there was no easy way to handle
 competing requests for limited resources.

Where there’s a will, there’s often a way, and the will to move beyond the limi-
tations of a Hadoop 1/MapReduce world led to a way out — the YARN way.

Scouting out the YARN architecture
YARN, for those just arriving at this particular party, stands for Yet Another
Resource Negotiator, a tool that enables other data processing frameworks to
run on Hadoop. The glory of YARN is that it presents Hadoop with an elegant
solution to a number of longstanding challenges, many of which are outlined
in some detail in the previous section. If you can’t be bothered to reread that
section, just know that YARN is meant to provide a more efficient and flexible
workload scheduling as well as a resource management facility, both of which
will ultimately enable Hadoop to run more than just MapReduce jobs.

Figure 7-3 shows in general terms how YARN fits into Hadoop and also makes
clear how it has enabled Hadoop to become a truly general-purpose platform
for data processing. The following list gives the lyrics to the melody — and it
wouldn’t hurt to compare Figure 7-3 with Figure 7-1:

 ✓ Distributed storage: Nothing has changed here with the shift from
MapReduce to YARN — HDFS is still the storage layer for Hadoop.

 ✓ Resource management: The key underlying concept in the shift to YARN
from Hadoop 1 is decoupling resource management from data processing.
This enables YARN to provide resources to any processing framework
written for Hadoop, including MapReduce.

 ✓ Processing framework: Because YARN is a general-purpose resource
management facility, it can allocate cluster resources to any data
 processing framework written for Hadoop. The processing framework
then handles application runtime issues. To maintain compatibility for
all the code that was developed for Hadoop 1, MapReduce serves as the
first framework available for use on YARN. At the time of this writing,
the Apache Tez project was an incubator project in development as an
 alternative framework for the execution of Pig and Hive applications.
Tez will likely emerge as a standard Hadoop configuration.

 ✓ Application Programming Interface (API): With the support for additional
processing frameworks, support for additional APIs will come. At the time
of this writing, Hoya (for running HBase on YARN), Apache Giraph (for
graph processing), Open MPI (for message passing in parallel systems),
Apache Storm (for data stream processing) are in active development.

109Chapter 7: Frameworks for Processing Data in Hadoop: YARN and MapReduce

Figure 7-3:
Hadoop

data
 processing

architecture
with YARN.

YARN’s Resource Manager
The core component of YARN is the Resource Manager, which governs all the
data processing resources in the Hadoop cluster. Simply put, the Resource
Manager is a dedicated scheduler that assigns resources to requesting
 applications. Its only tasks are to maintain a global view of all resources in
the cluster, handling resource requests, scheduling the request, and then
assigning resources to the requesting application.

The Resource Manager, a critical component in a Hadoop cluster, should run
on a dedicated master node.

Even though the Resource Manager is basically a pure scheduler, it relies
on scheduler modules for the actual scheduling logic. You can choose from
the same schedulers that were available in Hadoop 1, which have all been
updated to work with YARN: FIFO (first in, first out), Capacity, or Fair Share.
We’ll discuss these schedulers in greater detail in Chapter 17.

The Resource Manager is completely agnostic with regard to both applica-
tions and frameworks — it doesn’t have any dogs in those particular hunts,
in other words. It has no concept of map or reduce tasks, it doesn’t track the
progress of jobs or their individual tasks, and it doesn’t handle failovers. In
short, the Resource Manager is a complete departure from the JobTracker
daemon we looked at for Hadoop 1 environments. What the Resource
Manager does do is schedule workloads, and it does that job well. This high
degree of separating duties — concentrating on one aspect while ignoring
everything else — is exactly what makes YARN much more scalable, able to
provide a generic platform for applications, and able to support a multi-tenant
Hadoop cluster — multi-tenant because different business units can share the
same Hadoop cluster.

YARN’s Node Manager
Each slave node has a Node Manager daemon, which acts as a slave for the
Resource Manager. As with the TaskTracker, each slave node has a service
that ties it to the processing service (Node Manager) and the storage service
(DataNode) that enable Hadoop to be a distributed system. Each Node Manager
tracks the available data processing resources on its slave node and sends
regular reports to the Resource Manager.

110 Part II: How Hadoop Works

The processing resources in a Hadoop cluster are consumed in bite-size
pieces called containers. A container is a collection of all the resources
 necessary to run an application: CPU cores, memory, network bandwidth,
and disk space. A deployed container runs as an individual process on a
slave node in a Hadoop cluster.

 The concept of a container may remind you of a slot, the unit of processing used
by the JobTracker and TaskTracker, but they have some notable differences.
Most significantly, containers are generic and can run whatever application
logic they’re given, unlike slots, which are specifically defined to run either
map or reduce tasks. Also, containers can be requested with custom amounts
of resources, while slots are all uniform. As long as the requested amount is
within the minimum and maximum bounds of what’s acceptable for a container
(and as long as the requested amount of memory is a multiple of the minimum
amount), the Resource Manager will grant and schedule that container.

All container processes running on a slave node are initially provisioned,
monitored, and tracked by that slave node’s Node Manager daemon.

YARN’s Application Master
Unlike the YARN components we’ve described already, no component in
Hadoop 1 maps directly to the Application Master. In essence, this is work
that the JobTracker did for every application, but the implementation is
 radically different. Each application running on the Hadoop cluster has
its own, dedicated Application Master instance, which actually runs in a
 container process on a slave node (as compared to the JobTracker, which
was a single daemon that ran on a master node and tracked the progress of
all applications).

Throughout its life (for example, while the application is running), the
Application Master sends heartbeat messages to the Resource Manager with
its status and the state of the application’s resource needs. Based on the
results of the Resource Manager’s scheduling, it assigns container resource
leases — basically reservations for the resources containers need — to the
Application Master on specific slave nodes.

The Application Master oversees the full lifecycle of an application, all the
way from requesting the needed containers from the Resource Manager to
submitting container lease requests to the NodeManager.

Each application framework that’s written for Hadoop must have its own
Application Master implementation. MapReduce, for example, has a specific
Application Master that’s designed to execute map tasks and reduce tasks in
sequence.

111Chapter 7: Frameworks for Processing Data in Hadoop: YARN and MapReduce

Job History Server
The Job History Server is another example of a function that the JobTracker
used to handle, and it has been siphoned off as a self-contained daemon. Any
client requests for a job history or the status of current jobs are served by
the Job History Server.

Launching a YARN-based application
To show how the various YARN components work together, we walk you
through the execution of an application. For the sake of argument, it can be a
MapReduce application, such as the one we describe earlier in this chapter,
with the JobTracker and TaskTracker architecture. Just remember that, with
YARN, it can be any kind of application for which there’s an application frame-
work. Figure 7-4 shows the interactions, and the prose account is set down in
the following step list:

 1. The client application submits an application request to the Resource
Manager.

 2. The Resource Manager asks a Node Manager to create an Application
Master instance for this application. The Node Manager gets a container
for it and starts it up.

 3. This new Application Master initializes itself by registering itself with the
Resource Manager.

 4. The Application Master figures out how many processing resources are
needed to execute the entire application. This is done by requesting
from the NameNode the names and locations of the files and data blocks
the application needs and calculating how many map tasks and reduce
tasks are needed to process all this data.

 5. The Application Master then requests the necessary resources from the
Resource Manager. The Application Master sends heartbeat messages
to the Resource Manager throughout its lifetime, with a standing list of
requested resources and any changes (for example, a kill request).

 6. The Resource Manager accepts the resource request and queues up the
specific resource requests alongside all the other resource requests that
are already scheduled.

 7. As the requested resources become available on the slave nodes, the
Resource Manager grants the Application Master leases for containers
on specific slave nodes.

112 Part II: How Hadoop Works

 8. The Application Master requests the assigned container from the
Node Manager and sends it a Container Launch Context (CLC). The
CLC includes everything the application task needs in order to run:
 environment variables, authentication tokens, local resources needed at
runtime (for example, additional data files, or application logic in JARs),
and the command string necessary to start the actual process. The Node
Manager then creates the requested container process and starts it.

 9. The application executes while the container processes are running.
The Application Master monitors their progress, and in the event of
a container failure or a node failure, the task is restarted on the next
available slot. If the same task fails after four attempts (a default value
which can be customized), the whole job will fail. During this phase,
the Application Master also communicates directly with the client to
respond to status requests.

 10. Also, while containers are running, the Resource Manager can send a kill
order to the Node Manager to terminate a specific container. This can be
as a result of a scheduling priority change or a normal operation, such
as the application itself already being completed.

 11. In the case of MapReduce applications, after the map tasks are finished,
the Application Master requests resources for a round of reduce tasks to
process the interim result sets from the map tasks.

 12. When all tasks are complete, the Application Master sends the result
set to the client application, informs the Resource Manager that the
 application has successfully completed, deregisters itself from the
Resource Manager, and shuts itself down.

Figure 7-4:
YARN

 daemons
and

 application
execution.

113Chapter 7: Frameworks for Processing Data in Hadoop: YARN and MapReduce

Like the JobTracker and TaskTracker daemons and processing slots in Hadoop 1,
all of the YARN daemons and containers are Java processes, running in JVMs.
With YARN, you’re no longer required to define how many map and reduce
slots you need — you simply decide how much memory map and reduce tasks
can have. The Resource Manager will allocate containers for map or reduce
tasks on the cluster based on how much memory is available.

In this section, we have described what happens underneath the hood when
applications run on YARN. When you’re writing Hadoop applications, you
don’t need to worry about requesting resources and monitoring containers.
Whatever application framework you’re using does all that for you. It’s always
a good idea, however, to understand what goes on when your applications
are running on the cluster. This knowledge can help you immensely when
you’re monitoring application progress or debugging a failed task.

Real-Time and Streaming Applications
The process flow we describe in our coverage of YARN looks an awful lot
like a framework for batch execution. You might wonder, “What happened
to this idea of flexibility for different modes of applications?” Well, the only
application framework that was ready for production use at the time of this
writing was MapReduce. Soon, the Apache Tez and Apache Storm will be
ready for production use, and you can use Hadoop for more than just batch
processing.

Tez, for example, will support real-time applications — an interactive kind of
application where the user expects an immediate response. One design goal
of Tez is to provide an interactive facility for users to issue Hive queries and
receive a result set in just a few seconds or less.

Another example of a non-batch type of application is Storm, which can analyze
streaming data. This concept is completely different from either MapReduce or
Tez, both of which operate against data that is already persisted to disk — in
other words, data at rest. Storm processes data that hasn’t yet been stored to
disk — more specifically, data that’s streaming into an organization’s network.
It’s data in motion, in other words.

In both cases, the interactive and streaming-data processing goals wouldn’t
work if Application Masters need to be instantiated, along with all the
required containers, like we described in the steps involved in running a
YARN application. What YARN allows here is the concept of an ongoing
 service (a session), where there’s a dedicated Application Master that stays
alive, waiting to coordinate requests. The Application Master also has open
leases on reusable containers to execute any requests as they arrive.

114 Part II: How Hadoop Works

Chapter 8

Pig: Hadoop Programming
Made Easier

In This Chapter
▶ Looking at the Pig architecture

▶ Seeing the flow in the Pig Latin application flow

▶ Reciting the ABCs of Pig Latin

▶ Distinguishing between local and distributed modes of running Pig scripts

▶ Scripting with Pig Latin

J
ava MapReduce programs (see Chapter 6) and the Hadoop Distributed
File System (HDFS; see Chapter 4) provide you with a powerful distributed

computing framework, but they come with one major drawback — relying on
them limits the use of Hadoop to Java programmers who can think in Map
and Reduce terms when writing programs. More developers, data analysts,
data scientists, and all-around good folks could leverage Hadoop if they had
a way to harness the power of Map and Reduce while hiding some of the Map
and Reduce complexities.

As with most things in life, where there’s a need, somebody is bound to come
up with an idea meant to fill that need. A growing list of MapReduce abstractions
is now on the market — programming languages and/or tools such as Hive and
Pig, which hide the messy details of MapReduce so that a programmer can con-
centrate on the important work.

Hive, for example, provides a limited SQL-like capability that runs over
MapReduce, thus making said MapReduce more approachable for SQL devel-
opers. Hive also provides a declarative query language (the SQL-like HiveQL),
which allows you to focus on which operation you need to carry out versus
how it is carried out.

Though SQL is the common accepted language for querying structured data,
some developers still prefer writing imperative scripts — scripts that define
a set of operations that change the state of the data — and also want to have
more data processing flexibility than what SQL or HiveQL provides. Again, this

116 Part II: How Hadoop Works

need led the engineers at Yahoo! Research to come up with a product meant
to fulfill that need — and so Pig was born. Pig’s claim to fame was its status as
a programming tool attempting to have the best of both worlds: a declarative
query language inspired by SQL and a low-level procedural programming lan-
guage that can generate MapReduce code. This lowers the bar when it comes
to the level of technical knowledge needed to exploit the power of Hadoop.

By taking a look at some murky computer programming language history, we
can say that Pig was initially developed at Yahoo! in 2006 as part of a research
project tasked with coming up with ways for people using Hadoop to focus
more on analyzing large data sets rather than spending lots of time writing
Java MapReduce programs. The goal here was a familiar one: Allow users to
focus more on what they want to do and less on how it’s done. Not long after,
in 2007, Pig officially became an Apache project. As such, it is included in
most Hadoop distributions.

And its name? That one’s easy to figure out. The Pig programming language
is designed to handle any kind of data tossed its way — structured, semi-
structured, unstructured data, you name it. Pigs, of course, have a reputation
for eating anything they come across. (We suppose they could have called it
Goat — or maybe that name was already taken.) According to the Apache Pig
philosophy, pigs eat anything, live anywhere, are domesticated and can fly to
boot. (Flying Apache Pigs? Now we’ve seen everything.) Pigs “living anywhere”
refers to the fact that Pig is a parallel data processing programming language
and is not committed to any particular parallel framework — including Hadoop.
What makes it a domesticated animal? Well, if “domesticated” means “plays well
with humans,” then it’s definitely the case that Pig prides itself on being easy for
humans to code and maintain. (Hey, it’s easily integrated with other program-
ming languages and it’s extensible. What more could you ask?) Lastly, Pig is
smart and in data processing lingo this means there is an optimizer that figures
out how to do the hard work of figuring out how to get the data quickly. Pig is
not just going to be quick — it’s going to fly. (To see more about the Apache Pig
philosophy, check out http://pig.apache.org/philosophy.)

Admiring the Pig Architecture
“Simple” often means “elegant” when it comes to those architectural drawings
for that new Silicon Valley mansion you have planned for when the money
starts rolling in after you implement Hadoop. The same principle applies to
software architecture. Pig is made up of two (count ‘em, two) components:

 ✓ The language itself: As proof that programmers have a sense of humor, the
programming language for Pig is known as Pig Latin, a high-level language
that allows you to write data processing and analysis programs.

117 Chapter 8: Pig: Hadoop Programming Made Easier

 ✓ The Pig Latin compiler: The Pig Latin compiler converts the Pig Latin
code into executable code. The executable code is either in the form
of MapReduce jobs or it can spawn a process where a virtual Hadoop
instance is created to run the Pig code on a single node.

 The sequence of MapReduce programs enables Pig programs to do data
processing and analysis in parallel, leveraging Hadoop MapReduce and
HDFS. Running the Pig job in the virtual Hadoop instance is a useful
strategy for testing your Pig scripts.

Figure 8-1 shows how Pig relates to the Hadoop ecosystem.

Figure 8-1:
Pig archi-

tecture.

 Pig programs can run on MapReduce v1 or MapReduce v2 without any code
changes, regardless of what mode your cluster is running. However, Pig scripts
can also run using the Tez API instead. Apache Tez provides a more efficient
execution framework than MapReduce. YARN enables application frameworks
other than MapReduce (like Tez) to run on Hadoop. Hive can also run against
the Tez framework. See Chapter 7 for more information on YARN and Tez.

Going with the Pig Latin
Application Flow

At its core, Pig Latin is a dataflow language, where you define a data stream
and a series of transformations that are applied to the data as it flows
through your application. This is in contrast to a control flow language (like C
or Java), where you write a series of instructions. In control flow languages,
we use constructs like loops and conditional logic (like an if statement). You
won’t find loops and if statements in Pig Latin.

118 Part II: How Hadoop Works

If you need some convincing that working with Pig is a significantly easier
row to hoe than having to write Map and Reduce programs, start by taking a
look at some real Pig syntax:

Listing 8-1: Sample Pig Code to illustrate the data processing dataflow

A = LOAD 'data_file.txt';
...
B = GROUP ... ;
...
C= FILTER ...;
...
DUMP B;
..
STORE C INTO 'Results';

Some of the text in this example actually looks like English, right? Not too
scary, at least at this point. Looking at each line in turn, you can see the basic
flow of a Pig program. (Note that this code can either be part of a script or
issued on the interactive shell called Grunt — we learn more about Grunt in a
few pages.)

 1. Load: You first load (LOAD) the data you want to manipulate. As in a
typical MapReduce job, that data is stored in HDFS. For a Pig program to
access the data, you first tell Pig what file or files to use. For that task,
you use the LOAD 'data_file' command.

 Here, 'data_file' can specify either an HDFS file or a directory. If
a directory is specified, all files in that directory are loaded into the
program.

 If the data is stored in a file format that isn’t natively accessible to Pig,
you can optionally add the USING function to the LOAD statement to
specify a user-defined function that can read in (and interpret) the data.

 2. Transform: You run the data through a set of transformations that, way
under the hood and far removed from anything you have to concern
yourself with, are translated into a set of Map and Reduce tasks.

 The transformation logic is where all the data manipulation happens.
Here, you can FILTER out rows that aren’t of interest, JOIN two sets
of data files, GROUP data to build aggregations, ORDER results, and do
much, much more.

 3. Dump: Finally, you dump (DUMP) the results to the screen

 or

 Store (STORE) the results in a file somewhere.

119 Chapter 8: Pig: Hadoop Programming Made Easier

 You would typically use the DUMP command to send the output to the
screen when you debug your programs. When your program goes into
production, you simply change the DUMP call to a STORE call so that any
results from running your programs are stored in a file for further pro-
cessing or analysis.

Working through the ABCs of Pig Latin
Pig Latin is the language for Pig programs. Pig translates the Pig Latin script
into MapReduce jobs that can be executed within Hadoop cluster. When
coming up with Pig Latin, the development team followed three key design
principles:

 ✓ Keep it simple. Pig Latin provides a streamlined method for interacting
with Java MapReduce. It’s an abstraction, in other words, that simplifies
the creation of parallel programs on the Hadoop cluster for data flows
and analysis. Complex tasks may require a series of interrelated data
transformations — such series are encoded as data flow sequences.

 Writing data transformation and flows as Pig Latin scripts instead of
Java MapReduce programs makes these programs easier to write, under-
stand, and maintain because a) you don’t have to write the job in Java,
b) you don’t have to think in terms of MapReduce, and c) you don’t
need to come up with custom code to support rich data types. Pig Latin
provides a simpler language to exploit your Hadoop cluster, thus making
it easier for more people to leverage the power of Hadoop and become
productive sooner.

 ✓ Make it smart. You may recall that the Pig Latin Compiler does the work
of transforming a Pig Latin program into a series of Java MapReduce
jobs. The trick is to make sure that the compiler can optimize the execu-
tion of these Java MapReduce jobs automatically, allowing the user to
focus on semantics rather than on how to optimize and access the data.

 For you SQL types out there, this discussion will sound familiar. SQL
is set up as a declarative query that you use to access structured data
stored in an RDBMS. The RDBMS engine first translates the query to
a data access method and then looks at the statistics and generates a
series of data access approaches. The cost-based optimizer chooses the
most efficient approach for execution.

 ✓ Don’t limit development. Make Pig extensible so that developers can
add functions to address their particular business problems.

120 Part II: How Hadoop Works

 Traditional RDBMS data warehouses make use of the ETL data processing
pattern, where you extract data from outside sources, transform it to fit your
operational needs, and then load it into the end target, whether it’s an opera-
tional data store, a data warehouse, or another variant of database. However,
with big data, you typically want to reduce the amount of data you have
moving about, so you end up bringing the processing to the data itself. The
language for Pig data flows, therefore, takes a pass on the old ETL approach,
and goes with ELT instead: Extract the data from your various sources, load it
into HDFS, and then transform it as necessary to prepare the data for further
analysis.

Uncovering Pig Latin structures
To see how Pig Latin is put together, check out the following (bare-bones,
training wheel) program for playing around in Hadoop. (To save time and
money — hey, coming up with great examples can cost a pretty penny! — we’ll
reuse the Flight Data scenario from Chapter 6.) Compare and Contrast is often
a good way to learn something new, so go ahead and review the problem we’re
solving in Chapter 6, and take a look at the code in Listings 6-3, 6-4, and 6-5.

The problem we’re trying to solve involves calculating the total number of
flights flown by every carrier. Following is the Pig Latin script we’ll use to
answer this question.

Listing 8-2: Pig script calculating the total miles flown

records = LOAD '2013_subset.csv' USING PigStorage(',') AS
(Year,Month,DayofMonth,DayOfWeek,DepTime,CRSDep
Time,ArrTime,CRSArrTime,UniqueCarrier,FlightNum
,TailNum,ActualElapsedTime,CRSElapsedTime,AirTi
me,ArrDelay,DepDelay,Origin,Dest,Distance:int,T
axiIn,TaxiOut,Cancelled,CancellationCode,Divert
ed,CarrierDelay,WeatherDelay,NASDelay,SecurityD
elay,LateAircraftDelay);

milage_recs = GROUP records ALL;
tot_miles = FOREACH milage_recs GENERATE

SUM(records.Distance);

DUMP tot_miles;

Before we walk through the code, here are a few high-level observations:
The Pig script is a lot smaller than the MapReduce application you’d need
to accomplish the same task — the Pig script only has 4 lines of code! Yes,
that first line is rather long, but it’s pretty simple, since we’re just listing

121 Chapter 8: Pig: Hadoop Programming Made Easier

the names of the columns in the data set. And not only is the code shorter,
but it’s even semi-human readable. Just look at the key words in the script:
LOADs the data, does a GROUP, calculates a SUM and finally DUMPs out an
answer. You’ll remember that one reason why SQL is so awesome is because
it’s a declarative query language, meaning you express queries on what you
want the result to be, not how it is executed. Pig can be equally cool because
it also gives you that declarative aspect and you don’t have to tell it how to
actually do it and in particular how to do the MapReduce stuff.

Ready for your walkthrough? As you make your way through the code, take
note of these principles:

 ✓ Most Pig scripts start with the LOAD statement to read data from HDFS.
In this case, we’re loading data from a .csv file. Pig has a data model it
uses, so next we need to map the file’s data model to the Pig data mode.
This is accomplished with the help of the USING statement. (More
on the Pig data model in the next section.) We then specify that it is a
comma-delimited file with the PigStorage(',') statement followed
by the AS statement defining the name of each of the columns.

 ✓ Aggregations are commonly used in Pig to summarize data sets. The
GROUP statement is used to aggregate the records into a single record
mileage_recs. The ALL statement is used to aggregate all tuples into a
single group. Note that some statements — including the following SUM
statement — requires a preceding GROUP ALL statement for global sums.

 ✓ FOREACH . . . GENERATE statements are used here to transform
columns data. In this case, we want to count the miles traveled in the
records_Distance column. The SUM statement computes the sum
of the record_Distance column into a single-column collection
total_miles.

 ✓ The DUMP operator is used to execute the Pig Latin statement and dis-
play the results on the screen. DUMP is used in interactive mode, which
means that the statements are executable immediately and the results
are not saved. Typically, you will either use the DUMP or STORE opera-
tors at the end of your Pig script.

Looking at Pig data types and syntax
Pig’s data types make up the data model for how Pig thinks of the structure of
the data it is processing. With Pig, the data model gets defined when the data
is loaded. Any data you load into Pig from disk is going to have a particular
schema and structure. Pig needs to understand that structure, so when you
do the loading, the data automatically goes through a mapping.

122 Part II: How Hadoop Works

Luckily for you, the Pig data model is rich enough to handle most anything
thrown its way, including table-like structures and nested hierarchical data
structures. In general terms, though, Pig data types can be broken into two
categories: scalar types and complex types. Scalar types contain a single
value, whereas complex types contain other types, such as the Tuple, Bag,
and Map types listed below.

Pig Latin has these four types in its data model:

 ✓ Atom: An atom is any single value, such as a string or a number —
‘Diego’, for example. Pig’s atomic values are scalar types that appear
in most programming languages — int, long, float, double,
chararray, and bytearray, for example. See Figure 8-2 to see sample
atom types.

 ✓ Tuple: A tuple is a record that consists of a sequence of fields. Each field
can be of any type — ‘Diego’, ‘Gomez’, or 6, for example. Think of a tuple
as a row in a table.

 ✓ Bag: A bag is a collection of non-unique tuples. The schema of the bag is
flexible — each tuple in the collection can contain an arbitrary number
of fields, and each field can be of any type.

 ✓ Map: A map is a collection of key value pairs. Any type can be stored in
the value, and the key needs to be unique. The key of a map must be a
chararray and the value can be of any type.

Figure 8-2 offers some fine examples of Tuple, Bag, and Map data types, as well.

Figure 8-2:
Sample Pig
Data Types

 The value of all these types can also be null. The semantics for null are
 similar to those used in SQL. The concept of null in Pig means that the value is
unknown. Nulls can show up in the data in cases where values are unreadable or
unrecognizable — for example, if you were to use a wrong data type in the LOAD
statement. Null could be used as a placeholder until data is added or as a value
for a field that is optional.

123 Chapter 8: Pig: Hadoop Programming Made Easier

Pig Latin has a simple syntax with powerful semantics you’ll use to carry out
two primary operations: access and transform data. If you compare the Pig
implementation for calculating miles traveled by airline (Listing 8-1) with the
Java MapReduce implementations (Listings 6-1, 6-2, and 6-3), they both come
up with the same result but the Pig implementation has a lot less code and is
easier to understand.

 In a Hadoop context, accessing data means allowing developers to load, store,
and stream data, whereas transforming data means taking advantage of Pig’s
ability to group, join, combine, split, filter, and sort data. Table 8-1 gives an
overview of the operators associated with each operation.

Table 8-1 Pig Latin Operators
Operation Operator Explanation

Data Access LOAD/STORE Read and Write data to file system

DUMP Write output to standard output (stdout)

STREAM Send all records through external binary

FOREACH Apply expression to each record and
output one or more records

FILTER Apply predicate and remove records that
don’t meet condition

GROUP/
COGROUP

Aggregate records with the same key from
one or more inputs

JOIN Join two or more records based on a
condition

Transformations CROSS Cartesian product of two or more inputs

ORDER Sort records based on key

DISTINCT Remove duplicate records

UNION Merge two data sets

SPLIT Divide data into two or more bags based
on predicate

LIMIT subset the number of records

124 Part II: How Hadoop Works

Pig also provides a few operators that are helpful for debugging and trouble-
shooting, as shown in Table 8-2:

Table 8-2 Operators for Debugging and Troubleshooting
Operation Operator Description
Debug DESCRIBE Return the schema of a relation.

DUMP Dump the contents of a relation to the screen.

EXPLAIN Display the MapReduce execution plans.

 Part of the paradigm shift of Hadoop is that you apply your schema at Read
instead of Load. According to the old way of doing things — the RDBMS
way — when you load data into your database system, you must load it into
a well-defined set of tables. Hadoop allows you to store all that raw data
upfront and apply the schema at Read. With Pig, you do this during the load-
ing of the data, with the help of the LOAD operator. Back in Listing 8-2, we
used the LOAD operator to read the flight data from a file.

The optional USING statement defines how to map the data structure within
the file to the Pig data model — in this case, the PigStorage () data struc-
ture, which parses delimited text files. (This part of the USING statement is
often referred to as a LOAD Func and works in a fashion similar to a custom
deserializer.) The optional AS clause defines a schema for the data that is
being mapped. If you don’t use an AS clause, you’re basically telling the
default LOAD Func to expect a plain text file that is tab delimited. With no
schema provided, the fields must be referenced by position because no name
is defined.

Using AS clauses means that you have a schema in place at read-time for
your text files, which allows users to get started quickly and provides agile
schema modeling and flexibility so that you can add more data to your
analytics.

 The LOAD operator operates on the principle of lazy evaluation, also referred
to as call-by-need. Now lazy doesn’t sound particularly praiseworthy, but all it
means is that you delay the evaluation of an expression until you really need
it. In the context of our Pig example, that means that after the LOAD statement
is executed, no data is moved — nothing gets shunted around — until a statement
to write data is encountered. You can have a Pig script that is a page long filled
with complex transformations, but nothing gets executed until the DUMP or
STORE statement is encountered.

125 Chapter 8: Pig: Hadoop Programming Made Easier

Evaluating Local and Distributed
Modes of Running Pig scripts

Before you can run your first Pig script, you need to have a handle on how
Pig programs can be packaged with the Pig server.

Pig has two modes for running scripts, as shown in Figure 8-3:

 ✓ Local mode: All scripts are run on a single machine without requir-
ing Hadoop MapReduce and HDFS. This can be useful for developing
and testing Pig logic. If you’re using a small set of data to develope or
test your code, then local mode could be faster than going through the
MapReduce infrastructure.

 Local mode doesn’t require Hadoop. When you run in Local mode, the
Pig program runs in the context of a local Java Virtual Machine, and data
access is via the local file system of a single machine. Local mode is actu-
ally a local simulation of MapReduce in Hadoop’s LocalJobRunner class.

 ✓ MapReduce mode (also known as Hadoop mode): Pig is executed on
the Hadoop cluster. In this case, the Pig script gets converted into a
series of MapReduce jobs that are then run on the Hadoop cluster.

Figure 8-3:
Pig modes

126 Part II: How Hadoop Works

 If you have a terabyte of data that you want to perform operations on and you
want to interactively develop a program, you may soon find things slowing
down considerably, and you may start growing your storage. Local mode allows
you to work with a subset of your data in a more interactive manner so that you
can figure out the logic (and work out the bugs) of your Pig program. After you
have things set up as you want them and your operations are running smoothly,
you can then run the script against the full data set using MapReduce mode.

Checking Out the Pig Script Interfaces
Pig programs can be packaged in three different ways:

 ✓ Script: This method is nothing more than a file containing Pig Latin com-
mands, identified by the .pig suffix (FlightData.pig, for example).
Ending your Pig program with the .pig extension is a convention but
not required. The commands are interpreted by the Pig Latin compiler
and executed in the order determined by the Pig optimizer.

 ✓ Grunt: Grunt acts as a command interpreter where you can interactively
enter Pig Latin at the Grunt command line and immediately see the
response. This method is helpful for prototyping during initial develop-
ment and with what-if scenarios.

 ✓ Embedded: Pig Latin statements can be executed within Java, Python,
or JavaScript programs.

Pig scripts, Grunt shell Pig commands, and embedded Pig programs can run
in either Local mode or MapReduce mode.

The Grunt shell provides an interactive shell to submit Pig commands or run
Pig scripts. To start the Grunt shell in Interactive mode, just submit the com-
mand pig at your shell.

To specify whether a script or Grunt shell is executed locally or in Hadoop
mode just specify it in the –x flag to the pig command. The following is an
example of how you’d specify running your Pig script in local mode:

pig -x local milesPerCarrier.pig

Here’s how you’d run the Pig script in Hadoop mode, which is the default if
you don’t specify the flag:

pig -x mapreduce milesPerCarrier.pig

 By default, when you specify the pig command without any parameters, it
starts the Grunt shell in Hadoop mode. If you want to start the Grunt shell in
local mode just add the –x local flag to the command. Here is an example:

pig -x local

127 Chapter 8: Pig: Hadoop Programming Made Easier

Scripting with Pig Latin
Hadoop is a rich and quickly evolving ecosystem with a growing set of new
applications. Rather than try to keep up with all the requirements for new
capabilities, Pig is designed to be extensible via user-defined functions, also
known as UDFs. UDFs can be written in a number of programming languages,
including Java, Python, and JavaScript. Developers are also posting and shar-
ing a growing collection of UDFs online. (Look for Piggy Bank and DataFu, to
name just two examples of such online collections.) Some of the Pig UDFs
that are part of these repositories are LOAD/STORE functions (XML, for exam-
ple), date time functions, text, math, and stats functions.

Pig can also be embedded in host languages such as Java, Python, and JavaScript,
which allows you to integrate Pig with your existing applications. It also helps
overcome limitations in the Pig language. One of the most commonly referenced
limitations is that Pig doesn’t support control flow statements: if/else, while
loop, for loop, and condition statements. Pig natively supports data flow,
but needs to be embedded within another language to provide control flow. There
are tradeoffs, however of embedding Pig in a control-flow language. For example
if a Pig statement is embedded in a loop, every time the loop iterates and runs the
Pig statement, this causes a separate MapReduce job to run.

128 Part II: How Hadoop Works

Chapter 9

Statistical Analysis in Hadoop
In This Chapter
▶ Scaling out statistical analysis with Hadoop

▶ Gaining an understanding of Mahout

▶ Working with R on Hadoop

B
ig data is all about applying analytics to more data, for more people.
To carry out this task, big data practitioners use new tools — such

as Hadoop — to explore and understand data in ways that previously might
not have been possible (problems that were “too difficult,” “too expensive,”
or “too slow”). Some of the “bigger analytics” that you often hear mentioned
when Hadoop comes up in a conversation revolve around concepts such
as machine learning, data mining, and predictive analytics. Now, what’s the
common thread that runs through all these methods? That’s right: they all
use good old-fashioned statistical analysis.

In this chapter, we explore some of the challenges that arise when you try to
use traditional statistical tools on a Hadoop-level scale — a massive scale, in
other words. We also introduce you to some common, Hadoop-specific statis-
tical tools and show you when it makes sense to use them.

Pumping Up Your Statistical Analysis
Statistical analytics is far from being a new kid on the block, and it is cer-
tainly old news that it depends on processing large amounts of data to gain
new insight. However, the amount of data that’s traditionally processed
by these systems was in the range between 10 and 100 (or hundreds of)
 gigabytes — not the terabyte or petabyte ranges seen today, in other words.
And it often required an expensive symmetric multi-processing (SMP) machine
with as much memory as possible to hold the data being analyzed. That’s
because many of the algorithms used by the analytic approaches were quite
“compute intensive” and were designed to run in memory — as they require
multiple, and often frequent, passes through the data.

130 Part II: How Hadoop Works

The limitations of sampling
Faced with expensive hardware and a pretty high commitment in terms of
time and RAM, folks tried to make the analytics workload a bit more rea-
sonable by analyzing only a sampling of the data. The idea was to keep the
mountains upon mountains of data safely stashed in data warehouses, only
moving a statistically significant sampling of the data from their repositories
to a statistical engine.

While sampling is a good idea in theory, in practice this is often an unreli-
able tactic. Finding a statistically significant sampling can be challenging
for sparse and/or skewed data sets, which are quite common. This leads to
poorly judged samplings, which can introduce outliers and anomalous data
points, and can, in turn, bias the results of your analysis.

Factors that increase the scale
of statistical analysis
As we can see above, the reason people sample their data before running sta-
tistical analysis is that this kind of analysis often requires significant comput-
ing resources. This isn’t just about data volumes: there are five main factors
that influence the scale of statistical analysis:

 ✓ This one’s easy, but we have to mention it: the volume of data on
which you’ll perform the analysis definitely determines the scale of the
analysis.

 ✓ The number of transformations needed on the data set before applying
statistical models is definitely a factor.

 ✓ The number of pairwise correlations you’ll need to calculate plays
a role.

 ✓ The degree of complexity of the statistical computations to be applied is
a factor.

 ✓ The number of statistical models to be applied to your data set plays a
significant role.

Hadoop offers a way out of this dilemma by providing a platform to perform
massively parallel processing computations on data in Hadoop. In doing
so, it’s able to flip the analytic data flow; rather than move the data from its
repository to the analytics server, Hadoop delivers analytics directly to the
data. More specifically, HDFS allows you to store your mountains of data
and then bring the computation (in the form of MapReduce tasks) to the
slave nodes.

131 Chapter 9: Statistical Analysis in Hadoop

The common challenge posed by moving from traditional symmetric multi-
processing statistical systems (SMP) to Hadoop architecture is the locality
of the data. On traditional SMP platforms, multiple processors share access
to a single main memory resource. In Hadoop, HDFS replicates partitions of
data across multiple nodes and machines. Also, statistical algorithms that
were designed for processing data in-memory must now adapt to datasets
that span multiple nodes/racks and could not hope to fit in a single block
of memory.

Running statistical models in MapReduce
Converting statistical models to run in parallel is a challenging task. In the
traditional paradigm for parallel programming, memory access is regulated
through the use of threads — sub-processes created by the operating system
to distribute a single shared memory across multiple processors. Factors
such as race conditions between competing threads — when two or more
threads try to change shared data at the same time — can influence the per-
formance of your algorithm, as well as affect the precision of the statistical
results your program outputs — particularly for long-running analyses of
large sample sets.

A pragmatic approach to this problem is to assume that not many statisti-
cians will know the ins and outs of MapReduce (and vice-versa), nor can we
expect they’ll be aware of all the pitfalls that parallel programming entails.
Contributors to the Hadoop project have (and continue to develop) sta-
tistical tools with these realities in mind. The upshot: Hadoop offers many
solutions for implementing the algorithms required to perform statistical
modeling and analysis, without overburdening the statistician with nuanced
parallel programming considerations. We’ll be looking at the following tools
in greater detail:

 ✓ Mahout — and its wealth of statistical models and library functions

 ✓ The R language — and how to run it over Hadoop (including Big R)

Machine Learning with Mahout
Machine learning refers to a branch of artificial intelligence techniques that
provides tools enabling computers to improve their analysis based on previ-
ous events. These computer systems leverage historical data from previous
attempts at solving a task in order to improve the performance of future
attempts at similar tasks. In terms of expected outcomes, machine learning
may sound a lot like that other buzzword “data mining”; however, the former
focuses on prediction through analysis of prepared training data, the latter

132 Part II: How Hadoop Works

is concerned with knowledge discovery from unprocessed raw data. For this
reason, machine learning depends heavily upon statistical modelling tech-
niques and draws from areas of probability theory and pattern recognition.

Mahout is an open source project from Apache, offering Java libraries for dis-
tributed or otherwise scalable machine-learning algorithms. (See Figure 9-1
for the Big Picture.) These algorithms cover classic machine learning tasks
such as classification, clustering, association rule analysis, and recommen-
dations. Although Mahout libraries are designed to work within an Apache
Hadoop context, they are also compatible with any system supporting the
MapReduce framework. For example, Mahout provides Java libraries for Java
collections and common math operations (linear algebra and statistics) that
can be used without Hadoop.

Figure 9-1:
High-level
view of a

Mahout
deployment

over the
Hadoop

framework.

As you can see in Figure 9-1, the Mahout libraries are implemented in Java
MapReduce and run on your cluster as collections of MapReduce jobs on
either YARN (with MapReduce v2), or MapReduce v1.

 Mahout is an evolving project with multiple contributors. By the time of this
writing, the collection of algorithms available in the Mahout libraries is by no
means complete; however, the collection of algorithms implemented for use
continues to expand with time.

133 Chapter 9: Statistical Analysis in Hadoop

There are three main categories of Mahout algorithms for supporting statisti-
cal analysis: collaborative filtering, clustering, and classification. The next
few sections tackle each of these categories in turn.

Collaborative filtering
Mahout was specifically designed for serving as a recommendation engine,
employing what is known as a collaborative filtering algorithm. Mahout com-
bines the wealth of clustering and classification algorithms at its disposal to
produce more precise recommendations based on input data. These recom-
mendations are often applied against user preferences, taking into consider-
ation the behavior of the user. By comparing a user’s previous selections, it
is possible to identify the nearest neighbors (persons with a similar decision
history) to that user and predict future selections based on the behavior of
the neighbors.

Consider a “taste profile” engine such as Netflix — an engine which recom-
mends ratings based on that user’s previous scoring and viewing habits. In
this example, the behavioral patterns for a user are compared against the
user’s history — and the trends of users with similar tastes belonging to the
same Netflix community — to generate a recommendation for content not yet
viewed by the user in question.

Clustering
Unlike the supervised learning method described earlier for Mahout’s
recommendation engine feature, clustering is a form of unsupervised
 learning — where the labels for data points are unknown ahead of time and
must be inferred from the data without human input (the supervised part).
Generally, objects within a cluster should be similar; objects from differ-
ent clusters should be dissimilar. Decisions made ahead of time about the
number of clusters to generate, the criteria for measuring “similarity,” and
the representation of objects will impact the labelling produced by clustering
algorithms.

For example, a clustering engine that is provided a list of news articles should
be able to define clusters of articles within that collection which discuss simi-
lar topics. Suppose a set of articles about Canada, France, China, forestry, oil,
and wine were to be clustered. If the maximum number of clusters were set to
2, our algorithm might produce categories such as “regions” and “industries.”
Adjustments to the number of clusters will produce different categoriza-
tions; for example, selecting for 3 clusters may result in pairwise groupings of
nation-industry categories.

134 Part II: How Hadoop Works

Classifications
Classification algorithms make use of human-labelled training data sets,
where the categorization and classification of all future input is governed by
these known labels. These classifiers implement what is known as supervised
learning in the machine learning world. Classification rules — set by the train-
ing data, which has been labelled ahead of time by domain experts — are
then applied against raw, unprocessed data to best determine their appropri-
ate labelling.

These techniques are often used by e-mail services which attempt to clas-
sify spam e-mail before they ever cross your inbox. Specifically, given an
e-mail containing a set of phrases known to commonly occur together in a
certain class of spam mail — delivered from an address belonging to a known
botnet — our classification algorithm is able to reliably identify the e-mail as
malicious.

 In addition to the wealth of statistical algorithms that Mahout provides
natively, a supporting User Defined Algorithms (UDA) module is also avail-
able. Users can override existing algorithms or implement their own through
the UDA module. This robust customization allows for performance tuning
of native Mahout algorithms and flexibility in tackling unique statistical
analysis challenges. If Mahout can be viewed as a statistical analytics exten-
sion to Hadoop, UDA should be seen as an extension to Mahout’s statistical
capabilities.

Traditional statistical analysis applications (such as SAS, SPSS, and R) come
with powerful tools for generating workflows. These applications utilize intui-
tive graphical user interfaces that allow for better data visualization. Mahout
scripts follow a similar pattern as these other tools for generating statistical
analysis workflows. (See Figure 9-2.) During the final data exploration and
visualization step, users can export to human-readable formats (JSON, CSV)
or take advantage of visualization tools such as Tableau Desktop.

Figure 9-2:
Generalized

statistical
analysis

workflow for
Mahout.

135 Chapter 9: Statistical Analysis in Hadoop

Recall from Figure 9-1 that Mahout’s architecture sits atop the Hadoop plat-
form. Hadoop unburdens the programmer by separating the task of program-
ming MapReduce jobs from the complex bookkeeping needed to manage
parallelism across distributed file systems. In the same spirit, Mahout pro-
vides programmer-friendly abstractions of complex statistical algorithms,
ready for implementation with the Hadoop framework.

R on Hadoop
The machine learning discipline has a rich and extensive catalogue of tech-
niques. Mahout brings a range of statistical tools and algorithms to the table,
but it only captures a fraction of those techniques and algorithms, as the task
of converting these models to a MapReduce framework is a challenging one.
Over time, Mahout is sure to continue expanding its statistical toolbox, but
until then we advise all data scientists and statisticians out there to be aware
of alternative statistical modelling software — which is where R comes in.

The R language
The R language is a powerful and popular open-source statistical language
and development environment. It offers a rich analytics ecosystem that can
assist data scientists with data exploration, visualization, statistical analysis
and computing, modelling, machine learning, and simulation. The R language
is commonly used by statisticians, data miners, data analysts, and (nowa-
days) data scientists.

R language programmers have access to the Comprehensive R Archive
Network (CRAN) libraries which, as of the time of this writing, contains over
3000 statistical analysis packages. These add-ons can be pulled into any
R project, providing rich analytical tools for running classification, regres-
sion, clustering, linear modelling, and more specialized machine learn-
ing algorithms. The language is accessible to those familiar with simple
data structure types — vectors, scalars, data frames (matrices), and the
like — commonly used by statisticians as well as programmers.

Out of the box, one of the major pitfalls with using the R language is the
lack of support it offers for running concurrent tasks. Statistical language
tools like R excel at rigorous analysis, but lack scalability and native support
for parallel computations. These systems are non-distributable and were
not developed to be scalable for the modern petabyte-world of big data.
Proposals for overcoming these limitations need to extend R’s scope beyond
in-memory loading and single computer execution environments, while main-
taining R’s flair for easily-deployable statistical algorithms.

136 Part II: How Hadoop Works

Hadoop Integration with R
In the beginning, big data and R were not natural friends. R programming
requires that all objects be loaded into the main memory of a single machine.
The limitations of this architecture are quickly realized when big data
becomes a part of the equation. In contrast, distributed file systems such
as Hadoop are missing strong statistical techniques but are ideal for scaling
complex operations and tasks. Vertical scaling solutions — requiring invest-
ment in costly supercomputing hardware — often cannot compete with the
cost-value return offered by distributed, commodity hardware clusters.

To conform to the in-memory, single-machine limitations of the R language,
data scientists often had to restrict analysis to only a subset of the available
sample data. Prior to deeper integration with Hadoop, R language program-
mers offered a scale-out strategy for overcoming the in-memory challenges
posed by large data sets on single machines. This was achieved using mes-
sage-passing systems and paging. This technique is able to facilitate work
over data sets too large to store in main memory simultaneously; however,
its low-level programming approach presents a steep learning curve for those
unfamiliar with parallel programming paradigms.

Alternative approaches seek to integrate R’s statistical capabilities with
Hadoop’s distributed clusters in two ways: interfacing with SQL query lan-
guages, and integration with Hadoop Streaming. With the former, the goal
is to leverage existing SQL data warehousing platforms such as Hive (see
Chapter 13) and Pig (see Chapter 8). These schemas simplify Hadoop job
programming using SQL-style statements in order to provide high-level pro-
gramming for conducting statistical jobs over Hadoop data. For program-
mers wishing to program MapReduce jobs in languages (including R) other
than Java, a second option is to make use of Hadoop’s Streaming API. User-
submitted MapReduce jobs undergo data transformations with the assistance
of UNIX standard streams and serialization, guaranteeing Java-compliant
input to Hadoop — regardless of the language originally inputted by the
programmer.

Developers continue to explore various strategies to leverage the distributed
computation capability of MapReduce and the almost limitless storage capac-
ity of HDFS in ways that can be exploited by R. Integration of Hadoop with
R is ongoing, with offerings available from IBM (Big R as part of BigInsights)
and Revolution Analytics (Revolution R Enterprise). Bridging solutions that
integrate high-level programming and querying languages with Hadoop, such
as RHive and RHadoop, are also available. Fundamentally, each system aims
to deliver the deep analytical capabilities of the R language to much larger
sets of data. In closing this chapter, we briefly examine some of these efforts
to marry Hadoop’s scalability with R’s statistical capabilities.

137 Chapter 9: Statistical Analysis in Hadoop

RHive
The RHive framework serves as a bridge between the R language and Hive.
RHive delivers the rich statistical libraries and algorithms of R to data
stored in Hadoop by extending Hive’s SQL-like query language (HiveQL) with
R-specific functions. Through the RHive functions, you can use HiveQL to
apply R statistical models to data in your Hadoop cluster that you have cata-
loged using Hive.

RHadoop
Another open source framework available to R programmers is RHadoop,
a collection of packages intended to help manage the distribution and
analysis of data with Hadoop. Three packages of note — rmr2, rhdfs, and
rhbase — provide most of RHadoop’s functionality:

 ✓ rmr2: The rmr2 package supports translation of the R language into
Hadoop-compliant MapReduce jobs (producing efficient, low-level
MapReduce code from higher-level R code).

 ✓ rhdfs: The rhdfs package provides an R language API for file manage-
ment over HDFS stores. Using rhdfs, users can read from HDFS stores to
an R data frame (matrix), and similarly write data from these R matrices
back into HDFS storage.

 ✓ rhbase: rhbase packages provide an R language API as well, but their
goal in life is to deal with database management for HBase stores, rather
than HDFS files.

Revolution R
Revolution R (by Revolution Analytics) is a commercial R offering with sup-
port for R integration on Hadoop distributed systems. Revolution R prom-
ises to deliver improved performance, functionality, and usability for R on
Hadoop. To provide deep analytics akin to R, Revolution R makes use of the
company’s ScaleR library — a collection of statistical analysis algorithms
developed specifically for enterprise-scale big data collections.

ScaleR aims to deliver fast execution of R program code on Hadoop clusters,
allowing the R developer to focus exclusively on their statistical algorithms
and not on MapReduce. Furthermore, it handles numerous analytics tasks,
such as data preparation, visualization, and statistical tests.

IBM BigInsights Big R
Big R offers end-to-end integration between R and IBM’s Hadoop offering,
BigInsights, enabling R developers to analyze Hadoop data. The aim is to
exploit R’s programming syntax and coding paradigms, while ensuring that

138 Part II: How Hadoop Works

the data operated upon stays in HDFS. R datatypes serve as proxies to these
data stores, which means R developers don’t need to think about low-level
MapReduce constructs or any Hadoop-specific scripting languages (like Pig).

BigInsights Big R technology supports multiple data sources — including
flat files, HBase, and Hive storage formats — while providing parallel and
partitioned execution of R code across the Hadoop cluster. It hides many of
the complexities in the underlying HDFS and MapReduce frameworks, allow-
ing Big R functions to perform comprehensive data analytics — on both
structured and unstructured data. Finally, the scalability of Big R’s statistical
engine allows R developers to make use of both pre-defined statistical tech-
niques, as well as author new algorithms themselves.

Chapter 10

Developing and Scheduling
Application Workflows

with Oozie
In This Chapter
▶ Setting up the Oozie server

▶ Developing and running an Oozie workflow

▶ Scheduling and coordinating Oozie workflows

M
oving data and running different kinds of applications in Hadoop is
great stuff, but it’s only half the battle. For Hadoop’s efficiencies to

truly start paying off for you, start thinking about how you can tie together
a number of these actions to form a cohesive workflow. This idea is appeal-
ing, especially after you and your colleagues have built a number of Hadoop
applications and you need to mix and match them for different purposes. At
the same time, you inevitably need to prepare or move data as you progress
through your workflows and make decisions based on the output of your
jobs or other factors. Of course, you can always write your own logic or hack
an existing workflow tool to do this in a Hadoop setting — but that’s a lot of
work. Your best bet is to use Apache Oozie, a workflow engine and schedul-
ing facility designed specifically for Hadoop.

As a workflow engine, Oozie enables you to run a set of Hadoop applications
in a specified sequence known as a workflow. You define this sequence in
the form of a directed acyclic graph (DAG) of actions. In this workflow, the
nodes are actions and decision points (where the control flow will go in one
direction, or another), while the connecting lines show the sequence of these
actions and the directions of the control flow. Oozie graphs are acyclic (no
cycles, in other words), which means you can’t use loops in your workflows.
In terms of the actions you can schedule, Oozie supports a wide range of job
types, including Pig, Hive, and MapReduce, as well as jobs coming from Java
programs and Shell scripts.

140 Part II: How Hadoop Works

Oozie also provides a handy scheduling facility. An Oozie coordinator job, for
example, enables you to schedule any workflows you’ve already created. You
can schedule them to run based on specific time intervals, or even based on
data availability. At an even higher level, you can create an Oozie bundle job
to manage your coordinator jobs. Using a bundle job, you can easily apply
policies against a set of coordinator jobs by using a bundle job.

For all three kinds of Oozie jobs (workflow, coordinator, and bundle), you
start out by defining them using individual .xml files, and then you configure
them using a combination of properties files and command-line options.

Figure 10-1 gives an overview of all the components you’d usually find in an
Oozie server. Don’t expect to understand all the elements in one fell swoop.
We help you work through the various parts shown here throughout this
chapter as we explain how all the components work together.

Figure 10-1:
Oozie server
components.

Getting Oozie in Place
Apache Oozie is included in every major Hadoop distribution, including
Apache Bigtop, which is the basis of the distribution used by this book. In
your Hadoop cluster, install the Oozie server on an edge node, where you
would also run other client applications against the cluster’s data, as shown
in Figure 10-2.

Edge nodes are designed to be a gateway for the outside network to the
Hadoop cluster. This makes them ideal for data transfer technologies (Flume,
for example), but also client applications and other application infrastructure
like Oozie. Oozie does not need a dedicated server, and can easily coexist
with other services that are ideally suited for edge nodes, like Pig and Hive.
For more information on Hadoop deployments, see Chapter 16.

141 Chapter 10: Developing and Scheduling Application Workflows with Oozie

Figure 10-2:
Oozie server
deployment.

After Oozie is deployed, you’re ready to start the Oozie server. Oozie’s infra-
structure is installed in the $OOZIE_HOME directory. From there, run the
oozie-start.sh command to start the server. (As you might expect, stopping
the server involves typing oozie-stop.sh.) You can test the status of your
Oozie instance by running the command

oozie admin -status

After you have the Oozie server deployed and started, you can catalog and
run your various workflow, coordinator, or bundle jobs. When working with
your jobs, Oozie stores the catalog definitions — the data describing all the
Oozie objects (workflow, coordinator, and bundle jobs) — as well as their
states in a dedicated database.

 By default, Oozie is configured to use the embedded Derby database, but you
can use MySQL, Oracle, or PostgreSQL, if you need to.

A quick look at Figure 10-1 tells you that you have four options for interacting
with the Oozie server:

 ✓ The Java API: This option is useful in situations where you have your
own scheduling code in Java applications, and you need to control the
execution of your Oozie workflows, coordinators, or bundles from within
your application.

 ✓ The REST API: Again, this option works well in those cases where you want
to use your own scheduling code as the basis of your Oozie workflows, coor-
dinators, or bundles, or if you want to build your own interface or extend an
existing one for administering the Oozie server.

142 Part II: How Hadoop Works

 ✓ Command Line Interface (CLI): It’s the traditional Linux command line
interface for Oozie.

 ✓ The Oozie Web Console: Okay, maybe you can’t do much interacting
here, but the Oozie Web Console gives you a (read-only) view of the
state of the Oozie server, which is useful for monitoring your Oozie jobs.

Hue, a Hadoop administration interface, provides another tool for working
with Oozie. Oozie workflows, coordinators, and bundles are all defined using
XML, which can be tedious to edit, especially for complex situations. Hue
provides a GUI designer tool to graphically build workflows and other Oozie
objects.

 Underneath the covers, Oozie includes an embedded Tomcat web server,
which handles its input and output.

Developing and Running
an Oozie Workflow

Oozie workflows are, at their core, directed graphs, where you can define
actions (Hadoop applications) and data flow, but with no looping — meaning
you can’t define a structure where you’d run a specific operation over and
over until some condition is met (a for loop, for example). Oozie workflows
are quite flexible in that you can define condition-based decisions and forked
paths for parallel execution. You can also execute a wide range of actions.

Figure 10-3 shows a sample Oozie workflow.

Figure 10-3:
A sample

Oozie
workflow.

In this figure, we see a workflow showing the basic capabilities of Oozie work-
flows. First, a Pig script is run, and is immediately followed by a decision tree.
Depending on the state of the output, the control flow can either go directly
to an HDFS file operation (for example, a copyToLocal operation) or to a fork
action. If the control flow passes to the fork action, two jobs are run concur-
rently: a MapReduce job, and a Hive query. The control flow then goes to the
HDFS operation once both the MapReduce job and Hive query are finished
running. After the HDFS operation, the workflow is complete.

143 Chapter 10: Developing and Scheduling Application Workflows with Oozie

Writing Oozie workflow definitions
Oozie workflow definitions are written in XML, based on the Hadoop Process
Definition Language (hPDL) schema. This particular schema is, in turn, based
on the XML Process Definition Language (XPDL) schema, which is a product-
independent standard for modeling business process definitions.

An Oozie workflow is composed of a series of actions, which are encoded by
XML nodes. There are different kinds of nodes, representing different kinds of
actions or control flow directives. Each Oozie workflow has its own XML file,
where every node and its interconnections are defined. Workflow nodes all
require unique identifiers because they’re used to identify the next node to
be processed in the workflow. This means that the order in which the actions
are executed depends on where an action’s node appears in the workflow
XML. To see how this concept would look, check out Listing 10-1, which
shows an example of the basic structure of an Oozie workflow’s XML file.

Listing 10-1: A Sample Oozie XML File

<workflow-app name="SampleWorkflow" xmlns="uri:oozie:workflow:0.1">
 <start to="firstJob"/>
 <action name="firstJob">
 <pig>...</pig>
 <ok to="secondJob"/>
 <error to="kill"/>
 </action>
 <action name="secondJob">
 <map-reduce>...</map-reduce>
 <ok to="end" />
 <error to="kill" />
 </action>
 <end name="end"/>
 <kill name="kill">
 <message>"Killed job."</message>
 </kill>
</workflow-app>

In this example, aside from the start, end, and kill nodes, you have two action
nodes. Each action node represents an application or a command being exe-
cuted. The next few sections look a bit closer at each node type.

Start and end nodes
Each workflow XML file must have one matched pair of start and end nodes.
The sole purpose of the start node is to direct the workflow to the first node,
which is done using the to attribute. Because it’s the automatic starting
point for the workflow, no name identifier is required.

144 Part II: How Hadoop Works

 Action nodes need name identifiers, as the Oozie server uses them to track
the current position of the control flow as well as to specify which action to
execute next.

The sole purpose of the end node is to provide a termination point for the
workflow. A name identifier is required, but there’s no need for a to attribute.

Kill nodes
Oozie workflows can include kill nodes, which are a special kind of node
dedicated to handling error conditions. Kill nodes are optional, and you can
define multiple instances of them for cases where you need specialized han-
dling for different kinds of errors. Action nodes can include error transition
tags, which direct the control flow to the named kill node in case of an error.
You can also direct decision nodes to point to a kill node based on the results
of decision predicates, if needed. Like an end node, a kill node results in the
workflow ending, and it does not need a to attribute.

Decision nodes
Decision nodes enable you to define conditional logic to determine the next
step to be taken in the workflow — Listing 10-2 gives some examples:

Listing 10-2: A Sample Oozie XML File

<workflow-app name="SampleWorkflow" xmlns="uri:oozie:workflow:0.1">
 <start to="firstDecision"/>
 @@1
 <decision name="firstDecision">
 <switch>
 @@2
 <case to="firstJob">
 ${fs:fileSize('usr/dirk/ny-flights') gt 10 * GB}
 </case>
 @@3
 <case to="secondJob">
 ${fs:filSize('usr/dirk/ny-flights') lt 100 * MB}
 </case>
 @@4
 <default to="thirdJob"/>
 </switch>
 </decision>
 <action name="firstJob">...</action>
 <action name="secondJob">...</action>
 <action name="thirdJob">...</action>
 <end name="end"/>
</workflow-app>

145 Chapter 10: Developing and Scheduling Application Workflows with Oozie

In this workflow, we begin with a decision node (see the code following
the bold @@1), which includes a case statement (called switch), where,
depending on the size of the files in the 'usr/dirk/ny-flights' direc-
tory, a different action is taken. Here, if the size of the files in the 'usr/
dirk/ny-flights' directory is greater than 10GB (see the code following
the bold @@2), the control flow runs the action named firstJob next. If
the size of the files in the 'usr/dirk/ny-flights' directory is less than
100MB (see the code following the bold @@3), the control flow runs the
action named secondJob next. And if neither case we’ve seen so far is true
(in this case, if the size of the files in the 'usr/dirk/ny-flights' direc-
tory is greater than 100MB and less than 10GB), we want the action named
thirdJob to run.

 Case statements (seen here as switch) are quite common in control flow
programming languages. (We talk about the difference between control flow
and data flow languages in Chapter 8.) They enable you to define the flow of
a program based on a series of decisions. They’re called case statements,
because they’re really a set of cases: for example, in case the first comparison
is true, we’ll run one function, or in case the second comparison is true, we’ll
run a different function.

As we just saw, a decision node consists of a switch operation, where you
can define one or more cases and a single default case, which is mandatory.
This is to ensure the workflow always has a next action. Predicates for the
case statements — the logic inside the <case> tags — are written as JSP
Expression Language (EL) expressions, which resolve to either a true or
false value.

 For the full range of EL expressions that are bundled in the Oozie, check out
the related Oozie workflows specifications at this site:

http://oozie.apache.org/docs/4.0.0/WorkflowFunctionalSpec.
html - a4.2_Expression_Language_Functions

Action nodes
Action nodes are where the actual work performed by the workflow is com-
pleted. You have a wide variety of actions to choose from — Hadoop applica-
tions (like Pig, Hive, and MapReduce), Java applications, HDFS operations,
and even sending e-mail, to name just a few examples. You can also configure
custom action types for operations that have no existing action.

146 Part II: How Hadoop Works

Depending on the kind of action being used, a number of different tags need
to be used. All actions, however, require transition tags: one for defining the
next node after then successful completion of the action, and one for defining
the next node if the action fails. In the following list, we describe the more
commonly used action node types:

 ✓ MapReduce: MapReduce, as we discuss in Chapter 6, is a framework for
distributed applications to run on Hadoop. For a MapReduce workflow
to be successful, a couple things need to happen. MapReduce actions,
for example, require that you specify the addresses of the processing
and storage servers for your Hadoop cluster. We also need to specify the
master services for both the processing and storage systems in Hadoop
so that Oozie can properly submit this job for execution on the Hadoop
cluster, and so that the input files can be found. Listing 10-3 shows the
tagging for a MapReduce action:

Listing 10-3: A Sample Oozie XML File to Run a MapReduce Job
<workflow-app name=" SampleWorkflow " xmlns="uri:oozie:workflow:0.1">
 ...
 <action name="firstJob">
 <map-reduce>

 @@1 <job-tracker>serverName:8021</job-tracker>
 <name-node>serverName:8020</name-node>

 @@2 <prepare>
 <delete path="hdfs://clientName:8020/usr/sample/output-data"/>
 </prepare>

 @@3 <job-xml>jobConfig.xml</job-xml>
 <configuration>
 ...
 <property>
 <name>mapreduce.map.class</name>
 <value>dummies.oozie.FlightMilesMapper</value>
 </property>
 <property>
 <name>mapreduce.reduce.class</name>
 <value>dummies.oozie.FlightMilesReducer </value>
 </property>
 <property>
 <name>mapred.mapoutput.key.class</name>
 <value>org.apache.hadoop.io.Text</value>
 </property>
 <property>
 <name>mapred.mapoutput.value.class</name>
 <value>org.apache.hadoop.io.IntWritable</value>
 </property>
 <property>
 <name>mapred.output.key.class</name>
 <value>org.apache.hadoop.io.Text</value>
 </property>
 <property>

147 Chapter 10: Developing and Scheduling Application Workflows with Oozie

 <name>mapred.output.value.class</name>
 <value>org.apache.hadoop.io.IntWritable</value>
 </property>
 <property>
 <name>mapred.input.dir</name>
 <value>'/usr/dirk/flightdata'</value>
 </property>
 <property>
 <name>mapred.output.dir</name>
 <value>'/usr/dirk/flightmiles'</value>
 </property>
 ...
 </configuration>
 </map-reduce>
 <ok to="end"/>
 <error to="end"/>
 </action>
 ...
</workflow-app>

 In this code, we just have a single action to illustrate how to invoke a
MapReduce job from an Oozie workflow. In the code following the bold
@@1, we need to define the master servers for the storage and process-
ing systems in Hadoop. For the processing side, the old JobTracker term
is used, but you can enter the name for the Region Server if you’re using
YARN to manage the processing in your cluster. (See Chapter 7 for more
information on the JobTracker and the Region Server and how they
manage the processing for Hadoop, both in Hadoop 1 and in Hadoop 2.)
Note that we also specify the server and port number for the NameNode
(again, so the MapReduce job can find its files).

 In the code following the bold @@2, the <prepare> tag is used to delete
any residual information from previous runs of the same application.
You can also do other file movement operations here if needed.

 All the definitions for the MapReduce applications are specified in configu-
ration details. In the code following the bold @@3, we can see the first of
two options: the <job-xml> tag, which is optional, can point to a Hadoop
JobConf file, where you can define all your configuration details outside
the Oozie workflow XML document. This can be useful if you need to run
the same MapReduce application in many of your workflows, so if configu-
rations need to change you only need to adjust the settings in one place.
You can also enter configuration details in the <configuration> tag,
as we’ve done in the example above. In the example, you can see that we
define all the key touch points for the MapReduce application: the data
types of the key/value pairs as they input and output the map and reduce
phases, the class names for the map and reduce code you have written,
and the paths for the input and output files. It’s important to note that
configuration settings specified here would override any settings defined
in the file identified in the <job-xml> tag.

148 Part II: How Hadoop Works

 ✓ Hive: Similar to MapReduce actions, as just described, Hive actions
require that you specify the addresses of the processing and storage
servers for your Hadoop cluster. Hive enables you to submit SQL-like
queries against data in HDFS that you’ve cataloged as a Hive table. (For
more information on Hive, see Chapter 13.) As Hive does its work, Hive
queries get turned into MapReduce jobs, so we will need to specify the
names of the processing and storage systems used in your Hadoop clus-
ter. The following example shows the tagging for a Hive action:

Listing 10-4: A Sample Oozie XML File to Run a Hive Query
<workflow-app name="SampleWorkflow" xmlns="uri:oozie:workflow:0.2">
 ...
 <action name="firstJob">
 <hive>
 <job-tracker>serverName:8021</job-tracker>
 <name-node>serverName:8020</name-node>
 <prepare>
 <delete path="hdfs://clientName:8020/usr/sample/output-

data"/>
 </prepare>
 <job-xml>jobConfig.xml</job-xml>
 <configuration>...</configuration>
 @@1 <script>firstJob.hql</script>
 </hive>
 <ok to="end"/>
 <error to="end"/>
 </action>
 ...
</workflow-app>

 In the code in Listing 10-4, we have defined similar definitions as we’ve
done with the MapReduce action. The key difference here is that we can
avoid the extensive configuration tags defining the MapReduce details
and simply specify the location and name of the file containing the Hive
query. (See the code following the bold @@1.)

