
www.allitebooks.com

http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


Hadoop	MapReduce	v2	Cookbook	Second
Edition

www.allitebooks.com

http://www.allitebooks.org


Table	of	Contents

Hadoop	MapReduce	v2	Cookbook	Second	Edition

Credits

About	the	Author

Acknowledgments

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	Subscribe?

Free	Access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Getting	Started	with	Hadoop	v2

Introduction

Hadoop	Distributed	File	System	–	HDFS

Hadoop	YARN

Hadoop	MapReduce

Hadoop	installation	modes

Setting	up	Hadoop	v2	on	your	local	machine

Getting	ready

www.allitebooks.com

http://www.allitebooks.org


How	to	do	it…

How	it	works…

Writing	a	WordCount	MapReduce	application,	bundling	it,	and	running	it	using	the
Hadoop	local	mode

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Adding	a	combiner	step	to	the	WordCount	MapReduce	program

How	to	do	it…

How	it	works…

There’s	more…

Setting	up	HDFS

Getting	ready

How	to	do	it…

See	also

Setting	up	Hadoop	YARN	in	a	distributed	cluster	environment	using	Hadoop	v2

Getting	ready

How	to	do	it…

How	it	works…

See	also

Setting	up	Hadoop	ecosystem	in	a	distributed	cluster	environment	using	a	Hadoop
distribution

Getting	ready

How	to	do	it…

There’s	more…

HDFS	command-line	file	operations

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

www.allitebooks.com

http://www.allitebooks.org


Running	the	WordCount	program	in	a	distributed	cluster	environment

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Benchmarking	HDFS	using	DFSIO

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Benchmarking	Hadoop	MapReduce	using	TeraSort

Getting	ready

How	to	do	it…

How	it	works…

2.	Cloud	Deployments	–	Using	Hadoop	YARN	on	Cloud	Environments

Introduction

Running	Hadoop	MapReduce	v2	computations	using	Amazon	Elastic	MapReduce

Getting	ready

How	to	do	it…

See	also

Saving	money	using	Amazon	EC2	Spot	Instances	to	execute	EMR	job	flows

How	to	do	it…

There’s	more…

See	also

Executing	a	Pig	script	using	EMR

How	to	do	it…

There’s	more…

Starting	a	Pig	interactive	session

Executing	a	Hive	script	using	EMR

How	to	do	it…

There’s	more…

www.allitebooks.com

http://www.allitebooks.org


Starting	a	Hive	interactive	session

See	also

Creating	an	Amazon	EMR	job	flow	using	the	AWS	Command	Line	Interface

Getting	ready

How	to	do	it…

There’s	more…

See	also

Deploying	an	Apache	HBase	cluster	on	Amazon	EC2	using	EMR

Getting	ready

How	to	do	it…

See	also

Using	EMR	bootstrap	actions	to	configure	VMs	for	the	Amazon	EMR	jobs

How	to	do	it…

There’s	more…

Using	Apache	Whirr	to	deploy	an	Apache	Hadoop	cluster	in	a	cloud	environment

How	to	do	it…

How	it	works…

See	also

3.	Hadoop	Essentials	–	Configurations,	Unit	Tests,	and	Other	APIs

Introduction

Optimizing	Hadoop	YARN	and	MapReduce	configurations	for	cluster	deployments

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Shared	user	Hadoop	clusters	–	using	Fair	and	Capacity	schedulers

How	to	do	it…

How	it	works…

There’s	more…

Setting	classpath	precedence	to	user-provided	JARs

How	to	do	it…

www.allitebooks.com

http://www.allitebooks.org


How	it	works…

Speculative	execution	of	straggling	tasks

How	to	do	it…

There’s	more…

Unit	testing	Hadoop	MapReduce	applications	using	MRUnit

Getting	ready

How	to	do	it…

See	also

Integration	testing	Hadoop	MapReduce	applications	using	MiniYarnCluster

Getting	ready

How	to	do	it…

See	also

Adding	a	new	DataNode

Getting	ready

How	to	do	it…

There’s	more…

Rebalancing	HDFS

See	also

Decommissioning	DataNodes

How	to	do	it…

How	it	works…

See	also

Using	multiple	disks/volumes	and	limiting	HDFS	disk	usage

How	to	do	it…

Setting	the	HDFS	block	size

How	to	do	it…

There’s	more…

See	also

Setting	the	file	replication	factor

How	to	do	it…

How	it	works…

www.allitebooks.com

http://www.allitebooks.org


There’s	more…

See	also

Using	the	HDFS	Java	API

How	to	do	it…

How	it	works…

There’s	more…

Configuring	the	FileSystem	object

Retrieving	the	list	of	data	blocks	of	a	file

4.	Developing	Complex	Hadoop	MapReduce	Applications

Introduction

Choosing	appropriate	Hadoop	data	types

How	to	do	it…

There’s	more…

See	also

Implementing	a	custom	Hadoop	Writable	data	type

How	to	do	it…

How	it	works…

There’s	more…

See	also

Implementing	a	custom	Hadoop	key	type

How	to	do	it…

How	it	works…

See	also

Emitting	data	of	different	value	types	from	a	Mapper

How	to	do	it…

How	it	works…

There’s	more…

See	also

Choosing	a	suitable	Hadoop	InputFormat	for	your	input	data	format

How	to	do	it…

How	it	works…

www.allitebooks.com

http://www.allitebooks.org


There’s	more…

See	also

Adding	support	for	new	input	data	formats	–	implementing	a	custom	InputFormat

How	to	do	it…

How	it	works…

There’s	more…

See	also

Formatting	the	results	of	MapReduce	computations	–	using	Hadoop	OutputFormats

How	to	do	it…

How	it	works…

There’s	more…

Writing	multiple	outputs	from	a	MapReduce	computation

How	to	do	it…

How	it	works…

Using	multiple	input	data	types	and	multiple	Mapper	implementations	in	a	single
MapReduce	application

See	also

Hadoop	intermediate	data	partitioning

How	to	do	it…

How	it	works…

There’s	more…

TotalOrderPartitioner

KeyFieldBasedPartitioner

Secondary	sorting	–	sorting	Reduce	input	values

How	to	do	it…

How	it	works…

See	also

Broadcasting	and	distributing	shared	resources	to	tasks	in	a	MapReduce	job	–	Hadoop
DistributedCache

How	to	do	it…

How	it	works…

There’s	more…

www.allitebooks.com

http://www.allitebooks.org


Distributing	archives	using	the	DistributedCache

Adding	resources	to	the	DistributedCache	from	the	command	line

Adding	resources	to	the	classpath	using	the	DistributedCache

Using	Hadoop	with	legacy	applications	–	Hadoop	streaming

How	to	do	it…

How	it	works…

There’s	more…

See	also

Adding	dependencies	between	MapReduce	jobs

How	to	do	it…

How	it	works…

There’s	more…

Hadoop	counters	to	report	custom	metrics

How	to	do	it…

How	it	works…

5.	Analytics

Introduction

Simple	analytics	using	MapReduce

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Performing	GROUP	BY	using	MapReduce

Getting	ready

How	to	do	it…

How	it	works…

Calculating	frequency	distributions	and	sorting	using	MapReduce

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…



Plotting	the	Hadoop	MapReduce	results	using	gnuplot

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Calculating	histograms	using	MapReduce

Getting	ready

How	to	do	it…

How	it	works…

Calculating	Scatter	plots	using	MapReduce

Getting	ready

How	to	do	it…

How	it	works…

Parsing	a	complex	dataset	with	Hadoop

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Joining	two	datasets	using	MapReduce

Getting	ready

How	to	do	it…

How	it	works…

6.	Hadoop	Ecosystem	–	Apache	Hive

Introduction

Getting	started	with	Apache	Hive

How	to	do	it…

See	also

Creating	databases	and	tables	using	Hive	CLI

Getting	ready

How	to	do	it…

How	it	works…



There’s	more…

Hive	data	types

Hive	external	tables

Using	the	describe	formatted	command	to	inspect	the	metadata	of	Hive	tables

Simple	SQL-style	data	querying	using	Apache	Hive

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Using	Apache	Tez	as	the	execution	engine	for	Hive

See	also

Creating	and	populating	Hive	tables	and	views	using	Hive	query	results

Getting	ready

How	to	do	it…

Utilizing	different	storage	formats	in	Hive	-	storing	table	data	using	ORC	files

Getting	ready

How	to	do	it…

How	it	works…

Using	Hive	built-in	functions

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Hive	batch	mode	-	using	a	query	file

How	to	do	it…

How	it	works…

There’s	more…

See	also

Performing	a	join	with	Hive

Getting	ready



How	to	do	it…

How	it	works…

See	also

Creating	partitioned	Hive	tables

Getting	ready

How	to	do	it…

Writing	Hive	User-defined	Functions	(UDF)

Getting	ready

How	to	do	it…

How	it	works…

HCatalog	–	performing	Java	MapReduce	computations	on	data	mapped	to	Hive	tables

Getting	ready

How	to	do	it…

How	it	works…

HCatalog	–	writing	data	to	Hive	tables	from	Java	MapReduce	computations

Getting	ready

How	to	do	it…

How	it	works…

7.	Hadoop	Ecosystem	II	–	Pig,	HBase,	Mahout,	and	Sqoop

Introduction

Getting	started	with	Apache	Pig

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Joining	two	datasets	using	Pig

How	to	do	it…

How	it	works…

There’s	more…

Accessing	a	Hive	table	data	in	Pig	using	HCatalog



Getting	ready

How	to	do	it…

There’s	more…

See	also

Getting	started	with	Apache	HBase

Getting	ready

How	to	do	it…

There’s	more…

See	also

Data	random	access	using	Java	client	APIs

Getting	ready

How	to	do	it…

How	it	works…

Running	MapReduce	jobs	on	HBase

Getting	ready

How	to	do	it…

How	it	works…

Using	Hive	to	insert	data	into	HBase	tables

Getting	ready

How	to	do	it…

See	also

Getting	started	with	Apache	Mahout

How	to	do	it…

How	it	works…

There’s	more…

Running	K-means	with	Mahout

Getting	ready

How	to	do	it…

How	it	works…

Importing	data	to	HDFS	from	a	relational	database	using	Apache	Sqoop

Getting	ready



How	to	do	it…

Exporting	data	from	HDFS	to	a	relational	database	using	Apache	Sqoop

Getting	ready

How	to	do	it…

8.	Searching	and	Indexing

Introduction

Generating	an	inverted	index	using	Hadoop	MapReduce

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Outputting	a	random	accessible	indexed	InvertedIndex

See	also

Intradomain	web	crawling	using	Apache	Nutch

Getting	ready

How	to	do	it…

See	also

Indexing	and	searching	web	documents	using	Apache	Solr

Getting	ready

How	to	do	it…

How	it	works…

See	also

Configuring	Apache	HBase	as	the	backend	data	store	for	Apache	Nutch

Getting	ready

How	to	do	it…

How	it	works…

See	also

Whole	web	crawling	with	Apache	Nutch	using	a	Hadoop/HBase	cluster

Getting	ready

How	to	do	it…

How	it	works…



See	also

Elasticsearch	for	indexing	and	searching

Getting	ready

How	to	do	it…

How	it	works…

See	also

Generating	the	in-links	graph	for	crawled	web	pages

Getting	ready

How	to	do	it…

How	it	works…

See	also

9.	Classifications,	Recommendations,	and	Finding	Relationships

Introduction

Performing	content-based	recommendations

How	to	do	it…

How	it	works…

There’s	more…

Classification	using	the	naïve	Bayes	classifier

How	to	do	it…

How	it	works…

Assigning	advertisements	to	keywords	using	the	Adwords	balance	algorithm

How	to	do	it…

How	it	works…

There’s	more…

10.	Mass	Text	Data	Processing

Introduction

Data	preprocessing	using	Hadoop	streaming	and	Python

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…



See	also

De-duplicating	data	using	Hadoop	streaming

Getting	ready

How	to	do	it…

How	it	works…

See	also

Loading	large	datasets	to	an	Apache	HBase	data	store	–	importtsv	and	bulkload

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Data	de-duplication	using	HBase

See	also

Creating	TF	and	TF-IDF	vectors	for	the	text	data

Getting	ready

How	to	do	it…

How	it	works…

See	also

Clustering	text	data	using	Apache	Mahout

Getting	ready

How	to	do	it…

How	it	works…

See	also

Topic	discovery	using	Latent	Dirichlet	Allocation	(LDA)

Getting	ready

How	to	do	it…

How	it	works…

See	also

Document	classification	using	Mahout	Naive	Bayes	Classifier

Getting	ready

How	to	do	it…



How	it	works…

See	also

Index



www.allitebooks.com

http://www.allitebooks.org


Hadoop	MapReduce	v2	Cookbook	Second
Edition





Hadoop	MapReduce	v2	Cookbook	Second
Edition
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	January	2013

Second	edition:	February	2015

Production	reference:	1200215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78328-547-1

www.packtpub.com

Cover	image	by	Jarek	Blaminsky	(<milak6@wp.pl>)

http://www.packtpub.com
mailto:milak6@wp.pl




Credits
Authors

Thilina	Gunarathne

Srinath	Perera

Reviewers

Skanda	Bhargav

Randal	Scott	King

Dmitry	Spikhalskiy

Jeroen	van	Wilgenburg

Shinichi	Yamashita

Commissioning	Editor

Edward	Gordon

Acquisition	Editors

Joanne	Fitzpatrick

Content	Development	Editor

Shweta	Pant

Technical	Editors

Indrajit	A.	Das

Pankaj	Kadam

Copy	Editors

Puja	Lalwani

Alfida	Paiva

Laxmi	Subramanian

Project	Coordinator

Shipra	Chawhan

Proofreaders

Bridget	Braund

Maria	Gould

Paul	Hindle

Bernadette	Watkins

Indexer



Priya	Sane

Production	Coordinator

Nitesh	Thakur

Cover	Work

Nitesh	Thakur





About	the	Author
Thilina	Gunarathne	is	a	senior	data	scientist	at	KPMG	LLP.	He	led	the	Hadoop-related
efforts	at	Link	Analytics	before	its	acquisition	by	KPMG	LLP.	He	has	extensive
experience	in	using	Apache	Hadoop	and	its	related	technologies	for	large-scale	data-
intensive	computations.	He	coauthored	the	first	edition	of	this	book,	Hadoop	MapReduce
Cookbook,	with	Dr.	Srinath	Perera.

Thilina	has	contributed	to	several	open	source	projects	at	Apache	Software	Foundation	as
a	member,	committer,	and	a	PMC	member.	He	has	also	published	many	peer-reviewed
research	articles	on	how	to	extend	the	MapReduce	model	to	perform	efficient	data	mining
and	data	analytics	computations	in	the	cloud.	Thilina	received	his	PhD	and	MSc	degrees
in	computer	science	from	Indiana	University,	Bloomington,	USA,	and	received	his
bachelor	of	science	degree	in	computer	science	and	engineering	from	University	of
Moratuwa,	Sri	Lanka.





Acknowledgments
I	would	like	to	thank	my	wife,	Bimalee,	my	son,	Kaveen,	and	my	daughter,	Yasali,	for
putting	up	with	me	for	all	the	missing	family	time	and	for	providing	me	with	love	and
encouragement	throughout	the	writing	period.	I	would	also	like	to	thank	my	parents	and
siblings.	Without	their	love,	guidance,	and	encouragement,	I	would	not	be	where	I	am
today.

I	really	appreciate	the	contributions	from	my	coauthor,	Dr.	Srinath	Perera,	for	the	first
edition	of	this	book.	Many	of	his	contributions	from	the	first	edition	of	this	book	have
been	adapted	to	the	current	book	even	though	he	wasn’t	able	to	coauthor	this	book	due	to
his	work	and	family	commitments.

I	would	like	to	thank	the	Hadoop,	HBase,	Mahout,	Pig,	Hive,	Sqoop,	Nutch,	and	Lucene
communities	for	developing	great	open	source	products.	Thanks	to	Apache	Software
Foundation	for	fostering	vibrant	open	source	communities.

Big	thanks	to	the	editorial	staff	at	Packt	for	providing	me	with	the	opportunity	to	write	this
book	and	feedback	and	guidance	throughout	the	process.	Thanks	to	the	reviewers	of	this
book	for	the	many	useful	suggestions	and	corrections.

I	would	like	to	express	my	deepest	gratitude	to	all	the	mentors	I	have	had	over	the	years,
including	Prof.	Geoffrey	Fox,	Dr.	Chris	Groer,	Dr.	Sanjiva	Weerawarana,	Prof.	Dennis
Gannon,	Prof.	Judy	Qiu,	Prof.	Beth	Plale,	and	all	my	professors	at	Indiana	University	and
University	of	Moratuwa	for	all	the	knowledge	and	guidance	they	gave	me.	Thanks	to	all
my	past	and	present	colleagues	for	the	many	insightful	discussions	we’ve	had	and	the
knowledge	they	shared	with	me..

www.allitebooks.com

http://www.allitebooks.org




About	the	Author
Srinath	Perera	(coauthor	of	the	first	edition	of	this	book)	is	a	senior	software	architect	at
WSO2	Inc.,	where	he	overlooks	the	overall	WSO2	platform	architecture	with	the	CTO.	He
also	serves	as	a	research	scientist	at	Lanka	Software	Foundation	and	teaches	as	a	member
of	the	visiting	faculty	at	Department	of	Computer	Science	and	Engineering,	University	of
Moratuwa.	He	is	a	cofounder	of	Apache	Axis2	open	source	project,	and	he	has	been
involved	with	the	Apache	Web	Service	project	since	2002	and	is	a	member	of	Apache
Software	foundation	and	Apache	Web	Service	project	PMC.	Srinath	is	also	a	committer	of
Apache	open	source	projects	Axis,	Axis2,	and	Geronimo.

Srinath	received	his	PhD	and	MSc	in	computer	science	from	Indiana	University,
Bloomington,	USA,	and	his	bachelor	of	science	in	computer	science	and	engineering	from
University	of	Moratuwa,	Sri	Lanka.

Srinath	has	authored	many	technical	and	peer-reviewed	research	articles;	more	details	can
be	found	on	his	website.	He	is	also	a	frequent	speaker	at	technical	venues.

Srinath	has	worked	with	large-scale	distributed	systems	for	a	long	time.	He	closely	works
with	big	data	technologies	such	as	Hadoop	and	Cassandra	daily.	He	also	teaches	a	parallel
programming	graduate	class	at	University	of	Moratuwa,	which	is	primarily	based	on
Hadoop.

I	would	like	to	thank	my	wife,	Miyuru,	and	my	parents,	whose	never-ending	support	keeps
me	going.	I	would	also	like	to	thank	Sanjiva	from	WSO2	who	encouraged	us	to	make	our
mark	even	though	project	such	as	these	are	not	in	the	job	description.	Finally,	I	would	like
to	thank	my	colleagues	at	WSO2	for	ideas	and	companionship	that	have	shaped	the	book
in	many	ways.





About	the	Reviewers
Skanda	Bhargav	is	an	engineering	graduate	from	Visvesvaraya	Technological	University
(VTU),	Belgaum,	Karnataka,	India.	He	did	his	majors	in	computer	science	engineering.
He	is	currently	employed	with	Happiest	Minds	Technologies,	an	MNC	based	out	of
Bangalore.	He	is	a	Cloudera-certified	developer	in	Apache	Hadoop.	His	interests	are	big
data	and	Hadoop.

He	has	been	a	reviewer	for	the	following	books	and	a	video,	all	by	Packt	Publishing:

Instant	MapReduce	Patterns	–	Hadoop	Essentials	How-to
Hadoop	Cluster	Deployment
Building	Hadoop	Clusters	[Video]
Cloudera	Administration	Handbook

I	would	like	to	thank	my	family	for	their	immense	support	and	faith	in	me	throughout	my
learning	stage.	My	friends	have	brought	the	confidence	in	me	to	a	level	that	makes	me
bring	out	the	best	in	myself.	I	am	happy	that	God	has	blessed	me	with	such	wonderful
people,	without	whom	I	wouldn’t	have	tasted	the	success	that	I’ve	achieved	today.

Randal	Scott	King	is	a	global	consultant	who	specializes	in	big	data	and	network
architecture.	His	15	years	of	experience	in	IT	consulting	has	resulted	in	a	client	list	that
looks	like	a	“Who’s	Who”	of	the	Fortune	500.	His	recent	projects	include	a	complete
network	redesign	for	an	aircraft	manufacturer	and	an	in-store	video	analytics	pilot	for	a
major	home	improvement	retailer.

He	lives	with	his	children	outside	Atlanta,	GA.	You	can	visit	his	blog	at
www.randalscottking.com.

Dmitry	Spikhalskiy	currently	holds	the	position	of	software	engineer	in	a	Russian	social
network	service,	Odnoklassniki,	and	is	working	on	a	search	engine,	video
recommendation	system,	and	movie	content	analysis.

Previously,	Dmitry	took	part	in	developing	Mind	Labs’	platform,	infrastructure,	and
benchmarks	for	a	high-load	video	conference	and	streaming	service,	which	got	“The
biggest	online-training	in	the	world”	Guinness	world	record	with	more	than	12,000
participants.	As	a	technical	lead	and	architect,	he	launched	a	mobile	social	banking	start-
up	called	Instabank.	He	has	also	reviewed	Learning	Google	Guice	and	PostgreSQL	9
Admin	Cookbook,	both	by	Packt	Publishing.

Dmitry	graduated	from	Moscow	State	University	with	an	MSc	degree	in	computer
science,	where	he	first	got	interested	in	parallel	data	processing,	high-load	systems,	and
databases.

Jeroen	van	Wilgenburg	is	a	software	craftsman	at	JPoint	(http://www.jpoint.nl),	a
software	agency	based	in	the	center	of	the	Netherlands.	Their	main	focus	is	on	developing
high-quality	Java	and	Scala	software	with	open	source	frameworks.

Currently,	Jeroen	is	developing	several	big	data	applications	with	Hadoop,	MapReduce,
Storm,	Spark,	Kafka,	MongoDB,	and	Elasticsearch.

http://www.randalscottking.com
http://www.jpoint.nl


Jeroen	is	a	car	enthusiast	and	likes	to	be	outdoors,	usually	training	for	a	triathlon.	In	his
spare	time,	Jeroen	writes	about	his	work	experience	at
http://vanwilgenburg.wordpress.com.

Shinichi	Yamashita	is	a	solutions	architect	at	System	Platform	Sector	in	NTT	DATA
Corporation,	Japan.	He	has	more	than	9	years	of	experience	in	software	and	middleware
engineering	(Apache,	Tomcat,	PostgreSQL,	Hadoop	Ecosystem,	and	Spark).	Shinichi	has
written	a	few	books	on	Hadoop	in	Japanese.

http://vanwilgenburg.wordpress.com




www.PacktPub.com



Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib


Why	Subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser



Free	Access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

www.allitebooks.com

http://www.PacktPub.com
http://www.allitebooks.org




Preface
We	are	currently	facing	an	avalanche	of	data,	and	this	data	contains	many	insights	that
hold	the	keys	to	success	or	failure	in	the	data-driven	world.	Next	generation	Hadoop	(v2)
offers	a	cutting-edge	platform	to	store	and	analyze	these	massive	data	sets	and	improve
upon	the	widely	used	and	highly	successful	Hadoop	MapReduce	v1.	The	recipes	that	will
help	you	analyze	large	and	complex	datasets	with	next	generation	Hadoop	MapReduce
will	provide	you	with	the	skills	and	knowledge	needed	to	process	large	and	complex
datasets	using	the	next	generation	Hadoop	ecosystem.

This	book	presents	many	exciting	topics	such	as	MapReduce	patterns	using	Hadoop	to
solve	analytics,	classifications,	and	data	indexing	and	searching.	You	will	also	be
introduced	to	several	Hadoop	ecosystem	components	including	Hive,	Pig,	HBase,
Mahout,	Nutch,	and	Sqoop.

This	book	introduces	you	to	simple	examples	and	then	dives	deep	to	solve	in-depth	big
data	use	cases.	This	book	presents	more	than	90	ready-to-use	Hadoop	MapReduce	recipes
in	a	simple	and	straightforward	manner,	with	step-by-step	instructions	and	real-world
examples.



What	this	book	covers
Chapter	1,	Getting	Started	with	Hadoop	v2,	introduces	Hadoop	MapReduce,	YARN,	and
HDFS,	and	walks	through	the	installation	of	Hadoop	v2.

Chapter	2,	Cloud	Deployments	–	Using	Hadoop	Yarn	on	Cloud	Environments,	explains
how	to	use	Amazon	Elastic	MapReduce	(EMR)	and	Apache	Whirr	to	deploy	and	execute
Hadoop	MapReduce,	Pig,	Hive,	and	HBase	computations	on	cloud	infrastructures.

Chapter	3,	Hadoop	Essentials	–	Configurations,	Unit	Tests,	and	Other	APIs,	introduces
basic	Hadoop	YARN	and	HDFS	configurations,	HDFS	Java	API,	and	unit	testing	methods
for	MapReduce	applications.

Chapter	4,	Developing	Complex	Hadoop	MapReduce	Applications,	introduces	you	to
several	advanced	Hadoop	MapReduce	features	that	will	help	you	develop	highly
customized	and	efficient	MapReduce	applications.

Chapter	5,	Analytics,	explains	how	to	perform	basic	data	analytic	operations	using	Hadoop
MapReduce.

Chapter	6,	Hadoop	Ecosystem	–	Apache	Hive,	introduces	Apache	Hive,	which	provides
data	warehouse	capabilities	on	top	of	Hadoop,	using	a	SQL-like	query	language.

Chapter	7,	Hadoop	Ecosystem	II	–	Pig,	HBase,	Mahout,	and	Sqoop,	introduces	the
Apache	Pig	data	flow	style	data-processing	language,	Apache	HBase	NoSQL	data	storage,
Apache	Mahout	machine	learning	and	data-mining	toolkit,	and	Apache	Sqoop	bulk	data
transfer	utility	to	transfer	data	between	Hadoop	and	the	relational	databases.

Chapter	8,	Searching	and	Indexing,	introduces	several	tools	and	techniques	that	you	can
use	with	Apache	Hadoop	to	perform	large-scale	searching	and	indexing.

Chapter	9,	Classifications,	Recommendations,	and	Finding	Relationships,	explains	how	to
implement	complex	algorithms	such	as	classifications,	recommendations,	and	finding
relationships	using	Hadoop.

