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Introduction

W 
elcome to Hadoop for Dummies! Hadoop is an exciting technology, 
and this book will help you cut through the hype and wrap your 

head around what it’s good for and how it works. We’ve included examples 
and plenty of practical advice so you can get started with your own Hadoop 
cluster.

About this Book
In our own Hadoop learning activities, we’re constantly struck by how little 
beginner-level content is available. For almost any topic, we see two things: 
high-level marketing blurbs with pretty pictures; and dense, low-level, nar-
rowly focused descriptions. What are missing are solid entry-level explanations 
that add substance to the marketing fluff and help someone with little or no 
background knowledge bridge the gap to the more advanced material. Every 
chapter in this book was written with this goal in mind: to clearly explain the 
chapter’s concept, explain why it’s significant in the Hadoop universe, and 
show how you can get started with it.

No matter how much (or how little) you know about Hadoop, getting started 
with the technology is not exactly easy for a number of reasons. In addition 
to the lack of entry-level content, the rapid pace of change in the Hadoop eco-
system makes it difficult to keep on top of standards. We find that most dis-
cussions on Hadoop either cover the older interfaces, and are never updated; 
or they cover the newer interfaces with little insight into how to bridge the 
gap from the old technology. In this book, we’ve taken care to describe the 
current interfaces, but we also discuss previous standards, which are still 
commonly used in environments where some of the older interfaces are 
entrenched.

Here are a few things to keep in mind as you read this book:

 ✓ Bold text means that you’re meant to type the text just as it appears in 
the book. The exception is when you’re working through a steps list: 
Because each step is bold, the text to type is not bold.

 ✓ Web addresses and programming code appear in monofont. If you’re 
reading a digital version of this book on a device connected to the 
Internet, note that you can click the web address to visit that website, 
like this: www.dummies.com



2 Hadoop For Dummies 

Foolish Assumptions
We’ve written this book so that anyone with a basic understanding of com-
puters and IT can learn about Hadoop. But that said, some experience with 
databases, programming, and working with Linux would be helpful.

There are some parts of this book that require deeper skills, like the Java 
coverage in Chapter 6 on MapReduce; but if you haven’t programmed in Java 
before, don’t worry. The explanations of how MapReduce works don’t require 
you to be a Java programmer. The Java code is there for people who’ll want 
to try writing their own MapReduce applications. In Part 3, a database back-
ground would certainly help you understand the significance of the various 
Hadoop components you can use to integrate with existing databases and 
work with relational data. But again, we’ve written in a lot of background to 
help provide context for the Hadoop concepts we’re describing.

How This Book Is Organized
This book is composed of five parts, with each part telling a major chunk 
of the Hadoop story. Every part and every chapter was written to be a self-
contained unit, so you can pick and choose whatever you want to concentrate 
on. Because many Hadoop concepts are intertwined, we’ve taken care to refer 
to whatever background concepts you might need so you can catch up from 
other chapters, if needed. To give you an idea of the book’s layout, here are 
the parts of the book and what they’re about:

Part I: Getting Started With Hadoop
As the beginning of the book, this part gives a rundown of Hadoop and its 
ecosystem and the most common ways Hadoop’s being used. We also show 
you how you can set up your own Hadoop environment and run the example 
code we’ve included in this book.

Part II: How Hadoop Works
This is the meat of the book, with lots of coverage designed to help you under-
stand the nuts and bolts of Hadoop. We explain the storage and processing 
architecture, and also how you can write your own applications.
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Part III: Hadoop and Structured Data
How Hadoop deals with structured data is arguably the most important 
debate happening in the Hadoop community today. There are many competing 
SQL-on-Hadoop technologies, which we survey, but we also take a deep look 
at the more established Hadoop community projects dedicated to structured 
data: HBase, Hive, and Sqoop.

Part IV: Administering and  
Configuring Hadoop
When you’re ready to get down to brass tacks and deploy a cluster, this part 
is a great starting point. Hadoop clusters sink or swim depending on how 
they’re configured and deployed, and we’ve got loads of experience-based 
advice here.

Part V: The Part Of Tens: Getting More  
Out of Your Hadoop Cluster
To cap off the book, we’ve given you a list of additional places where you can 
bone up on your Hadoop skills. We’ve also provided you an additional set of 
reasons to adopt Hadoop, just in case you weren’t convinced already.

Icons Used in This Book
 The Tip icon marks tips (duh!) and shortcuts that you can use to make working 

with Hadoop easier.

 Remember icons mark the information that’s especially important to know. 
To siphon off the most important information in each chapter, just skim 
through these icons.
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 The Technical Stuff icon marks information of a highly technical nature that 
you can normally skip over.

 The Warning icon tells you to watch out! It marks important information that 
may save you headaches.

Beyond the Book
We have written a lot of extra content that you won’t find in this book. Go 
online to find the following:

 ✓ The Cheat Sheet for this book is at

www.dummies.com/cheatsheet/hadoop

  Here you’ll find quick references for useful Hadoop information we’ve 
brought together and keep up to date. For instance, a handy list of the 
most common Hadoop commands and their syntax, a map of the various 
Hadoop ecosystem components, and what they’re good for, and listings 
of the various Hadoop distributions available in the market and their 
unique offerings. Since the Hadoop ecosystem is continually evolving, 
we’ve also got instructions on how to set up the Hadoop for Dummies 
environment with the newest production-ready versions of the Hadoop 
and its components.

 ✓ Updates to this book, if we have any, are at

www.dummies.com/extras/hadoop

 ✓ Code samples used in this book are also at

www.dummies.com/extras/hadoop

  All the code samples in this book are posted to the website in Zip format; 
just download and unzip them and they’re ready to use with the Hadoop 
for Dummies environment described in Chapter 3. The Zip files, which are 
named according to chapter, contain one or more files. Some files have 
application code (Java, Pig, and Hive) and others have series of com-
mands or scripts. (Refer to the downloadable Read Me file for a detailed 
description of the files.) Note that not all chapters have associated code 
sample files.
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Where to Go from Here
If you’re starting from scratch with Hadoop, we recommend you start at the 
beginning and truck your way on through the whole book. But Hadoop does 
a lot of different things, so if you come to a chapter or section that covers an 
area you won’t be using, feel free to skip it. Or if you’re not a total newbie, 
you can bypass the parts you’re familiar with. We wrote this book so that you 
can dive in anywhere.

If you’re a selective reader and you just want to try out the examples in the 
book, we strongly recommend looking at Chapter 3. It’s here that we describe 
how to set up your own Hadoop environment in a Virtual Machine (VM) that 
you can run on your own computer. All the examples and code samples were 
tested using this environment, and we’ve laid out all the steps you need to 
download, install, and configure Hadoop.
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Part I
Getting Started  

with Hadoop

 Visit www.dummies.com for great Dummies content online.



In this part . . .
 ✓ See what makes Hadoop-sense — and what doesn’t.

 ✓ Look at what Hadoop is doing to raise productivity in the real 
world.

 ✓ See what’s involved in setting up a Hadoop environment

 ✓ Visit www.dummies.com for great Dummies content 
online.



Chapter 1

Introducing Hadoop and Seeing 
What It’s Good For

In This Chapter
▶ Seeing how Hadoop fills a need

▶ Digging (a bit) into Hadoop’s history

▶ Getting Hadoop for yourself

▶ Looking at Hadoop application offerings

O 
rganizations are flooded with data. Not only that, but in an era of incred-
ibly cheap storage where everyone and everything are interconnected, 

the nature of the data we’re collecting is also changing. For many businesses, 
their critical data used to be limited to their transactional databases and data 
warehouses. In these kinds of systems, data was organized into orderly rows 
and columns, where every byte of information was well understood in terms 
of its nature and its business value. These databases and warehouses are still 
extremely important, but businesses are now differentiating themselves by 
how they’re finding value in the large volumes of data that are not stored in a 
tidy database.

The variety of data that’s available now to organizations is incredible: 
Internally, you have website clickstream data, typed notes from call center 
operators, e-mail and instant messaging repositories; externally, open data 
initiatives from public and private entities have made massive troves of raw 
data available for analysis. The challenge here is that traditional tools are 
poorly equipped to deal with the scale and complexity of much of this data. 
That’s where Hadoop comes in. It’s tailor-made to deal with all sorts of messi-
ness. CIOs everywhere have taken notice, and Hadoop is rapidly becoming an 
established platform in any serious IT department.

This chapter is a newcomer’s welcome to the wonderful world of Hadoop — its 
design, capabilities, and uses. If you’re new to big data, you’ll also find impor-
tant background information that applies to Hadoop and other solutions.
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Big Data and the Need for Hadoop
Like many buzzwords, what people mean when they say “big data” is not 
always clear. This lack of clarity is made worse by IT people trying to attract 
attention to their own projects by labeling them as “big data,” even though 
there’s nothing big about them.

At its core, big data is simply a way of describing data problems that are 
unsolvable using traditional tools. To help understand the nature of big data 
problems, we like the “the three Vs of big data,” which are a widely accepted 
characterization for the factors behind what makes a data challenge “big”:

 ✓ Volume: High volumes of data ranging from dozens of terabytes, and 
even petabytes.

 ✓ Variety: Data that’s organized in multiple structures, ranging from raw 
text (which, from a computer’s perspective, has little or no discernible 
structure — many people call this unstructured data) to log files (com-
monly referred to as being semistructured) to data ordered in strongly 
typed rows and columns (structured data). To make things even more 
confusing, some data sets even include portions of all three kinds of 
data. (This is known as multistructured data.)

 ✓ Velocity: Data that enters your organization and has some kind of value 
for a limited window of time — a window that usually shuts well before 
the data has been transformed and loaded into a data warehouse for 
deeper analysis (for example, financial securities ticker data, which may 
reveal a buying opportunity, but only for a short while). The higher the 
volumes of data entering your organization per second, the bigger your 
velocity challenge.

Each of these criteria clearly poses its own, distinct challenge to someone 
wanting to analyze the information. As such, these three criteria are an easy 
way to assess big data problems and provide clarity to what has become a 
vague buzzword. The commonly held rule of thumb is that if your data stor-
age and analysis work exhibits any of these three characteristics, chances are 
that you’ve got yourself a big data challenge.

Failed attempts at coolness: Naming technologies
The co-opting of the big data label reminds 
us when Java was first becoming popular 
in the early 1990s and every IT project had to 
have Java support or something to do with 
Java. At the same time, web site application 

development was becoming popular and 
Netscape named their scripting language 
“JavaScript,” even though it had nothing to do 
with Java. To this day, people are confused by 
this shallow naming choice.
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As you’ll see in this book, Hadoop is anything but a traditional information 
technology tool, and it is well suited to meet many big data challenges, espe-
cially (as you’ll soon see) with high volumes of data and data with a variety 
of structures. But there are also big data challenges where Hadoop isn’t well 
suited — in particular, analyzing high-velocity data the instant it enters an 
organization. Data velocity challenges involve the analysis of data while it’s 
in motion, whereas Hadoop is tailored to analyze data when it’s at rest. The 
lesson to draw from this is that although Hadoop is an important tool for big 
data analysis, it will by no means solve all your big data problems. Unlike 
some of the buzz and hype, the entire big data domain isn’t synonymous with 
Hadoop.

Exploding data volumes
It is by now obvious that we live in an advanced state of the information age. 
Data is being generated and captured electronically by networked sensors at 
tremendous volumes, in ever-increasing velocities and in mind-boggling vari-
eties. Devices such as mobile telephones, cameras, automobiles, televisions, 
and machines in industry and health care all contribute to the exploding data 
volumes that we see today. This data can be browsed, stored, and shared, but 
its greatest value remains largely untapped. That value lies in its potential to 
provide insight that can solve vexing business problems, open new markets, 
reduce costs, and improve the overall health of our societies.

In the early 2000s (we like to say “the oughties”), companies such as Yahoo! 
and Google were looking for a new approach to analyzing the huge amounts 
of data that their search engines were collecting. Hadoop is the result of that 
effort, representing an efficient and cost-effective way of reducing huge ana-
lytical challenges to small, manageable tasks.

Origin of the “3 Vs”
In 2001, years before marketing people got 
ahold of the term “big data,” the analyst firm 
META Group published a report titled 3-D 
Data Management: Controlling Data Volume, 
Velocity and Variety. This paper was all about 
data warehousing challenges, and ways to use 

relational technologies to overcome them. So 
while the definitions of the 3Vs in this paper 
are quite different from the big data 3Vs, this 
paper does deserve a footnote in the history 
of big data, since it originated a catchy way to 
describe a problem.
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Varying data structures
Structured data is characterized by a high degree of organization and is typi-
cally the kind of data you see in relational databases or spreadsheets. Because 
of its defined structure, it maps easily to one of the standard data types (or 
user-defined types that are based on those standard types). It can be searched 
using standard search algorithms and manipulated in well-defined ways.

Semistructured data (such as what you might see in log files) is a bit more diffi-
cult to understand than structured data. Normally, this kind of data is stored in 
the form of text files, where there is some degree of order — for example, tab-
delimited files, where columns are separated by a tab character. So instead of 
being able to issue a database query for a certain column and knowing exactly 
what you’re getting back, users typically need to explicitly assign data types to 
any data elements extracted from semistructured data sets.

Unstructured data has none of the advantages of having structure coded into 
a data set. (To be fair, the unstructured label is a bit strong — all data stored 
in a computer has some degree of structure. When it comes to so-called 
unstructured data, there’s simply too little structure in order to make much 
sense of it.) Its analysis by way of more traditional approaches is difficult 
and costly at best, and logistically impossible at worst. Just imagine having 
many years’ worth of notes typed by call center operators that describe cus-
tomer observations. Without a robust set of text analytics tools, it would be 
extremely tedious to determine any interesting behavior patterns. Moreover, 
the sheer volume of data in many cases poses virtually insurmountable chal-
lenges to traditional data mining techniques, which, even when conditions 
are good, can handle only a fraction of the valuable data that’s available.

A playground for data scientists
A data scientist is a computer scientist who loves data (lots of data) and the 
sublime challenge of figuring out ways to squeeze every drop of value out 
of that abundant data. A data playground is an enterprise store of many tera-
bytes (or even petabytes) of data that data scientists can use to develop, 
test, and enhance their analytical “toys.”

Now that you know what big data is all about, what it is, and why it’s impor-
tant, it’s time to introduce Hadoop, the granddaddy of these nontraditional 
analytical toys. Understanding how this amazing platform for the analysis of 
big data came to be, and acquiring some basic principles about how it works, 
will help you to master the details we provide in the remainder of this book.
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The Origin and Design of Hadoop
So what exactly is this thing with the funny name — Hadoop? At its core, 
Hadoop is a framework for storing data on large clusters of commodity 
 hardware — everyday computer hardware that is affordable and easily 
 available — and running applications against that data. A cluster is a group of 
interconnected computers (known as nodes) that can work together on the 
same problem. Using networks of affordable compute resources to acquire 
business insight is the key value proposition of Hadoop.

As for that name, Hadoop, don’t look for any major significance there; it’s 
simply the name that Doug Cutting’s son gave to his stuffed elephant. (Doug 
Cutting is, of course, the co-creator of Hadoop.) The name is unique and easy 
to remember — characteristics that made it a great choice.

Hadoop consists of two main components: a distributed processing frame-
work named MapReduce (which is now supported by a component called 
YARN, which we describe a little later) and a distributed file system known 
as the Hadoop distributed file system, or HDFS.

An application that is running on Hadoop gets its work divided among the 
nodes (machines) in the cluster, and HDFS stores the data that will be pro-
cessed. A Hadoop cluster can span thousands of machines, where HDFS 
stores data, and MapReduce jobs do their processing near the data, which 
keeps I/O costs low. MapReduce is extremely flexible, and enables the devel-
opment of a wide variety of applications.

 As you might have surmised, a Hadoop cluster is a form of compute cluster, a 
type of cluster that’s used mainly for computational purposes. In a compute 
cluster, many computers (compute nodes) can share computational workloads 
and take advantage of a very large aggregate bandwidth across the cluster. 
Hadoop clusters typically consist of a few master nodes, which control the 
storage and processing systems in Hadoop, and many slave nodes, which store 
all the cluster’s data and is also where the data gets processed.

Distributed processing with MapReduce
MapReduce involves the processing of a sequence of operations on distributed 
data sets. The data consists of key-value pairs, and the computations have 
only two phases: a map phase and a reduce phase. User-defined MapReduce 
jobs run on the compute nodes in the cluster.
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Generally speaking, a MapReduce job runs as follows:

 1. During the Map phase, input data is split into a large number of fragments, 
each of which is assigned to a map task.

 2. These map tasks are distributed across the cluster.

 3. Each map task processes the key-value pairs from its assigned fragment 
and produces a set of intermediate key-value pairs.

 4. The intermediate data set is sorted by key, and the sorted data is parti-
tioned into a number of fragments that matches the number of reduce 
tasks.

 5. During the Reduce phase, each reduce task processes the data fragment 
that was assigned to it and produces an output key-value pair.

 6. These reduce tasks are also distributed across the cluster and write 
their output to HDFS when finished.

The Hadoop MapReduce framework in earlier (pre-version 2) Hadoop 
releases has a single master service called a JobTracker and several slave 
services called TaskTrackers, one per node in the cluster. When you submit 
a MapReduce job to the JobTracker, the job is placed into a queue and then 
runs according to the scheduling rules defined by an administrator. As you 
might expect, the JobTracker manages the assignment of map-and-reduce 
tasks to the TaskTrackers.

A look at the history books
Hadoop was originally intended to serve as the 
infrastructure for the Apache Nutch project, 
which started in 2002. Nutch, an open source 
web search engine, is a part of the Lucene proj-
ect. What are these projects? Apache projects 
are created to develop open source software 
and are supported by the Apache Software 
Foundation (ASF), a nonprofit corporation made 
up of a decentralized community of developers. 
Open source software, which is usually devel-
oped in a public and collaborative way, is soft-
ware whose source code is freely available to 
anyone for study, modification, and distribution.

Nutch needed an architecture that could scale 
to billions of web pages, and the needed archi-
tecture was inspired by the Google file system 

(GFS), and would ultimately become HDFS. In 
2004, Google published a paper that introduced 
MapReduce, and by the middle of 2005 Nutch 
was using both MapReduce and HDFS.

In early 2006, MapReduce and HDFS became 
part of the Lucene subproject named Hadoop, 
and by February 2008, the Yahoo! search index 
was being generated by a Hadoop cluster. By 
the beginning of 2008, Hadoop was a top-level 
project at Apache and was being used by many 
companies. In April 2008, Hadoop broke a world 
record by sorting a terabyte of data in 209 sec-
onds, running on a 910-node cluster. By May 
2009, Yahoo! was able to use Hadoop to sort 1 
terabyte in 62 seconds!
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With Hadoop 2, a new resource management system is in place called YARN 
(short for Yet Another Resource Manager). YARN provides generic  scheduling 
and resource management services so that you can run more than just Map 
Reduce applications on your Hadoop cluster. The JobTracker/TaskTracker 
architecture could only run MapReduce.

We describe YARN and the JobTracker/TaskTracker architectures in Chapter 7.

HDFS also has a master/slave architecture:

 ✓ Master service: Called a NameNode, it controls access to data files.

 ✓ Slave services: Called DataNodes, they’re distributed one per node in 
the cluster. DataNodes manage the storage that’s associated with the 
nodes on which they run, serving client read and write requests, among 
other tasks.

For more information on HDFS, see Chapter 4.

Apache Hadoop ecosystem
This section introduces other open source components that are typically 
seen in a Hadoop deployment. Hadoop is more than MapReduce and HDFS: 
It’s also a family of related projects (an ecosystem, really) for distributed 
computing and large-scale data processing. Most (but not all) of these proj-
ects are hosted by the Apache Software Foundation. Table 1-1 lists some of 
these projects.

Table 1-1 Related Hadoop Projects
Project 
Name

Description

Ambari An integrated set of Hadoop administration tools for installing, mon-
itoring, and maintaining a Hadoop cluster. Also included are tools to 
add or remove slave nodes. 

Avro A framework for the efficient serialization (a kind of transformation) 
of data into a compact binary format

Flume A data flow service for the movement of large volumes of log data 
into Hadoop

HBase A distributed columnar database that uses HDFS for its underlying 
storage. With HBase, you can store data in extremely large tables 
with variable column structures

HCatalog A service for providing a relational view of data stored in Hadoop, 
including a standard approach for tabular data

(continued)
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Project 
Name

Description

Hive A distributed data warehouse for data that is stored in HDFS; also 
provides a query language that’s based on SQL (HiveQL)

Hue A Hadoop administration interface with handy GUI tools for browsing 
files, issuing Hive and Pig queries, and developing Oozie workflows

Mahout A library of machine learning statistical algorithms that were imple-
mented in MapReduce and can run natively on Hadoop

Oozie A workflow management tool that can handle the scheduling and 
chaining together of Hadoop applications

Pig A platform for the analysis of very large data sets that runs on HDFS 
and with an infrastructure layer consisting of a compiler that produces 
sequences of MapReduce programs and a language layer consist-
ing of the query language named Pig Latin

Sqoop A tool for efficiently moving large amounts of data between rela-
tional databases and HDFS

ZooKeeper A simple interface to the centralized coordination of services (such 
as naming, configuration, and synchronization) used by distributed 
applications

The Hadoop ecosystem and its commercial distributions (see the “Comparing 
distributions” section, later in this chapter) continue to evolve, with new or 
improved technologies and tools emerging all the time.

Figure 1-1 shows the various Hadoop ecosystem projects and how they relate 
to one-another:

 

Figure 1-1: 
Hadoop 

ecosystem 
components.

 

Table 1-1 (continued)
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Examining the Various Hadoop Offerings
Hadoop is available from either the Apache Software Foundation or from 
companies that offer their own Hadoop distributions.

 Only products that are available directly from the Apache Software Foundation 
can be called Hadoop releases. Products from other companies can include 
the official Apache Hadoop release files, but products that are “forked” from 
(and represent modified or extended versions of) the Apache Hadoop source 
tree are not supported by the Apache Software Foundation.

Apache Hadoop has two important release series:

 ✓ 1.x: At the time of writing, this release is the most stable version of 
Hadoop available (1.2.1).

  Even after the 2.x release branch became available, this is still commonly 
found in production systems. All major Hadoop distributions include 
solutions for providing high availability for the NameNode service, 
which first appears in the 2.x release branch of Hadoop.

 ✓ 2.x: At the time of writing, this is the current version of Apache 
Hadoop (2.2.0), including these features:

	 •	A MapReduce architecture, named MapReduce 2 or YARN (Yet 
Another Resource Negotiator): It divides the two major functions of 
the JobTracker (resource management and job life-cycle manage-
ment) into separate components.

	 •	HDFS availability and scalability: The major limitation in Hadoop 1 
was that the NameNode was a single point of failure. Hadoop 2 pro-
vides the ability for the NameNode service to fail over to an active 
standby NameNode. The NameNode is also enhanced to scale out 
to support clusters with very large numbers of files. In Hadoop 1, 
clusters could typically not expand beyond roughly 5000 nodes. By 
adding multiple active NameNode services, with each one respon-
sible for managing specific partitions of data, you can scale out to 
a much greater degree.

 Some descriptions around the versioning of Hadoop are confusing because 
both Hadoop 1.x and 2.x are at times referenced using different version num-
bers: Hadoop 1.0 is occasionally known as Hadoop 0.20.205, while Hadoop 2.x 
is sometimes referred to as Hadoop 0.23. As of December 2011, the Apache 
Hadoop project was deemed to be production-ready by the open source com-
munity, and the Hadoop 0.20.205 version number was officially changed to 
1.0.0. Since then, legacy version numbering (below version 1.0) has persisted, 
partially because work on Hadoop 2.x was started well before the version 
numbering jump to 1.0 was made, and the Hadoop 0.23 branch was already 
created. Now that Hadoop 2.2.0 is production-ready, we’re seeing the old num-
bering less and less, but it still surfaces every now and then.



18 Part I: Getting Started with Hadoop 

Comparing distributions
You’ll find that the Hadoop ecosystem has many component parts, all of 
which exist as their own Apache projects. (See the previous section for more 
about them.) Because Hadoop has grown considerably, and faces some sig-
nificant further changes, different versions of these open source community 
components might not be fully compatible with other components. This 
poses considerable difficulties for people looking to get an independent start 
with Hadoop by downloading and compiling projects directly from Apache.

Red Hat is, for many people, the model of how to successfully make money in 
the open source software market. What Red Hat has done is to take Linux (an 
open source operating system), bundle all its required components, build a 
simple installer, and provide paid support to any customers. In the same way 
that Red Hat has provided a handy packaging for Linux, a number of com-
panies have bundled Hadoop and some related technologies into their own 
Hadoop distributions. This list describes the more prominent ones:

 ✓ Cloudera (www.cloudera.com/): Perhaps the best-known player in the 
field, Cloudera is able to claim Doug Cutting, Hadoop’s co-founder, as its 
chief architect. Cloudera is seen by many people as the market leader in the 
Hadoop space because it released the first commercial Hadoop distribution 
and it is a highly active contributor of code to the Hadoop ecosystem.

  Cloudera Enterprise, a product positioned by Cloudera at the center of 
what it calls the “Enterprise Data Hub,” includes the Cloudera Distribution 
for Hadoop (CDH), an open-source-based distribution of Hadoop and 
its related projects as well as its proprietary Cloudera Manager. Also 
included is a technical support subscription for the core components  
of CDH.

  Cloudera’s primary business model has long been based on its ability to 
leverage its popular CDH distribution and provide paid services and sup-
port. In the fall of 2013, Cloudera formally announced that it is focusing 
on adding proprietary value-added components on top of open source 
Hadoop to act as a differentiator. Also, Cloudera has made it a common 
practice to accelerate the adoption of alpha- and beta-level open source 
code for the newer Hadoop releases. Its approach is to take components 
it deems to be mature and retrofit them into the existing production-
ready open source libraries that are included in its distribution.

 ✓ EMC (www.gopivotal.com): Pivotal HD, the Apache Hadoop distribu-
tion from EMC, natively integrates EMC’s massively parallel processing 
(MPP) database technology (formerly known as Greenplum, and now 
known as HAWQ) with Apache Hadoop. The result is a high-performance 
Hadoop distribution with true SQL processing for Hadoop. SQL-based 
queries and other business intelligence tools can be used to analyze 
data that is stored in HDFS.
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 ✓ Hortonworks (www.hortonworks.com): Another major player in the 
Hadoop market, Hortonworks has the largest number of committers and 
code contributors for the Hadoop ecosystem components. (Committers 
are the gatekeepers of Apache projects and have the power to approve 
code changes.) Hortonworks is a spin-off from Yahoo!, which was the 
original corporate driver of the Hadoop project because it needed a 
large-scale platform to support its search engine business. Of all the 
Hadoop distribution vendors, Hortonworks is the most committed to the 
open source movement, based on the sheer volume of the development 
work it contributes to the community, and because all its development 
efforts are (eventually) folded into the open source codebase.

  The Hortonworks business model is based on its ability to  leverage its 
popular HDP distribution and provide paid services and support. However, 
it does not sell proprietary software. Rather, the company enthusiasti-
cally supports the idea of working within the open source community 
to develop solutions that address enterprise feature requirements (for 
example, faster query processing with Hive).

  Hortonworks has forged a number of relationships with established 
companies in the data management industry: Teradata, Microsoft, 
Informatica, and SAS, for example. Though these companies don’t 
have their own, in-house Hadoop offerings, they collaborate with 
Hortonworks to provide integrated Hadoop solutions with their own 
product sets.

  The Hortonworks Hadoop offering is the Hortonworks Data Platform (HDP), 
which includes Hadoop as well as related tooling and projects. Also 
unlike Cloudera, Hortonworks releases only HDP versions with produc-
tion-level code from the open source community.

 ✓ IBM (www.ibm.com/software/data/infosphere/biginsights): 
Big Blue offers a range of Hadoop offerings, with the focus around value 
added on top of the open source Hadoop stack:

  InfoSphere BigInsights: This software-based offering includes a 
number of Apache Hadoop ecosystem projects, along with addi-
tional software to provide additional capability. The focus of 
InfoSphere BigInsights is on making Hadoop more readily consum-
able for businesses. As such, the proprietary enhancements are 
focused on standards-based SQL support, data security and gover-
nance, spreadsheet-style analysis for business users, text analytics, 
workload management, and the application development life cycle.

  PureData System for Hadoop: This hardware- and software-based 
appliance is designed to reduce complexity, the time it takes to 
start analyzing data, as well as IT costs. It integrates InfoSphere 
BigInsights (Hadoop-based software), hardware, and storage into a 
single, easy-to-manage system.



20 Part I: Getting Started with Hadoop 

 ✓ Intel (hadoop.intel.com): The Intel Distribution for Apache Hadoop 
(Intel Distribution) provides distributed processing and data manage-
ment for enterprise applications that analyze big data. Key features 
include excellent performance with optimizations for Intel Xeon proces-
sors, Intel SSD storage, and Intel 10GbE networking; data security via 
encryption and decryption in HDFS, and role-based access control with 
cell-level granularity in HBase (you can control who’s allowed to see 
what data down to the cell level, in other words); improved Hive query 
performance; support for statistical analysis with a connector for R, the 
popular open source statistical package; and analytical graphics through 
Intel Graph Builder.

  It may come as a surprise to see Intel here among a list of software compa-
nies that have Hadoop distributions. The motivations for Intel are simple, 
though: Hadoop is a strategic platform, and it will require significant 
hardware investment, especially for larger deployments. Though much 
of the initial discussion around hardware reference architectures for 
Hadoop — the recommended patterns for deploying hardware for Hadoop 
clusters — have focused on commodity hardware, increasingly we are 
seeing use cases where more expensive hardware can provide significantly 
better value. It’s with this situation in mind that Intel is keenly interested in 
Hadoop. It’s in Intel’s best interest to ensure that Hadoop is optimized for 
Intel hardware, on both the higher end and commodity lines.

  The Intel Distribution comes with a management console designed to 
simplify the configuration, monitoring, tuning, and security of Hadoop 
deployments. This console includes automated configuration with Intel 
Active Tuner; simplified cluster management; comprehensive system 
monitoring and logging; and systematic health checking across clusters.

 ✓ MapR (www.mapr.com): For a complete distribution for Apache Hadoop 
and related projects that’s independent of the Apache Software 
Foundation, look no further than MapR. Boasting no Java dependencies 
or reliance on the Linux file system, MapR is being promoted as the only 
Hadoop distribution that provides full data protection, no single points 
of failure, and significant ease-of-use advantages. Three MapR editions 
are available: M3, M5, and M7. The M3 Edition is free and available for 
unlimited production use; MapR M5 is an intermediate-level subscription 
software offering; and MapR M7 is a complete distribution for Apache 
Hadoop and HBase that includes Pig, Hive, Sqoop, and much more.

  The MapR distribution for Hadoop is most well-known for its file system, 
which has a number of enhancements not included in HDFS, such as 
NFS access and POSIX compliance (long story short, this means you can 
mount the MapR file system like it’s any other storage device in your 
Linux instance and interact with data stored in it with any standard file 
applications or commands), storage volumes for specialized manage-
ment of data policies, and advanced data replication tools. MapR also 
ships a specialized version of HBase, which claims higher reliability, 
security, and performance than Apache HBase.
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Working with in-database MapReduce
When MapReduce processing occurs on structured data in a relational 
database, the process is referred to as in-database MapReduce. One imple-
mentation of a hybrid technology that combines MapReduce and relational 
databases for the analysis of analytical workloads is HadoopDB, a research 
project that originated a few years ago at Yale University. HadoopDB was 
designed to be a free, highly scalable, open source, parallel database manage-
ment system. Tests at Yale showed that HadoopDB could achieve the per-
formance of parallel databases, but with the scalability, fault tolerance, and 
flexibility of Hadoop-based systems.

More recently, Oracle has developed an in-database Hadoop prototype that 
makes it possible to run Hadoop programs written in Java naturally from SQL. 
Users with an existing database infrastructure can avoid setting up a Hadoop 
cluster and can execute Hadoop jobs within their relational databases.

Looking at the Hadoop toolbox
A number of companies offer tools designed to help you get the most out of 
your Hadoop implementation. Here’s a sampling:

 ✓ Amazon (aws.amazon.com/ec2): The Amazon Elastic MapReduce 
(Amazon EMR) web service enables you to easily process vast amounts 
of data by provisioning as much capacity as you need. Amazon EMR 
uses a hosted Hadoop framework running on the web-scale infrastruc-
ture of Amazon Elastic Compute Cloud (Amazon EC2) and Amazon 
Simple Storage Service (Amazon S3). Amazon EMR lets you analyze data 
without having to worry about setting up, managing, or tuning Hadoop 
clusters.

  Cloud-based deployments of Hadoop applications like those offered by 
Amazon EMR are somewhat different from on-premise deployments. You 
would follow these steps to deploy an application on Amazon EMR:

 1. Script a job flow in your language of choice, including a SQL-like 
language such as Hive or Pig.

 2. Upload your data and application to Amazon S3, which provides 
reliable storage for your data.

 3. Log in to the AWS Management Console to start an Amazon EMR job 
flow by specifying the number and type of Amazon EC2 instances 
that you want, as well as the location of the data on Amazon S3.

 4. Monitor the progress of your job flow, and then retrieve the output 
from Amazon S3 using the AWS management console, paying only 
for the resources that you consume.
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  Though Hadoop is an attractive platform for many kinds of workloads, 
it needs a significant hardware footprint, especially when your data 
approaches scales of hundreds of terabytes and beyond. This is where 
Amazon EMR is most practical: as a platform for short term, Hadoop-
based analysis or for testing the viability of a Hadoop-based solution 
before committing to an investment in on-premise hardware.

 ✓ Hadapt (www.hadapt.com): Look for the product Adaptive Analytical 
Platform, which delivers an ANSI SQL compliant query engine to 
Hadoop. Hadapt enables interactive query processing on huge data sets 
(Hadapt Interactive Query), and the Hadapt Development Kit (HDK) lets 
you create advanced SQL analytic functions for marketing campaign 
analysis, full text search, customer sentiment analysis (seeing whether 
comments are happy or sad, for example), pattern matching, and pre-
dictive modeling. Hadapt uses Hadoop as the parallelization layer for 
query processing. Structured data is stored in relational databases, and 
unstructured data is stored in HDFS. Consolidating multistructured data 
into a single platform facilitates more efficient, richer analytics.

 ✓ Karmasphere (www.karmasphere.com): Karmasphere provides a col-
laborative work environment for the analysis of big data that includes an 
easy-to-use interface with self-service access. The environment enables 
you to create projects that other authorized users can access. You can 
use a personalized home page to manage projects, monitor activities, 
schedule queries, view results, and create visualizations. Karmasphere 
has self-service wizards that help you to quickly transform and ana-
lyze data. You can take advantage of SQL syntax highlighting and code 
completion features to ensure that only valid queries are submitted to 
the Hadoop cluster. And you can write SQL scripts that call ready-to-use 
analytic models, algorithms, and functions developed in MapReduce, 
SPSS, SAS, and other analytic languages. Karmasphere also provides an 
administrative console for system-wide management and configuration, 
user management, Hadoop connection management, database connec-
tion management, and analytics asset management.

 ✓ WANdisco (www.wandisco.com): The WANdisco Non-Stop NameNode 
solution enables multiple active NameNode servers to act as synchro-
nized peers that simultaneously support client access for batch applica-
tions (using MapReduce) and real-time applications (using HBase). If one 
NameNode server fails, another server takes over automatically with no 
downtime. Also, WANdisco Hadoop Console is a comprehensive, easy-to-
use management dashboard that lets you deploy, monitor, manage, and 
scale a Hadoop implementation

 ✓ Zettaset (www.zettaset.com): Its Orchestrator platform automates, 
accelerates, and simplifies Hadoop installation and cluster management. 
It is an independent management layer that sits on top of an Apache 
Hadoop distribution. As well as simplifying Hadoop deployment and 
cluster management, Orchestrator is designed to meet enterprise secu-
rity, high availability, and performance requirements.



Chapter 2

Common Use Cases for  
Big Data in Hadoop

In This Chapter
▶ Extracting business value from Hadoop

▶ Digging into log data

▶ Moving the (data) warehouse into the 21st century

▶ Taking a bite out of fraud

▶ Modeling risk

▶ Seeing what’s causing a social media stir

▶ Classifying images on a massive scale

▶ Using graphs effectively

▶ Looking toward the future

B 
y writing this book, we want to help our readers answer the questions 
“What is Hadoop?” and “How do I use Hadoop?” Before we delve too 

deeply into the answers to these questions, though, we want to get you 
excited about some of the tasks that Hadoop excels at. In other words, we 
want to provide answers to the eternal question “What should I use Hadoop 
for?” In this chapter, we cover some of the most popular use cases we’ve 
seen in the Hadoop space, but first we have a couple thoughts on how you 
can make your Hadoop project successful.

The Keys to Successfully Adopting Hadoop 
(Or, “Please, Can We Keep Him?”)

We strongly encourage you not to go looking for a “science project” when you’re 
getting started with Hadoop. By that, we mean that you shouldn’t try to find an 
open-ended problem that, despite being interesting, has neither clearly defined 
milestones nor measurable business value. We’ve seen some shops set up nifty, 
100-node Hadoop clusters, but all that effort did little or nothing to add value to 
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their businesses (though its implementers still seemed proud of themselves). 
Businesses want to see value from their IT investments, and with Hadoop it may 
come in a variety of ways. For example, you may pursue a project whose goal is 
to create lower licensing and storage costs for warehouse data or to find insight 
from large-scale data analysis. The best way to request resources to fund inter-
esting Hadoop projects is by working with your business’s leaders. In any serious 
Hadoop project, you should start by teaming IT with business leaders from VPs 
on down to help solve your business’s pain points — those problems (real or 
perceived) that loom large in everyone’s mind.

Also examine the perspectives of people and processes that are adopting 
Hadoop in your organization. Hadoop deployments tend to be most success-
ful when adopters make the effort to create a culture that’s supportive of data 
science by fostering experimentation and data exploration. Quite simply, after 
you’ve created a Hadoop cluster, you still have work to do — you still need to 
enable people to experiment in a hands-on manner. Practically speaking, you 
should keep an eye on these three important goals:

 ✓ Ensure that your business users and analysts have access to as much 
data as possible. Of course, you still have to respect regulatory require-
ments for criteria such as data privacy.

 ✓ Mandate that your Hadoop developers expose their logic so that 
results are accessible through standard tools in your organization. 
The logic and any results must remain easily consumed and reusable.

 ✓ Recognize the governance requirements for the data you plan to store 
in Hadoop. Any data under governance control in a relational database 
management system (RDBMS) also needs to be under the same controls 
in Hadoop. After all, personally identifiable information has the same pri-
vacy requirements no matter where it’s stored. Quite simply, you should 
ensure that you can pass a data audit for both RDBMS and Hadoop!

All the uses cases we cover in this chapter have Hadoop at their core, but it’s 
when you combine it with the broader business and its repositories like data-
bases and document stores that you can build a more complete picture of what’s 
happening in your business. For example, social sentiment analysis performed in 
Hadoop might alert you to what people are saying, but do you know why they’re 
saying it? This concept requires thinking beyond Hadoop and linking your com-
pany’s systems of record (sales, for example) with its systems of engagement 
(like call center records — the data where you may draw the sentiment from).

Log Data Analysis
Log analysis is a common use case for an inaugural Hadoop project. Indeed, 
the earliest uses of Hadoop were for the large-scale analysis of clickstream 
logs — logs that record data about the web pages that people visit and in which 
order they visit them. We often refer to all the logs of data generated by your 
IT infrastructure as data exhaust. A log is a by-product of a functioning server, 
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much like smoke coming from a working engine’s exhaust pipe. Data exhaust 
has the connotation of pollution or waste, and many enterprises undoubtedly 
approach this kind of data with that thought in mind. Log data often grows 
quickly, and because of the high volumes produced, it can be tedious to ana-
lyze. And, the potential value of this data is often unclear. So the temptation in 
IT departments is to store this log data for as little time as reasonably possible. 
(After all, it costs money to retain data, and if there’s no perceived business 
value, why store it?) But Hadoop changes the math: The cost of storing data is 
comparatively inexpensive, and Hadoop was originally developed especially for 
the large-scale batch processing of log data.

 The log data analysis use case is a useful place to start your Hadoop journey 
because the chances are good that the data you work with is being deleted, or 
“dropped to the floor.” We’ve worked with companies that consistently record 
a terabyte (TB) or more of customer web activity per week, only to discard the 
data with no analysis (which makes you wonder why they bothered to collect 
it). For getting started quickly, the data in this use case is likely easy to get 
and generally doesn’t encompass the same issues you’ll encounter if you start 
your Hadoop journey with other (governed) data.

When industry analysts discuss the rapidly increasing volumes of data that 
exist (4.1 exabytes as of 2014 — more than 4 million 1TB hard drives), log data 
accounts for much of this growth. And no wonder: Almost every aspect of life 
now results in the generation of data. A smartphone can generate hundreds 
of log entries per day for an active user, tracking not only voice, text, and data 
transfer but also geolocation data. Most households now have smart meters 
that log their electricity use. Newer cars have thousands of sensors that 
record aspects of their condition and use. Every click and mouse movement 
we make while browsing the Internet causes a cascade of log entries to be 
generated. Every time we buy something — even without using a credit card 
or debit card — systems record the activity in databases — and in logs. You 
can see some of the more common sources of log data: IT servers, web click-
streams, sensors, and transaction systems.

Every industry (as well as all the log types just described) have the huge potential 
for valuable analysis — especially when you can zero in on a specific kind of activ-
ity and then correlate your findings with another data set to provide context.

As an example, consider this typical web-based browsing and buying experience:

 1. You surf the site, looking for items to buy.

 2. You click to read descriptions of a product that catches your eye.

 3. Eventually, you add an item to your shopping cart and proceed to the 
checkout (the buying action).

After seeing the cost of shipping, however, you decide that the item isn’t 
worth the price and you close the browser window. Every click you’ve 
made — and then stopped making — has the potential to offer valuable 
insight to the company behind this e-commerce site.
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In this example, assume that this business collects clickstream data (data about 
every mouse click and page view that a visitor “touches”) with the aim of under-
standing how to better serve its customers. One common challenge among 
e-commerce businesses is to recognize the key factors behind abandoned 
shopping carts. When you perform deeper analysis on the clickstream data and 
examine user behavior on the site, patterns are bound to emerge.

Does your company know the answer to the seemingly simple question, “Are 
certain products abandoned more than others?” Or the answer to the ques-
tion, “How much revenue can be recaptured if you decrease cart abandonment 
by 10 percent?” Figure 2-1 gives an example of the kind of reports you can show 
to your business leaders to seek their investment in your Hadoop cause.

 

Figure 2-1: 
Reporting 
on aban-

doned carts.
 

To get to the point where you can generate the data to build the graphs shown 
in Figure 2-1, you isolate the web browsing sessions of individual users (a pro-
cess known as sessionization), identify the contents of their shopping carts, 
and then establish the state of the transaction at the end of the session — all 
by examining the clickstream data.

In Figure 2-2, we give you an example of how to assemble users’ web brows-
ing sessions by grouping all clicks and URL addresses by IP address. (The 
example is a simple one in order to illustrate the point.) Remember: In a 
Hadoop context, you’re always working with keys and values — each phase 
of MapReduce inputs and outputs data in sets of keys and values. (We discuss 
this in greater detail in Chapter 6.) In Figure 2-2, the key is the IP address, and 
the value consists of the timestamp and the URL. During the map phase, user 
sessions are assembled in parallel for all file blocks of the clickstream data 
set that’s stored in your Hadoop cluster.

www.allitebooks.com

http://www.allitebooks.org
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Figure 2-2: 
Building 

user ses-
sions from 

clickstream 
log data and 

calculat-
ing the last 

page visited 
for sessions 

where a 
shopping 

cart is 
abandoned. 

The map phase returns these elements:

 ✓ The final page that’s visited

 ✓ A list of items in the shopping cart

 ✓ The state of the transaction for each user session (indexed by the IP 
address key)

The reducer picks up these records and performs aggregations to total the 
number and value of carts abandoned per month and to provide totals of 
the most common final pages that someone viewed before ending the user 
session.

This single example illustrates why Hadoop is a great fit for analyzing log 
data. The range of possibilities is limitless, and by leveraging some of the 
simpler interfaces such as Pig and Hive, basic log analysis makes for a simple 
initial Hadoop project.

Data Warehouse Modernization
Data warehouses are now under stress, trying to cope with increased demands 
on their finite resources. The rapid rise in the amount of data generated in the 
world has also affected data warehouses because the volumes of data they 
manage are increasing — partly because more structured data — the kind of 
data that is strongly typed and slotted into rows and columns — is generated 
but also because you often have to deal with regulatory requirements designed 
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to maintain queryable access to historical data. In addition, the processing 
power in data warehouses is often used to perform transformations of the 
relational data as it either enters the warehouse itself or is loaded into a child 
data mart (a separate subset of the data warehouse) for a specific analytics 
application. In addition, the need is increasing for analysts to issue new queries 
against the structured data stored in warehouses, and these ad hoc queries 
can often use significant data processing resources. Sometimes a one-time 
report may suffice, and sometimes an exploratory analysis is necessary to 
find questions that haven’t been asked yet that may yield significant business 
value. The bottom line is that data warehouses are often being used for pur-
poses beyond their original design.

Hadoop can provide significant relief in this situation. Figure 2-3 shows, using 
high-level architecture, how Hadoop can live alongside data warehouses and 
fulfill some of the purposes that they aren’t designed for.

 

Figure 2-3: 
Using 

Hadoop to 
modernize 

a traditional 
relational 

data 
warehouse.

 

Our view is that Hadoop is a warehouse helper, not a warehouse replacement. 
Later, in Chapter 11, we describe four ways that Hadoop can modernize a 
data warehousing ecosystem, here they are in summary:

 ✓ Provide a landing zone for all data.

 ✓ Persist the data to provide a queryable archive of cold data.

 ✓ Leverage Hadoop’s large-scale batch processing efficiencies to prepro-
cess and transform data for the warehouse.

 ✓ Enable an environment for ad hoc data discovery.
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Fraud Detection
Fraud is a major concern across all industries. You name the industry (bank-
ing, insurance, government, health care, or retail, for example) and you’ll find 
fraud. At the same time, you’ll find folks who are willing to invest an incredible 
amount of time and money to try to prevent fraud. After all, if fraud were easy 
to detect, there wouldn’t be so much investment around it. In today’s inter-
connected world, the sheer volume and complexity of transactions makes it 
harder than ever to find fraud. What used to be called “finding a needle in a 
haystack” has become the task of “finding a specific needle in stacks of nee-
dles.” Though the sheer volume of transactions makes it harder to spot fraud 
because of the volume of data, ironically, this same challenge can help create 
better fraud predictive models — an area where Hadoop shines. (We tell you 
more about statistical analysis in Chapter 9.)

Traditional approaches to fraud prevention aren’t particularly efficient. For 
example, the management of improper payments is often managed by ana-
lysts auditing what amounts to a very small sample of claims paired with 
requesting medical documentation from targeted submitters. The industry 
term for this model is pay and chase: Claims are accepted and paid out and 
processes look for intentional or unintentional overpayments by way of post-
payment review of those claims. (The U.S. Internal Revenue Service (IRS) 
operation uses the pay-and-chase approach on tax returns.)

Of course, you may wonder why businesses don’t simply apply extra due dili-
gence to every transaction proactively. They don’t do so because it’s a balancing 
act. Fraud detection can’t focus only on stopping fraud when it happens, or 
on detecting it quickly, because of the customer satisfaction component. For 
example, traveling outside your home country and finding that your credit 
card has been invalidated because the transactions originated from a geo-
graphical location that doesn’t match your purchase patterns can place you in 
a bad position, so vendors try to avoid false-positive results. They don’t want 
to anger clients by stopping transactions that seem suspicious but turn out to 
be legitimate.

So how is fraud detection done now? Because of the limitations of traditional 
technologies, fraud models are built by sampling data and using the sample 
to build a set of fraud-prediction and -detection models. When you contrast 
this model with a Hadoop-anchored fraud department that uses the full data 
set — no sampling — to build out the models, you can see the difference.

The most common recurring theme you see across most Hadoop use cases is 
that it assists business in breaking through the glass ceiling on the volume and 
variety of data that can be incorporated into decision analytics. The more data 
you have (and the more history you store), the better your models can be.
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Mixing nontraditional forms of data with your set of historical transactions can 
make your fraud models even more robust. For example, if a worker makes 
a worker’s compensation claim for a bad back from a slip-and-fall incident, 
having a pool of millions of patient outcome cases that detail treatment and 
length of recovery helps create a detection pattern for fraud.

As an example of how this model can work, imagine trying to find out 
whether patients in rural areas recover more slowly than those in urban 
areas. You can start by examining the proximity to physiotherapy services. 
Is there a pattern correlation between recovery times and geographical loca-
tion? If your fraud department determines that a certain injury takes three 
weeks of recovery but that a farmer with the same diagnosis lives one hour 
from a physiotherapist and the office worker has a practitioner in her office, 
that’s another variable to add to the fraud-detection pattern. When you har-
vest social network data for claimants and find a patient who claims to be 
suffering from whiplash is boasting about completing the rugged series of 
endurance events known as Tough Mudder, it’s an example of mixing new 
kinds of data with traditional data forms to spot fraud.

If you want to kick your fraud-detection efforts into a higher gear, your orga-
nization can work to move away from market segment modeling and move 
toward at-transaction or at-person level modeling. Quite simply, making a 
forecast based on a segment is helpful, but making a decision based on par-
ticular information about an individual transaction is (obviously) better. To 
do this, you work up a larger set of data than is conventionally possible in 
the traditional approach. In our experiences with customers, we estimate 
that only (a maximum of) 30 percent of the available information that may be 
useful for fraud modeling is being used.

For creating fraud-detection models, Hadoop is well suited to

 ✓ Handle volume: That means processing the full data set — no data 
sampling.

 ✓ Manage new varieties of data: Examples are the inclusion of proximity-
to-care-services and social circles to decorate the fraud model.

 ✓ Maintain an agile environment: Enable different kinds of analysis and 
changes to existing models.

Fraud modelers can add and test new variables to the model without having to 
make a proposal to your database administrator team and then wait a couple 
of weeks to approve a schema change and place it into their environment. This 
process is critical to fraud detection because dynamic environments com-
monly have cyclical fraud patterns that come and go in hours, days, or weeks. 
If the data used to identify or bolster new fraud-detection models isn’t available 
at a moment’s notice, by the time you discover these new patterns, it could be 
too late to prevent damage. Evaluate the benefit to your business of not only 
building out more comprehensive models with more types of data but also 
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being able to refresh and enhance those models faster than ever. We’d bet that 
the company that can refresh and enhance models daily will fare better than 
those that do it quarterly.

You may believe that this problem has a simple answer — just ask your CIO 
for operational expenditure (OPEX) and capital expenditure (CAPEX) approv-
als to accommodate more data to make better models and load the other  
70 percent of the data into your decision models. You may even believe that this 
investment will pay for itself with better fraud detection; however, the prob-
lem with this approach is the high up-front costs that need to be sunk into 
unknown data, where you don’t know whether it contains any truly valuable 
insight. Sure, tripling the size of your data warehouse, for example, will give 
you more access to structured historical data to fine-tune your models, but 
they can’t accommodate social media bursts. As we mention earlier in this 
chapter, traditional technologies aren’t as agile, either. Hadoop makes it easy 
to introduce new variables into the model, and if they turn out not to yield 
improvements to the model, you can simply discard the data and move on.

Risk Modeling
Risk modeling is another major use case that’s energized by Hadoop. We think 
you’ll find that it closely matches the use case of fraud detection in that it’s a 
model-based discipline. The more data you have and the more you can “connect 
the dots,” the more often your results will yield better risk-prediction models.

The all-encompassing word risk can take on a lot of meanings. For example, cus-
tomer churn prediction is the risk of a client moving to a competitor; the risk of 
a loan book relates to the risk of default; risk in health care spans the gamut from 
outbreak containment to food safety to the probability of reinfection and more.

The financial services sector (FSS) is now investing heavily in Hadoop-based 
risk modeling. This sector seeks to increase the automation and accuracy 
of its risk assessment and exposure modeling. Hadoop offers participants 
the opportunity to extend the data sets that are used in their risk models to 
include underutilized sources (or sources that are never utilized), such as 
e-mail, instant messaging, social media, and interactions with customer ser-
vice representatives, among other data sources. Risk models in FSS pop up 
everywhere. They’re used for customer churn prevention, trade manipulation 
modeling, corporate risk and exposure analytics, and more.

When a company issues an insurance policy against natural disasters at home, 
one challenge is clearly seeing how much money is potentially at risk. If the 
insurer fails to reserve money for possible payouts, regulators will intervene 
(the insurer doesn’t want that); if the insurer puts too much money into its 
reserves to pay out future policy claims, they can’t then invest your premium 
money and make a profit (the insurer doesn’t want that, either). We know 
of companies that are “blind” to the risk they face because they have been 
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unable to run an adequate amount of catastrophic simulations pertaining to 
variance in wind speed or precipitation rates (among other variables) as they 
relate to their exposure. Quite simply, these companies have difficulty stress-
testing their risk models. The ability to fold in more data — for example, 
weather patterns or the ever-changing socioeconomic distribution of their 
client base — gives them a lot more insight and capability when it comes to 
building better risk models.

Building and stress-testing risk models like the one just described is an ideal 
task for Hadoop. These operations are often computationally expensive and, 
when you’re building a risk model, likely impractical to run against a data 
warehouse, for these reasons:

 ✓ The warehouse probably isn’t optimized for the kinds of queries issued 
by the risk model. (Hadoop isn’t bound by the data models used in data 
warehouses.)

 ✓ A large, ad hoc batch job such as an evolving risk model would add load 
to the warehouse, influencing existing analytic applications. (Hadoop 
can assume this workload, freeing up the warehouse for regular business 
reporting.)

 ✓ More advanced risk models may need to factor in unstructured data, 
such as raw text. (Hadoop can handle that task efficiently.)

Social Sentiment Analysis
Social sentiment analysis is easily the most overhyped of the Hadoop use 
cases we present, which should be no surprise, given that we live in a world 
with a constantly connected and expressive population. This use case 
leverages content from forums, blogs, and other social media resources to 
develop a sense of what people are doing (for example, life events) and how 
they’re reacting to the world around them (sentiment). Because text-based 
data doesn’t naturally fit into a relational database, Hadoop is a practical 
place to explore and run analytics on this data.

Language is difficult to interpret, even for human beings at times — especially 
if you’re reading text written by people in a social group that’s different from 
your own. This group of people may be speaking your language, but their 
expressions and style are completely foreign, so you have no idea whether 
they’re talking about a good experience or a bad one. For example, if you hear 
the word bomb in reference to a movie, it might mean that the movie was bad 
(or good, if you’re part of the youth movement that interprets “It’s da bomb” 
as a compliment); of course, if you’re in the airline security business, the word 
bomb has quite a different meaning. The point is that language is used in many 
variable ways and is constantly evolving.
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 When you analyze sentiment on social media, you can choose from multiple 
approaches. The basic method programmatically parses the text, extracts 
strings, and applies rules. In simple situations, this approach is reasonable. 
But as requirements evolve and rules become more complex, manually 
coding text-extractions quickly becomes no longer feasible from the per-
spective of code maintenance, especially for performance optimization. 
Grammar- and rules-based approaches to text processing are computa-
tionally expensive, which is an important consideration in large-scale 
extraction in Hadoop. The more involved the rules (which is inevitable 
for complex purposes such as sentiment extraction), the more processing 
that’s needed.

Alternatively, a statistics-based approach is becoming increasingly common 
for sentiment analysis. Rather than manually write complex rules, you can 
use the classification-oriented machine-learning models in Apache Mahout. 
(See Chapter 9 for more on these models.) The catch here is that you’ll need 
to train your models with examples of positive and negative sentiment. The 
more training data you provide (for example, text from tweets and your classi-
fication), the more accurate your results.

Like the other use cases in this chapter, the one for social sentiment analysis 
can be applied across a wide range of industries. For example, consider food 
safety: Trying to predict or identify the outbreak of foodborne illnesses as 

Social sentiment analysis is,  
in reality, text analysis

Though this section focuses on the “fun” aspects 
of using social media, the ability to extract under-
standing and meaning from unstructured text is 
an important use case. For example, corporate 
earnings are published to the web, and the same 
techniques that you use to build social sentiment 
extractors may be used to try to extract meaning 
from financial disclosures or to auto-assemble 
intrasegment earnings reports that compare the 
services revenue in a specific sector. In fact, some 
hedge fund management teams are now doing 
this to try to get a leg up on their competition.

Perhaps your entertainment company wants to 
crack down on violations of intellectual prop-
erty on your event’s video footage. You can 

use the same techniques outlined in this use 
case to extract textual clues from various web 
postings and teasers such as Watch for free 
or Free on your PC. You can use a library of 
custom-built text extractors (built and refined 
on data stored in Hadoop) to crawl the web to 
generate a list of links to pirated video feeds of 
your company’s content.

These two examples don’t demonstrate senti-
ment analysis; however, they do a good job of 
illustrating how social text analytics doesn’t 
focus only on sentiment, despite the fun in illus-
trating the text analytics domain using senti-
ment analysis.
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quickly as possible is extremely important to health officials. Figure 2-4 shows 
a Hadoop-anchored application that ingests tweets using extractors based on 
the potential illness: FLU or FOOD POISONING. (We’ve anonymized the tweets 
so that you don’t send a message asking how they’re doing; we didn’t clean up 
the grammar, either.)

 

Figure 2-4: 
Using 

Hadoop 
to analyze 

and classify 
tweets in 

an attempt 
to classify 
a potential 

outbreak 
of the flu 

or food 
poisoning.

 

Do you see the generated heat map that shows the geographical location of 
the tweets? One characteristic of data in a world of big data is that most of it 
is spatially enriched: It has locality information (and temporal attributes, too). 
In this case, we reverse-engineered the Twitter profile by looking up the pub-
lished location. As it turns out, lots of Twitter accounts have geographic loca-
tions as part of their public profiles (as well as disclaimers clearly stating that 
their thoughts are their own as opposed to speaking for their employers).

How good of a prediction engine can social media be for the outbreak of the flu 
or a food poisoning incident? Consider the anonymized sample data shown in 
Figure 2-5.

You can see that social media signals trumped all other indicators for predicting 
a flu outbreak in a specific U.S. county during the late summer and into early fall.
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Figure 2-5: 
Chances are 

good that 
social media 
can tell you 
about a flu 

outbreak 
before 

traditional 
indicators 

can.
 

This example shows another benefit that accrues from analyzing social 
media: It gives you an unprecedented opportunity to look at attribute infor-
mation in posters’ profiles. Granted, what people say about themselves in 
their Twitter profiles is often incomplete (for example, the location code isn’t 
filled in) or not meaningful (the location code might say cloud nine). But you 
can learn a lot about people over time, based on what they say. For example, 
a client may have tweeted (posted on Twitter) the announcement of the 
birth of her baby, an Instagram picture of her latest painting, or a Facebook 
posting stating that she can’t believe Walter White’s behavior in last night’s 
Breaking Bad finale. (Now that many people watch TV series in their entirety, 
even long after they’ve ended, we wouldn’t want to spoil the ending for 
you.) In this ubiquitous example, your company can extract a life event 
that populates a family-graph (a new child is a valuable update for a person-
based Master Data Management profile), a hobby (painting), and an interest 
attribute (you love the show Breaking Bad). By analyzing social data in this 
way, you have the opportunity to flesh out personal attributes with informa-
tion such as hobbies, birthdays, life events, geographical locations (country, 
state, and city, for example), employer, gender, marital status, and more.

Assume for a minute that you’re the CIO of an airline. You can use the post-
ings of happy or angry frequent travelers to not only ascertain sentiment but 
also round out customer profiles for your loyalty program using social media 
information. Imagine how much better you could target potential customers 
with the information that was just shared — for example, an e-mail telling the 
client that Season 5 of Breaking Bad is now available on the plane’s media 
system or announcing that children under the age of two fly for free. It’s also 
a good example of how systems of record (say, sales or subscription data-
bases) can meet systems of engagement (say, support channels). Though the 
loyalty members’ redemption and travel history is in a relational database, the 
system of engagement can update records (for example, a HAS_KIDS column).
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Image Classification
Image classification starts with the notion that you build a training set and 
that computers learn to identify and classify what they’re looking at. In the 
same way that having more data helps build better fraud detection and risk 
models, it also helps systems to better classify images. This requires a sig-
nificant amount of data processing resources, however, which has limited 
the scale of deployments. Image classification is a hot topic in the Hadoop 
world because no mainstream technology was capable — until Hadoop came 
along — of opening doors for this kind of expensive processing on such a 
massive and efficient scale.

In this use case, the data is referred to as the training set as well as the 
models are classifiers. Classifiers recognize features or patterns within sound, 
image, or video and classify them appropriately. Classifiers are built and 
iteratively refined from training sets so that their precision scores (a measure 
of exactness) and recall scores (a measure of coverage) are high. Hadoop is 
well suited for image classification because it provides a massively parallel 
processing environment to not only create classifier models (iterating over 
training sets) but also provide nearly limitless scalability to process and run 
those classifiers across massive sets of unstructured data volumes. Consider 
multimedia sources such as YouTube, Facebook, Instagram, and Flickr — all 
are sources of unstructured binary data. Figure 2-6 shows one way you can 
use Hadoop to scale the processing of large volumes of stored images and 
video for multimedia semantic classification.

 

Figure 2-6: 
Using 

Hadoop to 
semantically 

classify 
video and 

images from 
social media 

sites.
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In Figure 2-6, you can see how all the concepts relating to the Hadoop pro-
cessing framework that are outlined in this book are applied to this data. 
Notice how images are loaded into HDFS. The classifier models, built over 
time, are now applied to the extra image-feature components in the Map 
phase of this solution. As you can see in the lower-right corner of Figure 2-6, 
the output of this processing consists of image classifications that range from 
cartoons to sports and locations, among others.

 Though this section focuses on image analysis, Hadoop can be used for audio or 
voice analytics, too. One security industry client we work with creates an audio 
classification system to classify sounds that are heard via acoustic-enriched 
fiber optic cables laid around the perimeter of nuclear reactors. For example, 
this system knows how to nearly instantaneously classify the whisper of the 
wind as compared to the whisper of a human voice or to distinguish the sound 
of human footsteps running in the perimeter parklands from that of wildlife.

We realize that this description may have sort of a Star Trek feel to it, but you 
can now see live examples. In fact, IBM makes public one of the largest image-
classification systems in the world, via the IBM Multimedia Analysis and 
Retrieval System (IMARS). Try it for yourself at

http://researcher.watson.ibm.com/researcher/view_project.
php?id=877

Figure 2-7 shows the result of an IMARS search for the term alpine skiing. 
At the top of the figure, you can see the results of the classifiers mapped to 
the image set that was processed by Hadoop, along with an associated tag 
cloud. Note the more coarsely defined parent classifier Wintersports, as 
opposed to the more granular Sailing. In fact, notice the multiple clas-
sification tiers: Alpine_Skiing rolls into Snow_Sports, which rolls into 
Wintersports — all generated automatically by the classifier model, built 
and scored using Hadoop.

 

Figure 2-7: 
The result of 

an IMARS 
search.
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 None of these pictures has any added metadata. No one has opened iPhoto 
and tagged an image as a winter sport to make it show up in this classification. 
It’s the winter sport classifier that was built to recognize image attributes and 
characteristics of sports that are played in a winter setting.

Image classification has many applications, and being able to perform this 
classification at a massive scale using Hadoop opens up more possibilities 
for analysis as other applications can use the classification information 
generated for the images. To see what we mean, look at this example from 
the health industry. We worked with a large health agency in Asia that was 
focused on delivering health care via mobile clinics to a rural population 
distributed across a large land mass. A significant problem that the agency 
faced was the logistical challenge of analyzing the medical imaging data that 
was generated in its mobile clinics. A radiologist is a scarce resource in this 
part of the world, so it made sense to electronically transmit the medical 
images to a central point and have an army of doctors examine them. The 
doctors examining the images were quickly overloaded, however. The agency 
is now working on a classification system to help identify possible conditions 
to effectively provide suggestions for the doctors to verify. Early testing has 
shown this strategy to help reduce the number of missed or inaccurate diag-
noses, saving time, money, and — most of all — lives.

Graph Analysis
Elsewhere in this chapter, we talk about log data, relational data, text data, 
and binary data, but you’ll soon hear about another form of information: 
graph data. In its simplest form, a graph is simply a collection of nodes (an 
entity, for example — a person, a department, or a company), and the lines 
connecting them are edges (this represents a relationship between two enti-
ties, for example two people who know each other). What makes graphs 
interesting is that they can be used to represent concepts such as relation-
ships in a much more efficient way than, say, a relational database. Social 
media is an application that immediately comes to mind — indeed, today’s 
leading social networks (Facebook, Twitter, LinkedIn, and Pinterest) are all 
making heavy use of graph stores and processing engines to map the connec-
tions and relationships between their subscribers.

In Chapter 11, we discuss the NoSQL movement, and the graph database is 
one major category of alternative data-storage technologies. Initially, the 
predominant graph store was Neo4j, an open source graph database. But 
now the use of Apache Giraph, a graph processing engine designed to work 
in Hadoop, is increasing rapidly. Using YARN, we expect Giraph adoption to 
increase even more because graph processing is no longer tied to the tradi-
tional MapReduce model, which was inefficient for this purpose. Facebook is 
reportedly the world’s largest Giraph shop, with a massive trillion-edge graph. 
(It’s the Six Degrees of Kevin Bacon game on steroids.)
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Graphs can represent any kind of relationship — not just people. One of the 
most common applications for graph processing now is mapping the Internet. 
When you think about it, a graph is the perfect way to store this kind of data, 
because the web itself is essentially a graph, where its websites are nodes 
and the hyperlinks between them are edges. Most PageRank algorithms use a 
form of graph processing to calculate the weightings of each page, which is a 
function of how many other pages point to it.

To Infinity and Beyond
This chapter easily could have been expanded into an entire book — there are 
that many places where Hadoop is a game changer. Before you apply one of 
the use cases from this chapter to your own first project and start seeing how 
to use Hadoop in Chapter 3, we want to reiterate some repeating patterns that 
we’ve noticed when organizations start taking advantage of the potential value 
of Hadoop:

 ✓ When you use more data, you can make better decisions and predictions 
and guide better outcomes.

 ✓ In cases where you need to retain data for regulatory purposes and pro-
vide a level of query access, Hadoop is a cost-effective solution.

 ✓ The more a business depends on new and valuable analytics that are 
discovered in Hadoop, the more it wants. When you initiate successful 
Hadoop projects, your clusters will find new purposes and grow!
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Chapter 3

Setting Up Your Hadoop 
Environment

In This Chapter
▶ Deciding on a Hadoop distribution

▶ Checking out the Hadoop For Dummies environment

▶ Creating your first Hadoop program: Hello Hadoop!

T 
his chapter is an overview of the steps involved in actually getting 
started with Hadoop. We start with some of the things you need to con-

sider when deciding which Hadoop distribution to use. It turns out that you 
have quite a few distributions to choose from, and any of them will make it 
easier for you to set up your Hadoop environment than if you were to go it 
alone, assembling the various components that make up the Hadoop eco-
system and then getting them to “play nice with one another.” Nevertheless, 
the various distributions that are available do differ in the features that they 
offer, and the trick is to figure out which one is best for you.

This chapter also introduces you to the Hadoop For Dummies environment 
that we used to create and test all examples in this book. (If you’re curious, 
we based our environment on Apache Bigtop.)

We round out this chapter with information you can use to create your first 
MapReduce program, after your Hadoop cluster is installed and running.

Choosing a Hadoop Distribution
Commercial Hadoop distributions offer various combinations of open source 
components from the Apache Software Foundation and elsewhere — the idea 
is that the various components have been integrated into a single product, 
saving you the effort of having to assemble your own set of integrated com-
ponents. In addition to open source software, vendors typically offer propri-
etary software, support, consulting services, and training.
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How do you go about choosing a Hadoop distribution from the numerous 
options that are available? We provide an overview in Chapter 1 of the more 
prominent distributions, but when it comes to setting up your own environ-
ment, you’re the one who has to choose, and that choice should be based on 
a set of criteria designed to help you make the best decision possible.

 Not all Hadoop distributions have the same components (although they all 
have Hadoop’s core capabilities), and not all components in one particular 
distribution are compatible with other distributions.

The criteria for selecting the most appropriate distribution can be articulated 
as this set of important questions:

 ✓ What do you want to achieve with Hadoop?

 ✓ How can you use Hadoop to gain business insight?

 ✓ What business problems do you want to solve?

 ✓ What data will be analyzed?

 ✓ Are you willing to use proprietary components, or do you prefer open 
source offerings?

 ✓ Is the Hadoop infrastructure that you’re considering flexible enough for 
all your use cases?

 ✓ What existing tools will you want to integrate with Hadoop?

 ✓ Do your administrators need management tools? (Hadoop’s core distri-
bution doesn’t include administrative tools.)

 ✓ Will the offering you choose allow you to move to a different product 
without obstacles such as vendor lock-in? (Application code that’s not 
transferrable to other distributions or data stored in proprietary formats 
represent good examples of lock-in.)

 ✓ Will the distribution you’re considering meet your future needs, insofar 
as you’re able to anticipate those needs?

One approach to comparing distributions is to create a feature matrix — a table 
that details the specifications and features of each distribution you’re consid-
ering. Your choice can then depend on the set of features and specs that best 
addresses the requirements around your specific business problems.

On the other hand, if your requirements include prototyping and experimen-
tation, choosing the latest official Apache Hadoop distribution might prove 
to be the best approach. The most recent releases certainly have the newest 
most exciting features, but if you want stability you don’t want excitement. 
For stability, look for an older release branch that’s been available long 
enough to have some incremental releases (these typically include bug fixes 
and minor features).
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Whenever you think about open source Hadoop distributions, give a 
moment’s thought (or perhaps many moments’ thought) to the concept of 
open source fidelity — the degree to which a particular distribution is com-
patible with the open source components on which it depends. High fidelity 
facilitates integration with other products that are designed to be compatible 
with those open source components. Low fidelity? Not so much.

 The open source approach to software development itself is an important part 
of your Hadoop plans because it promotes compatibility with a host of third-
party tools that you can leverage in your own Hadoop deployment. The open 
source approach also enables engagement with the Apache Hadoop com-
munity, which gives you, in turn, the opportunity to tap into a deeper pool of 
skills and innovation to enrich your Hadoop experience.

Because Hadoop is a fast-growing ecosystem, some parts continue to mature 
as the community develops tooling to meet industry demands. One aspect 
of this evolution is known as backporting, where you apply a new software 
modification or patch to a version of the software that’s older than the ver-
sion to which the patch is applicable. An example is NameNode failover: This 
capability is a part of Hadoop 2 but was backported (in its beta form) by a 
number of distributions into their Hadoop-1-based offerings for as much as a 
year before Hadoop 2 became generally available.

 Not every distribution engages actively in backporting new content to the 
same degree, although most do it for items such as bug fixes. If you want a 
production license for bleeding-edge technology, this is certainly an option; 
for stability, however, it’s not a good idea.

The majority of Hadoop distributions include proprietary code of some kind, 
which frequently comes in the form of installers and a set of management 
tools. These distributions usually emerge from different business models. For 
example, one business model can be summarized this way: “Establish yourself 
as an open source leader and pioneer, market your company as having the best 
expertise, and sell that expertise as a service.” Red Hat, Inc. is an example of 
a vendor that uses this model. In contrast to this approach, the embrace-and-
extend business model has vendors building capabilities that extend the capa-
bilities of open source software. MapR and IBM, which both offer alternative 
file systems to the Hadoop Distributed File System (HDFS), are good examples.

 People sometimes mistakenly throw the “fork” label at these innovations, making 
use of jargon used by software programmers to describe situations where some-
one takes a copy of an open source program as the starting point for their own 
(independent) development. The alternative file systems offered by MapR and 
IBM are completely different file systems, not a fork of the open source HDFS. 
Both companies enable their customers to choose either their proprietary dis-
tributed file system or HDFS. Nevertheless, in this approach, compatibility is 
critical, and the vendor must stay up to date with evolving interfaces. Customers 
need to know that vendors can be relied on to support their extensions.
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Choosing a Hadoop Cluster Architecture
Hadoop is designed to be deployed on a large cluster of networked comput-
ers, featuring master nodes (which host the services that control Hadoop’s 
storage and processing) and slave nodes (where the data is stored and pro-
cessed). You can, however, run Hadoop on a single computer, which is a great 
way to learn the basics of Hadoop by experimenting in a controlled space.

Hadoop has two deployment modes: pseudo-distributed mode and fully dis-
tributed mode, both of which are described below.

Pseudo-distributed mode (single node)
A single-node Hadoop deployment is referred to as running Hadoop in pseudo-
distributed mode, where all the Hadoop services, including the master and slave 
services, all run on a single compute node. This kind of deployment is useful 
for quickly testing applications while you’re developing them without having to 
worry about using Hadoop cluster resources someone else might need. It’s also 
a convenient way to experiment with Hadoop, as most of us don’t have clusters 
of computers at our disposal. With this in mind, the Hadoop for Dummies envi-
ronment is designed to work in pseudo-distributed mode.

Fully distributed mode  
 (a cluster of nodes)
A Hadoop deployment where the Hadoop master and slave services run on 
a cluster of computers is running in what’s known as fully distributed mode. 
This is an appropriate mode for production clusters and development clus-
ters. A further distinction can be made here: a development cluster usually 
has a small number of nodes and is used to prototype the workloads that will 
eventually run on a production cluster.

Chapter 16 provides extensive guidance on the hardware requirements for 
fully distributed Hadoop clusters with special considerations for both master 
and slave nodes as they have different requirements.

The Hadoop For Dummies Environment
To help you get started with Hadoop, we’re providing instructions on how to 
quickly download and set up Hadoop on your own laptop computer. As we men-
tion earlier in the chapter, your cluster will be running in pseudo-distributed 
mode on a virtual machine, so you won’t need special hardware.
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A virtual machine (VM) is a simulated computer that you can run on a real 
computer. For example, you can run a program on your laptop that “plays” a 
VM, which opens a window that looks like it’s running another computer. In 
effect, a pretend computer is running inside your real computer.

We’ll be downloading a VM, and while running it, we’ll install Hadoop.

 As you make your way through this book, enhance your learning by trying 
the examples and experimenting on your own!

The Hadoop For Dummies distribution: 
Apache Bigtop
We’ve done our best to provide a vendor-agnostic view of Hadoop with this 
book. It’s with this in mind that we built the Hadoop For Dummies environ-
ment using Apache Bigtop, a great alternative if you want to assemble your 
own Hadoop components. Bigtop gathers the core Hadoop components for 
you and ensures that your configuration works. Apache Bigtop is a 100 percent 
open source distribution.

The primary goal of Bigtop — itself an Apache project, just like Hadoop — is 
to build a community around the packaging, deployment, and integration of 
projects in the Apache Hadoop ecosystem. The focus is on the system as a 
whole rather than on individual projects.

Using Bigtop, you can easily install and deploy Hadoop components with-
out having to track them down in a specific distribution and match them 
with a specific Hadoop version. As new versions of Hadoop components are 
released, they sometimes do not work with the newest releases of other proj-
ects. If you’re on your own, significant testing is required. With Bigtop (or a 
commercial Hadoop release) you can trust that Hadoop experts have done 
this testing for you. To give you an idea of how expansive Bigtop has gotten, 
see the following list of all the components included in Bigtop:

 ✓ Apache Crunch

 ✓ Apache Flume

 ✓ Apache Giraph

 ✓ Apache HBase

 ✓ Apache HCatalog

 ✓ Apache Hive

 ✓ Apache Mahout

 ✓ Apache Oozie
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 ✓ Apache Pig

 ✓ Apache Solr

 ✓ Apache Sqoop

 ✓ Apache Whirr

 ✓ Apache Zookeeper

 ✓ Cloudera Hue

 ✓ LinkedIn DataFu

This collection of Hadoop ecosystem projects is about as expansive as it 
gets, as both major and minor projects are included. See Chapter 1 for sum-
mary descriptions of the more prominent projects.

Apache Bigtop is continuously evolving, so the list that’s presented here was 
current at the time of writing. For the latest release information about Bigtop, 
visit http://blogs.apache.org/bigtop.

Setting up the Hadoop For  
Dummies environment
This section describes all the steps involved in creating your own Hadoop For 
Dummies working environment. If you’re comfortable working with VMs and 
Linux, feel free to install Bigtop on a different VM than what we recommend. If 
you’re really bold and have the hardware, go ahead and try installing Bigtop 
on a cluster of machines in fully distributed mode!

Step 1: Downloading a VM
Hadoop runs on all popular Linux distributions, so we need a Linux VM. 
There is a freely available (and legal!) CentOS 6 image available here:

http://sourceforge.net/projects/centos-6-vmware

 You will need a 64-bit operating system on your laptop in order to run this VM. 
Hadoop needs a 64-bit environment.

After you’ve downloaded the VM, extract it from the downloaded Zip file into 
the destination directory. Do ensure you have around 50GB of space available 
as Hadoop and your sample data will need it.

If you don’t already have a VM player, you can download one for free from here:

https://www.vmware.com/go/downloadplayer

www.allitebooks.com
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After you have your VM player set up, open the player, go to File➪Open, then 
go to the directory where you extracted your Linux VM. Look for a file called 
centos-6.2-x64-virtual-machine-org.vmx and select it. You’ll see 
information on how many processors and how much memory it will use. Find 
out how much memory your computer has, and allocate half of it for the VM 
to use. Hadoop needs lots of memory.

Once you’re ready, click the Play button, and your Linux instance will start 
up. You’ll see lots of messages fly by as Linux is booting and you’ll come to a 
login screen. The user name is already set to “Tom.” Specify the password as 
“tomtom” and log in.

Step 2: Downloading Bigtop
From within your Linux VM, right-click on the screen and select Open in 
Terminal from the contextual menu that appears. This opens a Linux termi-
nal, where you can run commands. Click inside the terminal so you can see 
the cursor blinking and enter the following command:

su -

You’ll be asked for your password, so type “tomtom” like you did earlier. This 
command switches the user to root, which is the master account for a Linux 
computer — we’ll need this in order to install Hadoop.

With your root access (don’t let the power get to your head), run the follow-
ing command:

wget -O /etc/yum.repos.d/bigtop.repo \

      http://www.apache.org/dist/bigtop/bigtop-0.7.0/repos/centos6/bigtop.repo

The wget command is essentially a web request, which requests a specific 
file in the URL we can see and writes it to a specific path — in our case, that’s 
/etc/yum.repos.d/bigtop.repo.

Step 3: Installing Bigtop
The geniuses behind Linux have made life quite easy for people like us who 
need to install big software packages like Hadoop. What we downloaded in 
the last step wasn’t the entire Bigtop package and all its dependencies. It 
was just a repository file (with the extension .repo), which tells an installer 
 program which software packages are needed for the Bigtop installation.

Like any big software product, Hadoop has lots of prerequisites, but you 
don’t need to worry. A well-designed .repo file will point to any dependen-
cies, and the installer is smart enough to see if they’re missing on your 
 computer and then download and install them.
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The installer we’re using is called yum, which you get to see in action now:

yum install hadoop\* mahout\* oozie\* hbase\* hive\* hue\* pig\* zookeeper\*

Notice that we’re picking and choosing the Hadoop components to install. 
There are a number of other components available in Bigtop, but these are 
the only ones we’ll be using in this book. Since the VM we’re using is a fresh 
Linux install, we’ll need many dependencies, so you’ll need to wait a bit. The 
yum installer is quite verbose, so you can watch exactly what’s being down-
loaded and installed to pass the time. When the install process is done, you 
should see a message that says “Complete!”

Step 4: Starting Hadoop
Before we start running applications on Hadoop, there are a few basic con-
figuration and setup things we need to do. Here they are in order:

 1. Download and install Java:

yum install java-1.7.0-openjdk-devel.x86_64

 2. Format the NameNode:

sudo /etc/init.d/hadoop-hdfs-namenode init

 3. Start the Hadoop services for your pseudodistributed cluster:

for i in hadoop-hdfs-namenode hadoop-hdfs-datanode ; \
    do sudo service $i start ; done

 4. Create a sub-directory structure in HDFS:

sudo /usr/lib/hadoop/libexec/init-hdfs.sh

 5. Start the YARN daemons:

sudo service hadoop-yarn-resourcemanager start
sudo service hadoop-yarn-nodemanager start

And with that, you’re done. Congratulations! You’ve installed a working 
Hadoop deployment!

The Hadoop For Dummies Sample Data 
Set: Airline on-time performance
Throughout this book, we’ll be running examples based on the Airline On-time 
Performance data set — we call it the flight data set for short. This data set 
is a collection of all the logs of domestic flights from the period of October 
1987 to April 2008. Each record represents an individual flight, where various 
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details are captured, such as the time and date of arrival and departure, the 
originating and destination airports, and the amount of time taken to taxi 
from the runway to the gate. For more information about this data set see this 
page: http://stat-computing.org/dataexpo/2009/.

Many of us on the author team for this book spend a lot of time on planes, so 
this example data set is close to our hearts.

Step 5: Downloading the sample data set
To download the sample data set, open the Firefox browser from within 
the VM, and go to the following page: http://stat-computing.org/
dataexpo/2009/the-data.html.

You won’t need the entire data set, so we recommend you start with a single 
year, so select 1987. When you’re about to download, select the Open with 
Archive Manager option.

After your file has downloaded, extract the 1987.csv file into your home 
directory where you’ll easily be able to find it. Click on the Extract button, 
and then select the Desktop directory.

Step 6: Copying the sample data set into HDFS
Remember that your Hadoop programs can only work with data once it’s 
stored in HDFS. So what we’re going to do now is copy the flight data file for 
1987 into HDFS. Enter the following command:

hdfs dfs -copyFromLocal 1987.csv /user/root

Your First Hadoop Program:  
Hello Hadoop!

After the Hadoop cluster is installed and running, you can run your first 
Hadoop program.

This application is very simple, and calculates the total miles flown for all 
flights flown in one year. The year is defined by the data file you read in your 
application. We will look at MapReduce programs in more detail in Chapter 6, 
but to keep things a bit simpler here, we’ll run a Pig script to calculate the 
total miles flown. You will see the map and reduce phases fly by in the output.
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Here is the code for this Pig script:

records = LOAD '2013_subset.csv' USING PigStorage(',') AS
              (Year,Month,DayofMonth,DayOfWeek,DepTime,CRSDepTime,ArrTime,\ 
              CRSArrTime,UniqueCarrier,FlightNum,TailNum,ActualElapsedTime,\
              CRSElapsedTime,AirTime,ArrDelay,DepDelay,Origin,Dest,\
              Distance:int,TaxiIn,TaxiOut,Cancelled,CancellationCode,\
              Diverted,CarrierDelay,WeatherDelay,NASDelay,SecurityDelay,\
              LateAircraftDelay);
milage_recs = GROUP records ALL;
tot_miles = FOREACH milage_recs GENERATE SUM(records.Distance);
STORE tot_miles INTO /user/root/totalmiles;

We want to put this code in a file on our VM, so let’s first create a file. Right-
click on the desktop of your VM and select Create Document from the con-
textual menu that appears and name the document totalmiles.pig. Then 
open the document in an editor, paste in the above code, and save the file.