 To specify the Hive script being used, enter the filename and path in the
<script> tag. Aside from this tag, the remaining tags shown are the
same as for MapReduce.

 ✓ Pig: Pig scripts enable you to define a data flow (a series of actions you
can apply to data) and the Pig compiler turns that code into MapReduce.
(See Chapter 8 for more on Pig in general.) Pig actions require that you
specify the addresses of the processing and storage servers for your

149 Chapter 10: Developing and Scheduling Application Workflows with Oozie

Hadoop cluster. Since the Hadoop processing and storage systems are
used here, as they are in the Hive action, we need to specify their names
here as well. Listing 10-5 shows the tagging for a Pig action:

Listing 10-5: A Sample Oozie XML File to Run a Pig Script
<workflow-apfp name="SampleWorkflow" xmlns="uri:oozie:workflow:0.2">
 ...
 <action name="firstJob">
 <pig>
 <job-tracker>serverName:8021</job-tracker>
 <name-node>serverName:8020</name-node>
 <prepare>
 <delete path="hdfs://clientName:8020/usr/sample/output-

data"/>
 </prepare>
 <job-xml>jobConfig.xml</job-xml>
 <configuration>...</configuration>
 @@1 <script>firstJob.pig</script>
 </pig>
 <ok to="end"/>
 <error to="end"/>
 </action>
 ...
</workflow-app>

 Listing 10-5 looks a lot like Listing 10-4. Once again, we have defined
similar definitions as we’ve done with the MapReduce action and once
again the key difference here is that we can avoid the extensive configu-
ration tags defining the MapReduce details. All we have to do is specify
the location and name of the file containing the Pig script query. (See
the code following the bold @@1.) To specify the .pig script being used,
enter the filename and path in the <script> tag.

 ✓ File System (FS): The File System action enables you to run HDFS com-
mands as part of your workflow, which is tremendously useful as you
post-process and pre-preprocess data. Note: The HDFS commands
enable you to perform the typical file movement operations people
need to do when manipulating data inputs and outputs, like deleting,
copying, renaming, and moving files. Listing 10-6 shows the tagging for a
file system action where a file is deleted, a directory is created, a file is
moved, and permissions are changed:

150 Part II: How Hadoop Works

Listing 10-6: A Sample Oozie XML File to Run File System Commands

<workflow-app name="SampleWorkflow" xmlns="uri:oozie:workflow:0.1">
 ...
 <action name="firstJob">
 <fs>
 <delete path="hdfs://servername:8020/usr/sample/temp-data"/>
 <mkdir path="archives/${wf:id()}"/>
 <move source="${jobInput}"
 target="archives/${wf:id()}/processed-input"/>
 <chmod path="${jobOutput}" permissions="-rwxrw-rw-" dir-

files="true"><recursive/></chmod>
 </fs>
 <ok to="end"/>
 <error to="end"/>
 </action>
 ...
</workflow-app>

Fork and join nodes
You can define parallel execution tracks for your workflows by using fork
and join nodes together. This structure, which begins with a fork, can spawn
two or more workflow paths, which would then be executed in parallel. Use
the join node to merge the control flow back to a single path. See the code in
Listing 10-7:

Listing 10-7: A Sample Oozie XML File to Fork a Control Flow

<workflow-app name="SampleWorkflow" xmlns="uri:oozie:workflow:0.1">
 <start to="fork"/>
 <fork name="fork">
 <path start="firstJob" />
 <path start="secondJob" />
 </fork>
 <action name="firstJob">
 ...
 <ok to="join" />
 <error to="end" />
 </action>
 <action name="secondJob">
 ...
 <ok to="join" />
 <error to="end" />
 </action>
 <join name="join" to="end" />
 <end name="end"/>
</workflow-app>

151 Chapter 10: Developing and Scheduling Application Workflows with Oozie

The actions and other control flow nodes must point to the join node to termi-
nate the individual workflow paths that were spawned with the fork operation.
Before the next node pointed to by the join node can be executed, all the actions
and control flows in each of the paths must be finished.

Configuring Oozie workflows
You can configure Oozie workflows in one of three ways, depending on your
particular circumstances. You can use

 ✓ The config-default.xml file: Defines parameters that don’t change
for the workflow.

 ✓ The job.properties file: Defines parameters that are common for a
particular deployment of the workflow. Definitions here override those
made in the config-default.xml file.

 ✓ The command-line parameters: Defines parameters that are specific for
the workflow invocation. Definitions here override those made in the
job.properties file and the config-default.xml file.

The configuration details will differ, depending on the action they’re associ-
ated with. For example, as we saw in the MapReduce action (map-action) in
Listing 10-3, you have many more things to configure there, as opposed to a
file system (fs) action like the one shown in Listing 10-6.

Running Oozie workflows
Before running your Oozie workflows, all its components need to exist within
a specified directory structure. Specifically, the workflow itself should have
its own, dedicated directory, where workflow.xml is in the root directory,
and any code libraries exist in the subdirectory named lib. The workflow
directory and all its files must exist in HDFS for it to be executed.

 If you’ll be using the Oozie command-line interface to work with various jobs,
be sure to set the OOZIE_URL environment variable. (This is easily done from
a command line in a Linux terminal.) You can save yourself a lot of typing
because the Oozie server’s URL will now automatically be included with your
requests. Here’s a sample command one could use to set the OOZIE_URL
environment variable from the command line:

export OOZIE_URL="http://localhost:8080/oozie"

152 Part II: How Hadoop Works

 To run an Oozie workload from the Oozie command-line interface, issue a
command like the following, while ensuring that the job.properties file is
locally accessible — meaning the account you’re using can see it, meaning it
has to be on the same system where you’re running Oozie commands:

$ oozie job -config sampleWorkload/job.properties -run

After you submit a job, the workload is stored in the Oozie object
database. (Refer to Figure 10-1.) On submission, Oozie returns an identi-
fier to enable you to monitor and administer your workflow — job:
0000001-00000001234567-oozie-W, for example:

To check the status of this job, you’d run the command

oozie job -info 0000001-00000001234567-oozie-W

Scheduling and Coordinating
Oozie Workflows

After you’ve created a set of workflows, you can use a series of Oozie coordina-
tor jobs to schedule when they’re executed. You have two scheduling options
for execution: a specific time and the availability of data in conjunction with a
certain time. The following three sections take a look at each option.

Time-based scheduling for
Oozie coordinator jobs
Oozie coordinator jobs can be scheduled to execute at a certain time, but
after they’re started, they can then be configured to run at specified inter-
vals. The following example shows a coordinator job that starts running at a
specified start time and date:

Listing 10-8: A Sample Oozie XML File to Schedule a Workflow by Time

<coordinator-app name="sampleCoordinator"
 frequency="${coord:days(1)}"
 start="2014-06-01T00:01Z "
 end="2014-06-01T01:00Z "
 timezone="UTC"
 xmlns="uri:oozie:coordinator:0.1">
 <controls>...</controls>

153 Chapter 10: Developing and Scheduling Application Workflows with Oozie

 <action>
 <workflow>
 <app-path>${workflowAppPath}</app-path>
 </workflow>
 </action>
</coordinator-app>

Time and data availability-based scheduling
for Oozie coordinator jobs
Oozie coordinator jobs can also be scheduled to execute at a certain time if
specified data files or directories are available. Listing 10-9 shows an example
of a coordinator that starts running at a specified start time and date, is
executed once a day if the data set identified by triggerDatasetDir exists,
and runs until the specified end time:

Listing 10-9: A Sample Oozie XML File to Schedule a Workflow by
Time and Data Availability

<coordinator-app name="sampleCoordinator"
 frequency="${coord:days(1)}"
 start="${startTime}"
 end="${endTime}"
 timezone="${timeZoneDef}"
 xmlns="uri:oozie:coordinator:0.1">
 <controls>...</controls>
 <datasets>
 <dataset name="input" frequency="${coord:days(1)}" initial-

instance="${startTime}" timezone="${timeZoneDef}">
 <uri-template>${triggerDatasetDir}</uri-template>
 </dataset>
 </datasets>
 <input-events>
 <data-in name="sampleInput" dataset="input">
 <instance>${startTime}</instance>
 </data-in>
 </input-events>
 <action>
 <workflow>
 <app-path>${workflowAppPath}</app-path>
 </workflow>
 </action>
</coordinator-app>

154 Part II: How Hadoop Works

Running Oozie coordinator jobs
Similar to Oozie workflow jobs, coordinator jobs require a job.properties
file, and the coordinator.xml file needs to be loaded in the HDFS. To run an
Oozie coordinator job from the Oozie command-line interface, issue a com-
mand like the following while ensuring that the job.properties file is
locally accessible:

$ oozie job -config sampleCoordinator/job.properties -run

After you submit the job, the coordinator is stored in the Oozie object data-
base. (Refer to Figure 10-1.) On submission, Oozie returns an identifier to
enable you to monitor and administer your coordinator — job: 0000001-
00000001234567-oozie-C, for example:

To check the status of this job, run the command

oozie job -info 0000001-00000001234567-oozie-C

Part III
Hadoop and Structured Data

 Check out the article “Roadmap of Hadoop Family Projects” (and more) online at
www.dummies.com/extras/hadoop.

In this part . . .
 ✓ Examine how Hadoop can play nice with different kinds of data

warehouses.

 ✓ See what HBase brings to the Hadoop table.

 ✓ Be busy as a bee with Hive.

 ✓ Get the scoop on Sqoop.

 ✓ Look into the (SQL) future of Hadoop

 ✓ Check out the article “Roadmap of Hadoop Family Projects” (and
more) online at www.dummies.com/extras/hadoop.

Chapter 11

Hadoop and the Data Warehouse:
Friends or Foes?

In This Chapter
▶ Contrasting the architectural differences between Hadoop and relational databases

▶ Landing enterprise data in Hadoop

▶ Archiving data in Hadoop

▶ Preprocessing data in Hadoop

▶ Discovery and exploration in Hadoop

I
T types like us tend to love the latest and greatest new technologies, and
when compelling platforms like Hadoop emerge, they’re often accompanied

by a significant amount of hype. You might even say that this For Dummies
book is part of that hype! When it comes to Hadoop, though, there’s real
substance behind the hype. Not convinced? Just look at the increasing numbers
of code contributions in the Apache Hadoop projects as well as the adoption
rates of Hadoop in medium-to large-size businesses. The consensus is over-
whelming: Hadoop is here to stay.

It’s important to understand how any new technology relates to existing
technologies and business practices. In the case of Hadoop, you should know
how it will impact the field of enterprise data management. In our experience,
the IT market reacts in two distinct ways.

On one hand, the Hadoop hype machine is in full gear and bent on world
domination. This camp sees Hadoop replacing the relational database
products that now power the world’s data warehouses. The argument here is
compelling: Hadoop is cheap and scalable, and it has queryable interfaces
that are becoming increasingly faster and more closely compliant with ANSI
SQL — the standard for programming applications used with database systems.

158 Part III: Hadoop and Structured Data

On the other hand, many relational warehouse vendors have gone out of their
way to resist the appeal of all the Hadoop hype. Understandably, they won’t
roll over and make way for Hadoop to replace their relational database offerings.
They’ve adopted what we consider to be a protectionist stance, drawing a line
between structured data, which they consider to be the exclusive domain of
relational databases, and unstructured data, which is where they feel Hadoop
can operate. In this model, they’re positioning Hadoop as solely a tool to transform
unstructured data into a structured form for relational databases to store.

We feel that the truth lies in the middle of these opposing views: there are
many workloads and business applications where data warehouses powered
by relational databases are still the most practical choice. At the same time,
there are classes of data (both structured and unstructured) and workloads
where Hadoop is the most practical option. The key consideration here is
using tools that are best suited for the task at hand.

The focus of this chapter is on comparing and contrasting the relative
strengths of Hadoop technologies and relational databases and then on
exploring a family of use cases for how Hadoop’s strengths can expand
the capabilities of today’s data warehouses.

Comparing and Contrasting Hadoop
with Relational Databases

Database models and database systems have been around as long as computer
systems have roamed the earth, and most of us IT people have at least been
exposed to (or perhaps even used) some type of database technology for a very
long time. The most prevalent database technology is the relational database
management system (RDBMS), which can be traced back to Edgar F. Codd’s
groundbreaking work at IBM in the 1970s. Several well-known companies (IBM,
Informix, Oracle, and Sybase, for example) capitalized on Codd’s work and sold,
or continue to sell, products based on his relational model. At roughly the same
time, Donald D. Chamberlin and Raymond F. Boyce created the structured query
language (SQL) as a way to provide a common programming language for
managing data stored in an RDBMS.

The 1980s and 1990s saw the birth of the object database, which provided a
better fit for a particular class of problems than the relational database, and now
another new class of technologies, commonly referred to as NoSQL databases, is
emerging. Because NoSQL databases play a significant role in the Hadoop story,
they deserve a closer look, so be sure to read the next section.

159 Chapter 11: Hadoop and the Data Warehouse: Friends or Foes?

NoSQL data stores
NoSQL data stores originally subscribed to the notion “Just Say No to SQL”
(to paraphrase from an anti-drug advertising campaign in the 1980s), and
they were a reaction to the perceived limitations of (SQL-based) relational
databases. It’s not that these folks hated SQL, but they were tired of forcing
square pegs into round holes by solving problems that relational databases
weren’t designed for. A relational database is a powerful tool, but for some
kinds of data (like key-value pairs, or graphs) and some usage patterns (like
extremely large scale storage) a relational database just isn’t practical. And
when it comes to high-volume storage, relational database can be expensive,
both in terms of database license costs and hardware costs. (Relational
databases are designed to work with enterprise-grade hardware.) So, with
the NoSQL movement, creative programmers developed dozens of solutions for
different kinds of thorny data storage and processing problems. These NoSQL
databases typically provide massive scalability by way of clustering, and are
often designed to enable high throughput and low latency.

 The name NoSQL is somewhat misleading because many databases that fit the
category do have SQL support (rather than “NoSQL” support). Think of its
name instead as “Not Only SQL.”

The NoSQL offerings available today can be broken down into four distinct
categories, based on their design and purpose:

 ✓ Key-value stores: This offering provides a way to store any kind of data
without having to use a schema. This is in contrast to relational data-
bases, where you need to define the schema (the table structure) before
any data is inserted. Since key-value stores don’t require a schema, you
have great flexibility to store data in many formats. In a key-value store,
a row simply consists of a key (an identifier) and a value, which can be
anything from an integer value to a large binary data string. Many imple-
mentations of key-value stores are based on Amazon’s Dynamo paper.

 ✓ Column family stores: Here you have databases in which columns are
grouped into column families and stored together on disk.

 Strictly speaking, many of these databases aren’t column-oriented,
because they’re based on Google’s BigTable paper, which stores data
as a multidimensional sorted map. (For more on the role of Google’s
BigTable paper on database design, see Chapter 12.)

 ✓ Document stores: This offering relies on collections of similarly encoded
and formatted documents to improve efficiencies. Document stores
enable individual documents in a collection to include only a subset of
fields, so only the data that’s needed is stored. For sparse data sets, where
many fields are often not populated, this can translate into significant
space savings. By contrast, empty columns in relational database tables

160 Part III: Hadoop and Structured Data

do take up space. Document stores also enables schema flexibility,
because only the fields that are needed are stored, and new fields can
be added. Again, in contrast to relational databases, table structures are
defined up front before data is stored, and changing columns is a tedious
task that impacts the entire data set.

 ✓ Graph databases: Here you have databases that store graph struc-
tures — representations that show collections of entities (vertices or
nodes) and their relationships (edges) with each other. These structures
enable graph databases to be extremely well suited for storing complex
structures, like the linking relationships between all known web pages.
(For example, individual web pages are nodes, and the edges connecting
them are links from one page to another.) Google, of course, is all over
graph technology, and invented a graph processing engine called Pregel
to power its PageRank algorithm. (And yes, there’s a white paper on
Pregel.) In the Hadoop community, there’s an Apache project called
Giraph (based on the Pregel paper), which is a graph processing engine
designed to process graphs stored in HDFS.

 The data storage and processing options available in Hadoop are in many
cases implementations of the NoSQL categories listed here. This will help you
better evaluate solutions that are available to you and see how Hadoop can
complement traditional data warehouses.

ACID versus BASE data stores
One hallmark of relational database systems is something known as ACID
compliance. As you might have guessed, ACID is an acronym — the individual
letters, meant to describe a characteristic of individual database transactions,
can be expanded as described in this list:

 ✓ Atomicity: The database transaction must completely succeed or
completely fail. Partial success is not allowed.

 ✓ Consistency: During the database transaction, the RDBMS progresses
from one valid state to another. The state is never invalid.

 ✓ Isolation: The client’s database transaction must occur in isolation from
other clients attempting to transact with the RDBMS.

 ✓ Durability: The data operation that was part of the transaction must
be reflected in nonvolatile storage (computer memory that can retrieve
stored information even when not powered – like a hard disk) and persist
after the transaction successfully completes. Transaction failures cannot
leave the data in a partially committed state.

Certain use cases for RDBMSs, like online transaction processing, depend on
ACID-compliant transactions between the client and the RDBMS for the system
to function properly. A great example of an ACID-compliant transaction is a
transfer of funds from one bank account to another. This breaks down into two

161 Chapter 11: Hadoop and the Data Warehouse: Friends or Foes?

database transactions, where the originating account shows a withdrawal, and
the destination account shows a deposit. Obviously, these two transactions
have to be tied together in order to be valid so that if either of them fail, the
whole operation must fail to ensure both balances remain valid.

Hadoop itself has no concept of transactions (or even records, for that matter),
so it clearly isn’t an ACID-compliant system. Thinking more specifically about
data storage and processing projects in the entire Hadoop ecosystem (we tell
you more about these projects later in this chapter), none of them is fully
ACID-compliant, either. However, they do reflect properties that you often see
in NoSQL data stores, so there is some precedent to the Hadoop approach.

One key concept behind NoSQL data stores is that not every application truly
needs ACID-compliant transactions. Relaxing on certain ACID properties (and
moving away from the relational model) has opened up a wealth of possibilities,
which have enabled some NoSQL data stores to achieve massive scalability
and performance for their niche applications. Whereas ACID defines the key
characteristics required for reliable transaction processing, the NoSQL world
requires different characteristics to enable flexibility and scalability. These
opposing characteristics are cleverly captured in the acronym BASE:

 ✓ Basically Available: The system is guaranteed to be available for querying
by all users. (No isolation here.)

 ✓ Soft State: The values stored in the system may change because of the
eventual consistency model, as described in the next bullet.

 ✓ Eventually Consistent: As data is added to the system, the system’s
state is gradually replicated across all nodes. For example, in Hadoop,
when a file is written to the HDFS, the replicas of the data blocks are
created in different data nodes after the original data blocks have been
written. For the short period before the blocks are replicated, the state
of the file system isn’t consistent.

The acronym BASE is a bit contrived, as most NoSQL data stores don’t
completely abandon all the ACID characteristics — it’s not really the polar
opposite concept that the name implies, in other words. Also, the Soft State
and Eventually Consistent characteristics amount to the same thing, but
the point is that by relaxing consistency, the system can horizontally scale
(many nodes) and ensure availability.

 No discussion of NoSQL would be complete without mentioning the CAP
 theorem, which represents the three kinds of guarantees that architects aim
to provide in their systems:

 ✓ Consistency: Similar to the C in ACID, all nodes in the system would
have the same view of the data at any time.

 ✓ Availability: The system always responds to requests.

 ✓ Partition tolerance: The system remains online if network problems
occur between system nodes.

162 Part III: Hadoop and Structured Data

The CAP theorem states that in distributed networked systems, architects
have to choose two of these three guarantees — you can’t promise your users
all three. That leaves you with the three possibilities shown in Figure 11-1:

 ✓ Systems using traditional relational technologies normally aren’t partition
tolerant, so they can guarantee consistency and availability. In short, if one
part of these traditional relational technologies systems is offline, the whole
system is offline.

 ✓ Systems where partition tolerance and availability are of primary
importance can’t guarantee consistency, because updates (that
destroyer of consistency) can be made on either side of the partition. The
key-value stores Dynamo and CouchDB and the column-family store
Cassandra are popular examples of partition tolerant/availability (PA)
systems.

 ✓ Systems where partition tolerance and consistency are of primary
importance can’t guarantee availability because the systems return
errors until the partitioned state is resolved.

 Hadoop-based data stores are considered CP systems (consistent and
partition tolerant). With data stored redundantly across many slave
nodes, outages to large portions (partitions) of a Hadoop cluster can
be tolerated. Hadoop is considered to be consistent because it has
a central metadata store (the NameNode) which maintains a single,
consistent view of data stored in the cluster. We can’t say that Hadoop
guarantees availability, because if the NameNode fails applications
cannot access data in the cluster.

Figure 11-1:
CAP

theorem
guarantees
and imple-
mentation
examples.

163 Chapter 11: Hadoop and the Data Warehouse: Friends or Foes?

Structured data storage and
processing in Hadoop
When considering Hadoop’s capabilities for working with structured data
(or working with data of any type, for that matter), remember Hadoop’s core
characteristics: Hadoop is, first and foremost, a general-purpose data stor-
age and processing platform designed to scale out to thousands of compute
nodes and petabytes of data. There’s no data model in Hadoop itself; data is
simply stored on the Hadoop cluster as raw files. As such, the core compo-
nents of Hadoop itself have no special capabilities for cataloging, indexing, or
querying structured data.

The beauty of a general-purpose data storage system is that it can be extended
for highly specific purposes. The Hadoop community has done just that with a
number of Apache projects — projects that, in totality, make up the Hadoop
ecosystem. When it comes to structured data storage and processing, the
projects described in this list are the most commonly used:

 ✓ Hive: A data warehousing framework for Hadoop. Hive catalogs data in
structured files and provides a query interface with the SQL-like language
named HiveQL. (We tell you tons more about Hive in Chapter 13.)

 ✓ HBase: A distributed database — a NoSQL database that relies on multi-
ple computers rather than on a single CPU, in other words — that’s built
on top of Hadoop. (For more on HBase, see Chapter 12.)

 ✓ Giraph: A graph processing engine for data stored in Hadoop. (See the
earlier discussion in this chapter on NoSQL and graph databases.)

 Many other Apache projects support different aspects of structured data
analysis, and some projects focus on a number of frameworks and interfaces.
Chapter 14 takes a look at another structured data analysis tool — the aptly
named Sqoop — and Chapter 15 takes a look at SQL interfaces to Hadoop data.

When determining the optimal architecture for your analytics needs, be sure
to evaluate the attributes and capabilities of the systems you’re considering.
Table 11-1 compares Hadoop-based data stores (Hive, Giraph, and HBase)
with traditional RDBMS.

164 Part III: Hadoop and Structured Data

Table 11-1 A Comparison of Hadoop-Based Storage and RDBMS
Criteria Hive Giraph HBase RDBMS
Changeable
data

No Yes Yes

Data layout Raw files stored in HDFS;
Hive supports proprietary
row-oriented or column-
oriented formats.

A sparse,
distributed,
persistent mul-
tidimensional
sorted map

Row-
oriented
or column-
oriented

Data types Bytes; data types are interpreted on query. Rich data
type support

Hardware Hadoop-clustered commodity x86 servers;
five or more is typical because the underlying
storage technology is HDFS, which by default
requires three replicas.

Typically
large, scal-
able multi-
processor
systems

High
availability

Yes; built into the Hadoop architecture Yes, if the
hardware
and RDBMS
are con-
figured
correctly

Indexes Yes No Row-key only
or special
table required

Yes

Query
language

HiveQL Giraph
API

HBase API
commands
(get, put,
scan,
delete,
increment,
check),
HiveQL

SQL

165 Chapter 11: Hadoop and the Data Warehouse: Friends or Foes?

Criteria Hive Giraph HBase RDBMS

Schema Schema
defined
as files
are cata-
logued
with the
Hive Data
Definition
Language
(DDL)

Schema
on read

Variability
in schema
between rows

Schema on
load

Throughput Millions of reads and writes per second Thousands
of reads and
writes per
second

Transactions None Provides ACID
support on
only a single
row

Provides
multi-row
and cross-
table trans-
actional
support with
full ACID
property
compliance

Transaction
speed

Modest speed for interac-
tive queries; fast for full
table scans

Fast for inter-
active queries;
fast for full
table scans

Fast for
interactive
queries;
slower for
full table
scans

Typical size Ranges from terabytes to petabytes (from hun-
dreds of millions to billions of rows)

From giga-
bytes to
terabytes
(from hun-
dreds of
thousands
to millions of
rows)

166 Part III: Hadoop and Structured Data

Modernizing the Warehouse with Hadoop
We want to stress the fact that Hadoop and traditional RDBMS technologies
are more complementary than competitive. The sensationalist marketing and
news media articles that pit these technologies against each other are missing
the point: By using the strengths of these technologies together, you can build
a highly flexible and scalable analytics environment.

Rather than have you simply trust us on that assertion, we use the rest of
this chapter to lay out four (specific) ways that Hadoop can modernize the
warehouse. Get ready to delve into the messy details of these use cases:

 ✓ Landing Zone for All Data

 ✓ Queryable Archive of Cold Data

 ✓ Preprocessing Engine

 ✓ Data Discovery Zone

The landing zone
When we try to puzzle out what an analytics environment might look like in
the future, we stumble across the pattern of the Hadoop-based landing zone
time and time again. In fact, it’s no longer even a futures-oriented discussion
because the landing zone has become the way that forward-looking companies
now try to save IT costs, and provide a platform for innovative data analysis.

So what exactly is the landing zone? At the most basic level, the landing zone
is merely the central place where data will land in your enterprise — weekly
extractions of data from operational databases, for example, or from systems
generating log files. Hadoop is a useful repository in which to land data, for
these reasons:

 ✓ It can handle all kinds of data.

 ✓ It’s easily scalable.

 ✓ It’s inexpensive.

 ✓ Once you land data in Hadoop, you have the flexibility to query, analyze,
or process the data in a variety of ways.

A Hadoop-based landing zone, seen in Figure 11-2, is the foundation of the
other three use cases we describe later in this chapter.

167 Chapter 11: Hadoop and the Data Warehouse: Friends or Foes?

Figure 11-2:
The enter-

prise
doorstep:

Hadoop
serves as a

landing zone
for incoming

data.

 This diagram only shows part of the story and is by no means complete. After
all, you need to know how the data moves from the landing zone to the data
warehouse, and so on. (We get around to answering such questions and filling
in some of these blanks as we add more Hadoop use cases in this chapter.)

The starting point for the discussion on modernizing a data warehouse has
to be how organizations use data warehouses and the challenges IT depart-
ments face with them. In the 1980s, once organizations became good at storing
their operational information in relational databases (sales transactions, for
example, or supply chain statuses), business leaders began to want reports
generated from this relational data. The earliest relational stores were opera-
tional databases and were designed for Online Transaction Processing (OLTP),
so that records could be inserted, updated, or deleted as quickly as possible.
This is an impractical architecture for large scale reporting and analysis, so
Relational Online Analytical Processing (ROLAP) databases were developed
to meet this need. This led to the evolution of a whole new kind of RDBMS:
a data warehouse, which is a separate entity and lives alongside an organiza-
tion’s operational data stores. This comes down to using purpose-built tools for
greater efficiency: we have operational data stores, which are designed to effi-
ciently process transactions, and data warehouses, which are designed to sup-
port repeated analysis and reporting.

Data warehouses are under increasing stress though, for the following reasons:

 ✓ Increased demand to keep longer periods of data online.

 ✓ Increased demand for processing resources to transform data for use in
other warehouses and data marts.

 ✓ Increased demand for innovative analytics, which requires analysts to
pose questions on the warehouse data, on top of the regular reporting
that’s already being done. This can incur significant additional processing.

168 Part III: Hadoop and Structured Data

The use cases we cover later in this chapter address these pain points, and
actually frees data warehouses to do what they’re designed to do, which is
support the regular reporting activities that keep organizations running.

In Figure 11-2, we can see the data warehouse presented as the primary
resource for the various kinds of analysis listed on the far right side of
the figure. Here we also see the concept of a landing zone represented,
where Hadoop will store data from a variety of incoming data sources. To
enable a Hadoop landing zone, you’ll need to ensure you can write data
from the various data sources to HDFS. For relational databases, a good
solution would be to use Sqoop, which we talk about in Chapter 14.

But landing the data is only the beginning. What you do with it is where the
real value comes in, and that’s what we’ll get into with the remaining three
use cases — all of which depend on a Hadoop-based landing zone populated
with data from a variety of sources.

 When you’re moving data from many sources into your landing zone, one
issue that you’ll inevitably run into is data quality. It’s common for compa-
nies to have many operational databases where key details are different, for
example, that a customer might be known as “D. deRoos” in one database,
and “Dirk deRoos” in another. Another quality problem lies in systems where
there’s a heavy reliance on manual data entry, either from customers or
staff — here, it’s not uncommon to find first names and last names switched
around or other misinformation in the data fields. Data quality issues are a
big deal for data warehouse environments, and that’s why a lot of effort goes
into cleansing and validation steps as data from other systems are processed
as it’s loaded into the warehouse. It all comes down to trust: if the data you’re
asking questions against is dirty, you can’t trust the answers in your reports.
So while there’s huge potential in having access to many different data sets
from different sources in your Hadoop landing zone, you have to factor in data
quality and how much you can trust the data.

A queryable archive of cold warehouse data
A multitude of studies show that most data in an enterprise data warehouse
is rarely queried. Database vendors have responded to such observations
by implementing their own methods for sorting out what data gets placed
where. One method orders the data universe into designations of hot, warm,
or cold, where hot data (sometimes called active data) is used often, warm
data is used from time to time; and cold data is rarely used. The proposed
solution for many vendors is to store the cold data on slower disks within
the data warehouse enclosures or to create clever caching strategies to keep
the hot data in-memory, among others. The problem with this approach is
that even though slower storage is used, it’s still expensive to store cold,
seldom used data in a warehouse. The costs here stems from both hardware
and software licensing. At the same time, cold and dormant data is often

169 Chapter 11: Hadoop and the Data Warehouse: Friends or Foes?

archived to tape. This traditional model of archiving data breaks down when
you want to query all cold data in a cost-effective and relatively efficient
way — without having to request old tapes, in other words.

If you look at the cost and operational characteristics of Hadoop, indeed it
seems that it’s set to become the new backup tape. Hadoop is inexpensive
largely because Hadoop systems are designed to use a lower grade of hardware
than what’s normally deployed in data warehouse systems. Another significant
cost savings is software licensing. Commercial Hadoop distribution licenses
require a fraction of the cost of relational data warehouse software licenses, which
are notorious for being expensive. From an operational perspective, Hadoop is
designed to easily scale just by adding additional slave nodes to an existing
cluster. And as slave nodes are added and data sets grow in volume, Hadoop’s
data processing frameworks enable your applications to seamlessly handle the
increased workload. Hadoop represents a simple, flexible, and inexpensive way
to push processing across literally thousands of servers. To put this statement
into perspective: In 1955, 1 megabyte of storage cost about US$6,235. By the
middle of 1993, the price per megabyte dipped below US$1. The cost to purchase
1 megabyte of storage is now US$0.0000467 — in other words, at the time this
book was published, US$1 could get you about 22 gigabytes of storage.

With its scalable and inexpensive architecture, Hadoop would seem to be a
perfect choice for archiving warehouse data . . . except for one small matter:
Most of the IT world runs on SQL, and SQL on its own doesn’t play well with
Hadoop. Sure, the more Hadoop-friendly NoSQL movement is alive and well,
but most power users now use SQL by way of common, off-the-shelf toolsets
that generate SQL queries under the hood — products such as Tableau, Microsoft
Excel, and IBM Cognos BI. It’s true that the Hadoop ecosystem includes Hive,
but Hive supports only a subset of SQL, and although performance is improving
(along with SQL support), it’s not nearly as fast at answering smaller queries
as relational systems are. Recently, there has been major progress around
SQL access to Hadoop, which has paved the way for Hadoop to become the
new destination for online data warehouse archives.

Depending on the Hadoop vendor, SQL (or SQL-like) APIs are becoming
available so that the more common off-the-shelf reporting and analytics
tools can seamlessly issue SQL that executes on data stored in Hadoop. For
example, IBM has its Big SQL API, Cloudera has Impala, and Hive itself, via
the Hortonworks Stinger initiative, is becoming increasingly SQL compliant.
Though various points of view exist (some aim to enhance Hive; some, to
extend Hive; and others, to provide an alternative), all these solutions attempt
to tackle two issues: MapReduce is a poor solution for executing smaller
queries, and SQL access is — for now — the key to enabling IT workers to use
their existing SQL skills to get value out of data stored in Hadoop.

170 Part III: Hadoop and Structured Data

To add it all up — the inexpensive cost of storage for Hadoop plus the ability to
query Hadoop data with SQL — we think that Hadoop is the prime destination
for archival data. We consider this use case to have a low impact on your
organization because you can start building your Hadoop skill set on data
that’s not stored on performance-mission-critical systems. What’s more, you
don’t have to work hard to get at the data. (Since archived data is normally
stored on systems that have low usage, it’s easier to get at than data that’s in
“the limelight” on performance-mission-critical systems, like data warehouses.) If
you’re already using Hadoop as a landing zone, you have the foundation for your
archive! You simply keep what you want to archive and delete what you don’t.

If you think about the Landing Zone use case (refer to Figure 11-2), the queryable
archive, shown in Figure 11-3, extends the value of Hadoop and starts to
integrate pieces that likely already exist in your enterprise. It’s a great example
of finding economies of scale and cost take-out opportunities using Hadoop.

Figure 11-3:
Hadoop as

a queryable
archive in
support of
an enter-

prise data
warehouse.

In Figure 11-3, we show the archive component connecting the landing zone
and the data warehouse. The data being archived originates in the warehouse
and is then stored in the Hadoop cluster, which is also provisioning the land-
ing zone. In short, you can use the same Hadoop cluster to archive data and
act as your landing zone.

The key Hadoop technology you would use to perform the archiving is Sqoop,
which can move the data to be archived from the data warehouse into Hadoop.
You will need to consider what form you want the data to take in your
Hadoop cluster. In general, compressed Hive files are a good choice. You can,
of course, transform the data from the warehouse structures into some other
form (for example, a normalized form to reduce redundancy), but this is gener-
ally not a good idea. Keeping the data in the same structure as what’s in the
warehouse will make it much easier to perform a full data set query across the
archived data in Hadoop and the active data that’s in the warehouse.

171 Chapter 11: Hadoop and the Data Warehouse: Friends or Foes?

The concept of querying both the active and archived data sets brings up
another consideration: how much data should you archive? There are really
two common choices: archive everything as data is added and changed in
the data warehouse, or only archive the data you deem to be cold. Archiving
everything has the benefit of enabling you to easily issue queries from one
single interface across the entire data set — without a full archive, you’ll need
to figure out a federated query solution where you would have to union the
results from the archive and the active data warehouse. But the downside
here is that regular updates of your data warehouse’s hot data would cause
headaches for the Hadoop-based archive. This is because any changes to
data in individual rows and columns would require wholesale deletion and
re-cataloging of existing data sets.

Now that archival data is stored in your Hadoop-based landing zone (assuming
you’re using an option like the compressed Hive files mentioned above), you can
query it. This is where the SQL on Hadoop solutions we talk about in Chapter 15
can become interesting. An excellent example of what’s possible is for the
analysis tools we see on the right in Figure 11-3 to directly run reports or analysis
on the archived data stored in Hadoop. This is not to replace the data ware-
house — after all, Hadoop would not be able to match the warehouse’s
performance characteristics for supporting hundreds or more concurrent users
asking complex questions. The point here is that you can use reporting tools
against Hadoop to experiment and come up with new questions to answer in a
dedicated warehouse or mart.

 When you start your first Hadoop-based project for archiving warehouse data,
don’t break the current processes until you’ve fully tested them on your new
Hadoop solution. In other words, if your current warehousing strategy is to
archive to tape, keep that process in place, and dual-archive the data into
Hadoop and tape until you’ve fully tested the scenario (which would typi-
cally include restoring the warehouse data in case of a warehouse failure).
Though you’re maintaining (in the short term) two archive repositories, you’ll
have a robust infrastructure in place and tested before you decommission
a tried-and-true process. Personal observation makes us believe that this process
can ensure that you remain employed — with your current employer.

This use case is simple because there’s no change to the existing warehouse.
The business goal is still the same: cheaper storage and licensing costs by
migrating rarely-used data to an archive. The difference in this case is that
the technology behind the archive is Hadoop rather than offline storage, like
tape. In addition, we’ve seen various archive vendors start to incorporate
Hadoop into their solutions (for example, allowing their proprietary archive
files to reside on HDFS), so expect capabilities in this area to expand soon.

As you develop Hadoop skills (like exchanging data between Hadoop and
relational databases and querying data in HDFS) you can use them to tackle
bigger problems, such as analysis projects, which could provide additional
value for your organization’s Hadoop investment. This will be especially
relevant in the data discovery sandbox use case we describe a bit later.

172 Part III: Hadoop and Structured Data

Hadoop as a data preprocessing engine
One of the earliest use cases for Hadoop in the enterprise was as a pro-
grammatic transformation engine used to preprocess data bound for a data
warehouse. Essentially, this use case leverages the power of the Hadoop
ecosystem to manipulate and apply transformations to data before it’s loaded
into a data warehouse. Though the actual transformation engine is new (it’s
Hadoop, so transformations and data flows are coded in Pig or MapReduce,
among other languages), the approach itself has been in use awhile. What
we’re talking about here is Extract, Transform, Load (ETL) processes.

Think back for a minute to our description of the evolution of OLTP and
ROLAP databases in the Landing Zone section earlier in the chapter. The
outcome of this is that many organizations with operational databases also
deployed data warehouses. So how do IT departments get data from their
operational databases into their data warehouses? (Remember that the
operational data is typically not in a form that lends itself to analysis.) The
answer here is ETL, and as data warehouses increased in use and impor-
tance, the steps in the process became well understood and best practices
were developed. Also, a number of software companies started offering
interesting ETL solutions so that IT departments could minimize their own
custom code development.

The basic ETL process is fairly straightforward: you Extract data from
an operational database, Transform it into the form you need for your
analysis and reporting tools, and then you Load this data into your data
warehouse.

One common variation to ETL is ELT — Extract, Load, and Transform. In
the ELT process, you perform transformations (in contrast to ETL) after
loading the data into the target repository. This approach is often used
when the transformation stands to greatly benefit from a very fast SQL
processing engine on structured data. (Relational databases may not excel
at processing unstructured data, but they perform very fast processing
of — guess what? — structured data.) If the data you’re transforming is
destined for a data warehouse, and many of those transformations can be
done in SQL, you may choose to run the transformations in the data ware-
house itself. ELT is especially appealing if the bulk of your skill set lies
with SQL-based tooling. With Hadoop now able to process SQL queries,
both ETL and ELT workloads can be hosted on Hadoop. In Figure 11-4 we
show ETL services added to our reference architecture.

173 Chapter 11: Hadoop and the Data Warehouse: Friends or Foes?

Figure 11-4:
Hadoop can
be used as a

data trans-
formation

engine.

If you’ve deployed a Hadoop-based landing zone, which you can again see in
Figure 11-4, you’ve got almost everything you need in place to use Hadoop as
a transformation engine. You’re already landing data from your operational
systems into Hadoop using Sqoop, which covers the extraction step. At this
point you’ll need to implement your transformation logic into MapReduce or
Pig applications. After the data is transformed, you can load the data into the
data warehouse using Sqoop.

Thinking back to the archive use case we just discussed, using Hadoop as
a data transformation engine raises possibilities there as well. What we
described initially was a scenario where the archive consists of warehouse
data that’s dumped into the landing zone. But if your data warehouse doesn’t
modify its data (it’s for reporting only), you can simply keep the data you
generate with the transformation process. In this model, data only flows
from left-to-right in Figure 11-4, where data is extracted from operational
databases, transformed in the landing zone, and then loaded into the data
warehouse. With all the transformed data already in the landing zone, there’s
no need to copy it back to Hadoop — unless, of course, the data gets modi-
fied in the warehouse.

The hybrid data preprocess option (Or, hybrids aren’t just for cars)
In addition to having to store larger volumes of cold data, one pressure we
see in traditional data warehouses is that increasing amounts of processing
resources are being used for transformation (ELT) workloads. The idea behind
using Hadoop as a preprocessing engine to handle data transformation means
that precious processing cycles are freed up, allowing the data warehouse to
adhere to its original purpose: Answer repeated business questions to support
analytic applications. Again, we’re seeing how Hadoop can complement
traditional data warehouse deployments and enhance their productivity.

174 Part III: Hadoop and Structured Data

Perhaps a tiny, imaginary light bulb has lit up over your head and you’re
thinking, “Hey, maybe there are some transformation tasks perfectly suited
for Hadoop’s data processing ability, but I know there’s also a lot of transfor-
mation work steeped in algebraic, step-by-step tasks where running SQL on a
relational database engine would be the better choice. Wouldn’t it be cool if I
could run SQL on Hadoop?” As we’ve been hinting, SQL on Hadoop is already
here, and you can see the various offerings in Chapter 15. With the ability to
issue SQL queries against data in Hadoop, you’re not stuck with only an ETL
approach to your data flows — you can also deploy ELT-like applications.

Another hybrid approach to consider is where to run your transformation
logic: in Hadoop or in the data warehouse? Although some organizations are
concerned about running anything but analytics in their warehouses, the fact
remains that relational databases are excellent at running SQL, and could be
a more practical place to run a transformation than Hadoop.

Data transformation is more than
just data transformation

The idea of Hadoop-inspired ETL engines has
gained a lot of traction in recent years. After all,
Hadoop is a flexible data storage and process-
ing platform that can support huge amounts of
data and operations on that data. At the same
time, it’s fault tolerant, and it offers the oppor-
tunity for capital and software cost reductions.

Despite Hadoop’s popularity as an ETL engine,
however, many folks (including a famous firm
of analysts) don’t recommend Hadoop as the
sole piece of technology for your ETL strategy.
This is largely because developing ETL flows
requires a great deal of expertise about your
organization’s existing database systems, the
nature of the data itself, and the reports and
applications dependent on it. In other words,
the DBAs, developers, and architects in your
IT department would need to become familiar
enough with Hadoop to implement the needed
ETL flows. For example, a lot of intensive hand
coding with Pig, Hive, or even MapReduce
may be necessary to create even the simplest
of data flows — which puts your company on

the hook for those skills if it follows this path.
You have to code elements such as parallel
debugging, application management services
(such as check pointing and error and event
handling). Also, consider enterprise require-
ments such as glossarization and being able
to show your data’s lineage. There are regula-
tory requirements for many industry standard
reports, where data lineage is needed; the
reporting organization must be able to show
where the data points in the report come from,
how the data got to you, and what has been
done to the data.

Even for relational database systems, ETL is
complex enough that there are popular special-
ized products that provide interfaces for man-
aging and developing ETL flows. Some of these
products now aid in Hadoop-based ETL and
other Hadoop-based development. However,
depending on your requirements, you may need
to write some of your own code to support your
transformation logic.

175 Chapter 11: Hadoop and the Data Warehouse: Friends or Foes?

Data discovery and sandboxes
Data discovery is becoming an increasingly important activity for organizations
that rely on their data to be a differentiator. Today, that describes most busi-
nesses, as the ability to see trends and extract meaning from available data
sets applies to almost any industry. What this requires is two critical compo-
nents: analysts with the creativity to think of novel ways of analyzing data sets
to ask new questions (often these kinds of analysts are called data scientists);
and to provide these analysts with access to as much data as possible.

Consider the traditional approach to analytics in today’s IT landscape: The
business user community now typically determines the business questions
to ask — they submit a request, and the IT team builds a system that answers
specific questions. From a technical perspective, because this work has
traditionally been done in a relational database, it has been the IT team’s
responsibility to build schemas, remove data duplication, and so on. They’re
investing a lot of time into making this data queryable and to quickly answering
preplanned questions that the business unit wants answered. This is why
relational databases are typically considered schema-on-write because you
have to do a lot of work in order to write to the database. (In many cases, the
amount of work is worth the investment; however, in a world of big data, the
value and quality of many newer types of data you work with is unknown.)

This relational database approach is well suited to many common business
processes, such as monitoring sales by geography, product, or channel;
extracting insight from customer surveys, cost and profitability analyses, and
more — basically, the questions are asked time and time again. Data is typically
highly structured and is most likely highly trusted in this environment (see the
paragraph on trusted data in the earlier section describing the landing zone for
more on the concept of trust) in this environment; we refer to this activity as
guided analytics (as shown in Figure 11-5 and as you may have noticed in the
use cases described earlier in this chapter).

Figure 11-5:
Using

Hadoop
to add

Discovery
and

Sandbox
capa-

bilities to a
modern-day

analytics
ecosystem.

176 Part III: Hadoop and Structured Data

As an analogy, it’s as though your 8-year-old child is taking a break for recess
at school. For the most part, she can do whatever she wants within the
school’s grounds — as long as she remains within the fenced perimeter; how-
ever, she can’t jump the fence to discover what’s on the outside. Specifically,
your child can explore a known, safeguarded (within the schema) area and
analyze whatever can be found within that area.

Now imagine that your analytics environment has a discovery zone, as shown
in Figure 11-5. In this scenario, IT delivers data (it’s likely not to be fully trusted,
and it’s likely “dirty”) on a flexible discovery platform for business users to ask
virtually any question they want. In our analogy, your child is allowed to climb
the schoolyard fence (this area is schema-less), venture into the forest, and
return with whatever items she discovers. (Of course, in the IT world, you
don’t have to worry about business users getting lost or getting poison ivy.)

If you think about it, data discovery mirrors in some respects the evolution
of gold mining. During the gold rush years of old, gold strikes would spark
resource investment because someone discovered gold — it was visible to
the naked eye, it had clear value, and it therefore warranted the investment.
Fifty years ago, no one could afford to mine low-grade ore for gold because
cost-effective or capable technology didn’t exist (equipment to move and
handle vast amounts of ore wasn’t available) and rich-grade ore was still
available (compared to today, gold was relatively easier to find). Quite simply,
it wasn’t cost effective (or even possible) to work through the noise (low-grade
ore) to find the signals (the gold). With Hadoop, IT shops now have the
capital equipment to process millions of tons of ore (data with a low value
per byte) to find gold that’s nearly invisible to the naked eye (data with high
value per byte). And that’s exactly what discovery is all about. It’s about
having a low-cost, flexible repository where next-to-zero investment is made
to enrich the data until a discovery is made. After a discovery is made, it
might make sense to ask for more resources (to mine the gold discovery) and
formalize it into an analytics process that can be deployed in a data warehouse
or specialized data mart.

When insights are made in the discovery zone, that’s likely a good time to
engage the IT department and formalize a process, or have those folks lend
assistance to more in-depth discovery. In fact, this new pattern could even
move into the area of guided analytics. The point is that IT provisioned the
discovery zone for business users to ask and invent questions they haven’t
thought about before. Because that zone resides in Hadoop, it’s agile and
allows for users to venture into the wild blue yonder.

Notice that Figure 11-5 has a sandbox zone. In some reference architectures,
this zone is combined with the discovery zone. We like to keep these zones
separate because we see this area being used by application developers and
IT shops to do their own research, test applications, and, perhaps, formalize
conclusions and findings in the Discovery Zone when IT assistance is required
after a potential discovery is made.

177 Chapter 11: Hadoop and the Data Warehouse: Friends or Foes?

We’d be remiss not to note that our reference architecture is flexible, and
can easily be tweaked. Nothing is cast in stone: you can take what you need,
leave what you don’t, and add your own nuances. For instance, some organi-
zations may choose to co-locate all zones into a single Hadoop cluster, some
may choose to leverage a single cluster designed for multiple purposes; and
others may physically separate them. None of this affects the use cases that
we’ve built into the final reference architecture shown in Figure 11-5.

Looking to the future
The relational database, as we know it, isn’t
going away any time soon. Pundits will always
claim, “RDBMS will go the way of the dino-
saur,” but we think (at least for now) that IT
needs both systems. More importantly, IT needs
both systems to work together and comple-
ment each other. Suppose that you need to
derive client attributes from social media feeds.
Assume that your company underwrites a life
insurance policy to an individual with a family.
Your processes likely run the gamut of medi-
cal tests and smoker / nonsmoker classifica-
tions, but your actuaries might be better able
to assess risk and costs if they know that this

particular client participates in extreme sports
such as hang gliding. If you could extract this
information from social media data that you’ve
stored in a Hadoop landing zone, you could ana-
lyze this information and create a risk multiplier
based on social activities that your client openly
shares with the world via Facebook and Twitter,
for example. This information could be updated
in your system of record, where the actual
policy costs are itemized and maintained. This
example explains systems of engagement
meeting systems of record, which is a key tenet
to a next-generation analytics ecosystem.

178 Part III: Hadoop and Structured Data

Chapter 12

Extremely Big Tables: Storing
Data in HBase

In This Chapter
▶ Introducing HBase

▶ Storing data in HBase

▶ Looking at the nuts and bolts of HBase

▶ Taking HBase for a spin

▶ Interfacing with HBase

▶ Comparing HBase to relational databases

▶ Going with a real HBase deployment

D
o you remember your first surfing experience on the World Wide Web?
You just knew that it was an incredible innovation for the IT industry.

Having this vast ocean of knowledge at your fingertips was transformational.
Times change, though, and now the Internet is truly just another part of
everyday life that many people take for granted. You open your favorite
browser and visit a search engine, and — in a matter of seconds — you’re
learning something new.

In this chapter, we ask you to take a step back and ponder the immensity of
the web and, more specifically, how exactly an entity such as Google stores
all those references and web pages for your use? If the picture in your mind
includes the concept of a database, you’re right, but what kind of data-
base? Every database administrator has thought about limits at one time or
another. Storing gigabytes (or even terabytes) of data using your database
of choice is common, but you may be faced with petabytes of data as Google
was when it sought to index the web. The company’s strategy was to use
BigTable — Google researchers even published an important paper outlining
their vision of BigTable in 2006.

You may wonder what all this has to do with the history of HBase. Well,
HBase is an implementation of Google’s BigTable distributed data stor-
age system (DDSS, for short). After Google’s release of the BigTable paper,
Powerset, a company focused on building a natural language processing

180 Part III: Hadoop and Structured Data

(NLP) search engine for the Internet, became interested in creating its own
implementation of BigTable. So when the University of Michigan’s Mike
Cafarella made his first code drop of HBase to the Apache Open Source com-
munity in early 2007, Powerset engineers decided to carry the work forward.
By 2008 HBase had become a sub-project of Hadoop and in 2010 HBase
became an Apache top-level project. HBase, which has an affinity to Hadoop,
is referred to as “the Hadoop database” on its Apache web page. (Don’t
believe us? Check out the Welcome Apache HBase page at http://hbase.
apache.org.)

After you know a bit of the history of HBase, you’re on better footing to start
understanding what HBase actually does. In subsequent sections of this chap-
ter, you can see how HBase works and why it’s vital in the age of big data.

Say Hello to HBase
HBase is a Java implementation of Google’s BigTable. Google defines BigTable
as a “sparse, distributed, persistent multidimensional sorted map.” We’re
sure that you’ll agree that it’s quite a concise definition, but that you’ll also
agree that it’s a bit on the complex side. To break down BigTable’s complexity
a bit, we discuss each attribute in this section.

Sparse
As you might have guessed, the BigTable distributed data storage system was
designed to meet the demands of big data. Now, big data applications store lots
of data but big data content is also often variable. Imagine a traditional table in a
company database storing customer contact information, as shown in Table 12-1.

Table 12-1 Traditional Customer Contact Information Table
Customer
ID

Last
Name

First
Name

Middle
Name

E-mail
Address

Street
Address

00001 Smith John Timothy John.
Smith@
xyz.com

1 Hadoop
Lane, NY
11111

00002 Doe Jane NULL NULL 7 HBase
Ave, CA
22222

A company or individual may require a complete data record for each of its
customers or constituents. A good example is your doctor, who needs all
your contact information in order to provide you with proper care. Other

181 Chapter 12: Extremely Big Tables: Storing Data in HBase

companies or individuals may require only partial contact information or
may need to learn that information over time. For example, a customer
service company may process phone calls or e-mail messages for service
requests. Clients may or may not choose to give service companies all their
contact information. However, with each interaction over time, companies
may learn more about their clients that will enable them to provide better
service — by issuing proactive service alerts, for example.

 In this context, sparse means that fields in rows can be empty or NULL but that
doesn’t bring HBase to a screeching halt. HBase can handle the fact that we
don’t (yet) know Jane Doe’s middle name and e-mail address, for example.

Here’s another example: a database for storing satellite images. It turns out
that Google uses BigTable technology to store satellite imagery of the earth.
In almost every case, whenever imagery is stored, metadata is also stored
with it. The metadata may include the street address of the image or only the
latitude and longitude if the image is captured from the wilderness. The meta-
data is variable in content so some fields will be NULL — and that’s OK.

In both examples, the data sets that are collected can be extremely
large — especially in the second example. Imagery databases are almost
always measured in terabytes or sometimes in petabytes. We’ve already men-
tioned that HBase is designed for storing big data, but it’s also designed for
storing sparse data records at no cost. This concern is crucial when you’re
using big data applications! Storing a few NULL records over a million rows
is wasteful, but try to imagine the waste over a quadrillion rows! Thankfully,
this was a key consideration for Google designers and the HBase community.
Sparse data is supported with no waste of costly storage space.

And it doesn’t stop there. Consider the power of a schema-less data store.
Table 12-1 shows you a classic customer contact table. When companies
design these tables, they know up front what they want to store. In other
words the schema is fixed; it’s defined even before the first byte of informa-
tion is stored in the table. Now what if, over time, a new field is needed for
a customer? How about a Twitter handle or a new mobile phone number?
You’re seemingly stuck with a schema that no longer works for you. Well,
HBase solves this challenge as well — you can not only skip fields at no cost
when you don’t have the data, but also dynamically add fields (or columns
in the HBase vernacular — more on this later) over time without having to
redesign the schema or disrupt operations. So you can think of HBase as a
schema-less data store; that is, it’s fluid — you can add to, subtract from or
modify the schema as you go along.

It’s distributed and persistent
BigTable is a distributed and persistent data store. Persistent simply
means that the data you store in BigTable (and HBase, for that matter)
will persist or remain after your program or session ends. That’s pretty

182 Part III: Hadoop and Structured Data

straightforward — persistent means that it persists — but you should spend
a little more time thinking about how the data is persisted. In its BigTable
paper, Google described the distributed file system known as Google File
System or GFS. It turns out that, just as HBase is an open source implementa-
tion of BigTable, HDFS is an open source implementation of GFS. By default,
HBase leverages HDFS to persist its data to disk storage. (For more on the
mechanics of HDFS, see Chapter 3.) Though other distributed data stores can
be used with HBase, the vast majority of HBase installations leverage HDFS.
This makes perfect sense given that HBase is the “Hadoop Database” — hey,
it’s built into the name, for goodness sake.

 HDFS is a key enabling technology not only for Hadoop but also for HBase. By
storing data in HDFS, HBase offers reliability, availability, seamless scalability,
high performance and much more — all on cost effective distributed servers!

It has a multidimensional sorted map
Starting from the basics, a map (also known as an associative array) is an
abstract collection of key-value pairs, where the key is unique. This definition is
crucial to your understanding of HBase because the HBase data model is often
described in different ways — often incompletely as a column-oriented store.
HBase is, at bottom, a key-value data store where each key is unique — meaning
it appears at most once in the HBase data store. Additionally, the map is
sorted and multidimensional. The keys are stored in HBase and sorted in byte-
lexicographical order. Each value can have multiple versions, which makes the
data model multidimensional. By default, data versions are implemented with
a timestamp.

Understanding the HBase Data Model
HBase data stores consist of one or more tables, which are indexed by row
keys. Data is stored in rows with columns, and rows can have multiple ver-
sions. By default, data versioning for rows is implemented with time stamps.
Columns are grouped into column families, which must be defined up front
during table creation. Column families are stored together on disk, which
is why HBase is referred to as a column-oriented data store. To show you a
practical example, we’ve altered Table 12-1 to make it conform to an HBase
data model — behold the logical view of information in Table 12-2.

Because the data model is critical to understanding HBase, we discuss
Table 12-2 in detail in the following five sections.

183 Chapter 12: Extremely Big Tables: Storing Data in HBase

Table 12-2 Logical View of Customer Contact Information in HBase
Row Key Column Family: {Column Qualifier:Version:Value}
00001 CustomerName: {‘FN’: 1383859182496:‘John’,

 ‘LN’: 1383859182858:‘Smith’,

 ‘MN’: 1383859183001:’Timothy’,

 ‘MN’: 1383859182915:’T’}

ContactInfo: {‘EA’: 1383859183030:‘John.Smith@xyz.com’,

 ’SA’: 1383859183073:’1 Hadoop Lane, NY 11111’}

00002 CustomerName: {‘FN’: 1383859183103:‘Jane’,

 ‘LN’: 1383859183163:‘Doe’,

ContactInfo: {

 ’SA’: 1383859185577:’7 HBase Ave, CA 22222’}

Row keys
For the sake of illustration, Table 12-2 has two simple row keys: 00001 and
00002. Row keys are implemented as byte arrays, and are sorted in byte-
lexicographical order, which simply means that the row keys are sorted, byte
by byte, from left to right. If you think in terms of numeric values when designing
row keys, then sorting is simple. Given two keys, if the byte at Index 1 in Key
1 is less than the byte at Index 1 in Key 2, Row Key 1 will always be stored
before Row Key 2, no matter what’s next in the sequence of bytes. However,
it’s common to use printable (ASCII) characters rather than numeric values
for row keys in HBase and if you do, you need to understand that the Java
language represents characters using the Unicode Standard. The following
example illustrates this design consideration for Basic Latin (ASCII).

"RowA" precedes "RowA"
"Row-1" precedes "Row11"
"Row1" precedes "RowA"

 If you’re not sure of the order for ASCII characters, you can view an ordered
table at www.unicode.org/.

You may wonder why you would bother with this fine detail with respect to
row keys. The reason for this special attention is that proper row key design
is crucial to achieving good performance in HBase — not doing so means you
won’t realize the full value of your HBase cluster. Our detailed discussion of
Row key design at the end of this chapter can help you grasp the importance
of the sorting scheme. For now, keep in mind that sorted row keys can help
you access your data faster.

184 Part III: Hadoop and Structured Data

Column Families
Table 12-2 shows two column families: CustomerName and ContactInfo. When
creating a table in HBase, the developer or administrator is required to define
one or more column families using printable characters. (See the earlier sec-
tion “Row keys” for more on printable characters.) Generally, column families
remain fixed throughout the lifetime of an HBase table but new column fami-
lies can be added by using administrative commands. At the time this book
was written, the official recommendation for the number of column families
per table was three or less. (We have that number on good authority — see
the Apache HBase online documentation at http://hbase.apache.org/
book/number.of.cfs.html.) In addition, you should store data with simi-
lar access patterns in the same column family — you wouldn’t want a cus-
tomer’s middle name stored in a separate column family from the first or last
name because you generally access all name data at the same time.

 Column families are grouped together on disk, so grouping data with similar
access patterns reduces overall disk access and increases performance.

Column Qualifiers
Column qualifiers are specific names assigned to your data values in order to
make sure you’re able to accurately identify them. Unlike column families,
column qualifiers can be virtually unlimited in content, length and number. If you
omit the column qualifier, the HBase system will assign one for you. Printable
characters are not required, so any type and number of bytes can be used to
create a column qualifier. Because the number of column qualifiers is variable,
new data can be added to column families on the fly, making HBase flexible and
highly scalable. But there’s a cost to consider: HBase stores the column qualifier
with your value (it’s actually part of the key), and since HBase doesn’t limit the
number of column qualifiers you can have, creating long column qualifiers can be
quite costly in terms of storage. That’s why we decided to abbreviate the column
qualifiers in Table 12-2 (for example, “LN:” was used instead of “LastName”).
Notice in our logical representation of the customer contact information in HBase
that the system is taking advantage of sparse data support in the case of Jane
Doe (again, see Table 12-2). Assuming this table represents customer contact
information from a service company, the company isn’t too worried about Jane’s
middle name (abbreviated ‘MN’) and e-mail addresses (abbreviated ‘EA’) now,
but hopes to (progressively) gather that information over time.

Versions
Looking back at Table 12-2, you can see a number between the column quali-
fier and value (‘FN’: 1383859182496:‘John,’ for example). That number is the
version number for each value in the table. Values stored in HBase are time
stamped by default, which means you have a way to identify different versions
of your data right out of the box. It’s possible to create a custom versioning
scheme, but users typically go with a time stamp created using the current
Unix time. (The Unix time or Unix epoch represents the number of millisec-
onds since midnight January 1, 1970 UTC.) The versioned data is stored in
decreasing order, so that the most recent value is returned by default unless

185 Chapter 12: Extremely Big Tables: Storing Data in HBase

a query specifies a particular timestamp. You can see in Table 12-2 that our
fictional service company at first only had an initial for John Smith’s middle
name but then later on they learned that the “T” stood for “Timothy.” The
most recent value for the ‘MN’ column is stored first in the table.

 You can set a limit on the amount of time that data can stay in HBase with a
variable called time to live (TTL). You can also set a variable which controls the
number of versions per value. This can be done per column family. (You’ll be
learning more about these variables and how to set them later in the chapter.)

Key Value Pairs
If you’re reading this chapter from start to finish, you should be developing a
feel for the logical HBase data model. It’s simple yet elegant, and it provides
a natural data storage mechanism for all kinds of data — especially unstruc-
tured big data sets. A little later in this chapter, we cap our discussion of the
data model by walking you through a hands-on example to create your first
HBase table. First, though, we spend a little time explaining how all these
parts of the data model converge into a key-value pair.

First off, in a world where you can think of the row key as the primary key
for data stored in HBase, how do you end up leveraging the rest of the
data model components? Well, it all depends on how much data you want
returned in queries and how long you’re willing to wait. Specifying only the
row key can potentially return a ton of data, because an individual row can
have millions of columns. Also, with only the row key to work from, HBase
can return every column qualifier, version, and value related to the row key.
What if you want only a particular column or version of your data? From the
example shown in Table 12-2, can you see what happens if you want only the
last name of a particular customer? The solution is to build a more complex
key to specify exactly what you need. A key-value pair can look like this:

RowKey:(Column Family:Column Qualifier:Version) => Value

After you specify the key, the rest is optional. The more specific you make
the query, however (moving from left to right), the more granular the results.
Your performance will worsen, because the system has to spend more time
locating the exact value or values you need, but less data is returned when
the query is finished. So keys are more complex than you might imagine from
studying Table 12-2. For example, if you want the most recent middle name
(or the only middle name so far) of the customer in row ‘00001’, the resulting
key-value pair would look like this:

'00001:CustomerName:MN' => 'Timothy'

Remember that versions are implemented using time stamps by default and are
sorted in decreasing order so that you automatically get the most recent value
if you don’t specify a version. If you want a prior middle initial for your cus-
tomer (refer to Table 12-2), your resulting key-value pair would look like this:

'00001:CustomerName:MN:1383859182915' => 'T'

186 Part III: Hadoop and Structured Data

We hope that our various descriptions of HBase are starting to take shape in
your mind. Specifically HBase is both a column family oriented data store and
a key-value-pair data store. Referring to HBase as simply a “column oriented”
data store leaves a lot to the imagination.

 In case you were curious, there are no data types in HBase — values in HBase
are just one or more bytes. Again, simple but powerful because you can store
anything!

Understanding the HBase Architecture
The reason that folks such as chief financial officers are excited by the
thought of using Hadoop is that it lets you store massive amounts of data
across a cluster of low cost commodity servers — that’s music to the ears of
financially minded people. Well, HBase offers the same economic bang for the
buck — it’s a distributed data store, which leverages a network attached clus-
ter of low-cost commodity servers to store and persist data.

 HBase persists data by storing it in HDFS, but alternate storage arrangements
are possible. For example, HBase can be deployed in standalone mode in the
cloud (typically for educational purposes) or on expensive servers if the use
case warrants it.

In most cases, though, HBase implementations look pretty much like the one
shown in Figure 12-1.

Figure 12-1:
The HBase

architecture.

187 Chapter 12: Extremely Big Tables: Storing Data in HBase

As with the data model, understanding the components of the architecture is
critical for successful HBase cluster deployment. In the next few sections we
discuss the key components.

RegionServers
RegionServers are the software processes (often called daemons) you acti-
vate to store and retrieve data in HBase. In production environments, each
RegionServer is deployed on its own dedicated compute node. When you
start using HBase, you create a table and then begin storing and retriev-
ing your data. However, at some point — and perhaps quite quickly in big
data use cases — the table grows beyond a configurable limit. At this point,
the HBase system automatically splits the table and distributes the load to
another RegionServer.