Chapter	10,	Mass	Text	Data	Processing,	explains	how	to	use	Hadoop	and	Mahout	to
process	large	text	datasets	and	how	to	perform	data	preprocessing	and	loading	of
operations	using	Hadoop.





What	you	need	for	this	book
You	need	a	moderate	knowledge	of	Java	and	access	to	the	Internet	and	a	computer	that
runs	a	Linux	operating	system.





Who	this	book	is	for
If	you	are	a	big	data	enthusiast	and	wish	to	use	Hadoop	v2	to	solve	your	problems,	then
this	book	is	for	you.	This	book	is	for	Java	programmers	with	little	to	moderate	knowledge
of	Hadoop	MapReduce.	This	is	also	a	one-stop	reference	for	developers	and	system
admins	who	want	to	quickly	get	up	to	speed	with	using	Hadoop	v2.	It	would	be	helpful	to
have	a	basic	knowledge	of	software	development	using	Java	and	a	basic	working
knowledge	of	Linux.





Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles,	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“The
following	are	the	descriptions	of	the	properties	we	used	in	the	hadoop.properties	file.”

A	block	of	code	is	set	as	follows:

Path	file	=	new	Path("demo.txt");
FSDataOutputStream	outStream	=	fs.create(file);
outStream.writeUTF("Welcome	to	HDFS	Java	API!!!");
outStream.close();

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

Job	job	=	Job.getInstance(getConf(),	"MLReceiveReplyProcessor");
job.setJarByClass(CountReceivedRepliesMapReduce.class);
job.setMapperClass(AMapper.class);
job.setReducerClass(AReducer.class);
job.setNumReduceTasks(numReduce);

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
job.setInputFormatClass(MBoxFileInputFormat.class);
FileInputFormat.setInputPaths(job,	new	Path(inputPath));
FileOutputFormat.setOutputPath(job,	new	Path(outputPath));

int	exitStatus	=	job.waitForCompletion(true)	?	0	:	1;

Any	command-line	input	or	output	is	written	as	follows:

205.212.115.106	-	-	[01/Jul/1995:00:00:12	-0400]	"GET	
/shuttle/countdown/countdown.html	HTTP/1.0"	200	3985

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	“Select	Custom	Action	in
the	Add	Bootstrap	Actions	drop-down	box.	Click	on	Configure	and	add.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.



www.allitebooks.com

http://www.allitebooks.org


Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	via	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors




Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.



Downloading	the	example	code
You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

http://www.packtpub.com
http://www.packtpub.com/support


Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	would	report	this	to	us.	By	doing	so,	you	can	save
other	readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If
you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-
errata,	selecting	your	book,	clicking	on	the	errata	submission	form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	on	our	website,	or	added	to	any	list	of	existing	errata,	under	the
Errata	section	of	that	title.	Any	existing	errata	can	be	viewed	by	selecting	your	title	from
http://www.packtpub.com/support.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support


Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com


Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

mailto:questions@packtpub.com




Chapter	1.	Getting	Started	with	Hadoop
v2
In	this	chapter,	we	will	cover	the	following	recipes:

Setting	up	standalone	Hadoop	v2	on	your	local	machine
Writing	a	WordCount	MapReduce	application,	bundling	it,	and	running	it	using
Hadoop	local	mode
Adding	a	combiner	step	to	the	WordCount	MapReduce	program
Setting	up	HDFS
Setting	up	Hadoop	YARN	in	a	distributed	cluster	environment	using	Hadoop	v2
Setting	up	Hadoop	ecosystem	in	a	distributed	cluster	environment	using	a	Hadoop
distribution
HDFS	command-line	file	operations
Running	the	WordCount	program	in	a	distributed	cluster	environment
Benchmarking	HDFS	using	DFSIO
Benchmarking	Hadoop	MapReduce	using	TeraSort



Introduction
We	are	living	in	the	era	of	big	data,	where	exponential	growth	of	phenomena	such	as	web,
social	networking,	smartphones,	and	so	on	are	producing	petabytes	of	data	on	a	daily
basis.	Gaining	insights	from	analyzing	these	very	large	amounts	of	data	has	become	a
must-have	competitive	advantage	for	many	industries.	However,	the	size	and	the	possibly
unstructured	nature	of	these	data	sources	make	it	impossible	to	use	traditional	solutions
such	as	relational	databases	to	store	and	analyze	these	datasets.

Storage,	processing,	and	analyzing	petabytes	of	data	in	a	meaningful	and	timely	manner
require	many	compute	nodes	with	thousands	of	disks	and	thousands	of	processors	together
with	the	ability	to	efficiently	communicate	massive	amounts	of	data	among	them.	Such	a
scale	makes	failures	such	as	disk	failures,	compute	node	failures,	network	failures,	and	so
on	a	common	occurrence	making	fault	tolerance	a	very	important	aspect	of	such	systems.
Other	common	challenges	that	arise	include	the	significant	cost	of	resources,	handling
communication	latencies,	handling	heterogeneous	compute	resources,	synchronization
across	nodes,	and	load	balancing.	As	you	can	infer,	developing	and	maintaining
distributed	parallel	applications	to	process	massive	amounts	of	data	while	handling	all
these	issues	is	not	an	easy	task.	This	is	where	Apache	Hadoop	comes	to	our	rescue.

Note
Google	is	one	of	the	first	organizations	to	face	the	problem	of	processing	massive	amounts
of	data.	Google	built	a	framework	for	large-scale	data	processing	borrowing	the	map	and
reduce	paradigms	from	the	functional	programming	world	and	named	it	as	MapReduce.
At	the	foundation	of	Google,	MapReduce	was	the	Google	File	System,	which	is	a	high
throughput	parallel	filesystem	that	enables	the	reliable	storage	of	massive	amounts	of	data
using	commodity	computers.	Seminal	research	publications	that	introduced	Google
MapReduce	and	Google	File	System	concepts	can	be	found	at
http://research.google.com/archive/mapreduce.html	and
http://research.google.com/archive/gfs.html.

Apache	Hadoop	MapReduce	is	the	most	widely	known	and	widely	used	open	source
implementation	of	the	Google	MapReduce	paradigm.	Apache	Hadoop	Distributed	File
System	(HDFS)	provides	an	open	source	implementation	of	the	Google	File	Systems
concept.

Apache	Hadoop	MapReduce,	HDFS,	and	YARN	provide	a	scalable,	fault-tolerant,
distributed	platform	for	storage	and	processing	of	very	large	datasets	across	clusters	of
commodity	computers.	Unlike	in	traditional	High	Performance	Computing	(HPC)
clusters,	Hadoop	uses	the	same	set	of	compute	nodes	for	data	storage	as	well	as	to	perform
the	computations,	allowing	Hadoop	to	improve	the	performance	of	large	scale
computations	by	collocating	computations	with	the	storage.	Also,	the	hardware	cost	of	a
Hadoop	cluster	is	orders	of	magnitude	cheaper	than	HPC	clusters	and	database	appliances
due	to	the	usage	of	commodity	hardware	and	commodity	interconnects.	Together	Hadoop-
based	frameworks	have	become	the	de-facto	standard	for	storing	and	processing	big	data.

www.allitebooks.com

http://research.google.com/archive/mapreduce.html
http://research.google.com/archive/gfs.html
http://www.allitebooks.org


Hadoop	Distributed	File	System	–	HDFS
HDFS	is	a	block	structured	distributed	filesystem	that	is	designed	to	store	petabytes	of
data	reliably	on	compute	clusters	made	out	of	commodity	hardware.	HDFS	overlays	on
top	of	the	existing	filesystem	of	the	compute	nodes	and	stores	files	by	breaking	them	into
coarser	grained	blocks	(for	example,	128	MB).	HDFS	performs	better	with	large	files.
HDFS	distributes	the	data	blocks	of	large	files	across	to	all	the	nodes	of	the	cluster	to
facilitate	the	very	high	parallel	aggregate	read	bandwidth	when	processing	the	data.	HDFS
also	stores	redundant	copies	of	these	data	blocks	in	multiple	nodes	to	ensure	reliability	and
fault	tolerance.	Data	processing	frameworks	such	as	MapReduce	exploit	these	distributed
sets	of	data	blocks	and	the	redundancy	to	maximize	the	data	local	processing	of	large
datasets,	where	most	of	the	data	blocks	would	get	processed	locally	in	the	same	physical
node	as	they	are	stored.

HDFS	consists	of	NameNode	and	DataNode	services	providing	the	basis	for	the
distributed	filesystem.	NameNode	stores,	manages,	and	serves	the	metadata	of	the
filesystem.	NameNode	does	not	store	any	real	data	blocks.	DataNode	is	a	per	node	service
that	manages	the	actual	data	block	storage	in	the	DataNodes.	When	retrieving	data,	client
applications	first	contact	the	NameNode	to	get	the	list	of	locations	the	requested	data
resides	in	and	then	contact	the	DataNodes	directly	to	retrieve	the	actual	data.	The
following	diagram	depicts	a	high-level	overview	of	the	structure	of	HDFS:

Hadoop	v2	brings	in	several	performance,	scalability,	and	reliability	improvements	to
HDFS.	One	of	the	most	important	among	those	is	the	High	Availability	(HA)	support	for
the	HDFS	NameNode,	which	provides	manual	and	automatic	failover	capabilities	for	the
HDFS	NameNode	service.	This	solves	the	widely	known	NameNode	single	point	of



failure	weakness	of	HDFS.	Automatic	NameNode	high	availability	of	Hadoop	v2	uses
Apache	ZooKeeper	for	failure	detection	and	for	active	NameNode	election.	Another
important	new	feature	is	the	support	for	HDFS	federation.	HDFS	federation	enables	the
usage	of	multiple	independent	HDFS	namespaces	in	a	single	HDFS	cluster.	These
namespaces	would	be	managed	by	independent	NameNodes,	but	share	the	DataNodes	of
the	cluster	to	store	the	data.	The	HDFS	federation	feature	improves	the	horizontal
scalability	of	HDFS	by	allowing	us	to	distribute	the	workload	of	NameNodes.	Other
important	improvements	of	HDFS	in	Hadoop	v2	include	the	support	for	HDFS	snapshots,
heterogeneous	storage	hierarchy	support	(Hadoop	2.3	or	higher),	in-memory	data	caching
support	(Hadoop	2.3	or	higher),	and	many	performance	improvements.

Almost	all	the	Hadoop	ecosystem	data	processing	technologies	utilize	HDFS	as	the
primary	data	storage.	HDFS	can	be	considered	as	the	most	important	component	of	the
Hadoop	ecosystem	due	to	its	central	nature	in	the	Hadoop	architecture.



Hadoop	YARN
YARN	(Yet	Another	Resource	Negotiator)	is	the	major	new	improvement	introduced	in
Hadoop	v2.	YARN	is	a	resource	management	system	that	allows	multiple	distributed
processing	frameworks	to	effectively	share	the	compute	resources	of	a	Hadoop	cluster	and
to	utilize	the	data	stored	in	HDFS.	YARN	is	a	central	component	in	the	Hadoop	v2
ecosystem	and	provides	a	common	platform	for	many	different	types	of	distributed
applications.

The	batch	processing	based	MapReduce	framework	was	the	only	natively	supported	data
processing	framework	in	Hadoop	v1.	While	MapReduce	works	well	for	analyzing	large
amounts	of	data,	MapReduce	by	itself	is	not	sufficient	enough	to	support	the	growing
number	of	other	distributed	processing	use	cases	such	as	real-time	data	computations,
graph	computations,	iterative	computations,	and	real-time	data	queries.	The	goal	of	YARN
is	to	allow	users	to	utilize	multiple	distributed	application	frameworks	that	provide	such
capabilities	side	by	side	sharing	a	single	cluster	and	the	HDFS	filesystem.	Some	examples
of	the	current	YARN	applications	include	the	MapReduce	framework,	Tez	high
performance	processing	framework,	Spark	processing	engine,	and	the	Storm	real-time
stream	processing	framework.	The	following	diagram	depicts	the	high-level	architecture
of	the	YARN	ecosystem:

The	YARN	ResourceManager	process	is	the	central	resource	scheduler	that	manages	and
allocates	resources	to	the	different	applications	(also	known	as	jobs)	submitted	to	the
cluster.	YARN	NodeManager	is	a	per	node	process	that	manages	the	resources	of	a	single
compute	node.	Scheduler	component	of	the	ResourceManager	allocates	resources	in
response	to	the	resource	requests	made	by	the	applications,	taking	into	consideration	the
cluster	capacity	and	the	other	scheduling	policies	that	can	be	specified	through	the	YARN
policy	plugin	framework.

YARN	has	a	concept	called	containers,	which	is	the	unit	of	resource	allocation.	Each
allocated	container	has	the	rights	to	a	certain	amount	of	CPU	and	memory	in	a	particular



compute	node.	Applications	can	request	resources	from	YARN	by	specifying	the	required
number	of	containers	and	the	CPU	and	memory	required	by	each	container.

ApplicationMaster	is	a	per-application	process	that	coordinates	the	computations	for	a
single	application.	The	first	step	of	executing	a	YARN	application	is	to	deploy	the
ApplicationMaster.	After	an	application	is	submitted	by	a	YARN	client,	the
ResourceManager	allocates	a	container	and	deploys	the	ApplicationMaster	for	that
application.	Once	deployed,	the	ApplicationMaster	is	responsible	for	requesting	and
negotiating	the	necessary	resource	containers	from	the	ResourceManager.	Once	the
resources	are	allocated	by	the	ResourceManager,	ApplicationMaster	coordinates	with	the
NodeManagers	to	launch	and	monitor	the	application	containers	in	the	allocated	resources.
The	shifting	of	application	coordination	responsibilities	to	the	ApplicationMaster	reduces
the	burden	on	the	ResourceManager	and	allows	it	to	focus	solely	on	managing	the	cluster
resources.	Also	having	separate	ApplicationMasters	for	each	submitted	application
improves	the	scalability	of	the	cluster	as	opposed	to	having	a	single	process	bottleneck	to
coordinate	all	the	application	instances.	The	following	diagram	depicts	the	interactions
between	various	YARN	components,	when	a	MapReduce	application	is	submitted	to	the
cluster:

While	YARN	supports	many	different	distributed	application	execution	frameworks,	our
focus	in	this	book	is	mostly	on	traditional	MapReduce	and	related	technologies.



Hadoop	MapReduce
Hadoop	MapReduce	is	a	data	processing	framework	that	can	be	utilized	to	process
massive	amounts	of	data	stored	in	HDFS.	As	we	mentioned	earlier,	distributed	processing
of	a	massive	amount	of	data	in	a	reliable	and	efficient	manner	is	not	an	easy	task.	Hadoop
MapReduce	aims	to	make	it	easy	for	users	by	providing	a	clean	abstraction	for
programmers	by	providing	automatic	parallelization	of	the	programs	and	by	providing
framework	managed	fault	tolerance	support.

MapReduce	programming	model	consists	of	Map	and	Reduce	functions.	The	Map
function	receives	each	record	of	the	input	data	(lines	of	a	file,	rows	of	a	database,	and	so
on)	as	key-value	pairs	and	outputs	key-value	pairs	as	the	result.	By	design,	each	Map
function	invocation	is	independent	of	each	other	allowing	the	framework	to	use	divide	and
conquer	to	execute	the	computation	in	parallel.	This	also	allows	duplicate	executions	or
re-executions	of	the	Map	tasks	in	case	of	failures	or	load	imbalances	without	affecting	the
results	of	the	computation.	Typically,	Hadoop	creates	a	single	Map	task	instance	for	each
HDFS	data	block	of	the	input	data.	The	number	of	Map	function	invocations	inside	a	Map
task	instance	is	equal	to	the	number	of	data	records	in	the	input	data	block	of	the	particular
Map	task	instance.

Hadoop	MapReduce	groups	the	output	key-value	records	of	all	the	Map	tasks	of	a
computation	by	the	key	and	distributes	them	to	the	Reduce	tasks.	This	distribution	and
transmission	of	data	to	the	Reduce	tasks	is	called	the	Shuffle	phase	of	the	MapReduce
computation.	Input	data	to	each	Reduce	task	would	also	be	sorted	and	grouped	by	the	key.
The	Reduce	function	gets	invoked	for	each	key	and	the	group	of	values	of	that	key	(reduce
<key,	list_of_values>)	in	the	sorted	order	of	the	keys.	In	a	typical	MapReduce	program,
users	only	have	to	implement	the	Map	and	Reduce	functions	and	Hadoop	takes	care	of
scheduling	and	executing	them	in	parallel.	Hadoop	will	rerun	any	failed	tasks	and	also
provide	measures	to	mitigate	any	unbalanced	computations.	Have	a	look	at	the	following
diagram	for	a	better	understanding	of	the	MapReduce	data	and	computational	flows:



In	Hadoop	1.x,	the	MapReduce	(MR1)	components	consisted	of	the	JobTracker	process,
which	ran	on	a	master	node	managing	the	cluster	and	coordinating	the	jobs,	and
TaskTrackers,	which	ran	on	each	compute	node	launching	and	coordinating	the	tasks
executing	in	that	node.	Neither	of	these	processes	exist	in	Hadoop	2.x	MapReduce	(MR2).
In	MR2,	the	job	coordinating	responsibility	of	JobTracker	is	handled	by	an
ApplicationMaster	that	will	get	deployed	on-demand	through	YARN.	The	cluster
management	and	job	scheduling	responsibilities	of	JobTracker	are	handled	in	MR2	by	the
YARN	ResourceManager.	JobHistoryServer	has	taken	over	the	responsibility	of	providing
information	about	the	completed	MR2	jobs.	YARN	NodeManagers	provide	the
functionality	that	is	somewhat	similar	to	MR1	TaskTrackers	by	managing	resources	and
launching	containers	(which	in	the	case	of	MapReduce	2	houses	Map	or	Reduce	tasks)	in
the	compute	nodes.



Hadoop	installation	modes
Hadoop	v2	provides	three	installation	choices:

Local	mode:	The	local	mode	allows	us	to	run	MapReduce	computation	using	just	the
unzipped	Hadoop	distribution.	This	nondistributed	mode	executes	all	parts	of	Hadoop
MapReduce	within	a	single	Java	process	and	uses	the	local	filesystem	as	the	storage.
The	local	mode	is	very	useful	for	testing/debugging	the	MapReduce	applications
locally.
Pseudo	distributed	mode:	Using	this	mode,	we	can	run	Hadoop	on	a	single	machine
emulating	a	distributed	cluster.	This	mode	runs	the	different	services	of	Hadoop	as
different	Java	processes,	but	within	a	single	machine.	This	mode	is	good	to	let	you
play	and	experiment	with	Hadoop.
Distributed	mode:	This	is	the	real	distributed	mode	that	supports	clusters	that	span
from	a	few	nodes	to	thousands	of	nodes.	For	production	clusters,	we	recommend
using	one	of	the	many	packaged	Hadoop	distributions	as	opposed	to	installing
Hadoop	from	scratch	using	the	Hadoop	release	binaries,	unless	you	have	a	specific
use	case	that	requires	a	vanilla	Hadoop	installation.	Refer	to	the	Setting	up	Hadoop
ecosystem	in	a	distributed	cluster	environment	using	a	Hadoop	distribution	recipe	for
more	information	on	Hadoop	distributions.

Note
The	example	code	files	for	this	book	are	available	on	GitHub	at
https://github.com/thilg/hcb-v2.	The	chapter1	folder	of	the	code	repository	contains	the
sample	source	code	files	for	this	chapter.	You	can	also	download	all	the	files	in	the
repository	using	the	https://github.com/thilg/hcb-v2/archive/master.zip	link.

The	sample	code	for	this	book	uses	Gradle	to	automate	the	compiling	and	building	of	the
projects.	You	can	install	Gradle	by	following	the	guide	provided	at
http://www.gradle.org/docs/current/userguide/installation.html.	Usually,	you	only	have	to
download	and	extract	the	Gradle	distribution	from	http://www.gradle.org/downloads	and
add	the	bin	directory	of	the	extracted	Gradle	distribution	to	your	path	variable.

All	the	sample	code	can	be	built	by	issuing	the	gradle	build	command	in	the	main	folder
of	the	code	repository.

Project	files	for	Eclipse	IDE	can	be	generated	by	running	the	gradle	eclipse	command
in	the	main	folder	of	the	code	repository.

Project	files	for	the	IntelliJ	IDEA	IDE	can	be	generated	by	running	the	gradle	idea
command	in	the	main	folder	of	the	code	repository.

https://github.com/thilg/hcb-v2
https://github.com/thilg/hcb-v2/archive/master.zip
http://www.gradle.org/docs/current/userguide/installation.html
http://www.gradle.org/downloads




Setting	up	Hadoop	v2	on	your	local
machine
This	recipe	describes	how	to	set	up	Hadoop	v2	on	your	local	machine	using	the	local
mode.	Local	mode	is	a	non-distributed	mode	that	can	be	used	for	testing	and	debugging
your	Hadoop	applications.	When	running	a	Hadoop	application	in	local	mode,	all	the
required	Hadoop	components	and	your	applications	execute	inside	a	single	Java	Virtual
Machine	(JVM)	process.



Getting	ready
Download	and	install	JDK	1.6	or	a	higher	version,	preferably	the	Oracle	JDK	1.7.	Oracle
JDK	can	be	downloaded	from
http://www.oracle.com/technetwork/java/javase/downloads/index.html.

www.allitebooks.com

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.allitebooks.org


How	to	do	it…
Now	let’s	start	the	Hadoop	v2	installation:

1.	 Download	the	most	recent	Hadoop	v2	branch	distribution	(Hadoop	2.2.0	or	later)
from	http://hadoop.apache.org/releases.html.

2.	 Unzip	the	Hadoop	distribution	using	the	following	command.	You	will	have	to
change	the	x.x.	in	the	filename	to	the	actual	release	you	have	downloaded.	From	this
point	onward,	we	will	call	the	unpacked	Hadoop	directory	{HADOOP_HOME}:

$	tar	-zxvf	hadoop-2.x.x.tar.gz

3.	 Now,	you	can	run	Hadoop	jobs	through	the	{HADOOP_HOME}/bin/hadoop	command,
and	we	will	elaborate	on	that	further	in	the	next	recipe.

http://hadoop.apache.org/releases.html


How	it	works…
Hadoop	local	mode	does	not	start	any	servers	but	does	all	the	work	within	a	single	JVM.
When	you	submit	a	job	to	Hadoop	in	local	mode,	Hadoop	starts	a	JVM	to	execute	the	job.
The	output	and	the	behavior	of	the	job	is	the	same	as	a	distributed	Hadoop	job,	except	for
the	fact	that	the	job	only	uses	the	current	node	to	run	the	tasks	and	the	local	filesystem	is
used	for	the	data	storage.	In	the	next	recipe,	we	will	discover	how	to	run	a	MapReduce
program	using	the	Hadoop	local	mode.





Writing	a	WordCount	MapReduce
application,	bundling	it,	and	running	it
using	the	Hadoop	local	mode
This	recipe	explains	how	to	implement	a	simple	MapReduce	program	to	count	the	number
of	occurrences	of	words	in	a	dataset.	WordCount	is	famous	as	the	HelloWorld	equivalent
for	Hadoop	MapReduce.

To	run	a	MapReduce	job,	users	should	supply	a	map	function,	a	reduce	function,	input
data,	and	a	location	to	store	the	output	data.	When	executed,	Hadoop	carries	out	the
following	steps:

1.	 Hadoop	uses	the	supplied	InputFormat	to	break	the	input	data	into	key-value	pairs
and	invokes	the	map	function	for	each	key-value	pair,	providing	the	key-value	pair	as
the	input.	When	executed,	the	map	function	can	output	zero	or	more	key-value	pairs.

2.	 Hadoop	transmits	the	key-value	pairs	emitted	from	the	Mappers	to	the	Reducers	(this
step	is	called	Shuffle).	Hadoop	then	sorts	these	key-value	pairs	by	the	key	and	groups
together	the	values	belonging	to	the	same	key.

3.	 For	each	distinct	key,	Hadoop	invokes	the	reduce	function	once	while	passing	that
particular	key	and	list	of	values	for	that	key	as	the	input.

4.	 The	reduce	function	may	output	zero	or	more	key-value	pairs,	and	Hadoop	writes
them	to	the	output	data	location	as	the	final	result.



Getting	ready
Select	the	source	code	for	the	first	chapter	from	the	source	code	repository	for	this	book.
Export	the	$HADOOP_HOME	environment	variable	pointing	to	the	root	of	the	extracted
Hadoop	distribution.



How	to	do	it…
Now	let’s	write	our	first	Hadoop	MapReduce	program:

1.	 The	WordCount	sample	uses	MapReduce	to	count	the	number	of	word	occurrences
within	a	set	of	input	documents.	The	sample	code	is	available	in	the
chapter1/Wordcount.java	file	of	the	source	folder	of	this	chapter.	The	code	has
three	parts—Mapper,	Reducer,	and	the	main	program.

2.	 The	Mapper	extends	from	the	org.apache.hadoop.mapreduce.Mapper	interface.
Hadoop	InputFormat	provides	each	line	in	the	input	files	as	an	input	key-value	pair	to
the	map	function.	The	map	function	breaks	each	line	into	substrings	using	whitespace
characters	such	as	the	separator,	and	for	each	token	(word)	emits	(word,1)	as	the
output.

public	void	map(Object	key,	Text	value,	Context	context)	throws	
IOException,	InterruptedException	{
		//	Split	the	input	text	value	to	words
		StringTokenizer	itr	=	new	StringTokenizer(value.toString());

		//	Iterate	all	the	words	in	the	input	text	value
		while	(itr.hasMoreTokens())	{
				word.set(itr.nextToken());
				context.write(word,	new	IntWritable(1));
		}
}

3.	 Each	reduce	function	invocation	receives	a	key	and	all	the	values	of	that	key	as	the
input.	The	reduce	function	outputs	the	key	and	the	number	of	occurrences	of	the	key
as	the	output.

public	void	reduce(Text	key,	Iterable<IntWritable>values,	Context	
context)	throws	IOException,	InterruptedException
{
		int	sum	=	0;
		//	Sum	all	the	occurrences	of	the	word	(key)
		for	(IntWritableval	:	values)	{
				sum	+=	val.get();
		}
		result.set(sum);
		context.write(key,	result);
}

4.	 The	main	driver	program	configures	the	MapReduce	job	and	submits	it	to	the	Hadoop
YARN	cluster:

Configuration	conf	=	new	Configuration();
……
//	Create	a	new	job
Job	job	=	Job.getInstance(conf,	"word	count");
//	Use	the	WordCount.class	file	to	point	to	the	job	jar
job.setJarByClass(WordCount.class);

job.setMapperClass(TokenizerMapper.class);



job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

//	Setting	the	input	and	output	locations
FileInputFormat.addInputPath(job,	new	Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job,	newPath(otherArgs[1]));
//	Submit	the	job	and	wait	for	it's	completion
System.exit(job.waitForCompletion(true)	?	0	:	1);

5.	 Compile	the	sample	using	the	Gradle	build	as	mentioned	in	the	introduction	of	this
chapter	by	issuing	the	gradle	build	command	from	the	chapter1	folder	of	the
sample	code	repository.	Alternatively,	you	can	also	use	the	provided	Apache	Ant
build	file	by	issuing	the	ant	compile	command.