From the command line, run the following command to run the Pig script:

pig totalmiles.pig

You will see many lines of output, and then finally a “Success!” message, fol-
lowed by more statistics, and then finally the command prompt. After your 
Pig job has completed, you can see your output:

hdfs dfs -cat /user/root/totalmiles/part-r-00000

Drumroll, please. . . And the answer is:

775009272

And with that, you’ve run your first Hadoop application! The examples in this 
book use the flight data set, and will work in this environment, so do be sure 
to try them out yourself.



Part II
How Hadoop Works

 Check out the article “Securing your data in Hadoop” (and more) online at  
www.dummies.com/extras/hadoop.



In this part . . .
 ✓ Find out why folks are excited about HDFS.

 ✓ See how file management works in HDFS.

 ✓ Explore the mysteries of MapReduce.

 ✓ Discover how funny names like YARN and Pig can make your 
Hadoop world a lot easier.

 ✓ Master statistical analysis in a Hadoop environment

 ✓ Work on workflows with Oozie

 ✓ Check out the article “Securing your data in Hadoop” (and more) 
online at www.dummies.com/extras/hadoop.



Chapter 4

Storing Data in Hadoop: The Hadoop 
Distributed File System

In This Chapter
▶ Seeing how HDFS stores files in blocks

▶ Looking at HDFS components and architecture

▶ Scaling out HDFS

▶ Working with checkpoints

▶ Federating your NameNode

▶ Putting HDFS to the availability test

W 
hen it comes to the core Hadoop infrastructure, you have two 
 components: storage and processing. The Hadoop Distributed 

File System (HDFS) is the storage component. In short, HDFS provides a 
 distributed architecture for extremely large scale storage, which can easily 
be extended by scaling out.

Let us remind you why this is a big deal. In the late 1990s, after the Internet 
established itself as a fixture in society, Google was facing the major challenge of 
having to be able to store and process not only all the pages on the Internet but 
also Google users’ web log data. Google’s major claim to fame, then and now, 
was its expansive and current index of the Internet’s many pages, and its ability 
to return highly relevant search results to its users. The key to its success was 
being able to process and analyze both the Internet data and its user data. At 
the time, Google was using a scale-up architecture model — a model where you 
increase system capacity by adding CPU cores, RAM, and disk to an existing 
server — and it had two major problems:

 ✓ Expense: Scaling up the hardware by using increasingly bigger servers 
with more storage was becoming incredibly expensive. As computer 
systems increased in their size, their cost increased at an even higher 
rate. In addition, Google needed a highly available environment — one 
that would ensure its mission critical workloads could continue  running 
in the event of a failure — so a failover system was also needed,  doubling 
the IT expense.
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 ✓ Structural limitations: Google engineers were reaching the limits of 
what a scale-up architecture could sustain. For example, with the 
increasing data volumes Google was seeing, it was taking much longer 
for data sets to be transferred from SANs to the CPUs for processing. 
And all the while, the Internet’s growth and usage showed no sign of 
slowing down.

Rather than scale up, Google engineers decided to scale out by using a cluster 
of smaller servers they could continually add to if they needed more power or 
capacity. To enable a scale-out model, they developed the Google File System 
(GFS), which was the inspiration for the engineers who first developed HDFS. 
The early use cases, for both the Google and HDFS engineers, were solely based 
on the batch processing of large data sets. This concept is reflected in the 
design of HDFS, which is optimized for large-scale batch processing workloads. 
Since Hadoop came on the scene in 2005, it has emerged as the premier platform 
for large-scale data storage and processing. There’s a growing demand for the 
optimization of interactive workloads as well, which involve queries that involve 
small subsets of the data. Though today’s HDFS still works best for batch 
workloads, features are being added to improve the performance of interactive 
workloads.

Data Storage in HDFS
Just to be clear, storing data in HDFS is not entirely the same as saving 
files on your personal computer. In fact, quite a number of differences 
exist — most having to do with optimizations that make HDFS able to scale 
out easily across thousands of slave nodes and perform well with batch 
workloads.

The most noticeable difference initially is the size of files. Hadoop is designed 
to work best with a modest number of extremely large files. Average file sizes 
that are larger than 500MB are the norm.

Here’s an additional bit of background information on how data is stored: 
HDFS has a Write Once, Read Often model of data access. That means the 
contents of individual files cannot be modified, other than appending new 
data to the end of the file.

Don’t worry, though: There’s still lots you can do with HDFS files, including

 ✓ Create a new file

 ✓ Append content to the end of a file

 ✓ Delete a file

 ✓ Rename a file

 ✓ Modify file attributes like owner



55 Chapter 4: Storing Data in Hadoop: The Hadoop Distributed File System

Taking a closer look at data blocks
When you store a file in HDFS, the system breaks it down into a set of 
 individual blocks and stores these blocks in various slave nodes in the 
Hadoop cluster, as shown in Figure 4-1. This is an entirely normal thing to do, 
as all file systems break files down into blocks before storing them to disk. 
HDFS has no idea (and doesn’t care) what’s stored inside the file, so raw files 
are not split in accordance with rules that we humans would understand. 
Humans, for example, would want record boundaries — the lines showing 
where a record begins and ends — to be respected. HDFS is often blissfully 
unaware that the final record in one block may be only a partial record, with 
the rest of its content shunted off to the following block. HDFS only wants 
to make sure that files are split into evenly sized blocks that match the 
predefined block size for the Hadoop instance (unless a custom value was 
entered for the file being stored). In Figure 4-1, that block size is 128MB.

 

Figure 4-1: 
A file being 
divided into 

blocks of 
data.

 

 Not every file you need to store is an exact multiple of your system’s block 
size, so the final data block for a file uses only as much space as is needed. In 
the case of Figure 4-1, the final block of data is 1MB.

The concept of storing a file as a collection of blocks is entirely consistent 
with how file systems normally work. But what’s different about HDFS is the 
scale. A typical block size that you’d see in a file system under Linux is 4KB, 
whereas a typical block size in Hadoop is 128MB. This value is configurable, 
and it can be customized, as both a new system default and a custom value 
for individual files.

Hadoop was designed to store data at the petabyte scale, where any 
 potential limitations to scaling out are minimized. The high block size is a 
direct  consequence of this need to store data on a massive scale. First of 
all, every data block stored in HDFS has its own metadata and needs to be 
tracked by a central server so that applications needing to access a specific 
file can be directed to wherever all the file’s blocks are stored. If the block 
size were in the kilobyte range, even modest volumes of data in the terabyte 
scale would overwhelm the metadata server with too many blocks to track. 
Second, HDFS is designed to enable high throughput so that the parallel 
processing of these large data sets happens as quickly as possible. The key 
to Hadoop’s  scalability on the data processing side is, and always will be, 
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parallelism — the ability to process the individual blocks of these large files 
in parallel. To enable efficient processing, a balance needs to be struck. On 
one hand, the block size needs to be large enough to warrant the resources 
dedicated to an individual unit of data processing (for instance, a map or 
reduce task, which we look at in Chapter 6). On the other hand, the block 
size can’t be so large that the system is waiting a very long time for one last 
unit of data processing to finish its work. These two considerations obviously 
depend on the kinds of work being done on the data blocks.

Replicating data blocks
HDFS is designed to store data on inexpensive, and more unreliable, hardware. 
(We say more on that topic later in this chapter.) Inexpensive has an attractive 
ring to it, but it does raise concerns about the reliability of the system as a 
whole, especially for ensuring the high availability of the data. Planning ahead 
for disaster, the brains behind HDFS made the decision to set up the system 
so that it would store three (count ’em — three) copies of every data block.

HDFS assumes that every disk drive and every slave node is inherently 
 unreliable, so, clearly, care must be taken in choosing where the three copies 
of the data blocks are stored. Figure 4-2 shows how data blocks from the 
earlier file are striped across the Hadoop cluster — meaning they are evenly 
distributed between the slave nodes so that a copy of the block will still be 
available regardless of disk, node, or rack failures.

 

Figure 4-2: 
Replication 
patterns of 

data blocks 
in HDFS.

 

The file shown in Figure 4-2 has five data blocks, labeled a, b, c, d, and e. If 
you take a closer look, you can see this particular cluster is made up of two 
racks with two nodes apiece, and that the three copies of each data block 
have been spread out across the various slave nodes.
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Every component in the Hadoop cluster is seen as a potential failure point, 
so when HDFS stores the replicas of the original blocks across the Hadoop 
cluster, it tries to ensure that the block replicas are stored in different failure 
points. For example, take a look at Block A. At the time it needed to be stored, 
Slave Node 3 was chosen, and the first copy of Block A was stored there. For 
multiple rack systems, HDFS then determines that the remaining two copies 
of block A need to be stored in a different rack. So the second copy of block 
A is stored on Slave Node 1. The final copy can be stored on the same rack as 
the second copy, but not on the same slave node, so it gets stored on Slave 
Node 2.

Slave node and disk failures
Like death and taxes, disk failures (and given enough time, even node or rack 
failures), are inevitable. Given the example in Figure 4-2, even if one rack 
were to fail, the cluster could continue functioning. Performance would suffer 
because you’ve lost half your processing resources, but the system is still 
online and all data is still available.

In a scenario where a disk drive or a slave node fails, the central metadata 
server for HDFS (called the NameNode) eventually finds out that the file 
blocks stored on the failed resource are no longer available. For example, 
if Slave Node 3 in Figure 4-2 fails, it would mean that Blocks A, C, and D are 
underreplicated. In other words, too few copies of these blocks are available in 
HDFS. When HDFS senses that a block is underreplicated, it orders a new copy.

To continue the example, let’s say that Slave Node 3 comes back online after 
a few hours. Meanwhile, HDFS has ensured that there are three copies of all 
the file blocks. So now, Blocks A, C, and D have four copies apiece and are 
overreplicated. As with underreplicated blocks, the HDFS central metadata 
server will find out about this as well, and will order one copy of every file to 
be deleted.

One nice result of the availability of data is that when disk failures do occur, 
there’s no need to immediately replace failed hard drives. This can more 
effectively be done at regularly scheduled intervals.

Sketching Out the HDFS Architecture
The core concept of HDFS is that it can be made up of dozens, hundreds, or 
even thousands of individual computers, where the system’s files are stored 
in directly attached disk drives. Each of these individual computers is a 
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self-contained server with its own memory, CPU, disk storage, and installed 
operating system (typically Linux, though Windows is also supported). 
Technically speaking, HDFS is a user-space-level file system because it lives 
on top of the file systems that are installed on all individual computers that 
make up the Hadoop cluster. Figure 4-3 illustrates this concept.

 

Figure 4-3: 
HDFS as a 

user-space-
level file 
system.

 

Figure 4-3 shows that a Hadoop cluster is made up of two classes of servers: 
slave nodes, where the data is stored and processed, and master nodes, which 
govern the management of the Hadoop cluster. On each of the master nodes 
and slave nodes, HDFS runs special services and stores raw data to capture 
the state of the file system. In the case of the slave nodes, the raw data con-
sists of the blocks stored on the node, and with the master nodes, the raw 
data consists of metadata that maps data blocks to the files stored in HDFS.

Looking at slave nodes
In a Hadoop cluster, each data node (also known as a slave node) runs a 
background process named DataNode. This background process (also known 
as a daemon) keeps track of the slices of data that the system stores on its 
computer. It regularly talks to the master server for HDFS (known as the 
NameNode) to report on the health and status of the locally stored data.

 Data blocks are stored as raw files in the local file system. From the perspective 
of a Hadoop user, you have no idea which of the slave nodes has the pieces of 
the file you need to process. From within Hadoop, you don’t see data blocks or 
how they’re distributed across the cluster — all you see is a listing of files in 
HDFS. The complexity of how the file blocks are distributed across the cluster 
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is hidden from you — you don’t know how complicated it all is, and you don’t 
need to know. Actually, the slave nodes themselves don’t even know what’s 
inside the data blocks they’re storing. It’s the NameNode server that knows the 
mappings of which data blocks compose the files stored in HDFS.

Better living through redundancy
One core design principle of HDFS is the concept of minimizing the cost of 
the individual slave nodes by using commodity hardware components. For 
massively scalable systems, this idea is a sensible one because costs escalate 
quickly when you need hundreds or thousands of slave nodes. Using lower-cost 
hardware has a consequence, though, in that individual components aren’t as 
reliable as more expensive hardware.

When you’re choosing storage options, consider the impact of using commodity 
drives rather than more expensive enterprise-quality drives. Imagine that you 
have a 750-node cluster, where each node has 12 hard disk drives dedicated to 
HDFS storage. Based on an annual failure rate (AFR) of 4 percent for commodity 
disk drives (a given hard disk drive has a 4 percent likelihood of failing in a given 
year, in other words), your cluster will likely experience a hard disk failure every 
day of the year.

Because there can be so many slave nodes, their failure is also a common 
occurrence in larger clusters with hundreds or more nodes. With this 
information in mind, HDFS has been engineered on the assumption that all 
hardware components, even at the slave node level, are unreliable. HDFS 
overcomes the unreliability of individual hardware components by way of 
redundancy: That’s the idea behind those three copies of every file stored in 
HDFS, distributed throughout the system. More specifically, each file block 
stored in HDFS has a total of three replicas. If one system breaks with a 
 specific file block that you need, you can turn to the other two.

Sketching out slave node server design
To balance such important factors as total cost of ownership, storage capacity, 
and performance, you need to carefully plan the design of your slave nodes. 
Chapter 16 covers this topic in greater detail, but we want to take a quick look 
in this section at what a typical slave node looks like.

We commonly see slave nodes now where each node typically has between 
12 and 16 locally attached 3TB hard disk drives. Slave nodes use moderately 
fast dual-socket CPUs with six to eight cores each — no speed demons, in 
other words. This is accompanied by 48GB of RAM. In short, this server is 
optimized for dense storage.
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Because HDFS is a user-space-level file system, it’s important to optimize the 
local file system on the slave nodes to work with HDFS. In this regard, one 
high-impact decision when setting up your servers is choosing a file system 
for the Linux installation on the slave nodes. Ext3 is the most commonly 
deployed file system because it has been the most stable option for a number 
of years. Take a look at Ext4, however. It’s the next version of Ext3, and it has 
been available long enough to be widely considered stable and reliable. More 
importantly for our purposes, it has a number of optimizations for handling 
large files, which makes it an ideal choice for HDFS slave node servers.

 Don’t use the Linux Logical Volume Manager (LVM) — it represents an 
 additional layer between the Linux file system and HDFS, which prevents 
Hadoop from optimizing its performance. Specifically, LVM aggregates disks, 
which hampers the resource management that HDFS and YARN do, based on 
how files are distributed on the physical drives.

Keeping track of data blocks 
with NameNode
When a user stores a file in HDFS, the file is divided into data blocks, and 
three copies of these data blocks are stored in slave nodes throughout the 
Hadoop cluster. That’s a lot of data blocks to keep track of. The NameNode 
acts as the address book for HDFS because it knows not only which blocks 
make up individual files but also where each of these blocks and their replicas 
are stored. As you might expect, knowing where the bodies are buried makes 
the NameNode a critically important component in a Hadoop cluster. If the 
NameNode is unavailable, applications cannot access any data stored in HDFS.

If you take another look at Figure 4-3, you can see the NameNode daemon 
 running on a master node server. All mapping information dealing with the 
data blocks and their corresponding files is stored in a file named fsimage. 
HDFS is a journaling file system, which means that any data changes are 
logged in an edit journal that tracks events since the last checkpoint — the 
last time when the edit log was merged with fsimage. In HDFS, the edit 
 journal is maintained in a file named edits that’s stored on the NameNode.

NameNode startup and operation
To understand how the NameNode works, it’s helpful to take a look at how 
it starts up. Because the purpose of the NameNode is to inform applications 
of how many data blocks they need to process and to keep track of the exact 
location where they’re stored, it needs all the block locations and block-to-file 
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mappings that are available in RAM. These are the steps the NameNode 
takes. To load all the information that the NameNode needs after it starts up, 
the following happens:

 1. The NameNode loads the fsimage file into memory.

 2. The NameNode loads the edits file and re-plays the journaled changes 
to update the block metadata that’s already in memory.

 3. The DataNode daemons send the NameNode block reports.

  For each slave node, there’s a block report that lists all the data blocks 
stored there and describes the health of each one.

After the startup process is completed, the NameNode has a complete 
picture of all the data stored in HDFS, and it’s ready to receive application 
requests from Hadoop clients. As data files are added and removed based 
on client requests, the changes are written to the slave node’s disk volumes, 
journal updates are made to the edits file, and the changes are reflected in 
the block locations and metadata stored in the NameNode’s memory (see 
Figure 4-4).

 

Figure 4-4: 
Interaction 

between 
HDFS 

components.
 

Throughout the life of the cluster, the DataNode daemons send the NameNode 
heartbeats (a quick signal) every three seconds, indicating they’re active. 
(This default value is configurable.) Every six hours (again, a configurable 
default), the DataNodes send the NameNode a block report outlining which 
file blocks are on their nodes. This way, the NameNode always has a current 
view of the available resources in the cluster.
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Writing data
To create new files in HDFS, the following process would have to take place 
(refer to Figure 4-4 to see the components involved):

 1. The client sends a request to the NameNode to create a new file.

  The NameNode determines how many blocks are needed, and the client 
is granted a lease for creating these new file blocks in the cluster. As part 
of this lease, the client has a time limit to complete the creation task. 
(This time limit ensures that storage space isn’t taken up by failed client 
applications.)

 2. The client then writes the first copies of the file blocks to the slave 
nodes using the lease assigned by the NameNode.

  The NameNode handles write requests and determines where the file 
blocks and their replicas need to be written, balancing availability and 
performance. The first copy of a file block is written in one rack, and 
the second and third copies are written on a different rack than the first 
copy, but in different slave nodes in the same rack. This arrangement 
minimizes network traffic while ensuring that no data blocks are on the 
same failure point.

 3. As each block is written to HDFS, a special process writes the remaining 
replicas to the other slave nodes identified by the NameNode.

 4. After the DataNode daemons acknowledge the file block replicas have 
been created, the client application closes the file and notifies the 
NameNode, which then closes the open lease.

Reading Data
To read files from HDFS, the following process would have to take place 
(again, refer to Figure 4-4 for the components involved):

 1. The client sends a request to the NameNode for a file.

  The NameNode determines which blocks are involved and chooses, 
based on overall proximity of the blocks to one another and to the 
client, the most efficient access path.

 2. The client then accesses the blocks using the addresses given by the 
NameNode.

Balancing data in the Hadoop cluster
Over time, with combinations of uneven data-ingestion patterns (where some 
slave nodes might have more data written to them) or node failures, data is 
likely to become unevenly distributed across the racks and slave nodes in 
your Hadoop cluster. This uneven distribution can have a detrimental impact 
on performance because the demand on individual slave nodes will become 
unbalanced; nodes with little data won’t be fully used; and nodes with many 
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blocks will be overused. (Note: The overuse and underuse are based on disk 
activity, not on CPU or RAM.) HDFS includes a balancer utility to  redistribute 
blocks from overused slave nodes to underused ones while maintaining 
the policy of putting blocks on different slave nodes and racks. Hadoop 
 administrators should regularly check HDFS health, and if data becomes 
unevenly distributed, they should invoke the balancer utility.

NameNode master server design
Because of its mission-critical nature, the master server running the NameNode 
daemon needs markedly different hardware requirements than the ones for a 
slave node. Most significantly, enterprise-level components need to be used 
to minimize the probability of an outage. Also, you’ll need enough RAM to 
load into memory all the metadata and location data about all the data blocks 
stored in HDFS. See Chapter 16 for a full discussion on this topic.

Checkpointing updates
Earlier in this chapter, we say that HDFS is a journaled file system, where 
new changes to files in HDFS are captured in an edit log that’s stored on the 
NameNode in a file named edits. Periodically, when the edits file reaches 
a certain threshold or after a certain period has elapsed, the journaled 
entries need to be committed to the master fsimage file. The NameNode 
itself doesn’t do this, because it’s designed to answer application requests as 
quickly as possible. More importantly, considerable risk is involved in having 
this metadata update operation managed by a single master server.

 If the metadata describing the mappings between the data blocks and their 
corresponding files becomes corrupted, the original data is as good as lost.

Checkpointing services for a Hadoop cluster are handled by one of four 
 possible daemons, which need to run on their own dedicated master node 
alongside the NameNode daemon’s master node:

 ✓ Secondary NameNode: Prior to Hadoop 2, this was the only checkpointing 
daemon, performing the checkpointing process described in this section. 
The Secondary NameNode has a notoriously inaccurate name because it 
is in no way “secondary” or a “standby” for the NameNode.

 ✓ Checkpoint Node: The Checkpoint Node is the replacement for the 
Secondary NameNode. It performs checkpointing and nothing more.

 ✓ Backup Node: Provides checkpointing service, but also maintains a 
backup of the fsimage and edits file.

 ✓ Standby NameNode: Performs checkpointing service and, unlike the old 
Secondary NameNode, the Standby NameNode is a true standby server, 
enabling a hot-swap of the NameNode process to avoid any downtime.
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The checkpointing process
The following steps, depicted in Figure 4-5, describe the checkpointing process 
as it’s carried out by the NameNode and the checkpointing service (note that 
four possible daemons can be used for checkpointing — see above):

 1. When it’s time to perform the checkpoint, the NameNode creates a new 
file to accept the journaled file system changes.

  It names the new file edits.new.

 2. As a result, the edits file accepts no further changes and is copied to 
the checkpointing service, along with the fsimage file.

 3. The checkpointing service merges these two files, creating a file named 
fsimage.ckpt.

 4. The checkpointing service copies the fsimage.ckpt file to the 
NameNode.

 5. The NameNode overwrites the file fsimage with fsimage.ckpt.

 6. The NameNode renames the edits.new file to edits.

 

Figure 4-5: 
Check- 
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Backup Node considerations
In addition to providing checkpointing functionality, the Backup Node 
 maintains the current state of all the HDFS block metadata in memory, just 
like the NameNode. In this sense, it maintains a real-time backup of the 
NameNode’s state. As a result of keeping the block metadata in memory, the 
Backup Node is far more efficient than the Checkpoint Node at performing 
the checkpointing task, because the fsimage and edits files don’t need 
to be transferred and then merged. These changes are already merged in 
memory.

 Another benefit of using the Backup Node is that the NameNode can be 
 configured to delegate the Backup Node so that it persists journal data to disk.

If you’re using the Backup Node, you can’t run the Checkpoint Node. There’s 
no need to do so, because the checkpointing process is already being taken 
care of.

Standby NameNode considerations
The Standby NameNode is the designated hot standby master server for the 
NameNode. While serving as standby, it also performs the checkpointing 
 process. As such, you can’t run the Backup Node or Standby Node.

Secondary NameNode, Checkpoint Node, Backup Node,  
and Standby NameNode Master server design
The master server running the Secondary NameNode, Checkpoint Node, 
Backup Node, or Standby NameNode daemons have the same hardware 
requirements as the ones deployed for the NameNode master server. The 
reason is that these servers also load into memory all the metadata and 
 location data about all the data blocks stored in HDFS. See Chapter 16 for 
a full discussion on this topic.

HDFS Federation
Before Hadoop 2 entered the scene, Hadoop clusters had to live with the fact 
that NameNode placed limits on the degree to which they could scale. Few 
clusters were able to scale beyond 3,000 or 4,000 nodes. NameNode’s need to 
maintain records for every block of data stored in the cluster turned out to 
be the most significant factor restricting greater cluster growth. When you 
have too many blocks, it becomes increasingly difficult for the NameNode to 
scale up as the Hadoop cluster scales out.
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The solution to expanding Hadoop clusters indefinitely is to federate the 
NameNode. Specifically, you must set it up so that you have multiple NameNode 
instances running on their own, dedicated master nodes and then making 
each NameNode responsible only for the file blocks in its own name space. In 
Figure 4-6, you can see a Hadoop cluster with two NameNodes serving a single 
cluster. The slave nodes all contain blocks from both name spaces.

 

Figure 4-6: 
Replication 
patterns of 

data blocks 
in HDFS.

 

HDFS High Availability
Often in Hadoop’s infancy, a great amount of discussion was centered on the 
NameNode’s representation of a single point of failure. Hadoop, overall, has 
always had a robust and failure-tolerant architecture, with the exception of 
this key area. As we mention earlier in this chapter, without the NameNode, 
there’s no Hadoop cluster.

Using Hadoop 2, you can configure HDFS so that there’s an Active NameNode 
and a Standby NameNode (see Figure 4-7). The Standby NameNode needs 
to be on a dedicated master node that’s configured identically to the master 
node used by the Active NameNode (refer to Figure 4-7).

The Standby NameNode isn’t sitting idly by while the NameNode handles all 
the block address requests. The Standby NameNode, charged with the task 
of keeping the state of the block locations and block metadata in memory, 
handles the HDFS checkpointing responsibilities. The Active NameNode 
writes journal entries on file changes to the majority of the JournalNode 
services, which run on the master nodes. (Note: The HDFS high availability 
solution requires at least three master nodes, and if there are more, there can 
be only an odd number.) If a failure occurs, the Standby Node first reads all 
completed journal entries (where a majority of Journal Nodes have an entry, 
in other words), to ensure that the new Active NameNode is fully consistent 
with the state of the cluster.
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Figure 4-7: 
High 

 availability 
of the 

NameNode.
 

Zookeeper is used to monitor the Active NameNode and to handle the 
failover logistics if the Active NameNode becomes unavailable. Both 
the Active and Standby NameNodes have dedicated Zookeeper Failover 
Controllers (ZFC) that perform the monitoring and failover tasks. In the event 
of a failure, the ZFC informs the Zookeeper instances on the cluster, which 
then elect a new Active NameNode.

 Apache Zookeeper provides coordination and configuration services for 
 distributed systems, so it’s no wonder we see it used all over the place in 
Hadoop. See Chapter 12 for more information about Zookeeper.
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Chapter 5

Reading and Writing Data
In This Chapter
▶ Compressing data

▶ Managing files with the Hadoop file system commands

▶ Ingesting log data with Flume

T 
his chapter tells you all about getting data in and out of Hadoop, which 
are basic operations along the path of big data discovery.

We begin by describing the importance of data compression for optimizing 
the performance of your Hadoop installation, and we briefly outline some 
of the available compression utilities that are supported by Hadoop. We 
also give you an overview of the Hadoop file system (FS) shell (a command-
line interface), which includes a number of shell-like commands that you 
can use to directly interact with the Hadoop Distributed File System (HDFS) 
and other file systems that Hadoop supports. Finally, we describe how you 
can use Apache Flume — the Hadoop community technology for collecting 
large volumes of log files and storing them in Hadoop — to efficiently ingest 
huge volumes of log data.

 We use the word “ingest” all over this chapter and this book. In short, ingest-
ing data simply means to accept data from an outside source and store it in 
Hadoop. With Hadoop’s scalable, reliable, and inexpensive storage, we think 
you’ll understand why people are so keen on this.

Compressing Data
The huge data volumes that are realities in a typical Hadoop deployment 
make compression a necessity. Data compression definitely saves you a great 
deal of storage space and is sure to speed up the movement of that data 
throughout your cluster. Not surprisingly, a number of available compression 
schemes, called codecs, are out there for you to consider.
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 In a Hadoop deployment, you’re dealing (potentially) with quite a large 
number of individual slave nodes, each of which has a number of large disk 
drives. It’s not uncommon for an individual slave node to have upwards of 
45TB of raw storage space available for HDFS. Even though Hadoop slave 
nodes are designed to be inexpensive, they’re not free, and with large volumes 
of data that have a tendency to grow at increasing rates, compression is an 
obvious tool to control extreme data volumes.

First, some basic terms: A codec, which is a shortened form of compressor/ 
decompressor, is technology (software or hardware, or both) for compressing 
and decompressing data; it’s the implementation of a compression/decom-
pression algorithm. You need to know that some codecs support something 
called splittable compression and that codecs differ in both the speed with 
which they can compress and decompress data and the degree to which they 
can compress it.

Splittable compression is an important concept in a Hadoop context. The way 
Hadoop works is that files are split if they’re larger than the file’s block size 
setting, and individual file splits can be processed in parallel by different 
mappers. With most codecs, text file splits cannot be decompressed indepen-
dently of other splits from the same file, so those codecs are said to be non-
splittable, so MapReduce processing is limited to a single mapper. Because 
the file can be decompressed only as a whole, and not as individual parts 
based on splits, there can be no parallel processing of such a file, and per-
formance might take a huge hit as a job waits for a single mapper to process 
multiple data blocks that can’t be decompressed independently. (For more 
on how MapReduce processing works, see Chapter 6.)

 Splittable compression is only a factor for text files. For binary files, Hadoop 
compression codecs compress data within a binary-encoded container, 
 depending on the file type (for example, a SequenceFile, Avro, or ProtocolBuffer).

 Speaking of performance, there’s a cost (in terms of processing resources 
and time) associated with compressing the data that is being written to your 
Hadoop cluster. With computers, as with life, nothing is free. When compress-
ing data, you’re exchanging processing cycles for disk space. And when that 
data is being read, there’s a cost associated with decompressing the data as 
well. Be sure to weigh the advantages of storage savings against the additional 
performance overhead.

If the input file to a MapReduce job contains compressed data, the time that 
is needed to read that data from HDFS is reduced and job performance is 
enhanced. The input data is decompressed automatically when it is being read 
by MapReduce. The input filename extension determines which supported 
codec is used to automatically decompress the data. For example, a .gz exten-
sion identifies the file as a gzip-compressed file.
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It can also be useful to compress the intermediate output of the map phase 
in the MapReduce processing flow. Because map function output is written 
to disk and shipped across the network to the reduce tasks, compressing the 
output can result in significant performance improvements. And if you want 
to store the MapReduce output as history files for future use, compressing 
this data can significantly reduce the amount of needed space in HDFS.

There are many different compression algorithms and tools, and their char-
acteristics and strengths vary. The most common trade-off is between com-
pression ratios (the degree to which a file is compressed) and compress/
decompress speeds. The Hadoop framework supports several codecs. The 
framework transparently compresses and decompresses most input and 
output file formats.

The following list identifies some common codecs that are supported by the 
Hadoop framework. Be sure to choose the codec that most closely matches 
the demands of your particular use case (for example, with workloads where 
the speed of processing is important, choose a codec with high decompres-
sion speeds):

 ✓ Gzip: A compression utility that was adopted by the GNU project, Gzip 
(short for GNU zip) generates compressed files that have a .gz exten-
sion. You can use the gunzip command to decompress files that were 
created by a number of compression utilities, including Gzip.

 ✓ Bzip2: From a usability standpoint, Bzip2 and Gzip are similar. Bzip2 gen-
erates a better compression ratio than does Gzip, but it’s much slower. 
In fact, of all the available compression codecs in Hadoop, Bzip2 is by 
far the slowest. If you’re setting up an archive that you’ll rarely need 
to query and space is at a high premium, then maybe would Bzip2 be 
worth considering. (The B in Bzip comes from its use of the Burrows-
Wheeler algorithm, in case you’re curious.)

 ✓ Snappy: The Snappy codec from Google provides modest compression 
ratios, but fast compression and decompression speeds. (In fact, it has 
the fastest decompression speeds, which makes it highly desirable for 
data sets that are likely to be queried often.) The Snappy codec is inte-
grated into Hadoop Common, a set of common utilities that supports 
other Hadoop subprojects. You can use Snappy as an add-on for more 
recent versions of Hadoop that do not yet provide Snappy codec support.

 ✓ LZO: Similar to Snappy, LZO (short for Lempel-Ziv-Oberhumer, the trio of 
computer scientists who came up with the algorithm) provides modest 
compression ratios, but fast compression and decompression speeds. 
LZO is licensed under the GNU Public License (GPL). This license is 
incompatible with the Apache license, and as a result, LZO has been 
removed from some distributions. (Some distributions, such as IBM’s 
BigInsights, have made an end run around this restriction by releasing 
GPL-free versions of LZO.)
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  LZO supports splittable compression, which, as we mention earlier in 
this chapter, enables the parallel processing of compressed text file 
splits by your MapReduce jobs. LZO needs to create an index when it 
compresses a file, because with variable-length compression blocks, an 
index is required to tell the mapper where it can safely split the com-
pressed file. LZO is only really desirable if you need to compress text 
files. For binary files, which are not impacted by non-splittable codecs, 
Snappy is your best option.

Table 5-1 summarizes the common characteristics of some of the codecs that 
are supported by the Hadoop framework.

Table 5-1 Hadoop Codecs
Codec File 

Extension
Splittable? Degree of 

Compression
Compression 
Speed

Gzip .gz No Medium Medium

Bzip2 .bz2 Yes High Slow

Snappy .snappy No Medium Fast

LZO .lzo No, unless 
indexed

Medium Fast

All compression algorithms must make trade-offs between the degree of com-
pression and the speed of compression that they can achieve. The codecs 
that are listed in Table 5-1 provide you with some control over what the 
balance between the compression ratio and speed should be at compres-
sion time. For example, Gzip lets you regulate the speed of compression by 
specifying a negative integer (or keyword), where –1 (or --fast) indicates 
the fastest compression level, and –9 (or --best) indicates the slowest com-
pression level. The default compression level is –6.

Managing Files with the Hadoop 
File System Commands

HDFS is one of the two main components of the Hadoop framework; the other 
is the computational paradigm known as MapReduce. A distributed file system 
is a file system that manages storage across a networked cluster of machines.
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HDFS stores data in blocks, units whose default size is 64MB. Files that you 
want stored in HDFS need to be broken into block-size chunks that are then 
stored independently throughout the cluster. You can use the fsck line com-
mand to list the blocks that make up each file in HDFS, as follows:

% hadoop fsck / -files -blocks

 Because Hadoop is written in Java, all interactions with HDFS are managed via 
the Java API. Keep in mind, though, that you don’t need to be a Java guru to 
work with files in HDFS. Several Hadoop interfaces built on top of the Java API 
are now in common use (and hide Java), but the simplest one is the command-
line interface; we use the command line to interact with HDFS in the examples 
we provide in this chapter.

You access the Hadoop file system shell by running one form of the hadoop 
command. (We tell you more about that topic later.) All hadoop commands are 
invoked by the bin/hadoop script. (To retrieve a description of all hadoop 
commands, run the hadoop script without specifying any arguments.) The 
hadoop command has the syntax

hadoop [--config confdir] [COMMAND] [GENERIC_OPTIONS] 
[COMMAND_OPTIONS]

The --config confdir option overwrites the default configuration 
directory ($HADOOP_HOME/conf), so you can easily customize your Hadoop 
environment configuration. The generic options and command options are a 
common set of options that are supported by several commands.

Hadoop file system shell commands (for command line interfaces) take uni-
form resource identifiers (URIs) as arguments. A URI is a string of characters 
that’s used to identify a name or a web resource. The string can include a 
scheme name — a qualifier for the nature of the data source. For HDFS, the 
scheme name is hdfs, and for the local file system, the scheme name is 
file. If you don’t specify a scheme name, the default is the scheme name 
that’s specified in the configuration file. A file or directory in HDFS can be 
specified in a fully qualified way, such as in this example:

hdfs://namenodehost/parent/child
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Or it can simply be /parent/child if the configuration file points to 
hdfs://namenodehost.

The Hadoop file system shell commands, which are similar to Linux file com-
mands, have the following general syntax:

hadoop hdfs -file_cmd

 Readers with some prior Hadoop experience might ask, “But what about the 
hadoop fs command?” The fs command is deprecated in the Hadoop 0.2 
release series, but it does still work in Hadoop 2. We recommend that you use 
hdfs dfs instead.

As you might expect, you use the mkdir command to create a directory in 
HDFS, just as you would do on Linux or on Unix-based operating systems. 
Though HDFS has a default working directory, /user/$USER, where $USER is 
your login username, you need to create it yourself by using the syntax

$ hadoop hdfs dfs -mkdir /user/login_user_name

For example, to create a directory named “joanna”, run this mkdir command:

$ hadoop hdfs dfs -mkdir /user/joanna

Use the Hadoop put command to copy a file from your local file system to 
HDFS:

$ hadoop hdfs dfs -put file_name /user/login_user_name

For example, to copy a file named data.txt to this new directory, run the 
following put command:

$ hadoop hdfs dfs -put data.txt /user/joanna

Run the ls command to get an HDFS file listing:

$ hadoop hdfs dfs -ls .
Found 2 items
drwxr-xr-x - joanna supergroup 0 2013-06-30 12:25 /user/joanna
-rw-r--r-- 1 joanna supergroup 118 2013-06-30 12:15 /user/joanna/data.txt
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The file listing itself breaks down as described in this list:

 ✓ Column 1 shows the file mode (“d” for directory and “–” for normal 
file, followed by the permissions). The three permission types — read 
(r), write (w), and execute (x) — are the same as you find on Linux- and 
Unix-based systems. The execute permission for a file is ignored because 
you cannot execute a file on HDFS. The permissions are grouped by 
owner, group, and public (everyone else).

 ✓ Column 2 shows the replication factor for files. (The concept of rep-
lication doesn’t apply to directories.) The blocks that make up a file in 
HDFS are replicated to ensure fault tolerance. The replication factor, or 
the number of replicas that are kept for a specific file, is configurable. 
You can specify the replication factor when the file is created or later, via 
your application.

 ✓ Columns 3 and 4 show the file owner and group. Supergroup is the 
name of the group of superusers, and a superuser is the user with the 
same identity as the NameNode process. If you start the NameNode, 
you’re the superuser for now. This is a special group – regular users will 
have their userids belong to a group without special characteristics — a 
group that’s simply defined by a Hadoop administrator.

 ✓ Column 5 shows the size of the file, in bytes, or 0 if it’s a directory.

 ✓ Columns 6 and 7 show the date and time of the last modification, 
respectively.

 ✓ Column 8 shows the unqualified name (meaning that the scheme 
name isn’t specified) of the file or directory.

Use the Hadoop get command to copy a file from HDFS to your local file 
system:

$ hadoop hdfs dfs -get file_name /user/login_user_name

Use the Hadoop rm command to delete a file or an empty directory:

$ hadoop hdfs dfs -rm file_name /user/login_user_name

 Use the hadoop hdfs dfs -help command to get detailed help for every 
option.

Table 5-2 summarizes the Hadoop file system shell commands.



76 Part II: How Hadoop Works 

Table 5-2 File System Shell Commands
Command What It Does Usage Examples

dcat Copies source paths to 
stdout.

hdfs dfs -cat 
URI [URI ...]

hdfs dfs -cat 
hdfs://<path>/
file1; hdfs dfs 
-cat file:///
file2 /user/
hadoop/file3

chgrp Changes the group 
association of files. With 
-R, makes the change 
recursively by way of the 
directory structure. The 
user must be the file owner 
or the superuser.

hdfs dfs -chgrp 
[-R] GROUP URI 
[URI ...]

hdfs dfs -chgrp 
analysts test/
data1.txt

chmod Changes the permissions 
of files. With -R, makes 
the change recursively 
by way of the directory 
structure. The user must 
be the file owner or the 
superuser.

hdfs dfs 
-chmod [-R] 
<MODE[,MODE]... 
| OCTALMODE> 
URI [URI ...]

hdfs dfs 
-chmod 777 
test/data1.txt

chown Changes the owner of 
files. With -R, makes the 
change recursively by way 
of the directory structure. 
The user must be the 
superuser.

hdfs dfs -chown 
[-R] [OWNER]
[:[GROUP]] URI 
[URI ]

hdfs dfs -chown 
-R hduser2  
/opt/hadoop/
logs

copyFrom 
Local

Works similarly to the put 
command, except that the 
source is restricted to a 
local file reference.

hdfs dfs 
-copyFromLocal 
<localsrc> URI

hdfs dfs 
-copyFrom Local 
input/docs/
data2.txt  
hdfs://
localhost/
user/rosemary/
data2.txt

copyTo 
Local

Works similarly to the get 
command, except that the 
destination is restricted to 
a local file reference.

hdfs dfs 
-copyToLocal 
[-ignorecrc] 
[-crc] URI 
<localdst>

hdfs dfs 
-copyToLocal 
data2.txt 
data2.copy.txt

count Counts the number of 
directories, files, and bytes 
under the paths that match 
the specified file pattern.

hdfs dfs -count 
[-q] <paths>

hdfs dfs -count 
hdfs://nn1.
example.com/
file1 hdfs://
nn2.example 
.com/file2
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cp Copies one or more files 
from a specified source 
to a specified destination. 
If you specify multiple 
sources, the specified 
destination must be a 
directory.

hdfs dfs -cp 
URI [URI ...] 
<dest>

hdfs dfs -cp  
/user/hadoop/
file1 /user/
hadoop/file2  
/user/hadoop/
dir

du Displays the size of the 
specified file, or the sizes 
of files and directories 
that are contained in the 
 specified directory. If you 
specify the -s option, 
displays an aggregate 
summary of file sizes rather 
than individual file sizes. If 
you specify the -h option, 
formats the file sizes in a 
"human-readable" way.

hdfs dfs -du 
[-s] [-h] URI 
[URI ...]

hdfs dfs -du  
/user/hadoop/
dir1 /user/
hadoop/file1

expunge Empties the trash. When 
you delete a file, it isn’t 
removed immediately from 
HDFS, but is renamed 
to a file in the /trash 
 directory. As long as the 
file remains there, you can 
undelete it if you change 
your mind, though only the 
latest copy of the deleted 
file can be restored.

hdfs dfs  
–expunge

hdfs dfs  
–expunge

get Copies files to the local 
file system. Files that 
fail a cyclic redundancy 
check (CRC) can still be 
copied if you specify the 
-ignorecrc option. 
The CRC is a common 
technique for detecting 
data transmission errors. 
CRC checksum files have 
the .crc extension and 
are used to verify the data 
integrity of another file. 
These files are copied 
if you specify the -crc 
option.

hdfs dfs -get 
[-ignorecrc] 
[-crc] <src> 
<localdst>

hdfs dfs -get 
/user/hadoop/
file3 localfile

(continued)
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getmerge Concatenates the files in 
src and writes the result 
to the specified local 
destination file. To add a 
newline character at the 
end of each file, specify the 
addnl option.

hdfs dfs 
-getmerge <src> 
<localdst> 
[addnl]

hdfs dfs 
-getmerge/
user/hadoop/
mydir/ 
~/result_file 
addnl

ls Returns statistics for 
the specified files or 
directories.

hdfs dfs -ls 
<args>

hdfs dfs -ls  
/user/hadoop/
file1

lsr Serves as the recursive 
version of ls; similar to 
the Unix command ls -R.

hdfs dfs -lsr 
<args>

hdfs dfs -lsr  
/user/hadoop

mkdir Creates directories on one 
or more specified paths. 
Its behavior is similar to 
the Unix mkdir -p com-
mand, which creates all 
directories that lead up to 
the specified directory if 
they don’t exist already.

hdfs dfs -mkdir 
<paths>

hdfs dfs -mkdir 
/user/hadoop/
dir5/temp

moveFrom 
Local

Works similarly to the put 
command, except that the 
source is deleted after it is 
copied.

hdfs dfs 
-moveFromLocal 
<localsrc> 
<dest>

hdfs dfs 
-moveFromLocal 
localfile1 
localfile2  
/user/hadoop/
hadoopdir

mv Moves one or more files 
from a specified source 
to a specified destination. 
If you specify multiple 
sources, the specified des-
tination must be a direc-
tory. Moving files across 
file systems isn’t permitted.

hdfs dfs -mv 
URI [URI ...] 
<dest>

hdfs dfs -mv  
/user/hadoop/
file1 /user/
hadoop/file2

put Copies files from the local 
file system to the destina-
tion file system. This com-
mand can also read input 
from stdin and write to 
the destination file system.

hdfs dfs -put 
<localsrc> ... 
<dest>

hdfs dfs -put 
localfile1 
localfile2  
/user/hadoop/
hadoopdir; hdfs 
dfs -put -  
/user/hadoop/
hadoopdir 
(reads input from 
stdin)

Table 5-2 (continued)
Command What It Does Usage Examples
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rm Deletes one or more speci-
fied files. This command 
doesn’t delete empty direc-
tories or files. To bypass 
the trash (if it’s enabled) 
and delete the specified 
files immediately, specify 
the -skipTrash option.

hdfs dfs -rm 
[-skipTrash] 
URI [URI ...]

hdfs dfs -rm  
hdfs://nn. 
example.com/
file9

rmr Serves as the recursive 
version of –rm.

hdfs dfs -rmr 
[-skipTrash] 
URI [URI ...]

hdfs dfs -rmr 
/user/hadoop/
dir

setrep Changes the replication 
factor for a specified file or 
directory. With -R, makes 
the change recursively 
by way of the directory 
structure.

hdfs dfs 
-setrep <rep> 
[-R] <path>

hdfs dfs 
-setrep 3 -R  
/user/hadoop/
dir1

stat Displays information about 
the specified path.

hdfs dfs -stat 
URI [URI ...]

hdfs dfs -stat 
/user/hadoop/
dir1

tail Displays the last kilobyte of 
a specified file to stdout. 
The syntax supports the 
Unix -f option, which 
enables the specified file 
to be monitored. As new 
lines are added to the file 
by another process, tail 
updates the display.

hdfs dfs -tail 
[-f] URI

hdfs dfs -tail 
/user/hadoop/
dir1

test Returns attributes of the 
specified file or directory. 
Specifies -e to determine 
whether the file or direc-
tory exists; -z to deter-
mine whether the file or 
directory is empty; and -d 
to determine whether the 
URI is a directory.

hdfs dfs -test 
-[ezd] URI

hdfs dfs -test 
/user/hadoop/
dir1

text Outputs a specified source 
file in text format. Valid 
input file formats are zip 
and TextRecord 
InputStream.

hdfs dfs -text 
<src>

hdfs dfs -text 
/user/hadoop/
file8.zip

touchz Creates a new, empty file 
of size 0 in the specified 
path.

hdfs dfs 
-touchz <path>

hdfs dfs 
-touchz /user/
hadoop/file12
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Ingesting Log Data with Flume
Some of the data that ends up in HDFS might land there via database load 
operations or other types of batch processes, but what if you want to capture 
the data that’s flowing in high-throughput data streams, such as application 
log data? Apache Flume is the current standard way to do that easily, effi-
ciently, and safely.

Apache Flume, another top-level project from the Apache Software Foundation, 
is a distributed system for aggregating and moving large amounts of stream-
ing data from different sources to a centralized data store. Put another way, 
Flume is designed for the continuous ingestion of data into HDFS. The data can 
be any kind of data, but Flume is particularly well-suited to handling log data, 
such as the log data from web servers. Units of the data that Flume processes 
are called events; an example of an event is a log record.

To understand how Flume works within a Hadoop cluster, you need to know 
that Flume runs as one or more agents, and that each agent has three plug-
gable components: sources, channels, and sinks, as shown in Figure 5-1 and 
described in this list:

 ✓ Sources retrieve data and send it to channels.

 ✓ Channels hold data queues and serve as conduits between sources and 
sinks, which is useful when the incoming flow rate exceeds the outgoing 
flow rate.

 ✓ Sinks process data that was taken from channels and deliver it to a desti-
nation, such as HDFS.

 

Figure 5-1: 
The Flume 
data flow 

model.
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An agent must have at least one of each component to run, and each agent is 
contained within its own instance of the Java Virtual Machine (JVM).

 An event that is written to a channel by a source isn’t removed from that chan-
nel until a sink removes it by way of a transaction. If a network failure occurs, 
channels keep their events queued until the sinks can write them to the clus-
ter. An in-memory channel can process events quickly, but it is volatile and 
cannot be recovered, whereas a file-based channel offers persistence and can 
be recovered in the event of failure.

Each agent can have several sources, channels, and sinks, and although a 
source can write to many channels, a sink can take data from only one channel.

An agent is just a JVM that’s running Flume, and the sinks for each agent 
node in the Hadoop cluster send data to collector nodes, which aggregate the 
data from many agents before writing it to HDFS, where it can be analyzed by 
other Hadoop tools.

Agents can be chained together so that the sink from one agent sends data to 
the source from another agent. Avro, Apache’s remote call-and-serialization 
framework, is the usual way of sending data across a network with Flume, 
because it serves as a useful tool for the efficient serialization or transforma-
tion of data into a compact binary format. In the context of Flume, compat-
ibility is important: An Avro event requires an Avro source, for example, and 
a sink must deliver events that are appropriate to the destination.

What makes this great chain of sources, channels, and sinks work is the 
Flume agent configuration, which is stored in a local text file that’s structured 
like a Java properties file. You can configure multiple agents in the same file. 
Let’s look at an sample file, which we name flume-agent.conf — it’s set to 
configure an agent we named shaman:

# Identify the components on agent shaman:
shaman.sources = netcat_s1
shaman.sinks = hdfs_w1
shaman.channels = in-mem_c1

# Configure the source:
shaman.sources.netcat_s1.type = netcat
shaman.sources.netcat_s1.bind = localhost
shaman.sources.netcat_s1.port = 44444

# Describe the sink:
shaman.sinks.hdfs_w1.type = hdfs
shaman.sinks.hdfs_w1.hdfs.path = hdfs://<path>
shaman.sinks.hdfs_w1.hdfs.writeFormat = Text
shaman.sinks.hdfs_w1.hdfs.fileType = DataStream
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# Configure a channel that buffers events in memory:
shaman.channels.in-mem_c1.type = memory
shaman.channels.in-mem_c1.capacity = 20000
shaman.channels.in-mem_c1.transactionCapacity = 100

# Bind the source and sink to the channel:
shaman.sources.netcat_s1.channels = in-mem_c1
shaman.sinks.hdfs_w1.channels = in-mem_c1

The configuration file includes properties for each source, channel, and sink in 
the agent and specifies how they’re connected. In this example, agent shaman 
has a source that listens for data (messages to netcat) on port 44444, a chan-
nel that buffers event data in memory, and a sink that logs event data to the 
console. This configuration file could have been used to define several agents; 
we’re configuring only one to keep things simple.

To start the agent, use a shell script called flume-ng, which is located in 
the bin directory of the Flume distribution. From the command line, issue 
the agent command, specifying the path to the configuration file and the 
agent name.

The following sample command starts the Flume agent that we showed you 
how to configure:

flume-ng agent -f /<path to flume-agent.conf> -n shaman

The Flume agent’s log should have entries verifying that the source, channel, 
and sink started successfully.

To further test the configuration, you can telnet to port 44444 from another 
terminal and send Flume an event by entering an arbitrary text string. If all 
goes well, the original Flume terminal will output the event in a log message 
that you should be able to see in the agent’s log.



Chapter 6

MapReduce Programming
In This Chapter
▶ Thinking in parallel

▶ Working with key/value pairs

▶ Tracking your application flow

▶ Running the sample MapReduce application

A 
fter you’ve stored reams and reams of data in HDFS (a distributed 
storage system spread over an expandable cluster of individual 

slave nodes), the first question that comes to mind is “How can I analyze or 
query my data?” Transferring all this data to a central node for processing 
isn’t the answer, since you’ll be waiting forever for the data to transfer over 
the  network (not to mention waiting for everything to be processed serially). 
So what’s the solution? MapReduce!

As we describe in Chapter 1, Google faced this exact problem with their 
 distributed Google File System (GFS), and came up with their MapReduce data 
processing model as the best possible solution. Google needed to be able to 
grow their data storage and processing capacity, and the only  feasible model 
was a distributed system. In Chapter 4, we look at a number of the  benefits 
of storing data in the Hadoop Distributed File System (HDFS): low cost, 
 fault-tolerant, and easily scalable, to name just a few. In Hadoop, MapReduce 
integrates with HDFS to provide the exact same benefits for data processing.

At first glance, the strengths of Hadoop sound too good to be true — and  overall 
the strengths truly are good! But there is a cost here: writing applications for 
distributed systems is completely different from writing the same code for 
centralized systems. For applications to take advantage of the  distributed slave 
nodes in the Hadoop cluster, the application logic will need to run in parallel.

Thinking in Parallel
Let’s say you want to do something simple, like count the number of flights 
for each carrier in our flight data set — this will be our example scenario 
for this chapter. For a normal program that runs serially, this is a simple 



84 Part II: How Hadoop Works 

operation. Listing 6-1 shows the pseudocode, which is fairly straightforward: 
set up the array to store the number of times you run across each carrier, 
and then, as you read each record in sequence, increment the applicable 
 airline’s counter.

Listing 6-1: Pseudocode for Calculating The Number of Flights  
By Carrier Serially

create a two-dimensional array
  create a row for every airline carrier
    populate the first column with the carrier code
    populate the second column with the integer zero

for each line of flight data
  read the airline carrier code
  find the row in the array that matches the carrier code
    increment the counter in the second column by one

print the totals for each row in the two-dimensional array

The thing is, you would not be able to take this (elegantly simple) code and 
run it successfully on flight data stored in a distributed system. Even though 
this is a simple example, you need to think in parallel as you code your appli-
cation. Listing 6-2 shows the pseudocode for calculating the number of flights 
by carrier in parallel.

Listing 6-2: Pesudocode for Calculating The Number of Flights  
By Carrier in Parallel

Map Phase:
  for each line of flight data
    read the current record and extract the airline carrier code
    output the airline carrier code and the number one as a key/value pair

Shuffle and Sort Phase:
  read the list of key/value pairs from the map phase
  group all the values for each key together
    each key has a corresponding array of values
  sort the data by key
  output each key and its array of values

Reduce Phase:
  read the list of carriers and arrays of values from the shuffle and sort phase
  for each carrier code
    add the total number of ones in the carrier code's array of values together

print the totals for each row in the two-dimensional array
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The code in Listing 6-2 shows a completely different way of thinking about 
how to process data. Since we need totals, we had to break this  application 
up into phases. The first phase is the map phase, which is where every 
record in the data set is processed individually. Here, we extract the carrier 
code from the flight data record it’s assigned, and then export a key/value 
pair, with the carrier code as the key and the value being an integer one. The 
map operation is run against every record in the data set. After every record 
is processed, you need to ensure that all the values (the integer ones) are 
grouped together for each key, which is the airline carrier code, and then 
sorted by key. This is known as the shuffle and sort phase. Finally, there is 
the reduce phase, where you add the total number of ones together for each 
 airline carrier, which gives you the total flights for each airline carrier.

As you can see, there is little in common between the serial version of the 
code and the parallel version. Also, even though this is a simple example, 
developing the parallel version requires an altogether different approach. 
What’s more, as the computation problems get even a little more difficult, 
they become even harder when they need to be parallelized.

Seeing the Importance of MapReduce
For most of Hadoop’s history, MapReduce has been the only game in town 
when it comes to data processing. The availability of MapReduce has been 
the reason for Hadoop’s success and at the same time a major factor in 
 limiting further adoption.

As we’ll see later in this chapter, MapReduce enables skilled programmers to 
write distributed applications without having to worry about the underlying 
distributed computing infrastructure. This is a very big deal: Hadoop and 
the MapReduce framework handle all sorts of complexity that application 
developers don’t need to handle. For example, the ability to transparently 
scale out the cluster by adding nodes and the automatic failover of both 
data storage and data processing subsystems happen with zero impact on 
applications.

The other side of the coin here is that although MapReduce hides a tremen-
dous amount of complexity, you can’t afford to forget what it is: an interface 
for parallel programming. This is an advanced skill — and a barrier to wider 
adoption. There simply aren’t yet many MapReduce programmers, and not 
everyone has the skill to master it.

The goal of this chapter is to help you understand how MapReduce applica-
tions work, how to think in parallel, and to provide a basic entry point into 
the world of MapReduce programming.
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 In Hadoop’s early days (Hadoop 1 and before), you could only run MapReduce 
applications on your clusters. In Hadoop 2, the YARN  component changed 
all that by taking over resource management and scheduling from the 
MapReduce framework, and providing a generic interface to facilitate applica-
tions to run on a Hadoop cluster. (See Chapter 7 for our  discussion of YARN’s 
 framework-agnostic resource management.) In short, this means MapReduce 
is now just one of many application frameworks you can use to develop and 
run applications on Hadoop. Though it’s certainly  possible to run  applications 
using other frameworks on Hadoop, it doesn’t mean that we can start forget-
ting about MapReduce. At the time we wrote this book, MapReduce was still 
the only production-ready data processing framework available for Hadoop. 
Though other frameworks will eventually become available, MapReduce has 
almost a decade of maturity under its belt (with almost 4,000 JIRA issues com-
pleted, involving hundreds of developers, if you’re keeping track). There’s no 
 dispute: MapReduce is Hadoop’s most mature framework for data  processing. 
In addition, a  significant amount of MapReduce code is now in use that’s 
unlikely to go anywhere soon. Long story short: MapReduce is an important 
part of the Hadoop story.

Later in this book, we cover certain programming abstractions to MapReduce, 
such as Pig (see Chapter 8) and Hive (see Chapter 13), which hide the com-
plexity of parallel programming. The Apache Hive and Apache Pig projects 
are highly popular because they’re easier entry points for data processing 
on Hadoop. For many problems, especially the kinds that you can solve with 
SQL, Hive and Pig are excellent tools. But for a wider-ranging task such 
as  statistical processing or text extraction, and especially for processing 
unstructured data, you need to use MapReduce.

Doing Things in Parallel: Breaking  
Big Problems into Many  
Bite-Size Pieces

If you’re a programmer, chances are good that you’re at least aware of reddit, 
a popular discussion site — perhaps you’re even a full-blown redditor. Its 
Ask Me Anything subreddit features a notable person logging in to reddit 
to answer redditor’s questions. In a running gag, someone inevitably asks 
the question, “Would you rather fight 1 horse-sized duck or 100 duck-sized 
horses?” The answers and the rationale behind them are sources of great 
amusement, but they create a mental picture of what Hadoop and MapReduce 
are all about: scaling out as opposed to scaling up. Of course you’d rather 
defend yourself against 1  horse-sized duck — a herd of duck-sized horses 
would overwhelm you in seconds!
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Looking at MapReduce application flow
At its core, MapReduce is a programming model for processing data sets that 
are stored in a distributed manner across a Hadoop cluster’s slave nodes. 
The key concept here is divide and conquer. Specifically, you want to break 
a large data set into many smaller pieces and process them in parallel with 
the same algorithm. With the Hadoop Distributed File System (HDFS), the 
files are already divided into bite-sized pieces. MapReduce is what you use 
to  process all the pieces.

MapReduce applications have multiple phases, as spelled out in this list:

 1. Determine the exact data sets to process from the data blocks. This 
involves calculating where the records to be processed are located 
within the data blocks.

 2. Run the specified algorithm against each record in the data set until all 
the records are processed. The individual instance of the application 
running against a block of data in a data set is known as a mapper task. 
(This is the mapping part of MapReduce.)

 3. Locally perform an interim reduction of the output of each mapper. 
(The outputs are provisionally combined, in other words.) This phase is 
optional because, in some common cases, it isn’t desirable.

 4. Based on partitioning requirements, group the applicable partitions of 
data from each mapper’s result sets.

 5. Boil down the result sets from the mappers into a single result set — the 
Reduce part of MapReduce. An individual instance of the application run-
ning against mapper output data is known as a reducer task. (As strange 
as it may seem, since “Reduce” is part of the MapReduce name, this phase 
can be optional; applications without a reducer are known as map-only 
jobs, which can be useful when there’s no need to combine the result sets 
from the map tasks.)

Understanding input splits
The way HDFS has been set up, it breaks down very large files into large blocks 
(for example, measuring 128MB), and stores three copies of these blocks on 
different nodes in the cluster. HDFS has no awareness of the content of these 
files. (If this business about HDFS doesn’t ring a bell, check out Chapter 4.)

In YARN, when a MapReduce job is started, the Resource Manager (the 
 cluster resource management and job scheduling facility) creates an 
Application Master daemon to look after the lifecycle of the job. (In Hadoop 1, 
the JobTracker monitored individual jobs as well as handling job  scheduling 
and cluster resource management. For more on this, see Chapter 7.) One of 
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the first things the Application Master does is determine which file blocks 
are needed for processing. The Application Master requests details from the 
NameNode on where the replicas of the needed data blocks are stored. Using 
the location data for the file blocks, the Application Master makes requests to 
the Resource Manager to have map tasks process specific blocks on the slave 
nodes where they’re stored.

 The key to efficient MapReduce processing is that, wherever possible, data is 
processed locally — on the slave node where it’s stored.

Before looking at how the data blocks are processed, you need to look more 
closely at how Hadoop stores data. In Hadoop, files are composed of  individual 
records, which are ultimately processed one-by-one by mapper tasks. For 
example, the sample data set we use in this book contains information about 
completed flights within the United States between 1987 and 2008. We have one 
large file for each year, and within every file, each individual line represents a 
single flight. In other words, one line represents one record. Now, remember 
that the block size for the Hadoop cluster is 64MB, which means that the light 
data files are broken into chunks of exactly 64MB.

Do you see the problem? If each map task processes all records in a specific 
data block, what happens to those records that span block boundaries? 
File blocks are exactly 64MB (or whatever you set the block size to be), and 
because HDFS has no conception of what’s inside the file blocks, it can’t gauge 
when a record might spill over into another block. To solve this problem, 
Hadoop uses a logical representation of the data stored in file blocks, known as 
input splits. When a MapReduce job client calculates the input splits, it figures 
out where the first whole record in a block begins and where the last record 
in the block ends. In cases where the last record in a block is  incomplete, the 
input split includes location information for the next block and the byte offset 
of the data needed to complete the record. Figure 6-1 shows this relationship 
between data blocks and input splits.

Figure 6-1: 
Data blocks 

(HDFS) 
and input 

splits (Map
Reduce).
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 You can configure the Application Master daemon (or JobTracker, if you’re in 
Hadoop 1) to calculate the input splits instead of the job client, which would 
be faster for jobs processing a large number of data blocks.

MapReduce data processing is driven by this concept of input splits. The 
number of input splits that are calculated for a specific application determines 
the number of mapper tasks. Each of these mapper tasks is assigned, where 
possible, to a slave node where the input split is stored. The Resource Manager 
(or JobTracker, if you’re in Hadoop 1) does its best to ensure that input splits 
are processed locally.

Seeing how key/value pairs fit into the 
MapReduce application flow
You may be wondering what happens in the processing of all these input splits. 
To answer this question, you need to understand that a MapReduce applica-
tion processes the data in input splits on a record-by-record basis and that each 
record is understood by MapReduce to be a key/value pair. (In more technical 
descriptions of Hadoop, you see key/value pairs referred to as tuples.)

 Obviously, when you’re processing data, not everything needs to be repre-
sented as a key/value pair, so in cases where it isn’t needed, you can provide 
a dummy key or value.

We describe the phases of a MapReduce application in the “Looking at 
MapReduce application flow” section, earlier in this chapter. Figure 6-2 fills 
out that description by showing how our sample MapReduce application 
(complete with sample flight data) makes its way through these phases. The 
next few sections of this chapter walk you through the process shown in 
Figure 6-2.

Map phase
After the input splits have been calculated, the mapper tasks can start 
 processing them — that is, right after the Resource Manager’s  scheduling 
facility assigns them their processing resources. (In Hadoop 1, the JobTracker 
assigns mapper tasks to specific processing slots.) The mapper task itself 
processes its input split one record at a time — in Figure 6-2, this lone record 
is represented by the key/value pair (K1,V1). In the case of our flight data, 
when the input splits are calculated (using the default file  processing method 
for text files), the assumption is that each row in the text file is a single record. 
For each record, the text of the row itself represents the value, and the byte 
offset of each row from the beginning of the split is  considered to be the key.
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Figure 6-2: 
Data flow 

through the 
MapReduce 

cycle.

 You might be wondering why the row number isn’t used instead of the byte 
offset. When you consider that a very large text file is broken down into many 
individual data blocks, and is processed as many splits, the row number is a 
risky concept. The number of lines in each split vary, so it would be impossible 
to compute the number of rows preceding the one being processed. However, 
with the byte offset, you can be precise, because every block has a fixed 
number of bytes.

As a mapper task processes each record, it generates a new key/value pair: 
(K2,V2). The key and the value here can be completely different from the 
input pair. The output of the mapper task is the full collection of all these 
key/value pairs. In Figure 6-2, the output is represented by list(K2,V2). 
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Before the final output file for each mapper task is written, the output is 
 partitioned based on the key and sorted. This partitioning means that all 
of the values for each key are grouped together, resulting in the following 
output: K2, list(V2).

In the case of our fairly basic sample application, there is only a single reducer, 
so all the output of the mapper task is written to a single file. But in cases with 
multiple reducers, every mapper task may generate multiple output files as 
well. The breakdown of these output files is based on the partitioning key. For 
example, if there are only three distinct partitioning keys output for the mapper 
tasks and you have configured three reducers for the job, there will be three 
mapper output files. In this example, if a particular mapper task processes an 
input split and it generates output with two of the three keys, there will be only 
two output files.

 Always compress your mapper tasks’ output files. The biggest benefit here 
is in performance gains, because writing smaller output files minimizes the 
inevitable cost of transferring the mapper output to the nodes where the 
reducers are running. Enable compression by setting the mapreduce.map.
output.compress property to true and assigning a compression codec to 
the mapred.map.output.compress.codec property. (This property can 
be found in the mapred-site.xml file, which is stored in Hadoop’s conf 
 directory. For details on configuring Hadoop, see Chapter 3.)

 The default partitioner is more than adequate in most situations, but sometimes 
you may want to customize how the data is partitioned before it’s processed 
by the reducers. For example, you may want the data in your result sets to be 
sorted by the key and their values — known as a secondary sort. To do this, 
you can override the default partitioner and implement your own. This process 
requires some care, however, because you’ll want to ensure that the number of 
records in each partition is uniform. (If one reducer has to process much more 
data than the other reducers, you’ll wait for your MapReduce job to finish while 
the single overworked reducer is slogging through its disproportionally large 
data set.) Using uniformly sized intermediate files, you can better take advantage 
of the parallelism available in MapReduce processing.

Shuffle phase
After the Map phase and before the beginning of the Reduce phase is a hand-
off process, known as shuffle and sort. Here, data from the mapper tasks is 
 prepared and moved to the nodes where the reducer tasks will be run. When 
the mapper task is complete, the results are sorted by key,  partitioned if there 
are multiple reducers, and then written to disk. You can see this  concept 
in Figure 6-3, which shows the MapReduce data  processing flow and its 
 interaction with the physical components of the Hadoop  cluster. (One quick 
note about Figure 6-3: Data in memory is represented by white squares, and 
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data stored to disk is represented by gray squares.) To speed up the overall 
MapReduce process, data is immediately moved to the reducer tasks’ nodes, 
to avoid a flood of network activity when the final mapper task  finishes its 
work. This transfer happens while the mapper task is  running, as the outputs 
for each record — remember (K2,V2) — are stored in the memory of a 
waiting reducer task. (You can configure whether this  happens — or doesn’t 
happen — and also the number of threads involved.) Keep in mind that even 
though a reducer task might have most of the mapper task’s output, the 
reduce task’s processing cannot begin until all mapper tasks have finished.

 

Figure 6-3: 
MapReduce 

processing 
flow.

 

 To avoid scenarios where the performance of a MapReduce job is hampered by 
one straggling mapper task that’s running on a poorly performing slave node, 
the MapReduce framework uses a concept called speculative execution. In case 
some mapper tasks are running slower than what’s considered  reasonable, the 
Application Master will spawn duplicate tasks (in Hadoop 1, the JobTracker 
does this). Whichever task finishes first — the duplicate or the original — its 
results are stored to disk, and the other task is killed. If you’re monitoring your 
jobs closely and are wondering why there are more mapper tasks running than 
you expect, this is a likely reason. 

The output from mapper tasks isn’t written to HDFS, but rather to local disk 
on the slave node where the mapper task was run. As such, it’s not replicated 
across the Hadoop cluster.
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 Aside from compressing the output, you can potentially boost performance 
by running a combiner task. This simple tactic, shown in Figure 6-4, involves 
performing a local reduce of the output for individual mapper tasks. In the 
majority of cases, no extra programming is needed, as you can tell the system 
to use the reducer function. If you’re not using your reducer function, you 
need to ensure that the combiner function’s output is identical to that of the 
reducer function. It’s up to the MapReduce framework whether the combiner 
function needs to be run once, multiple times, or never, so it’s critical that 
the combiner’s code ensures that the final results are unaffected by multiple 
runs. Running the combiner can yield a performance benefit by lessening the 
amount of intermediate data that would otherwise need to be transferred 
over the network. This also lowers the amount of processing the reducer 
tasks would need to do. You are running an extra task here, so it is possible 
that any performance gain is negligible or may even result in worse overall 
 performance. Your mileage may vary, so we recommend testing this carefully.

Figure 6-4: 
Reducing 

intermedi
ate data 
size with 

combiners.

After all the results of the mapper tasks are copied to the reducer tasks’ 
nodes, these files are merged and sorted.

Reduce phase
Here’s the blow-by-blow so far: A large data set has been broken down into 
smaller pieces, called input splits, and individual instances of mapper tasks have 
processed each one of them. In some cases, this single phase of  processing is all 
that’s needed to generate the desired application output. For example, if you’re 
running a basic transformation operation on the data — converting all text to 
uppercase, for example, or extracting key frames from video files — the lone 
phase is all you need. (This is known as a map-only job, by the way.) But in many 
other cases, the job is only half-done when the mapper tasks have written their 
output. The remaining task is boiling down all interim results to a single, unified 
answer.
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The Reduce phase processes the keys and their individual lists of values so 
that what’s normally returned to the client application is a set of key/value 
pairs. Similar to the mapper task, which processes each record one-by-one, 
the reducer processes each key individually. Back in Figure 6-2, you see this 
concept represented as K2,list(V2). The whole Reduce phase returns 
list(K3,V3). Normally, the reducer returns a single key/value pair for 
every key it processes. However, these key/value pairs can be as expansive 
or as small as you need them to be. In the code example later in this  chapter, 
you see a minimalist case, with a simple key/value pair with one airline code 
and the corresponding total number of flights completed. But in practice, 
you could expand the sample to return a nested set of values where, for 
 example, you return a breakdown of the number of flights per month for 
every airline code.

When the reducer tasks are finished, each of them returns a results file and 
stores it in HDFS. As shown in Figure 6-3, the HDFS system then automatically 
replicates these results.

 Where the Resource Manager (or JobTracker if you’re using Hadoop 1) tries 
its best to assign resources to mapper tasks to ensure that input splits are 
processed locally, there is no such strategy for reducer tasks. It is assumed 
that mapper task result sets need to be transferred over the network to be 
processed by the reducer tasks. This is a reasonable implementation because, 
with hundreds or even thousands of mapper tasks, there would be no  practical 
way for reducer tasks to have the same locality prioritization.

Writing MapReduce Applications
The MapReduce API is written in Java, so MapReduce applications are 
primarily Java-based. The following list specifies the components of a 
MapReduce application that you can develop:

 ✓ Driver (mandatory): This is the application shell that’s invoked from the 
client. It configures the MapReduce Job class (which you do not cus-
tomize) and submits it to the Resource Manager (or JobTracker if you’re 
using Hadoop 1).

 ✓ Mapper class (mandatory): The Mapper class you implement needs to 
define the formats of the key/value pairs you input and output as you 
process each record. This class has only a single method, named map, 
which is where you code how each record will be processed and what 
key/value to output. To output key/value pairs from the mapper task, 
write them to an instance of the Context class.
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 ✓ Reducer class (optional): The reducer is optional for map-only applica-
tions where the Reduce phase isn’t needed.

 ✓ Combiner class (optional): A combiner can often be defined as a 
reducer, but in some cases it needs to be different. (Remember, for 
example, that a reducer may not be able to run multiple times on a data 
set without mutating the results.)

 ✓ Partitioner class (optional): Customize the default partitioner to per-
form special tasks, such as a secondary sort on the values for each key 
or for rare cases involving sparse data and imbalanced output files from 
the mapper tasks.

 ✓ RecordReader and RecordWriter classes (optional): Hadoop has 
some standard data formats (for example, text files, sequence files, and 
databases), which are useful for many cases. For specifically formatted 
data, implementing your own classes for reading and writing data can 
greatly simplify your mapper and reducer code.

From within the driver, you can use the MapReduce API, which includes 
 factory methods to create instances of all components in the preceding list. 
(In case you’re not a Java person, a factory method is a tool for creating 
objects.)

 A generic API named Hadoop Streaming lets you use other programming 
 languages (most commonly, C, Python, and Perl). Though this API enables 
organizations with non-Java skills to write MapReduce code, using it has some 
disadvantages. Because of the additional abstraction layers that this stream-
ing code needs to go through in order to function, there’s a  performance 
 penalty and increased memory usage. Also, you can code mapper and reducer 
functions only with Hadoop Streaming. Record  readers and writers, as well as 
all your partitioners, need to be written in Java. A direct consequence — and 
additional disadvantage — of being unable to  customize record readers and 
writers is that Hadoop Streaming applications are well suited to handle only 
text-based data.

 In this book, we’ve made two critical decisions around the libraries we’re 
using and how the applications are processed on the Hadoop cluster. We’re 
using the MapReduce framework in the YARN processing environment 
(often referred to as MRv2), as opposed to the old JobTracker / TaskTracker 
environment from before Hadoop 2 (referred to as MRv1). Also, for the code 
libraries, we’re using what’s generally known as the new MapReduce API, 
which belongs to the org.apache.hadoop.mapreduce package. The old 
MapReduce API uses the org.apache.hadoop.mapred package. We still 
see code in the wild using the old API, but it’s deprecated, and we don’t 
 recommend writing new applications with it.
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Getting Your Feet Wet: Writing a Simple 
MapReduce Application

It’s time to take a look at a simple application. As we do throughout this 
book, we’ll analyze data for commercial flights in the United States. In this 
MapReduce application, the goal is to simply calculate the total number of 
flights flown for every carrier.

The FlightsByCarrier driver application
As a starting point for the FlightsByCarrier application, you need a client 
application driver, which is what we use to launch the MapReduce code on 
the Hadoop cluster. We came up with the driver application shown in Listing 
6-3, which is stored in the file named FlightsByCarrier.java.

Listing 6-3: The FlightsByCarrier Driver Application

@@1
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

public class FlightsByCarrier {
      public static void main(String[] args) throws Exception {
 @@2
 Job job = new Job();
 job.setJarByClass(FlightsByCarrier.class);
 job.setJobName("FlightsByCarrier");

 @@3
 TextInputFormat.addInputPath(job, new Path(args[0]));
 job.setInputFormatClass(TextInputFormat.class);
  
 @@4
 job.setMapperClass(FlightsByCarrierMapper.class);
 job.setReducerClass(FlightsByCarrierReducer.class);

 @@5
 TextOutputFormat.setOutputPath(job, new Path(args[1]));
 job.setOutputFormatClass(TextOutputFormat.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);
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 @@6
 job.waitForCompletion(true);
     }
}

The code in most MapReduce applications is more or less similar. The driver’s 
job is essentially to define the structure of the MapReduce application and 
invoke it on the cluster — none of the application logic is defined here.

As you walk through the code, take note of these principles:

 ✓ The import statements that follow the bold @@1 in the code pull in 
all required Hadoop classes. Note that we used the new MapReduce 
API, as indicated by the use of the org.apache.hadoop.mapreduce 
package.

 ✓ The first instance of the Job class (see the code that follows the 
bolded @@2) represents the entire MapReduce application. Here, 
we’ve set the class name that will run the job and an identifier for it. By 
default, job properties are read from the configuration files stored in /
etc/hadoop/conf, but you can override them by setting your Job 
class properties.

 ✓ Using the input path we catch from the main method, (see the code 
that follows the bolded @@3), we identify the HDFS path for the data 
to be processed. We also identify the expected format of the data. The 
default input format is TextInputFormat (which we’ve included for 
clarity).

 ✓ After identifying the HDFS path, we want to define the overall struc-
ture of the MapReduce application. We do that by specifying both the 
Mapper and Reducer classes. (See the code that follows the bolded 
@@4.) If we wanted a map-only job, we would simply omit the definition 
of the Reducer class and set the number of reduce tasks to zero with 
the following line of code:

job.setNumReduceTasks(0)

 ✓ After specifying the app’s overall structure, we need to indicate the 
HDFS path for the application’s output as well as the format of the data. 
(See the code following the bolded @@5.) The data format is quite specific 
here because both the key and value formats need to be identified.

 ✓ Finally, we run the job and wait. (See the code following the bolded 
@@6.) The driver waits at this point until the waitForCompletion 
function returns. As an alternative, if you want your driver application 
to run the lines of code following the submission of the job, you can use 
the submit method instead.
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The FlightsByCarrier mapper
Listing 6-4 shows the mapper code, which is stored in the file named 
FlightsByCarrierMapper.java.

Listing 6-4: The FlightsByCarrier Mapper Code 

@@1
import java.io.IOException;
import au.com.bytecode.opencsv.CSVParser;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.Mapper;

@@2
public class FlightsByCarrierMapper extends
  Mapper<LongWritable, Text, Text, IntWritable> { 
 @Override
 @@3
 protected void map(LongWritable key, Text value, Context context)
      throws IOException, InterruptedException {
  @@4
  if (key.get() > 0) {
      String[] lines = new  

CSVParser().parseLine(value.toString());
     @@5
        context.write(new Text(lines[8]), new IntWritable(1));
  }
 }
}

The code for mappers is where you see the most variation, though it has 
standard boilerplate. Here are the high points:

 ✓ The import statements that follow the bold @@1 in the code pull in 
all the required Hadoop classes. The CSVParser class isn’t a standard 
Hadoop class, but we use it to simply the parsing of CSV files.

 ✓ The specification of the Mapper class (see the code after the bolded 
@@2) explicitly identifies the formats of the key/value pairs that the 
mapper will input and output.

 ✓ The Mapper class has a single method, named map. (See the code after 
the bolded @@3.) The map method names the input key/value pair vari-
ables and the Context object, which is where output key/value pairs 
are written.
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 ✓ The block of code in the if statement is where all data processing 
 happens. (See the code after the bolded @@4.) We use the if statement 
to indicate that we don’t want to parse the first line in the file, because 
it’s the header information describing each column. It’s also where we 
parse the records using the CSVParser class’s parseLine method.

 ✓ With the array of strings that represent the values of the flight record 
being processed, the ninth value is returned to the Context object as 
the key. (See the code after the bolded @@5.) This value represents the 
carrier that completed the flight. For the value, we return a value of one 
because this represents one flight.

The FlightsByCarrier reducer
Listing 6-5 shows the reducer code, which is stored in the file named 
FlightsByCarrierReducer.java.

Listing 6-5: The FlightsByCarrier Reducer Code

@@1
import java.io.IOException;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.Reducer;

@@2
public class FlightsByCarrierReducer extends
 Reducer<Text, IntWritable, Text, IntWritable> {
 @Override
 @@3
 protected void reduce(Text token, Iterable<IntWritable> counts,
   Context context) throws IOException, InterruptedException {
  int sum = 0;
  
  @@4
  for (IntWritable count : counts) {
      sum+= count.get();
  }
  @@5
  context.write(token, new IntWritable(sum));
 }
}



100 Part II: How Hadoop Works 

The code for reducers also has a fair amount of variation, but it also has 
common patterns. For example, the counting exercise is quite common. 
Again, here are the high points:

 ✓ The import statements that follow the bold @@1 in the code pull in all 
required Hadoop classes.

 ✓ The specification of the Reducer class (see the code after the bolded 
@@2) explicitly identifies the formats of the key/value pairs that the 
reducer will input and output.

 ✓ The Reducer class has a single method, named reduce. The reduce 
method names the input key/value pair variables and the Context 
object, which is where output key/value pairs are written. (See the code 
after the bolded @@3.)

 ✓ The block of code in the for loop is where all data processing  happens. 
(See the code after the bolded @@4.) Remember that the reduce 
 function runs on individual keys and their lists of values. So for the 
 particular key, (in this case, the carrier), the for loop sums the numbers 
in the list, which are all ones. This provides the total number of flights 
for the particular carrier.

 ✓ This total is written to the context object as the value, and the input 
key, named token, is reused as the output key. (See the code after the 
bolded @@5.)

Running the FlightsByCarrier application
To run the FlightsByCarrier application, follow these steps:

 1. Go to the directory with your Java code and compile it using the 
 following command:

javac -classpath $CLASSPATH MapRed/FlightsByCarrier/*.java

 2. Build a JAR file for the application by using this command:

jar cvf FlightsByCarrier.jar *.class

 3. Run the driver application by using this command:

hadoop jar FlightsByCarrier.jar FlightsByCarrier /user/root/airline-
data/2008.csv /user/root/output/flightsCount

  Note that we’re running the application against data from the year 2008. 
For this application to work, we clearly need the flight data to be stored 
in HDFS in the path identified in the command
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/user/root/airline-data

  The application runs for a few minutes. (Running it on a virtual machine 
on a laptop computer may take a little longer, especially if the machine 
has less than 8GB of RAM and only a single processor.) Listing 6-6 shows 
the status messages you can expect in your terminal window. You can 
usually safely ignore the many warnings and informational messages 
strewn throughout this output.

 4. Show the job’s output file from HDFS by running the command

hadoop fs -cat /user/root/output/flightsCount/part-r-00000

  You see the total counts of all flights completed for each of the carriers 
in 2008:

AA 165121
AS 21406
CO 123002
DL 185813
EA 108776
HP 45399
NW 108273
PA (1) 16785
PI 116482
PS 41706
TW 69650
UA 152624
US 94814
WN 61975

Listing 6-6: The FlightsByCarrier Application Output

...
14/01/30 19:58:39 INFO mapreduce.Job: The url to track the job: 
 http://localhost.localdomain:8088/proxy/application_1386752664246_0017/
14/01/30 19:58:39 INFO mapreduce.Job: Running job: job_1386752664246_0017
14/01/30 19:58:47 INFO mapreduce.Job: Job job_1386752664246_0017 running in uber 

mode : false
14/01/30 19:58:47 INFO mapreduce.Job:  map 0% reduce 0%
14/01/30 19:59:03 INFO mapreduce.Job:  map 83% reduce 0%
14/01/30 19:59:04 INFO mapreduce.Job:  map 100% reduce 0%
14/01/30 19:59:11 INFO mapreduce.Job:  map 100% reduce 100%
14/01/30 19:59:11 INFO mapreduce.Job: Job job_1386752664246_0017 completed 

successfully
14/01/30 19:59:11 INFO mapreduce.Job: Counters: 43
  File System Counters
 FILE: Number of bytes read=11873580
 FILE: Number of bytes written=23968326
 FILE: Number of read operations=0

(continued)
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 FILE: Number of large read operations=0
 FILE: Number of write operations=0
 HDFS: Number of bytes read=127167274
 HDFS: Number of bytes written=137
 HDFS: Number of read operations=9
 HDFS: Number of large read operations=0
 HDFS: Number of write operations=2
  Job Counters 
 Launched map tasks=2
 Launched reduce tasks=1
 Data-local map tasks=2
 Total time spent by all maps in occupied slots (ms)=29786
 Total time spent by all reduces in occupied slots (ms)=6024
  Map-Reduce Framework
 Map input records=1311827
 Map output records=1311826
 Map output bytes=9249922
 Map output materialized bytes=11873586
 Input split bytes=236
 Combine input records=0
 Combine output records=0
 Reduce input groups=14
 Reduce shuffle bytes=11873586
 Reduce input records=1311826
 Reduce output records=14
 Spilled Records=2623652
 Shuffled Maps =2
 Failed Shuffles=0
 Merged Map outputs=2
 GC time elapsed (ms)=222
 CPU time spent (ms)=8700
 Physical memory (bytes) snapshot=641634304
 Virtual memory (bytes) snapshot=2531708928
 Total committed heap usage (bytes)=496631808
  Shuffle Errors
 BAD_ID=0
 CONNECTION=0
 IO_ERROR=0
 WRONG_LENGTH=0
 WRONG_MAP=0
 WRONG_REDUCE=0
  File Input Format Counters 
 Bytes Read=127167038
  File Output Format Counters 
Bytes Written=137

There you have it. You’ve just seen how to program and run a basic MapReduce 
application. What we’ve done is read the flight data set and calculated the total 
number of flights flown for every carrier. To make this work in MapReduce, we 
had to think about how to program this calculation so that the individual pieces 
of the larger data set could be processed in parallel. And, not to put too fine a 
point on it, the thoughts we came up with turned out to be pretty darn good!