 In this process, often referred to as auto-sharding, HBase automatically scales
as you add data to the system — a huge benefit compared to most database
management systems, which require manual intervention to scale the overall
system beyond a single server. With HBase, as long as you have in the rack
another spare server that’s configured, scaling is automatic!

Why set a limit on tables and then split them? After all, HDFS is the underly-
ing storage mechanism, so all available disks in the HDFS cluster are available
for storing your tables. (Not counting the replication factor, of course; see
Chapter 3 for that wrinkle.) If you have an entire cluster at your disposal, why
limit yourself to one RegionServer to manage your tables?

Simple. You may have any number of tables large or small and you’ll want
HBase to leverage all available RegionServers when managing your data. You
want to take full advantage of the cluster’s compute performance. Furthermore,
with many clients accessing your HBase system, you’ll want to use many
RegionServers to meet the demand. HBase addresses all of these concerns for
you and scales automatically in terms of storage capacity and compute power.

Regions
RegionServers are one thing, but you also have to take a look at how indi-
vidual regions work. In HBase, a table is both spread across a number of
RegionServers as well as being made up of individual regions. As tables are
split, the splits become regions. Regions store a range of key-value pairs, and
each RegionServer manages a configurable number of regions. But what do
the individual regions look like? HBase is a column-family-oriented data store,
so how do the individual regions store key-value pairs based on the column
families they belong to? Figure 12-2 begins to answer these questions and
helps you digest more vital information about the architecture of HBase.

188 Part III: Hadoop and Structured Data

Figure 12-2:
HBase

regions in
detail.

 HBase is written in Java — like the vast majority of Hadoop technologies. Java
is an object oriented programming language and an elegant technology for dis-
tributed computing. So, as you continue to find out more about HBase, remem-
ber that all of the components in the architecture are ultimately Java objects.

First off, Figure 12-2 gives a pretty good idea of what region objects actu-
ally look like, generally speaking. Figure 12-2 also makes it clear that regions
separate data into column families and store the data in the HDFS using HFile
objects. When clients put key-value pairs into the system, the keys are pro-
cessed so that data is stored based on the column family the pair belongs
to. As shown in the figure, each column family store object has a read cache
called the BlockCache and a write cache called the MemStore. The BlockCache
helps with random read performance. Data is read in blocks from the HDFS
and stored in the BlockCache. Subsequent reads for the data — or data stored
in close proximity — will be read from RAM instead of disk, improving overall
performance. The Write Ahead Log (WAL, for short) ensures that your HBase
writes are reliable. There is one WAL per RegionServer.

 Always heed the Iron Law of Distributed Computing: A failure isn’t the
exception — it’s the norm, especially when clustering hundreds or even
thousands of servers. Google followed the Iron Law in designing BigTable and
HBase followed suit. If you’re reading the entire chapter, you’ll find out more
about how node failures are handled in HBase and how the WAL is a key part
of this overall strategy. When you write or modify data in HBase, the data
is first persisted to the WAL, which is stored in the HDFS, and then the data
is written to the MemStore cache. At configurable intervals, key-value pairs
stored in the MemStore are written to HFiles in the HDFS and afterwards WAL
entries are erased. If a failure occurs after the initial WAL write but before the
final MemStore write to disk, the WAL can be replayed to avoid any data loss.

189 Chapter 12: Extremely Big Tables: Storing Data in HBase

Figure 12-2 shows three HFile objects in one column family and two in the
other. The design of HBase is to flush column family data stored in the
MemStore to one HFile per flush. Then at configurable intervals HFiles are
combined into larger HFiles. This strategy queues up the critical compaction
operation in HBase, as described in the next section

Compactions major and minor
Compaction, the process by which HBase cleans up after itself, comes in two fla-
vors: major and minor. Major compactions can be a big deal so we’ll discuss man-
aging them in detail in a bit, but first you need to understand minor compactions.

Minor compactions combine a configurable number of smaller HFiles into one
larger HFile. You can tune the number of HFiles to compact and the frequency
of a minor compaction. Minor compactions are important because without
them, reading a particular row can require many disk reads and cause slow
overall performance. Figure 12-3, which illustrates how this concept works,
can help you visualize how Table 12-2 can be persisted on the HDFS.

Figure 12-3:
HFiles

and minor
compaction.

Looking at Figure 12-3, notice how the CustomerName column family was
written to the HDFS with two MemStore flushes and how the data in the
ContactInfo column family was persisted to disk with only one MemStore
flush. This example is hypothetical, but it’s a likely scenario depending on
the timing of the writes. Picture a service company that’s gaining more and
more customer contact information over time. The service company may
know its client’s first and last name but not learn about its middle name until

190 Part III: Hadoop and Structured Data

hours or weeks later in subsequent service requests. This scenario would
result in parts of Row 00001 being persisted to the HDFS in different HFiles.
Until the HBase system performs a minor compaction, reading from Row
00001 would require three disk reads to retrieve the relevant HFile content!
Minor compactions seek to minimize system overhead while keeping the
number of HFiles under control. HBase designers took special care to give
the HBase administrator as much tuning control as possible to make any
system impact “minor.”

As its name implies, a major compaction is different from the perspective of
a system impact. However, the compaction is quite important to the overall
functionality of the HBase system. A major compaction seeks to combine
all HFiles into one large HFile. In addition, a major compaction does the
cleanup work after a user deletes a record. When a user issues a Delete call,
the HBase system places a marker in the key-value pair so that it can be per-
manently removed during the next major compaction. Additionally, because
major compactions combine all HFiles into one large HFile, the time is right
for the system to review the versions of the data and compare them against
the time to live (TTL) property. Values older than the TTL are purged.

 Time to live refers to the variable in HBase you can set in order to define how
long data with multiple versions will remain in HBase. For more information
on versions in HBase see the “Understanding the HBase Data Model” section,
earlier in this chapter.

For a complete list of HBase tuning parameters see http://hbase.apache.
org/book/config.files.html.

You may have guessed that a major compaction significantly affects the
system response time. Users who are trying to add, retrieve or manipulate
data in the system during a major compaction, they may see poor system
response time. In addition, the HBase cluster may have to split regions at the
same time that a major compaction is taking place and balance the regions
across all RegionServers. This scenario would result in a significant amount of
network traffic between RegionServers. For these reasons, your HBase admin-
istrator needs to have a major compaction strategy for your deployment. We
discuss a solution to the major compaction challenge at the end of this chap-
ter, but for now we continue your tour of the basic HBase architecture.

MasterServer
Starting our discussion of architecture by describing RegionServers instead
of the MasterServer may surprise you. The term RegionServer would seem
to imply that it depends on (and is secondary to) the MasterServer and
that we should therefore describe the MasterServer first. As the old song
goes, though, “it ain’t necessarily so.” The RegionServers do depend on

191 Chapter 12: Extremely Big Tables: Storing Data in HBase

the MasterServer for certain functions, but not in the sense of a master-
slave relationship for data storage and retrieval. In the upper-left corner of
Figure 12-1, notice that the clients do not point to the MasterServer, but point
instead to the Zookeeper cluster and RegionServers.

The MasterServer isn’t in the path for data storage and access — that’s the job
of the Zookeeper cluster and the RegionServers. We’ll cover Zookeeper in the
following section and describe client interaction later in this chapter; for now,
take a look at the primary functions of the MasterServer, which is also a soft-
ware process (or daemon) like the RegionServers. The MasterServer is there to

 ✓ Monitor the RegionServers in the HBase cluster: The MasterServer
maintains a list of active RegionServers in the HBase cluster.

 ✓ Handle metadata operations: When a table is created or its attributes are
altered (compression setting, cache settings, versioning, and more) the
MasterServer handles the operation and stores the required metadata.

 ✓ Assign regions: The MasterServer assigns regions to RegionServers.

 ✓ Manage RegionServer failover: As with any distributed cluster, you
hope that node failures don’t occur and you plan for them anyway. When
region servers fail, Zookeeper notifies the MasterServer so that failover
and restore operations can be initiated. We discuss this topic in greater
detail in the later section “Zookeeper and HBase reliability.”

 ✓ Oversee load balancing of regions across all available RegionServers:
You may recall that tables are comprised of regions which are evenly
distributed across all available RegionServers. This is the work of the
balancer thread (or chore, if you prefer) which the MasterServer periodi-
cally activates.

 ✓ Manage (and clean) catalog tables: Two key catalog tables — labeled
ROOT- and .META — are used by the HBase system to help a client find
a particular key value pair in the system.

	 •	The	-ROOT- table keeps track of the .META table’s location in the
cluster.

	 •	The	.META table keeps track of where each region is located in the
cluster.

 The MasterServer provides management of these critical tables on
behalf of the overall HBase system.

 ✓ Clear the WAL: The MasterServer interacts with the WAL during
RegionServer failover and periodically cleans the logs.

 ✓ Provide a coprocessor framework for observing master operations:
Here’s another new term for your growing HBase glossary. Coprocessors
run in the context of the MasterServer or RegionServers. For example,
a MasterServer observer coprocessor allows you to change or extend
the normal functionality of the server when operations such as table
creation or table deletion take place. Often coprocessors are used to
manage table indexes for advanced HBase applications.

192 Part III: Hadoop and Structured Data

 A coprocessor, which runs in the context of the MasterServer and or
RegionServer (or both) can be used to enhance security, create secondary
indexes, and more. You can find more information about coprocessors at this
HBase community blog: https://blogs.apache.org/hbase/entry/
coprocessor_introduction.

 As with all open source Hadoop technologies, MasterServer operations will
likely change over time as the community of engineers work on innovations
designed to enhance HBase. As of this writing, however, you now have a fairly
thorough list that serves as a high-level reference for the MasterServer

Finally, we have one more important point to make about the HBase
MasterServer. There can and should be a backup MasterServer in any HBase
cluster. (Refer to Figure 12-1.) There needs to be only one active MasterServer
at any given time, so the backup MasterServer is for failover purposes. You
may recall that the MasterServer isn’t in the data access path for HBase cli-
ents. However, you may also recall (from the list of functions in this section)
that the MasterServer is responsible for actions such as RegionServer failover
and load balancing. The good news is that clients can continue to query the
HBase cluster if the master goes down but for normal cluster operations, the
master should not remain down for any length of time.

Zookeeper and HBase reliability
Zookeeper is a distributed cluster of servers that collectively provides reli-
able coordination and synchronization services for clustered applications.
Admittedly, the name “Zookeeper” may seem at first to be an odd choice, but
when you understand what it does for an HBase cluster, you can see the logic
behind it. When you’re building and debugging distributed applications “it’s a
zoo out there,” so you should put Zookeeper on your team. (If you’re like us,
you love it when a technology is appropriately named.)

HBase clusters can be huge and coordinating the operations of the
MasterServers, RegionServers, and clients can be a daunting task, but that’s
where Zookeeper enters the picture. As in HBase, Zookeeper clusters typi-
cally run on low-cost commodity x86 servers. Each individual x86 server runs
a single Zookeeper software process (hereafter referred to as a Zookeeper
server), with one Zookeeper server elected by the ensemble as the leader
and the rest of the servers are followers. Zookeeper ensembles are governed
by the principle of a majority quorum. Configurations with one Zookeeper
server are supported for test and development purposes, but if you want a
reliable cluster that can tolerate server failure, you need to deploy at least
three Zookeeper servers to achieve a majority quorum.

193 Chapter 12: Extremely Big Tables: Storing Data in HBase

 So, how many Zookeeper servers will you need? Five is the minimum recom-
mended for production use, but you really don’t want to go with the bare mini-
mum. When you decide to plan your Zookeeper ensemble, follow this simple
formula: 2F + 1 = N where F is the number of failures you can accept in your
Zookeeper cluster and N is the total number of Zookeeper servers you must
deploy. Five is recommended because one server can be shut down for main-
tenance but the Zookeeper cluster can still tolerate one server failure.

Zookeeper provides coordination and synchronization with what it calls
znodes, which are presented as a directory tree and resemble the file path
names you’d see in a Unix file system. Znodes do store data but not much
to speak of — currently less than 1 MB by default. The idea here is that
Zookeeper stores znodes in memory and that these memory-based znodes
provide fast client access for coordination, status, and other vital functions
required by distributed applications like HBase. Zookeeper replicates znodes
across the ensemble so if servers fail, the znode data is still available as long
as a majority quorum of servers is still up and running.

Another primary Zookeeper concept concerns how znode reads (versus
writes) are handled. Any Zookeeper server can handle reads from a client,
including the leader, but only the leader issues atomic znode writes — writes
that either completely succeed or completely fail. When a znode write request
arrives at the leader node, the leader broadcasts the write request to the fol-
lower nodes and then waits for a majority of followers to acknowledge znode
write complete. After the acknowledgement, the leader issues the znode write
itself and then reports the successful completion status to the client.

 Znodes provide some very powerful guarantees. When a Zookeeper client
(such as an HBase RegionServer) writes or reads a znode, the operation is
atomic. It either completely succeeds or completely fails — there are no par-
tial reads or writes. No other competing client can cause the read or write
operation to fail. In addition, a znode has an access control lists (ACL) associ-
ated with it for security, and it supports versions, timestamps and notification
to clients when it changes.

Zookeeper replicates znodes across the ensemble so if servers fail, the znode
data is still available as long as a majority quorum of servers is still up and run-
ning. This means that writes to any znode from any Zookeeper server must be
propagated across the ensemble. The Zookeeper leader manages this operation.

 This znode write approach can cause followers to fall behind the leader for
short periods. Zookeeper solves this potential problem by providing a syn-
chronization command. Clients that cannot tolerate this temporary lack of
synchronization within the Zookeeper cluster may decide to issue a sync
command before reading znodes.

194 Part III: Hadoop and Structured Data

In a znode world, you’re going to come across what looks like the Unix-style
pathnames. (Typically they begin with /hbase.) These pathnames, which
are a subset of the znodes in the Zookeeper system created by HBase, are
described in this list:

 ✓ master: Holds the name of the primary MasterServer,

 ✓ hbaseid: Holds the cluster’s ID,

 ✓ root-region-server: Points to the RegionServer holding the
-ROOT- table),

 ✓ Something called /hbase/rs.

So now you may wonder what’s up with this rather vaguely defined /hbase/
rs. In the previous section, we describe the various operations of the
MasterServer and mention that Zookeeper notifies the MasterServer when-
ever a RegionServer fails. Now we help you take a closer look at how the
process actually works in HBase — and you’d be right to assume that it has
something to do with /hbase/rs. Zookeeper uses its watches mechanism
to notify clients whenever a znode is created, accessed, or changed in some
way. The MasterServers are Zookeeper clients as well as the RegionServers
and can leverage these znode watches. When a RegionServer comes online in
the HBase system, it connects to the Zookeeper ensemble and creates its own
unique ephemeral znode under the znode pathname /hbase/rs. At the same
time, the Zookeeper system establishes a session with the RegionServer
and monitors the session for events. If the RegionServer breaks the ses-
sion for whatever reason (by failing to send a heartbeat ping, for example),
the ephemeral znode that it created is deleted. The action of deleting the
RegionServer’s child node under /hbase/rs will cause the MasterServer
to be notified so that it can initiate RegionServer failover. This notification
is accomplished by way of a watch that the MasterServer sets up on the
/hbase/rs znode.

 HBase provides a high degree of reliability. When configured with the proper
redundancy (a backup MasterServer, proper Zookeeper configuration, and
sufficient RegionServers), HBase is sometimes considered fault tolerant, mean-
ing that HBase can tolerate any failure and still function properly. This is not
exactly true, of course, since (for example) a cascading failure could cause
the cluster to fail if the Zookeeper ensemble and or the MasterServers all
failed at once. When thinking about HBase and fault tolerance, remember that
HBase is a distributed system and that failure modes are quite different in
distributed systems versus the traditional high-end scalable database server
in a high availability (HA) configuration. To understand HBase fault toler-
ance and availability in more detail you need to consider the CAP theorem
which we introduce in Chapter 11. No discussion of HBase and fault toler-
ance would be complete without at least mentioning the CAP theorem. CAP
stands for “Consistency” (in the data stored), “Availability”(ready for use) and
“Partition Tolerance” (tolerant of network failures). Remember, HBase pro-
vides “Consistency” and “Partition Tolerance” but is not always “Available.”
For example, you may have a RegionServer failure and when you do, the

195 Chapter 12: Extremely Big Tables: Storing Data in HBase

availability of your data may be delayed if the failed RegionServer was manag-
ing the key (or keys) you were querying at the time of failure. The good news
is that the system, if configured properly, will recover (thanks to Zookeeper
and the MasterServer) and your data will become available again without
manual intervention. So HBase is consistent and tolerant of network failures
but not highly available like traditional HA database systems.

Taking HBase for a Test Run
In this section, you find out how to download and deploy HBase in stand-
alone mode. We think you’ll agree that it’s amazingly simple to install HBase
and start using the technology. Just keep in mind that HBase is typically
deployed on a cluster of commodity servers, though you can also easily
deploy HBase in a standalone configuration instead, for learning or demon-
stration purposes.

 For more information on the hardware requirements for HBase, check out
the section “Deploying and Tuning HBase,” later in this chapter. For Apache’s
official Quick Start Guide to HBase, check out http://hbase.apache.org/
book/quickstart.html.

Like Apache Hadoop, HBase supports Linux primarily but you can use Windows
in non-production environments if you first download Cygwin. Cygwin gives
Microsoft Windows users a Unix shell with all its commands and utilities. So if
you follow the Quick Start Guide — which we recommend you do — you’ll want
to download the latest HBase release (HBase 0.94.7 at the time of this writing).

You get to choose where to install HBase. We decided to install it on a nice
little laptop that’s currently running a 64-bit Linux kernel. You get to choose
where you want to install your HBase. It turns out, though, that if you want
things to run in standalone mode, you’ll need to edit a couple of files before
you can actually start HBase. Look for these files in the $INSTALL DIR/
hbase-0.94.7/conf directory in the HBase release. The first file is the
hbase-site.xml file shown in Listing 12-1. The changes you’ll want to make
are bolded to make them stand out:

Listing 12-1: The hbase-site.xml File

<configuration>
 <property>
 <name>hbase.rootdir</name>
 <value>file:///home/biadmin/my-local-hbase/hbase-data</value>
 </property>
 <property>
 <name>hbase.cluster.distributed</name>
 <value>true</value>

(continued)

196 Part III: Hadoop and Structured Data

 </property>
 <property>
 <name>hbase.zookeeper.property.clientPort</name>
 <value>2222</value>
 <description>Property from ZooKeeper's config zoo.cfg.
 The port at which the clients will connect.
 </description>
 </property>
 <property>
 <name>hbase.zookeeper.property.dataDir</name>
 <value>/home/biadmin/my-local-hbase/zookeeper</value>
 </property>
 <property>
 <name>hbase.zookeeper.quorum</name>
 <value>bivm</value>
 </property>
</configuration>

Using the hbase.rootdir property, you specify a directory in the local file
system to store the HBase data. In production environments, this property
would point to the HDFS for the data store. You also set the hbase.cluster.
distributed property to true which causes HBase to start up in a pseudo-
distributed mode. If you would choose not to set this property to true, HBase
would run all of the necessary processes in a single Java Virtual Machine
(JVM). However, for the sake of illustration, pseudo-distributed mode will
cause HBase to start a RegionServer instance, a MasterServer instance, and a
Zookeeper process. Additionally, you need to specify the hbase.zookeeper.
property.clientPort, the directory where Zookeeper will store its data
(hbase.zookeeper.property.dataDir) and a list of servers on which
Zookeeper will run to form a quorum (hbase.zookeeper.quorum). For
standalone, you specify only the single Zookeeper server bivm.

 Getting started with HBase in standalone mode is very straightforward in part
because HBase manages Zookeeper for you. You can download a separate
Zookeeper release and point HBase to it, but for standalone installs, you’ll find
it much easier to let HBase manage Zookeeper for you.

To crystallize the decision to let HBase manage Zookeeper for you, we show
you how to set an environment variable in yet another HBase file: the hbase-
env.sh file, to be precise. Listing 12-2 shows what needs to be added:

Listing 12-2: The hbase-env.sh File

Tell HBase whether it should manage its own instance of Zookeeper or not.
export HBASE_MANAGES_ZK=true

The java implementation to use. Java 1.6 required.
export JAVA_HOME=/opt/ibm/biginsights/jdk

Listing 12-1 (continued)

197 Chapter 12: Extremely Big Tables: Storing Data in HBase

In the listing, we’ve also set the JAVA_HOME environment variable to point to
the IBM JDK we have on our system. You’ll have to make sure you set JAVA_
HOME to point to your chosen JDK. Finally, you need to specify the name of
your Linux system in yet another file — the regionservers file. (In a fully
distributed production environment, the regionservers file would have
a line by line list of all servers on which HBase can start the RegionServer
process on.)

With the hbase-site.xml file and the hbase-env.sh file configured, you
can now start up HBase and test your install. To start HBase, use the start-
hbase.sh script as spelled out in Listing 12-3. (We show you how to test the
install below.)

Listing 12-3: Starting HBase

$ cd $INSTALL_DIR/hbase-0.94.7/bin
$./start-hbase.sh
bivm: starting zookeeper, logging to /home/biadmin/my-local-hbase/hbase-0.94.7/

bin/../logs/hbase-biadmin-zookeeper-bivm.out
starting master, logging to /home/biadmin/my-local-hbase/hbase-0.94.7/bin/../

logs/hbase-biadmin-master-bivm.out
localhost: starting regionserver, logging to /home/biadmin/my-local-hbase/hbase-

0.94.7/bin/../logs/hbase-biadmin-regionserver-bivm.out

Note that the first line has a cd (change directory) command that moves you
to an environment variable called $INSTALL_DIR. You have to set that vari-
able to your actual install directory for HBase or type out the full path.

 In Listing 12-1 we set the hbase.cluster.distributed property to true
which causes HBase to start up in a pseudo-distributed mode. We explained
that this would cause HBase to start three processes: a RegionServer instance,
a MasterServer instance, and a Zookeeper process. This is exactly what we see
in Listing 12-3.

Next we use the JConsole tool, which comes bundled with Java, to perform a
quick check on what processes are running after the start-hbase.sh script
finishes. You can start the JConsole tool by typing the following command:

$JAVA_HOME/bin/jconsole

In Figure 12-4, JConsole reveals that the three processes that the start-
hbase.sh script claimed to start are indeed running — the zookeeper, the
master and the RegionServer processes.

To put HBase through its paces, you interact with all three HBase processes,
starting with the MasterServer. By default, the MasterServer reports on the
system status by way of a browser user interface on port number 60010. In the
example, our server name is bivm so you can confirm that the MasterServer
is running correctly by entering the following URL in a web browser: http://
bivm:60010/. Doing so brings up the information you see in Figure 12-5.

198 Part III: Hadoop and Structured Data

Figure 12-4:
HBase Java

processes
running In

pseudo-
distributed

mode.

Figure 12-5:
Master-

Server user
interface

screenshot.

To keep the figure simple, we’ve captured only a portion of the MasterServer
metrics, but you can see the HBase Root Directory we set in the hbase-
site.xml file along with the Zookeeper Quorum port number. The
RegionServers also report their status and provide critical metrics via a
browser user interface on port 60030 by default. We tell you how to interact
with the Zookeeper process shortly but first we want to show you how to
leverage the RegionServer process and enter some data.

There are a growing number of approaches for clients to access HBase. In the
next section entitled “Getting things done with HBase” you’ll learn more about
the various client options for interacting with HBase. In this section, we introduce

199 Chapter 12: Extremely Big Tables: Storing Data in HBase

you to the HBase shell. You can think of the HBase shell as a client program for
interacting with HBase. To activate the HBase shell, first use the cd command to
change to the $INSTALL-DIR/bin directory and then type this command:

./hbase shell

You should see output like the following example, depending on which ver-
sion of HBase you’ve managed to download:

HBase Shell; enter 'help<RETURN>' for list of supported commands.
Type "exit<RETURN>" to leave the HBase Shell
Version 0.94.7, r1471806, Wed Apr 24 18:48:26 PDT 2013

Creating a table
And now the real work begins. The HBase shell provides you with a simple
set of commands for creating, reading, writing or updating, and deleting
tables. Commands to manage and configure tables are also provided. In
this section you’ll be learning about the create, put, get, scan and
describe commands. (These HBase shell commands are implemented by
a Java class called HTable that you’ll get to try out in the section entitled
“Working with an HBase Java API client example”.) Start by building the
Customer Contact Information table, using the information from Table 12-2.

hbase(main):002:0> create 'CustomerContactInfo', 'CustomerName', 'ContactInfo'
0 row(s) in 1.2080 seconds

This command creates two column families — ‘CustomerName’ and
‘ContactInfo’ — in a table called ‘CustomerContactInfo’.

Now enter the records from Table 12-2 into the new table, using Listing 12-4
as a model:

Listing 12-4: Entering Records

hbase(main):008:0> put 'CustomerContactInfo', '00001', 'CustomerName:FN', 'John'
0 row(s) in 0.2870 seconds

hbase(main):009:0> put 'CustomerContactInfo', '00001', 'CustomerName:LN', 'Smith'
0 row(s) in 0.0170 seconds

hbase(main):010:0> put 'CustomerContactInfo', '00001', 'CustomerName:MN', 'T'
0 row(s) in 0.0070 seconds

hbase(main):011:0> put 'CustomerContactInfo', '00001', 'CustomerName:MN', 'Timothy'
0 row(s) in 0.0050 seconds

(continued)

200 Part III: Hadoop and Structured Data

hbase(main):012:0> put 'CustomerContactInfo', '00001', 'ContactInfo:EA', 'John.
Smith@xyz.com'

0 row(s) in 0.0170 seconds

hbase(main):013:0> put 'CustomerContactInfo', '00001', 'ContactInfo:SA', '1
Hadoop Lane, NY 11111'

0 row(s) in 0.0030 seconds

hbase(main):014:0> put 'CustomerContactInfo', '00002', 'CustomerName:FN', 'Jane'
0 row(s) in 0.0290 seconds

hbase(main):015:0> put 'CustomerContactInfo', '00002', 'CustomerName:LN', 'Doe'
0 row(s) in 0.0090 seconds

hbase(main):016:0> put 'CustomerContactInfo', '00002', 'ContactInfo:SA', '7
HBase Ave, CA 22222'

0 row(s) in 0.0240 seconds

After you enter all the data from Table 12-2, you can retrieve the contents of
the new table by using the HBase scan command. The result should look like
Listing 12-5:

Listing 12-5: Scan Results

hbase(main):020:0> scan 'CustomerContactInfo', {VERSIONS => 2}
ROW COLUMN+CELL
 00001 column=ContactInfo:EA,

timestamp=1383859183030, value=John.Smith@xyz.com
 00001 column=ContactInfo:SA,

timestamp=1383859183073, value=1 Hadoop Lane, NY 11111
 00001 column=CustomerName:FN,

timestamp=1383859182496, value=John
 00001 column=CustomerName:LN,

timestamp=1383859182858, value=Smith
 00001 column=CustomerName:MN,

timestamp=1383859183001, value=Timothy
 00001 column=CustomerName:MN,

timestamp=1383859182915, value=T
 00002 column=ContactInfo:SA,

timestamp=1383859185577, value=7 HBase Ave, CA 22222
 00002 column=CustomerName:FN,

timestamp=1383859183103, value=Jane
 00002 column=CustomerName:LN,

timestamp=1383859183163, value=Doe
2 row(s) in 0.0520 seconds

Notice that we specified that HBase should return two versions of our values
if they exist in the table. This allows us to see the original middle initial of
John Smith as well as the latest full middle name.

Now we want to show you how to retrieve individual key-value pairs from our
Customer Contact Information table instead of retrieving the whole table with

Listing 12-4 (continued)

201 Chapter 12: Extremely Big Tables: Storing Data in HBase

the scan command. This will also further illustrate the versioning in HBase.
To retrieve data, you’ll need to build a key using the shell’s get command. As
you saw earlier in the chapter, keys look like this:

RowKey:(Column Family:Column Qualifier:Version)

Now, if you just specify the row key (0001 or 0002, for example) then you get
all the data associated with a row key — the row keys you’re using are just
not that granular. However, the more specific you get, the less data you get
back. Listing 12-6 illustrates this principle in HBase.

Listing 12-6: Using the get Command to Retrieve Entire Rows and
Individual Values

(1) hbase(main):037:0> get 'CustomerContactInfo', '00001'
COLUMN CELL
 ContactInfo:EA timestamp=1383859183030, value=John.

Smith@xyz.com
 ContactInfo:SA timestamp=1383859183073, value=1 Hadoop

Lane, NY 11111
 CustomerName:FN timestamp=1383859182496, value=John
 CustomerName:LN timestamp=1383859182858, value=Smith
 CustomerName:MN timestamp=1383859183001, value=Timothy
5 row(s) in 0.0150 seconds

(2) hbase(main):038:0> get 'CustomerContactInfo', '00001',
 {COLUMN => 'CustomerName:MN'}
COLUMN CELL
 CustomerName:MN timestamp=1383859183001, value=Timothy
1 row(s) in 0.0090 seconds

(3) hbase(main):039:0> get 'CustomerContactInfo', '00001',
 {COLUMN => 'CustomerName:MN',
 TIMESTAMP => 1383859182915}
COLUMN CELL
 CustomerName:MN timestamp=1383859182915, value=T
1 row(s) in 0.0290 seconds

 Note that, in Listing 12-6 above you can see how John Smith’s full middle
name (Timothy) is returned by default (lines 1 & 2) until we specify an exact
timestamp to return the prior middle initial (T in line 3). Note as well that for
the last get command (line 3), we constructed a full key to retrieve a specific
value — in this case the prior middle initial for John Smith. We included the
column family name (CustomerContactInfo), column qualifier (MN) and time
stamp (1383859182915).

You may be wondering how many versions you can store in the Customer
Contact Information table. To answer this question, you’d need to use the
describe shell command to look at the table descriptors per column family.
The first line of Listing 12-7 shows the syntax of the describe command and
the bolded lines in the same listing give you the answer you’re looking for.

202 Part III: Hadoop and Structured Data

Listing 12-7: Using the describe Command

hbase(main):018:0> describe 'CustomerContactInfo'
DESCRIPTION ENABLED
 'CustomerContactInfo', {NAME => 'ContactInfo', REPLICATION_SCOPE => '0', KE true
 EP_DELETED_CELLS => 'false', COMPRESSION => 'NONE', ENCODE_ON_DISK => 'true
 ', BLOCKCACHE => 'true', MIN_VERSIONS => '0', DATA_BLOCK_ENCODING => 'NONE'
 , IN_MEMORY => 'false', BLOOMFILTER => 'NONE', TTL => '2147483647', VERSION
 S => '3', BLOCKSIZE => '65536'}, {NAME => 'CustomerName', REPLICATION_SCOPE
 => '0', KEEP_DELETED_CELLS => 'false', COMPRESSION => 'NONE', ENCODE_ON_DI
 SK => 'true', BLOCKCACHE => 'true', MIN_VERSIONS => '0', DATA_BLOCK_ENCODIN
 G => 'NONE', IN_MEMORY => 'false', BLOOMFILTER => 'NONE', TTL => '214748364
 7', VERSIONS => '3', BLOCKSIZE => '65536'}
1 row(s) in 0.0350 seconds

hbase(main):022:0> quit

Notice that the default value for VERSIONS in both of our column families is 3.
This descriptor and others can be modified with the alter command by dis-
abling the table (via the disable command), altering it, and then enabling
the table again with the help of the enable command.

Working with Zookeeper
After you’ve created the table, you should ensure that the Zookeeper process
is working smoothly. The way the Zookeeper ensemble works is that it main-
tains critical data for HBase in data registers it calls znodes. If everything has
been working correctly, you should now have some meaningful znodes to
retrieve. It’s time to see whether that assumption is correct.

You’ve set your Zookeeper port to 2222 in the hbase-site.xml file back in
Listing 12-1, so using that port number you can bring up a Zookeeper command
line interface as shown in Listing 12-8 using the command shown in line 1.

Listing 12-8: Testing Zookeeper

(1) ./hbase zkcli -server bivm:2222
Connecting to bivm:2222
13/06/30 12:54:44 INFO zookeeper.ZooKeeper: Client environment:zookeeper.

version=3.4.5-1392090, built on 09/30/2012 17:52 GMT
13/06/30 12:54:44 INFO zookeeper.ZooKeeper: Client environment:host.name=bivm
. . .
(2) [zk: bivm:2222(CONNECTED) 0] ls /
[hbase, zookeeper]

203 Chapter 12: Extremely Big Tables: Storing Data in HBase

(3) [zk: bivm:2222(CONNECTED) 1] ls /hbase
[root-region-server, rs, master, hbaseid, shutdown, backup-masters, unassigned,

table92, draining, splitlog, online-snapshot, table]
(4) [zk: bivm:2222(CONNECTED) 2] ls /hbase/table
[CustomerContactInfo, .META., -ROOT-]
(5) [zk: bivm:2222(CONNECTED) 5] quit
Quitting...

Using the ls command (lines 2 & 3), you can browse through the znodes as
set up by the MasterServer and RegionServer (line 3). Notice the results of
line 4 ls /hbase/table. As expected, you can see the Customer Contact
Information table that you created using the hbase shell. (We bolded it for you.)

Getting Things Done with HBase
HBase is written in Java, an elegant language for building distributed tech-
nologies like HBase, but let’s face it — not everyone who wants to take
advantage of HBase innovations is a Java developer. That’s why there’s a rich
HBase client ecosystem out there whose sole purpose is to do the heavy Java
lifting for you and let you concentrate on making HBase work for you.

Rich is usually a good characteristic, but when that adjective crosses the line
into overwhelming, you start having a problem. In case the rich HBase client
ecosystem strikes you as overwhelming, we thought we should do some prun-
ing and highlight only the most popular clients available. To make things even
easier, we start by giving you an overview of the client ecosystem in diagram
form, as shown in Figure 12-6. Note that the diagram is similar to the HBase
architecture diagram in Figure 12-1, with an exploded view of the client box.

Figure 12-6:
The HBase

client
ecosystem.

204 Part III: Hadoop and Structured Data

The following lists summarize your options, starting with the Apache Hadoop
clients, more specifically those HBase clients which are part of the Apache
Hadoop ecosystem along with those technologies bundled with HBase that
are designed to help you build HBase clients:

 ✓ Hive: Hive is another top level Apache project and it happens to have an
entire chapter in this book devoted to it. (Chapter 13, if you’re curious.)
Hive provides its own take on data warehousing capabilities on top of
Apache Hadoop. It comes with a storage handler for HBase, and also
provides the HiveQL query language, which is quite similar to SQL. With
Hive, you can do all the querying of HBase that you want using HiveQL
and — here’s the kicker — no Java coding is required when you’re using
HBase with Hive.

 ✓ MapReduce: MapReduce is part of the Apache Hadoop framework
(and gets some nice coverage in Chapter 6 of this book). MapReduce’s
claim to fame is that it’s a programming model for processing data
in parallel on a distributed cluster. In the Hadoop universe, HBase is
(as the name implies) the “Hadoop Database.” HBase leverages the
Hadoop Distributed File System (HDFS) and can also be leveraged by
MapReduce jobs. HBase tables can be a source or sink to parallel pro-
cessing MapReduce jobs. This is an exciting feature included with HBase
and has many applications.

 ✓ Pig: Pig is another technology included with Apache Hadoop and, as
with Hive, Pig can leverage HBase. Pig takes you up a level by giving you
a higher level programming language called Pig Latin, which can do the
heavy MapReduce lifting for you. The details are a bit complicated, but
you’ll find out more in Chapter 8.

 ✓ Multi-Language Thrift System: Thrift provides a language-neutral
approach to building HBase clients. Developed by Facebook, Thrift’s
Interface Definition Language (IDL) allows you to define data types and
service interfaces so that two different systems written in different
languages can communicate with one another. After the IDL is written,
Thrift generates the code necessary for communication.

 Here’s the really cool part — HBase comes with the Thrift IDL already
written for you! As long as Thrift supports your language — and there
are 14 supported languages as of this writing — you’re well on your
way to writing your own custom HBase client. HBase also includes
the Thrift Server that’s necessary to act as a gateway for your custom
client. (That’s why the Thrift Server is depicted inside the HBase cluster
in Figure 12-6.) It doesn’t have to run on a cluster node; it ships with
HBase and only needs network access to the cluster. The Thrift server
provides a gateway between your client and the HBase Java Client APIs.
(More on those in a bit.) You start the Thrift gateway server pretty much
like you’d start the HBase shell client — by using the $INSTALL_DIR/
hbase-0.94.7/bin/hbase thrift start command.

205 Chapter 12: Extremely Big Tables: Storing Data in HBase

 ✓ Java Client: If you happen to be a Java developer — hey, we’ve got no
problem with that! — and you understand the ins and outs of Java pack-
ages, then you’ll want to check out the org.apache.hadoop.hbase.
client package which comes bundled with the HBase distribution.

 A little later in this chapter we show you a sample Java client that lever-
ages this package, but if you just want to poke around a bit, a good place
to start is with the package’s HTable class. There you’ll find the get,
put, checkAndPut, checkAndDelete, and delete primitives, some of
which you tried with the HBase shell in the hands-on example from the
“Taking HBase for a test run” section, earlier in this chapter.

 These primitives form the data manipulation language of HBase. (Okay,
we need to add scan here as well; it’s also part of the client package but
in a separate class.) When you’ve mastered the package’s HTable class,
you’ll want to check out its HBaseAdmin class so that you can manage
your tables and, while you’re at it, take a look at HTablePool as well,
because it’s an efficient way to leverage the Java client APIs.

 ✓ REST System: Probably the fastest approach for accessing a HBase
table is to leverage the REST interface. REST, which stands for
Representational State Transfer, is the technology that makes your web
browser work. Most folks just take web browsers for granted these
days, so what could be more natural for anyone than just using your
favorite browser as the gateway to an HBase cluster? As with the Thrift
approach, the REST gateway server ships with HBase and you need
to start at least one in order to enable browser interaction with your
tables. To do that, just pick a port number for your gateway server (we’ll
use 7777) and type the following command:

$INSTALL_DIR/hbase-0.94.7/bin/hbase rest start _p 7777

 If you continue leveraging the example of the Customer Contact
Information table from earlier in this chapter, you can type http://
bivm:7777/CustomerContactInfo/schema/ in your browser to
have the table schema returned to you — in effect mirroring what the
describe command would do in the HBase shell (note that ‘bivm’ is
the system name here so you’ll need to enter the actual name of your
system for this to work).

 You can perform HBase client commands like get, put, scan, delete,
and others using the Unix curl command. The curl command is often
written as cURL because it lets you create web browser URLs using the
command line. However, you’ll need to do a little more work to get human
readable results after you start retrieving your data. On its own, the
browser returns base64 encoded data, since HBase is just storing bytes.

 ✓ JRuby (HBase Shell): The fastest way to roll up your sleeves and learn
to use HBase is via the HBase shell. As you’ve probably already seen in
the hands-on example of the HBase shell in the previous section, the
shell is a powerful tool for interacting with HBase. The HBase shell is
based on JRuby’s Interactive Ruby Shell or IRB for short. (For more on

206 Part III: Hadoop and Structured Data

JRuby, check out http://jruby.org.) Keep in mind, however, that
you can also write scripts and execute them in batch mode. (You see a
use case for shell scripts in the “Deploying and Tuning HBase” section,
later in this chapter, when we discuss major compactions.)

With the Apache Hadoop clients out of the way, it’s time to turn to other
HBase clients. The following list describes HBase clients which have been
created by other open source communities and commercial companies.

 ✓ AsyncHBase & hrider: We’re seeing lots of open source HBase clients
springing up, so we want to introduce you to a pair that are really cool!
The first is AsyncHBase which, as the name implies, is an asynchronous
client. The standard bundled HBase client found in the org.apache.
hadoop.hbase.client package is synchronous, which means that
when you write a program using the standard package and it accesses
an HBase table in some way, your program has to stop and wait for
HBase to finish the operation. AsyncHBase provides an alternative to
this Stop and Wait approach by letting your program do other things
while HBase fulfills your request in the background. The second client is
hrider which is a really cool little graphical user interface (GUI) on top
of HBase. You know how we used the HBase shell earlier in our hands-on
example? Well, hrider lets you interact with HBase through a GUI with a
point and a click instead of typing out all of your HBase commands. You
can find both of these projects and more on http://github.com.

 ✓ Other Products: As you would expect, plenty of commercial compa-
nies are creating innovative products for HBase — IBM, Cloudera,
Hortonworks, and Amazon to name a few. To take just two examples, IBM
created Big SQL which allows you to execute SQL against HBase tables,
and Cloudera created Impala which improves HiveQL performance when
querying data stored in HBase tables. You’ll want to check out Chapter 14
for more on Big SQL and Impala.

Working with an HBase Java
API client example
Here’s a simple Java Client example to help you get started if you have your
heart set on writing your own client. To run this code on the standalone
pseudo-distributed install you’ve set up, set the Java CLASSPATH environ-
ment variable as follows:

CLASSPATH=$YOUR_HOME/HBaseClientApp:$INSTALL_DIR/hbase-0.94.7/hbase-
0.94.7.jar:$INSTALL_DIR/hbase-0.94.7/conf:$INSTALL_DIR/
hbase-0.94.7/lib/*

207 Chapter 12: Extremely Big Tables: Storing Data in HBase

Your application needs to not only find the HBase jar files, but also know
where your configuration files reside. Setting the Java CLASSPATH environ-
ment variable as shown takes care of that task for you. (Without the HBase
configuration files, the Java Client APIs cannot find Zookeeper, which is Step
1 for accessing the installation.)

 Before you start working your way through the following sample code, you
should know that one of the more powerful features in HBase for making data
retrieval more efficient is filters. A filter lets you leverage the RegionServer’s
processing power to separate out the data you need — and the sample Java
client example takes advantage of one of these built-in filters. This approach
makes your queries faster and reduces the load on your network. Now clients
don’t have to sort through potentially huge chunks of data to find the record
they need!

Listing 12-9 shows a simple Java client example in all its splendor. Note that
the code below has been documented with comments — lines starting with //,
that is — to help you understand how the HBaseClientApp class works. We
labeled the comments with bold numbers so you can keep them straight:

Listing 12-9: A Simple Java Client Example

import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.Get;
import org.apache.hadoop.hbase.client.HTable;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.ResultScanner;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.filter.*;
import org.apache.hadoop.hbase.util.Bytes;

public class HBaseClientApp {

 // Comment 1
 // HBase programming best practices call for declaring column
 // family names, column qualifiers and other frequently
 // used byte arrays once as constants instead of calling
 // Bytes.toBytes every time you need to create these byte
 // arrays. Bytes.toBytes can be very costly in terms of
 // CPU cycles and can slow down your code especially if you
 // call the method inside a loop.

 private static final byte[] FIRSTROWKEY = Bytes.toBytes("00001");
 private static final byte[] ROWKEY = Bytes.toBytes("91000");
 private static final byte[] CF_CustomerName = Bytes.toBytes("CustomerName");
 private static final byte[] CF_ContactInfo = Bytes.toBytes("ContactInfo");
 private static final byte[] CQ_FirstName = Bytes.toBytes("FN");
 private static final byte[] CQ_LastName = Bytes.toBytes("LN");

(continued)

208 Part III: Hadoop and Structured Data

 private static final byte[] CQ_EmailAddr = Bytes.toBytes("EA");
 private static final byte[] CQ_StreetAddr = Bytes.toBytes("SA");

 public static void main(String[] args) throws IOException {

 // Comment 2
 // Find the hbase-site.xml configuration
 // file from your CLASSPATH

 Configuration myConfig = HBaseConfiguration.create();

 // Comment 3
 // Create an HTable object and connect it
 // to your Customer Contact Information table

 HTable myTable = new HTable(myConfig, "CustomerContactInfo");

 // Comment 4
 // Create a Put object to enter some new
 // customer information into your Customer Contact Information table.
 // This code assumes that you_re keeping track
 // of your ROWKEY.
 Put myPutObject = new Put(ROWKEY);

 myPutObject.add(CF_CustomerName, CQ_FirstName, Bytes.toBytes("Bruce"));
 myPutObject.add(CF_CustomerName, CQ_LastName, Bytes.toBytes("Brown"));
 myPutObject.add(CF_ContactInfo, CQ_EmailAddr, Bytes.toBytes("brownb@

client.com"));
 myPutObject.add(CF_ContactInfo, CQ_StreetAddr, Bytes.toBytes("HBase

Author Lane, CA 33333"));

 // Comment 5
 // Commit our new record to the 'CustomerContactInfo'
 // table.
 myTable.put(myPutObject);

 // Comment 6
 // In the example below you are leveraging one of the many
 // built-in filters to query the Customer Contact
 // Information table for customers that have a
 // particular email address. Only client records that have
 // a particular domain name in their email address
 // are returned to our Java Client.

 Filter companyFilter = new ValueFilter(CompareFilter.CompareOp.EQUAL,
 new SubstringComparator("@client.com"));
 Scan myScanner = new Scan(FIRSTROWKEY,companyFilter);
 ResultScanner myResults = myTable.getScanner(myScanner);
 for (Result res : myResults) {
 System.out.println(Bytes.toString(res.value()));
 }
 }
}

Listing 12-9 (continued)

209 Chapter 12: Extremely Big Tables: Storing Data in HBase

Beginning with Comment 1, this block of Java code illustrates a best practice
with HBase, namely that you want to define your byte arrays holding your
HBase row keys, column family names, column qualifiers and data up front as
constants. This saves valuable CPU cycles and makes your code run faster,
especially if there are repeated loop constructs. If you were wondering how
the main method that executes the HBase commands finds the Zookeeper
ensemble and then RegionServers, Comment 2 explains this. However, the
HBaseConfiguration.create method won’t find your cluster if your
CLASSPATH environment variable is not set correctly, so don’t forget that
task! Comment 3 explains how our HBaseClientApp class connects with the
’CustomerContactInfo’ table and Comments 4 and 5 show you how you can
place data in our ’CustomerContactInfo’ table. Finally, Comment 6 explains
how HBase filter technology can improve your table scans by allowing you
to target specific data in the table. Without filters you would be pulling much
more data out of the HBase cluster and across the network to your client
where you would have to write code to sort through the results. Filters make
HBase life a whole lot easier!

If you compile and run this example application, you’ll have added a new
customer name (Bruce Brown) and the customer’s contact info (brownb@
client.com, residing at HBase Author Lane, CA 33333) to the Customer
Contact Information table and you’ll have used a filter to track down and
print the e-mail address.

HBase and the RDBMS world
We think it’s best to state right up front that HBase and relational database
technology (like Oracle, DB2, and MySQL to name just a few) really don’t
compare all that well. Despite the cliché, it’s truly a case of comparing apples
to oranges. HBase is a NoSQL technology — we explain the meaning of this
catchy nomenclature in detail in Chapter 11 and we discuss the major differ-
ences between relational database management systems (RDBMSs) and HBase
in Chapter 11 as well. If your background is in relational database technology
and you are wondering how you might convert some of your databases to
HBase — or even if that makes sense — then this section is just for you! We’ll
start with a brief description (or refresher if you read Chapter 11) of the differ-
ences and then we’ll discuss some considerations and guidelines for making
the move.

BigTable, HBase’s Google forebear, was born out of a need to manage massive
amounts of data in a seamless, scalable fashion. HBase is a direct implemen-
tation of BigTable providing the same scalability properties, reliability, fault
recovery, a rich client ecosystem, and a simple yet powerful programming
model. The relational data model and the database systems that followed
were built with different goals in mind. The relational model and accom-
panying structured query language (SQL) is a mathematical approach that
enforces data integrity, defines how data is to be manipulated, provides a

210 Part III: Hadoop and Structured Data

basis for efficient data storage and prevents update anomalies by way of the
normalization process. Though HBase and the RDBMS have some commonali-
ties, the design goals were different.

You may wonder why the examples earlier in this chapter center on mapping
a relational table — our Customer Contact Information table — to an HBase
table. The reason is two-fold:

 ✓ The relational model is the most prevalent, so using that model for the
sake of comparisons often helps professionals coming from the world of
RDBMSs better grasp the HBase data model.

 ✓ The innovations provided by BigTable and HBase are making this new
NoSQL technology an attractive alternative for certain applications
that don’t necessarily fit the RDBMS model. (The ability of HBase to
scale automatically is alone a huge innovation for the world of database
technology!)

Knowing when HBase makes
sense for you?
So, when should you consider using HBase? Though the answer to this ques-
tion isn’t necessarily straightforward for everyone, for starters you clearly
must have

 ✓ A big data requirement: We’re talking terabytes to petabytes here —
otherwise you’ll have a lot of idle servers in your racks.

 ✓ Sufficient hardware resources: Five servers is a good starting point, as
described in the “Hardware Architecture” row in Table 12-4.

When considering which route to take — HBase versus RDBMS — consider
other requirements such as transaction support, rich data types, indexes,
and query language support — though these factors are not as black and
white as the preceding two bullets. Rich data types, indexes and query lan-
guage support can be added via other technologies, such as Hive or commer-
cial products, as described in Chapter 13. “What about transactions?” you
ask. The answer to that question is in the following section.

ACID Properties in HBase
Certain use cases for RDBMSs, like online transaction processing, depend
on ACID-compliant transactions between the client and the RDBMS for the
system to function properly. (We define the ACID acronym — Atomicity,
Consistency, Isolation, and Durability — in Chapter 11.) When compared to

211 Chapter 12: Extremely Big Tables: Storing Data in HBase

an RDBMS, HBase isn’t considered an ACID-compliant database as of this
writing. HBase does not support ACID-compliant transactions over multiple
rows or across tables. However, HBase does guarantee the following aspects:

 ✓ Atomic: All row level operations within a table are atomic. This guar-
antee is maintained even when there’s more than one column family
within a row. HBase provides, in addition to the get, put, delete and
scan commands described earlier in this chapter, atomic increment,
checkAndPut and checkAndDelete methods.

 ✓ Consistency: Scan operations return a consistent view of the data stored
in HBase at some point in the past. Concurrent client interaction could
update a row during a multi-row scan, but all rows returned by a scan
operation will always contain valid data from some point in the past.

 ✓ Durability: Any data that can be retrieved from HBase has also been
made durable to disk (persisted to HDFS, in other words).

 One of the exciting aspects of HBase and other open source Apache projects
is that someone in the community is always innovating and trying to improve
the technology. HBase does support multi-row transactions if the rows are
on the same RegionServer. This feature, which requires additional coding,
was introduced in HBase version 0.94.0 documented at https://issues.
apache.org/jira/browse/HBASE-5229. (If you’re curious, the additional
coding focused on HBase’s split policy.)

 When ACID properties are required by HBase clients, design the HBase
schema such that cross row or cross table data operations are not required.
Keeping data within a row provides atomicity.

Transitioning from an RDBMS
model to HBase
If you’re facing the design phase for your application and you believe that
HBase would be a good fit, then designing your row keys and schema to fit
the HBase data model and architecture is the right approach. However, some-
times it makes sense to move a database originally designed for an RDBMS
to HBase. A common scenario where this approach makes sense is a MySQL
database instance that has reached its limits of scalability. Techniques exist
for horizontally scaling a MySQL instance (sharding, in other words) but this
process is usually cumbersome and problematic because MySQL simply was
not originally designed for sharding. If you’re in this predicament yet you
believe that the HBase differences are manageable, then read on. The tips in
this section may save you some valuable time.

212 Part III: Hadoop and Structured Data

Transitioning from the relational model to the HBase model is a relatively
new discipline. However, certain established patterns of thought are emerg-
ing and have coalesced into three key principles to follow when approaching
a transition. These principles are denormalization, duplication, and intelligent
keys (DDI). The following list takes a closer look at each principle:

 ✓ Denormalization: The relational database model depends on a) a nor-
malized database schema and b) joins between tables to respond to
SQL operations. Database normalization is a technique which guards
against data loss, redundancy, and other anomalies as data is updated
and retrieved. There are a number of rules the experts follow to arrive at
a normalized database schema (and database normalization is a whole
study itself), but the process usually involves dividing larger tables into
smaller tables and defining relationships between them. Database denor-
malization is the opposite of normalization, where smaller, more specific
tables are joined into larger, more general tables. This is a common pat-
tern when transitioning to HBase because joins are not provided across
tables, and joins can be slow since they involve costly disk operations.
Guarding against the update and retrieval anomalies is now the job of
your HBase client application, since the protections afforded you by nor-
malization are null and void.

 ✓ Duplication: As you denormalize your database schema, you will likely
end up duplicating the data because it can help you avoid costly read
operations across multiple tables. Don’t be concerned about the extra
storage (within reason of course); you can use the automatic scalability
of HBase to your advantage. Be aware, though, that extra work will be
required by your client application to duplicate the data and remember
that natively HBase only provides row level atomic operations not cross
row (with the exception described in the HBASE-5229 JIRA) or cross
table.

 ✓ Intelligent Keys: Because the data stored in HBase is ordered by row
key, and the row key is the only native index provided by the system,
careful intelligent design of the row key can make a huge difference.
For example, your row key could be a combination of a service order
number and the customer’s ID number that placed the service order.
This row key design would allow you to look up data related to the ser-
vice order or look up data related to the customer using the same row
key in the same table. This technique will be faster for some queries and
avoid costly table joins.

To clarify these particular patterns of thought, we expand on the example of
the Customer Contact Information table by placing it within the context of a
typical service order database. Figure 12-7 shows you what a normalized ser-
vice order database schema might look like.

213 Chapter 12: Extremely Big Tables: Storing Data in HBase

Figure 12-7:
An RDBMS
normalized

service
order

database.

Following the rules of RDBMS normalization, we set up the sample Customer
Contact Information table so that it is separate from the service order table
in order to avoid losing customer data when service orders are closed and
possibly deleted. We took the same approach for the Products table, which
means that new products can be added to the fictional company database
independently of service orders. By relying on RDBMS join operations, this
schema supports queries that reveal the number of service orders that are
opened against a particular product along with the customer’s location
where the product is in use.

That’s all fine and dandy, but it’s a schema you’d use with RDBM. How do you
transition this schema to an HBase schema? Figure 12-8 illustrates a possible
HBase scheme — one that follows the DDI design pattern.

Figure 12-8:
An HBase

schema
for the ser-
vice order
database.

To avoid costly search operations and additional HBase get and/or scan
operations (or both), the Customer Contact Information table has been
denormalized by including the customer name and contact info in place of
the foreign keys used previously. (See Figure 12-7.) Also, the data is dupli-
cated by keeping the Customer Contact Information table as is. Now joins
across the Service Order table and Customer Contact Information table are
not necessary. Additionally, an intelligent row key design has been employed
that combines the product number with the customer number to form the

214 Part III: Hadoop and Structured Data

service order number (A100|00001, for example). Using this intelligent key,
the service order table can provide vital reports about product deficiencies
and customers who are currently experiencing product issues. All these que-
ries can all be supported by HBase in a row level atomic fashion for the appli-
cation. We don’t have to worry about the lack of ACID compliant joins across
the two tables. Additionally, because you know that HBase orders row keys
and sorts them in a lexicographical fashion, your application can make cer-
tain educated guesses about data locality when issuing scans for reporting.
(All A* series product numbers will be stored together, for example.)

The service order database represented by the HBase schema (refer to Figure
12-8) is a relatively simple example, but it illustrates how HBase can, in cer-
tain cases, intersect with the RDBMS world and provide significant value. If
the fictional company has terabytes or even petabytes of service call data
to store, HBase would make a huge difference in terms of cost, reliability,
performance, and scale. You can, of course, design your service order HBase
schema in several different ways. Admittedly, the design all depends on the
queries that must be supported, but you have the ability to transition some
relational databases to very powerful HBase applications for production use
as long as you work from a solid understanding of HBase architecture and the
DDI design pattern.

 This example has assumed that queries were performed by a Java applica-
tion leveraging the HBase client APIs, or perhaps via another language using
Apache Thrift. This application model may fit the requirements just fine and
provide useful performance and customization options for the fictional service
company. However, the downside is that the service order database schema is
tied pretty tightly to the application layer that issues the queries and manages
the database integrity. (We say “tied pretty tightly” because changes to the
HBase schema would require changes to the application code.) You might ask
these two questions: “could either HiveQL or other commercial offerings pro-
viding SQL support for HBase be used to make this process easier for the engi-
neers creating this HBase application?” (changing HiveQL or SQL is certainly
easier and less costly than changing application code) and “could joins be per-
formed when appropriate using Hadoop MapReduce?” (That might be easier
than following the DDI pattern if the limited ACID properties provided by
HBase fit your application.) The answer to these questions is “yes,” so you’ll
want to check out Chapters 13 and 15 to see how HBase can be combined with
other Hadoop and commercial products to create some very powerful big data
applications.

Deploying and Tuning HBase
HBase is a powerful and flexible technology, but accompanying this flexibility
is the requirement for proper configuration and tuning. Now, installing and run-
ning HBase in a standalone mode for learning purposes is seamless and very

215 Chapter 12: Extremely Big Tables: Storing Data in HBase

straightforward, but standalone mode for testing purposes in no way, shape, or
form represents the real world. Admittedly, some applications of HBase simply
involve ingesting large amounts of data and then querying that data occasion-
ally over time at a leisurely pace — no strict deadlines, in other words, which
means that you don’t have to worry too much about efficiencies. Other pos-
sibilities might include running a Map Reduce job against the data for business
analytics or machine learning applications. These use cases are batch ori-
ented in nature and if your use case fits into this category, you probably don’t
need to configure and tune HBase all that much. Your main concerns are the
proper hardware configuration and correct configuration files. Reviewing the
Apache HBase online Quick Start guide (http://hbase.apache.org/book/
quickstart.html) and following the guidance in the later section “Hardware
requirements” is likely all you need to soon be on your way.

Most HBase deployments, however, are going to include performance expec-
tations or performance requirements (or both) along with the expectation
that you take advantage of freebies such as auto sharding and automatic
recovery after node failures. Often new use cases arise after an organization
becomes accustomed to the new and shiny database toy on the network
and so the original expectations or requirements can change. So for all these
reasons and more, deploying HBase at scale in production environments
typically requires careful thought and an understanding of how to tune
HBase. The good news is that, in our experience, a little tuning goes a long
way, so don’t feel overwhelmed. We’ve personally seen HBase performance
improve by several orders of magnitude by simply following the suggestions
in this section and in the online page “Apache HBase performance tuning”
(http://hbase.apache.org/book/performance.html).

Hardware requirements
It’s time for some general guidelines for configuring HBase clusters. Your
“mileage” may vary, depending on specific compute requirements for your
RegionServers (custom coprocessors, for example) and other applications
you may choose to co-locate on your cluster.

RegionServers
The first temptation to resist when configuring your RegionServers is plunk-
ing down lots of cash for some high end enterprise systems. Don’t do it!
HBase is typically deployed on plain vanilla commodity x86 servers. Now,
don’t take that statement as license to deploy the cheapest, low quality
servers. Yes, HBase is designed to recover from node failures but your avail-
ability suffers during recovery periods so hardware quality and redundancy
do matter. Redundant power supplies as well as redundant network interface
cards are a good idea for production deployments. Typically, organizations
choose two socket machines with four to six cores each.

216 Part III: Hadoop and Structured Data

The second temptation to resist is configuring your server with the maximum
storage and memory capacity. A common configuration would include from
6 to 12 terabytes (TB) of disk space and from 48 to 96 gigabytes (GB) of RAM.
RAID controllers for the disks are unnecessary because HDFS provides data
protection when disks fail.

 HBase requires a read and write cache that’s allocated from the Java heap.
Keep this statement in mind as you read about the HBase configuration
variables because you’ll see that a direct relationship exists between a
RegionServer’s disk capacity and a RegionServer’s Java heap. You can find an
excellent discussion on HBase RegionServer memory sizing at

http://hadoop-hbase.blogspot.com/2013/01/hbase-region-
server-memory-sizing.html

The article points out that you can estimate the ratio of raw disk space to
Java heap by following this formula:

RegionSize divided by Memstoresize multiplied by HDFS Replication
Factor multiplied by HeapFractionForMemstores

Using the default HBase configuration variables from http://hbase.
apache.org/book/config.files.html provides this ratio:

10GB / 128MB * 3 * 0.4 = Ratio of 96MB disk space : 1 MB Java heap space.

The preceding line equates to 3TB of raw disk capacity per RegionServer with
32GB of RAM allocated to the Java heap.

What you end up with, then, is 1 terabyte of usable space per RegionServer
since the default HDFS replication factor is 3. This number is still impres-
sive in terms of database storage per node but not so impressive given that
commodity servers can typically accommodate eight or more drives with a
capacity of 2 to 4 terabyte a piece. The overarching problem as of this writ-
ing is the fact that current Java Virtual Machines (JVMs) struggle to provide
efficient memory management (garbage collection, to be precise) with large
heap spaces (spaces greater than 32GB, for example).

Yes, there are garbage collection tuning parameters you can use, and you
should check with your JVM vendor to insure you have the latest options, but
you won’t be able to get very far using them at this time. The memory man-
agement issue will eventually be solved but for now be aware that you may
encounter a problem if your HBase storage requirements are in the range
of hundreds of terabytes to more than a petabyte. You can easily increase
the hbase.hregion.max.filesize to 20GB to reach 6TB raw and 2TB
usable. You can make other tweaks (reducing MemStore size for read heavy
workloads, for example) but you won’t make orders of magnitude leaps in the
useable space until we have a JVM that efficiently handles garbage collection
with massive heaps.

217 Chapter 12: Extremely Big Tables: Storing Data in HBase

 You can find ways around the JVM garbage collection issue for RegionServers
but the solutions are new and are not yet part of the main HBase distribution
as of this writing. If your HBase data store requirements are massive, check
out the “bucket cache” article at https://issues.apache.org/jira/
browse/HBASE-7404 before you buy too many RegionServers.

Master servers
The MasterServer does not consume system resources like the
RegionServers do. However, you should provide for hardware redundancy,
including RAID to prevent system failure. For good measure, also configure
a backup MasterServer into the cluster. A common configuration is 4 CPU
cores, between 8GB and 16GB of RAM and 1 Gigabit Ethernet is a common
configuration. If you co-locate MasterServers and Zookeeper nodes, 16GB of
RAM is advisable.

Zookeeper
Like the MasterServer, Zookeeper doesn’t require a large hardware configura-
tion, but Zookeeper must not block (or be required to compete for) system
resources. Zookeeper, which is the coordination service for an HBase cluster,
sits in the data path for clients. If Zookeeper cannot do its job, time-outs will
occur — and the results can be catastrophic. Zookeeper hardware require-
ments are the same as for the MasterServer except that a dedicated disk
should be provided for the process. For small clusters you can co-locate
Zookeeper with the master server but remember that Zookeeper needs suf-
ficient system resources to run when ready.

Deployment Considerations
Now that you have a solid understanding of HBase hardware (HW) require-
ments, we have a couple of points for you regarding deployment:

 ✓ In this chapter, we’re assuming that you’re concerned primarily about
setting up an HBase cluster. Though co-locating HBase with MapReduce
is often done, it affects performance and sizing requirements. So if
you’re serious about maximum HBase performance, consider carefully
the additional HW resources you may require or provision a separate
cluster for MapReduce and other Hadoop jobs. Then you can keep your
HBase cluster separate.

 ✓ Deploying Hadoop is the subject of Chapter 16 so we encourage you to
check that chapter out. In Chapter 16, you’ll find more detail on network-
ing as well as physical HW deployment examples for HBase and Hadoop.
We cover Hadoop 1 deployments as well as Hadoop 2 deployments.

218 Part III: Hadoop and Structured Data

Tuning prerequisites
Any serious HBase installation requires some standard setup on your cluster
and on your individual nodes. We give you a few examples here and then
point you to the sections in the Apache HBase online documentation you’ll
need to reference. First take a look at monitoring and management.

Tools to monitor your cluster
If you’ve had the privilege of engineering a system at some point in your
career, you know you face the major challenge of coming up with a rigor-
ous testing procedure to ensure that your system is ready for its production
phase. If you don’t plan for testing and debugging right up front, you’ll likely
miss your production deadlines or fail altogether. The HBase and Hadoop
committers made sure that you would have a rich metrics subsystem to draw
on during the debug and test phase. You can find all the messy details in the
Apache HBase online documentation (http://hbase.apache.org/book.
html#ops_mgt), especially the sections dealing with HBase Backup and
Replication. In this section, we give you an overview of the available tools.

 The Cluster Replication feature is a key tool when debugging, tuning or if you
want to run Map Reduce against your tables without impacting performance.
Obviously, you’ll need it for disaster recover as well.

Getting started with the Hadoop management tools set is surprisingly easy.
HBase leverages the Java Management Extensions (JMX) technology for
exposing key metrics. And with the Java Virtual Machine, you also get the
JConsole tool, a free JMX client that you can use to view HBase metrics.
The HBase distribution we’ve been working with (0.94.7) enables access via
JConsole by default, so in your standalone environment you simply select the
HBase server that you want to monitor and JConsole then presents you with
a graphical user interface for viewing key server metrics.

 You can start the JConsole tool with the following command:

 $JAVA_HOME/bin/jconsole

Additionally, you should familiarize yourself with these two other open
source technologies for monitoring your HBase cluster:

 ✓ Ganglia: Often used to provide monitoring graphs over time, Ganglia
can help you spot problems that occur occasionally or only after days of
operation.

 ✓ Nagios: Nagios is useful if you’re an HBase administrator and you want
to receive a page on your pager or an e-mail if, say, a RegionServer goes
down or you have a garbage collection issue in your cluster.

 If you’re leveraging HBase as part of a commercial product, be sure to check
with your vendor for a tool to monitor and manage HBase.