6.	 Run	the	WordCount	sample	using	the	following	command.	In	this	command,
chapter1.WordCount	is	the	name	of	the	main	class.	wc-input	is	the	input	data
directory	and	wc-output	is	the	output	path.	The	wc-input	directory	of	the	source
repository	contains	a	sample	text	file.	Alternatively,	you	can	copy	any	text	file	to	the
wc-input	directory.

$	$HADOOP_HOME/bin/hadoop	jar	\
hcb-c1-samples.jar	\
chapter1.WordCount	wc-input	wc-output

7.	 The	output	directory	(wc-output)	will	have	a	file	named	part-r-XXXXX,	which	will
have	the	count	of	each	word	in	the	document.	Congratulations!	You	have
successfully	run	your	first	MapReduce	program.

$	cat	wc-output/part*



How	it	works…
In	the	preceding	sample,	MapReduce	worked	in	the	local	mode	without	starting	any
servers	and	using	the	local	filesystem	as	the	storage	system	for	inputs,	outputs,	and
working	data.	The	following	diagram	shows	what	happened	in	the	WordCount	program
under	the	covers:

The	WordCount	MapReduce	workflow	works	as	follows:

1.	 Hadoop	reads	the	input,	breaks	it	using	new	line	characters	as	the	separator	and	then
runs	the	map	function	passing	each	line	as	an	argument	with	the	line	number	as	the
key	and	the	line	contents	as	the	value.

2.	 The	map	function	tokenizes	the	line,	and	for	each	token	(word),	emits	a	key-value	pair
(word,1).

3.	 Hadoop	collects	all	the	(word,1)	pairs,	sorts	them	by	the	word,	groups	all	the	values
emitted	against	each	unique	key,	and	invokes	the	reduce	function	once	for	each
unique	key	passing	the	key	and	values	for	that	key	as	an	argument.

4.	 The	reduce	function	counts	the	number	of	occurrences	of	each	word	using	the	values
and	emits	it	as	a	key-value	pair.

5.	 Hadoop	writes	the	final	output	to	the	output	directory.



There’s	more…
As	an	optional	step,	you	can	set	up	and	run	the	WordCount	application	directly	from	your
favorite	Java	Integrated	Development	Environment	(IDE).	Project	files	for	Eclipse
IDE	and	IntelliJ	IDEA	IDE	can	be	generated	by	running	gradle	eclipse	and	gradle
idea	commands	respectively	in	the	main	folder	of	the	code	repository.

For	other	IDEs,	you’ll	have	to	add	the	JAR	files	in	the	following	directories	to	the	class-
path	of	the	IDE	project	you	create	for	the	sample	code:

{HADOOP_HOME}/share/hadoop/common
{HADOOP_HOME}/share/hadoop/common/lib
{HADOOP_HOME}/share/hadoop/mapreduce
{HADOOP_HOME}/share/hadoop/yarn
{HADOOP_HOME}/share/hadoop/hdfs

Execute	the	chapter1.WordCount	class	by	passing	wc-input	and	wc-output	as	arguments.
This	will	run	the	sample	as	before.	Running	MapReduce	jobs	from	IDE	in	this	manner	is
very	useful	for	debugging	your	MapReduce	jobs.



See	also
Although	you	ran	the	sample	with	Hadoop	installed	in	your	local	machine,	you	can	run	it
using	the	distributed	Hadoop	cluster	setup	with	an	HDFS-distributed	filesystem.	The
Running	the	WordCount	program	in	a	distributed	cluster	environment	recipe	of	this
chapter	will	discuss	how	to	run	this	sample	in	a	distributed	setup.





Adding	a	combiner	step	to	the
WordCount	MapReduce	program
A	single	Map	task	may	output	many	key-value	pairs	with	the	same	key	causing	Hadoop	to
shuffle	(move)	all	those	values	over	the	network	to	the	Reduce	tasks,	incurring	a
significant	overhead.	For	example,	in	the	previous	WordCount	MapReduce	program,
when	a	Mapper	encounters	multiple	occurrences	of	the	same	word	in	a	single	Map	task,
the	map	function	would	output	many	<word,1>	intermediate	key-value	pairs	to	be
transmitted	over	the	network.	However,	we	can	optimize	this	scenario	if	we	can	sum	all
the	instances	of	<word,1>	pairs	to	a	single	<word,	count>	pair	before	sending	the	data
across	the	network	to	the	Reducers.

To	optimize	such	scenarios,	Hadoop	supports	a	special	function	called	combiner,	which
performs	local	aggregation	of	the	Map	task	output	key-value	pairs.	When	provided,
Hadoop	calls	the	combiner	function	on	the	Map	task	outputs	before	persisting	the	data	on
the	disk	to	shuffle	the	Reduce	tasks.	This	can	significantly	reduce	the	amount	of	data
shuffled	from	the	Map	tasks	to	the	Reduce	tasks.	It	should	be	noted	that	the	combiner	is	an
optional	step	of	the	MapReduce	flow.	Even	when	you	provide	a	combiner	implementation,
Hadoop	may	decide	to	invoke	it	only	for	a	subset	of	the	Map	output	data	or	may	decide	to
not	invoke	it	at	all.

This	recipe	explains	how	to	use	a	combiner	with	the	WordCount	MapReduce	application
introduced	in	the	previous	recipe.



How	to	do	it…
Now	let’s	add	a	combiner	to	the	WordCount	MapReduce	application:

1.	 The	combiner	must	have	the	same	interface	as	the	reduce	function.	Output	key-value
pair	types	emitted	by	the	combiner	should	match	the	type	of	the	Reducer	input	key-
value	pairs.	For	the	WordCount	sample,	we	can	reuse	the	WordCount	reduce
function	as	the	combiner	since	the	input	and	output	data	types	of	the	WordCount
reduce	function	are	the	same.

2.	 Uncomment	the	following	line	in	the	WordCount.java	file	to	enable	the	combiner	for
the	WordCount	application:

job.setCombinerClass(IntSumReducer.class);

3.	 Recompile	the	code	by	re-running	the	Gradle	(gradle	build)	or	the	Ant	build	(ant
compile).

4.	 Run	the	WordCount	sample	using	the	following	command.	Make	sure	to	delete	the
old	output	directory	(wc-output)	before	running	the	job.

$	$HADOOP_HOME/bin/hadoop	jar	\
hcb-c1-samples.jar	\
chapter1.WordCount	wc-input	wc-output

5.	 The	final	results	will	be	available	from	the	wc-output	directory.



How	it	works…
When	provided,	Hadoop	calls	the	combiner	function	on	the	Map	task	outputs	before
persisting	the	data	on	the	disk	for	shuffling	to	the	Reduce	tasks.	The	combiner	can	pre-
process	the	data	generated	by	the	Mapper	before	sending	it	to	the	Reducer,	thus	reducing
the	amount	of	data	that	needs	to	be	transferred.

In	the	WordCount	application,	combiner	receives	N	number	of	(word,1)	pairs	as	input	and
outputs	a	single	(word,	N)	pair.	For	example,	if	an	input	processed	by	a	Map	task	had
1,000	occurrences	of	the	word	“the”,	the	Mapper	will	generate	1,000	(the,1)	pairs,	while
the	combiner	will	generate	one	(the,1000)	pair,	thus	reducing	the	amount	of	data	that
needs	to	be	transferred	to	the	Reduce	tasks.	The	following	diagram	show	the	usage	of	the
combiner	in	the	WordCount	MapReduce	application:



There’s	more…
Using	the	job’s	reduce	function	as	the	combiner	only	works	when	the	reduce	function
input	and	output	key-value	data	types	are	the	same.	In	situations	where	you	cannot	reuse
the	reduce	function	as	the	combiner,	you	can	write	a	dedicated	reduce	function
implementation	to	act	as	the	combiner.	Combiner	input	and	output	key-value	pair	types
should	be	the	same	as	the	Mapper	output	key-value	pair	types.

We	reiterate	that	the	combiner	is	an	optional	step	of	the	MapReduce	flow.	Even	when	you
provide	a	combiner	implementation,	Hadoop	may	decide	to	invoke	it	only	for	a	subset	of
the	Map	output	data	or	may	decide	to	not	invoke	it	at	all.	Care	should	be	taken	not	to	use
the	combiner	to	perform	any	essential	tasks	of	the	computation	as	Hadoop	does	not
guarantee	the	execution	of	the	combiner.

Using	a	combiner	does	not	yield	significant	gains	in	the	non-distributed	modes.	However,
in	the	distributed	setups	as	described	in	Setting	up	Hadoop	YARN	in	a	distributed	cluster
environment	using	Hadoop	v2	recipe,	a	combiner	can	provide	significant	performance
gains.





Setting	up	HDFS
HDFS	is	a	block	structured	distributed	filesystem	that	is	designed	to	store	petabytes	of
data	reliably	on	top	of	clusters	made	out	of	commodity	hardware.	HDFS	supports	storing
massive	amounts	of	data	and	provides	high	throughput	access	to	the	data.	HDFS	stores	file
data	across	multiple	nodes	with	redundancy	to	ensure	fault-tolerance	and	high	aggregate
bandwidth.

HDFS	is	the	default	distributed	filesystem	used	by	the	Hadoop	MapReduce	computations.
Hadoop	supports	data	locality	aware	processing	of	data	stored	in	HDFS.	HDFS
architecture	consists	mainly	of	a	centralized	NameNode	that	handles	the	filesystem
metadata	and	DataNodes	that	store	the	real	data	blocks.	HDFS	data	blocks	are	typically
coarser	grained	and	perform	better	with	large	streaming	reads.

To	set	up	HDFS,	we	first	need	to	configure	a	NameNode	and	DataNodes,	and	then	specify
the	DataNodes	in	the	slaves	file.	When	we	start	the	NameNode,	the	startup	script	will
start	the	DataNodes.

Tip
Installing	HDFS	directly	using	Hadoop	release	artifacts	as	mentioned	in	this	recipe	is
recommended	for	development	testing	and	for	advanced	use	cases	only.	For	regular
production	clusters,	we	recommend	using	a	packaged	Hadoop	distribution	as	mentioned	in
the	Setting	up	Hadoop	ecosystem	in	a	distributed	cluster	environment	using	a	Hadoop
distribution	recipe.	Packaged	Hadoop	distributions	make	it	much	easier	to	install,
configure,	maintain,	and	update	the	components	of	the	Hadoop	ecosystem.



Getting	ready
You	can	follow	this	recipe	either	using	a	single	machine	or	multiple	machines.	If	you	are
using	multiple	machines,	you	should	choose	one	machine	as	the	master	node	where	you
will	run	the	HDFS	NameNode.	If	you	are	using	a	single	machine,	use	it	as	both	the	name
node	as	well	as	the	DataNode.

1.	 Install	JDK	1.6	or	above	(Oracle	JDK	1.7	is	preferred)	in	all	machines	that	will	be
used	to	set	up	the	HDFS	cluster.	Set	the	JAVA_HOME	environment	variable	to	point	to
the	Java	installation.

2.	 Download	Hadoop	by	following	the	Setting	up	Hadoop	v2	on	your	local	machine
recipe.



How	to	do	it…
Now	let’s	set	up	HDFS	in	the	distributed	mode:

1.	 Set	up	password-less	SSH	from	the	master	node,	which	will	be	running	the
NameNode,	to	the	DataNodes.	Check	that	you	can	log	in	to	localhost	and	to	all	other
nodes	using	SSH	without	a	passphrase	by	running	one	of	the	following	commands:

$	ssh	localhost
$	ssh	<IPaddress>

Tip
Configuring	password-less	SSH

If	the	command	in	step	1	returns	an	error	or	asks	for	a	password,	create	SSH	keys	by
executing	the	following	command	(you	may	have	to	manually	enable	SSH
beforehand	depending	on	your	OS):

$	ssh-keygen	-t	dsa	-P	''	-f	~/.ssh/id_dsa

Move	the	~/.ssh/id_dsa.pub	file	to	all	the	nodes	in	the	cluster.	Then	add	the	SSH
keys	to	the	~/.ssh/authorized_keys	file	in	each	node	by	running	the	following
command	(if	the	authorized_keys	file	does	not	exist,	run	the	following	command.
Otherwise,	skip	to	the	cat	command):

$	touch	~/.ssh/authorized_keys	&&	chmod	600	~/.ssh/authorized_keys

Now	with	permissions	set,	add	your	key	to	the	~/.ssh/authorized_keys	file:

$	cat	~/.ssh/id_dsa.pub	>>	~/.ssh/authorized_keys

Then	you	should	be	able	to	execute	the	following	command	successfully,	without
providing	a	password:

$	ssh	localhost

2.	 In	each	server,	create	a	directory	for	storing	HDFS	data.	Let’s	call	that	directory
{HADOOP_DATA_DIR}.	Create	two	subdirectories	inside	the	data	directory	as
{HADOOP_DATA_DIR}/data	and	{HADOOP_DATA_DIR}/name.	Change	the	directory
permissions	to	755	by	running	the	following	command	for	each	directory:

$	chmod	–R	755	<HADOOP_DATA_DIR>

3.	 In	the	NameNode,	add	the	IP	addresses	of	all	the	slave	nodes,	each	on	a	separate	line,
to	the{HADOOP_HOME}/etc/hadoop/slaves	file.	When	we	start	the	NameNode,	it	will
use	this	slaves	file	to	start	the	DataNodes.

4.	 Add	the	following	configurations	to	{HADOOP_HOME}/etc/hadoop/core-site.xml.
Before	adding	the	configurations,	replace	the	{NAMENODE}	strings	with	the	IP	of	the
master	node:

<configuration>
		<property>
				<name>fs.defaultFS</name>



				<value>hdfs://{NAMENODE}:9000/</value>
		</property>
</configuration>

5.	 Add	the	following	configurations	to	the	{HADOOP_HOME}/etc/hadoop/hdfs-site.xml
files	in	the	{HADOOP_HOME}/etc/hadoop	directory.	Before	adding	the	configurations,
replace	the	{HADOOP_DATA_DIR}	with	the	directory	you	created	in	the	first	step.
Replicate	the	core-site.xml	and	hdfs-site.xml	files	we	modified	in	steps	4	and	5
to	all	the	nodes.

<configuration>
		<property>
				<name>dfs.namenode.name.dir</name>
				<!--	Path	to	store	namespace	and	transaction	logs	-->
				<value>{HADOOP_DATA_DIR}/name</value>
		</property>
		<property>
				<name>dfs.datanode.data.dir</name>
				<!--	Path	to	store	data	blocks	in	datanode	-->
				<value>{HADOOP_DATA_DIR}/data</value>
		</property>
</configuration>

6.	 From	the	NameNode,	run	the	following	command	to	format	a	new	filesystem:

$	$HADOOP_HOME/bin/hdfs	namenode	–format

You	will	see	the	following	line	in	the	output	after	the	successful	completion	of	the
previous	command:

…
13/04/09	08:44:51	INFO	common.Storage:	Storage	directory	/…/dfs/name	
has	been	successfully	formatted.
….

7.	 Start	the	HDFS	using	the	following	command:

$	$HADOOP_HOME/sbin/start-dfs.sh

This	command	will	first	start	a	NameNode	in	the	master	node.	Then	it	will	start	the
DataNode	services	in	the	machines	mentioned	in	the	slaves	file.	Finally,	it’ll	start
the	secondary	NameNode.

8.	 HDFS	comes	with	a	monitoring	web	console	to	verify	the	installation	and	to	monitor
the	HDFS	cluster.	It	also	lets	users	explore	the	contents	of	the	HDFS	filesystem.	The
HDFS	monitoring	console	can	be	accessed	from	http://{NAMENODE}:50070/.	Visit
the	monitoring	console	and	verify	whether	you	can	see	the	HDFS	startup	page.	Here,
replace	{NAMENODE}	with	the	IP	address	of	the	node	running	the	HDFS	NameNode.

9.	 Alternatively,	you	can	use	the	following	command	to	get	a	report	about	the	HDFS
status:

$	$HADOOP_HOME/bin/hadoop	dfsadmin	-report

10.	 Finally,	shut	down	the	HDFS	cluster	using	the	following	command:



$	$HADOOP_HOME/sbin/stop-dfs.sh



See	also
In	the	HDFS	command-line	file	operations	recipe,	we	will	explore	how	to	use	HDFS
to	store	and	manage	files.
The	HDFS	setup	is	only	a	part	of	the	Hadoop	installation.	The	Setting	up	Hadoop
YARN	in	a	distributed	cluster	environment	using	Hadoop	v2	recipe	describes	how	to
set	up	the	rest	of	Hadoop.
The	Setting	up	Hadoop	ecosystem	in	a	distributed	cluster	environment	using	a
Hadoop	distribution	recipe	explores	how	to	use	a	packaged	Hadoop	distribution	to
install	the	Hadoop	ecosystem	in	your	cluster.





Setting	up	Hadoop	YARN	in	a	distributed
cluster	environment	using	Hadoop	v2
Hadoop	v2	YARN	deployment	includes	deploying	the	ResourceManager	service	on	the
master	node	and	deploying	NodeManager	services	in	the	slave	nodes.	YARN
ResourceManager	is	the	service	that	arbitrates	all	the	resources	of	the	cluster,	and
NodeManager	is	the	service	that	manages	the	resources	in	a	single	node.

Hadoop	MapReduce	applications	can	run	on	YARN	using	a	YARN	ApplicationMaster	to
coordinate	each	job	and	a	set	of	resource	containers	to	run	the	Map	and	Reduce	tasks.

Tip
Installing	Hadoop	directly	using	Hadoop	release	artifacts,	as	mentioned	in	this	recipe,	is
recommended	for	development	testing	and	for	advanced	use	cases	only.	For	regular
production	clusters,	we	recommend	using	a	packaged	Hadoop	distribution	as	mentioned	in
the	Setting	up	Hadoop	ecosystem	in	a	distributed	cluster	environment	using	a	Hadoop
distribution	recipe.	Packaged	Hadoop	distributions	make	it	much	easier	to	install,
configure,	maintain,	and	update	the	components	of	the	Hadoop	ecosystem.



Getting	ready
You	can	follow	this	recipe	either	using	a	single	machine	as	a	pseudo-distributed
installation	or	using	a	multiple	machine	cluster.	If	you	are	using	multiple	machines,	you
should	choose	one	machine	as	the	master	node	where	you	will	run	the	HDFS	NameNode
and	the	YARN	ResourceManager.	If	you	are	using	a	single	machine,	use	it	as	both	the
master	node	as	well	as	the	slave	node.

Set	up	HDFS	by	following	the	Setting	up	HDFS	recipe.



How	to	do	it…
Let’s	set	up	Hadoop	YARN	by	setting	up	the	YARN	ResourceManager	and	the
NodeManagers.

1.	 In	each	machine,	create	a	directory	named	local	inside	{HADOOP_DATA_DIR},	which
you	created	in	the	Setting	up	HDFS	recipe.	Change	the	directory	permissions	to	755.

2.	 Add	the	following	to	the	{HADOOP_HOME}/etc/hadoop/mapred-site.xml	template
and	save	it	as	{HADOOP_HOME}/etc/hadoop/mapred-site.xml:

<property>
		<name>fs.default.name</name>
		<value>hdfs://localhost:9000</value>
</property>

3.	 Add	the	following	to	the	{HADOOP_HOME}/etc/hadoop/yarn-site.xml	file:

<property>
		<name>yarn.nodemanager.aux-services</name>
		<value>mapreduce_shuffle</value>
</property>
<property>
		<name>yarn.nodemanager.aux-services.mapreduce_shuffle.class</name>
		<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>

4.	 Start	HDFS	using	the	following	command:

$	$HADOOP_HOME/sbin/start-dfs.sh

5.	 Run	the	following	command	to	start	the	YARN	services:

$	$HADOOP_HOME/sbin/start-yarn.sh
starting	yarn	daemons
starting	resourcemanager,	logging	to	………
xxx.xx.xxx.xxx:	starting	nodemanager,	logging	to	………

6.	 Run	the	following	command	to	start	the	MapReduce	JobHistoryServer.	This	enables
the	web	console	for	MapReduce	job	histories:

$	$HADOOP_HOME/sbin/mr-jobhistory-daemon.sh	start	historyserver

7.	 Verify	the	installation	by	listing	the	processes	through	the	jps	command.	The	master
node	will	list	the	NameNode,	ResourceManager,	and	JobHistoryServer	services.	The
slave	nodes	will	list	DataNode	and	NodeManager	services:

$	jps
27084	NameNode
2073	JobHistoryServer
2106	Jps
2588
1536	ResourceManager

8.	 Visit	the	web-based	monitoring	pages	for	ResourceManager	available	at
http://{MASTER_NODE}:8088/.





How	it	works…
As	described	in	the	introduction	to	the	chapter,	Hadoop	v2	installation	consists	of	HDFS
nodes,	YARN	ResourceManager,	and	worker	nodes.	When	we	start	the	NameNode,	it
finds	slaves	through	the	HADOOP_HOME/slaves	file	and	uses	SSH	to	start	the	DataNodes	in
the	remote	server	at	the	startup.	Also,	when	we	start	ResourceManager,	it	finds	slaves
through	the	HADOOP_HOME/slaves	file	and	starts	NodeManagers.



See	also
The	Setting	up	Hadoop	ecosystem	in	a	distributed	cluster	environment	using	a	Hadoop
distribution	recipe	explores	how	to	use	a	packaged	Hadoop	distribution	to	install	the
Hadoop	ecosystem	in	your	cluster.





Setting	up	Hadoop	ecosystem	in	a
distributed	cluster	environment	using	a
Hadoop	distribution
The	Hadoop	YARN	ecosystem	now	contains	many	useful	components	providing	a	wide
range	of	data	processing,	storing,	and	querying	functionalities	for	the	data	stored	in	HDFS.
However,	manually	installing	and	configuring	all	of	these	components	to	work	together
correctly	using	individual	release	artifacts	is	quite	a	challenging	task.	Other	challenges	of
such	an	approach	include	the	monitoring	and	maintenance	of	the	cluster	and	the	multiple
Hadoop	components.

Luckily,	there	exist	several	commercial	software	vendors	that	provide	well	integrated
packaged	Hadoop	distributions	to	make	it	much	easier	to	provision	and	maintain	a	Hadoop
YARN	ecosystem	in	our	clusters.	These	distributions	often	come	with	easy	GUI-based
installers	that	guide	you	through	the	whole	installation	process	and	allow	you	to	select	and
install	the	components	that	you	require	in	your	Hadoop	cluster.	They	also	provide	tools	to
easily	monitor	the	cluster	and	to	perform	maintenance	operations.	For	regular	production
clusters,	we	recommend	using	a	packaged	Hadoop	distribution	from	one	of	the	well-
known	vendors	to	make	your	Hadoop	journey	much	easier.	Some	of	these	commercial
Hadoop	distributions	(or	editions	of	the	distribution)	have	licenses	that	allow	us	to	use
them	free	of	charge	with	optional	paid	support	agreements.

Hortonworks	Data	Platform	(HDP)	is	one	such	well-known	Hadoop	YARN	distribution
that	is	available	free	of	charge.	All	the	components	of	HDP	are	available	as	free	and	open
source	software.	You	can	download	HDP	from	http://hortonworks.com/hdp/downloads/.
Refer	to	the	installation	guides	available	in	the	download	page	for	instructions	on	the
installation.

Cloudera	CDH	is	another	well-known	Hadoop	YARN	distribution.	The	Express	edition
of	CDH	is	available	free	of	charge.	Some	components	of	the	Cloudera	distribution	are
proprietary	and	available	only	for	paying	clients.	You	can	download	Cloudera	Express
from	http://www.cloudera.com/content/cloudera/en/products-and-services/cloudera-
express.html.	Refer	to	the	installation	guides	available	on	the	download	page	for
instructions	on	the	installation.

Hortonworks	HDP,	Cloudera	CDH,	and	some	of	the	other	vendors	provide	fully
configured	quick	start	virtual	machine	images	that	you	can	download	and	run	on	your
local	machine	using	a	virtualization	software	product.	These	virtual	machines	are	an
excellent	resource	to	learn	and	try	the	different	Hadoop	components	as	well	as	for
evaluation	purposes	before	deciding	on	a	Hadoop	distribution	for	your	cluster.

Apache	Bigtop	is	an	open	source	project	that	aims	to	provide	packaging	and
integration/interoperability	testing	for	the	various	Hadoop	ecosystem	components.	Bigtop
also	provides	a	vendor	neutral	packaged	Hadoop	distribution.	While	it	is	not	as
sophisticated	as	the	commercial	distributions,	Bigtop	is	easier	to	install	and	maintain	than

http://hortonworks.com/hdp/downloads/
http://www.cloudera.com/content/cloudera/en/products-and-services/cloudera-express.html


using	release	binaries	of	each	of	the	Hadoop	components.	In	this	recipe,	we	provide	steps
to	use	Apache	Bigtop	to	install	Hadoop	ecosystem	in	your	local	machine.

Any	of	the	earlier	mentioned	distributions,	including	Bigtop,	is	suitable	for	the	purposes	of
following	the	recipes	and	executing	the	samples	provided	in	this	book.	However,	when
possible,	we	recommend	using	Hortonworks	HDP,	Cloudera	CDH,	or	other	commercial
Hadoop	distributions.



Getting	ready
This	recipe	provides	instructions	for	the	Cent	OS	and	Red	Hat	operating	systems.	Stop	any
Hadoop	service	that	you	started	in	the	previous	recipes.