Listing 6-6 (continued)



Chapter 7

Frameworks for Processing  
Data in Hadoop: YARN  

and MapReduce
In This Chapter
▶ Examining distributed data processing in Hadoop

▶ Looking at MapReduce execution

▶ Venturing into YARN architecture

▶ Anticipating future directions for data processing on Hadoop

M 
y, how time flies. If we had written this book a year (well, a few 
months) earlier, this chapter on data processing would have talked 

only about MapReduce, for the simple reason that MapReduce was then the 
only way to process data in Hadoop. With the release of Hadoop 2, however, 
YARN was introduced, ushering in a whole new world of data processing 
opportunities.

YARN stands for Yet Another Resource Negotiator — a rather modest label 
considering its key role in the Hadoop ecosystem. (The Yet Another label 
is a long-running gag in computer science that celebrates programmers’ 
 propensity to be lazy about feature names.) A (Hadoop-centric) thumbnail 
sketch would describe YARN as a tool that enables other data processing 
frameworks to run on Hadoop. A more substantive take on YARN would 
describe it as a general-purpose resource management facility that can 
schedule and assign CPU cycles and memory (and in the future, other 
resources, such as network bandwidth) from the Hadoop cluster to waiting 
applications.

 At the time of this writing, only batch-mode MapReduce applications were 
supported in production. A number of additional application frameworks 
being ported to YARN are in various stages of development, however, and 
many of them will soon be production ready.
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For us authors, as Hadoop enthusiasts, YARN raises exciting possibilities. 
Singlehandedly, YARN has converted Hadoop from simply a batch processing 
engine into a platform for many different modes of data processing, from 
traditional batch to interactive queries to streaming analysis.

Running Applications Before Hadoop 2
Because many existing Hadoop deployments still aren’t yet using YARN, we 
take a quick look at how Hadoop managed its data processing before the days 
of Hadoop 2. We concentrate on the role that JobTracker master daemons 
and TaskTracker slave daemons played in handling MapReduce processing.

Before tackling the daemons, however, let us back up and remind you that 
the whole point of employing distributed systems is to be able to deploy 
computing resources in a network of self-contained computers in a manner 
that’s fault-tolerant, easy, and inexpensive. In a distributed system such 
as Hadoop, where you have a cluster of self-contained compute nodes all 
working in parallel, a great deal of complexity goes into ensuring that all the 
pieces work together. As such, these systems typically have distinct layers 
to handle different tasks to support parallel data processing. This concept, 
known as the separation of concerns, ensures that if you are, for example, the 
application programmer, you don’t need to worry about the specific details 
for, say, the failover of map tasks. In Hadoop, the system consists of these 
four distinct layers, as shown in Figure 7-1:

 ✓ Distributed storage: The Hadoop Distributed File System (HDFS) is the 
storage layer where the data, interim results, and final result sets are 
stored.

 ✓ Resource management: In addition to disk space, all slave nodes in the 
Hadoop cluster have CPU cycles, RAM, and network bandwidth. A system 
such as Hadoop needs to be able to parcel out these resources so that 
multiple applications and users can share the cluster in predictable and 
tunable ways. This job is done by the JobTracker daemon.

 ✓ Processing framework: The MapReduce process flow defines the 
 execution of all applications in Hadoop 1. As we saw in Chapter 6, this 
begins with the map phase; continues with aggregation with shuffle, 
sort, or merge; and ends with the reduce phase. In Hadoop 1, this is 
also managed by the JobTracker daemon, with local execution being 
 managed by TaskTracker daemons running on the slave nodes.

 ✓ Application Programming Interface (API): Applications developed for 
Hadoop 1 needed to be coded using the MapReduce API. In Hadoop 1, 
the Hive and Pig projects provide programmers with easier interfaces 
for writing Hadoop applications, and underneath the hood, their code 
compiles down to MapReduce.
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Figure 7-1: 
Hadoop 1  

data 
 processing 

architecture.

 In the world of Hadoop 1 (which was the only world we had until quite 
recently), all data processing revolved around MapReduce.

Tracking JobTracker
MapReduce processing in Hadoop 1 is handled by the JobTracker and 
TaskTracker daemons. The JobTracker maintains a view of all available 
 processing resources in the Hadoop cluster and, as application requests come 
in, it schedules and deploys them to the TaskTracker nodes for execution. 
As applications are running, the JobTracker receives status updates from the 
TaskTracker nodes to track their progress and, if necessary, coordinate the 
handling of any failures. The JobTracker needs to run on a master node in the 
Hadoop cluster as it coordinates the execution of all MapReduce applications 
in the cluster, so it’s a mission-critical service.

Tracking TaskTracker
An instance of the TaskTracker daemon runs on every slave node in the 
Hadoop cluster, which means that each slave node has a service that ties it 
to the processing (TaskTracker) and the storage (DataNode), which enables 
Hadoop to be a distributed system. As a slave process, the TaskTracker 
receives processing requests from the JobTracker. Its primary responsibility 
is to track the execution of MapReduce workloads happening locally on its 
slave node and to send status updates to the JobTracker.

TaskTrackers manage the processing resources on each slave node in the 
form of processing slots — the slots defined for map tasks and reduce tasks, 
to be exact. The total number of map and reduce slots indicates how many 
map and reduce tasks can be executed at one time on the slave node.
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 When it comes to tuning a Hadoop cluster, setting the optimal number of 
map and reduce slots is critical. The number of slots needs to be carefully 
 configured based on available memory, disk, and CPU resources on each slave 
node. Memory is the most critical of these three resources from a  performance 
perspective. As such, the total number of task slots needs to be balanced with 
the maximum amount of memory allocated to the Java heap size. Keep in mind 
that every map and reduce task spawns its own Java virtual machine (JVM) 
and that the heap represents the amount of memory that’s allocated for each 
JVM. The ratio of map slots to reduce slots is also an important consideration. 
For example, if you have too many map slots and not enough reduce slots for 
your workloads, map slots will tend to sit idle, while your jobs are waiting for 
reduce slots to become available.

Distinct sets of slots are defined for map tasks and reduce tasks because they 
use computing resources quite differently. Map tasks are assigned based on 
data locality, and they depend heavily on disk I/O and CPU. Reduce tasks are 
assigned based on availability, not on locality, and they depend heavily on 
network bandwidth because they need to receive output from map tasks.

Launching a MapReduce application
To see how the JobTracker and TaskTracker work together to carry out a 
MapReduce action, take a look at the execution of a MapReduce application, 
as shown in Figure 7-2. The figure shows the interactions, and the following 
step list lays out the play-by-play:

 1. The client application submits an application request to the JobTracker.

 2. The JobTracker determines how many processing resources are needed 
to execute the entire application. This is done by requesting the locations 
and names of the files and data blocks that the application needs from 
the NameNode, and calculating how many map tasks and reduce tasks 
will be needed to process all this data.

 3. The JobTracker looks at the state of the slave nodes and queues all the 
map tasks and reduce tasks for execution.

 4. As processing slots become available on the slave nodes, map tasks are 
deployed to the slave nodes. Map tasks assigned to specific blocks of 
data are assigned to nodes where that same data is stored.

 5. The JobTracker monitors task progress, and in the event of a task failure 
or a node failure, the task is restarted on the next available slot. If the 
same task fails after four attempts (which is a default value and can be 
customized), the whole job will fail.

 6. After the map tasks are finished, reduce tasks process the interim result 
sets from the map tasks.

 7. The result set is returned to the client application.
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Figure 7-2: 
Hadoop 1   
 daemons 

and 
 application 
execution.

 More complicated applications can have multiple rounds of map/reduce 
phases, where the result of one round is used as input for the second round. 
This is quite common with SQL-style workloads, where there are, for example, 
join and group-by operations.

Seeing a World beyond MapReduce
MapReduce has been (and continues to be) a successful batch-oriented 
 programming model. You need look no further than the wide adoption of 
Hadoop to recognize the truth of this statement. But Hadoop itself has been 
hitting a glass ceiling in terms of wider use. The most significant factor in this 
regard has been Hadoop’s exclusive tie to MapReduce, which means that it 
could be used only for batch-style workloads and for general-purpose  analysis. 
Hadoop’s success has created demand for additional data processing modes: 
graph analysis, for example, or streaming data processing or message passing. 
To top it all off, demand is growing for real-time and ad-hoc analysis, where 
analysts ask many smaller questions against subsets of the data and need a 
near-instant response. This approach, which is what analysts are accustomed 
to using with relational databases, is a significant departure from the kind of 
batch processing Hadoop can currently support.

When you start noticing a technology’s limitations, you’re reminded of 
all its other little quirks that bother you, such as Hadoop 1’s  restrictions 
around  scalability — the limitation of the number of data blocks that 
the NameNode could track, for example. (See Chapter 4 for more on 
these — and other — restrictions.) The JobTracker also has a practical limit 
to the amount of processing resources and running tasks it can track – this 
(like the NameNode’s limitations) is between 4,000 and 5,000 nodes.
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And finally, to the extent that Hadoop could support different kinds of 
 workloads other than MapReduce — largely with HBase and other third-
party services running on slave nodes — there was no easy way to handle 
 competing requests for limited resources.

Where there’s a will, there’s often a way, and the will to move beyond the limi-
tations of a Hadoop 1/MapReduce world led to a way out — the YARN way.

Scouting out the YARN architecture
YARN, for those just arriving at this particular party, stands for Yet Another 
Resource Negotiator, a tool that enables other data processing frameworks to 
run on Hadoop. The glory of YARN is that it presents Hadoop with an elegant 
solution to a number of longstanding challenges, many of which are outlined 
in some detail in the previous section. If you can’t be bothered to reread that 
section, just know that YARN is meant to provide a more efficient and flexible 
workload scheduling as well as a resource management facility, both of which 
will ultimately enable Hadoop to run more than just MapReduce jobs.

Figure 7-3 shows in general terms how YARN fits into Hadoop and also makes 
clear how it has enabled Hadoop to become a truly general-purpose platform 
for data processing. The following list gives the lyrics to the melody — and it 
wouldn’t hurt to compare Figure 7-3 with Figure 7-1:

 ✓ Distributed storage: Nothing has changed here with the shift from 
MapReduce to YARN — HDFS is still the storage layer for Hadoop.

 ✓ Resource management: The key underlying concept in the shift to YARN 
from Hadoop 1 is decoupling resource management from data processing. 
This enables YARN to provide resources to any processing framework 
written for Hadoop, including MapReduce.

 ✓ Processing framework: Because YARN is a general-purpose resource 
management facility, it can allocate cluster resources to any data 
 processing framework written for Hadoop. The processing framework 
then handles application runtime issues. To maintain compatibility for 
all the code that was developed for Hadoop 1, MapReduce serves as the 
first framework available for use on YARN. At the time of this writing, 
the Apache Tez project was an incubator project in development as an 
 alternative framework for the execution of Pig and Hive applications. 
Tez will likely emerge as a standard Hadoop configuration.

 ✓ Application Programming Interface (API): With the support for additional 
processing frameworks, support for additional APIs will come. At the time 
of this writing, Hoya (for running HBase on YARN), Apache Giraph (for 
graph processing), Open MPI (for message passing in parallel systems), 
Apache Storm (for data stream processing) are in active development.
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Figure 7-3: 
Hadoop 

data 
 processing 

architecture 
with YARN.

YARN’s Resource Manager
The core component of YARN is the Resource Manager, which governs all the 
data processing resources in the Hadoop cluster. Simply put, the Resource 
Manager is a dedicated scheduler that assigns resources to requesting 
 applications. Its only tasks are to maintain a global view of all resources in 
the cluster, handling resource requests, scheduling the request, and then 
assigning resources to the requesting application.

The Resource Manager, a critical component in a Hadoop cluster, should run 
on a dedicated master node.

Even though the Resource Manager is basically a pure scheduler, it relies 
on scheduler modules for the actual scheduling logic. You can choose from 
the same schedulers that were available in Hadoop 1, which have all been 
updated to work with YARN: FIFO (first in, first out), Capacity, or Fair Share. 
We’ll discuss these schedulers in greater detail in Chapter 17.

The Resource Manager is completely agnostic with regard to both applica-
tions and frameworks — it doesn’t have any dogs in those particular hunts, 
in other words. It has no concept of map or reduce tasks, it doesn’t track the 
progress of jobs or their individual tasks, and it doesn’t handle failovers. In 
short, the Resource Manager is a complete departure from the JobTracker 
daemon we looked at for Hadoop 1 environments. What the Resource 
Manager does do is schedule workloads, and it does that job well. This high 
degree of separating duties — concentrating on one aspect while ignoring 
everything else — is exactly what makes YARN much more scalable, able to 
provide a generic platform for applications, and able to support a multi-tenant 
Hadoop cluster — multi-tenant because different business units can share the 
same Hadoop cluster.

YARN’s Node Manager
Each slave node has a Node Manager daemon, which acts as a slave for the 
Resource Manager. As with the TaskTracker, each slave node has a service 
that ties it to the processing service (Node Manager) and the storage service 
(DataNode) that enable Hadoop to be a distributed system. Each Node Manager 
tracks the available data processing resources on its slave node and sends 
regular reports to the Resource Manager.
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The processing resources in a Hadoop cluster are consumed in bite-size 
pieces called containers. A container is a collection of all the resources 
 necessary to run an application: CPU cores, memory, network bandwidth, 
and disk space. A deployed container runs as an individual process on a 
slave node in a Hadoop cluster.

 The concept of a container may remind you of a slot, the unit of  processing used 
by the JobTracker and TaskTracker, but they have some notable  differences. 
Most significantly, containers are generic and can run whatever application 
logic they’re given, unlike slots, which are specifically defined to run either 
map or reduce tasks. Also, containers can be requested with custom amounts 
of resources, while slots are all uniform. As long as the requested amount is 
within the minimum and maximum bounds of what’s acceptable for a container 
(and as long as the requested amount of memory is a multiple of the minimum 
amount), the Resource Manager will grant and schedule that container.

All container processes running on a slave node are initially provisioned, 
monitored, and tracked by that slave node’s Node Manager daemon.

YARN’s Application Master
Unlike the YARN components we’ve described already, no component in 
Hadoop 1 maps directly to the Application Master. In essence, this is work 
that the JobTracker did for every application, but the implementation is 
 radically different. Each application running on the Hadoop cluster has 
its own, dedicated Application Master instance, which actually runs in a 
 container process on a slave node (as compared to the JobTracker, which 
was a single daemon that ran on a master node and tracked the progress of 
all applications).

Throughout its life (for example, while the application is running), the 
Application Master sends heartbeat messages to the Resource Manager with 
its status and the state of the application’s resource needs. Based on the 
results of the Resource Manager’s scheduling, it assigns container resource 
leases — basically reservations for the resources containers need — to the 
Application Master on specific slave nodes.

The Application Master oversees the full lifecycle of an application, all the 
way from requesting the needed containers from the Resource Manager to 
submitting container lease requests to the NodeManager.

Each application framework that’s written for Hadoop must have its own 
Application Master implementation. MapReduce, for example, has a specific 
Application Master that’s designed to execute map tasks and reduce tasks in 
sequence.
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Job History Server
The Job History Server is another example of a function that the JobTracker 
used to handle, and it has been siphoned off as a self-contained daemon. Any 
client requests for a job history or the status of current jobs are served by 
the Job History Server.

Launching a YARN-based application
To show how the various YARN components work together, we walk you 
through the execution of an application. For the sake of argument, it can be a 
MapReduce application, such as the one we describe earlier in this chapter, 
with the JobTracker and TaskTracker architecture. Just remember that, with 
YARN, it can be any kind of application for which there’s an application frame-
work. Figure 7-4 shows the interactions, and the prose account is set down in 
the following step list:

 1. The client application submits an application request to the Resource 
Manager.

 2. The Resource Manager asks a Node Manager to create an Application 
Master instance for this application. The Node Manager gets a container 
for it and starts it up.

 3. This new Application Master initializes itself by registering itself with the 
Resource Manager.

 4. The Application Master figures out how many processing resources are 
needed to execute the entire application. This is done by requesting 
from the NameNode the names and locations of the files and data blocks 
the application needs and calculating how many map tasks and reduce 
tasks are needed to process all this data.

 5. The Application Master then requests the necessary resources from the 
Resource Manager. The Application Master sends heartbeat messages 
to the Resource Manager throughout its lifetime, with a standing list of 
requested resources and any changes (for example, a kill request).

 6. The Resource Manager accepts the resource request and queues up the 
specific resource requests alongside all the other resource requests that 
are already scheduled.

 7. As the requested resources become available on the slave nodes, the 
Resource Manager grants the Application Master leases for containers 
on specific slave nodes.
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 8. The Application Master requests the assigned container from the 
Node Manager and sends it a Container Launch Context (CLC). The 
CLC includes everything the application task needs in order to run: 
 environment variables, authentication tokens, local resources needed at 
runtime (for example, additional data files, or application logic in JARs), 
and the command string necessary to start the actual process. The Node 
Manager then creates the requested container process and starts it.

 9. The application executes while the container processes are running. 
The Application Master monitors their progress, and in the event of 
a container failure or a node failure, the task is restarted on the next 
available slot. If the same task fails after four attempts (a default value 
which can be customized), the whole job will fail. During this phase, 
the Application Master also communicates directly with the client to 
respond to status requests.

 10. Also, while containers are running, the Resource Manager can send a kill 
order to the Node Manager to terminate a specific container. This can be 
as a result of a scheduling priority change or a normal operation, such 
as the application itself already being completed.

 11. In the case of MapReduce applications, after the map tasks are finished, 
the Application Master requests resources for a round of reduce tasks to 
process the interim result sets from the map tasks.

 12. When all tasks are complete, the Application Master sends the result 
set to the client application, informs the Resource Manager that the 
 application has successfully completed, deregisters itself from the 
Resource Manager, and shuts itself down.

Figure 7-4: 
YARN 

 daemons 
and 

 application 
execution.
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Like the JobTracker and TaskTracker daemons and processing slots in Hadoop 1,  
all of the YARN daemons and containers are Java processes, running in JVMs. 
With YARN, you’re no longer required to define how many map and reduce 
slots you need — you simply decide how much memory map and reduce tasks 
can have. The Resource Manager will allocate containers for map or reduce 
tasks on the cluster based on how much memory is available.

In this section, we have described what happens underneath the hood when 
applications run on YARN. When you’re writing Hadoop applications, you 
don’t need to worry about requesting resources and monitoring containers. 
Whatever application framework you’re using does all that for you. It’s always 
a good idea, however, to understand what goes on when your applications 
are running on the cluster. This knowledge can help you immensely when 
you’re monitoring application progress or debugging a failed task.

Real-Time and Streaming Applications
The process flow we describe in our coverage of YARN looks an awful lot 
like a framework for batch execution. You might wonder, “What happened 
to this idea of flexibility for different modes of applications?” Well, the only 
application framework that was ready for production use at the time of this 
writing was MapReduce. Soon, the Apache Tez and Apache Storm will be 
ready for production use, and you can use Hadoop for more than just batch 
processing.

Tez, for example, will support real-time applications — an interactive kind of 
application where the user expects an immediate response. One design goal 
of Tez is to provide an interactive facility for users to issue Hive queries and 
receive a result set in just a few seconds or less.

Another example of a non-batch type of application is Storm, which can analyze 
streaming data. This concept is completely different from either MapReduce or 
Tez, both of which operate against data that is already persisted to disk — in 
other words, data at rest. Storm processes data that hasn’t yet been stored to 
disk — more specifically, data that’s streaming into an organization’s network. 
It’s data in motion, in other words.

In both cases, the interactive and streaming-data processing goals wouldn’t 
work if Application Masters need to be instantiated, along with all the 
required containers, like we described in the steps involved in running a 
YARN application. What YARN allows here is the concept of an ongoing 
 service (a session), where there’s a dedicated Application Master that stays 
alive, waiting to coordinate requests. The Application Master also has open 
leases on reusable containers to execute any requests as they arrive.



114 Part II: How Hadoop Works 



Chapter 8

Pig: Hadoop Programming  
Made Easier

In This Chapter
▶ Looking at the Pig architecture

▶ Seeing the flow in the Pig Latin application flow

▶ Reciting the ABCs of Pig Latin

▶ Distinguishing between local and distributed modes of running Pig scripts

▶ Scripting with Pig Latin

J 
ava MapReduce programs (see Chapter 6) and the Hadoop Distributed 
File System (HDFS; see Chapter 4) provide you with a powerful distributed 

computing framework, but they come with one major drawback — relying on 
them limits the use of Hadoop to Java programmers who can think in Map 
and Reduce terms when writing programs. More developers, data analysts, 
data scientists, and all-around good folks could leverage Hadoop if they had 
a way to harness the power of Map and Reduce while hiding some of the Map 
and Reduce complexities.

As with most things in life, where there’s a need, somebody is bound to come 
up with an idea meant to fill that need. A growing list of MapReduce abstractions 
is now on the market — programming languages and/or tools such as Hive and 
Pig, which hide the messy details of MapReduce so that a programmer can con-
centrate on the important work.

Hive, for example, provides a limited SQL-like capability that runs over 
MapReduce, thus making said MapReduce more approachable for SQL devel-
opers. Hive also provides a declarative query language (the SQL-like HiveQL), 
which allows you to focus on which operation you need to carry out versus 
how it is carried out.

Though SQL is the common accepted language for querying structured data, 
some developers still prefer writing imperative scripts — scripts that define 
a set of operations that change the state of the data — and also want to have 
more data processing flexibility than what SQL or HiveQL provides. Again, this 
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need led the engineers at Yahoo! Research to come up with a product meant 
to fulfill that need — and so Pig was born. Pig’s claim to fame was its status as 
a programming tool attempting to have the best of both worlds: a declarative 
query language inspired by SQL and a low-level procedural programming lan-
guage that can generate MapReduce code. This lowers the bar when it comes 
to the level of technical knowledge needed to exploit the power of Hadoop.

By taking a look at some murky computer programming language history, we 
can say that Pig was initially developed at Yahoo! in 2006 as part of a research 
project tasked with coming up with ways for people using Hadoop to focus 
more on analyzing large data sets rather than spending lots of time writing 
Java MapReduce programs. The goal here was a familiar one: Allow users to 
focus more on what they want to do and less on how it’s done. Not long after, 
in 2007, Pig officially became an Apache project. As such, it is included in 
most Hadoop distributions.

And its name? That one’s easy to figure out. The Pig programming language 
is designed to handle any kind of data tossed its way — structured, semi-
structured, unstructured data, you name it. Pigs, of course, have a reputation 
for eating anything they come across. (We suppose they could have called it 
Goat — or maybe that name was already taken.) According to the Apache Pig 
philosophy, pigs eat anything, live anywhere, are domesticated and can fly to 
boot. (Flying Apache Pigs? Now we’ve seen everything.) Pigs “living anywhere” 
refers to the fact that Pig is a parallel data processing programming language 
and is not committed to any particular parallel framework — including Hadoop. 
What makes it a domesticated animal? Well, if “domesticated” means “plays well 
with humans,” then it’s definitely the case that Pig prides itself on being easy for 
humans to code and maintain. (Hey, it’s easily integrated with other program-
ming languages and it’s extensible. What more could you ask?) Lastly, Pig is 
smart and in data processing lingo this means there is an optimizer that figures 
out how to do the hard work of figuring out how to get the data quickly. Pig is 
not just going to be quick — it’s going to fly. (To see more about the Apache Pig 
philosophy, check out http://pig.apache.org/philosophy.)

Admiring the Pig Architecture
“Simple” often means “elegant” when it comes to those architectural drawings 
for that new Silicon Valley mansion you have planned for when the money 
starts rolling in after you implement Hadoop. The same principle applies to 
software architecture. Pig is made up of two (count ‘em, two) components:

 ✓ The language itself: As proof that programmers have a sense of humor, the 
programming language for Pig is known as Pig Latin, a high-level language 
that allows you to write data processing and analysis programs.
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 ✓ The Pig Latin compiler: The Pig Latin compiler converts the Pig Latin 
code into executable code. The executable code is either in the form 
of MapReduce jobs or it can spawn a process where a virtual Hadoop 
instance is created to run the Pig code on a single node.

  The sequence of MapReduce programs enables Pig programs to do data 
processing and analysis in parallel, leveraging Hadoop MapReduce and 
HDFS. Running the Pig job in the virtual Hadoop instance is a useful 
strategy for testing your Pig scripts.

Figure 8-1 shows how Pig relates to the Hadoop ecosystem.

 

Figure 8-1: 
Pig archi-  

tecture.
 

 Pig programs can run on MapReduce v1 or MapReduce v2 without any code 
changes, regardless of what mode your cluster is running. However, Pig scripts 
can also run using the Tez API instead. Apache Tez provides a more efficient 
execution framework than MapReduce. YARN enables application frameworks 
other than MapReduce (like Tez) to run on Hadoop. Hive can also run against 
the Tez framework. See Chapter 7 for more information on YARN and Tez.

Going with the Pig Latin  
Application Flow

At its core, Pig Latin is a dataflow language, where you define a data stream 
and a series of transformations that are applied to the data as it flows 
through your application. This is in contrast to a control flow language (like C 
or Java), where you write a series of instructions. In control flow languages, 
we use constructs like loops and conditional logic (like an if statement). You 
won’t find loops and if statements in Pig Latin.
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If you need some convincing that working with Pig is a significantly easier 
row to hoe than having to write Map and Reduce programs, start by taking a 
look at some real Pig syntax:

Listing 8-1: Sample Pig Code to illustrate the data processing dataflow

A = LOAD 'data_file.txt';
... 
B = GROUP ... ;
...
C= FILTER ...;
...
DUMP B;
..
STORE C INTO 'Results';

Some of the text in this example actually looks like English, right? Not too 
scary, at least at this point. Looking at each line in turn, you can see the basic 
flow of a Pig program. (Note that this code can either be part of a script or 
issued on the interactive shell called Grunt — we learn more about Grunt in a 
few pages.)

 1. Load: You first load (LOAD) the data you want to manipulate. As in a 
typical MapReduce job, that data is stored in HDFS. For a Pig program to 
access the data, you first tell Pig what file or files to use. For that task, 
you use the LOAD 'data_file' command.

  Here, 'data_file' can specify either an HDFS file or a directory. If 
a directory is specified, all files in that directory are loaded into the 
program.

  If the data is stored in a file format that isn’t natively accessible to Pig, 
you can optionally add the USING function to the LOAD statement to 
specify a user-defined function that can read in (and interpret) the data.

 2. Transform: You run the data through a set of transformations that, way 
under the hood and far removed from anything you have to concern 
yourself with, are translated into a set of Map and Reduce tasks.

  The transformation logic is where all the data manipulation happens. 
Here, you can FILTER out rows that aren’t of interest, JOIN two sets 
of data files, GROUP data to build aggregations, ORDER results, and do 
much, much more.

 3. Dump: Finally, you dump (DUMP) the results to the screen

  or

  Store (STORE) the results in a file somewhere.
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  You would typically use the DUMP command to send the output to the 
screen when you debug your programs. When your program goes into 
production, you simply change the DUMP call to a STORE call so that any 
results from running your programs are stored in a file for further pro-
cessing or analysis.

Working through the ABCs of Pig Latin
Pig Latin is the language for Pig programs. Pig translates the Pig Latin script 
into MapReduce jobs that can be executed within Hadoop cluster. When 
coming up with Pig Latin, the development team followed three key design 
principles:

 ✓ Keep it simple. Pig Latin provides a streamlined method for interacting 
with Java MapReduce. It’s an abstraction, in other words, that simplifies 
the creation of parallel programs on the Hadoop cluster for data flows 
and analysis. Complex tasks may require a series of interrelated data 
transformations — such series are encoded as data flow sequences.

  Writing data transformation and flows as Pig Latin scripts instead of 
Java MapReduce programs makes these programs easier to write, under-
stand, and maintain because a) you don’t have to write the job in Java, 
b) you don’t have to think in terms of MapReduce, and c) you don’t 
need to come up with custom code to support rich data types. Pig Latin 
provides a simpler language to exploit your Hadoop cluster, thus making 
it easier for more people to leverage the power of Hadoop and become 
productive sooner.

 ✓ Make it smart. You may recall that the Pig Latin Compiler does the work 
of transforming a Pig Latin program into a series of Java MapReduce 
jobs. The trick is to make sure that the compiler can optimize the execu-
tion of these Java MapReduce jobs automatically, allowing the user to 
focus on semantics rather than on how to optimize and access the data.

  For you SQL types out there, this discussion will sound familiar. SQL 
is set up as a declarative query that you use to access structured data 
stored in an RDBMS. The RDBMS engine first translates the query to 
a data access method and then looks at the statistics and generates a 
series of data access approaches. The cost-based optimizer chooses the 
most efficient approach for execution.

 ✓ Don’t limit development. Make Pig extensible so that developers can 
add functions to address their particular business problems.
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 Traditional RDBMS data warehouses make use of the ETL data processing 
pattern, where you extract data from outside sources, transform it to fit your 
operational needs, and then load it into the end target, whether it’s an opera-
tional data store, a data warehouse, or another variant of database. However, 
with big data, you typically want to reduce the amount of data you have 
moving about, so you end up bringing the processing to the data itself. The 
language for Pig data flows, therefore, takes a pass on the old ETL approach, 
and goes with ELT instead: Extract the data from your various sources, load it 
into HDFS, and then transform it as necessary to prepare the data for further 
analysis.

Uncovering Pig Latin structures
To see how Pig Latin is put together, check out the following (bare-bones, 
training wheel) program for playing around in Hadoop. (To save time and 
money — hey, coming up with great examples can cost a pretty penny! — we’ll 
reuse the Flight Data scenario from Chapter 6.) Compare and Contrast is often 
a good way to learn something new, so go ahead and review the problem we’re 
solving in Chapter 6, and take a look at the code in Listings 6-3, 6-4, and 6-5.

The problem we’re trying to solve involves calculating the total number of 
flights flown by every carrier. Following is the Pig Latin script we’ll use to 
answer this question.

Listing 8-2: Pig script calculating the total miles flown

records = LOAD '2013_subset.csv' USING PigStorage(',') AS 
(Year,Month,DayofMonth,DayOfWeek,DepTime,CRSDep
Time,ArrTime,CRSArrTime,UniqueCarrier,FlightNum
,TailNum,ActualElapsedTime,CRSElapsedTime,AirTi
me,ArrDelay,DepDelay,Origin,Dest,Distance:int,T
axiIn,TaxiOut,Cancelled,CancellationCode,Divert
ed,CarrierDelay,WeatherDelay,NASDelay,SecurityD
elay,LateAircraftDelay);

milage_recs = GROUP records ALL;
tot_miles = FOREACH milage_recs GENERATE  

SUM(records.Distance);

DUMP tot_miles;

Before we walk through the code, here are a few high-level observations: 
The Pig script is a lot smaller than the MapReduce application you’d need 
to accomplish the same task — the Pig script only has 4 lines of code! Yes, 
that first line is rather long, but it’s pretty simple, since we’re just listing 
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the names of the columns in the data set. And not only is the code shorter, 
but it’s even semi-human readable. Just look at the key words in the script: 
LOADs the data, does a GROUP, calculates a SUM and finally DUMPs out an 
answer. You’ll remember that one reason why SQL is so awesome is because 
it’s a declarative query language, meaning you express queries on what you 
want the result to be, not how it is executed. Pig can be equally cool because 
it also gives you that declarative aspect and you don’t have to tell it how to 
actually do it and in particular how to do the MapReduce stuff.

Ready for your walkthrough? As you make your way through the code, take 
note of these principles:

 ✓ Most Pig scripts start with the LOAD statement to read data from HDFS. 
In this case, we’re loading data from a .csv file. Pig has a data model it 
uses, so next we need to map the file’s data model to the Pig data mode. 
This is accomplished with the help of the USING statement. (More 
on the Pig data model in the next section.) We then specify that it is a 
comma-delimited file with the PigStorage(',') statement followed 
by the AS statement defining the name of each of the columns.

 ✓ Aggregations are commonly used in Pig to summarize data sets. The 
GROUP statement is used to aggregate the records into a single record 
mileage_recs. The ALL statement is used to aggregate all tuples into a 
single group. Note that some statements — including the following SUM 
statement — requires a preceding GROUP ALL statement for global sums.

 ✓ FOREACH . . . GENERATE statements are used here to transform 
columns data. In this case, we want to count the miles traveled in the 
records_Distance column. The SUM statement computes the sum 
of the record_Distance column into a single-column collection 
total_miles.

 ✓ The DUMP operator is used to execute the Pig Latin statement and dis-
play the results on the screen. DUMP is used in interactive mode, which 
means that the statements are executable immediately and the results 
are not saved. Typically, you will either use the DUMP or STORE opera-
tors at the end of your Pig script.

Looking at Pig data types and syntax
Pig’s data types make up the data model for how Pig thinks of the structure of 
the data it is processing. With Pig, the data model gets defined when the data 
is loaded. Any data you load into Pig from disk is going to have a particular 
schema and structure. Pig needs to understand that structure, so when you 
do the loading, the data automatically goes through a mapping. 
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Luckily for you, the Pig data model is rich enough to handle most anything 
thrown its way, including table-like structures and nested hierarchical data 
structures. In general terms, though, Pig data types can be broken into two 
categories: scalar types and complex types. Scalar types contain a single 
value, whereas complex types contain other types, such as the Tuple, Bag, 
and Map types listed below.

Pig Latin has these four types in its data model:

 ✓ Atom: An atom is any single value, such as a string or a number — 
‘Diego’, for example. Pig’s atomic values are scalar types that appear 
in most programming languages — int, long, float, double, 
chararray, and bytearray, for example. See Figure 8-2 to see sample 
atom types.

 ✓ Tuple: A tuple is a record that consists of a sequence of fields. Each field 
can be of any type — ‘Diego’, ‘Gomez’, or 6, for example. Think of a tuple 
as a row in a table.

 ✓ Bag: A bag is a collection of non-unique tuples. The schema of the bag is 
flexible — each tuple in the collection can contain an arbitrary number 
of fields, and each field can be of any type.

 ✓ Map: A map is a collection of key value pairs. Any type can be stored in 
the value, and the key needs to be unique. The key of a map must be a 
chararray and the value can be of any type.

Figure 8-2 offers some fine examples of Tuple, Bag, and Map data types, as well.

 

Figure 8-2: 
Sample Pig 
Data Types

 

 The value of all these types can also be null. The semantics for null are 
 similar to those used in SQL. The concept of null in Pig means that the value is 
unknown. Nulls can show up in the data in cases where values are unreadable or 
unrecognizable — for example, if you were to use a wrong data type in the LOAD 
statement. Null could be used as a placeholder until data is added or as a value 
for a field that is optional.
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Pig Latin has a simple syntax with powerful semantics you’ll use to carry out 
two primary operations: access and transform data. If you compare the Pig 
implementation for calculating miles traveled by airline (Listing 8-1) with the 
Java MapReduce implementations (Listings 6-1, 6-2, and 6-3), they both come 
up with the same result but the Pig implementation has a lot less code and is 
easier to understand.

 In a Hadoop context, accessing data means allowing developers to load, store, 
and stream data, whereas transforming data means taking advantage of Pig’s 
ability to group, join, combine, split, filter, and sort data. Table 8-1 gives an 
overview of the operators associated with each operation.

Table 8-1 Pig Latin Operators
Operation Operator Explanation

Data Access LOAD/STORE Read and Write data to file system

DUMP Write output to standard output (stdout)

STREAM Send all records through external binary

FOREACH Apply expression to each record and 
output one or more records

FILTER Apply predicate and remove records that 
don’t meet condition

GROUP/
COGROUP

Aggregate records with the same key from 
one or more inputs

JOIN Join two or more records based on a 
condition

Transformations CROSS Cartesian product of two or more inputs

ORDER Sort records based on key

DISTINCT Remove duplicate records

UNION Merge two data sets

SPLIT Divide data into two or more bags based 
on predicate

LIMIT subset the number of records
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Pig also provides a few operators that are helpful for debugging and trouble-
shooting, as shown in Table 8-2:

Table 8-2 Operators for Debugging and Troubleshooting
Operation Operator Description
Debug DESCRIBE Return the schema of a relation.

DUMP Dump the contents of a relation to the screen.

EXPLAIN Display the MapReduce execution plans.

 Part of the paradigm shift of Hadoop is that you apply your schema at Read 
instead of Load. According to the old way of doing things — the RDBMS 
way — when you load data into your database system, you must load it into 
a well-defined set of tables. Hadoop allows you to store all that raw data 
upfront and apply the schema at Read. With Pig, you do this during the load-
ing of the data, with the help of the LOAD operator. Back in Listing 8-2, we 
used the LOAD operator to read the flight data from a file.

The optional USING statement defines how to map the data structure within 
the file to the Pig data model — in this case, the PigStorage () data struc-
ture, which parses delimited text files. (This part of the USING statement is 
often referred to as a LOAD Func and works in a fashion similar to a custom 
deserializer.) The optional AS clause defines a schema for the data that is 
being mapped. If you don’t use an AS clause, you’re basically telling the 
default LOAD Func to expect a plain text file that is tab delimited. With no 
schema provided, the fields must be referenced by position because no name 
is defined.

Using AS clauses means that you have a schema in place at read-time for 
your text files, which allows users to get started quickly and provides agile 
schema modeling and flexibility so that you can add more data to your 
analytics.

 The LOAD operator operates on the principle of lazy evaluation, also referred 
to as call-by-need. Now lazy doesn’t sound particularly praiseworthy, but all it 
means is that you delay the evaluation of an expression until you really need 
it. In the context of our Pig example, that means that after the LOAD statement 
is executed, no data is moved — nothing gets shunted around — until a statement 
to write data is encountered. You can have a Pig script that is a page long filled 
with complex transformations, but nothing gets executed until the DUMP or 
STORE statement is encountered.
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Evaluating Local and Distributed  
Modes of Running Pig scripts

Before you can run your first Pig script, you need to have a handle on how 
Pig programs can be packaged with the Pig server.

Pig has two modes for running scripts, as shown in Figure 8-3:

 ✓ Local mode: All scripts are run on a single machine without requir-
ing Hadoop MapReduce and HDFS. This can be useful for developing 
and testing Pig logic. If you’re using a small set of data to develope or 
test your code, then local mode could be faster than going through the 
MapReduce infrastructure.

  Local mode doesn’t require Hadoop. When you run in Local mode, the 
Pig program runs in the context of a local Java Virtual Machine, and data 
access is via the local file system of a single machine. Local mode is actu-
ally a local simulation of MapReduce in Hadoop’s LocalJobRunner class.

 ✓ MapReduce mode (also known as Hadoop mode): Pig is executed on 
the Hadoop cluster. In this case, the Pig script gets converted into a 
series of MapReduce jobs that are then run on the Hadoop cluster.

 

Figure 8-3: 
Pig modes
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 If you have a terabyte of data that you want to perform operations on and you 
want to interactively develop a program, you may soon find things slowing 
down considerably, and you may start growing your storage. Local mode allows 
you to work with a subset of your data in a more interactive manner so that you 
can figure out the logic (and work out the bugs) of your Pig program. After you 
have things set up as you want them and your operations are running smoothly, 
you can then run the script against the full data set using MapReduce mode.

Checking Out the Pig Script Interfaces
Pig programs can be packaged in three different ways:

 ✓ Script: This method is nothing more than a file containing Pig Latin com-
mands, identified by the .pig suffix (FlightData.pig, for example). 
Ending your Pig program with the .pig extension is a convention but 
not required. The commands are interpreted by the Pig Latin compiler 
and executed in the order determined by the Pig optimizer.

 ✓ Grunt: Grunt acts as a command interpreter where you can interactively 
enter Pig Latin at the Grunt command line and immediately see the 
response. This method is helpful for prototyping during initial develop-
ment and with what-if scenarios.

 ✓ Embedded: Pig Latin statements can be executed within Java, Python, 
or JavaScript programs.

Pig scripts, Grunt shell Pig commands, and embedded Pig programs can run 
in either Local mode or MapReduce mode.

The Grunt shell provides an interactive shell to submit Pig commands or run 
Pig scripts. To start the Grunt shell in Interactive mode, just submit the com-
mand pig at your shell.

To specify whether a script or Grunt shell is executed locally or in Hadoop 
mode just specify it in the –x flag to the pig command. The following is an 
example of how you’d specify running your Pig script in local mode:

pig -x local milesPerCarrier.pig 

Here’s how you’d run the Pig script in Hadoop mode, which is the default if 
you don’t specify the flag:

pig -x mapreduce milesPerCarrier.pig

 By default, when you specify the pig command without any parameters, it 
starts the Grunt shell in Hadoop mode. If you want to start the Grunt shell in 
local mode just add the –x local flag to the command. Here is an example:

pig -x local
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Scripting with Pig Latin
Hadoop is a rich and quickly evolving ecosystem with a growing set of new 
applications. Rather than try to keep up with all the requirements for new 
capabilities, Pig is designed to be extensible via user-defined functions, also 
known as UDFs. UDFs can be written in a number of programming languages, 
including Java, Python, and JavaScript. Developers are also posting and shar-
ing a growing collection of UDFs online. (Look for Piggy Bank and DataFu, to 
name just two examples of such online collections.) Some of the Pig UDFs 
that are part of these repositories are LOAD/STORE functions (XML, for exam-
ple), date time functions, text, math, and stats functions.

Pig can also be embedded in host languages such as Java, Python, and JavaScript, 
which allows you to integrate Pig with your existing applications. It also helps 
overcome limitations in the Pig language. One of the most commonly referenced 
limitations is that Pig doesn’t support control flow statements: if/else, while 
loop, for loop, and condition statements. Pig natively supports data flow, 
but needs to be embedded within another language to provide control flow. There 
are tradeoffs, however of embedding Pig in a control-flow language. For example 
if a Pig statement is embedded in a loop, every time the loop iterates and runs the 
Pig statement, this causes a separate MapReduce job to run.
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Chapter 9

Statistical Analysis in Hadoop
In This Chapter
▶ Scaling out statistical analysis with Hadoop

▶ Gaining an understanding of Mahout

▶ Working with R on Hadoop

B 
ig data is all about applying analytics to more data, for more people. 
To carry out this task, big data practitioners use new tools — such 

as Hadoop — to explore and understand data in ways that previously might 
not have been possible (problems that were “too difficult,” “too expensive,” 
or “too slow”). Some of the “bigger analytics” that you often hear mentioned 
when Hadoop comes up in a conversation revolve around concepts such 
as machine learning, data mining, and predictive analytics. Now, what’s the 
common thread that runs through all these methods? That’s right: they all 
use good old-fashioned statistical analysis.

In this chapter, we explore some of the challenges that arise when you try to 
use traditional statistical tools on a Hadoop-level scale — a massive scale, in 
other words. We also introduce you to some common, Hadoop-specific statis-
tical tools and show you when it makes sense to use them.

Pumping Up Your Statistical Analysis
Statistical analytics is far from being a new kid on the block, and it is cer-
tainly old news that it depends on processing large amounts of data to gain 
new insight. However, the amount of data that’s traditionally processed 
by these systems was in the range between 10 and 100 (or hundreds of) 
 gigabytes — not the terabyte or petabyte ranges seen today, in other words. 
And it often required an expensive symmetric multi-processing (SMP) machine 
with as much memory as possible to hold the data being analyzed. That’s 
because many of the algorithms used by the analytic approaches were quite 
“compute intensive” and were designed to run in memory — as they require 
multiple, and often frequent, passes through the data.
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The limitations of sampling
Faced with expensive hardware and a pretty high commitment in terms of 
time and RAM, folks tried to make the analytics workload a bit more rea-
sonable by analyzing only a sampling of the data. The idea was to keep the 
mountains upon mountains of data safely stashed in data warehouses, only 
moving a statistically significant sampling of the data from their repositories 
to a statistical engine.

While sampling is a good idea in theory, in practice this is often an unreli-
able tactic. Finding a statistically significant sampling can be challenging 
for sparse and/or skewed data sets, which are quite common. This leads to 
poorly judged samplings, which can introduce outliers and anomalous data 
points, and can, in turn, bias the results of your analysis.

Factors that increase the scale 
of statistical analysis
As we can see above, the reason people sample their data before running sta-
tistical analysis is that this kind of analysis often requires significant comput-
ing resources. This isn’t just about data volumes: there are five main factors 
that influence the scale of statistical analysis:

 ✓ This one’s easy, but we have to mention it: the volume of data on 
which you’ll perform the analysis definitely determines the scale of the 
analysis.

 ✓ The number of transformations needed on the data set before applying 
statistical models is definitely a factor.

 ✓ The number of pairwise correlations you’ll need to calculate plays 
a role.

 ✓ The degree of complexity of the statistical computations to be applied is 
a factor.

 ✓ The number of statistical models to be applied to your data set plays a 
significant role.

Hadoop offers a way out of this dilemma by providing a platform to perform 
massively parallel processing computations on data in Hadoop. In doing 
so, it’s able to flip the analytic data flow; rather than move the data from its 
repository to the analytics server, Hadoop delivers analytics directly to the 
data. More specifically, HDFS allows you to store your mountains of data 
and then bring the computation (in the form of MapReduce tasks) to the 
slave nodes.
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The common challenge posed by moving from traditional symmetric multi-
processing statistical systems (SMP) to Hadoop architecture is the locality 
of the data. On traditional SMP platforms, multiple processors share access 
to a single main memory resource. In Hadoop, HDFS replicates partitions of 
data across multiple nodes and machines. Also, statistical algorithms that 
were designed for processing data in-memory must now adapt to datasets 
that span multiple nodes/racks and could not hope to fit in a single block 
of memory.

Running statistical models in MapReduce
Converting statistical models to run in parallel is a challenging task. In the 
traditional paradigm for parallel programming, memory access is regulated 
through the use of threads — sub-processes created by the operating system 
to distribute a single shared memory across multiple processors. Factors 
such as race conditions between competing threads — when two or more 
threads try to change shared data at the same time — can influence the per-
formance of your algorithm, as well as affect the precision of the statistical 
results your program outputs — particularly for long-running analyses of 
large sample sets.

A pragmatic approach to this problem is to assume that not many statisti-
cians will know the ins and outs of MapReduce (and vice-versa), nor can we 
expect they’ll be aware of all the pitfalls that parallel programming entails. 
Contributors to the Hadoop project have (and continue to develop) sta-
tistical tools with these realities in mind. The upshot: Hadoop offers many 
solutions for implementing the algorithms required to perform statistical 
modeling and analysis, without overburdening the statistician with nuanced 
parallel programming considerations. We’ll be looking at the following tools 
in greater detail:

 ✓ Mahout — and its wealth of statistical models and library functions

 ✓ The R language — and how to run it over Hadoop (including Big R)

Machine Learning with Mahout
Machine learning refers to a branch of artificial intelligence techniques that 
provides tools enabling computers to improve their analysis based on previ-
ous events. These computer systems leverage historical data from previous 
attempts at solving a task in order to improve the performance of future 
attempts at similar tasks. In terms of expected outcomes, machine learning 
may sound a lot like that other buzzword “data mining”; however, the former 
focuses on prediction through analysis of prepared training data, the latter 
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is concerned with knowledge discovery from unprocessed raw data. For this 
reason, machine learning depends heavily upon statistical modelling tech-
niques and draws from areas of probability theory and pattern recognition.

Mahout is an open source project from Apache, offering Java libraries for dis-
tributed or otherwise scalable machine-learning algorithms. (See Figure 9-1 
for the Big Picture.) These algorithms cover classic machine learning tasks 
such as classification, clustering, association rule analysis, and recommen-
dations. Although Mahout libraries are designed to work within an Apache 
Hadoop context, they are also compatible with any system supporting the 
MapReduce framework. For example, Mahout provides Java libraries for Java 
collections and common math operations (linear algebra and statistics) that 
can be used without Hadoop.

Figure 9-1: 
High-level 
view of a 

Mahout 
deployment 

over the 
Hadoop 

framework.

As you can see in Figure 9-1, the Mahout libraries are implemented in Java 
MapReduce and run on your cluster as collections of MapReduce jobs on 
either YARN (with MapReduce v2), or MapReduce v1.

 Mahout is an evolving project with multiple contributors. By the time of this 
writing, the collection of algorithms available in the Mahout libraries is by no 
means complete; however, the collection of algorithms implemented for use 
continues to expand with time.
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There are three main categories of Mahout algorithms for supporting statisti-
cal analysis: collaborative filtering, clustering, and classification. The next 
few sections tackle each of these categories in turn.

Collaborative filtering
Mahout was specifically designed for serving as a recommendation engine, 
employing what is known as a collaborative filtering algorithm. Mahout com-
bines the wealth of clustering and classification algorithms at its disposal to 
produce more precise recommendations based on input data. These recom-
mendations are often applied against user preferences, taking into consider-
ation the behavior of the user. By comparing a user’s previous selections, it 
is possible to identify the nearest neighbors (persons with a similar decision 
history) to that user and predict future selections based on the behavior of 
the neighbors.

Consider a “taste profile” engine such as Netflix — an engine which recom-
mends ratings based on that user’s previous scoring and viewing habits. In 
this example, the behavioral patterns for a user are compared against the 
user’s history — and the trends of users with similar tastes belonging to the 
same Netflix community — to generate a recommendation for content not yet 
viewed by the user in question.

Clustering
Unlike the supervised learning method described earlier for Mahout’s 
recommendation engine feature, clustering is a form of unsupervised 
 learning — where the labels for data points are unknown ahead of time and 
must be inferred from the data without human input (the supervised part). 
Generally, objects within a cluster should be similar; objects from differ-
ent clusters should be dissimilar. Decisions made ahead of time about the 
number of clusters to generate, the criteria for measuring “similarity,” and 
the representation of objects will impact the labelling produced by clustering 
algorithms.

For example, a clustering engine that is provided a list of news articles should 
be able to define clusters of articles within that collection which discuss simi-
lar topics. Suppose a set of articles about Canada, France, China, forestry, oil, 
and wine were to be clustered. If the maximum number of clusters were set to 
2, our algorithm might produce categories such as “regions” and “industries.” 
Adjustments to the number of clusters will produce different categoriza-
tions; for example, selecting for 3 clusters may result in pairwise groupings of 
nation-industry categories.
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Classifications
Classification algorithms make use of human-labelled training data sets, 
where the categorization and classification of all future input is governed by 
these known labels. These classifiers implement what is known as supervised 
learning in the machine learning world. Classification rules — set by the train-
ing data, which has been labelled ahead of time by domain experts — are 
then applied against raw, unprocessed data to best determine their appropri-
ate labelling.

These techniques are often used by e-mail services which attempt to clas-
sify spam e-mail before they ever cross your inbox. Specifically, given an 
e-mail containing a set of phrases known to commonly occur together in a 
certain class of spam mail — delivered from an address belonging to a known 
botnet — our classification algorithm is able to reliably identify the e-mail as 
malicious.

 In addition to the wealth of statistical algorithms that Mahout provides 
natively, a supporting User Defined Algorithms (UDA) module is also avail-
able. Users can override existing algorithms or implement their own through 
the UDA module. This robust customization allows for performance tuning 
of native Mahout algorithms and flexibility in tackling unique statistical 
analysis challenges. If Mahout can be viewed as a statistical analytics exten-
sion to Hadoop, UDA should be seen as an extension to Mahout’s statistical 
capabilities.

Traditional statistical analysis applications (such as SAS, SPSS, and R) come 
with powerful tools for generating workflows. These applications utilize intui-
tive graphical user interfaces that allow for better data visualization. Mahout 
scripts follow a similar pattern as these other tools for generating statistical 
analysis workflows. (See Figure 9-2.) During the final data exploration and 
visualization step, users can export to human-readable formats (JSON, CSV) 
or take advantage of visualization tools such as Tableau Desktop.

Figure 9-2: 
Generalized 

statistical 
analysis 

workflow for 
Mahout.
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Recall from Figure 9-1 that Mahout’s architecture sits atop the Hadoop plat-
form. Hadoop unburdens the programmer by separating the task of program-
ming MapReduce jobs from the complex bookkeeping needed to manage 
parallelism across distributed file systems. In the same spirit, Mahout pro-
vides programmer-friendly abstractions of complex statistical algorithms, 
ready for implementation with the Hadoop framework.

R on Hadoop
The machine learning discipline has a rich and extensive catalogue of tech-
niques. Mahout brings a range of statistical tools and algorithms to the table, 
but it only captures a fraction of those techniques and algorithms, as the task 
of converting these models to a MapReduce framework is a challenging one. 
Over time, Mahout is sure to continue expanding its statistical toolbox, but 
until then we advise all data scientists and statisticians out there to be aware 
of alternative statistical modelling software — which is where R comes in.

The R language
The R language is a powerful and popular open-source statistical language 
and development environment. It offers a rich analytics ecosystem that can 
assist data scientists with data exploration, visualization, statistical analysis 
and computing, modelling, machine learning, and simulation. The R language 
is commonly used by statisticians, data miners, data analysts, and (nowa-
days) data scientists.

R language programmers have access to the Comprehensive R Archive 
Network (CRAN) libraries which, as of the time of this writing, contains over 
3000 statistical analysis packages. These add-ons can be pulled into any 
R project, providing rich analytical tools for running classification, regres-
sion, clustering, linear modelling, and more specialized machine learn-
ing algorithms. The language is accessible to those familiar with simple 
data structure types — vectors, scalars, data frames (matrices), and the 
like — commonly used by statisticians as well as programmers.

Out of the box, one of the major pitfalls with using the R language is the 
lack of support it offers for running concurrent tasks. Statistical language 
tools like R excel at rigorous analysis, but lack scalability and native support 
for parallel computations. These systems are non-distributable and were 
not developed to be scalable for the modern petabyte-world of big data. 
Proposals for overcoming these limitations need to extend R’s scope beyond 
in-memory loading and single computer execution environments, while main-
taining R’s flair for easily-deployable statistical algorithms.
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Hadoop Integration with R
In the beginning, big data and R were not natural friends. R programming 
requires that all objects be loaded into the main memory of a single machine. 
The limitations of this architecture are quickly realized when big data 
becomes a part of the equation. In contrast, distributed file systems such 
as Hadoop are missing strong statistical techniques but are ideal for scaling 
complex operations and tasks. Vertical scaling solutions — requiring invest-
ment in costly supercomputing hardware — often cannot compete with the 
cost-value return offered by distributed, commodity hardware clusters.

To conform to the in-memory, single-machine limitations of the R language, 
data scientists often had to restrict analysis to only a subset of the available 
sample data. Prior to deeper integration with Hadoop, R language program-
mers offered a scale-out strategy for overcoming the in-memory challenges 
posed by large data sets on single machines. This was achieved using mes-
sage-passing systems and paging. This technique is able to facilitate work 
over data sets too large to store in main memory simultaneously; however, 
its low-level programming approach presents a steep learning curve for those 
unfamiliar with parallel programming paradigms.

Alternative approaches seek to integrate R’s statistical capabilities with 
Hadoop’s distributed clusters in two ways: interfacing with SQL query lan-
guages, and integration with Hadoop Streaming. With the former, the goal 
is to leverage existing SQL data warehousing platforms such as Hive (see 
Chapter 13) and Pig (see Chapter 8). These schemas simplify Hadoop job 
programming using SQL-style statements in order to provide high-level pro-
gramming for conducting statistical jobs over Hadoop data. For program-
mers wishing to program MapReduce jobs in languages (including R) other 
than Java, a second option is to make use of Hadoop’s Streaming API. User-
submitted MapReduce jobs undergo data transformations with the assistance 
of UNIX standard streams and serialization, guaranteeing Java-compliant 
input to Hadoop — regardless of the language originally inputted by the 
programmer.

Developers continue to explore various strategies to leverage the distributed 
computation capability of MapReduce and the almost limitless storage capac-
ity of HDFS in ways that can be exploited by R. Integration of Hadoop with 
R is ongoing, with offerings available from IBM (Big R as part of BigInsights) 
and Revolution Analytics (Revolution R Enterprise). Bridging solutions that 
integrate high-level programming and querying languages with Hadoop, such 
as RHive and RHadoop, are also available. Fundamentally, each system aims 
to deliver the deep analytical capabilities of the R language to much larger 
sets of data. In closing this chapter, we briefly examine some of these efforts 
to marry Hadoop’s scalability with R’s statistical capabilities.
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RHive
The RHive framework serves as a bridge between the R language and Hive. 
RHive delivers the rich statistical libraries and algorithms of R to data 
stored in Hadoop by extending Hive’s SQL-like query language (HiveQL) with 
R-specific functions. Through the RHive functions, you can use HiveQL to 
apply R statistical models to data in your Hadoop cluster that you have cata-
loged using Hive.

RHadoop
Another open source framework available to R programmers is RHadoop, 
a collection of packages intended to help manage the distribution and 
analysis of data with Hadoop. Three packages of note — rmr2, rhdfs, and 
rhbase — provide most of RHadoop’s functionality:

 ✓ rmr2: The rmr2 package supports translation of the R language into 
Hadoop-compliant MapReduce jobs (producing efficient, low-level 
MapReduce code from higher-level R code).

 ✓ rhdfs: The rhdfs package provides an R language API for file manage-
ment over HDFS stores. Using rhdfs, users can read from HDFS stores to 
an R data frame (matrix), and similarly write data from these R matrices 
back into HDFS storage.

 ✓ rhbase: rhbase packages provide an R language API as well, but their 
goal in life is to deal with database management for HBase stores, rather 
than HDFS files.

Revolution R
Revolution R (by Revolution Analytics) is a commercial R offering with sup-
port for R integration on Hadoop distributed systems. Revolution R prom-
ises to deliver improved performance, functionality, and usability for R on 
Hadoop. To provide deep analytics akin to R, Revolution R makes use of the 
company’s ScaleR library — a collection of statistical analysis algorithms 
developed specifically for enterprise-scale big data collections.

ScaleR aims to deliver fast execution of R program code on Hadoop clusters, 
allowing the R developer to focus exclusively on their statistical algorithms 
and not on MapReduce. Furthermore, it handles numerous analytics tasks, 
such as data preparation, visualization, and statistical tests.

IBM BigInsights Big R
Big R offers end-to-end integration between R and IBM’s Hadoop offering, 
BigInsights, enabling R developers to analyze Hadoop data. The aim is to 
exploit R’s programming syntax and coding paradigms, while ensuring that 
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the data operated upon stays in HDFS. R datatypes serve as proxies to these 
data stores, which means R developers don’t need to think about low-level 
MapReduce constructs or any Hadoop-specific scripting languages (like Pig).

BigInsights Big R technology supports multiple data sources — including 
flat files, HBase, and Hive storage formats — while providing parallel and 
partitioned execution of R code across the Hadoop cluster. It hides many of 
the complexities in the underlying HDFS and MapReduce frameworks, allow-
ing Big R functions to perform comprehensive data analytics — on both 
structured and unstructured data. Finally, the scalability of Big R’s statistical 
engine allows R developers to make use of both pre-defined statistical tech-
niques, as well as author new algorithms themselves.
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Developing and Scheduling 
Application Workflows  

with Oozie
In This Chapter
▶ Setting up the Oozie server

▶ Developing and running an Oozie workflow

▶ Scheduling and coordinating Oozie workflows

M 
oving data and running different kinds of applications in Hadoop is 
great stuff, but it’s only half the battle. For Hadoop’s efficiencies to 

truly start paying off for you, start thinking about how you can tie together 
a number of these actions to form a cohesive workflow. This idea is appeal-
ing, especially after you and your colleagues have built a number of Hadoop 
applications and you need to mix and match them for different purposes. At 
the same time, you inevitably need to prepare or move data as you progress 
through your workflows and make decisions based on the output of your 
jobs or other factors. Of course, you can always write your own logic or hack 
an existing workflow tool to do this in a Hadoop setting — but that’s a lot of 
work. Your best bet is to use Apache Oozie, a workflow engine and schedul-
ing facility designed specifically for Hadoop.

As a workflow engine, Oozie enables you to run a set of Hadoop applications 
in a specified sequence known as a workflow. You define this sequence in 
the form of a directed acyclic graph (DAG) of actions. In this workflow, the 
nodes are actions and decision points (where the control flow will go in one 
direction, or another), while the connecting lines show the sequence of these 
actions and the directions of the control flow. Oozie graphs are acyclic (no 
cycles, in other words), which means you can’t use loops in your workflows. 
In terms of the actions you can schedule, Oozie supports a wide range of job 
types, including Pig, Hive, and MapReduce, as well as jobs coming from Java 
programs and Shell scripts.
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Oozie also provides a handy scheduling facility. An Oozie coordinator job, for 
example, enables you to schedule any workflows you’ve already created. You 
can schedule them to run based on specific time intervals, or even based on 
data availability. At an even higher level, you can create an Oozie bundle job 
to manage your coordinator jobs. Using a bundle job, you can easily apply 
policies against a set of coordinator jobs by using a bundle job.

For all three kinds of Oozie jobs (workflow, coordinator, and bundle), you 
start out by defining them using individual .xml files, and then you configure 
them using a combination of properties files and command-line options.

Figure 10-1 gives an overview of all the components you’d usually find in an 
Oozie server. Don’t expect to understand all the elements in one fell swoop. 
We help you work through the various parts shown here throughout this 
chapter as we explain how all the components work together.

 

Figure 10-1: 
Oozie server 
components.

 

Getting Oozie in Place
Apache Oozie is included in every major Hadoop distribution, including 
Apache Bigtop, which is the basis of the distribution used by this book. In 
your Hadoop cluster, install the Oozie server on an edge node, where you 
would also run other client applications against the cluster’s data, as shown 
in Figure 10-2.

Edge nodes are designed to be a gateway for the outside network to the 
Hadoop cluster. This makes them ideal for data transfer technologies (Flume, 
for example), but also client applications and other application infrastructure 
like Oozie. Oozie does not need a dedicated server, and can easily coexist 
with other services that are ideally suited for edge nodes, like Pig and Hive. 
For more information on Hadoop deployments, see Chapter 16.
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Figure 10-2: 
Oozie server 
deployment.

 

After Oozie is deployed, you’re ready to start the Oozie server. Oozie’s infra-
structure is installed in the $OOZIE_HOME directory. From there, run the 
oozie-start.sh command to start the server. (As you might expect, stopping 
the server involves typing oozie-stop.sh.) You can test the status of your 
Oozie instance by running the command

oozie admin -status

After you have the Oozie server deployed and started, you can catalog and 
run your various workflow, coordinator, or bundle jobs. When working with 
your jobs, Oozie stores the catalog definitions — the data describing all the 
Oozie objects (workflow, coordinator, and bundle jobs) — as well as their 
states in a dedicated database.

 By default, Oozie is configured to use the embedded Derby database, but you 
can use MySQL, Oracle, or PostgreSQL, if you need to.

A quick look at Figure 10-1 tells you that you have four options for interacting 
with the Oozie server:

 ✓ The Java API: This option is useful in situations where you have your 
own scheduling code in Java applications, and you need to control the 
execution of your Oozie workflows, coordinators, or bundles from within 
your application.

 ✓ The REST API: Again, this option works well in those cases where you want 
to use your own scheduling code as the basis of your Oozie workflows, coor-
dinators, or bundles, or if you want to build your own interface or extend an 
existing one for administering the Oozie server.



142 Part II: How Hadoop Works 

 ✓ Command Line Interface (CLI): It’s the traditional Linux command line 
interface for Oozie.

 ✓ The Oozie Web Console: Okay, maybe you can’t do much interacting 
here, but the Oozie Web Console gives you a (read-only) view of the 
state of the Oozie server, which is useful for monitoring your Oozie jobs.

Hue, a Hadoop administration interface, provides another tool for working 
with Oozie. Oozie workflows, coordinators, and bundles are all defined using 
XML, which can be tedious to edit, especially for complex situations. Hue 
provides a GUI designer tool to graphically build workflows and other Oozie 
objects.

 Underneath the covers, Oozie includes an embedded Tomcat web server, 
which handles its input and output.

Developing and Running  
an Oozie Workflow

Oozie workflows are, at their core, directed graphs, where you can define 
actions (Hadoop applications) and data flow, but with no looping — meaning 
you can’t define a structure where you’d run a specific operation over and 
over until some condition is met (a for loop, for example). Oozie workflows 
are quite flexible in that you can define condition-based decisions and forked 
paths for parallel execution. You can also execute a wide range of actions.

Figure 10-3 shows a sample Oozie workflow.

 

Figure 10-3: 
A sample 

Oozie 
workflow.

 

In this figure, we see a workflow showing the basic capabilities of Oozie work-
flows. First, a Pig script is run, and is immediately followed by a decision tree. 
Depending on the state of the output, the control flow can either go directly 
to an HDFS file operation (for example, a copyToLocal operation) or to a fork 
action. If the control flow passes to the fork action, two jobs are run concur-
rently: a MapReduce job, and a Hive query. The control flow then goes to the 
HDFS operation once both the MapReduce job and Hive query are finished 
running. After the HDFS operation, the workflow is complete.
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Writing Oozie workflow definitions
Oozie workflow definitions are written in XML, based on the Hadoop Process 
Definition Language (hPDL) schema. This particular schema is, in turn, based 
on the XML Process Definition Language (XPDL) schema, which is a product-
independent standard for modeling business process definitions.

An Oozie workflow is composed of a series of actions, which are encoded by 
XML nodes. There are different kinds of nodes, representing different kinds of 
actions or control flow directives. Each Oozie workflow has its own XML file, 
where every node and its interconnections are defined. Workflow nodes all 
require unique identifiers because they’re used to identify the next node to 
be processed in the workflow. This means that the order in which the actions 
are executed depends on where an action’s node appears in the workflow 
XML. To see how this concept would look, check out Listing 10-1, which 
shows an example of the basic structure of an Oozie workflow’s XML file.

Listing 10-1: A Sample Oozie XML File

<workflow-app name="SampleWorkflow" xmlns="uri:oozie:workflow:0.1">
  <start to="firstJob"/>
  <action name="firstJob">
    <pig>...</pig>
    <ok to="secondJob"/>
    <error to="kill"/>
  </action>
  <action name="secondJob">
    <map-reduce>...</map-reduce>
    <ok to="end" />
    <error to="kill" />
  </action>
  <end name="end"/>
  <kill name="kill">
    <message>"Killed job."</message>
  </kill>
</workflow-app>

In this example, aside from the start, end, and kill nodes, you have two action 
nodes. Each action node represents an application or a command being exe-
cuted. The next few sections look a bit closer at each node type.

Start and end nodes
Each workflow XML file must have one matched pair of start and end nodes. 
The sole purpose of the start node is to direct the workflow to the first node, 
which is done using the to attribute. Because it’s the automatic starting 
point for the workflow, no name identifier is required.
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 Action nodes need name identifiers, as the Oozie server uses them to track 
the current position of the control flow as well as to specify which action to 
execute next.

The sole purpose of the end node is to provide a termination point for the 
workflow. A name identifier is required, but there’s no need for a to attribute.

Kill nodes
Oozie workflows can include kill nodes, which are a special kind of node 
dedicated to handling error conditions. Kill nodes are optional, and you can 
define multiple instances of them for cases where you need specialized han-
dling for different kinds of errors. Action nodes can include error transition 
tags, which direct the control flow to the named kill node in case of an error. 
You can also direct decision nodes to point to a kill node based on the results 
of decision predicates, if needed. Like an end node, a kill node results in the 
workflow ending, and it does not need a to attribute.

Decision nodes
Decision nodes enable you to define conditional logic to determine the next 
step to be taken in the workflow — Listing 10-2 gives some examples:

Listing 10-2: A Sample Oozie XML File

<workflow-app name="SampleWorkflow" xmlns="uri:oozie:workflow:0.1">
  <start to="firstDecision"/>
  @@1
  <decision name="firstDecision">
  <switch>
   @@2
    <case to="firstJob">
    ${fs:fileSize('usr/dirk/ny-flights') gt 10 * GB}
    </case>
   @@3
    <case to="secondJob">
    ${fs:filSize('usr/dirk/ny-flights') lt 100 * MB}
    </case>
   @@4
    <default to="thirdJob"/>
  </switch>
  </decision>
  <action name="firstJob">...</action>
  <action name="secondJob">...</action>
  <action name="thirdJob">...</action>
  <end name="end"/>
</workflow-app>
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In this workflow, we begin with a decision node (see the code following 
the bold @@1), which includes a case statement (called switch), where, 
depending on the size of the files in the 'usr/dirk/ny-flights' direc-
tory, a different action is taken. Here, if the size of the files in the 'usr/
dirk/ny-flights' directory is greater than 10GB (see the code following 
the bold @@2), the control flow runs the action named firstJob next. If 
the size of the files in the 'usr/dirk/ny-flights' directory is less than 
100MB (see the code following the bold @@3), the control flow runs the 
action named secondJob next. And if neither case we’ve seen so far is true 
(in this case, if the size of the files in the 'usr/dirk/ny-flights' direc-
tory is greater than 100MB and less than 10GB), we want the action named 
thirdJob to run.

 Case statements (seen here as switch) are quite common in control flow 
programming languages. (We talk about the difference between control flow 
and data flow languages in Chapter 8.) They enable you to define the flow of 
a program based on a series of decisions. They’re called case statements, 
because they’re really a set of cases: for example, in case the first comparison 
is true, we’ll run one function, or in case the second comparison is true, we’ll 
run a different function.

As we just saw, a decision node consists of a switch operation, where you 
can define one or more cases and a single default case, which is mandatory. 
This is to ensure the workflow always has a next action. Predicates for the 
case statements — the logic inside the <case> tags — are written as JSP 
Expression Language (EL) expressions, which resolve to either a true or 
false value.

 For the full range of EL expressions that are bundled in the Oozie, check out 
the related Oozie workflows specifications at this site:

http://oozie.apache.org/docs/4.0.0/WorkflowFunctionalSpec.
html - a4.2_Expression_Language_Functions

Action nodes
Action nodes are where the actual work performed by the workflow is com-
pleted. You have a wide variety of actions to choose from — Hadoop applica-
tions (like Pig, Hive, and MapReduce), Java applications, HDFS operations, 
and even sending e-mail, to name just a few examples. You can also configure 
custom action types for operations that have no existing action.
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Depending on the kind of action being used, a number of different tags need 
to be used. All actions, however, require transition tags: one for defining the 
next node after then successful completion of the action, and one for defining 
the next node if the action fails. In the following list, we describe the more 
commonly used action node types:

 ✓ MapReduce: MapReduce, as we discuss in Chapter 6, is a framework for 
distributed applications to run on Hadoop. For a MapReduce workflow 
to be successful, a couple things need to happen. MapReduce actions, 
for example, require that you specify the addresses of the processing 
and storage servers for your Hadoop cluster. We also need to specify the 
master services for both the processing and storage systems in Hadoop 
so that Oozie can properly submit this job for execution on the Hadoop 
cluster, and so that the input files can be found. Listing 10-3 shows the 
tagging for a MapReduce action:

Listing 10-3: A Sample Oozie XML File to Run a MapReduce Job
<workflow-app name=" SampleWorkflow " xmlns="uri:oozie:workflow:0.1">
   ...
   <action name="firstJob">
      <map-reduce>

      @@1     <job-tracker>serverName:8021</job-tracker>
         <name-node>serverName:8020</name-node>

      @@2      <prepare>
            <delete path="hdfs://clientName:8020/usr/sample/output-data"/>
         </prepare>

      @@3     <job-xml>jobConfig.xml</job-xml>
         <configuration>
           ...
            <property>
               <name>mapreduce.map.class</name>
               <value>dummies.oozie.FlightMilesMapper</value>
            </property>
            <property>
               <name>mapreduce.reduce.class</name>
               <value>dummies.oozie.FlightMilesReducer </value>
            </property>
            <property>
               <name>mapred.mapoutput.key.class</name>
               <value>org.apache.hadoop.io.Text</value>
            </property>
            <property>
               <name>mapred.mapoutput.value.class</name>
               <value>org.apache.hadoop.io.IntWritable</value>
            </property>
            <property>
               <name>mapred.output.key.class</name>
               <value>org.apache.hadoop.io.Text</value>
            </property>
            <property>
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               <name>mapred.output.value.class</name>
               <value>org.apache.hadoop.io.IntWritable</value>
            </property>
            <property>
               <name>mapred.input.dir</name>
               <value>'/usr/dirk/flightdata'</value>
            </property>
            <property>
               <name>mapred.output.dir</name>
               <value>'/usr/dirk/flightmiles'</value>
            </property>
            ...
         </configuration>
      </map-reduce>
      <ok to="end"/>
      <error to="end"/>
   </action>
   ...
</workflow-app>

  In this code, we just have a single action to illustrate how to invoke a 
MapReduce job from an Oozie workflow. In the code following the bold 
@@1, we need to define the master servers for the storage and process-
ing systems in Hadoop. For the processing side, the old JobTracker term 
is used, but you can enter the name for the Region Server if you’re using 
YARN to manage the processing in your cluster. (See Chapter 7 for more 
information on the JobTracker and the Region Server and how they 
manage the processing for Hadoop, both in Hadoop 1 and in Hadoop 2.) 
Note that we also specify the server and port number for the NameNode 
(again, so the MapReduce job can find its files).

  In the code following the bold @@2, the <prepare> tag is used to delete 
any residual information from previous runs of the same application. 
You can also do other file movement operations here if needed.

  All the definitions for the MapReduce applications are specified in configu-
ration details. In the code following the bold @@3, we can see the first of 
two options: the <job-xml> tag, which is optional, can point to a Hadoop 
JobConf file, where you can define all your configuration details outside 
the Oozie workflow XML document. This can be useful if you need to run 
the same MapReduce application in many of your workflows, so if configu-
rations need to change you only need to adjust the settings in one place. 
You can also enter configuration details in the <configuration> tag, 
as we’ve done in the example above. In the example, you can see that we 
define all the key touch points for the MapReduce application: the data 
types of the key/value pairs as they input and output the map and reduce 
phases, the class names for the map and reduce code you have written, 
and the paths for the input and output files. It’s important to note that 
configuration settings specified here would override any settings defined 
in the file identified in the <job-xml> tag.
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 ✓ Hive: Similar to MapReduce actions, as just described, Hive actions 
require that you specify the addresses of the processing and storage 
servers for your Hadoop cluster. Hive enables you to submit SQL-like 
queries against data in HDFS that you’ve cataloged as a Hive table. (For 
more information on Hive, see Chapter 13.) As Hive does its work, Hive 
queries get turned into MapReduce jobs, so we will need to specify the 
names of the processing and storage systems used in your Hadoop clus-
ter. The following example shows the tagging for a Hive action:

Listing 10-4: A Sample Oozie XML File to Run a Hive Query
<workflow-app name="SampleWorkflow" xmlns="uri:oozie:workflow:0.2">
    ...
    <action name="firstJob">
        <hive>
            <job-tracker>serverName:8021</job-tracker>
            <name-node>serverName:8020</name-node>
            <prepare>
                <delete path="hdfs://clientName:8020/usr/sample/output-

data"/>
            </prepare>
            <job-xml>jobConfig.xml</job-xml>
            <configuration>...</configuration>
        @@1 <script>firstJob.hql</script>
        </hive>
        <ok to="end"/>
        <error to="end"/>
    </action>
    ...
</workflow-app>

  In the code in Listing 10-4, we have defined similar definitions as we’ve 
done with the MapReduce action. The key difference here is that we can 
avoid the extensive configuration tags defining the MapReduce details 
and simply specify the location and name of the file containing the Hive 
query. (See the code following the bold @@1.)

  To specify the Hive script being used, enter the filename and path in the 
<script> tag. Aside from this tag, the remaining tags shown are the 
same as for MapReduce.

 ✓ Pig: Pig scripts enable you to define a data flow (a series of actions you 
can apply to data) and the Pig compiler turns that code into MapReduce. 
(See Chapter 8 for more on Pig in general.) Pig actions require that you 
specify the addresses of the processing and storage servers for your 
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Hadoop cluster. Since the Hadoop processing and storage systems are 
used here, as they are in the Hive action, we need to specify their names 
here as well. Listing 10-5 shows the tagging for a Pig action:

Listing 10-5: A Sample Oozie XML File to Run a Pig Script
<workflow-apfp name="SampleWorkflow" xmlns="uri:oozie:workflow:0.2">
    ...
    <action name="firstJob">
        <pig>
            <job-tracker>serverName:8021</job-tracker>
            <name-node>serverName:8020</name-node>
            <prepare>
                <delete path="hdfs://clientName:8020/usr/sample/output-

data"/>
            </prepare>
            <job-xml>jobConfig.xml</job-xml>
            <configuration>...</configuration>
        @@1 <script>firstJob.pig</script>
        </pig>
        <ok to="end"/>
        <error to="end"/>
    </action>
    ...
</workflow-app>

  Listing 10-5 looks a lot like Listing 10-4. Once again, we have defined 
similar definitions as we’ve done with the MapReduce action and once 
again the key difference here is that we can avoid the extensive configu-
ration tags defining the MapReduce details. All we have to do is specify 
the location and name of the file containing the Pig script query. (See 
the code following the bold @@1.) To specify the .pig script being used, 
enter the filename and path in the <script> tag.

 ✓ File System (FS): The File System action enables you to run HDFS com-
mands as part of your workflow, which is tremendously useful as you 
post-process and pre-preprocess data. Note: The HDFS commands 
enable you to perform the typical file movement operations people 
need to do when manipulating data inputs and outputs, like deleting, 
copying, renaming, and moving files. Listing 10-6 shows the tagging for a 
file system action where a file is deleted, a directory is created, a file is 
moved, and permissions are changed:
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Listing 10-6: A Sample Oozie XML File to Run File System Commands

<workflow-app name="SampleWorkflow" xmlns="uri:oozie:workflow:0.1">
    ...
    <action name="firstJob">
         <fs>
            <delete path="hdfs://servername:8020/usr/sample/temp-data"/>
            <mkdir path="archives/${wf:id()}"/>
            <move source="${jobInput}" 
           target="archives/${wf:id()}/processed-input"/>
            <chmod path="${jobOutput}" permissions="-rwxrw-rw-" dir-

files="true"><recursive/></chmod>
        </fs>
        <ok to="end"/>
        <error to="end"/>
    </action>
    ...
</workflow-app>

Fork and join nodes
You can define parallel execution tracks for your workflows by using fork 
and join nodes together. This structure, which begins with a fork, can spawn 
two or more workflow paths, which would then be executed in parallel. Use 
the join node to merge the control flow back to a single path. See the code in 
Listing 10-7:

Listing 10-7: A Sample Oozie XML File to Fork a Control Flow

<workflow-app name="SampleWorkflow" xmlns="uri:oozie:workflow:0.1">
  <start to="fork"/>
  <fork name="fork">
    <path start="firstJob" />
    <path start="secondJob" />
  </fork>
  <action name="firstJob">
    ...
    <ok to="join" />
    <error to="end" />
  </action>
  <action name="secondJob">
    ...
    <ok to="join" />
    <error to="end" />
  </action>
  <join name="join" to="end" />
  <end name="end"/>
</workflow-app>
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The actions and other control flow nodes must point to the join node to termi-
nate the individual workflow paths that were spawned with the fork operation. 
Before the next node pointed to by the join node can be executed, all the actions 
and control flows in each of the paths must be finished.

Configuring Oozie workflows
You can configure Oozie workflows in one of three ways, depending on your 
particular circumstances. You can use

 ✓ The config-default.xml file: Defines parameters that don’t change 
for the workflow.

 ✓ The job.properties file: Defines parameters that are common for a 
particular deployment of the workflow. Definitions here override those 
made in the config-default.xml file.

 ✓ The command-line parameters: Defines parameters that are specific for 
the workflow invocation. Definitions here override those made in the 
job.properties file and the config-default.xml file.

The configuration details will differ, depending on the action they’re associ-
ated with. For example, as we saw in the MapReduce action (map-action) in 
Listing 10-3, you have many more things to configure there, as opposed to a 
file system (fs) action like the one shown in Listing 10-6.

Running Oozie workflows
Before running your Oozie workflows, all its components need to exist within 
a specified directory structure. Specifically, the workflow itself should have 
its own, dedicated directory, where workflow.xml is in the root directory, 
and any code libraries exist in the subdirectory named lib. The workflow 
directory and all its files must exist in HDFS for it to be executed.

 If you’ll be using the Oozie command-line interface to work with various jobs, 
be sure to set the OOZIE_URL environment variable. (This is easily done from 
a command line in a Linux terminal.) You can save yourself a lot of typing 
because the Oozie server’s URL will now automatically be included with your 
requests. Here’s a sample command one could use to set the OOZIE_URL  
environment variable from the command line:

export OOZIE_URL="http://localhost:8080/oozie"
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 To run an Oozie workload from the Oozie command-line interface, issue a 
command like the following, while ensuring that the job.properties file is 
locally accessible — meaning the account you’re using can see it, meaning it 
has to be on the same system where you’re running Oozie commands:

$ oozie job -config sampleWorkload/job.properties -run

After you submit a job, the workload is stored in the Oozie object 
database. (Refer to Figure 10-1.) On submission, Oozie returns an identi-
fier to enable you to monitor and administer your workflow — job: 
0000001-00000001234567-oozie-W, for example:

To check the status of this job, you’d run the command

oozie job -info 0000001-00000001234567-oozie-W

Scheduling and Coordinating  
Oozie Workflows

After you’ve created a set of workflows, you can use a series of Oozie coordina-
tor jobs to schedule when they’re executed. You have two scheduling options 
for execution: a specific time and the availability of data in conjunction with a 
certain time. The following three sections take a look at each option.