219 Chapter 12: Extremely Big Tables: Storing Data in HBase

Cluster setup
HBase typically deploys on a cluster, and you’ll need to make some adjust-
ments on each of your servers to accommodate HBase components. A good
first step is insuring that the system clocks on each server in your cluster
are in sync. Out of sync system clocks on your servers can really confuse
HBase, so check out the Network Time Protocol or NTP for short. Running
the NTP on your cluster will take care of any time synchronization issues.
Furthermore, HBase is a unique application in certain respects because it
stresses your system beyond the level that applications may do. The truth
is that HBase is going to be opening a lot of files — that’s just the nature of
the beast. Given that fact, you need to ensure that your operating systems
are configured to handle what is sure to be a far-from-typical file system
load. Swapping in your Linux operating systems (moving between disk and
memory, in other words) can have very adverse effects on Zookeeper. Finally
there’s the Java Virtual Machine (JVM) that ultimately runs on each of your
nodes and executes the HBase processes. HBase also puts far-from-typical
stress on the JVM. (For example, the MemStore cache, which heavily exer-
cises the garbage collection system, is sure to be taxed to the max.)

 When the MemStore is committed to HFiles on the HDFS, the Java heap is
reclaimed. This can result in long garbage collection pauses if your JVM is not
configured correctly.

So for all of these reasons and more you should review these two sections of
the Apache HBase online documentation:

 ✓ General Configuration Requirements: Review Chapter 2 of the Apache
HBase online documentation (http://hbase.apache.org/book/
configuration.html) and especially section 2.5 entitled “The
Important Configurations” - http://hbase.apache.org/book/
important_configurations.html.

 ✓ Java Virtual Machine: Determine which JVM you’re running and make
sure that it has been tested for compatibility with HBase. As of this
writing, the Apache HBase online documentation suggests Java 6 from
Oracle because Java 7 hasn’t been fully tested. Another JVM we’ve
tested is IBM’s J9. If you plan to use J9, review the IBM documentation
for the latest command line options when starting your JVMs. If you plan
to use Oracle’s JVM, review the following sections of the HBase online
documentation to familiarize yourself with the proper settings: http://
hbase.apache.org/book/jvm.html and http://hbase.apache.
org/book/trouble.log.html#trouble.log.gc

Enabling compression
Compression boosts HBase performance by reducing overall disk input/
output. Consider enabling compression unless your data doesn’t compress
well (images, for example) or if your RegionServers cannot handle the addi-
tional CPU load that compression and decompression requires. Compression
can be enabled via the HBase shell command, as we explain in the “Taking

220 Part III: Hadoop and Structured Data

HBase for a test run” section, earlier in this chapter, when we tell you how
to leverage the describe shell command (see Listing 12-10) to view our
Customer Contact Information table descriptors:

Listing 12-10: The describe Shell Command

hbase(main):018:0> describe 'CustomerContactInfo'
... {NAME => 'ContactInfo', REPLICATION_SCOPE => '0', KE true
 EP_DELETED_CELLS => 'false', COMPRESSION => 'NONE',...

By default, compression is disabled per column family. The supported
compression types are Gzip, LZO and Snappy (with some other derivatives
available and more on the way). GZIP is best overall for achieving a good
compression ratio, but LZO and Snappy are faster. Keep in mind, though, that
both LZO and Snappy compression codecs must be installed separately; only
Gzip works without further configuration steps. Listing 12-11 shows the steps
you’d need to enable Gzip compression on the Customer Contact Information
table:

Listing 12-11: Enabling Gzip Compression

hbase(main):007:0> disable 'CustomerContactInfo'
hbase(main):010:0> alter 'CustomerContactInfo', { NAME => 'CustomerName',

COMPRESSION => 'GZ' }
hbase(main):014:0> describe 'CustomerContactInfo'
... {NAME => 'CustomerName', REPLICATION_SC
 OPE => '0', KEEP_DELETED_CELLS => 'false', COMPRESSION => 'GZ',...
hbase(main):017:0> enable 'CustomerContactInfo'

Understanding your data access patterns
Achieving peak performance with HBase requires an understanding of your
data access patterns. How will your application or clients query HBase? Is
your data ingested in bulk or gradually over time? Are the patterns mostly
reads or writes or a mix of both? Are the queries random or sequential? How
much data is read or written per query? Often no clear answer to these ques-
tions emerges or the answer varies per table. However, the good news is that
you can tune on a per table basis, so choosing a few key tables to tune can
help a great deal.

 It is beyond the scope of this section and somewhat unrealistic to cover all
tuning scenarios, but we do want to provide some general guidance which
will (hopefully) help you focus on the most important issues and tuning
parameters:

221 Chapter 12: Extremely Big Tables: Storing Data in HBase

 ✓ As mentioned earlier in this chapter, the Apache HBase online guide has a
whole section on performance tuning that’s worth your while to check out:

http://hbase.apache.org/book.html#performance

 ✓ While you’re at it, review the online guide’s Apache HBase configuration
coverage, especially the section about HBase configuration variables:

http://hbase.apache.org/book/config.files.html

 ✓ Commonly used variables are in the section about performance tuning:

http://hbase.apache.org/book/perf.configurations.html

Here’s what we recommend for some common situations:

 ✓ Read Heavy Workloads: If the read workload is random, consider
increasing the hfile.block.cache.size setting and shrinking the
hbase.regionserver.global.memstore.upperLimit and hbase.
regionserver.global.memstore.lowerLimit settings.

 You can also keep part or all of a column family in memory by setting
the in_memory descriptor to true while disabling the block cache alto-
gether for other tables’ column families.

{ NAME => 'columnfamily', IN_MEMORY => 'true' }
{ NAME => 'columnfamily', BLOCKCACHE => 'false' }

 If the read workload is sequential, caching will most likely not help your
performance so look at increasing the HFile block size to achieve more
data per read. The HBase API docs suggest numbers between 8KB and
1MB, with the default setting of 64KB. (We suggest going with 128KB
in the example below.) Also review your hbase.client.scanner.
caching setting to ensure that it fits your sequential read patterns.

{ NAME => 'columnfamily', BLOCKSIZE => 131072 }

 ✓ Write Heavy Workloads: With write heavy workloads, the MemStore
configuration becomes quite important, so review all settings that affect
the MemStore write cache — things like the hbase.regionserver.
global.memstore.lowerLimit setting and the hbase.
regionserver.global.memstore.upperLimit setting.

 JVM garbage collection must also be configured correctly so that large
garbage collection pauses don’t occur — and slow your application.
Worse yet, such large pauses can confuse Zookeeper into believing that
your RegionServer has failed and then your HBase experience gets ugly.
Finally you should have a strategy in place for handling region splits.
HBase-generated region splits is a beautiful thing with respect to auto-
matic scalability but if you’re doing lots of writes, you’ll want to control
when your regions split. You can handle it in a couple of ways:

222 Part III: Hadoop and Structured Data

	 •	Increase the region size parameter, hbase.hregion.max.
filesize. The default size was increased to 10GB recently,
though, so it depends on the amount of data you want to ingest.

	 •	Pre-split your regions to distribute them across the cluster. You can do
this if you have enough RegionServers. We discuss this technique
in the next section.

 ✓ Mixed workloads: If your workload is mixed, you’re in good company!
Most clusters serve more than a single purpose. For mixed workloads,
you need to follow best practices. First and foremost you’ll need a
good row key design to match your table access patterns. (We dis-
cuss row key design in the later section “The importance of row key
design.”) We’ve already discussed compression which improves
performance.

Pre-Splitting your regions
HBase scales automatically by splitting regions when their size reaches
the value configured in the hbase.hregion.max.filesize parameter.
Regions are evenly distributed across the cluster by the load balancer pro-
cess which runs on the MasterServer. This automation is very valuable for
most HBase use cases, but you may (during bulk ingest operations or heavy
writes, for example) want to manually control the whole process. In this case,
you would set the hbase.hregion.max.filesize parameter to a very
high value that you do not anticipate you will reach. After this is done, you
can then manually split and compact your regions using the HBase shell com-
mands. (See the “Tuning major compactions” section later in this chapter for
more details.) You may also choose to pre-split your table(s) and distribute
them across all available RegionServers right up front so that you can lever-
age the full power of the cluster immediately. If this tuning concept fits your
application, then you can leverage one of the approaches in this list.

 ✓ Use the HBase shell to create a table with pre-split regions, like this:

hbase(main):021:0> create 'Pre-Splits-Table',
'OneColumnFamily', { SPLITS => ['A999',
'B999', 'C999', 'D999'] }

0 row(s) in 1.1720 seconds

 ✓ Note that you can also create a splits file where each line has a start-
ing row key and then point to the file using the HBase shell create
table command, as in this example.

hbase(main):021:0> create 'Pre-Splits-Table',
'OneColumnFamily', { SPLITS_FILE =>
'mySplitsFile' }

223 Chapter 12: Extremely Big Tables: Storing Data in HBase

 ✓ Leverage the org.apache.hadoop.hbase.util.RegionSplitter utility.

 For documentation on the utility go to: http://hbase.apache.org/
apidocs/org/apache/hadoop/hbase/util/RegionSplitter.
html.

 ✓ Leverage a createTable method from the org.apache.hadoop.hbase.
client.HBaseAdmin class

 If you decide that manual intervention into HBase region splitting is right for
you, check out Hannibal, a very cool little tool for monitoring region splitting
that helps you better manage the overall process. Hannibal is on GitHub at
https://github.com/sentric/hannibal.

The importance of row key design
Proper row key design is central to creating any table in HBase. How you
design the row key affects your performance, how you query your data, and
the complexity of your application or client access approach. Also, if you find
that you need to transition from a relational data model to an HBase model,
you’ll find that “intelligent” row keys are quite helpful. We stress this fact in
the section “Transitioning from a RDBMS To HBase,” earlier in this chapter.
Given the importance of row key design, we could dedicate an entire section
or even chapter to the subject but the point of this section is to highlight
the key points around HBase deployment and performance tuning and then
point you to further information where appropriate. So as you might expect
by now, the Apache HBase online guide has an entire section dedicated
to row key design case studies and you’ll definitely want to review it for a
thorough understanding of row key design. It’s part of Apache’s HBase and
schema design overview; see http://hbase.apache.org/book/schema.
casestudies.html.

What we want to do here is highlight the key points and considerations for
proper row key design and introduce you to some tools at your disposal.

Making your row key fit your query patterns
The first thing you have to consider is how you intend to query data that’s
stored in the table. Will the row key enable targeted access to a particular
row you’re looking for or will you have to scan large numbers of rows and
look for the key value pair you need? Remember that HBase is row level
atomic (meaning operations like get, put, and scan are guaranteed to
successfully complete or completely fail — no partial results allowed), so
it may be critical to target individual rows rather than perform scans for
certain queries. Can you combine two or more unique identifiers to create a

224 Part III: Hadoop and Structured Data

composite row key? When we show you how to work with the service order
database earlier in this chapter, we combined the service order number with
the customer number to create an intelligent composite row key, like this

A100|00001 Customer Name Contact Info Status

This approach enables queries based only on product number or customer
number. This can be accomplished by leveraging HBase row key filters.
Listing 12-12 shows simple table that illustrates this row key design.

Listing 12-12: Illustrating Intelligent Row Key Design

hbase(main):124:0> scan 'RowKeyTest'
ROW COLUMN+CELL
 A100|00005 column=cf:service-order, value=brokenc
 B100|00003 column=cf:service-order,

timestamp=1373463447048, value=brokeng
 B102|00004 column=cf:service-order,

timestamp=1373463409362, value=brokenb
 C201|00001 column=cf:service-order,

timestamp=1373463173365, value=brokena
4 row(s) in 0.0140 seconds
Now, use the scan command

to determine whether a service call has been placed for product
number A100.

hbase(main):127:0> scan 'RowKeyTest', { FILTER => PrefixFilter.new(Bytes.
toBytes('A100')) }

ROW COLUMN+CELL
 A100|00005 column=cf:service-order,

timestamp=1373463418241, value=brokenc
1 row(s) in 0.0090 seconds
Use the same scan command

to determine whether customer number <span cssStyle="text-
decoration:line-through">00001 has placed a service call.

hbase(main):128:0> scan 'RowKeyTest', { FILTER => RowFilter.
new(CompareFilter::CompareOp.valueOf('EQUAL'),
SubstringComparator.new('00001')) }

ROW COLUMN+CELL
 C201|00001 column=cf:service-order,

timestamp=1373463173365, value=brokena
1 row(s) in 0.0080 seconds

The two examples above illustrate how awesome composite row keys can
be when combined with filters! Instead of having multiple tables or multiple
rows to store customer and service order information, you can store it all in
a single row and single table, thereby reducing overall disk and network traf-
fic within your HBase cluster. Targeted or pointed HBase queries are the goal;
you don’t want to be doing extra IO operations while you search for your data.

225 Chapter 12: Extremely Big Tables: Storing Data in HBase

Making your row key design leverage the
performance potential of the cluster
A common challenge you face when designing your row keys is region hotspot-
ting, where one or more RegionServers get overloaded with requests while
the others sit idle. This is not what we want to see in HBase-land; we’d rather
have every RegionServer pulling its own weight so users see the maximum
performance! This performance issue will occur during large sequential writes
or when you are reading continually from a small subsection of the table.

 You learned about the MasterServer web interface at http://bivm:60010/
in the “Taking HBase for a Test Run” section, and about the byte lexicographi-
cal sorting of row keys in the “Understanding the HBase Data Model” section.
Now we’re showing you some practical uses for this knowledge.

Now that the regions are pre-split (Step 1 we completed in the “Pre-Splitting
your regions” section), Step 2 involves the row key. Keep in mind that, with
byte lexicographical sorting, row keys are sorted from left to right. You can
pre-split your tables, but if you don’t ensure that your row keys are designed
to distribute evenly across the splits, you’ll still have a region hotspotting
problem.

 HBase is a highly configurable and therefore a flexible technology, and the
Load Balancer is no exception. You can either let the MasterServer automati-
cally balance your regions or manually control the balancer via the shell.

Tuning major compactions
We introduce you to minor and major compactions — the process by which
HBase cleans up after itself — in the “Understanding the HBase Architecture”
section, earlier in this chapter, but in this section we want to briefly explain
how you can control major compactions, because the impact to cluster per-
formance is “major” — pun intended!

The approach is very straightforward — simply turn off automatic major
compactions and issue the command manually against your tables at an
appropriate time. To turn off major compactions, set the hbase.hregion.
majorcompaction parameter to 0 in your hbase-site.xml file and restart
HBase. To manually run a major compaction, simply issue the major_
compact command from the HBase shell.

hbase(main):018:0> major_compact 'CustomerContactInfo'
0 row(s) in 0.0480 seconds

226 Part III: Hadoop and Structured Data

An obvious solution would be to script the major compaction shell com-
mands and run the script using a scheduling utility like cron at the
appropriate time. Simply put the preceding command in a file, name it
major-compact.rb, add an exit command and execute it with this
command:

$INSTALL_DIR/bin/hbase shell major-compact.rb

You can also trigger a major compaction via one of several major_compact
methods in the Java client org.apache.hadoop.hbase.client.
HBaseAdmin class.

 For a quick review of the HBaseAdmin class (it’s well worth your time), see:
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/
client/HBaseAdmin.html.

How HBase is being used in the marketplace
The truly innovative technology HBase is a
vital part of the Hadoop ecosystem. Here’s
a web page for you to check out: http://
wiki.apache.org/hadoop/Hbase/
PoweredBy . If you’re wondering how
HBase is now used in the marketplace, you’ll
be pleasantly surprised to know that you’ve
probably already counted on HBase as part

of your social media experience. Popular sites
such as Facebook, Yahoo, Twitter, Meetup,
StumbleUpon, Adobe, and many others now
leverage HBase in production today. We trust
that you’ll be inspired to leverage HBase for
your big data storage needs and start contrib-
uting to the ever growing and vibrant HBase
community!

Chapter 13

Applying Structure to Hadoop
Data with Hive

In This Chapter
▶ Introducing Hive

▶ Exploring the Hive architecture

▶ Getting started (properly) with Hive

▶ Working with the Hive clients

▶ Seeing which data types work with Hive

▶ Creating and managing databases and tables

▶ Mastering the Hive data-manipulation language

▶ Querying and analyzing data

I
f you were to look back at the history of the IT Industry, you’d soon see
that every decade has had one or more watershed moments. Huge inno-

vations have often dramatically impacted the industry as a whole, changing
the course of certain companies and creating a “genesis moment” for others.
Edgar F. Codd’s groundbreaking work in the 1970s on the relational model
that spawned the whole relational database management system (RDBMS)
industry was definitely a significant innovation. Immediately following Codd’s
innovation was the introduction of structured query language (SQL), which
was created by Donald D. Chamberlin and Raymond F. Boyce to provide a
common programming language for managing data stored in a RDBMS. The
RDBMS and SQL technologies became the de facto standards for data man-
agement and processing and have continued to hold sway over the industry.

Now, if you were to ask us to name the major innovation of the “noughties”
(we’re still getting used to this nickname for the aught years, from 2000 to
2009), we’d pick Apache Hadoop, of course — the amazing new technol-
ogy for big data management, analysis, and processing. However, few if any
new IT technologies, no matter how innovative and attractive, can uproot

228 Part III: Hadoop and Structured Data

established standards and start over with a clean slate. For Hadoop to truly
have a broad impact on the IT Industry and live up to its true potential, it
needed to “play nice” with the older technologies: It had to support SQL;
integrate with, and extend, the RDBMS; and enable IT professionals who
lack skills in using Java MapReduce to take advantage of its features. For
this reason (and others, which we discuss later in this chapter), Apache
Hive was created at Facebook by a team of engineers who were led by Jeff
Hammerbacher. Hive, a top-level Apache project and a vital component
within the Apache Hadoop ecosystem, drives several leading big-data use
cases and has brought Hadoop into data centers across the globe.

Saying Hello to Hive
To make a long story short, Hive provides Hadoop with a bridge to the
RDBMS world and provides an SQL dialect known as Hive Query Language
(HiveQL), which can be used to perform SQL-like tasks. That’s the big news,
but there’s more to Hive than meets the eye, as they say, or more applica-
tions of this new technology than you can present in a standard elevator
pitch. For example, Hive also makes possible the concept known as enter-
prise data warehouse (EDW) augmentation, a leading use case for Apache
Hadoop, where data warehouses are set up as RDBMSs built specifically for
data analysis and reporting. Now, some experts will argue that Hadoop (with
Hive, HBase, Sqoop, and its assorted buddies) can replace the EDW, but we
disagree. We believe that Apache Hadoop is a great addition to the enterprise
and that it can augment (as mentioned earlier in this paragraph) and comple-
ment existing EDWs. This particular debate is also the subject of Chapter 10,
so check out our discussion there. For now, we leave that debate alone and
simply explain in this chapter how Hive, HBase, and Sqoop enable EDW
augmentation.

Closely associated with RDBMS/EDW technology is extract, transform, and
load (ETL) technology. To grasp what ETL does, it helps to know that, in many
use cases, data cannot be immediately loaded into the relational database — it
must first be extracted from its native source, transformed into an appropriate
format, and then loaded into the RDBMS or EDW. For example, a company or
an organization might extract unstructured text data from an Internet forum,
transform the data into a structured format that’s both valuable and useful,
and then load the structured data into its EDW.

As you make your way through this chapter (if you choose to read it that
way), you can see that Hive is a powerful ETL tool in its own right, along
with the major player in this realm: Apache Pig. (See Chapter 8 for more on
Apache’s porcine offering.) Again, users may try to set up Hive and Pig as
the new ETL tools for the data center. (Let them try.) As with the debate over

229 Chapter 13: Applying Structure to Hadoop Data with Hive

EDW versus Apache Hadoop, we see these Apache Hadoop technologies not
as direct replacements for existing ETL tools but instead as powerful new ETL
tools to be used when appropriate.

Last but not least, Apache Hive gives you powerful analytical tools, all within
the framework of HiveQL. These tools should look and feel quite familiar to IT
professionals who understand how to use SQL. We provide you with hands-
on examples of Hive analytics later in this chapter, but first we discuss the
architecture of Hive in the next section.

Seeing How the Hive is Put Together
In this section, we illustrate for you the architecture of Apache Hive and
explain its various components, as shown in the illustration in Figure 13-1.

Figure 13-1:
The Apache

Hive
architecture.

230 Part III: Hadoop and Structured Data

As you examine the elements shown in Figure 13-1, you can see at the bottom
that Hive sits on top of the Hadoop Distributed File System (HDFS) and
MapReduce systems. In the case of MapReduce, Figure 13-1 shows both the
Hadoop 1 and Hadoop 2 components. With Hadoop 1, Hive queries are con-
verted to MapReduce code and executed using the MapReduce v1 (MRv1)
infrastructure, like the JobTracker and TaskTracker. With Hadoop 2, YARN
has decoupled resource management and scheduling from the MapReduce
framework. (For more on MapReduce and YARN, check out Chapters 6 and 7.)
Hive queries can still be converted to MapReduce code and executed, now
with MapReduce v2 (MRv2) and the YARN infrastructure.

 There is a new framework under development called Apache Tez, which is
designed to improve Hive performance for batch-style queries and support
smaller interactive (also known as real-time) queries. At the time of writing, the
Apache Tez project is still in incubation, and doesn’t yet have a production-ready
release.

If it helps you visualize how all the pieces fit together, think of the HDFS
(see Chapter 4) and MapReduce systems (see Chapter 6) as being parts of
the Apache Hadoop operating system, with Hive — as well as other compo-
nents, such as HBase, described in Chapter 12 — as higher-level functions or
applications. (If you read the chapters in this part of the book, you can see
a common theme emerge: HDFS provides the storage, and MapReduce pro-
vides the parallel processing capability for higher-level functions within the
Hadoop ecosystem.) Moving up the diagram, you find the Hive Driver, which
compiles, optimizes, and executes the HiveQL. The Hive Driver may choose
to execute HiveQL statements and commands locally or spawn a MapReduce
job, depending on the task at hand. (We discuss MapReduce within the con-
text of Hive later in this chapter.) The Hive Driver stores table metadata in
the metastore and its database.

 We assume that you have some familiarity with SQL and the relational data-
base model from the world of RDBMSs. A table or relation is composed of verti-
cal columns and horizontal rows. Cells are stored where the rows and columns
intersect. If you’re not familiar with SQL and the relational database model,
you can find helpful learning sources using your favorite search engine.

By default, Hive includes the Apache Derby RDBMS configured with the
metastore in what’s called embedded mode. Embedded mode means that the
Hive Driver, the metastore, and Apache Derby are all running in one Java
Virtual Machine (JVM). This configuration is fine for learning purposes, but
embedded mode can support only a single Hive session, so it normally isn’t
used in multi-user production environments. Two other modes exist — local
and remote — which can better support multiple Hive sessions in production
environments. Also, you can configure any RDBMS that’s compliant with the
Java Database Connectivity (JDBC) Application Programming Interface (API)
suite. (Examples here include MySQL and DB2.)

231 Chapter 13: Applying Structure to Hadoop Data with Hive

The key to application support is the Hive Thrift Server (see Figure 13-1),
which enables a rich set of clients to access the Hive subsystem. We’ve
included the open source SQuirreL SQL client, which can be found at
http://squirrel-sql.sourceforge.net, as an example. The main
point is that any JDBC-compliant application can access Hive via the bundled
JDBC driver. The same statement applies to clients compliant with Open
Database Connectivity (ODBC) — for example, unixODBC and the isql utility,
which are typically bundled with Linux, enable access to Hive from remote
Linux clients. Additionally, if you use Microsoft Excel, you’ll be pleased to
know that you can access Hive after you install the Microsoft ODBC driver
on your client system. Finally, if you need to access Hive from programming
languages other than Java (PHP or Python, for example), Apache Thrift is the
answer. Apache Thrift clients connect to Hive via the Hive Thrift Server, just
as the JDBC and ODBC clients do.

 For more information on Apache Thrift see Chapter 12.

To continue with the Hive architecture drawing in Figure 13-1, note that Hive
includes a Command Line Interface (CLI), where you can use a Linux terminal
window to issue queries and administrative commands directly to the Hive
Driver. (We use the Hive CLI several times in this chapter to demonstrate
HiveQL.) If a graphical approach is more your speed, there’s also a handy
web interface so that you can access your Hive-managed tables and data via
your favorite browser.

 There is another web browser technology known as Hue that provides a
graphical user interface (GUI) to Apache Hive. Some Hadoop users like to have
a GUI at their disposal instead of just a command line interface (CLI). Along
with Hive, Hue supports other key Hadoop technologies as well like HDFS,
MapReduce/YARN, HBase, Zookeeper, Oozie, Pig, and Sqoop. We think you’ll
like the name for Hue’s Apache Hive GUI -- it’s called Beeswax. Hue is also an
open source project and you can find it at http://gethue.com.

Getting Started with Apache Hive
As with most technological matters, there’s no better way to see what’s what
than to install the software and give it a test run — Hive is no exception. And,
as with other technologies in the Hadoop ecosystem, it doesn’t take long to
get started.

 If you have the time and the network bandwidth, it’s always best to download
an entire Apache Hadoop distribution with all the technologies integrated and
ready to run. You can find a list of Apache Hadoop bundles at

232 Part III: Hadoop and Structured Data

http://wiki.apache.org/hadoop/Distributions%20and%20
Commercial%20Support

If you take the full-distribution route, a popular approach for learning the ins
and outs of Hive is to run your Hadoop distribution in a Linux virtual machine
(VM) on a 64-bit-capable laptop with sufficient RAM. (Eight gigabytes or
more of RAM tends to work well if Windows 7 is hosting your VM, although
we’ve met engineers who live dangerously with less.) You also need Java 6 or
later and — of course — a supported operating system: Linux, Mac OS X, or
Cygwin, to provide a Linux shell for Windows users. (We use Red Hat Linux
on Windows 7 in a VMware virtual machine for the sample environment.)

The setup steps run something like this:

 1. Download the latest Hive release from this site:

http://hive.apache.org/releases.html

 For this book, we downloaded Hive version 11.0. You also need the
Hadoop and MapReduce subsystems, so be sure to complete Step 2.

 2. Download Hadoop version 1.2.1 from this site:

http://hadoop.apache.org/releases.html

 3. Using the commands in Listing 13-1 (the listing following this step list),
place the releases in separate directories, and then uncompress and
untar them. (Untar is one of those pesky Unix terms which simply
means to expand an archived software package.)

 4. Using the commands in Listing 13-2 (again, following this step list),
set up your Apache Hive environment variables, including HADOOP_
HOME, JAVA_HOME, HIVE_HOME and PATH, in your shell profile
script.

 5. Create the Hive configuration file that you’ll use to define specific
Hive configuration settings.

 The Apache Hive distribution includes a template configuration file that
provides all default settings for Hive. To customize Hive for your envi-
ronment, all you need to do is copy the template file to the file named
hive-site.xml and edit it. Listing 13-3 shows the steps to accomplish
this task.

 Because you’re running Hive in stand-alone mode on a virtual machine
rather than in a real-life Apache Hadoop cluster, configure the system
to use local storage rather than the HDFS: Simply set the hive.
metastore.warehouse.dir parameter. As we demonstrate in the next

233 Chapter 13: Applying Structure to Hadoop Data with Hive

section, when you start a Hive client, the $HIVE_HOME environment vari-
able tells the client that it should look for your configuration file (hive-
site.xml) in the conf directory.

Listing 13-1: Installing Apache Hadoop and Hive

$ mkdir hadoop; cp hadoop-1.2.1.tar.gz hadoop; cd hadoop
$ gunzip hadoop-1.2.1.tar.gz
$ tar xvf *.tar
$ mkdir hive; cp hive-0.11.0.tar.gz hive; cd hive
$ gunzip hive-0.11.0.tar.gz
$ tar xvf *.tar

Listing 13-2: Setting Up Apache Hive Environment Variables in .bashrc

export HADOOP_HOME=/home/user/Hive/hadoop/hadoop-1.2.1
export JAVA_HOME=/opt/jdk
export HIVE_HOME=/home/user/Hive/hive-0.11.0
export PATH=$HADOOP_HOME/bin:$HIVE_HOME/bin:

$JAVA_HOME/bin:$PATH

Listing 13-3: Setting Up the hive-site.xml File

$ cd $HIVE_HOME/conf
$ cp hive-default.xml.template hive-site.xml

(Using your favorite editor, modify the hive-site.xml file

so that it only includes the "hive.metastore.
warehouse.dir" property for now. When finished
it will look like the XML file below. Note
that we removed the comments to shorten the
listing):

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl"

href="configuration.xsl"?>
<configuration>
<!-- Hive Execution Parameters -->
<property>
 <name>hive.metastore.warehouse.dir</name>
 <value>/home/biadmin/Hive/warehouse</value>
 <description>location of default database for the

warehouse</description>
</property>
</configuration>

234 Part III: Hadoop and Structured Data

 Both Hadoop and Hive support a local mode configuration, which is the
approach we’re leveraging in this chapter. If you already have a Hadoop cluster
configured and running, you need to set the hive.metastore.warehouse.
dir configuration variable to the HDFS directory where you intend to store
your Hive warehouse, set the mapred.job.tracker configuration variable to
point to your Hadoop JobTracker, and (most likely) set up a distributed metas-
tore. For the latest up-to-date Hive installation instructions, see the page at

https://cwiki.apache.org/confluence/display/Hive/
GettingStarted

That’s all you need to do to get started with Apache Hive! In the next section,
you meet several Hive clients and get to run your first Hive commands.

Examining the Hive Clients
Earlier in this chapter (refer to Figure 13-1), you can see that there are quite a
number of client options for Hive. It’s truly beyond the scope of this chapter
to show you how to leverage all the client options, so we picked three that we
believe should prove quite useful when the time comes to analyze data using
HiveQL. The first client is the Hive command-line interface (CLI), followed
by a web browser using the Hive Web Interface (HWI) Server, and, finally,
the open source SQuirreL client using the JDBC driver. Each of these client
options can play a particular role as you work with Hive to analyze data.

The Hive CLI client
To master the finer points of the Hive CLI client, it might help to revisit the
(somewhat busy-looking) Hive architecture diagram shown in Figure 13-1.
In Figure 13-2, we’ve streamlined the original figure to focus only on the compo-
nents that are required when running the CLI.

Figure 13-2:
The Hive

command-
line inter-

face mode.

235 Chapter 13: Applying Structure to Hadoop Data with Hive

 Figure 13-2 illustrates the components of Hive that are needed when running
the CLI on a Hadoop cluster. In the examples in this chapter, you run Hive in
local mode, which uses local storage, rather than the HDFS, for your data.

To run the Hive CLI, you execute the hive command and specify the CLI as
the service you want to run. In Listing 13-4, you can see the command that’s
required as well as some of our first HiveQL statements. (We have included a
steps annotation using the A-B-C model in the listing to direct your attention
to the key commands.)

Listing 13-4: Using the Hive CLI to Create a Table

(A) $ $HIVE_HOME/bin hive --service cli
(B) hive> set hive.cli.print.current.db=true;
(C) hive (default)> CREATE DATABASE ourfirstdatabase;
OK
Time taken: 3.756 seconds
(D) hive (default)> USE ourfirstdatabase;
OK
Time taken: 0.039 seconds
(E) hive (ourfirstdatabase)> CREATE TABLE our_first_table

(
 > FirstName STRING,
 > LastName STRING,
 > EmployeeId INT);
OK
Time taken: 0.043 seconds
hive (ourfirstdatabase)> quit;
(F) $ ls /home/biadmin/Hive/warehouse/ourfirstdatabase.db
our_first_table

The first command in Listing 13-4 (see Step A) starts the Hive CLI using the
$HIVE_HOME environment variable (refer to Listing 13-2). The –service
cli command-line option directs the Hive system to start the command-line
interface, though you could have chosen other servers. (In fact, you can try
a few later in this section.) Next, in Step B, you tell the Hive CLI to print your
current working database so that you know where you are in the namespace.
(This statement will make sense after we explain how to use the next com-
mand, so hold tight.) Continuing in Listing 13-4, in Step C you use HiveQL’s
data definition language (DDL) to create your first database. (Remember that
databases in Hive are simply namespaces where particular tables reside;
because a set of tables can be thought of as a database or schema, you could
have used the term SCHEMA in place of DATABASE to accomplish the same
result.) More specifically, you’re using DDL to tell the system to create a data-
base called ourfirstdatabase and then to make this database the default
for subsequent HiveQL DDL commands using the USE command in Step
D. In Step E, you create your first table and give it the (quite appropriate)
name our_first_table. (Until now, you may have believed that it looks
a lot like SQL, with perhaps a few minor differences in syntax depending on
which RDBMS you’re accustomed to — and you would have been right.)

236 Part III: Hadoop and Structured Data

The last command, in Step F, carries out a directory listing of your chosen
Hive warehouse directory so that you can see that our_first_table has in
fact been stored on disk.

 You set the hive.metastore.warehouse.dir variable to point to the local
directory /home/biadmin/Hive/warehouse in your Linux virtual machine
rather than use the HDFS as you would on a proper Hadoop cluster.

After you’ve created a table, it’s interesting to view the table’s metadata. In
production environments, you might have dozens of tables or more, so it’s
helpful to be able to review the table structure from time to time. You can use
a HiveQL command to do this using the Hive CLI, but the Hive Web Interface
(HWI) Server provides a helpful interface for this type of operation. (More on
HWI in the next section.)

 Using the HWI Server instead of the CLI can also be more secure. Careful
consideration must be made when using the CLI in production environments
because the machine running the CLI must have access to the entire Hadoop
cluster. Therefore, system administrators typically put in place tools like the
secure shell (ssh) in order to provide controlled and secure access to the
machine running the CLI as well as to provide network encryption. However,
when the HWI Server is employed, a user can only access Hive data allowed
by the HWI Server via his or her web browser

The web browser as Hive client
Using the Hive CLI requires only one command to start the Hive shell, but
when you want to access Hive using a web browser, you first need to start
the HWI Server and then point your browser to the port on which the server
is listening. Figure 13-3 illustrates how this type of Hive client configuration
might work. (Note that even though you might not be using the Hive CLI, it’s
not an optional component and is still present.)

Figure 13-3:
The Hive

Web
Interface

client con-
figuration.

237 Chapter 13: Applying Structure to Hadoop Data with Hive

The following steps show you what you need to do before you can start the
HWI Server:

 1. Using the commands in Listing 13-5 (following this list), configure the
$HIVE_HOME/conf/hive-site.xml file to ensure that Hive can find
and load the HWI’s Java server pages.

 2. The HWI Server requires Apache Ant libraries to run, so you need to
download more files. Download Ant from the Apache site at http://
ant.apache.org/bindownload.cgi.

 3. Install Ant using the following commands:

mkdir ant
cp apache-ant-1.9.2-bin.tar.gz ant; cd ant
gunzip apache-ant-1.9.2-bin.tar.gz
tar xvf apache-ant-1.9.2-bin.tar

 4. Set the $ANT_LIB environment variable and start the HWI Server by
using the following commands:

$ export ANT_LIB=/home/user/ant/apache-ant-1.9.2/lib
$ bin/hive --service hwi
13/09/24 16:54:37 INFO hwi.HWIServer: HWI is starting up
...
13/09/24 16:54:38 INFO mortbay.log: Started

SocketConnector@0.0.0.0:9999

Listing 13-5: Configuring the $HIVE_HOME/conf/hive-site.xml file

 <property>
 <name>hive.hwi.war.file</name>
 <value>${HIVE_HOME}/lib/hive_hwi.war</value>
 <description>This is the WAR file with the

jsp
 content for Hive Web Interface</description>
 </property>

 In a production environment, you’d probably configure two other properties:
hive.hwi.listen.host and hive.hwi.listen.port. You can use the
first property to set the IP address of the system running your HWI Server, and
use the second to set the port that the HWI Server listens on. In this exercise,
you use the default settings: With the HWI Server now running, you simply
enter the URL http://localhost:9999/hwi/ into your web browser and
view the metadata for our_first_table (refer to Listing 13-4). Figure 13-4
shows what the screen looks like after selecting the Browse Schema link fol-
lowed by ourfirstdatabase and our_first_table.

238 Part III: Hadoop and Structured Data

Figure 13-4:
Using the
Hive Web

Interface to
browse the

metadata.

 In production environments, working with the HWI Server can save you the
time of loading the Hive distribution on every client — instead, you just point
your browser to the server running the HWI. Additionally, you can use the
HWI Server to view Hive Thrift Server diagnostics and query tables. The HWI
Server allows you to set up batch sessions for long-running queries. To set up
a session, you simply click the Create Session link (refer to Figure 13-4).

SQuirreL as Hive client
with the JDBC Driver
The last Hive client we discuss and demonstrate in this chapter is the open
source tool SQuirreL SQL. You can download this universal SQL client from
the SourceForge website: http://sourceforge.net. It provides a user
interface to Hive and simplifies the tasks of querying large tables and analyz-
ing data with Apache Hive.

Figure 13-5 illustrates how the Hive architecture would work when using tools
such as SQuirreL.

In the figure, you can see that the SQuirreL client uses the JDBC APIs to pass
commands to the Hive Driver by way of the Server.

 For a helpful example of a Hive Java client connecting to the system via the
JDBC interface, see

https://cwiki.apache.org/confluence/display/Hive/
HiveClient#HiveClient-JDBC

239 Chapter 13: Applying Structure to Hadoop Data with Hive

Figure 13-5:
Using the
SQuirreL

client with
Apache

Hive.

Follow these steps to get SQuirreL running:

 1. Start the Hive Thrift Server using the command in Listing 13-6 (follow-
ing this list).

 2. Download the latest SQuirreL distribution from the SourceForge site
into a directory of your choice.

 For this example, we downloaded squirrel-sql-3.5.0-
standard.tar.gz from http://sourceforge.net/projects/
squirrel-sql/files/1-stable/3.5.0-plainzip.

 3. Uncompress the SQuirreL package using the gunzip command and
expand the archive using the tar command.

 gunzip squirrel-sql-3.5.0-standard.tar.gz; tar
xvf squirrel-sql-3.5.0-standard.tar.gz

 4. Change to the new SQuirreL release directory and start the tool using
the following command.

 $ cd squirrel-sql-3.5.0-standard;./squirrel-
sql.sh

 5. Follow the directions for running SQuirreL with Apache Hive at

https://cwiki.apache.org/confluence/display/Hive/
HiveJDBCInterface - HiveJDBCInterface-
IntegrationwithSQuirrelSQLClient

 Note that the instructions for including the Hadoop core .jar file may
differ depending on the Hadoop release. In this case, the Hadoop .jar
file was named hadoop-core-1.2.1.jar, so including $HADOOP_
HOME/hadoop-*-core.jar per the online instructions was incorrect.
We had to use $HADOOP_HOME/hadoop-core*.jar.

240 Part III: Hadoop and Structured Data

Listing 13-6: Starting the Hive Thrift Server

$ $HIVE_HOME/bin/hive --service hiveserver -p 10000 -v
Starting Hive Thrift Server
Starting Hive Thrift Server on port 10000 with 100 min

worker threads and 2147483647 max worker
threads

This is all that’s required to begin using the SQuirreL graphical user interface.
Figure 13-6 shows some HiveQL commands running against the Hive Driver —
similar to the commands you ran earlier, with the CLI; refer to Listing 13-4.

Figure 13-6:
Using the
SQuirreL

SQL client to
run HiveQL

commands.

 The Apache Hive 0.11 release also includes a new Hive Thrift Server called
HiveServer2. When configured correctly, HiveServer2 can support multiple
clients (a CLI client and a SQuirreL client at the same time, for example)
and it provides better security. For more information on HiveServer2
see: https://cwiki.apache.org/confluence/display/Hive/
Setting+up+HiveServer2.

Now that you know how to leverage some indispensable Hive client technolo-
gies, we want to start you on your survey of the HiveQL. Your first stop: Hive
data types.

Working with Hive Data Types
Listing 13-7 goes to the trouble of creating a table that leverages all (as of this
writing) Hive-supported data types.

241 Chapter 13: Applying Structure to Hadoop Data with Hive

Listing 13-7: HiveQL-Supported Data Types

$./hive --service cli
hive> CREATE DATABASE data_types_db;
OK
Time taken: 0.119 seconds
hive> USE data_types_db;
OK
Time taken: 0.018 seconds
(1)Hive> CREATE TABLE data_types_table (
(2) > our_tinyint TINYINT COMMENT '1 byte signed integer',
(3) > our_smallint SMALLINT COMMENT '2 byte signed integer',
(4) > our_int INT COMMENT '4 byte signed integer',
(5) > our_bigint BIGINT COMMENT '8 byte signed integer',
(6) > our_float FLOAT COMMENT 'Single precision floating point',
(7) > our_double DOUBLE COMMENT 'Double precision floating point',
(8) > our_decimal DECIMAL COMMENT 'Precise decimal type based
(9) > on Java BigDecimal Object',
(10) > our_timestamp TIMESTAMP COMMENT 'YYYY-MM-DD HH:MM:SS.fffffffff"
(11) > (9 decimal place precision)',
(12) > our_boolean BOOLEAN COMMENT 'TRUE or FALSE boolean data type',
(13) > our_string STRING COMMENT 'Character String data type',
(14) > our_binary BINARY COMMENT 'Data Type for Storing arbitrary
(15) > number of bytes',
(16) > our_array ARRAY<TINYINT> COMMENT 'A collection of fields all of
(17) > the same data type indexed BY
(18) > an integer',
(19) > our_map MAP<STRING,INT> COMMENT 'A Collection of Key,Value Pairs
(20) > where the Key is a Primitive
(21) > Type and the Value can be
(22) > anything. The chosen data
(23) > types for the keys and values
(24) > must remain the same per map',
(25) > our_struct STRUCT<first : SMALLINT, second : FLOAT, third : STRING>
(26) > COMMENT 'A nested complex data
(27) > structure',
(28) > our_union UNIONTYPE<INT,FLOAT,STRING>
(29) > COMMENT 'A Complex Data Type that can
(30) > hold One of its Possible Data
(31) > Types at Once')
(32) > COMMENT 'Table illustrating all Apache Hive data types'
(33) > ROW FORMAT DELIMITED
(34) > FIELDS TERMINATED BY ','
(35) > COLLECTION ITEMS TERMINATED BY '|'
(36) > MAP KEYS TERMINATED BY '^'
(37) > LINES TERMINATED BY '\n'
(38) > STORED AS TEXTFILE
(39) > TBLPROPERTIES ('creator'='Bruce Brown', 'created_at'='Sat Sep 21

20:46:32 EDT 2013');
OK
Time taken: 0.886 seconds

242 Part III: Hadoop and Structured Data

We’ve included line numbers with the HiveQL to make it easier to study the
table. You can see from the CREATE TABLE statement (refer to Line 1) all the
various data types at your disposal (again, as of this writing) in Hive 0.11.
One in particular, DECIMAL, is new as of Hive 0.11, so whenever Hive 0.12 is
released, check to see whether it has more. (Hint: Watch for the type named
DATE.)

 Consult the Data Types page in the Apache Hive Language Manual
(https://cwiki.apache.org/confluence/display/Hive/
LanguageManual+Types) to watch for new data types as the Hive commu-
nity continues to develop and create new, innovative features in Hive.

Notice in the table that after every column we created (see Lines 2–31), we
wrote a comment (using the HiveQL reserved keyword - COMMENT) giving
you information about the Hive data type of the column. Hive supports the
Comment feature as a way to document the columns in your tables. Also,
Line 32 allows you to add a comment for the entire table. Line 39 starts with
the keyword TBLPROPERTIES, which provides a way for you to add metadata
to the table. This information can be viewed later, after the table is created,
with other HiveQL commands such as DESCRIBE EXTENDED table_name.

 Keep in mind that Hive has primitive data types as well as complex data
types. The last four columns (see Lines 16–31) in our_datatypes_table are
complex data types: ARRAY, MAP, STRUCT, and UNIONTYPE. Their presence
provides more proof (if proof is needed) that Hive supports a rich set of data
types that enables you to manage diverse data, all under HiveQL.

Finally, Lines 33–38 in the CREATE TABLE statement show off a particularly
powerful feature of Hive. Here, the lines let you define the file format when
your table gets stored in HDFS and define how fields and rows are delimited.
Actually Hive allows you to specify the file format and record format sepa-
rately. We discuss this powerful feature of Hive in greater detail in the next
section as we tell you more about creating Hive databases and tables.

Creating and Managing
Databases and Tables

To fully grasp Hive database and table creation in all its splendor, you need
a thorough grounding in what’s referred to as Hive’s data definition language
(DDL). You get that grounding in this section, starting with database or
schema creation.

243 Chapter 13: Applying Structure to Hadoop Data with Hive

Managing Hive databases
Earlier in this chapter, Listing 13-4 shows you the basics of creating data-
bases or schemas with Hive, but they’re just that — the basics. Quite a few
more features are out there that you’ll find useful; Listing 13-8 illustrates a
few of them.

Listing 13-8: Creating, Dropping, and Altering Databases in Apache Hive

(1) $ $HIVE_HOME/bin hive --service cli
(2) hive> set hive.cli.print.current.db=true;
(3) hive (default)> USE ourfirstdatabase;
(4) hive (ourfirstdatabase)> ALTER DATABASE

ourfirstdatabase SET DBPROPERTIES
('creator'='Bruce Brown',
'created_for'='Learning Hive DDL');

OK
Time taken: 0.138 seconds
(5) hive (ourfirstdatabase)> DESCRIBE DATABASE EXTENDED

ourfirstdatabase;
OK
ourfirstdatabase

file:/home/biadmin/Hive/warehouse/
ourfirstdatabase.db {created_for=Learning
Hive DDL, creator=Bruce Brown}

Time taken: 0.084 seconds, Fetched: 1 row(s)CREATE
(DATABASE|SCHEMA) [IF NOT EXISTS] database_name

(6) hive (ourfirstdatabase)> DROP DATABASE
ourfirstdatabase CASCADE;

OK
Time taken: 0.132 seconds

Listing 13-8 picks up where Listing 13-4 left off, with you having already cre-
ated a database aptly named ourfirstdatabase. In Line 4 of Listing 13-8,
you’re now altering the database to include two new metadata items: creator
and created_for. As you can imagine, including custom metadata with your
database (and tables, as we describe earlier) can be quite useful for docu-
mentation purposes and coordination within your working group. On Line 5,
you get the command to view the metadata, and on Line 6 you’re dropping
the entire database — removing it from the server, in other words — with the
DROP command and CASCADE keyword. (Without the CASCADE keyword, you
couldn’t drop the database because the server has still stored our_first_
table — refer to Listing 13-4.) You can use the DROP TABLE command to
delete individual tables or you can use the brute-force technique, as you do
here, to forcefully remove everything from the namespace.

244 Part III: Hadoop and Structured Data

Creating and managing tables with Hive
After you have a good working knowledge of Hive database creation and man-
agement under your belt, it’s time to turn your attention to table creation and
management. Your first stop? Hive table file and record formats. Apache Hive
lets you define the record format separately from the file format. This power-
ful feature — coupled with the complex data types you leveraged in Listing
13-7 — enables the Hive user to analyze and query unstructured and semi-
structured data that RDBMSs cannot handle!

Defining table file formats
In the “Working with Hive Data Types” section, earlier in this chapter, we
describe how to create a table (data_types_table) that includes all Hive
0.11–supported data types. We point out there that Lines 33–38 illustrate a
powerful feature in Hive, and we promise to discuss that feature in this chap-
ter. Well, here we are, as promised. To refresh your memory, we’ve copied
Lines 33–38 into Listing 13-9 so that you don’t have to flip back and review
the Hive Query Language (HiveQL) — refer to Listing 13-7.

Listing 13-9: Defining the Hive Row Format for the TEXTFILE File Format

(1)Hive> CREATE TABLE data_types_table (
...
(33) > ROW FORMAT DELIMITED
(34) > FIELDS TERMINATED BY ','
(35) > COLLECTION ITEMS TERMINATED BY '|'
(36) > MAP KEYS TERMINATED BY '^'
(37) > LINES TERMINATED BY '\n'
(38) > STORED AS TEXTFILE
...
(39) > TBLPROPERTIES ('creator'='Bruce Brown',

'created_at'='Sat Sep 21 20:46:32 EDT 2013');

Lines 33–37 define the Hive row format for your data_types_table and
provide specifics on how fields will be separated or delimited whenever you
insert or load data into the table. (You can find out more in the next section
about the various techniques for loading data into tables.) Line 38 defines the
Hive file format — a text file — when the data is stored in the HDFS (or local
file system, in this case). You may be wondering why our_first_table
(refer to Listing 13-4) lacks these extra keywords and delimiters. The reason
is that Hive tables default to the configuration in Listing 13-10 unless you
override the default settings, as we do above in Listing 13-9.

245 Chapter 13: Applying Structure to Hadoop Data with Hive

Listing 13-10: Hive Table Default Row and File Format

CREATE TABLE ...
 ...
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\001'
COLLECTION ITEMS TERMINATED BY '\002'
MAP KEYS TERMINATED BY '\003'
LINES TERMINATED BY '\n'
STORED AS TEXTFILE
...

We chose to have you override the defaults in Listing 13-7 and 13-9 to make
it easier to build a readable data file to load into the data_types_table,
and to illustrate this powerful row formatting feature in Hive. We show you
how to actually create a readable data file and load it into the data_types_
table later in this chapter, in the section entitled “Seeing How the Hive Data
Manipulation Language Works” in Listing 13-13.

So far, we have been using the default TEXTFILE format for your Hive table
records. However, as you know, text files are slower to process, and they con-
sume a lot of disk space unless you compress them. For these reasons and
more, the Apache Hive community came up with several choices for storing
our tables on the HDFS. The following list describes the file formats you can
choose from as of Hive version 0.11.

 ✓ TEXTFILE: The default file format for Hive records. Alphanumeric char-
acters from the Unicode standard (see www.unicode.org) are used to
store your data.

 ✓ SEQUENCEFILE: The format for binary files composed of key/value
pairs. Sequence files, which are used heavily by Hadoop, are often good
choices for Hive table storage, especially if you want to integrate Hive
with other technologies in the Hadoop ecosystem.

 ✓ RCFILE: Stores records in a column-oriented fashion rather than a
row-oriented fashion — like the TEXTFILE format approach. Using the
RCFILE format makes sense when tables have a large number of col-
umns, but only a few columns are typically accessed. (RCFILE stands
for record columnar file.)

 ✓ ORC: A format (new as of Hive 0.11) that has significant optimizations to
improve Hive reads and writes and the processing of tables. (ORC stands
for optimized row columnar and has nothing to do goblins loyal to Lord
Sauron.) For example, ORC files include optimizations for Hive com-
plex types and new types such as DECIMAL. Also lightweight indexes
are included with ORC files to improve performance. For a complete
list of new ORC file format features, consult the Hive Language Manual
at https://cwiki.apache.org/confluence/display/Hive/
LanguageManual+ORC

246 Part III: Hadoop and Structured Data

 ✓ INPUTFORMAT, OUTPUTFORMAT: Lets you specify the Java class that
will read data from the Hive table. OUTPUTFORMAT does the same thing
for writing data to the Hive table. The keywords in the earlier table entries
(TEXTFILE, for example) provide shortened syntax so that you don’t
have to specify both INPUTFORMAT and OUTPUTFORMAT for every CREATE
TABLE statement. Of course, it enables customization and can be quite pow-
erful under the right circumstances. To see the default settings for the table,
simply execute a DESCRIBE EXTENDED tablename HiveQL statement and
you’ll see the INPUTFORMAT and OUTPUTFORMAT classes for your table.

Defining table record formats
The Java technology that Hive uses to process records and map them to
column data types in Hive tables (like you defined in Listing 13-7) is called
SerDe, which is short for SerializerDeserializer. Figure 13-7 illustrates how
SerDes are leveraged and it will help you understand how Hive keeps file for-
mats separate from record formats.

Figure 13-7:
How Hive

Reads and
Writes

Records

So the first thing to notice from Figure 13-7 is the INPUTFORMAT object.
INPUTFORMAT allows you to specify your own Java class should you want
Hive to read from a different file format. In the examples so far, you have been
using STORED AS TEXTFILE, which is easier than writing INPUTFORMAT
org.apache.hadoop.mapred.TextInputFormat — the whole Java
package tree and class name for the default text file input format object,
in other words. The same is true of the OUTPUTFORMAT object. Instead of
writing out the whole Java package tree and class name, the STORED AS
TEXTFILE statement takes care of all of that for you. Now, we’ve been saying

247 Chapter 13: Applying Structure to Hadoop Data with Hive

that Hive allows you to separate your record format from your file format so
how exactly do you accomplish this? Simple, you either replace STORED AS
TEXTFILE with something like STORED AS RCFILE, or you can create your
own Java class and specify the input and output classes using INPUTFORMAT
packagepath.classname and OUTPUTFORMAT packagepath.classname.

Finally notice that when Hive is reading data from the HDFS (or local file
system), a Java Deserializer formats the data into a record that maps to
table column data types. This would characterize the data flow for a HiveQL
SELECT statement which you’ll be able to try out in “Querying and analyzing
data” section below. When Hive is writing data, a Java Serializer accepts the
record Hive uses and translates it such that the OUTPUTFORMAT class can
write it to the HDFS (or local file system). This would characterize the data
flow for a HiveQL CREATE-TABLE-AS-SELECT statement which you’ll be
able to try out in “Mastering the Hive data-manipulation language” section
below. So the INPUTFORMAT, OUTPUTFORMAT and SerDe objects allow Hive to
separate the table record format from the table file format. You’ll be able to
see this in action in two examples below but first we want to expose you to
some SerDe options.

Hive bundles a number of SerDes for you to choose from, and you’ll find a
larger number available from third parties if you search online. You can also
develop your own SerDes if you have a more unusual data type that you want
to manage with a Hive table. (Possible examples here are video data and
e-mail data.) In the list below, we describe some of the SerDes provided with
Hive as well as one third-party option that you may find useful.

 ✓ LazySimpleSerDe: The default SerDe that’s used with the TEXTFILE
format; it would be used with our_first_table from Listing 13-4 and
with data_types_table from Listing 13-7.

 ✓ ColumnarSerDe: Used with the RCFILE format.

 ✓ RegexSerDe: The regular expression SerDe, which ships with Hive
to enable the parsing of text files, RegexSerDe can form a powerful
approach for building structured data in Hive tables from unstructured
blogs, semi-structured log files, e-mails, tweets, and other data from
social media. Regular expressions allow you to extract meaningful infor-
mation (an e-mail address, for example) with HiveQL from an unstruc-
tured or semi-structured text document incompatible with traditional
SQL and RDBMSs.

 ✓ HBaseSerDe: Included with Hive to enables it to integrate with HBase.
You can store Hive tables in HBase by leveraging this SerDe.

 ✓ JSONSerDe: A third-party SerDe for reading and writing JSON data
records with Hive. We quickly found (via Google and GitHub) two JSON
SerDes by searching online for the phrase json serde for hive.

 ✓ AvroSerDe: Included with Hive so that you can read and write Avro data
in Hive tables.

248 Part III: Hadoop and Structured Data

Reviewing the Language Manual DDL (found at: https://cwiki.apache.
org/confluence/display/Hive/LanguageManual+DDL) can be very
helpful before you start creating your tables. We’ve included an excerpt from
the manual below, which shows you (in bold print) all of the options we’ve
been discussing in this section.

CREATE [EXTERNAL] TABLE [IF NOT EXISTS]
[db_name.]table_name

 ... (Skipping some lines for brevity)
 [ROW FORMAT row_format] [STORED AS file_format]
 | STORED BY 'storage.handler.class.name' [WITH

SERDEPROPERTIES (...)]]
 ... (Skipping some lines for brevity)
row_format
 : DELIMITED [FIELDS TERMINATED BY char [ESCAPED BY

char]] [COLLECTION ITEMS TERMINATED BY char]
 [MAP KEYS TERMINATED BY char] [LINES TERMINATED BY

char] [NULL DEFINED AS char]
 | SERDE serde_name [WITH SERDEPROPERTIES

(property_name=property_value, property_
name=property_value, ...)]

file_format:
 : SEQUENCEFILE | TEXTFILE | RCFILE | ORC
 | INPUTFORMAT input_format_classname OUTPUTFORMAT

output_format_classname

Tying it all together with an example
We want to tie things together in this section with two examples. In this first
example, we revisit data_types_table from Listing 13-7. Here we leverage
the DESCRIBE EXTENDED data_types_table HiveQL command to illus-
trate what Hive does with our CREATE TABLE statement under the hood.

hive> DESCRIBE EXTENDED data_types_table;
OK
our_tinyint tinyint 1 byte

signed integer
our_smallint smallint 2 byte

signed integer
...
(A)inputFormat:org.apache.hadoop.mapred.TextInputFormat,
outputFormat:
(B)org.apache.hadoop.hive.ql.io.

HiveIgnoreKeyTextOutputFormat
, ...
serializationLib:
 org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe,
(C)parameters:{collection.delim=|, mapkey.delim=^, line.

delim=
(D), serialization.format= ,, field.delim=,}),
...

249 Chapter 13: Applying Structure to Hadoop Data with Hive

Notice that Hive provides an INPUTFORMAT and OUTPUTFORMAT class for you
when you specify STORED AS TEXTFILE, as we did in line 38 from Listing 13-7.
Also note how Hive included the default LazySimpleSerDe. The row format delim-
iters that you specified in lines 33 through 37 from Listing 13-7 are inserted as
parameters to the LazySimpleSerDe so the records in the text file can be parsed
and translated into column types by the SerDe or written in proper format to the
text file.

An example of how to use the HBase SerDe
In this last example of this section, we want to show you how to specify a
SerDe instead of letting Hive pick a default SerDe for you. We want to show
you an example that also dovetails with some of the concepts covered in
Chapter 12 — the HBase Chapter. Hive includes an HBase SerDe, which
is great news if you want to put a HiveQL front end on your HBase table.
Without HiveQL, HBase users have to leverage the HBase shell or write Java
code to query from and write to HBase tables. In the example in Listing 13-11,
you create an EXTERNAL Hive table that connects with an HBase table. (The
external table is another feature of Hive that lets you connect with data, then
query and analyze the data with HiveQL, but when you delete the table, the
data remains in its original location.) Listing 13-11 shows the schema and
contents of the HBase table that you connect to with Hive using the HBase
SerDe.

Listing 13-11: Customer Information HBase Table

ROW COLUMN+CELL
00001 column=ContactInfo:EA, value=John.Smith@xyz.com
00001 column=ContactInfo:SA, value=1 Hadoop Lane, NY

11111
00001 column=CustomerName:FN, value=John
00001 column=CustomerName:LN, value=Smith
00001 column=CustomerName:MN, value=Timothy
00002 column=ContactInfo:EA, value=Jane.Doe@xyz.com
00002 column=ContactInfo:SA, value=7 HBase Ave, CA 22222
00002 column=CustomerName:FN, value=Jane
00002 column=CustomerName:LN, value=Doe
00002 column=CustomerName:MN, value=A

The Customer Information HBase table consists of two rows and two column
families: ContactInfo and CustomerName. The ContactInfo column
family has two columns storing the customer’s e-mail address (EA) and street
address (SA). The CustomerName column family has three rows storing
the first name (FN), middle name (MN) and last name (LN) of the customer.
You can find out much more about HBase in Chapter 12, but for now, what’s
important to understand is that HBase stores key value pairs just like the
Hive map data type we demonstrate in Line 19 of Listing 13-7. In Listing 13-12,
you see the HiveQL statements you need in order to create a table that con-
nects to your HBase table (refer to Listing 13-11) using map data types.

250 Part III: Hadoop and Structured Data

Listing 13-12: Creating an External Hive Table to Connect to the HBase
Customer Information Table

(A) CREATE EXTERNAL TABLE hive_hbase_table (
key INT,
name map<STRING,STRING>,
info map<STRING,STRING>)
STORED BY 'org.apache.hadoop.hive.hbase.

HBaseStorageHandler'
WITH SERDEPROPERTIES ("hbase.columns.mapping" =

":key,CustomerName:,ContactInfo:")
TBLPROPERTIES ("hbase.table.name" = "customerinfo");

(B) hive> SELECT * FROM hive_hbase_table;
OK
1 {"FN":"John","LN":"Smith","MN":"Timothy"}
 {"EA":"John.Smith@xyz.com","SA":"1 Hadoop Lane, NY

11111"}
2 {"FN":"Jane","LN":"Doe","MN":"A"}
 {"EA":"Jane.Doe@xyz.com","SA":"6 Novice HBase Ave,

CA 22222"}
Time taken: 1.422 seconds
(C) hive> SELECT info["EA"] FROM hive_hbase_table WHERE

name["FN"] = "Jane" AND name["LN"] = "Doe";
Total MapReduce jobs = 1
...
OK
Jane.Doe@xyz.com

In Step (A), you create an external table with a Key field to link up with
the HBase row keys (00001 and 00002 from Listing 13-11), and two map
data types (name and info) to link up with the two column families
(ContactInfo and CustomerName). Note the syntax for providing this
linkage via the WITH SERDEPROPERTIES keywords. This SerDe con-
figuration technique is quite common in Hive DDL. Note as well that the
TBLPROPERTIES keyword is crucial for connecting the new external hive_
hbase_table with the actual customerinfo HBase table name.

Step (B) shows how the key value pairs in HBase ({“FN”,”John”}, for example)
are now available for querying with the help of the HiveQL. Note the syntax
for accessing the Hive map data type in Step (C). You can select the value of
the info map type using the notation info ["EA"] where "EA" is the key.

 If you’re already familiar with SQL, you’ll notice that the SELECT ...
FROM ... WHERE statement shown in Step (C) is almost identical to the
types of queries you can form using SQL and MySQL, or DB2 and others.

251 Chapter 13: Applying Structure to Hadoop Data with Hive

Seeing How the Hive Data Manipulation
Language Works

In the first half of this chapter, we walk you through a couple of CREATE
TABLE examples using the Hive CLI (refer to Listings 13-4 and 13-7), and
you can see how Hive allows you to control your table’s file and record stor-
age formats. Now it’s time to delve into Hive’s data manipulation language
(DML) — it lets you load and insert data into tables and create tables from
other tables. We even go all out and provide examples that illustrate four
ways to input data into Hive tables.

LOAD DATA examples
We have you start out by placing data into the data_types_table you cre-
ated using Listing 13-7. Doing so illustrates the LOAD DATA command and
will serve to cement some of the concepts from the last section. The syntax
for the LOAD DATA command is shown in Listing 13-13.

Listing 13-13: LOAD DATA Command Syntax

"LOAD DATA [LOCAL] INPATH 'path to file' [OVERWRITE] INTO
TABLE 'table name' [PARTITION partition column1
= value1, partition column2 = value2,...]

A few areas in Listing 13-13 need an explanation. First, the optional LOCAL
keyword tells Hive to copy data from the input file on the local file system
into the Hive data warehouse directory (in our case, on the local file system).
Without the LOCAL keyword, the data is simply moved (not copied) into the
warehouse directory. Also you should be aware that when running in distrib-
uted mode, if you omit the LOCAL keyword Hive assumes your data is already
in the HDFS, and in this case moves the data from its current HDFS location
into the HDFS warehouse directory. Second, the optional OVERWRITE key-
word, as you might imagine, causes the system to overwrite data in the speci-
fied table if it already has data stored in it. Finally, the optional PARTITION
list tells Hive to partition the storage of the table into different directories
in the data warehouse directory structure. This powerful concept improves
query performance in Hive, and we demonstrate its use later in this section.
When you think about the magnitude of data that can be managed by Hive
in the HDFS, partitioning makes a lot of sense. Rather than run a MapReduce
job over the entire table to find the data you want to view or analyze, you can
isolate a segment of the table and save a lot of system time with partitions.

 Apache Hive uses the MapReduce technology within Hadoop to query and
analyze tables — though, in some cases, MapReduce is not used. It turns out
that you can set the configuration variable hive.exec.mode.local.auto

252 Part III: Hadoop and Structured Data

in the hive-site.xml file. When the variable is set to true, Hive tries to
execute queries on small data sets locally without MapReduce whenever pos-
sible, to speed execution.

Listing 13-14 shows the commands to use to load the data_types_table
with data. Again, we’ve annotated the listing so that we can discuss each step.

Listing 13-14: Loading our_first_table with Data

(A) $ cat data.txt
100,32000,2000000,9200000000000000000,0.15625,4.9406564584

124654,
1.23E+3,2013-09-21 20:19:52.025,true,
test string,\0xFFFFDDDDEEEEAAAA,1|2|3|4,key^1024,
1|3.1459|test struct,2|test union
(B) hive (data_types_db)> LOAD DATA LOCAL INPATH

'/home/biadmin/Hive/data.txt' INTO TABLE
data_types_table;

Copying data from file:/home/biadmin/Hive/data.txt
Copying file: file:/home/biadmin/Hive/data.txt
Loading data to table data_types_db.data_types_table
Table data_types_db.data_types_table stats:

[num_partitions: 0, num_files: 1, num_rows: 0,
total_size: 185, raw_data_size: 0]

OK
Time taken: 0.287 seconds
(C) hive> SELECT * FROM data_types_table;
OK
100 32000 2000000 9200000000000000000 0.15625

4.940656458412465
1230 2013-09-21 20:19:52.025 true test string
\0xFFFFDDDDEEEEAAAA [1,2,3,4] {"key":1024}
{"first":1,"second":3.1459,"third":"test struct"}
(D) {2:"test union"}
Time taken: 0.201 seconds, Fetched: 1 row(s)

Step (A) is a listing (using the Unix cat command) of data you intend to load.
This data file has only one record in it, but there’s a value for each field in the
table. Note the field and complex type delimiters. As we specified at table cre-
ation time (refer to Listing 13-7 or 13-9), fields are separated by a comma; col-
lections (such as STRUCT and UNIONTYPE) are separated by the vertical bar
or pipe character (|̄); and the MAP keys and values are separated by the caret
character (^̄). Step (B) has the LOAD DATA command, and in Step (C) you’re
retrieving the record you just loaded in Step (B) so that you can view the data.