How	to	do	it…
The	following	steps	will	guide	you	through	the	installation	process	of	a	Hadoop	cluster
using	Apache	Bigtop	for	Cent	OS	and	Red	Hat	operating	systems.	Please	adapt	the
commands	accordingly	for	other	Linux-based	operating	systems.

1.	 Install	the	Bigtop	repository:

$	sudo	wget	-O	\
/etc/yum.repos.d/bigtop.repo	\	
http://www.apache.org/dist/bigtop/stable/repos/centos6/bigtop.repo

2.	 Search	for	Hadoop:

$	yum	search	hadoop

3.	 Install	Hadoop	v2	using	Yum.	This	will	install	Hadoop	v2	components	(MapReduce,
HDFS,	and	YARN)	together	with	the	ZooKeeper	dependency.

$	sudo	yum	install	hadoop\*

4.	 Use	your	favorite	editor	to	add	the	following	line	to	the	/etc/default/bigtop-
utils	file.	It	is	recommended	to	point	JAVA_HOME	to	a	JDK	1.6	or	later	installation
(Oracle	JDK	1.7	or	higher	is	preferred).

export	JAVA_HOME=/usr/java/default/

5.	 Initialize	and	format	the	NameNode:

$	sudo		/etc/init.d/hadoop-hdfs-namenode	init

6.	 Start	the	Hadoop	NameNode	service:

$	sudo	service	hadoop-hdfs-namenode	start

7.	 Start	the	Hadoop	DataNode	service:

$	sudo	service	hadoop-hdfs-datanode	start

8.	 Run	the	following	script	to	create	the	necessary	directories	in	HDFS:

$	sudo		/usr/lib/hadoop/libexec/init-hdfs.sh

9.	 Create	your	home	directory	in	HDFS	and	apply	the	necessary	permisions:

$	sudo	su	-s	/bin/bash	hdfs	\
-c	"/usr/bin/hdfs	dfs	-mkdir	/user/${USER}"
$	sudo	su	-s	/bin/bash	hdfs	\
-c	"/usr/bin/hdfs	dfs	-chmod	-R	755	/user/${USER}"
$	sudo	su	-s	/bin/bash	hdfs	\
-c	"/usr/bin/hdfs	dfs	-chown	${USER}	/user/${USER}"

10.	 Start	the	YARN	ResourceManager	and	the	NodeManager:

$	sudo	service	hadoop-yarn-resourcemanager	start
$	sudo	service	hadoop-yarn-nodemanager	start
$	sudo	service	hadoop-mapreduce-historyserver	start



11.	 Try	the	following	commands	to	verify	the	installation:

$	hadoop	fs	-ls		/
$	hadoop	jar	\
/usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar	\
pi	10	1000

12.	 You	can	also	monitor	the	status	of	the	HDFS	using	the	monitoring	console	available
at	http://<namenode_ip>:50070.

13.	 Install	Hive,	HBase,	Mahout,	and	Pig	using	Bigtop	as	follows:

$	sudo	yum	install	hive\*,	hbase\*,	mahout\*,	pig\*



There’s	more…
You	can	use	the	Puppet-based	cluster	installation	of	Bigtop	by	following	the	steps
given	at
https://cwiki.apache.org/confluence/display/BIGTOP/How+to+install+BigTop+0.7.0+hadoop+on+CentOS+with+puppet
You	can	also	set	up	your	Hadoop	v2	clusters	in	a	cloud	environment	as	we	will
discuss	in	the	next	chapter

https://cwiki.apache.org/confluence/display/BIGTOP/How+to+install+BigTop+0.7.0+hadoop+on+CentOS+with+puppet




HDFS	command-line	file	operations
HDFS	is	a	distributed	filesystem,	and	just	like	any	other	filesystem,	it	allows	users	to
manipulate	the	filesystem	using	shell	commands.	This	recipe	introduces	some	of	these
commands	and	shows	how	to	use	the	HDFS	shell	commands.

It	is	worth	noting	that	some	of	the	HDFS	commands	have	a	one-to-one	correspondence
with	the	mostly	used	Unix	commands.	For	example,	consider	the	following	command:

$	bin/hdfs	dfs	–cat	/user/joe/foo.txt

The	command	reads	the	/user/joe/foo.txt	file	and	prints	it	to	the	screen,	just	like	the
cat	command	in	a	Unix	system.



Getting	ready
Start	the	HDFS	server	by	following	the	Setting	up	HDFS	recipe	or	the	Setting	up	Hadoop
ecosystem	in	a	distributed	cluster	environment	using	a	Hadoop	distribution	recipe.



How	to	do	it…
1.	 Run	the	following	command	to	list	the	content	of	your	HDFS	home	directory.	If	your

HDFS	home	directory	does	not	exist,	please	follow	step	9	of	the	Setting	up	Hadoop
ecosystem	in	a	distributed	cluster	environment	using	a	Hadoop	distribution	recipe	to
create	your	HDFS	home	directory.

$	hdfs	dfs	-ls

2.	 Run	the	following	command	to	create	a	new	directory	called	test	inside	your	home
directory	in	HDFS:

$	hdfs	dfs	-mkdir	test

3.	 The	HDFS	filesystem	has	/	as	the	root	directory.	Run	the	following	command	to	list
the	content	of	the	newly	created	directory	in	HDFS:

$	hdfs	dfs	-ls	test

4.	 Run	the	following	command	to	copy	the	local	readme	file	to	test:

$	hdfs	dfs	-copyFromLocal	README.txt	test

5.	 Run	the	following	command	to	list	the	test	directory:

$	hdfs	dfs	-ls	test
Found	1	items
-rw-r--r--			1	joesupergroup1366	2013-12-05	07:06	
/user/joe/test/README.txt

6.	 Run	the	following	command	to	copy	the	/test/README.txt	file	back	to	a	local
directory:

$	hdfs	dfs	–copyToLocal	\
test/README.txt	README-NEW.txt



How	it	works…
When	the	command	is	issued,	the	HDFS	client	will	talk	to	HDFS	NameNode	on	our
behalf	and	carry	out	the	operation.	The	client	will	pick	up	the	NameNode	from	the
configurations	in	the	HADOOP_HOME/etc/hadoop/conf	directory.

However,	if	needed,	we	can	use	a	fully	qualified	path	to	force	the	client	to	talk	to	a
specific	NameNode.	For	example,	hdfs://bar.foo.com:9000/data	will	ask	the	client	to
talk	to	NameNode	running	on	bar.foo.com	at	the	port	9000.



There’s	more…
HDFS	supports	most	of	the	Unix	commands	such	as	cp,	mv,	and	chown,	and	they	follow
the	same	pattern	as	the	commands	discussed	earlier.	The	following	command	lists	all	the
available	HDFS	shell	commands:

$	hdfs	dfs	-help

Using	a	specific	command	with	help	will	display	the	usage	of	that	command.

$	hdfs	dfs	–help	du





Running	the	WordCount	program	in	a
distributed	cluster	environment
This	recipe	describes	how	to	run	a	MapReduce	computation	in	a	distributed	Hadoop	v2
cluster.



Getting	ready
Start	the	Hadoop	cluster	by	following	the	Setting	up	HDFS	recipe	or	the	Setting	up
Hadoop	ecosystem	in	a	distributed	cluster	environment	using	a	Hadoop	distribution
recipe.



How	to	do	it…
Now	let’s	run	the	WordCount	sample	in	the	distributed	Hadoop	v2	setup:

1.	 Upload	the	wc-input	directory	in	the	source	repository	to	the	HDFS	filesystem.
Alternatively,	you	can	upload	any	other	set	of	text	documents	as	well.

$	hdfs	dfs	-copyFromLocal	wc-input	.

2.	 Execute	the	WordCount	example	from	the	HADOOP_HOME	directory:

$	hadoop	jar	hcb-c1-samples.jar	\
chapter1.WordCount	\
wc-input	wc-output

3.	 Run	the	following	commands	to	list	the	output	directory	and	then	look	at	the	results:

$hdfs	dfs	-ls	wc-output
Found	3	items
-rw-r--r--			1	joesupergroup0	2013-11-09	09:04	/data/output1/_SUCCESS
drwxr-xr-x			-	joesupergroup0	2013-11-09	09:04	/data/output1/_logs
-rw-r--r--			1	joesupergroup1306	2013-11-09	09:04	/data/output1/part-r-
00000

$	hdfs	dfs	-cat	wc-output/part*



How	it	works…
When	we	submit	a	job,	YARN	would	schedule	a	MapReduce	ApplicationMaster	to
coordinate	and	execute	the	computation.	ApplicationMaster	requests	the	necessary
resources	from	the	ResourceManager	and	executes	the	MapReduce	computation	using	the
containers	it	received	from	the	resource	request.



There’s	more…
You	can	also	see	the	results	of	the	WordCount	application	through	the	HDFS	monitoring
UI	by	visiting	http://NAMANODE:50070.





Benchmarking	HDFS	using	DFSIO
Hadoop	contains	several	benchmarks	that	you	can	use	to	verify	whether	your	HDFS
cluster	is	set	up	properly	and	performs	as	expected.	DFSIO	is	a	benchmark	test	that	comes
with	Hadoop,	which	can	be	used	to	analyze	the	I/O	performance	of	an	HDFS	cluster.	This
recipe	shows	how	to	use	DFSIO	to	benchmark	the	read/write	performance	of	an	HDFS
cluster.



Getting	ready
You	must	set	up	and	deploy	HDFS	and	Hadoop	v2	YARN	MapReduce	prior	to	running
these	benchmarks.	Locate	the	hadoop-mapreduce-client-jobclient-*-tests.jar	file	in
your	Hadoop	installation.



How	to	do	it…
The	following	steps	will	show	you	how	to	run	the	write	and	read	DFSIO	performance
benchmarks:

1.	 Execute	the	following	command	to	run	the	HDFS	write	performance	benchmark.	The
–nrFiles	parameter	specifies	the	number	of	files	to	be	written	by	the	benchmark.
Use	a	number	high	enough	to	saturate	the	task	slots	in	your	cluster.	The	-fileSize
parameter	specifies	the	file	size	of	each	file	in	MB.	Change	the	location	of	the
hadoop-mapreduce-client-jobclient-*-tests.jar	file	in	the	following
commands	according	to	your	Hadoop	installation.

$	hadoop	jar	\
$HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-
*-tests.jar	\
TestDFSIO	-write	-nrFiles	32	–fileSize	1000

2.	 The	write	benchmark	writes	the	results	to	the	console	as	well	as	appending	to	a	file
named	TestDFSIO_results.log.	You	can	provide	your	own	result	filename	using	the
–resFile	parameter.

3.	 The	following	step	will	show	you	how	to	run	the	HDFS	read	performance
benchmark.	The	read	performance	benchmark	uses	the	files	written	by	the	write
benchmark	in	step	1.	Hence,	the	write	benchmark	should	be	executed	before	running
the	read	benchmark	and	the	files	written	by	the	write	benchmark	should	exist	in	the
HDFS	for	the	read	benchmark	to	work	properly.	The	benchmark	writes	the	results	to
the	console	and	appends	the	results	to	a	logfile	similarly	to	the	write	benchmark.

$hadoop	jar	\
$HADOOP_HOME/share/Hadoop/mapreduce/hadoop-mapreduce-client-jobclient-
*-tests.jar	\
TestDFSIO	-read	\
-nrFiles	32	–fileSize	1000

4.	 The	files	generated	by	the	preceding	benchmarks	can	be	cleaned	up	using	the
following	command:

$hadoop	jar	\
$HADOOP_HOME/share/Hadoop/mapreduce/hadoop-mapreduce-client-jobclient-
*-tests.jar	\
TestDFSIO	-clean



How	it	works…
DFSIO	executes	a	MapReduce	job	where	the	Map	tasks	write	and	read	the	files	in	parallel,
while	the	Reduce	tasks	are	used	to	collect	and	summarize	the	performance	numbers.	You
can	compare	the	throughput	and	IO	rate	results	of	this	benchmark	with	the	total	number	of
disks	and	their	raw	speeds	to	verify	whether	you	are	getting	the	expected	performance
from	your	cluster.	Please	note	the	replication	factor	when	verifying	the	write	performance
results.	High	standard	deviation	in	these	tests	may	hint	at	one	or	more	underperforming
nodes	due	to	some	reason.



There’s	more…
Running	these	tests	together	with	monitoring	systems	can	help	you	identify	the
bottlenecks	of	your	Hadoop	cluster	much	easily.





Benchmarking	Hadoop	MapReduce	using
TeraSort
Hadoop	TeraSort	is	a	well-known	benchmark	that	aims	to	sort	1	TB	of	data	as	fast	as
possible	using	Hadoop	MapReduce.	TeraSort	benchmark	stresses	almost	every	part	of	the
Hadoop	MapReduce	framework	as	well	as	the	HDFS	filesystem	making	it	an	ideal	choice
to	fine-tune	the	configuration	of	a	Hadoop	cluster.

The	original	TeraSort	benchmark	sorts	10	million	100	byte	records	making	the	total	data
size	1	TB.	However,	we	can	specify	the	number	of	records,	making	it	possible	to
configure	the	total	size	of	data.



Getting	ready
You	must	set	up	and	deploy	HDFS	and	Hadoop	v2	YARN	MapReduce	prior	to	running
these	benchmarks,	and	locate	the	hadoop-mapreduce-examples-*.jar	file	in	your
Hadoop	installation.



How	to	do	it…
The	following	steps	will	show	you	how	to	run	the	TeraSort	benchmark	on	the	Hadoop
cluster:

1.	 The	first	step	of	the	TeraSort	benchmark	is	the	data	generation.	You	can	use	the
teragen	command	to	generate	the	input	data	for	the	TeraSort	benchmark.	The	first
parameter	of	teragen	is	the	number	of	records	and	the	second	parameter	is	the	HDFS
directory	to	generate	the	data.	The	following	command	generates	1	GB	of	data
consisting	of	10	million	records	to	the	tera-in	directory	in	HDFS.	Change	the
location	of	the	hadoop-mapreduce-examples-*.jar	file	in	the	following	commands
according	to	your	Hadoop	installation:

$	hadoop	jar	\
$HADOOP_HOME/share/Hadoop/mapreduce/hadoop-mapreduce-examples-*.jar	\
teragen	10000000	tera-in

Tip
It’s	a	good	idea	to	specify	the	number	of	Map	tasks	to	the	teragen	computation	to
speed	up	the	data	generation.	This	can	be	done	by	specifying	the	–
Dmapred.map.tasks	parameter.

Also,	you	can	increase	the	HDFS	block	size	for	the	generated	data	so	that	the	Map
tasks	of	the	TeraSort	computation	would	be	coarser	grained	(the	number	of	Map	tasks
for	a	Hadoop	computation	typically	equals	the	number	of	input	data	blocks).	This	can
be	done	by	specifying	the	–Ddfs.block.size	parameter.

$	hadoop	jar	$HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-
examples-*.jar	\
teragen	–Ddfs.block.size=536870912	\
–Dmapred.map.tasks=256	10000000	tera-in

2.	 The	second	step	of	the	TeraSort	benchmark	is	the	execution	of	the	TeraSort
MapReduce	computation	on	the	data	generated	in	step	1	using	the	following
command.	The	first	parameter	of	the	terasort	command	is	the	input	of	HDFS	data
directory,	and	the	second	part	of	the	terasort	command	is	the	output	of	the	HDFS
data	directory.

$	hadoop	jar	\
$HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-*.jar	\
terasort	tera-in	tera-out

Tip
It’s	a	good	idea	to	specify	the	number	of	Reduce	tasks	to	the	TeraSort	computation	to
speed	up	the	Reducer	part	of	the	computation.	This	can	be	done	by	specifying	the	–
Dmapred.reduce.tasks	parameter	as	follows:

$	hadoop	jar	$HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-
examples-*.jar	terasort	–Dmapred.reduce.tasks=32	tera-in	tera-out



3.	 The	last	step	of	the	TeraSort	benchmark	is	the	validation	of	the	results.	This	can	be
done	using	the	teravalidate	application	as	follows.	The	first	parameter	is	the
directory	with	the	sorted	data	and	the	second	parameter	is	the	directory	to	store	the
report	containing	the	results.

$	hadoop	jar	\
$HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-*.jar	\
teravalidate	tera-out	tera-validate



How	it	works…
TeraSort	uses	the	sorting	capability	of	the	MapReduce	framework	together	with	a	custom
range	Partitioner	to	divide	the	Map	output	among	the	Reduce	tasks	ensuring	the	global
sorted	order.





Chapter	2.	Cloud	Deployments	–	Using
Hadoop	YARN	on	Cloud	Environments
In	this	chapter,	we	will	cover	the	following	recipes:

Running	Hadoop	MapReduce	v2	computations	using	Amazon	Elastic	MapReduce
Saving	money	using	Amazon	EC2	Spot	Instances	to	execute	EMR	job	flows
Executing	a	Pig	script	using	EMR
Executing	a	Hive	script	using	EMR
Creating	an	Amazon	EMR	job	flow	using	the	AWS	Command	Line	Interface
Deploying	an	Apache	HBase	cluster	on	Amazon	EC2	using	EMR
Using	EMR	bootstrap	actions	to	configure	VMs	for	the	Amazon	EMR	jobs
Using	Apache	Whirr	to	deploy	an	Apache	Hadoop	cluster	in	EC2	environment



Introduction
In	this	chapter,	we	will	explore	several	mechanisms	to	deploy	and	execute	Hadoop
MapReduce	v2	and	other	Hadoop-related	computations	on	cloud	environments.

Cloud	computing	environments	such	as	Amazon	EC2	and	Microsoft	Azure	provide	on-
demand	compute	and	storage	resources	as	a	service	over	the	Web.	These	cloud	computing
environments	enable	us	to	perform	occasional	large-scale	Hadoop	computations	without
an	upfront	capital	investment	and	require	us	to	pay	only	for	the	actual	usage.	Another
advantage	of	using	cloud	environments	is	the	ability	to	increase	the	throughput	of	the
Hadoop	computations	by	horizontally	scaling	the	number	of	computing	resources	with
minimal	additional	cost.	For	an	example,	the	cost	for	using	10	cloud	instances	for	100
hours	equals	the	cost	of	using	100	cloud	instances	for	10	hours.	In	addition	to	storage,
compute,	and	hosted	MapReduce	services,	these	cloud	environments	provide	many	other
distributed	computing	services	as	well,	which	you	may	find	useful	when	implementing
your	overall	application	architecture.

While	the	cloud	environments	provide	many	advantages	over	their	traditional
counterparts,	they	also	come	with	several	unique	reliability	and	performance	challenges
due	to	the	virtualized,	multi-tenant	nature	of	the	infrastructure.	With	respect	to	the	data-
intensive	Hadoop	computations,	one	of	the	major	challenges	would	be	the	transfer	of	large
datasets	in	and	out	of	the	cloud	environments.	We	also	need	to	make	sure	to	use	a
persistent	storage	medium	to	store	any	data	that	you	need	to	preserve.	Any	data	that	is
stored	in	the	ephemeral	instance	storage	of	the	cloud	instances	would	be	lost	at	the
termination	of	those	instances.

We	will	mainly	be	using	the	Amazon	AWS	cloud	for	the	recipes	in	this	chapter	due	to	the
maturity	of	the	Linux	instance	support	and	the	maturity	of	hosted	Hadoop	services
compared	to	the	other	commercial	cloud	offerings	such	as	Microsoft	Azure	cloud.

This	chapter	guides	you	on	using	Amazon	Elastic	MapReduce	(EMR),	which	is	the
hosted	Hadoop	infrastructure,	to	execute	traditional	MapReduce	computations	as	well	as
Pig	and	Hive	computations	on	the	Amazon	EC2	infrastructure.	This	chapter	also	presents
how	to	provision	an	HBase	cluster	using	Amazon	EMR	and	how	to	back	up	and	restore
the	data	of	an	EMR	HBase	cluster.	We	will	also	use	Apache	Whirr,	a	cloud	neutral	library
for	deploying	services	on	cloud	environments,	to	provision	Apache	Hadoop	and	Apache
HBase	clusters	on	cloud	environments.

Tip
Sample	code

The	example	code	files	for	this	book	are	available	in	the	https://github.com/thilg/hcb-v2
repository.	The	chapter2	folder	of	the	code	repository	contains	the	sample	source	code
files	for	this	chapter.

https://github.com/thilg/hcb-v2




Running	Hadoop	MapReduce	v2
computations	using	Amazon	Elastic
MapReduce
Amazon	Elastic	MapReduce	(EMR)	provides	on-demand	managed	Hadoop	clusters	in
the	Amazon	Web	Services	(AWS)	cloud	to	perform	your	Hadoop	MapReduce
computations.	EMR	uses	Amazon	Elastic	Compute	Cloud	(EC2)	instances	as	the
compute	resources.	EMR	supports	reading	input	data	from	Amazon	Simple	Storage
Service	(S3)	and	storing	of	the	output	data	in	Amazon	S3	as	well.	EMR	takes	care	of	the
provisioning	of	cloud	instances,	configuring	the	Hadoop	cluster,	and	the	execution	of	our
MapReduce	computational	flows.

In	this	recipe,	we	are	going	to	execute	the	WordCount	MapReduce	sample	(the	Writing	a
WordCount	MapReduce	application,	bundling	it,	and	running	it	using	the	Hadoop	local
mode	recipe	from	Chapter	1,	Getting	Started	with	Hadoop	v2)	in	the	Amazon	EC2	using
the	Amazon	Elastic	MapReduce	service.



Getting	ready
Build	the	hcb-c1-samples.jar	file	by	running	the	Gradle	build	in	the	chapter1	folder	of
the	sample	code	repository.



How	to	do	it…
The	following	are	the	steps	for	executing	WordCount	MapReduce	application	on	Amazon
Elastic	MapReduce:

1.	 Sign	up	for	an	AWS	account	by	visiting	http://aws.amazon.com.
2.	 Open	the	Amazon	S3	monitoring	console	at	https://console.aws.amazon.com/s3	and

sign	in.
3.	 Create	an	S3	bucket	to	upload	the	input	data	by	clicking	on	Create	Bucket.	Provide

a	unique	name	for	your	bucket.	Let’s	assume	the	name	of	the	bucket	is	wc-input-
data.	You	can	find	more	information	on	creating	an	S3	bucket	at
http://docs.amazonwebservices.com/AmazonS3/latest/gsg/CreatingABucket.html.
There	also	exist	several	third-party	desktop	clients	for	the	Amazon	S3.	You	can	use
one	of	those	clients	to	manage	your	data	in	S3	as	well.

4.	 Upload	your	input	data	to	the	bucket	we	just	created	by	selecting	the	bucket	and
clicking	on	Upload.	The	input	data	for	the	WordCount	sample	should	be	one	or	more
text	files:

5.	 Create	an	S3	bucket	to	upload	the	JAR	file	needed	for	our	MapReduce	computation.
Let’s	assume	the	name	of	the	bucket	as	sample-jars.	Upload	hcb-c1-samples.jar
to	the	newly	created	bucket.

6.	 Create	an	S3	bucket	to	store	the	output	data	of	the	computation.	Let’s	assume	the
name	of	this	bucket	as	wc-output-data.	Create	another	S3	bucket	to	store	the	logs	of
the	computation.	Let’s	assume	the	name	of	this	bucket	is	hcb-c2-logs.

Note
Note	that	all	the	S3	users	share	the	S3	bucket	naming	namespace.	Hence,	using	the
example	bucket	names	given	in	this	recipe	might	not	work	for	you.	In	such	scenarios,
you	should	give	your	own	custom	names	for	the	buckets	and	substitute	those	names
in	the	subsequent	steps	of	this	recipe.

7.	 Open	the	Amazon	EMR	console	at
https://console.aws.amazon.com/elasticmapreduce.	Click	on	the	Create	Cluster
button	to	create	a	new	EMR	cluster.	Provide	a	name	for	your	cluster.

8.	 In	the	Log	folder	S3	location	textbox,	enter	the	path	of	the	S3	bucket	you	created
earlier	to	store	the	logs.	Select	the	Enabled	radio	button	for	Debugging.

http://aws.amazon.com
https://console.aws.amazon.com/s3
http://docs.amazonwebservices.com/AmazonS3/latest/gsg/CreatingABucket.html
https://console.aws.amazon.com/elasticmapreduce


9.	 Select	the	Hadoop	distribution	and	version	in	the	Software	Configuration	section.
Select	AMI	version	3.0.3	or	above	with	the	Amazon	Hadoop	distribution	to	deploy	a
Hadoop	v2	cluster.	Leave	the	default	selected	applications	(Hive,	Pig,	and	Hue)	in	the
Application	to	be	installed	section.

10.	 Select	the	EC2	instance	types,	instance	counts,	and	the	availability	zone	in	the
Hardware	Configuration	section.	The	default	options	use	two	EC2	m1.large
instances	for	the	Hadoop	slave	nodes	and	one	EC2	m1.large	instance	for	the	Hadoop
Master	node.

11.	 Leave	the	default	options	in	the	Security	and	Access	and	Bootstrap	Actions
sections.

12.	 Select	the	Custom	Jar	option	under	the	Add	Step	dropdown	of	the	Steps	section.
Click	on	Configure	and	add	to	configure	the	JAR	file	for	our	computation.	Specify
the	S3	location	of	hcb-c1-samples.jar	in	the	Jar	S3	location	textbox.	You	should
specify	the	location	of	the	JAR	in	the	format	s3n://bucket_name/jar_name.	In	the
Arguments	textbox,	type	chapter1.WordCount	followed	by	the	bucket	location



where	you	uploaded	the	input	data	in	step	4	and	the	output	data	bucket	you	created	in
step	6.	The	output	path	should	not	exist	and	we	use	a	directory	(for	example,	wc-
output-data/out1)	inside	the	output	bucket	you	created	in	step	6	as	the	output	path.
You	should	specify	the	locations	using	the	format,	s3n://bucket_name/path.

13.	 Click	on	Create	Cluster	to	launch	the	EMR	Hadoop	cluster	and	run	the	WordCount
application.

Note
Amazon	will	charge	you	for	the	compute	and	storage	resources	you	use	when
clicking	on	Create	Cluster	in	step	13.	Refer	to	the	Saving	money	using	Amazon	EC2
Spot	Instances	to	execute	EMR	job	flows	recipe	to	find	out	how	you	can	save	money
by	using	Amazon	EC2	Spot	Instances.