Time-based scheduling for  
Oozie coordinator jobs
Oozie coordinator jobs can be scheduled to execute at a certain time, but 
after they’re started, they can then be configured to run at specified inter-
vals. The following example shows a coordinator job that starts running at a 
specified start time and date:

Listing 10-8: A Sample Oozie XML File to Schedule a Workflow by Time

<coordinator-app name="sampleCoordinator"
                 frequency="${coord:days(1)}"
                 start="2014-06-01T00:01Z "
                 end="2014-06-01T01:00Z "
                 timezone="UTC"
                 xmlns="uri:oozie:coordinator:0.1">
   <controls>...</controls>



153 Chapter 10: Developing and Scheduling Application Workflows with Oozie

   <action>
      <workflow>
         <app-path>${workflowAppPath}</app-path>
      </workflow>
   </action>     
</coordinator-app>

Time and data availability-based scheduling 
for Oozie coordinator jobs
Oozie coordinator jobs can also be scheduled to execute at a certain time if 
specified data files or directories are available. Listing 10-9 shows an example 
of a coordinator that starts running at a specified start time and date, is 
executed once a day if the data set identified by triggerDatasetDir exists, 
and runs until the specified end time:

Listing 10-9: A Sample Oozie XML File to Schedule a Workflow by  
Time and Data Availability

<coordinator-app name="sampleCoordinator"
                 frequency="${coord:days(1)}"
                 start="${startTime}"
                 end="${endTime}"
                 timezone="${timeZoneDef}"
                 xmlns="uri:oozie:coordinator:0.1">
   <controls>...</controls>
   <datasets>
      <dataset name="input" frequency="${coord:days(1)}" initial-

instance="${startTime}" timezone="${timeZoneDef}">
         <uri-template>${triggerDatasetDir}</uri-template>
      </dataset>
   </datasets>
   <input-events>
         <data-in name="sampleInput" dataset="input">
         <instance>${startTime}</instance>
      </data-in>
   </input-events>
   <action>
      <workflow>
         <app-path>${workflowAppPath}</app-path>
      </workflow>
   </action>     
</coordinator-app>
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Running Oozie coordinator jobs
Similar to Oozie workflow jobs, coordinator jobs require a job.properties 
file, and the coordinator.xml file needs to be loaded in the HDFS. To run an 
Oozie coordinator job from the Oozie command-line interface, issue a com-
mand like the following while ensuring that the job.properties file is 
locally accessible:

$ oozie job -config sampleCoordinator/job.properties -run

After you submit the job, the coordinator is stored in the Oozie object data-
base. (Refer to Figure 10-1.) On submission, Oozie returns an identifier to 
enable you to monitor and administer your coordinator — job: 0000001- 
00000001234567-oozie-C, for example:

To check the status of this job, run the command

oozie job -info 0000001-00000001234567-oozie-C



Part III
Hadoop and Structured Data 

 Check out the article “Roadmap of Hadoop Family Projects” (and more) online at  
www.dummies.com/extras/hadoop.



In this part . . .
 ✓ Examine how Hadoop can play nice with different kinds of data 

warehouses.

 ✓ See what HBase brings to the Hadoop table.

 ✓ Be busy as a bee with Hive.

 ✓ Get the scoop on Sqoop.

 ✓ Look into the (SQL) future of Hadoop

 ✓ Check out the article “Roadmap of Hadoop Family Projects” (and 
more) online at www.dummies.com/extras/hadoop.



Chapter 11

Hadoop and the Data Warehouse: 
Friends or Foes?

In This Chapter
▶ Contrasting the architectural differences between Hadoop and relational databases

▶ Landing enterprise data in Hadoop

▶ Archiving data in Hadoop

▶ Preprocessing data in Hadoop

▶ Discovery and exploration in Hadoop

I 
T types like us tend to love the latest and greatest new technologies, and 
when compelling platforms like Hadoop emerge, they’re often accompanied 

by a significant amount of hype. You might even say that this For Dummies 
book is part of that hype! When it comes to Hadoop, though, there’s real 
substance behind the hype. Not convinced? Just look at the increasing numbers 
of code contributions in the Apache Hadoop projects as well as the adoption 
rates of Hadoop in medium-to large-size businesses. The consensus is over-
whelming: Hadoop is here to stay.

It’s important to understand how any new technology relates to existing 
technologies and business practices. In the case of Hadoop, you should know 
how it will impact the field of enterprise data management. In our experience, 
the IT market reacts in two distinct ways.

On one hand, the Hadoop hype machine is in full gear and bent on world 
domination. This camp sees Hadoop replacing the relational database 
products that now power the world’s data warehouses. The argument here is 
compelling: Hadoop is cheap and scalable, and it has queryable interfaces 
that are becoming increasingly faster and more closely compliant with ANSI 
SQL — the standard for programming applications used with database systems.
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On the other hand, many relational warehouse vendors have gone out of their 
way to resist the appeal of all the Hadoop hype. Understandably, they won’t 
roll over and make way for Hadoop to replace their relational database offerings. 
They’ve adopted what we consider to be a protectionist stance, drawing a line 
between structured data, which they consider to be the exclusive domain of 
relational databases, and unstructured data, which is where they feel Hadoop 
can operate. In this model, they’re positioning Hadoop as solely a tool to transform 
unstructured data into a structured form for relational databases to store.

We feel that the truth lies in the middle of these opposing views: there are 
many workloads and business applications where data warehouses powered 
by relational databases are still the most practical choice. At the same time, 
there are classes of data (both structured and unstructured) and workloads 
where Hadoop is the most practical option. The key consideration here is 
using tools that are best suited for the task at hand.

The focus of this chapter is on comparing and contrasting the relative 
strengths of Hadoop technologies and relational databases and then on 
exploring a family of use cases for how Hadoop’s strengths can expand 
the capabilities of today’s data warehouses.

Comparing and Contrasting Hadoop 
with Relational Databases

Database models and database systems have been around as long as computer 
systems have roamed the earth, and most of us IT people have at least been 
exposed to (or perhaps even used) some type of database technology for a very 
long time. The most prevalent database technology is the relational database 
management system (RDBMS), which can be traced back to Edgar F. Codd’s 
groundbreaking work at IBM in the 1970s. Several well-known companies (IBM, 
Informix, Oracle, and Sybase, for example) capitalized on Codd’s work and sold, 
or continue to sell, products based on his relational model. At roughly the same 
time, Donald D. Chamberlin and Raymond F. Boyce created the structured query 
language (SQL) as a way to provide a common programming language for 
managing data stored in an RDBMS.

The 1980s and 1990s saw the birth of the object database, which provided a 
better fit for a particular class of problems than the relational database, and now 
another new class of technologies, commonly referred to as NoSQL databases, is 
emerging. Because NoSQL databases play a significant role in the Hadoop story, 
they deserve a closer look, so be sure to read the next section.
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NoSQL data stores
NoSQL data stores originally subscribed to the notion “Just Say No to SQL” 
(to paraphrase from an anti-drug advertising campaign in the 1980s), and 
they were a reaction to the perceived limitations of (SQL-based) relational 
databases. It’s not that these folks hated SQL, but they were tired of forcing 
square pegs into round holes by solving problems that relational databases 
weren’t designed for. A relational database is a powerful tool, but for some 
kinds of data (like key-value pairs, or graphs) and some usage patterns (like 
extremely large scale storage) a relational database just isn’t practical. And 
when it comes to high-volume storage, relational database can be expensive, 
both in terms of database license costs and hardware costs. (Relational 
databases are designed to work with enterprise-grade hardware.) So, with 
the NoSQL movement, creative programmers developed dozens of solutions for 
different kinds of thorny data storage and processing problems. These NoSQL 
databases typically provide massive scalability by way of clustering, and are 
often designed to enable high throughput and low latency.

 The name NoSQL is somewhat misleading because many databases that fit the 
category do have SQL support (rather than “NoSQL” support). Think of its 
name instead as “Not Only SQL.”

The NoSQL offerings available today can be broken down into four distinct 
categories, based on their design and purpose:

 ✓ Key-value stores: This offering provides a way to store any kind of data 
without having to use a schema. This is in contrast to relational data-
bases, where you need to define the schema (the table structure) before 
any data is inserted. Since key-value stores don’t require a schema, you 
have great flexibility to store data in many formats. In a key-value store, 
a row simply consists of a key (an identifier) and a value, which can be 
anything from an integer value to a large binary data string. Many imple-
mentations of key-value stores are based on Amazon’s Dynamo paper.

 ✓ Column family stores: Here you have databases in which columns are 
grouped into column families and stored together on disk.

  Strictly speaking, many of these databases aren’t column-oriented, 
because they’re based on Google’s BigTable paper, which stores data 
as a multidimensional sorted map. (For more on the role of Google’s 
BigTable paper on database design, see Chapter 12.)

 ✓ Document stores: This offering relies on collections of similarly encoded 
and formatted documents to improve efficiencies. Document stores 
enable individual documents in a collection to include only a subset of 
fields, so only the data that’s needed is stored. For sparse data sets, where 
many fields are often not populated, this can translate into significant 
space savings. By contrast, empty columns in relational database tables 
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do take up space. Document stores also enables schema flexibility, 
because only the fields that are needed are stored, and new fields can 
be added. Again, in contrast to relational databases, table structures are 
defined up front before data is stored, and changing columns is a tedious 
task that impacts the entire data set.

 ✓ Graph databases: Here you have databases that store graph struc-
tures — representations that show collections of entities (vertices or 
nodes) and their relationships (edges) with each other. These structures 
enable graph databases to be extremely well suited for storing complex 
structures, like the linking relationships between all known web pages. 
(For example, individual web pages are nodes, and the edges connecting 
them are links from one page to another.) Google, of course, is all over 
graph technology, and invented a graph processing engine called Pregel 
to power its PageRank algorithm. (And yes, there’s a white paper on 
Pregel.) In the Hadoop community, there’s an Apache project called 
Giraph (based on the Pregel paper), which is a graph processing engine 
designed to process graphs stored in HDFS.

 The data storage and processing options available in Hadoop are in many 
cases implementations of the NoSQL categories listed here. This will help you 
better evaluate solutions that are available to you and see how Hadoop can 
complement traditional data warehouses.

ACID versus BASE data stores
One hallmark of relational database systems is something known as ACID 
compliance. As you might have guessed, ACID is an acronym — the individual 
letters, meant to describe a characteristic of individual database transactions, 
can be expanded as described in this list:

 ✓ Atomicity: The database transaction must completely succeed or 
completely fail. Partial success is not allowed.

 ✓ Consistency: During the database transaction, the RDBMS progresses 
from one valid state to another. The state is never invalid.

 ✓ Isolation: The client’s database transaction must occur in isolation from 
other clients attempting to transact with the RDBMS.

 ✓ Durability: The data operation that was part of the transaction must 
be reflected in nonvolatile storage (computer memory that can retrieve 
stored information even when not powered – like a hard disk) and persist 
after the transaction successfully completes. Transaction failures cannot 
leave the data in a partially committed state.

Certain use cases for RDBMSs, like online transaction processing, depend on 
ACID-compliant transactions between the client and the RDBMS for the system 
to function properly. A great example of an ACID-compliant transaction is a 
transfer of funds from one bank account to another. This breaks down into two 
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database transactions, where the originating account shows a withdrawal, and 
the destination account shows a deposit. Obviously, these two transactions 
have to be tied together in order to be valid so that if either of them fail, the 
whole operation must fail to ensure both balances remain valid.

Hadoop itself has no concept of transactions (or even records, for that matter), 
so it clearly isn’t an ACID-compliant system. Thinking more specifically about 
data storage and processing projects in the entire Hadoop ecosystem (we tell 
you more about these projects later in this chapter), none of them is fully 
ACID-compliant, either. However, they do reflect properties that you often see 
in NoSQL data stores, so there is some precedent to the Hadoop approach.

One key concept behind NoSQL data stores is that not every application truly 
needs ACID-compliant transactions. Relaxing on certain ACID properties (and 
moving away from the relational model) has opened up a wealth of possibilities, 
which have enabled some NoSQL data stores to achieve massive scalability 
and performance for their niche applications. Whereas ACID defines the key 
characteristics required for reliable transaction processing, the NoSQL world 
requires different characteristics to enable flexibility and scalability. These 
opposing characteristics are cleverly captured in the acronym BASE:

 ✓ Basically Available: The system is guaranteed to be available for querying 
by all users. (No isolation here.)

 ✓ Soft State: The values stored in the system may change because of the 
eventual consistency model, as described in the next bullet.

 ✓ Eventually Consistent: As data is added to the system, the system’s 
state is gradually replicated across all nodes. For example, in Hadoop, 
when a file is written to the HDFS, the replicas of the data blocks are 
created in different data nodes after the original data blocks have been 
written. For the short period before the blocks are replicated, the state 
of the file system isn’t consistent.

The acronym BASE is a bit contrived, as most NoSQL data stores don’t 
completely abandon all the ACID characteristics — it’s not really the polar 
opposite concept that the name implies, in other words. Also, the Soft State 
and Eventually Consistent characteristics amount to the same thing, but 
the point is that by relaxing consistency, the system can horizontally scale 
(many nodes) and ensure availability.

 No discussion of NoSQL would be complete without mentioning the CAP 
 theorem, which represents the three kinds of guarantees that architects aim 
to provide in their systems:

 ✓ Consistency: Similar to the C in ACID, all nodes in the system would 
have the same view of the data at any time.

 ✓ Availability: The system always responds to requests.

 ✓ Partition tolerance: The system remains online if network problems 
occur between system nodes.
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The CAP theorem states that in distributed networked systems, architects 
have to choose two of these three guarantees — you can’t promise your users 
all three. That leaves you with the three possibilities shown in Figure 11-1:

 ✓ Systems using traditional relational technologies normally aren’t partition 
tolerant, so they can guarantee consistency and availability. In short, if one 
part of these traditional relational technologies systems is offline, the whole 
system is offline.

 ✓ Systems where partition tolerance and availability are of primary 
importance can’t guarantee consistency, because updates (that 
destroyer of consistency) can be made on either side of the partition. The 
key-value stores Dynamo and CouchDB and the column-family store 
Cassandra are popular examples of partition tolerant/availability (PA) 
systems.

 ✓ Systems where partition tolerance and consistency are of primary 
importance can’t guarantee availability because the systems return 
errors until the partitioned state is resolved.

  Hadoop-based data stores are considered CP systems (consistent and 
partition tolerant). With data stored redundantly across many slave 
nodes, outages to large portions (partitions) of a Hadoop cluster can 
be tolerated. Hadoop is considered to be consistent because it has 
a central metadata store (the NameNode) which maintains a single, 
consistent view of data stored in the cluster. We can’t say that Hadoop 
guarantees availability, because if the NameNode fails applications 
cannot access data in the cluster.

 

Figure 11-1: 
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Structured data storage and  
processing in Hadoop
When considering Hadoop’s capabilities for working with structured data 
(or working with data of any type, for that matter), remember Hadoop’s core 
characteristics: Hadoop is, first and foremost, a general-purpose data stor-
age and processing platform designed to scale out to thousands of compute 
nodes and petabytes of data. There’s no data model in Hadoop itself; data is 
simply stored on the Hadoop cluster as raw files. As such, the core compo-
nents of Hadoop itself have no special capabilities for cataloging, indexing, or 
querying structured data.

The beauty of a general-purpose data storage system is that it can be extended 
for highly specific purposes. The Hadoop community has done just that with a 
number of Apache projects — projects that, in totality, make up the Hadoop 
ecosystem. When it comes to structured data storage and processing, the 
projects described in this list are the most commonly used:

 ✓ Hive: A data warehousing framework for Hadoop. Hive catalogs data in 
structured files and provides a query interface with the SQL-like language 
named HiveQL. (We tell you tons more about Hive in Chapter 13.)

 ✓ HBase: A distributed database — a NoSQL database that relies on multi-
ple computers rather than on a single CPU, in other words — that’s built 
on top of Hadoop. (For more on HBase, see Chapter 12.)

 ✓ Giraph: A graph processing engine for data stored in Hadoop. (See the 
earlier discussion in this chapter on NoSQL and graph databases.)

 Many other Apache projects support different aspects of structured data 
analysis, and some projects focus on a number of frameworks and interfaces. 
Chapter 14 takes a look at another structured data analysis tool — the aptly 
named Sqoop — and Chapter 15 takes a look at SQL interfaces to Hadoop data.

When determining the optimal architecture for your analytics needs, be sure 
to evaluate the attributes and capabilities of the systems you’re considering. 
Table 11-1 compares Hadoop-based data stores (Hive, Giraph, and HBase) 
with traditional RDBMS.
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Table 11-1 A Comparison of Hadoop-Based Storage and RDBMS
Criteria Hive Giraph HBase RDBMS
Changeable 
data

No Yes Yes

Data layout Raw files stored in HDFS; 
Hive supports proprietary 
row-oriented or column-
oriented formats.

A sparse, 
distributed, 
persistent mul-
tidimensional 
sorted map

Row-
oriented 
or column-
oriented

Data types Bytes; data types are interpreted on query. Rich data 
type support

Hardware Hadoop-clustered commodity x86 servers; 
five or more is typical because the underlying 
storage technology is HDFS, which by default 
requires three replicas.

Typically 
large, scal-
able multi-
processor 
systems

High 
availability

Yes; built into the Hadoop architecture Yes, if the 
hardware 
and RDBMS 
are con-
figured 
correctly

Indexes Yes No Row-key only 
or special 
table required

Yes

Query 
language

HiveQL Giraph 
API

HBase API 
commands 
(get, put, 
scan, 
delete, 
increment, 
check), 
HiveQL

SQL



165 Chapter 11: Hadoop and the Data Warehouse: Friends or Foes?

Criteria Hive Giraph HBase RDBMS

Schema Schema 
defined 
as files 
are cata-
logued 
with the 
Hive Data 
Definition 
Language 
(DDL)

Schema 
on read

Variability 
in schema 
between rows

Schema on 
load

Throughput Millions of reads and writes per second Thousands 
of reads and 
writes per 
second

Transactions None Provides ACID 
support on 
only a single 
row

Provides 
multi-row 
and cross-
table trans-
actional 
support with 
full ACID 
property 
compliance

Transaction 
speed

Modest speed for interac-
tive queries; fast for full 
table scans

Fast for inter-
active queries; 
fast for full 
table scans

Fast for 
interactive 
queries; 
slower for 
full table 
scans

Typical size Ranges from terabytes to petabytes (from hun-
dreds of millions to billions of rows)

From giga-
bytes to 
terabytes 
(from hun-
dreds of 
thousands 
to millions of 
rows)
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Modernizing the Warehouse with Hadoop
We want to stress the fact that Hadoop and traditional RDBMS technologies 
are more complementary than competitive. The sensationalist marketing and 
news media articles that pit these technologies against each other are missing 
the point: By using the strengths of these technologies together, you can build 
a highly flexible and scalable analytics environment.

Rather than have you simply trust us on that assertion, we use the rest of 
this chapter to lay out four (specific) ways that Hadoop can modernize the 
warehouse. Get ready to delve into the messy details of these use cases:

 ✓ Landing Zone for All Data

 ✓ Queryable Archive of Cold Data

 ✓ Preprocessing Engine

 ✓ Data Discovery Zone

The landing zone
When we try to puzzle out what an analytics environment might look like in 
the future, we stumble across the pattern of the Hadoop-based landing zone 
time and time again. In fact, it’s no longer even a futures-oriented discussion 
because the landing zone has become the way that forward-looking companies 
now try to save IT costs, and provide a platform for innovative data analysis.

So what exactly is the landing zone? At the most basic level, the landing zone 
is merely the central place where data will land in your enterprise — weekly 
extractions of data from operational databases, for example, or from systems 
generating log files. Hadoop is a useful repository in which to land data, for 
these reasons:

 ✓ It can handle all kinds of data.

 ✓ It’s easily scalable.

 ✓ It’s inexpensive.

 ✓ Once you land data in Hadoop, you have the flexibility to query, analyze, 
or process the data in a variety of ways.

A Hadoop-based landing zone, seen in Figure 11-2, is the foundation of the 
other three use cases we describe later in this chapter.
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Figure 11-2: 
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 This diagram only shows part of the story and is by no means complete. After 
all, you need to know how the data moves from the landing zone to the data 
warehouse, and so on. (We get around to answering such questions and filling 
in some of these blanks as we add more Hadoop use cases in this chapter.)

The starting point for the discussion on modernizing a data warehouse has 
to be how organizations use data warehouses and the challenges IT depart-
ments face with them. In the 1980s, once organizations became good at storing 
their operational information in relational databases (sales transactions, for 
example, or supply chain statuses), business leaders began to want reports 
generated from this relational data. The earliest relational stores were opera-
tional databases and were designed for Online Transaction Processing (OLTP), 
so that records could be inserted, updated, or deleted as quickly as possible. 
This is an impractical architecture for large scale reporting and analysis, so 
Relational Online Analytical Processing (ROLAP) databases were developed 
to meet this need. This led to the evolution of a whole new kind of RDBMS: 
a data warehouse, which is a separate entity and lives alongside an organiza-
tion’s operational data stores. This comes down to using purpose-built tools for 
greater efficiency: we have operational data stores, which are designed to effi-
ciently process transactions, and data warehouses, which are designed to sup-
port repeated analysis and reporting.

Data warehouses are under increasing stress though, for the following reasons:

 ✓ Increased demand to keep longer periods of data online.

 ✓ Increased demand for processing resources to transform data for use in 
other warehouses and data marts.

 ✓ Increased demand for innovative analytics, which requires analysts to 
pose questions on the warehouse data, on top of the regular reporting 
that’s already being done. This can incur significant additional processing.
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The use cases we cover later in this chapter address these pain points, and 
actually frees data warehouses to do what they’re designed to do, which is 
support the regular reporting activities that keep organizations running.

In Figure 11-2, we can see the data warehouse presented as the primary 
resource for the various kinds of analysis listed on the far right side of 
the figure. Here we also see the concept of a landing zone represented, 
where Hadoop will store data from a variety of incoming data sources. To 
enable a Hadoop landing zone, you’ll need to ensure you can write data 
from the various data sources to HDFS. For relational databases, a good 
solution would be to use Sqoop, which we talk about in Chapter 14.

But landing the data is only the beginning. What you do with it is where the 
real value comes in, and that’s what we’ll get into with the remaining three 
use cases — all of which depend on a Hadoop-based landing zone populated 
with data from a variety of sources.

 When you’re moving data from many sources into your landing zone, one 
issue that you’ll inevitably run into is data quality. It’s common for compa-
nies to have many operational databases where key details are different, for 
example, that a customer might be known as “D. deRoos” in one database, 
and “Dirk deRoos” in another. Another quality problem lies in systems where 
there’s a heavy reliance on manual data entry, either from customers or 
staff — here, it’s not uncommon to find first names and last names switched 
around or other misinformation in the data fields. Data quality issues are a 
big deal for data warehouse environments, and that’s why a lot of effort goes 
into cleansing and validation steps as data from other systems are processed 
as it’s loaded into the warehouse. It all comes down to trust: if the data you’re 
asking questions against is dirty, you can’t trust the answers in your reports. 
So while there’s huge potential in having access to many different data sets 
from different sources in your Hadoop landing zone, you have to factor in data 
quality and how much you can trust the data.

A queryable archive of cold warehouse data
A multitude of studies show that most data in an enterprise data warehouse 
is rarely queried. Database vendors have responded to such observations 
by implementing their own methods for sorting out what data gets placed 
where. One method orders the data universe into designations of hot, warm, 
or cold, where hot data (sometimes called active data) is used often, warm 
data is used from time to time; and cold data is rarely used. The proposed 
solution for many vendors is to store the cold data on slower disks within 
the data warehouse enclosures or to create clever caching strategies to keep 
the hot data in-memory, among others. The problem with this approach is 
that even though slower storage is used, it’s still expensive to store cold, 
seldom used data in a warehouse. The costs here stems from both hardware 
and software licensing. At the same time, cold and dormant data is often 
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archived to tape. This traditional model of archiving data breaks down when 
you want to query all cold data in a cost-effective and relatively efficient 
way — without having to request old tapes, in other words.

If you look at the cost and operational characteristics of Hadoop, indeed it 
seems that it’s set to become the new backup tape. Hadoop is inexpensive 
largely because Hadoop systems are designed to use a lower grade of hardware 
than what’s normally deployed in data warehouse systems. Another significant 
cost savings is software licensing. Commercial Hadoop distribution licenses 
require a fraction of the cost of relational data warehouse software licenses, which 
are notorious for being expensive. From an operational perspective, Hadoop is 
designed to easily scale just by adding additional slave nodes to an existing 
cluster. And as slave nodes are added and data sets grow in volume, Hadoop’s 
data processing frameworks enable your applications to seamlessly handle the 
increased workload. Hadoop represents a simple, flexible, and inexpensive way 
to push processing across literally thousands of servers. To put this statement 
into perspective: In 1955, 1 megabyte of storage cost about US$6,235. By the 
middle of 1993, the price per megabyte dipped below US$1. The cost to purchase 
1 megabyte of storage is now US$0.0000467 — in other words, at the time this 
book was published, US$1 could get you about 22 gigabytes of storage.

With its scalable and inexpensive architecture, Hadoop would seem to be a 
perfect choice for archiving warehouse data . . . except for one small matter: 
Most of the IT world runs on SQL, and SQL on its own doesn’t play well with 
Hadoop. Sure, the more Hadoop-friendly NoSQL movement is alive and well, 
but most power users now use SQL by way of common, off-the-shelf toolsets 
that generate SQL queries under the hood — products such as Tableau, Microsoft 
Excel, and IBM Cognos BI. It’s true that the Hadoop ecosystem includes Hive, 
but Hive supports only a subset of SQL, and although performance is improving 
(along with SQL support), it’s not nearly as fast at answering smaller queries 
as relational systems are. Recently, there has been major progress around 
SQL access to Hadoop, which has paved the way for Hadoop to become the 
new destination for online data warehouse archives.

Depending on the Hadoop vendor, SQL (or SQL-like) APIs are becoming 
available so that the more common off-the-shelf reporting and analytics 
tools can seamlessly issue SQL that executes on data stored in Hadoop. For 
example, IBM has its Big SQL API, Cloudera has Impala, and Hive itself, via 
the Hortonworks Stinger initiative, is becoming increasingly SQL compliant. 
Though various points of view exist (some aim to enhance Hive; some, to 
extend Hive; and others, to provide an alternative), all these solutions attempt 
to tackle two issues: MapReduce is a poor solution for executing smaller 
queries, and SQL access is — for now — the key to enabling IT workers to use 
their existing SQL skills to get value out of data stored in Hadoop.
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To add it all up — the inexpensive cost of storage for Hadoop plus the ability  to 
query Hadoop data with SQL — we think that Hadoop is the prime  destination 
for archival data. We consider this use case to have a low impact on your 
organization because you can start building your Hadoop skill set on data 
that’s not stored on performance-mission-critical systems. What’s more, you 
don’t have to work hard to get at the data. (Since archived data is normally 
stored on systems that have low usage, it’s easier to get at than data that’s in 
“the limelight” on performance-mission-critical systems, like data warehouses.) If 
you’re already using Hadoop as a landing zone, you have the foundation for your 
archive! You simply keep what you want to archive and delete what you don’t.

If you think about the Landing Zone use case (refer to Figure 11-2), the queryable 
archive, shown in Figure 11-3, extends the value of Hadoop and starts to 
integrate pieces that likely already exist in your enterprise. It’s a great example 
of finding economies of scale and cost take-out opportunities using Hadoop.

 

Figure 11-3: 
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In Figure 11-3, we show the archive component connecting the landing zone 
and the data warehouse. The data being archived originates in the warehouse 
and is then stored in the Hadoop cluster, which is also provisioning the land-
ing zone. In short, you can use the same Hadoop cluster to archive data and 
act as your landing zone.

The key Hadoop technology you would use to perform the archiving is Sqoop, 
which can move the data to be archived from the data warehouse into Hadoop. 
You will need to consider what form you want the data to take in your 
Hadoop cluster. In general, compressed Hive files are a good choice. You can, 
of course, transform the data from the warehouse structures into some other 
form (for example, a normalized form to reduce redundancy), but this is gener-
ally not a good idea. Keeping the data in the same structure as what’s in the 
warehouse will make it much easier to perform a full data set query across the 
archived data in Hadoop and the active data that’s in the warehouse.
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The concept of querying both the active and archived data sets brings up 
another consideration: how much data should you archive? There are really 
two common choices: archive everything as data is added and changed in 
the data warehouse, or only archive the data you deem to be cold. Archiving 
everything has the benefit of enabling you to easily issue queries from one 
single interface across the entire data set — without a full archive, you’ll need 
to figure out a federated query solution where you would have to union the 
results from the archive and the active data warehouse. But the downside 
here is that regular updates of your data warehouse’s hot data would cause 
headaches for the Hadoop-based archive. This is because any changes to 
data in individual rows and columns would require wholesale deletion and 
re-cataloging of existing data sets.

Now that archival data is stored in your Hadoop-based landing zone (assuming 
you’re using an option like the compressed Hive files mentioned above), you can 
query it. This is where the SQL on Hadoop solutions we talk about in Chapter 15 
can become interesting. An excellent example of what’s possible is for the 
analysis tools we see on the right in Figure 11-3 to directly run reports or analysis 
on the archived data stored in Hadoop. This is not to replace the data ware-
house — after all, Hadoop would not be able to match the warehouse’s 
performance characteristics for supporting hundreds or more concurrent users 
asking complex questions. The point here is that you can use reporting tools 
against Hadoop to experiment and come up with new questions to answer in a 
dedicated warehouse or mart.

 When you start your first Hadoop-based project for archiving warehouse data, 
don’t break the current processes until you’ve fully tested them on your new 
Hadoop solution. In other words, if your current warehousing strategy is to 
archive to tape, keep that process in place, and dual-archive the data into 
Hadoop and tape until you’ve fully tested the scenario (which would typi-
cally include restoring the warehouse data in case of a warehouse failure). 
Though you’re maintaining (in the short term) two archive repositories, you’ll 
have a robust infrastructure in place and tested before you decommission 
a tried-and-true process. Personal observation makes us believe that this process 
can ensure that you remain employed — with your current employer.

This use case is simple because there’s no change to the existing warehouse. 
The business goal is still the same: cheaper storage and licensing costs by 
migrating rarely-used data to an archive. The difference in this case is that 
the technology behind the archive is Hadoop rather than offline storage, like 
tape. In addition, we’ve seen various archive vendors start to incorporate 
Hadoop into their solutions (for example, allowing their proprietary archive 
files to reside on HDFS), so expect capabilities in this area to expand soon.

As you develop Hadoop skills (like exchanging data between Hadoop and 
relational databases and querying data in HDFS) you can use them to tackle 
bigger problems, such as analysis projects, which could provide additional 
value for your organization’s Hadoop investment. This will be especially 
relevant in the data discovery sandbox use case we describe a bit later.
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Hadoop as a data preprocessing engine
One of the earliest use cases for Hadoop in the enterprise was as a pro-
grammatic transformation engine used to preprocess data bound for a data 
warehouse. Essentially, this use case leverages the power of the Hadoop 
ecosystem to manipulate and apply transformations to data before it’s loaded 
into a data warehouse. Though the actual transformation engine is new (it’s 
Hadoop, so transformations and data flows are coded in Pig or MapReduce, 
among other languages), the approach itself has been in use awhile. What 
we’re talking about here is Extract, Transform, Load (ETL) processes.

Think back for a minute to our description of the evolution of OLTP and 
ROLAP databases in the Landing Zone section earlier in the chapter. The 
outcome of this is that many organizations with operational databases also 
deployed data warehouses. So how do IT departments get data from their 
operational databases into their data warehouses? (Remember that the 
operational data is typically not in a form that lends itself to analysis.) The 
answer here is ETL, and as data warehouses increased in use and impor-
tance, the steps in the process became well understood and best practices 
were developed. Also, a number of software companies started offering 
interesting ETL solutions so that IT departments could minimize their own 
custom code development.

The basic ETL process is fairly straightforward: you Extract data from 
an operational database, Transform it into the form you need for your 
analysis and reporting tools, and then you Load this data into your data 
warehouse.

One common variation to ETL is ELT — Extract, Load, and Transform. In 
the ELT process, you perform transformations (in contrast to ETL) after 
loading the data into the target repository. This approach is often used 
when the transformation stands to greatly benefit from a very fast SQL 
processing engine on structured data. (Relational databases may not excel 
at processing unstructured data, but they perform very fast processing 
of — guess what? — structured data.) If the data you’re transforming is 
destined for a data warehouse, and many of those transformations can be 
done in SQL, you may choose to run the transformations in the data ware-
house itself. ELT is especially appealing if the bulk of your skill set lies 
with SQL-based tooling. With Hadoop now able to process SQL queries, 
both ETL and ELT workloads can be hosted on Hadoop. In Figure 11-4 we 
show ETL services added to our reference architecture.
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Figure 11-4: 
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If you’ve deployed a Hadoop-based landing zone, which you can again see in 
Figure 11-4, you’ve got almost everything you need in place to use Hadoop as 
a transformation engine. You’re already landing data from your operational 
systems into Hadoop using Sqoop, which covers the extraction step. At this 
point you’ll need to implement your transformation logic into MapReduce or 
Pig applications. After the data is transformed, you can load the data into the 
data warehouse using Sqoop.

Thinking back to the archive use case we just discussed, using Hadoop as 
a data transformation engine raises possibilities there as well. What we 
described initially was a scenario where the archive consists of warehouse 
data that’s dumped into the landing zone. But if your data warehouse doesn’t 
modify its data (it’s for reporting only), you can simply keep the data you 
generate with the transformation process. In this model, data only flows 
from left-to-right in Figure 11-4, where data is extracted from operational 
databases, transformed in the landing zone, and then loaded into the data 
warehouse. With all the transformed data already in the landing zone, there’s 
no need to copy it back to Hadoop — unless, of course, the data gets modi-
fied in the warehouse.

The hybrid data preprocess option (Or, hybrids aren’t just for cars)
In addition to having to store larger volumes of cold data, one pressure we 
see in traditional data warehouses is that increasing amounts of processing 
resources are being used for transformation (ELT) workloads. The idea behind 
using Hadoop as a preprocessing engine to handle data transformation means 
that precious processing cycles are freed up, allowing the data warehouse to 
adhere to its original purpose: Answer repeated business questions to support 
analytic applications. Again, we’re seeing how Hadoop can complement 
traditional data warehouse deployments and enhance their productivity.
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Perhaps a tiny, imaginary light bulb has lit up over your head and you’re 
thinking, “Hey, maybe there are some transformation tasks perfectly suited 
for Hadoop’s data processing ability, but I know there’s also a lot of transfor-
mation work steeped in algebraic, step-by-step tasks where running SQL on a 
relational database engine would be the better choice. Wouldn’t it be cool if I 
could run SQL on Hadoop?” As we’ve been hinting, SQL on Hadoop is already 
here, and you can see the various offerings in Chapter 15. With the ability to 
issue SQL queries against data in Hadoop, you’re not stuck with only an ETL 
approach to your data flows — you can also deploy ELT-like applications.

Another hybrid approach to consider is where to run your transformation 
logic: in Hadoop or in the data warehouse? Although some organizations are 
concerned about running anything but analytics in their warehouses, the fact 
remains that relational databases are excellent at running SQL, and could be 
a more practical place to run a transformation than Hadoop.

Data transformation is more than  
just data transformation

The idea of Hadoop-inspired ETL engines has 
gained a lot of traction in recent years. After all, 
Hadoop is a flexible data storage and process-
ing platform that can support huge amounts of 
data and operations on that data. At the same 
time, it’s fault tolerant, and it offers the oppor-
tunity for capital and software cost reductions.

Despite Hadoop’s popularity as an ETL engine, 
however, many folks (including a famous firm 
of analysts) don’t recommend Hadoop as the 
sole piece of technology for your ETL strategy. 
This is largely because developing ETL flows 
requires a great deal of expertise about your 
organization’s existing database systems, the 
nature of the data itself, and the reports and 
applications dependent on it. In other words, 
the DBAs, developers, and architects in your 
IT department would need to become familiar 
enough with Hadoop to implement the needed 
ETL flows. For example, a lot of intensive hand 
coding with Pig, Hive, or even MapReduce 
may be necessary to create even the simplest 
of data flows — which puts your company on 

the hook for those skills if it follows this path. 
You have to code elements such as parallel 
debugging, application management services 
(such as check pointing and error and event 
handling). Also, consider enterprise require-
ments such as glossarization and being able 
to show your data’s lineage. There are regula-
tory requirements for many industry standard 
reports, where data lineage is needed; the 
reporting organization must be able to show 
where the data points in the report come from, 
how the data got to you, and what has been 
done to the data.

Even for relational database systems, ETL is 
complex enough that there are popular special-
ized products that provide interfaces for man-
aging and developing ETL flows. Some of these 
products now aid in Hadoop-based ETL and 
other Hadoop-based development. However, 
depending on your requirements, you may need 
to write some of your own code to support your 
transformation logic.
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Data discovery and sandboxes
Data discovery is becoming an increasingly important activity for organizations 
that rely on their data to be a differentiator. Today, that describes most busi-
nesses, as the ability to see trends and extract meaning from available data 
sets applies to almost any industry. What this requires is two critical compo-
nents: analysts with the creativity to think of novel ways of analyzing data sets 
to ask new questions (often these kinds of analysts are called data scientists); 
and to provide these analysts with access to as much data as possible.

Consider the traditional approach to analytics in today’s IT landscape: The 
business user community now typically determines the business questions 
to ask — they submit a request, and the IT team builds a system that answers 
specific questions. From a technical perspective, because this work has 
traditionally been done in a relational database, it has been the IT team’s 
responsibility to build schemas, remove data duplication, and so on. They’re 
investing a lot of time into making this data queryable and to quickly answering 
preplanned questions that the business unit wants answered. This is why 
relational databases are typically considered schema-on-write because you 
have to do a lot of work in order to write to the database. (In many cases, the 
amount of work is worth the investment; however, in a world of big data, the 
value and quality of many newer types of data you work with is unknown.)

This relational database approach is well suited to many common business 
processes, such as monitoring sales by geography, product, or channel; 
extracting insight from customer surveys, cost and profitability analyses, and 
more — basically, the questions are asked time and time again. Data is typically 
highly structured and is most likely highly trusted in this environment (see the 
paragraph on trusted data in the earlier section describing the landing zone for 
more on the concept of trust) in this environment; we refer to this activity as 
guided analytics (as shown in Figure 11-5 and as you may have noticed in the 
use cases described earlier in this chapter).

 

Figure 11-5: 
Using 

Hadoop 
to add 

Discovery 
and 

Sandbox 
capa-

bilities to a 
modern-day 

analytics 
ecosystem.
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As an analogy, it’s as though your 8-year-old child is taking a break for recess 
at school. For the most part, she can do whatever she wants within the 
school’s grounds — as long as she remains within the fenced perimeter; how-
ever, she can’t jump the fence to discover what’s on the outside. Specifically, 
your child can explore a known, safeguarded (within the schema) area and 
analyze whatever can be found within that area.

Now imagine that your analytics environment has a discovery zone, as shown 
in Figure 11-5. In this scenario, IT delivers data (it’s likely not to be fully trusted, 
and it’s likely “dirty”) on a flexible discovery platform for business users to ask 
virtually any question they want. In our analogy, your child is allowed to climb 
the schoolyard fence (this area is schema-less), venture into the forest, and 
return with whatever items she discovers. (Of course, in the IT world, you 
don’t have to worry about business users getting lost or getting poison ivy.)

If you think about it, data discovery mirrors in some respects the evolution 
of gold mining. During the gold rush years of old, gold strikes would spark 
resource investment because someone discovered gold — it was visible to 
the naked eye, it had clear value, and it therefore warranted the investment. 
Fifty years ago, no one could afford to mine low-grade ore for gold because 
cost-effective or capable technology didn’t exist (equipment to move and 
handle vast amounts of ore wasn’t available) and rich-grade ore was still 
available (compared to today, gold was relatively easier to find). Quite simply, 
it wasn’t cost effective (or even possible) to work through the noise (low-grade 
ore) to find the signals (the gold). With Hadoop, IT shops now have the 
capital equipment to process millions of tons of ore (data with a low value 
per byte) to find gold that’s nearly invisible to the naked eye (data with high 
value per byte). And that’s exactly what discovery is all about. It’s about 
having a low-cost, flexible repository where next-to-zero investment is made 
to enrich the data until a discovery is made. After a discovery is made, it 
might make sense to ask for more resources (to mine the gold discovery) and 
formalize it into an analytics process that can be deployed in a data warehouse 
or specialized data mart.

When insights are made in the discovery zone, that’s likely a good time to 
engage the IT department and formalize a process, or have those folks lend 
assistance to more in-depth discovery. In fact, this new pattern could even 
move into the area of guided analytics. The point is that IT provisioned the 
discovery zone for business users to ask and invent questions they haven’t 
thought about before. Because that zone resides in Hadoop, it’s agile and 
allows for users to venture into the wild blue yonder.

Notice that Figure 11-5 has a sandbox zone. In some reference architectures, 
this zone is combined with the discovery zone. We like to keep these zones 
separate because we see this area being used by application developers and 
IT shops to do their own research, test applications, and, perhaps,  formalize 
conclusions and findings in the Discovery Zone when IT assistance is required 
after a potential discovery is made.
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We’d be remiss not to note that our reference architecture is flexible, and 
can easily be tweaked. Nothing is cast in stone: you can take what you need, 
leave what you don’t, and add your own nuances. For instance, some organi-
zations may choose to co-locate all zones into a single Hadoop cluster, some 
may choose to leverage a single cluster designed for multiple purposes; and 
others may physically separate them. None of this affects the use cases that 
we’ve built into the final reference architecture shown in Figure 11-5.

Looking to the future
The relational database, as we know it, isn’t 
going away any time soon. Pundits will always 
claim, “RDBMS will go the way of the dino-
saur,” but we think (at least for now) that IT 
needs both systems. More importantly, IT needs 
both systems to work together and comple-
ment each other. Suppose that you need to 
derive client attributes from social media feeds. 
Assume that your company underwrites a life 
insurance policy to an individual with a family. 
Your processes likely run the gamut of medi-
cal tests and smoker / nonsmoker classifica-
tions, but your actuaries might be better able 
to assess risk and costs if they know that this 

particular client participates in extreme sports 
such as hang gliding. If you could extract this 
information from social media data that you’ve 
stored in a Hadoop landing zone, you could ana-
lyze this information and create a risk multiplier 
based on social activities that your client openly 
shares with the world via Facebook and Twitter, 
for example. This information could be updated 
in your system of record, where the actual 
policy costs are itemized and maintained. This 
example explains systems of engagement 
meeting systems of record, which is a key tenet 
to a next-generation analytics ecosystem.
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Chapter 12

Extremely Big Tables: Storing  
Data in HBase

In This Chapter
▶ Introducing HBase

▶ Storing data in HBase

▶ Looking at the nuts and bolts of HBase

▶ Taking HBase for a spin

▶ Interfacing with HBase

▶ Comparing HBase to relational databases

▶ Going with a real HBase deployment

D 
o you remember your first surfing experience on the World Wide Web? 
You just knew that it was an incredible innovation for the IT industry. 

Having this vast ocean of knowledge at your fingertips was transformational. 
Times change, though, and now the Internet is truly just another part of 
everyday life that many people take for granted. You open your favorite 
browser and visit a search engine, and — in a matter of seconds — you’re 
learning something new.

In this chapter, we ask you to take a step back and ponder the immensity of 
the web and, more specifically, how exactly an entity such as Google stores 
all those references and web pages for your use? If the picture in your mind 
includes the concept of a database, you’re right, but what kind of data-
base? Every database administrator has thought about limits at one time or 
another. Storing gigabytes (or even terabytes) of data using your database 
of choice is common, but you may be faced with petabytes of data as Google 
was when it sought to index the web. The company’s strategy was to use 
BigTable — Google researchers even published an important paper outlining 
their vision of BigTable in 2006.

You may wonder what all this has to do with the history of HBase. Well, 
HBase is an implementation of Google’s BigTable distributed data stor-
age system (DDSS, for short). After Google’s release of the BigTable paper, 
Powerset, a company focused on building a natural language processing 
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(NLP) search engine for the Internet, became interested in creating its own 
implementation of BigTable. So when the University of Michigan’s Mike 
Cafarella made his first code drop of HBase to the Apache Open Source com-
munity in early 2007, Powerset engineers decided to carry the work forward. 
By 2008 HBase had become a sub-project of Hadoop and in 2010 HBase 
became an Apache top-level project. HBase, which has an affinity to Hadoop, 
is referred to as “the Hadoop database” on its Apache web page. (Don’t 
believe us? Check out the Welcome Apache HBase page at http://hbase.
apache.org.)

After you know a bit of the history of HBase, you’re on better footing to start 
understanding what HBase actually does. In subsequent sections of this chap-
ter, you can see how HBase works and why it’s vital in the age of big data.

Say Hello to HBase
HBase is a Java implementation of Google’s BigTable. Google defines BigTable 
as a “sparse, distributed, persistent multidimensional sorted map.” We’re 
sure that you’ll agree that it’s quite a concise definition, but that you’ll also 
agree that it’s a bit on the complex side. To break down BigTable’s complexity 
a bit, we discuss each attribute in this section.

Sparse
As you might have guessed, the BigTable distributed data storage system was 
designed to meet the demands of big data. Now, big data applications store lots 
of data but big data content is also often variable. Imagine a traditional table in a 
company database storing customer contact information, as shown in Table 12-1.

Table 12-1 Traditional Customer Contact Information Table
Customer 
ID

Last 
Name

First 
Name

Middle 
Name

E-mail 
Address

Street 
Address

00001 Smith John Timothy John.
Smith@
xyz.com

1 Hadoop 
Lane, NY 
11111

00002 Doe Jane NULL NULL 7 HBase 
Ave, CA 
22222

A company or individual may require a complete data record for each of its 
customers or constituents. A good example is your doctor, who needs all 
your contact information in order to provide you with proper care. Other 
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companies or individuals may require only partial contact information or 
may need to learn that information over time. For example, a customer 
service company may process phone calls or e-mail messages for service 
requests. Clients may or may not choose to give service companies all their 
contact information. However, with each interaction over time, companies 
may learn more about their clients that will enable them to provide better 
service — by issuing proactive service alerts, for example.

 In this context, sparse means that fields in rows can be empty or NULL but that 
doesn’t bring HBase to a screeching halt. HBase can handle the fact that we 
don’t (yet) know Jane Doe’s middle name and e-mail address, for example.

Here’s another example: a database for storing satellite images. It turns out 
that Google uses BigTable technology to store satellite imagery of the earth. 
In almost every case, whenever imagery is stored, metadata is also stored 
with it. The metadata may include the street address of the image or only the 
latitude and longitude if the image is captured from the wilderness. The meta-
data is variable in content so some fields will be NULL — and that’s OK.

In both examples, the data sets that are collected can be extremely 
large — especially in the second example. Imagery databases are almost 
always measured in terabytes or sometimes in petabytes. We’ve already men-
tioned that HBase is designed for storing big data, but it’s also designed for 
storing sparse data records at no cost. This concern is crucial when you’re 
using big data applications! Storing a few NULL records over a million rows 
is wasteful, but try to imagine the waste over a quadrillion rows! Thankfully, 
this was a key consideration for Google designers and the HBase community. 
Sparse data is supported with no waste of costly storage space.

And it doesn’t stop there. Consider the power of a schema-less data store. 
Table 12-1 shows you a classic customer contact table. When companies 
design these tables, they know up front what they want to store. In other 
words the schema is fixed; it’s defined even before the first byte of informa-
tion is stored in the table. Now what if, over time, a new field is needed for 
a customer? How about a Twitter handle or a new mobile phone number? 
You’re seemingly stuck with a schema that no longer works for you. Well, 
HBase solves this challenge as well — you can not only skip fields at no cost 
when you don’t have the data, but also dynamically add fields (or columns 
in the HBase vernacular — more on this later) over time without having to 
redesign the schema or disrupt operations. So you can think of HBase as a 
schema-less data store; that is, it’s fluid — you can add to, subtract from or 
modify the schema as you go along.

It’s distributed and persistent
BigTable is a distributed and persistent data store. Persistent simply 
means that the data you store in BigTable (and HBase, for that matter) 
will persist or remain after your program or session ends. That’s pretty 
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straightforward — persistent means that it persists — but you should spend 
a little more time thinking about how the data is persisted. In its BigTable 
paper, Google described the distributed file system known as Google File 
System or GFS. It turns out that, just as HBase is an open source implementa-
tion of BigTable, HDFS is an open source implementation of GFS. By default, 
HBase leverages HDFS to persist its data to disk storage. (For more on the 
mechanics of HDFS, see Chapter 3.) Though other distributed data stores can 
be used with HBase, the vast majority of HBase installations leverage HDFS. 
This makes perfect sense given that HBase is the “Hadoop Database” — hey, 
it’s built into the name, for goodness sake.

 HDFS is a key enabling technology not only for Hadoop but also for HBase. By 
storing data in HDFS, HBase offers reliability, availability, seamless scalability, 
high performance and much more — all on cost effective distributed servers!

It has a multidimensional sorted map
Starting from the basics, a map (also known as an associative array) is an 
abstract collection of key-value pairs, where the key is unique. This definition is 
crucial to your understanding of HBase because the HBase data model is often 
described in different ways — often incompletely as a column-oriented store. 
HBase is, at bottom, a key-value data store where each key is unique — meaning  
it appears at most once in the HBase data store. Additionally, the map is 
sorted and multidimensional. The keys are stored in HBase and sorted in byte-
lexicographical order. Each value can have multiple versions, which makes the 
data model multidimensional. By default, data versions are implemented with 
a timestamp.

Understanding the HBase Data Model
HBase data stores consist of one or more tables, which are indexed by row 
keys. Data is stored in rows with columns, and rows can have multiple ver-
sions. By default, data versioning for rows is implemented with time stamps. 
Columns are grouped into column families, which must be defined up front 
during table creation. Column families are stored together on disk, which 
is why HBase is referred to as a column-oriented data store. To show you a 
practical example, we’ve altered Table 12-1 to make it conform to an HBase 
data model — behold the logical view of information in Table 12-2.

Because the data model is critical to understanding HBase, we discuss 
Table 12-2 in detail in the following five sections.
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Table 12-2 Logical View of Customer Contact Information in HBase
Row Key Column Family: {Column Qualifier:Version:Value}
00001 CustomerName: {‘FN’: 1383859182496:‘John’,

                                ‘LN’: 1383859182858:‘Smith’, 

                                ‘MN’: 1383859183001:’Timothy’,

                                ‘MN’: 1383859182915:’T’}

ContactInfo: {‘EA’: 1383859183030:‘John.Smith@xyz.com’,

                         ’SA’: 1383859183073:’1 Hadoop Lane, NY 11111’}

00002 CustomerName: {‘FN’: 1383859183103:‘Jane’,

                                ‘LN’: 1383859183163:‘Doe’,

ContactInfo: {

                         ’SA’: 1383859185577:’7 HBase Ave, CA 22222’}

Row keys
For the sake of illustration, Table 12-2 has two simple row keys: 00001 and 
00002. Row keys are implemented as byte arrays, and are sorted in byte- 
lexicographical order, which simply means that the row keys are sorted, byte 
by byte, from left to right. If you think in terms of numeric values when designing 
row keys, then sorting is simple. Given two keys, if the byte at Index 1  in Key 
1 is less than the byte at Index 1 in Key 2, Row Key 1 will always be stored 
before Row Key 2, no matter what’s next in the sequence of bytes. However, 
it’s common to use printable (ASCII) characters rather than numeric values 
for row keys in HBase and if you do, you need to understand that the Java 
language represents characters using the Unicode Standard. The following 
example illustrates this design consideration for Basic Latin (ASCII).

"RowA" precedes "RowA"
"Row-1" precedes "Row11"
"Row1" precedes "RowA"

 If you’re not sure of the order for ASCII characters, you can view an ordered 
table at www.unicode.org/.

You may wonder why you would bother with this fine detail with respect to 
row keys. The reason for this special attention is that proper row key design 
is crucial to achieving good performance in HBase — not doing so means you 
won’t realize the full value of your HBase cluster. Our detailed discussion of 
Row key design at the end of this chapter can help you grasp the importance 
of the sorting scheme. For now, keep in mind that sorted row keys can help 
you access your data faster.
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Column Families
Table 12-2 shows two column families: CustomerName and ContactInfo. When 
creating a table in HBase, the developer or administrator is required to define 
one or more column families using printable characters. (See the earlier sec-
tion “Row keys” for more on printable characters.) Generally, column families 
remain fixed throughout the lifetime of an HBase table but new column fami-
lies can be added by using administrative commands. At the time this book 
was written, the official recommendation for the number of column families 
per table was three or less. (We have that number on good authority — see 
the Apache HBase online documentation at http://hbase.apache.org/
book/number.of.cfs.html.) In addition, you should store data with simi-
lar access patterns in the same column family — you wouldn’t want a cus-
tomer’s middle name stored in a separate column family from the first or last 
name because you generally access all name data at the same time.

 Column families are grouped together on disk, so grouping data with similar 
access patterns reduces overall disk access and increases performance.

Column Qualifiers
Column qualifiers are specific names assigned to your data values in order to 
make sure you’re able to accurately identify them. Unlike column families, 
column qualifiers can be virtually unlimited in content, length and number. If you 
omit the column qualifier, the HBase system will assign one for you. Printable 
characters are not required, so any type and number of bytes can be used to 
create a column qualifier. Because the number of column qualifiers is variable, 
new data can be added to column families on the fly, making HBase flexible and 
highly scalable. But there’s a cost to consider: HBase stores the column qualifier 
with your value (it’s actually part of the key), and since HBase doesn’t limit the 
number of column qualifiers you can have, creating long column qualifiers can be 
quite costly in terms of storage. That’s why we decided to abbreviate the column 
qualifiers in Table 12-2 (for example, “LN:” was used instead of “LastName”). 
Notice in our logical representation of the customer contact information in HBase 
that the system is taking advantage of sparse data support in the case of Jane 
Doe (again, see Table 12-2). Assuming this table represents customer contact 
information from a service company, the company isn’t too worried about Jane’s 
middle name (abbreviated ‘MN’) and e-mail addresses (abbreviated ‘EA’) now, 
but hopes to (progressively) gather that information over time.

Versions
Looking back at Table 12-2, you can see a number between the column quali-
fier and value (‘FN’: 1383859182496:‘John,’ for example). That number is the 
version number for each value in the table. Values stored in HBase are time 
stamped by default, which means you have a way to identify different versions 
of your data right out of the box. It’s possible to create a custom versioning 
scheme, but users typically go with a time stamp created using the current 
Unix time. (The Unix time or Unix epoch represents the number of millisec-
onds since midnight January 1, 1970 UTC.) The versioned data is stored in 
decreasing order, so that the most recent value is returned by default unless 
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a query specifies a particular timestamp. You can see in Table 12-2 that our 
fictional service company at first only had an initial for John Smith’s middle 
name but then later on they learned that the “T” stood for “Timothy.” The 
most recent value for the ‘MN’ column is stored first in the table.

 You can set a limit on the amount of time that data can stay in HBase with a 
variable called time to live (TTL). You can also set a variable which controls the 
number of versions per value. This can be done per column family. (You’ll be 
learning more about these variables and how to set them later in the chapter.)

Key Value Pairs
If you’re reading this chapter from start to finish, you should be developing a 
feel for the logical HBase data model. It’s simple yet elegant, and it provides 
a natural data storage mechanism for all kinds of data — especially unstruc-
tured big data sets. A little later in this chapter, we cap our discussion of the 
data model by walking you through a hands-on example to create your first 
HBase table. First, though, we spend a little time explaining how all these 
parts of the data model converge into a key-value pair.

First off, in a world where you can think of the row key as the primary key 
for data stored in HBase, how do you end up leveraging the rest of the 
data model components? Well, it all depends on how much data you want 
returned in queries and how long you’re willing to wait. Specifying only the 
row key can potentially return a ton of data, because an individual row can 
have millions of columns. Also, with only the row key to work from, HBase 
can return every column qualifier, version, and value related to the row key. 
What if you want only a particular column or version of your data? From the 
example shown in Table 12-2, can you see what happens if you want only the 
last name of a particular customer? The solution is to build a more complex 
key to specify exactly what you need. A key-value pair can look like this:

RowKey:(Column Family:Column Qualifier:Version) => Value

After you specify the key, the rest is optional. The more specific you make 
the query, however (moving from left to right), the more granular the results. 
Your performance will worsen, because the system has to spend more time 
locating the exact value or values you need, but less data is returned when 
the query is finished. So keys are more complex than you might imagine from 
studying Table 12-2. For example, if you want the most recent middle name 
(or the only middle name so far) of the customer in row ‘00001’, the resulting 
key-value pair would look like this:

'00001:CustomerName:MN' => 'Timothy'

Remember that versions are implemented using time stamps by default and are 
sorted in decreasing order so that you automatically get the most recent value 
if you don’t specify a version. If you want a prior middle initial for your cus-
tomer (refer to Table 12-2), your resulting key-value pair would look like this:

'00001:CustomerName:MN:1383859182915' => 'T'
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We hope that our various descriptions of HBase are starting to take shape in 
your mind. Specifically HBase is both a column family oriented data store and 
a key-value-pair data store. Referring to HBase as simply a “column oriented” 
data store leaves a lot to the imagination.

 In case you were curious, there are no data types in HBase — values in HBase 
are just one or more bytes. Again, simple but powerful because you can store 
anything!

Understanding the HBase Architecture
The reason that folks such as chief financial officers are excited by the 
thought of using Hadoop is that it lets you store massive amounts of data 
across a cluster of low cost commodity servers — that’s music to the ears of 
financially minded people. Well, HBase offers the same economic bang for the 
buck — it’s a distributed data store, which leverages a network attached clus-
ter of low-cost commodity servers to store and persist data.

 HBase persists data by storing it in HDFS, but alternate storage arrangements 
are possible. For example, HBase can be deployed in standalone mode in the 
cloud (typically for educational purposes) or on expensive servers if the use 
case warrants it.

In most cases, though, HBase implementations look pretty much like the one 
shown in Figure 12-1.

 

Figure 12-1: 
The HBase 

architecture.
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As with the data model, understanding the components of the architecture is 
critical for successful HBase cluster deployment. In the next few sections we 
discuss the key components.

RegionServers
RegionServers are the software processes (often called daemons) you acti-
vate to store and retrieve data in HBase. In production environments, each 
RegionServer is deployed on its own dedicated compute node. When you 
start using HBase, you create a table and then begin storing and retriev-
ing your data. However, at some point — and perhaps quite quickly in big 
data use cases — the table grows beyond a configurable limit. At this point, 
the HBase system automatically splits the table and distributes the load to 
another RegionServer.

 In this process, often referred to as auto-sharding, HBase automatically scales 
as you add data to the system — a huge benefit compared to most database 
management systems, which require manual intervention to scale the overall 
system beyond a single server. With HBase, as long as you have in the rack 
another spare server that’s configured, scaling is automatic!

Why set a limit on tables and then split them? After all, HDFS is the underly-
ing storage mechanism, so all available disks in the HDFS cluster are available 
for storing your tables. (Not counting the replication factor, of course; see 
Chapter 3 for that wrinkle.) If you have an entire cluster at your disposal, why 
limit yourself to one RegionServer to manage your tables?

Simple. You may have any number of tables large or small and you’ll want 
HBase to leverage all available RegionServers when managing your data. You 
want to take full advantage of the cluster’s compute performance. Furthermore, 
with many clients accessing your HBase system, you’ll want to use many 
RegionServers to meet the demand. HBase addresses all of these concerns for 
you and scales automatically in terms of storage capacity and compute power.

Regions
RegionServers are one thing, but you also have to take a look at how indi-
vidual regions work. In HBase, a table is both spread across a number of 
RegionServers as well as being made up of individual regions. As tables are 
split, the splits become regions. Regions store a range of key-value pairs, and 
each RegionServer manages a configurable number of regions. But what do 
the individual regions look like? HBase is a column-family-oriented data store, 
so how do the individual regions store key-value pairs based on the column 
families they belong to? Figure 12-2 begins to answer these questions and 
helps you digest more vital information about the architecture of HBase.
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Figure 12-2: 
HBase 

regions in 
detail.

 

 HBase is written in Java — like the vast majority of Hadoop technologies. Java 
is an object oriented programming language and an elegant technology for dis-
tributed computing. So, as you continue to find out more about HBase, remem-
ber that all of the components in the architecture are ultimately Java objects.

First off, Figure 12-2 gives a pretty good idea of what region objects actu-
ally look like, generally speaking. Figure 12-2 also makes it clear that regions 
separate data into column families and store the data in the HDFS using HFile 
objects. When clients put key-value pairs into the system, the keys are pro-
cessed so that data is stored based on the column family the pair belongs 
to. As shown in the figure, each column family store object has a read cache 
called the BlockCache and a write cache called the MemStore. The BlockCache 
helps with random read performance. Data is read in blocks from the HDFS 
and stored in the BlockCache. Subsequent reads for the data — or data stored 
in close proximity — will be read from RAM instead of disk, improving overall 
performance. The Write Ahead Log (WAL, for short) ensures that your HBase 
writes are reliable. There is one WAL per RegionServer.

 Always heed the Iron Law of Distributed Computing: A failure isn’t the 
exception — it’s the norm, especially when clustering hundreds or even 
thousands of servers. Google followed the Iron Law in designing BigTable and 
HBase followed suit. If you’re reading the entire chapter, you’ll find out more 
about how node failures are handled in HBase and how the WAL is a key part 
of this overall strategy. When you write or modify data in HBase, the data 
is first persisted to the WAL, which is stored in the HDFS, and then the data 
is written to the MemStore cache. At configurable intervals, key-value pairs 
stored in the MemStore are written to HFiles in the HDFS and afterwards WAL 
entries are erased. If a failure occurs after the initial WAL write but before the 
final MemStore write to disk, the WAL can be replayed to avoid any data loss.
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Figure 12-2 shows three HFile objects in one column family and two in the 
other. The design of HBase is to flush column family data stored in the 
MemStore to one HFile per flush. Then at configurable intervals HFiles are 
combined into larger HFiles. This strategy queues up the critical compaction 
operation in HBase, as described in the next section

Compactions major and minor
Compaction, the process by which HBase cleans up after itself, comes in two fla-
vors: major and minor. Major compactions can be a big deal so we’ll discuss man-
aging them in detail in a bit, but first you need to understand minor compactions.

Minor compactions combine a configurable number of smaller HFiles into one 
larger HFile. You can tune the number of HFiles to compact and the frequency 
of a minor compaction. Minor compactions are important because without 
them, reading a particular row can require many disk reads and cause slow 
overall performance. Figure 12-3, which illustrates how this concept works, 
can help you visualize how Table 12-2 can be persisted on the HDFS.

Figure 12-3: 
HFiles 

and minor 
compaction.

Looking at Figure 12-3, notice how the CustomerName column family was 
written to the HDFS with two MemStore flushes and how the data in the 
ContactInfo column family was persisted to disk with only one MemStore 
flush. This example is hypothetical, but it’s a likely scenario depending on 
the timing of the writes. Picture a service company that’s gaining more and 
more customer contact information over time. The service company may 
know its client’s first and last name but not learn about its middle name until 
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hours or weeks later in subsequent service requests. This scenario would 
result in parts of Row 00001 being persisted to the HDFS in different HFiles. 
Until the HBase system performs a minor compaction, reading from Row 
00001 would require three disk reads to retrieve the relevant HFile content! 
Minor compactions seek to minimize system overhead while keeping the 
number of HFiles under control. HBase designers took special care to give 
the HBase administrator as much tuning control as possible to make any 
system impact “minor.”

As its name implies, a major compaction is different from the perspective of 
a system impact. However, the compaction is quite important to the overall 
functionality of the HBase system. A major compaction seeks to combine 
all HFiles into one large HFile. In addition, a major compaction does the 
cleanup work after a user deletes a record. When a user issues a Delete call, 
the HBase system places a marker in the key-value pair so that it can be per-
manently removed during the next major compaction. Additionally, because 
major compactions combine all HFiles into one large HFile, the time is right 
for the system to review the versions of the data and compare them against 
the time to live (TTL) property. Values older than the TTL are purged.

 Time to live refers to the variable in HBase you can set in order to define how 
long data with multiple versions will remain in HBase. For more information 
on versions in HBase see the “Understanding the HBase Data Model” section, 
earlier in this chapter.

For a complete list of HBase tuning parameters see http://hbase.apache.
org/book/config.files.html.

You may have guessed that a major compaction significantly affects the 
system response time. Users who are trying to add, retrieve or manipulate 
data in the system during a major compaction, they may see poor system 
response time. In addition, the HBase cluster may have to split regions at the 
same time that a major compaction is taking place and balance the regions 
across all RegionServers. This scenario would result in a significant amount of 
network traffic between RegionServers. For these reasons, your HBase admin-
istrator needs to have a major compaction strategy for your deployment. We 
discuss a solution to the major compaction challenge at the end of this chap-
ter, but for now we continue your tour of the basic HBase architecture.

MasterServer
Starting our discussion of architecture by describing RegionServers instead 
of the MasterServer may surprise you. The term RegionServer would seem 
to imply that it depends on (and is secondary to) the MasterServer and 
that we should therefore describe the MasterServer first. As the old song 
goes, though, “it ain’t necessarily so.” The RegionServers do depend on 
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the MasterServer for certain functions, but not in the sense of a master-
slave relationship for data storage and retrieval. In the upper-left corner of 
Figure 12-1, notice that the clients do not point to the MasterServer, but point 
instead to the Zookeeper cluster and RegionServers.

The MasterServer isn’t in the path for data storage and access — that’s the job 
of the Zookeeper cluster and the RegionServers. We’ll cover Zookeeper in the 
following section and describe client interaction later in this chapter; for now, 
take a look at the primary functions of the MasterServer, which is also a soft-
ware process (or daemon) like the RegionServers. The MasterServer is there to

 ✓ Monitor the RegionServers in the HBase cluster: The MasterServer 
maintains a list of active RegionServers in the HBase cluster.

 ✓ Handle metadata operations: When a table is created or its attributes are 
altered (compression setting, cache settings, versioning, and more) the 
MasterServer handles the operation and stores the required metadata.

 ✓ Assign regions: The MasterServer assigns regions to RegionServers.

 ✓ Manage RegionServer failover: As with any distributed cluster, you 
hope that node failures don’t occur and you plan for them anyway. When 
region servers fail, Zookeeper notifies the MasterServer so that failover 
and restore operations can be initiated. We discuss this topic in greater 
detail in the later section “Zookeeper and HBase reliability.”

 ✓ Oversee load balancing of regions across all available RegionServers: 
You may recall that tables are comprised of regions which are evenly 
distributed across all available RegionServers. This is the work of the 
balancer thread (or chore, if you prefer) which the MasterServer periodi-
cally activates.

 ✓ Manage (and clean) catalog tables: Two key catalog tables — labeled 
ROOT- and .META — are used by the HBase system to help a client find 
a particular key value pair in the system.

	 •	The	-ROOT- table keeps track of the .META table’s location in the 
cluster.

	 •	The	.META table keeps track of where each region is located in the 
cluster.

  The MasterServer provides management of these critical tables on 
behalf of the overall HBase system.

 ✓ Clear the WAL: The MasterServer interacts with the WAL during 
RegionServer failover and periodically cleans the logs.

 ✓ Provide a coprocessor framework for observing master operations: 
Here’s another new term for your growing HBase glossary. Coprocessors 
run in the context of the MasterServer or RegionServers. For example, 
a MasterServer observer coprocessor allows you to change or extend 
the normal functionality of the server when operations such as table 
creation or table deletion take place. Often coprocessors are used to 
manage table indexes for advanced HBase applications.
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 A coprocessor, which runs in the context of the MasterServer and or 
RegionServer (or both) can be used to enhance security, create secondary 
indexes, and more. You can find more information about coprocessors at this 
HBase community blog: https://blogs.apache.org/hbase/entry/
coprocessor_introduction.

 As with all open source Hadoop technologies, MasterServer operations will 
likely change over time as the community of engineers work on innovations 
designed to enhance HBase. As of this writing, however, you now have a fairly 
thorough list that serves as a high-level reference for the MasterServer

Finally, we have one more important point to make about the HBase 
MasterServer. There can and should be a backup MasterServer in any HBase 
cluster. (Refer to Figure 12-1.) There needs to be only one active MasterServer 
at any given time, so the backup MasterServer is for failover purposes. You 
may recall that the MasterServer isn’t in the data access path for HBase cli-
ents. However, you may also recall (from the list of functions in this section) 
that the MasterServer is responsible for actions such as RegionServer failover 
and load balancing. The good news is that clients can continue to query the 
HBase cluster if the master goes down but for normal cluster operations, the 
master should not remain down for any length of time.

Zookeeper and HBase reliability
Zookeeper is a distributed cluster of servers that collectively provides reli-
able coordination and synchronization services for clustered applications. 
Admittedly, the name “Zookeeper” may seem at first to be an odd choice, but 
when you understand what it does for an HBase cluster, you can see the logic 
behind it. When you’re building and debugging distributed applications “it’s a 
zoo out there,” so you should put Zookeeper on your team. (If you’re like us, 
you love it when a technology is appropriately named.)

HBase clusters can be huge and coordinating the operations of the 
MasterServers, RegionServers, and clients can be a daunting task, but that’s 
where Zookeeper enters the picture. As in HBase, Zookeeper clusters typi-
cally run on low-cost commodity x86 servers. Each individual x86 server runs 
a single Zookeeper software process (hereafter referred to as a Zookeeper 
server), with one Zookeeper server elected by the ensemble as the leader 
and the rest of the servers are followers. Zookeeper ensembles are governed 
by the principle of a majority quorum. Configurations with one Zookeeper 
server are supported for test and development purposes, but if you want a 
reliable cluster that can tolerate server failure, you need to deploy at least 
three Zookeeper servers to achieve a majority quorum.
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 So, how many Zookeeper servers will you need? Five is the minimum recom-
mended for production use, but you really don’t want to go with the bare mini-
mum. When you decide to plan your Zookeeper ensemble, follow this simple 
formula: 2F + 1 = N where F is the number of failures you can accept in your 
Zookeeper cluster and N is the total number of Zookeeper servers you must 
deploy. Five is recommended because one server can be shut down for main-
tenance but the Zookeeper cluster can still tolerate one server failure.

Zookeeper provides coordination and synchronization with what it calls 
znodes, which are presented as a directory tree and resemble the file path 
names you’d see in a Unix file system. Znodes do store data but not much 
to speak of — currently less than 1 MB by default. The idea here is that 
Zookeeper stores znodes in memory and that these memory-based znodes 
provide fast client access for coordination, status, and other vital functions 
required by distributed applications like HBase. Zookeeper replicates znodes 
across the ensemble so if servers fail, the znode data is still available as long 
as a majority quorum of servers is still up and running.

Another primary Zookeeper concept concerns how znode reads (versus 
writes) are handled. Any Zookeeper server can handle reads from a client, 
including the leader, but only the leader issues atomic znode writes — writes 
that either completely succeed or completely fail. When a znode write request 
arrives at the leader node, the leader broadcasts the write request to the fol-
lower nodes and then waits for a majority of followers to acknowledge znode 
write complete. After the acknowledgement, the leader issues the znode write 
itself and then reports the successful completion status to the client.

 Znodes provide some very powerful guarantees. When a Zookeeper client 
(such as an HBase RegionServer) writes or reads a znode, the operation is 
atomic. It either completely succeeds or completely fails — there are no par-
tial reads or writes. No other competing client can cause the read or write 
operation to fail. In addition, a znode has an access control lists (ACL) associ-
ated with it for security, and it supports versions, timestamps and notification 
to clients when it changes.

Zookeeper replicates znodes across the ensemble so if servers fail, the znode 
data is still available as long as a majority quorum of servers is still up and run-
ning. This means that writes to any znode from any Zookeeper server must be 
propagated across the ensemble. The Zookeeper leader manages this operation.

 This znode write approach can cause followers to fall behind the leader for 
short periods. Zookeeper solves this potential problem by providing a syn-
chronization command. Clients that cannot tolerate this temporary lack of 
synchronization within the Zookeeper cluster may decide to issue a sync 
command before reading znodes.
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In a znode world, you’re going to come across what looks like the Unix-style 
pathnames. (Typically they begin with /hbase.) These pathnames, which 
are a subset of the znodes in the Zookeeper system created by HBase, are 
described in this list:

 ✓ master: Holds the name of the primary MasterServer,

 ✓ hbaseid: Holds the cluster’s ID,

 ✓ root-region-server: Points to the RegionServer holding the 
-ROOT- table),

 ✓ Something called /hbase/rs.

So now you may wonder what’s up with this rather vaguely defined /hbase/
rs. In the previous section, we describe the various operations of the 
MasterServer and mention that Zookeeper notifies the MasterServer when-
ever a RegionServer fails. Now we help you take a closer look at how the 
process actually works in HBase — and you’d be right to assume that it has 
something to do with /hbase/rs. Zookeeper uses its watches mechanism 
to notify clients whenever a znode is created, accessed, or changed in some 
way. The MasterServers are Zookeeper clients as well as the RegionServers 
and can leverage these znode watches. When a RegionServer comes online in 
the HBase system, it connects to the Zookeeper ensemble and creates its own 
unique ephemeral znode under the znode pathname /hbase/rs. At the same 
time, the Zookeeper system establishes a session with the RegionServer 
and monitors the session for events. If the RegionServer breaks the ses-
sion for whatever reason (by failing to send a heartbeat ping, for example), 
the ephemeral znode that it created is deleted. The action of deleting the 
RegionServer’s child node under /hbase/rs will cause the MasterServer 
to be notified so that it can initiate RegionServer failover. This notification 
is accomplished by way of a watch that the MasterServer sets up on the  
/hbase/rs znode.

 HBase provides a high degree of reliability. When configured with the proper 
redundancy (a backup MasterServer, proper Zookeeper configuration, and 
sufficient RegionServers), HBase is sometimes considered fault tolerant, mean-
ing that HBase can tolerate any failure and still function properly. This is not 
exactly true, of course, since (for example) a cascading failure could cause 
the cluster to fail if the Zookeeper ensemble and or the MasterServers all 
failed at once. When thinking about HBase and fault tolerance, remember that 
HBase is a distributed system and that failure modes are quite different in 
distributed systems versus the traditional high-end scalable database server 
in a high availability (HA) configuration. To understand HBase fault toler-
ance and availability in more detail you need to consider the CAP theorem 
which we introduce in Chapter 11. No discussion of HBase and fault toler-
ance would be complete without at least mentioning the CAP theorem. CAP 
stands for “Consistency” (in the data stored), “Availability”(ready for use) and 
“Partition Tolerance” (tolerant of network failures). Remember, HBase pro-
vides “Consistency” and “Partition Tolerance” but is not always “Available.” 
For example, you may have a RegionServer failure and when you do, the 
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availability of your data may be delayed if the failed RegionServer was manag-
ing the key (or keys) you were querying at the time of failure. The good news 
is that the system, if configured properly, will recover (thanks to Zookeeper 
and the MasterServer) and your data will become available again without 
manual intervention. So HBase is consistent and tolerant of network failures 
but not highly available like traditional HA database systems.

Taking HBase for a Test Run
In this section, you find out how to download and deploy HBase in stand-
alone mode. We think you’ll agree that it’s amazingly simple to install HBase 
and start using the technology. Just keep in mind that HBase is typically 
deployed on a cluster of commodity servers, though you can also easily 
deploy HBase in a standalone configuration instead, for learning or demon-
stration purposes.

 For more information on the hardware requirements for HBase, check out 
the section “Deploying and Tuning HBase,” later in this chapter. For Apache’s 
official Quick Start Guide to HBase, check out http://hbase.apache.org/
book/quickstart.html.

Like Apache Hadoop, HBase supports Linux primarily but you can use Windows 
in non-production environments if you first download Cygwin. Cygwin gives 
Microsoft Windows users a Unix shell with all its commands and utilities. So if 
you follow the Quick Start Guide — which we recommend you do — you’ll want 
to download the latest HBase release (HBase 0.94.7 at the time of this writing).

You get to choose where to install HBase. We decided to install it on a nice 
little laptop that’s currently running a 64-bit Linux kernel. You get to choose 
where you want to install your HBase. It turns out, though, that if you want 
things to run in standalone mode, you’ll need to edit a couple of files before 
you can actually start HBase. Look for these files in the $INSTALL DIR/
hbase-0.94.7/conf directory in the HBase release. The first file is the 
hbase-site.xml file shown in Listing 12-1. The changes you’ll want to make 
are bolded to make them stand out:

Listing 12-1: The hbase-site.xml File

<configuration>
  <property>
    <name>hbase.rootdir</name>
     <value>file:///home/biadmin/my-local-hbase/hbase-data</value>
  </property>
  <property>
     <name>hbase.cluster.distributed</name>
     <value>true</value>

(continued)
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  </property>
  <property>
    <name>hbase.zookeeper.property.clientPort</name>
    <value>2222</value>
    <description>Property from ZooKeeper's config zoo.cfg.
      The port at which the clients will connect.
    </description>
  </property>
  <property>
    <name>hbase.zookeeper.property.dataDir</name>
    <value>/home/biadmin/my-local-hbase/zookeeper</value>
  </property>
   <property>
      <name>hbase.zookeeper.quorum</name>
      <value>bivm</value>
   </property>
</configuration>

Using the hbase.rootdir property, you specify a directory in the local file 
system to store the HBase data. In production environments, this property 
would point to the HDFS for the data store. You also set the hbase.cluster.
distributed property to true which causes HBase to start up in a pseudo-
distributed mode. If you would choose not to set this property to true, HBase 
would run all of the necessary processes in a single Java Virtual Machine 
(JVM). However, for the sake of illustration, pseudo-distributed mode will 
cause HBase to start a RegionServer instance, a MasterServer instance, and a 
Zookeeper process. Additionally, you need to specify the hbase.zookeeper.
property.clientPort, the directory where Zookeeper will store its data 
(hbase.zookeeper.property.dataDir) and a list of servers on which 
Zookeeper will run to form a quorum (hbase.zookeeper.quorum). For 
standalone, you specify only the single Zookeeper server bivm.

 Getting started with HBase in standalone mode is very straightforward in part 
because HBase manages Zookeeper for you. You can download a separate 
Zookeeper release and point HBase to it, but for standalone installs, you’ll find 
it much easier to let HBase manage Zookeeper for you.

To crystallize the decision to let HBase manage Zookeeper for you, we show 
you how to set an environment variable in yet another HBase file: the hbase-
env.sh file, to be precise. Listing 12-2 shows what needs to be added:

Listing 12-2: The hbase-env.sh File

# Tell HBase whether it should manage its own instance of Zookeeper or not.
export HBASE_MANAGES_ZK=true

# The java implementation to use. Java 1.6 required.
export JAVA_HOME=/opt/ibm/biginsights/jdk

Listing 12-1 (continued)
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In the listing, we’ve also set the JAVA_HOME environment variable to point to 
the IBM JDK we have on our system. You’ll have to make sure you set JAVA_
HOME to point to your chosen JDK. Finally, you need to specify the name of 
your Linux system in yet another file — the regionservers file. (In a fully 
distributed production environment, the regionservers file would have 
a line by line list of all servers on which HBase can start the RegionServer 
process on.)

With the hbase-site.xml file and the hbase-env.sh file configured, you 
can now start up HBase and test your install. To start HBase, use the start-
hbase.sh script as spelled out in Listing 12-3. (We show you how to test the 
install below.)

Listing 12-3: Starting HBase

$ cd $INSTALL_DIR/hbase-0.94.7/bin
$ ./start-hbase.sh
bivm: starting zookeeper, logging to /home/biadmin/my-local-hbase/hbase-0.94.7/

bin/../logs/hbase-biadmin-zookeeper-bivm.out
starting master, logging to /home/biadmin/my-local-hbase/hbase-0.94.7/bin/../

logs/hbase-biadmin-master-bivm.out
localhost: starting regionserver, logging to /home/biadmin/my-local-hbase/hbase-

0.94.7/bin/../logs/hbase-biadmin-regionserver-bivm.out

Note that the first line has a cd (change directory) command that moves you 
to an environment variable called $INSTALL_DIR. You have to set that vari-
able to your actual install directory for HBase or type out the full path. 

 In Listing 12-1 we set the hbase.cluster.distributed property to true 
which causes HBase to start up in a pseudo-distributed mode. We explained 
that this would cause HBase to start three processes: a RegionServer instance, 
a MasterServer instance, and a Zookeeper process. This is exactly what we see 
in Listing 12-3.

Next we use the JConsole tool, which comes bundled with Java, to perform a 
quick check on what processes are running after the start-hbase.sh script 
finishes. You can start the JConsole tool by typing the following command:

$JAVA_HOME/bin/jconsole

In Figure 12-4, JConsole reveals that the three processes that the start-
hbase.sh script claimed to start are indeed running — the zookeeper, the 
master and the RegionServer processes.

To put HBase through its paces, you interact with all three HBase processes, 
starting with the MasterServer. By default, the MasterServer reports on the 
system status by way of a browser user interface on port number 60010. In the 
example, our server name is bivm so you can confirm that the MasterServer 
is running correctly by entering the following URL in a web browser: http://
bivm:60010/. Doing so brings up the information you see in Figure 12-5.
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To keep the figure simple, we’ve captured only a portion of the MasterServer 
metrics, but you can see the HBase Root Directory we set in the hbase-
site.xml file along with the Zookeeper Quorum port number. The 
RegionServers also report their status and provide critical metrics via a 
browser user interface on port 60030 by default. We tell you how to interact 
with the Zookeeper process shortly but first we want to show you how to 
leverage the RegionServer process and enter some data.

There are a growing number of approaches for clients to access HBase. In the 
next section entitled “Getting things done with HBase” you’ll learn more about 
the various client options for interacting with HBase. In this section, we introduce 
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you to the HBase shell. You can think of the HBase shell as a client program for 
interacting with HBase. To activate the HBase shell, first use the cd command to 
change to the $INSTALL-DIR/bin directory and then type this command:

./hbase shell

You should see output like the following example, depending on which ver-
sion of HBase you’ve managed to download:

HBase Shell; enter 'help<RETURN>' for list of supported commands.
Type "exit<RETURN>" to leave the HBase Shell
Version 0.94.7, r1471806, Wed Apr 24 18:48:26 PDT 2013

Creating a table
And now the real work begins. The HBase shell provides you with a simple 
set of commands for creating, reading, writing or updating, and deleting 
tables. Commands to manage and configure tables are also provided. In 
this section you’ll be learning about the create, put, get, scan and 
describe commands. (These HBase shell commands are implemented by 
a Java class called HTable that you’ll get to try out in the section entitled 
“Working with an HBase Java API client example”.) Start by building the 
Customer Contact Information table, using the information from Table 12-2.

hbase(main):002:0> create 'CustomerContactInfo', 'CustomerName', 'ContactInfo'
0 row(s) in 1.2080 seconds

This command creates two column families —  ‘CustomerName’ and 
‘ContactInfo’ — in a table called ‘CustomerContactInfo’. 