 The data retrieved using the SELECT command is as expected, but the last
field — see line (D) — needs some attention. Note how the UNIONTYPE works.
UNIONTYPEs in Hive can store different data types, but only one at a time. In the
data.txt file you list in Step (A), you specify to use the third data type in the
our_union field. (It’s the third one because you start counting at zero, of course.)
So you specify a string — in this case, test union — after the 2 in the data file.

253 Chapter 13: Applying Structure to Hadoop Data with Hive

The last example in this subsection sets up other examples later in this
chapter. We have downloaded some historical airline flight data for the
years 2007 and 2008 from the website http://stat-computing.org/
dataexpo/2009/the-data.html. This data was compiled by the Research
and Innovative Technology Administration, which coordinates with the U.S.
Department of Transportation’s Bureau of Transportation Statistics to pro-
vide data to statisticians and scientists. It’s a classic use case for Apache
Hive: We show you how to load this airline data into a Hive table, and then
you get a chance to perform some analysis with HiveQL!

 To put this airline data in perspective, the data for the year 2007 is approxi-
mately 671MB and the data for the year 2008 is 659MB. We don’t want to over-
load the disk space on your virtual machine, so we downloaded only a few
data files, though it appears that the files range between 100MB and 659MB in
the case of the year 2008. If you were to download all 22 years’ worth of data
from http://stat-computing.org/dataexpo/2009/the-data.html,
it would amount to well over 1 terabyte (TB) of information. This is a typical
big data use case for Apache Hadoop and Hive running on a cluster of Linux
servers. If you would attempt to analyze that much data on classic relational
database systems, it would be costly and cumbersome at best.

So, after downloading the data and studying the data types listed on the
website, we created two identical tables, named FlightInfo2007 and
FlightInfo2008, as you can see in steps (A) and (F) in Listing 13-15. Note
that this data is posted on the aforementioned website as comma-separated
text, so you’ll use the classic text file format for your records, and we’ve
specified comma separation for the record fields. Hive’s LazySimpleSerDe
does the rest of the job for you. Step (B) should also look familiar except that
we didn’t use the LOCAL keyword. That’s because these files are large; you’ll
move the data into your Hive warehouse, not make another copy on your
small and tired laptop disk. You’d likely want to do the same thing on a real
cluster and not waste the storage.

Listing 13-15: Flight Information Tables from 2007 and 2008

(A) CREATE TABLE IF NOT EXISTS FlightInfo2007 (
 Year SMALLINT, Month TINYINT, DayofMonth TINYINT,

DayOfWeek TINYINT,
 DepTime SMALLINT, CRSDepTime SMALLINT, ArrTime SMALLINT,

CRSArrTime SMALLINT,
 UniqueCarrier STRING, FlightNum STRING, TailNum STRING,
 ActualElapsedTime SMALLINT, CRSElapsedTime SMALLINT,
 AirTime SMALLINT, ArrDelay SMALLINT, DepDelay SMALLINT,
 Origin STRING, Dest STRING,Distance INT,
 TaxiIn SMALLINT, TaxiOut SMALLINT, Cancelled SMALLINT,
 CancellationCode STRING, Diverted SMALLINT,
 CarrierDelay SMALLINT, WeatherDelay SMALLINT,
 NASDelay SMALLINT, SecurityDelay SMALLINT,

LateAircraftDelay SMALLINT)
COMMENT 'Flight InfoTable'

(continued)

254 Part III: Hadoop and Structured Data

ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
LINES TERMINATED BY '\n'
STORED AS TEXTFILE
TBLPROPERTIES ('creator'='Bruce Brown', 'created_at'='Thu

Sep 19 10:58:00 EDT 2013');

(B) hive (flightdata)> LOAD DATA INPATH '/home/biadmin/

Hive/Data/2007.csv' INTO TABLE FlightInfo2007;
Loading data to table flightdata.flightinfo2007
Table flightdata.flightinfo2007 stats: [num_partitions:

0, num_files: 2, num_rows: 0, total_size:
1405756086, raw_data_size: 0]

OK
Time taken: 0.284 seconds;
(C) hive (flightdata)> SELECT * FROM FlightInfo2007 LIMIT

2;
OK
NULL NULL NULL NULL NULL NULL NULL

NULL UniqueCarrier FlightNum TailNum
NULL NULLNULL NULL NULL Origin
Dest NULL NULL NULL NULL
CancellationCode NULL NULL
NULLNULL NULL NULL

2007 1 1 1 1232 1225 1341
1340 WN 2891 N351 69 75
54 1 7SMF ONT 389 4 11
0 0 0 0 0
0 0

Time taken: 0.087 seconds, Fetched: 2 row(s)

(D) LOAD DATA INPATH '/home/biadmin/Hive/Data/2007.csv'

OVERWRITE INTO TABLE FlightInfo2007;
(E) hive (flightdata)> SELECT * FROM FlightInfo2007 LIMIT

2;
OK
2007 1 1 1 1232 1225 1341

1340 WN 2891 N351 69 75
54 1 7SMF ONT 389 4 11
0 0 0 0 0
0 0

2007 1 1 1 1918 1905 2043
2035 WN 462 N370 85 90
74 8 13 SMF PDX 479 5
6 0 0 0 0
0 0 0

Time taken: 0.089 seconds, Fetched: 2 row(s)

(F) CREATE TABLE IF NOT EXISTS FlightInfo2008 LIKE

FlightInfo2007;
(G) LOAD DATA INPATH '/home/biadmin/Hive/Data/2008.csv'

INTO TABLE FlightInfo2008;

Listing 13-15 (continued)

255 Chapter 13: Applying Structure to Hadoop Data with Hive

To test the LOAD DATA command and make sure everything works, you use
the SELECT command as shown in the previous example, but this time you
also use the LIMIT keyword [see step (C)] because this table is huge. Note
that initially you have a bit of problem with the FlightInfo2007 table.
Why are you seeing mostly all NULL values in the first record? The answer is
that the 2007.csv file has a header on the first line giving the descriptions
of the columns in the rest of the file. These descriptions match the website’s
explanation of the fields we used to define the data types. So the solution
was simple: We downloaded another copy of the data, deleted the header
line, and ran the command again — this time, using the OVERWRITE keyword.
Now, in Step (E) you can see that the problem has been solved. In Step (F),
the LIKE keyword instructs Hive to copy the existing FlightInfo2007
table definition when creating the FlightInfo2008 table. In Step (G) you’re
using the same technique as in Step (B).

The problem with NULL values seemed trivial enough, but this example
points to an interesting aspect of Hive that we need to explain before we
move on to the next Hive DML command.

In Listing 13-15, Hive could not (at first) match the first record with the data
types you specified in your CREATE TABLE statement. So the system showed
NULL values in place of the real data, and the command completed success-
fully. This behavior illustrates that Hive uses a Schema on Read verification
approach as opposed to the Schema on Write verification approach, which you
find in RDBMS technologies. This is one reason why Hive is so powerful for big
data analytics — it lets you discover and explore your data in a relaxed fashion
as opposed to a strict structured approach. A typical RDBMS system would
have returned errors when the data didn’t match. Hive didn’t return an error
when we tried to load data into the table that didn’t match our schema — it
simply showed NULL values, and then you figured out the bit about the data-
types disconnect by inspecting the data and adjusted accordingly.

INSERT examples
Another Hive DML command to explore is the INSERT command. You basi-
cally have three INSERT variants; we show you two of them in Listing 13-16.
To demonstrate this new DML command, we have you create a new table that
will hold a subset of the data in the FlightInfo2008 table you created in
the previous example. In Step (A), you create this new table and specify that
the file format will be row columnar (Step (B)) instead of text. This format is
more compact than text and often performs better, depending on your access
patterns. (If you’re accessing a small subset of columns instead of entire
rows, try the RCFILE format.)

 The default SerDe for RCFILE format is the ColumnarSerDe. You can verify
this fact by running the DESCRIBE EXTENDED myFlightInfo HiveQL com-
mand from the command line interface.

256 Part III: Hadoop and Structured Data

Listing 13-16: Partitioned Version of 2008 Flight Information Table

(A) CREATE TABLE IF NOT EXISTS myFlightInfo (
 Year SMALLINT, DontQueryMonth TINYINT, DayofMonth

TINYINT, DayOfWeek TINYINT,
 DepTime SMALLINT, ArrTime SMALLINT,
 UniqueCarrier STRING, FlightNum STRING,
 AirTime SMALLINT, ArrDelay SMALLINT, DepDelay SMALLINT,
 Origin STRING, Dest STRING, Cancelled SMALLINT,
 CancellationCode STRING)
COMMENT 'Flight InfoTable'
PARTITIONED BY(Month TINYINT)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
LINES TERMINATED BY '\n'
(B) STORED AS RCFILE
TBLPROPERTIES ('creator'='Bruce Brown', 'created_at'='Mon

Sep 2 14:24:19 EDT 2013');

(C) INSERT OVERWRITE TABLE myflightinfo
 PARTITION (Month=1)
 SELECT Year, Month, DayofMonth, DayOfWeek, DepTime,

ArrTime, UniqueCarrier,
 FlightNum, AirTime, ArrDelay, DepDelay, Origin,

Dest, Cancelled,
 CancellationCode
 FROM FlightInfo2008 WHERE Month=1;

(D) FROM FlightInfo2008
INSERT INTO TABLE myflightinfo
 PARTITION (Month=2)
 SELECT Year, Month, DayofMonth, DayOfWeek, DepTime,

ArrTime, UniqueCarrier, FlightNum,
 AirTime, ArrDelay, DepDelay, Origin, Dest, Cancelled,

CancellationCode WHERE Month=2
... (Months 3 through 11 skipped for brevity)
INSERT INTO TABLE myflightinfo
 PARTITION (Month=12)
 SELECT Year, Month, DayofMonth, DayOfWeek, DepTime,

ArrTime, UniqueCarrier, FlightNum,
 AirTime, ArrDelay, DepDelay, Origin, Dest, Cancelled,

CancellationCode WHERE Month=12;

(E) hive (flightdata)> SHOW PARTITIONS myflightinfo;
OK
month=1
month=10
month=11
month=12
...
month=9

257 Chapter 13: Applying Structure to Hadoop Data with Hive

(F) $ ls
/home/biadmin/Hive/warehouse/flightdata.db/myflightinfo
month=1 month=11 month=2 month=4 month=6 month=8
month=10 month=12 month=3 month=5 month=7 month=9

(G) $HIVE_HOME/bin/hive --service rcfilecat
 /home/biadmin/Hive/warehouse/flightdata.db/myflightinfo/

month=12/000000_0
...
2008 12 13 6 655 856 DL

1638 85 0 -5 PBI ATL
0

2008 12 13 6 1251 1446 DL
1639 89 9 11 IAD ATL
0

2008 12 13 6 1110 1413 DL
1641 104 -5 7 SAT ATL
0

After creating the table, you use the INSERT OVERWRITE command [see Step
(C)] to insert data via a SELECT statement from the FlightInfo2008 table.
Note that you’re partitioning your data using the PARTITION keyword based on
the Month field. After you’re finished, you’ll have 12 table partitions, or actual
directories, under the warehouse directory in the file system on your virtual
machine, corresponding to the 12 months of the year. As we explain earlier,
partitioning can dramatically improve your query performance if you want to
query data in the myFlightInfo table for only a certain month. You can see
the results of the PARTITION approach with the SHOW PARTITIONS command
in Steps (E) and (F). Notice in Step (D) that you’re using a variant of the INSERT
command to insert data into multiple partitions at one time. We have only shown
month 2 and 12 for brevity but months 3 through 11 would have the same syntax.

 Partitions are quite useful to the Hive programmer. However, it’s not uncom-
mon to encounter a data set where partitioning could become unwieldy, espe-
cially if multiple partitions are specified [PARTITION BY(Country STRING,
PersonName STRING), for example]. Twelve partitions are one thing — 7
billion partitions would be quite another! The solution to partition sprawl is
bucketing. Bucketing in Hive works by allowing you to specify some reason-
able number of buckets, and then the system attempts to evenly distribute
the data into the number of buckets you specify. [That could look something
like PARTITION BY(...) CLUSTERED BY(BucketingColumn) INTO x
BUCKETS.] Additionally, this feature enables table sampling — a technique
that allows Hive users to write queries on a sample of the data instead of the
entire table. HiveQL table sampling can be very useful for big data analytics.
(For more information on bucketing and table sampling see https://cwiki.
apache.org/confluence/display/Hive/LanguageManual+Sampling.)

You can also use this FROM table1 INSERT INTO table2 SELECT ...
format to insert into multiple tables at a time. We have you use INSERT
instead of OVERWRITE here to show the option of inserting instead of

258 Part III: Hadoop and Structured Data

overwriting. Hive allows only appends, not inserts, into tables, so the INSERT
keyword simply instructs Hive to append the data to the table. Finally, note in
Step (G) that you have to use a special Hive command service (rcfilecat)
to view this table in your warehouse, because the RCFILE format is a binary
format, unlike the previous TEXTFILE format examples.

We say at the beginning of this subsection that the INSERT DML command has
three variants. (You’ve been dying to find out what the third variant is, right?)
Well, the third one is the Dynamic Partition Inserts variant. In Listing 13-16,
you partition the myFlightInfo table into 12 segments, 1 per month. If
you had hundreds of partitions, this task would have become quite diffi-
cult, and it would have required scripting to get the job done. Instead, Hive
supports a technique for dynamically creating partitions with the INSERT
OVERWRITE statement. So, if you find yourself needing to leverage table
partitioning with a large, and possibly variable, number of partitions, check
out the Dynamic Partition Inserts feature in the Hive DML Language Manual
at https://cwiki.apache.org/confluence/display/Hive/
Tutorial - Tutorial-Dynamic-PartitionInsert.

Create Table As Select (CTAS) examples
In the Hive DML example in this section, we illustrate the powerful technique
in Hive known as Create Table As Select, or CTAS. Its constructs allow you to
quickly derive Hive tables from other tables as you build powerful schemas
for big data analysis.

Listing 13-17 shows you how CTAS works, and it sets the stage for other
HiveQL examples later in this chapter.

Listing 13-17: An Example of Using CREATE TABLE . . . AS SELECT

(A) hive> CREATE TABLE myflightinfo2007 AS
 > SELECT Year, Month, DepTime, ArrTime, FlightNum,

Origin, Dest FROM FlightInfo2007
 > WHERE (Month = 7 AND DayofMonth = 3) AND

(Origin='JFK' AND Dest='ORD');
(B) hive> SELECT * FROM myFlightInfo2007;
OK
2007 7 700 834 5447 JFK ORD
2007 7 1633 1812 5469 JFK ORD
2007 7 1905 2100 5492 JFK ORD
2007 7 1453 1624 4133 JFK ORD
2007 7 1810 1956 4392 JFK ORD
2007 7 643 759 903 JFK ORD
2007 7 939 1108 907 JFK ORD
2007 7 1313 1436 915 JFK ORD
2007 7 1617 1755 917 JFK ORD
2007 7 2002 2139 919 JFK ORD

259 Chapter 13: Applying Structure to Hadoop Data with Hive

Time taken: 0.089 seconds, Fetched: 10 row(s)
hive> CREATE TABLE myFlightInfo2008 AS
 > SELECT Year, Month, DepTime, ArrTime, FlightNum,

Origin, Dest FROM FlightInfo2008
 > WHERE (Month = 7 AND DayofMonth = 3) AND

(Origin='JFK' AND Dest='ORD');
hive> SELECT * FROM myFlightInfo2008;
OK
2008 7 930 1103 5199 JFK ORD
2008 7 705 849 5687 JFK ORD
2008 7 1645 1914 5469 JFK ORD
2008 7 1345 1514 4392 JFK ORD
2008 7 1718 1907 1217 JFK ORD
2008 7 757 929 1323 JFK ORD
2008 7 928 1057 907 JFK ORD
2008 7 1358 1532 915 JFK ORD
2008 7 1646 1846 917 JFK ORD
2008 7 2129 2341 919 JFK ORD
Time taken: 0.186 seconds, Fetched: 10 row(s)

In Step A, you build two smaller tables derived from the FlightInfo2007
and FlightInfo2008 by selecting a subset of fields from the larger tables
for a particular day (in this case, July 3), where the origin of the flight is
New York’s JFK airport (JFK) and the destination is Chicago’s O’Hare airport
(ORD). Then in Step B you simply dump the contents of these small tables so
that you can view the data.

Querying and Analyzing Data
Earlier sections in this chapter describe Hive data types, Hive’s DDL, and
Hive’s DML, but now we help you explore some HiveQL features for query-
ing and analyzing data. Keep in mind, though, that it is beyond the scope of
this chapter to provide an exhaustive treatise on HiveQL as it stands today.
Moreover, the vibrant and active Apache Hive community continually adds
to an already extensive feature set, which makes exhaustive coverage even
more difficult. We concentrate on the high points here, knowing full well that
finishing this chapter will get you excited about the new potential of big data
analytics at your fingertips with Apache Hive. We begin by exploring table
joins in Hive.

 For an exhaustive list of HiveQL features, consult the Hive Language Manual at
this page:

https://cwiki.apache.org/confluence/display/Hive/
LanguageManual

260 Part III: Hadoop and Structured Data

Joining tables with Hive
You probably know already that experts in relational database modeling and
design typically spend a lot of their time designing normalized databases,
or schemas. Database normalization is a technique that guards against data
loss, redundancy, and other anomalies as data is updated and retrieved. The
experts follow a number of rules to arrive at a normalized database, but Rule
1 is that you must end up with a group of tables. (One large table storing all
your data is not normal — pun intended.) There are exceptions, depending
on the use case, but the law of many tables is generally followed closely,
especially for databases that support transactions or analytic processing
(business intelligence, for example). When you begin to query and analyze
your data, tables are joined based on the defined relationships between them
using SQL — which means that the disks are ultimately busy on your server
when you start joining tables, and busy disks usually result in slower user
response times. However, the good news is that RDBMSs and EDWs are tuned
to make joins as fast as possible.

What does all this have to do with joins in Hive? Well, remember that
the underlying operating system for Hive is (surprise!) Apache Hadoop:
MapReduce is the engine for joining tables, and the Hadoop File System
(HDFS) is the underlying storage. It’s all good news for the user who wants to
create, manage, and analyze large tables with Hive. The potential to unlock
information that’s hidden in massive data structures is exciting. However,
joins with Hive usually don’t perform as well as they do in the RDBMS/EDW
world, so first-time users are often surprised by the “pokiness” of the system
response. Remember that MapReduce and HDFS are optimized for through-
put with big data analytics and that, in this world, latencies — user response
times, in other words — are usually high. Hive is designed for batch-style
analytic processing, not for fast online transaction processing. Users who
want the best possible performance with SQL on Apache Hadoop have solu-
tions available, and we look at those solutions in more detail in Chapter 14.
For now, keep this dynamic in mind when you start joining tables with Hive.
Also note that Hive architects usually denormalize their databases to some
extent, so having fewer larger tables is commonplace. That’s why complex
data types such as STRUCTs and ARRAYs are provided. You can use these
complex data types to pack a lot more data into a single table. Because Hive
table reads and writes via HDFS usually involve very large blocks of data,
the more data you can manage altogether in one table, the better the overall
performance.

 Disk and network access is a lot slower than memory access, so minimize
HDFS reads and writes as much as possible.

With this background information in mind, you can tackle making joins
with Hive. Fortunately, the Hive development community was realistic and
understood that users would want and need to join tables with HiveQL.

261 Chapter 13: Applying Structure to Hadoop Data with Hive

This knowledge becomes especially important with EDW augmentation,
as explained in Chapter 10. Use cases such as “queryable” archives often
require joins for data analysis.

Earlier in this chapter, we show you how to use Hive’s Create Table As Select
(CTAS) technique for creating new tables from existing tables. Now we show you
a Hive join example using our flight data tables. Listing 11-17 shows you how
to create and display a myflightinfo2007 table and a myflightinfo2008
table from the larger FlightInfo2007 and FlightInfo2008 tables.
The plan all along was to use the CTAS created myflightinfo2007 and
myflightinfo2008 tables to illustrate how you can perform joins in Hive.
Figure 13-8 shows the result of an inner join with the myflightinfo2007 and
myflightinfo2008 tables using the SQuirreL SQL client.

Figure 13-8:
The Hive

inner join.

 Hive supports equi-joins, a specific type of join that only uses equality com-
parisons in the join predicate. (ON m8.FlightNum = m7.FlightNum, from
Figure 13-8 above, is one example of an equi-join.) Other comparators such
as Less Than (<) are not supported. This restriction is only because of limita-
tions on the underlying MapReduce engine. Also, you cannot use OR in the ON
clause.

Figure 13-8 illustrates the earlier example of the inner join and two other Hive
join types. Note that you can confirm the results of an inner join by reviewing
the contents of the myflight2007 and myflight2008 tables in Listing 13-17.
Figure 13-9 illustrates how an inner join works using a Venn diagram, in case
you’re not familiar with the technique. The basic idea here is that an inner join
returns the records that match between two tables. So an inner join is a per-
fect analysis tool to determine which flights are the same from JFK (New York)
to ORD (Chicago) in July of 2007 and July of 2008.

262 Part III: Hadoop and Structured Data

Figure 13-9:
Hive inner

join, full
outer join,

and left
outer join.

 Optimizing Hive joins is a hot topic in the Hive community. For more informa-
tion on current optimization techniques, see the Join Optimization page on the
Hive wiki at

https://cwiki.apache.org/confluence/display/Hive/LanguageM
anual+JoinOptimization

Improving your Hive queries with indexes
Creating an index is common practice with relational databases when you
want to speed access to a column or set of columns in your database.
Without an index, the database system has to read all rows in the table to
find the data you have selected. Indexes become even more essential when
the tables grow extremely large, and as you now undoubtedly know, Hive
thrives on large tables. As you would expect, Hive supports index creation
on tables, though its functionality is still somewhat immature as of this
writing. However, as we’ve said, the Hive community is active, and indexing
will eventually mature. Even with its current limitations, indexing offers an
approach to speed up Hive queries with little effort, so we show you a brief
example.

 You can optimize Hive queries in at least five ways: First, with a little research,
you can often speed your joins by leveraging certain optimization techniques,
as described on the Hive wiki. (Check out https://cwiki.apache.org/
confluence/display/Hive/LanguageManual+JoinOptimization.)
Second, column-oriented storage options (see the “Defining table file formats”
section, earlier in the chapter) can be quite helpful. Remember that the ORC
file format is new as of Hive 0.11. Third, we demonstrate and discuss how to
partition tables in Listing 13-16. Fourth, the Hive community has provided

263 Chapter 13: Applying Structure to Hadoop Data with Hive

indexing, as illustrated in Listing 13-18. Finally, don’t forget the hive.exec.
mode.local.auto configuration variable we mention earlier, in the section
“Seeing How the Hive Data Manipulation Language Works.”

In Listing 13-18, we list the steps necessary to index the FlightInfo2008
table. This extremely large table has millions of rows, so it makes a good can-
didate for an index or two.

Listing 13-18: Creating an Index on the FlightInfo2008 Table

(A) CREATE INDEX f08_index ON TABLE flightinfo2008
(Origin) AS 'COMPACT' WITH DEFERRED REBUILD;

(B) ALTER INDEX f08_index ON flightinfo2008 REBUILD;
(C) hive (flightdata)> SHOW INDEXES ON FlightInfo2008;
OK
f08index flightinfo2008 origin

flightdata__flightinfo2008_f08index__ compact
Time taken: 0.079 seconds, Fetched: 1 row(s)
(D) hive (flightdata)> DESCRIBE

flightdata__flightinfo2008_f08index__;
OK
origin string None
_bucketname string
_offsets array<bigint>
Time taken: 0.112 seconds, Fetched: 3 row(s)
(E) hive (flightdata)> SELECT Origin, COUNT(1) FROM

flightinfo2008 WHERE Origin = 'SYR' GROUP BY
Origin;

SYR 12032
Time taken: 17.34 seconds, Fetched: 1 row(s)
(F) hive (flightdata)> SELECT Origin, SIZE(`_offsets`)

FROM flightdata__flightinfo2008_f08index__
WHERE origin = 'SYR';

SYR 12032
Time taken: 8.347 seconds, Fetched: 1 row(s)
(G) hive (flightdata)> DESCRIBE

flightdata__flightinfo2008_f08index__;
OK
origin string None
_bucketname string
_offsets array<bigint>
Time taken: 0.12 seconds, Fetched: 3 row(s)

Step (A) creates the index using the ‘COMPACT' index handler on the Origin
column. Hive also offers a bitmap index handler as of the 0.8 release, which
is intended for creating indexes on columns with a few unique values. In Step
(A) the keywords WITH DEFERRED REBUILD instructs Hive to first create an
empty index; Step (B) is where you actually build the index with the ALTER
INDEX ... REBUILD command. Deferred index builds can be very useful
in workflows where one process creates the tables and indexes, another
loads the data and builds the indexes and a final process performs data

264 Part III: Hadoop and Structured Data

analysis. (For more on workflows — more specifically, Oozie workflows —
check out Chapter 9. As of this writing, Hive doesn’t provide automatic index
maintenance, so you need to rebuild the index if you overwrite or append
data to the table. Also, Hive indexes support table partitions, so a rebuild
can be limited to a partition. (Refer to Listing 13-16 for more information on
 partitions.) Step (C) illustrates how you can list or show the indexes created
against a particular table. Step (D) illustrates an important point regarding
Hive indexes: Hive indexes are implemented as tables. This is why you
need to first create the index table and then build it to populate the table.
Therefore, you can use indexes in at least two ways:

 ✓ Count on the system to automatically use indexes that you create.

 ✓ Rewrite some queries to leverage the new index table (as we demon-
strate in Listing 13-18).

The automatic use of indexes is progressing, but this aspect is a work in prog-
ress. Focusing on the second option, in Step (E) you write a query that seeks
to determine how many flights left the Syracuse airport during 2008. To get
this information, you leverage the COUNT aggregate function. You can see that
Hive took 17.32 seconds on our virtual machine to report that 12,032 flights
originated from Syracuse, New York. In Step (F), you leverage the new index
table and use the SIZE function instead. Step (F) makes more sense after
you study Step (D): Step (D) shows you what an index table looks like, where
records each hold the column _bucketname, which is the location of the data
in the Hive warehouse (/home/biadmin/Hive/warehouse, in this case),
and an _offsets array, which is the index into the table (FlightInfo2008)
in this case. So now the query in Step (F) makes sense. All Hive has to do is
find the SYR origin (for Syracuse) in the flightdata__flightinfo2008_
f08index__ table and then count the rows in the _offsets’ array to get
the number of flights — a simple yet elegant way to double the performance
(8.347 secs in Step (F) versus 17.34 in Step (E)) of the original query.

Windowing in HiveQL
The concept of windowing, introduced in the SQL:2003 standard, allows the
SQL programmer to create a frame from the data against which aggregate and
other window functions can operate. HiveQL now supports windowing per
the SQL standard. Examples are quite helpful when explaining windowing and
aggregate functions, so we start with an introductory example.

In our experience (and as other frequent flyers can attest), departure delays
come with the territory when flying is your chosen mode of travel. It comes as
no surprise, then, that the RITA-compiled flight data includes this information.
One question we had when we first discovered this data set was, “What exactly
is the average flight delay per day?” So we created a query in Listing 13-19 that
produces the average departure delay per day in 2008.

265 Chapter 13: Applying Structure to Hadoop Data with Hive

Listing 13-19: Finding the Average Departure Delay per Day in 2008

(A) hive (flightdata)> CREATE VIEW avgdepdelay AS
 > SELECT DayOfWeek, AVG(DepDelay) FROM

FlightInfo2008 GROUP BY DayOfWeek;
OK
Time taken: 0.121 seconds
(B) hive (flightdata)> SELECT * FROM avgdepdelay;
...
OK
1 10.269990244459473
2 8.97689712068735
3 8.289761053658728
4 9.772897177836702
5 12.158036387869656
6 8.645680904903614
7 11.568973392595312
Time taken: 18.6 seconds, Fetched: 7 row(s)

Before we explain the steps in this query, we have to say that TGIF, or “Thank
God It’s Friday,” doesn’t apply to everyone. It was no surprise to us that
Friday — Day 5 under the results in Step (B) — had the highest number of
delays.

Anyway, about that query in Step (A): We want to point out that Hive’s Data
Definition Language (DDL) also includes the CREATE VIEW statement, which
can be quite useful. In Hive, views allow a query to be saved but data is not
stored as with the Create Table as Select (CTAS) statement you learned about
earlier in this chapter. When a view is referenced in HiveQL, Hive executes
the query and then uses the results which could be part of a larger query.
This can be very useful to simplify complex queries and break them down
into logical components. Additionally, note the GROUP BY clause, which gath-
ers all the days per week and allows the AVG aggregate function to provide a
consolidated answer per day. This information is useful, of course, but what
if we want to see some individual numbers per day? We consolidate the data
with GROUP BY, and we have the answer we’re looking for, though we’ve lost
information as well. Solving this problem of information loss is where win-
dowing becomes quite handy.

After we answered our question above about average flight delays per day,
we came up with another question about the RITA 2008 flight data that
Apache Hive can answer: “What is the first flight between Airport X and Y?”
Suppose that in addition to this information, you want to know about subse-
quent flights, just in case you’re not a “morning person.” Well, this is a job for
windowing in HiveQL! Listing 13-20 provides you with a query that answers
these questions.

266 Part III: Hadoop and Structured Data

Listing 13-20: Using Aggregate Window Functions on the Flight Data

(A) hive (flightdata)> SELECT f08.Month, f08.DayOfMonth,
cr.description, f08.Origin, f08.Dest,
f08.FlightNum, f08.DepTime, MIN(f08.DepTime)

OVER (PARTITION BY f08.DayOfMonth ORDER BY f08.DepTime)
FROM flightinfo2008 f08 JOIN Carriers cr ON

f08.UniqueCarrier = cr.code
WHERE f08.Origin = 'JFK' AND f08.Dest = 'ORD' AND

f08.Month = 1 AND f08.DepTime != 0;
...
OK
1 1 JetBlue Airways JFK ORD 903 641 641
1 1 American Airlines Inc. JFK ORD 1323 833 641
1 1 JetBlue Airways JFK ORD 907 929 641
1 1 Comair Inc. JFK ORD 5083 945 641
1 1 Comair Inc. JFK ORD 5634 1215 641
1 1 JetBlue Airways JFK ORD 915 1352 641
1 1 American Airlines Inc. JFK ORD 1323 833 641
1 1 JetBlue Airways JFK ORD 907 929 641
1 1 Comair Inc. JFK ORD 5083 945 641
1 1 Comair Inc. JFK ORD 5634 1215 641
1 1 JetBlue Airways JFK ORD 915 1352 641
1 1 American Airlines Inc. JFK ORD 1815 1610 641
1 1 JetBlue Airways JFK ORD 917 1735 641
1 1 Comair Inc. JFK ORD 5469 1749 641
1 1 Comair Inc. JFK ORD 5492 2000 641
1 1 JetBlue Airways JFK ORD 919 2102 641
1 31 JetBlue Airways JFK ORD 919 48 48
1 31 JetBlue Airways JFK ORD 903 635 48
1 31 Comair Inc. JFK ORD 5447 650 48
1 31 American Airlines Inc. JFK ORD 1323 840 48
1 31 JetBlue Airways JFK ORD 907 921 48
1 31 JetBlue Airways JFK ORD 917 1859 48

In Step (A), we’ve replaced the GROUP BY clause with the OVER clause where
we specify the PARTITION or window over which we want the MIN aggregate
function to operate. We’ve also included the ORDER BY clause so that we can
see those subsequent flights after the first one. As you can see from the list-
ing, on January 31, JetBlue has a nice, early flight at 12:48 a.m. — we’ll opt for
a later one, at 6:35 a.m. Early-riser issues aside, note that we have retained
the information in the query output that would have been lost if we had chosen
to use a GROUP BY clause again. This capability alone makes windowing
a powerful feature, and there’s more. Along with windowing in the
Hive 0.11 release, the community provided some analytics functions that
you can use in conjunction with windowing. Also at your disposal are these
functions: RANK, ROW_NUMBER, DENSE_RANK, CUME_DIST, PERCENT_RANK,
and NTILE. Finally, don’t miss the use of JOIN in Listing 13-20: It’s a real-life,

267 Chapter 13: Applying Structure to Hadoop Data with Hive

practical example of an inner join in which we join the FlightInfo2008
table with the Carriers table to get the airline name — rather than the
cryptic code found in the FlightInfo2008 table.

 At the beginning of this chapter, we make the point that Hive is a key com-
ponent of EDW augmentation. By importing, transforming, and analyzing the
RITA flight data, we demonstrate how an EDW augmentation workflow might
take shape. If data in your RDBMS or EDW can be enhanced by this flight data,
Hive is the enabling technology to augment your existing IT system. Similarly,
data from your RDBMS or EDW could have been exported to Apache Hive
(perhaps using Apache Sqoop, as discussed in Chapter 13) and joined with
this new flight data.

Other key HiveQL features
If this chapter is to be complete, we cannot leave a few other HiveQL features
unmentioned. The following list summarizes them for you:

 ✓ Security: Apache Hive provides a security subsystem that can be quite
helpful in preventing accidental data corruption or compromise among
trusted members of workgroups. However, as of this writing, the Hive
Language Manual clearly states that the Hive Security subsystem isn’t
designed to prevent nefarious users from compromising a Hive system.
Hive security can be established for individual users, groups, and admin-
istrative roles. Hive provides privileges that can be granted or revoked
to users, groups, or administrative roles. The Hive 0.10 release improved
security in multi-user environments by providing authorization to the
metastore, and future Hive releases will provide increasing integration
with the Hadoop security framework. Kerberos is emerging as the tech-
nology of choice for securing Apache Hadoop.

 ✓ Multi-User Locking: Hive supports multi-user warehouse access when
configured with Apache Zookeeper. Without this support, one user
may read a table at the same time another user is deleting that table —
which is, obviously, unacceptable. (For more information on Apache
Zookeeper, see Chapter 12.) Multi-user access is enabled via configura-
tion variables in the hive-site.xml file. Once configured, Hive implicitly
acquires locks through Zookeeper for certain table operations. Users
can also explicitly manage locks in the Hive CLI. Locks and associated
configuration properties/variables are described in the Hive Language
Manual.

 ✓ Compression: Data compression can not only save space on the HDFS
but also improve performance by reducing the overall size of input/
output operations. Additionally, compression between the Hadoop

268 Part III: Hadoop and Structured Data

mappers and reducers can improve performance, because less data is
passed between nodes in the cluster. Hive supports intermediate com-
pression between the mappers and reducers as well as table output
compression. Hive also understands how to ingest compressed data
into the warehouse. Files compressed with Gzip or Bzip2 can be read by
Hive’s LOAD DATA command.

 ✓ Functions: HiveQL provides a rich set of built-in operators, built-in func-
tions, built-in aggregate functions, and built-in table-generating func-
tions. Several examples in this chapter use built-in operators as well
as built-in aggregate functions (AVG, MIN, and COUNT, for example). To
list all built-in functions for any particular Hive release, use the SHOW
FUNCTIONS HiveQL command. You can also retrieve information about a
built-in function by using the HiveQL commands DESCRIBE FUNCTION
function_name and DESCRIBE FUNCTION EXTENDED function_
name. Using the EXTENDED keyword sometimes returns usage examples
for the specified built-in function. Additionally, Hive allows users to
create their own functions, called user-defined functions, or UDFs. Using
Hive’s Java-based UDF framework, you can create additional functions,
including aggregates and table-generating functions. This feature is one
of the reasons that Hive can function as an ETL tool.

Chapter 14

Integrating Hadoop with Relational
Databases Using Sqoop

In This Chapter
▶ Introducing Sqoop

▶ Looking at the nuts and bolts of Sqoop

▶ Importing data with Sqoop

▶ Exporting data with Sqoop

▶ Customizing your Sqoop input and output formats

▶ Looking ahead to Sqoop 2.0

P
erforming analytics on large, diverse data sets is a natural fit for Apache
Hadoop. The whole point of the Hadoop File System (HDFS) is that it

excels at providing a massively scalable, diverse data store that, when com-
bined with the many analytic tools available on the Hadoop platform — from
Map Reduce to Mahout and others — gives you a lean, mean, analytics
machine when you hitch your data store wagon to Apache Hadoop.

This rosy picture presents a slight problem, however: It turns out that most
of the world’s structured data is already stored in relational database man-
agement systems (RDBMSs), and it’s common practice to leverage struc-
tured query language (SQL, for short) for data transformation, processing,
and analysis — and SQL is decidedly not a natural fit for Apache Hadoop.
The Hadoop community knew what it was getting into, though, and planned
to provide support for structured relational data — an SQL “fix,” as it
were — early on. Folks have been looking at combining and then analyzing
field sensor data with the corresponding product data stored in a RDBMS or
data warehouse, for example, a use case that places Apache Hive, with its
SQL-like HiveQL, at its center.

It sounds like a great idea, but you may be wondering how, in this particular
use case, you can get the data from the RDBMS onto the Apache Hadoop
cluster, where Apache Hive can then do its magic. What’s the “scoop” on that,
you ask? (How’s that for setting up a pun that refers to the chapter title?)

270 Part III: Hadoop and Structured Data

The answer, of course, is “SQL to Hadoop,” or Sqoop, for short. Sqoop was
first announced in 2009 by Aaron Kimball as a database import tool for
Hadoop, and three years later (March 2012, to be exact), Sqoop became a
top-level Apache project. The glory of Sqoop lies in the fact that it not only
allows you to import relational data but also provides an export mechanism.
The result is that Sqoop can provide an efficient mechanism for loading an
RDBMS table by exporting data stored in HDFS, a use case perfectly suited for
scenarios where you make use of Hadoop as an enterprise data warehouse
(EDW) preprocessing engine. (See Chapter 11 for more on that scenario.)

Sqoop has grown a lot since its introduction in 2009. Along the way, Apache
Sqoop committers have also added import support for Hive and HBase,
making Sqoop a powerful addition to the Apache Hadoop ecosystem. In this
chapter, you get the chance to explore the old and the new of Sqoop, from
imports to exports to other, jazzier Sqoop tools. (You’ll also come across a
ton of hands-on examples.)

The Principles of Sqoop Design
When it comes to Sqoop, a picture is often worth a thousand words, so check
out Figure 14-1, which gives you a bird’s-eye view of the Sqoop architecture.

Figure 14-1:
Sqoop

design.

The idea behind Sqoop is that it leverages map tasks — tasks that perform
the parallel import and export of relational database tables — right from
within the Hadoop MapReduce framework. This is good news because the
MapReduce framework provides fault tolerance for import and export jobs
along with parallel processing! You’ll appreciate the fault tolerance if there is
a failure during a large table import or export because the MapReduce frame-
work will recover without requiring you to start the process all over again.
(For more information on the MapReduce framework, see Chapter 6.)

271 Chapter 14: Integrating Hadoop with Relational Databases Using Sqoop

 Sqoop can import data to Hive and HBase. Note, however, that the arrows to
Hive and HBase point in only one direction in Figure 14-1. Data stored in any
relational database with JDBC support can be directly imported into the Hive
or HBase systems with Sqoop. Exports, however, are performed from data
stored in HDFS. Therefore, if you need to export your Hive tables, you point
Sqoop to HDFS directories that store your Hive tables. If you need to export
HBase tables, you first have to export them to HDFS and then execute the
Sqoop export command.

Scooping Up Data with Sqoop
Sqoop provides Hadoop with export and import capability to and from
any RDBMS or data warehouse (DW) that supports the Java Database
Connectivity (JDBC) application programming interface (API) suite. All
major RDBMS and DW vendors generally provide JDBC-compliant drivers
for their products. In addition, Sqoop releases are bundled with special
connector technology for a variety of popular products. As of this writing,
Sqoop version 1.4.4 provides special connectors for MySQL, PostgreSQL,
Oracle, Microsoft SQL Server, DB2, and Netezza. These special connectors
take advantage of specific features within the individual database systems in
order to improve import/export performance and functionality. Additionally,
third-party connectors are available that aren’t bundled with Sqoop for other
NoSQL data store and data warehouse providers (Couchbase and Teradata
from Cloudera, for example). Sqoop also includes a generic JDBC connector
that only supports the Java JDBC API.

Connectors and Drivers
Sqoop connectors generally go hand in hand with a JDBC driver. Sqoop
does not bundle the JDBC drivers because they are usually proprietary and
licensed by the RDBMS or DW vendor. So there are three possible scenarios
for Sqoop, depending on the type of data management system (RDBMS, DW,
or NoSQL) you are trying to interact with. Let’s take a look at each one:

 ✓ Your data management system is supported by one of the bundled
Sqoop connectors listed above. In this case, you need to acquire the
JDBC driver from your data management system provider and install
the .jar file associated with it in your $SQOOP_HOME/lib directory.
($SQOOP_HOME is an environment variable that refers to the directory
pathname on your system where you install Apache Sqoop.) For the
hands-on examples shown in this chapter, we installed the mysql-
connector-java-5.1.26-bin.jar file from http://dev.mysql.
com/downloads/connector in our $SQOOP_HOME/lib directory.

272 Part III: Hadoop and Structured Data

 ✓ Sqoop does not include a connector for your database management
system. That means you need to download one from a 3rd party vendor,
along with a JDBC driver if the connector requires one. (Couchbase and
Teradata both do, for example.)

 ✓ Your database management system does not provide a Sqoop connec-
tor but a JDBC driver is available. In this case, you leverage Sqoop’s
generic JDBC connector and download and install your vendor’s JDBC
driver.

 For an in-depth discussion of Sqoop connectors and drivers, see the following
blog entry: https://blogs.apache.org/sqoop/date/201309. For the
latest release, documentation, and connector information, check out http://
sqoop.apache.org.

Importing Data with Sqoop
Ready to dive into importing data with Sqoop? Start by taking a look at
Figure 14-2, which illustrates the steps in a typical Sqoop import opera-
tion from an RDBMS or a data warehouse system. Nothing too complicated
here — just a typical Products data table from a (typical) fictional company
being imported into a typical Apache Hadoop cluster from a typical data
management system (DMS).

Figure 14-2:
The Sqoop

import
flow of

execution.

During Step 1, Sqoop uses the appropriate connector to retrieve the Products
table metadata from the target DMS. (The metadata is used to map the data
types from the Products table to data types in the Java language.) Step 2 then
uses this metadata to generate and compile a Java class that will be used by one

273 Chapter 14: Integrating Hadoop with Relational Databases Using Sqoop

or more map tasks to import the actual rows from the Products table. Sqoop
saves the generated Java class to temp space or to a directory you specify so
that you can leverage it for the subsequent processing of your data records.

 The Sqoop generated Java code that is saved for you is like the gift that keeps
on giving! With this code, Sqoop imports records from the DMS and stores
them to HDFS using one of three formats that you can pick: binary Avro data,
binary sequence files, or delimited text files. Afterwards, this code is available
to you for subsequent data processing. Sequence files are a natural choice if
you’re importing binary data types and you’ll need the generated Java class
to serialize and deserialize your data later on — perhaps for MapReduce pro-
cessing or exporting. (More on exporting later — right now, we’re focusing on
imports.) Avro data — based on Apache’s own serialization framework — is
useful if you need to interact with other applications after the import to HDFS.
If you choose to store your imported data in delimited text format, you may
find the generated Java code valuable later on as you parse and perform data
format conversions on your new data. Later in this chapter, you’ll see that the
generated code also helps you merge data sets after Sqoop import operations
and the final example in this chapter illustrates how the generated Java code
can help avoid ambiguity when processing delimited text data.

Finally, during Step 3, Sqoop divides the data records in the Products table
across a number of map tasks (with the number of mappers optionally speci-
fied by the user) and imports the table data into HDFS, Hive, or HBase.

Importing data into HDFS
Figure 14-2 gives you the big-picture view of the Sqoop data import process.
Time to look at the process in a bit more detail, with the help of a few hands-
on examples.

Figure 14-3 helps you imagine a relational database used by a fictional service
company that has been taking (you guessed it) Apache Hadoop service calls
and now wants to move some of its data onto Hadoop to run Hive queries,
leverage HBase scalability and performance, and run text analytics on its cus-
tomer’s problem descriptions.

 We discuss the Service Order Database in Chapter 12 and explain how it might
be converted to an HBase schema. Sqoop is the tool you’ll want to use to
import data from relational tables into HBase tables on Hadoop.

In Listing 14-1 we show the MySQL commands we used to build the Service
Order Database you see in Figure 14-3. (We filled in a couple records in the
diagram shown in Figure 14-3 to make things crystal clear.) We installed a
MySQL RDBMS that we could import from and export to using Sqoop. Since
these commands also show you the data we load into our Service Order
Database, we’ll be referring back to this listing several times in this chapter
to confirm that our Sqoop examples work properly.

274 Part III: Hadoop and Structured Data

Listing 14-1: MySQL Commands to Build the Service Order Database

/* Create the Service Orders Database */

CREATE DATABASE serviceorderdb;
USE serviceorderdb;

/* Create the Product Information Table */

CREATE TABLE productinfo(
productnum CHAR (4) PRIMARY KEY,
productdesc VARCHAR(100)
);

/* Create the Customer Contact Information Table */

CREATE TABLE customercontactinfo(
customernum INT PRIMARY KEY,
customername VARCHAR(100),
contactinfo VARCHAR(100),
productnums SET('A100','A200','A300','B400','B500','C500','C600','D700')
);

/* Create the Service Orders Table */

CREATE TABLE serviceorders(
serviceordernum INT PRIMARY KEY,
customernum INT,
productnum CHAR(4),
status VARCHAR(100),

Figure 14-3:
A Service

Order
Database
schema.

275 Chapter 14: Integrating Hadoop with Relational Databases Using Sqoop

FOREIGN KEY (customernum) REFERENCES customercontactinfo(customernum),
FOREIGN KEY (productnum) REFERENCES productinfo(productnum)
);

/* Insert product data into the Product Information Table */

INSERT INTO productinfo VALUES ('A100', 'HBase Support Product');
INSERT INTO productinfo VALUES ('A200', 'Hive Support Product');
INSERT INTO productinfo VALUES ('A300', 'Sqoop Support Product');
INSERT INTO productinfo VALUES ('B400', 'Ambari Support Product');
INSERT INTO productinfo VALUES ('B500', 'HDFS Support Product');
INSERT INTO productinfo VALUES ('C500', 'Mahout Support Product');
INSERT INTO productinfo VALUES ('C600', 'Zookeeper Support Product');
INSERT INTO productinfo VALUES ('D700', 'Pig Support Product');

/* Insert customer data into the Customer Contact Information Table */

INSERT INTO customercontactinfo
VALUES (10000, 'John Timothy Smith', '1 Hadoop Lane, NY, 11111,
 John.Smith@xyz.com', 'B500');

INSERT INTO customercontactinfo
VALUES (10001, 'Bill Jones', '2 HBase Ave, CA, 22222',
 'A100,A200,A300,B400,B500,C500,C600,D700');

INSERT INTO customercontactinfo
VALUES (20000, 'Jane Ann Doe', '1 Expert HBase Ave, CA, 22222',
 'A100,A200,A300');

INSERT INTO customercontactinfo
VALUES (20001, 'Joe Developer', '1 Piglatin Ave, CO, 33333', 'D700');

INSERT INTO customercontactinfo
VALUES (30000, 'Data Scientist', '1 Statistics Lane, MA, 33333', 'A300,C500');

/* Enter service orders into the Service Orders Table */

INSERT INTO serviceorders
VALUES (100000, 20000, 'A200', 'I have some questions on building HiveQL

queries? My Hadoop for Dummies book has not arrived yet!');

INSERT INTO serviceorders
VALUES (100001, 10001, 'A100', 'I need to understand how to configure Zookeeper

for my HBase Cluster?');

INSERT INTO serviceorders
VALUES (200000, 20001, 'D700', 'I am writing some Piglatin and I have a few

questions?');

INSERT INTO serviceorders
VALUES (200001, 30000, 'A300', 'How do I merge my data sets after Sqoop

incremental imports?');

276 Part III: Hadoop and Structured Data

Listing 14-2 confirms that the MySQL Service Order Database has been cre-
ated using the commands in Listing 14-1, and shows you the table names that
we’ll import from using Sqoop.

Listing 14-2: The MySQL show tables Command

mysql> show tables;
+--------------------------+
| Tables_in_serviceorderdb |
+--------------------------+
| customercontactinfo |
| productinfo |
| serviceorders |
+--------------------------+
3 rows in set (0.00 sec)

Now that you have seen the MySQL Service Order Database records that are
just waiting to be exploited, it’s time to turn your attention to Hadoop and
run your first Sqoop command. For this example, we downloaded an Apache
Hadoop distribution that provides us with Sqoop, and we already had in
place an HDFS as well as Hive and HBase. (For more information on setting up
your Apache Hadoop environment, see Chapter 3.)

 You can find a thorough list of Apache Hadoop bundles at http://wiki.
apache.org/hadoop/Distributions and Commercial Support.

Note, however, that we don’t pull out the trusty import command right off
the bat. Sqoop includes several handy tools along with import and export,
including the list-databases command, which we use in Listing 14-3.
Using that command, you can confirm that you have connectivity and visibil-
ity into the MySQL database.

Listing 14-3: The Sqoop list-databases Command

$ sqoop list-databases --connect jdbc:mysql://localhost/ \
 --username root -P
Enter password:
13/08/15 17:21:00 INFO manager.MySQLManager: Preparing to

use a MySQL streaming resultset.
information_schema
mysql
performance_schema
serviceorderdb

The serviceorderdb (bolded in Listing 14-3) is shown to be available, so
now you can list the tables within serviceorderdb by using the Sqoop
list-tables command, as shown in Listing 14-4. Notice that now we’re
adding the database that we want Sqoop to access in the jdbc:mysql URL.

277 Chapter 14: Integrating Hadoop with Relational Databases Using Sqoop

Listing 14-4: The Sqoop list-tables Command

$ sqoop list-tables \
 --connect jdbc:mysql://localhost/serviceorderdb \
 --username root -P
Enter password:
13/08/15 17:22:01 INFO manager.MySQLManager: Preparing to

use a MySQL streaming resultset.
customercontactinfo
productinfo
serviceorders

Listing 14-3 and Listing 14-4 should assure you that Sqoop now has connec-
tivity and can access the three tables from Figure 14-3. That means you can
execute your first Sqoop import command and target the serviceorders
table with a clean conscience. Sqoop import commands have this format:

sqoop import (generic arguments) (import arguments)

With the generic arguments, you point to your MySQL database and provide
the necessary login information, just as we did with the preceding list-
tables tool. In the import arguments, you (the user) have the ability to spec-
ify what you want to import and how you want the import to be performed. In
Listing 14-5, we specify the serviceorders table and request that one map
task be used for the import using the -m 1 CLA. (By default, Sqoop would use
four map tasks, but that would be overkill for this small table and our virtual
machine.) We have also specified the --class-name for the generated code
and specified the --bindir where the compiled code and .jar file should
be located. (Without these arguments, Sqoop would place the generated Java
source file in your current working directory and the compiled .class file
and .jar file in /tmp/sqoop-<username>/compile.) The class name
simply derives from the table name unless you specify a name with the help
of the --class-name command line argument (CLA). The --target-dir is
the location in HDFS where you want the imported table to be placed.

Listing 14-5: The Sqoop import serviceorders Table Command

$ sqoop import \
 --connect jdbc:mysql://localhost/serviceorderdb \
 --username root -P \
 --table serviceorders -m 1 \
 --class-name serviceorders \
 --target-dir /usr/biadmin/serviceorders-import \
 --bindir .
Enter password:
...
13/08/25 14:43:56 INFO mapreduce.ImportJobBase:

Transferred 356 bytes in 21.0736 seconds
(16.8932 bytes/sec)

13/08/25 14:43:56 INFO mapreduce.ImportJobBase: Retrieved
4 records.

278 Part III: Hadoop and Structured Data

The command ran fine, so you should have the same serviceorders data
that’s shown in Listing 14-1 now stored in your HDFS as well as the generated
Java files in your current working directory. Listing 14-6 shows how you can
use the hadoop fs –cat command to verify this.

Listing 14-6: Displaying the serviceorders Table Now Stored in HDFS and
Listing the Generated Java Files

$ hadoop fs -cat /usr/biadmin/serviceorders-import/part-m-00000
100000,20000,A200,I have some questions on building HiveQL queries? My Hadoop

for Dummies book has not arrived yet!
100001,10001,A100,I need to configure Zookeeper for my HBase Cluster?
200000,10001,D700,I am writing some Piglatin and I have a few questions?
200001,20000,A300,How do I merge my data sets after Sqoop incremental imports?

$ ls *.jar *.java *.class
serviceorders.class serviceorders.jar serviceorders.java

In the next two listings, we show you some additional options that can help
you specify in greater detail the data you want to import. Normally, Sqoop
imports the entire table or tables that you specify. However, you can control
the number and order of columns using the --columns <col1, col2,
...> command line argument. You can also provide your own SELECT state-
ment after the --query argument. In Listing 14-7, you use the --query
argument to specify that you want to import only the names and contact
information for those customers who have open service orders. (The WHERE
$CONDITIONS token is required by Sqoop to help the map tasks divide and
conquer the import operation — at the end of this section, we explain more
about how Sqoop divides an import.)

Listing 14-7: The Sqoop import Command Using the --query CLA

sqoop import --connect jdbc:mysql://localhost/serviceorderdb \
 --username root -P -m 2 \
 --query 'SELECT customercontactinfo.customername, customercontactinfo.

contactinfo FROM customercontactinfo JOIN
serviceorders ON customercontactinfo.customernum = serviceorders.customernum

WHERE $CONDITIONS' \
 --split-by serviceorders.serviceordernum \
 --boundary-query "SELECT min(serviceorders.serviceordernum),

max(serviceorders.serviceordernum) FROM serviceorders" \
 --target-dir /usr/biadmin/customers \
 --verbose

This Sqoop import is somewhat complex, so we want to take the time to
explain it in detail and discuss how Sqoop divides up the import job. It helps
to understand that, by default, Sqoop performs the following statement to
decide how to divide the table rows across the map tasks for importing:

SQL SELECT MIN(primary key col), MAX(primary key col) FROM
table

279 Chapter 14: Integrating Hadoop with Relational Databases Using Sqoop

That’s the default behavior in an import operation, such as the one in Listing
14-5. The exception in that listing, of course, is that the table is very small
and we used just the one map task. If it were a very large table, you would
want more map tasks, to get the job done faster. Now, we made Listing 14-7
more extravagant — it uses two map tasks. In this case, Sqoop requires the
--split-by and --boundary-query command line arguments because the
--table CLA has been replaced by our own query using the --query CLA.
So we’re helping Sqoop divide the work across the two map tasks we created
by specifying our own boundaries for the import. In this case, we know that
the serviceorders table has the increasing integer primary key named
serviceordernum, which lets Sqoop divide up the work. The --boundary-
query command line argument lets you get creative to help Sqoop meet your
table import requirements, but we keep it simple in this example.

Listings 14-8 and 14-9 confirm that our two map tasks did their job. This time
we have two files to view because we used two map tasks.

Listing 14-8: Output from Map Task 1

$ hadoop fs -cat /usr/biadmin/customers/part-m-00000
Jane Ann Doe,1 Expert HBase Ave, CA, 22222
Bill Jones,2 HBase Ave, CA, 22222

Listing 14-9: Output from Map Task 2

$ hadoop fs -cat /usr/biadmin/customers/part-m-00001
Joe Developer,1 Piglatin Ave, CO, 33333
Data Scientist,1 Statistics Lane, MA, 33333

You can also control which rows are imported using the --where argument
to provide a WHERE clause, as shown in Listing 14-10.

Listing 14-10: The Sqoop import Command using the --where
CLA with Results

sqoop import \
 --connect jdbc:mysql://localhost/serviceorderdb \
 --username root -P -m 1 \
 --table customercontactinfo \
 --where 'customernum >= 20000 and customernum < 30000' \
 --target-dir /user/biadmin/customers-range
$ hadoop fs -cat /user/biadmin/customers-range/part-m-00000
20000,Jane Ann Doe,1 Expert HBase Ave, CA, 22222,A100,A200,A300
20001,Joe Developer,1 Piglatin Ave, CO, 33333,D700

In Listing 14-10, we’re back to using the default behavior, as in Listing 14-5.
But because Sqoop lets us specify a WHERE clause using the --where com-
mand line argument, we download only those customers who have IDs
between 20000 and 29999.

280 Part III: Hadoop and Structured Data

Are you getting a sense of the power and flexibility that Sqoop brings to
Apache Hadoop? Big data analytics become far more valuable when com-
bined with existing enterprise data, and Sqoop greatly simplifies and stream-
lines the overall process! In the preceding example, the fictional service
company can now leverage the data in the serviceorders table, which is
now stored as a flat file in HDFS, as part of a larger Hadoop text analytics or
statistical analysis application.

Importing data into Hive
For our next example, we import all of the Service Order Database directly
from MySQL into Hive and run a HiveQL query against the newly imported
database on Apache Hadoop. (For more information on Hive, see Chapter 13).
Listing 14-11 shows you how it’s done.

Listing 14-11: Hive and Sqoop commands to import the Service Order
Database into Apache Hive

hive> create database serviceorderdb;
OK
Time taken: 1.343 seconds
hive> use serviceorderdb;
OK
Time taken: 0.062 seconds

$ sqoop import --connect jdbc:mysql://localhost/serviceorderdb \
 --username root -P \
 --table productinfo \
 --hive-import \
 --hive-table serviceorderdb.productinfo -m 1
Enter password:
...
13/08/16 15:17:08 INFO hive.HiveImport: Hive import complete.
$ sqoop import --connect jdbc:mysql://localhost/serviceorderdb \
 --username root -P \
 --table customercontactinfo \
 --hive-import \
 --hive-table serviceorderdb.customercontactinfo -m 1
Enter password:
...
13/08/16 17:21:35 INFO hive.HiveImport: Hive import complete.
$ sqoop import --connect jdbc:mysql://localhost/serviceorderdb \
 --username root -P \
 --table serviceorders \
 --hive-import \
 --hive-table serviceorderdb.serviceorders -m 1
Enter password:
...
13/08/16 17:26:56 INFO hive.HiveImport: Hive import complete.

281 Chapter 14: Integrating Hadoop with Relational Databases Using Sqoop

When the import operations are complete, you run the show tables com-
mand to list the newly imported tables (see Listing 14-12), and then run a
Hive query (see Listing 14-13) to show which Apache Hadoop technologies
have open service orders in the database.

Listing 14-12: Confirming the Sqoop Import Operations in Apache Hive

hive> show tables;
OK
customercontactinfo
productinfo
serviceorders
Time taken: 0.074 seconds

Listing 14-13: HiveQL Query to Determine Which Products Have Open
Service Orders Against Them

hive> SELECT productdesc FROM productinfo
 > INNER JOIN serviceorders
 > ON productinfo.productnum = serviceorders.productnum;
...
OK
HBase Support Product
Hive Support Product
Sqoop Support Product
Pig Support Product
Time taken: 28.552 seconds

Based on the Service Order Database we created and populated back in
Listing 14-1, you can confirm the results in Listing 14-13. We have four open
service orders on the products in bold. The Sqoop Hive import operation
worked, and now the service company can leverage Hive to query, analyze,
and transform its service order structured data. Additionally, the company
can now combine its relational data with other data types (perhaps unstruc-
tured) as part of any new Hadoop analytics applications. Many possibilities
now exist with Apache Hadoop being part of the overall IT strategy!

Importing data into HBase
Chapter 12 takes a look at how you can transform a relational database
schema into an HBase schema, when appropriate. In this subsection, we dem-
onstrate how Sqoop can be used to make that transformation much easier.
Of course, our main goal here is to demonstrate how Sqoop can import data
from an RDBMS or data warehouse directly into HBase, but it’s always better
to see how a tool is used in context versus how it’s used in the abstract.
Figure 14-4 shows how the Service Order Database might look after being
transformed into an HBase schema.

282 Part III: Hadoop and Structured Data

Figure 14-4:
The Service
Order data-
base, trans-

lated into
an HBase

schema.

Because we talk a lot about the process and methodology of this transforma-
tion in Chapter 12, we hold off on explaining it here. (If you desperately need to
know this instant how this process works, of course, take a look at Chapter 12.)
For more information on the Denormalization, Duplication, and Intelligent Keys
(DDI) methodology of translating relational database schemas into HBase sche-
mas, pay particular attention to the section in Chapter 12 about transitioning
from an RDBMS to HBase.

 For this particular import example, we want to import the customercontact
info table directly into an HBase table in preparation for building the HBase
Service Order Database schema. (Refer to Figure 14-4.) To complete the HBase
schema, you’d have to execute the same steps to import the productinfo
table, and then the serviceorders table could be built with a Java
MapReduce application.

Sqoop doesn’t now permit you to import, all at once, a relational table directly
into an HBase table having multiple column families. To work around this limi-
tation, you create the HBase table first and then execute three Sqoop import
operations to finish the task. Listing 14-14 shows the task of creating the table.

Listing 14-14: HBase customercontactinfo Table Creation Command

hbase(main):017:0> create 'customercontactinfo', 'CustomerName',
hbase(main):018:0* 'ContactInfo', 'ProductNums'
0 row(s) in 1.0680 seconds

In Listing 14-15, for each Sqoop import command, note that we have bolded
the target HBase column family specified by the --column-family CLA
and the corresponding MySQL columns specified by the –columns CLA. The
customernum primary key also becomes the HBase row key, as specified by
the --hbase-row-key CLA.

283 Chapter 14: Integrating Hadoop with Relational Databases Using Sqoop

Listing 14-15: Sqoop Commands to Import the customercontactinfo
Table Directly into a HBase Table

$ sqoop import \
 --connect jdbc:mysql://localhost/serviceorderdb \
 --username root -P \
 --table customercontactinfo \
 --columns "customernum,customername" \
 --hbase-table customercontactinfo \
 --column-family CustomerName \
 --hbase-row-key customernum -m 1
Enter password:
...
13/08/17 16:53:01 INFO mapreduce.ImportJobBase: Retrieved

5 records.
$ sqoop import \
 --connect jdbc:mysql://localhost/serviceorderdb \
 --username root -P \
 --table customercontactinfo \
 --columns "customernum,contactinfo" \
 --hbase-table customercontactinfo \
 --column-family ContactInfo \
 --hbase-row-key customernum -m 1
Enter password:
...
13/08/17 17:00:59 INFO mapreduce.ImportJobBase: Retrieved

5 records.
$ sqoop import \
 --connect jdbc:mysql://localhost/serviceorderdb \
 --username root -P \
 --table customercontactinfo \
 --columns "customernum,productnums" \
 --hbase-table customercontactinfo \
 --column-family ProductNums \
 --hbase-row-key customernum -m 1
Enter password:
...
13/08/17 17:05:54 INFO mapreduce.ImportJobBase: Retrieved

5 records.

If you were to carry out an HBase scan of your new table (see Listing 14-16),
you’d see that the import and translation from a relational database table on
MySQL directly into HBase was a success. The customercontactinfo table
in this example is rather small, but imagine the power you now have, using
Sqoop and HBase, to quickly move relational tables that may be exceeding
capacity on your RDBMS or data warehouse into HBase, where capacity is
virtually unlimited and scalability is automatic.

284 Part III: Hadoop and Structured Data

Listing 14-16: HBase Scan of the New customercontactinfo Table
Confirming Success

hbase(main):033:0> scan 'customercontactinfo'
ROW COLUMN+CELL
 10000 column=ContactInfo:contactinfo,

timestamp=1376773256317, value=1 Hadoop Lane,
NY, 11111, John.Smith@xyz.com

 10000 column=CustomerName:customername,
timestamp=1376772776684, value=John Timothy
Smith

 10000 column=ProductNums:productnums,
timestamp=1376773551221, value=B500

 10001 column=ContactInfo:contactinfo,
timestamp=1376773256317, value=2 HBase Ave, CA,
22222

 10001 column=CustomerName:customername,
timestamp=1376772776684, value=Bill Jones

 10001 column=ProductNums:productnums,
timestamp=1376773551221,
value=A100,A200,A300,B400,B500,C500,C600,D700

 20000 column=ContactInfo:contactinfo,
timestamp=1376773256317, value=1 Expert HBase
Ave, CA, 22222

 20000 column=CustomerName:customername,
timestamp=1376772776684, value=Jane Ann Doe

 20000 column=ProductNums:productnums,
timestamp=1376773551221, value=A100,A200,A300

 20001 column=ContactInfo:contactinfo,
timestamp=1376773256317, value=1 Piglatin Ave,
CO, 33333

 20001 column=CustomerName:customername,
timestamp=1376772776684, value=Joe Developer

 20001 column=ProductNums:productnums,
timestamp=1376773551221, value=D700

 30000 column=ContactInfo:contactinfo,
timestamp=1376773256317, value=1 Statistics
Lane, MA, 33333

 30000 column=CustomerName:customername,
timestamp=1376772776684, value=Data Scientist

 30000 column=ProductNums:productnums,
timestamp=1376773551221, value=C500

5 row(s) in 0.1120 seconds

 Importing existing relational data via Sqoop into Hive and HBase tables can
potentially enable a wide range of new and exciting data analysis workflows. If
this feature is of interest to you, check out the Apache Sqoop documentation
for additional Hive and HBase command line arguments and features.