Note	that	AWS	bills	you	by	the	hour	and	any	partial	usage	would	get	billed	as	an
hour.	Each	launch	and	stop	of	an	instance	would	be	billed	as	a	single	hour,	even	if	it
takes	only	minutes.	Be	aware	of	the	expenses	when	performing	frequent	re-launching
of	clusters	for	testing	purposes.

14.	 Monitor	the	progress	of	your	MapReduce	cluster	deployment	and	the	computation	in
the	Cluster	List	|	Cluster	Details	page	of	the	Elastic	MapReduce	console.	Expand
the	Steps	section	of	the	page	to	see	the	status	of	the	individual	steps	of	the	cluster
setup	and	the	application	execution.	Select	a	step	and	click	on	View	logs	to	view	the
logs	and	to	debug	the	computation.	Since	EMR	uploads	the	logfiles	periodically,	you
might	have	to	wait	and	refresh	to	access	the	logfiles.	Check	the	output	of	the
computation	in	the	output	data	bucket	using	the	AWS	S3	console.



15.	 Terminate	your	cluster	to	avoid	getting	billed	for	the	instances	that	are	left.	However,
you	may	leave	the	cluster	running	to	try	out	the	other	recipes	in	this	chapter.



See	also
The	Writing	a	WordCount	MapReduce	application,	bundling	it,	and	running	it	using
the	Hadoop	local	mode	recipe	from	Chapter	1,	Getting	Started	with	Hadoop	v2
The	Running	the	WordCount	program	in	a	distributed	cluster	environment	recipe
from	Chapter	1,	Getting	Started	with	Hadoop	v2





Saving	money	using	Amazon	EC2	Spot
Instances	to	execute	EMR	job	flows
Amazon	EC2	Spot	Instances	allow	us	to	purchase	underutilized	EC2	compute	resources
at	a	significant	discount.	The	prices	of	Spot	Instances	change	depending	on	the	demand.
We	can	submit	bids	for	the	Spot	Instances	and	we	receive	the	requested	compute	instances
if	our	bid	exceeds	the	current	Spot	Instance	price.	Amazon	bills	these	instances	based	on
the	actual	Spot	Instance	price,	which	can	be	lower	than	your	bid.	Amazon	will	terminate
your	instances,	if	the	Spot	Instance	price	exceeds	your	bid.	However,	Amazon	does	not
charge	for	partial	Spot	Instance	hours	if	Amazon	terminated	your	instances.	You	can	find
more	information	on	Amazon	EC2	Spot	Instances	at	http://aws.amazon.com/ec2/spot-
instances/.

Amazon	EMR	supports	using	Spot	Instances	both	as	master	as	well	as	worker	compute
instances.	Spot	Instances	are	ideal	to	execute	nontime	critical	computations	such	as	batch
jobs.

http://aws.amazon.com/ec2/spot-instances/


How	to	do	it…
The	following	steps	show	you	how	to	use	Amazon	EC2	Spot	Instances	with	Amazon
Elastic	MapReduce	to	execute	the	WordCount	MapReduce	application:

1.	 Follow	steps	1	to	9	of	the	Running	Hadoop	MapReduce	v2	computations	using
Amazon	Elastic	MapReduce	recipe.

2.	 Configure	your	EMR	cluster	to	use	Spot	Instances	in	the	Hardware	Configuration
section.	(Refer	to	step	10	of	the	Running	Hadoop	MapReduce	v2	computations	using
Amazon	Elastic	MapReduce	recipe).	In	the	Hardware	Configuration	section,	select
the	Request	Spot	checkboxes	next	to	the	instance	types.

3.	 Specify	your	bid	price	in	the	Bid	price	textboxes.	You	can	find	the	Spot	Instance
pricing	history	in	the	Spot	Requests	window	of	the	Amazon	EC2	console
(https://console.aws.amazon.com/ec2).

4.	 Follow	steps	11	to	16	of	the	Running	Hadoop	MapReduce	v2	computations	using
Amazon	Elastic	MapReduce	recipe.

https://console.aws.amazon.com/ec2


There’s	more…
You	can	also	run	the	EMR	computations	on	a	combination	of	traditional	EC2	on-demand
instances	and	EC2	Spot	Instances,	safe	guarding	your	computation	against	possible	Spot
Instance	terminations.

Since	Amazon	bills	the	Spot	Instances	using	the	current	Spot	price	irrespective	of	your	bid
price,	it	is	a	good	practice	to	not	set	the	Spot	Instance	price	too	low	to	avoid	the	risk	of
frequent	terminations.



See	also
The	Running	Hadoop	MapReduce	v2	computations	using	Amazon	Elastic	MapReduce
recipe.





Executing	a	Pig	script	using	EMR
Amazon	EMR	supports	executing	Apache	Pig	scripts	on	the	data	stored	in	S3.	Refer	to	the
Pig-related	recipes	in	Chapter	7,	Hadoop	Ecosystem	II	–	Pig,	HBase,	Mahout,	and	Sqoop,
for	more	details	on	using	Apache	Pig	for	data	analysis.

In	this	recipe,	we	are	going	to	execute	a	simple	Pig	script	using	Amazon	EMR.	This
sample	will	use	the	Human	Development	Reports	data
(http://hdr.undp.org/en/statistics/data/)	to	print	names	of	countries	that	have	a	GNI	value
greater	than	$2000	of	gross	national	income	per	capita	(GNI)	sorted	by	GNI.

http://hdr.undp.org/en/statistics/data/


How	to	do	it…
The	following	steps	show	you	how	to	use	a	Pig	script	with	Amazon	Elastic	MapReduce	to
process	a	dataset	stored	on	Amazon	S3:

1.	 Use	the	Amazon	S3	console	to	create	a	bucket	in	S3	to	upload	the	input	data.	Upload
the	resources/hdi-data.csv	file	in	the	source	repository	for	this	chapter	to	the
newly	created	bucket.	You	can	also	use	an	existing	bucket	or	a	directory	inside	a
bucket	as	well.	We	assume	the	S3	path	for	the	uploaded	file	is	hcb-c2-data/hdi-
data.csv.

2.	 Review	the	Pig	script	available	in	the	resources/countryFilter-EMR.pig	file	of
the	source	repository	for	this	chapter.	This	script	uses	the	STORE	command	to	save	the
result	in	the	filesystem.	In	addition,	we	parameterize	the	LOAD	command	of	the	Pig
script	by	adding	$INPUT	as	the	input	file	and	the	store	command	by	adding	$OUTPUT
as	the	output	directory.	These	two	parameters	would	be	substituted	by	the	S3	input
and	output	locations	we	specify	in	step	5.

A	=	LOAD	'$INPUT'	using	PigStorage(',')		AS	
(id:int,	country:chararray,	hdi:float,	lifeex:int,
mysch:int,	eysch:int,	gni:int);
B	=	FILTER	A	BY	gni	>	2000;
C	=	ORDER	B	BY	gni;
STORE	C	into	'$OUTPUT';

3.	 Use	the	Amazon	S3	console	to	create	a	bucket	in	S3	to	upload	the	Pig	script.	Upload
the	resources/countryFilter-EMR.pig	script	to	the	newly	created	bucket.	You	can
also	use	an	existing	bucket	or	a	directory	inside	a	bucket	as	well.	We	assume	the	S3
path	for	the	uploaded	file	as	hcb-c2-resources/countryFilter-EMR.pig.

4.	 Open	the	Amazon	EMR	console	at
https://console.aws.amazon.com/elasticmapreduce.	Click	on	the	Create	Cluster
button	to	create	a	new	EMR	cluster.	Provide	a	name	for	your	cluster.	Follow	steps	8
to	11	of	the	Running	Hadoop	MapReduce	v2	computations	using	Amazon	Elastic
MapReduce	recipe	to	configure	your	cluster.

Note
You	can	reuse	the	EMR	cluster	you	created	in	the	Running	Hadoop	MapReduce	v2
computations	using	Amazon	Elastic	MapReduce	recipe	to	follow	the	steps	of	this
recipe.	To	do	that,	use	the	Add	Step	option	in	the	Cluster	Details	page	of	the
running	cluster	to	perform	the	actions	mentioned	in	step	5.

5.	 Select	the	Pig	Program	option	under	the	Add	Step	dropdown	of	the	Steps	section.
Click	on	Configure	and	add	to	configure	the	Pig	script,	input,	and	output	data	for
our	computation.	Specify	the	S3	location	of	the	Pig	script	we	uploaded	in	step	3,	in
the	Script	S3	location	textbox.	You	should	specify	the	location	of	the	script	in	the
format	s3://bucket_name/script_filename.	Specify	the	S3	location	of	the
uploaded	input	data	file	in	the	Input	S3	Location	textbox.	In	the	Output	S3
Location	textbox,	specify	an	S3	location	to	store	the	output.	The	output	path	should

https://console.aws.amazon.com/elasticmapreduce


not	exist;	we	use	a	non-existing	directory	(for	example,	hcb-c2-out/pig)	inside	the
output	bucket	as	the	output	path.	You	should	specify	the	locations	using	the	format
s3://bucket_name/path.	Click	on	Add.

6.	 Click	on	Create	Cluster	to	launch	the	EMR	Hadoop	cluster	and	to	run	the
configured	Pig	script.

Note
Amazon	will	charge	you	for	the	compute	and	storage	resources	you	use	by	clicking
on	Create	Job	Flow	in	step	8.	Refer	to	the	Saving	money	using	EC2	Spot	Instances
to	execute	EMR	job	flows	recipe	that	we	discussed	earlier	to	find	out	how	you	can
save	money	by	using	Amazon	EC2	Spot	Instances.

7.	 Monitor	the	progress	of	your	MapReduce	cluster	deployment	and	the	computation	in
the	Cluster	List	|	Cluster	Details	page	of	the	Elastic	MapReduce	console.	Expand
and	refresh	the	Steps	section	of	the	page	to	see	the	status	of	the	individual	steps	of
the	cluster	setup	and	the	application	execution.	Select	a	step	and	click	on	View	logs
to	view	the	logs	and	to	debug	the	computation.	Check	the	output	of	the	computation
in	the	output	data	bucket	using	the	AWS	S3	console.



There’s	more…
Amazon	EMR	allows	us	to	use	Apache	Pig	in	the	interactive	mode	as	well.

Starting	a	Pig	interactive	session
1.	 Open	the	Amazon	EMR	console	at

https://console.aws.amazon.com/elasticmapreduce.	Click	on	the	Create	Cluster
button	to	create	a	new	EMR	cluster.	Provide	a	name	for	your	cluster.

2.	 You	must	select	a	key	pair	from	the	Amazon	EC2	Key	Pair	dropdown	in	the
Security	and	Access	section.	If	you	do	not	have	a	usable	Amazon	EC2	key	pair	with
access	to	the	private	key,	log	on	to	the	Amazon	EC2	console	and	create	a	new	key
pair.

3.	 Click	on	Create	Cluster	without	specifying	any	steps.	Make	sure	No	is	selected	in
the	Auto-Terminate	option	under	the	Steps	section.

4.	 Monitor	the	progress	of	your	MapReduce	cluster	deployment	and	the	computation	in
the	Cluster	Details	page	under	Cluster	List	of	the	Elastic	MapReduce	console.
Retrieve	Master	Public	DNS	from	the	cluster	details	in	this	page.

5.	 Use	the	master	public	DNS	name	and	the	private	key	file	of	the	Amazon	EC2	key
pair	you	specified	in	step	2	to	SSH	into	the	master	node	of	the	cluster:

$	ssh	-i	<path-to-the-key-file>	hadoop@<master-public-DNS>

6.	 Start	the	Pig	interactive	Grunt	shell	in	the	master	node	and	issue	your	Pig	commands:

$	pig
.........
grunt>

https://console.aws.amazon.com/elasticmapreduce




Executing	a	Hive	script	using	EMR
Hive	provides	a	SQL-like	query	layer	for	the	data	stored	in	HDFS	utilizing	Hadoop
MapReduce	underneath.	Amazon	EMR	supports	executing	Hive	queries	on	the	data	stored
in	S3.	Refer	to	the	Apache	Hive	recipes	in	Chapter	6,	Hadoop	Ecosystem	–	Apache	Hive,
for	more	information	on	using	Hive	for	large-scale	data	analysis.

In	this	recipe,	we	are	going	to	execute	a	Hive	script	to	perform	the	computation	we	did	in
the	Executing	a	Pig	script	using	EMR	recipe	earlier.	We	will	use	the	Human	Development
Reports	data	(http://hdr.undp.org/en/statistics/data/)	to	print	names	of	countries	that	have	a
GNI	value	greater	than	$2000	of	gross	national	income	per	capita	(GNI)	sorted	by	GNI.

http://hdr.undp.org/en/statistics/data/


How	to	do	it…
The	following	steps	show	how	to	use	a	Hive	script	with	Amazon	Elastic	MapReduce	to
query	a	dataset	stored	on	Amazon	S3:

1.	 Use	the	Amazon	S3	console	to	create	a	bucket	in	S3	to	upload	the	input	data.	Create
a	directory	inside	the	bucket.	Upload	the	resources/hdi-data.csv	file	in	the	source
package	of	this	chapter	to	the	newly	created	directory	inside	the	bucket.	You	can	also
use	an	existing	bucket	or	a	directory	inside	a	bucket	as	well.	We	assume	the	S3	path
for	the	uploaded	file	is	hcb-c2-data/data/hdi-data.csv.

2.	 Review	the	Hive	script	available	in	the	resources/countryFilter-EMR.hql	file	of
the	source	repository	for	this	chapter.	This	script	first	creates	a	mapping	of	the	input
data	to	a	Hive	table.	Then	we	create	a	Hive	table	to	store	the	results	of	our	query.
Finally,	we	issue	a	query	to	select	the	list	of	countries	with	a	GNI	larger	than	$2000.
We	use	the	$INPUT	and	$OUTPUT	variables	to	specify	the	location	of	the	input	data	and
the	location	to	store	the	output	table	data.

CREATE	EXTERNAL	TABLE	
hdi(
				id	INT,	
				country	STRING,	
				hdi	FLOAT,	
				lifeex	INT,	
				mysch	INT,	
				eysch	INT,	
				gni	INT)	
ROW	FORMAT	DELIMITED	
FIELDS	TERMINATED	BY	','	
STORED	AS	TEXTFILE
LOCATION	'${INPUT}';

CREATE	EXTERNAL	TABLE	
output_countries(
				country	STRING,	
				gni	INT)	
				ROW	FORMAT	DELIMITED
				FIELDS	TERMINATED	BY	','
				STORED	AS	TEXTFILE
				LOCATION	'${OUTPUT}';

INSERT	OVERWRITE	TABLE	
output_countries
		SELECT	
				country,	gni	
		FROM	
				hdi	
		WHERE	
				gni	>	2000;

3.	 Use	the	Amazon	S3	console	to	create	a	bucket	in	S3	to	upload	the	Hive	script.
Upload	the	resources/countryFilter-EMR.hql	script	to	the	newly	created	bucket.
You	can	also	use	an	existing	bucket	or	a	directory	inside	a	bucket	as	well.	We	assume



the	S3	path	for	the	uploaded	file	is	hcb-resources/countryFilter-EMR.hql.
4.	 Open	the	Amazon	EMR	console	at

https://console.aws.amazon.com/elasticmapreduce.	Click	on	the	Create	Cluster
button	to	create	a	new	EMR	cluster.	Provide	a	name	for	your	cluster.	Follow	steps	8
to	11	of	the	Running	Hadoop	MapReduce	v2	computations	using	Amazon	Elastic
MapReduce	recipe	to	configure	your	cluster.

Note
You	can	reuse	an	EMR	cluster	you	created	for	one	of	the	earlier	recipes	to	follow	the
steps	of	this	recipe.	To	do	that,	use	the	Add	Step	option	in	the	Cluster	Details	page
of	the	running	cluster	to	perform	the	actions	mentioned	in	step	5.

5.	 Select	the	Hive	Program	option	under	the	Add	Step	dropdown	of	the	Steps	section.
Click	on	Configure	and	add	to	configure	the	Hive	script,	and	input	and	output	data
for	our	computation.	Specify	the	S3	location	of	the	Hive	script	we	uploaded	in	step	3
in	the	Script	S3	location	textbox.	You	should	specify	the	location	of	the	script	in	the
format	s3://bucket_name/script_filename.	Specify	the	S3	location	of	the
uploaded	input	data	directory	in	the	Input	S3	Location	textbox.	In	the	Output	S3
Location	textbox,	specify	an	S3	location	to	store	the	output.	The	output	path	should
not	exist	and	we	use	a	nonexisting	directory	(for	example,	hcb-c2-out/hive)	inside
the	output	bucket	as	the	output	path.	You	should	specify	the	locations	using	the
format	s3://bucket_name/path.	Click	on	Add.

6.	 Click	on	Create	Cluster	to	launch	the	EMR	Hadoop	cluster	and	to	run	the
configured	Hive	script.

Note
Amazon	will	charge	you	for	the	compute	and	storage	resources	you	use	by	clicking
on	Create	Job	Flow	in	step	8.	Refer	to	the	Saving	money	using	Amazon	EC2	Spot
Instances	to	execute	EMR	job	flows	to	execute	EMR	job	flows	recipe	that	we
discussed	earlier	to	find	out	how	you	can	save	money	by	using	Amazon	EC2	Spot
Instances.

https://console.aws.amazon.com/elasticmapreduce


7.	 Monitor	the	progress	of	your	MapReduce	cluster	deployment	and	the	computation	in
the	Cluster	Details	page	under	Cluster	List	of	the	Elastic	MapReduce	console.
Expand	and	refresh	the	Steps	section	of	the	page	to	see	the	status	of	the	individual
steps	of	the	cluster	setup	and	the	application	execution.	Select	a	step	and	click	on
View	logs	to	view	the	logs	and	to	debug	the	computation.	Check	the	output	of	the
computation	in	the	output	data	bucket	using	the	AWS	S3	console.



There’s	more…
Amazon	EMR	also	allows	us	to	use	the	Hive	shell	in	the	interactive	mode	as	well.

Starting	a	Hive	interactive	session
Follow	steps	1	to	5	of	the	Starting	a	Pig	interactive	session	section	of	the	previous
Executing	a	Pig	script	using	EMR	recipe	to	create	a	cluster	and	to	log	in	to	it	using	SSH.

Start	the	Hive	shell	in	the	master	node	and	issue	your	Hive	queries:

$	hive
hive	>
.........



See	also
The	Simple	SQL-style	data	querying	using	Apache	Hive	recipe	of	Chapter	6,	Hadoop
Ecosystem	–	Apache	Hive.





Creating	an	Amazon	EMR	job	flow	using
the	AWS	Command	Line	Interface
AWS	Command	Line	Interface	(CLI)	is	a	tool	that	allows	us	to	manage	our	AWS
services	from	the	command	line.	In	this	recipe,	we	use	AWS	CLI	to	manage	Amazon
EMR	services.

This	recipe	creates	an	EMR	job	flow	using	the	AWS	CLI	to	execute	the	WordCount
sample	from	the	Running	Hadoop	MapReduce	computations	using	Amazon	Elastic
MapReduce	recipe	of	this	chapter.



Getting	ready
The	following	are	the	prerequisites	to	get	started	with	this	recipe:

Python	2.6.3	or	higher
pip—Python	package	management	system



How	to	do	it…
The	following	steps	show	you	how	to	create	an	EMR	job	flow	using	the	EMR	command-
line	interface:

1.	 Install	AWS	CLI	in	your	machine	using	the	pip	installer:

$	sudo	pip	install	awscli

Note
Refer	to	http://docs.aws.amazon.com/cli/latest/userguide/installing.html	for	more
information	on	installing	the	AWS	CLI.	This	guide	provides	instructions	on	installing
AWS	CLI	without	sudo	as	well	as	instructions	on	installing	AWS	CLI	using	alternate
methods.

2.	 Create	an	access	key	ID	and	a	secret	access	key	by	logging	in	to	the	AWS	IAM
console	(https://console.aws.amazon.com/iam).	Download	and	save	the	key	file	in	a
safe	location.

3.	 Use	the	aws	configure	utility	to	configure	your	AWS	account	to	the	AWC	CLI.
Provide	the	access	key	ID	and	the	secret	access	key	you	obtained	in	the	previous
step.	This	information	would	get	stored	in	the	.aws/config	and	.aws/credentials
files	in	your	home	directory.

$	aws	configure
AWS	Access	Key	ID	[None]:	AKIA….
AWS	Secret	Access	Key	[None]:	GC…
Default	region	name	[None]:	us-east-1a
Default	output	format	[None]:	

Tip
You	can	skip	to	step	7	if	you	have	completed	steps	2	to	6	of	the	Running	Hadoop
MapReduce	computations	using	Amazon	Elastic	MapReduce	recipe	in	this	chapter.

4.	 Create	a	bucket	to	upload	the	input	data	by	clicking	on	Create	Bucket	in	the
Amazon	S3	monitoring	console	(https://console.aws.amazon.com/s3).	Provide	a
unique	name	for	your	bucket.	Upload	your	input	data	to	the	newly-created	bucket	by
selecting	the	bucket	and	clicking	on	Upload.	The	input	data	for	the	WordCount
sample	should	be	one	or	more	text	files.

5.	 Create	an	S3	bucket	to	upload	the	JAR	file	needed	for	our	MapReduce	computation.
Upload	hcb-c1-samples.jar	to	the	newly	created	bucket.

6.	 Create	an	S3	bucket	to	store	the	output	data	of	the	computation.	Create	another	S3
bucket	to	store	the	logs	of	the	computation.	Let’s	assume	the	name	of	this	bucket	is
hcb-c2-logs.

7.	 Create	an	EMR	cluster	by	executing	the	following	command.	This	command	will
output	the	cluster	ID	of	the	created	EMR	cluster:

$	aws	emr	create-cluster	--ami-version	3.1.0	\
--log-uri	s3://hcb-c2-logs	\
--instance-groups	\

http://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://console.aws.amazon.com/iam
https://console.aws.amazon.com/s3


InstanceGroupType=MASTER,InstanceCount=1,\
InstanceType=m3.xlarge	\
InstanceGroupType=CORE,InstanceCount=2,\
InstanceType=m3.xlarge
{
				“ClusterId”:	“j-2X9TDN6T041ZZ”
}

8.	 You	can	use	the	list-clusters	command	to	check	the	status	of	the	created	EMR
cluster:

$	aws	emr	list-clusters
{
				“Clusters”:	[
								{
												“Status”:	{
																“Timeline”:	{
																				“ReadyDateTime”:	1421128629.1830001,
																				“CreationDateTime”:	1421128354.4130001
																},
																“State”:	“WAITING”,
																“StateChangeReason”:	{
																				“Message”:	“Waiting	after	step	completed”
																}
												},
												“NormalizedInstanceHours”:	24,
												“Id”:	“j-2X9TDN6T041ZZ”,
												“Name”:	“Development	Cluster”
								}
				]
}

9.	 Add	a	job	step	to	this	EMR	cluster	by	executing	the	following.	Replace	the	paths	of
the	JAR	file,	input	data	location,	and	the	output	data	location	with	the	locations	you
used	in	steps	5,	6,	and	7.	Replace	cluster-id	with	the	cluster	ID	of	your	newly
created	EMR	cluster.

$	aws	emr	add-steps	\
--cluster-id	j-2X9TDN6T041ZZ	\
--steps	Type=CUSTOM_JAR,Name=CustomJAR,ActionOnFailure=CONTINUE,\
Jar=s3n://[S3	jar	file	bucket]/hcb-c1-samples.jar,\
Args=chapter1.WordCount,\
s3n://[S3	input	data	path]/*,\
s3n://[S3	output	data	path]/wc-out
{
				“StepIds”:	[
								“s-1SEEPDZ99H3Y2”
				]
}

10.	 Check	the	status	of	the	submitted	job	step	using	the	describe-step	command	as
follows.	You	can	also	check	the	status	and	debug	your	job	flow	using	the	Amazon
EMR	console	(https://console.aws.amazon.com/elasticmapreduce).

$	aws	emr	describe-step	\

https://console.aws.amazon.com/elasticmapreduce


–cluster-id	j-2X9TDN6T041ZZ	\
–step-id	s-1SEEPDZ99H3Y2

11.	 Once	the	job	flow	is	completed,	check	the	result	of	the	computation	in	the	output	data
location	using	the	S3	console.

12.	 Terminate	the	cluster	using	the	terminate-clusters	command:

$	aws	emr	terminate-clusters	--cluster-ids	j-2X9TDN6T041ZZ



There’s	more…
You	can	use	EC2	Spot	Instances	with	your	EMR	clusters	to	reduce	the	cost	of	your
computations.	Add	a	bid	price	to	your	request	by	adding	the	--BidPrice	parameter	to	the
instance	groups	of	your	create-cluster	command:

$	aws	emr	create-cluster	--ami-version	3.1.0	\
--log-uri	s3://hcb-c2-logs	\
--instance-groups	\
InstanceGroupType=MASTER,InstanceCount=1,\
InstanceType=m3.xlarge,BidPrice=0.10	\
InstanceGroupType=CORE,InstanceCount=2,\
InstanceType=m3.xlarge,BidPrice=0.10

Refer	to	the	Saving	money	using	Amazon	EC2	Spot	Instances	to	execute	EMR	job	flows
recipe	in	this	chapter	for	more	details	on	Amazon	Spot	Instances.



See	also
The	Running	Hadoop	MapReduce	computations	using	Amazon	Elastic	MapReduce
recipe	of	this	chapter
You	can	find	the	reference	documentation	for	the	EMR	section	of	the	AWS	CLI	at
http://docs.aws.amazon.com/cli/latest/reference/emr/index.html

http://docs.aws.amazon.com/cli/latest/reference/emr/index.html




Deploying	an	Apache	HBase	cluster	on
Amazon	EC2	using	EMR
We	can	use	Amazon	Elastic	MapReduce	to	start	an	Apache	HBase	cluster	on	the	Amazon
infrastructure	to	store	large	quantities	of	data	in	a	column-oriented	data	store.	We	can	use
the	data	stored	on	Amazon	EMR	HBase	clusters	as	input	and	output	of	EMR	MapReduce
computations	as	well.	We	can	incrementally	back	up	the	data	stored	in	Amazon	EMR
HBase	clusters	to	Amazon	S3	for	data	persistence.	We	can	also	start	an	EMR	HBase
cluster	by	restoring	the	data	from	a	previous	S3	backup.