Now enter the records from Table 12-2 into the new table, using Listing 12-4 
as a model:

Listing 12-4: Entering Records

hbase(main):008:0> put 'CustomerContactInfo', '00001', 'CustomerName:FN', 'John'
0 row(s) in 0.2870 seconds

hbase(main):009:0> put 'CustomerContactInfo', '00001', 'CustomerName:LN', 'Smith'
0 row(s) in 0.0170 seconds

hbase(main):010:0> put 'CustomerContactInfo', '00001', 'CustomerName:MN', 'T'
0 row(s) in 0.0070 seconds

hbase(main):011:0> put 'CustomerContactInfo', '00001', 'CustomerName:MN', 'Timothy'
0 row(s) in 0.0050 seconds

(continued)
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hbase(main):012:0> put 'CustomerContactInfo', '00001', 'ContactInfo:EA', 'John.
Smith@xyz.com'

0 row(s) in 0.0170 seconds

hbase(main):013:0> put 'CustomerContactInfo', '00001', 'ContactInfo:SA', '1 
Hadoop Lane, NY 11111'

0 row(s) in 0.0030 seconds

hbase(main):014:0> put 'CustomerContactInfo', '00002', 'CustomerName:FN', 'Jane'
0 row(s) in 0.0290 seconds

hbase(main):015:0> put 'CustomerContactInfo', '00002', 'CustomerName:LN', 'Doe'
0 row(s) in 0.0090 seconds

hbase(main):016:0> put 'CustomerContactInfo', '00002', 'ContactInfo:SA', '7 
HBase Ave, CA 22222'

0 row(s) in 0.0240 seconds

After you enter all the data from Table 12-2, you can retrieve the contents of 
the new table by using the HBase scan command. The result should look like 
Listing 12-5:

Listing 12-5: Scan Results

hbase(main):020:0> scan 'CustomerContactInfo', {VERSIONS => 2}
ROW                                     COLUMN+CELL                                                                                                   
 00001                                  column=ContactInfo:EA,  

timestamp=1383859183030, value=John.Smith@xyz.com                                        
 00001                                  column=ContactInfo:SA, 

timestamp=1383859183073, value=1 Hadoop Lane, NY 11111                                   
 00001                                  column=CustomerName:FN, 

timestamp=1383859182496, value=John                                                     
 00001                                  column=CustomerName:LN, 

timestamp=1383859182858, value=Smith                                                    
 00001                                  column=CustomerName:MN, 

timestamp=1383859183001, value=Timothy                                                  
 00001                                  column=CustomerName:MN, 

timestamp=1383859182915, value=T                                                        
 00002                                  column=ContactInfo:SA, 

timestamp=1383859185577, value=7 HBase Ave, CA 22222                              
 00002                                  column=CustomerName:FN, 

timestamp=1383859183103, value=Jane                                                     
 00002                                  column=CustomerName:LN, 

timestamp=1383859183163, value=Doe                                                      
2 row(s) in 0.0520 seconds

Notice that we specified that HBase should return two versions of our values 
if they exist in the table. This allows us to see the original middle initial of 
John Smith as well as the latest full middle name. 

Now we want to show you how to retrieve individual key-value pairs from our 
Customer Contact Information table instead of retrieving the whole table with 

Listing 12-4 (continued)
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the scan command. This will also further illustrate the versioning in HBase. 
To retrieve data, you’ll need to build a key using the shell’s get command. As 
you saw earlier in the chapter, keys look like this:

RowKey:(Column Family:Column Qualifier:Version)

Now, if you just specify the row key (0001 or 0002, for example) then you get 
all the data associated with a row key — the row keys you’re using are just 
not that granular. However, the more specific you get, the less data you get 
back. Listing 12-6 illustrates this principle in HBase.

Listing 12-6: Using the get Command to Retrieve Entire Rows and  
Individual Values

(1) hbase(main):037:0> get 'CustomerContactInfo', '00001'
COLUMN                                  CELL                                                                                                            
 ContactInfo:EA                         timestamp=1383859183030, value=John.

Smith@xyz.com                                                               
 ContactInfo:SA                         timestamp=1383859183073, value=1 Hadoop 

Lane, NY 11111                                                          
 CustomerName:FN                        timestamp=1383859182496, value=John                                                                             
 CustomerName:LN                        timestamp=1383859182858, value=Smith                                                                            
 CustomerName:MN                        timestamp=1383859183001, value=Timothy                                                                          
5 row(s) in 0.0150 seconds

(2) hbase(main):038:0> get 'CustomerContactInfo', '00001', 
                            {COLUMN => 'CustomerName:MN'}
COLUMN                                  CELL                                                                                                            
 CustomerName:MN                        timestamp=1383859183001, value=Timothy                                                                          
1 row(s) in 0.0090 seconds

(3) hbase(main):039:0> get 'CustomerContactInfo', '00001', 
                            {COLUMN => 'CustomerName:MN', 
                            TIMESTAMP => 1383859182915}
COLUMN                                  CELL                                                                                                            
 CustomerName:MN                        timestamp=1383859182915, value=T                                                                                
1 row(s) in 0.0290 seconds

 Note that, in Listing 12-6 above you can see how John Smith’s full middle 
name (Timothy) is returned by default (lines 1 & 2) until we specify an exact 
timestamp to return the prior middle initial (T in line 3). Note as well that for 
the last get command (line 3), we constructed a full key to retrieve a specific 
value — in this case the prior middle initial for John Smith. We included the 
column family name (CustomerContactInfo), column qualifier (MN) and time 
stamp (1383859182915).

You may be wondering how many versions you can store in the Customer 
Contact Information table. To answer this question, you’d need to use the 
describe shell command to look at the table descriptors per column family. 
The first line of Listing 12-7 shows the syntax of the describe command and 
the bolded lines in the same listing give you the answer you’re looking for.
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Listing 12-7: Using the describe Command

hbase(main):018:0> describe 'CustomerContactInfo'
DESCRIPTION                                                             ENABLED                                  
 'CustomerContactInfo', {NAME => 'ContactInfo', REPLICATION_SCOPE => '0', KE true                                     
 EP_DELETED_CELLS => 'false', COMPRESSION => 'NONE', ENCODE_ON_DISK => 'true                                          
 ', BLOCKCACHE => 'true', MIN_VERSIONS => '0', DATA_BLOCK_ENCODING => 'NONE'                                          
 , IN_MEMORY => 'false', BLOOMFILTER => 'NONE', TTL => '2147483647', VERSION                                          
 S => '3', BLOCKSIZE => '65536'}, {NAME => 'CustomerName', REPLICATION_SCOPE                                          
  => '0', KEEP_DELETED_CELLS => 'false', COMPRESSION => 'NONE', ENCODE_ON_DI                                          
 SK => 'true', BLOCKCACHE => 'true', MIN_VERSIONS => '0', DATA_BLOCK_ENCODIN                                          
 G => 'NONE', IN_MEMORY => 'false', BLOOMFILTER => 'NONE', TTL => '214748364                                          
 7', VERSIONS => '3', BLOCKSIZE => '65536'}                                                                           
1 row(s) in 0.0350 seconds

hbase(main):022:0> quit

Notice that the default value for VERSIONS in both of our column families is 3. 
This descriptor and others can be modified with the alter command by dis-
abling the table (via the disable command), altering it, and then enabling 
the table again with the help of the enable command.

Working with Zookeeper
After you’ve created the table, you should ensure that the Zookeeper process 
is working smoothly. The way the Zookeeper ensemble works is that it main-
tains critical data for HBase in data registers it calls znodes. If everything has 
been working correctly, you should now have some meaningful znodes to 
retrieve. It’s time to see whether that assumption is correct.

You’ve set your Zookeeper port to 2222 in the hbase-site.xml file back in 
Listing 12-1, so using that port number you can bring up a Zookeeper command 
line interface as shown in Listing 12-8 using the command shown in line 1.

Listing 12-8: Testing Zookeeper

(1) ./hbase zkcli -server bivm:2222
Connecting to bivm:2222
13/06/30 12:54:44 INFO zookeeper.ZooKeeper: Client environment:zookeeper.

version=3.4.5-1392090, built on 09/30/2012 17:52 GMT
13/06/30 12:54:44 INFO zookeeper.ZooKeeper: Client environment:host.name=bivm
. . .
(2) [zk: bivm:2222(CONNECTED) 0] ls /
[hbase, zookeeper]
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(3) [zk: bivm:2222(CONNECTED) 1] ls /hbase
[root-region-server, rs, master, hbaseid, shutdown, backup-masters, unassigned, 

table92, draining, splitlog, online-snapshot, table]
(4) [zk: bivm:2222(CONNECTED) 2] ls /hbase/table
[CustomerContactInfo, .META., -ROOT-]
(5) [zk: bivm:2222(CONNECTED) 5] quit
Quitting...

Using the ls command (lines 2 & 3), you can browse through the znodes as 
set up by the MasterServer and RegionServer (line 3). Notice the results of 
line 4 ls /hbase/table. As expected, you can see the Customer Contact 
Information table that you created using the hbase shell. (We bolded it for you.) 

Getting Things Done with HBase
HBase is written in Java, an elegant language for building distributed tech-
nologies like HBase, but let’s face it — not everyone who wants to take 
advantage of HBase innovations is a Java developer. That’s why there’s a rich 
HBase client ecosystem out there whose sole purpose is to do the heavy Java 
lifting for you and let you concentrate on making HBase work for you.

Rich is usually a good characteristic, but when that adjective crosses the line 
into overwhelming, you start having a problem. In case the rich HBase client 
ecosystem strikes you as overwhelming, we thought we should do some prun-
ing and highlight only the most popular clients available. To make things even 
easier, we start by giving you an overview of the client ecosystem in diagram 
form, as shown in Figure 12-6. Note that the diagram is similar to the HBase 
architecture diagram in Figure 12-1, with an exploded view of the client box.

 

Figure 12-6: 
The HBase 

client 
ecosystem.
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The following lists summarize your options, starting with the Apache Hadoop 
clients, more specifically those HBase clients which are part of the Apache 
Hadoop ecosystem along with those technologies bundled with HBase that 
are designed to help you build HBase clients:

 ✓ Hive: Hive is another top level Apache project and it happens to have an 
entire chapter in this book devoted to it. (Chapter 13, if you’re curious.) 
Hive provides its own take on data warehousing capabilities on top of 
Apache Hadoop. It comes with a storage handler for HBase, and also 
provides the HiveQL query language, which is quite similar to SQL. With 
Hive, you can do all the querying of HBase that you want using HiveQL 
and — here’s the kicker — no Java coding is required when you’re using 
HBase with Hive.

 ✓ MapReduce: MapReduce is part of the Apache Hadoop framework 
(and gets some nice coverage in Chapter 6 of this book). MapReduce’s 
claim to fame is that it’s a programming model for processing data 
in parallel on a distributed cluster. In the Hadoop universe, HBase is 
(as the name implies) the “Hadoop Database.” HBase leverages the 
Hadoop Distributed File System (HDFS ) and can also be leveraged by 
MapReduce jobs. HBase tables can be a source or sink to parallel pro-
cessing MapReduce jobs. This is an exciting feature included with HBase 
and has many applications.

 ✓ Pig: Pig is another technology included with Apache Hadoop and, as 
with Hive, Pig can leverage HBase. Pig takes you up a level by giving you 
a higher level programming language called Pig Latin, which can do the 
heavy MapReduce lifting for you. The details are a bit complicated, but 
you’ll find out more in Chapter 8.

 ✓ Multi-Language Thrift System: Thrift provides a language-neutral 
approach to building HBase clients. Developed by Facebook, Thrift’s 
Interface Definition Language (IDL) allows you to define data types and 
service interfaces so that two different systems written in different 
languages can communicate with one another. After the IDL is written, 
Thrift generates the code necessary for communication.

  Here’s the really cool part — HBase comes with the Thrift IDL already 
written for you! As long as Thrift supports your language — and there 
are 14 supported languages as of this writing — you’re well on your 
way to writing your own custom HBase client. HBase also includes 
the Thrift Server that’s necessary to act as a gateway for your custom 
client. (That’s why the Thrift Server is depicted inside the HBase cluster 
in Figure 12-6.) It doesn’t have to run on a cluster node; it ships with 
HBase and only needs network access to the cluster. The Thrift server 
provides a gateway between your client and the HBase Java Client APIs. 
(More on those in a bit.) You start the Thrift gateway server pretty much 
like you’d start the HBase shell client — by using the $INSTALL_DIR/
hbase-0.94.7/bin/hbase thrift start command.
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 ✓ Java Client: If you happen to be a Java developer — hey, we’ve got no 
problem with that! — and you understand the ins and outs of Java pack-
ages, then you’ll want to check out the org.apache.hadoop.hbase.
client package which comes bundled with the HBase distribution.

  A little later in this chapter we show you a sample Java client that lever-
ages this package, but if you just want to poke around a bit, a good place 
to start is with the package’s HTable class. There you’ll find the get, 
put, checkAndPut, checkAndDelete, and delete primitives, some of 
which you tried with the HBase shell in the hands-on example from the 
“Taking HBase for a test run” section, earlier in this chapter.

  These primitives form the data manipulation language of HBase. (Okay, 
we need to add scan here as well; it’s also part of the client package but 
in a separate class.) When you’ve mastered the package’s HTable class, 
you’ll want to check out its HBaseAdmin class so that you can manage 
your tables and, while you’re at it, take a look at HTablePool as well, 
because it’s an efficient way to leverage the Java client APIs.

 ✓ REST System: Probably the fastest approach for accessing a HBase 
table is to leverage the REST interface. REST, which stands for 
Representational State Transfer, is the technology that makes your web 
browser work. Most folks just take web browsers for granted these 
days, so what could be more natural for anyone than just using your 
favorite browser as the gateway to an HBase cluster? As with the Thrift 
approach, the REST gateway server ships with HBase and you need 
to start at least one in order to enable browser interaction with your 
tables. To do that, just pick a port number for your gateway server (we’ll 
use 7777) and type the following command: 

$INSTALL_DIR/hbase-0.94.7/bin/hbase rest start _p 7777

  If you continue leveraging the example of the Customer Contact 
Information table from earlier in this chapter, you can type http://
bivm:7777/CustomerContactInfo/schema/ in your browser to 
have the table schema returned to you — in effect mirroring what the 
describe command would do in the HBase shell (note that ‘bivm’ is 
the system name here so you’ll need to enter the actual name of your 
system for this to work).

  You can perform HBase client commands like get, put, scan, delete, 
and others using the Unix curl command. The curl command is often 
written as cURL because it lets you create web browser URLs using the 
command line. However, you’ll need to do a little more work to get human 
readable results after you start retrieving your data. On its own, the 
browser returns base64 encoded data, since HBase is just storing bytes.

 ✓ JRuby (HBase Shell): The fastest way to roll up your sleeves and learn 
to use HBase is via the HBase shell. As you’ve probably already seen in 
the hands-on example of the HBase shell in the previous section, the 
shell is a powerful tool for interacting with HBase. The HBase shell is 
based on JRuby’s Interactive Ruby Shell or IRB for short. (For more on 
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JRuby, check out http://jruby.org.) Keep in mind, however, that 
you can also write scripts and execute them in batch mode. (You see a 
use case for shell scripts in the “Deploying and Tuning HBase” section, 
later in this chapter, when we discuss major compactions.)

With the Apache Hadoop clients out of the way, it’s time to turn to other 
HBase clients. The following list describes HBase clients which have been 
created by other open source communities and commercial companies.

 ✓ AsyncHBase & hrider: We’re seeing lots of open source HBase clients 
springing up, so we want to introduce you to a pair that are really cool! 
The first is AsyncHBase which, as the name implies, is an asynchronous 
client. The standard bundled HBase client found in the org.apache.
hadoop.hbase.client package is synchronous, which means that 
when you write a program using the standard package and it accesses 
an HBase table in some way, your program has to stop and wait for 
HBase to finish the operation. AsyncHBase provides an alternative to 
this Stop and Wait approach by letting your program do other things 
while HBase fulfills your request in the background. The second client is 
hrider which is a really cool little graphical user interface (GUI) on top 
of HBase. You know how we used the HBase shell earlier in our hands-on 
example? Well, hrider lets you interact with HBase through a GUI with a 
point and a click instead of typing out all of your HBase commands. You 
can find both of these projects and more on http://github.com.

 ✓ Other Products: As you would expect, plenty of commercial compa-
nies are creating innovative products for HBase — IBM, Cloudera, 
Hortonworks, and Amazon to name a few. To take just two examples, IBM 
created Big SQL which allows you to execute SQL against HBase tables, 
and Cloudera created Impala which improves HiveQL performance when 
querying data stored in HBase tables. You’ll want to check out Chapter 14 
for more on Big SQL and Impala.

Working with an HBase Java  
API client example
Here’s a simple Java Client example to help you get started if you have your 
heart set on writing your own client. To run this code on the standalone 
pseudo-distributed install you’ve set up, set the Java CLASSPATH environ-
ment variable as follows:

CLASSPATH=$YOUR_HOME/HBaseClientApp:$INSTALL_DIR/hbase-0.94.7/hbase-
0.94.7.jar:$INSTALL_DIR/hbase-0.94.7/conf:$INSTALL_DIR/
hbase-0.94.7/lib/*
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Your application needs to not only find the HBase jar files, but also know 
where your configuration files reside. Setting the Java CLASSPATH environ-
ment variable as shown takes care of that task for you. (Without the HBase 
configuration files, the Java Client APIs cannot find Zookeeper, which is Step 
# 1 for accessing the installation.)

 Before you start working your way through the following sample code, you 
should know that one of the more powerful features in HBase for making data 
retrieval more efficient is filters. A filter lets you leverage the RegionServer’s 
processing power to separate out the data you need — and the sample Java 
client example takes advantage of one of these built-in filters. This approach 
makes your queries faster and reduces the load on your network. Now clients 
don’t have to sort through potentially huge chunks of data to find the record 
they need! 

Listing 12-9 shows a simple Java client example in all its splendor. Note that 
the code below has been documented with comments — lines starting with //, 
that is — to help you understand how the HBaseClientApp class works. We 
labeled the comments with bold numbers so you can keep them straight:

Listing 12-9: A Simple Java Client Example

import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.Get;
import org.apache.hadoop.hbase.client.HTable;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.ResultScanner;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.filter.*;
import org.apache.hadoop.hbase.util.Bytes;

public class HBaseClientApp {

   // Comment 1
   // HBase programming best practices call for declaring column 
   // family names, column qualifiers and other frequently
   // used byte arrays once as constants instead of calling
   // Bytes.toBytes every time you need to create these byte
   // arrays.  Bytes.toBytes can be very costly in terms of
   // CPU cycles and can slow down your code especially if you
   // call the method inside a loop.

   private static final byte[] FIRSTROWKEY = Bytes.toBytes("00001");
   private static final byte[] ROWKEY = Bytes.toBytes("91000");
   private static final byte[] CF_CustomerName = Bytes.toBytes("CustomerName");
   private static final byte[] CF_ContactInfo = Bytes.toBytes("ContactInfo");
   private static final byte[] CQ_FirstName = Bytes.toBytes("FN");
   private static final byte[] CQ_LastName = Bytes.toBytes("LN");

(continued)
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   private static final byte[] CQ_EmailAddr = Bytes.toBytes("EA");
   private static final byte[] CQ_StreetAddr = Bytes.toBytes("SA");

   public static void main(String[] args) throws IOException {

      // Comment 2
      // Find the hbase-site.xml configuration 
      // file from your CLASSPATH

      Configuration myConfig = HBaseConfiguration.create();

      // Comment 3
      // Create an HTable object and connect it 
      // to your Customer Contact Information table

      HTable myTable = new HTable(myConfig, "CustomerContactInfo");

      // Comment 4
      // Create a Put object to enter some new 
      // customer information into your Customer Contact Information table.
      // This code assumes that you_re keeping track
      // of your ROWKEY.
      Put myPutObject = new Put(ROWKEY);

      myPutObject.add(CF_CustomerName, CQ_FirstName,  Bytes.toBytes("Bruce"));
      myPutObject.add(CF_CustomerName, CQ_LastName,   Bytes.toBytes("Brown"));
      myPutObject.add(CF_ContactInfo,  CQ_EmailAddr,  Bytes.toBytes("brownb@

client.com"));
      myPutObject.add(CF_ContactInfo,  CQ_StreetAddr, Bytes.toBytes("HBase 

Author Lane, CA 33333"));

      // Comment 5
      // Commit our new record to the 'CustomerContactInfo'
      // table.
      myTable.put(myPutObject);

      // Comment 6
      // In the example below you are leveraging one of the many
      // built-in filters to query the Customer Contact 
      // Information table for customers that have a
      // particular email address. Only client records that have 
      // a particular domain name in their email address 
      // are returned to our Java Client.

      Filter companyFilter = new ValueFilter(CompareFilter.CompareOp.EQUAL,
                new SubstringComparator("@client.com"));
      Scan myScanner = new Scan(FIRSTROWKEY,companyFilter);
      ResultScanner myResults = myTable.getScanner(myScanner);
      for (Result res : myResults) {
         System.out.println(Bytes.toString(res.value()));
      }
   }
}

Listing 12-9 (continued)
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Beginning with Comment 1, this block of Java code illustrates a best practice 
with HBase, namely that you want to define your byte arrays holding your 
HBase row keys, column family names, column qualifiers and data up front as 
constants. This saves valuable CPU cycles and makes your code run faster, 
especially if there are repeated loop constructs. If you were wondering how 
the main method that executes the HBase commands finds the Zookeeper 
ensemble and then RegionServers, Comment 2 explains this. However, the 
HBaseConfiguration.create method won’t find your cluster if your 
CLASSPATH environment variable is not set correctly, so don’t forget that 
task! Comment 3 explains how our HBaseClientApp class connects with the 
’CustomerContactInfo’ table and Comments 4 and 5 show you how you can 
place data in our ’CustomerContactInfo’ table. Finally, Comment 6 explains 
how HBase filter technology can improve your table scans by allowing you 
to target specific data in the table. Without filters you would be pulling much 
more data out of the HBase cluster and across the network to your client 
where you would have to write code to sort through the results. Filters make 
HBase life a whole lot easier!

If you compile and run this example application, you’ll have added a new 
customer name (Bruce Brown) and the customer’s contact info (brownb@
client.com, residing at HBase Author Lane, CA 33333) to the Customer 
Contact Information table and you’ll have used a filter to track down and 
print the e-mail address. 

HBase and the RDBMS world
We think it’s best to state right up front that HBase and relational database 
technology (like Oracle, DB2, and MySQL to name just a few) really don’t 
compare all that well. Despite the cliché, it’s truly a case of comparing apples 
to oranges. HBase is a NoSQL technology — we explain the meaning of this 
catchy nomenclature in detail in Chapter 11 and we discuss the major differ-
ences between relational database management systems (RDBMSs) and HBase 
in Chapter 11 as well. If your background is in relational database technology 
and you are wondering how you might convert some of your databases to 
HBase — or even if that makes sense — then this section is just for you! We’ll 
start with a brief description (or refresher if you read Chapter 11) of the differ-
ences and then we’ll discuss some considerations and guidelines for making 
the move.

BigTable, HBase’s Google forebear, was born out of a need to manage massive 
amounts of data in a seamless, scalable fashion. HBase is a direct implemen-
tation of BigTable providing the same scalability properties, reliability, fault 
recovery, a rich client ecosystem, and a simple yet powerful programming 
model. The relational data model and the database systems that followed 
were built with different goals in mind. The relational model and accom-
panying structured query language (SQL) is a mathematical approach that 
enforces data integrity, defines how data is to be manipulated, provides a 
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basis for efficient data storage and prevents update anomalies by way of the 
normalization process. Though HBase and the RDBMS have some commonali-
ties, the design goals were different.

You may wonder why the examples earlier in this chapter center on mapping 
a relational table — our Customer Contact Information table — to an HBase 
table. The reason is two-fold:

 ✓ The relational model is the most prevalent, so using that model for the 
sake of comparisons often helps professionals coming from the world of 
RDBMSs better grasp the HBase data model. 

 ✓ The innovations provided by BigTable and HBase are making this new 
NoSQL technology an attractive alternative for certain applications 
that don’t necessarily fit the RDBMS model. (The ability of HBase to 
scale automatically is alone a huge innovation for the world of database 
technology!) 

Knowing when HBase makes  
sense for you?
So, when should you consider using HBase? Though the answer to this ques-
tion isn’t necessarily straightforward for everyone, for starters you clearly 
must have

 ✓ A big data requirement: We’re talking terabytes to petabytes here — 
otherwise you’ll have a lot of idle servers in your racks.

 ✓ Sufficient hardware resources: Five servers is a good starting point, as 
described in the “Hardware Architecture” row in Table 12-4. 

When considering which route to take — HBase versus RDBMS — consider 
other requirements such as transaction support, rich data types, indexes, 
and query language support — though these factors are not as black and 
white as the preceding two bullets. Rich data types, indexes and query lan-
guage support can be added via other technologies, such as Hive or commer-
cial products, as described in Chapter 13. “What about transactions?” you 
ask. The answer to that question is in the following section.

ACID Properties in HBase
Certain use cases for RDBMSs, like online transaction processing, depend 
on ACID-compliant transactions between the client and the RDBMS for the 
system to function properly. (We define the ACID acronym — Atomicity, 
Consistency, Isolation, and Durability — in Chapter 11.) When compared to 
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an RDBMS, HBase isn’t considered an ACID-compliant database as of this 
writing. HBase does not support ACID-compliant transactions over multiple 
rows or across tables. However, HBase does guarantee the following aspects: 

 ✓ Atomic: All row level operations within a table are atomic. This guar-
antee is maintained even when there’s more than one column family 
within a row. HBase provides, in addition to the get, put, delete and 
scan commands described earlier in this chapter, atomic increment, 
checkAndPut and checkAndDelete methods.

 ✓ Consistency: Scan operations return a consistent view of the data stored 
in HBase at some point in the past. Concurrent client interaction could 
update a row during a multi-row scan, but all rows returned by a scan 
operation will always contain valid data from some point in the past. 

 ✓ Durability: Any data that can be retrieved from HBase has also been 
made durable to disk (persisted to HDFS, in other words).

 One of the exciting aspects of HBase and other open source Apache projects 
is that someone in the community is always innovating and trying to improve 
the technology. HBase does support multi-row transactions if the rows are 
on the same RegionServer. This feature, which requires additional coding, 
was introduced in HBase version 0.94.0 documented at https://issues.
apache.org/jira/browse/HBASE-5229. (If you’re curious, the additional 
coding focused on HBase’s split policy.) 

 When ACID properties are required by HBase clients, design the HBase 
schema such that cross row or cross table data operations are not required. 
Keeping data within a row provides atomicity. 

Transitioning from an RDBMS  
model to HBase
If you’re facing the design phase for your application and you believe that 
HBase would be a good fit, then designing your row keys and schema to fit 
the HBase data model and architecture is the right approach. However, some-
times it makes sense to move a database originally designed for an RDBMS 
to HBase. A common scenario where this approach makes sense is a MySQL 
database instance that has reached its limits of scalability. Techniques exist 
for horizontally scaling a MySQL instance (sharding, in other words) but this 
process is usually cumbersome and problematic because MySQL simply was 
not originally designed for sharding. If you’re in this predicament yet you 
believe that the HBase differences are manageable, then read on. The tips in 
this section may save you some valuable time.
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Transitioning from the relational model to the HBase model is a relatively 
new discipline. However, certain established patterns of thought are emerg-
ing and have coalesced into three key principles to follow when approaching 
a transition. These principles are denormalization, duplication, and intelligent 
keys (DDI). The following list takes a closer look at each principle:

 ✓ Denormalization: The relational database model depends on a) a nor-
malized database schema and b) joins between tables to respond to 
SQL operations. Database normalization is a technique which guards 
against data loss, redundancy, and other anomalies as data is updated 
and retrieved. There are a number of rules the experts follow to arrive at 
a normalized database schema (and database normalization is a whole 
study itself), but the process usually involves dividing larger tables into 
smaller tables and defining relationships between them. Database denor-
malization is the opposite of normalization, where smaller, more specific 
tables are joined into larger, more general tables. This is a common pat-
tern when transitioning to HBase because joins are not provided across 
tables, and joins can be slow since they involve costly disk operations. 
Guarding against the update and retrieval anomalies is now the job of 
your HBase client application, since the protections afforded you by nor-
malization are null and void. 

 ✓ Duplication: As you denormalize your database schema, you will likely 
end up duplicating the data because it can help you avoid costly read 
operations across multiple tables. Don’t be concerned about the extra 
storage (within reason of course); you can use the automatic scalability 
of HBase to your advantage. Be aware, though, that extra work will be 
required by your client application to duplicate the data and remember 
that natively HBase only provides row level atomic operations not cross 
row (with the exception described in the HBASE-5229 JIRA) or cross 
table.

 ✓ Intelligent Keys: Because the data stored in HBase is ordered by row 
key, and the row key is the only native index provided by the system, 
careful intelligent design of the row key can make a huge difference. 
For example, your row key could be a combination of a service order 
number and the customer’s ID number that placed the service order. 
This row key design would allow you to look up data related to the ser-
vice order or look up data related to the customer using the same row 
key in the same table. This technique will be faster for some queries and 
avoid costly table joins.

To clarify these particular patterns of thought, we expand on the example of 
the Customer Contact Information table by placing it within the context of a 
typical service order database. Figure 12-7 shows you what a normalized ser-
vice order database schema might look like.
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Figure 12-7: 
An RDBMS 
normalized 

service 
order 

database.

Following the rules of RDBMS normalization, we set up the sample Customer 
Contact Information table so that it is separate from the service order table 
in order to avoid losing customer data when service orders are closed and 
possibly deleted. We took the same approach for the Products table, which 
means that new products can be added to the fictional company database 
independently of service orders. By relying on RDBMS join operations, this 
schema supports queries that reveal the number of service orders that are 
opened against a particular product along with the customer’s location 
where the product is in use.

That’s all fine and dandy, but it’s a schema you’d use with RDBM. How do you 
transition this schema to an HBase schema? Figure 12-8 illustrates a possible 
HBase scheme — one that follows the DDI design pattern.

 

Figure 12-8: 
An HBase 

schema 
for the ser-
vice order 
database.

 

To avoid costly search operations and additional HBase get and/or scan 
operations (or both), the Customer Contact Information table has been 
denormalized by including the customer name and contact info in place of 
the foreign keys used previously. (See Figure 12-7.) Also, the data is dupli-
cated by keeping the Customer Contact Information table as is. Now joins 
across the Service Order table and Customer Contact Information table are 
not necessary. Additionally, an intelligent row key design has been employed 
that combines the product number with the customer number to form the 
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service order number (A100|00001, for example). Using this intelligent key, 
the service order table can provide vital reports about product deficiencies 
and customers who are currently experiencing product issues. All these que-
ries can all be supported by HBase in a row level atomic fashion for the appli-
cation. We don’t have to worry about the lack of ACID compliant joins across 
the two tables. Additionally, because you know that HBase orders row keys 
and sorts them in a lexicographical fashion, your application can make cer-
tain educated guesses about data locality when issuing scans for reporting. 
(All A* series product numbers will be stored together, for example.)

The service order database represented by the HBase schema (refer to Figure 
12-8) is a relatively simple example, but it illustrates how HBase can, in cer-
tain cases, intersect with the RDBMS world and provide significant value. If 
the fictional company has terabytes or even petabytes of service call data 
to store, HBase would make a huge difference in terms of cost, reliability, 
performance, and scale. You can, of course, design your service order HBase 
schema in several different ways. Admittedly, the design all depends on the 
queries that must be supported, but you have the ability to transition some 
relational databases to very powerful HBase applications for production use 
as long as you work from a solid understanding of HBase architecture and the 
DDI design pattern.

 This example has assumed that queries were performed by a Java applica-
tion leveraging the HBase client APIs, or perhaps via another language using 
Apache Thrift. This application model may fit the requirements just fine and 
provide useful performance and customization options for the fictional service 
company. However, the downside is that the service order database schema is 
tied pretty tightly to the application layer that issues the queries and manages 
the database integrity. (We say “tied pretty tightly” because changes to the 
HBase schema would require changes to the application code.) You might ask 
these two questions: “could either HiveQL or other commercial offerings pro-
viding SQL support for HBase be used to make this process easier for the engi-
neers creating this HBase application?” (changing HiveQL or SQL is certainly 
easier and less costly than changing application code) and “could joins be per-
formed when appropriate using Hadoop MapReduce?” (That might be easier 
than following the DDI pattern if the limited ACID properties provided by 
HBase fit your application.) The answer to these questions is “yes,” so you’ll 
want to check out Chapters 13 and 15 to see how HBase can be combined with 
other Hadoop and commercial products to create some very powerful big data 
applications.

Deploying and Tuning HBase
HBase is a powerful and flexible technology, but accompanying this flexibility 
is the requirement for proper configuration and tuning. Now, installing and run-
ning HBase in a standalone mode for learning purposes is seamless and very 
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straightforward, but standalone mode for testing purposes in no way, shape, or 
form represents the real world. Admittedly, some applications of HBase simply 
involve ingesting large amounts of data and then querying that data occasion-
ally over time at a leisurely pace — no strict deadlines, in other words, which 
means that you don’t have to worry too much about efficiencies. Other pos-
sibilities might include running a Map Reduce job against the data for business 
analytics or machine learning applications. These use cases are batch ori-
ented in nature and if your use case fits into this category, you probably don’t 
need to configure and tune HBase all that much. Your main concerns are the 
proper hardware configuration and correct configuration files. Reviewing the 
Apache HBase online Quick Start guide (http://hbase.apache.org/book/
quickstart.html) and following the guidance in the later section “Hardware 
requirements” is likely all you need to soon be on your way.

Most HBase deployments, however, are going to include performance expec-
tations or performance requirements (or both) along with the expectation 
that you take advantage of freebies such as auto sharding and automatic 
recovery after node failures. Often new use cases arise after an organization 
becomes accustomed to the new and shiny database toy on the network 
and so the original expectations or requirements can change. So for all these 
reasons and more, deploying HBase at scale in production environments 
typically requires careful thought and an understanding of how to tune 
HBase. The good news is that, in our experience, a little tuning goes a long 
way, so don’t feel overwhelmed. We’ve personally seen HBase performance 
improve by several orders of magnitude by simply following the suggestions 
in this section and in the online page “Apache HBase performance tuning” 
(http://hbase.apache.org/book/performance.html).

Hardware requirements
It’s time for some general guidelines for configuring HBase clusters. Your 
“mileage” may vary, depending on specific compute requirements for your 
RegionServers (custom coprocessors, for example) and other applications 
you may choose to co-locate on your cluster. 

RegionServers
The first temptation to resist when configuring your RegionServers is plunk-
ing down lots of cash for some high end enterprise systems. Don’t do it! 
HBase is typically deployed on plain vanilla commodity x86 servers. Now, 
don’t take that statement as license to deploy the cheapest, low quality 
servers. Yes, HBase is designed to recover from node failures but your avail-
ability suffers during recovery periods so hardware quality and redundancy 
do matter. Redundant power supplies as well as redundant network interface 
cards are a good idea for production deployments. Typically, organizations 
choose two socket machines with four to six cores each.
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The second temptation to resist is configuring your server with the maximum 
storage and memory capacity. A common configuration would include from 
6 to 12 terabytes (TB) of disk space and from 48 to 96 gigabytes (GB) of RAM. 
RAID controllers for the disks are unnecessary because HDFS provides data 
protection when disks fail. 

 HBase requires a read and write cache that’s allocated from the Java heap. 
Keep this statement in mind as you read about the HBase configuration 
variables because you’ll see that a direct relationship exists between a 
RegionServer’s disk capacity and a RegionServer’s Java heap. You can find an 
excellent discussion on HBase RegionServer memory sizing at

http://hadoop-hbase.blogspot.com/2013/01/hbase-region-
server-memory-sizing.html

The article points out that you can estimate the ratio of raw disk space to 
Java heap by following this formula:

RegionSize divided by Memstoresize multiplied by HDFS Replication 
Factor multiplied by HeapFractionForMemstores

Using the default HBase configuration variables from http://hbase.
apache.org/book/config.files.html provides this ratio:

10GB / 128MB * 3 * 0.4 = Ratio of 96MB disk space : 1 MB Java heap space.

The preceding line equates to 3TB of raw disk capacity per RegionServer with 
32GB of RAM allocated to the Java heap.

What you end up with, then, is 1 terabyte of usable space per RegionServer 
since the default HDFS replication factor is 3. This number is still impres-
sive in terms of database storage per node but not so impressive given that 
commodity servers can typically accommodate eight or more drives with a 
capacity of 2 to 4 terabyte a piece. The overarching problem as of this writ-
ing is the fact that current Java Virtual Machines (JVMs) struggle to provide 
efficient memory management (garbage collection, to be precise) with large 
heap spaces (spaces greater than 32GB, for example). 

Yes, there are garbage collection tuning parameters you can use, and you 
should check with your JVM vendor to insure you have the latest options, but 
you won’t be able to get very far using them at this time. The memory man-
agement issue will eventually be solved but for now be aware that you may 
encounter a problem if your HBase storage requirements are in the range 
of hundreds of terabytes to more than a petabyte. You can easily increase 
the hbase.hregion.max.filesize to 20GB to reach 6TB raw and 2TB 
usable. You can make other tweaks (reducing MemStore size for read heavy 
workloads, for example) but you won’t make orders of magnitude leaps in the 
useable space until we have a JVM that efficiently handles garbage collection 
with massive heaps.
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 You can find ways around the JVM garbage collection issue for RegionServers 
but the solutions are new and are not yet part of the main HBase distribution 
as of this writing. If your HBase data store requirements are massive, check 
out the “bucket cache” article at https://issues.apache.org/jira/
browse/HBASE-7404 before you buy too many RegionServers.

Master servers
The MasterServer does not consume system resources like the 
RegionServers do. However, you should provide for hardware redundancy, 
including RAID to prevent system failure. For good measure, also configure 
a backup MasterServer into the cluster. A common configuration is 4 CPU 
cores, between 8GB and 16GB of RAM and 1 Gigabit Ethernet is a common 
configuration. If you co-locate MasterServers and Zookeeper nodes, 16GB of 
RAM is advisable. 

Zookeeper 
Like the MasterServer, Zookeeper doesn’t require a large hardware configura-
tion, but Zookeeper must not block (or be required to compete for) system 
resources. Zookeeper, which is the coordination service for an HBase cluster, 
sits in the data path for clients. If Zookeeper cannot do its job, time-outs will 
occur — and the results can be catastrophic. Zookeeper hardware require-
ments are the same as for the MasterServer except that a dedicated disk 
should be provided for the process. For small clusters you can co-locate 
Zookeeper with the master server but remember that Zookeeper needs suf-
ficient system resources to run when ready.

Deployment Considerations
Now that you have a solid understanding of HBase hardware (HW) require-
ments, we have a couple of points for you regarding deployment:

 ✓ In this chapter, we’re assuming that you’re concerned primarily about 
setting up an HBase cluster. Though co-locating HBase with MapReduce 
is often done, it affects performance and sizing requirements. So if 
you’re serious about maximum HBase performance, consider carefully 
the additional HW resources you may require or provision a separate 
cluster for MapReduce and other Hadoop jobs. Then you can keep your 
HBase cluster separate.

 ✓ Deploying Hadoop is the subject of Chapter 16 so we encourage you to 
check that chapter out. In Chapter 16, you’ll find more detail on network-
ing as well as physical HW deployment examples for HBase and Hadoop. 
We cover Hadoop 1 deployments as well as Hadoop 2 deployments.
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Tuning prerequisites
Any serious HBase installation requires some standard setup on your cluster 
and on your individual nodes. We give you a few examples here and then 
point you to the sections in the Apache HBase online documentation you’ll 
need to reference. First take a look at monitoring and management.

Tools to monitor your cluster
If you’ve had the privilege of engineering a system at some point in your 
career, you know you face the major challenge of coming up with a rigor-
ous testing procedure to ensure that your system is ready for its production 
phase. If you don’t plan for testing and debugging right up front, you’ll likely 
miss your production deadlines or fail altogether. The HBase and Hadoop 
committers made sure that you would have a rich metrics subsystem to draw 
on during the debug and test phase. You can find all the messy details in the 
Apache HBase online documentation (http://hbase.apache.org/book.
html#ops_mgt ), especially the sections dealing with HBase Backup and 
Replication. In this section, we give you an overview of the available tools.

 The Cluster Replication feature is a key tool when debugging, tuning or if you 
want to run Map Reduce against your tables without impacting performance. 
Obviously, you’ll need it for disaster recover as well.

Getting started with the Hadoop management tools set is surprisingly easy. 
HBase leverages the Java Management Extensions (JMX) technology for 
exposing key metrics. And with the Java Virtual Machine, you also get the 
JConsole tool, a free JMX client that you can use to view HBase metrics. 
The HBase distribution we’ve been working with (0.94.7) enables access via 
JConsole by default, so in your standalone environment you simply select the 
HBase server that you want to monitor and JConsole then presents you with 
a graphical user interface for viewing key server metrics. 

 You can start the JConsole tool with the following command:

  $JAVA_HOME/bin/jconsole

Additionally, you should familiarize yourself with these two other open 
source technologies for monitoring your HBase cluster:

 ✓ Ganglia: Often used to provide monitoring graphs over time, Ganglia 
can help you spot problems that occur occasionally or only after days of 
operation.

 ✓ Nagios: Nagios is useful if you’re an HBase administrator and you want 
to receive a page on your pager or an e-mail if, say, a RegionServer goes 
down or you have a garbage collection issue in your cluster.

 If you’re leveraging HBase as part of a commercial product, be sure to check 
with your vendor for a tool to monitor and manage HBase. 
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Cluster setup
HBase typically deploys on a cluster, and you’ll need to make some adjust-
ments on each of your servers to accommodate HBase components. A good 
first step is insuring that the system clocks on each server in your cluster 
are in sync. Out of sync system clocks on your servers can really confuse 
HBase, so check out the Network Time Protocol or NTP for short. Running 
the NTP on your cluster will take care of any time synchronization issues. 
Furthermore, HBase is a unique application in certain respects because it 
stresses your system beyond the level that applications may do. The truth 
is that HBase is going to be opening a lot of files — that’s just the nature of 
the beast. Given that fact, you need to ensure that your operating systems 
are configured to handle what is sure to be a far-from-typical file system 
load. Swapping in your Linux operating systems (moving between disk and 
memory, in other words) can have very adverse effects on Zookeeper. Finally 
there’s the Java Virtual Machine (JVM) that ultimately runs on each of your 
nodes and executes the HBase processes. HBase also puts far-from-typical 
stress on the JVM. (For example, the MemStore cache, which heavily exer-
cises the garbage collection system, is sure to be taxed to the max.) 

 When the MemStore is committed to HFiles on the HDFS, the Java heap is 
reclaimed. This can result in long garbage collection pauses if your JVM is not 
configured correctly. 

So for all of these reasons and more you should review these two sections of 
the Apache HBase online documentation:

 ✓ General Configuration Requirements: Review Chapter 2 of the Apache 
HBase online documentation (http://hbase.apache.org/book/
configuration.html) and especially section 2.5 entitled “The 
Important Configurations” - http://hbase.apache.org/book/
important_configurations.html.

 ✓ Java Virtual Machine: Determine which JVM you’re running and make 
sure that it has been tested for compatibility with HBase. As of this 
writing, the Apache HBase online documentation suggests Java 6 from 
Oracle because Java 7 hasn’t been fully tested. Another JVM we’ve 
tested is IBM’s J9. If you plan to use J9, review the IBM documentation 
for the latest command line options when starting your JVMs. If you plan 
to use Oracle’s JVM, review the following sections of the HBase online 
documentation to familiarize yourself with the proper settings: http://
hbase.apache.org/book/jvm.html and http://hbase.apache.
org/book/trouble.log.html#trouble.log.gc

Enabling compression
Compression boosts HBase performance by reducing overall disk input/
output. Consider enabling compression unless your data doesn’t compress 
well (images, for example) or if your RegionServers cannot handle the addi-
tional CPU load that compression and decompression requires. Compression 
can be enabled via the HBase shell command, as we explain in the “Taking 
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HBase for a test run” section, earlier in this chapter, when we tell you how 
to leverage the describe shell command (see Listing 12-10) to view our 
Customer Contact Information table descriptors:

Listing 12-10: The describe Shell Command

hbase(main):018:0> describe 'CustomerContactInfo'
... {NAME => 'ContactInfo', REPLICATION_SCOPE => '0', KE true                                  
 EP_DELETED_CELLS => 'false', COMPRESSION => 'NONE',...

By default, compression is disabled per column family. The supported 
compression types are Gzip, LZO and Snappy (with some other derivatives 
available and more on the way). GZIP is best overall for achieving a good 
compression ratio, but LZO and Snappy are faster. Keep in mind, though, that 
both LZO and Snappy compression codecs must be installed separately; only 
Gzip works without further configuration steps. Listing 12-11 shows the steps 
you’d need to enable Gzip compression on the Customer Contact Information 
table:

Listing 12-11: Enabling Gzip Compression

hbase(main):007:0> disable 'CustomerContactInfo'
hbase(main):010:0> alter 'CustomerContactInfo', { NAME => 'CustomerName', 

COMPRESSION => 'GZ' }
hbase(main):014:0> describe 'CustomerContactInfo'
... {NAME => 'CustomerName', REPLICATION_SC                                                    
 OPE => '0', KEEP_DELETED_CELLS => 'false', COMPRESSION => 'GZ',...
hbase(main):017:0> enable 'CustomerContactInfo'

Understanding your data access patterns
Achieving peak performance with HBase requires an understanding of your 
data access patterns. How will your application or clients query HBase? Is 
your data ingested in bulk or gradually over time? Are the patterns mostly 
reads or writes or a mix of both? Are the queries random or sequential? How 
much data is read or written per query? Often no clear answer to these ques-
tions emerges or the answer varies per table. However, the good news is that 
you can tune on a per table basis, so choosing a few key tables to tune can 
help a great deal.

 It is beyond the scope of this section and somewhat unrealistic to cover all 
tuning scenarios, but we do want to provide some general guidance which 
will (hopefully) help you focus on the most important issues and tuning 
parameters: 
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 ✓ As mentioned earlier in this chapter, the Apache HBase online guide has a 
whole section on performance tuning that’s worth your while to check out:

http://hbase.apache.org/book.html#performance

 ✓ While you’re at it, review the online guide’s Apache HBase configuration 
coverage, especially the section about HBase configuration variables:

http://hbase.apache.org/book/config.files.html

 ✓ Commonly used variables are in the section about performance tuning:

http://hbase.apache.org/book/perf.configurations.html

Here’s what we recommend for some common situations:

 ✓ Read Heavy Workloads: If the read workload is random, consider 
increasing the hfile.block.cache.size setting and shrinking the 
hbase.regionserver.global.memstore.upperLimit and hbase.
regionserver.global.memstore.lowerLimit settings.

  You can also keep part or all of a column family in memory by setting 
the in_memory descriptor to true while disabling the block cache alto-
gether for other tables’ column families.

{ NAME => 'columnfamily', IN_MEMORY => 'true' }
{ NAME => 'columnfamily', BLOCKCACHE => 'false' }

  If the read workload is sequential, caching will most likely not help your 
performance so look at increasing the HFile block size to achieve more 
data per read. The HBase API docs suggest numbers between 8KB and 
1MB, with the default setting of 64KB. (We suggest going with 128KB 
in the example below.) Also review your hbase.client.scanner.
caching setting to ensure that it fits your sequential read patterns.

{ NAME => 'columnfamily', BLOCKSIZE => 131072 }

 ✓ Write Heavy Workloads: With write heavy workloads, the MemStore 
configuration becomes quite important, so review all settings that affect 
the MemStore write cache — things like the hbase.regionserver.
global.memstore.lowerLimit setting and the hbase.
regionserver.global.memstore.upperLimit setting.

  JVM garbage collection must also be configured correctly so that large 
garbage collection pauses don’t occur — and slow your application. 
Worse yet, such large pauses can confuse Zookeeper into believing that 
your RegionServer has failed and then your HBase experience gets ugly. 
Finally you should have a strategy in place for handling region splits. 
HBase-generated region splits is a beautiful thing with respect to auto-
matic scalability but if you’re doing lots of writes, you’ll want to control 
when your regions split. You can handle it in a couple of ways:
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	 •	Increase the region size parameter, hbase.hregion.max.
filesize. The default size was increased to 10GB recently, 
though, so it depends on the amount of data you want to ingest.

	 •	Pre-split your regions to distribute them across the cluster. You can do 
this if you have enough RegionServers. We discuss this technique 
in the next section.

 ✓ Mixed workloads: If your workload is mixed, you’re in good company! 
Most clusters serve more than a single purpose. For mixed workloads, 
you need to follow best practices. First and foremost you’ll need a 
good row key design to match your table access patterns. (We dis-
cuss row key design in the later section “The importance of row key 
design.”) We’ve already discussed compression which improves 
performance.

Pre-Splitting your regions
HBase scales automatically by splitting regions when their size reaches 
the value configured in the hbase.hregion.max.filesize parameter. 
Regions are evenly distributed across the cluster by the load balancer pro-
cess which runs on the MasterServer. This automation is very valuable for 
most HBase use cases, but you may (during bulk ingest operations or heavy 
writes, for example) want to manually control the whole process. In this case, 
you would set the hbase.hregion.max.filesize parameter to a very 
high value that you do not anticipate you will reach. After this is done, you 
can then manually split and compact your regions using the HBase shell com-
mands. (See the “Tuning major compactions” section later in this chapter for 
more details.) You may also choose to pre-split your table(s) and distribute 
them across all available RegionServers right up front so that you can lever-
age the full power of the cluster immediately. If this tuning concept fits your 
application, then you can leverage one of the approaches in this list.

 ✓ Use the HBase shell to create a table with pre-split regions, like this:

hbase(main):021:0> create 'Pre-Splits-Table', 
'OneColumnFamily', { SPLITS => ['A999', 
'B999', 'C999', 'D999'] }

0 row(s) in 1.1720 seconds

 ✓ Note that you can also create a splits file where each line has a start-
ing row key and then point to the file using the HBase shell create 
table command, as in this example.

hbase(main):021:0> create 'Pre-Splits-Table', 
'OneColumnFamily', { SPLITS_FILE => 
'mySplitsFile' }
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 ✓ Leverage the org.apache.hadoop.hbase.util.RegionSplitter utility. 

  For documentation on the utility go to: http://hbase.apache.org/
apidocs/org/apache/hadoop/hbase/util/RegionSplitter.
html.

 ✓ Leverage a createTable method from the org.apache.hadoop.hbase.
client.HBaseAdmin class

 If you decide that manual intervention into HBase region splitting is right for 
you, check out Hannibal, a very cool little tool for monitoring region splitting 
that helps you better manage the overall process. Hannibal is on GitHub at 
https://github.com/sentric/hannibal.

The importance of row key design
Proper row key design is central to creating any table in HBase. How you 
design the row key affects your performance, how you query your data, and 
the complexity of your application or client access approach. Also, if you find 
that you need to transition from a relational data model to an HBase model, 
you’ll find that “intelligent” row keys are quite helpful. We stress this fact in 
the section “Transitioning from a RDBMS To HBase,” earlier in this chapter. 
Given the importance of row key design, we could dedicate an entire section 
or even chapter to the subject but the point of this section is to highlight 
the key points around HBase deployment and performance tuning and then 
point you to further information where appropriate. So as you might expect 
by now, the Apache HBase online guide has an entire section dedicated 
to row key design case studies and you’ll definitely want to review it for a 
thorough understanding of row key design. It’s part of Apache’s HBase and 
schema design overview; see http://hbase.apache.org/book/schema.
casestudies.html.

What we want to do here is highlight the key points and considerations for 
proper row key design and introduce you to some tools at your disposal.

Making your row key fit your query patterns
The first thing you have to consider is how you intend to query data that’s 
stored in the table. Will the row key enable targeted access to a particular 
row you’re looking for or will you have to scan large numbers of rows and 
look for the key value pair you need? Remember that HBase is row level 
atomic (meaning operations like get, put, and scan are guaranteed to 
successfully complete or completely fail — no partial results allowed), so 
it may be critical to target individual rows rather than perform scans for 
certain queries. Can you combine two or more unique identifiers to create a 
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composite row key? When we show you how to work with the service order 
database earlier in this chapter, we combined the service order number with 
the customer number to create an intelligent composite row key, like this

A100|00001      Customer Name      Contact Info       Status

This approach enables queries based only on product number or customer 
number. This can be accomplished by leveraging HBase row key filters. 
Listing 12-12 shows simple table that illustrates this row key design.

Listing 12-12: Illustrating Intelligent Row Key Design

hbase(main):124:0> scan 'RowKeyTest'
ROW                                COLUMN+CELL                                                                                         
 A100|00005                        column=cf:service-order, value=brokenc                                     
 B100|00003                        column=cf:service-order, 

timestamp=1373463447048, value=brokeng                                     
 B102|00004                        column=cf:service-order, 

timestamp=1373463409362, value=brokenb                                     
 C201|00001                        column=cf:service-order, 

timestamp=1373463173365, value=brokena                                     
4 row(s) in 0.0140 seconds
Now, use the <span cssStyle="text-decoration:line-through">scan</span> command 

to determine whether a service call has been placed for product 
number <span cssStyle="text-decoration:line-through">A100</span>.

hbase(main):127:0> scan 'RowKeyTest', { FILTER => PrefixFilter.new(Bytes.
toBytes('A100')) }

ROW                                COLUMN+CELL                                                                                         
 A100|00005                        column=cf:service-order, 

timestamp=1373463418241, value=brokenc                                     
1 row(s) in 0.0090 seconds
Use the same <span cssStyle="text-decoration:line-through">scan</span> command 

to determine whether customer number <span cssStyle="text-
decoration:line-through">00001</span> has placed a service call.

hbase(main):128:0> scan 'RowKeyTest', { FILTER => RowFilter.
new(CompareFilter::CompareOp.valueOf('EQUAL'), 
SubstringComparator.new('00001')) }

ROW                                COLUMN+CELL                                                                                       
 C201|00001                        column=cf:service-order, 

timestamp=1373463173365, value=brokena                                   
1 row(s) in 0.0080 seconds

The two examples above illustrate how awesome composite row keys can 
be when combined with filters! Instead of having multiple tables or multiple 
rows to store customer and service order information, you can store it all in 
a single row and single table, thereby reducing overall disk and network traf-
fic within your HBase cluster. Targeted or pointed HBase queries are the goal; 
you don’t want to be doing extra IO operations while you search for your data.
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Making your row key design leverage the  
performance potential of the cluster
A common challenge you face when designing your row keys is region hotspot-
ting, where one or more RegionServers get overloaded with requests while 
the others sit idle. This is not what we want to see in HBase-land; we’d rather 
have every RegionServer pulling its own weight so users see the maximum 
performance! This performance issue will occur during large sequential writes 
or when you are reading continually from a small subsection of the table.

 You learned about the MasterServer web interface at http://bivm:60010/ 
in the “Taking HBase for a Test Run” section, and about the byte lexicographi-
cal sorting of row keys in the “Understanding the HBase Data Model” section. 
Now we’re showing you some practical uses for this knowledge.

Now that the regions are pre-split (Step 1 we completed in the “Pre-Splitting 
your regions” section ), Step 2 involves the row key. Keep in mind that, with 
byte lexicographical sorting, row keys are sorted from left to right. You can 
pre-split your tables, but if you don’t ensure that your row keys are designed 
to distribute evenly across the splits, you’ll still have a region hotspotting 
problem. 

 HBase is a highly configurable and therefore a flexible technology, and the 
Load Balancer is no exception. You can either let the MasterServer automati-
cally balance your regions or manually control the balancer via the shell.

Tuning major compactions
We introduce you to minor and major compactions — the process by which 
HBase cleans up after itself — in the “Understanding the HBase Architecture” 
section, earlier in this chapter, but in this section we want to briefly explain 
how you can control major compactions, because the impact to cluster per-
formance is “major” — pun intended!

The approach is very straightforward — simply turn off automatic major 
compactions and issue the command manually against your tables at an 
appropriate time. To turn off major compactions, set the hbase.hregion.
majorcompaction parameter to 0 in your hbase-site.xml file and restart 
HBase. To manually run a major compaction, simply issue the major_
compact command from the HBase shell.

hbase(main):018:0> major_compact 'CustomerContactInfo'
0 row(s) in 0.0480 seconds
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An obvious solution would be to script the major compaction shell com-
mands and run the script using a scheduling utility like cron at the 
appropriate time. Simply put the preceding command in a file, name it 
major-compact.rb, add an exit command and execute it with this 
command:

$INSTALL_DIR/bin/hbase shell major-compact.rb

You can also trigger a major compaction via one of several major_compact 
methods in the Java client org.apache.hadoop.hbase.client.
HBaseAdmin class.

 For a quick review of the HBaseAdmin class (it’s well worth your time), see: 
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/
client/HBaseAdmin.html.

How HBase is being used in the marketplace
The truly innovative technology HBase is a 
vital part of the Hadoop ecosystem. Here’s 
a web page for you to check out: http://
wiki.apache.org/hadoop/Hbase/
PoweredBy . If you’re wondering how 
HBase is now used in the marketplace, you’ll 
be pleasantly surprised to know that you’ve 
probably already counted on HBase as part 

of your social media experience. Popular sites 
such as Facebook, Yahoo, Twitter, Meetup, 
StumbleUpon, Adobe, and many others now 
leverage HBase in production today. We trust 
that you’ll be inspired to leverage HBase for 
your big data storage needs and start contrib-
uting to the ever growing and vibrant HBase 
community! 
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Applying Structure to Hadoop  
Data with Hive

In This Chapter
▶ Introducing Hive

▶ Exploring the Hive architecture

▶ Getting started (properly) with Hive

▶ Working with the Hive clients

▶ Seeing which data types work with Hive

▶ Creating and managing databases and tables

▶ Mastering the Hive data-manipulation language

▶ Querying and analyzing data

I 
f you were to look back at the history of the IT Industry, you’d soon see 
that every decade has had one or more watershed moments. Huge inno-

vations have often dramatically impacted the industry as a whole, changing 
the course of certain companies and creating a “genesis moment” for others. 
Edgar F. Codd’s groundbreaking work in the 1970s on the relational model 
that spawned the whole relational database management system (RDBMS) 
industry was definitely a significant innovation. Immediately following Codd’s 
innovation was the introduction of structured query language (SQL), which 
was created by Donald D. Chamberlin and Raymond F. Boyce to provide a 
common programming language for managing data stored in a RDBMS. The 
RDBMS and SQL technologies became the de facto standards for data man-
agement and processing and have continued to hold sway over the industry.

Now, if you were to ask us to name the major innovation of the “noughties” 
(we’re still getting used to this nickname for the aught years, from 2000 to 
2009), we’d pick Apache Hadoop, of course — the amazing new technol-
ogy for big data management, analysis, and processing. However, few if any 
new IT technologies, no matter how innovative and attractive, can uproot 
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established standards and start over with a clean slate. For Hadoop to truly 
have a broad impact on the IT Industry and live up to its true potential, it 
needed to “play nice” with the older technologies: It had to support SQL; 
integrate with, and extend, the RDBMS; and enable IT professionals who 
lack skills in using Java MapReduce to take advantage of its features. For 
this reason (and others, which we discuss later in this chapter), Apache 
Hive was created at Facebook by a team of engineers who were led by Jeff 
Hammerbacher. Hive, a top-level Apache project and a vital component 
within the Apache Hadoop ecosystem, drives several leading big-data use 
cases and has brought Hadoop into data centers across the globe.

Saying Hello to Hive
To make a long story short, Hive provides Hadoop with a bridge to the 
RDBMS world and provides an SQL dialect known as Hive Query Language 
(HiveQL), which can be used to perform SQL-like tasks. That’s the big news, 
but there’s more to Hive than meets the eye, as they say, or more applica-
tions of this new technology than you can present in a standard elevator 
pitch. For example, Hive also makes possible the concept known as enter-
prise data warehouse (EDW) augmentation, a leading use case for Apache 
Hadoop, where data warehouses are set up as RDBMSs built specifically for 
data analysis and reporting. Now, some experts will argue that Hadoop (with 
Hive, HBase, Sqoop, and its assorted buddies) can replace the EDW, but we 
disagree. We believe that Apache Hadoop is a great addition to the enterprise 
and that it can augment (as mentioned earlier in this paragraph) and comple-
ment existing EDWs. This particular debate is also the subject of Chapter 10, 
so check out our discussion there. For now, we leave that debate alone and 
simply explain in this chapter how Hive, HBase, and Sqoop enable EDW 
augmentation.

Closely associated with RDBMS/EDW technology is extract, transform, and 
load (ETL) technology. To grasp what ETL does, it helps to know that, in many 
use cases, data cannot be immediately loaded into the relational database — it 
must first be extracted from its native source, transformed into an appropriate 
format, and then loaded into the RDBMS or EDW. For example, a company or 
an organization might extract unstructured text data from an Internet forum, 
transform the data into a structured format that’s both valuable and useful, 
and then load the structured data into its EDW.

As you make your way through this chapter (if you choose to read it that 
way), you can see that Hive is a powerful ETL tool in its own right, along 
with the major player in this realm: Apache Pig. (See Chapter 8 for more on 
Apache’s porcine offering.) Again, users may try to set up Hive and Pig as 
the new ETL tools for the data center. (Let them try.) As with the debate over 
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EDW versus Apache Hadoop, we see these Apache Hadoop technologies not 
as direct replacements for existing ETL tools but instead as powerful new ETL 
tools to be used when appropriate.

Last but not least, Apache Hive gives you powerful analytical tools, all within 
the framework of HiveQL. These tools should look and feel quite familiar to IT 
professionals who understand how to use SQL. We provide you with hands-
on examples of Hive analytics later in this chapter, but first we discuss the 
architecture of Hive in the next section.

Seeing How the Hive is Put Together
In this section, we illustrate for you the architecture of Apache Hive and 
explain its various components, as shown in the illustration in Figure 13-1.

Figure 13-1: 
The Apache 

Hive 
architecture.
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As you examine the elements shown in Figure 13-1, you can see at the bottom 
that Hive sits on top of the Hadoop Distributed File System (HDFS) and 
MapReduce systems. In the case of MapReduce, Figure 13-1 shows both the 
Hadoop 1 and Hadoop 2 components. With Hadoop 1, Hive queries are con-
verted to MapReduce code and executed using the MapReduce v1 (MRv1) 
infrastructure, like the JobTracker and TaskTracker. With Hadoop 2, YARN 
has decoupled resource management and scheduling from the MapReduce 
framework. (For more on MapReduce and YARN, check out Chapters 6 and 7.) 
Hive queries can still be converted to MapReduce code and executed, now 
with MapReduce v2 (MRv2) and the YARN infrastructure.

 There is a new framework under development called Apache Tez, which is 
designed to improve Hive performance for batch-style queries and support 
smaller interactive (also known as real-time) queries. At the time of writing, the 
Apache Tez project is still in incubation, and doesn’t yet have a production-ready 
release.

If it helps you visualize how all the pieces fit together, think of the HDFS 
(see Chapter 4) and MapReduce systems (see Chapter 6) as being parts of 
the Apache Hadoop operating system, with Hive — as well as other compo-
nents, such as HBase, described in Chapter 12 — as higher-level functions or 
applications. (If you read the chapters in this part of the book, you can see 
a common theme emerge: HDFS provides the storage, and MapReduce pro-
vides the parallel processing capability for higher-level functions within the 
Hadoop ecosystem.) Moving up the diagram, you find the Hive Driver, which 
compiles, optimizes, and executes the HiveQL. The Hive Driver may choose 
to execute HiveQL statements and commands locally or spawn a MapReduce 
job, depending on the task at hand. (We discuss MapReduce within the con-
text of Hive later in this chapter.) The Hive Driver stores table metadata in 
the metastore and its database.

 We assume that you have some familiarity with SQL and the relational data-
base model from the world of RDBMSs. A table or relation is composed of verti-
cal columns and horizontal rows. Cells are stored where the rows and columns 
intersect. If you’re not familiar with SQL and the relational database model, 
you can find helpful learning sources using your favorite search engine.

By default, Hive includes the Apache Derby RDBMS configured with the 
metastore in what’s called embedded mode. Embedded mode means that the 
Hive Driver, the metastore, and Apache Derby are all running in one Java 
Virtual Machine (JVM). This configuration is fine for learning purposes, but 
embedded mode can support only a single Hive session, so it normally isn’t 
used in multi-user production environments. Two other modes exist — local 
and remote — which can better support multiple Hive sessions in production 
environments. Also, you can configure any RDBMS that’s compliant with the 
Java Database Connectivity (JDBC) Application Programming Interface (API) 
suite. (Examples here include MySQL and DB2.)
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The key to application support is the Hive Thrift Server (see Figure 13-1), 
which enables a rich set of clients to access the Hive subsystem. We’ve 
included the open source SQuirreL SQL client, which can be found at 
http://squirrel-sql.sourceforge.net, as an example. The main 
point is that any JDBC-compliant application can access Hive via the bundled 
JDBC driver. The same statement applies to clients compliant with Open 
Database Connectivity (ODBC) — for example, unixODBC and the isql utility, 
which are typically bundled with Linux, enable access to Hive from remote 
Linux clients. Additionally, if you use Microsoft Excel, you’ll be pleased to 
know that you can access Hive after you install the Microsoft ODBC driver 
on your client system. Finally, if you need to access Hive from programming 
languages other than Java (PHP or Python, for example), Apache Thrift is the 
answer. Apache Thrift clients connect to Hive via the Hive Thrift Server, just 
as the JDBC and ODBC clients do.

 For more information on Apache Thrift see Chapter 12.

To continue with the Hive architecture drawing in Figure 13-1, note that Hive 
includes a Command Line Interface (CLI), where you can use a Linux terminal 
window to issue queries and administrative commands directly to the Hive 
Driver. (We use the Hive CLI several times in this chapter to demonstrate 
HiveQL.) If a graphical approach is more your speed, there’s also a handy 
web interface so that you can access your Hive-managed tables and data via 
your favorite browser.

 There is another web browser technology known as Hue that provides a 
graphical user interface (GUI) to Apache Hive. Some Hadoop users like to have 
a GUI at their disposal instead of just a command line interface (CLI). Along 
with Hive, Hue supports other key Hadoop technologies as well like HDFS, 
MapReduce/YARN, HBase, Zookeeper, Oozie, Pig, and Sqoop. We think you’ll 
like the name for Hue’s Apache Hive GUI -- it’s called Beeswax. Hue is also an 
open source project and you can find it at http://gethue.com.

Getting Started with Apache Hive
As with most technological matters, there’s no better way to see what’s what 
than to install the software and give it a test run — Hive is no exception. And, 
as with other technologies in the Hadoop ecosystem, it doesn’t take long to 
get started.

 If you have the time and the network bandwidth, it’s always best to download 
an entire Apache Hadoop distribution with all the technologies integrated and 
ready to run. You can find a list of Apache Hadoop bundles at
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http://wiki.apache.org/hadoop/Distributions%20and%20
Commercial%20Support

If you take the full-distribution route, a popular approach for learning the ins 
and outs of Hive is to run your Hadoop distribution in a Linux virtual machine 
(VM) on a 64-bit-capable laptop with sufficient RAM. (Eight gigabytes or 
more of RAM tends to work well if Windows 7 is hosting your VM, although 
we’ve met engineers who live dangerously with less.) You also need Java 6 or 
later and — of course — a supported operating system: Linux, Mac OS X, or 
Cygwin, to provide a Linux shell for Windows users. (We use Red Hat Linux 
on Windows 7 in a VMware virtual machine for the sample environment.)

The setup steps run something like this:

 1. Download the latest Hive release from this site:

http://hive.apache.org/releases.html

  For this book, we downloaded Hive version 11.0. You also need the 
Hadoop and MapReduce subsystems, so be sure to complete Step 2.

 2. Download Hadoop version 1.2.1 from this site:

http://hadoop.apache.org/releases.html

 3. Using the commands in Listing 13-1 (the listing following this step list), 
place the releases in separate directories, and then uncompress and 
untar them. (Untar is one of those pesky Unix terms which simply 
means to expand an archived software package.)

 4. Using the commands in Listing 13-2 (again, following this step list), 
set up your Apache Hive environment variables, including HADOOP_
HOME, JAVA_HOME, HIVE_HOME and PATH, in your shell profile 
script.

 5. Create the Hive configuration file that you’ll use to define specific 
Hive configuration settings.

  The Apache Hive distribution includes a template configuration file that 
provides all default settings for Hive. To customize Hive for your envi-
ronment, all you need to do is copy the template file to the file named 
hive-site.xml and edit it. Listing 13-3 shows the steps to accomplish 
this task.

  Because you’re running Hive in stand-alone mode on a virtual machine 
rather than in a real-life Apache Hadoop cluster, configure the system 
to use local storage rather than the HDFS: Simply set the hive.
metastore.warehouse.dir parameter. As we demonstrate in the next 
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section, when you start a Hive client, the $HIVE_HOME environment vari-
able tells the client that it should look for your configuration file (hive-
site.xml) in the conf directory.

Listing 13-1: Installing Apache Hadoop and Hive

$ mkdir hadoop; cp hadoop-1.2.1.tar.gz hadoop; cd hadoop
$ gunzip hadoop-1.2.1.tar.gz
$ tar xvf *.tar
$ mkdir hive; cp hive-0.11.0.tar.gz hive; cd hive
$ gunzip hive-0.11.0.tar.gz
$ tar xvf *.tar

Listing 13-2: Setting Up Apache Hive Environment Variables in .bashrc

export HADOOP_HOME=/home/user/Hive/hadoop/hadoop-1.2.1
export JAVA_HOME=/opt/jdk
export HIVE_HOME=/home/user/Hive/hive-0.11.0
export PATH=$HADOOP_HOME/bin:$HIVE_HOME/bin:  

$JAVA_HOME/bin:$PATH

Listing 13-3: Setting Up the hive-site.xml File

$ cd $HIVE_HOME/conf
$ cp hive-default.xml.template hive-site.xml
 
(Using your favorite editor, modify the hive-site.xml file 

so that it only includes the "hive.metastore.
warehouse.dir" property for now. When finished 
it will look like the XML file below. Note 
that we removed the comments to shorten the 
listing):

 
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl"  

href="configuration.xsl"?>
<configuration>
<!-- Hive Execution Parameters -->
<property>
  <name>hive.metastore.warehouse.dir</name>
  <value>/home/biadmin/Hive/warehouse</value>
  <description>location of default database for the 

warehouse</description>
</property>
</configuration>
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 Both Hadoop and Hive support a local mode configuration, which is the 
approach we’re leveraging in this chapter. If you already have a Hadoop cluster 
configured and running, you need to set the hive.metastore.warehouse.
dir configuration variable to the HDFS directory where you intend to store 
your Hive warehouse, set the mapred.job.tracker configuration variable to 
point to your Hadoop JobTracker, and (most likely) set up a distributed metas-
tore. For the latest up-to-date Hive installation instructions, see the page at

https://cwiki.apache.org/confluence/display/Hive/
GettingStarted

That’s all you need to do to get started with Apache Hive! In the next section, 
you meet several Hive clients and get to run your first Hive commands.

Examining the Hive Clients
Earlier in this chapter (refer to Figure 13-1), you can see that there are quite a 
number of client options for Hive. It’s truly beyond the scope of this chapter 
to show you how to leverage all the client options, so we picked three that we 
believe should prove quite useful when the time comes to analyze data using 
HiveQL. The first client is the Hive command-line interface (CLI), followed 
by a web browser using the Hive Web Interface (HWI) Server, and, finally, 
the open source SQuirreL client using the JDBC driver. Each of these client 
options can play a particular role as you work with Hive to analyze data.

The Hive CLI client
To master the finer points of the Hive CLI client, it might help to revisit the 
(somewhat busy-looking) Hive architecture diagram shown in Figure 13-1. 
In Figure 13-2, we’ve streamlined the original figure to focus only on the compo-
nents that are required when running the CLI.

Figure 13-2: 
The Hive 

command-
line inter-

face mode.
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 Figure 13-2 illustrates the components of Hive that are needed when running 
the CLI on a Hadoop cluster. In the examples in this chapter, you run Hive in 
local mode, which uses local storage, rather than the HDFS, for your data.

To run the Hive CLI, you execute the hive command and specify the CLI as 
the service you want to run. In Listing 13-4, you can see the command that’s 
required as well as some of our first HiveQL statements. (We have included a 
steps annotation using the A-B-C model in the listing to direct your attention 
to the key commands.)

Listing 13-4: Using the Hive CLI to Create a Table

(A) $ $HIVE_HOME/bin hive --service cli
(B) hive> set hive.cli.print.current.db=true;
(C) hive (default)> CREATE DATABASE ourfirstdatabase;
OK
Time taken: 3.756 seconds
(D) hive (default)> USE ourfirstdatabase;
OK
Time taken: 0.039 seconds
(E) hive (ourfirstdatabase)> CREATE TABLE our_first_table 

(
                       > FirstName       STRING,
                       > LastName        STRING,
                       > EmployeeId      INT);
OK
Time taken: 0.043 seconds
hive (ourfirstdatabase)> quit;
(F) $ ls /home/biadmin/Hive/warehouse/ourfirstdatabase.db
our_first_table

The first command in Listing 13-4 (see Step A) starts the Hive CLI using the 
$HIVE_HOME environment variable (refer to Listing 13-2). The –service 
cli command-line option directs the Hive system to start the command-line 
interface, though you could have chosen other servers. (In fact, you can try 
a few later in this section.) Next, in Step B, you tell the Hive CLI to print your 
current working database so that you know where you are in the namespace. 
(This statement will make sense after we explain how to use the next com-
mand, so hold tight.) Continuing in Listing 13-4, in Step C you use HiveQL’s 
data definition language (DDL) to create your first database. (Remember that 
databases in Hive are simply namespaces where particular tables reside; 
because a set of tables can be thought of as a database or schema, you could 
have used the term SCHEMA in place of DATABASE to accomplish the same 
result.) More specifically, you’re using DDL to tell the system to create a data-
base called ourfirstdatabase and then to make this database the default 
for subsequent HiveQL DDL commands using the USE command in Step 
D. In Step E, you create your first table and give it the (quite appropriate) 
name our_first_table. (Until now, you may have believed that it looks 
a lot like SQL, with perhaps a few minor differences in syntax depending on 
which RDBMS you’re accustomed to — and you would have been right.) 
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The last command, in Step F, carries out a directory listing of your chosen 
Hive warehouse directory so that you can see that our_first_table has in 
fact been stored on disk.

 You set the hive.metastore.warehouse.dir variable to point to the local 
directory /home/biadmin/Hive/warehouse in your Linux virtual machine 
rather than use the HDFS as you would on a proper Hadoop cluster.

After you’ve created a table, it’s interesting to view the table’s metadata. In 
production environments, you might have dozens of tables or more, so it’s 
helpful to be able to review the table structure from time to time. You can use 
a HiveQL command to do this using the Hive CLI, but the Hive Web Interface 
(HWI) Server provides a helpful interface for this type of operation. (More on 
HWI in the next section.)

 Using the HWI Server instead of the CLI can also be more secure. Careful 
consideration must be made when using the CLI in production environments 
because the machine running the CLI must have access to the entire Hadoop 
cluster. Therefore, system administrators typically put in place tools like the 
secure shell (ssh) in order to provide controlled and secure access to the 
machine running the CLI as well as to provide network encryption. However, 
when the HWI Server is employed, a user can only access Hive data allowed 
by the HWI Server via his or her web browser

The web browser as Hive client
Using the Hive CLI requires only one command to start the Hive shell, but 
when you want to access Hive using a web browser, you first need to start 
the HWI Server and then point your browser to the port on which the server 
is listening. Figure 13-3 illustrates how this type of Hive client configuration 
might work. (Note that even though you might not be using the Hive CLI, it’s 
not an optional component and is still present.)

Figure 13-3:  
The Hive 

Web 
Interface 

client con-
figuration.
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The following steps show you what you need to do before you can start the 
HWI Server:

 1. Using the commands in Listing 13-5 (following this list), configure the 
$HIVE_HOME/conf/hive-site.xml file to ensure that Hive can find 
and load the HWI’s Java server pages.

 2. The HWI Server requires Apache Ant libraries to run, so you need to 
download more files. Download Ant from the Apache site at http://
ant.apache.org/bindownload.cgi.

 3. Install Ant using the following commands:

mkdir ant
cp apache-ant-1.9.2-bin.tar.gz ant; cd ant
gunzip apache-ant-1.9.2-bin.tar.gz
tar xvf apache-ant-1.9.2-bin.tar
 

 4. Set the $ANT_LIB environment variable and start the HWI Server by 
using the following commands:

$ export ANT_LIB=/home/user/ant/apache-ant-1.9.2/lib
$ bin/hive --service hwi
13/09/24 16:54:37 INFO hwi.HWIServer: HWI is starting up
...
13/09/24 16:54:38 INFO mortbay.log: Started 

SocketConnector@0.0.0.0:9999

Listing 13-5: Configuring the $HIVE_HOME/conf/hive-site.xml file

          <property>
             <name>hive.hwi.war.file</name>
             <value>${HIVE_HOME}/lib/hive_hwi.war</value>
             <description>This is the WAR file with the 

jsp
             content for Hive Web Interface</description>
          </property>

 In a production environment, you’d probably configure two other properties: 
hive.hwi.listen.host and hive.hwi.listen.port. You can use the 
first property to set the IP address of the system running your HWI Server, and 
use the second to set the port that the HWI Server listens on. In this exercise, 
you use the default settings: With the HWI Server now running, you simply 
enter the URL http://localhost:9999/hwi/ into your web browser and 
view the metadata for our_first_table (refer to Listing 13-4). Figure 13-4 
shows what the screen looks like after selecting the Browse Schema link fol-
lowed by ourfirstdatabase and our_first_table.
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Figure 13-4: 
Using the 
Hive Web 

Interface to 
browse the 

metadata.
 

 In production environments, working with the HWI Server can save you the 
time of loading the Hive distribution on every client — instead, you just point 
your browser to the server running the HWI. Additionally, you can use the 
HWI Server to view Hive Thrift Server diagnostics and query tables. The HWI 
Server allows you to set up batch sessions for long-running queries. To set up 
a session, you simply click the Create Session link (refer to Figure 13-4).

SQuirreL as Hive client  
with the JDBC Driver
The last Hive client we discuss and demonstrate in this chapter is the open 
source tool SQuirreL SQL. You can download this universal SQL client from 
the SourceForge website: http://sourceforge.net. It provides a user 
interface to Hive and simplifies the tasks of querying large tables and analyz-
ing data with Apache Hive. 

Figure 13-5 illustrates how the Hive architecture would work when using tools 
such as SQuirreL.

In the figure, you can see that the SQuirreL client uses the JDBC APIs to pass 
commands to the Hive Driver by way of the Server.

 For a helpful example of a Hive Java client connecting to the system via the 
JDBC interface, see

https://cwiki.apache.org/confluence/display/Hive/
HiveClient#HiveClient-JDBC
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Figure 13-5: 
Using the 
SQuirreL 

client with 
Apache 

Hive.

Follow these steps to get SQuirreL running:

 1. Start the Hive Thrift Server using the command in Listing 13-6 (follow-
ing this list).

 2. Download the latest SQuirreL distribution from the SourceForge site 
into a directory of your choice.

  For this example, we downloaded squirrel-sql-3.5.0-
standard.tar.gz from http://sourceforge.net/projects/
squirrel-sql/files/1-stable/3.5.0-plainzip.

 3. Uncompress the SQuirreL package using the gunzip command and 
expand the archive using the tar command.

  gunzip squirrel-sql-3.5.0-standard.tar.gz; tar 
xvf squirrel-sql-3.5.0-standard.tar.gz

 4. Change to the new SQuirreL release directory and start the tool using 
the following command.

  $ cd squirrel-sql-3.5.0-standard;./squirrel-
sql.sh

 5. Follow the directions for running SQuirreL with Apache Hive at

https://cwiki.apache.org/confluence/display/Hive/
HiveJDBCInterface - HiveJDBCInterface-
IntegrationwithSQuirrelSQLClient

  Note that the instructions for including the Hadoop core .jar file may 
differ depending on the Hadoop release. In this case, the Hadoop .jar 
file was named hadoop-core-1.2.1.jar, so including $HADOOP_
HOME/hadoop-*-core.jar per the online instructions was incorrect. 
We had to use $HADOOP_HOME/hadoop-core*.jar.
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Listing 13-6: Starting the Hive Thrift Server

$ $HIVE_HOME/bin/hive --service hiveserver -p 10000 -v
Starting Hive Thrift Server
Starting Hive Thrift Server on port 10000 with 100 min 

worker threads and 2147483647 max worker 
threads

This is all that’s required to begin using the SQuirreL graphical user interface. 
Figure 13-6 shows some HiveQL commands running against the Hive Driver — 
similar to the commands you ran earlier, with the CLI; refer to Listing 13-4.

 

Figure 13-6: 
Using the 
SQuirreL 

SQL client to 
run HiveQL 

commands.
 

 The Apache Hive 0.11 release also includes a new Hive Thrift Server called 
HiveServer2. When configured correctly, HiveServer2 can support multiple 
clients (a CLI client and a SQuirreL client at the same time, for example) 
and it provides better security. For more information on HiveServer2 
see: https://cwiki.apache.org/confluence/display/Hive/
Setting+up+HiveServer2.

Now that you know how to leverage some indispensable Hive client technolo-
gies, we want to start you on your survey of the HiveQL. Your first stop: Hive 
data types.

Working with Hive Data Types
Listing 13-7 goes to the trouble of creating a table that leverages all (as of this 
writing) Hive-supported data types.
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Listing 13-7: HiveQL-Supported Data Types

$ ./hive --service cli
hive> CREATE DATABASE data_types_db;
OK
Time taken: 0.119 seconds
hive> USE data_types_db;
OK
Time taken: 0.018 seconds
(1)Hive> CREATE TABLE data_types_table (
(2) > our_tinyint     TINYINT     COMMENT '1 byte signed integer',
(3) > our_smallint    SMALLINT    COMMENT '2 byte signed integer',
(4) > our_int         INT         COMMENT '4 byte signed integer',
(5) > our_bigint      BIGINT      COMMENT '8 byte signed integer',
(6) > our_float       FLOAT       COMMENT 'Single precision floating point',
(7) > our_double      DOUBLE      COMMENT 'Double precision floating point',
(8) > our_decimal     DECIMAL     COMMENT 'Precise decimal type based
(9) >                                      on Java BigDecimal Object',
(10) > our_timestamp   TIMESTAMP   COMMENT 'YYYY-MM-DD HH:MM:SS.fffffffff"
(11) >                                     (9 decimal place precision)',
(12) > our_boolean     BOOLEAN     COMMENT 'TRUE or FALSE boolean data type',
(13) > our_string      STRING      COMMENT 'Character String data type',
(14) > our_binary      BINARY      COMMENT 'Data Type for Storing arbitrary
(15) >                                      number of bytes',
(16) > our_array       ARRAY<TINYINT>  COMMENT 'A collection of fields all of
(17) >                                          the same data type indexed BY
(18) >                                          an integer',
(19) > our_map       MAP<STRING,INT> COMMENT 'A Collection of Key,Value Pairs
(20) >                                          where the Key is a Primitive
(21) >                                          Type and the Value can be
(22) >                                          anything.  The chosen data
(23) >                                          types for the keys and values
(24) >                                          must remain the same per map',
(25) > our_struct    STRUCT<first : SMALLINT, second : FLOAT, third : STRING>
(26) >                                 COMMENT 'A nested complex data
(27) >                                          structure',
(28) > our_union      UNIONTYPE<INT,FLOAT,STRING>
(29) >                                 COMMENT 'A Complex Data Type that can
(30) >                                          hold One of its Possible Data
(31) >                                          Types at Once')
(32) > COMMENT 'Table illustrating all Apache Hive data types'
(33) > ROW FORMAT DELIMITED
(34) > FIELDS TERMINATED BY ','
(35) > COLLECTION ITEMS TERMINATED BY '|'
(36) > MAP KEYS TERMINATED BY '^'
(37) > LINES TERMINATED BY '\n'
(38) > STORED AS TEXTFILE
(39) > TBLPROPERTIES ('creator'='Bruce Brown', 'created_at'='Sat Sep 21 

20:46:32 EDT 2013');
OK
Time taken: 0.886 seconds
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We’ve included line numbers with the HiveQL to make it easier to study the 
table. You can see from the CREATE TABLE statement (refer to Line 1) all the 
various data types at your disposal (again, as of this writing) in Hive 0.11. 
One in particular, DECIMAL, is new as of Hive 0.11, so whenever Hive 0.12 is 
released, check to see whether it has more. (Hint: Watch for the type named 
DATE.)