285 Chapter 14: Integrating Hadoop with Relational Databases Using Sqoop

Importing incrementally
If the tables you’re planning to import into Hadoop are changing or growing
(which means that you may be planning more than one import or perhaps
continual imports), be sure to check out Sqoop’s Incremental Import feature.
Sqoop provides several options and tools to make incremental import opera-
tions flexible and straightforward.

Incremental import append mode
When you have a table that is receiving new rows and it has a column with a con-
tinually increasing value (like the customernum from our customercontact
info table), you can leverage incremental append mode. Below we show how
you can incrementally import all new customers from the fictional service com-
pany that have been appended to our MySQL customercontactinfo table
since the last import operation.

First you need to know the number of the last customer in our MySQL
customercontactinfo table. A quick review of Listing 14-1 shows that our
last customer, Mr. Data Scientist, was given a customer number of 30000.

In the next step, you need to add three customers to our MySQL customer
contactinfo table for the example to work properly. The SQL statements
in Listing 14-17 will get the job done.

Listing 14-17: Insert Commands in the MySQL customercontactinfo Table

INSERT INTO customercontactinfo VALUES (40000, 'Isaac
Newton', '1 Gravity Lane, London, United
Kingdom', 'C500');

INSERT INTO customercontactinfo VALUES (50000, 'Johann
Kepler', '1 Astronomy Street, Württemberg,
Germany', 'A100,B500,C500');

INSERT INTO customercontactinfo VALUES (60000, 'Louis
Pasteur', '1 Bacteriology Ave, Dole, France',
'A100,A200,A300,B500,C600');

At this point, you’re ready to let Sqoop do the work and import all new cus-
tomers with a customer number greater than 30000. Listing 14-18 provides
the command you can use.

286 Part III: Hadoop and Structured Data

Listing 14-18: Sqoop Incremental Import Command to Pick Up New
Customers in Hive

sqoop import \
 --connect jdbc:mysql://localhost/serviceorderdb \
 --username root -P \
 --table customercontactinfo -m 1 \
 --incremental append \
 --check-column customernum \
 --last-value 30000
Enter password:
...
13/08/24 14:15:28 INFO tool.ImportTool: --incremental

append
13/08/24 14:15:28 INFO tool.ImportTool: --check-column

customernum
(A) 13/08/24 14:15:28 INFO tool.ImportTool: --last-value

60000
(B) 13/08/24 14:15:28 INFO tool.ImportTool: (Consider

saving this with 'sqoop job --create')

Listing 14-19 confirms our success. You now have three new customers
stored in your HDFS file.

Listing 14-19: New Customers Now Stored in HDFS after Sqoop
Incremental Import

$ hadoop fs -cat /user/biadmin/customercontactinfo/part-m-00000
40000,Isaac Newton,1 Gravity Lane, London, United Kingdom,C500
50000,Johann Kepler,1 Astronomy Street, W_rttemberg, Germany,A100,B500,C500
60000,Louis Pasteur,1 Bacteriology Ave, Dole, France,A100,A200,A300,B500,C600

Note the last two lines of output from Listing 14-18. The line labeled A lets
you know that, of the customer records that were imported, the last new
record had the customer ID 60000 (Louis Pasteur). This handy bookkeeping
feature in Sqoop gets even better! Line B suggests that you save the value for
the next incremental import and consider using the sqoop-job tool to make
the task easier. The sqoop job --create command works hand in hand
with incremental imports. Using the sqoop-job tool, you can create a job
that you can run as often as you need to, and Sqoop’s metastore keeps track
of the vital information — like last-value, in this case. Listing 14-20 creates
a Sqoop job that you can call every time you need to import new customers
into your HDFS. (We call our job load-new-customers but you call it whatever
makes sense for your application.)

287 Chapter 14: Integrating Hadoop with Relational Databases Using Sqoop

Listing 14-20: The sqoop job --create Command and Subsequent sqoop
job --list to Confirm Results

$ sqoop job --create load-new-customers -- \
 import \
 --connect jdbc:mysql://localhost/serviceorderdb \
 --username root -P \
 --table customercontactinfo -m 1 \
 --incremental append \
 --check-column customernum \
 --last-value 60000
Enter password:
$ sqoop job --list
Available jobs:
 load-new-customers

Additionally, you can leverage another Sqoop tool — sqoop-metastore —
to create an HSQLDB instance that can be accessed by other users on your
network; now your Sqoop meta data can be shared by others on your team!

 HSQLDB, which stands for HyperSQL DataBase, is an SQL database written
in Java. For more information on HSQLDB, go to http://hsqldb.org. For
the metastore thing to work, you also need to add some information to your
$SQOOP_HOME/conf/sqoop-site.xml file.

After running the sqoop-metastore command, your team can leverage it in
the sqoop job --create command by adding a --meta-connect com-
mand line argument, as shown in this example:

sqoop job
 --create load-new-customers \
 --meta-connect jdbc.hsqldb:hsql://<servername>:<port>/

sqoop \
 --import \
 --table xyz \
 ...

Incremental import lastmodified mode
In addition to incremental append mode, Sqoop provides last modified mode.
You can use this mode to incrementally import updates from a table to HDFS.
For example, to import to HDFS any changes in the customercontactinfo
table that took place yesterday, you would have to modify the table to include
a LastUpdate column that would hold the timestamp for each update. With
a new LastUpdate column, you could create this Sqoop command:

sqoop import
 --connect jdbc:mysql://localhost/serviceorderdb \
 --username root -P \
 --table customerinfo -m 1 \
 --incremental lastmodified \
 --check-column LastUpdate \
 --last-value "2013-08-23 00:00:00"

288 Part III: Hadoop and Structured Data

Note that, as with the incremental append mode option, the sqoop-job
tool can come in quite handy for saving the last-value timestamp for sub-
sequent incremental lastmodified imports. Speaking of subsequent
imports, what do you suppose happens when you run the same command
again (or job, if you created one) on, say, the next day to pick up more poten-
tial customercontactinfo table changes? The answer is that you get
another file under the directory customercontactinfo in your HDFS with
the customercontactinfo table modifications. So how do you merge these
files? You use the sqoop-merge command, of course, which is the subject of
the next subsection.

The sqoop merge tool
The sqoop merge tool works hand in hand with the incremental import
lastmodified mode. Each import creates a new file, so if you want to keep
the table data together in one file, you use the merge tool. The sqoop
merge tool combines a newer data set with an older data set by overwrit-
ing rows from the older data set with the rows from the new dataset when
the primary keys match. The sqoop merge command shown in the fol-
lowing example illustrates how this would look when using new and old
customercontactinfo incremental imports:

 The generated Java class file from the previous import (specified with --jar-
file customercontactinfo.jar) is required to parse the records for this
merge example. If you don’t keep it around, you’ll need to use the codegen
tool to recreate it.

sqoop merge
 --new-data \
 /user/biadmin/customercontactinfo/part-m-00001 \
 --onto \
 /user/biadmin/customercontactinfo/part-m-00000 \
 --target-dir /user/biadmin/merged-customers \
 --jar-file customercontactinfo.jar \
 --class-name customercontactinfo \
 --merge-key customernum

Benefiting from additional
Sqoop import features
With the hands-on examples from the preceding section in mind, we’d like to
describe some additional import features that you should know about. It’s
beyond the scope of this chapter to cover every Sqoop feature in detail, but
Table 14-1 exposes you to its more significant features. Also note that the
Sqoop community is always innovating and adding functionality to Sqoop,
so you should watch the community documentation pages under http://
sqoop.apache.org/docs for the latest features and new Sqoop command
options.

289 Chapter 14: Integrating Hadoop with Relational Databases Using Sqoop

Table 14-1 Miscellaneous Sqoop Import Options
Command Line Arguments Description
Generic
--driver <class-name>
--connection-manager
<manager-name>

Earlier in the chapter under the subsec-
tion entitled “Connectors and Drivers” we
explain three approaches for using Sqoop
depending on which data management
system you are interfacing with. If you
need to download and install your own
connector, then you’ll need to use
the --connection-manager CLA
and possibly the --driver CLA as well.
If you find yourself needing to use the
generic JDBC connector, then you have to
specify that with the --connection-
manager CLA and your vendor specific
JDBC driver with the --driver CLA.

Import
--append You can append imported data to an

existing dataset stored in HDFS. Without
the --append CLA, if you try to import
to an existing HDFS directory, the import
fails. With the --append CLA, the import
data is written to a new file in the same
HDFS directory and is given a name that
doesn’t conflict with the existing file(s).

--as-avrodatafile,
--as-sequencefile,
--as-textfile

These three arguments let you specify
the import data format when it’s stored
on HDFS. The default import format is
textfile.

--direct Some of the Sqoop-supported databases
offer high-performance tools for data
movement that exceed the performance
of their respective JDBC drivers. As of
this writing, both MySQL and PostregSQL
provide these high-performance tools,
and you can leverage them by using
the --direct argument along with the
table-split-size argument via --direct-
split-size <n>. Beware that there
may be certain limitations in direct mode
(e.g. large objects may not be supported)
so consult your database documentation.

(continued)

290 Part III: Hadoop and Structured Data

Command Line Arguments Description
--map-column-java
<mapping>, --map-column-
hive <mapping>

Sqoop lets you explicitly specify the Java
type mapping for imports into HDFS and
Hive.

--inline-lob-limit
<size>

As you might expect, Sqoop can import
large objects (BLOBs and CLOBs, in RDBMS
terms). After all, Apache Hadoop is all
about big data! As long as the large object
doesn’t exceed the size of the --inline-
lob-limit <size> CLA, Sqoop stores
the large object in line with the rest of the
data in HDFS. However, if the large object
exceeds the aforementioned limit specified
by the CLA, it’s stored in the subdirectory
named _lobs, off the main HDFS import
directory.

--compress,
--compression-codec <c>

By default, data isn’t compressed,
but you can leverage gzip by specifying
the --compress argument or your own
algorithm using the --compression-
codec argument. All three of the supported
file types (text, sequence, and Avro) can be
compressed.

Sending Data Elsewhere with Sqoop
Sqoop export operations are quite similar to import operations, with a couple
of notable exceptions. First, Sqoop cannot determine the correct data types
for your relational tables. SQL data types are numerous and rich, so it makes
far more sense for you to first decide how you want to map your Hadoop data
into relational database types, and then complete the export. In other words,
you need to create the target table in your RDBMS or data warehouse first
to hold the data you want to export. Second, when you execute the Sqoop
export command, you specify the HDFS directory where the export data is
stored. You cannot specify a Hive or HBase table name for exports, as you
can with imports.

Figure 14-5 illustrates the steps involved in a Sqoop export from HDFS to an
RDBMS or data warehouse system.

Table 14-1 (continued)

291 Chapter 14: Integrating Hadoop with Relational Databases Using Sqoop

Figure 14-5:
The Sqoop

export
flow of

execution.

As you can see, the Sqoop export flow of execution is similar to the import
flow. Figure 14-5 focuses on the export of a potentially large Products file from
HDFS into a similar Products data table in a data management system. Three
map tasks are depicted to parallelize the process, but more or less could be
specified by the user, based on the dataset size and the size of the Hadoop
cluster. Carefully consider specifying the number of map tasks, in terms of
both exports and imports. Too many map tasks can take longer if sufficient
resources don’t exist on your Hadoop cluster, and, similarly, too many map
tasks can overwhelm the data management system as well.

Exporting data from HDFS
The following hands-on example demonstrates an export of a Hive table
called sev1_serviceorders. A fictional service company has derived
the table from the original serviceorders table that we show you how
to import from the MySQL serviceorderdb earlier in this chapter. It
was decided, after leveraging text analytics on the Apache Hadoop cluster
against the database, that service orders for customer number 20000 should
be treated with a severity level of 1 and be exported back to the MySQL
database for report generation. (This example is contrived but still illustra-
tive of a typical joint use case for Apache Hadoop and the RDBMS or data
warehouse.)

Right off the bat, make sure that the MySQL serviceorderdb has an appro-
priate table to receive your Sqoop export. The data definition language to
create the table is given in Listing 14-21.

292 Part III: Hadoop and Structured Data

Listing 14-21: MySQL Create Table Statement

CREATE TABLE sev1_serviceorders(
serviceordernum INT PRIMARY KEY,
customernum INT,
productnum CHAR(4),
status VARCHAR(100),
FOREIGN KEY (customernum) REFERENCES

customercontactinfo(customernum),
FOREIGN KEY (productnum) REFERENCES

productinfo(productnum)
);

The Hive sev1_serviceorders table can be created and displayed in sev-
eral different ways, but for the sake of illustration, we’ve included a pair of
possible HiveQL statements in Listings 14-22 and 14-23.

Listing 14-22: HiveQL Create Table Statement with INSERT
Command to Load Data

hive> CREATE TABLE sev1_serviceorders(
 > serviceordernum INT,
 > customernum INT,
 > productnum STRING,
 > status STRING);
OK
Time taken: 0.7 seconds
hive> INSERT OVERWRITE TABLE sev1_serviceorders
 > SELECT * FROM serviceorders WHERE customernum =

20000;
...
Total MapReduce CPU Time Spent: 1 seconds 30 msec
OK
Time taken: 26.836 seconds

Listing 14-23: HiveQL SELECT Command to Display the Contents
of the New Table

hive> SELECT * FROM sev1_serviceorders;
OK
100000 20000 A200 I have some questions on building

HiveQL queries? My Hadoop for Dummies book has
not arrived yet!

Time taken: 0.167 seconds

Listing 14-23 confirms that everything is in place to perform the Sqoop export
operation. Sqoop export commands are similar to import commands, as you
can see in this example:

sqoop export (generic arguments) (export arguments)

293 Chapter 14: Integrating Hadoop with Relational Databases Using Sqoop

In the export arguments, you specify in your HDFS the pathname to the Hive
warehouse where the sev1_serviceorders table is stored. In addition, you
specify the field delimiter that you want to use for your table, because Hive
allows many different types of delimiters. Listing 14-24 shows a possible sce-
nario, and Listing 14-25 shows the results.

Listing 14-24: Sqoop export Command from HDFS to MySQL

$ sqoop export \
--connect jdbc:mysql://localhost/serviceorderdb \
--username root -P -m 1 \
--table sev1_serviceorders \
--export-dir /biginsights/hive/warehouse/serviceorderdb.db/sev1_serviceorders \
--input-fields-terminated-by '\0x0001'
Enter password:
...
13/08/18 19:08:27 INFO mapreduce.ExportJobBase: Exported 1 records.

Listing 14-25: MySQL Export Results

mysql> select * from sev1_serviceorders;
| serviceordernum | customernum | productnum | status
| 100000 | 20000 | A200 | I have some questions on building

HiveQL queries? My Hadoop for Dummies book has not arrived yet! |
1 row in set (0.00 sec)

Listing 14-25 confirms that the export was successful and the record you
expected to be inserted into the sev1_serviceorders table in the MySQL
database has in fact been inserted.

Just because we authors value thoroughness, we show you four distinct
export approaches in this section: insert, update, update insert, and call pro-
cedures. The preceding example used the insert approach. In the following
four sections, we explain each export approach (yes, even insert again) and
their various options.

Sqoop exports using the Insert approach
In the hands-on export example in the previous section, the rows are
exported from the Hive data warehouse (stored in HDFS) with the help of
SQL INSERT statements in the MySQL RDBMS. The export operation was a
small one, for the sake of illustration, but often, exports include very large
tables with millions of rows. Sqoop handles large export use cases by way
of batching techniques and by leveraging multiple map tasks to write the
data in parallel. (As with imports, Sqoop uses four map tasks by default with
exports.) The idea behind batching is to execute a group of SQL INSERT
statements together instead of the serial approach of executing them one
by one. The idea is straightforward, but the approach for batching differs

294 Part III: Hadoop and Structured Data

from one database technology to another. The Sqoop designers knew this, so
they made some good, educated guesses on batch default parameters and
then gave us different options for adapting to, and tuning for, our database
of choice.

This list describes two techniques that Sqoop users can leverage to batch
export operations:

 ✓ The --batch command line argument: This argument allows Sqoop to
batch together SQL INSERT statements using the JDBC PreparedStatement
interface. So the Sqoop client creates a batch of the following statements
using the JDBC APIs:

INSERT INTO table VALUES (col1,col2,...);
INSERT INTO table VALUES (col1,col2,...);
INSERT INTO table VALUES (col1,col2,...)

 In theory, this technique should result in better export throughput
because Sqoop’s map task writers avoid sending individual INSERT
statements and instead batch them together.

 ✓ The -D <property=value> argument: If you were to issue the sqoop
help export command, you’d see a command line argument that
begins with -D to allow you to set properties for Sqoop that would
otherwise have to be set in the $SQOOP_HOME/conf/sqoop-site.
xml file. If you leverage the -D <property=value> argument, you
can set the sqoop.export.records.per.statement property to a
value that determines the number of records per INSERT statement. For
example, setting the aforementioned property to 3 would generate the
INSERT statement

INSERT INTO "table" VALUES (x,y,z,...), (x,y,z,...),
(x,y,z,...);

 You can also set the sqoop.export.statements.per.transaction
property to a value that specifies the number of INSERT statements to
be executed before you commit the transaction.

Which option should you use? Well, it depends on your chosen database
technology. The --batch command line argument may work fine, but it
depends on how the JDBC driver was implemented. As of this writing, the
default behavior for Sqoop 1.4.4 is to leverage the -D <property=value>
argument, with records per statement set to 100 and statements per trans-
action set to 100. Therefore, every 10,000 rows, Sqoop commits your batch
INSERT operations. By causing a commit every 10,000 rows, Sqoop avoids
out-of-memory errors. We don’t mean that the -D <property=value> argu-
ment works with every database technology — it just happens to be what the
Sqoop designers chose, based on certain assumptions. Consult your vendor,
or review the database documentation before executing batch Sqoop export
commands to see which options are supported.

295 Chapter 14: Integrating Hadoop with Relational Databases Using Sqoop

Sqoop exports using the Update
and Update Insert approach
With insert mode, records exported by Sqoop are appended to the end of the
target table. Sqoop also provides an update mode that you can use by provid-
ing the --update-key <column(s)> command line argument. This action
causes Sqoop to generate a SQL UPDATE statement to run on the RDBMS or
data warehouse. Assume that you want to update a three-column table with
data stored in the HDFS file /user/my-hdfs-file. The file contains this data:

100, 1000, 2000

The following abbreviated Sqoop export command generates the corresponding
SQL UPDATE statement on your database system:

$ sqoop export (Generic Arguments)
 --table target-relational-table \
 --update-key column1
 --export-dir /user/my-hdfs-file
 ...

Generates => UPDATE target-relational-table SET
 column2=1000,column3=2000
 WHERE column1=100;

With the preceding export command, if the target-relational-table
on your RDBMS or data warehouse system has no record with the match-
ing value in column1, nothing is changed in target-relational-table.
However, you may also include another argument that inserts or appends
your data to target-table if no matching records are found. Think of it this
way: If exists UPDATE else INSERT. This technique is often referred
to as upsert in the database vernacular or as MERGE in other implementa-
tions. The argument for upsert mode is --update-mode <mode>, where
updateonly is the default and allowinsert activates upsert mode. Check
your database documentation or consult with your vender to determine
whether upsert mode is supported with Apache Sqoop.

Sqoop exports using call stored procedures
Sqoop can also export HDFS data by calling a stored procedure in your
RDBMS or data warehouse using the --call <stored procedure> com-
mand line argument. The following abbreviated Sqoop export command illus-
trates this approach:

sqoop export (Generic Arguments)
 --call my-stored-procedure \
 --export-dir /user/my-hdfs-export-data

296 Part III: Hadoop and Structured Data

In this example, Sqoop calls the my-stored-procedure for every record in
the /user/my-hdfs-export-data file. Many use cases can leverage this
feature. A classic example is that you already have existing stored procedures
that you use to import data into your RDBMS or data warehouse.

 A stored procedure is a subroutine that’s stored in the RDBMS or data ware-
house. It can centralize common logic that would otherwise have to exist at
the application level.

Sqoop exports and transactions
The beauty of Sqoop is that it can export massive data sets to an RDBMS or
data warehouse by batching SQL statements and leveraging parallel map
writer tasks. However, the export operation is not atomic — it isn’t an all-
or-nothing entity, in other words. Individual writer tasks can fail, leaving the
Sqoop export operation in a partially completed state. If this happens, your
table data is corrupt and you’re unlikely to be a “happy Hadooper.” Sqoop
solves this problem with the help of staging tables.

The idea here is that you can first export data to a staging table and after the
export successfully completes, move your staging table to the final table in
one atomic transaction. Use the command line argument --staging-table
<table name> to specify your staging table, and use --clear-staging-
table to clear the staging table before each subsequent export.

 Staging tables aren’t supported when using the --direct option, update mode,
update insert mode, or called procedures. Staging tables are only available with
the insert approach discussed above and demonstrated in Listing 14-25.

Looking at Your Sqoop Input and
Output Formatting Options

In the earlier subsection “Importing Data with Sqoop,” we talk about Sqoop’s
code generation feature. A bit later in the chapter — at Listing 14-5 or there-
abouts — we also leverage code generation command-line arguments to
demonstrate how you can control the code generation process and results.
(Then you can use the .jar file for subsequent applications where you
need to process the data now stored in HDFS.) Finally, in Listing 14-24, we
use an --input-fields-terminated-by '\0x0001' command line
argument to instruct the Sqoop export tool how to read and parse records

297 Chapter 14: Integrating Hadoop with Relational Databases Using Sqoop

managed by Hive before exporting to MySQL. Hive uses control-A characters
(‘\0x0001’ in Listing 14-24) rather than the default comma for field termina-
tion. In this section, we help you take a closer look at input parsing CLAs as
well as output line formatting CLAs. When you choose to import or export
delimited text, you often need these CLAs.

Table 14-2 lists the input parsing CLAs which begin with --input, and the
output line formatting CLAs. You’ll probably notice that these CLAs are just
opposites of each other.

Table 14-2 Sqoop Output Line Formatting
 and Input Parsing CLAs
Command Line Argument What It Does
--enclosed-by <char>
--input-enclosed-by <char>

Specifies a field-enclosing character
(double quotes, for example).

--optionally-enclosed-by
<char>
--input-optionally-
enclosed-by <char>

Specifies that if the data includes the
enclosed-by <char>, say double
quotes (“), then the double quotes
should be written; otherwise, double
quotes are optional — don’t write them.
So for example, if Sqoop imports a string
field enclosed in double quotes then
it will be written to HDFS with double
quotes. Otherwise, other fields would not
be written to HDFS with double quotes.

--escaped-by <char>
--input-escaped-by <char>

Specifies an escape character to
avoid ambiguity when parsing or writ-
ing records to HDFS. As an example,
you might make the --escaped-by
character a backslash (\) which would
allow you to import a string with double
quotes inside the string. When Sqoop
writes the field to HDFS, the double
quotes within the string would be pre-
ceded with a backslash. In a similar
way, if you use the generated Java
code to parse a string with quotes
inside the string, specifying a backslash
(\) with the --input-escaped-by
CLA would save you from losing data
because Sqoop would see the backs-
lash, skip over the quotes and continue
looking for the enclosing quotes.

(continued)

298 Part III: Hadoop and Structured Data

Command Line Argument What It Does
--fields-terminated-by
<char>
--input-fields-
terminated-by <char>

Specifies the field-termination charac-
ter (a comma, for example).

--lines-terminated-by
<char>
--input-lines-
terminated-by <char>

Specifies the record- or line-termination
character (a new-line character for
example).

--mysql-delimeters <char> For output line formatting only, this
CLA indicates that the default MySQL
delimiters should be used for outputting
records to HDFS. MySQL’s default delim-
iter set is the following: fields: , lines: \n
escaped-by: \ optionally-enclosed-by: ’

 If you accidentally delete Java files generated by sqoop-import or sqoop-
export, you can use the sqoop-codegen tool later to reproduce the files.
The Sqoop codegen tool accepts the same CLAs in Table 14-2. You can also
use sqoop-codegen independently and specify the jar file and class name for
your sqoop-import or sqoop-export commands.

Getting down to brass tacks: An example
of output line-formatting and
input-parsing
To ensure that this whole output line formatting / input parsing feature
in Sqoop is clear, we close this discussion with an example using our old
standby, the Service Order Database. Imagine a call center operator from
our fictional service company taking calls from customers and inputting
their comments into the MySQL serviceorderdb that was used in earlier
examples. You might imagine an operator entering commas in the problem
description, in an attempt to keep the prose as clear as possible for the engi-
neer, who would later try to solve the issue for the customer. However, unbe-
knownst to the call center operator, commas are the default field-termination
characters for Sqoop — so later, when the IT staff decides to import part or
all of the serviceorderdb into Hadoop for analysis, we have a problem.
It could happen like this: the call center operator takes a service call from
a customer and the MySQL system inserts the following record into the
serviceorderdb.

Table 14-2 (continued)

299 Chapter 14: Integrating Hadoop with Relational Databases Using Sqoop

INSERT INTO serviceorders VALUES (100000, 20000, 'A200',
'I have some questions, on building HiveQL
queries? My Hadoop for Dummies book has not
arrived yet!');

Later on, the IT staff imports the serviceorders table into Apache Hadoop
using this familiar command:

sqoop import \
 --connect jdbc:mysql://localhost/serviceorderdb \
 --username root -P \
 --table serviceorders -m 1

At this point, everything is good; even though a comma appears in the prob-
lem description, it’s imported into HDFS verbatim. However, suppose that the
IT staff decides to export the data from Hadoop back into a MySQL table later
on, using this command:

sqoop export \
 --connect jdbc:mysql://localhost/serviceorderdb \
 --username root -P \
 --export-dir /user/biadmin/serviceorders \
 --table serviceorders -m 1

After the export operation, the MySQL database administrator looks at the
new table and sees the following records:

mysql> select * from serviceorders;
...
| serviceordernum | customernum | productnum | status
| 100000 | 20000 | A200 | I have some questions

|
| 100001 | 10001 | A100 | I need to understand how to

configure Zookeeper for my HBase Cluster? |
...

The Sqoop export command has interpreted the operator’s comma as a field
delimiter, and some vital data was lost. We’re in danger of losing an important
customer because we can’t address the problem without an embarrassing
return phone call to solve the data loss problem! It sounds bad, so what’s the
solution? The solution is output line formatting and input parsing CLAs. Two
commands (one import and one export — see Listing 14-26) would solve
the problem.

300 Part III: Hadoop and Structured Data

Listing 14-26: An Output Line Formatting and Input Parsing Example

sqoop import \
 --connect jdbc:mysql://localhost/serviceorderdb \
 --username root -P -m 1 \
 --table serviceorders \
 --target-dir /user/biadmin/serviceorders-test \
 --escaped-by \\ \
 --input-escaped-by \\ \
 --class-name serviceorderstest \
 --bindir /home/biadmin/serviceorders-test
sqoop export \
 --connect jdbc:mysql://localhost/serviceorderdb \
 --username root -P -m 1 \
 --table serviceorders \
 --export-dir /user/biadmin/serviceorders-test \
 --class-name serviceorderstest \
 --jar-file /home/biadmin/serviceorders-test/serviceorderstest.jar

Because this topic is important, we walk you through each step. First, in the
import, we’re specifying an output line formatting escape character(\).
This character causes the generated code (which we’re naming service-
orderstest) to place a backslash (because of the --escaped by \ CLA)
before the operator’s comma in the HDFS records file. Then when the
serviceorders records are exported from HDFS back to the MySQL
serviceorders table (or another table like it), we’ll reuse the generated
code, which we saved in the /home/biadmin/serviceorders-test
directory with the --bindir CLA. This generated code has an input parse
method that knows how to read the problem description, so whenever it sees
the backslash and comma (because of the --input-escaped-by \ CLA in
the import command), it continues reading and exporting the whole prob-
lem description until it finds the final field-enclosing comma. Now, when the
MySQL database administrator from the service company issues the SELECT
statement, he or she sees the whole problem description.

 The Linux shell uses the backslash (\) as a line continuation character so
you can just keep on typing with a whole new line. (This is a pretty important
little technique with Sqoop and its long command structures.) That’s why we
have three backslashes on the lines in Listing 14-26 where we are specifying
the backslash as an escape character. We’re escaping our escape character and
continuing our line.

 If you had chosen to import binary data from a data management system
(DMS) with Sqoop, and store that data in HDFS using a sequence file (with
the --as-sequencefile CLA), then you should save your generated Java
class (like we did in Listing 14-26) so you can point to it (using the --class-
name and --jar-file CLAs) if you need to export the data back to the DMS.

301 Chapter 14: Integrating Hadoop with Relational Databases Using Sqoop

Sqoop 2.0 Preview
With all the success surrounding Sqoop 1.x upon its graduation from the
Apache incubator, Sqoop has momentum! So, as you might expect, Sqoop 2.0
is in the works with exciting new features on the way. If you haven’t already,
we suggest checking out http://sqoop.apache.org for the full story. As
of this writing, you can see that Sqoop 1.99.3 is downloadable, complete with
documentation. We’d bet that you’re wondering (like we are) how many 1.99.x
releases will be available before the big 2.0 hits http://sqoop.apache.
org. Well, our crystal ball only works part-time so the answer is “not yet.”

We can still dream, right? And while we’re dreaming, we can still provide you
with a preview of Sqoop 2.0 features. However, you know the drill: The situa-
tion can change leading up to the 2.0 release, so we keep our description at a
relatively high level of generality.

Figure 14-6 illustrates (documented) design plans for Sqoop 2.0.

Figure 14-6:
Sqoop 2.0

design
plans.

As you can see, the big change in the works is that Sqoop 2.0 will have a
separate server, which is good news for a number of reasons. First, you won’t
have to do so much work. The Sqoop connector and JDBC driver will be
installed once by the system administrator for your cluster instead of once
per Sqoop client. If you happen to be the system administrator, we extend
our condolences. You still have to do the work, but maybe you’ll like the next
benefit: Sqoop 2.0 will be more secure! With a Sqoop server as part of the
architecture, sensitive operations such as connecting to the database servers
only have to happen on the Sqoop server and you’ll have role-based access
control. Additionally, Sqoop clients can leverage Sqoop from anywhere on the

302 Part III: Hadoop and Structured Data

network (thanks to the new rest interface), and they will enjoy a new graphi-
cal user interface (GUI). We think you’ll agree that the command line options
are necessary and powerful for scripting purposes, but we all like a cool GUI
from time to time. Sqoop requires many command line options, which can be
error-prone without a GUI to guide you.

We’ll leave this preview as is for now because we don’t want to discuss features
that might change. We would bet that you’ve noticed MapReduce (instead of
just map tasks) proudly displayed in Figure 14-6. We’ve inserted it on purpose,
but we’ll wait to add our two cents until after we hear the exact details on how
reducers are leveraged when the 2.0 announcement hits the community page.
Until then, enjoy Sqoop 1.x and start experimenting with 1.99.x.

 You can read more about the Sqoop 2 goals and architecture on this web site:
https://cwiki.apache.org/confluence/display/SQOOP/Sqoop+2

Chapter 15

The Holy Grail: Native SQL Access
to Hadoop Data

In This Chapter
▶ Seeing why SQL is important for Hadoop

▶ Looking at SQL access and the open source Hadoop community

▶ Evaluating proprietary SQL solutions

T
he NoSQL movement that has been happening over the past few years
has taught two important lessons: a) Alternatives to relational databases

can be a great help in solving a variety of problems and b) SQL isn’t going
anywhere. In fact, the NoSQL movement is now being rebranded as NewSQL,
as in, “Here’s a new technology where you can use SQL!” Even though we’ve
seen a tremendous amount of innovation in the information management
field — technologies are now available that can store graphs, documents, and
key/value pairs at a massive scale — the IT market is still demanding SQL
support for all of it. Hadoop is no exception, and a number of companies are
investing heavily to drive open source projects and proprietary solutions for
SQL access to Hadoop data.

SQL’s Importance for Hadoop
There are compelling reasons that SQL has proven to be resilient. The IT
industry has had 40 years of experience with SQL, since it was first devel-
oped by IBM in the early 1970s. With the increase in the adoption of relational
databases in the 1980s, SQL has since become a standard skill for most IT
professionals. You can easily see why SQL has been so successful: It’s rela-
tively easy to learn, and SQL queries are quite readable. This ease can be
traced back to a core design point in SQL — the fact that it’s a declarative
language, as opposed to an imperative language. For a language to be declara-
tive means that your queries deal only with the nature of the data being
requested — ideally, there should be nothing in your query that determines
how the processing should be executed. In other words, all you indicate in

304 Part III: Hadoop and Structured Data

SQL is what information you want back from the system — not how to get it.
In contrast, with an imperative language (C, for example, or Java, or Python)
your code consists of instructions where you define the actions you need the
system to execute.

In addition to the (easily leveraged) skills of your SQL-friendly IT profession-
als, decades’ worth of database applications have also been built with SQL
interfaces. As we discuss in Chapter 11, when talking about how Hadoop
can complement the data warehouse, it’s clear that organizations will store
structured data in Hadoop. And as a result, they’ll run some of their existing
application logic against Hadoop. No one wants to pay for applications to be
rewritten, so a SQL interface is highly desirable.

With the development of SQL interfaces to Hadoop data, an interesting trend
is that commercial business analytics and data management tools are almost
all jumping on the Hadoop bandwagon, including business intelligence report-
ing; statistical packages; Extract, Transform, and Load frameworks (ETL); and
a variety of other tools. In most cases, the interface to the Hadoop data is
Hive (see Chapter 13) or one of the other solutions described in this chapter.

Looking at What SQL Access
Actually Means

When we use the term SQL access, we do so knowing that we’re relying on a
few basic assumptions:

 ✓ Language standards: The most important standard, of course, entails
the language itself. Many “SQL-like” solutions exist, though they usually
don’t measure up in certain fundamental ways — ways that would pre-
vent even typical SQL statements from working. The American National
Standards Institute (ANSI) established SQL as an official technical stan-
dard, and the IT industry accepts the ANSI SQL-92 standard as repre-
senting the benchmark for basic SQL compliance. ANSI has released a
number of progressively more advanced versions over the years as data-
base technologies have evolved.

 ✓ Drivers: Another key component in a SQL access solution is the
driver — the interface for applications to connect and exchange data
with the data store. Without a driver, there’s no SQL interface for any
client applications or tools to connect to for the submission of SQL que-
ries. As such, any SQL on Hadoop solution has to have JDBC and ODBC
drivers at the very least, because they’re the most commonly used data-
base interface technologies.

305 Chapter 15: The Holy Grail: Native SQL Access to Hadoop Data

 ✓ Real-time access: Until Hadoop 2, MapReduce-based execution was the
only available option for analytics against data stored in Hadoop. For
relatively simple queries involving a full scan of data in a table, Hadoop
was quite fast as compared to a traditional relational database. Keep in
mind that this is a batch analysis use case, where fast can mean hours,
depending on how much data is involved. But when it came to more
complex queries, involving subsets of data, Hadoop did not do well.
MapReduce is a batch processing framework, so achieving high perfor-
mance for real-time queries before Hadoop 2 was architecturally impos-
sible. One early motivator for YARN, the new resource management and
scheduling system on the block, was this need to support other process-
ing frameworks to enable real-time workloads, such as interactive SQL
queries. Indeed, a proper SQL solution should not leave people waiting
for reasonable queries. (For more on YARN, see Chapter 7.)

 ✓ Mutable data: A common question in many discussions around SQL
support on Hadoop is “Can we use INSERT, UPDATE, and DELETE state-
ments, as we would be able to do in a typical relational database?” For
now, the answer is no, which reflects the nature of HDFS — it’s focused
on large, immutable files. At the time of this writing, technologies such
as Hive offer read-only access to these files. Regardless, work is ongo-
ing in the Hive Apache project to enable INSERT, UPDATE, and DELETE
statements.

SQL Access and Apache Hive
At the time of this writing, Apache Hive is indisputably the most widespread
data query interface in the Hadoop community. (We cover Hive in depth in
Chapter 13, describing its structure and how to use it.)

Originally, the design goals for Hive were not for full SQL compatibility and
high performance, but were to provide an easy, somewhat familiar interface
for developers needing to issue batch queries against Hadoop. This rather
piecemeal approach no longer works, so the demand grows for real SQL
support and good performance. Hortonworks responded to this demand
by creating the Stinger project, where it invested its developer resources in
improving Hive to be faster, to scale at a petabyte level, and to be more com-
pliant to SQL standards. This work was to be delivered in three phases.

In Phases 1 and 2, you saw a number of optimizations for how queries were
processed as well as added support for traditional SQL data types; the addi-
tion of the ORCFile format for more efficient processing and storage; and
integration with YARN for better performance. In Phase 3, the truly significant
evolutions take place, which decouple Hive from MapReduce. Specifically, it
involves the release of Apache Tez (described in Chapter 7), which is an alter-
native processing model for Hadoop, designed for interactive workloads.

306 Part III: Hadoop and Structured Data

Massively parallel processing databases
To provide a better understanding of the SQL-
on-Hadoop alternatives to Hive in this chapter,
we thought it would be helpful to provide a
primer on massively parallel processing (MPP)
databases first.

As we explain in Chapter 13, Apache Hive is
layered on top of the Hadoop Distributed File
System (HDFS) and the MapReduce system and
presents an SQL-like programming interface to
your data (HiveQL, to be precise). This combi-
nation of Hadoop technologies deployed on a
cluster is similar to MPP databases that have
existed for a while in the IT marketplace. MPP
databases usually provide an SQL interface
and a relational database management system
(RDBMS) running on a cluster of servers net-
worked together by a high-speed intercon-
nect. The figure shows the components of an
RDBMS that are typically included in the SQL-
on-Hadoop solutions described in this chapter.

Relational data systems have evolved consider-
ably to a point where best practices have
emerged among most offerings in terms of an
optimal query execution infrastructure. The
figure above shows this in terms of the flow of a
query as it’s processed by an RDBMS engine.
First, the query text is parsed and understood.
Then the syntax tree for the query is compiled
into a logical execution plan, which is then opti-
mized to form the final physical execution plan,
which is then executed by the runtime. For many
of the SQL-on-Hadoop solutions, we’re seeing
similar components being deployed in Hadoop.

MPP clusters are usually referred to as having
a Shared-Nothing architecture, because each
system has its own CPU, memory and disk.
However, through the database software and
high-speed interconnects, the system func-
tions as a whole and can scale as new servers
are added to the cluster. The overall system is
explicitly tuned to provide fast, interactive query
response. MPP databases are often more flexible,
scalable, and cost effective than the traditional
RDBMS, hosted on a large multiprocessor server.

307 Chapter 15: The Holy Grail: Native SQL Access to Hadoop Data

In addition to the Stinger project, Hortonworks is spearheading an ambi-
tious initiative to enable Hive to support editing data at the row level — in
other words, enabling INSERT, UPDATE, and DELETE statements against Hive
data with full compliance with the ACID properties for database systems:
Atomicity, Consistency, Isolation levels, and Durability. (For more on the ACID
properties, see Chapter 11.)

Solutions Inspired by Google Dremel
For most people, the term Dremel brings to mind a handy high-speed, low-
torque tool that works well for a variety of jobs around the house. But did you
know that Google created a Dremel? Rather than produce another handheld
mechanical tool, though, Google chose a fast software tool intended for inter-
active analysis of big data. As with other Google technologies that inspired
parts of the Hadoop ecosystem, such as MapReduce (see Chapter 6), Google
File System (HDFS, see Chapter 4), and BigTable (see HBase, Chapter 12),
Google developed Dremel for use internally and then published a paper
describing the purpose and design of the technology. (In other words, Dremel
is not something you can download and use on your Hadoop cluster.)

 You can find Google’s Dremel whitepaper at this site:

http://research.google.com/pubs/pub36632.html

Google uses Dremel for a variety of jobs, including analyzing web-crawled
documents, detecting e-mail spam, working through application crash
reports, and more. Google’s BigQuery service actually uses Dremel.

As we discuss in Chapter 1, Google designed MapReduce technology for
batch processing over massive sets of data. As their needs evolved, so did
their technology, and Google decided to create Dremel to improve perfor-
mance for interactive queries against big data sets. The MapReduce approach
provides scalability and query fault tolerance, but it’s fundamentally a batch-
based system, so response times for smaller queries (queries involving only a
small part of an entire data set, for instance) are often not what users expect.
So Google developed a query execution technology designed for interac-
tive queries, which runs on intermediate servers on top of the Google File
System (GFS). (Remember, GFS was the inspiration for Apache HDFS, which is
Hadoop’s file system.)

Similar to Hive, Dremel uses an SQL-like language (familiar to most program-
mers) and employs a columnar data layout. Dremel provides fast, interactive
query response while preserving the scalability and fault tolerance found in
Apache Hive. In the Dremel whitepaper, Google explains how it can perform
aggregation queries within seconds over tables with a trillion rows — not bad
at all.

308 Part III: Hadoop and Structured Data

So Google has its Dremel technology, which it uses internally, but then there
are all the technologies “inspired by” Dremel (kind of like all those perfumes
“inspired by” Drakkar Noir). We introduce you now to two “inspired by”
products — Apache Drill and Cloudera Impala. The pattern here is similar in
both cases:

Apache Drill
As of this writing, Drill is a candidate project in the Apache incubator.
We don’t mean that Apache Drill is especially sickly, though. The Apache
Software Foundation (ASF) candidate technologies all begin as incubator
projects before becoming official ASF technologies. You can read about the
Apache Incubator at

http://incubator.apache.org

You can read about Drill at

http://incubator.apache.org/drill

Inspired by Google’s Dremel technology, the stated performance goal for Drill
is to enable SQL queries against a petabyte or more of data distributed across
10,000-plus servers. Figure 15-1 illustrates the architecture of Apache Drill.

Figure 15-1:
Apache Drill
architecture.

In Figure 15-1, we see that the key to the Drill architecture are the DrillBit
servers deployed on each data node. Note that each server includes a query
parser, compiler, optimizer, and runtime, but there is a master DrillBit server
nominated by Zookeeper servers, which oversees the execution of the que-
ries and looks after the task of pulling together the interim result sets into a
single set of output.

Like Dremel, Drill can coexist with, and complement, MapReduce, but
MapReduce isn’t used to fulfill queries, as with Apache Hive. Instead, execu-
tion engines called Drillbits have been developed by members of the Drill
community. This community aims to provide low-latency queries for applica-
tions such as real-time business intelligence dashboards, fraud detection, and
other time-sensitive use cases. Drill supports nested data types such as Avro,

309 Chapter 15: The Holy Grail: Native SQL Access to Hadoop Data

JSON, and Google protocol buffers. These nested data types allow for very
large denormalized tables. The Drill development team is also working on
providing extensive SQL support by targeting SQL2003 compliance. Finally,
note that the Drill team is providing HBase support so that users will be able
to query HBase tables with SQL.

Cloudera Impala
Cloudera is a leading Apache Hadoop software and services provider in the
big data market. Like Apache Drill, Cloudera’s Impala technology seeks to
improve interactive query response time for Hadoop users. As we discuss in
Chapter 13, Apache Hive has provided a familiar and powerful query mecha-
nism for Hadoop users, but query response times are often unacceptable
due to Hive’s reliance on MapReduce. Cloudera’s answer to this problem
is Impala. Cloudera has developed an MPP query engine, written in C++, to
replace the MapReduce layer leveraged by Apache Hive. Unlike Dremel and
Drill, Cloudera decided that a native C++ MPP engine — instead of a Java
engine — was the answer for fast, interactive Hadoop queries.

Note that Impala uses HiveQL as a programming interface, and Impala’s
Query Exec Engines are co-located with HDFS data nodes, in keeping with the
Hadoop approach of co-locating data with processing tasks. Impala can also
use HBase as a data store. In this sense, Impala is an extension to Apache
Hadoop, providing a very high-performance alternative to the Hive-on-top-of-
MapReduce model.

 In Chapter 13, we present several Hive file formats: TEXTFILE, SEQUENCEFILE,
RCFILE, and ORC. Cloudera and Twitter led the development of the new
Hadoop file format PARQUET, which can be used with Impala and is available
as open source on GitHub. The Parquet file format provides a robust columnar
medium for storing data in Hadoop. It supports highly efficient compression
and encoding, and is effective for storing nested data structures.

You can find Cloudera’s Impala technology, which also was inspired by
Google’s Dremel invention, at https://github.com/cloudera/impala.

IBM Big SQL
IBM has a long history of working with SQL and database technology, as the
introduction to this chapter makes clear. In keeping with this history, IBM’s
solution for SQL on Hadoop leverages components from its relational data-
base technologies that are ported to run on Hadoop.

310 Part III: Hadoop and Structured Data

If you’re at all familiar with IBM’s product naming for its Big Data products
and features, you can easily guess what they’ve named their SQL on Hadoop
solution: Big SQL. The goal of Big SQL is to provide a SQL interface on Hadoop
that gives users as much as possible of what they’re used to with SQL inter-
faces for relational databases. This means extensive query syntax support,
fast performance that doesn’t require users having to monkey with their que-
ries, and the ability to control data security.

Figure 15-2 shows a partial deployment of BigInsights, IBM’s Hadoop distribu-
tion running Big SQL.

Figure 15-2:
IBM

Big SQL
architecture.

In Figure 15-2 you can see a subset of the master nodes and data nodes
behind the BigInsights firewall. One of the master nodes is running the Big
SQL server, which includes IBM’s SQL compiler and optimizer. Also included
on this master node is a catalog, where metadata and statistics about any cat-
aloged data in HDFS is stored for use by the compiler/optimizer. Subsections
of queries are sent to the applicable data nodes where requested data is
stored, and there the Big SQL Runtime (which is IBM’s SQL runtime) executes
the workload. Rather than run mapper and reducer processes and persist
files with intermediate result sets, Big SQL uses continuously running dae-
mons that pass messages between each other. It’s important to note that the
data being queried is stored and managed by Hadoop. Big SQL supports stan-
dard Hadoop file formats — for example, RCFile and Parquet.

Big SQL provides the same extensive SQL support as the IBM relational data-
base products — for example, ANSI SQL-2011, and compatibility for IBM’s
SQL Procedural Language (SQL/PL). (At the time of writing, IBM was working
on providing support for Oracle’s SQL dialect and their PL/SQL procedural
language.) Along with the standard IBM SQL engine come a number of other
capabilities, most notably IBM’s row- and column-based security (also known
as Fine-Grained Access Control, or FGAC), where only specific users can be
authorized to see certain sets of data rows or columns.

311 Chapter 15: The Holy Grail: Native SQL Access to Hadoop Data

Big SQL comes with the standard IBM Data Server Client, which includes a
driver package (refer to Figure 15-2). Traditional database applications can
connect to the BigInsights Hadoop cluster and securely exchange encrypted
data over SSL.

Pivotal HAWQ
In 2010, EMC and VMware, market leaders in delivering IT as a service via
cloud computing, acquired Greenplum Corporation, the folks who had suc-
cessfully brought the Greenplum MPP Data Warehouse (DW) product to
market. Later in 2012, Pivotal Labs, a leading provider of Agile software devel-
opment services, was also acquired. Through this federation of companies,
the Pivotal HD Enterprise platform was announced in early 2013. This plat-
form, which is integrated with Apache Hadoop, includes the Pivotal HAWQ
(Hadoop With Query) product — the former Greenplum MPP DW product.
Though the Pivotal HD Enterprise platform also includes other components
and technologies (VMware’s GemFire, for example), we want to draw your
attention to the Pivotal HAWQ product, Pivotal’s approach to low-latency
interactive SQL queries on Hadoop. Pivotal has integrated the Greenplum
MPP Shared-Nothing DW with Apache Hadoop to enable big data analytics.
The Pivotal HAWQ MPP DW stores its data in the Apache HDFS.

Pivotal HAWQ provides ANSI SQL support and enables SQL queries of HBase
tables. HAWQ also includes its own set of catalog services instead of using
the Hive metastore. The Pivotal HAWQ approach is to provide a highly opti-
mized and fast Hadoop SQL query mechanism on top of Apache Hadoop.

Hadapt
Late in the year 2010, Hadapt was formed as a start-up by two Yale University
students and an assistant professor of computer science. Professor Daniel
Abadi and Kamil Bajda-Pawlikowski, a PhD student from Yale’s computer sci-
ence department, had been working on the research project HadoopDB. After
this paper was published, Justin Borgman, a student from the Yale School of
Management, became interested in the work. He would later team up with
Professor Abadi and Kamil Bajda-Pawlikowski to form Hadapt.

The Hadapt strategy is to join Apache Hadoop with a Shared-Nothing MPP
database to create an adaptive analytics platform. This approach provides
a standard SQL interface on Hadoop and enables analytics across unstruc-
tured, semistructured, and structured data on the same cluster.

312 Part III: Hadoop and Structured Data

Like Apache Hive and other technologies, Hadapt provides a familiar JDBC/
ODBC interface for submitting SQL or MapReduce jobs to the cluster. Hadapt
provides a cost-based query optimizer, which can decide between a combina-
tion of MapReduce jobs and MPP database jobs to fulfill a query, or the job
can be handled by the MPP database for fast interactive response. By joining
an Apache Hadoop cluster with an MPP database cluster to create a hybrid
system, Hadapt solves the query response time and partial SQL support (via
HiveQL) found in Apache Hive.

The SQL Access Big Picture
SQL access to Hadoop data is a burning (and ongoing) concern. Many ven-
dors are offering solutions — some are adding value to the Hadoop eco-
system by writing their own high-performance MPP engine to replace the
higher-latency MapReduce system, and others are working hard to improve
the performance of MapReduce by rewriting parts of the Hadoop system with
native code (using the C and or C++ languages, for example) instead of with
Java. Some have decided that integrating Shared-Nothing MPP database sys-
tems and Hadoop on the same platform is the way to go. History has shown
that in technological battles such as this one, only one or two victors will
emerge, leaving many solutions obsolete. The positive perspective in this
case is that regardless of the specific winning technology, the interface will at
least be SQL.

Part IV
Administering and

Configuring Hadoop

 Check out the article “Processing graphs in Hadoop“ (and more) online at
www.dummies.com/extras/hadoop.

In this part . . .
 ✓ Look at the Hadoop Deployment Big Picture

 ✓ Explore Hadoop administrative commands

 ✓ Plan for when things go wrong.

 ✓ See the importance of security in a Hadoop environment

 ✓ Check out the article “Processing graphs in Hadoop“ (and more)
online at www.dummies.com/extras/hadoop.

Chapter 16

Deploying Hadoop
In This Chapter
▶ Examining the components that comprise a Hadoop cluster

▶ Designing the Hadoop cluster components

▶ Reviewing Hadoop deployment form factors

▶ Sizing a Hadoop cluster

A
t its core, Hadoop is a system for storing and processing data at a mas-
sive scale using a cluster of many individual compute nodes. In this

chapter, we describe the tasks involved in building a Hadoop cluster, all the
way from the hardware components in the compute nodes to different cluster
configuration patterns, to how to appropriately size clusters. In at least one
way, Hadoop is no different from many other IT systems: If you don’t design
your cluster to match your business requirements, you get bad results.

Working with Hadoop
Cluster Components

While you’re getting your feet wet with Hadoop, you’re likely to limit your-
self to using a pseudo-distributed cluster running in a virtual machine on a
personal computer. Though this environment is a good one for testing and
learning, it’s obviously inappropriate for production-level performance and
scalability. In this section, we talk about what’s involved in advancing to the
next step. More specifically, we describe what a distributed cluster looks like,
where multiple nodes are dedicated to data storage and processing.

Distributed Hadoop clusters normally follow the model shown in Figure 16-1.
Redundancy is critical in avoiding single points of failure, so you see two
switches and three master nodes. (We explain the latter number later in this
chapter, in the section “Master nodes.”) You also see two edge nodes for

316 Part IV: Administering and Configuring Hadoop

client applications and connectivity to resources outside the cluster, and a
sufficient number of slave nodes to store your data sets. You see variations
on this model when using multiple racks or processing techniques that need
additional master nodes (HBase with its region servers, for example). We get
into the specifics in later sections.

Figure 16-1:
Typical

components
in a Hadoop

cluster.

Rack considerations
A core principle of Hadoop is scaling out with additional slave nodes to meet
increasing data-storage and -processing demands. In a scale-out model, you
must carefully consider cluster design because dozens, and even hundreds,
of slave nodes will ultimately need to be racked, powered, networked, and
cooled.

317 Chapter 16: Deploying Hadoop

Server form factors
One of the first choices that IT architects will face when designing a Hadoop
cluster is which of the following two form factors to use for Hadoop nodes:

 ✓ Blade server: Designed for maximum density, you can cram as many of
these babies into one rack as possible. Blade servers fit into blade enclo-
sures, which have many standard server components, like dedicated
storage, networking, power, and cooling. These components are shared
among the blade servers, which means that each individual blade server
can be much smaller.

 Blade servers are an appealing choice on the surface because you could
take a standard rack and deploy between 40 and 50 of these blade serv-
ers. The problem with using blades for Hadoop deployments is that they
rely on certain shared components, which isn’t in line with Hadoop’s
shared-nothing architecture, where each of the slave nodes are self-
contained and have their own dedicated resources. More importantly,
blades have little room for locally attached storage, often having no
more than two or three drive bays. This is a non-starter for Hadoop,
since slave nodes need much more dedicated storage capacity.

 ✓ Rack server: Complete servers with no shared components and room
for hardware expansion, rack servers are the true choice for Hadoop
because they’re nicely self-contained. A rack server that’s appropriately
configured for being a Hadoop slave node typically occupies two RU, so
you can fit 20 of them in a standard rack.

Cost of ownership
When choosing and designing a slave node, your most important consider-
ations are typically the initial procurement costs and the storage volume.
However, the cost of ownership is also important. It’s a fine balancing act,
however, because choices affecting procurement cost, power consump-
tion, cooling, hardware performance, and density are often in opposition. In
the name of helping you make good choices, we offer some (quite specific)
advice:

 ✓ Reserve redundant power supplies for the master nodes. Having
redundant power supplies for slave nodes is overkill — a power supply
failure in a slave node wouldn’t greatly affect the cluster. However,
having redundant power supplies on all slave nodes would increase
power consumption and generate more heat.

 ✓ Choose middle-of-the-road clock speeds for slave node CPUs. CPUs
with higher clock speeds not only cost more but also use more power
and generate far more heat.

318 Part IV: Administering and Configuring Hadoop

 ✓ Choose rack servers that are designed for Hadoop. With the rising pop-
ularity of Hadoop, all major hardware vendors now offer rack servers
that are ideal slave nodes, with 12 to 20 drive bays for locally attached
storage. Rack servers designed to work as Hadoop slave nodes are typi-
cally too big to fit into a form factor of one RU, but taking up two RUs
can result in wasted space. For the more efficient use of space, certain
hardware vendors have released rack servers that cram multiple slave
nodes into a single chassis. As an example, in this compressed form, a
standard rack can have as many as 27 slave nodes (even with network
switches), where each slave node has room for 15 disk drives for HDFS.
The upshot of this arrangement is much higher density and better use of
space in the data center.

Master nodes
The master nodes host the various storage and processing management ser-
vices, described in this list, for the entire Hadoop cluster:

 ✓ NameNode: Manages HDFS storage. To ensure high availability, you have
both an active NameNode and a standby NameNode. Each runs on its
own, dedicated master node.

 ✓ Checkpoint node (or backup node): Provides checkpointing services
for the NameNode. This involves reading the NameNode’s edit log for
changes to files in HDFS (new, deleted, and appended files) since the last
checkpoint, and applying them to the NameNode’s master file that maps
files to data blocks. In addition, the Backup Node keeps a copy of the file
system namespace in memory and keeps it in sync with the state of the
NameNode. For high availability deployments, do not use a checkpoint
node or backup node — use a Standby NameNode instead. In addition
to being an active standby for the NameNode, the Standby NameNode
maintains the checkpointing services and keeps an up-to-date copy of
the file system namespace in memory.

 ✓ JournalNode: Receives edit log modifications indicating changes to files
in HDFS from the NameNode. At least three JournalNode services (and
it’s always an odd number) must be running in a cluster, and they’re
lightweight enough that they can be colocated with other services on
the master nodes.

 ✓ Resource Manager: Oversees the scheduling of application tasks and
management of the Hadoop cluster’s resources. This service is the heart
of YARN.

 ✓ JobTracker: For Hadoop 1 servers, handles cluster resource manage-
ment and scheduling. With YARN, the JobTracker is obsolete and isn’t
used. We mention it because a number of Hadoop deployments still
haven’t migrated to Hadoop 2 and YARN.

319 Chapter 16: Deploying Hadoop

 ✓ HMaster: Monitors the HBase region servers and handles all metadata
changes. To ensure high availability, be sure to use a second HMaster
instance. The HMaster service is lightweight enough to be colocated
with other services on the master nodes. In Hadoop 1, instances of the
HMaster service run on master nodes. In Hadoop 2, with Hoya (HBase
on Yarn), HMaster instances run in containers on slave nodes.

 ✓ Zookeeper: Coordinates distributed components and provides mecha-
nisms to keep them in sync. Zookeeper is used to detect the failure of
the NameNode and elect a new NameNode. It’s also used with HBase to
manage the states of the HMaster and the RegionServers. As with the
JournalNode, you need at least three instances of Zookeeper nodes (and
always an odd number), and they’re lightweight enough to be colocated
with other services on the master nodes.

Figure 16-2 shows an example of how Hadoop 2 services can be deployed.

Figure 16-2:
Hadoop 2
services

deployed
on master

nodes.

Here we’ve got three master nodes (with the same hardware), where the
key services Active NameNode, Standby NameNode, and Resource Manager
each have their own server. There are JournalNode and Zookeeper services
running on each server as well, but as we mentioned earlier, these are light-
weight and won’t be a source of resource contention with the NameNode and
Resource Manager services.

Figure 16-3 shows what master nodes look like for Hadoop 1 deployments.

Figure 16-3:
Hadoop 1
services

deployed
on master

nodes.

320 Part IV: Administering and Configuring Hadoop

The principles are the same for Hadoop 1, where you need a dedicated
master node for the NameNode, Secondary NameNode, and JobTracker
services.

If you plan to use HBase with Hoya in Hadoop 2, you don’t need any addi-
tional services. For Hadoop 1 deployments using HBase, see Figure 16-4 for
the deployment of services on the Hadoop cluster’s master nodes.

Figure 16-4:
Hadoop 1
services

deployed
on master

nodes, with
HBase.

There are two differences when comparing these master servers to the
Hadoop 1 master servers without HBase support: here we need two
HMaster services (one to coordinate HBase, and one to act as a standby)
and Zookeeper services on all three master nodes to handle failover. If you
intend to use your Hadoop 1 cluster only for HBase, you can do without
the JobTracker service, since HBase does not depend on the Hadoop 1
MapReduce infrastructure.

 When people talk about hardware for Hadoop, they generally emphasize the
use of commodity components — the inexpensive ones, in other words. We
don’t recommend taking that route for master nodes. Because you have to
plunk down for only a few master nodes (typically, three or four), you aren’t
hit by multiplying costs if, for example, you decide to use expensive hard
disk drives. Keep in mind that, without master nodes, there is no Hadoop
cluster. Master nodes serve a mission-critical function, and even though
you need redundancy, you should design them with high availability and
resiliency in mind.

Recommended storage
For Hadoop master nodes, regardless of the number of slave nodes or uses
of the cluster, the storage characteristics are consistent. Use four 900GB SAS
drives, along with a RAID HDD controller configured for RAID 1+0. SAS drives
are more expensive than SATA drives, and have lower storage capacity, but
they are faster and much more reliable. Deploying your SAS drives as a RAID
array ensures that the Hadoop management services have a redundant store
for their mission-critical data. This gives you enough stable, fast, and redun-
dant storage to support the management of your Hadoop cluster.

321 Chapter 16: Deploying Hadoop

Recommended processors
At the time of this writing, most reference architectures recommend using
motherboards with two CPU sockets, each with six or eight cores. The Intel
Ivy Bridge architecture is commonly used.

Recommended memory
Memory requirements vary considerably depending on the scale of a Hadoop
cluster. Memory is a critical factor for Hadoop master nodes because the
active and standby NameNode servers rely heavily on RAM to manage
HDFS. As such, we recommend the use of error-correcting memory (ECC)
for Hadoop master nodes. Typically, master nodes need between 64GB and
128GB of RAM.

The NameNode memory requirement is a direct function of the number of file
blocks stored in HDFS. As a rule, the NameNode uses roughly 1GB of RAM per
million HDFS blocks. (Remember that files are broken down into individual
blocks and replicated so that you have three copies of each block.)

The memory demands of Resource Manager, HMaster, Zookeeper, and
JournalNode servers are considerably less than for the NameNode server.
However, it’s good practice to size the master nodes in a consistent fashion
so that they’re interchangeable in case of hardware failure.

Recommended networking
Fast communication is vital for the services on master nodes, so we recom-
mend using a pair of bonded 10GbE connections. (In case networking jargon
is new to you, GbE stands for GigaBit Ethernet.) This bonded pair provides
redundancy, but also doubles throughput to 20GbE. For smaller clusters (for
instance, less than 50 nodes) you could get away with using 1 GbE connectors.

Slave nodes
In a Hadoop universe, slave nodes are where Hadoop data is stored and
where data processing takes place. The following services enable slave nodes
to store and process data:

 ✓ NodeManager: Coordinates the resources for an individual slave node
and reports back to the Resource Manager.

 ✓ ApplicationMaster: Tracks the progress of all the tasks running on the
Hadoop cluster for a specific application. For each client application, the
Resource Manager deploys an instance of the ApplicationMaster service
in a container on a slave node. (Remember that any node running the
NodeManager service is visible to the Resource Manager.)

322 Part IV: Administering and Configuring Hadoop

 ✓ Container: A collection of all the resources needed to run individual
tasks for an application. When an application is running on the cluster,
the Resource Manager schedules the tasks for the application to run as
container services on the cluster’s slave nodes.

 ✓ TaskTracker: Manages the individual map and reduce tasks executing on
a slave node for Hadoop 1 clusters. In Hadoop 2, this service is obsolete
and has been replaced by YARN services.

 ✓ DataNode: An HDFS service that enables the NameNode to store blocks
on the slave node.

 ✓ RegionServer: Stores data for the HBase system. In Hadoop 2, HBase uses
Hoya, which enables RegionServer instances to be run in containers.

Figure 16-5 shows the services deployed on Hadoop 2 slave nodes.

Figure 16-5:
Services

deployed on
Hadoop 2

slave nodes.

Here, each slave node is always running a DataNode instance (which enables
HDFS to store and retrieve data blocks on the slave node) and a NodeManager
instance (which enables the Resource Manager to assign application tasks to
the slave node for processing). The container processes are individual tasks
for applications that are running on the cluster. Each running application has
a dedicated ApplicationMaster task, which also runs in a container, and tracks
the execution of all the tasks executing on the cluster until the application is
finished.

With HBase on Hadoop 2, the container model is still followed, as we can see
in Figure 16-6.

323 Chapter 16: Deploying Hadoop

Figure 16-6:
Services

deployed on
Hadoop 2

slave nodes,
including

HBase.

HBase on Hadoop 2 is initiated by the Hoya Application Master, which
requests containers for the HMaster services. (You need multiple HMaster
services for redundancy.) The Hoya Application Master also requests
resources for RegionServers, which likewise run in special containers.

Figure 16-7 shows the services deployed on Hadoop 1 slave nodes.

Figure 16-7:
Services

deployed on
Hadoop 1

slave nodes.

For Hadoop 1, each slave node is always running a DataNode instance
(which enables HDFS to store and retrieve data blocks on the slave node)
and a TaskTracker instance (which enables the JobTracker to assign map

324 Part IV: Administering and Configuring Hadoop

and reduce tasks to the slave node for processing). Slave nodes have a fixed
number of map slots and reduce slots for the execution of map and reduce
tasks respectively. If your cluster is running HBase, a number of your slave
nodes will need to run a RegionServer service. The more data you store in
HBase, the more RegionServer instances you’ll need.

 The hardware criteria for slave nodes are rather different from those for
master nodes (refer to the “Master nodes” section earlier in this chapter); in
fact, the criteria don’t match those found in traditional hardware reference
architectures for data servers. Much of the buzz surrounding Hadoop is due
to the use of commodity hardware in the design criteria of Hadoop clusters,
but keep in mind that commodity hardware does not refer to consumer-grade
hardware. Hadoop slave nodes still require enterprise-grade hardware, but at
the lower end of the cost spectrum, especially for storage.

Recommended storage
Enterprise storage is normally configured as a RAID array, but with Hadoop,
the optimal configuration is the almost comically simple JBOD — Just a
Bunch Of Disks. That’s right — JBOD is just a bunch of disks that are directly
(and independently) connected with the slave node’s motherboard. For
Hadoop slave nodes, you need two sets of hard disk drives: one set for the
operating system and the other set for HDFS. Two 500GB SATA drives are suf-
ficient for the operating system. Most hardware manufacturers have released
rack servers specially designed for Hadoop, which enable individual slave
nodes to house an additional 12 to20 drives for dedicated HDFS storage. Be
sure to choose large form-factor (LFF) drives (3½ inches) for HDFS storage,
because they have a higher capacity and are less expensive. At the time of
this writing, 3TB SATA LFF drives are the most practical and cost-effective
choice, though 4TB SATA drives will likely become a common choice.