In	this	recipe,	we	start	an	Apache	HBase	cluster	on	Amazon	EC2	using	Amazon	EMR;
perform	several	simple	operations	on	the	newly	created	HBase	cluster	and	back	up	the
HBase	data	into	Amazon	S3	before	shutting	down	the	cluster.	Then	we	start	a	new	HBase
cluster	restoring	the	HBase	data	backups	from	the	original	HBase	cluster.



Getting	ready
You	should	have	the	AWS	CLI	installed	and	configured	to	manually	back	up	HBase	data.
Refer	to	the	Creating	an	Amazon	EMR	job	flow	using	the	AWS	Command	Line	Interface
recipe	in	this	chapter	for	more	information	on	installing	and	configuring	the	AWS	CLI.



How	to	do	it…
The	following	steps	show	how	to	deploy	an	Apache	HBase	cluster	on	Amazon	EC2	using
Amazon	EMR:

1.	 Create	an	S3	bucket	to	store	the	HBase	backups.	We	assume	the	S3	bucket	for	the
HBase	data	backups	is	hcb-c2-data.

2.	 Open	the	Amazon	EMR	console	at
https://console.aws.amazon.com/elasticmapreduce.	Click	on	the	Create	Cluster
button	to	create	a	new	EMR	cluster.	Provide	a	name	for	your	cluster.

3.	 Provide	a	path	in	Log	folder	S3	location	and	select	an	AMI	version	with	Hadoop	v2
(for	example,	AMI	version	3.1.0	with	Hadoop	2.4.0).

4.	 Select	HBase	from	the	Additional	Applications	drop-down	box	under	the
Applications	to	be	installed	section.	Click	on	Configure	and	add.

5.	 Make	sure	the	Restore	from	backup	radio	button	is	not	selected.	Select	the
Schedule	regular	backups	and	Consistent	Backup	radio	buttons.	Specify	a	Backup
frequency	for	automatic	scheduled	incremental	data	backups	and	provide	a	path
inside	the	Blob	we	created	in	step	1	as	the	backup	location.	Click	on	Continue.

6.	 Configure	the	EC2	instances	under	the	Hardware	Configuration	section.
7.	 Select	a	key	pair	in	the	Amazon	EC2	Key	Pair	drop-down	box.	Make	sure	you	have

the	private	key	for	the	selected	EC2	key	pair	downloaded	on	your	computer.

Note
If	you	do	not	have	a	usable	key	pair,	go	to	the	EC2	console
(https://console.aws.amazon.com/ec2)	to	create	a	key	pair.	To	create	a	key	pair,	log	in
to	the	EC2	dashboard,	select	a	region,	and	click	on	Key	Pairs	under	the	Network
and	Security	menu.	Click	on	the	Create	Key	Pair	button	in	the	Key	Pairs	window
and	provide	a	name	for	the	new	key	pair.	Download	and	save	the	private	key	file	(in

https://console.aws.amazon.com/elasticmapreduce
https://console.aws.amazon.com/ec2


the	PEM	format)	in	a	safe	location.

8.	 Click	on	the	Create	Cluster	button	to	deploy	the	EMR	HBase	cluster.

Note
Amazon	will	charge	you	for	the	compute	and	storage	resources	you	use	by	clicking
on	Create	Cluster	in	the	preceding	step.	Refer	to	the	Saving	money	using	Amazon
EC2	Spot	Instances	to	execute	EMR	job	flows	recipe	that	we	discussed	earlier	to	find
out	how	you	can	save	money	by	using	Amazon	EC2	Spot	Instances.

The	following	steps	will	show	you	how	to	connect	to	the	master	node	of	the	deployed
HBase	cluster	to	start	the	HBase	shell:

1.	 Go	to	the	Amazon	EMR	console
(https://console.aws.amazon.com/elasticmapreduce).	Select	the	Cluster	details	for
the	HBase	cluster	to	view	more	information	about	the	cluster.	Retrieve	Master
Public	DNS	Name	from	the	information	pane.

2.	 Use	the	master	public	DNS	name	and	the	EC2	PEM-based	key	(selected	in	step	4)	to
connect	to	the	master	node	of	the	HBase	cluster:

$	ssh	-i	ec2.pem	hadoop@ec2-184-72-138-2.compute-1.amazonaws.com

3.	 Start	the	HBase	shell	using	the	hbase	shell	command.	Create	a	table	named	'test'
in	your	HBase	installation	and	insert	a	sample	entry	to	the	table	using	the	put
command.	Use	the	scan	command	to	view	the	contents	of	the	table.

$	hbase	shell
.........

hbase(main):001:0>	create	'test','cf'
0	row(s)	in	2.5800	seconds

hbase(main):002:0>	put	'test','row1','cf:a','value1'
0	row(s)	in	0.1570	seconds

hbase(main):003:0>	scan	'test'
ROW																			COLUMN+CELL
	row1																	column=cf:a,	timestamp=1347261400477,	
value=value1								
1	row(s)	in	0.0440	seconds

hbase(main):004:0>	quit

The	following	step	will	back	up	the	data	stored	in	an	Amazon	EMR	HBase	cluster.

4.	 Execute	the	following	command	using	the	AWS	CLI	to	schedule	a	periodic	backup
of	the	data	stored	in	an	EMR	HBase	cluster.	Retrieve	the	cluster	ID	(for	example,	j-
FDMXCBZP9P85)	from	the	EMR	console.	Replace	the	<cluster_id>	using	the
retrieved	job	flow	name.	Change	the	backup	directory	path	(s3://hcb-c2-
data/hbase-backup)	according	to	your	backup	data	Blob.	Wait	for	several	minutes
for	the	backup	to	be	performed.

https://console.aws.amazon.com/elasticmapreduce


$	aws	emr	schedule-hbase-backup	--cluster-id	<cluster_id>	\
	--type	full	–dir	s3://hcb-c2-data/hbase-backup	\
--interval	1	--unit	hours	

5.	 Go	to	the	Cluster	Details	page	in	the	EMR	console	and	click	on	Terminate.

Now,	we	will	start	a	new	Amazon	EMR	HBase	cluster	by	restoring	data	from	a
backup:

6.	 Create	a	new	job	flow	by	clicking	on	the	Create	Cluster	button	in	the	EMR	console.
Provide	a	name	for	your	cluster.	Provide	a	path	in	Log	folder	S3	location	and	select
an	AMI	version	with	Hadoop	v2	(for	example,	AMI	version	3.1.0	with	Hadoop
2.4.0).

7.	 Select	HBase	from	the	Additional	Applications	drop-down	box	under	the
Applications	to	be	installed	section.	Click	on	Configure	and	add.

8.	 Configure	the	EMR	HBase	cluster	to	restore	data	from	the	previous	data	backup.
Select	the	Restore	from	Backup	option	and	provide	the	backup	directory	path	you
used	in	step	9	in	the	Backup	Location	textbox.	You	can	leave	the	backup	version
textbox	empty	and	the	EMR	would	restore	the	latest	backup.	Click	on	Continue.

9.	 Repeat	steps	4,	5,	6,	and	7.
10.	 Start	the	HBase	shell	by	logging	in	to?	the	master	node	of	the	new	HBase	cluster.	Use

the	list	command	to	list	the	set	tables	in	HBase	and	the	scan	'test'	command	to
view	the	contents	of	the	'test'	table.

$	hbase	shell
.........

hbase(main):001:0>	list
TABLE
test
1	row(s)	in	1.4870	seconds

hbase(main):002:0>	scan	'test'
ROW																			COLUMN+CELL
	row1																	column=cf:a,	timestamp=1347318118294,	
value=value1								
1	row(s)	in	0.2030	seconds

11.	 Terminate	your	cluster	using	the	EMR	console	by	going	to	the	Cluster	Details	page
and	clicking	on	the	Terminate	button.



See	also
The	HBase-related	recipes	in	Chapter	7,	Hadoop	Ecosystem	II	–	Pig,	HBase,	Mahout,	and
Sqoop.





Using	EMR	bootstrap	actions	to	configure
VMs	for	the	Amazon	EMR	jobs
EMR	bootstrap	actions	provide	us	a	mechanism	to	configure	the	EC2	instances	before
running	our	MapReduce	computations.	Examples	of	bootstrap	actions	include	providing
custom	configurations	for	Hadoop,	installing	any	dependent	software,	distributing	a
common	dataset,	and	so	on.	Amazon	provides	a	set	of	predefined	bootstrap	actions	as	well
as	allowing	us	to	write	our	own	custom	bootstrap	actions.	EMR	runs	the	bootstrap	actions
in	each	instance	before	Hadoop	cluster	services	are	started.

In	this	recipe,	we	are	going	to	use	a	stop	words	list	to	filter	out	the	common	words	from
our	WordCount	sample.	We	download	the	stop	words	list	to	the	workers	using	a	custom
bootstrap	action.



How	to	do	it…
The	following	steps	show	you	how	to	download	a	file	to	all	the	EC2	instances	of	an	EMR
computation	using	a	bootstrap	script:

1.	 Save	the	following	script	to	a	file	named	download-stopwords.sh.	Upload	the	file	to
a	Blob	container	in	the	Amazon	S3.	This	custom	bootstrap	file	downloads	a	stop
words	list	to	each	instance	and	copies	it	to	a	pre-designated	directory	inside	the
instance.

#!/bin/bash
set	-e
wget	http://www.textfixer.com/resources/common-english-words-with-
contractions.txt
mkdir	–p	/home/hadoop/stopwords
mv	common-english-words-with-contractions.txt	/home/hadoop/stopwords

2.	 Complete	steps	1	to	10	of	the	Running	Hadoop	MapReduce	computations	using
Amazon	Elastic	MapReduce	recipe	in	this	chapter.

3.	 Select	the	Add	Bootstrap	Actions	option	in	the	Bootstrap	Actions	tab.	Select
Custom	Action	in	the	Add	Bootstrap	Actions	drop-down	box.	Click	on	Configure
and	add.	Give	a	name	to	your	action	in	the	Name	textbox	and	provide	the	S3	path	of
the	location	where	you	uploaded	the	download-stopwords.sh	file	in	the	S3	location
textbox.	Click	on	Add.

4.	 Add	Steps	if	needed.
5.	 Click	on	the	Create	Cluster	button	to	launch	instances	and	to	deploy	the	MapReduce

cluster.
6.	 Click	on	Refresh	in	the	EMR	console	and	go	to	your	Cluster	Details	page	to	view

the	details	of	the	cluster.



There’s	more…
Amazon	provides	us	with	the	following	predefined	bootstrap	actions:

configure-daemons:	This	allows	us	to	set	Java	Virtual	Machine	(JVM)	options	for
the	Hadoop	daemons,	such	as	the	heap	size	and	garbage	collection	behavior.
configure-hadoop:	This	allows	us	to	modify	the	Hadoop	configuration	settings.
Either	we	can	upload	a	Hadoop	configuration	XML	or	we	can	specify	individual
configuration	options	as	key-value	pairs.
memory-intensive:	This	allows	us	to	configure	the	Hadoop	cluster	for	memory-
intensive	workloads.
run-if:	This	allows	us	to	run	bootstrap	actions	based	on	a	property	of	an	instance.
This	action	can	be	used	in	scenarios	where	we	want	to	run	a	command	only	in	the
Hadoop	master	node.

You	can	also	create	shutdown	actions	by	writing	scripts	to	a	designated	directory	in	the
instance.	Shutdown	actions	are	executed	after	the	job	flow	is	terminated.

Refer	to
http://docs.amazonwebservices.com/ElasticMapReduce/latest/DeveloperGuide/Bootstrap.html
for	more	information.

http://docs.amazonwebservices.com/ElasticMapReduce/latest/DeveloperGuide/Bootstrap.html




Using	Apache	Whirr	to	deploy	an	Apache
Hadoop	cluster	in	a	cloud	environment
Apache	Whirr	provides	a	set	of	cloud-vendor-neutral	set	of	libraries	to	provision	services
on	the	cloud	resources.	Apache	Whirr	supports	the	provisioning,	installing,	and
configuring	of	Hadoop	clusters	in	several	cloud	environments.	In	addition	to	Hadoop,
Apache	Whirr	also	supports	the	provisioning	of	Apache	Cassandra,	Apache	ZooKeeper,
Apache	HBase,	Voldemort	(key-value	storage),	and	Apache	Hama	clusters	on	the	cloud
environments.

Note
The	installation	programs	of	several	commercial	Hadoop	distributions,	such	as
Hortonworks	HDP	and	Cloudera	CDH,	now	support	installation	and	configuration	of
those	distributions	on	Amazon	EC2	instances.	These	commercial-distribution-based
installations	would	provide	you	with	a	more	feature-rich	Hadoop	cluster	on	the	cloud	than
using	Apache	Whirr.

In	this	recipe,	we	are	going	to	start	a	Hadoop	cluster	on	Amazon	EC2	using	Apache	Whirr
and	run	the	WordCount	MapReduce	sample	(the	Writing	a	WordCount	MapReduce
application,	bundling	it,	and	running	it	using	the	Hadoop	local	mode	recipe	from	Chapter
1,	Getting	Started	with	Hadoop	v2)	program	on	that	cluster.



How	to	do	it…
The	following	are	the	steps	to	deploy	a	Hadoop	cluster	on	Amazon	EC2	using	Apache
Whirr	and	to	execute	the	WordCount	MapReduce	sample	on	the	deployed	cluster:

1.	 Download	and	unzip	the	Apache	Whirr	binary	distribution	from
http://whirr.apache.org/.	You	may	be	able	to	install	Whirr	through	your	Hadoop
distribution	as	well.

2.	 Run	the	following	command	from	the	extracted	directory	to	verify	your	Whirr
installation:

$	whirr	version
Apache	Whirr	0.8.2
jclouds	1.5.8

3.	 Export	your	AWS	access	keys	to	the	AWS_ACCESS_KEY_ID	and
AWS_SECRET_ACCESS_KEY	environment	parameters:

$	export	AWS_ACCESS_KEY_ID=AKIA…
$	export	AWS_SECRET_ACCESS_KEY=…

4.	 Generate	an	rsa	key	pair	using	the	following	command.	This	key	pair	is	not	the
same	as	your	AWS	key	pair.

$ssh-keygen	-t	rsa	-P	''

5.	 Locate	the	file	named	recipes/hadoop-yarn-ec2.properties	in	your	Apache	Whirr
installation.	Copy	it	to	your	working	directory.	Change	the	whirr.hadoop.version
property	to	match	a	current	Hadoop	version	(for	example,	2.5.2)	available	in	the
Apache	Hadoop	downloads	page.

6.	 If	you	provided	a	custom	name	for	your	key-pair	in	the	previous	step,	change	the
whirr.private-key-file	and	the	whirr.public-key-file	property	values	in	the
hadoop-yarn-ec2.properties	file	to	the	paths	of	the	private	key	and	the	public	key
you	generated.

Tip
The	whirr.aws-ec2-spot-price	property	is	an	optional	property	that	allows	us	to
use	cheaper	EC2	Spot	Instances.	You	can	delete	that	property	to	use	EC2	traditional
on-demand	instances.

7.	 Execute	the	following	command	pointing	to	your	hadoop-yarn-ec2.properties	file
to	launch	your	Hadoop	cluster	on	EC2.	After	the	successful	cluster	creation,	this
command	outputs	an	SSH	command	that	we	can	use	to	log	in	to	the	EC2	Hadoop
cluster.

$bin/whirr	launch-cluster	--config	hadoop-yarn-ec2.properties

8.	 The	traffic	from	the	outside	to	the	provisioned	EC2	Hadoop	cluster	is	routed	through
the	master	node.	Whirr	generates	a	script	that	we	can	use	to	start	this	proxy,	under	a
subdirectory	named	after	your	Hadoop	cluster	inside	the	~/.whirr	directory.	Run	this

http://whirr.apache.org/


in	a	new	terminal.	It	will	take	a	few	minutes	for	Whirr	to	start	the	cluster	and	to
generate	this	script.

$cd	~/.whirr/Hadoop-yarn/
$hadoop-proxy.sh

9.	 You	can	open	the	Hadoop	web-based	monitoring	console	in	your	local	machine	by
configuring	this	proxy	in	your	web	browser.

10.	 Whirr	generates	a	hadoop-site.xml	file	for	your	cluster	in	the	~/.whirr/<your
cluster	name>	directory.	You	can	use	it	to	issue	Hadoop	commands	from	your	local
machine	to	your	Hadoop	cluster	on	EC2.	Export	the	path	of	the	generated	hadoop-
site.xml	to	an	environmental	variable	named	HADOOP_CONF_DIR.	Copy	the	hadoop-
site.xml	file	in	this	directory	to	another	file	named	core-site.xml.	To	execute	the
Hadoop	commands,	you	should	have	Hadoop	v2	binaries	installed	in	your	machine.

$	cp	~/.whirr/hadoop-yarn/hadoop-site.xml	~/.whirr/hadoop-yarn/core-
site.xml
$	export	HADOOP_CONF_DIR=~/.whirr/hadoop-yarn/
$	hdfs	dfs	-ls	/

11.	 Create	a	directory	named	wc-input-data	in	HDFS	and	upload	a	text	dataset	to	that
directory.	Depending	on	the	version	of	Whirr,	you	may	have	to	create	your	home
directory	first.

$	hdfs	dfs	–mkdir	/user/<user_name>
$	hdfs		dfs	-mkdir	wc-input-data
$	hdfs	dfs	-put	sample.txt	wc-input-data

12.	 In	this	step,	we	run	the	Hadoop	WordCount	sample	in	the	Hadoop	cluster	we	started
in	Amazon	EC2:

$	hadoop	jar	hcb-c1-samples.jar	chapter1.WordCount	\
wc-input-data	wc-out

13.	 View	the	results	of	the	WordCount	computation	by	executing	the	following
commands:

$hadoop	fs	-ls	wc-out
Found	3	items
-rw-r--r--			3	thilina	supergroup										0	2012-09-05	15:40	
/user/thilina/wc-out/_SUCCESS
drwxrwxrwx			-	thilina	supergroup										0	2012-09-05	15:39	
/user/thilina/wc-out/_logs
-rw-r--r--			3	thilina	supergroup						19908	2012-09-05	15:40	
/user/thilina/wc-out/part-r-00000

$	hadoop	fs	-cat	wc-out/part-*	|	more

14.	 Issue	the	following	command	to	shut	down	the	Hadoop	cluster.	Make	sure	to
download	any	important	data	before	shutting	down	the	cluster,	as	the	data	will	be
permanently	lost	after	shutting	down	the	cluster.

$bin/whirr	destroy-cluster	--config	hadoop.properties



How	it	works…
The	following	are	the	descriptions	of	the	properties	we	used	in	the	hadoop.properties
file.

whirr.cluster-name=Hadoop-yarn

The	preceding	property	provides	a	name	for	the	cluster.	The	instances	of	the	cluster	will
be	tagged	using	this	name.

whirr.instance-templates=1	hadoop-namenode+yarn-resource-manager+mapreduce-
historyserver,	1	hadoop-datanode+yarn-nodemanager

This	property	specifies	the	number	of	instances	to	be	used	for	each	set	of	roles	and	the
type	of	roles	for	the	instances.

whirr.provider=aws-ec2

We	use	the	Whirr	Amazon	EC2	provider	to	provision	our	cluster.

whirr.private-key-file=${sys:user.home}/.ssh/id_rsa
whirr.public-key-file=${sys:user.home}/.ssh/id_rsa.pub

Both	the	properties	mentioned	earlier	point	to	the	paths	of	the	private	key	and	the	public
key	you	provide	for	the	cluster.

whirr.hadoop.version=2.5.2

We	specify	a	custom	Hadoop	version	using	the	preceding	property.

whirr.aws-ec2-spot-price=0.15

This	property	specifies	a	bid	price	for	the	Amazon	EC2	Spot	Instances.	Specifying	this
property	triggers	Whirr	to	use	EC2	Spot	Instances	for	the	cluster.	If	the	bid	price	is	not
met,	Apache	Whirr	Spot	Instance	requests	a	time	out	after	20	minutes.	Refer	to	the	Saving
money	using	Amazon	EC2	Spot	Instances	to	execute	EMR	job	flows	recipe	for	more
details.

More	details	on	Whirr	configuration	can	be	found	at
http://whirr.apache.org/docs/0.8.1/configuration-guide.html.

http://whirr.apache.org/docs/0.8.1/configuration-guide.html


See	also
The	Saving	money	using	Amazon	EC2	Spot	Instances	to	execute	EMR	job	flows	recipe.





Chapter	3.	Hadoop	Essentials	–
Configurations,	Unit	Tests,	and	Other
APIs
In	this	chapter,	we	will	cover:

Optimizing	Hadoop	YARN	and	MapReduce	configurations	for	cluster	deployments
Shared	user	Hadoop	clusters	–	using	Fair	and	Capacity	schedulers
Setting	classpath	precedence	to	user-provided	JARs
Speculative	execution	of	straggling	tasks
Unit	testing	Hadoop	MapReduce	applications	using	MRUnit
Integration	testing	Hadoop	MapReduce	applications	using	MiniYarnCluster
Adding	a	new	DataNode
Decommissioning	DataNodes
Using	multiple	disks/volumes	and	limiting	HDFS	disk	usage
Setting	the	HDFS	block	size
Setting	the	file	replication	factor
Using	the	HDFS	Java	API



Introduction
This	chapter	describes	how	to	perform	advanced	administration	steps	in	your	Hadoop
cluster,	how	to	develop	unit	and	integration	tests	for	Hadoop	MapReduce	programs	and
how	to	use	the	Java	API	of	HDFS.	This	chapter	assumes	that	you	have	followed	the	first
chapter	and	have	installed	Hadoop	in	a	clustered	or	pseudo-distributed	setup.

Note
Sample	code	and	data

The	sample	code	files	for	this	book	are	available	in	GitHub	at
https://github.com/thilg/hcb-v2.	The	chapter3	folder	of	the	code	repository	contains	the
sample	source	code	files	for	this	chapter.

Sample	codes	can	be	compiled	and	built	by	issuing	the	gradle	build	command	in	the
chapter3	folder	of	the	code	repository.	Project	files	for	Eclipse	IDE	can	be	generated	by
running	the	gradle	eclipse	command	in	the	main	folder	of	the	code	repository.	Project
files	for	the	IntelliJ	IDEA	IDE	can	be	generated	by	running	the	gradle	idea	command	in
the	main	folder	of	the	code	repository.

https://github.com/thilg/hcb-v2




Optimizing	Hadoop	YARN	and
MapReduce	configurations	for	cluster
deployments
In	this	recipe,	we	explore	some	of	the	important	configuration	options	of	Hadoop	YARN
and	Hadoop	MapReduce.	Commercial	Hadoop	distributions	typically	provide	a	GUI-
based	approach	to	specify	Hadoop	configurations.

YARN	allocates	resource	containers	to	the	applications	based	on	the	resource	requests
made	by	the	applications	and	the	available	resource	capacity	of	the	cluster.	A	resource
request	by	an	application	would	consist	of	the	number	of	containers	required	and	the
resource	requirement	of	each	container.	Currently,	most	container	resource	requirements
are	specified	using	the	amount	of	memory.	Hence,	our	focus	in	this	recipe	will	be	mainly
on	configuring	the	memory	allocation	of	a	YARN	cluster.



Getting	ready
Set	up	a	Hadoop	cluster	by	following	the	recipes	in	the	first	chapter.



How	to	do	it…
The	following	instructions	will	show	you	how	to	configure	the	memory	allocation	in	a
YARN	cluster.	The	number	of	tasks	per	node	is	derived	using	this	configuration:

1.	 The	following	property	specifies	the	amount	of	memory	(RAM)	that	can	be	used	by
YARN	containers	in	a	worker	node.	It’s	advisable	to	set	this	slightly	less	than	the
amount	of	physical	RAM	present	in	the	node,	leaving	some	memory	for	the	OS	and
other	non-Hadoop	processes.	Add	or	modify	the	following	lines	in	the	yarn-
site.xml	file:

<property>
		<name>yarn.nodemanager.resource.memory-mb</name>
		<value>100240</value>
</property>

2.	 The	following	property	specifies	the	minimum	amount	of	memory	(RAM)	that	can
be	allocated	to	a	YARN	container	in	a	worker	node.	Add	or	modify	the	following
lines	in	the	yarn-site.xml	file	to	configure	this	property.

If	we	assume	that	all	the	YARN	resource-requests	request	containers	with	only	the
minimum	amount	of	memory,	the	maximum	number	of	concurrent	resource
containers	that	can	be	executed	in	a	node	equals	(YARN	memory	per	node	specified	in
step	1)/(YARN	minimum	allocation	configured	below).	Based	on	this	relationship,	we
can	use	the	value	of	the	following	property	to	achieve	the	desired	number	of	resource
containers	per	node.

The	number	of	resource	containers	per	node	is	recommended	to	be	less	than	or	equal
to	the	minimum	of	(2*number	CPU	cores)	or	(2*	number	of	disks).

<property>
		<name>yarn.scheduler.minimum-allocation-mb</name>
		<value>3072</value>
</property>

3.	 Restart	the	YARN	ResourceManager	and	NodeManager	services	by	running
sbin/stop-yarn.sh	and	sbin/start-yarn.sh	from	the	HADOOP_HOME	directory.

The	following	instructions	will	show	you	how	to	configure	the	memory	requirements	of
the	MapReduce	applications.