 Consult the Data Types page in the Apache Hive Language Manual 
(https://cwiki.apache.org/confluence/display/Hive/
LanguageManual+Types) to watch for new data types as the Hive commu-
nity continues to develop and create new, innovative features in Hive.

Notice in the table that after every column we created (see Lines 2–31), we 
wrote a comment (using the HiveQL reserved keyword - COMMENT) giving 
you information about the Hive data type of the column. Hive supports the 
Comment feature as a way to document the columns in your tables. Also, 
Line 32 allows you to add a comment for the entire table. Line 39 starts with 
the keyword TBLPROPERTIES, which provides a way for you to add metadata 
to the table. This information can be viewed later, after the table is created, 
with other HiveQL commands such as DESCRIBE EXTENDED table_name.

 Keep in mind that Hive has primitive data types as well as complex data 
types. The last four columns (see Lines 16–31) in our_datatypes_table are 
complex data types: ARRAY, MAP, STRUCT, and UNIONTYPE. Their presence 
provides more proof (if proof is needed) that Hive supports a rich set of data 
types that enables you to manage diverse data, all under HiveQL.

Finally, Lines 33–38 in the CREATE TABLE statement show off a particularly 
powerful feature of Hive. Here, the lines let you define the file format when 
your table gets stored in HDFS and define how fields and rows are delimited. 
Actually Hive allows you to specify the file format and record format sepa-
rately. We discuss this powerful feature of Hive in greater detail in the next 
section as we tell you more about creating Hive databases and tables.

Creating and Managing  
Databases and Tables

To fully grasp Hive database and table creation in all its splendor, you need 
a thorough grounding in what’s referred to as Hive’s data definition language 
(DDL). You get that grounding in this section, starting with database or 
schema creation.
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Managing Hive databases
Earlier in this chapter, Listing 13-4 shows you the basics of creating data-
bases or schemas with Hive, but they’re just that — the basics. Quite a few 
more features are out there that you’ll find useful; Listing 13-8 illustrates a 
few of them.

Listing 13-8: Creating, Dropping, and Altering Databases in Apache Hive

(1) $ $HIVE_HOME/bin hive --service cli
(2) hive> set hive.cli.print.current.db=true;
(3) hive (default)> USE ourfirstdatabase;
(4) hive (ourfirstdatabase)> ALTER DATABASE 

ourfirstdatabase SET DBPROPERTIES 
('creator'='Bruce Brown',  
'created_for'='Learning Hive DDL');

OK
Time taken: 0.138 seconds
(5) hive (ourfirstdatabase)> DESCRIBE DATABASE EXTENDED 

ourfirstdatabase;
OK
ourfirstdatabase                                     

file:/home/biadmin/Hive/warehouse/
ourfirstdatabase.db   {created_for=Learning 
Hive DDL, creator=Bruce Brown}

Time taken: 0.084 seconds, Fetched: 1 row(s)CREATE 
(DATABASE|SCHEMA) [IF NOT EXISTS] database_name

(6) hive (ourfirstdatabase)> DROP DATABASE 
ourfirstdatabase CASCADE;

OK
Time taken: 0.132 seconds

Listing 13-8 picks up where Listing 13-4 left off, with you having already cre-
ated a database aptly named ourfirstdatabase. In Line 4 of Listing 13-8, 
you’re now altering the database to include two new metadata items: creator 
and created_for. As you can imagine, including custom metadata with your 
database (and tables, as we describe earlier) can be quite useful for docu-
mentation purposes and coordination within your working group. On Line 5, 
you get the command to view the metadata, and on Line 6 you’re dropping 
the entire database — removing it from the server, in other words — with the 
DROP command and CASCADE keyword. (Without the CASCADE keyword, you 
couldn’t drop the database because the server has still stored our_first_
table — refer to Listing 13-4.) You can use the DROP TABLE command to 
delete individual tables or you can use the brute-force technique, as you do 
here, to forcefully remove everything from the namespace.
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Creating and managing tables with Hive
After you have a good working knowledge of Hive database creation and man-
agement under your belt, it’s time to turn your attention to table creation and 
management. Your first stop? Hive table file and record formats. Apache Hive 
lets you define the record format separately from the file format. This power-
ful feature — coupled with the complex data types you leveraged in Listing 
13-7 — enables the Hive user to analyze and query unstructured and semi-
structured data that RDBMSs cannot handle! 

Defining table file formats
In the “Working with Hive Data Types” section, earlier in this chapter, we 
describe how to create a table (data_types_table) that includes all Hive 
0.11–supported data types. We point out there that Lines 33–38 illustrate a 
powerful feature in Hive, and we promise to discuss that feature in this chap-
ter. Well, here we are, as promised. To refresh your memory, we’ve copied 
Lines 33–38 into Listing 13-9 so that you don’t have to flip back and review 
the Hive Query Language (HiveQL) — refer to Listing 13-7.

Listing 13-9:  Defining the Hive Row Format for the TEXTFILE File Format

(1)Hive> CREATE TABLE data_types_table (
...
(33) > ROW FORMAT DELIMITED
(34) > FIELDS TERMINATED BY ','
(35) > COLLECTION ITEMS TERMINATED BY '|'
(36) > MAP KEYS TERMINATED BY '^'
(37) > LINES TERMINATED BY '\n'
(38) > STORED AS TEXTFILE
...
(39) > TBLPROPERTIES ('creator'='Bruce Brown',  

'created_at'='Sat Sep 21 20:46:32 EDT 2013');

Lines 33–37 define the Hive row format for your data_types_table and 
provide specifics on how fields will be separated or delimited whenever you 
insert or load data into the table. (You can find out more in the next section 
about the various techniques for loading data into tables.) Line 38 defines the 
Hive file format — a text file — when the data is stored in the HDFS (or local 
file system, in this case). You may be wondering why our_first_table 
(refer to Listing 13-4) lacks these extra keywords and delimiters. The reason 
is that Hive tables default to the configuration in Listing 13-10 unless you 
override the default settings, as we do above in Listing 13-9.
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Listing 13-10: Hive Table Default Row and File Format

CREATE TABLE ...
             ...
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\001'
COLLECTION ITEMS TERMINATED BY '\002'
MAP KEYS TERMINATED BY '\003'
LINES TERMINATED BY '\n'
STORED AS TEXTFILE
...

We chose to have you override the defaults in Listing 13-7 and 13-9 to make 
it easier to build a readable data file to load into the data_types_table, 
and to illustrate this powerful row formatting feature in Hive. We show you 
how to actually create a readable data file and load it into the data_types_
table later in this chapter, in the section entitled “Seeing How the Hive Data 
Manipulation Language Works” in Listing 13-13. 

So far, we have been using the default TEXTFILE format for your Hive table 
records. However, as you know, text files are slower to process, and they con-
sume a lot of disk space unless you compress them. For these reasons and 
more, the Apache Hive community came up with several choices for storing 
our tables on the HDFS. The following list describes the file formats you can 
choose from as of Hive version 0.11.

 ✓ TEXTFILE: The default file format for Hive records. Alphanumeric char-
acters from the Unicode standard (see www.unicode.org) are used to 
store your data.

 ✓ SEQUENCEFILE: The format for binary files composed of key/value 
pairs. Sequence files, which are used heavily by Hadoop, are often good 
choices for Hive table storage, especially if you want to integrate Hive 
with other technologies in the Hadoop ecosystem.

 ✓ RCFILE: Stores records in a column-oriented fashion rather than a 
row-oriented fashion — like the TEXTFILE format approach. Using the 
RCFILE format makes sense when tables have a large number of col-
umns, but only a few columns are typically accessed. (RCFILE stands 
for record columnar file.)

 ✓ ORC: A format (new as of Hive 0.11) that has significant optimizations to 
improve Hive reads and writes and the processing of tables. (ORC stands 
for optimized row columnar and has nothing to do goblins loyal to Lord 
Sauron.) For example, ORC files include optimizations for Hive com-
plex types and new types such as DECIMAL. Also lightweight indexes 
are included with ORC files to improve performance. For a complete 
list of new ORC file format features, consult the Hive Language Manual 
at https://cwiki.apache.org/confluence/display/Hive/
LanguageManual+ORC
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 ✓ INPUTFORMAT, OUTPUTFORMAT: Lets you specify the Java class that 
will read data from the Hive table. OUTPUTFORMAT does the same thing 
for writing data to the Hive table. The keywords in the earlier table entries 
(TEXTFILE, for example) provide shortened syntax so that you don’t 
have to specify both INPUTFORMAT and OUTPUTFORMAT for every CREATE 
TABLE statement. Of course, it enables customization and can be quite pow-
erful under the right circumstances. To see the default settings for the table, 
simply execute a DESCRIBE EXTENDED tablename HiveQL statement and 
you’ll see the INPUTFORMAT and OUTPUTFORMAT classes for your table.

Defining table record formats
The Java technology that Hive uses to process records and map them to 
column data types in Hive tables (like you defined in Listing 13-7) is called 
SerDe, which is short for SerializerDeserializer. Figure 13-7 illustrates how 
SerDes are leveraged and it will help you understand how Hive keeps file for-
mats separate from record formats.

Figure 13-7: 
How Hive 

Reads and 
Writes 

Records

So the first thing to notice from Figure 13-7 is the INPUTFORMAT object. 
INPUTFORMAT allows you to specify your own Java class should you want 
Hive to read from a different file format. In the examples so far, you have been 
using STORED AS TEXTFILE, which is easier than writing INPUTFORMAT 
org.apache.hadoop.mapred.TextInputFormat — the whole Java 
package tree and class name for the default text file input format object, 
in other words. The same is true of the OUTPUTFORMAT object. Instead of 
writing out the whole Java package tree and class name, the STORED AS 
TEXTFILE statement takes care of all of that for you. Now, we’ve been saying 
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that Hive allows you to separate your record format from your file format so 
how exactly do you accomplish this? Simple, you either replace STORED AS 
TEXTFILE with something like STORED AS RCFILE, or you can create your 
own Java class and specify the input and output classes using INPUTFORMAT 
packagepath.classname and OUTPUTFORMAT packagepath.classname.

Finally notice that when Hive is reading data from the HDFS (or local file 
system), a Java Deserializer formats the data into a record that maps to 
table column data types. This would characterize the data flow for a HiveQL 
SELECT statement which you’ll be able to try out in “Querying and analyzing 
data” section below. When Hive is writing data, a Java Serializer accepts the 
record Hive uses and translates it such that the OUTPUTFORMAT class can 
write it to the HDFS (or local file system). This would characterize the data 
flow for a HiveQL CREATE-TABLE-AS-SELECT statement which you’ll be 
able to try out in “Mastering the Hive data-manipulation language” section 
below. So the INPUTFORMAT, OUTPUTFORMAT and SerDe objects allow Hive to 
separate the table record format from the table file format. You’ll be able to 
see this in action in two examples below but first we want to expose you to 
some SerDe options.

Hive bundles a number of SerDes for you to choose from, and you’ll find a 
larger number available from third parties if you search online. You can also 
develop your own SerDes if you have a more unusual data type that you want 
to manage with a Hive table. (Possible examples here are video data and 
e-mail data.) In the list below, we describe some of the SerDes provided with 
Hive as well as one third-party option that you may find useful.

 ✓ LazySimpleSerDe: The default SerDe that’s used with the TEXTFILE 
format; it would be used with our_first_table from Listing 13-4 and 
with data_types_table from Listing 13-7.

 ✓ ColumnarSerDe: Used with the RCFILE format.

 ✓ RegexSerDe: The regular expression SerDe, which ships with Hive 
to enable the parsing of text files, RegexSerDe can form a powerful 
approach for building structured data in Hive tables from unstructured 
blogs, semi-structured log files, e-mails, tweets, and other data from 
social media. Regular expressions allow you to extract meaningful infor-
mation (an e-mail address, for example) with HiveQL from an unstruc-
tured or semi-structured text document incompatible with traditional 
SQL and RDBMSs.

 ✓ HBaseSerDe: Included with Hive to enables it to integrate with HBase. 
You can store Hive tables in HBase by leveraging this SerDe.

 ✓ JSONSerDe: A third-party SerDe for reading and writing JSON data 
records with Hive. We quickly found (via Google and GitHub) two JSON 
SerDes by searching online for the phrase json serde for hive.

 ✓ AvroSerDe: Included with Hive so that you can read and write Avro data 
in Hive tables. 
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Reviewing the Language Manual DDL (found at: https://cwiki.apache.
org/confluence/display/Hive/LanguageManual+DDL) can be very 
helpful before you start creating your tables. We’ve included an excerpt from 
the manual below, which shows you (in bold print) all of the options we’ve 
been discussing in this section.

CREATE [EXTERNAL] TABLE [IF NOT EXISTS]  
[db_name.]table_name

  ...  (Skipping some lines for brevity)
   [ROW FORMAT row_format] [STORED AS file_format]
   | STORED BY 'storage.handler.class.name' [WITH 

SERDEPROPERTIES (...)] ]
  ...  (Skipping some lines for brevity) 
row_format
  : DELIMITED [FIELDS TERMINATED BY char [ESCAPED BY 

char]] [COLLECTION ITEMS TERMINATED BY char]
        [MAP KEYS TERMINATED BY char] [LINES TERMINATED BY 

char] [NULL DEFINED AS char]  
        | SERDE serde_name [WITH SERDEPROPERTIES 

(property_name=property_value, property_
name=property_value, ...)]

file_format:
  : SEQUENCEFILE | TEXTFILE | RCFILE | ORC 
  | INPUTFORMAT input_format_classname OUTPUTFORMAT 

output_format_classname

Tying it all together with an example
We want to tie things together in this section with two examples. In this first 
example, we revisit data_types_table from Listing 13-7. Here we leverage 
the DESCRIBE EXTENDED data_types_table HiveQL command to illus-
trate what Hive does with our CREATE TABLE statement under the hood.

hive> DESCRIBE EXTENDED data_types_table;
OK
our_tinyint             tinyint                 1 byte 

signed integer
our_smallint            smallint                2 byte 

signed integer
...
(A)inputFormat:org.apache.hadoop.mapred.TextInputFormat,
outputFormat:
(B)org.apache.hadoop.hive.ql.io.

HiveIgnoreKeyTextOutputFormat
, ...
serializationLib:
  org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe, 
(C)parameters:{collection.delim=|, mapkey.delim=^, line.

delim=
(D), serialization.format= ,, field.delim=,}), 
...
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Notice that Hive provides an INPUTFORMAT and OUTPUTFORMAT class for you 
when you specify STORED AS TEXTFILE, as we did in line 38 from Listing 13-7. 
Also note how Hive included the default LazySimpleSerDe. The row format delim-
iters that you specified in lines 33 through 37 from Listing 13-7 are inserted as 
parameters to the LazySimpleSerDe so the records in the text file can be parsed 
and translated into column types by the SerDe or written in proper format to the 
text file.

An example of how to use the HBase SerDe
In this last example of this section, we want to show you how to specify a 
SerDe instead of letting Hive pick a default SerDe for you. We want to show 
you an example that also dovetails with some of the concepts covered in 
Chapter 12 — the HBase Chapter. Hive includes an HBase SerDe, which 
is great news if you want to put a HiveQL front end on your HBase table. 
Without HiveQL, HBase users have to leverage the HBase shell or write Java 
code to query from and write to HBase tables. In the example in Listing 13-11, 
you create an EXTERNAL Hive table that connects with an HBase table. (The 
external table is another feature of Hive that lets you connect with data, then 
query and analyze the data with HiveQL, but when you delete the table, the 
data remains in its original location.) Listing 13-11 shows the schema and 
contents of the HBase table that you connect to with Hive using the HBase 
SerDe.

Listing 13-11: Customer Information HBase Table

ROW    COLUMN+CELL
00001  column=ContactInfo:EA,  value=John.Smith@xyz.com
00001  column=ContactInfo:SA,  value=1 Hadoop Lane, NY 

11111
00001  column=CustomerName:FN, value=John
00001  column=CustomerName:LN, value=Smith
00001  column=CustomerName:MN, value=Timothy
00002  column=ContactInfo:EA,  value=Jane.Doe@xyz.com
00002  column=ContactInfo:SA,  value=7 HBase Ave, CA 22222
00002  column=CustomerName:FN, value=Jane
00002  column=CustomerName:LN, value=Doe
00002  column=CustomerName:MN, value=A

The Customer Information HBase table consists of two rows and two column 
families: ContactInfo and CustomerName. The ContactInfo column 
family has two columns storing the customer’s e-mail address (EA) and street 
address (SA). The CustomerName column family has three rows storing 
the first name (FN), middle name (MN) and last name (LN) of the customer. 
You can find out much more about HBase in Chapter 12, but for now, what’s 
important to understand is that HBase stores key value pairs just like the 
Hive map data type we demonstrate in Line 19 of Listing 13-7. In Listing 13-12, 
you see the HiveQL statements you need in order to create a table that con-
nects to your HBase table (refer to Listing 13-11) using map data types.
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Listing 13-12: Creating an External Hive Table to Connect to the HBase 
Customer Information Table

(A) CREATE EXTERNAL TABLE hive_hbase_table (
key     INT,
name    map<STRING,STRING>,
info    map<STRING,STRING>)
STORED BY 'org.apache.hadoop.hive.hbase.

HBaseStorageHandler'
WITH SERDEPROPERTIES ("hbase.columns.mapping" =  

":key,CustomerName:,ContactInfo:")
TBLPROPERTIES ("hbase.table.name" = "customerinfo");
 
(B) hive> SELECT * FROM hive_hbase_table;
OK
1       {"FN":"John","LN":"Smith","MN":"Timothy"}
        {"EA":"John.Smith@xyz.com","SA":"1 Hadoop Lane, NY 

11111"}
2       {"FN":"Jane","LN":"Doe","MN":"A"}
        {"EA":"Jane.Doe@xyz.com","SA":"6 Novice HBase Ave, 

CA 22222"}
Time taken: 1.422 seconds
(C) hive> SELECT info["EA"] FROM hive_hbase_table WHERE 

name["FN"] = "Jane" AND name["LN"] = "Doe";
Total MapReduce jobs = 1
...
OK
Jane.Doe@xyz.com

In Step (A), you create an external table with a Key field to link up with 
the HBase row keys (00001 and 00002 from Listing 13-11), and two map 
data types (name and info) to link up with the two column families 
(ContactInfo and CustomerName). Note the syntax for providing this 
linkage via the WITH SERDEPROPERTIES keywords. This SerDe con-
figuration technique is quite common in Hive DDL. Note as well that the 
TBLPROPERTIES keyword is crucial for connecting the new external hive_
hbase_table with the actual customerinfo HBase table name.

Step (B) shows how the key value pairs in HBase ({“FN”,”John”}, for example) 
are now available for querying with the help of the HiveQL. Note the syntax 
for accessing the Hive map data type in Step (C). You can select the value of 
the info map type using the notation info ["EA"] where "EA" is the key.

 If you’re already familiar with SQL, you’ll notice that the SELECT ... 
FROM ... WHERE statement shown in Step (C) is almost identical to the 
types of queries you can form using SQL and MySQL, or DB2 and others.
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Seeing How the Hive Data Manipulation 
Language Works

In the first half of this chapter, we walk you through a couple of CREATE 
TABLE examples using the Hive CLI (refer to Listings 13-4 and 13-7), and 
you can see how Hive allows you to control your table’s file and record stor-
age formats. Now it’s time to delve into Hive’s data manipulation language 
(DML) — it lets you load and insert data into tables and create tables from 
other tables. We even go all out and provide examples that illustrate four 
ways to input data into Hive tables.

LOAD DATA examples
We have you start out by placing data into the data_types_table you cre-
ated using Listing 13-7. Doing so illustrates the LOAD DATA command and 
will serve to cement some of the concepts from the last section. The syntax 
for the LOAD DATA command is shown in Listing 13-13.

Listing 13-13: LOAD DATA Command Syntax

"LOAD DATA [LOCAL] INPATH 'path to file' [OVERWRITE] INTO  
TABLE 'table name' [PARTITION partition column1 
= value1, partition column2 = value2,...]

A few areas in Listing 13-13 need an explanation. First, the optional LOCAL 
keyword tells Hive to copy data from the input file on the local file system 
into the Hive data warehouse directory (in our case, on the local file system). 
Without the LOCAL keyword, the data is simply moved (not copied) into the 
warehouse directory. Also you should be aware that when running in distrib-
uted mode, if you omit the LOCAL keyword Hive assumes your data is already 
in the HDFS, and in this case moves the data from its current HDFS location 
into the HDFS warehouse directory. Second, the optional OVERWRITE key-
word, as you might imagine, causes the system to overwrite data in the speci-
fied table if it already has data stored in it. Finally, the optional PARTITION 
list tells Hive to partition the storage of the table into different directories 
in the data warehouse directory structure. This powerful concept improves 
query performance in Hive, and we demonstrate its use later in this section. 
When you think about the magnitude of data that can be managed by Hive 
in the HDFS, partitioning makes a lot of sense. Rather than run a MapReduce 
job over the entire table to find the data you want to view or analyze, you can 
isolate a segment of the table and save a lot of system time with partitions.

 Apache Hive uses the MapReduce technology within Hadoop to query and 
analyze tables — though, in some cases, MapReduce is not used. It turns out 
that you can set the configuration variable hive.exec.mode.local.auto 
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in the hive-site.xml file. When the variable is set to true, Hive tries to 
execute queries on small data sets locally without MapReduce whenever pos-
sible, to speed execution.

Listing 13-14 shows the commands to use to load the data_types_table 
with data. Again, we’ve annotated the listing so that we can discuss each step.

Listing 13-14: Loading our_first_table with Data

(A) $ cat data.txt
100,32000,2000000,9200000000000000000,0.15625,4.9406564584

124654,
1.23E+3,2013-09-21 20:19:52.025,true,
test string,\0xFFFFDDDDEEEEAAAA,1|2|3|4,key^1024,
1|3.1459|test struct,2|test union
(B) hive (data_types_db)> LOAD DATA LOCAL INPATH  

'/home/biadmin/Hive/data.txt' INTO TABLE  
data_types_table;

Copying data from file:/home/biadmin/Hive/data.txt
Copying file: file:/home/biadmin/Hive/data.txt
Loading data to table data_types_db.data_types_table
Table data_types_db.data_types_table stats:  

[num_partitions: 0, num_files: 1, num_rows: 0, 
total_size: 185, raw_data_size: 0]

OK
Time taken: 0.287 seconds
(C) hive> SELECT * FROM data_types_table;
OK
100     32000   2000000 9200000000000000000     0.15625 

4.940656458412465
1230    2013-09-21 20:19:52.025      true    test string
\0xFFFFDDDDEEEEAAAA     [1,2,3,4]       {"key":1024}
{"first":1,"second":3.1459,"third":"test struct"}
(D) {2:"test union"}
Time taken: 0.201 seconds, Fetched: 1 row(s)

Step (A) is a listing (using the Unix cat command) of data you intend to load. 
This data file has only one record in it, but there’s a value for each field in the 
table. Note the field and complex type delimiters. As we specified at table cre-
ation time (refer to Listing 13-7 or 13-9), fields are separated by a comma; col-
lections (such as STRUCT and UNIONTYPE) are separated by the vertical bar 
or pipe character (|̄); and the MAP keys and values are separated by the caret 
character (^̄). Step (B) has the LOAD DATA command, and in Step (C) you’re 
retrieving the record you just loaded in Step (B) so that you can view the data.

 The data retrieved using the SELECT command is as expected, but the last 
field — see line (D) — needs some attention. Note how the UNIONTYPE works. 
UNIONTYPEs in Hive can store different data types, but only one at a time. In the 
data.txt file you list in Step (A), you specify to use the third data type in the 
our_union field. (It’s the third one because you start counting at zero, of course.) 
So you specify a string — in this case, test union — after the 2 in the data file.
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The last example in this subsection sets up other examples later in this 
chapter. We have downloaded some historical airline flight data for the 
years 2007 and 2008 from the website http://stat-computing.org/
dataexpo/2009/the-data.html. This data was compiled by the Research 
and Innovative Technology Administration, which coordinates with the U.S. 
Department of Transportation’s Bureau of Transportation Statistics to pro-
vide data to statisticians and scientists. It’s a classic use case for Apache 
Hive: We show you how to load this airline data into a Hive table, and then 
you get a chance to perform some analysis with HiveQL!

 To put this airline data in perspective, the data for the year 2007 is approxi-
mately 671MB and the data for the year 2008 is 659MB. We don’t want to over-
load the disk space on your virtual machine, so we downloaded only a few 
data files, though it appears that the files range between 100MB and 659MB in 
the case of the year 2008. If you were to download all 22 years’ worth of data 
from http://stat-computing.org/dataexpo/2009/the-data.html, 
it would amount to well over 1 terabyte (TB) of information. This is a typical 
big data use case for Apache Hadoop and Hive running on a cluster of Linux 
servers. If you would attempt to analyze that much data on classic relational 
database systems, it would be costly and cumbersome at best.

So, after downloading the data and studying the data types listed on the 
website, we created two identical tables, named FlightInfo2007 and 
FlightInfo2008, as you can see in steps (A) and (F) in Listing 13-15. Note 
that this data is posted on the aforementioned website as comma-separated 
text, so you’ll use the classic text file format for your records, and we’ve 
specified comma separation for the record fields. Hive’s LazySimpleSerDe 
does the rest of the job for you. Step (B) should also look familiar except that 
we didn’t use the LOCAL keyword. That’s because these files are large; you’ll 
move the data into your Hive warehouse, not make another copy on your 
small and tired laptop disk. You’d likely want to do the same thing on a real 
cluster and not waste the storage.

Listing 13-15: Flight Information Tables from 2007 and 2008

(A) CREATE TABLE IF NOT EXISTS FlightInfo2007 (
  Year SMALLINT, Month TINYINT, DayofMonth TINYINT, 

DayOfWeek TINYINT,
  DepTime SMALLINT, CRSDepTime SMALLINT, ArrTime SMALLINT, 

CRSArrTime SMALLINT,
  UniqueCarrier STRING, FlightNum STRING, TailNum STRING,
  ActualElapsedTime SMALLINT, CRSElapsedTime SMALLINT,
  AirTime SMALLINT, ArrDelay SMALLINT, DepDelay SMALLINT,
  Origin STRING, Dest STRING,Distance INT,
  TaxiIn SMALLINT, TaxiOut SMALLINT, Cancelled SMALLINT,
  CancellationCode STRING, Diverted SMALLINT,
  CarrierDelay SMALLINT, WeatherDelay SMALLINT,
  NASDelay SMALLINT, SecurityDelay SMALLINT, 

LateAircraftDelay SMALLINT)
COMMENT 'Flight InfoTable'

(continued)
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ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
LINES TERMINATED BY '\n'
STORED AS TEXTFILE
TBLPROPERTIES ('creator'='Bruce Brown', 'created_at'='Thu 

Sep 19 10:58:00 EDT 2013');
 
(B) hive (flightdata)> LOAD DATA INPATH '/home/biadmin/

Hive/Data/2007.csv' INTO TABLE FlightInfo2007;
Loading data to table flightdata.flightinfo2007
Table flightdata.flightinfo2007 stats: [num_partitions: 

0, num_files: 2, num_rows: 0, total_size: 
1405756086, raw_data_size: 0]

OK
Time taken: 0.284 seconds;
(C) hive (flightdata)> SELECT * FROM FlightInfo2007 LIMIT 

2;
OK
NULL    NULL    NULL    NULL    NULL    NULL    NULL    

NULL    UniqueCarrier   FlightNum       TailNum 
NULL    NULLNULL     NULL    NULL    Origin  
Dest    NULL    NULL    NULL    NULL    
CancellationCode        NULL    NULL    
NULLNULL     NULL    NULL

2007    1       1       1       1232    1225    1341    
1340    WN      2891    N351    69      75      
54      1   7SMF     ONT     389     4       11      
0               0       0       0       0       
0       0

Time taken: 0.087 seconds, Fetched: 2 row(s)
 
(D) LOAD DATA INPATH '/home/biadmin/Hive/Data/2007.csv' 

OVERWRITE INTO TABLE FlightInfo2007;
(E) hive (flightdata)>  SELECT * FROM FlightInfo2007 LIMIT 

2;
OK
2007    1       1       1       1232    1225    1341    

1340    WN      2891    N351    69      75      
54      1   7SMF     ONT     389     4       11      
0               0       0       0       0       
0       0

2007    1       1       1       1918    1905    2043    
2035    WN      462     N370    85      90      
74      8   13       SMF     PDX     479     5       
6       0               0       0       0       
0       0       0

Time taken: 0.089 seconds, Fetched: 2 row(s)
 
(F) CREATE TABLE IF NOT EXISTS FlightInfo2008 LIKE 

FlightInfo2007;
(G) LOAD DATA INPATH '/home/biadmin/Hive/Data/2008.csv' 

INTO TABLE FlightInfo2008;

Listing 13-15 (continued)



255 Chapter 13: Applying Structure to Hadoop Data with Hive

To test the LOAD DATA command and make sure everything works, you use 
the SELECT command as shown in the previous example, but this time you 
also use the LIMIT keyword [see step (C)] because this table is huge. Note 
that initially you have a bit of problem with the FlightInfo2007 table. 
Why are you seeing mostly all NULL values in the first record? The answer is 
that the 2007.csv file has a header on the first line giving the descriptions 
of the columns in the rest of the file. These descriptions match the website’s 
explanation of the fields we used to define the data types. So the solution 
was simple: We downloaded another copy of the data, deleted the header 
line, and ran the command again — this time, using the OVERWRITE keyword. 
Now, in Step (E) you can see that the problem has been solved. In Step (F), 
the LIKE keyword instructs Hive to copy the existing FlightInfo2007 
table definition when creating the FlightInfo2008 table. In Step (G) you’re 
using the same technique as in Step (B).

The problem with NULL values seemed trivial enough, but this example 
points to an interesting aspect of Hive that we need to explain before we 
move on to the next Hive DML command.

In Listing 13-15, Hive could not (at first) match the first record with the data 
types you specified in your CREATE TABLE statement. So the system showed 
NULL values in place of the real data, and the command completed success-
fully. This behavior illustrates that Hive uses a Schema on Read verification 
approach as opposed to the Schema on Write verification approach, which you 
find in RDBMS technologies. This is one reason why Hive is so powerful for big 
data analytics — it lets you discover and explore your data in a relaxed fashion 
as opposed to a strict structured approach. A typical RDBMS system would 
have returned errors when the data didn’t match. Hive didn’t return an error 
when we tried to load data into the table that didn’t match our schema — it 
simply showed NULL values, and then you figured out the bit about the data-
types disconnect by inspecting the data and adjusted accordingly.

INSERT examples
Another Hive DML command to explore is the INSERT command. You basi-
cally have three INSERT variants; we show you two of them in Listing 13-16. 
To demonstrate this new DML command, we have you create a new table that 
will hold a subset of the data in the FlightInfo2008 table you created in 
the previous example. In Step (A), you create this new table and specify that 
the file format will be row columnar (Step (B)) instead of text. This format is 
more compact than text and often performs better, depending on your access 
patterns. (If you’re accessing a small subset of columns instead of entire 
rows, try the RCFILE format.)

 The default SerDe for RCFILE format is the ColumnarSerDe. You can verify 
this fact by running the DESCRIBE EXTENDED myFlightInfo HiveQL com-
mand from the command line interface.
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Listing 13-16: Partitioned Version of 2008 Flight Information Table

(A) CREATE TABLE IF NOT EXISTS myFlightInfo (
  Year SMALLINT, DontQueryMonth TINYINT, DayofMonth 

TINYINT, DayOfWeek TINYINT,
  DepTime SMALLINT, ArrTime SMALLINT,
  UniqueCarrier STRING, FlightNum STRING,
  AirTime SMALLINT, ArrDelay SMALLINT, DepDelay SMALLINT,
  Origin STRING, Dest STRING, Cancelled SMALLINT,
  CancellationCode STRING)
COMMENT 'Flight InfoTable'
PARTITIONED BY(Month TINYINT)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
LINES TERMINATED BY '\n'
(B) STORED AS RCFILE
TBLPROPERTIES ('creator'='Bruce Brown', 'created_at'='Mon 

Sep  2 14:24:19 EDT 2013');
 
(C) INSERT OVERWRITE TABLE myflightinfo
  PARTITION (Month=1)
  SELECT Year, Month, DayofMonth, DayOfWeek, DepTime, 

ArrTime, UniqueCarrier,
         FlightNum, AirTime, ArrDelay, DepDelay, Origin, 

Dest, Cancelled,
         CancellationCode
  FROM FlightInfo2008 WHERE Month=1;
 
(D) FROM FlightInfo2008
INSERT INTO TABLE myflightinfo
  PARTITION (Month=2)
  SELECT Year, Month, DayofMonth, DayOfWeek, DepTime, 

ArrTime, UniqueCarrier, FlightNum,
  AirTime, ArrDelay, DepDelay, Origin, Dest, Cancelled, 

CancellationCode WHERE Month=2
... (Months 3 through 11 skipped for brevity)
INSERT INTO TABLE myflightinfo
  PARTITION (Month=12)
  SELECT Year, Month, DayofMonth, DayOfWeek, DepTime, 

ArrTime, UniqueCarrier, FlightNum,
  AirTime, ArrDelay, DepDelay, Origin, Dest, Cancelled, 

CancellationCode WHERE Month=12;
 
(E) hive (flightdata)> SHOW PARTITIONS myflightinfo;
OK
month=1
month=10
month=11
month=12
...
month=9
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(F) $ ls 
/home/biadmin/Hive/warehouse/flightdata.db/myflightinfo
month=1   month=11  month=2  month=4  month=6  month=8
month=10  month=12  month=3  month=5  month=7  month=9
 
(G) $HIVE_HOME/bin/hive --service rcfilecat
  /home/biadmin/Hive/warehouse/flightdata.db/myflightinfo/

month=12/000000_0
...
2008    12      13      6       655     856     DL      

1638    85      0       -5      PBI     ATL     
0

2008    12      13      6       1251    1446    DL      
1639    89      9       11      IAD     ATL     
0

2008    12      13      6       1110    1413    DL      
1641    104     -5      7       SAT     ATL     
0

After creating the table, you use the INSERT OVERWRITE command [see Step 
(C)] to insert data via a SELECT statement from the FlightInfo2008 table. 
Note that you’re partitioning your data using the PARTITION keyword based on 
the Month field. After you’re finished, you’ll have 12 table partitions, or actual 
directories, under the warehouse directory in the file system on your virtual 
machine, corresponding to the 12 months of the year. As we explain earlier, 
partitioning can dramatically improve your query performance if you want to 
query data in the myFlightInfo table for only a certain month. You can see 
the results of the PARTITION approach with the SHOW PARTITIONS command 
in Steps (E) and (F). Notice in Step (D) that you’re using a variant of the INSERT 
command to insert data into multiple partitions at one time. We have only shown 
month 2 and 12 for brevity but months 3 through 11 would have the same syntax.

 Partitions are quite useful to the Hive programmer. However, it’s not uncom-
mon to encounter a data set where partitioning could become unwieldy, espe-
cially if multiple partitions are specified [PARTITION BY(Country STRING, 
PersonName STRING), for example]. Twelve partitions are one thing — 7 
billion partitions would be quite another! The solution to partition sprawl is 
bucketing. Bucketing in Hive works by allowing you to specify some reason-
able number of buckets, and then the system attempts to evenly distribute 
the data into the number of buckets you specify. [That could look something 
like PARTITION BY(...) CLUSTERED BY(BucketingColumn) INTO x 
BUCKETS.] Additionally, this feature enables table sampling — a technique 
that allows Hive users to write queries on a sample of the data instead of the 
entire table. HiveQL table sampling can be very useful for big data analytics. 
(For more information on bucketing and table sampling see https://cwiki.
apache.org/confluence/display/Hive/LanguageManual+Sampling.)

You can also use this FROM table1 INSERT INTO table2 SELECT ... 
format to insert into multiple tables at a time. We have you use INSERT 
instead of OVERWRITE here to show the option of inserting instead of 
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overwriting. Hive allows only appends, not inserts, into tables, so the INSERT 
keyword simply instructs Hive to append the data to the table. Finally, note in 
Step (G) that you have to use a special Hive command service (rcfilecat) 
to view this table in your warehouse, because the RCFILE format is a binary 
format, unlike the previous TEXTFILE format examples.

We say at the beginning of this subsection that the INSERT DML command has 
three variants. (You’ve been dying to find out what the third variant is, right?) 
Well, the third one is the Dynamic Partition Inserts variant. In Listing 13-16, 
you partition the myFlightInfo table into 12 segments, 1 per month. If 
you had hundreds of partitions, this task would have become quite diffi-
cult, and it would have required scripting to get the job done. Instead, Hive 
supports a technique for dynamically creating partitions with the INSERT 
OVERWRITE statement. So, if you find yourself needing to leverage table 
partitioning with a large, and possibly variable, number of partitions, check 
out the Dynamic Partition Inserts feature in the Hive DML Language Manual 
at https://cwiki.apache.org/confluence/display/Hive/
Tutorial - Tutorial-Dynamic-PartitionInsert.

Create Table As Select (CTAS) examples
In the Hive DML example in this section, we illustrate the powerful technique 
in Hive known as Create Table As Select, or CTAS. Its constructs allow you to 
quickly derive Hive tables from other tables as you build powerful schemas 
for big data analysis.

Listing 13-17 shows you how CTAS works, and it sets the stage for other 
HiveQL examples later in this chapter. 

Listing 13-17: An Example of Using CREATE TABLE . . . AS SELECT

(A) hive> CREATE TABLE myflightinfo2007 AS
    > SELECT Year, Month, DepTime, ArrTime, FlightNum, 

Origin, Dest FROM FlightInfo2007
    > WHERE (Month = 7 AND DayofMonth = 3) AND 

(Origin='JFK' AND Dest='ORD');
(B) hive> SELECT * FROM myFlightInfo2007;
OK
2007    7       700     834     5447    JFK     ORD
2007    7       1633    1812    5469    JFK     ORD
2007    7       1905    2100    5492    JFK     ORD
2007    7       1453    1624    4133    JFK     ORD
2007    7       1810    1956    4392    JFK     ORD
2007    7       643     759     903     JFK     ORD
2007    7       939     1108    907     JFK     ORD
2007    7       1313    1436    915     JFK     ORD
2007    7       1617    1755    917     JFK     ORD
2007    7       2002    2139    919     JFK     ORD
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Time taken: 0.089 seconds, Fetched: 10 row(s)
hive> CREATE TABLE myFlightInfo2008 AS
    > SELECT Year, Month, DepTime, ArrTime, FlightNum, 

Origin, Dest FROM FlightInfo2008
    > WHERE (Month = 7 AND DayofMonth = 3) AND 

(Origin='JFK' AND Dest='ORD');
hive> SELECT * FROM myFlightInfo2008;
OK
2008    7       930     1103    5199    JFK     ORD
2008    7       705     849     5687    JFK     ORD
2008    7       1645    1914    5469    JFK     ORD
2008    7       1345    1514    4392    JFK     ORD
2008    7       1718    1907    1217    JFK     ORD
2008    7       757     929     1323    JFK     ORD
2008    7       928     1057    907     JFK     ORD
2008    7       1358    1532    915     JFK     ORD
2008    7       1646    1846    917     JFK     ORD
2008    7       2129    2341    919     JFK     ORD
Time taken: 0.186 seconds, Fetched: 10 row(s)

In Step A, you build two smaller tables derived from the FlightInfo2007 
and FlightInfo2008 by selecting a subset of fields from the larger tables 
for a particular day (in this case, July 3), where the origin of the flight is 
New York’s JFK airport (JFK) and the destination is Chicago’s O’Hare airport 
(ORD). Then in Step B you simply dump the contents of these small tables so 
that you can view the data.

Querying and Analyzing Data
Earlier sections in this chapter describe Hive data types, Hive’s DDL, and 
Hive’s DML, but now we help you explore some HiveQL features for query-
ing and analyzing data. Keep in mind, though, that it is beyond the scope of 
this chapter to provide an exhaustive treatise on HiveQL as it stands today. 
Moreover, the vibrant and active Apache Hive community continually adds 
to an already extensive feature set, which makes exhaustive coverage even 
more difficult. We concentrate on the high points here, knowing full well that 
finishing this chapter will get you excited about the new potential of big data 
analytics at your fingertips with Apache Hive. We begin by exploring table 
joins in Hive.

 For an exhaustive list of HiveQL features, consult the Hive Language Manual at 
this page:

https://cwiki.apache.org/confluence/display/Hive/
LanguageManual
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Joining tables with Hive
You probably know already that experts in relational database modeling and 
design typically spend a lot of their time designing normalized databases, 
or schemas. Database normalization is a technique that guards against data 
loss, redundancy, and other anomalies as data is updated and retrieved. The 
experts follow a number of rules to arrive at a normalized database, but Rule 
1 is that you must end up with a group of tables. (One large table storing all 
your data is not normal — pun intended.) There are exceptions, depending 
on the use case, but the law of many tables is generally followed closely, 
especially for databases that support transactions or analytic processing 
(business intelligence, for example). When you begin to query and analyze 
your data, tables are joined based on the defined relationships between them 
using SQL — which means that the disks are ultimately busy on your server 
when you start joining tables, and busy disks usually result in slower user 
response times. However, the good news is that RDBMSs and EDWs are tuned 
to make joins as fast as possible.

What does all this have to do with joins in Hive? Well, remember that 
the underlying operating system for Hive is (surprise!) Apache Hadoop: 
MapReduce is the engine for joining tables, and the Hadoop File System 
(HDFS) is the underlying storage. It’s all good news for the user who wants to 
create, manage, and analyze large tables with Hive. The potential to unlock 
information that’s hidden in massive data structures is exciting. However, 
joins with Hive usually don’t perform as well as they do in the RDBMS/EDW 
world, so first-time users are often surprised by the “pokiness” of the system 
response. Remember that MapReduce and HDFS are optimized for through-
put with big data analytics and that, in this world, latencies — user response 
times, in other words — are usually high. Hive is designed for batch-style 
analytic processing, not for fast online transaction processing. Users who 
want the best possible performance with SQL on Apache Hadoop have solu-
tions available, and we look at those solutions in more detail in Chapter 14. 
For now, keep this dynamic in mind when you start joining tables with Hive. 
Also note that Hive architects usually denormalize their databases to some 
extent, so having fewer larger tables is commonplace. That’s why complex 
data types such as STRUCTs and ARRAYs are provided. You can use these 
complex data types to pack a lot more data into a single table. Because Hive 
table reads and writes via HDFS usually involve very large blocks of data, 
the more data you can manage altogether in one table, the better the overall 
performance.

 Disk and network access is a lot slower than memory access, so minimize 
HDFS reads and writes as much as possible.

With this background information in mind, you can tackle making joins 
with Hive. Fortunately, the Hive development community was realistic and 
understood that users would want and need to join tables with HiveQL. 
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This knowledge becomes especially important with EDW augmentation, 
as explained in Chapter 10. Use cases such as “queryable” archives often 
require joins for data analysis.

Earlier in this chapter, we show you how to use Hive’s Create Table As Select 
(CTAS) technique for creating new tables from existing tables. Now we show you 
a Hive join example using our flight data tables. Listing 11-17 shows you how 
to create and display a myflightinfo2007 table and a myflightinfo2008 
table from the larger FlightInfo2007 and FlightInfo2008 tables. 
The plan all along was to use the CTAS created myflightinfo2007 and 
myflightinfo2008 tables to illustrate how you can perform joins in Hive. 
Figure 13-8 shows the result of an inner join with the myflightinfo2007 and 
myflightinfo2008 tables using the SQuirreL SQL client.

 

Figure 13-8: 
The Hive 

inner join.
 

 Hive supports equi-joins, a specific type of join that only uses equality com-
parisons in the join predicate. (ON m8.FlightNum = m7.FlightNum, from 
Figure 13-8 above, is one example of an equi-join.) Other comparators such 
as Less Than (<) are not supported. This restriction is only because of limita-
tions on the underlying MapReduce engine. Also, you cannot use OR in the ON 
clause.

Figure 13-8 illustrates the earlier example of the inner join and two other Hive 
join types. Note that you can confirm the results of an inner join by reviewing 
the contents of the myflight2007 and myflight2008 tables in Listing 13-17. 
Figure 13-9 illustrates how an inner join works using a Venn diagram, in case 
you’re not familiar with the technique. The basic idea here is that an inner join 
returns the records that match between two tables. So an inner join is a per-
fect analysis tool to determine which flights are the same from JFK (New York) 
to ORD (Chicago) in July of 2007 and July of 2008.
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Figure 13-9: 
Hive inner 

join, full 
outer join, 

and left 
outer join.

 

 Optimizing Hive joins is a hot topic in the Hive community. For more informa-
tion on current optimization techniques, see the Join Optimization page on the 
Hive wiki at

https://cwiki.apache.org/confluence/display/Hive/LanguageM
anual+JoinOptimization

Improving your Hive queries with indexes
Creating an index is common practice with relational databases when you 
want to speed access to a column or set of columns in your database. 
Without an index, the database system has to read all rows in the table to 
find the data you have selected. Indexes become even more essential when 
the tables grow extremely large, and as you now undoubtedly know, Hive 
thrives on large tables. As you would expect, Hive supports index creation 
on tables, though its functionality is still somewhat immature as of this 
writing. However, as we’ve said, the Hive community is active, and indexing 
will eventually mature. Even with its current limitations, indexing offers an 
approach to speed up Hive queries with little effort, so we show you a brief 
example.

 You can optimize Hive queries in at least five ways: First, with a little research, 
you can often speed your joins by leveraging certain optimization techniques, 
as described on the Hive wiki. (Check out https://cwiki.apache.org/
confluence/display/Hive/LanguageManual+JoinOptimization.) 
Second, column-oriented storage options (see the “Defining table file formats” 
section, earlier in the chapter) can be quite helpful. Remember that the ORC 
file format is new as of Hive 0.11. Third, we demonstrate and discuss how to 
partition tables in Listing 13-16. Fourth, the Hive community has provided 
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indexing, as illustrated in Listing 13-18. Finally, don’t forget the hive.exec.
mode.local.auto configuration variable we mention earlier, in the section 
“Seeing How the Hive Data Manipulation Language Works.”

In Listing 13-18, we list the steps necessary to index the FlightInfo2008 
table. This extremely large table has millions of rows, so it makes a good can-
didate for an index or two.

Listing 13-18: Creating an Index on the FlightInfo2008 Table

(A) CREATE INDEX f08_index ON TABLE flightinfo2008 
(Origin) AS 'COMPACT' WITH DEFERRED REBUILD;

(B) ALTER INDEX f08_index ON flightinfo2008 REBUILD;
(C) hive (flightdata)> SHOW INDEXES ON FlightInfo2008;
OK
f08index                flightinfo2008          origin                  

flightdata__flightinfo2008_f08index__ compact
Time taken: 0.079 seconds, Fetched: 1 row(s)
(D) hive (flightdata)> DESCRIBE  

flightdata__flightinfo2008_f08index__;
OK
origin                  string                  None
_bucketname             string
_offsets                array<bigint>
Time taken: 0.112 seconds, Fetched: 3 row(s)
(E) hive (flightdata)> SELECT Origin, COUNT(1) FROM 

flightinfo2008 WHERE Origin = 'SYR' GROUP BY 
Origin;

SYR     12032
Time taken: 17.34 seconds, Fetched: 1 row(s)
(F) hive (flightdata)> SELECT Origin, SIZE(`_offsets`) 

FROM flightdata__flightinfo2008_f08index__ 
WHERE origin = 'SYR';

SYR     12032
Time taken: 8.347 seconds, Fetched: 1 row(s)
(G) hive (flightdata)> DESCRIBE  

flightdata__flightinfo2008_f08index__;
OK
origin                  string                  None
_bucketname             string
_offsets                array<bigint>
Time taken: 0.12 seconds, Fetched: 3 row(s)

Step (A) creates the index using the ‘COMPACT' index handler on the Origin 
column. Hive also offers a bitmap index handler as of the 0.8 release, which 
is intended for creating indexes on columns with a few unique values. In Step 
(A) the keywords WITH DEFERRED REBUILD instructs Hive to first create an 
empty index; Step (B) is where you actually build the index with the ALTER 
INDEX ... REBUILD command. Deferred index builds can be very useful 
in workflows where one process creates the tables and indexes, another 
loads the data and builds the indexes and a final process performs data 
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analysis. (For more on workflows — more specifically, Oozie workflows — 
check out Chapter 9. As of this writing, Hive doesn’t provide automatic index 
maintenance, so you need to rebuild the index if you overwrite or append 
data to the table. Also, Hive indexes support table partitions, so a rebuild 
can be  limited to a partition. (Refer to Listing 13-16 for more information on 
 partitions.) Step (C) illustrates how you can list or show the indexes created 
against a particular table. Step (D) illustrates an important point  regarding 
Hive indexes: Hive indexes are implemented as tables. This is why you 
need to first create the index table and then build it to populate the table. 
Therefore, you can use indexes in at least two ways:

 ✓ Count on the system to automatically use indexes that you create.

 ✓ Rewrite some queries to leverage the new index table (as we demon-
strate in Listing 13-18).

The automatic use of indexes is progressing, but this aspect is a work in prog-
ress. Focusing on the second option, in Step (E) you write a query that seeks 
to determine how many flights left the Syracuse airport during 2008. To get 
this information, you leverage the COUNT aggregate function. You can see that 
Hive took 17.32 seconds on our virtual machine to report that 12,032 flights 
originated from Syracuse, New York. In Step (F), you leverage the new index 
table and use the SIZE function instead. Step (F) makes more sense after 
you study Step (D): Step (D) shows you what an index table looks like, where 
records each hold the column _bucketname, which is the location of the data 
in the Hive warehouse (/home/biadmin/Hive/warehouse, in this case), 
and an _offsets array, which is the index into the table (FlightInfo2008) 
in this case. So now the query in Step (F) makes sense. All Hive has to do is 
find the SYR origin (for Syracuse) in the flightdata__flightinfo2008_
f08index__ table and then count the rows in the _offsets’ array to get 
the number of flights — a simple yet elegant way to double the performance 
(8.347 secs in Step (F) versus 17.34 in Step (E)) of the original query.

Windowing in HiveQL
The concept of windowing, introduced in the SQL:2003 standard, allows the 
SQL programmer to create a frame from the data against which aggregate and 
other window functions can operate. HiveQL now supports windowing per 
the SQL standard. Examples are quite helpful when explaining windowing and 
aggregate functions, so we start with an introductory example.

In our experience (and as other frequent flyers can attest), departure delays 
come with the territory when flying is your chosen mode of travel. It comes as 
no surprise, then, that the RITA-compiled flight data includes this information. 
One question we had when we first discovered this data set was, “What exactly 
is the average flight delay per day?” So we created a query in Listing 13-19 that 
produces the average departure delay per day in 2008.
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Listing 13-19: Finding the Average Departure Delay per Day in 2008

(A) hive (flightdata)> CREATE VIEW avgdepdelay AS
                 > SELECT DayOfWeek, AVG(DepDelay) FROM 

FlightInfo2008 GROUP BY DayOfWeek;
OK
Time taken: 0.121 seconds
(B) hive (flightdata)> SELECT * FROM avgdepdelay;
...
OK
1       10.269990244459473
2       8.97689712068735
3       8.289761053658728
4       9.772897177836702
5       12.158036387869656
6       8.645680904903614
7       11.568973392595312
Time taken: 18.6 seconds, Fetched: 7 row(s)

Before we explain the steps in this query, we have to say that TGIF, or “Thank 
God It’s Friday,” doesn’t apply to everyone. It was no surprise to us that 
Friday — Day 5 under the results in Step (B) — had the highest number of 
delays.

Anyway, about that query in Step (A): We want to point out that Hive’s Data 
Definition Language (DDL) also includes the CREATE VIEW statement, which 
can be quite useful. In Hive, views allow a query to be saved but data is not 
stored as with the Create Table as Select (CTAS) statement you learned about 
earlier in this chapter. When a view is referenced in HiveQL, Hive executes 
the query and then uses the results which could be part of a larger query. 
This can be very useful to simplify complex queries and break them down 
into logical components. Additionally, note the GROUP BY clause, which gath-
ers all the days per week and allows the AVG aggregate function to provide a 
consolidated answer per day. This information is useful, of course, but what 
if we want to see some individual numbers per day? We consolidate the data 
with GROUP BY, and we have the answer we’re looking for, though we’ve lost 
information as well. Solving this problem of information loss is where win-
dowing becomes quite handy.

After we answered our question above about average flight delays per day, 
we came up with another question about the RITA 2008 flight data that 
Apache Hive can answer: “What is the first flight between Airport X and Y?” 
Suppose that in addition to this information, you want to know about subse-
quent flights, just in case you’re not a “morning person.” Well, this is a job for 
windowing in HiveQL! Listing 13-20 provides you with a query that answers 
these questions.
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Listing 13-20: Using Aggregate Window Functions on the Flight Data

(A) hive (flightdata)> SELECT f08.Month, f08.DayOfMonth, 
cr.description, f08.Origin, f08.Dest,  
f08.FlightNum, f08.DepTime, MIN(f08.DepTime)

OVER (PARTITION BY f08.DayOfMonth ORDER BY f08.DepTime)
FROM flightinfo2008 f08 JOIN Carriers cr ON  

f08.UniqueCarrier = cr.code
WHERE f08.Origin = 'JFK' AND f08.Dest = 'ORD' AND  

f08.Month = 1 AND f08.DepTime != 0;
...
OK
1     1  JetBlue Airways         JFK ORD 903   641 641
1     1  American Airlines Inc.  JFK ORD 1323  833  641
1     1  JetBlue Airways         JFK ORD 907   929  641
1     1  Comair Inc.             JFK ORD 5083  945  641
1     1  Comair Inc.             JFK ORD 5634  1215 641
1     1  JetBlue Airways         JFK ORD 915   1352 641
1     1  American Airlines Inc.  JFK ORD 1323  833  641
1     1  JetBlue Airways         JFK ORD 907   929  641
1     1  Comair Inc.             JFK ORD 5083  945  641
1     1  Comair Inc.             JFK ORD 5634  1215 641
1     1  JetBlue Airways         JFK ORD 915   1352 641
1     1  American Airlines Inc.  JFK ORD 1815  1610 641
1     1  JetBlue Airways         JFK ORD 917   1735 641
1     1  Comair Inc.             JFK ORD 5469  1749 641
1     1  Comair Inc.             JFK ORD 5492  2000 641
1     1  JetBlue Airways         JFK ORD 919   2102 641
1     31 JetBlue Airways         JFK ORD 919   48   48
1     31 JetBlue Airways         JFK ORD 903   635  48
1     31 Comair Inc.             JFK ORD 5447  650  48
1     31 American Airlines Inc.  JFK ORD 1323  840  48
1     31 JetBlue Airways         JFK ORD 907   921  48
1     31 JetBlue Airways         JFK ORD 917   1859 48

In Step (A), we’ve replaced the GROUP BY clause with the OVER clause where 
we specify the PARTITION or window over which we want the MIN aggregate 
function to operate. We’ve also included the ORDER BY clause so that we can 
see those subsequent flights after the first one. As you can see from the list-
ing, on January 31, JetBlue has a nice, early flight at 12:48 a.m. — we’ll opt for 
a later one, at 6:35 a.m. Early-riser issues aside, note that we have retained 
the information in the query output that would have been lost if we had chosen 
to use a GROUP BY clause again. This capability alone makes windowing 
a powerful feature, and there’s more. Along with windowing in the  
Hive 0.11 release, the community provided some analytics functions that 
you can use in conjunction with windowing. Also at your disposal are these 
functions: RANK, ROW_NUMBER, DENSE_RANK, CUME_DIST, PERCENT_RANK, 
and NTILE. Finally, don’t miss the use of JOIN in Listing 13-20: It’s a real-life, 
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practical example of an inner join in which we join the FlightInfo2008 
table with the Carriers table to get the airline name — rather than the 
cryptic code found in the FlightInfo2008 table.

 At the beginning of this chapter, we make the point that Hive is a key com-
ponent of EDW augmentation. By importing, transforming, and analyzing the 
RITA flight data, we demonstrate how an EDW augmentation workflow might 
take shape. If data in your RDBMS or EDW can be enhanced by this flight data, 
Hive is the enabling technology to augment your existing IT system. Similarly, 
data from your RDBMS or EDW could have been exported to Apache Hive 
(perhaps using Apache Sqoop, as discussed in Chapter 13) and joined with 
this new flight data.

Other key HiveQL features
If this chapter is to be complete, we cannot leave a few other HiveQL features 
unmentioned. The following list summarizes them for you:

 ✓ Security: Apache Hive provides a security subsystem that can be quite 
helpful in preventing accidental data corruption or compromise among 
trusted members of workgroups. However, as of this writing, the Hive 
Language Manual clearly states that the Hive Security subsystem isn’t 
designed to prevent nefarious users from compromising a Hive system. 
Hive security can be established for individual users, groups, and admin-
istrative roles. Hive provides privileges that can be granted or revoked 
to users, groups, or administrative roles. The Hive 0.10 release improved 
security in multi-user environments by providing authorization to the 
metastore, and future Hive releases will provide increasing integration 
with the Hadoop security framework. Kerberos is emerging as the tech-
nology of choice for securing Apache Hadoop.

 ✓ Multi-User Locking: Hive supports multi-user warehouse access when 
configured with Apache Zookeeper. Without this support, one user 
may read a table at the same time another user is deleting that table — 
which is, obviously, unacceptable. (For more information on Apache 
Zookeeper, see Chapter 12.) Multi-user access is enabled via configura-
tion variables in the hive-site.xml file. Once configured, Hive implicitly 
acquires locks through Zookeeper for certain table operations. Users 
can also explicitly manage locks in the Hive CLI. Locks and associated 
configuration properties/variables are described in the Hive Language 
Manual.

 ✓ Compression: Data compression can not only save space on the HDFS 
but also improve performance by reducing the overall size of input/
output operations. Additionally, compression between the Hadoop 
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mappers and reducers can improve performance, because less data is 
passed between nodes in the cluster. Hive supports intermediate com-
pression between the mappers and reducers as well as table output 
compression. Hive also understands how to ingest compressed data 
into the warehouse. Files compressed with Gzip or Bzip2 can be read by 
Hive’s LOAD DATA command.

 ✓ Functions: HiveQL provides a rich set of built-in operators, built-in func-
tions, built-in aggregate functions, and built-in table-generating func-
tions. Several examples in this chapter use built-in operators as well 
as built-in aggregate functions ( AVG, MIN, and COUNT, for example). To 
list all built-in functions for any particular Hive release, use the SHOW 
FUNCTIONS HiveQL command. You can also retrieve information about a 
built-in function by using the HiveQL commands DESCRIBE FUNCTION 
function_name and DESCRIBE FUNCTION EXTENDED function_
name. Using the EXTENDED keyword sometimes returns usage examples 
for the specified built-in function. Additionally, Hive allows users to 
create their own functions, called user-defined functions, or UDFs. Using 
Hive’s Java-based UDF framework, you can create additional functions, 
including aggregates and table-generating functions. This feature is one 
of the reasons that Hive can function as an ETL tool.



Chapter 14

Integrating Hadoop with Relational 
Databases Using Sqoop

In This Chapter
▶ Introducing Sqoop

▶ Looking at the nuts and bolts of Sqoop

▶ Importing data with Sqoop

▶ Exporting data with Sqoop

▶ Customizing your Sqoop input and output formats

▶ Looking ahead to Sqoop 2.0

P 
erforming analytics on large, diverse data sets is a natural fit for Apache 
Hadoop. The whole point of the Hadoop File System (HDFS) is that it 

excels at providing a massively scalable, diverse data store that, when com-
bined with the many analytic tools available on the Hadoop platform — from 
Map Reduce to Mahout and others — gives you a lean, mean, analytics 
machine when you hitch your data store wagon to Apache Hadoop.

This rosy picture presents a slight problem, however: It turns out that most 
of the world’s structured data is already stored in relational database man-
agement systems (RDBMSs), and it’s common practice to leverage struc-
tured query language (SQL, for short) for data transformation, processing, 
and analysis — and SQL is decidedly not a natural fit for Apache Hadoop. 
The Hadoop community knew what it was getting into, though, and planned 
to provide support for structured relational data — an SQL “fix,” as it 
were — early on. Folks have been looking at combining and then analyzing 
field sensor data with the corresponding product data stored in a RDBMS or 
data warehouse, for example, a use case that places Apache Hive, with its 
SQL-like HiveQL, at its center.

It sounds like a great idea, but you may be wondering how, in this particular 
use case, you can get the data from the RDBMS onto the Apache Hadoop 
cluster, where Apache Hive can then do its magic. What’s the “scoop” on that, 
you ask? (How’s that for setting up a pun that refers to the chapter title?)
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The answer, of course, is “SQL to Hadoop,” or Sqoop, for short. Sqoop was 
first announced in 2009 by Aaron Kimball as a database import tool for 
Hadoop, and three years later (March 2012, to be exact), Sqoop became a 
top-level Apache project. The glory of Sqoop lies in the fact that it not only 
allows you to import relational data but also provides an export mechanism. 
The result is that Sqoop can provide an efficient mechanism for loading an 
RDBMS table by exporting data stored in HDFS, a use case perfectly suited for 
scenarios where you make use of Hadoop as an enterprise data warehouse 
(EDW) preprocessing engine. (See Chapter 11 for more on that scenario.)

Sqoop has grown a lot since its introduction in 2009. Along the way, Apache 
Sqoop committers have also added import support for Hive and HBase, 
making Sqoop a powerful addition to the Apache Hadoop ecosystem. In this 
chapter, you get the chance to explore the old and the new of Sqoop, from 
imports to exports to other, jazzier Sqoop tools. (You’ll also come across a 
ton of hands-on examples.)

The Principles of Sqoop Design
When it comes to Sqoop, a picture is often worth a thousand words, so check 
out Figure 14-1, which gives you a bird’s-eye view of the Sqoop architecture.

 

Figure 14-1: 
Sqoop 

design.
 

The idea behind Sqoop is that it leverages map tasks — tasks that perform 
the parallel import and export of relational database tables — right from 
within the Hadoop MapReduce framework. This is good news because the 
MapReduce framework provides fault tolerance for import and export jobs 
along with parallel processing! You’ll appreciate the fault tolerance if there is 
a failure during a large table import or export because the MapReduce frame-
work will recover without requiring you to start the process all over again. 
(For more information on the MapReduce framework, see Chapter 6.)
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 Sqoop can import data to Hive and HBase. Note, however, that the arrows to 
Hive and HBase point in only one direction in Figure 14-1. Data stored in any 
relational database with JDBC support can be directly imported into the Hive 
or HBase systems with Sqoop. Exports, however, are performed from data 
stored in HDFS. Therefore, if you need to export your Hive tables, you point 
Sqoop to HDFS directories that store your Hive tables. If you need to export 
HBase tables, you first have to export them to HDFS and then execute the 
Sqoop export command.

Scooping Up Data with Sqoop
Sqoop provides Hadoop with export and import capability to and from 
any RDBMS or data warehouse (DW) that supports the Java Database 
Connectivity (JDBC) application programming interface (API) suite. All 
major RDBMS and DW vendors generally provide JDBC-compliant drivers 
for their products. In addition, Sqoop releases are bundled with special 
connector technology for a variety of popular products. As of this writing, 
Sqoop version 1.4.4 provides special connectors for MySQL, PostgreSQL, 
Oracle, Microsoft SQL Server, DB2, and Netezza. These special connectors 
take advantage of specific features within the individual database systems in 
order to improve import/export performance and functionality. Additionally, 
third-party connectors are available that aren’t bundled with Sqoop for other 
NoSQL data store and data warehouse providers (Couchbase and Teradata 
from Cloudera, for example). Sqoop also includes a generic JDBC connector 
that only supports the Java JDBC API.

Connectors and Drivers
Sqoop connectors generally go hand in hand with a JDBC driver. Sqoop 
does not bundle the JDBC drivers because they are usually proprietary and 
licensed by the RDBMS or DW vendor. So there are three possible scenarios 
for Sqoop, depending on the type of data management system (RDBMS, DW, 
or NoSQL) you are trying to interact with. Let’s take a look at each one:

 ✓ Your data management system is supported by one of the bundled 
Sqoop connectors listed above. In this case, you need to acquire the 
JDBC driver from your data management system provider and install 
the .jar file associated with it in your $SQOOP_HOME/lib directory. 
($SQOOP_HOME is an environment variable that refers to the directory 
pathname on your system where you install Apache Sqoop.) For the 
hands-on examples shown in this chapter, we installed the mysql-
connector-java-5.1.26-bin.jar file from http://dev.mysql.
com/downloads/connector in our $SQOOP_HOME/lib directory.
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 ✓ Sqoop does not include a connector for your database management 
system. That means you need to download one from a 3rd party vendor, 
along with a JDBC driver if the connector requires one. (Couchbase and 
Teradata both do, for example.)

 ✓ Your database management system does not provide a Sqoop connec-
tor but a JDBC driver is available. In this case, you leverage Sqoop’s 
generic JDBC connector and download and install your vendor’s JDBC 
driver.

 For an in-depth discussion of Sqoop connectors and drivers, see the following 
blog entry: https://blogs.apache.org/sqoop/date/201309. For the 
latest release, documentation, and connector information, check out http://
sqoop.apache.org.

Importing Data with Sqoop
Ready to dive into importing data with Sqoop? Start by taking a look at 
Figure 14-2, which illustrates the steps in a typical Sqoop import opera-
tion from an RDBMS or a data warehouse system. Nothing too complicated 
here — just a typical Products data table from a (typical) fictional company 
being imported into a typical Apache Hadoop cluster from a typical data 
management system (DMS).

 

Figure 14-2: 
The Sqoop 

import 
flow of 

execution.
 

During Step 1, Sqoop uses the appropriate connector to retrieve the Products 
table metadata from the target DMS. (The metadata is used to map the data 
types from the Products table to data types in the Java language.) Step 2 then 
uses this metadata to generate and compile a Java class that will be used by one 
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or more map tasks to import the actual rows from the Products table. Sqoop 
saves the generated Java class to temp space or to a directory you specify so 
that you can leverage it for the subsequent processing of your data records.

 The Sqoop generated Java code that is saved for you is like the gift that keeps 
on giving! With this code, Sqoop imports records from the DMS and stores 
them to HDFS using one of three formats that you can pick: binary Avro data, 
binary sequence files, or delimited text files. Afterwards, this code is available 
to you for subsequent data processing. Sequence files are a natural choice if 
you’re importing binary data types and you’ll need the generated Java class 
to serialize and deserialize your data later on — perhaps for MapReduce pro-
cessing or exporting. (More on exporting later — right now, we’re focusing on 
imports.) Avro data — based on Apache’s own serialization framework — is 
useful if you need to interact with other applications after the import to HDFS. 
If you choose to store your imported data in delimited text format, you may 
find the generated Java code valuable later on as you parse and perform data 
format conversions on your new data. Later in this chapter, you’ll see that the 
generated code also helps you merge data sets after Sqoop import operations 
and the final example in this chapter illustrates how the generated Java code 
can help avoid ambiguity when processing delimited text data.

Finally, during Step 3, Sqoop divides the data records in the Products table 
across a number of map tasks (with the number of mappers optionally speci-
fied by the user) and imports the table data into HDFS, Hive, or HBase.

Importing data into HDFS
Figure 14-2 gives you the big-picture view of the Sqoop data import process. 
Time to look at the process in a bit more detail, with the help of a few hands-
on examples.

Figure 14-3 helps you imagine a relational database used by a fictional service 
company that has been taking (you guessed it) Apache Hadoop service calls 
and now wants to move some of its data onto Hadoop to run Hive queries, 
leverage HBase scalability and performance, and run text analytics on its cus-
tomer’s problem descriptions.

 We discuss the Service Order Database in Chapter 12 and explain how it might 
be converted to an HBase schema. Sqoop is the tool you’ll want to use to 
import data from relational tables into HBase tables on Hadoop.

In Listing 14-1 we show the MySQL commands we used to build the Service 
Order Database you see in Figure 14-3. (We filled in a couple records in the 
diagram shown in Figure 14-3 to make things crystal clear.) We installed a 
MySQL RDBMS that we could import from and export to using Sqoop. Since 
these commands also show you the data we load into our Service Order 
Database, we’ll be referring back to this listing several times in this chapter 
to confirm that our Sqoop examples work properly.
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Listing 14-1: MySQL Commands to Build the Service Order Database

/* Create the Service Orders Database */

CREATE DATABASE serviceorderdb;
USE serviceorderdb;

/* Create the Product Information Table */

CREATE TABLE productinfo(
productnum CHAR (4) PRIMARY KEY,
productdesc VARCHAR(100)
);

/* Create the Customer Contact Information Table */

CREATE TABLE customercontactinfo(
customernum INT PRIMARY KEY,
customername VARCHAR(100),
contactinfo VARCHAR(100),
productnums SET('A100','A200','A300','B400','B500','C500','C600','D700')
);

/* Create the Service Orders Table */

CREATE TABLE serviceorders(
serviceordernum INT PRIMARY KEY,
customernum INT,
productnum CHAR(4),
status VARCHAR(100),

 

Figure 14-3: 
A Service 

Order 
Database 
schema.
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FOREIGN KEY (customernum) REFERENCES customercontactinfo(customernum),
FOREIGN KEY (productnum) REFERENCES productinfo(productnum)
);

/* Insert product data into the Product Information Table */

INSERT INTO productinfo VALUES ('A100', 'HBase Support Product');
INSERT INTO productinfo VALUES ('A200', 'Hive Support Product');
INSERT INTO productinfo VALUES ('A300', 'Sqoop Support Product');
INSERT INTO productinfo VALUES ('B400', 'Ambari Support Product');
INSERT INTO productinfo VALUES ('B500', 'HDFS Support Product');
INSERT INTO productinfo VALUES ('C500', 'Mahout Support Product');
INSERT INTO productinfo VALUES ('C600', 'Zookeeper Support Product');
INSERT INTO productinfo VALUES ('D700', 'Pig Support Product');

/* Insert customer data into the Customer Contact Information Table */

INSERT INTO customercontactinfo 
VALUES (10000, 'John Timothy Smith', '1 Hadoop Lane, NY, 11111, 
        John.Smith@xyz.com', 'B500');

INSERT INTO customercontactinfo 
VALUES (10001, 'Bill Jones', '2 HBase Ave, CA, 22222', 
        'A100,A200,A300,B400,B500,C500,C600,D700');

INSERT INTO customercontactinfo 
VALUES (20000, 'Jane Ann Doe', '1 Expert HBase Ave, CA, 22222', 
        'A100,A200,A300');

INSERT INTO customercontactinfo 
VALUES (20001, 'Joe Developer', '1 Piglatin Ave, CO, 33333', 'D700');

INSERT INTO customercontactinfo 
VALUES (30000, 'Data Scientist', '1 Statistics Lane, MA, 33333', 'A300,C500');

/* Enter service orders into the Service Orders Table */

INSERT INTO serviceorders 
VALUES (100000, 20000, 'A200', 'I have some questions on building HiveQL 

queries? My Hadoop for Dummies book has not arrived yet!');

INSERT INTO serviceorders 
VALUES (100001, 10001, 'A100', 'I need to understand how to configure Zookeeper 

for my HBase Cluster?');

INSERT INTO serviceorders 
VALUES (200000, 20001, 'D700', 'I am writing some Piglatin and I have a few 

questions?');

INSERT INTO serviceorders 
VALUES (200001, 30000, 'A300', 'How do I merge my data sets after Sqoop 

incremental imports?');
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Listing 14-2 confirms that the MySQL Service Order Database has been cre-
ated using the commands in Listing 14-1, and shows you the table names that 
we’ll import from using Sqoop.

Listing 14-2: The MySQL show tables Command

mysql> show tables;
+--------------------------+
| Tables_in_serviceorderdb |
+--------------------------+
| customercontactinfo      |
| productinfo              |
| serviceorders            |
+--------------------------+
3 rows in set (0.00 sec)

Now that you have seen the MySQL Service Order Database records that are 
just waiting to be exploited, it’s time to turn your attention to Hadoop and 
run your first Sqoop command. For this example, we downloaded an Apache 
Hadoop distribution that provides us with Sqoop, and we already had in 
place an HDFS as well as Hive and HBase. (For more information on setting up 
your Apache Hadoop environment, see Chapter 3.)

 You can find a thorough list of Apache Hadoop bundles at http://wiki.
apache.org/hadoop/Distributions and Commercial Support.

Note, however, that we don’t pull out the trusty import command right off 
the bat. Sqoop includes several handy tools along with import and export, 
including the list-databases command, which we use in Listing 14-3. 
Using that command, you can confirm that you have connectivity and visibil-
ity into the MySQL database.

Listing 14-3: The Sqoop list-databases Command

$ sqoop list-databases --connect jdbc:mysql://localhost/ \
                       --username root -P
Enter password:
13/08/15 17:21:00 INFO manager.MySQLManager: Preparing to 

use a MySQL streaming resultset.
information_schema
mysql
performance_schema
serviceorderdb

The serviceorderdb (bolded in Listing 14-3) is shown to be available, so 
now you can list the tables within serviceorderdb by using the Sqoop 
list-tables command, as shown in Listing 14-4. Notice that now we’re 
adding the database that we want Sqoop to access in the jdbc:mysql URL.
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Listing 14-4: The Sqoop list-tables Command

$ sqoop list-tables \
         --connect jdbc:mysql://localhost/serviceorderdb \
         --username root -P
Enter password:
13/08/15 17:22:01 INFO manager.MySQLManager: Preparing to 

use a MySQL streaming resultset.
customercontactinfo
productinfo
serviceorders

Listing 14-3 and Listing 14-4 should assure you that Sqoop now has connec-
tivity and can access the three tables from Figure 14-3. That means you can 
execute your first Sqoop import command and target the serviceorders 
table with a clean conscience. Sqoop import commands have this format:

sqoop import (generic arguments) (import arguments)

With the generic arguments, you point to your MySQL database and provide 
the necessary login information, just as we did with the preceding list-
tables tool. In the import arguments, you (the user) have the ability to spec-
ify what you want to import and how you want the import to be performed. In 
Listing 14-5, we specify the serviceorders table and request that one map 
task be used for the import using the -m 1 CLA. (By default, Sqoop would use 
four map tasks, but that would be overkill for this small table and our virtual 
machine.) We have also specified the --class-name for the generated code 
and specified the --bindir where the compiled code and .jar file should 
be located. (Without these arguments, Sqoop would place the generated Java 
source file in your current working directory and the compiled .class file 
and .jar file in /tmp/sqoop-<username>/compile.) The class name 
simply derives from the table name unless you specify a name with the help 
of the --class-name command line argument (CLA). The --target-dir is 
the location in HDFS where you want the imported table to be placed.

Listing 14-5: The Sqoop import serviceorders Table Command

$ sqoop import \
  --connect jdbc:mysql://localhost/serviceorderdb  \
  --username root -P \
  --table serviceorders -m 1 \
  --class-name serviceorders \
  --target-dir /usr/biadmin/serviceorders-import \
  --bindir .
Enter password:
...
13/08/25 14:43:56 INFO mapreduce.ImportJobBase: 

Transferred 356 bytes in 21.0736 seconds 
(16.8932 bytes/sec)

13/08/25 14:43:56 INFO mapreduce.ImportJobBase: Retrieved 
4 records.
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The command ran fine, so you should have the same serviceorders data 
that’s shown in Listing 14-1 now stored in your HDFS as well as the generated 
Java files in your current working directory. Listing 14-6 shows how you can 
use the hadoop fs –cat command to verify this.

Listing 14-6: Displaying the serviceorders Table Now Stored in HDFS and 
Listing the Generated Java Files

$ hadoop fs -cat /usr/biadmin/serviceorders-import/part-m-00000
100000,20000,A200,I have some questions on building HiveQL queries? My Hadoop 

for Dummies book has not arrived yet!
100001,10001,A100,I need to configure Zookeeper for my HBase Cluster?
200000,10001,D700,I am writing some Piglatin and I have a few questions?
200001,20000,A300,How do I merge my data sets after Sqoop incremental imports?

$ ls *.jar *.java *.class
serviceorders.class  serviceorders.jar  serviceorders.java

In the next two listings, we show you some additional options that can help 
you specify in greater detail the data you want to import. Normally, Sqoop 
imports the entire table or tables that you specify. However, you can control 
the number and order of columns using the --columns <col1, col2, 
...> command line argument. You can also provide your own SELECT state-
ment after the --query argument. In Listing 14-7, you use the --query 
argument to specify that you want to import only the names and contact 
information for those customers who have open service orders. (The WHERE 
$CONDITIONS token is required by Sqoop to help the map tasks divide and 
conquer the import operation — at the end of this section, we explain more 
about how Sqoop divides an import.)

Listing 14-7: The Sqoop import Command Using the --query CLA

sqoop import --connect jdbc:mysql://localhost/serviceorderdb \
 --username root -P -m 2 \
 --query 'SELECT customercontactinfo.customername, customercontactinfo.

contactinfo FROM customercontactinfo JOIN 
serviceorders ON customercontactinfo.customernum = serviceorders.customernum 

WHERE $CONDITIONS' \
 --split-by serviceorders.serviceordernum \
 --boundary-query "SELECT min(serviceorders.serviceordernum), 

max(serviceorders.serviceordernum) FROM serviceorders" \
 --target-dir /usr/biadmin/customers \
 --verbose

This Sqoop import is somewhat complex, so we want to take the time to 
explain it in detail and discuss how Sqoop divides up the import job. It helps 
to understand that, by default, Sqoop performs the following statement to 
decide how to divide the table rows across the map tasks for importing:

SQL SELECT MIN(primary key col), MAX(primary key col) FROM 
table
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That’s the default behavior in an import operation, such as the one in Listing 
14-5. The exception in that listing, of course, is that the table is very small 
and we used just the one map task. If it were a very large table, you would 
want more map tasks, to get the job done faster. Now, we made Listing 14-7 
more extravagant — it uses two map tasks. In this case, Sqoop requires the 
--split-by and --boundary-query command line arguments because the 
--table CLA has been replaced by our own query using the --query CLA. 
So we’re helping Sqoop divide the work across the two map tasks we created 
by specifying our own boundaries for the import. In this case, we know that 
the serviceorders table has the increasing integer primary key named 
serviceordernum, which lets Sqoop divide up the work. The --boundary-
query command line argument lets you get creative to help Sqoop meet your 
table import requirements, but we keep it simple in this example.

Listings 14-8 and 14-9 confirm that our two map tasks did their job. This time 
we have two files to view because we used two map tasks.

Listing 14-8: Output from Map Task 1

$ hadoop fs -cat /usr/biadmin/customers/part-m-00000
Jane Ann Doe,1 Expert HBase Ave, CA, 22222
Bill Jones,2 HBase Ave, CA, 22222

Listing 14-9: Output from Map Task 2

$ hadoop fs -cat /usr/biadmin/customers/part-m-00001
Joe Developer,1 Piglatin Ave, CO, 33333
Data Scientist,1 Statistics Lane, MA, 33333

You can also control which rows are imported using the --where argument 
to provide a WHERE clause, as shown in Listing 14-10.

Listing 14-10: The Sqoop import Command using the --where  
CLA with Results

sqoop import \
        --connect jdbc:mysql://localhost/serviceorderdb \
        --username root -P -m 1 \
        --table customercontactinfo \
        --where 'customernum >= 20000 and customernum < 30000' \
        --target-dir /user/biadmin/customers-range
$ hadoop fs -cat /user/biadmin/customers-range/part-m-00000
20000,Jane Ann Doe,1 Expert HBase Ave, CA, 22222,A100,A200,A300
20001,Joe Developer,1 Piglatin Ave, CO, 33333,D700

In Listing 14-10, we’re back to using the default behavior, as in Listing 14-5. 
But because Sqoop lets us specify a WHERE clause using the --where com-
mand line argument, we download only those customers who have IDs 
between 20000 and 29999.
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Are you getting a sense of the power and flexibility that Sqoop brings to 
Apache Hadoop? Big data analytics become far more valuable when com-
bined with existing enterprise data, and Sqoop greatly simplifies and stream-
lines the overall process! In the preceding example, the fictional service 
company can now leverage the data in the serviceorders table, which is 
now stored as a flat file in HDFS, as part of a larger Hadoop text analytics or 
statistical analysis application.

Importing data into Hive
For our next example, we import all of the Service Order Database directly 
from MySQL into Hive and run a HiveQL query against the newly imported 
database on Apache Hadoop. (For more information on Hive, see Chapter 13). 
Listing 14-11 shows you how it’s done.

Listing 14-11: Hive and Sqoop commands to import the Service Order 
Database into Apache Hive

hive> create database serviceorderdb;
OK
Time taken: 1.343 seconds
hive> use serviceorderdb;
OK
Time taken: 0.062 seconds

$ sqoop import --connect jdbc:mysql://localhost/serviceorderdb \
   --username root -P \
   --table productinfo \
   --hive-import \
   --hive-table serviceorderdb.productinfo -m 1
Enter password:
...
13/08/16 15:17:08 INFO hive.HiveImport: Hive import complete.
$ sqoop import --connect jdbc:mysql://localhost/serviceorderdb \
   --username root -P \
   --table customercontactinfo \
   --hive-import \
   --hive-table serviceorderdb.customercontactinfo -m 1
Enter password:
...
13/08/16 17:21:35 INFO hive.HiveImport: Hive import complete.
$ sqoop import --connect jdbc:mysql://localhost/serviceorderdb \
   --username root -P \
   --table serviceorders \
   --hive-import \
   --hive-table serviceorderdb.serviceorders -m 1
Enter password:
...
13/08/16 17:26:56 INFO hive.HiveImport: Hive import complete.
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When the import operations are complete, you run the show tables com-
mand to list the newly imported tables (see Listing 14-12), and then run a 
Hive query (see Listing 14-13) to show which Apache Hadoop technologies 
have open service orders in the database.

Listing 14-12: Confirming the Sqoop Import Operations in Apache Hive

hive> show tables;
OK
customercontactinfo
productinfo
serviceorders
Time taken: 0.074 seconds

Listing 14-13: HiveQL Query to Determine Which Products Have Open  
Service Orders Against Them

hive> SELECT productdesc FROM productinfo
   > INNER JOIN serviceorders
   > ON productinfo.productnum = serviceorders.productnum;
...
OK
HBase Support Product
Hive Support Product
Sqoop Support Product
Pig Support Product
Time taken: 28.552 seconds

Based on the Service Order Database we created and populated back in 
Listing 14-1, you can confirm the results in Listing 14-13. We have four open 
service orders on the products in bold. The Sqoop Hive import operation 
worked, and now the service company can leverage Hive to query, analyze, 
and transform its service order structured data. Additionally, the company 
can now combine its relational data with other data types (perhaps unstruc-
tured) as part of any new Hadoop analytics applications. Many possibilities 
now exist with Apache Hadoop being part of the overall IT strategy!

Importing data into HBase
Chapter 12 takes a look at how you can transform a relational database 
schema into an HBase schema, when appropriate. In this subsection, we dem-
onstrate how Sqoop can be used to make that transformation much easier. 
Of course, our main goal here is to demonstrate how Sqoop can import data 
from an RDBMS or data warehouse directly into HBase, but it’s always better 
to see how a tool is used in context versus how it’s used in the abstract. 
Figure 14-4 shows how the Service Order Database might look after being 
transformed into an HBase schema.
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Figure 14-4: 
The Service 
Order data-
base, trans-

lated into 
an HBase 

schema.
 