Keep in mind the following information about Hadoop slave node storage:

 ✓ Twelve 3TB drives provide 36 terabytes of raw storage for your Hadoop
cluster, which enables you to store 12 terabytes of data in HDFS, given
the default replication factor of 3.

 ✓ For efficient and cost-effective performance, ensure a 1:1 ratio of CPU
cores to drives dedicated to HDFS.

 ✓ Though the drives used for slave nodes are in the more economical com-
modity class, it’s practical to connect them with a faster and more stable
controller. Because many Hadoop workloads are I/O bound, we recom-
mend using a SAS 6 gigabytes-per-second controller.

 Never use an operating system drive for HDFS, because it compromises
performance.

325 Chapter 16: Deploying Hadoop

Recommended processors
At the time of this writing, dual-socket servers that have Intel Ivy Bridge pro-
cessors that are clocked between 2 and 2.5 GHz represent the best balance
of performance and cost for slave nodes. And, as we mentioned in the guide-
lines for storage earlier in the “Recommended storage” section, the number
of drives you choose should be consistent with the number of CPU cores
present — we recommend you should maintain a 1:1 ratio. If you’re using
12 drives for HDFS, for example, you use two 6-core CPUs, and if you’re using
16 drives, you use two 8-core CPUs. This configuration is practical for many
applications, but if you’re going to run processor-intensive workloads and
you need fast performance, you can maintain a higher ratio of CPU cores to
HDFS drives, for example 3 CPU cores for every two drives. As with any per-
formance optimization exercise, at some point you will hit a bottleneck. For
example, if you increase the ratio of CPU cores to HDFS drives too much, you
will find your applications spending most of their time waiting for disk read
or write operations.

Recommended memory
For most workloads, considering the nature of the processor and disk specifi-
cations given in the previous two sections, 48GB of RAM is sufficient for slave
nodes. For maximum performance, however, you must fully populate the
RAM channels for the slave node processors. For example, a dual-core server
with three RAM channels per processor will have 48GB of RAM divided
between six 8GB memory modules (DIMMs).

 If you’re not up on RAM channels, here’s a quick primer. Most modern moth-
erboard chipsets now use multi-channel memory. This enables the CPU to
access its memory in parallel, which increases the data transfer speed by as
many times as there are channels. For example, data transfers between the
memory and CPU on servers with triple-channel memory architecture will be
three times as fast as servers with single-channel memory architecture. The
catch here is that for multi-channel memory to work well, each slot for the
memory channel must be populated with an identical memory module.

For Hadoop clusters where you know that the workload will be memory
intensive (for example, HBase deployments), we recommend doubling the
number of DIMMs, for a total of 96GB of RAM per slave node (as per the pre-
ceding example, which is twelve 8GB DIMMs).

Recommended networking
For slave nodes, we recommend a pair of bonded network connections, to pro-
vide redundancy and to double throughput. The deciding factor here is speed.
If your cluster’s slave nodes have 48GB or more dedicated to HDFS, we recom-
mend 10GbE connections to be able to handle the data transfer demands that
arise from dense storage. Otherwise, we recommend 1GbE connections.

326 Part IV: Administering and Configuring Hadoop

 A key concept in good cluster design is the separation of duties between
master nodes and slave nodes. Their purposes are radically different, and their
design patterns reflect this. For production clusters, do not give in to the temp-
tation to add DataNode and NodeManager (or TaskTracker, for Hadoop 1) serv-
ers to your master nodes. Keep separate elements separate, in other words.

Edge nodes
Edge nodes are the interface between the Hadoop cluster and the outside
network. For this reason, they’re sometimes referred to as gateway nodes.
Most commonly, edge nodes are used to run client applications and cluster
administration tools. They’re also often used as staging areas for data being
transferred into the Hadoop cluster. As such, Oozie, Pig, Sqoop, and manage-
ment tools such as Hue and Ambari run well there. Figure 16-8 shows the pro-
cesses you can run on Edge nodes.

Figure 16-8:
Services

deployed on
edge nodes.

Edge nodes are often overlooked in Hadoop hardware architecture discus-
sions. This situation is unfortunate because edge nodes serve an important
purpose in a Hadoop cluster, and they have hardware requirements that are
different from master nodes and slave nodes. In general, it’s a good idea to
minimize deployments of administration tools on master nodes and slave
nodes to ensure that critical Hadoop services like the NameNode have as
little competition for resources as possible.

327 Chapter 16: Deploying Hadoop

 You should avoid placing a data transfer utility like Sqoop on anything but an
edge node, as the high data transfer volumes could risk the ability of Hadoop
services on the same node to communicate. The messages Hadoop services
exchange are their lifeblood, so high latency means the whole node could be
cut off from the cluster.

Figure 16-8 shows two edge nodes, but for many Hadoop clusters a single
edge node would suffice. Additional edge nodes are most commonly needed
when the volume of data being transferred in or out of the cluster is too
much for a single server to handle.

Recommended storage
For edge nodes in a Hadoop cluster, use enterprise class storage. For edge
nodes focused on administration tools and running client applications, we
recommend using four 900GB SAS drives, along with a RAID HDD controller
configured for RAID 1+0.

Edge nodes oriented to ingesting data obviously need much more storage
space, so you can add drives to the edge node. In this case, use LFF SAS
drives because much higher capacities are available, as compared to smaller
form-factor SAS drives.

Recommended processors
A general-purpose edge node would be well served by a processor configura-
tion similar to one used for slave nodes — specifically, a dual-socket server
with Ivy Bridge processors clocked at between 2 and 2.5GHz.

Recommended memory
For most workloads we see on edge nodes, 48GB of RAM is sufficient.

Recommended networking
To enable communication between the outside network and the Hadoop
cluster, edge nodes need to be multi-homed into the private subnet of the
Hadoop cluster as well as into the corporate network.

 A multi-homed computer is one that has dedicated connections to multiple
networks. This is a practical illustration of why edge nodes are perfectly
suited for interaction with the world outside the Hadoop cluster. Keeping your
Hadoop cluster in its own private subnet is an excellent practice, so these
edge nodes serve as a controlled window inside the cluster.

328 Part IV: Administering and Configuring Hadoop

For edge nodes that serve the purpose of running client applications or
administration tools, we recommend two pairs of bonded 1GbE network con-
nections: one pair to connect to the Hadoop cluster and another pair for the
outside network.

Edge nodes oriented to handling high inbound and outbound data transfer
rates will need two (or more) pairs of bonded 10GbE network connectors:
one pair to connect to the Hadoop cluster and another pair for the outside
network or specific data ingest sources.

Networking
As with any distributed system, networking can make or break a Hadoop
cluster: Don’t “go cheap.” A great deal of chatter takes place between the
master nodes and slave nodes in a Hadoop cluster that is essential in keeping
the cluster running, so we definitely recommend enterprise-class switches.

For each rack in your cluster, you need two top-of-rack (ToR) switches, for
both redundancy and performance. We recommend using 10GbE for ToR
switches.

 ToR switches are network switches that connect all the computers in a rack
together. You normally see them at the very top of a rack, which is why people
say “top-of-rack.” An alternative networking approach is to use end-of-row
(EoR) switches but, we don’t see this very often. The ToR approach is simpler
from a networking perspective for growing clusters. For example, adding slave
nodes and additional racks is far easier with ToR switches than EoR.

When you have more than three racks, you need at least two core switches
(again, primarily for redundancy, but also for performance). These core
switches handle massive amounts of traffic, so 40GbE is a necessity.

 If you’re building or expanding a cluster to span multiple racks, we strongly
recommend engaging networking experts who are familiar with Hadoop, your
future growth plans, and your workload. Bad networking can severely hamper
performance, but it can also make future growth painful and expensive.

Hadoop Cluster Configurations
Many of the decisions you need to make in terms of the composition of racks
and networking are dependent on the scale of your Hadoop cluster. It has
three main permutations, as discussed in the following three sections.

329 Chapter 16: Deploying Hadoop

Small
A single-rack deployment is an ideal starting point for a Hadoop cluster, as
shown in Figure 16-9.

Figure 16-9:
Single-rack

Hadoop
deployment.

Here, the cluster is fairly self-contained, but because it still has relatively few
slave nodes, the true benefits of Hadoop’s resiliency aren’t yet apparent.

Medium
A medium-size cluster has multiple racks, where the three master nodes are
distributed across the racks, as shown in Figure 16-10.

Figure 16-10:
Three-

rack
Hadoop

deployment.

330 Part IV: Administering and Configuring Hadoop

Hadoop’s resiliency is starting to become apparent: Even if an entire rack
were to fail (for example, both ToR switches in a single rack), the cluster
would still function, albeit at a lower level of performance. A slave node fail-
ure would barely be noticeable.

Large
In larger clusters with many racks, like the example shown in Figure 16-11,
the networking architecture required is pretty sophisticated.

Figure 16-11:
Large-scale

Hadoop
deployment.

Regardless of how many racks Hadoop clusters expand to, the slave nodes
from any rack need to be able to efficiently “talk” to any master node.

As the number of slave nodes increases to the point where you have more
than three racks, additional racks are composed only of slave nodes, aside
from the ToR switches. If you’re using HBase heavily on your cluster, you may
add master nodes to host additional HMaster and Zookeeper services. If you
graduate to a truly massive scale, where you have hundreds of slave nodes,
you may need to use the HDFS federation capabilities so that large portions
of your data sets are managed by different NameNode services. (For more
information on HDFS federation, see Chapter 4.) For every additional Active
NameNode, you will need a corresponding Standby NameNode and two
master nodes to host these servers. With HDFS federation, the sky is truly the
limit in terms of how far you can scale out your clusters.

331 Chapter 16: Deploying Hadoop

Alternate Deployment Form Factors
Though Hadoop works best when it’s installed on a physical computer,
where the processing has direct access to dedicated storage and networking,
Hadoop has alternative deployments. And though they are less efficient than
the dedicated hardware we describe earlier in this chapter, in certain cases
alternatives are worthwhile options.

Virtualized servers
A major trend in IT centers over the past decade is virtualization, where a
large server can host several “virtual machines” which look and act like single
machines. In place of dedicated hardware, an organization’s entire set of appli-
cations and repositories is deployed on virtualized hardware. This approach
has many advantages: The centralization of IT simplifies maintenance, IT
investment is maximized because of fewer unused CPU cycles, and the overall
hardware footprint is lower, resulting in a lower total cost of ownership.

Organizations in which IT deployments are entirely virtualized sometimes
mandate that every new application follow this model. Though Hadoop can be
deployed in this manner, essentially as a virtual cluster (with virtual master
nodes and virtual slave nodes), performance suffers, partially because for
most virtualized environments, storage is SAN-based and isn’t locally attached.
Because Hadoop is designed to work best when all available CPU cores are able
to have fast access to independently spinning disks, a bottleneck is created as
all the map and reduce tasks start processing data via the limited networking
between the CPUs and the SAN. Since the degree of isolation between virtual-
ized server resources is limited (virtual servers share resources with each
other), Hadoop workloads can also be affected by other activity. When your
virtual server’s performance is affected by another server’s workload, that’s
actually known in IT circles as a “noisy neighbor” problem!

Virtualized environments can be quite useful, though, in some cases. For exam-
ple, if your organization needs to complete a one-time exploratory analysis of
a large data set, you can easily create a temporary cluster in your virtualized
environment. This method is often a faster way to gain internal approval than to
endure the bureaucratic hassles of procuring new dedicated hardware.

As we experiment with Hadoop, we often run it on our laptop machines via a
virtual machine (VM). Hadoop is extremely slow in this kind of environment,
but if you’re using small data sets, it’s a valuable learning and testing tool.

332 Part IV: Administering and Configuring Hadoop

Cloud deployments
Variations of virtualized environments are cloud computing providers such
as Amazon, Rackspace, and IBM SoftLayer. Most major public cloud provid-
ers now have MapReduce or Hadoop offerings available for use. Again, their
performance is inferior to deploying your cluster on dedicated hardware, but
it’s improving. Cloud providers are making Hadoop-optimized environments
available where slave nodes have locally attached storage and dedicated
networking. Also, hypervisors are becoming far more efficient, with reduced
overhead and latency.

Don’t consider a cloud solution for long-term applications, because the cost
of renting cloud computing resources is significantly higher than that of
owning and maintaining a comparable system. With a cloud provider, you’re
paying for convenience and for being able to offload the overhead of provi-
sioning hardware. However, the cloud is an ideal platform for testing, educa-
tion, and one-time data processing tasks. We use public cloud offerings often
for proof-of-concept exercises in Hadoop, and we’re able to easily conjure up
a made-to-order cluster in a matter of minutes.

 Aside from performance and cost considerations, you have regulatory con-
siderations with public cloud deployments. If you have sensitive data, which
must be stored either in-house or in-country, a public cloud deployment isn’t
an option. In cases like this, where you need the convenience of a cloud-based
deployment, a private cloud is a good option, if it’s available.

Sizing Your Hadoop Cluster
Sizing any data processing system is as much a science as it is an art. With
Hadoop, you consider the same information as you would with a relational
database, for example. Most significantly, you need to know how much data
you have, estimate its expected growth rates, and establish a retention policy
(how long to keep the data). The answers to these questions serve as your
starting point, which is independent of any technology-related requirements.

After you determine how much data you need to store, you can start factor-
ing in Hadoop-specific considerations. Suppose that you have a telecom
company and you’ve established that you need 750 terabytes (TB) of stor-
age space for its call detail record (CDR) log files. You retain these records
to obey government regulations, but you can also analyze them to see churn
patterns and monitor network health, for example. To determine how much
storage space you need and, as a result, how many racks and slave nodes you
need, you carry out your calculations with these factors in mind:

333 Chapter 16: Deploying Hadoop

 ✓ Replication: The default replication factor for data in HDFS is 3. The
500 terabytes of CDR data for the telecom company in the example then
turns into 1500 terabytes.

 ✓ Swap space: Any analysis or processing of the data by MapReduce
needs an additional 25 percent of space to store any interim and final
result sets. (The telecom company now needs 1875 terabytes of storage
space.)

 ✓ Compression: The telecom company stores the CDRs in a compressed
form, where the average compression ratio is expected to be 3:1. We
now need 625 terabytes.

 ✓ Number of slave nodes: Assuming that each slave node has twelve 3TB
drives dedicated to HDFS, each slave node has 36 terabytes of raw HDFS
storage available, so the company needs 18 slave nodes.

 ✓ Number of racks: Because each slave node uses 2RU and the company
in the example needs three master nodes (1RU apiece) and two ToR
switches (1RU apiece), you need a total of 41RU. It’s 1RU less than the
total capacity of a standard rack, so a single rack is sufficient for this
deployment. Regardless, no room remains for growth in this cluster, so
it’s prudent to buy a second rack (and two additional ToR switches) and
divide the slave nodes between the two racks.

 ✓ Testing: Maintaining a test cluster that’s a smaller scale representation
of the production cluster is a standard practice. It doesn’t have to be
huge, but you want at least five data nodes so that you get an accurate
representation of Hadoop’s behavior. As with any test environment, it
should be isolated on a different network from the production cluster.

 ✓ Backup and disaster recovery: Like any production system, the tele-
com company will also need to consider backup and disaster recovery
requirements. This company could go as far as to create a mirror cluster
to ensure they have a hot standby for their entire system. This is obvi-
ously the most expensive option, but is appropriate for environments
where constant uptime is critical. At the least expensive end of the
spectrum (beyond not backing up the data at all), the telecom company
could regularly backup all data (including the data itself, applications,
configuration files, and metadata) being stored in their production clus-
ter to tape. With tape, the data is not immediately accessible, but it will
enable a disaster recovery effort in the case that the entire production
Hadoop cluster fails.

 As with your own personal computer, when the main hard disk drive fills with
space, the system slows down considerably. Hadoop is no exception. Also, a
hard drive performs better when it’s less than 85 to 90 percent full. With this
information in mind, if performance is important to you, you should bump up
the swap-space factor from 25 to 33 percent.

334 Part IV: Administering and Configuring Hadoop

Chapter 17

Administering Your
Hadoop Cluster

In This Chapter
▶ Seeing why having a well-running Hadoop cluster is good for you

▶ Exploring administration commands

▶ Improving performance and setting benchmarks

▶ Planning for when things go wrong

▶ Working with Apache Hadoop’s Capacity Scheduler

▶ Dealing with security issues

▶ Adding resources to your administrator toolset

Y
ou’ll want to keep your Hadoop cluster running smoothly and at a high
level of performance. For that to happen, you need to master the mys-

teries of Hadoop administration. Part of this process involves careful plan-
ning to ensure that you deploy and configure appropriate hardware for your
Hadoop cluster, the use of judicious benchmarking to evaluate performance,
and a good understanding of the anticipated workloads.

Complicating matters a bit is the fact that not only is most of the Hadoop
ecosystem quite compartmentalized, but each component also has its own
administrative issues. We deal with these issues in various sections through-
out this book, where appropriate. This chapter (Chapter 17) introduces you
to more general administrative concepts.

Achieving Balance: A Big Factor
in Cluster Health

A cluster is said to be balanced if no under- or overutilized slave nodes are
in the cluster. In this context, a utilization level is defined in terms of the
percentage of space that’s used. A Hadoop cluster can become imbalanced
whenever a major change occurs — say, when a slave node is added to the

336 Part IV: Administering and Configuring Hadoop

cluster. An imbalanced cluster can lead to bandwidth problems and reduced
read parallelism (where many applications can read data independently,
instead of having to wait their turn), and a Hadoop administrator should be
prepared to redistribute data blocks when cluster imbalance occurs.

The goal, then, is to spread data as uniformly as possible across the slave nodes
in the cluster. As much as this idea seems to make obvious sense, it isn’t always
achievable. When a slave node is added to an existing cluster, the NameNode
must choose which existing slave nodes are to receive some of the new data
blocks. One goal is to place different replicas of a particular block across server
racks to minimize the loss of an entire rack. Another goal is to reduce network
I/O by placing one replica on the same rack as the node that’s writing to a file.

 Despite your best-laid plans, various competing factors might cause new data
to be placed across the slave nodes in a non-uniform manner. Luckily, one tool
can analyze block placement and rebalance data across the slave nodes for
you: the Hadoop balancer command, which gets a nice mention in the fol-
lowing section, in Table 17-1.

Mastering the Hadoop Administration
Commands

Any Hadoop administrator worth his salt must master a comprehensive set
of commands for cluster administration. Table 17-1 summarizes the most
important commands. Know them, and you will advance a long way along
the path to Hadoop wisdom. Table 17-2 summarizes the Hadoop dfsadmin
command options.

Table 17-1 Administration Commands
Command What It Does Syntax Example
balancer Runs the cluster-balancing

utility. The specified thresh-
old value, which represents
a percentage of disk capac-
ity, is used to overwrite
the default threshold value
(10 percent). To stop the
rebalancing process, press
Ctrl+C.

hadoop balancer
[-threshold
<threshold>]

hadoop
balancer -
threshold 20

daemonlog Gets or sets the log level for
each daemon. Connects to
http://host:port/
logLevel?log=name
and prints or sets the log

hadoop daemonlog -
getlevel
<host:port>
<name>; hadoop
daemonlog

hadoop
daemonlog -
getlevel
10.250.1.
15:50030

337 Chapter 17: Administering Your Hadoop Cluster

Command What It Does Syntax Example

level of the daemon that’s
running at host:port.
Hadoop daemons generate
log files that help you deter-
mine what’s happening on
the system, and you can use
the daemonlog command
to temporarily change the
log level of a Hadoop com-
ponent when you’re debug-
ging the system. The change
becomes effective when the
daemon restarts.

 -setlevel
<host:port>
<name> <level>

org.apache.
hadoop.
mapred.
JobTracker;
hadoop
daemonlog -
setlevel
10.250.1.
15:50030
org.apache.
hadoop.
mapred.
JobTracker
DEBUG

datanode Runs the HDFS DataNode
service, which coordinates
storage on each slave node.
If you specify -rollback,
the DataNode is rolled back
to the previous version. Stop
the DataNode and distribute
the previous Hadoop version
before using this option.

hadoop datanode
[-rollback]

hadoop datanode
–
rollback

dfsadmin Runs a number of Hadoop
Distributed File System
(HDFS) administrative
operations. Use the -help
option to see a list of all sup-
ported options. The generic
options are a common set of
options supported by several
commands. (For detailed
information about generic
options, visit http://
hadoop.apache.org/
docs/r2.0.5-alpha/
hadoop-project-
dist/hadoop-common/
CommandsManual.
html. For detailed informa-
tion about the individual
dfsadmin command
options, see Table 17-2.)

hadoop dfsadmin
[GENERIC_OPTIONS]
[-report]
[-safemode
enter | leave
| get | wait]
[-refreshNodes]
[-finalizeUpgrade]
[-upgradeProgress
status | details |
force] [-metasave
filename]
[-setQuota <quota>
<dirname>. . .
<dirname>]
[-clrQuota
<dirname>. . .
<dirname>]
[-restoreFailed
Storage
true|false|check]
[-help [cmd]]

(continued)

338 Part IV: Administering and Configuring Hadoop

Command What It Does Syntax Example

mradmin Runs a number of
MapReduce administrative
operations. Use the -help
option to see a list of all
supported options. Again,
the generic options are a
common set of options that
are supported by several
commands. (For detailed
information about these
options, visit http://
hadoop.apache.org/
docs/r2.0.5-alpha/
hadoop-project-
dist/hadoop-common/
CommandsManual.
html.) If you specify
-refreshServiceAcl,
mradmin reloads
the service-level
authorization policy
file (JobTracker reloads
the authorization policy
file); -refreshQueues
reloads the queue access
control lists (ACLs) and state
(JobTracker reloads the
mapred-queues.xml
file); -refreshNodes
refreshes the hosts infor-
mation at the JobTracker;
-refreshUser
ToGroupsMappings
refreshes user-to-groups
mappings; -refreshSupe
rUserGroupsConfigur
ation refreshes superuser
proxy groups mappings; and
-help [cmd] displays
help for the given command
or for all commands if none
is specified.

hadoop mradmin [
GENERIC_OPTIONS]
[-refresh
ServiceAcl]
[-refreshQueues]
[-refreshNodes]
[-refreshUser
ToGroupsMappings]
[-refreshSuper
UserGroups
Configuration]
[-help [cmd]]

hadoop
mradmin -
help –
refreshNodes

Table 17-1 (continued)

339 Chapter 17: Administering Your Hadoop Cluster

Command What It Does Syntax Example

jobtracker Runs the MapReduce
JobTracker node, which
coordinates the data pro-
cessing system for Hadoop.
If you specify -
dumpConfiguration,
the configuration that’s used
by the JobTracker and the
queue configuration in JSON
format are written to stan-
dard output.

hadoop jobtracker
[-dump
Configuration]

hadoop
jobtracker –
dump
Configuration

namenode Runs the NameNode, which
coordinates the storage for
the whole Hadoop cluster. If
you specify -format, the
NameNode is started, format-
ted, and then stopped; with
-upgrade, the NameNode
starts with the upgrade
option after a new Hadoop
version is distributed; with
-rollback, the NameNode
is rolled back to the previous
 version (remember to stop
the cluster and distribute
the previous Hadoop version
before using this option); with
-finalize, the previous
state of the file system is
removed, the most recent
upgrade becomes perma-
nent, rollback is no longer
available, and the NameNode
is stopped; finally, with
-importCheckpoint,
an image is loaded from
the checkpoint directory
(as specified by the fs.
checkpoint.dir prop-
erty) and saved into the cur-
rent directory.

hadoop namenode
[-format] |
[-upgrade] |
[-rollback] |
[-finalize] |
[-import
Checkpoint]

hadoop
namenode –
finalize

(continued)

340 Part IV: Administering and Configuring Hadoop

Command What It Does Syntax Example
secondary
namenode

Runs the secondary
NameNode. If you specify
-checkpoint, a check-
point on the secondary
NameNode is performed
if the size of the EditLog
(a transaction log that
records every change that
occurs to the file system
metadata) is greater
than or equal to fs.
checkpoint.size; if you
specify –force, a check-
point is performed regardless
of the EditLog size; specify
–geteditsize and the
EditLog size is printed.

hadoop secondary
namenode
[-checkpoint
[force]] |
[-geteditsize]

hadoop
secondary
namenode –
geteditsize

tasktracker Runs a MapReduce
TaskTracker node.

hadoop
tasktracker

hadoop
tasktracker

Table 17-2 The Hadoop dfsadmin Command
Option What It Does
-report Reports basic file system information and

statistics.
-safemode enter
| leave | get | wait

Manages safe mode, a NameNode state in
which changes to the name space are not
accepted and blocks can be neither repli-
cated nor deleted.

The NameNode is in safe mode during start-
up so that it doesn’t prematurely start repli-
cating blocks even though there are already
enough replicas in the cluster.

Table 17-1 (continued)

341 Chapter 17: Administering Your Hadoop Cluster

Option What It Does

-refreshNodes Forces the NameNode to reread its configura-
tion, including the dfs.hosts.exclude
file. The NameNode decommissions nodes
after their blocks have been replicated onto
machines that will remain active.

-finalizeUpgrade Completes the HDFS upgrade process.
DataNodes and the NameNode delete work-
ing directories from the previous version in
order to keep things nice and neat.

-upgradeProgress
status | details |
force

Requests the standard or detailed current
status of the distributed upgrade, or forces the
upgrade to proceed.

-metasave filename Saves the NameNode’s primary data struc-
tures to filename in a directory that’s spec-
ified by the hadoop.log.dir property. File
filename, which is overwritten if it already
exists, contains one line for each of these
items: a) DataNodes that are exchanging
heartbeats (electronic “signs of life”) with the
NameNode; b) blocks that are waiting to be
replicated; c) blocks that are being replicated;
and d) blocks that are waiting to be deleted.

 -setQuota <quota>
<dirname>...
<dirname>

Sets an upper limit on the number of names
in the directory tree. You can set this limit
(a long integer) for one or more directories
simultaneously.

-clrQuota <dirname>...
<dirname>

Clears the upper limit on the number of names
in the directory tree. You can clear this limit
for one or more directories simultaneously.

-restoreFailedStorage
true | false | check

Turns on or off the automatic attempts to
restore failed storage replicas. If a failed
storage location becomes available again,
the system attempts to restore edits and the
fsimage during a checkpoint. The check
option returns the current setting.

-help [cmd] Displays help information for the given com-
mand or for all commands if none is specified.

342 Part IV: Administering and Configuring Hadoop

Understanding Factors for Performance
Many factors affect the performance of a Hadoop cluster, including the hard-
ware configuration of machines in the cluster, the software configuration, and
how well the map and reduce tasks are tuned for the particular jobs they per-
form when processing your workloads. This section takes a look at each one
of these factors in turn.

Hardware
As you might expect, because each node in a Hadoop cluster is used to store
(DataNode) and process (TaskTracker) data, the hardware should be con-
figured with both roles in mind. Always use the fastest machines you can
afford, with processing speed a function of the number of cores available.
Also, remember that having lots of RAM minimizes the number of times that
data must be read from disk. RAM requirements for the NameNode increase
in proportion to the total number of data blocks in the cluster, and extra
RAM on the NameNode accommodates the future growth of the cluster. Disk
speed affects the degree of throughput that can be achieved, and the number
of disks per node affects the cluster’s ability to “scale up,” which in this case
means the ability to add storage to individual nodes in the system.

MapReduce
 Tuning the number of map tasks and reduce tasks for a particular job in your

workload is another way that you can optimize performance, because each
task has a significant level of overhead that can represent a significant cost for
you when the length of time spent on task execution ends up being relatively
short.

If your jobs involve larger data sets, increasing the block size reduces the
number of tasks, which also has a positive impact on performance.

When planning to maximize the performance of your Hadoop cluster, you
often have to make a trade-off between the overhead of data movement and
your IO (input/output) costs. If your nodes have local storage disks, it might
make sense to move MapReduce processing to those nodes so that input/
output is minimized. If, on the other hand, the data isn’t available locally, you
have to move it to the nodes where processing will occur. This situation can
result in network congestion and eroded performance when data volumes
are very large. Although data replication can address this issue by producing
a local copy of the data at each processing node, creating, distributing, and
storing replicas in a large cluster can be quite costly.

343 Chapter 17: Administering Your Hadoop Cluster

Benchmarking
After you have defined the types of workloads to run on your system, you
can begin to benchmark those workloads to identify input/output and data
processing bottlenecks.

So, what exactly is benchmarking? Many types of benchmarking are out there,
but when the term is applied to a Hadoop cluster, what’s usually meant is a
process whereby you compare the cluster’s performance either to previously
measured values or to published best-of-breed values. Performance bench-
marking involves the monitoring of specific indicators (for example, through-
put, response time) under controlled conditions. Benchmarking is typically
an ongoing process that’s designed to promote continuous improvement.

When you have set up a new cluster, benchmarking is a good way to deter-
mine whether the cluster was set up correctly. See whether you get the
expected results. Your expectations might be driven by published results
from other clusters that were configured in a similar way. You can also tune
the cluster by comparing monitored results with benchmark values.

 To produce the best results, run benchmarks when your cluster isn’t being
used by others.

It just so happens that the Hadoop distribution includes a number
of benchmarks you can use. Examples include TestDFSIO, NNBench,
and MRBench (in hadoop-*test*.jar) and TeraSort (in hadoop-
examples.jar). If you’re curious about what these benchmarks can
offer, check out this list:

 ✓ TestDFSIO: The TestDFSIO benchmark is useful for testing the I/O per-
formance of the HDFS. This benchmark uses a MapReduce job to read
and write files in separate map tasks, whose output is used for collecting
statistics that are accumulated in the reduce tasks to produce a sum-
mary result. The benchmark data is then appended to a local file named
TestDFSIO_results.log and written to standard output.

 ✓ NNBench: The NNBench benchmark is useful for load-testing the
NameNode. This benchmark simulates a high volume of file manipula-
tion requests against the HDFS to “stress-test” the NameNode’s ability to
manage the HDFS.

 ✓ MRBench: The MRBench benchmark loops small jobs to determine
whether they’re running efficiently. It’s used to test the MapReduce layer.

 ✓ TeraSort: The TeraSort benchmark sorts a fixed amount of data
as quickly as possible. This benchmark tests both the HDFS and
MapReduce layers of your Hadoop cluster and is useful for comparing
the performance of your cluster with other clusters. You can use the
TeraSort benchmark to fine-tune your Hadoop configuration after run-
ning the TestDFSIO benchmark.

344 Part IV: Administering and Configuring Hadoop

To get a list of the benchmarks that come with Hadoop, run the JAR file with
no arguments:

% hadoop jar $HADOOP_INSTALL/hadoop-*-test.jar

To retrieve usage information for a specific benchmark, run the benchmark
with no arguments. For example:

% hadoop jar $HADOOP_INSTALL/hadoop-*-test.jar TestDFSIO

 When tuning the cluster, be sure to include jobs that are similar to the work-
loads you’ll run most often. The standard benchmarks that come with Hadoop
are fine in general, but tune the cluster for your specific workloads. And
remember to test the same set of jobs and data every time so that you can
meaningfully compare runs.

Tolerating Faults and Data Reliability
The glory of Apache Hadoop is that, in a Hadoop cluster, data is distributed
across a number of balanced machines, and replication is used to ensure
both data reliability and fault tolerance.

By default, each block is replicated to three slave nodes. The replication
factor is configurable. Block replication is maintained by the system auto-
matically. The NameNode is responsible for detecting failed slave nodes or
unavailable replicas and ensures that usable replicas are copied to other
nodes.

 The DataNode service on each slave node sends heartbeats (indicating their
good health) to the NameNode by using the same port number that was
defined for the NameNode daemon (typically, TCP 9000 or TCP 8020). A heart-
beat is a periodic signal in the form of a TCP handshake, which is the proce-
dure that takes place between two TCP/IP nodes to establish a connection.
As you might expect, regular heartbeats from a DataNode tell the NameNode
that the DataNode is alive and well. By default, the heartbeat interval is three
seconds, and if the NameNode doesn’t receive a heartbeat from a particular
DataNode within ten minutes, the DataNode is presumed to be “dead,” and its
blocks are scheduled for replication on other nodes.

 Keep the heartbeat frequency high, even on big clusters. NameNodes can
handle thousands of heartbeats per second without difficulty, and the granu-
larity of the information that is provided in this way is essential to maintaining
good cluster health.

345 Chapter 17: Administering Your Hadoop Cluster

Every tenth heartbeat from a particular DataNode is a block report, by which
the DataNode identifies its blocks to the NameNode. This information is used
by the NameNode to determine whether the correct number of block rep-
licas exists. If a DataNode is dead, its data is of course unavailable, but the
NameNode is aware of which replicas died along with the node and can repli-
cate those blocks to other slave nodes.

You expect your Hadoop cluster to be always available. One way to make it
happen is to configure the HDFS High Availability (HA) feature, using a shared
NFS directory.

Prior to the Hadoop 2.x series, the NameNode was a single point of failure in an
HDFS cluster — in other words, if the machine on which the single NameNode
was configured became unavailable, the entire cluster would be unavailable
until the NameNode could be restarted. This was bad news, especially in the
case of unplanned outages, which could result in significant downtime if the
cluster administrator weren’t available to restart the NameNode.

The solution to this problem is addressed by the HDFS High Availability fea-
ture. The idea is to run two NameNodes in the same cluster — one active
NameNode and one hot standby NameNode. If the active NameNode crashes
or needs to be stopped for planned maintenance, it can be quickly failed over
to the hot standby NameNode, which now becomes the active NameNode.
The key is to keep the standby node synchronized with the active node; this
action is now accomplished by having both nodes access a shared NFS direc-
tory. All namespace changes on the active node are logged in the shared
directory. The standby node picks up those changes from the directory and
applies them to its own namespace. In this way, the standby NameNode acts
as a current backup of the active NameNode. The standby node also has cur-
rent block location information, because DataNode heartbeats are routinely
sent to both active and standby NameNodes.

To ensure that only one NameNode is the “active” node at any given time,
configure a fencing process for the shared storage directory; then, during a
failover, if it appears that the failed NameNode still carries the active state,
the configured fencing process prevents that node from accessing the shared
directory and permits the newly active node (the former standby node) to
complete the failover.

 The machines that will serve as the active and standby NameNodes in your
High Availability cluster should have equivalent hardware. The shared NFS
storage directory, which must be accessible to both active and standby
NameNodes, is usually located on a separate machine and can be mounted on
each NameNode machine. To prevent this directory from becoming a single
point of failure, configure multiple network paths to the storage directory, and
ensure that there’s redundancy in the storage itself. Use a dedicated network-
attached storage (NAS) appliance to contain the shared storage directory.

346 Part IV: Administering and Configuring Hadoop

Putting Apache Hadoop’s Capacity
Scheduler to Good Use

Although it might seem that Hadoop is an inherently limitless resource, there
are limits to its capacity, and cluster resources must be managed appropri-
ately to avoid performance issues. You don’t have to be an organization such
as Yahoo! or Facebook, which control some of the largest Hadoop clusters in
the world, to appreciate the need for capacity management.

Apache Hadoop’s Capacity Scheduler was designed to address — you
guessed it — capacity management. The Capacity Scheduler, a pluggable
scheduler and console for Hadoop, uses job queues to facilitate the organized
sharing of Hadoop clusters. It guarantees minimum capacity levels for all
queues and makes unused capacity available to overloaded queues, which
leads to optimized cluster utilization.

The Capacity Scheduler provides a set of limits to ensure that a single appli-
cation cannot consume a disproportionate amount of cluster resources,
thereby promoting fairness and stability.

You can assign jobs to specific queues and, as an administrator, define each
queue’s maximum capacity — a limit on the amount of resources a queue can
claim beyond its guaranteed capacity.

Each queue enforces additional restrictions, including a limit on

 ✓ The resources that a specific user can access if multiple users are
accessing the queue at the same time

 ✓ The number of accepted or active jobs per queue or per user

 ✓ The number of pending tasks per queue or per user

Moreover, hierarchical queues ensure that resources are shared among an
organization’s subqueues before another organization’s queues are allowed
to access unused resources.

From a security perspective, each queue has access control lists (ACLs) that
control which users are authorized to submit applications to specific queues.
Moreover, users cannot view or change the applications of other users.

As an administrator, you can change queue definitions, properties, and ACLs
at run time, but you cannot delete queues. You can, however, stop a queue at
run time to block the submission of new applications while existing applica-
tions are running. Because existing applications continue to run, the queue is
able to run its course. Administrators can also start any stopped queues.

347 Chapter 17: Administering Your Hadoop Cluster

 To take advantage of the Capacity Scheduler, you have to configure your
ResourceManager (see Chapter 7) to use it. To do so, set the yarn.
resourcemanager.scheduler.class property in the conf/yarn-site.
xml file to

org.apache.hadoop.yarn.server.resourcemanager.scheduler.
capacity.CapacityScheduler

The configuration file for the Capacity Scheduler is conf/capacity-
scheduler.xml. You can edit this file to define new queues or to modify
existing ones. After editing the configuration file, run yarn rmadmin –
refreshQueues, as shown here:

$ vi $HADOOP_CONF_DIR/capacity-scheduler.xml
$ $HADOOP_YARN_HOME/bin/yarn rmadmin -refreshQueues

The Capacity Scheduler has the predefined queue named root. All other
queues are defined as children of the root queue.

It’s easy to define new queues: Simply configure the yarn.scheduler.
capacity.root.queues property with a list of child queue names, sepa-
rated by commas. For example, to add two child queues (q1 and q2), you’d
do this:

<property>
 <name>yarn.scheduler.capacity.root.queues</name>
 <value>q1,q2</value>
 <description>The child queues under root.
 </description>
</property>

The queue hierarchy is denoted by a path notation (starting with
root) in which each queue is separated by a dot: yarn.scheduler.
capacity.queue-path.queues. For example:

<property>
 <name>yarn.scheduler.capacity.root.q1.queues</name>
 <value>q1a1,q1a2</value>
 <description>The child queues under q1.
 </description>
</property>

 For more information about the Capacity Scheduler, visit

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-
yarn-site/CapacityScheduler.html

348 Part IV: Administering and Configuring Hadoop

Setting Security: The Kerberos Protocol
When we speak about security in a Hadoop context, we are referring to an
authentication method to ensure that users of the Hadoop cluster are who
they say they are. File system permissions, which enforce authorization, are
designed to control the file operations (such as read or write) that a specific
user or group can perform. For various reasons, including the importance
of protecting sensitive data from users who don’t have a business need to
access such data, shared clusters, including Hadoop clusters, must have
effective authentication mechanisms in place.

Secure authentication of Hadoop clusters has been available through the
Kerberos protocol since Hadoop 2. Kerberos is a mature, open source com-
puter network authentication protocol that enables nodes to securely verify
their identity to one another. Kerberos does not manage file or directory
permissions.

The Kerberos protocol is implemented as a series of negotiations between
a client, the authentication server (AS), and the service server (SS). This is
what happens, in a nutshell: When a user logs on, the client authenticates
itself to the AS, which sends the username to a key distribution center (KDC).
The KDC then issues a time-stamped ticket-granting ticket (TGT), which is
encrypted and returned to the client.

When the client wants to communicate with another node, it sends the TGT
to a ticket-granting server (TGS), which verifies that the TGT is valid. The
TGS then issues a ticket and session keys, which are returned to the client.
The client, in turn, sends the ticket and a service request to the service
server (SS), which, in the case of a Hadoop cluster, might be the NameNode
or the JobTracker.

A TGT expires after a certain period (ten hours, by default) but can be
renewed for as long as a week. You can provide a single sign-on to Hadoop by
automating the authentication process at operating system login.

To use Kerberos authentication with Hadoop, you must install and config-
ure a key distribution center. Enable Kerberos authentication by setting
the hadoop.security.authentication property in core-site.xml
to kerberos. Enable service-level authorization by setting the hadoop.
security.authorization property in the same file to true. You should
also configure access control lists (ACLs) in the hadoop-policy.xml con-
figuration file to specify which users and groups have permission to connect
to the various Hadoop services, such as NameNode communication.

349 Chapter 17: Administering Your Hadoop Cluster

Expanding Your Toolset Options
You are not alone. Lots of very smart people have come up with a bunch of
tools and interfaces that you can use to make administering a Hadoop cluster
easier. Two of the more prominent tools are Hue and Ambari, which we high-
light in the upcoming sections.

Hue
Hue is a browser-based graphical user interface to Apache Hadoop. Folks just
call it Hue these days, but the name originates as an acronym for Hadoop
User Experience.

Hue was initially developed as an open source project by Cloudera. Although
Hue comes bundled with Cloudera (and with many Hadoop distributions to
boot), it’s also available from GitHub as open source code. With Hue, you can
browse the HDFS (by using FileBrowser); create and manage user accounts;
monitor your cluster; submit and view MapReduce or YARN jobs (by using
JobSub and JobBrowser); enable a user interface (named Beeswax) to Hive;
use an HBase browser; access query editors for Hive, Pig, Cloudera Impala,
and Sqoop 2; and much more.

Table 17-3 summarizes the various components that make up the Hue
offering.

Table 17-3 The Components of Hue, a Graphical
 User Interface to Apache Hadoop
Component What You Can Do with It
File Browser Upload, browse, and manipulate files and directories in

the Hadoop Distributed File System (HDFS).

HBase Browser Quickly access very large tables, create new tables, add
data, or modify existing data.

Cloudera Search Search for data that’s stored in the HDFS or HBase.
SQL and programming skills aren’t required, because
Cloudera Search provides a simple, full-text interface for
searching.

Job Designer Create and submit MapReduce, YARN, or Java jobs to
your Hadoop cluster.

(continued)

350 Part IV: Administering and Configuring Hadoop

Component What You Can Do with It

Job Browser Monitor the MapReduce or YARN jobs that are running
on your Hadoop cluster. Jobs appear in a list, and you
can link to a list of tasks for a specific job. You can view
task details or logs to troubleshoot failed jobs.

Metastore Manager Manage the databases, tables, and partitions of the Hive
metastore, which is shared by Beeswax and Cloudera
Impala. You can use the Metastore Manager to create
or drop a database; create, browse, or drop tables; or
import data into tables. (For more on Apache Hive, see
Chapter 13.)

Beeswax Hive User
Interface

Run and manage queries on Apache Hive, a distributed
data warehouse for data that’s stored in the HDFS. You
can download query results in a Microsoft Office Excel
worksheet or a text file.

Sqoop 2 Efficiently move large amounts of data between rela-
tional databases and the HDFS.

Cloudera Impala Issue low-latency SQL queries against data that’s stored
in the HDFS or HBase without the need for data move-
ment or transformation. This massively parallel process-
ing query engine runs natively on Apache Hadoop.

Pig Editor Edit your Pig scripts with autocompletion and syntax
highlighting. (For more on Pig and Pig scripting, see
Chapter 8.)

Oozie Editor and
Dashboard

Define Oozie workflow and coordinator applications, run
workflow and coordinator jobs, and view the status of
those jobs. (For more on Oozie, see Chapter 10.)

Zookeeper User
Interface

Browse the Znode hierarchy of your Zookeeper cluster,
and add, edit, or delete Znodes. (For more on Zookeeper,
see Chapter 12.)

User Admin Add, delete, and manage Hue users or groups (if you’re
the administrator); add users or groups individually or
import them from an LDAP directory. Granted permis-
sions determine which Hue applications, or application
features, users or groups can access.

Table 17-3 (continued)

351 Chapter 17: Administering Your Hadoop Cluster

Hue also comes with a software development kit (SDK) that enables you to
reuse Hue libraries and build applications on top of Hadoop.

Hue is designed to enhance the Hadoop user experience by facilitating real-
time interaction with data and helping you to get results faster. It’s intended
to be used by a variety of users and is offered in several languages, including
Spanish, French, German, Portuguese, Brazilian Portuguese, Japanese, simpli-
fied Chinese, and Korean.

For information about getting started with Hue, including development pre-
requisites, visit one of these sites:

https://github.com/cloudera/hue
http://cloudera.github.io/hue/docs-2.0.1/manual.html

Ambari
Apache Ambari is a tool for provisioning, configuring, managing, and moni-
toring Apache Hadoop clusters. With Ambari, you can deploy and operate a
complete Hadoop stack by using a browser-based management interface.

Apache Ambari is still undergoing incubation at the Apache Software
Foundation (ASF); incubation is required of all newly accepted projects until
their infrastructure is deemed consistent with other successful ASF projects.

The Apache Ambari project is designed to simplify Hadoop management by
providing a set of simple GUI tools. It now supports the following Hadoop
components: the HDFS, MapReduce, Hive, HCatalog, HBase, ZooKeeper,
Oozie, Pig, and Sqoop.

Ambari makes it easy for system administrators to perform the tasks
described in this list:

 ✓ Provision a Hadoop cluster:

	 •	Ambari provides an easy-to-use wizard to help you install Hadoop
services.

	 •	Ambari handles the configuration of Hadoop services for your cluster.

 ✓ Manage a Hadoop cluster:

	 •	Ambari provides central management for starting, stopping, and
reconfiguring Hadoop services across your entire cluster.

 ✓ Monitor a Hadoop cluster:

	 •	Ambari provides a dashboard for monitoring the health and status of
your Hadoop cluster.

352 Part IV: Administering and Configuring Hadoop

	 •	Ambari leverages Ganglia for metrics collection. Ganglia, a BSD-
licensed open source project, is a scalable distributed monitoring
system for high-performance computing systems such as clusters. For
information about Ganglia monitoring, visit http://ganglia.
sourceforge.net.

	 •	Ambari leverages Nagios for system alerting and sends e-mails when
your attention is needed, such as when a node fails. Nagios, an
open source application, offers monitoring and alerting services for
servers, switches, applications, and services. For information about
Nagios monitoring, visit www.nagios.org.

Ambari also helps application developers and system integrators integrate
Hadoop provisioning, management, and monitoring capabilities into their own
applications by using Ambari’s Representational State Transfer (REST) APIs.
(REST is an architectural style for client/server communication over HTTP.)

Ambari now supports the 64-bit version of these operating systems:

 ✓ RHEL (Redhat Enterprise Linux) 5 and 6

 ✓ CentOS 5 and 6

 ✓ OEL (Oracle Enterprise Linux) 5 and 6

 ✓ SLES (SuSE Linux Enterprise Server) 11

For more information about the Apache Ambari, visit one of these sites:

http://incubator.apache.org/ambari
http://hortonworks.com/hadoop/ambari

Hadoop User Experience (Hue)
Hadoop User Experience (Hue, for short) is a browser-based graphical user
interface to Apache Hadoop. You can use Hue to

 ✓ Browse the HDFS

 ✓ Create and manage user accounts

 ✓ Monitor the cluster

 ✓ Submit and view MapReduce or YARN jobs (by using JobSub and
JobBrowser)

 ✓ Enable Beeswax, an aptly named user interface for Apache Hive, which
is Hadoop’s data warehouse infrastructure with SQL-like features

 ✓ Use an HBase browser

 ✓ Access query editors for (the aforementioned) Hive, Pig, Cloudera
Impala (a query engine with SQL capabilities) and Sqoop 2

353 Chapter 17: Administering Your Hadoop Cluster

Hue was developed as an open source project by — and is available
from — Cloudera (www.cloudera.com/). The current version of Hue
is 2.3.0.

Table 17-4 summarizes the various components that come packaged
with Hue.

Table 17-4 Hue Components
Component What You Can Do with It
File Browser Upload, browse, and manipulate files and directories in the

Hadoop distributed file system (HDFS).

HBase Browser Quickly access very large tables, create new tables, add
data, or modify existing data.

Cloudera Search Search for data that’s stored in the HDFS or HBase. SQL
and programming skills aren’t required, because Cloudera
Search provides a simple, full-text interface for searching.

Job Designer Create and submit MapReduce, YARN, or Java jobs to your
Hadoop cluster.

Job Browser Monitor the MapReduce or YARN jobs that are running on
your Hadoop cluster. Jobs appear in a list, and you can link
to a list of tasks for a specific job. You can view task details
or logs to troubleshoot failed jobs.

Metastore
Manager

Manage the databases, tables, and partitions of the Hive
metastore that are shared by Beeswax and Cloudera
Impala. You can use the Metastore Manager to create or
drop a database; create, browse, or drop tables; and import
data into tables.

Beeswax Hive
User Interface

Run and manage queries on Apache Hive. You can down-
load query results in a worksheet or text file in Microsoft
Office Excel. (For more on Hive, see Chapter 13.)

Sqoop 2 Efficiently move large amounts of data between relational
databases and the HDFS.

Cloudera Impala Issue low-latency SQL queries against data stored in the
HDFS or in HBase without the need for data movement or
transformation. (This massively parallel processing query
engine runs natively on Apache Hadoop.)

Pig Editor Edit Pig scripts with autocompletion and syntax highlighting.
(For much more on Pig, see Chapter 8.)

Oozie Editor and
Dashboard

Define Oozie workflow and coordinator applications, run
workflow and coordinator jobs, and view the status of those
jobs. (For more on Oozie, check out Chapter 10.)

(continued)

354 Part IV: Administering and Configuring Hadoop

Component What You Can Do with It

Zookeeper User
Interface

Browse the Znode hierarchy of the Zookeeper cluster,
and add, edit, or delete Znodes. (You can find lots more on
Zookeeper in Chapter 13.)

User Admin Add, delete, and manage Hue users or groups (if you’re the
administrator). You can add users or groups individually or
import them from an LDAP directory, such as a corporate
e-mail directory. Granted permissions determine which Hue
applications or application features can be accessed by
users or groups.

Hue also comes supplied with an SDK (System Development Kit) that enables
you to reuse Hue libraries and build applications on top of Hadoop.

Hue is designed to enhance the Hadoop user experience by facilitating real-
time interaction with data and by helping you get results faster. Intended
to be used by a variety of users, Hue is offered in several languages, includ-
ing Spanish, French, German, Portuguese, Brazilian Portuguese, Japanese,
 simplified Chinese, and Korean.

 For information about getting started with Hue, including development prereq-
uisites, visit one of these sites:

https://github.com/cloudera/hue
http://cloudera.github.io/hue/docs-2.0.1/manual.html

The Hadoop shell
The Hadoop shell is a family of commands that you can run from your oper-
ating system’s command line. The shell has two sets of commands: one for
file manipulation (similar in purpose and syntax to Linux commands that
many of us know and love) and one for Hadoop administration. For a detailed
description of the file management commands available in the Hadoop shell,
see the section in Chapter 5 about managing files with the Hadoop file system
commands. For details on the administration commands in the Hadoop shell,
see the “Mastering the Hadoop Administration Commands” section, earlier in
this chapter.

Table 17-4 (continued)

355 Chapter 17: Administering Your Hadoop Cluster

Basic Hadoop Configuration Details
In Hadoop 0.19.x or earlier, you had to modify only one configuration file,
hadoop-site.xml, in order to lay the groundwork for your Hadoop project.
In Hadoop 0.21 and later, however, you have a bit more work coming your
way. More specifically, you need to configure three separate XML files, all
found in the HADOOP_HOME/conf directory:

 ✓ core-site.xml

 ✓ hdfs-site.xml

 ✓ mapred-site.xml

Your Hadoop configuration is driven by two distinct types of configuration
files:

 ✓ Default (read-only): Files here include src/core/core-default.xml,
src/hdfs/hdfs-default.xml, and src/mapred/mapred-default.
xml.

 ✓ Site-specific configuration: Files here include conf/core-site.xml,
conf/hdfs-site.xml, and conf/mapred-site.xml.

 These files are also known as resources. A resource contains a set of name/
value pairs as XML data. Each resource is identified by either a string value
or a path. If you specify a string value, the classpath is searched for a file
whose name matches that value. If you specify a path, the local file system
is searched directly. The default resources (XML files), which are read-only,
reside inside the hadoop-common and hadoop-hdfs JAR files. These files,
which are read from the JAR files directly, should never be modified.

The site-specific resources are loaded from the classpath, and their values
are used to override the corresponding values in the matching default
resource. If you’ve surmised that the previous statement implies that the
default resource is loaded first, followed by the site-specific resource, you’re
right! For example:

 ✓ core-default.xml: Contains read-only default values for your Hadoop
configuration and is read in first.

 ✓ core-site.xml: Contains site-specific configuration values for your
Hadoop deployment and is read in second; contains only those values
that need to be changed from the default.

356 Part IV: Administering and Configuring Hadoop

The following code example shows a configuration specification from a
core-site.xml file:

<property>
 <name>hadoop.tmp.dir</name>
 <value>/home/hadoop/hadoop-0.20.2/hdfs-tmp</value>
 <description>A base for other temporary

directories.</description>
</property>

Note that each <property> element (<name>, <value>, and <description>
in this example) defines a specific configuration name/value pair. The file can
contain any number of these <property> elements, which are enclosed by one
<configuration> element, as in this example:

<configuration>
...
<property>
 <name>...</name>
 <value>...</value>
 <description>...</description>
</property
...
</configuration>

The <description> element is optional but can be quite useful for tracking
details about the property it describes.

Your applications can specify additional resources, and they’re also loaded in
the order in which they’re specified, after the system-defined resources have
been loaded.

 Configuration parameter values can be declared as final so that user appli-
cations can’t change them later, as shown in the following example (from a
sample hdfs-site.xml file):

<property>
 <name>dfs.hosts.include</name>
 <value>/etc/hadoop/conf/hosts.include</value>
 <final>true</final>
</property>

After a value is declared to be final, no subsequently loaded resource can
alter that value.

357 Chapter 17: Administering Your Hadoop Cluster

Finally, the following code example shows a configuration specification from
a mapred-site.xml file:

<property>
 <name>mapred.local.dir</name>
 <value>/home/hadoop/hadoop-0.20.2/mapred-tmp</value>
 <description>Comma-separated list of paths on the local

file system where temporary MapReduce data is
written.</description>

</property>

A ton of parameter names and values are associated with the resources in the
following list. To see a list of a resource’s parameter names and values, check
out its URL:

 ✓ core-default.xml: http://hadoop.apache.org/docs/current/
hadoop-project-dist/hadoop-common/core-default.xml

 ✓ hdfs-default.xml: http://hadoop.apache.org/docs/current/
hadoop-project-dist/hadoop-hdfs/hdfs-default.xml

 ✓ mapred-default.xml: http://hadoop.apache.org/docs/
current/hadoop-mapreduce-client/hadoop-mapreduce-
client-core/mapred-default.xml

358 Part IV: Administering and Configuring Hadoop

Part V
The Part of Tens

 Enjoy an additional Hadoop Part of Tens chapter online at www.dummies.com/
extras/hadoop.

In this part . . .
 ✓ Check out the Ten Hadoop Resources Worthy of a

Bookmark.

 ✓ Find out Ten Reasons to Adopt Hadoop.

 ✓ Enjoy an additional Hadoop Part of Tens chapter online at
www.dummies.com/extras/hadoop.

Chapter 18

Ten Hadoop Resources Worthy
of a Bookmark

In This Chapter
▶ Learning Hadoop — for free

▶ Finding the Hadoop information you need — fast

▶ Setting up a lifelong learning plan for Hadoop

F
rom its roots in the early 2000s as an Internet search engine indexer,
Hadoop has evolved to become a large-scale, general-purpose comput-

ing platform. Indeed, competence in Hadoop is one of the hottest skills you
can list on a résumé in today’s IT job market. If we can tell you one thing from
our collective century-plus years of IT experience across multiple jobs and
technology domains, it’s that you should never reach the finish line of your
learning roadmap.

Hadoop continues to evolve in a fascinating manner — especially when you
consider all the Apache subprojects (and associated projects) that work within
the Hadoop ecosystem. You’re off to a great start with this book, though this
fast-paced environment will continue to change. For example, many new pro-
cessing frameworks for YARN are being developed that will introduce a wide
variety of data processing options to Hadoop. We believe that the Hive project
will explode with innovation, especially when you add YARN (see Chapter 7)
and Tez (see Chapter 7 again) to the mix. The point? If you want to stay on top
of Hadoop, you have to invest in it with a lifelong learning plan.

We highlight the free areas of Hadoop training in keeping with its open source
spirit. You’ll see that most vendors have found that they can make money
delivering top-notch Hadoop training, so they often have both options: for-fee
and for-free.

In this chapter, we describe what we think are ten terrific Hadoop resources that
are worthy of creating a bookmark in your browser. These resources not only pick
up from where we leave off in this book but also help you create a lifelong learning
plan for Hadoop. From virtual universities, to ’zines and websites and more, you
can continue learning in order to stay on the leading edge of the Hadoop curve, or
simply to ensure that you have a solid understanding of the technology.

362 Part V: The Part of Tens

Central Nervous System: Apache.org
The Apache Software Foundation (ASF) is the central community for open
source software projects. (Note: The group’s charter stipulates that Apache
software must be used for public good — so we’re assuming that you’ll use
Hadoop for tasks other than finding better ways to increase the cost of gas.)
Not just any project can be an Apache project — many consensus-driven
processes convert a piece of software from its initial designs and beta code
(its incubator status) to full-fledged, generally available software. You can find
more about ASF at http://apache.org.

The ASF isn’t just where projects like Hadoop are managed — it’s where
they “live and breathe.” Today, there are hundreds of Apache projects. With
this in mind, you should bookmark the Apache Hadoop page (http://
projects.apache.org/projects/hadoop.html) as one of your main-
stay learning resources. This site is important because you can access the
source code there. You can also open or view Hadoop-related defects or
bugs; view the license; access mailing lists for the community; download a
versioned Hadoop feature, component, or branch (not just those marked
stable); and more.

At this point, you’ve entered the Valhalla of Hadoop links — the Apache.org
site is über-Hadoop Land, and is the home of Hadoop’s development. You can
think of the site as Hadoop’s central nervous system. We make no guarantee
that everything there is easy to consume, but its information is generally
valuable — and straight from the source of Hadoop’s developers.

Tweet This
Twitter isn’t the place to learn Hadoop per se — after all, you can’t easily master
MapReduce programming in lessons that span only 140 characters. Be that as it
may, quite a number of big data gurus are on Twitter, and they express opinions
and point to resources that can make you a smarter Hadoop user.

A number of top-influencer lists in the Twitter landscape cover Hadoop and
big data, and that’s the best way to find these Hadoop personalities and add
them to your Twitter lists. Here are a couple notable lists where you can
find the most distinguished personalities covering Hadoop and big data on
Twitter — including some of the authors of this book:

 ✓ #BigData100 (Big Data Republic): tinyurl.com/ouk6lb8

 ✓ Top 200 Big Data Influencers (Onalytica): tinyurl.com/oq6677s

363 Chapter 18: Ten Hadoop Resources Worthy of a Bookmark

Hortonworks University
Hortonworks University (hortonworks.com/hadoop-training) provides
Hadoop training and certifications. The site offers Hadoop courses built for
either administrator or developer practitioners with the option of a rigorous
certification program. Hortonworks employs some of the deepest and most
noted Hadoop experts in the world, so you’re assured of quality expertise
behind the courseware.

Hortonworks University has for-free and for-fee training. We focus on the
free stuff in this chapter, so we think that the place you’ll head to is the
Hortonworks Sandbox (hortonworks.com/products/Hortonworks-
sandbox) and its Resources page (hortonworks.com/resources). If
you’re looking for fee-based training, you can find it there as well.

The Hortonworks Sandbox gives you a portable Hadoop environment with an
accompanying set of tutorials that cover a wide arrange of features from the
latest HDP distribution. (This distribution is also used extensively in for-fee
training).

The aforementioned Resources pages provide a wide array of document-
based tutorials, videos, presentations, demos, and more. It also provides a
decent roadmap to get started, aptly named “Getting Started with Hadoop”
(hortonworks.com/get-started).

Cloudera University
Cloudera University (university.cloudera.com) is similar in its business
model and charter to Hortonworks University, providing a number of learn-
ing avenues that run the gamut from traditional text to video. Cloudera is a
prominent fixture in the Hadoop world. (Doug Cutting, the “father” of Hadoop
is its chief architect.) The site offers an extensive set of courses, and more,
which are based on the Cloudera Distribution for Hadoop (CDH).

Some courses are offered for a fee with in-classroom instruction, but one
option lets you take certain courses for free in an online video series — for
example, Cloudera Essentials for Apache Hadoop, at university.
cloudera.com/onlineresources.html. When we took the course, we
would have liked to have seen more-engaging materials in the courseware,
but the instructors are engaging, considering that you’re watching a recorded
video (plus, nobody gets mad at you for chewing gum while in class).

364 Part V: The Part of Tens

We think that the Introduction to Data Science class at Cloudera University
is pretty cool. Next to the big data label, data science is likely one of the most
overused, or most misunderstood, labels — but people in that profession
are commanding even higher salaries than Hadoop experts are. Cloudera
even has a certification program (the Cloudera Certified Professional: Data
Scientist), which we found to be a unique and terrific idea.

Cloudera University includes a number of modules in its e-learning catalog
(university.cloudera.com/onlineresources/elearning.html).
Because Cloudera is focused on Hadoop as well as on its own set of Hadoop
add-ons, the site offers training in the full spectrum of features that Cloudera
brings to the table. For example, in Figure 18-1 you can see an example of the
course An Introduction to Impala. (Impala, if you’re curious, is the Cloudera
alternative to Hive; we cover Impala in Chapter 15.)

To get started with CDH and create an environment to complement your
knowledge of Hadoop (or any Cloudera technology, for that matter), you
can find packaged code and virtual images at cloudera.com/content/
support/en/downloads.html.

Figure 18-1:
The

Cloudera
University
e-learning
course on
Cloudera

Impala.

365 Chapter 18: Ten Hadoop Resources Worthy of a Bookmark

BigDataUniversity.com
BigDataUniversity.com (the case doesn’t matter when you enter the URL
in your browser) is a fantastic resource for learning about — you guessed
it — big data. Of course, big data isn’t just Hadoop, so you’ll find more than
Hadoop resources at this site. This university has over 100,000 students
enrolled and learning about Hadoop and big data every day.

You’ll notice right off the bat that this isn’t a typical IBM resource. For
example, you won’t fill out dozens of fields and answer all kinds of questions
that make you feel like you’re getting set up for a cold call. We like to think of
BigDataUniversity.com as free, in-your-place and at-your-pace Hadoop
training. The word free is the key here: Unlike the other two universities we
detail in this chapter, there isn’t a fee-based component anywhere on the site.

The university moniker for this site isn’t an accident — it has quite an exten-
sive list of courseware that expands beyond Hadoop (bigdatauniversity.
com/courses). From a Hadoop perspective, you won’t just find courses on
“Hadoop Fundamentals,” but also “Hadoop and the Amazon Cloud,” “Hadoop
Reporting and Analytics” and more — including some database stuff. That’s
why we really like this resource – it gives off a Swiss Army knife vibe that gives
you a place to expand your Hadoop knowledge even further into the big data
domain.

Courses at BigDataUniversity.com are composed of traditional reading
materials, mixed with multimedia, and code examples. An example of the
Hadoop Fundamentals I course is shown in Figure 18-2.

From the navigation panel on the left, you can see multiple lessons and even
a teaching assistant that can provide technical assistance if you get stuck.
When you’re done with a course, you can take a test. If you pass — you get a
certificate!

Another nice feature of this site is that you can leverage the IBM Smart Cloud
and create your own Hadoop cluster for free.

If you’d rather host your Hadoop platform locally, you can use IBM
InfoSphere BigInsights, IBM’s own Hadoop distribution. A Quick Start
Edition (available at www.ibm.com/developerworks/downloads/im/
biginsightsquick) comes with its own set of tutorials, which showcase
not only Hadoop but also certain IBM enhancements. (The BigInsights
Quick Start Edition includes the Text Analytics Toolkit, for example, which
includes an Eclipse-based text analytics development environment with an
accompanying SQL-like declarative language that runs on Hadoop, and other
platforms.) You can use any Hadoop distribution for the courseware on
BigDataUniversity.com.

366 Part V: The Part of Tens

Figure 18-2:
The Hadoop

Funda-
mentals I

course
on the

Big Data
University

site.

planet Big Data Blog Aggregator
We love it when the name of a site tells you exactly what it does — like planet
Big Data Blog Aggregator (www.planetbigdata.com): It’s an aggregator of
blogs about big data, Hadoop, and other related topics on the planet (well, on
Planet Earth anyway).

Both big names and no-names show up on the site, but that’s helpful: Though
there’s undoubtedly commitment to Hadoop by Cloudera, Hortonworks, IBM,
and others, it’s often refreshing and valuable to get exposure to the thoughts
and opinions of grass roots, non-affiliated practitioners by communities not
tied to a specific vendor in your learning roadmap.

 Are you a big data blogger? Get your blog included in the planet Big Data Blog
Aggregator list by e-mailing planetbigdata@gmail.com.

367 Chapter 18: Ten Hadoop Resources Worthy of a Bookmark

Quora’s Apache Hadoop Forum
The Quora Apache Hadoop forum (www.quora.com/Apache-Hadoop) is
the cornerstone for anyone looking to find out more about Hadoop, or about
big data in general, for that matter.

As in any forum, the range of questions and answers you can find at this site
is dizzying, but they all lead you to what you’re looking for: knowledge. The
site has linkages to Hadoop and to its individual components — for example,
it has specific forums for MapReduce, HDFS, Pig, HBase, and more. The site
also has associated Hadoop forums; for example, Cloudera and Hortonworks
have specific discussion groups for their distributions — a testament to how
popular this forum is.

Of course, as you transform yourself into a Hadoop demigod, you can answer
questions that are posted to the forum and develop your Hadoop influence.
(A lot of the active participants in this forum are on the Twitter lists we iden-
tify earlier in this chapter.)