1.	 The	following	properties	define	the	maximum	amount	of	memory	(RAM)	that	will	be
available	to	each	Map	and	Reduce	task.	These	memory	values	will	be	used	when
MapReduce	applications	request	resources	from	YARN	for	Map	and	Reduce	task
containers.	Add	the	following	lines	to	the	mapred-site.xml	file:

<property>
		<name>mapreduce.map.memory.mb</name>
		<value>3072</value>
</property>
<property>



		<name>mapreduce.reduce.memory.mb</name>
		<value>6144</value>
</property>

2.	 The	following	properties	define	the	JVM	heap	size	of	the	Map	and	Reduce	tasks
respectively.	Set	these	values	to	be	slightly	less	than	the	corresponding	values	in	step
4,	so	that	they	won’t	exceed	the	resource	limits	of	the	YARN	containers.	Add	the
following	lines	to	the	mapred-site.xml	file:

<property>
		<name>mapreduce.map.java.opts</name>
		<value>-Xmx2560m</value>
</property>
<property>
		<name>mapreduce.reduce.java.opts</name>
		<value>-Xmx5120m</value>
</property>



How	it	works…
We	can	control	Hadoop	configurations	through	the	following	four	configuration	files.
Hadoop	reloads	the	configurations	from	these	configuration	files	after	a	cluster	restart:

core-site.xml:	Contains	the	configurations	common	to	the	whole	Hadoop
distribution
hdfs-site.xml:	Contains	configurations	for	HDFS
mapred-site.xml:	Contains	configurations	for	MapReduce
yarn-site.xml:	Contains	configurations	for	the	YARN	ResourceManager	and
NodeManager	processes

Each	configuration	file	has	name-value	pairs	expressed	in	XML	format,	defining	the
configurations	of	different	aspects	of	Hadoop.	The	following	is	an	example	of	a	property
in	a	configuration	file.	The	<configuration>	tag	is	the	top-level	parent	XML	container
and	<property>	tags,	which	define	individual	properties,	are	specified	as	child	tags	inside
the	<configuration>	tag:

<configuration>
			<property>
						<name>mapreduce.reduce.shuffle.parallelcopies</name>
						<value>20</value>
			</property>
...
</configuration>

Some	configurations	can	be	configured	on	a	per-job	basis	using	the
job.getConfiguration().set(name,	value)	method	from	the	Hadoop	MapReduce	job
driver	code.



There’s	more…
There	are	many	similar	important	configuration	properties	defined	in	Hadoop.	The
following	are	some	of	them:

conf/core-site.xml

Name Default
value Description

fs.inmemory.size.mb 200 Amount	of	memory	allocated	to	the	in-memory	filesystem	that	is	used	to	merge
map	outputs	at	reducers	in	MBs

io.file.buffer.size 131072 Size	of	the	read/write	buffer	used	by	sequence	files

conf/mapred-site.xml

Name Default
value Description

mapreduce.reduce.shuffle.parallelcopies 20 Maximum	number	of	parallel	copies	the	reduce	step	will
execute	to	fetch	output	from	many	parallel	jobs

mapreduce.task.io.sort.factor 50 Maximum	number	of	streams	merged	while	sorting	files

mapreduce.task.io.sort.mb 200 Memory	limit	while	sorting	data	in	MBs

conf/hdfs-site.xml

Name Default	value Description

dfs.blocksize 134217728 HDFS	block	size

dfs.namenode.handler.count 200 Number	of	server	threads	to	handle	RPC	calls	in	NameNodes

Note
You	can	find	a	list	of	deprecated	properties	in	the	latest	version	of	Hadoop	and	the	new
replacement	properties	for	them	at	http://hadoop.apache.org/docs/current/hadoop-project-
dist/hadoop-common/DeprecatedProperties.html.

The	following	documents	provide	the	list	of	properties,	their	default	values,	and	the
descriptions	of	each	of	the	configuration	files	mentioned	earlier:

Common	configuration:	http://hadoop.apache.org/docs/current/hadoop-project-
dist/hadoop-common/core-default.xml
HDFS	configuration:	https://hadoop.apache.org/docs/current/hadoop-project-
dist/hadoop-hdfs/hdfs-default.xml
YARN	configuration:	http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-
yarn-common/yarn-default.xml

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/DeprecatedProperties.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/core-default.xml
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/hdfs-default.xml
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-common/yarn-default.xml


MapReduce	configuration:	http://hadoop.apache.org/docs/stable/hadoop-
mapreduce-client/hadoop-mapreduce-client-core/mapred-default.xml

http://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/mapred-default.xml




Shared	user	Hadoop	clusters	–	using	Fair
and	Capacity	schedulers
The	Hadoop	YARN	scheduler	is	responsible	for	assigning	resources	to	the	applications
submitted	by	users.	In	Hadoop	YARN,	these	can	be	any	YARN	application	in	addition	to
MapReduce	applications.	Currently,	the	default	YARN	resource	allocation	is	based	on	the
memory	requirements	of	the	application,	while	resource	allocation	based	on	other
resources	such	as	CPU	can	be	configured	additionally.

Hadoop	YARN	supports	a	pluggable	scheduling	framework,	where	the	cluster
administrator	has	the	choice	of	selecting	an	appropriate	scheduler	for	the	cluster.	By
default,	YARN	supports	a	First	in	First	out	(FIFO)	scheduler,	which	executes	jobs	in	the
same	order	as	they	arrive	using	a	queue	of	jobs.	However,	FIFO	scheduling	might	not	be
the	best	option	for	large	multi-user	Hadoop	deployments,	where	the	cluster	resources	have
to	be	shared	across	different	users	and	different	applications	to	ensure	maximum
productivity	from	the	cluster.	Please	note	that	commercial	Hadoop	distributions	may	use	a
different	scheduler	such	as	Fair	scheduler	(for	example,	Cloudera	CDH)	or	Capacity
scheduler	(for	example,	Hortonworks	HDP)	as	the	default	YARN	scheduler.

In	addition	to	the	default	FIFO	scheduler,	YARN	contains	the	following	two	schedulers	(if
required,	it	is	possible	for	you	to	write	your	own	scheduler	as	well):

Fair	scheduler:	The	Fair	scheduler	allows	all	jobs	to	receive	an	equal	share	of
resources.	The	resources	are	assigned	to	newly	submitted	jobs	as	and	when	the
resources	become	available	until	all	submitted	and	running	jobs	have	the	same
amount	of	resources.	The	Fair	scheduler	ensures	that	short	jobs	are	completed	at	a
realistic	speed,	while	not	starving	long-running	larger	jobs	for	longer	periods.	With
the	Fair	scheduler,	it’s	also	possible	to	define	multiple	queues	and	queue	hierarchies
with	guaranteed	minimum	resources	to	each	queue,	where	the	jobs	in	a	particular
queue	share	the	resources	equally.	Resources	allocated	to	any	empty	queues	get
divided	among	the	queues	with	active	jobs.	The	Fair	scheduler	also	allows	us	to	set
job	priorities,	which	are	used	to	calculate	the	proportion	of	resource	distribution
inside	a	queue.
Capacity	scheduler:	The	Capacity	scheduler	allows	a	large	cluster	to	be	shared
across	multiple	organizational	entities	while	ensuring	guaranteed	capacity	for	each
entity	and	that	no	single	user	or	job	holds	all	the	resources.	This	allows	organizations
to	achieve	economies	of	scale	by	maintaining	a	centralized	Hadoop	cluster	shared
between	various	entities.	In	order	to	achieve	this,	the	Capacity	scheduler	defines
queues	and	queue	hierarchies,	with	each	queue	having	a	guaranteed	capacity.	The
Capacity	scheduler	allows	the	jobs	to	use	the	excess	resources	(if	any)	from	the	other
queues.



How	to	do	it…
This	recipe	describes	how	to	change	the	scheduler	in	Hadoop:

1.	 Shut	down	the	Hadoop	cluster.
2.	 Add	the	following	to	the	yarn-site.xml	file:

<property>
		<name>yarn.resourcemanager.scheduler.class</name>
	<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.Fa
irScheduler</value>
</property>

3.	 Restart	the	Hadoop	cluster.
4.	 Verify	that	the	new	scheduler	has	been	applied	by	going	to	http://<master-

noe>:8088/cluster/scheduler	in	your	installation.



How	it	works…
When	you	follow	the	aforementioned	steps,	Hadoop	will	load	the	new	scheduler	settings
when	it	is	started.	The	Fair	scheduler	shares	an	equal	amount	of	resources	between	users
unless	it	has	been	configured	otherwise.

We	can	provide	an	XML	formatted	allocation	file,	defining	the	queues	for	the	Fair
scheduler,	using	the	yarn.scheduler.fair.allocation.file	property	in	the	yarn-
site.xml	file.

More	details	about	the	Fair	scheduler	and	its	configurations	can	be	found	at
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html.

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html


There’s	more…
You	can	enable	the	Capacity	scheduler	by	adding	the	following	to	the	yarn-site.xml
file	and	restarting	the	cluster:

<property>
		<name>yarn.resourcemanager.scheduler.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.Cap
acityScheduler</value>
</property>

The	Capacity	scheduler	can	be	configured	using	the	capacity-scheduler.xml	file	in	the
Hadoop	configuration	directory	of	the	ResourceManager	node.	Issue	the	following
command	in	the	YARN	ResourceManager	node	to	load	the	configuration	and	to	refresh
the	queues:

$	yarn	rmadmin	-refreshQueues

More	details	about	the	Capacity	scheduler	and	its	configurations	can	be	found	at
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-
site/CapacityScheduler.html.

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html




Setting	classpath	precedence	to	user-
provided	JARs
While	developing	Hadoop	MapReduce	applications,	you	may	encounter	scenarios	where
your	MapReduce	application	requires	a	newer	version	of	an	auxiliary	library	that	is
already	included	in	Hadoop.	By	default,	Hadoop	gives	classpath	precedence	to	the
libraries	included	with	Hadoop,	which	can	result	in	conflicts	with	the	version	of	the	library
you	provide	with	your	applications.	This	recipe	shows	you	how	to	configure	Hadoop	to
give	classpath	precedence	to	user-provided	libraries.



How	to	do	it…
The	following	steps	show	you	how	to	add	external	libraries	to	the	Hadoop	task	classpath
and	how	to	provide	precedence	to	user-supplied	JARs:

1.	 Set	the	following	property	in	the	driver	program	of	your	MapReduce	computation:

job.getConfiguration().set("mapreduce.job.user.classpath.first","true")
;

2.	 Use	the	–libjars	option	in	the	Hadoop	command	to	provide	your	libraries,	as
follows:

$hadoop	jar	hcb-c3-samples.jar	\	
chapter3.WordCountWithTools	\
–libjars	guava-15.0.jar	\
InDir	OutDir	…



How	it	works…
Hadoop	will	copy	the	JARs	specified	by	–libjars	in	to	the	Hadoop	DistributedCache
and	they	will	be	made	available	to	the	classpath	of	all	the	tasks	belonging	to	this	particular
job.	When	mapreduce.user.classpath.first	is	set,	the	user-supplied	JARs	will	be
appended	to	the	classpath	before	the	default	Hadoop	JARs	and	Hadoop	dependencies.





Speculative	execution	of	straggling	tasks
One	of	the	main	advantages	of	using	Hadoop	MapReduce	is	the	framework-managed	fault
tolerance.	When	performing	a	large-scale	distributed	computation,	parts	of	the
computation	can	fail	due	to	external	causes	such	as	network	failures,	disk	failures,	and
node	failures.	When	Hadoop	detects	an	unresponsive	task	or	a	failed	task,	Hadoop	will	re-
execute	those	tasks	in	a	new	node.

A	Hadoop	cluster	may	consist	of	heterogeneous	nodes,	and	as	a	result	there	can	be	very
slow	nodes	as	well	as	fast	nodes.	Potentially,	a	few	slow	nodes	and	the	tasks	executing	on
those	nodes	can	dominate	the	execution	time	of	a	computation.	Hadoop	introduces
speculative	execution	optimization	to	avoid	these	slow-running	tasks,	which	are	called
stragglers.

When	most	of	the	Map	(or	Reduce)	tasks	of	a	computation	are	completed,	the	Hadoop
speculative	execution	feature	will	schedule	duplicate	executions	of	the	remaining	slow
tasks	in	available	alternate	nodes.	The	slowness	of	a	task	is	decided	relative	to	the	running
time	taken	by	the	other	tasks	of	the	same	computation.	From	a	set	of	duplicate	tasks,
Hadoop	will	choose	the	results	from	the	first	completed	task	and	will	kill	any	other
duplicate	executions	of	that	task.



How	to	do	it…
By	default,	speculative	executions	are	enabled	in	Hadoop	for	both	Map	and	Reduce	tasks.
If	such	duplicate	executions	are	undesirable	for	your	computations	for	some	reason,	you
can	disable	(or	enable)	speculative	executions	as	follows:

1.	 Run	the	WordCount	sample	passing	the	following	option	as	an	argument:

$	hadoop	jar	hcb-c32-samples.jar	chapter3.WordCountWithTools	\
				–Dmapreduce.map.speculative=false	\
				–Dmapreduce.reduce.speculative=false	\
				/data/input1	/data/output1

2.	 However,	the	preceding	command	only	works	if	the	job	implements	the
org.apache.hadoop.util.Tools	interface.	Otherwise,	set	these	properties	in	the
MapReduce	driver	program	using	the	following	methods:

For	the	whole	job,	use	job.setSpeculativeExecution(boolean	specExec)
For	Map	tasks,	use	job.setMapSpeculativeExecution(boolean	specExec)
For	Reduce	tasks,	use	Job.setReduceSpeculativeExecution(boolean
specExec)



There’s	more…
You	can	configure	the	maximum	number	of	retry	attempts	for	a	task	using	the	properties,
mapreduce.map.maxattempts	and	mapreduce.reduce.maxattempts,	for	Map	and	Reduce
tasks,	respectively.	Hadoop	declares	a	task	as	a	failure	after	it	exceeds	the	given	number	of
retries.	You	can	also	use	the	JobConf.setMaxMapAttempts()	and
JobConf.setMaxReduceAttempts()	functions	to	configure	these	properties.	The	default
value	for	these	properties	is	4.





Unit	testing	Hadoop	MapReduce
applications	using	MRUnit
MRUnit	is	a	JUnit-based	Java	library	that	allows	us	to	unit	test	Hadoop	MapReduce
programs.	This	makes	it	easy	to	develop	as	well	as	to	maintain	Hadoop	MapReduce	code
bases.	MRUnit	supports	testing	Mappers	and	Reducers	separately	as	well	as	testing
MapReduce	computations	as	a	whole.	In	this	recipe,	we’ll	be	exploring	all	three	testing
scenarios.	The	source	code	for	the	test	program	used	in	this	recipe	is	available	in	the
chapter3\test\chapter3\WordCountWithToolsTest.java	file	in	the	Git	repository.



Getting	ready
We	use	Gradle	as	the	build	tool	for	our	sample	code	base.	If	you	haven’t	already	done	so,
please	install	Gradle	by	following	the	instructions	given	in	the	introduction	section	of
Chapter	1,	Getting	Started	with	Hadoop	v2.



How	to	do	it…
The	following	steps	show	you	how	to	perform	unit	testing	of	a	Mapper	using	MRUnit:

1.	 In	the	setUp	method	of	the	test	class,	initialize	an	MRUnit	MapDriver	instance	with
the	Mapper	class	you	want	to	test.	In	this	example,	we	are	going	to	test	the	Mapper	of
the	WordCount	MapReduce	application	we	discussed	in	earlier	recipes:

public	class	WordCountWithToolsTest	{

		MapDriver<Object,	Text,	Text,	IntWritable>	mapDriver;

		@Before
		public	void	setUp()	{
				WordCountWithTools.TokenizerMapper	mapper	=	new	
WordCountWithTools.TokenizerMapper();
				mapDriver	=	MapDriver.newMapDriver(mapper);
		}
……
}

2.	 Write	a	test	function	to	test	the	Mapper	logic.	Provide	the	test	input	to	the	Mapper
using	the	MapDriver.withInput	method.	Then,	provide	the	expected	result	of	the
Mapper	execution	using	the	MapDriver.withOutput	method.	Now,	invoke	the	test
using	the	MapDriver.runTest	method.	The	MapDriver.withAll	and
MapDriver.withAllOutput	methods	allow	us	to	provide	a	list	of	test	inputs	and	a	list
of	expected	outputs,	rather	than	adding	them	individually.

@Test
		public	void	testWordCountMapper()	throws	IOException	{
				IntWritable	inKey	=	new	IntWritable(0);
				mapDriver.withInput(inKey,	new	Text("Test	Quick"));
				….
				mapDriver.withOutput(new	Text("Test"),new	IntWritable(1));
				mapDriver.withOutput(new	Text("Quick"),new	IntWritable(1));
				…
				mapDriver.runTest();
		}

The	following	step	shows	you	how	to	perform	unit	testing	of	a	Reducer	using
MRUnit.

3.	 Similar	to	step	1	and	2,	initialize	a	ReduceDriver	by	providing	the	Reducer	class
under	test	and	then	configure	the	ReduceDriver	with	the	test	input	and	the	expected
output.	The	input	to	the	reduce	function	should	conform	to	a	key	with	a	list	of
values.	Also,	in	this	test,	we	use	the	ReduceDriver.withAllOutput	method	to
provide	a	list	of	expected	outputs.

public	class	WordCountWithToolsTest	{
		ReduceDriver<Text,IntWritable,Text,IntWritable>	reduceDriver;

@Before
		public	void	setUp()	{



				WordCountWithTools.IntSumReducer	reducer	=	new	
WordCountWithTools.IntSumReducer();
				reduceDriver	=	ReduceDriver.newReduceDriver(reducer);
		}

@Test
		public	void	testWordCountReduce()	throws	IOException	{
				ArrayList<IntWritable>	reduceInList	=	new	ArrayList<IntWritable>();
				reduceInList.add(new	IntWritable(1));
				reduceInList.add(new	IntWritable(2));

				reduceDriver.withInput(new	Text("Quick"),	reduceInList);
				...
				ArrayList<Pair<Text,	IntWritable>>	reduceOutList	=	new	
ArrayList<Pair<Text,IntWritable>>();
				reduceOutList.add(new	Pair<Text,	IntWritable>	(new	
Text("Quick"),new	IntWritable(3)));
				...
				reduceDriver.withAllOutput(reduceOutList);
				reduceDriver.runTest();
		}
}

The	following	steps	show	you	how	to	perform	unit	testing	on	a	whole	MapReduce
computation	using	MRUnit.

4.	 In	this	step,	initialize	a	MapReduceDriver	by	providing	the	Mapper	class	and	Reducer
class	of	the	MapReduce	program	that	you	want	to	test.	Then,	configure	the
MapReduceDriver	with	the	test	input	data	and	the	expected	output	data.	When
executed,	this	test	will	execute	the	MapReduce	execution	flow	starting	from	the	Map
input	stage	to	the	Reduce	output	stage.	It’s	possible	to	provide	a	combiner
implementation	to	this	test	as	well.

public	class	WordCountWithToolsTest	{
		……
		MapReduceDriver<Object,	Text,	Text,	IntWritable,	Text,	IntWritable>	
mapReduceDriver;

@Before
		public	void	setUp()	{
				....
				mapReduceDriver	=	MapReduceDriver.newMapReduceDriver(mapper,	
reducer);
		}

@Test
		public	void	testWordCountMapReduce()	throws	IOException	{

				IntWritable	inKey	=	new	IntWritable(0);
				mapReduceDriver.withInput(inKey,	new	Text("Test	Quick"));
				……
				ArrayList<Pair<Text,	IntWritable>>	reduceOutList	=	new	
ArrayList<Pair<Text,IntWritable>>();
				reduceOutList.add(new	Pair<Text,	IntWritable>(new	Text("Quick"),new	
IntWritable(2)));



				……
				mapReduceDriver.withAllOutput(reduceOutList);
				mapReduceDriver.runTest();
		}
}

5.	 The	Gradle	build	script	(or	any	other	Java	build	mechanism)	can	be	configured	to
execute	these	unit	tests	with	every	build.	We	can	add	the	MRUnit	dependency	to	the
Gradle	build	(chapter3/build.gradle)	file	as	follows:

dependencies	{
		testCompile	group:	'org.apache.mrunit',	name:	'mrunit',	version:	
'1.1.+',classifier:	'hadoop2'
……
}

6.	 Use	the	following	Gradle	command	to	execute	only	the	WordCountWithToolsTest
unit	test.	This	command	executes	any	test	class	that	matches	the	pattern
**/WordCountWith*.class:

$	gradle	–Dtest.single=WordCountWith	test
:chapter3:compileJava	UP-TO-DATE
:chapter3:processResources	UP-TO-DATE
:chapter3:classes	UP-TO-DATE
:chapter3:compileTestJava	UP-TO-DATE
:chapter3:processTestResources	UP-TO-DATE
:chapter3:testClasses	UP-TO-DATE
:chapter3:test
BUILD	SUCCESSFUL
Total	time:	27.193	secs

7.	 You	can	also	execute	MRUnit-based	unit	tests	in	your	IDE.	You	can	use	the	gradle
eclipse	or	gradle	idea	commands	to	generate	the	project	files	for	the	Eclipse	and
IDEA	IDE	respectively.



See	also
The	Integration	testing	Hadoop	MapReduce	applications	using	MiniYarnCluster
recipe	in	this	chapter
For	more	information	about	using	MRUnit,	go	to
https://cwiki.apache.org/confluence/display/MRUNIT/MRUnit+Tutorial

https://cwiki.apache.org/confluence/display/MRUNIT/MRUnit+Tutorial




Integration	testing	Hadoop	MapReduce
applications	using	MiniYarnCluster
While	unit	testing	using	MRUnit	is	very	useful,	there	can	be	certain	integration	test
scenarios	that	have	to	be	tested	in	a	cluster	environment.	MiniYARNCluster	of	Hadoop
YARN	is	a	cluster	simulator	that	we	can	use	to	create	a	testing	environment	for	such
integration	tests.	In	this	recipe,	we’ll	be	using	MiniYARNCluster	to	perform	integration
testing	of	the	WordCountWithTools	MapReduce	application.

The	source	code	for	the	test	program	used	in	this	recipe	is	available	in	the
chapter3\test\chapter3\minicluster\WordCountMiniClusterTest.java	file	in	the	Git
repository.



Getting	ready
We	use	Gradle	as	the	build	tool	for	our	sample	code	base.	If	you	haven’t	already	done	so,
please	install	Gradle	by	following	the	instructions	given	in	the	introduction	section	of
Chapter	1,	Getting	Started	with	Hadoop	v2.	Export	the	JAVA_HOME	environmental	variable
pointing	to	your	JDK	installation.



How	to	do	it…
The	following	steps	show	you	how	to	perform	integration	testing	of	a	MapReduce
application	using	the	MiniYarnCluster	environment:

1.	 Within	the	setup	method	of	your	JUnit	test,	create	an	instance	of	MiniYarnCluster
using	MiniMRClientClusterFactory	as	follows.	MiniMRClientCluster	is	a	wrapper
interface	for	MiniMRYarnCluster	to	provide	support	testing	using	Hadoop	1.x
clusters.

public	class	WordCountMiniClusterTest	{
		private	static	MiniMRClientCluster	mrCluster;
		private	class	InternalClass	{
		}

@BeforeClass
		public	static	void	setup()	throws	IOException	{
				//	create	the	mini	cluster	to	be	used	for	the	tests
				mrCluster	=	MiniMRClientClusterFactory.create(InternalClass.class,	
1,new	Configuration());
		}
}

2.	 Make	sure	to	stop	the	cluster	inside	the	setup	method	of	your	test:

@AfterClass
		public	static	void	cleanup()	throws	IOException	{
				//	stopping	the	mini	cluster
				mrCluster.stop();
		}

3.	 Within	your	test	method,	prepare	a	MapReduce	computation	using	the	configuration
object	of	the	MiniYARNCluster	we	just	created.	Submit	the	job	and	wait	for	its
completion.	Then	test	whether	the	job	was	successful.

@Test
		public	void	testWordCountIntegration()	throws	Exception{
……
				Job	job	=	(new	
WordCountWithTools()).prepareJob(testInput,outDirString,	
mrCluster.getConfig());
				//	Make	sure	the	job	completes	successfully
				assertTrue(job.waitForCompletion(true));
				validateCounters(job.getCounters(),	12,	367,	201,	201);
		}

4.	 In	this	example,	we	will	use	the	counters	to	validate	the	expected	results	of	the
MapReduce	computation.	You	may	also	implement	logic	to	compare	the	output	data
of	the	computation	with	the	expected	output	of	the	computation.	However,	care	must
be	taken	to	handle	the	possibility	of	having	multiple	output	files	due	to	the	presence
of	multiple	Reduce	tasks.

		private	void	validateCounters(Counters	counters,	long	
mapInputRecords,…)	{



				assertEquals("MapInputRecords",	mapInputRecords,	
counters.findCounter("org.apache.hadoop.mapred.Task$Counter",	
"MAP_INPUT_RECORDS").getValue());
				………
		}

5.	 Use	the	following	Gradle	command	to	execute	only	the	WordCountMiniClusterTest
JUnit	test.	This	command	executes	any	test	class	that	matches	the	pattern
**/WordCountMini*.class.

$	gradle	-Dtest.single=WordCountMini	test
:chapter3:compileJava	UP-TO-DATE
:chapter3:processResources	UP-TO-DATE
:chapter3:classes	UP-TO-DATE
:chapter3:compileTestJava	UP-TO-DATE
:chapter3:processTestResources	UP-TO-DATE
:chapter3:testClasses	UP-TO-DATE
:chapter3:test	UP-TO-DATE

BUILD	SUCCESSFUL

6.	 You	can	also	execute	MiniYarnCluster-based	unit	tests	in	your	IDE.	You	can	use	the
gradle	eclipse	or	gradle	idea	commands	to	generate	the	project	files	for	the
Eclipse	and	IDEA	IDE	respectively.



See	also
The	Unit	testing	Hadoop	MapReduce	applications	using	MRUnit	recipe	in	this
chapter
The	Hadoop	counters	for	reporting	custom	metrics	recipe	in	Chapter	4,	Developing
Complex	Hadoop	MapReduce	Applications





Adding	a	new	DataNode
This	recipe	shows	you	how	to	add	new	nodes	to	an	existing	HDFS	cluster	without
restarting	the	whole	cluster,	and	how	to	force	HDFS	to	rebalance	after	the	addition	of	new
nodes.	Commercial	Hadoop	distributions	typically	provide	a	GUI-based	approach	to	add
and	remove	DataNodes.



Getting	ready
1.	 Install	Hadoop	on	the	new	node	and	replicate	the	configuration	files	of	your	existing

Hadoop	cluster.	You	can	use	rsync	to	copy	the	Hadoop	configuration	from	another
node;	for	example:

$	rsync	-a	<master_node_ip>:$HADOOP_HOME/etc/hadoop/	
$HADOOP_HOME/etc/hadoop

2.	 Ensure	that	the	master	node	of	your	Hadoop/HDFS	cluster	can	perform	password-
less	SSH	to	the	new	node.	Password-less	SSH	setup	is	optional	if	you	are	not
planning	to	use	the	bin/*.sh	scripts	from	the	master	node	to	start/stop	the	cluster.