Because we talk a lot about the process and methodology of this transforma-
tion in Chapter 12, we hold off on explaining it here. (If you desperately need to 
know this instant how this process works, of course, take a look at Chapter 12.) 
For more information on the Denormalization, Duplication, and Intelligent Keys 
(DDI) methodology of translating relational database schemas into HBase sche-
mas, pay particular attention to the section in Chapter 12 about transitioning 
from an RDBMS to HBase.

 For this particular import example, we want to import the customercontact 
info table directly into an HBase table in preparation for building the HBase 
Service Order Database schema. (Refer to Figure 14-4.) To complete the HBase 
schema, you’d have to execute the same steps to import the productinfo 
table, and then the serviceorders table could be built with a Java 
MapReduce application.

Sqoop doesn’t now permit you to import, all at once, a relational table directly 
into an HBase table having multiple column families. To work around this limi-
tation, you create the HBase table first and then execute three Sqoop import 
operations to finish the task. Listing 14-14 shows the task of creating the table.

Listing 14-14: HBase customercontactinfo Table Creation Command

hbase(main):017:0> create 'customercontactinfo', 'CustomerName', 
hbase(main):018:0*        'ContactInfo', 'ProductNums'
0 row(s) in 1.0680 seconds

In Listing 14-15, for each Sqoop import command, note that we have bolded 
the target HBase column family specified by the --column-family CLA 
and the corresponding MySQL columns specified by the –columns CLA. The 
customernum primary key also becomes the HBase row key, as specified by 
the --hbase-row-key CLA.
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Listing 14-15: Sqoop Commands to Import the customercontactinfo  
Table Directly into a HBase Table

$ sqoop import \
    --connect jdbc:mysql://localhost/serviceorderdb \
    --username root -P \
    --table customercontactinfo \
    --columns "customernum,customername" \
    --hbase-table customercontactinfo \
    --column-family CustomerName \
    --hbase-row-key customernum -m 1
Enter password:
...
13/08/17 16:53:01 INFO mapreduce.ImportJobBase: Retrieved 

5 records.
$ sqoop import \
    --connect jdbc:mysql://localhost/serviceorderdb \
    --username root -P \
    --table customercontactinfo \
    --columns "customernum,contactinfo" \
    --hbase-table customercontactinfo \
    --column-family ContactInfo \
    --hbase-row-key customernum -m 1
Enter password:
...
13/08/17 17:00:59 INFO mapreduce.ImportJobBase: Retrieved 

5 records.
$ sqoop import \
    --connect jdbc:mysql://localhost/serviceorderdb \
    --username root -P \
    --table customercontactinfo \
    --columns "customernum,productnums" \
    --hbase-table customercontactinfo \
    --column-family ProductNums \
    --hbase-row-key customernum -m 1
Enter password:
...
13/08/17 17:05:54 INFO mapreduce.ImportJobBase: Retrieved 

5 records.

If you were to carry out an HBase scan of your new table (see Listing 14-16), 
you’d see that the import and translation from a relational database table on 
MySQL directly into HBase was a success. The customercontactinfo table 
in this example is rather small, but imagine the power you now have, using 
Sqoop and HBase, to quickly move relational tables that may be exceeding 
capacity on your RDBMS or data warehouse into HBase, where capacity is 
virtually unlimited and scalability is automatic.
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Listing 14-16: HBase Scan of the New customercontactinfo Table 
Confirming Success

hbase(main):033:0> scan 'customercontactinfo'
ROW COLUMN+CELL
 10000 column=ContactInfo:contactinfo, 

timestamp=1376773256317, value=1 Hadoop Lane, 
NY, 11111, John.Smith@xyz.com

 10000 column=CustomerName:customername, 
timestamp=1376772776684, value=John Timothy 
Smith

 10000 column=ProductNums:productnums, 
timestamp=1376773551221, value=B500

 10001 column=ContactInfo:contactinfo, 
timestamp=1376773256317, value=2 HBase Ave, CA, 
22222

 10001 column=CustomerName:customername, 
timestamp=1376772776684, value=Bill Jones

 10001 column=ProductNums:productnums, 
timestamp=1376773551221,  
value=A100,A200,A300,B400,B500,C500,C600,D700

 20000 column=ContactInfo:contactinfo, 
timestamp=1376773256317, value=1 Expert HBase 
Ave, CA, 22222

 20000 column=CustomerName:customername, 
timestamp=1376772776684, value=Jane Ann Doe

 20000 column=ProductNums:productnums, 
timestamp=1376773551221, value=A100,A200,A300

 20001 column=ContactInfo:contactinfo, 
timestamp=1376773256317, value=1 Piglatin Ave, 
CO, 33333

 20001 column=CustomerName:customername, 
timestamp=1376772776684, value=Joe Developer

 20001 column=ProductNums:productnums, 
timestamp=1376773551221, value=D700

 30000 column=ContactInfo:contactinfo, 
timestamp=1376773256317, value=1 Statistics 
Lane, MA, 33333

 30000 column=CustomerName:customername, 
timestamp=1376772776684, value=Data Scientist

 30000 column=ProductNums:productnums, 
timestamp=1376773551221, value=C500

5 row(s) in 0.1120 seconds

 Importing existing relational data via Sqoop into Hive and HBase tables can 
potentially enable a wide range of new and exciting data analysis workflows. If 
this feature is of interest to you, check out the Apache Sqoop documentation 
for additional Hive and HBase command line arguments and features.
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Importing incrementally 
If the tables you’re planning to import into Hadoop are changing or growing 
(which means that you may be planning more than one import or perhaps 
continual imports), be sure to check out Sqoop’s Incremental Import feature. 
Sqoop provides several options and tools to make incremental import opera-
tions flexible and straightforward.

Incremental import append mode
When you have a table that is receiving new rows and it has a column with a con-
tinually increasing value (like the customernum from our customercontact 
info table), you can leverage incremental append mode. Below we show how 
you can incrementally import all new customers from the fictional service com-
pany that have been appended to our MySQL customercontactinfo table 
since the last import operation.

First you need to know the number of the last customer in our MySQL 
customercontactinfo table. A quick review of Listing 14-1 shows that our 
last customer, Mr. Data Scientist, was given a customer number of 30000.

In the next step, you need to add three customers to our MySQL customer 
contactinfo table for the example to work properly. The SQL statements 
in Listing 14-17 will get the job done.

Listing 14-17: Insert Commands in the MySQL customercontactinfo Table

INSERT INTO customercontactinfo VALUES (40000, 'Isaac 
Newton', '1 Gravity Lane, London, United 
Kingdom', 'C500');

INSERT INTO customercontactinfo VALUES (50000, 'Johann 
Kepler', '1 Astronomy Street, Württemberg, 
Germany', 'A100,B500,C500');

INSERT INTO customercontactinfo VALUES (60000, 'Louis 
Pasteur', '1 Bacteriology Ave, Dole, France', 
'A100,A200,A300,B500,C600');

At this point, you’re ready to let Sqoop do the work and import all new cus-
tomers with a customer number greater than 30000. Listing 14-18 provides 
the command you can use.
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Listing 14-18: Sqoop Incremental Import Command to Pick Up New 
Customers in Hive

sqoop import \
         --connect jdbc:mysql://localhost/serviceorderdb \
         --username root -P \
         --table customercontactinfo -m 1 \
         --incremental append \
         --check-column customernum \
         --last-value 30000
Enter password:
...
13/08/24 14:15:28 INFO tool.ImportTool:  --incremental 

append
13/08/24 14:15:28 INFO tool.ImportTool:   --check-column 

customernum
(A) 13/08/24 14:15:28 INFO tool.ImportTool:   --last-value 

60000
(B) 13/08/24 14:15:28 INFO tool.ImportTool: (Consider 

saving this with 'sqoop job --create')

Listing 14-19 confirms our success. You now have three new customers 
stored in your HDFS file.

Listing 14-19: New Customers Now Stored in HDFS after Sqoop 
Incremental Import

$ hadoop fs -cat /user/biadmin/customercontactinfo/part-m-00000
40000,Isaac Newton,1 Gravity Lane, London, United Kingdom,C500
50000,Johann Kepler,1 Astronomy Street, W_rttemberg, Germany,A100,B500,C500
60000,Louis Pasteur,1 Bacteriology Ave, Dole, France,A100,A200,A300,B500,C600

Note the last two lines of output from Listing 14-18. The line labeled A lets 
you know that, of the customer records that were imported, the last new 
record had the customer ID 60000 (Louis Pasteur). This handy bookkeeping 
feature in Sqoop gets even better! Line B suggests that you save the value for 
the next incremental import and consider using the sqoop-job tool to make 
the task easier. The sqoop job --create command works hand in hand 
with incremental imports. Using the sqoop-job tool, you can create a job 
that you can run as often as you need to, and Sqoop’s metastore keeps track 
of the vital information — like last-value, in this case. Listing 14-20 creates 
a Sqoop job that you can call every time you need to import new customers 
into your HDFS. (We call our job load-new-customers but you call it whatever 
makes sense for your application.)
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Listing 14-20: The sqoop job --create Command and Subsequent sqoop  
job --list to Confirm Results

$ sqoop job --create load-new-customers -- \
        import \
         --connect jdbc:mysql://localhost/serviceorderdb \
         --username root -P \
         --table customercontactinfo -m 1 \
         --incremental append \
         --check-column customernum \
         --last-value 60000
Enter password:
$ sqoop job --list
Available jobs:
  load-new-customers

Additionally, you can leverage another Sqoop tool — sqoop-metastore — 
to create an HSQLDB instance that can be accessed by other users on your 
network; now your Sqoop meta data can be shared by others on your team!

 HSQLDB, which stands for HyperSQL DataBase, is an SQL database written 
in Java. For more information on HSQLDB, go to http://hsqldb.org. For 
the metastore thing to work, you also need to add some information to your 
$SQOOP_HOME/conf/sqoop-site.xml file.

After running the sqoop-metastore command, your team can leverage it in 
the sqoop job --create command by adding a --meta-connect com-
mand line argument, as shown in this example:

sqoop job 
  --create load-new-customers \
  --meta-connect jdbc.hsqldb:hsql://<servername>:<port>/

sqoop \
  --import \
  --table xyz \
   ...

Incremental import lastmodified mode
In addition to incremental append mode, Sqoop provides last modified mode. 
You can use this mode to incrementally import updates from a table to HDFS. 
For example, to import to HDFS any changes in the customercontactinfo 
table that took place yesterday, you would have to modify the table to include 
a LastUpdate column that would hold the timestamp for each update. With 
a new LastUpdate column, you could create this Sqoop command:

sqoop import 
        --connect jdbc:mysql://localhost/serviceorderdb \
        --username root -P \
        --table customerinfo -m 1 \
        --incremental lastmodified \
        --check-column LastUpdate \
        --last-value "2013-08-23 00:00:00"
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Note that, as with the incremental append mode option, the sqoop-job 
tool can come in quite handy for saving the last-value timestamp for sub-
sequent incremental lastmodified imports. Speaking of subsequent 
imports, what do you suppose happens when you run the same command 
again (or job, if you created one) on, say, the next day to pick up more poten-
tial customercontactinfo table changes? The answer is that you get 
another file under the directory customercontactinfo in your HDFS with 
the customercontactinfo table modifications. So how do you merge these 
files? You use the sqoop-merge command, of course, which is the subject of 
the next subsection.

The sqoop merge tool
The sqoop merge tool works hand in hand with the incremental import 
lastmodified mode. Each import creates a new file, so if you want to keep 
the table data together in one file, you use the merge tool. The sqoop 
merge tool combines a newer data set with an older data set by overwrit-
ing rows from the older data set with the rows from the new dataset when 
the primary keys match. The sqoop merge command shown in the fol-
lowing example illustrates how this would look when using new and old 
customercontactinfo incremental imports:

 The generated Java class file from the previous import (specified with --jar-
file customercontactinfo.jar) is required to parse the records for this 
merge example. If you don’t keep it around, you’ll need to use the codegen 
tool to recreate it.

sqoop merge
      --new-data \
        /user/biadmin/customercontactinfo/part-m-00001 \
      --onto \
        /user/biadmin/customercontactinfo/part-m-00000 \
      --target-dir /user/biadmin/merged-customers \
      --jar-file customercontactinfo.jar \
      --class-name customercontactinfo \
      --merge-key customernum

Benefiting from additional  
Sqoop import features
With the hands-on examples from the preceding section in mind, we’d like to 
describe some additional import features that you should know about. It’s 
beyond the scope of this chapter to cover every Sqoop feature in detail, but 
Table 14-1 exposes you to its more significant features. Also note that the 
Sqoop community is always innovating and adding functionality to Sqoop, 
so you should watch the community documentation pages under http://
sqoop.apache.org/docs for the latest features and new Sqoop command 
options.
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Table 14-1 Miscellaneous Sqoop Import Options
Command Line Arguments Description
Generic
--driver <class-name>
--connection-manager 
<manager-name>

Earlier in the chapter under the subsec-
tion entitled “Connectors and Drivers” we 
explain three approaches for using Sqoop 
depending on which data management 
system you are interfacing with. If you 
need to download and install your own 
connector, then you’ll need to use  
the --connection-manager CLA  
and possibly the --driver CLA as well. 
If you find yourself needing to use the 
generic JDBC connector, then you have to 
specify that with the --connection-
manager CLA and your vendor specific 
JDBC driver with the --driver CLA.

Import
--append You can append imported data to an  

existing dataset stored in HDFS. Without 
the --append CLA, if you try to import 
to an existing HDFS directory, the import 
fails. With the --append CLA, the import 
data is written to a new file in the same 
HDFS directory and is given a name that 
doesn’t conflict with the existing file(s).

--as-avrodatafile, 
--as-sequencefile, 
--as-textfile

These three arguments let you specify 
the import data format when it’s stored 
on HDFS. The default import format is 
textfile.

--direct Some of the Sqoop-supported databases 
offer high-performance tools for data 
movement that exceed the performance  
of their respective JDBC drivers. As of  
this writing, both MySQL and PostregSQL 
provide these high-performance tools,  
and you can leverage them by using  
the --direct argument along with the 
table-split-size argument via --direct-
split-size <n>. Beware that there 
may be certain limitations in direct mode 
(e.g. large objects may not be supported) 
so consult your database documentation.

(continued)
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Command Line Arguments Description
--map-column-java 
<mapping>, --map-column-
hive <mapping>

Sqoop lets you explicitly specify the Java 
type mapping for imports into HDFS and 
Hive.

--inline-lob-limit 
<size>

As you might expect, Sqoop can import 
large objects (BLOBs and CLOBs, in RDBMS 
terms). After all, Apache Hadoop is all 
about big data! As long as the large object 
doesn’t exceed the size of the --inline-
lob-limit <size> CLA, Sqoop stores 
the large object in line with the rest of the 
data in HDFS. However, if the large object 
exceeds the aforementioned limit specified 
by the CLA, it’s stored in the subdirectory 
named _lobs, off the main HDFS import 
directory.

--compress, 
--compression-codec <c>

By default, data isn’t compressed,  
but you can leverage gzip by specifying 
the --compress argument or your own 
algorithm using the --compression-
codec argument. All three of the supported 
file types (text, sequence, and Avro) can be 
compressed.

Sending Data Elsewhere with Sqoop
Sqoop export operations are quite similar to import operations, with a couple 
of notable exceptions. First, Sqoop cannot determine the correct data types 
for your relational tables. SQL data types are numerous and rich, so it makes 
far more sense for you to first decide how you want to map your Hadoop data 
into relational database types, and then complete the export. In other words, 
you need to create the target table in your RDBMS or data warehouse first 
to hold the data you want to export. Second, when you execute the Sqoop 
export command, you specify the HDFS directory where the export data is 
stored. You cannot specify a Hive or HBase table name for exports, as you 
can with imports.

Figure 14-5 illustrates the steps involved in a Sqoop export from HDFS to an 
RDBMS or data warehouse system.

Table 14-1 (continued)
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Figure 14-5: 
The Sqoop 

export 
flow of 

execution.
 

As you can see, the Sqoop export flow of execution is similar to the import 
flow. Figure 14-5 focuses on the export of a potentially large Products file from 
HDFS into a similar Products data table in a data management system. Three 
map tasks are depicted to parallelize the process, but more or less could be 
specified by the user, based on the dataset size and the size of the Hadoop 
cluster. Carefully consider specifying the number of map tasks, in terms of 
both exports and imports. Too many map tasks can take longer if sufficient 
resources don’t exist on your Hadoop cluster, and, similarly, too many map 
tasks can overwhelm the data management system as well.

Exporting data from HDFS
The following hands-on example demonstrates an export of a Hive table 
called sev1_serviceorders. A fictional service company has derived 
the table from the original serviceorders table that we show you how 
to import from the MySQL serviceorderdb earlier in this chapter. It 
was decided, after leveraging text analytics on the Apache Hadoop cluster 
against the database, that service orders for customer number 20000 should 
be treated with a severity level of 1 and be exported back to the MySQL 
database for report generation. (This example is contrived but still illustra-
tive of a typical joint use case for Apache Hadoop and the RDBMS or data 
warehouse.)

Right off the bat, make sure that the MySQL serviceorderdb has an appro-
priate table to receive your Sqoop export. The data definition language to 
create the table is given in Listing 14-21.
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Listing 14-21: MySQL Create Table Statement

CREATE TABLE sev1_serviceorders(
serviceordernum INT PRIMARY KEY,
customernum INT,
productnum CHAR(4),
status VARCHAR(100),
FOREIGN KEY (customernum) REFERENCES  

customercontactinfo(customernum),
FOREIGN KEY (productnum) REFERENCES 

productinfo(productnum)
);

The Hive sev1_serviceorders table can be created and displayed in sev-
eral different ways, but for the sake of illustration, we’ve included a pair of 
possible HiveQL statements in Listings 14-22 and 14-23.

Listing 14-22: HiveQL Create Table Statement with INSERT  
Command to Load Data

hive> CREATE TABLE sev1_serviceorders(
    > serviceordernum INT,
    > customernum INT,
    > productnum STRING,
    > status STRING);
OK
Time taken: 0.7 seconds
hive> INSERT OVERWRITE TABLE sev1_serviceorders
    > SELECT * FROM serviceorders WHERE customernum = 

20000;
...
Total MapReduce CPU Time Spent: 1 seconds 30 msec
OK
Time taken: 26.836 seconds

Listing 14-23: HiveQL SELECT Command to Display the Contents  
of the New Table

hive> SELECT * FROM sev1_serviceorders;
OK
100000  20000   A200    I have some questions on building 

HiveQL queries? My Hadoop for Dummies book has 
not arrived yet!

Time taken: 0.167 seconds

Listing 14-23 confirms that everything is in place to perform the Sqoop export 
operation. Sqoop export commands are similar to import commands, as you 
can see in this example:

sqoop export (generic arguments) (export arguments)
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In the export arguments, you specify in your HDFS the pathname to the Hive 
warehouse where the sev1_serviceorders table is stored. In addition, you 
specify the field delimiter that you want to use for your table, because Hive 
allows many different types of delimiters. Listing 14-24 shows a possible sce-
nario, and Listing 14-25 shows the results.

Listing 14-24: Sqoop export Command from HDFS to MySQL

$ sqoop export \
--connect jdbc:mysql://localhost/serviceorderdb \
--username root -P -m 1 \
--table sev1_serviceorders \
--export-dir /biginsights/hive/warehouse/serviceorderdb.db/sev1_serviceorders \
--input-fields-terminated-by '\0x0001'
Enter password:
...
13/08/18 19:08:27 INFO mapreduce.ExportJobBase: Exported 1 records.

Listing 14-25: MySQL Export Results

mysql> select * from sev1_serviceorders;
| serviceordernum | customernum | productnum | status                                                                                            
|          100000 |       20000 | A200       | I have some questions on building 

HiveQL queries? My Hadoop for Dummies book has not arrived yet! |
1 row in set (0.00 sec)

Listing 14-25 confirms that the export was successful and the record you 
expected to be inserted into the sev1_serviceorders table in the MySQL 
database has in fact been inserted.

Just because we authors value thoroughness, we show you four distinct 
export approaches in this section: insert, update, update insert, and call pro-
cedures. The preceding example used the insert approach. In the following 
four sections, we explain each export approach (yes, even insert again) and 
their various options.

Sqoop exports using the Insert approach
In the hands-on export example in the previous section, the rows are 
exported from the Hive data warehouse (stored in HDFS) with the help of 
SQL INSERT statements in the MySQL RDBMS. The export operation was a 
small one, for the sake of illustration, but often, exports include very large 
tables with millions of rows. Sqoop handles large export use cases by way 
of batching techniques and by leveraging multiple map tasks to write the 
data in parallel. (As with imports, Sqoop uses four map tasks by default with 
exports.) The idea behind batching is to execute a group of SQL INSERT 
statements together instead of the serial approach of executing them one 
by one. The idea is straightforward, but the approach for batching differs 
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from one database technology to another. The Sqoop designers knew this, so 
they made some good, educated guesses on batch default parameters and 
then gave us different options for adapting to, and tuning for, our database 
of choice.

This list describes two techniques that Sqoop users can leverage to batch 
export operations:

 ✓ The --batch command line argument: This argument allows Sqoop to 
batch together SQL INSERT statements using the JDBC PreparedStatement 
interface. So the Sqoop client creates a batch of the following statements 
using the JDBC APIs:

INSERT INTO table VALUES (col1,col2,...);
INSERT INTO table VALUES (col1,col2,...);
INSERT INTO table VALUES (col1,col2,...)

  In theory, this technique should result in better export throughput 
because Sqoop’s map task writers avoid sending individual INSERT 
statements and instead batch them together.

 ✓ The -D <property=value> argument: If you were to issue the sqoop 
help export command, you’d see a command line argument that 
begins with -D to allow you to set properties for Sqoop that would 
otherwise have to be set in the $SQOOP_HOME/conf/sqoop-site.
xml file. If you leverage the -D <property=value> argument, you 
can set the sqoop.export.records.per.statement property to a 
value that determines the number of records per INSERT statement. For 
example, setting the aforementioned property to 3 would generate the 
INSERT statement

INSERT INTO "table" VALUES (x,y,z,...), (x,y,z,...), 
(x,y,z,...);

  You can also set the sqoop.export.statements.per.transaction 
property to a value that specifies the number of INSERT statements to 
be executed before you commit the transaction.

Which option should you use? Well, it depends on your chosen database 
technology. The --batch command line argument may work fine, but it 
depends on how the JDBC driver was implemented. As of this writing, the 
default behavior for Sqoop 1.4.4 is to leverage the -D <property=value> 
argument, with records per statement set to 100 and statements per trans-
action set to 100. Therefore, every 10,000 rows, Sqoop commits your batch 
INSERT operations. By causing a commit every 10,000 rows, Sqoop avoids 
out-of-memory errors. We don’t mean that the -D <property=value> argu-
ment works with every database technology — it just happens to be what the 
Sqoop designers chose, based on certain assumptions. Consult your vendor, 
or review the database documentation before executing batch Sqoop export 
commands to see which options are supported.
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Sqoop exports using the Update 
and Update Insert approach
With insert mode, records exported by Sqoop are appended to the end of the 
target table. Sqoop also provides an update mode that you can use by provid-
ing the --update-key <column(s)> command line argument. This action 
causes Sqoop to generate a SQL UPDATE statement to run on the RDBMS or 
data warehouse. Assume that you want to update a three-column table with 
data stored in the HDFS file /user/my-hdfs-file. The file contains this data:

100, 1000, 2000

The following abbreviated Sqoop export command generates the corresponding 
SQL UPDATE statement on your database system:

$ sqoop export (Generic Arguments)
  --table target-relational-table \
  --update-key column1
  --export-dir /user/my-hdfs-file
  ...

Generates => UPDATE target-relational-table SET
                    column2=1000,column3=2000 
             WHERE column1=100;

With the preceding export command, if the target-relational-table 
on your RDBMS or data warehouse system has no record with the match-
ing value in column1, nothing is changed in target-relational-table. 
However, you may also include another argument that inserts or appends 
your data to target-table if no matching records are found. Think of it this 
way: If exists UPDATE else INSERT. This technique is often referred 
to as upsert in the database vernacular or as MERGE in other implementa-
tions. The argument for upsert mode is --update-mode <mode>, where 
updateonly is the default and allowinsert activates upsert mode. Check 
your database documentation or consult with your vender to determine 
whether upsert mode is supported with Apache Sqoop.

Sqoop exports using call stored procedures
Sqoop can also export HDFS data by calling a stored procedure in your 
RDBMS or data warehouse using the --call <stored procedure> com-
mand line argument. The following abbreviated Sqoop export command illus-
trates this approach:

sqoop export (Generic Arguments)
  --call my-stored-procedure \
  --export-dir /user/my-hdfs-export-data



296 Part III: Hadoop and Structured Data 

In this example, Sqoop calls the my-stored-procedure for every record in 
the /user/my-hdfs-export-data file. Many use cases can leverage this 
feature. A classic example is that you already have existing stored procedures 
that you use to import data into your RDBMS or data warehouse.

 A stored procedure is a subroutine that’s stored in the RDBMS or data ware-
house. It can centralize common logic that would otherwise have to exist at 
the application level.

Sqoop exports and transactions
The beauty of Sqoop is that it can export massive data sets to an RDBMS or 
data warehouse by batching SQL statements and leveraging parallel map 
writer tasks. However, the export operation is not atomic — it isn’t an all-
or-nothing entity, in other words. Individual writer tasks can fail, leaving the 
Sqoop export operation in a partially completed state. If this happens, your 
table data is corrupt and you’re unlikely to be a “happy Hadooper.” Sqoop 
solves this problem with the help of staging tables.

The idea here is that you can first export data to a staging table and after the 
export successfully completes, move your staging table to the final table in 
one atomic transaction. Use the command line argument --staging-table 
<table name> to specify your staging table, and use --clear-staging-
table to clear the staging table before each subsequent export.

 Staging tables aren’t supported when using the --direct option, update mode, 
update insert mode, or called procedures. Staging tables are only available with 
the insert approach discussed above and demonstrated in Listing 14-25.

Looking at Your Sqoop Input and 
Output Formatting Options

In the earlier subsection “Importing Data with Sqoop,” we talk about Sqoop’s 
code generation feature. A bit later in the chapter — at Listing 14-5 or there-
abouts — we also leverage code generation command-line arguments to 
demonstrate how you can control the code generation process and results. 
(Then you can use the .jar file for subsequent applications where you 
need to process the data now stored in HDFS.) Finally, in Listing 14-24, we 
use an --input-fields-terminated-by '\0x0001' command line 
argument to instruct the Sqoop export tool how to read and parse records 
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managed by Hive before exporting to MySQL. Hive uses control-A characters 
(‘\0x0001’ in Listing 14-24) rather than the default comma for field termina-
tion. In this section, we help you take a closer look at input parsing CLAs as 
well as output line formatting CLAs. When you choose to import or export 
delimited text, you often need these CLAs.

Table 14-2 lists the input parsing CLAs which begin with --input, and the 
output line formatting CLAs. You’ll probably notice that these CLAs are just 
opposites of each other.

Table 14-2 Sqoop Output Line Formatting  
 and Input Parsing CLAs
Command Line Argument What It Does
--enclosed-by <char>
--input-enclosed-by <char>

Specifies a field-enclosing character 
(double quotes, for example).

--optionally-enclosed-by 
<char>
--input-optionally-
enclosed-by <char>

Specifies that if the data includes the 
enclosed-by <char>, say double 
quotes (“), then the double quotes 
should be written; otherwise, double 
quotes are optional — don’t write them. 
So for example, if Sqoop imports a string 
field enclosed in double quotes then 
it will be written to HDFS with double 
quotes. Otherwise, other fields would not 
be written to HDFS with double quotes.

--escaped-by <char>
--input-escaped-by <char>

Specifies an escape character to 
avoid ambiguity when parsing or writ-
ing records to HDFS. As an example, 
you might make the --escaped-by 
character a backslash (\) which would 
allow you to import a string with double 
quotes inside the string. When Sqoop 
writes the field to HDFS, the double 
quotes within the string would be pre-
ceded with a backslash. In a similar 
way, if you use the generated Java 
code to parse a string with quotes 
inside the string, specifying a backslash 
(\) with the --input-escaped-by 
CLA would save you from losing data 
because Sqoop would see the backs-
lash, skip over the quotes and continue 
looking for the enclosing quotes.

(continued)
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Command Line Argument What It Does
--fields-terminated-by 
<char>
--input-fields-
terminated-by <char>

Specifies the field-termination charac-
ter (a comma, for example).

--lines-terminated-by 
<char>
--input-lines-
terminated-by <char>

Specifies the record- or line-termination 
character (a new-line character for 
example).

--mysql-delimeters <char> For output line formatting only, this 
CLA indicates that the default MySQL 
delimiters should be used for outputting 
records to HDFS. MySQL’s default delim-
iter set is the following: fields: , lines: \n 
escaped-by: \ optionally-enclosed-by: ’

 If you accidentally delete Java files generated by sqoop-import or sqoop-
export, you can use the sqoop-codegen tool later to reproduce the files. 
The Sqoop codegen tool accepts the same CLAs in Table 14-2. You can also 
use sqoop-codegen independently and specify the jar file and class name for 
your sqoop-import or sqoop-export commands.

Getting down to brass tacks: An example  
of output line-formatting and  
input-parsing 
To ensure that this whole output line formatting / input parsing feature 
in Sqoop is clear, we close this discussion with an example using our old 
standby, the Service Order Database. Imagine a call center operator from 
our fictional service company taking calls from customers and inputting 
their comments into the MySQL serviceorderdb that was used in earlier 
examples. You might imagine an operator entering commas in the problem 
description, in an attempt to keep the prose as clear as possible for the engi-
neer, who would later try to solve the issue for the customer. However, unbe-
knownst to the call center operator, commas are the default field-termination 
characters for Sqoop — so later, when the IT staff decides to import part or 
all of the serviceorderdb into Hadoop for analysis, we have a problem. 
It could happen like this: the call center operator takes a service call from 
a customer and the MySQL system inserts the following record into the 
serviceorderdb.

Table 14-2 (continued)
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INSERT INTO serviceorders VALUES (100000, 20000, 'A200', 
'I have some questions, on building HiveQL 
queries? My Hadoop for Dummies book has not 
arrived yet!');

Later on, the IT staff imports the serviceorders table into Apache Hadoop 
using this familiar command:

sqoop import \
  --connect jdbc:mysql://localhost/serviceorderdb \
  --username root -P \
  --table serviceorders -m 1

At this point, everything is good; even though a comma appears in the prob-
lem description, it’s imported into HDFS verbatim. However, suppose that the 
IT staff decides to export the data from Hadoop back into a MySQL table later 
on, using this command:

sqoop export \
  --connect jdbc:mysql://localhost/serviceorderdb \
  --username root -P \
  --export-dir /user/biadmin/serviceorders \
  --table serviceorders -m 1

After the export operation, the MySQL database administrator looks at the 
new table and sees the following records:

mysql> select * from serviceorders;
...
| serviceordernum | customernum | productnum | status
|          100000 |       20000 | A200       | I have some questions                                                 

|
|          100001 |       10001 | A100       | I need to understand how to 

configure Zookeeper for my HBase Cluster? |
...

The Sqoop export command has interpreted the operator’s comma as a field 
delimiter, and some vital data was lost. We’re in danger of losing an important 
customer because we can’t address the problem without an embarrassing 
return phone call to solve the data loss problem! It sounds bad, so what’s the 
solution? The solution is output line formatting and input parsing CLAs. Two 
commands (one import and one export — see Listing 14-26) would solve 
the problem.
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Listing 14-26: An Output Line Formatting and Input Parsing Example

sqoop import \
   --connect jdbc:mysql://localhost/serviceorderdb \
   --username root -P -m 1 \
   --table serviceorders \
   --target-dir /user/biadmin/serviceorders-test \
   --escaped-by \\ \
   --input-escaped-by \\ \
   --class-name serviceorderstest \
   --bindir /home/biadmin/serviceorders-test
sqoop export \
   --connect jdbc:mysql://localhost/serviceorderdb \
   --username root -P -m 1 \
   --table serviceorders \
   --export-dir /user/biadmin/serviceorders-test \
   --class-name serviceorderstest \
   --jar-file /home/biadmin/serviceorders-test/serviceorderstest.jar

Because this topic is important, we walk you through each step. First, in the 
import, we’re specifying an output line formatting escape character(\).  
This character causes the generated code (which we’re naming service-
orderstest) to place a backslash (because of the --escaped by \ CLA)  
before the operator’s comma in the HDFS records file. Then when the 
serviceorders records are exported from HDFS back to the MySQL 
serviceorders table (or another table like it), we’ll reuse the generated 
code, which we saved in the /home/biadmin/serviceorders-test 
directory with the --bindir CLA. This generated code has an input parse 
method that knows how to read the problem description, so whenever it sees 
the backslash and comma (because of the --input-escaped-by \ CLA in 
the import command), it continues reading and exporting the whole prob-
lem description until it finds the final field-enclosing comma. Now, when the 
MySQL database administrator from the service company issues the SELECT 
statement, he or she sees the whole problem description.

 The Linux shell uses the backslash (\) as a line continuation character so 
you can just keep on typing with a whole new line. (This is a pretty important 
little technique with Sqoop and its long command structures.) That’s why we 
have three backslashes on the lines in Listing 14-26 where we are specifying 
the backslash as an escape character. We’re escaping our escape character and 
continuing our line.

 If you had chosen to import binary data from a data management system 
(DMS) with Sqoop, and store that data in HDFS using a sequence file (with 
the --as-sequencefile CLA), then you should save your generated Java 
class (like we did in Listing 14-26) so you can point to it (using the --class-
name and --jar-file CLAs) if you need to export the data back to the DMS.



301 Chapter 14: Integrating Hadoop with Relational Databases Using Sqoop

Sqoop 2.0 Preview
With all the success surrounding Sqoop 1.x upon its graduation from the 
Apache incubator, Sqoop has momentum! So, as you might expect, Sqoop 2.0 
is in the works with exciting new features on the way. If you haven’t already, 
we suggest checking out http://sqoop.apache.org for the full story. As 
of this writing, you can see that Sqoop 1.99.3 is downloadable, complete with 
documentation. We’d bet that you’re wondering (like we are) how many 1.99.x 
releases will be available before the big 2.0 hits http://sqoop.apache.
org. Well, our crystal ball only works part-time so the answer is “not yet.”

We can still dream, right? And while we’re dreaming, we can still provide you 
with a preview of Sqoop 2.0 features. However, you know the drill: The situa-
tion can change leading up to the 2.0 release, so we keep our description at a 
relatively high level of generality.

Figure 14-6 illustrates (documented) design plans for Sqoop 2.0.

 

Figure 14-6: 
Sqoop 2.0 

design 
plans.

 

As you can see, the big change in the works is that Sqoop 2.0 will have a 
separate server, which is good news for a number of reasons. First, you won’t 
have to do so much work. The Sqoop connector and JDBC driver will be 
installed once by the system administrator for your cluster instead of once 
per Sqoop client. If you happen to be the system administrator, we extend 
our condolences. You still have to do the work, but maybe you’ll like the next 
benefit: Sqoop 2.0 will be more secure! With a Sqoop server as part of the 
architecture, sensitive operations such as connecting to the database servers 
only have to happen on the Sqoop server and you’ll have role-based access 
control. Additionally, Sqoop clients can leverage Sqoop from anywhere on the 
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network (thanks to the new rest interface), and they will enjoy a new graphi-
cal user interface (GUI). We think you’ll agree that the command line options 
are necessary and powerful for scripting purposes, but we all like a cool GUI 
from time to time. Sqoop requires many command line options, which can be 
error-prone without a GUI to guide you.

We’ll leave this preview as is for now because we don’t want to discuss features 
that might change. We would bet that you’ve noticed MapReduce (instead of 
just map tasks) proudly displayed in Figure 14-6. We’ve inserted it on purpose, 
but we’ll wait to add our two cents until after we hear the exact details on how 
reducers are leveraged when the 2.0 announcement hits the community page. 
Until then, enjoy Sqoop 1.x and start experimenting with 1.99.x.

 You can read more about the Sqoop 2 goals and architecture on this web site: 
https://cwiki.apache.org/confluence/display/SQOOP/Sqoop+2



Chapter 15

The Holy Grail: Native SQL Access 
to Hadoop Data

In This Chapter
▶ Seeing why SQL is important for Hadoop

▶ Looking at SQL access and the open source Hadoop community

▶ Evaluating proprietary SQL solutions

T 
he NoSQL movement that has been happening over the past few years 
has taught two important lessons: a) Alternatives to relational databases 

can be a great help in solving a variety of problems and b) SQL isn’t going 
anywhere. In fact, the NoSQL movement is now being rebranded as NewSQL, 
as in, “Here’s a new technology where you can use SQL!” Even though we’ve 
seen a tremendous amount of innovation in the information management 
field — technologies are now available that can store graphs, documents, and 
key/value pairs at a massive scale — the IT market is still demanding SQL 
support for all of it. Hadoop is no exception, and a number of companies are 
investing heavily to drive open source projects and proprietary solutions for 
SQL access to Hadoop data.

SQL’s Importance for Hadoop
There are compelling reasons that SQL has proven to be resilient. The IT 
industry has had 40 years of experience with SQL, since it was first devel-
oped by IBM in the early 1970s. With the increase in the adoption of relational 
databases in the 1980s, SQL has since become a standard skill for most IT 
professionals. You can easily see why SQL has been so successful: It’s rela-
tively easy to learn, and SQL queries are quite readable. This ease can be 
traced back to a core design point in SQL — the fact that it’s a declarative 
language, as opposed to an imperative language. For a language to be declara-
tive means that your queries deal only with the nature of the data being 
requested — ideally, there should be nothing in your query that determines 
how the processing should be executed. In other words, all you indicate in 
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SQL is what information you want back from the system — not how to get it. 
In contrast, with an imperative language (C, for example, or Java, or Python) 
your code consists of instructions where you define the actions you need the 
system to execute.

In addition to the (easily leveraged) skills of your SQL-friendly IT profession-
als, decades’ worth of database applications have also been built with SQL 
interfaces. As we discuss in Chapter 11, when talking about how Hadoop 
can complement the data warehouse, it’s clear that organizations will store 
structured data in Hadoop. And as a result, they’ll run some of their existing 
application logic against Hadoop. No one wants to pay for applications to be 
rewritten, so a SQL interface is highly desirable.

With the development of SQL interfaces to Hadoop data, an interesting trend 
is that commercial business analytics and data management tools are almost 
all jumping on the Hadoop bandwagon, including business intelligence report-
ing; statistical packages; Extract, Transform, and Load frameworks (ETL); and 
a variety of other tools. In most cases, the interface to the Hadoop data is 
Hive (see Chapter 13) or one of the other solutions described in this chapter.

Looking at What SQL Access  
Actually Means

When we use the term SQL access, we do so knowing that we’re relying on a 
few basic assumptions:

 ✓ Language standards: The most important standard, of course, entails 
the language itself. Many “SQL-like” solutions exist, though they usually 
don’t measure up in certain fundamental ways — ways that would pre-
vent even typical SQL statements from working. The American National 
Standards Institute (ANSI) established SQL as an official technical stan-
dard, and the IT industry accepts the ANSI SQL-92 standard as repre-
senting the benchmark for basic SQL compliance. ANSI has released a 
number of progressively more advanced versions over the years as data-
base technologies have evolved.

 ✓ Drivers: Another key component in a SQL access solution is the 
driver — the interface for applications to connect and exchange data 
with the data store. Without a driver, there’s no SQL interface for any 
client applications or tools to connect to for the submission of SQL que-
ries. As such, any SQL on Hadoop solution has to have JDBC and ODBC 
drivers at the very least, because they’re the most commonly used data-
base interface technologies.
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 ✓ Real-time access: Until Hadoop 2, MapReduce-based execution was the 
only available option for analytics against data stored in Hadoop. For 
relatively simple queries involving a full scan of data in a table, Hadoop 
was quite fast as compared to a traditional relational database. Keep in 
mind that this is a batch analysis use case, where fast can mean hours, 
depending on how much data is involved. But when it came to more 
complex queries, involving subsets of data, Hadoop did not do well. 
MapReduce is a batch processing framework, so achieving high perfor-
mance for real-time queries before Hadoop 2 was architecturally impos-
sible. One early motivator for YARN, the new resource management and 
scheduling system on the block, was this need to support other process-
ing frameworks to enable real-time workloads, such as interactive SQL 
queries. Indeed, a proper SQL solution should not leave people waiting 
for reasonable queries. (For more on YARN, see Chapter 7.)

 ✓ Mutable data: A common question in many discussions around SQL 
support on Hadoop is “Can we use INSERT, UPDATE, and DELETE state-
ments, as we would be able to do in a typical relational database?” For 
now, the answer is no, which reflects the nature of HDFS — it’s focused 
on large, immutable files. At the time of this writing, technologies such 
as Hive offer read-only access to these files. Regardless, work is ongo-
ing in the Hive Apache project to enable INSERT, UPDATE, and DELETE 
statements.

SQL Access and Apache Hive
At the time of this writing, Apache Hive is indisputably the most widespread 
data query interface in the Hadoop community. (We cover Hive in depth in 
Chapter 13, describing its structure and how to use it.)

Originally, the design goals for Hive were not for full SQL compatibility and 
high performance, but were to provide an easy, somewhat familiar interface 
for developers needing to issue batch queries against Hadoop. This rather 
piecemeal approach no longer works, so the demand grows for real SQL 
support and good performance. Hortonworks responded to this demand 
by creating the Stinger project, where it invested its developer resources in 
improving Hive to be faster, to scale at a petabyte level, and to be more com-
pliant to SQL standards. This work was to be delivered in three phases.

In Phases 1 and 2, you saw a number of optimizations for how queries were 
processed as well as added support for traditional SQL data types; the addi-
tion of the ORCFile format for more efficient processing and storage; and 
integration with YARN for better performance. In Phase 3, the truly significant 
evolutions take place, which decouple Hive from MapReduce. Specifically, it 
involves the release of Apache Tez (described in Chapter 7), which is an alter-
native processing model for Hadoop, designed for interactive workloads.
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Massively parallel processing databases
To provide a better understanding of the SQL-
on-Hadoop alternatives to Hive in this chapter, 
we thought it would be helpful to provide a 
primer on massively parallel processing (MPP) 
databases first.

As we explain in Chapter 13, Apache Hive is 
layered on top of the Hadoop Distributed File 
System (HDFS) and the MapReduce system and 
presents an SQL-like programming interface to 
your data (HiveQL, to be precise). This combi-
nation of Hadoop technologies deployed on a 
cluster is similar to MPP databases that have 
existed for a while in the IT marketplace. MPP 
databases usually provide an SQL interface 
and a relational database management system 
(RDBMS) running on a cluster of servers net-
worked together by a high-speed intercon-
nect. The figure shows the components of an 
RDBMS that are typically included in the SQL-
on-Hadoop solutions described in this chapter.

Relational data systems have evolved consider-
ably to a point where best practices have 
emerged among most offerings in terms of an 
optimal query execution infrastructure. The 
figure above shows this in terms of the flow of a 
query as it’s processed by an RDBMS engine. 
First, the query text is parsed and understood. 
Then the syntax tree for the query is compiled 
into a logical execution plan, which is then opti-
mized to form the final physical execution plan, 
which is then executed by the runtime. For many 
of the SQL-on-Hadoop solutions, we’re seeing 
similar components being deployed in Hadoop.

MPP clusters are usually referred to as having 
a Shared-Nothing architecture, because each 
system has its own CPU, memory and disk. 
However, through the database software and 
high-speed interconnects, the system func-
tions as a whole and can scale as new servers 
are added to the cluster. The overall system is 
explicitly tuned to provide fast, interactive query 
response. MPP databases are often more flexible, 
scalable, and cost effective than the traditional 
RDBMS, hosted on a large multiprocessor server.
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In addition to the Stinger project, Hortonworks is spearheading an ambi-
tious initiative to enable Hive to support editing data at the row level — in 
other words, enabling INSERT, UPDATE, and DELETE statements against Hive 
data with full compliance with the ACID properties for database systems: 
Atomicity, Consistency, Isolation levels, and Durability. (For more on the ACID 
properties, see Chapter 11.)

Solutions Inspired by Google Dremel
For most people, the term Dremel brings to mind a handy high-speed, low-
torque tool that works well for a variety of jobs around the house. But did you 
know that Google created a Dremel? Rather than produce another handheld 
mechanical tool, though, Google chose a fast software tool intended for inter-
active analysis of big data. As with other Google technologies that inspired 
parts of the Hadoop ecosystem, such as MapReduce (see Chapter 6), Google 
File System (HDFS, see Chapter 4), and BigTable (see HBase, Chapter 12), 
Google developed Dremel for use internally and then published a paper 
describing the purpose and design of the technology. (In other words, Dremel 
is not something you can download and use on your Hadoop cluster.)

 You can find Google’s Dremel whitepaper at this site:

http://research.google.com/pubs/pub36632.html

Google uses Dremel for a variety of jobs, including analyzing web-crawled 
documents, detecting e-mail spam, working through application crash 
reports, and more. Google’s BigQuery service actually uses Dremel.

As we discuss in Chapter 1, Google designed MapReduce technology for 
batch processing over massive sets of data. As their needs evolved, so did 
their technology, and Google decided to create Dremel to improve perfor-
mance for interactive queries against big data sets. The MapReduce approach 
provides scalability and query fault tolerance, but it’s fundamentally a batch-
based system, so response times for smaller queries (queries involving only a 
small part of an entire data set, for instance) are often not what users expect. 
So Google developed a query execution technology designed for interac-
tive queries, which runs on intermediate servers on top of the Google File 
System (GFS). (Remember, GFS was the inspiration for Apache HDFS, which is 
Hadoop’s file system.)

Similar to Hive, Dremel uses an SQL-like language (familiar to most program-
mers) and employs a columnar data layout. Dremel provides fast, interactive 
query response while preserving the scalability and fault tolerance found in 
Apache Hive. In the Dremel whitepaper, Google explains how it can perform 
aggregation queries within seconds over tables with a trillion rows — not bad 
at all.
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So Google has its Dremel technology, which it uses internally, but then there 
are all the technologies “inspired by” Dremel (kind of like all those perfumes 
“inspired by” Drakkar Noir). We introduce you now to two “inspired by” 
products — Apache Drill and Cloudera Impala. The pattern here is similar in 
both cases:

Apache Drill
As of this writing, Drill is a candidate project in the Apache incubator. 
We don’t mean that Apache Drill is especially sickly, though. The Apache 
Software Foundation (ASF) candidate technologies all begin as incubator 
projects before becoming official ASF technologies. You can read about the 
Apache Incubator at

http://incubator.apache.org

You can read about Drill at

http://incubator.apache.org/drill

Inspired by Google’s Dremel technology, the stated performance goal for Drill 
is to enable SQL queries against a petabyte or more of data distributed across 
10,000-plus servers. Figure 15-1 illustrates the architecture of Apache Drill.

Figure 15-1: 
Apache Drill 
architecture.

In Figure 15-1, we see that the key to the Drill architecture are the DrillBit 
servers deployed on each data node. Note that each server includes a query 
parser, compiler, optimizer, and runtime, but there is a master DrillBit server 
nominated by Zookeeper servers, which oversees the execution of the que-
ries and looks after the task of pulling together the interim result sets into a 
single set of output.

Like Dremel, Drill can coexist with, and complement, MapReduce, but 
MapReduce isn’t used to fulfill queries, as with Apache Hive. Instead, execu-
tion engines called Drillbits have been developed by members of the Drill 
community. This community aims to provide low-latency queries for applica-
tions such as real-time business intelligence dashboards, fraud detection, and 
other time-sensitive use cases. Drill supports nested data types such as Avro, 
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JSON, and Google protocol buffers. These nested data types allow for very 
large denormalized tables. The Drill development team is also working on 
providing extensive SQL support by targeting SQL2003 compliance. Finally, 
note that the Drill team is providing HBase support so that users will be able 
to query HBase tables with SQL.

Cloudera Impala
Cloudera is a leading Apache Hadoop software and services provider in the 
big data market. Like Apache Drill, Cloudera’s Impala technology seeks to 
improve interactive query response time for Hadoop users. As we discuss in 
Chapter 13, Apache Hive has provided a familiar and powerful query mecha-
nism for Hadoop users, but query response times are often unacceptable 
due to Hive’s reliance on MapReduce. Cloudera’s answer to this problem 
is Impala. Cloudera has developed an MPP query engine, written in C++, to 
replace the MapReduce layer leveraged by Apache Hive. Unlike Dremel and 
Drill, Cloudera decided that a native C++ MPP engine — instead of a Java 
engine — was the answer for fast, interactive Hadoop queries.

Note that Impala uses HiveQL as a programming interface, and Impala’s 
Query Exec Engines are co-located with HDFS data nodes, in keeping with the 
Hadoop approach of co-locating data with processing tasks. Impala can also 
use HBase as a data store. In this sense, Impala is an extension to Apache 
Hadoop, providing a very high-performance alternative to the Hive-on-top-of-
MapReduce model.

 In Chapter 13, we present several Hive file formats: TEXTFILE, SEQUENCEFILE, 
RCFILE, and ORC. Cloudera and Twitter led the development of the new 
Hadoop file format PARQUET, which can be used with Impala and is available 
as open source on GitHub. The Parquet file format provides a robust columnar 
medium for storing data in Hadoop. It supports highly efficient compression 
and encoding, and is effective for storing nested data structures.

You can find Cloudera’s Impala technology, which also was inspired by 
Google’s Dremel invention, at https://github.com/cloudera/impala.

IBM Big SQL
IBM has a long history of working with SQL and database technology, as the 
introduction to this chapter makes clear. In keeping with this history, IBM’s 
solution for SQL on Hadoop leverages components from its relational data-
base technologies that are ported to run on Hadoop.
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If you’re at all familiar with IBM’s product naming for its Big Data products 
and features, you can easily guess what they’ve named their SQL on Hadoop 
solution: Big SQL. The goal of Big SQL is to provide a SQL interface on Hadoop 
that gives users as much as possible of what they’re used to with SQL inter-
faces for relational databases. This means extensive query syntax support, 
fast performance that doesn’t require users having to monkey with their que-
ries, and the ability to control data security.

Figure 15-2 shows a partial deployment of BigInsights, IBM’s Hadoop distribu-
tion running Big SQL.

 

Figure 15-2: 
IBM 

Big SQL 
architecture.

 

In Figure 15-2 you can see a subset of the master nodes and data nodes 
behind the BigInsights firewall. One of the master nodes is running the Big 
SQL server, which includes IBM’s SQL compiler and optimizer. Also included 
on this master node is a catalog, where metadata and statistics about any cat-
aloged data in HDFS is stored for use by the compiler/optimizer. Subsections 
of queries are sent to the applicable data nodes where requested data is 
stored, and there the Big SQL Runtime (which is IBM’s SQL runtime) executes 
the workload. Rather than run mapper and reducer processes and persist 
files with intermediate result sets, Big SQL uses continuously running dae-
mons that pass messages between each other. It’s important to note that the 
data being queried is stored and managed by Hadoop. Big SQL supports stan-
dard Hadoop file formats — for example, RCFile and Parquet.

Big SQL provides the same extensive SQL support as the IBM relational data-
base products — for example, ANSI SQL-2011, and compatibility for IBM’s 
SQL Procedural Language (SQL/PL). (At the time of writing, IBM was working 
on providing support for Oracle’s SQL dialect and their PL/SQL procedural 
language.) Along with the standard IBM SQL engine come a number of other 
capabilities, most notably IBM’s row- and column-based security (also known 
as Fine-Grained Access Control, or FGAC), where only specific users can be 
authorized to see certain sets of data rows or columns.
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Big SQL comes with the standard IBM Data Server Client, which includes a 
driver package (refer to Figure 15-2). Traditional database applications can 
connect to the BigInsights Hadoop cluster and securely exchange encrypted 
data over SSL.

Pivotal HAWQ
In 2010, EMC and VMware, market leaders in delivering IT as a service via 
cloud computing, acquired Greenplum Corporation, the folks who had suc-
cessfully brought the Greenplum MPP Data Warehouse (DW) product to 
market. Later in 2012, Pivotal Labs, a leading provider of Agile software devel-
opment services, was also acquired. Through this federation of companies, 
the Pivotal HD Enterprise platform was announced in early 2013. This plat-
form, which is integrated with Apache Hadoop, includes the Pivotal HAWQ 
(Hadoop With Query) product — the former Greenplum MPP DW product. 
Though the Pivotal HD Enterprise platform also includes other components 
and technologies (VMware’s GemFire, for example), we want to draw your 
attention to the Pivotal HAWQ product, Pivotal’s approach to low-latency 
interactive SQL queries on Hadoop. Pivotal has integrated the Greenplum 
MPP Shared-Nothing DW with Apache Hadoop to enable big data analytics. 
The Pivotal HAWQ MPP DW stores its data in the Apache HDFS.

Pivotal HAWQ provides ANSI SQL support and enables SQL queries of HBase 
tables. HAWQ also includes its own set of catalog services instead of using 
the Hive metastore. The Pivotal HAWQ approach is to provide a highly opti-
mized and fast Hadoop SQL query mechanism on top of Apache Hadoop.

Hadapt
Late in the year 2010, Hadapt was formed as a start-up by two Yale University 
students and an assistant professor of computer science. Professor Daniel 
Abadi and Kamil Bajda-Pawlikowski, a PhD student from Yale’s computer sci-
ence department, had been working on the research project HadoopDB. After 
this paper was published, Justin Borgman, a student from the Yale School of 
Management, became interested in the work. He would later team up with 
Professor Abadi and Kamil Bajda-Pawlikowski to form Hadapt.

The Hadapt strategy is to join Apache Hadoop with a Shared-Nothing MPP 
database to create an adaptive analytics platform. This approach provides 
a standard SQL interface on Hadoop and enables analytics across unstruc-
tured, semistructured, and structured data on the same cluster.
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Like Apache Hive and other technologies, Hadapt provides a familiar JDBC/
ODBC interface for submitting SQL or MapReduce jobs to the cluster. Hadapt 
provides a cost-based query optimizer, which can decide between a combina-
tion of MapReduce jobs and MPP database jobs to fulfill a query, or the job 
can be handled by the MPP database for fast interactive response. By joining 
an Apache Hadoop cluster with an MPP database cluster to create a hybrid 
system, Hadapt solves the query response time and partial SQL support (via 
HiveQL) found in Apache Hive.

The SQL Access Big Picture
SQL access to Hadoop data is a burning (and ongoing) concern. Many ven-
dors are offering solutions — some are adding value to the Hadoop eco-
system by writing their own high-performance MPP engine to replace the 
higher-latency MapReduce system, and others are working hard to improve 
the performance of MapReduce by rewriting parts of the Hadoop system with 
native code (using the C and or C++ languages, for example) instead of with 
Java. Some have decided that integrating Shared-Nothing MPP database sys-
tems and Hadoop on the same platform is the way to go. History has shown 
that in technological battles such as this one, only one or two victors will 
emerge, leaving many solutions obsolete. The positive perspective in this 
case is that regardless of the specific winning technology, the interface will at 
least be SQL.



Part IV
Administering and 

Configuring Hadoop

 Check out the article “Processing graphs in Hadoop“ (and more) online at  
www.dummies.com/extras/hadoop.



In this part . . .
 ✓ Look at the Hadoop Deployment Big Picture

 ✓ Explore Hadoop administrative commands

 ✓ Plan for when things go wrong.

 ✓ See the importance of security in a Hadoop environment

 ✓ Check out the article “Processing graphs in Hadoop“ (and more) 
online at www.dummies.com/extras/hadoop.



Chapter 16

Deploying Hadoop
In This Chapter
▶ Examining the components that comprise a Hadoop cluster

▶ Designing the Hadoop cluster components

▶ Reviewing Hadoop deployment form factors

▶ Sizing a Hadoop cluster

A 
t its core, Hadoop is a system for storing and processing data at a mas-
sive scale using a cluster of many individual compute nodes. In this 

chapter, we describe the tasks involved in building a Hadoop cluster, all the 
way from the hardware components in the compute nodes to different cluster 
configuration patterns, to how to appropriately size clusters. In at least one 
way, Hadoop is no different from many other IT systems: If you don’t design 
your cluster to match your business requirements, you get bad results.

Working with Hadoop  
Cluster Components

While you’re getting your feet wet with Hadoop, you’re likely to limit your-
self to using a pseudo-distributed cluster running in a virtual machine on a 
personal computer. Though this environment is a good one for testing and 
learning, it’s obviously inappropriate for production-level performance and 
scalability. In this section, we talk about what’s involved in advancing to the 
next step. More specifically, we describe what a distributed cluster looks like, 
where multiple nodes are dedicated to data storage and processing.

Distributed Hadoop clusters normally follow the model shown in Figure 16-1.  
Redundancy is critical in avoiding single points of failure, so you see two 
switches and three master nodes. (We explain the latter number later in this 
chapter, in the section “Master nodes.”) You also see two edge nodes for 
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client applications and connectivity to resources outside the cluster, and a 
sufficient number of slave nodes to store your data sets. You see variations 
on this model when using multiple racks or processing techniques that need 
additional master nodes (HBase with its region servers, for example). We get 
into the specifics in later sections.

 

Figure 16-1: 
Typical 

components 
in a Hadoop 

cluster.
 

Rack considerations
A core principle of Hadoop is scaling out with additional slave nodes to meet 
increasing data-storage and -processing demands. In a scale-out model, you 
must carefully consider cluster design because dozens, and even hundreds, 
of slave nodes will ultimately need to be racked, powered, networked, and 
cooled.
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Server form factors
One of the first choices that IT architects will face when designing a Hadoop 
cluster is which of the following two form factors to use for Hadoop nodes:

 ✓ Blade server: Designed for maximum density, you can cram as many of 
these babies into one rack as possible. Blade servers fit into blade enclo-
sures, which have many standard server components, like dedicated 
storage, networking, power, and cooling. These components are shared 
among the blade servers, which means that each individual blade server 
can be much smaller.

  Blade servers are an appealing choice on the surface because you could 
take a standard rack and deploy between 40 and 50 of these blade serv-
ers. The problem with using blades for Hadoop deployments is that they 
rely on certain shared components, which isn’t in line with Hadoop’s 
shared-nothing architecture, where each of the slave nodes are self-
contained and have their own dedicated resources. More importantly, 
blades have little room for locally attached storage, often having no 
more than two or three drive bays. This is a non-starter for Hadoop, 
since slave nodes need much more dedicated storage capacity.

 ✓ Rack server: Complete servers with no shared components and room 
for hardware expansion, rack servers are the true choice for Hadoop 
because they’re nicely self-contained. A rack server that’s appropriately 
configured for being a Hadoop slave node typically occupies two RU, so 
you can fit 20 of them in a standard rack.

Cost of ownership
When choosing and designing a slave node, your most important consider-
ations are typically the initial procurement costs and the storage volume. 
However, the cost of ownership is also important. It’s a fine balancing act, 
however, because choices affecting procurement cost, power consump-
tion, cooling, hardware performance, and density are often in opposition. In 
the name of helping you make good choices, we offer some (quite specific) 
advice:

 ✓ Reserve redundant power supplies for the master nodes. Having 
redundant power supplies for slave nodes is overkill — a power supply 
failure in a slave node wouldn’t greatly affect the cluster. However, 
having redundant power supplies on all slave nodes would increase 
power consumption and generate more heat.

 ✓ Choose middle-of-the-road clock speeds for slave node CPUs. CPUs 
with higher clock speeds not only cost more but also use more power 
and generate far more heat.



318 Part IV: Administering and Configuring Hadoop 

 ✓ Choose rack servers that are designed for Hadoop. With the rising pop-
ularity of Hadoop, all major hardware vendors now offer rack servers 
that are ideal slave nodes, with 12 to 20 drive bays for locally attached 
storage. Rack servers designed to work as Hadoop slave nodes are typi-
cally too big to fit into a form factor of one RU, but taking up two RUs 
can result in wasted space. For the more efficient use of space, certain 
hardware vendors have released rack servers that cram multiple slave 
nodes into a single chassis. As an example, in this compressed form, a 
standard rack can have as many as 27 slave nodes (even with network 
switches), where each slave node has room for 15 disk drives for HDFS. 
The upshot of this arrangement is much higher density and better use of 
space in the data center.

Master nodes
The master nodes host the various storage and processing management ser-
vices, described in this list, for the entire Hadoop cluster:

 ✓ NameNode: Manages HDFS storage. To ensure high availability, you have 
both an active NameNode and a standby NameNode. Each runs on its 
own, dedicated master node.

 ✓ Checkpoint node (or backup node): Provides checkpointing services 
for the NameNode. This involves reading the NameNode’s edit log for 
changes to files in HDFS (new, deleted, and appended files) since the last 
checkpoint, and applying them to the NameNode’s master file that maps 
files to data blocks. In addition, the Backup Node keeps a copy of the file 
system namespace in memory and keeps it in sync with the state of the 
NameNode. For high availability deployments, do not use a checkpoint 
node or backup node — use a Standby NameNode instead. In addition 
to being an active standby for the NameNode, the Standby NameNode 
maintains the checkpointing services and keeps an up-to-date copy of 
the file system namespace in memory.

 ✓ JournalNode: Receives edit log modifications indicating changes to files 
in HDFS from the NameNode. At least three JournalNode services (and 
it’s always an odd number) must be running in a cluster, and they’re 
lightweight enough that they can be colocated with other services on 
the master nodes.

 ✓ Resource Manager: Oversees the scheduling of application tasks and 
management of the Hadoop cluster’s resources. This service is the heart 
of YARN.

 ✓ JobTracker: For Hadoop 1 servers, handles cluster resource manage-
ment and scheduling. With YARN, the JobTracker is obsolete and isn’t 
used. We mention it because a number of Hadoop deployments still 
haven’t migrated to Hadoop 2 and YARN.
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 ✓ HMaster: Monitors the HBase region servers and handles all metadata 
changes. To ensure high availability, be sure to use a second HMaster 
instance. The HMaster service is lightweight enough to be colocated 
with other services on the master nodes. In Hadoop 1, instances of the 
HMaster service run on master nodes. In Hadoop 2, with Hoya (HBase 
on Yarn), HMaster instances run in containers on slave nodes.

 ✓ Zookeeper: Coordinates distributed components and provides mecha-
nisms to keep them in sync. Zookeeper is used to detect the failure of 
the NameNode and elect a new NameNode. It’s also used with HBase to 
manage the states of the HMaster and the RegionServers. As with the 
JournalNode, you need at least three instances of Zookeeper nodes (and 
always an odd number), and they’re lightweight enough to be colocated 
with other services on the master nodes.

Figure 16-2 shows an example of how Hadoop 2 services can be deployed.

Figure 16-2: 
Hadoop 2 
services 

deployed 
on master 

nodes.

Here we’ve got three master nodes (with the same hardware), where the 
key services Active NameNode, Standby NameNode, and Resource Manager 
each have their own server. There are JournalNode and Zookeeper services 
running on each server as well, but as we mentioned earlier, these are light-
weight and won’t be a source of resource contention with the NameNode and 
Resource Manager services.

Figure 16-3 shows what master nodes look like for Hadoop 1 deployments.

Figure 16-3: 
Hadoop 1 
services 

deployed 
on master 

nodes.
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The principles are the same for Hadoop 1, where you need a dedicated 
master node for the NameNode, Secondary NameNode, and JobTracker 
services.

If you plan to use HBase with Hoya in Hadoop 2, you don’t need any addi-
tional services. For Hadoop 1 deployments using HBase, see Figure 16-4 for 
the deployment of services on the Hadoop cluster’s master nodes.

Figure 16-4: 
Hadoop 1 
services 

deployed 
on master 

nodes, with 
HBase.

There are two differences when comparing these master servers to the 
Hadoop 1 master servers without HBase support: here we need two 
HMaster services (one to coordinate HBase, and one to act as a standby) 
and Zookeeper services on all three master nodes to handle failover. If you 
intend to use your Hadoop 1 cluster only for HBase, you can do without 
the JobTracker service, since HBase does not depend on the Hadoop 1 
MapReduce infrastructure.

 When people talk about hardware for Hadoop, they generally emphasize the 
use of commodity components — the inexpensive ones, in other words. We 
don’t recommend taking that route for master nodes. Because you have to 
plunk down for only a few master nodes (typically, three or four), you aren’t 
hit by multiplying costs if, for example, you decide to use expensive hard 
disk drives. Keep in mind that, without master nodes, there is no Hadoop 
cluster. Master nodes serve a mission-critical function, and even though 
you need redundancy, you should design them with high availability and 
resiliency in mind.

Recommended storage
For Hadoop master nodes, regardless of the number of slave nodes or uses 
of the cluster, the storage characteristics are consistent. Use four 900GB SAS 
drives, along with a RAID HDD controller configured for RAID 1+0. SAS drives 
are more expensive than SATA drives, and have lower storage capacity, but 
they are faster and much more reliable. Deploying your SAS drives as a RAID 
array ensures that the Hadoop management services have a redundant store 
for their mission-critical data. This gives you enough stable, fast, and redun-
dant storage to support the management of your Hadoop cluster.
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Recommended processors
At the time of this writing, most reference architectures recommend using 
motherboards with two CPU sockets, each with six or eight cores. The Intel 
Ivy Bridge architecture is commonly used.

Recommended memory
Memory requirements vary considerably depending on the scale of a Hadoop 
cluster. Memory is a critical factor for Hadoop master nodes because the 
active and standby NameNode servers rely heavily on RAM to manage 
HDFS. As such, we recommend the use of error-correcting memory (ECC) 
for Hadoop master nodes. Typically, master nodes need between 64GB and 
128GB of RAM.

The NameNode memory requirement is a direct function of the number of file 
blocks stored in HDFS. As a rule, the NameNode uses roughly 1GB of RAM per 
million HDFS blocks. (Remember that files are broken down into individual 
blocks and replicated so that you have three copies of each block.)

The memory demands of Resource Manager, HMaster, Zookeeper, and 
JournalNode servers are considerably less than for the NameNode server. 
However, it’s good practice to size the master nodes in a consistent fashion 
so that they’re interchangeable in case of hardware failure.

Recommended networking
Fast communication is vital for the services on master nodes, so we recom-
mend using a pair of bonded 10GbE connections. (In case networking jargon 
is new to you, GbE stands for GigaBit Ethernet.) This bonded pair provides 
redundancy, but also doubles throughput to 20GbE. For smaller clusters (for 
instance, less than 50 nodes) you could get away with using 1 GbE connectors.

Slave nodes
In a Hadoop universe, slave nodes are where Hadoop data is stored and 
where data processing takes place. The following services enable slave nodes 
to store and process data:

 ✓ NodeManager: Coordinates the resources for an individual slave node 
and reports back to the Resource Manager.

 ✓ ApplicationMaster: Tracks the progress of all the tasks running on the 
Hadoop cluster for a specific application. For each client application, the 
Resource Manager deploys an instance of the ApplicationMaster service 
in a container on a slave node. (Remember that any node running the 
NodeManager service is visible to the Resource Manager.)
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 ✓ Container: A collection of all the resources needed to run individual 
tasks for an application. When an application is running on the cluster, 
the Resource Manager schedules the tasks for the application to run as 
container services on the cluster’s slave nodes.

 ✓ TaskTracker: Manages the individual map and reduce tasks executing on 
a slave node for Hadoop 1 clusters. In Hadoop 2, this service is obsolete 
and has been replaced by YARN services.

 ✓ DataNode: An HDFS service that enables the NameNode to store blocks 
on the slave node.

 ✓ RegionServer: Stores data for the HBase system. In Hadoop 2, HBase uses 
Hoya, which enables RegionServer instances to be run in containers.

Figure 16-5 shows the services deployed on Hadoop 2 slave nodes.

Figure 16-5: 
Services 

deployed on 
Hadoop 2 

slave nodes.

Here, each slave node is always running a DataNode instance (which enables 
HDFS to store and retrieve data blocks on the slave node) and a NodeManager 
instance (which enables the Resource Manager to assign application tasks to 
the slave node for processing). The container processes are individual tasks 
for applications that are running on the cluster. Each running application has 
a dedicated ApplicationMaster task, which also runs in a container, and tracks 
the execution of all the tasks executing on the cluster until the application is 
finished.

With HBase on Hadoop 2, the container model is still followed, as we can see 
in Figure 16-6.
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Figure 16-6: 
Services 

deployed on 
Hadoop 2 

slave nodes, 
including 

HBase.
 

HBase on Hadoop 2 is initiated by the Hoya Application Master, which 
requests containers for the HMaster services. (You need multiple HMaster 
services for redundancy.) The Hoya Application Master also requests 
resources for RegionServers, which likewise run in special containers.

Figure 16-7 shows the services deployed on Hadoop 1 slave nodes.

 

Figure 16-7: 
Services 

deployed on 
Hadoop 1 

slave nodes.
 

For Hadoop 1, each slave node is always running a DataNode instance 
(which enables HDFS to store and retrieve data blocks on the slave node) 
and a TaskTracker instance (which enables the JobTracker to assign map 



324 Part IV: Administering and Configuring Hadoop 

and reduce tasks to the slave node for processing). Slave nodes have a fixed 
number of map slots and reduce slots for the execution of map and reduce 
tasks respectively. If your cluster is running HBase, a number of your slave 
nodes will need to run a RegionServer service. The more data you store in 
HBase, the more RegionServer instances you’ll need.

 The hardware criteria for slave nodes are rather different from those for 
master nodes (refer to the “Master nodes” section earlier in this chapter); in 
fact, the criteria don’t match those found in traditional hardware reference 
architectures for data servers. Much of the buzz surrounding Hadoop is due 
to the use of commodity hardware in the design criteria of Hadoop clusters, 
but keep in mind that commodity hardware does not refer to consumer-grade 
hardware. Hadoop slave nodes still require enterprise-grade hardware, but at 
the lower end of the cost spectrum, especially for storage.

Recommended storage
Enterprise storage is normally configured as a RAID array, but with Hadoop, 
the optimal configuration is the almost comically simple JBOD — Just a 
Bunch Of Disks. That’s right — JBOD is just a bunch of disks that are directly 
(and independently) connected with the slave node’s motherboard. For 
Hadoop slave nodes, you need two sets of hard disk drives: one set for the 
operating system and the other set for HDFS. Two 500GB SATA drives are suf-
ficient for the operating system. Most hardware manufacturers have released 
rack servers specially designed for Hadoop, which enable individual slave 
nodes to house an additional 12 to20 drives for dedicated HDFS storage. Be 
sure to choose large form-factor (LFF) drives (3½ inches) for HDFS storage, 
because they have a higher capacity and are less expensive. At the time of 
this writing, 3TB SATA LFF drives are the most practical and cost-effective 
choice, though 4TB SATA drives will likely become a common choice.

Keep in mind the following information about Hadoop slave node storage:

 ✓ Twelve 3TB drives provide 36 terabytes of raw storage for your Hadoop 
cluster, which enables you to store 12 terabytes of data in HDFS, given 
the default replication factor of 3.

 ✓ For efficient and cost-effective performance, ensure a 1:1 ratio of CPU 
cores to drives dedicated to HDFS.

 ✓ Though the drives used for slave nodes are in the more economical com-
modity class, it’s practical to connect them with a faster and more stable 
controller. Because many Hadoop workloads are I/O bound, we recom-
mend using a SAS 6 gigabytes-per-second controller.

 Never use an operating system drive for HDFS, because it compromises 
performance.
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Recommended processors
At the time of this writing, dual-socket servers that have Intel Ivy Bridge pro-
cessors that are clocked between 2 and 2.5 GHz represent the best balance 
of performance and cost for slave nodes. And, as we mentioned in the guide-
lines for storage earlier in the “Recommended storage” section, the number 
of drives you choose should be consistent with the number of CPU cores 
present — we recommend you should maintain a 1:1 ratio. If you’re using 
12 drives for HDFS, for example, you use two 6-core CPUs, and if you’re using 
16 drives, you use two 8-core CPUs. This configuration is practical for many 
applications, but if you’re going to run processor-intensive workloads and 
you need fast performance, you can maintain a higher ratio of CPU cores to 
HDFS drives, for example 3 CPU cores for every two drives. As with any per-
formance optimization exercise, at some point you will hit a bottleneck. For 
example, if you increase the ratio of CPU cores to HDFS drives too much, you 
will find your applications spending most of their time waiting for disk read 
or write operations.

Recommended memory
For most workloads, considering the nature of the processor and disk specifi-
cations given in the previous two sections, 48GB of RAM is sufficient for slave 
nodes. For maximum performance, however, you must fully populate the 
RAM channels for the slave node processors. For example, a dual-core server 
with three RAM channels per processor will have 48GB of RAM divided 
between six 8GB memory modules (DIMMs).

 If you’re not up on RAM channels, here’s a quick primer. Most modern moth-
erboard chipsets now use multi-channel memory. This enables the CPU to 
access its memory in parallel, which increases the data transfer speed by as 
many times as there are channels. For example, data transfers between the 
memory and CPU on servers with triple-channel memory architecture will be 
three times as fast as servers with single-channel memory architecture. The 
catch here is that for multi-channel memory to work well, each slot for the 
memory channel must be populated with an identical memory module.

For Hadoop clusters where you know that the workload will be memory 
intensive (for example, HBase deployments), we recommend doubling the 
number of DIMMs, for a total of 96GB of RAM per slave node (as per the pre-
ceding example, which is twelve 8GB DIMMs).

Recommended networking
For slave nodes, we recommend a pair of bonded network connections, to pro-
vide redundancy and to double throughput. The deciding factor here is speed. 
If your cluster’s slave nodes have 48GB or more dedicated to HDFS, we recom-
mend 10GbE connections to be able to handle the data transfer demands that 
arise from dense storage. Otherwise, we recommend 1GbE connections.
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 A key concept in good cluster design is the separation of duties between 
master nodes and slave nodes. Their purposes are radically different, and their 
design patterns reflect this. For production clusters, do not give in to the temp-
tation to add DataNode and NodeManager (or TaskTracker, for Hadoop 1) serv-
ers to your master nodes. Keep separate elements separate, in other words.

Edge nodes
Edge nodes are the interface between the Hadoop cluster and the outside 
network. For this reason, they’re sometimes referred to as gateway nodes. 
Most commonly, edge nodes are used to run client applications and cluster 
administration tools. They’re also often used as staging areas for data being 
transferred into the Hadoop cluster. As such, Oozie, Pig, Sqoop, and manage-
ment tools such as Hue and Ambari run well there. Figure 16-8 shows the pro-
cesses you can run on Edge nodes.

 

Figure 16-8: 
Services 

deployed on 
edge nodes.

 

Edge nodes are often overlooked in Hadoop hardware architecture discus-
sions. This situation is unfortunate because edge nodes serve an important 
purpose in a Hadoop cluster, and they have hardware requirements that are 
different from master nodes and slave nodes. In general, it’s a good idea to 
minimize deployments of administration tools on master nodes and slave 
nodes to ensure that critical Hadoop services like the NameNode have as 
little competition for resources as possible.
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 You should avoid placing a data transfer utility like Sqoop on anything but an 
edge node, as the high data transfer volumes could risk the ability of Hadoop 
services on the same node to communicate. The messages Hadoop services 
exchange are their lifeblood, so high latency means the whole node could be 
cut off from the cluster.

Figure 16-8 shows two edge nodes, but for many Hadoop clusters a single 
edge node would suffice. Additional edge nodes are most commonly needed 
when the volume of data being transferred in or out of the cluster is too 
much for a single server to handle.

Recommended storage
For edge nodes in a Hadoop cluster, use enterprise class storage. For edge 
nodes focused on administration tools and running client applications, we 
recommend using four 900GB SAS drives, along with a RAID HDD controller 
configured for RAID 1+0.

Edge nodes oriented to ingesting data obviously need much more storage 
space, so you can add drives to the edge node. In this case, use LFF SAS 
drives because much higher capacities are available, as compared to smaller 
form-factor SAS drives.

Recommended processors
A general-purpose edge node would be well served by a processor configura-
tion similar to one used for slave nodes — specifically, a dual-socket server 
with Ivy Bridge processors clocked at between 2 and 2.5GHz.

Recommended memory
For most workloads we see on edge nodes, 48GB of RAM is sufficient.

Recommended networking
To enable communication between the outside network and the Hadoop 
cluster, edge nodes need to be multi-homed into the private subnet of the 
Hadoop cluster as well as into the corporate network.

 A multi-homed computer is one that has dedicated connections to multiple 
networks. This is a practical illustration of why edge nodes are perfectly 
suited for interaction with the world outside the Hadoop cluster. Keeping your 
Hadoop cluster in its own private subnet is an excellent practice, so these 
edge nodes serve as a controlled window inside the cluster.
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For edge nodes that serve the purpose of running client applications or 
administration tools, we recommend two pairs of bonded 1GbE network con-
nections: one pair to connect to the Hadoop cluster and another pair for the 
outside network.

Edge nodes oriented to handling high inbound and outbound data transfer 
rates will need two (or more) pairs of bonded 10GbE network connectors: 
one pair to connect to the Hadoop cluster and another pair for the outside 
network or specific data ingest sources.

Networking
As with any distributed system, networking can make or break a Hadoop 
cluster: Don’t “go cheap.” A great deal of chatter takes place between the 
master nodes and slave nodes in a Hadoop cluster that is essential in keeping 
the cluster running, so we definitely recommend enterprise-class switches.

For each rack in your cluster, you need two top-of-rack (ToR) switches, for 
both redundancy and performance. We recommend using 10GbE for ToR 
switches.

 ToR switches are network switches that connect all the computers in a rack 
together. You normally see them at the very top of a rack, which is why people 
say “top-of-rack.” An alternative networking approach is to use end-of-row 
(EoR) switches but, we don’t see this very often. The ToR approach is simpler 
from a networking perspective for growing clusters. For example, adding slave 
nodes and additional racks is far easier with ToR switches than EoR.

When you have more than three racks, you need at least two core switches 
(again, primarily for redundancy, but also for performance). These core 
switches handle massive amounts of traffic, so 40GbE is a necessity.

 If you’re building or expanding a cluster to span multiple racks, we strongly 
recommend engaging networking experts who are familiar with Hadoop, your 
future growth plans, and your workload. Bad networking can severely hamper 
performance, but it can also make future growth painful and expensive.

Hadoop Cluster Configurations
Many of the decisions you need to make in terms of the composition of racks 
and networking are dependent on the scale of your Hadoop cluster. It has 
three main permutations, as discussed in the following three sections.
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Small
A single-rack deployment is an ideal starting point for a Hadoop cluster, as 
shown in Figure 16-9.

 

Figure 16-9: 
Single-rack 

Hadoop 
deployment.

 

Here, the cluster is fairly self-contained, but because it still has relatively few 
slave nodes, the true benefits of Hadoop’s resiliency aren’t yet apparent.

Medium
A medium-size cluster has multiple racks, where the three master nodes are 
distributed across the racks, as shown in Figure 16-10.

 

Figure 16-10: 
Three- 

rack  
Hadoop 

deployment.
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Hadoop’s resiliency is starting to become apparent: Even if an entire rack 
were to fail (for example, both ToR switches in a single rack), the cluster 
would still function, albeit at a lower level of performance. A slave node fail-
ure would barely be noticeable.

Large
In larger clusters with many racks, like the example shown in Figure 16-11, 
the networking architecture required is pretty sophisticated.

Figure 16-11: 
Large-scale 

Hadoop 
deployment.

Regardless of how many racks Hadoop clusters expand to, the slave nodes 
from any rack need to be able to efficiently “talk” to any master node.

As the number of slave nodes increases to the point where you have more 
than three racks, additional racks are composed only of slave nodes, aside 
from the ToR switches. If you’re using HBase heavily on your cluster, you may 
add master nodes to host additional HMaster and Zookeeper services. If you 
graduate to a truly massive scale, where you have hundreds of slave nodes, 
you may need to use the HDFS federation capabilities so that large portions 
of your data sets are managed by different NameNode services. (For more 
information on HDFS federation, see Chapter 4.) For every additional Active 
NameNode, you will need a corresponding Standby NameNode and two 
master nodes to host these servers. With HDFS federation, the sky is truly the 
limit in terms of how far you can scale out your clusters.
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Alternate Deployment Form Factors
Though Hadoop works best when it’s installed on a physical computer, 
where the processing has direct access to dedicated storage and networking, 
Hadoop has alternative deployments. And though they are less efficient than 
the dedicated hardware we describe earlier in this chapter, in certain cases 
alternatives are worthwhile options.

Virtualized servers
A major trend in IT centers over the past decade is virtualization, where a 
large server can host several “virtual machines” which look and act like single 
machines. In place of dedicated hardware, an organization’s entire set of appli-
cations and repositories is deployed on virtualized hardware. This approach 
has many advantages: The centralization of IT simplifies maintenance, IT 
investment is maximized because of fewer unused CPU cycles, and the overall 
hardware footprint is lower, resulting in a lower total cost of ownership.

Organizations in which IT deployments are entirely virtualized sometimes 
mandate that every new application follow this model. Though Hadoop can be 
deployed in this manner, essentially as a virtual cluster (with virtual master 
nodes and virtual slave nodes), performance suffers, partially because for 
most virtualized environments, storage is SAN-based and isn’t locally attached. 
Because Hadoop is designed to work best when all available CPU cores are able 
to have fast access to independently spinning disks, a bottleneck is created as 
all the map and reduce tasks start processing data via the limited networking 
between the CPUs and the SAN. Since the degree of isolation between virtual-
ized server resources is limited (virtual servers share resources with each 
other), Hadoop workloads can also be affected by other activity. When your 
virtual server’s performance is affected by another server’s workload, that’s 
actually known in IT circles as a “noisy neighbor” problem!

Virtualized environments can be quite useful, though, in some cases. For exam-
ple, if your organization needs to complete a one-time exploratory analysis of 
a large data set, you can easily create a temporary cluster in your virtualized 
environment. This method is often a faster way to gain internal approval than to 
endure the bureaucratic hassles of procuring new dedicated hardware.

As we experiment with Hadoop, we often run it on our laptop machines via a 
virtual machine (VM). Hadoop is extremely slow in this kind of environment, 
but if you’re using small data sets, it’s a valuable learning and testing tool.
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Cloud deployments
Variations of virtualized environments are cloud computing providers such 
as Amazon, Rackspace, and IBM SoftLayer. Most major public cloud provid-
ers now have MapReduce or Hadoop offerings available for use. Again, their 
performance is inferior to deploying your cluster on dedicated hardware, but 
it’s improving. Cloud providers are making Hadoop-optimized environments 
available where slave nodes have locally attached storage and dedicated 
networking. Also, hypervisors are becoming far more efficient, with reduced 
overhead and latency.

Don’t consider a cloud solution for long-term applications, because the cost 
of renting cloud computing resources is significantly higher than that of 
owning and maintaining a comparable system. With a cloud provider, you’re 
paying for convenience and for being able to offload the overhead of provi-
sioning hardware. However, the cloud is an ideal platform for testing, educa-
tion, and one-time data processing tasks. We use public cloud offerings often 
for proof-of-concept exercises in Hadoop, and we’re able to easily conjure up 
a made-to-order cluster in a matter of minutes.

 Aside from performance and cost considerations, you have regulatory con-
siderations with public cloud deployments. If you have sensitive data, which 
must be stored either in-house or in-country, a public cloud deployment isn’t 
an option. In cases like this, where you need the convenience of a cloud-based 
deployment, a private cloud is a good option, if it’s available.