The IBM Big Data Hub
The IBM Big Data Hub (www.ibmbigdatahub.com) is an excellent place to
learn about Hadoop and its ecosystem. Despite being owned and operated by
IBM, this site’s content isn’t always linked with IBM products.

The IBM Big Data Hub provides any visitor with enough knowledge to quench
anyone’s thirst for big data. You’ll find all sorts of blogs, videos, analysts’
articles, use cases, infographics, presentations, and more. It’s truly a treasure
trove of big data resources. This site also aggregates videos from the IBM Big
Data and Analytics page at YouTube (youtube.com/user/ibmbigdata),
which leads you into even more top-notch resources. For example, it has
videos such as “What Is Big Data?” and “What Is Hadoop?” that feature some
of the authors of this book.

Conferences Not to Be Missed
There are many Hadoop conferences, and even more big data conferences.
We’re recommending the Hadoop Summit (hadoopsummit.org) and Strata
Hadoop World (strataconf.com) as the quintessential conferences not to
be missed. Typically, a distribution vendor co-sponsors these conferences.
For example, Yahoo! and Hortonworks sponsor the Hadoop Summit, and
Cloudera is the co-sponsor of Strata Hadoop World.

368 Part V: The Part of Tens

Both Strata Hadoop World and the Hadoop Summit are the gathering places
of the brightest Hadoop minds in the business; these conferences attract a
wide array of Hadoop-interested professionals, including decision makers,
architects, developers, analysts, and more.

The Strata Hadoop World name didn’t come by accident; two formerly sepa-
rate and independent conferences (Strata and Hadoop World) have now
joined forces to become one of the world’s largest gatherings of the Apache
Hadoop community. A look at the curriculum makes obvious its focus on all
aspects of Hadoop — from sessions devoted to hands-on practitioners to ses-
sions devoted to business use cases.

The Hadoop Summit can be considered a competitor to Strata Hadoop World
(though if you’re lucky, your bosses will pay for you to go to both). The
summit features the same themes and, likely, a lot of the same presenters.
One aspect that we find appealing is that the conference tracks are chosen
by the community at large as opposed to a conference committee. In the June
2013 Hadoop Summit that took place in San Jose, over 6,000 community mem-
bers cast over 15,000 votes to create the seven tracks that became the pillars
of the conference.

 If your appetite leans more in the direction of big data, we think that the
yearly IBM Insight Conference (www.ibm.com/software/data/2013-
conference) is a must-attend event. It not only features deep, hands-on
Hadoop labs and sessions but also runs the gamut of big data topics, including
stream computing, governance, the interaction of Hadoop and relational data-
bases, and more.

The Google Papers That Started It All
What is now known as Hadoop has its genesis in a number of papers written
by Google employees who were focused on the problem of indexing the Web.
While the Apache Nutch project (an open source technology for crawling
the Web) was turning its focus on scaling outward in order to index higher
volumes of web data, Google published a paper, “The Google File System”
(October 2003: research.google.com/archive/gfs.html), which
greatly influenced Doug Cutting and his Nutch co-founder, Mike Cafarella.
Shortly after, Google released its paper “MapReduce: Simplified Data
Processing on Large Clusters” (December 2004: research.google.com/
archive/mapreduce.html).

Together, the concept of a distributed file system and a large-scale parallel
processing framework were taken by Cutting and Cafarella to develop Apache
Hadoop. Of course, Cutting commercialized this work while at Yahoo!, and
the rest, as they say, is history.

369 Chapter 18: Ten Hadoop Resources Worthy of a Bookmark

 Here’s a great question for a game of Trivial Pursuit for IT geeks: Whatever
happened to Mike Cafarella, who cofounded Hadoop with Doug Cutting?” The
answer? He’s an associate professor at the University of Michigan, and he’s
working on the Hadoop-complementary project RecordBreaker. Some call
him the “Pete Best of big data.” (Pete Best was the original drummer for The
Beatles.)

A host of other Google papers have influenced the Hadoop ecosystem as
well. For example, Google’s paper “Bigtable: A Distributed Storage System
for Structured Data (November 2006: research.google.com/archive/
bigtable.html) is the inspiration behind HBase, among other NoSQL
technologies.

Though these papers represent the original ideas behind Hadoop, and parts
of its ecosystem, as a tribute to where it all began, we’ve included Google
Research (research.google.com) and its collection of groundbreaking
research papers in our list. Even today, reading these papers gives you a
strong appreciation of where Hadoop came from and, potentially, some ideas
of where it might evolve.

The Bonus Resource: What Did We
Ever Do B.G.?

Considering the impact that Google has had on Hadoop, we thought it pru-
dent to toss in one more related resource to keep in mind if you’re on the
hunt for Hadoop information: Google. (It’s fair to lump YouTube into Google
because not only does Google own it, but it has also become one of the top
three Internet search sites.) From watching how to bake a pie to solving a
problem on your computer to learning about Hadoop, after you type what
you’re looking for, there’s a great chance that you’ll find it. All this, of course,
makes us wonder: What did we ever do B.G. (before Google)?

370 Part V: The Part of Tens

Chapter 19

Ten Reasons to Adopt Hadoop
In This Chapter
▶ The price is right

▶ The (open source) community is there

▶ Companies love Hadoop — they really do

▶ Scalability isn’t a problem

▶ Hadoop plays nicely with traditional tools

▶ Hadoop has broad tastes in data types

▶ Hadoop can face (almost) any analytical challenge

▶ Full data sets are the norm (no sampling)

▶ Hardware’s ability to deal with Hadoop improves every day

▶ Flexible workloads? No problem!

H
adoop is a powerful and flexible platform for large-scale data analysis.
This statement alone is a compelling reason to consider using Hadoop

for your analytics projects, especially for solutions involving the use cases
we describe in Chapter 2. To help further tip the scales, this chapter lists ten
compelling reasons to deploy Hadoop as part of your big data solution.

 Though we’re excited about Hadoop and we want to promote its adoption,
in some cases other software solutions are more appropriate. For example,
replacing an online transaction processing database system with Hadoop is
almost never a good idea. Architecture decisions come down to requirements,
which may include performance thresholds, fine-grained access control, data
column masking, or a host of other data governance-related considerations.
If your project’s criteria align with the characteristics and capabilities of
Hadoop that we describe throughout this book, the reasons in this chapter
apply to you!

372 Part V: The Part of Tens

Hadoop Is Relatively Inexpensive
At the time we wrote this book, the cost per terabyte to implement a Hadoop
cluster was cheaper than the per-terabyte cost to set up a tape backup
system. Granted, a Hadoop system costs more to operate, because the disk
drives holding the data are all online and powered, unlike tape drives. But
this interesting metric still shows the tremendous potential value of an
investment in Hadoop.

The primary reason Hadoop is inexpensive is its reliance on commodity
hardware. Traditional solutions in enterprise data management depend on
expensive resources to ensure high availability and fast performance. Storage
is an excellent example, because the typical relational data warehouse uses
expensive SAS disk drives arranged in RAID arrays. By contrast, Hadoop was
designed to run with inexpensive SATA drives, where availability is provided
by replicating individual data blocks three times. The assumption that all
hardware fails is a core principle for Hadoop, so it was designed to run on
less expensive hardware.

 You may look at this section’s heading and say, “Of course Hadoop is inex-
pensive. Open source software is free!” Well, if you’re a hobbyist programmer,
then yes, you may download and play with Hadoop for free. But if you’re an
enterprise that’s deploying Hadoop in places where it’s delivering business
value, you can’t get by with a hobbyist mentality; you need an enterprise-
ready software license and a support contract to boot. The bottom line is that
although a respectable Hadoop distribution will cost you license and support
fees, these expenses for Hadoop are far lower than for large relational data-
base technologies.

On the three-legged stool of IT solution costs, we’ve covered only the
hardware and software legs. One other critical ingredient is services, or
skills. When Hadoop was younger, fewer people had Hadoop skills, so
folks were seeing major shortages of trained personnel. Also, Hadoop
was a more difficult platform to use a few years ago, which made the
skills shortage even more acute. The open source community has made
progress in improving Hadoop’s usability — most significantly with Hive.
People with SQL skills — a large contingent of IT professionals — can now
query data using a SQL dialect that’s becoming increasingly compatible
with SQL-92, which reduces the dependency on, for example, MapReduce
skills.

373 Chapter 19: Ten Reasons to Adopt Hadoop

Hadoop Has an Active Open
Source Community

Whenever an organization invests in a software package, a key consideration
is the long-term relevance of the software it bought. No business wants to
purchase software licenses and build specific skills around technologies that
will be either obsolete or irrelevant in the coming months and years.

In that regard, you don’t need to worry about Hadoop. The Apache Hadoop
project is on the path of long-term adoption and relevance. Its key projects
have dozens of committers (see below) and hundreds of developers contrib-
uting code. Though a few of these people are academics or hobbyists, the
majority of them are paid by enterprise software companies to help grow the
Hadoop platform.

 Since the Hadoop community projects are part of the Apache Software
Foundation (ASF), here’s a bit of background. The ASF provides the key ingre-
dients for a community to manage the development and release of a software
project. For example, the ASF features a governance structure to ensure an
open and democratic approach to evolving the project; an issue tracking
framework to manage bugs and new feature development; and a software
license that encourages easy adoption and future innovation.

Anyone can be a contributor for an Apache project. In fact, projects with
large numbers of developers representing diverse interests contributing code
are considered the healthiest. To ensure code integrity and that development
is being done according to the project’s democratically agreed upon direc-
tion, it’s only the project’s committers that have write access to the project’s
code repository. A committer is a special role that the Project Management
Committee (PMC) votes to assign to contributors who have shown both deep
expertise and personal investment. The PMC itself is made up of committers
who are effectively the stewards of the Apache project, voting on its overall
direction, major features, and releases.

In addition to the large numbers of individual people contributing to Hadoop
projects, a significant number of software companies are actively investing
top development talent in growing the Apache Hadoop ecosystem, includ-
ing larger IT companies such as IBM, Intel, Microsoft, and Yahoo! but also
a multitude of smaller and younger companies — most notably, Cloudera,
Hortonworks, Facebook, and MapR.

374 Part V: The Part of Tens

Along with the number of committers, contributors, and companies funding
open source development work, the number of recently filed bug reports is an
excellent indicator of technology uptake. All reasonably sophisticated software
will inevitably have bugs, so in general the more people using the software, the
more bugs will surface. Apache projects make bug reporting highly visible via
the JIRA interface. If you search on the Internet for Hadoop JIRA, you’ll quickly
see dozens of bug reports opened for the Hadoop ecosystem project and
others.

Hadoop Is Being Widely Adopted
in Every Industry

As with the adoption of relational database technology from the 1980s and
onward, Hadoop solutions are springing up in every industry. Looking at the
generic use cases we describe in Chapter 2, you can easily imagine most of
them having a specific application for a business in any industry.

From what we’re seeing firsthand as we work with clients on building Hadoop
solutions, most businesses with large-scale information management chal-
lenges are seriously exploring Hadoop. Broad consensus from media stories
and analyst reports now indicate that almost every Fortune 500 company has
embarked on a Hadoop project.

Hadoop Can Easily Scale Out As
Your Data Grows

Rising data volumes are a widespread big data challenge now faced by orga-
nizations. In highly competitive environments where analytics is increasingly
becoming the deciding factor in determining winners and losers, being able
to analyze those increasing volumes of data is becoming a high priority. Even
now, most traditional data processing tools, such as databases and statistical
packages, require larger scale hardware (more memory, disk, and CPU cores)
to handle the increasing data volumes. This scale-up approach is limiting and
cost-ineffective, given the need for expensive components.

In contrast to the scale-up model, where faster and higher capacity hardware
is added to a single server, Hadoop is designed to scale out with ease by
adding data nodes. These data nodes, representing increased cluster storage
capacity and processing power, can easily be added on the fly to an active

375 Chapter 19: Ten Reasons to Adopt Hadoop

cluster. There are some software solutions using a scale-out model, but they
often have complex dependencies and require application logic to change
when resources are added or subtracted. Hadoop applications have no
dependencies on the layout of racks or data nodes and require no changes as
the numbers of active nodes change.

Traditional Tools Are Integrating
with Hadoop

With increased adoption, businesses are coming to depend on Hadoop and
are using it to store and analyze critical data. With this trend comes an appe-
tite for the same kinds of data management tools that people are accustomed
to having for their traditional data sources, such as a relational database.
Here are some of the more important application categories where we’re
seeing integration with Hadoop:

 ✓ Business analysis tools: Analysts can build reports against data stored
in HDFS and cataloged using Hive. (Cognos, Microstrategy, and Tableau
support this tack, for example.)

 ✓ Statistical analysis packages: Statisticians can apply their models on
large data sets stored in HDFS and have that processing be pushed down
to the Hadoop cluster to be run on the data nodes, where the data is
stored. (For example, both SAS and SPSS have enabled limited push-
down to MapReduce, as we discussed in Chapter 9.)

 ✓ Data integration tools: Data architects can enable high-speed data
exchange between Hadoop and relational databases, and varying
degrees of being able to push down transformation logic to the Hadoop
cluster. (For example, both IBM DataStage and Informatica have parallel
connectors to Hadoop enabling high speed data transfer and varying
degrees of ability to have custom data transformation algorithms exe-
cute on the data nodes.)

Hadoop Can Store Data in Any Format
One feature of Hadoop reflects a key NoSQL principle: Store data first, and
apply any schemas after it is queried. (For more on the ideas behind NoSQL,
check out Chapter 11.) One major benefit that accrues to Hadoop from acting
in accordance with this principle is that you can literally store any kind of
data in Hadoop: completely unstructured, binary formats, semistructured log

376 Part V: The Part of Tens

files, or relational data. But along with this flexibility comes a curse: After you
store data, you eventually want to analyze it — and analyzing messy data can
be difficult and time consuming. The good news here is that increasing num-
bers of tools can mitigate the analysis challenges commonly seen in large,
messy data sets.

Hadoop Is Designed to Run
Complex Analytics

You can not only store just about anything in Hadoop but also run just about
any kind of algorithm against that data. The machine learning models and
libraries included in Apache Mahout are prime examples, and they can be
used for a variety of sophisticated problems, including classifying elements
based on a large set of training data.

Hadoop Can Process a Full Data Set
(As Opposed to Sampling)

For fraud-analysis types of use cases (see Chapter 2), industry data from
multiple sources indicates that less than 3 percent of all returns and claims
are audited. Granted, in many circumstances, such as election polling, ana-
lyzing small sample sets of data is useful and sufficient. But when 97 percent
of returns and claims are unaudited, even with good sampling rules, many
fraudulent returns still occur. By being able to run fraud analysis against the
entire corpus of data, you now get to decide whether to sample.

Hardware Is Being Optimized for Hadoop
One of the more interesting Hadoop-related news items we’ve recently read is
that Intel is now a player in the Hadoop distribution market. This new strat-
egy raised many eyebrows: “What’s a hardware manufacturer doing selling
software?” This move by Intel was a shrewd one because its distribution work
shows the seriousness and commitment behind its open source integration
efforts. With Hadoop, Intel sees a tremendous opportunity to sell more hard-
ware. After all, Hadoop clusters can feature hundreds of nodes, all requiring
processors, motherboards, RAM, and hard disk drives. Intel has been investing

377 Chapter 19: Ten Reasons to Adopt Hadoop

heavily in understanding Hadoop so that it can build Intel-specific hardware
optimizations that its Hadoop contributors can integrate into open source
Hadoop projects. Other major hardware vendors (such as IBM, Dell, and HP)
are also actively bringing Hadoop-friendly offerings to market.

Hadoop Can Increasingly Handle Flexible
Workloads (No Longer Just Batch)

During the four-year lead-up to the release of Hadoop 2, a great deal of atten-
tion was directed at solving the problem of having a single point of failure
(SPOF) with the HDFS NameNode (see Chapter 4). Though this particular
success was no doubt an important improvement, since it did much to
enable enterprise stability, we would argue that YARN is a far more significant
development (see Chapter 7). Until Hadoop 2, the only processing that could
be done on a Hadoop cluster was restricted to the MapReduce framework.
This was acceptable for the log analytics use cases that Hadoop was origi-
nally built for, but with increased adoption came the real need for increased
flexibility.

By decoupling resource management and scheduling responsibilities and
implementing them in a generic framework, YARN can provision and manage
a wider variety of processing models. At the time Hadoop 2 was released,
MapReduce was still the only production-ready framework available. But
active projects exist for in-memory processing, streaming data analysis,
graph analysis, and much more.

The following statement is, for us, the perfect closing note for this book:
We’re about to see Hadoop become a truly multipurpose, flexible data pro-
cessing engine. Where it once could support only batch workloads, it can
now support real-time queries, and even a completely different processing
approach by analyzing streaming data while it’s still in motion.

378 Part V: The Part of Tens

Index

• A •
Abadi, Daniel, 311
abstractions, MapReduce, 115
access control lists (ACL), znodes, 193
accessing data, 123
ACID properties

HBase, 210–211
relational databases, 160–161

ACL (access control lists), znodes, 193
action nodes, Oozie workflows, 145–150
active (hot) data, 168–169
Active NameNode daemon, 66–67
Active Open Source Community, 373
administration commands, cluster, 336
AFR (annual failure rate), commodity disk

drives, 59
agent nodes, Apache Flume project, 81
agents, Apache Flume project, 81–82
Airline On-time Performance data set

(flight data set), 48–49
ALL statement, 121
alternate deployment form factors

cloud deployments, 332
virtualized servers, 331

Amazon Elastic Compute Cloud (Amazon
EC2), 21

Amazon Elastic MapReduce (Amazon EMR)
web service, 21–22

Amazon Simple Storage Service
(Amazon S3), 21

Ambari (Apache), 15, 351–352
annual failure rate (AFR), commodity disk

drives, 59
Apache Ambari, 15, 351–352
Apache Bigtop, 45–48
Apache Derby RDBMS, 230
Apache Drill, 308–309
Apache Flume project, 15, 80–82
Apache Giraph, 38, 163–165
Apache Hive. See Hive

Apache Incubator, 308
Apache Lucene project, 14
Apache Mahout, 16, 131–135
Apache Nutch project, 14
Apache Oozie. See Oozie workflow

scheduler
Apache Pig. See Pig programming language
Apache Software Foundation (ASF), 14,

351, 373
Apache Storm, 113
Apache Tez, 113, 230
Apache.org, 362
API (Application Programming Interface)

data processing, 104, 105
YARN, 108

application flow
MapReduce, 87
Pig Latin script, 117–119

Application Master daemon, 87–88, 110
Application Programming Interface. See API
ApplicationMaster service, slave nodes, 321
ARRAY data type, 260
AS (authentication server), 348
AS clauses, Pig Latin script, 124
ASF (Apache Software Foundation), 14,

351, 373
associative arrays (maps), 122, 182
AsyncHBase, 206
atomic znode writes, Zookeeper, 193
atomicity

HBase, 211
relational database systems, 160

atoms, Pig Latin script, 122
at-transaction (at-person) level modeling,

fraud detection, 30
audio classification system, 37
authentication server (AS), 348
auto-sharding, 187
availability, relational database

systems, 162
Avro project, 15

380 Hadoop For Dummies

• B •
backporting, 43
Backup Node daemon

checkpointing updates, 65
defined, 63

bags, Pig Latin script, 122
Bajda-Pawlikowski, Kamil, 311
balancer command, 336
balancing clusters, 336–340
balancing data, 62–63
BASE data store, 161–162
--batch command line argument,

Sqoop, 294
batch processing, 54, 260
Beeswax Hive User Interface component,

Hue, 350, 353
big data

data scientist, 12
data structures, 12
spatially enriched, 34
variety, 10
velocity, 10–11
volume, 10, 11

Big SQL (IBM), 309–311
BigDataUniversity.com, 365–366
BigInsights distribution, 310
BigTable, HBase

client ecosystem, 203–206
column families, 184
column qualifiers, 184
compactions, 225–226
data access patterns, 220–222
deployment considerations, 217
distributed, 181–182
hardware requirements, 215–217
Java API client example, 206–209
key value pairs, 185–186
MasterServer, 190–192
multidimensional sorted map, 182
overview, 179–180, 186–187
persistent, 181–182
pre-splitting regions, 222–223
RDBMS and, 209–214
RegionServers, 187–190
row key design, 223–225

row keys, 183
sparse data, 180–181
test run, 195–203
tuning prerequisites, 218–220
versions, 184–185
Zookeeper, 192–195

Bigtop (Apache), 45–48
binary files, data compression, 70
Blade servers, 317
BlockCache cache, HBase, 188
Borgman, Justin, 311
Boyce, Raymond F., 158, 227
bundle job, Oozie, 140
business analysis tools, 375
Bzip2 codec, 71, 72

• C •
Cafarella, Mike, 180
call detail record (CDR) log files, 332
call stored procedures, Sqoop, 295–296
call-by-need (lazy evaluation) principle, 124
CAP theorem

HBase, 194
relational databases, 162

Capacity Scheduler, 346–347
CAPEX (capital expenditure), 31
case statements, decision nodes, 145
catalog tables, HBase, 191
CDR (call detail record) log files, 332
Chamberlin, Donald D., 158, 227
channels, Apache Flume project, 80
Checkpoint Node daemon

checkpointing updates, 65
defined, 63
master nodes, 318

checkpointing updates
Backup Node daemon, 65
Checkpoint Node daemon, 65
overview, 63–64
Secondary NameNode daemon, 65
Standby NameNode daemon, 65

chgrp command, HDFS, 76
child data mart, 28
chmod command, HDFS, 76
chown command, HDFS, 76

381381 Index

CLAs (command line arguments)
input parsing, 296–300
Sqoop, 289–290

classifications, Apache Mahout, 134–135
classifiers, 36
CLI (Command Line Interface) option,

Oozie server, 142
clickstream logs, 24, 26
client ecosystem, HBase, 203–206
clients, Hive

Hive CLI client, 234–236
HWI Server, 236–238
SQuirreL SQL, 238–240

Cloudera distribution, 18
Cloudera Impala, 309
Cloudera Impala component, Hue, 350, 353
Cloudera Search component, Hue, 349, 353
Cloudera University, 363–364
-clrQuota option, dfsadmin command, 341
cluster architecture

fully distributed mode, 44
pseudo-distributed mode, 44

cluster configurations
large, 330
medium, 329–330
small, 329

cluster of nodes (fully distributed mode),
cluster architecture, 44

Cluster Replication feature, HBase, 218
clustering, Apache Mahout, 133
clusters

Apache Ambari, 351–352
balancing, 336–340
Capacity Scheduler, 346–347
compute, 13
configuration, 355–357
defined, 13
dfsadmin command options, 340–341
Hadoop shell, 354
Hue, 349–351, 352–354
Kerberos Protocol, 348
performance factors, 342–344
tolerating faults and data reliability,

344–345
Codd, Edgar F., 158, 227

codecs
Bzip2, 71, 72
defined, 70
Gzip, 71, 72
LZO, 71–72, 220
Snappy, 71, 72

cold data, queryable archive of, 168–171
collaborative filtering, Apache Mahout, 133
collector nodes, Apache Flume project, 81
column families, HBase, 184
column family stores, NoSQL, 159
column qualifiers, HBase, 184
Combiner class, MapReduce, 95
command line arguments (CLAs)

input parsing, 296–300
Sqoop, 289–290

Command Line Interface (CLI) option,
Oozie server, 142

command-line parameters, Oozie
workflows, 151

committers, 373
commodity hardware, 13, 186, 195, 215
compactions, HBase, 189–190, 225–226
complex data types, Pig, 122
Comprehensive R Archive Network

(CRAN), 135
compressing data

HBase, 219–220
HiveQL, 267–268
overview, 69–72

compute cluster, 13
compute nodes, 13
--config confdir option, HDFS, 73
config-default.xml file, Oozie

workflows, 151
configuring

clusters, 355–357
Oozie workflows, 151

connectors, Sqoop, 271–272
consistency

HBase, 211
relational database systems, 160, 162

container resource leases, 110
container service, slave nodes, 322–323
containers, 110

382 Hadoop For Dummies

control flow language, 117
coordinator jobs, Oozie

defined, 140
running, 154
time and data availability-based

scheduling, 153
time-based scheduling, 152–153

coprocessors, HBase, 191–192
copyFromLocal command, HDFS, 76
copyToLocal command, HDFS, 76
cost

data compression, 70
Google scale-up architecture model, 53
Hadoop, 317–318, 372

count command, HDFS, 76
cp command, HDFS, 77
CRAN (Comprehensive R Archive

Network), 135
CTAS (Create Table As Select), Hive,

258–259
Cutting, Doug, 13
Cygwin, 195
-D <property=value> argument,

Sqoop, 294

• D •
daemonlog command, 336–337
daemons, 58, 63, 65, 87–88. See also names

of specific daemons; RegionServers;
services

DAG (directed acyclic graph), 139
data access patterns, HBase, 220–222
data blocks

disk failure, 57
overview, 55–56
replicating, 56–57
slave nodes, 57

data classifiers, 36
data compression. See compressing data
data definition language (DDL), Hive, 235,

243–250
data discovery, 175–177
data exhaust, 24–25
data flow sequences, Pig Latin script, 119
data integration tools, 375

data manipulation language, Hive. See
DML, Hive

data playground, 12
data preprocessing engine, Hadoop as,

172–174
data processing

Application Programming Interface,
104, 105

distributed storage, 104, 105
framework, 104, 105
JobTracker, 105
MapReduce, 106–107
real-time applications, 113
resource management, 104, 105
separation of concerns concept, 104
streaming applications, 113
TaskTracker, 105–106
YARN, 108–113

data reliability, clusters, 344–345
data scientists, 12, 175
data structures, 12
data transformation, 172
data types
ARRAY, 260
Hive, 240–242
Pig Latin script, 121–122
SQL, 305
STRUCT, 260

data warehouse. See DW
databases, Hive, 243
dataflow language, 117
datanode command, 337
DataNode service, slave nodes, 15, 58, 322
dcat command, HDFS, 76
DDI (denormalization, duplication and

intelligent keys) principles, 212–214
DDL (data definition language), Hive, 235,

243–250
DDSS (distributed data storage system),

179. See also HBase
decision nodes, Oozie workflows, 144–145
declarative query language, 115, 303
definitions, Oozie workflows

action nodes, 145–150
decision nodes, 144–145
end nodes, 143–144

383383 Index

fork modes, 150–151
join modes, 150–151
kill nodes, 144
overview, 143
start nodes, 143–144

denormalization, duplication and intelligent
keys (DDI) principles, 212–214

deploying Hadoop
alternate deployment form factors,

331–332
cluster configurations, 328–330
cost of ownership, 317–318
edge nodes, 326–328
HBase, 217
master nodes, 318–321
networking, 328
overview, 315–316
server form factors, 317
sizing cluster, 332–333
slave nodes, 321–326

Derby RDBMS, 230
design

NameNode daemon, 63
Pig Latin script, 119–120
slave nodes, 59–60

development cluster, 44. See also clusters
dfsadmin command, 337, 340–341
directed acyclic graph (DAG), 139
disk failure, 57
distributed data storage system (DDSS), 179.

See also HBase
distributed storage

data processing, 104, 105
YARN, 108

distributions
BigInsights, 310
choosing, 41–43
Cloudera, 18
EMC, 18
Hortonworks, 19
IBM, 19
Intel, 20
MapR, 20

DML (data manipulation language), Hive
CTAS, 258–259
INSERT command, 255–258
LOAD DATA command, 251–255

document stores, NoSQL, 159–160

downloading
Bigtop, 47
VM, 46–47

Dremel (Google), 307–308
Drill (Apache), 308–309
driver application, FlightsByCarrier

application, 96–97
Driver component, MapReduce, 94
drivers

SQL Access, 304
Sqoop, 271–272

du command, HDFS, 77
DUMP operator, 121
durability

HBase, 211
relational database systems, 160

DW (data warehouse)
data discovery, 175–177
Hadoop as data preprocessing engine,

172–174
landing zone, 166–168
modernization, 27–28
queryable archive of cold data, 168–171
Sqoop, 271

• E •
ecosystem, Hadoop

Ambari project, 15
Avro project, 15
Flume project, 15
HBase project, 15
HCatalog project, 15
Hive project, 16
Hue project, 16
Mahout project, 16
Oozie project, 16
Pig project, 16
Sqoop project, 16
ZooKeeper project, 16

edge nodes
Oozie workflows, 140
overview, 326–327
recommended memory, 327
recommended networking, 327–328
recommended processors, 327
recommended storage, 327

384 Hadoop For Dummies

edits file
checkpointing process, 64
overview, 60–61

EDW (enterprise data warehouse)
augmentation, 228

EL (Expression Language) expressions, 145
embedded mode, 230
Embedded packaging method, Pig

programs, 126
EMC distribution, 18
end nodes, Oozie workflows, 143–144
end-of-row (EoR) switches, 328
enterprise data warehouse (EDW)

augmentation, 228
EoR (end- of-row) switches, 328
epoch (Unix time), 184
equi-joins, 261
ETL (extract, transform, and load)

technology, 120, 172, 174, 228
events, Apache Flume project, 80
expense

data compression, 70
Google scale-up architecture model, 53
Hadoop, 317–318, 372

exporting data with Sqoop
with call stored procedures, 295–296
from HDFS, 291–293
with INSERT statements, 293–294
overview, 290–291
transactions and, 296
with UPDATE statements, 295

Expression Language (EL) expressions, 145
expunge command, HDFS, 77
extract, transform, and load (ETL)

technology, 120, 172, 174, 228

• F •
fault tolerance, HBase, 194
faults, cluster, 344–345
federation, HDFS, 65–66
fencing process, 345
FGAC (Fine-Grained Access Control), 310
File Browser component, Hue, 349, 353
file formats, Hive tables, 244–246
file permission types, HDFS, 75

File System (FS), 149–150
-finalizeUpgrade option, dfsadmin

command, 341
financial services sector (FSS), 31
Fine-Grained Access Control (FGAC), 310
flight data set (Airline On-time

Performance data set), 48–49
FlightsByCarrier application

driver application, 96–97
mapper code, 98–99
reducer code, 99–100
running, 100–102

Flume project, 15, 80–82
FOREACH statement, 121
fork modes, Oozie workflows, 150–151
frameworks

data processing, 104, 105
R language, 137
YARN, 108

fraud detection, 29–31
FS (File System), 149–150
fs command, HDFS, 74
fsck line command, HDFS, 73
fsimage file

checkpointing process, 64
overview, 60–61

FSS (financial services sector), 31
fully distributed mode (cluster of nodes),

cluster architecture, 44
functions, HiveQL, 268

• G •
Ganglia, HBase, 218
gateway nodes. See edge nodes
GENERATE statement, 121
get command, HDFS, 77
getmerge command, HDFS, 78
GFS (Google File System), 14, 54, 307,

368–369
Giraph, 38, 163–165
Google BigTable. See BigTable, HBase
Google Dremel, 307–308
Google File System (GFS), 14, 54, 307,

368–369
Google scale-up architecture model, 53–54

385385 Index

grammar-based approach, 33
graph analysis, 38–39
graph databases, NoSQL, 160
GROUP statement, Pig script, 121
Grunt shell, Pig programs, 126
guided analytics, 175
Gzip codec, 71, 72, 220

• H •
Hadapt, 22, 311–312
Hadapt Development Kit (HDK), 22
Hadoop. See also deploying Hadoop

big data and, 10–12
comparing distributions, 18–20
data block size, 55
data warehouse modernization, 27–28
ecosystem, 15–16
fraud detection, 29–31
graph analysis, 38–39
Hadoop distributed file system, 15
history of, 14
image classification, 36–38
in-database MapReduce, 21
log data analysis, 24–27
MapReduce, 13–15
release series, 17
risk modeling, 31–32
social sentiment analysis, 32–36
toolbox, 21–22

Hadoop Distributed File System. See HDFS
Hadoop for dummies environment

Airline On-time Performance data set
(flight data set), 48–49

Bigtop, 45–46
downloading Bigtop, 47
downloading VM, 46–47
installing Bigtop, 47–48
overview, 44–45
starting Hadoop, 48

hadoop hdfs dfs -help command,
HDFS, 75

Hadoop Process Definition Language
(hPDL) schema, 143

Hadoop shell, 354
Hadoop Streaming, 95

Hadoop Summit, 367–368
Hadoop User Experience (Hue), 16, 231,

349–351, 352–354
HADOOP_HOME/conf directory, 355
HadoopDB, 21
hardware

commodity, 13
optimization of, 376–377
slave node criteria, 324

HAWQ (Pivotal Hadoop With Query)
product, 311

HBase
architecture, 186
client ecosystem, 203–206
column families, 184
column qualifiers, 184
compactions, 189–190, 225–226
compared to RDBMS storage, 163–165
data access patterns, 220–222
defined, 15
deployment, 217
distributed, 181–182
hardware requirements, 215–217
importing data with Sqoop, 281–284
Java API client example, 206–209
key value pairs, 185–186
multidimensional sorted map, 182
MasterServer, 190–192
overview, 179–180
persistent, 181–182
pre-splitting regions, 222–223
RDBMS and, 209–214
RegionServers, 187–190
row key design, 223–225
row keys, 183
SerDe technology, 246–250
sparse data, 180–181
test run, 195–203
tuning, 218–220
versions, 184–185

HBase Browser component, Hue, 349, 353
HCatalog project, 15
HDFS (Hadoop Distributed File System)

checkpointing updates, 63–65
chgrp command, 76
chmod command, 76

386 Hadoop For Dummies

HDFS (Hadoop Distributed File System)
(continued)

chown command, 76
--config confdir option, 73
copyFromLocal command, 76
copyToLocal command, 76
count command, 76
cp command, 77
data blocks, 55–57
dcat command, 76
defined, 15
du command, 77
exporting data with Sqoop, 291–293
expunge command, 77
federation, 65–66
file permission types, 75
fs command, 74
fsck line command, 73
get command, 77
getmerge command, 78
hadoop hdfs dfs -help command, 75
high availability solution, 66–67
importing data with Sqoop, 273–280
ls command, 74, 78
lsr command, 78
managing files with, 72–79
master nodes, 60–63
mkdir command, 74, 78
moveFromLocal command, 78
mv command, 78
overview, 53–54
put command, 74, 78
replication factor, 75
rm command, 75, 79
rmr command, 79
scheme name, 73
setrep command, 79
slave nodes, 58–60
stat command, 79
supergroups, 75
superusers, 75
tail command, 79
test command, 79
text command, 79
touchz command, 79
uniform resource identifiers (URIs), 73
as user-space-level file system, 58

HDK (Hadapt Development Kit), 22
heartbeat, DataNode service, 344–345
-help option, dfsadmin command, 341
HFile objects, 188–189
hierarchical queues, 346
high availability solution, HDFS, 66–67
Hive

architecture, 229–231
clients, 234–240
compared to RDBMS storage, 163–165
data definition language, 243–250
data manipulation language, 251–259
data types, 240–242
HBase and, 204
HiveQL, 260–267
importing data with Sqoop, 280–281
overview, 227–229
setting up, 231–234
SQL access and, 305, 307
workflows and, 148

Hive CLI client, 234–236
Hive project, 16
Hive Query Language. See HiveQL
Hive Thrift Server, 231
Hive Web Interface (HWI) Server, 234,

236–238
HiveQL (Hive Query Language)

data compression, 267–268
functions, 268
improving queries with indexes, 262–264
joining tables, 260–262
multi-user locking, 267
overview, 137
security, 267
windowing, 264–267

HiveServer2, 240
HMaster service, master nodes, 319
Hortonworks distribution, 19
Hortonworks University, 363
host languages, 127
hot (active) data, 168–169
hotspotting, 225
Hoya Application Master, 323
hPDL (Hadoop Process Definition

Language) schema, 143
hrider client, HBase, 206
HSQLDB (Hyper SQL Data Base), 287

387387 Index

Hue (Hadoop User Experience), 16, 231,
349–351, 352–354

HWI (Hive Web Interface) Server, 234,
236–238

Hyper SQL Data Base (HSQLDB), 287

• I •
IBM Big Data Hub, 367
IBM Big SQL, 309–311
IBM BigInsights Big R technology, 137–138
IBM distribution, 19
IBM Multimedia Analysis and Retrieval

System (IMARS), 37
image classification, 36–38
imagery databases, 181
IMARS (IBM Multimedia Analysis and

Retrieval System), 37
Impala (Cloudera), 309
imperative scripts, 115
importing data with Sqoop

into HBase, 281–284
into HDFS, 273–280
into Hive, 280–281
import options, 288–290
Incremental import append mode, 285–287
Incremental import lastmodified mode,

287–288
overview, 272–273
sqoop merge tool, 288

Incremental import append mode, Sqoop,
285–287

Incremental import lastmodified mode,
Sqoop, 287–288

in-database MapReduce, 21
indexes, HiveQL, 262–264
input parsing CLAs, Sqoop, 296–300
input splits, MapReduce, 87–89
INSERT command, Hive, 255–258
INSERT statements, 293–294
Intel distribution, 20
interfaces

API, 104, 105, 108
HWI Server, 234, 236–238
Pig programming language, 126

isolation
HBase, 211
relational database systems, 160

isql utility, 231

• J •
Java API option, Oozie server, 141
Java Client, 188, 205, 206–209
Java Management Extensions (JMX)

technology, 218
Java Virtual Machine (JVM), 106, 219, 230
JBOD (Just a Bunch Of Disks), 324
JConsole tool, HBase, 218
JMX (Java Management Extensions)

technology, 218
Job Browser component, Hue, 350, 353
Job Designer component, Hue, 349, 353
Job History Server, YARN, 111
job queues, 346
job.properties file, Oozie

workflows, 151
jobtracker command, 339
JobTracker service, 14, 105, 318
join modes, Oozie workflows, 150–151
joins, Hive, 260–262
JournalNode service, master nodes, 318
JRuby, 205–206
Just a Bunch Of Disks (JBOD), 324
JVM (Java Virtual Machine), 106, 219, 230

• K •
Karmasphere, 22
KDC (key distribution center), 348
Kerberos Protocol, 348
key distribution center (KDC), 348
key/value pairs, MapReduce

HBase, 185–186
Map phase, 89–91
Reduce phase, 93–94
Shuffle phase, 91–93

key-value stores, NoSQL, 159
kill nodes, Oozie workflows, 144
Kimball, Aaron, 270

388 Hadoop For Dummies

• L •
landing zone, data warehouse, 166–168
language standards, SQL Access, 304
large cluster configurations, 330
large form-factor (LFF) drives, 324
latencies, 260
lazy evaluation (call-by-need) principle, 124
Lempel-Ziv-Oberhumer (LZO) codec,

71–72, 220
LFF (large form-factor) drives, 324
Linux

data block size, 55
Logical Volume Manager, 60

LOAD DATA command, Hive, 251–255
LOAD operator, Pig Latin script, 124
LOAD statement, Pig Latin script, 121
local mode, Pig programming language,

125–126, 230
log data analysis, 24–27
Logical Volume Manager (LVM), 60
ls command, HDFS, 74, 78
lsr command, HDFS, 78
Lucene project (Apache), 14
LVM (Logical Volume Manager), 60
LZO (Lempel-Ziv-Oberhumer) codec,

71–72, 220

• M •
machine learning

classifications, 134–135
clustering, 133
collaborative filtering, 133
overview, 131–133

Mahout, 16, 131–135
major compactions, HBase, 190, 225–226
Map phase, MapReduce, 14, 85, 89–91
map tasks, Sqoop, 270
map-only job, MapReduce, 93
Mapper class, MapReduce, 94
mapper code, FlightsByCarrier application,

98–99
MapR distribution, 20
mapred.map.output.compress.codec

property, 91

MapReduce
abstractions, 115
application flow, 87
distributed processing with, 13–15
HBase and, 204
importance of, 85–86
input splits, 87–89
key/value pairs, 89–93
launching application, 106–107
parallelism, data processing, 83–85
running statistical analysis models in, 131
workflows and, 146–147
writing applications, 94–102

MapReduce mode, Pig programming
language, 125–126

maps (associative arrays), 122, 182
massively parallel processing (MPP)

databases, 306
master nodes

Checkpoint (backup) node service, 318
defined, 13
HMaster service, 319
JobTracker service, 318
JournalNode service, 318
NameNode daemon, 60–63
NameNode service, 318
recommended memory, 321
recommended networking, 321
recommended processors, 321
recommended storage, 320
Resource Manager service, 318
Zookeeper service, 319

master services
Hadoop distributed file system, 15
JobTracker, 14

MasterServer, HBase, 190–192, 217
maximum capacity, job queues, 346
medium cluster configurations, 329–330
memory, recommended

edge nodes, 327
master nodes, 320
slave nodes, 325

MemStore cache, HBase, 188
.META catalog table, HBase, 191
-metasave filename option, dfsadmin

command, 341

389389 Index

Metastore Manager component, Hue,
350, 353

minor compactions, HBase, 189–190
mkdir command, HDFS, 74, 78
moveFromLocal command, HDFS, 78
MPP (massively parallel processing)

databases, 306
mradmin command, 338
MRBench benchmark, 343
multidimensional sorted map, HBase, 182
multi-homed computer, 327
Multi-Language Thrift System, 204
multi-user locking, HiveQL, 267
mutable data, SQL Access, 305
mv command, HDFS, 78

• N •
Nagios, HBase, 218
name identifiers, action nodes, 144
namenode command, 339
NameNode daemon

balancing data, 62–63
defined, 15
design, 63
master nodes, 318
reading data, 62
startup and operation, 60–61
writing data, 62

natural language processing (NLP), 179–180
Neo4j graph database, 38
Netflix, 133
Network Time Protocol (NTP), 219
networking

edge nodes, 327–328
Hadoop, 328
slave nodes, 325–326

NLP (natural language processing), 179–180
NNBench benchmark, 343
NodeManager service

slave nodes, 321
YARN, 109–110

nodes, 13. See also names of specific nodes
nonvolatile storage, 160
normalization, database, 260

normalized databases (schemas), 260
NoSQL data stores, relational databases,

159–160
NTP (Network Time Protocol), 219
null values, Pig Latin script, 122
Nutch project (Apache), 14

• O •
ODBC (Open Database Connectivity), 231
Oozie Editor and Dashboard component,

Hue, 350, 353
Oozie Web Console option, Oozie

server, 142
Oozie workflow scheduler

defined, 16
overview, 139–140
setting up, 140–142
workflows, 142–154

Open Database Connectivity (ODBC), 231
open source fidelity, 43
open source software, 14
operational expenditure (OPEX), 31
operators, Pig Latin script, 123–124
OPEX (operational expenditure), 31
ORCFile format, 305
Orchestrator platform, Zettaset, 22
output line formatting, Sqoop, 296–300
overreplicated data blocks, 57
ownership, cost of, 317–318

• P •
pain points, business, 24
parallelism, data processing, 56,

83–85
Parquet file format, 309
partition tolerance, relational database

systems, 162
Partitioner class, MapReduce, 95
performance factors

benchmarking, 343–344
hardware, 342
MapReduce, 342

persistent HBase, 181–182

390 Hadoop For Dummies

petabyte scale, data storage, 55
Pig Editor component, Hue, 350, 353
Pig Latin compiler, 117, 119
Pig Latin script

application flow, 117–119
data types, 121–122
design principles, 119–120
structures, 120–121
syntax, 123–124

Pig programming language
Airline On-time Performance data set

(flight data set) example, 49–50
defined, 16
embedding in host languages, 127
HBase and, 204
interfaces, 126
Local mode, 125–126
MapReduce (Hadoop) mode, 125–126
overview, 116–117
Pig Latin compiler, 117
Pig Latin script, 117–124
user-defined functions, 127
workflows and, 148–149

Pivotal Hadoop With Query (HAWQ)
product, 311

planet Big Data Blog Aggregator, 366
PMC (Project Management Committee), 373
pre-splitting regions, HBase, 222–223
processing power, data warehouse, 28
processors, recommended

edge nodes, 327
master nodes, 321
slave nodes, 325

production cluster, 44
programming language. See also Pig

programming language
declarative query language, 115
Hive, 115
imperative scripts, 115
MapReduce abstractions, 115
SQL, 115–116

Project Management Committee
(PMC), 373

pseudo-distributed mode (single node),
cluster architecture, 44

put command, HDFS, 74, 78

• Q •
queries, Hive, 262–264
Quora Apache Hadoop forum, 367

• R •
R language

Hadoop integration with, 136
IBM BigInsights Big R technology, 137–138
overview, 135
Revolution R, 137
RHadoop framework, 137
RHive framework, 137

Rack servers, 317
RDBMS (relational database management

system). See also data warehouse;
Sqoop

ACID compliance, 160–161
BASE data store, 161–162
CAP theorem, 162
compared to Hadoop-based storage,

164–165
governance requirements, 24
HBase and, 209–214
integrating Hadoop with, 269–270
NoSQL data stores, 159–160
structured data storage and processing,

162–165
read parallelism, 336
reading data

Apache Flume, 80–82
data compression, 69–72
managing files with HDFS, 72–79
NameNode daemon, 62

real-time access, SQL Access, 305
record formats, Hive tables, 246–249
RecordReader class, MapReduce, 95
RecordWriter class, MapReduce, 95
Red Hat, 18
Reduce phase, MapReduce, 14, 85, 93–94
Reducer class, MapReduce, 95
reducer code, FlightsByCarrier application,

99–100
redundancy, slave nodes, 59

391391 Index

-refreshNodes option, dfsadmin
command, 341

RegionServers
HBase, 187–190, 215–217
hotspotting, 225
slave nodes, 322

relational database management system.
See RDBMS

release series, 17
remote mode, 230
replicating data blocks, 56–57
replication factor, HDFS, 75
- report option, dfsadmin command, 340
repository file, 47
Representational State Transfer (REST), 352
resource management

data processing, 104, 105
YARN, 15, 108

Resource Manager service, master
nodes, 318

Resource Manager, YARN, 109
resources

Apache.org, 362
BigDataUniversity.com, 365–366
Cloudera University, 363–364
configuration files, 355
Google File System, 368–369
Hadoop Summit, 367–368
Hortonworks University, 363
IBM Big Data Hub, 367
planet Big Data Blog Aggregator, 366
Quora Apache Hadoop forum, 367
Strata Hadoop World, 367–368
Twitter, 362

REST (Representational State Transfer)
System, 205, 352

REST API option, Oozie server, 141
-restoreFailedStorage option,

dfsadmin command, 341
Revolution R, 137
RHadoop framework, 137
rhbase package, RHadoop framework, 137
rhdfs package, RHadoop framework, 137
RHive framework, 137
risk modeling, 31–32
rm command, HDFS, 75, 79

rmr command, HDFS, 79
rmr2 package, RHadoop framework, 137
-ROOT- catalog table, HBase, 191
row keys, HBase, 183, 223–225
rules-based approach, social sentiment

analysis, 33
-safemode option, dfsadmin command,

340–341

• S •
sampling data

fraud detection and, 29
statistical analysis, 130

sandbox zone, analytics, 175
scalar data types, Pig, 122
scale-up architecture model, 53–54
scaling out, 374–375
schemas (normalized databases), 260
scheme name, HDFS, 73
Script packaging method, Pig programs, 126
SDK (System Development Kit), Hue, 354
secondary namenode command, 340
Secondary NameNode daemon

checkpointing updates, 65
defined, 63

secondary sort, MapReduce, 91
security

HiveQL, 267
Kerberos Protocol, 348

semistructured data, 12
separation of concerns concept, 104
SerDe (Serializer Deserializer) technology

AvroSerDe, 247
ColumnarSerDe, 247
defined, 246
HBaseSerDe, 247, 249–250
JSONSerDe, 247
LazySimpleSerDe, 247
RegexSerDe, 247

server form factors, 317
service server (SS), 348
services

Application Master, 87–88
Backup Node, 63, 65
Checkpoint Node, 63

392 Hadoop For Dummies

services (continued)
DataNode, 58
Secondary NameNode, 63
Standby NameNode, 63

sessionization, 26
-setQuota option, dfsadmin

command, 341
setrep command, HDFS, 79
setting up environment

choosing cluster architecture, 44
choosing distribution, 41–43
Hadoop for dummies, 44–49
running program, 49–50

sharding, 211
SHOW FUNCTIONS HiveQL command, 268
Shuffle and Sort phase, MapReduce key/

value pairs, 85, 91–93
single node (pseudo-distributed mode),

cluster architecture, 44
single point of failure (SPOF), 377
sinks, Apache Flume project, 80
sizing cluster, 332–333
slave nodes

ApplicationMaster service, 321
container model, 322–323
Container service, 322
DataNode service, 322
defined, 13
design, 59–60
disk failure and, 57
hardware criteria, 324
NodeManager service, 321
overview, 58–59
recommended memory, 325
recommended networking, 325–326
recommended processors, 325
recommended storage, 324
redundancy, 59
RegionServer service, 322
TaskTracker service, 322

slave services
Hadoop distributed file system, 15
TaskTrackers, 14

slots, 110
small cluster configurations, 329
SMP (symmetric multi-processing), 129, 131
Snappy codec, 71, 72, 220

social sentiment analysis, 32–36
software requirements, downloading VM, 46
sources, Apache Flume project, 80
sparse data, HBase, 180–181
spatially enriched, big data, 34
speculative execution, MapReduce, 92
splittable compression, 70
SPOF (single point of failure), 377
SQL. See also SQL access

Apache Drill, 308–309
Cloudera Impala, 309
Google Dremel, 307–308
Hadapt, 311–312
IBM Big SQL, 309–311
overview, 303–304
Pivotal Hadoop With Query (HAWQ)

product, 311
SQL access

Apache Hive and, 305, 307
overview, 304–305

SQL language, 115–116
Sqoop. See also importing data with Sqoop

archiving data, 170
connectors, 271–272
defined, 16
drivers, 271–272
exporting data, 290–296
input parsing CLAs, 296–300
output line formatting, 296–300
overview, 269–270
principles of, 270–271
version 2.0, 301–302

Sqoop 2 component, Hue, 350, 353
sqoop merge tool, 288
SQuirreL SQL client, 238–240
SS (service server), 348
standalone mode, HBase, 195
Standby NameNode daemon, 63, 65–67
start nodes, Oozie workflows, 143–144
starting Hadoop, 48
stat command, HDFS, 79
statistical analysis

factors that increase scale of, 130–131
machine learning, 131–135
overview, 129
packages, 375
R language, 135–138

393393 Index

running models in MapReduce, 131
sampling, 130

statistics-based approach, social sentiment
analysis, 33

storage, recommended
edge nodes, 327
master nodes, 320
slave nodes, 324

stored procedure, 296
storing data. See HDFS
Storm, 113
Strata Hadoop World, 367–368
STRUCT data type, 260
structural limitations, Google scale-up

architecture model, 54
structured data, 12, 27, 162–165
structures, Pig Latin script, 120–121
supergroups, HDFS, 75
superusers, HDFS, 75
supervised learning, 134
symmetric multi-processing (SMP),

129, 131
syntax, Pig Latin script, 123–124
System Development Kit (SDK), Hue, 354

• T •
table sampling technique, 257
tables, Hive

defining table file formats, 244–246
defining table record formats, 246–249
SerDe technology, 249–250

tail command, HDFS, 79
tasktracker command, 340
TaskTracker service, 14, 105–106, 322
TeraSort benchmark, 343
test command, HDFS, 79
TestDFSIO benchmark, 343
text analysis, social sentiment analysis, 33
text command, HDFS, 79
Tez (Apache), 113, 230
threads, 131
ticket-granting server (TGS), 348
ticket-granting ticket (TGT), 348
time and data availability-based scheduling,

Oozie coordinator jobs, 153
time to live (TTL) variable, HBase, 185, 190

time-based scheduling, Oozie coordinator
jobs, 152–153

tools
Amazon Elastic MapReduce (Amazon

EMR) web service, 21–22
Apache Ambari, 351–352
Hadapt, 22
Hadoop shell, 354
Hadoop User Experience (Hue), 351–352,

352–354
Karmasphere, 22
WANdisco, 22
Zettaset, 22

ToR (top-of-rack) switches, 328
touchz command, HDFS, 79
transforming data, 123
transitioning, HBase, 211–214
TTL (time to live) variable, HBase, 185, 190
tuning prerequisites, HBase, 218–220
tuples, 122. See also key/value pairs,

MapReduce
Twitter, 34–35, 362

• U •
UDA (User Defined Algorithms) module, 134
UDFs (user-defined functions), Pig

programming language, 127
underreplicated data blocks, 57
uniform resource identifiers (URIs), 73
Unix time (epoch), 184
unixODBC utility, 231
unstructured data, 12
unsupervised learning, 133
UPDATE statements, Sqoop, 295
-upgradeProgress option, dfsadmin

command, 341
URIs (uniform resource identifiers), 73
User Admin component, Hue, 350, 354
User Defined Algorithms (UDA)

module, 134
user-defined functions (UDFs), Pig

programming language, 127
user-space-level file system, HDFS, 58
USING statement, Pig script, 121
utilization level, 336

394 Hadoop For Dummies

• V •
velocity, big data, 10–11
versions

HBase, 184–185
Sqoop 1.0, 17
Sqoop 2.0, 17, 301–302

VM (virtual machine)
defined, 45
downloading, 46–47

volume, big data, 10, 11

• W •
WAL (Write Ahead Log), 188
WANdisco Hadoop Console, 22
WANdisco Non-Stop NameNode solution, 22
warm data, 168–169
watches mechanism, Zookeeper, 194
web-based browsing, 25–27
wget command, 47
windowing, in HiveQL, 264–267
workflows, Oozie

configuring, 151
coordinator jobs, 152–154
overview, 142
running, 151–152
writing definitions, 143–151

Write Ahead Log (WAL), 188
Write Once, Read Often model, HDFS, 54
writing applications, MapReduce, 94–102
writing data

Apache Flume, 80–82
data compression, 69–72
managing files with HDFS, 72–79
NameNode daemon, 62

• X •
XML Process Definition Language (XPDL)

schema, 143
XPDL (XML Process Definition Language)

schema, 143

• Y •
YARN (Yet Another Resource Negotiator)

Application Master daemon, 110
defined, 15
Job History Server, 111
launching application, 111–113
Node Manager, 109–110
overview, 108–109
Resource Manager, 109
workload flexibility and, 377

• Z •
Zettaset, 22
ZFC (Zookeeper Failover Controllers), 67
znodes, 193, 202–203
Zookeeper

defined, 16
HBase, 192–195, 217
HDFS high availability, 67
master nodes, 319
znodes, 193, 202–203

Zookeeper Failover Controllers (ZFC), 67
Zookeeper User Interface component, Hue,

350, 354

About the Authors
Dirk deRoos, B.C.S., B.A., is IBM’s World-Wide Technical Sales Leader for
IBM’s Hadoop offering: BigInsights. Dirk provides technical guidance to IBM’s
technical sales community and helps customers build solutions featuring
BigInsights and Apache Hadoop.

Paul C. Zikopoulos, B.A., M.B.A., is the VP of Big Data and Technical Sales
at IBM. He’s an award winning speaker & writer, penning 18 books and 350+
articles. Independent groups often recognize Paul as a thought leader with
nominations to SAP’s “Top 50 Big Data Twitter Influencers”, Big Data Republic’s
“Most Influential”, Onalytica’s “Top 100”, and AnalyticsWeek “Thought Leader
in Big Data and Analytics” lists. Technopedia listed him as a “Big Data Expert to
Follow” and he was consulted on the topic of Big Data by the popular TV show
60 Minutes.

Bruce Brown, B.Sc. (C.S.), is a Big Data Technical Specialist at IBM, where he
provides training to IBM’s world-wide technical community and helps clients
achieve success with BigInsights and Apache Hadoop.

Rafael Coss, M.C.S., is a Solution Architect and manages IBM’s World Wide
Big Data Enablement team based in IBM Silicon Valley Lab, where he’s respon-
sible for the technical development of partnerships and customer advocates
for IBM’s Big Data portfolio.

Roman B. Melnyk, Ph.D., is a senior member of the IBM DB2 Information
Development team. Roman edited DB2 10.5 with BLU Acceleration: New
Dynamic In-Memory Analytics for the Era of Big Data, Harness the Power of
Big Data: The IBM Big Data Platform, Warp Speed, Time Travel, Big Data, and
More!: DB2 10 for Linux, UNIX, and Windows New Features, and Apache Derby -
Off to the Races. Roman co-authored DB2 Version 8: The Official Guide, DB2:
The Complete Reference, DB2 Fundamentals Certification for Dummies, and
DB2 for Dummies.

Dedication
In memory of Jirard Brown.

Publisher’s Acknowledgments

Senior Acquisitions Editor: Kyle Looper

Senior Project Editor: Paul Levesque

Copy Editor: Becky Whitney

Technical Editor: Myles Brown

Editorial Assistant: Annie Sullivan

Sr. Editorial Assistant: Cherie Case

Project Coordinator: Patrick Redmond

Cover Image: ©iStockphoto.com/JuanDarien

Author’s Acknowledgments
Dirk deRoos: Thanks to my wife, Sandra, and children, Erik and Anna, for
standing behind me as I worked on this project. For technical guidance,
thanks to Stewart Tate, Bill O’Connell, and Shankar Venkataraman.

Paul C. Zikopoulos: Thanks to my precious little girl, Chloe. Today you think
I’m the coolest, smartest person on earth and that BigData is boring — it’s
something that robs you of your Daddy time (though you do call me BigDaDa,
which I like). I’m sure there will come a time where that changes, when I
become uncool and don’t know what I’m talking about; but if at that time
you think Big Data is cool & see its endless possibilities, I would have well
prepped you to make a difference in this world.

Bruce Brown: To my family Jill, Kristin, and Daniel. Thank you for your love
and support. Also to my father Jirard and mother-in-law Mary. I will never
forget your life-long encouragement and grace in trials!

Rafael Coss: To my family: Sandra, Diego, Mariela, and Santiago, you are my
inspiration and I love each of you very much. Honey, thanks for supporting
me through the writing of this book. Mama & Papa, thank you for your love
and support to make this possible. Thanks, Dirk deRoos, for your feedback
and guidance along the way. Also, thanks to Nicolas Morales for feedback.
I want to acknowledge the great IBM Big Data development and enablement
team for their expertise and for teaching me so much about Big Data.

Roman B. Melnyk: Many thanks to my wife, Teresa, and to my children,
Rosemary and Joanna, for their patience, love, and support.

From the whole writing team, thanks to the folks at Wiley who supported
us throughout this project. Writing a book on an emerging technology is
an incredible challenge, and doubly so when massive changes are released
during the authoring process! Thanks in particular to Kyle Looper for
patiently coaching and pushing us to the finish line, and to Paul Levesque
and Rebecca Whitney for their great editorial work.

Start with FREE Cheat Sheets
Cheat Sheets include
	 •	Checklists
	 •	Charts
	 •	Common	Instructions
	 •	And	Other	Good	Stuff!

Get Smart at Dummies.com
Dummies.com makes your life easier with 1,000s
of answers on everything from removing wallpaper
to using the latest version of Windows.

Check out our
	 •	Videos
	 •	Illustrated	Articles
	 •	Step-by-Step	Instructions

Plus, each month you can win valuable prizes by entering
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
	 •	Digital	Photography
	 •	Microsoft	Windows	&	Office
	 •	Personal	Finance	&	Investing
	 •	Health	&	Wellness
	 •	Computing,	iPods	&	Cell	Phones
	 •	eBay
	 •	Internet
	 •	Food,	Home	&	Garden

Find out “HOW” at Dummies.com

*Sweepstakes not currently available in all countries; visit Dummies.com for official rules.

Get More and Do More at Dummies.com®

To access the Cheat Sheet created specifically for this book, go to
www.dummies.com/cheatsheet/hadoop

www.facebook.com/fordummies
www.twitter.com/fordummies

From eLearning to e-books, test prep to test banks,
language learning to video training, mobile apps, and more,

Dummies makes learning easier.

At home, at work, or on the go,
Dummies is here to help you
go digital!

Uploaded by [StormRG]

	Contents at a Glance
	Table of Contents
	Introduction
	About this Book
	Foolish Assumptions
	How This Book Is Organized
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part I: Getting Started with Hadoop
	Chapter 1: Introducing Hadoop and Seeing What It’s Good For
	Big Data and the Need for Hadoop
	The Origin and Design of Hadoop
	Examining the Various Hadoop Offerings

	Chapter 2: Common Use Cases for Big Data in Hadoop
	The Keys to Successfully Adopting Hadoop (Or, “Please, Can We Keep Him?”)
	Log Data Analysis
	Data Warehouse Modernization
	Fraud Detection
	Risk Modeling
	Social Sentiment Analysis
	Image Classification
	Graph Analysis
	To Infinity and Beyond

	Chapter 3: Setting Up Your Hadoop Environment
	Choosing a Hadoop Distribution
	Choosing a Hadoop Cluster Architecture
	The Hadoop For Dummies Environment
	Your First Hadoop Program: Hello Hadoop!

	Part II: How Hadoop Works
	Chapter 4: Storing Data in Hadoop: The Hadoop Distributed File System
	Data Storage in HDFS
	Sketching Out the HDFS Architecture
	HDFS Federation
	HDFS High Availability

	Chapter 5: Reading and Writing Data
	Compressing Data
	Managing Files with the Hadoop File System Commands
	Ingesting Log Data with Flume

	Chapter 6: MapReduce Programming
	Thinking in Parallel
	Seeing the Importance of MapReduce
	Doing Things in Parallel: Breaking Big Problems into Many Bite-Size Pieces
	Writing MapReduce Applications
	Getting Your Feet Wet: Writing a Simple MapReduce Application

	Chapter 7: Frameworks for Processing Data in Hadoop: YARN and MapReduce
	Running Applications Before Hadoop 2
	Seeing a World beyond MapReduce
	Real-Time and Streaming Applications

	Chapter 8: Pig: Hadoop Programming Made Easier
	Admiring the Pig Architecture
	Going with the Pig Latin Application Flow
	Working through the ABCs of Pig Latin
	Evaluating Local and Distributed Modes of Running Pig scripts
	Checking Out the Pig Script Interfaces
	Scripting with Pig Latin

	Chapter 9: Statistical Analysis in Hadoop
	Pumping Up Your Statistical Analysis
	Machine Learning with Mahout
	R on Hadoop

	Chapter 10: Developing and Scheduling Application Workflows with Oozie
	Getting Oozie in Place
	Developing and Running an Oozie Workflow
	Scheduling and Coordinating Oozie Workflows

	Part III: Hadoop and Structured Data
	Chapter 11: Hadoop and the Data Warehouse: Friends or Foes?
	Comparing and Contrasting Hadoop with Relational Databases
	Modernizing the Warehouse with Hadoop

	Chapter 12: Extremely Big Tables: Storing Data in HBase
	Say Hello to HBase
	Understanding the HBase Data Model
	Understanding the HBase Architecture
	Taking HBase for a Test Run
	Getting Things Done with HBase
	HBase and the RDBMS world
	Deploying and Tuning HBase

	Chapter 13: Applying Structure to Hadoop Data with Hive
	Saying Hello to Hive
	Seeing How the Hive is Put Together
	Getting Started with Apache Hive
	Examining the Hive Clients
	Working with Hive Data Types
	Creating and Managing Databases and Tables
	Seeing How the Hive Data Manipulation Language Works
	Querying and Analyzing Data

	Chapter 14: Integrating Hadoop with Relational Databases Using Sqoop
	The Principles of Sqoop Design
	Scooping Up Data with Sqoop
	Sending Data Elsewhere with Sqoop
	Looking at Your Sqoop Input and Output Formatting Options
	Sqoop 2.0 Preview

	Chapter 15: The Holy Grail: Native SQL Access to Hadoop Data
	SQL’s Importance for Hadoop
	Looking at What SQL Access Actually Means
	SQL Access and Apache Hive
	Solutions Inspired by Google Dremel
	IBM Big SQL
	Pivotal HAWQ
	Hadapt
	The SQL Access Big Picture

	Part IV: Administering and Configuring Hadoop
	Chapter 16: Deploying Hadoop
	Working with Hadoop Cluster Components
	Hadoop Cluster Configurations
	Alternate Deployment Form Factors
	Sizing Your Hadoop Cluster

	Chapter 17: Administering Your Hadoop Cluster
	Achieving Balance: A Big Factor in Cluster Health
	Mastering the Hadoop Administration Commands
	Understanding Factors for Performance
	Tolerating Faults and Data Reliability
	Putting Apache Hadoop’s Capacity Scheduler to Good Use
	Setting Security: The Kerberos Protocol
	Expanding Your Toolset Options
	Basic Hadoop Configuration Details

	Part V: The Part of Tens
	Chapter 18: Ten Hadoop Resources Worthy of a Bookmark
	Central Nervous System: Apache.org
	Tweet This
	Hortonworks University
	Cloudera University
	BigDataUniversity.com
	planet Big Data Blog Aggregator
	Quora’s Apache Hadoop Forum
	The IBM Big Data Hub
	Conferences Not to Be Missed
	The Google Papers That Started It All
	The Bonus Resource: What Did We Ever Do B.G.?

	Chapter 19: Ten Reasons to Adopt Hadoop
	Hadoop Is Relatively Inexpensive
	Hadoop Has an Active Open Source Community
	Hadoop Is Being Widely Adopted in Every Industry
	Hadoop Can Easily Scale Out As Your Data Grows
	Traditional Tools Are Integrating with Hadoop
	Hadoop Can Store Data in Any Format
	Hadoop Is Designed to Run Complex Analytics
	Hadoop Can Process a Full Data Set (As Opposed to Sampling)
	Hardware Is Being Optimized for Hadoop
	Hadoop Can Increasingly Handle Flexible Workloads (No Longer Just Batch)

	Index
	About the Authors