Sizing Your Hadoop Cluster
Sizing any data processing system is as much a science as it is an art. With 
Hadoop, you consider the same information as you would with a relational 
database, for example. Most significantly, you need to know how much data 
you have, estimate its expected growth rates, and establish a retention policy 
(how long to keep the data). The answers to these questions serve as your 
starting point, which is independent of any technology-related requirements.

After you determine how much data you need to store, you can start factor-
ing in Hadoop-specific considerations. Suppose that you have a telecom 
company and you’ve established that you need 750 terabytes (TB) of stor-
age space for its call detail record (CDR) log files. You retain these records 
to obey government regulations, but you can also analyze them to see churn 
patterns and monitor network health, for example. To determine how much 
storage space you need and, as a result, how many racks and slave nodes you 
need, you carry out your calculations with these factors in mind:
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 ✓ Replication: The default replication factor for data in HDFS is 3. The 
500 terabytes of CDR data for the telecom company in the example then 
turns into 1500 terabytes.

 ✓ Swap space: Any analysis or processing of the data by MapReduce 
needs an additional 25 percent of space to store any interim and final 
result sets. (The telecom company now needs 1875 terabytes of storage 
space.)

 ✓ Compression: The telecom company stores the CDRs in a compressed 
form, where the average compression ratio is expected to be 3:1. We 
now need 625 terabytes.

 ✓ Number of slave nodes: Assuming that each slave node has twelve 3TB 
drives dedicated to HDFS, each slave node has 36 terabytes of raw HDFS 
storage available, so the company needs 18 slave nodes.

 ✓ Number of racks: Because each slave node uses 2RU and the company 
in the example needs three master nodes (1RU apiece) and two ToR 
switches (1RU apiece), you need a total of 41RU. It’s 1RU less than the 
total capacity of a standard rack, so a single rack is sufficient for this 
deployment. Regardless, no room remains for growth in this cluster, so 
it’s prudent to buy a second rack (and two additional ToR switches) and 
divide the slave nodes between the two racks.

 ✓ Testing: Maintaining a test cluster that’s a smaller scale representation 
of the production cluster is a standard practice. It doesn’t have to be 
huge, but you want at least five data nodes so that you get an accurate 
representation of Hadoop’s behavior. As with any test environment, it 
should be isolated on a different network from the production cluster.

 ✓ Backup and disaster recovery: Like any production system, the tele-
com company will also need to consider backup and disaster recovery 
requirements. This company could go as far as to create a mirror cluster 
to ensure they have a hot standby for their entire system. This is obvi-
ously the most expensive option, but is appropriate for environments 
where constant uptime is critical. At the least expensive end of the 
spectrum (beyond not backing up the data at all), the telecom company 
could regularly backup all data (including the data itself, applications, 
configuration files, and metadata) being stored in their production clus-
ter to tape. With tape, the data is not immediately accessible, but it will 
enable a disaster recovery effort in the case that the entire production 
Hadoop cluster fails.

 As with your own personal computer, when the main hard disk drive fills with 
space, the system slows down considerably. Hadoop is no exception. Also, a 
hard drive performs better when it’s less than 85 to 90 percent full. With this 
information in mind, if performance is important to you, you should bump up 
the swap-space factor from 25 to 33 percent.
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Chapter 17

Administering Your  
Hadoop Cluster

In This Chapter
▶ Seeing why having a well-running Hadoop cluster is good for you

▶ Exploring administration commands

▶ Improving performance and setting benchmarks

▶ Planning for when things go wrong

▶ Working with Apache Hadoop’s Capacity Scheduler

▶ Dealing with security issues

▶ Adding resources to your administrator toolset

Y 
ou’ll want to keep your Hadoop cluster running smoothly and at a high 
level of performance. For that to happen, you need to master the mys-

teries of Hadoop administration. Part of this process involves careful plan-
ning to ensure that you deploy and configure appropriate hardware for your 
Hadoop cluster, the use of judicious benchmarking to evaluate performance, 
and a good understanding of the anticipated workloads.

Complicating matters a bit is the fact that not only is most of the Hadoop 
ecosystem quite compartmentalized, but each component also has its own 
administrative issues. We deal with these issues in various sections through-
out this book, where appropriate. This chapter (Chapter 17) introduces you 
to more general administrative concepts.

Achieving Balance: A Big Factor 
in Cluster Health

A cluster is said to be balanced if no under- or overutilized slave nodes are 
in the cluster. In this context, a utilization level is defined in terms of the 
percentage of space that’s used. A Hadoop cluster can become imbalanced 
whenever a major change occurs — say, when a slave node is added to the 
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cluster. An imbalanced cluster can lead to bandwidth problems and reduced 
read parallelism (where many applications can read data independently, 
instead of having to wait their turn), and a Hadoop administrator should be 
prepared to redistribute data blocks when cluster imbalance occurs.

The goal, then, is to spread data as uniformly as possible across the slave nodes 
in the cluster. As much as this idea seems to make obvious sense, it isn’t always 
achievable. When a slave node is added to an existing cluster, the NameNode 
must choose which existing slave nodes are to receive some of the new data 
blocks. One goal is to place different replicas of a particular block across server 
racks to minimize the loss of an entire rack. Another goal is to reduce network 
I/O by placing one replica on the same rack as the node that’s writing to a file.

 Despite your best-laid plans, various competing factors might cause new data 
to be placed across the slave nodes in a non-uniform manner. Luckily, one tool 
can analyze block placement and rebalance data across the slave nodes for 
you: the Hadoop balancer command, which gets a nice mention in the fol-
lowing section, in Table 17-1.

Mastering the Hadoop Administration 
Commands

Any Hadoop administrator worth his salt must master a comprehensive set 
of commands for cluster administration. Table 17-1 summarizes the most 
important commands. Know them, and you will advance a long way along 
the path to Hadoop wisdom. Table 17-2 summarizes the Hadoop dfsadmin 
command options.

Table 17-1 Administration Commands
Command What It Does Syntax Example
balancer Runs the cluster-balancing 

utility. The specified thresh-
old value, which represents 
a percentage of disk capac-
ity, is used to overwrite 
the default threshold value 
(10 percent). To stop the 
rebalancing process, press 
Ctrl+C.

hadoop balancer 
[-threshold 
<threshold>]

hadoop  
balancer - 
threshold 20

daemonlog Gets or sets the log level for 
each daemon. Connects to 
http://host:port/
logLevel?log=name 
and prints or sets the log

hadoop daemonlog - 
getlevel 
<host:port> 
<name>; hadoop 
daemonlog

hadoop  
daemonlog - 
getlevel 
10.250.1. 
15:50030
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Command What It Does Syntax Example

level of the daemon that’s 
running at host:port. 
Hadoop daemons generate 
log files that help you deter-
mine what’s happening on 
the system, and you can use 
the daemonlog command 
to temporarily change the 
log level of a Hadoop com-
ponent when you’re debug-
ging the system. The change 
becomes effective when the 
daemon restarts.

 -setlevel 
<host:port>  
<name> <level>

org.apache.
hadoop. 
mapred.
JobTracker; 
hadoop  
daemonlog - 
setlevel 
10.250.1. 
15:50030  
org.apache.
hadoop. 
mapred. 
JobTracker 
DEBUG

datanode Runs the HDFS DataNode 
service, which coordinates 
storage on each slave node. 
If you specify -rollback, 
the DataNode is rolled back 
to the previous version. Stop 
the DataNode and distribute 
the  previous Hadoop version 
before using this option.

hadoop datanode 
[-rollback]

hadoop datanode 
– 
rollback

dfsadmin Runs a number of Hadoop 
Distributed File System 
(HDFS) administrative 
operations. Use the -help 
option to see a list of all sup-
ported options. The generic 
options are a common set of 
options supported by several 
commands. (For detailed 
information about generic 
options, visit http://
hadoop.apache.org/
docs/r2.0.5-alpha/
hadoop-project-
dist/hadoop-common/
CommandsManual.
html. For detailed informa-
tion about the individual 
dfsadmin command 
options, see Table 17-2.)

hadoop dfsadmin 
[GENERIC_OPTIONS] 
[-report] 
[-safemode  
enter | leave 
| get | wait] 
[-refreshNodes] 
[-finalizeUpgrade] 
[-upgradeProgress 
status | details | 
force] [-metasave 
filename] 
[-setQuota <quota> 
<dirname>. . . 
<dirname>] 
[-clrQuota 
<dirname>. . . 
<dirname>] 
[-restoreFailed 
Storage 
true|false|check] 
[-help [cmd]]

(continued)
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Command What It Does Syntax Example

mradmin Runs a number of 
MapReduce administrative 
operations. Use the -help 
option to see a list of all 
supported options. Again, 
the generic options are a 
common set of options that 
are  supported by several 
commands. (For detailed 
information about these 
options, visit http://
hadoop.apache.org/
docs/r2.0.5-alpha/
hadoop-project-
dist/hadoop-common/
CommandsManual.
html.) If you specify 
-refreshServiceAcl, 
mradmin reloads 
the service-level 
authorization policy 
file (JobTracker reloads 
the  authorization policy 
file); -refreshQueues 
reloads the queue access 
control lists (ACLs) and state 
(JobTracker reloads the 
mapred-queues.xml 
file); -refreshNodes 
refreshes the hosts infor-
mation at the JobTracker; 
-refreshUser 
ToGroupsMappings 
refreshes user-to-groups 
mappings; -refreshSupe
rUserGroupsConfigur
ation refreshes superuser 
proxy groups mappings; and 
-help [cmd] displays 
help for the given command 
or for all commands if none 
is specified.

hadoop mradmin [ 
GENERIC_OPTIONS ]  
[-refresh 
ServiceAcl] 
[-refreshQueues]  
[-refreshNodes] 
[-refreshUser 
ToGroupsMappings]  
[-refreshSuper 
UserGroups 
Configuration]  
[-help [cmd]]

hadoop  
mradmin - 
help – 
refreshNodes

Table 17-1 (continued)



339 Chapter 17: Administering Your Hadoop Cluster

Command What It Does Syntax Example

jobtracker Runs the MapReduce 
JobTracker node, which 
coordinates the data pro-
cessing system for Hadoop. 
If you specify - 
dumpConfiguration, 
the configuration that’s used 
by the JobTracker and the 
queue configuration in JSON 
format are written to stan-
dard output.

hadoop jobtracker 
[-dump 
Configuration]

hadoop 
jobtracker – 
dump 
Configuration

namenode Runs the NameNode, which 
coordinates the storage for 
the whole Hadoop cluster. If 
you specify -format, the 
NameNode is started, format-
ted, and then stopped; with 
-upgrade, the NameNode 
starts with the upgrade 
option after a new Hadoop 
version is distributed; with 
-rollback, the NameNode 
is rolled back to the previous 
 version (remember to stop 
the cluster and distribute 
the previous Hadoop version 
before using this option); with 
-finalize, the previous 
state of the file system is 
removed, the most recent 
upgrade becomes perma-
nent, rollback is no longer 
available, and the NameNode 
is stopped; finally, with 
-importCheckpoint, 
an image is loaded from 
the checkpoint directory 
(as specified by the fs.
checkpoint.dir prop-
erty) and saved into the cur-
rent directory.

hadoop namenode 
[-format] | 
[-upgrade] | 
[-rollback] | 
[-finalize] | 
[-import 
Checkpoint]

hadoop  
namenode – 
finalize

(continued)
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Command What It Does Syntax Example
secondary 
namenode

Runs the secondary 
NameNode. If you specify 
-checkpoint, a check-
point on the secondary 
NameNode is performed 
if the size of the EditLog 
(a transaction log that 
records every change that 
occurs to the file system 
metadata) is greater 
than or equal to fs.
checkpoint.size; if you 
specify –force, a check-
point is performed regardless 
of the EditLog size; specify 
–geteditsize and the 
EditLog size is printed.

hadoop secondary 
namenode 
[-checkpoint 
[force]] | 
[-geteditsize]

hadoop 
secondary 
namenode – 
geteditsize

tasktracker Runs a MapReduce 
TaskTracker node.

hadoop  
tasktracker

hadoop 
tasktracker

Table 17-2 The Hadoop dfsadmin Command
Option What It Does
-report Reports basic file system information and 

statistics.
-safemode enter 
| leave | get | wait

Manages safe mode, a NameNode state in 
which changes to the name space are not 
accepted and blocks can be neither repli-
cated nor deleted. 

The NameNode is in safe mode during start-
up so that it doesn’t prematurely start repli-
cating blocks even though there are already 
enough replicas in the cluster.

Table 17-1 (continued)
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Option What It Does

-refreshNodes Forces the NameNode to reread its configura-
tion, including the dfs.hosts.exclude 
file. The NameNode decommissions nodes 
after their blocks have been replicated onto 
machines that will remain active.

-finalizeUpgrade Completes the HDFS upgrade process. 
DataNodes and the NameNode delete work-
ing directories from the previous version in 
order to keep things nice and neat.

-upgradeProgress 
status | details | 
force

Requests the standard or detailed current 
status of the distributed upgrade, or forces the 
upgrade to proceed.

-metasave filename Saves the NameNode’s primary data struc-
tures to filename in a directory that’s spec-
ified by the hadoop.log.dir property. File 
filename, which is overwritten if it already 
exists, contains one line for each of these 
items: a) DataNodes that are exchanging 
heartbeats (electronic “signs of life”) with the 
NameNode; b) blocks that are waiting to be 
replicated; c) blocks that are being replicated; 
and d) blocks that are waiting to be deleted.

 -setQuota <quota> 
<dirname>... 
<dirname>

Sets an upper limit on the number of names 
in the directory tree. You can set this limit 
(a long integer) for one or more directories 
simultaneously.

-clrQuota <dirname>... 
<dirname>

Clears the upper limit on the number of names 
in the directory tree. You can clear this limit 
for one or more directories simultaneously.

-restoreFailedStorage 
true | false | check

Turns on or off the automatic attempts to 
restore failed storage replicas. If a failed 
storage location becomes available again, 
the system attempts to restore edits and the 
fsimage during a checkpoint. The check 
option returns the current setting.

-help [cmd] Displays help information for the given com-
mand or for all commands if none is specified.
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Understanding Factors for Performance
Many factors affect the performance of a Hadoop cluster, including the hard-
ware configuration of machines in the cluster, the software configuration, and 
how well the map and reduce tasks are tuned for the particular jobs they per-
form when processing your workloads. This section takes a look at each one 
of these factors in turn.

Hardware
As you might expect, because each node in a Hadoop cluster is used to store 
(DataNode) and process (TaskTracker) data, the hardware should be con-
figured with both roles in mind. Always use the fastest machines you can 
afford, with processing speed a function of the number of cores available. 
Also, remember that having lots of RAM minimizes the number of times that 
data must be read from disk. RAM requirements for the NameNode increase 
in proportion to the total number of data blocks in the cluster, and extra 
RAM on the NameNode accommodates the future growth of the cluster. Disk 
speed affects the degree of throughput that can be achieved, and the number 
of disks per node affects the cluster’s ability to “scale up,” which in this case 
means the ability to add storage to individual nodes in the system.

MapReduce
 Tuning the number of map tasks and reduce tasks for a particular job in your 

workload is another way that you can optimize performance, because each 
task has a significant level of overhead that can represent a significant cost for 
you when the length of time spent on task execution ends up being relatively 
short.

If your jobs involve larger data sets, increasing the block size reduces the 
number of tasks, which also has a positive impact on performance.

When planning to maximize the performance of your Hadoop cluster, you 
often have to make a trade-off between the overhead of data movement and 
your IO (input/output) costs. If your nodes have local storage disks, it might 
make sense to move MapReduce processing to those nodes so that input/
output is minimized. If, on the other hand, the data isn’t available locally, you 
have to move it to the nodes where processing will occur. This situation can 
result in network congestion and eroded performance when data volumes 
are very large. Although data replication can address this issue by producing 
a local copy of the data at each processing node, creating, distributing, and 
storing replicas in a large cluster can be quite costly.
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Benchmarking
After you have defined the types of workloads to run on your system, you 
can begin to benchmark those workloads to identify input/output and data 
processing bottlenecks.

So, what exactly is benchmarking? Many types of benchmarking are out there, 
but when the term is applied to a Hadoop cluster, what’s usually meant is a 
process whereby you compare the cluster’s performance either to previously 
measured values or to published best-of-breed values. Performance bench-
marking involves the monitoring of specific indicators (for example, through-
put, response time) under controlled conditions. Benchmarking is typically 
an ongoing process that’s designed to promote continuous improvement.

When you have set up a new cluster, benchmarking is a good way to deter-
mine whether the cluster was set up correctly. See whether you get the 
expected results. Your expectations might be driven by published results 
from other clusters that were configured in a similar way. You can also tune 
the cluster by comparing monitored results with benchmark values.

 To produce the best results, run benchmarks when your cluster isn’t being 
used by others.

It just so happens that the Hadoop distribution includes a number 
of benchmarks you can use. Examples include TestDFSIO, NNBench, 
and MRBench (in hadoop-*test*.jar) and TeraSort (in hadoop-
*examples*.jar). If you’re curious about what these benchmarks can 
offer, check out this list:

 ✓ TestDFSIO: The TestDFSIO benchmark is useful for testing the I/O per-
formance of the HDFS. This benchmark uses a MapReduce job to read 
and write files in separate map tasks, whose output is used for collecting 
statistics that are accumulated in the reduce tasks to produce a sum-
mary result. The benchmark data is then appended to a local file named 
TestDFSIO_results.log and written to standard output.

 ✓ NNBench: The NNBench benchmark is useful for load-testing the 
NameNode. This benchmark simulates a high volume of file manipula-
tion requests against the HDFS to “stress-test” the NameNode’s ability to 
manage the HDFS.

 ✓ MRBench: The MRBench benchmark loops small jobs to determine 
whether they’re running efficiently. It’s used to test the MapReduce layer.

 ✓ TeraSort: The TeraSort benchmark sorts a fixed amount of data 
as quickly as possible. This benchmark tests both the HDFS and 
MapReduce layers of your Hadoop cluster and is useful for comparing 
the performance of your cluster with other clusters. You can use the 
TeraSort benchmark to fine-tune your Hadoop configuration after run-
ning the TestDFSIO benchmark.
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To get a list of the benchmarks that come with Hadoop, run the JAR file with 
no arguments:

% hadoop jar $HADOOP_INSTALL/hadoop-*-test.jar

To retrieve usage information for a specific benchmark, run the benchmark 
with no arguments. For example:

% hadoop jar $HADOOP_INSTALL/hadoop-*-test.jar TestDFSIO

 When tuning the cluster, be sure to include jobs that are similar to the work-
loads you’ll run most often. The standard benchmarks that come with Hadoop 
are fine in general, but tune the cluster for your specific workloads. And 
remember to test the same set of jobs and data every time so that you can 
meaningfully compare runs.

Tolerating Faults and Data Reliability
The glory of Apache Hadoop is that, in a Hadoop cluster, data is distributed 
across a number of balanced machines, and replication is used to ensure 
both data reliability and fault tolerance.

By default, each block is replicated to three slave nodes. The replication 
factor is configurable. Block replication is maintained by the system auto-
matically. The NameNode is responsible for detecting failed slave nodes or 
unavailable replicas and ensures that usable replicas are copied to other 
nodes.

 The DataNode service on each slave node sends heartbeats (indicating their 
good health) to the NameNode by using the same port number that was 
defined for the NameNode daemon (typically, TCP 9000 or TCP 8020). A heart-
beat is a periodic signal in the form of a TCP handshake, which is the proce-
dure that takes place between two TCP/IP nodes to establish a connection. 
As you might expect, regular heartbeats from a DataNode tell the NameNode 
that the DataNode is alive and well. By default, the heartbeat interval is three 
seconds, and if the NameNode doesn’t receive a heartbeat from a particular 
DataNode within ten minutes, the DataNode is presumed to be “dead,” and its 
blocks are scheduled for replication on other nodes.

 Keep the heartbeat frequency high, even on big clusters. NameNodes can 
handle thousands of heartbeats per second without difficulty, and the granu-
larity of the information that is provided in this way is essential to maintaining 
good cluster health.



345 Chapter 17: Administering Your Hadoop Cluster

Every tenth heartbeat from a particular DataNode is a block report, by which 
the DataNode identifies its blocks to the NameNode. This information is used 
by the NameNode to determine whether the correct number of block rep-
licas exists. If a DataNode is dead, its data is of course unavailable, but the 
NameNode is aware of which replicas died along with the node and can repli-
cate those blocks to other slave nodes.

You expect your Hadoop cluster to be always available. One way to make it 
happen is to configure the HDFS High Availability (HA) feature, using a shared 
NFS directory.

Prior to the Hadoop 2.x series, the NameNode was a single point of failure in an 
HDFS cluster — in other words, if the machine on which the single NameNode 
was configured became unavailable, the entire cluster would be unavailable 
until the NameNode could be restarted. This was bad news, especially in the 
case of unplanned outages, which could result in significant downtime if the 
cluster administrator weren’t available to restart the NameNode.

The solution to this problem is addressed by the HDFS High Availability fea-
ture. The idea is to run two NameNodes in the same cluster — one active 
NameNode and one hot standby NameNode. If the active NameNode crashes 
or needs to be stopped for planned maintenance, it can be quickly failed over 
to the hot standby NameNode, which now becomes the active NameNode. 
The key is to keep the standby node synchronized with the active node; this 
action is now accomplished by having both nodes access a shared NFS direc-
tory. All namespace changes on the active node are logged in the shared 
directory. The standby node picks up those changes from the directory and 
applies them to its own namespace. In this way, the standby NameNode acts 
as a current backup of the active NameNode. The standby node also has cur-
rent block location information, because DataNode heartbeats are routinely 
sent to both active and standby NameNodes.

To ensure that only one NameNode is the “active” node at any given time, 
configure a fencing process for the shared storage directory; then, during a 
failover, if it appears that the failed NameNode still carries the active state, 
the configured fencing process prevents that node from accessing the shared 
directory and permits the newly active node (the former standby node) to 
complete the failover.

 The machines that will serve as the active and standby NameNodes in your 
High Availability cluster should have equivalent hardware. The shared NFS 
storage directory, which must be accessible to both active and standby 
NameNodes, is usually located on a separate machine and can be mounted on 
each NameNode machine. To prevent this directory from becoming a single 
point of failure, configure multiple network paths to the storage directory, and 
ensure that there’s redundancy in the storage itself. Use a dedicated network-
attached storage (NAS) appliance to contain the shared storage directory.
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Putting Apache Hadoop’s Capacity 
Scheduler to Good Use

Although it might seem that Hadoop is an inherently limitless resource, there 
are limits to its capacity, and cluster resources must be managed appropri-
ately to avoid performance issues. You don’t have to be an organization such 
as Yahoo! or Facebook, which control some of the largest Hadoop clusters in 
the world, to appreciate the need for capacity management.

Apache Hadoop’s Capacity Scheduler was designed to address — you 
guessed it — capacity management. The Capacity Scheduler, a pluggable 
scheduler and console for Hadoop, uses job queues to facilitate the organized 
sharing of Hadoop clusters. It guarantees minimum capacity levels for all 
queues and makes unused capacity available to overloaded queues, which 
leads to optimized cluster utilization.

The Capacity Scheduler provides a set of limits to ensure that a single appli-
cation cannot consume a disproportionate amount of cluster resources, 
thereby promoting fairness and stability.

You can assign jobs to specific queues and, as an administrator, define each 
queue’s maximum capacity — a limit on the amount of resources a queue can 
claim beyond its guaranteed capacity.

Each queue enforces additional restrictions, including a limit on

 ✓ The resources that a specific user can access if multiple users are 
accessing the queue at the same time

 ✓ The number of accepted or active jobs per queue or per user

 ✓ The number of pending tasks per queue or per user

Moreover, hierarchical queues ensure that resources are shared among an 
organization’s subqueues before another organization’s queues are allowed 
to access unused resources.

From a security perspective, each queue has access control lists (ACLs) that 
control which users are authorized to submit applications to specific queues. 
Moreover, users cannot view or change the applications of other users.

As an administrator, you can change queue definitions, properties, and ACLs 
at run time, but you cannot delete queues. You can, however, stop a queue at 
run time to block the submission of new applications while existing applica-
tions are running. Because existing applications continue to run, the queue is 
able to run its course. Administrators can also start any stopped queues.
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 To take advantage of the Capacity Scheduler, you have to configure your 
ResourceManager (see Chapter 7) to use it. To do so, set the yarn.
resourcemanager.scheduler.class property in the conf/yarn-site.
xml file to

org.apache.hadoop.yarn.server.resourcemanager.scheduler.
capacity.CapacityScheduler

The configuration file for the Capacity Scheduler is conf/capacity-
scheduler.xml. You can edit this file to define new queues or to modify 
existing ones. After editing the configuration file, run yarn rmadmin –
refreshQueues, as shown here:

$ vi $HADOOP_CONF_DIR/capacity-scheduler.xml
$ $HADOOP_YARN_HOME/bin/yarn rmadmin -refreshQueues

The Capacity Scheduler has the predefined queue named root. All other 
queues are defined as children of the root queue.

It’s easy to define new queues: Simply configure the yarn.scheduler.
capacity.root.queues property with a list of child queue names, sepa-
rated by commas. For example, to add two child queues (q1 and q2), you’d 
do this:

<property>
  <name>yarn.scheduler.capacity.root.queues</name>
  <value>q1,q2</value>
  <description>The child queues under root.
  </description>
</property>

The queue hierarchy is denoted by a path notation (starting with 
root) in which each queue is separated by a dot: yarn.scheduler.
capacity.queue-path.queues. For example:

<property>
  <name>yarn.scheduler.capacity.root.q1.queues</name>
  <value>q1a1,q1a2</value>
  <description>The child queues under q1.
  </description>
</property>

 For more information about the Capacity Scheduler, visit

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-
yarn-site/CapacityScheduler.html
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Setting Security: The Kerberos Protocol
When we speak about security in a Hadoop context, we are referring to an 
authentication method to ensure that users of the Hadoop cluster are who 
they say they are. File system permissions, which enforce authorization, are 
designed to control the file operations (such as read or write) that a specific 
user or group can perform. For various reasons, including the importance 
of protecting sensitive data from users who don’t have a business need to 
access such data, shared clusters, including Hadoop clusters, must have 
effective authentication mechanisms in place.

Secure authentication of Hadoop clusters has been available through the 
Kerberos protocol since Hadoop 2. Kerberos is a mature, open source com-
puter network authentication protocol that enables nodes to securely verify 
their identity to one another. Kerberos does not manage file or directory 
permissions.

The Kerberos protocol is implemented as a series of negotiations between 
a client, the authentication server (AS), and the service server (SS). This is 
what happens, in a nutshell: When a user logs on, the client authenticates 
itself to the AS, which sends the username to a key distribution center (KDC). 
The KDC then issues a time-stamped ticket-granting ticket (TGT), which is 
encrypted and returned to the client.

When the client wants to communicate with another node, it sends the TGT 
to a ticket-granting server (TGS), which verifies that the TGT is valid. The 
TGS then issues a ticket and session keys, which are returned to the client. 
The client, in turn, sends the ticket and a service request to the service 
server (SS), which, in the case of a Hadoop cluster, might be the NameNode 
or the JobTracker.

A TGT expires after a certain period (ten hours, by default) but can be 
renewed for as long as a week. You can provide a single sign-on to Hadoop by 
automating the authentication process at operating system login.

To use Kerberos authentication with Hadoop, you must install and config-
ure a key distribution center. Enable Kerberos authentication by setting 
the hadoop.security.authentication property in core-site.xml 
to kerberos. Enable service-level authorization by setting the hadoop.
security.authorization property in the same file to true. You should 
also configure access control lists (ACLs) in the hadoop-policy.xml con-
figuration file to specify which users and groups have permission to connect 
to the various Hadoop services, such as NameNode communication.
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Expanding Your Toolset Options
You are not alone. Lots of very smart people have come up with a bunch of 
tools and interfaces that you can use to make administering a Hadoop cluster 
easier. Two of the more prominent tools are Hue and Ambari, which we high-
light in the upcoming sections.

Hue
Hue is a browser-based graphical user interface to Apache Hadoop. Folks just 
call it Hue these days, but the name originates as an acronym for Hadoop 
User Experience.

Hue was initially developed as an open source project by Cloudera. Although 
Hue comes bundled with Cloudera (and with many Hadoop distributions to 
boot), it’s also available from GitHub as open source code. With Hue, you can 
browse the HDFS (by using FileBrowser); create and manage user accounts; 
monitor your cluster; submit and view MapReduce or YARN jobs (by using 
JobSub and JobBrowser); enable a user interface (named Beeswax) to Hive; 
use an HBase browser; access query editors for Hive, Pig, Cloudera Impala, 
and Sqoop 2; and much more.

Table 17-3 summarizes the various components that make up the Hue 
offering.

Table 17-3 The Components of Hue, a Graphical  
 User Interface to Apache Hadoop
Component What You Can Do with It
File Browser Upload, browse, and manipulate files and directories in 

the Hadoop Distributed File System (HDFS).

HBase Browser Quickly access very large tables, create new tables, add 
data, or modify existing data.

Cloudera Search Search for data that’s stored in the HDFS or HBase. 
SQL and programming skills aren’t required, because 
Cloudera Search provides a simple, full-text interface for 
searching.

Job Designer Create and submit MapReduce, YARN, or Java jobs to 
your Hadoop cluster.

(continued)



350 Part IV: Administering and Configuring Hadoop 

Component What You Can Do with It

Job Browser Monitor the MapReduce or YARN jobs that are running 
on your Hadoop cluster. Jobs appear in a list, and you 
can link to a list of tasks for a specific job. You can view 
task details or logs to troubleshoot failed jobs.

Metastore Manager Manage the databases, tables, and partitions of the Hive 
metastore, which is shared by Beeswax and Cloudera 
Impala. You can use the Metastore Manager to create 
or drop a database; create, browse, or drop tables; or 
import data into tables. (For more on Apache Hive, see 
Chapter 13.)

Beeswax Hive User 
Interface

Run and manage queries on Apache Hive, a distributed 
data warehouse for data that’s stored in the HDFS. You 
can download query results in a Microsoft Office Excel 
worksheet or a text file.

Sqoop 2 Efficiently move large amounts of data between rela-
tional databases and the HDFS.

Cloudera Impala Issue low-latency SQL queries against data that’s stored 
in the HDFS or HBase without the need for data move-
ment or transformation. This massively parallel process-
ing query engine runs natively on Apache Hadoop.

Pig Editor Edit your Pig scripts with autocompletion and syntax 
highlighting. (For more on Pig and Pig scripting, see 
Chapter 8.)

Oozie Editor and 
Dashboard

Define Oozie workflow and coordinator applications, run 
workflow and coordinator jobs, and view the status of 
those jobs. (For more on Oozie, see Chapter 10.)

Zookeeper User 
Interface

Browse the Znode hierarchy of your Zookeeper cluster, 
and add, edit, or delete Znodes. (For more on Zookeeper, 
see Chapter 12.)

User Admin Add, delete, and manage Hue users or groups (if you’re 
the administrator); add users or groups individually or 
import them from an LDAP directory. Granted permis-
sions determine which Hue applications, or application 
features, users or groups can access.

Table 17-3 (continued)
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Hue also comes with a software development kit (SDK) that enables you to 
reuse Hue libraries and build applications on top of Hadoop.

Hue is designed to enhance the Hadoop user experience by facilitating real-
time interaction with data and helping you to get results faster. It’s intended 
to be used by a variety of users and is offered in several languages, including 
Spanish, French, German, Portuguese, Brazilian Portuguese, Japanese, simpli-
fied Chinese, and Korean.

For information about getting started with Hue, including development pre-
requisites, visit one of these sites:

https://github.com/cloudera/hue
http://cloudera.github.io/hue/docs-2.0.1/manual.html

Ambari
Apache Ambari is a tool for provisioning, configuring, managing, and moni-
toring Apache Hadoop clusters. With Ambari, you can deploy and operate a 
complete Hadoop stack by using a browser-based management interface.

Apache Ambari is still undergoing incubation at the Apache Software 
Foundation (ASF); incubation is required of all newly accepted projects until 
their infrastructure is deemed consistent with other successful ASF projects.

The Apache Ambari project is designed to simplify Hadoop management by 
providing a set of simple GUI tools. It now supports the following Hadoop 
components: the HDFS, MapReduce, Hive, HCatalog, HBase, ZooKeeper, 
Oozie, Pig, and Sqoop.

Ambari makes it easy for system administrators to perform the tasks 
described in this list:

 ✓ Provision a Hadoop cluster:

	 •	Ambari provides an easy-to-use wizard to help you install Hadoop 
services.

	 •	Ambari handles the configuration of Hadoop services for your cluster.

 ✓ Manage a Hadoop cluster:

	 •	Ambari provides central management for starting, stopping, and 
reconfiguring Hadoop services across your entire cluster.

 ✓ Monitor a Hadoop cluster:

	 •	Ambari provides a dashboard for monitoring the health and status of 
your Hadoop cluster.
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	 •	Ambari leverages Ganglia for metrics collection. Ganglia, a BSD-
licensed open source project, is a scalable distributed monitoring 
system for high-performance computing systems such as clusters. For 
information about Ganglia monitoring, visit http://ganglia.
sourceforge.net.

	 •	Ambari leverages Nagios for system alerting and sends e-mails when 
your attention is needed, such as when a node fails. Nagios, an 
open source application, offers monitoring and alerting services for 
servers, switches, applications, and services. For information about 
Nagios monitoring, visit www.nagios.org.

Ambari also helps application developers and system integrators integrate 
Hadoop provisioning, management, and monitoring capabilities into their own 
applications by using Ambari’s Representational State Transfer (REST) APIs. 
(REST is an architectural style for client/server communication over HTTP.)

Ambari now supports the 64-bit version of these operating systems:

 ✓ RHEL (Redhat Enterprise Linux) 5 and 6

 ✓ CentOS 5 and 6

 ✓ OEL (Oracle Enterprise Linux) 5 and 6

 ✓ SLES (SuSE Linux Enterprise Server) 11

For more information about the Apache Ambari, visit one of these sites:

http://incubator.apache.org/ambari
http://hortonworks.com/hadoop/ambari

Hadoop User Experience (Hue)
Hadoop User Experience (Hue, for short) is a browser-based graphical user 
interface to Apache Hadoop. You can use Hue to

 ✓ Browse the HDFS

 ✓ Create and manage user accounts

 ✓ Monitor the cluster

 ✓ Submit and view MapReduce or YARN jobs (by using JobSub and 
JobBrowser)

 ✓ Enable Beeswax, an aptly named user interface for Apache Hive, which 
is Hadoop’s data warehouse infrastructure with SQL-like features

 ✓ Use an HBase browser

 ✓ Access query editors for (the aforementioned) Hive, Pig, Cloudera 
Impala (a query engine with SQL capabilities) and Sqoop 2
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Hue was developed as an open source project by — and is available 
from — Cloudera (www.cloudera.com/). The current version of Hue 
is 2.3.0.

Table 17-4 summarizes the various components that come packaged 
with Hue.

Table 17-4 Hue Components
Component What You Can Do with It
File Browser Upload, browse, and manipulate files and directories in the 

Hadoop distributed file system (HDFS).

HBase Browser Quickly access very large tables, create new tables, add 
data, or modify existing data.

Cloudera Search Search for data that’s stored in the HDFS or HBase. SQL 
and programming skills aren’t required, because Cloudera 
Search provides a simple, full-text interface for searching.

Job Designer Create and submit MapReduce, YARN, or Java jobs to your 
Hadoop cluster.

Job Browser Monitor the MapReduce or YARN jobs that are running on 
your Hadoop cluster. Jobs appear in a list, and you can link 
to a list of tasks for a specific job. You can view task details 
or logs to troubleshoot failed jobs.

Metastore 
Manager

Manage the databases, tables, and partitions of the Hive 
metastore that are shared by Beeswax and Cloudera 
Impala. You can use the Metastore Manager to create or 
drop a database; create, browse, or drop tables; and import 
data into tables.

Beeswax Hive 
User Interface

Run and manage queries on Apache Hive. You can down-
load query results in a worksheet or text file in Microsoft 
Office Excel. (For more on Hive, see Chapter 13.)

Sqoop 2 Efficiently move large amounts of data between  relational 
databases and the HDFS.

Cloudera Impala Issue low-latency SQL queries against data stored in the 
HDFS or in HBase without the need for data movement or 
transformation. (This massively parallel processing query 
engine runs natively on Apache Hadoop.)

Pig Editor Edit Pig scripts with autocompletion and syntax highlighting. 
(For much more on Pig, see Chapter 8.)

Oozie Editor and 
Dashboard

Define Oozie workflow and coordinator applications, run 
workflow and coordinator jobs, and view the status of those 
jobs. (For more on Oozie, check out Chapter 10.)

(continued)
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Component What You Can Do with It

Zookeeper User 
Interface

Browse the Znode hierarchy of the Zookeeper cluster, 
and add, edit, or delete Znodes. (You can find lots more on 
Zookeeper in Chapter 13.)

User Admin Add, delete, and manage Hue users or groups (if you’re the 
administrator). You can add users or groups individually or 
import them from an LDAP directory, such as a corporate 
e-mail directory. Granted permissions determine which Hue 
applications or application features can be accessed by 
users or groups.

Hue also comes supplied with an SDK (System Development Kit) that enables 
you to reuse Hue libraries and build applications on top of Hadoop.

Hue is designed to enhance the Hadoop user experience by facilitating real-
time interaction with data and by helping you get results faster. Intended 
to be used by a variety of users, Hue is offered in several languages, includ-
ing Spanish, French, German, Portuguese, Brazilian Portuguese, Japanese, 
 simplified Chinese, and Korean.

 For information about getting started with Hue, including development prereq-
uisites, visit one of these sites:

https://github.com/cloudera/hue
http://cloudera.github.io/hue/docs-2.0.1/manual.html

The Hadoop shell
The Hadoop shell is a family of commands that you can run from your oper-
ating system’s command line. The shell has two sets of commands: one for 
file manipulation (similar in purpose and syntax to Linux commands that 
many of us know and love) and one for Hadoop administration. For a detailed 
description of the file management commands available in the Hadoop shell, 
see the section in Chapter 5 about managing files with the Hadoop file system 
commands. For details on the administration commands in the Hadoop shell, 
see the “Mastering the Hadoop Administration Commands” section, earlier in 
this chapter.

Table 17-4 (continued)
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Basic Hadoop Configuration Details
In Hadoop 0.19.x or earlier, you had to modify only one configuration file, 
hadoop-site.xml, in order to lay the groundwork for your Hadoop project. 
In Hadoop 0.21 and later, however, you have a bit more work coming your 
way. More specifically, you need to configure three separate XML files, all 
found in the HADOOP_HOME/conf directory:

 ✓ core-site.xml

 ✓ hdfs-site.xml

 ✓ mapred-site.xml

Your Hadoop configuration is driven by two distinct types of configuration 
files:

 ✓ Default (read-only): Files here include src/core/core-default.xml, 
src/hdfs/hdfs-default.xml, and src/mapred/mapred-default.
xml.

 ✓ Site-specific configuration: Files here include conf/core-site.xml, 
conf/hdfs-site.xml, and conf/mapred-site.xml.

 These files are also known as resources. A resource contains a set of name/
value pairs as XML data. Each resource is identified by either a string value 
or a path. If you specify a string value, the classpath is searched for a file 
whose name matches that value. If you specify a path, the local file system 
is searched directly. The default resources (XML files), which are read-only, 
reside inside the hadoop-common and hadoop-hdfs JAR files. These files, 
which are read from the JAR files directly, should never be modified.

The site-specific resources are loaded from the classpath, and their values 
are used to override the corresponding values in the matching default 
resource. If you’ve surmised that the previous statement implies that the 
default resource is loaded first, followed by the site-specific resource, you’re 
right! For example:

 ✓ core-default.xml: Contains read-only default values for your Hadoop 
configuration and is read in first.

 ✓ core-site.xml: Contains site-specific configuration values for your 
Hadoop deployment and is read in second; contains only those values 
that need to be changed from the default.
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The following code example shows a configuration specification from a 
core-site.xml file:

<property>
  <name>hadoop.tmp.dir</name>
  <value>/home/hadoop/hadoop-0.20.2/hdfs-tmp</value>
  <description>A base for other temporary  

directories.</description>
</property>

Note that each <property> element (<name>, <value>, and <description> 
in this example) defines a specific configuration name/value pair. The file can 
contain any number of these <property> elements, which are enclosed by one 
<configuration> element, as in this example:

<configuration>
...
<property>
  <name>...</name>
  <value>...</value>
  <description>...</description>
</property
...
</configuration>

The <description> element is optional but can be quite useful for tracking 
details about the property it describes.

Your applications can specify additional resources, and they’re also loaded in 
the order in which they’re specified, after the system-defined resources have 
been loaded.

 Configuration parameter values can be declared as final so that user appli-
cations can’t change them later, as shown in the following example (from a 
sample hdfs-site.xml file):

<property>
    <name>dfs.hosts.include</name>
    <value>/etc/hadoop/conf/hosts.include</value>
    <final>true</final>
</property>

After a value is declared to be final, no subsequently loaded resource can 
alter that value.
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Finally, the following code example shows a configuration specification from 
a mapred-site.xml file:

<property>
  <name>mapred.local.dir</name>
  <value>/home/hadoop/hadoop-0.20.2/mapred-tmp</value>
  <description>Comma-separated list of paths on the local 

file system where temporary MapReduce data is 
written.</description>

</property>

A ton of parameter names and values are associated with the resources in the 
following list. To see a list of a resource’s parameter names and values, check 
out its URL:

 ✓ core-default.xml: http://hadoop.apache.org/docs/current/
hadoop-project-dist/hadoop-common/core-default.xml

 ✓ hdfs-default.xml: http://hadoop.apache.org/docs/current/
hadoop-project-dist/hadoop-hdfs/hdfs-default.xml

 ✓ mapred-default.xml: http://hadoop.apache.org/docs/
current/hadoop-mapreduce-client/hadoop-mapreduce-
client-core/mapred-default.xml
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Part V
The Part of Tens

 Enjoy an additional Hadoop Part of Tens chapter online at www.dummies.com/
extras/hadoop.



In this part . . .
 ✓ Check out the Ten Hadoop Resources Worthy of a 

Bookmark.

 ✓ Find out Ten Reasons to Adopt Hadoop.

 ✓ Enjoy an additional Hadoop Part of Tens chapter online at 
www.dummies.com/extras/hadoop.



Chapter 18

Ten Hadoop Resources Worthy  
of a Bookmark

In This Chapter
▶ Learning Hadoop — for free

▶ Finding the Hadoop information you need — fast

▶ Setting up a lifelong learning plan for Hadoop

F 
rom its roots in the early 2000s as an Internet search engine indexer, 
Hadoop has evolved to become a large-scale, general-purpose comput-

ing platform. Indeed, competence in Hadoop is one of the hottest skills you 
can list on a résumé in today’s IT job market. If we can tell you one thing from 
our collective century-plus years of IT experience across multiple jobs and 
technology domains, it’s that you should never reach the finish line of your 
learning roadmap.

Hadoop continues to evolve in a fascinating manner — especially when you 
consider all the Apache subprojects (and associated projects) that work within 
the Hadoop ecosystem. You’re off to a great start with this book, though this 
fast-paced environment will continue to change. For example, many new pro-
cessing frameworks for YARN are being developed that will introduce a wide 
variety of data processing options to Hadoop. We believe that the Hive project 
will explode with innovation, especially when you add YARN (see Chapter 7) 
and Tez (see Chapter 7 again) to the mix. The point? If you want to stay on top 
of Hadoop, you have to invest in it with a lifelong learning plan.

We highlight the free areas of Hadoop training in keeping with its open source 
spirit. You’ll see that most vendors have found that they can make money 
delivering top-notch Hadoop training, so they often have both options: for-fee 
and for-free.

In this chapter, we describe what we think are ten terrific Hadoop resources that 
are worthy of creating a bookmark in your browser. These resources not only pick 
up from where we leave off in this book but also help you create a lifelong learning 
plan for Hadoop. From virtual universities, to ’zines and websites and more, you 
can continue learning in order to stay on the leading edge of the Hadoop curve, or 
simply to ensure that you have a solid understanding of the technology.
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Central Nervous System: Apache.org
The Apache Software Foundation (ASF) is the central community for open 
source software projects. (Note: The group’s charter stipulates that Apache 
software must be used for public good — so we’re assuming that you’ll use 
Hadoop for tasks other than finding better ways to increase the cost of gas.) 
Not just any project can be an Apache project — many consensus-driven 
processes convert a piece of software from its initial designs and beta code 
(its incubator status) to full-fledged, generally available software. You can find 
more about ASF at http://apache.org.

The ASF isn’t just where projects like Hadoop are managed — it’s where 
they “live and breathe.” Today, there are hundreds of Apache projects. With 
this in mind, you should bookmark the Apache Hadoop page (http://
projects.apache.org/projects/hadoop.html) as one of your main-
stay learning resources. This site is important because you can access the 
source code there. You can also open or view Hadoop-related defects or 
bugs; view the license; access mailing lists for the community; download a 
versioned Hadoop feature, component, or branch (not just those marked 
stable); and more.

At this point, you’ve entered the Valhalla of Hadoop links — the Apache.org 
site is über-Hadoop Land, and is the home of Hadoop’s development. You can 
think of the site as Hadoop’s central nervous system. We make no guarantee 
that everything there is easy to consume, but its information is generally 
valuable — and straight from the source of Hadoop’s developers.

Tweet This
Twitter isn’t the place to learn Hadoop per se — after all, you can’t easily master 
MapReduce programming in lessons that span only 140 characters. Be that as it 
may, quite a number of big data gurus are on Twitter, and they express opinions 
and point to resources that can make you a smarter Hadoop user.

A number of top-influencer lists in the Twitter landscape cover Hadoop and 
big data, and that’s the best way to find these Hadoop personalities and add 
them to your Twitter lists. Here are a couple notable lists where you can 
find the most distinguished personalities covering Hadoop and big data on 
Twitter — including some of the authors of this book:

 ✓ #BigData100 (Big Data Republic): tinyurl.com/ouk6lb8

 ✓ Top 200 Big Data Influencers (Onalytica): tinyurl.com/oq6677s
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Hortonworks University
Hortonworks University (hortonworks.com/hadoop-training) provides 
Hadoop training and certifications. The site offers Hadoop courses built for 
either administrator or developer practitioners with the option of a rigorous 
certification program. Hortonworks employs some of the deepest and most 
noted Hadoop experts in the world, so you’re assured of quality expertise 
behind the courseware.

Hortonworks University has for-free and for-fee training. We focus on the 
free stuff in this chapter, so we think that the place you’ll head to is the 
Hortonworks Sandbox (hortonworks.com/products/Hortonworks-
sandbox) and its Resources page (hortonworks.com/resources). If 
you’re looking for fee-based training, you can find it there as well.

The Hortonworks Sandbox gives you a portable Hadoop environment with an 
accompanying set of tutorials that cover a wide arrange of features from the 
latest HDP distribution. (This distribution is also used extensively in for-fee 
training).

The aforementioned Resources pages provide a wide array of document-
based tutorials, videos, presentations, demos, and more. It also provides a 
decent roadmap to get started, aptly named “Getting Started with Hadoop” 
(hortonworks.com/get-started).

Cloudera University
Cloudera University (university.cloudera.com) is similar in its business 
model and charter to Hortonworks University, providing a number of learn-
ing avenues that run the gamut from traditional text to video. Cloudera is a 
prominent fixture in the Hadoop world. (Doug Cutting, the “father” of Hadoop 
is its chief architect.) The site offers an extensive set of courses, and more, 
which are based on the Cloudera Distribution for Hadoop (CDH).

Some courses are offered for a fee with in-classroom instruction, but one 
option lets you take certain courses for free in an online video series — for 
example, Cloudera Essentials for Apache Hadoop, at university.
cloudera.com/onlineresources.html. When we took the course, we 
would have liked to have seen more-engaging materials in the courseware, 
but the instructors are engaging, considering that you’re watching a recorded 
video (plus, nobody gets mad at you for chewing gum while in class).
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We think that the Introduction to Data Science class at Cloudera University 
is pretty cool. Next to the big data label, data science is likely one of the most 
overused, or most misunderstood, labels — but people in that profession 
are commanding even higher salaries than Hadoop experts are. Cloudera 
even has a certification program (the Cloudera Certified Professional: Data 
Scientist), which we found to be a unique and terrific idea.

Cloudera University includes a number of modules in its e-learning catalog 
(university.cloudera.com/onlineresources/elearning.html). 
Because Cloudera is focused on Hadoop as well as on its own set of Hadoop 
add-ons, the site offers training in the full spectrum of features that Cloudera 
brings to the table. For example, in Figure 18-1 you can see an example of the 
course An Introduction to Impala. (Impala, if you’re curious, is the Cloudera 
alternative to Hive; we cover Impala in Chapter 15.)

To get started with CDH and create an environment to complement your 
knowledge of Hadoop (or any Cloudera technology, for that matter), you 
can find packaged code and virtual images at cloudera.com/content/
support/en/downloads.html.

Figure 18-1: 
The 

Cloudera 
University 
e-learning 
course on 
Cloudera 

Impala.
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BigDataUniversity.com
BigDataUniversity.com (the case doesn’t matter when you enter the URL 
in your browser) is a fantastic resource for learning about — you guessed 
it — big data. Of course, big data isn’t just Hadoop, so you’ll find more than 
Hadoop resources at this site. This university has over 100,000 students 
enrolled and learning about Hadoop and big data every day.

You’ll notice right off the bat that this isn’t a typical IBM resource. For 
example, you won’t fill out dozens of fields and answer all kinds of questions 
that make you feel like you’re getting set up for a cold call. We like to think of 
BigDataUniversity.com as free, in-your-place and at-your-pace Hadoop 
training. The word free is the key here: Unlike the other two universities we 
detail in this chapter, there isn’t a fee-based component anywhere on the site.

The university moniker for this site isn’t an accident — it has quite an exten-
sive list of courseware that expands beyond Hadoop (bigdatauniversity.
com/courses). From a Hadoop perspective, you won’t just find courses on 
“Hadoop Fundamentals,” but also “Hadoop and the Amazon Cloud,” “Hadoop 
Reporting and Analytics” and more — including some database stuff. That’s 
why we really like this resource – it gives off a Swiss Army knife vibe that gives 
you a place to expand your Hadoop knowledge even further into the big data 
domain.

Courses at BigDataUniversity.com are composed of traditional reading 
materials, mixed with multimedia, and code examples. An example of the 
Hadoop Fundamentals I course is shown in Figure 18-2.

From the navigation panel on the left, you can see multiple lessons and even 
a teaching assistant that can provide technical assistance if you get stuck. 
When you’re done with a course, you can take a test. If you pass — you get a 
certificate!

Another nice feature of this site is that you can leverage the IBM Smart Cloud 
and create your own Hadoop cluster for free.

If you’d rather host your Hadoop platform locally, you can use IBM 
InfoSphere BigInsights, IBM’s own Hadoop distribution. A Quick Start 
Edition (available at www.ibm.com/developerworks/downloads/im/
biginsightsquick) comes with its own set of tutorials, which showcase 
not only Hadoop but also certain IBM enhancements. (The BigInsights 
Quick Start Edition includes the Text Analytics Toolkit, for example, which 
includes an Eclipse-based text analytics development environment with an 
accompanying SQL-like declarative language that runs on Hadoop, and other 
platforms.) You can use any Hadoop distribution for the courseware on 
BigDataUniversity.com.
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Figure 18-2: 
The Hadoop 

Funda-
mentals I 

course  
on the  

Big Data  
University  

site.
 

planet Big Data Blog Aggregator
We love it when the name of a site tells you exactly what it does — like planet 
Big Data Blog Aggregator (www.planetbigdata.com): It’s an aggregator of 
blogs about big data, Hadoop, and other related topics on the planet (well, on 
Planet Earth anyway).

Both big names and no-names show up on the site, but that’s helpful: Though 
there’s undoubtedly commitment to Hadoop by Cloudera, Hortonworks, IBM, 
and others, it’s often refreshing and valuable to get exposure to the thoughts 
and opinions of grass roots, non-affiliated practitioners by communities not 
tied to a specific vendor in your learning roadmap.

 Are you a big data blogger? Get your blog included in the planet Big Data Blog 
Aggregator list by e-mailing planetbigdata@gmail.com.



367 Chapter 18: Ten Hadoop Resources Worthy of a Bookmark

Quora’s Apache Hadoop Forum
The Quora Apache Hadoop forum (www.quora.com/Apache-Hadoop) is 
the cornerstone for anyone looking to find out more about Hadoop, or about 
big data in general, for that matter.

As in any forum, the range of questions and answers you can find at this site 
is dizzying, but they all lead you to what you’re looking for: knowledge. The 
site has linkages to Hadoop and to its individual components — for example, 
it has specific forums for MapReduce, HDFS, Pig, HBase, and more. The site 
also has associated Hadoop forums; for example, Cloudera and Hortonworks 
have specific discussion groups for their distributions — a testament to how 
popular this forum is.

Of course, as you transform yourself into a Hadoop demigod, you can answer 
questions that are posted to the forum and develop your Hadoop influence. 
(A lot of the active participants in this forum are on the Twitter lists we iden-
tify earlier in this chapter.)

The IBM Big Data Hub
The IBM Big Data Hub (www.ibmbigdatahub.com) is an excellent place to 
learn about Hadoop and its ecosystem. Despite being owned and operated by 
IBM, this site’s content isn’t always linked with IBM products.

The IBM Big Data Hub provides any visitor with enough knowledge to quench 
anyone’s thirst for big data. You’ll find all sorts of blogs, videos, analysts’ 
articles, use cases, infographics, presentations, and more. It’s truly a treasure 
trove of big data resources. This site also aggregates videos from the IBM Big 
Data and Analytics page at YouTube (youtube.com/user/ibmbigdata), 
which leads you into even more top-notch resources. For example, it has 
videos such as “What Is Big Data?” and “What Is Hadoop?” that feature some 
of the authors of this book.

Conferences Not to Be Missed
There are many Hadoop conferences, and even more big data conferences. 
We’re recommending the Hadoop Summit (hadoopsummit.org) and Strata 
Hadoop World (strataconf.com) as the quintessential conferences not to 
be missed. Typically, a distribution vendor co-sponsors these conferences. 
For example, Yahoo! and Hortonworks sponsor the Hadoop Summit, and 
Cloudera is the co-sponsor of Strata Hadoop World.
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Both Strata Hadoop World and the Hadoop Summit are the gathering places 
of the brightest Hadoop minds in the business; these conferences attract a 
wide array of Hadoop-interested professionals, including decision makers, 
architects, developers, analysts, and more.

The Strata Hadoop World name didn’t come by accident; two formerly sepa-
rate and independent conferences (Strata and Hadoop World) have now 
joined forces to become one of the world’s largest gatherings of the Apache 
Hadoop community. A look at the curriculum makes obvious its focus on all 
aspects of Hadoop — from sessions devoted to hands-on practitioners to ses-
sions devoted to business use cases.

The Hadoop Summit can be considered a competitor to Strata Hadoop World 
(though if you’re lucky, your bosses will pay for you to go to both). The 
summit features the same themes and, likely, a lot of the same presenters. 
One aspect that we find appealing is that the conference tracks are chosen 
by the community at large as opposed to a conference committee. In the June 
2013 Hadoop Summit that took place in San Jose, over 6,000 community mem-
bers cast over 15,000 votes to create the seven tracks that became the pillars 
of the conference.

 If your appetite leans more in the direction of big data, we think that the 
yearly IBM Insight Conference (www.ibm.com/software/data/2013-
conference) is a must-attend event. It not only features deep, hands-on 
Hadoop labs and sessions but also runs the gamut of big data topics, including 
stream computing, governance, the interaction of Hadoop and relational data-
bases, and more.

The Google Papers That Started It All
What is now known as Hadoop has its genesis in a number of papers written 
by Google employees who were focused on the problem of indexing the Web. 
While the Apache Nutch project (an open source technology for crawling 
the Web) was turning its focus on scaling outward in order to index higher 
volumes of web data, Google published a paper, “The Google File System” 
(October 2003: research.google.com/archive/gfs.html), which 
greatly influenced Doug Cutting and his Nutch co-founder, Mike Cafarella. 
Shortly after, Google released its paper “MapReduce: Simplified Data 
Processing on Large Clusters” (December 2004: research.google.com/
archive/mapreduce.html).

Together, the concept of a distributed file system and a large-scale parallel 
processing framework were taken by Cutting and Cafarella to develop Apache 
Hadoop. Of course, Cutting commercialized this work while at Yahoo!, and 
the rest, as they say, is history.
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 Here’s a great question for a game of Trivial Pursuit for IT geeks: Whatever 
happened to Mike Cafarella, who cofounded Hadoop with Doug Cutting?” The 
answer? He’s an associate professor at the University of Michigan, and he’s 
working on the Hadoop-complementary project RecordBreaker. Some call 
him the “Pete Best of big data.” (Pete Best was the original drummer for The 
Beatles.)

A host of other Google papers have influenced the Hadoop ecosystem as 
well. For example, Google’s paper “Bigtable: A Distributed Storage System 
for Structured Data (November 2006: research.google.com/archive/
bigtable.html) is the inspiration behind HBase, among other NoSQL 
technologies.

Though these papers represent the original ideas behind Hadoop, and parts 
of its ecosystem, as a tribute to where it all began, we’ve included Google 
Research (research.google.com) and its collection of groundbreaking 
research papers in our list. Even today, reading these papers gives you a 
strong appreciation of where Hadoop came from and, potentially, some ideas 
of where it might evolve.

The Bonus Resource: What Did We 
Ever Do B.G.?

Considering the impact that Google has had on Hadoop, we thought it pru-
dent to toss in one more related resource to keep in mind if you’re on the 
hunt for Hadoop information: Google. (It’s fair to lump YouTube into Google 
because not only does Google own it, but it has also become one of the top 
three Internet search sites.) From watching how to bake a pie to solving a 
problem on your computer to learning about Hadoop, after you type what 
you’re looking for, there’s a great chance that you’ll find it. All this, of course, 
makes us wonder: What did we ever do B.G. (before Google)?
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Chapter 19

Ten Reasons to Adopt Hadoop
In This Chapter
▶ The price is right

▶ The (open source) community is there

▶ Companies love Hadoop — they really do

▶ Scalability isn’t a problem

▶ Hadoop plays nicely with traditional tools

▶ Hadoop has broad tastes in data types

▶ Hadoop can face (almost) any analytical challenge

▶ Full data sets are the norm (no sampling)

▶ Hardware’s ability to deal with Hadoop improves every day

▶ Flexible workloads? No problem!

H 
adoop is a powerful and flexible platform for large-scale data analysis. 
This statement alone is a compelling reason to consider using Hadoop 

for your analytics projects, especially for solutions involving the use cases 
we describe in Chapter 2. To help further tip the scales, this chapter lists ten 
compelling reasons to deploy Hadoop as part of your big data solution.

 Though we’re excited about Hadoop and we want to promote its adoption, 
in some cases other software solutions are more appropriate. For example, 
replacing an online transaction processing database system with Hadoop is 
almost never a good idea. Architecture decisions come down to requirements, 
which may include performance thresholds, fine-grained access control, data 
column masking, or a host of other data governance-related considerations. 
If your project’s criteria align with the characteristics and capabilities of 
Hadoop that we describe throughout this book, the reasons in this chapter 
apply to you!
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Hadoop Is Relatively Inexpensive
At the time we wrote this book, the cost per terabyte to implement a Hadoop 
cluster was cheaper than the per-terabyte cost to set up a tape backup 
system. Granted, a Hadoop system costs more to operate, because the disk 
drives holding the data are all online and powered, unlike tape drives. But 
this interesting metric still shows the tremendous potential value of an 
investment in Hadoop.

The primary reason Hadoop is inexpensive is its reliance on commodity 
hardware. Traditional solutions in enterprise data management depend on 
expensive resources to ensure high availability and fast performance. Storage 
is an excellent example, because the typical relational data warehouse uses 
expensive SAS disk drives arranged in RAID arrays. By contrast, Hadoop was 
designed to run with inexpensive SATA drives, where availability is provided 
by replicating individual data blocks three times. The assumption that all 
hardware fails is a core principle for Hadoop, so it was designed to run on 
less expensive hardware.

 You may look at this section’s heading and say, “Of course Hadoop is inex-
pensive. Open source software is free!” Well, if you’re a hobbyist programmer, 
then yes, you may download and play with Hadoop for free. But if you’re an 
enterprise that’s deploying Hadoop in places where it’s delivering business 
value, you can’t get by with a hobbyist mentality; you need an enterprise-
ready software license and a support contract to boot. The bottom line is that 
although a respectable Hadoop distribution will cost you license and support 
fees, these expenses for Hadoop are far lower than for large relational data-
base technologies.

On the three-legged stool of IT solution costs, we’ve covered only the 
hardware and software legs. One other critical ingredient is services, or 
skills. When Hadoop was younger, fewer people had Hadoop skills, so 
folks were seeing major shortages of trained personnel. Also, Hadoop 
was a more difficult platform to use a few years ago, which made the 
skills shortage even more acute. The open source community has made 
progress in improving Hadoop’s usability — most significantly with Hive. 
People with SQL skills — a large contingent of IT professionals — can now 
query data using a SQL dialect that’s becoming increasingly compatible 
with SQL-92, which reduces the dependency on, for example, MapReduce 
skills.
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Hadoop Has an Active Open  
Source Community

Whenever an organization invests in a software package, a key consideration 
is the long-term relevance of the software it bought. No business wants to 
purchase software licenses and build specific skills around technologies that 
will be either obsolete or irrelevant in the coming months and years.

In that regard, you don’t need to worry about Hadoop. The Apache Hadoop 
project is on the path of long-term adoption and relevance. Its key projects 
have dozens of committers (see below) and hundreds of developers contrib-
uting code. Though a few of these people are academics or hobbyists, the 
majority of them are paid by enterprise software companies to help grow the 
Hadoop platform.

 Since the Hadoop community projects are part of the Apache Software 
Foundation (ASF), here’s a bit of background. The ASF provides the key ingre-
dients for a community to manage the development and release of a software 
project. For example, the ASF features a governance structure to ensure an 
open and democratic approach to evolving the project; an issue tracking 
framework to manage bugs and new feature development; and a software 
license that encourages easy adoption and future innovation.

Anyone can be a contributor for an Apache project. In fact, projects with 
large numbers of developers representing diverse interests contributing code 
are considered the healthiest. To ensure code integrity and that development 
is being done according to the project’s democratically agreed upon direc-
tion, it’s only the project’s committers that have write access to the project’s 
code repository. A committer is a special role that the Project Management 
Committee (PMC) votes to assign to contributors who have shown both deep 
expertise and personal investment. The PMC itself is made up of committers 
who are effectively the stewards of the Apache project, voting on its overall 
direction, major features, and releases.

In addition to the large numbers of individual people contributing to Hadoop 
projects, a significant number of software companies are actively investing 
top development talent in growing the Apache Hadoop ecosystem, includ-
ing larger IT companies such as IBM, Intel, Microsoft, and Yahoo! but also 
a multitude of smaller and younger companies — most notably, Cloudera, 
Hortonworks, Facebook, and MapR.
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Along with the number of committers, contributors, and companies funding 
open source development work, the number of recently filed bug reports is an 
excellent indicator of technology uptake. All reasonably sophisticated software 
will inevitably have bugs, so in general the more people using the software, the 
more bugs will surface. Apache projects make bug reporting highly visible via 
the JIRA interface. If you search on the Internet for Hadoop JIRA, you’ll quickly 
see dozens of bug reports opened for the Hadoop  ecosystem project and 
others.

Hadoop Is Being Widely Adopted 
in Every Industry

As with the adoption of relational database technology from the 1980s and 
onward, Hadoop solutions are springing up in every industry. Looking at the 
generic use cases we describe in Chapter 2, you can easily imagine most of 
them having a specific application for a business in any industry.

From what we’re seeing firsthand as we work with clients on building Hadoop 
solutions, most businesses with large-scale information management chal-
lenges are seriously exploring Hadoop. Broad consensus from media stories 
and analyst reports now indicate that almost every Fortune 500 company has 
embarked on a Hadoop project.

Hadoop Can Easily Scale Out As 
Your Data Grows

Rising data volumes are a widespread big data challenge now faced by orga-
nizations. In highly competitive environments where analytics is increasingly 
becoming the deciding factor in determining winners and losers, being able 
to analyze those increasing volumes of data is becoming a high priority. Even 
now, most traditional data processing tools, such as databases and statistical 
packages, require larger scale hardware (more memory, disk, and CPU cores) 
to handle the increasing data volumes. This scale-up approach is limiting and 
cost-ineffective, given the need for expensive components.

In contrast to the scale-up model, where faster and higher capacity hardware 
is added to a single server, Hadoop is designed to scale out with ease by 
adding data nodes. These data nodes, representing increased cluster storage 
capacity and processing power, can easily be added on the fly to an active 
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cluster. There are some software solutions using a scale-out model, but they 
often have complex dependencies and require application logic to change 
when resources are added or subtracted. Hadoop applications have no 
dependencies on the layout of racks or data nodes and require no changes as 
the numbers of active nodes change.

Traditional Tools Are Integrating 
with Hadoop

With increased adoption, businesses are coming to depend on Hadoop and 
are using it to store and analyze critical data. With this trend comes an appe-
tite for the same kinds of data management tools that people are accustomed 
to having for their traditional data sources, such as a relational database. 
Here are some of the more important application categories where we’re 
seeing integration with Hadoop:

 ✓ Business analysis tools: Analysts can build reports against data stored 
in HDFS and cataloged using Hive. (Cognos, Microstrategy, and Tableau 
support this tack, for example.)

 ✓ Statistical analysis packages: Statisticians can apply their models on 
large data sets stored in HDFS and have that processing be pushed down 
to the Hadoop cluster to be run on the data nodes, where the data is 
stored. (For example, both SAS and SPSS have enabled limited push-
down to MapReduce, as we discussed in Chapter 9.)

 ✓ Data integration tools: Data architects can enable high-speed data 
exchange between Hadoop and relational databases, and varying 
degrees of being able to push down transformation logic to the Hadoop 
cluster. (For example, both IBM DataStage and Informatica have parallel 
connectors to Hadoop enabling high speed data transfer and varying 
degrees of ability to have custom data transformation algorithms exe-
cute on the data nodes.)

Hadoop Can Store Data in Any Format
One feature of Hadoop reflects a key NoSQL principle: Store data first, and 
apply any schemas after it is queried. (For more on the ideas behind NoSQL, 
check out Chapter 11.) One major benefit that accrues to Hadoop from acting 
in accordance with this principle is that you can literally store any kind of 
data in Hadoop: completely unstructured, binary formats, semistructured log 
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files, or relational data. But along with this flexibility comes a curse: After you 
store data, you eventually want to analyze it — and analyzing messy data can 
be difficult and time consuming. The good news here is that increasing num-
bers of tools can mitigate the analysis challenges commonly seen in large, 
messy data sets.

Hadoop Is Designed to Run  
Complex Analytics

You can not only store just about anything in Hadoop but also run just about 
any kind of algorithm against that data. The machine learning models and 
libraries included in Apache Mahout are prime examples, and they can be 
used for a variety of sophisticated problems, including classifying elements 
based on a large set of training data.

Hadoop Can Process a Full Data Set  
(As Opposed to Sampling)

For fraud-analysis types of use cases (see Chapter 2), industry data from 
multiple sources indicates that less than 3 percent of all returns and claims 
are audited. Granted, in many circumstances, such as election polling, ana-
lyzing small sample sets of data is useful and sufficient. But when 97 percent 
of returns and claims are unaudited, even with good sampling rules, many 
fraudulent returns still occur. By being able to run fraud analysis against the 
entire corpus of data, you now get to decide whether to sample.

Hardware Is Being Optimized for Hadoop
One of the more interesting Hadoop-related news items we’ve recently read is 
that Intel is now a player in the Hadoop distribution market. This new strat-
egy raised many eyebrows: “What’s a hardware manufacturer doing selling 
software?” This move by Intel was a shrewd one because its distribution work 
shows the seriousness and commitment behind its open source integration 
efforts. With Hadoop, Intel sees a tremendous opportunity to sell more hard-
ware. After all, Hadoop clusters can feature hundreds of nodes, all requiring 
processors, motherboards, RAM, and hard disk drives. Intel has been investing 
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heavily in understanding Hadoop so that it can build Intel-specific hardware 
optimizations that its Hadoop contributors can integrate into open source 
Hadoop projects. Other major hardware vendors (such as IBM, Dell, and HP) 
are also actively bringing Hadoop-friendly offerings to market.

Hadoop Can Increasingly Handle Flexible 
Workloads (No Longer Just Batch)

During the four-year lead-up to the release of Hadoop 2, a great deal of atten-
tion was directed at solving the problem of having a single point of failure 
(SPOF) with the HDFS NameNode (see Chapter 4). Though this particular 
success was no doubt an important improvement, since it did much to 
enable enterprise stability, we would argue that YARN is a far more significant 
development (see Chapter 7). Until Hadoop 2, the only processing that could 
be done on a Hadoop cluster was restricted to the MapReduce framework. 
This was acceptable for the log analytics use cases that Hadoop was origi-
nally built for, but with increased adoption came the real need for increased 
flexibility.

By decoupling resource management and scheduling responsibilities and 
implementing them in a generic framework, YARN can provision and manage 
a wider variety of processing models. At the time Hadoop 2 was released, 
MapReduce was still the only production-ready framework available. But 
active projects exist for in-memory processing, streaming data analysis, 
graph analysis, and much more.

The following statement is, for us, the perfect closing note for this book: 
We’re about to see Hadoop become a truly multipurpose, flexible data pro-
cessing engine. Where it once could support only batch workloads, it can 
now support real-time queries, and even a completely different processing 
approach by analyzing streaming data while it’s still in motion.
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Multi-Language Thrift System, 204
multi-user locking, HiveQL, 267
mutable data, SQL Access, 305
mv command, HDFS, 78

• N •
Nagios, HBase, 218
name identifiers, action nodes, 144
namenode command, 339
NameNode daemon

balancing data, 62–63
defined, 15
design, 63
master nodes, 318
reading data, 62
startup and operation, 60–61
writing data, 62

natural language processing (NLP), 179–180
Neo4j graph database, 38
Netflix, 133
Network Time Protocol (NTP), 219
networking

edge nodes, 327–328
Hadoop, 328
slave nodes, 325–326

NLP (natural language processing), 179–180
NNBench benchmark, 343
NodeManager service

slave nodes, 321
YARN, 109–110

nodes, 13. See also names of specific nodes
nonvolatile storage, 160
normalization, database, 260

normalized databases (schemas), 260
NoSQL data stores, relational databases, 

159–160
NTP (Network Time Protocol), 219
null values, Pig Latin script, 122
Nutch project (Apache), 14

• O •
ODBC (Open Database Connectivity), 231
Oozie Editor and Dashboard component, 

Hue, 350, 353
Oozie Web Console option, Oozie 

server, 142
Oozie workflow scheduler

defined, 16
overview, 139–140
setting up, 140–142
workflows, 142–154

Open Database Connectivity (ODBC), 231
open source fidelity, 43
open source software, 14
operational expenditure (OPEX), 31
operators, Pig Latin script, 123–124
OPEX (operational expenditure), 31
ORCFile format, 305
Orchestrator platform, Zettaset, 22
output line formatting, Sqoop, 296–300
overreplicated data blocks, 57
ownership, cost of, 317–318

• P •
pain points, business, 24
parallelism, data processing, 56,  

83–85
Parquet file format, 309
partition tolerance, relational database 

systems, 162
Partitioner class, MapReduce, 95
performance factors

benchmarking, 343–344
hardware, 342
MapReduce, 342

persistent HBase, 181–182
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petabyte scale, data storage, 55
Pig Editor component, Hue, 350, 353
Pig Latin compiler, 117, 119
Pig Latin script

application flow, 117–119
data types, 121–122
design principles, 119–120
structures, 120–121
syntax, 123–124

Pig programming language
Airline On-time Performance data set 

(flight data set) example, 49–50
defined, 16
embedding in host languages, 127
HBase and, 204
interfaces, 126
Local mode, 125–126
MapReduce (Hadoop) mode, 125–126
overview, 116–117
Pig Latin compiler, 117
Pig Latin script, 117–124
user-defined functions, 127
workflows and, 148–149

Pivotal Hadoop With Query (HAWQ) 
product, 311

planet Big Data Blog Aggregator, 366
PMC (Project Management Committee), 373
pre-splitting regions, HBase, 222–223
processing power, data warehouse, 28
processors, recommended

edge nodes, 327
master nodes, 321
slave nodes, 325

production cluster, 44
programming language. See also Pig 

programming language
declarative query language, 115
Hive, 115
imperative scripts, 115
MapReduce abstractions, 115
SQL, 115–116

Project Management Committee 
(PMC), 373

pseudo-distributed mode (single node), 
cluster architecture, 44

put command, HDFS, 74, 78

• Q •
queries, Hive, 262–264
Quora Apache Hadoop forum, 367

• R •
R language

Hadoop integration with, 136
IBM BigInsights Big R technology, 137–138
overview, 135
Revolution R, 137
RHadoop framework, 137
RHive framework, 137

Rack servers, 317
RDBMS (relational database management 

system). See also data warehouse; 
Sqoop

ACID compliance, 160–161
BASE data store, 161–162
CAP theorem, 162
compared to Hadoop-based storage, 

164–165
governance requirements, 24
HBase and, 209–214
integrating Hadoop with, 269–270
NoSQL data stores, 159–160
structured data storage and processing, 

162–165
read parallelism, 336
reading data

Apache Flume, 80–82
data compression, 69–72
managing files with HDFS, 72–79
NameNode daemon, 62

real-time access, SQL Access, 305
record formats, Hive tables, 246–249
RecordReader class, MapReduce, 95
RecordWriter class, MapReduce, 95
Red Hat, 18
Reduce phase, MapReduce, 14, 85, 93–94
Reducer class, MapReduce, 95
reducer code, FlightsByCarrier application, 

99–100
redundancy, slave nodes, 59
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-refreshNodes option, dfsadmin 
command, 341

RegionServers
HBase, 187–190, 215–217
hotspotting, 225
slave nodes, 322

relational database management system. 
See RDBMS

release series, 17
remote mode, 230
replicating data blocks, 56–57
replication factor, HDFS, 75
- report option, dfsadmin command, 340
repository file, 47
Representational State Transfer (REST), 352
resource management

data processing, 104, 105
YARN, 15, 108

Resource Manager service, master  
nodes, 318

Resource Manager, YARN, 109
resources

Apache.org, 362
BigDataUniversity.com, 365–366
Cloudera University, 363–364
configuration files, 355
Google File System, 368–369
Hadoop Summit, 367–368
Hortonworks University, 363
IBM Big Data Hub, 367
planet Big Data Blog Aggregator, 366
Quora Apache Hadoop forum, 367
Strata Hadoop World, 367–368
Twitter, 362

REST (Representational State Transfer) 
System, 205, 352

REST API option, Oozie server, 141
-restoreFailedStorage option, 

dfsadmin command, 341
Revolution R, 137
RHadoop framework, 137
rhbase package, RHadoop framework, 137
rhdfs package, RHadoop framework, 137
RHive framework, 137
risk modeling, 31–32
rm command, HDFS, 75, 79

rmr command, HDFS, 79
rmr2 package, RHadoop framework, 137
-ROOT- catalog table, HBase, 191
row keys, HBase, 183, 223–225
rules-based approach, social sentiment 

analysis, 33
-safemode option, dfsadmin command, 

340–341

• S •
sampling data

fraud detection and, 29
statistical analysis, 130

sandbox zone, analytics, 175
scalar data types, Pig, 122
scale-up architecture model, 53–54
scaling out, 374–375
schemas (normalized databases), 260
scheme name, HDFS, 73
Script packaging method, Pig programs, 126
SDK (System Development Kit), Hue, 354
secondary namenode command, 340
Secondary NameNode daemon

checkpointing updates, 65
defined, 63

secondary sort, MapReduce, 91
security

HiveQL, 267
Kerberos Protocol, 348

semistructured data, 12
separation of concerns concept, 104
SerDe (Serializer Deserializer) technology

AvroSerDe, 247
ColumnarSerDe, 247
defined, 246
HBaseSerDe, 247, 249–250
JSONSerDe, 247
LazySimpleSerDe, 247
RegexSerDe, 247

server form factors, 317
service server (SS), 348
services

Application Master, 87–88
Backup Node, 63, 65
Checkpoint Node, 63
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services (continued)
DataNode, 58
Secondary NameNode, 63
Standby NameNode, 63

sessionization, 26
-setQuota option, dfsadmin 

command, 341
setrep command, HDFS, 79
setting up environment

choosing cluster architecture, 44
choosing distribution, 41–43
Hadoop for dummies, 44–49
running program, 49–50

sharding, 211
SHOW FUNCTIONS HiveQL command, 268
Shuffle and Sort phase, MapReduce key/

value pairs, 85, 91–93
single node (pseudo-distributed mode), 

cluster architecture, 44
single point of failure (SPOF), 377
sinks, Apache Flume project, 80
sizing cluster, 332–333
slave nodes

ApplicationMaster service, 321
container model, 322–323
Container service, 322
DataNode service, 322
defined, 13
design, 59–60
disk failure and, 57
hardware criteria, 324
NodeManager service, 321
overview, 58–59
recommended memory, 325
recommended networking, 325–326
recommended processors, 325
recommended storage, 324
redundancy, 59
RegionServer service, 322
TaskTracker service, 322

slave services
Hadoop distributed file system, 15
TaskTrackers, 14

slots, 110
small cluster configurations, 329
SMP (symmetric multi-processing), 129, 131
Snappy codec, 71, 72, 220

social sentiment analysis, 32–36
software requirements, downloading VM, 46
sources, Apache Flume project, 80
sparse data, HBase, 180–181
spatially enriched, big data, 34
speculative execution, MapReduce, 92
splittable compression, 70
SPOF (single point of failure), 377
SQL. See also SQL access

Apache Drill, 308–309
Cloudera Impala, 309
Google Dremel, 307–308
Hadapt, 311–312
IBM Big SQL, 309–311
overview, 303–304
Pivotal Hadoop With Query (HAWQ) 

product, 311
SQL access

Apache Hive and, 305, 307
overview, 304–305

SQL language, 115–116
Sqoop. See also importing data with Sqoop

archiving data, 170
connectors, 271–272
defined, 16
drivers, 271–272
exporting data, 290–296
input parsing CLAs, 296–300
output line formatting, 296–300
overview, 269–270
principles of, 270–271
version 2.0, 301–302

Sqoop 2 component, Hue, 350, 353
sqoop merge tool, 288
SQuirreL SQL client, 238–240
SS (service server), 348
standalone mode, HBase, 195
Standby NameNode daemon, 63, 65–67
start nodes, Oozie workflows, 143–144
starting Hadoop, 48
stat command, HDFS, 79
statistical analysis

factors that increase scale of, 130–131
machine learning, 131–135
overview, 129
packages, 375
R language, 135–138
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running models in MapReduce, 131
sampling, 130

statistics-based approach, social sentiment 
analysis, 33

storage, recommended
edge nodes, 327
master nodes, 320
slave nodes, 324

stored procedure, 296
storing data. See HDFS
Storm, 113
Strata Hadoop World, 367–368
STRUCT data type, 260
structural limitations, Google scale-up 

architecture model, 54
structured data, 12, 27, 162–165
structures, Pig Latin script, 120–121
supergroups, HDFS, 75
superusers, HDFS, 75
supervised learning, 134
symmetric multi-processing (SMP),  

129, 131
syntax, Pig Latin script, 123–124
System Development Kit (SDK), Hue, 354

• T •
table sampling technique, 257
tables, Hive

defining table file formats, 244–246
defining table record formats, 246–249
SerDe technology, 249–250

tail command, HDFS, 79
tasktracker command, 340
TaskTracker service, 14, 105–106, 322
TeraSort benchmark, 343
test command, HDFS, 79
TestDFSIO benchmark, 343
text analysis, social sentiment analysis, 33
text command, HDFS, 79
Tez (Apache), 113, 230
threads, 131
ticket-granting server (TGS), 348
ticket-granting ticket (TGT), 348
time and data availability-based scheduling, 

Oozie coordinator jobs, 153
time to live (TTL) variable, HBase, 185, 190

time-based scheduling, Oozie coordinator 
jobs, 152–153

tools
Amazon Elastic MapReduce (Amazon 

EMR) web service, 21–22
Apache Ambari, 351–352
Hadapt, 22
Hadoop shell, 354
Hadoop User Experience (Hue), 351–352, 

352–354
Karmasphere, 22
WANdisco, 22
Zettaset, 22

ToR (top-of-rack) switches, 328
touchz command, HDFS, 79
transforming data, 123
transitioning, HBase, 211–214
TTL (time to live) variable, HBase, 185, 190
tuning prerequisites, HBase, 218–220
tuples, 122. See also key/value pairs, 

MapReduce
Twitter, 34–35, 362

• U •
UDA (User Defined Algorithms) module, 134
UDFs (user-defined functions), Pig 

programming language, 127
underreplicated data blocks, 57
uniform resource identifiers (URIs), 73
Unix time (epoch), 184
unixODBC utility, 231
unstructured data, 12
unsupervised learning, 133
UPDATE statements, Sqoop, 295
-upgradeProgress option, dfsadmin 

command, 341
URIs (uniform resource identifiers), 73
User Admin component, Hue, 350, 354
User Defined Algorithms (UDA) 

module, 134
user-defined functions (UDFs), Pig 

programming language, 127
user-space-level file system, HDFS, 58
USING statement, Pig script, 121
utilization level, 336
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• V •
velocity, big data, 10–11
versions

HBase, 184–185
Sqoop 1.0, 17
Sqoop 2.0, 17, 301–302

VM (virtual machine)
defined, 45
downloading, 46–47

volume, big data, 10, 11

• W •
WAL (Write Ahead Log), 188
WANdisco Hadoop Console, 22
WANdisco Non-Stop NameNode solution, 22
warm data, 168–169
watches mechanism, Zookeeper, 194
web-based browsing, 25–27
wget command, 47
windowing, in HiveQL, 264–267
workflows, Oozie

configuring, 151
coordinator jobs, 152–154
overview, 142
running, 151–152
writing definitions, 143–151

Write Ahead Log (WAL), 188
Write Once, Read Often model, HDFS, 54
writing applications, MapReduce, 94–102
writing data

Apache Flume, 80–82
data compression, 69–72
managing files with HDFS, 72–79
NameNode daemon, 62

• X •
XML Process Definition Language (XPDL) 

schema, 143
XPDL (XML Process Definition Language) 

schema, 143

• Y •
YARN (Yet Another Resource Negotiator)

Application Master daemon, 110
defined, 15
Job History Server, 111
launching application, 111–113
Node Manager, 109–110
overview, 108–109
Resource Manager, 109
workload flexibility and, 377

• Z •
Zettaset, 22
ZFC (Zookeeper Failover Controllers), 67
znodes, 193, 202–203
Zookeeper

defined, 16
HBase, 192–195, 217
HDFS high availability, 67
master nodes, 319
znodes, 193, 202–203

Zookeeper Failover Controllers (ZFC), 67
Zookeeper User Interface component, Hue, 

350, 354
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