How	to	do	it…
The	following	steps	will	show	you	how	to	add	a	new	DataNode	to	an	existing	HDFS
cluster:

1.	 Add	the	IP	or	the	DNS	of	the	new	node	to	the	$HADOOP_HOME/etc/hadoop/slaves
file	in	the	master	node.

2.	 Start	the	DataNode	on	the	newly	added	slave	node	by	using	the	following	command:

$	$HADOOP_HOME/sbin/hadoop-deamons.sh	start	datanode

Tip
You	can	also	use	the	$HADOOP_HOME/sbin/start-dfs.sh	script	from	the	master	node
to	start	the	DataNode	daemons	in	the	newly	added	nodes.	This	is	helpful	if	you	are
adding	more	than	one	new	DataNode	to	the	cluster.

3.	 Check	$HADOOP_HOME/logs/hadoop-*-datanode-*.log	in	the	new	slave	node	for
any	errors.

These	steps	apply	to	both	adding	a	new	node	as	well	as	rejoining	a	node	that	has	crashed
and	restarted.



There’s	more…
Similarly,	you	can	add	a	new	node	to	the	Hadoop	YARN	cluster	as	well:

1.	 Start	the	NodeManager	in	the	new	node	using	the	following	command:

>	$HADOOP_HOME/sbin/yarn-deamons.sh	start	nodemanager

2.	 Check	$HADOOP_HOME/logs/yarn-*-nodemanager-*.log	in	the	new	slave	node	for
any	errors.

Rebalancing	HDFS
When	you	add	new	nodes,	HDFS	will	not	rebalance	automatically.	However,	HDFS
provides	a	rebalancer	tool	that	can	be	invoked	manually.	This	tool	will	balance	the	data
blocks	across	clusters	up	to	an	optional	threshold	percentage.	Rebalancing	would	be	very
helpful	if	you	are	having	space	issues	in	the	other	existing	nodes.

1.	 Execute	the	following	command:

>	$HADOOP_HOME/sbin/start-balancer.sh	–threshold	15

The	(optional)	–threshold	parameter	specifies	the	percentage	of	disk	capacity
leeway	to	consider	when	identifying	a	node	as	under-	or	over-utilized.	An	under-
utilized	DataNode	is	a	node	whose	utilization	is	less	than	(average	utilization-
threshold).	An	over-utilized	DataNode	is	a	node	whose	utilization	is	greater	than
(average	utilization	+	threshold).	Smaller	threshold	values	will	achieve	more	evenly
balanced	nodes,	but	will	take	more	time	for	the	rebalancing.	The	default	threshold
value	is	10	percent.

2.	 Rebalancing	can	be	stopped	by	executing	the	sbin/stop-balancer.sh	command.
3.	 A	summary	of	the	rebalancing	is	available	in	the	$HADOOP_HOME/logs/hadoop-*-

balancer*.out	file.



See	also
The	Decommissioning	DataNodes	recipe	in	this	chapter.





Decommissioning	DataNodes
There	can	be	multiple	situations	where	you	want	to	decommission	one	or	more	DataNodes
from	an	HDFS	cluster.	This	recipe	shows	how	to	gracefully	decommission	DataNodes
without	incurring	data	loss.



How	to	do	it…
The	following	steps	show	you	how	to	decommission	DataNodes	gracefully:

1.	 If	your	cluster	doesn’t	have	it,	add	an	exclude	file	to	the	cluster.	Create	an	empty	file
in	the	NameNode	and	point	to	it	from	the	$HADOOP_HOME/etc/hadoop/hdfs-
site.xml	file	by	adding	the	following	property.	Restart	the	NameNode:

<property>
<name>dfs.hosts.exclude</name>
<value>FULL_PATH_TO_THE_EXCLUDE_FILE</value>
<description>Names	a	file	that	contains	a	list	of	hosts	that	are	not	
permitted	to	connect	to	the	namenode.	The	full	pathname	of	the	file	
must	be	specified.	If	the	value	is	empty,	no	hosts	are	excluded.
</description>
</property>

2.	 Add	the	hostnames	of	the	nodes	that	are	to	be	decommissioned	to	the	exclude	file.
3.	 Run	the	following	command	to	reload	the	NameNode	configuration:

$	hdfs	dfsadmin	–refreshNodes

This	will	start	the	decommissioning	process.	This	process	can	take	a	significant
amount	of	time	as	it	requires	replication	of	data	blocks	without	overwhelming	the
other	tasks	of	the	cluster.

4.	 The	progress	of	the	decommissioning	process	is	shown	in	the	HDFS	UI	under	the
Decommissioning	Nodes	page.	The	progress	can	be	monitored	using	the	following
command	as	well.	Do	not	shut	down	the	nodes	until	the	decommissioning	is
complete.

$	hdfs	dfsadmin	-report
.....
.....
Name:	myhost:50010
Decommission	Status	:	Decommission	in	progress
Configured	Capacity:	....
.....

5.	 You	can	remove	the	nodes	from	the	exclude	file	and	execute	the	hdfs	dfsadmin	–
refreshNodes	command	when	you	want	to	add	the	nodes	back	in	to	the	cluster.

6.	 The	decommissioning	process	can	be	stopped	by	removing	the	node	name	from	the
exclude	file	and	then	executing	the	hdfs	dfsadmin	–refreshNodes	command.



How	it	works…
When	a	node	is	in	the	decommissioning	process,	HDFS	replicates	the	blocks	in	that	node
to	the	other	nodes	in	the	cluster.	Decommissioning	can	be	a	slow	process	as	HDFS
purposely	does	it	slowly	to	avoid	overwhelming	the	cluster.	Shutting	down	nodes	without
decommissioning	may	result	in	data	loss.

After	the	decommissioning	is	complete,	the	nodes	mentioned	in	the	exclude	file	are	not
allowed	to	communicate	with	the	NameNode.



See	also
The	Rebalancing	HDFS	section	of	the	Adding	a	new	DataNode	recipe	in	this	chapter.





Using	multiple	disks/volumes	and	limiting
HDFS	disk	usage
Hadoop	supports	specifying	multiple	directories	for	the	DataNode	data	directory.	This
feature	allows	us	to	utilize	multiple	disks/volumes	to	store	data	blocks	in	DataNodes.
Hadoop	tries	to	store	equal	amounts	of	data	in	each	directory.	It	also	supports	limiting	the
amount	of	disk	space	used	by	HDFS.



How	to	do	it…
The	following	steps	will	show	you	how	to	add	multiple	disk	volumes:

1.	 Create	HDFS	data	storage	directories	in	each	volume.
2.	 Locate	the	hdfs-site.xml	configuration	file.	Provide	a	comma-separated	list	of

directories	corresponding	to	the	data	storage	locations	in	each	volume	under	the
dfs.datanode.data.dir	property	as	follows:

<property>
									<name>dfs.datanode.data.dir</name>
									<value>/u1/hadoop/data,	/u2/hadoop/data</value>
</property>

3.	 In	order	to	limit	disk	usage,	add	the	following	property	to	the	hdfs-site.xml	file	to
reserve	space	for	non-DFS	usage.	The	value	specifies	the	number	of	bytes	that	HDFS
cannot	use	per	volume:

		<property>
				<name>dfs.datanode.du.reserved</name>
				<value>6000000000</value>
				<description>Reserved	space	in	bytes	per	volume.	Always	leave	this	
much	space	free	for	non	dfs	use.
				</description>
		</property>





Setting	the	HDFS	block	size
HDFS	stores	files	across	the	cluster	by	breaking	them	down	in	to	coarser-grained,	fixed-
size	blocks.	The	default	HDFS	block	size	is	64	MB.	Block	size	of	a	data	product	can
affect	the	performance	of	the	filesystem	operations	where	larger	block	sizes	would	be
more	effective	if	you	are	storing	and	processing	very	large	files.	Block	size	of	a	data
product	can	also	affect	the	performance	of	MapReduce	computations,	as	the	default
behavior	of	Hadoop	is	to	create	one	Map	task	for	each	data	block	of	the	input	files.



How	to	do	it…
The	following	steps	show	you	how	to	use	the	NameNode	configuration	file	to	set	the
HDFS	block	size:

1.	 Add	or	modify	the	following	code	in	the	$HADOOP_HOME/etc/hadoop/hdfs-site.xml
file.	The	block	size	is	provided	using	the	number	of	bytes.	This	change	would	not
change	the	block	size	of	the	files	that	are	already	in	the	HDFS.	Only	the	files	copied
after	the	change	will	have	the	new	block	size.

<property>
								<name>dfs.blocksize</name>
								<value>134217728</value>
</property>

2.	 You	can	specify	different	HDFS	block	sizes	for	specific	file	paths	as	well.	You	can
also	specify	the	block	size	when	uploading	a	file	to	HDFS	from	the	command	line	as
follows:

$	hdfs	dfs	\
	-Ddfs.blocksize=134217728	\
	-put	data.in	foo/test



There’s	more…
You	can	also	specify	the	block	size	when	creating	files	using	the	HDFS	Java	API	as	well,
in	the	following	manner:

public	FSDataOutputStream	create(Path	f,boolean	overwrite,	int	bufferSize,	
short	replication,long	blockSize)

You	can	use	the	fsck	command	to	find	the	block	size	and	block	locations	of	a	particular
file	path	in	the	HDFS.	You	can	find	this	information	by	browsing	the	filesystem	from	the
HDFS	monitoring	console	as	well.

	>	$HADOOP_HOME/bin/hdfs	fsck	\
		/user/foo/data.in	\
		-blocks	-files	-locations
......
/user/foo/data.in	215227246	bytes,	2	block(s):	....
0.	blk_6981535920477261584_1059	len=134217728	repl=1	[hostname:50010]
1.	blk_-8238102374790373371_1059	len=81009518	repl=1	[hostname:50010]

......



See	also
The	Setting	the	file	replication	factor	recipe	in	this	chapter.





Setting	the	file	replication	factor
HDFS	stores	files	across	the	cluster	by	breaking	them	down	into	coarser-grained,	fixed-
size	blocks.	These	coarser-grained	data	blocks	are	replicated	to	different	DataNodes
mainly	for	fault-tolerance	purposes.	Data	block	replication	also	has	the	ability	to	increase
the	data	locality	of	the	MapReduce	computations	and	to	increase	the	total	data	access
bandwidth	as	well.	Reducing	the	replication	factor	helps	save	storage	space	in	HDFS.

The	HDFS	replication	factor	is	a	file-level	property	that	can	be	set	on	a	per-file	basis.
This	recipe	shows	you	how	to	change	the	default	replication	factor	of	an	HDFS
deployment	affecting	the	new	files	that	will	be	created	afterwards,	how	to	specify	a
custom	replication	factor	at	the	time	of	file	creation	in	HDFS,	and	how	to	change	the
replication	factor	of	existing	files	in	HDFS.



How	to	do	it…
Follow	these	instructions	to	set	the	file	replication	factor	using	the	NameNode
configuration:

1.	 Add	or	modify	the	dfs.replication	property	in	$HADOOP_HOME/etc/hadoop/hdfs-
site.xml.	This	change	will	not	change	the	replication	factor	of	the	files	that	are
already	in	the	HDFS.	Only	the	files	copied	after	the	change	will	have	the	new
replication	factor.	Please	be	aware	that	reducing	the	replication	factor	decreases	the
reliability	of	the	stored	files	and	may	also	cause	a	performance	decrease	when
processing	that	data	as	well.

<property>
								<name>dfs.replication</name>
								<value>2</value>
</property>

2.	 Set	the	file	replication	factor	when	uploading	the	files.	You	can	specify	the
replication	factor	when	uploading	the	file	from	the	command	line	as	follows:

$	hdfs	dfs	\
	-Ddfs.replication=1	\
	-copyFromLocal	\
	non-critical-file.txt	/user/foo

3.	 Change	the	file	replication	factor	of	the	existing	file	paths.	The	setrep	command	can
be	used	to	change	the	replication	factor	of	files	or	file	paths	that	are	already	in	the
HDFS	in	the	following	manner:

$	hdfs	dfs	\
	-setrep	2	non-critical-file.txt

Replication	2	set:	hdfs://myhost:9000/user/foo/non-critical-file.txt



How	it	works…
Have	a	look	at	the	following	command:

hdfs	dfs	-setrep	[-R]	<path>

The	<path>	parameter	of	the	setrep	command	specifies	the	HDFS	path	where	the
replication	factor	has	to	be	changed.	The	–R	option	recursively	sets	the	replication	factor
for	files	and	directories	within	a	directory.



There’s	more…
The	replication	factor	of	a	file	is	displayed	when	listing	the	files	using	the	ls	command:

$	hdfs	fs	-ls
Found	1	item
-rw-r--r--	2	foo	supergroup…	/user/foo/non-critical-file.txt

The	replication	factor	of	files	is	displayed	in	the	HDFS	monitoring	the	UI	as	well.



See	also
The	Setting	the	HDFS	block	size	recipe	in	this	chapter.





Using	the	HDFS	Java	API
The	HDFS	Java	API	can	be	used	to	interact	with	HDFS	from	any	Java	program.	This
API	gives	us	the	ability	to	utilize	the	data	stored	in	HDFS	from	other	Java	programs	as
well	as	to	process	that	data	with	other	non-Hadoop	computational	frameworks.
Occasionally,	you	may	also	come	across	a	use	case	where	you	want	to	access	HDFS
directly	from	within	a	MapReduce	application.	However,	if	you	are	writing	or	modifying
files	in	HDFS	directly	from	a	Map	or	Reduce	task,	please	be	aware	that	you	are	violating
the	side-effect-free	nature	of	MapReduce,	which	might	lead	to	data	consistency	issues
based	on	your	use	case.



How	to	do	it…
The	following	steps	show	you	how	to	use	the	HDFS	Java	API	to	perform	filesystem
operations	on	an	HDFS	installation	using	a	Java	program:

1.	 The	following	sample	program	creates	a	new	file	in	HDFS,	writes	some	text	in	the
newly	created	file,	and	reads	the	file	back	from	HDFS:

import	java.io.IOException;

import	org.apache.hadoop.conf.Configuration;
import	org.apache.hadoop.fs.FSDataInputStream;
import	org.apache.hadoop.fs.FSDataOutputStream;
import	org.apache.hadoop.fs.FileSystem;
import	org.apache.hadoop.fs.Path;

public	class	HDFSJavaAPIDemo	{
		public	static	void	main(String[]	args)	throws	IOException	{
				Configuration	conf	=	new	Configuration();
				FileSystem	fs	=	FileSystem.get(conf);
				System.out.println(fs.getUri());

				Path	file	=	new	Path("demo.txt");

				if	(fs.exists(file))	{
						System.out.println("File	exists.");
				}	else	{
						//	Writing	to	file
						FSDataOutputStream	outStream	=	fs.create(file);
						outStream.writeUTF("Welcome	to	HDFS	Java	API!!!");
						outStream.close();
				}

				//	Reading	from	file
				FSDataInputStream	inStream	=	fs.open(file);
				String	data	=	inStream.readUTF();
				System.out.println(data);
				inStream.close();

				fs.close();
		}

2.	 Compile	and	package	the	preceding	program	by	issuing	the	gradle	build	command
in	the	chapter3	folder	of	the	source	repository.	The	hcb-c3-samples.jar	file	will	be
created	in	the	build/libs	folder.

3.	 You	can	execute	the	preceding	sample	using	the	following	command.	Running	this
sample	using	the	hadoop	script	ensures	that	it	uses	the	currently	configured	HDFS
and	the	necessary	dependencies	from	the	Hadoop	classpath.

$	hadoop	jar	\
		hcb-c3-samples.jar	\
		chapter3.hdfs.javaapi.HDFSJavaAPIDemo

hdfs://yourhost:9000



Welcome	to	HDFS	Java	API!!!

4.	 Use	the	ls	command	to	list	the	newly	created	file,	shown	as	follows:

$	hdfs	dfs	-ls
Found	1	items
-rw-r--r--			3	foo	supergroup									20	2012-04-27	16:57	
/user/foo/demo.txt



How	it	works…
In	order	to	interact	with	HDFS	programmatically,	we	first	need	to	obtain	a	handle	to	the
currently	configured	filesystem.	For	this,	we	instantiate	a	Configuration	object	and
obtain	a	FileSystem	handle,	which	will	point	to	the	HDFS	NameNode	of	the	Hadoop
environment	where	we	run	this	program.	Several	alternative	methods	to	configure	a
FileSystem	object	have	been	discussed	in	the	Configuring	the	FileSystem	object	section
in	this	chapter:

Configuration	conf	=	new	Configuration();
FileSystem	fs	=	FileSystem.get(conf);

The	FileSystem.create(filePath)	method	creates	a	new	file	in	the	given	path	and
provides	us	with	an	FSDataOutputStream	object	to	the	newly	created	file.
FSDataOutputStream	wraps	java.io.DataOutputStream	and	allows	the	program	to	write
primitive	Java	data	types	to	the	file.	The	FileSystem.Create()	method	overrides	if	the
file	exists.	In	this	example,	the	file	will	be	created	relative	to	your	HDFS	home	directory,
which	would	result	in	a	path	similar	to	/user/<user_name>/demo.txt.	Your	HDFS	home
directory	has	to	be	created	beforehand.

Path	file	=	new	Path("demo.txt");
FSDataOutputStream	outStream	=	fs.create(file);
outStream.writeUTF("Welcome	to	HDFS	Java	API!!!");
outStream.close();

FileSystem.open(filepath)	opens	an	FSDataInputStream	to	the	given	file.
FSDataInputStream	wraps	java.io.DataInputStream	and	allows	the	program	to	read
primitive	Java	data	types	from	the	file.

FSDataInputStream	inStream	=	fs.open(file);
String	data	=	inStream.readUTF();
System.out.println(data);
inStream.close();



There’s	more…
The	HDFS	Java	API	supports	many	more	filesystem	operations	than	we	have	used	in	the
preceding	sample.	The	full	API	documentation	can	be	found	at
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/fs/FileSystem.html.

Configuring	the	FileSystem	object
We	can	use	the	HDFS	Java	API	from	outside	the	Hadoop	environment	as	well.	When
doing	so,	we	have	to	explicitly	configure	the	HDFS	NameNode	and	the	port.	The
following	are	a	couple	of	ways	to	perform	that	configuration:

You	can	load	the	configuration	files	to	the	configuration	object	before	retrieving
the	FileSystem	object	as	follows.	Make	sure	to	add	all	the	Hadoop	and	dependency
libraries	to	the	classpath.

Configuration	conf	=	new	Configuration();
conf.addResource(new	Path("/etc/hadoop/core-site.xml"));
conf.addResource(new	Path("/etc/hadoop/conf/hdfs-site.xml"));
FileSystem	fileSystem	=	FileSystem.get(conf);

You	can	also	specify	the	NameNode	and	the	port	as	follows.	Replace	the
NAMENODE_HOSTNAME	and	PORT	with	the	hostname	and	the	port	of	the	NameNode	of
your	HDFS	installation.

Configuration	conf	=	new	Configuration();
conf.set("fs.defaultFS,	"hdfs://NAMENODE_HOSTNAME:PORT");
FileSystem	fileSystem	=	FileSystem.get(conf);

The	HDFS	filesystem	API	is	an	abstraction	that	supports	several	filesystems.	If	the
preceding	program	does	not	find	a	valid	HDFS	configuration,	it	will	point	to	the	local
filesystem	instead	of	the	HDFS.	You	can	identify	the	current	filesystem	of	the	fileSystem
object	using	the	getUri()	function	as	follows.	It	would	result	in
hdfs://your_namenode:port	if	it’s	using	a	properly	configured	HDFS	and	file:///	if	it
is	using	the	local	filesystem.

fileSystem.getUri();

Retrieving	the	list	of	data	blocks	of	a	file
The	getFileBlockLocations()	function	of	the	fileSystem	object	allows	you	to	retrieve
the	list	of	data	blocks	of	a	file	stored	in	HDFS,	together	with	hostnames	where	the	blocks
are	stored	and	the	block	offsets.	This	information	would	be	very	useful	if	you	are	planning
on	doing	any	local	operations	on	the	file	data	using	a	framework	other	than	Hadoop
MapReduce.

FileStatus	fileStatus	=	fs.getFileStatus(file);
BlockLocation[]	blocks	=	fs.getFileBlockLocations(
		fileStatus,	0,	fileStatus.getLen());

http://hadoop.apache.org/docs/current/api/org/apache/hadoop/fs/FileSystem.html




Chapter	4.	Developing	Complex	Hadoop
MapReduce	Applications
In	this	chapter,	we	will	cover	the	following	recipes:

Choosing	appropriate	Hadoop	data	types
Implementing	a	custom	Hadoop	Writable	data	type
Implementing	a	custom	Hadoop	key	type
Emitting	data	of	different	value	types	from	a	Mapper
Choosing	a	suitable	Hadoop	InputFormat	for	your	input	data	format
Adding	support	for	new	input	data	formats	–	implementing	a	custom	InputFormat
Formatting	the	results	of	MapReduce	computations	–	using	Hadoop	OutputFormats
Writing	multiple	outputs	from	a	MapReduce	computation
Hadoop	intermediate	data	partitioning
Secondary	sorting	–	sorting	Reduce	input	values
Broadcasting	and	distributing	shared	resources	to	tasks	in	a	MapReduce	job	–
Hadoop	DistributedCache
Using	Hadoop	with	legacy	applications	–	Hadoop	streaming
Adding	dependencies	between	MapReduce	jobs
Hadoop	counters	for	reporting	custom	metrics



Introduction
This	chapter	introduces	you	to	several	advanced	Hadoop	MapReduce	features	that	will
help	you	to	develop	highly	customized,	efficient	MapReduce	applications.

The	preceding	figure	depicts	the	typical	flow	of	a	Hadoop	MapReduce	computation.	The
InputFormat	reads	the	input	data	from	HDFS	and	parses	the	data	to	create	key-value	pair
inputs	for	the	map	function.	InputFormat	also	performs	the	logical	partitioning	of	data	to
create	the	Map	tasks	of	the	computation.	A	typical	MapReduce	computation	creates	a	Map
task	for	each	input	HDFS	data	block.	Hadoop	invokes	the	user	provided	map	function	for
each	of	the	generated	key-value	pairs.	As	mentioned	in	Chapter	1,	Getting	Started	with
Hadoop	v2,	if	provided,	the	optional	combiner	step	may	get	invoked	with	the	output	data
from	the	map	function.

The	Partitioner	step	then	partitions	the	output	data	of	the	Map	task	in	order	to	send	them
to	the	respective	Reduce	tasks.	This	partitioning	is	performed	using	the	key	field	of	the
Map	task	output	key-value	pairs	and	results	in	a	number	of	partitions	equal	to	the	number
of	Reduce	tasks.	Each	Reduce	task	fetches	the	respective	output	data	partitions	from	the
Map	tasks	(also	known	as	shuffling)	and	performs	a	merge	sort	of	the	data	based	on	the
key	field.	Hadoop	also	groups	the	input	data	to	the	reduce	function	based	on	the	key	field
of	the	data	before	invoking	the	reduce	function.	The	output	key-value	pairs	from	the
Reduce	task	would	get	written	to	the	HDFS	based	on	the	format	specified	by	the
OutputFormat	class.

In	this	chapter,	we	will	explore	the	different	parts	of	the	earlier	mentioned	high-level	flow
of	a	Hadoop	MapReduce	computation	in	detail	and	explore	the	options	and	customizations
available	for	each	step.	First	you’ll	learn	the	different	data	types	provided	by	Hadoop	and
the	steps	to	implement	custom	data	types	for	Hadoop	MapReduce	computations.	Then
we’ll	walk	through	the	different	data	InputFormats	and	OutputFormats	provided	by
Hadoop.	Next,	we	will	get	a	basic	understanding	of	how	to	add	support	for	new	data
formats	in	Hadoop	as	well	as	mechanisms	for	outputting	more	than	one	data	product	from
a	single	MapReduce	computation.	We	will	also	explore	the	Map	output	data	partitioning
and	use	that	knowledge	to	introduce	secondary	sorting	of	the	reduce	function	input	data
values.



In	addition	to	the	above,	we	will	also	discuss	other	advanced	Hadoop	features	such	as
using	DistributedCache	for	distributing	the	data,	using	Hadoop	streaming	feature	for
quick	prototyping	of	Hadoop	computations,	and	using	Hadoop	counters	to	report	custom
metrics	for	your	computations	as	well	as	adding	job	dependencies	to	manage	simple
DAG-based	workflows	of	Hadoop	MapReduce	computations.

Note
Sample	code	and	data

The	example	code	files	for	this	book	are	available	in	GitHub	at
https://github.com/thilg/hcb-v2.	The	chapter4	folder	of	the	code	repository	contains	the
sample	source	code	files	for	this	chapter.

You	can	download	the	data	for	the	log	processing	sample	from
http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html.	You	can	find	a	description	of	the
structure	of	this	data	from	http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html.	A	small
extract	of	this	dataset	that	can	be	used	for	testing	is	available	in	the	code	repository	at
chapter4/resources.

Sample	codes	can	be	compiled	by	issuing	the	gradle	build	command	in	the	chapter4
folder	of	the	code	repository.	Project	files	for	Eclipse	IDE	can	be	generated	by	running	the
gradle	eclipse	command	in	the	main	folder	of	the	code	repository.	Project	files	for
IntelliJ	IDEA	IDE	can	be	generated	by	running	the	gradle	idea	command	in	the	main
folder	of	the	code	repository.

https://github.com/thilg/hcb-v2
http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html




Choosing	appropriate	Hadoop	data	types
Hadoop	uses	the	Writable	interface-based	classes	as	the	data	types	for	the	MapReduce
computations.	These	data	types	are	used	throughout	the	MapReduce	computational	flow,
starting	with	reading	the	input	data,	transferring	intermediate	data	between	Map	and
Reduce	tasks,	and	finally,	when	writing	the	output	data.	Choosing	the	appropriate
Writable	data	types	for	your	input,	intermediate,	and	output	data	can	have	a	large	effect
on	the	performance	and	the	programmability	of	your	MapReduce	programs.

In	order	to	be	used	as	a	value	data	type	of	a	MapReduce	computation,	a	data	type	must
implement	the	org.apache.hadoop.io.Writable	interface.	The	Writable	interface
defines	how	Hadoop	should	serialize	and	de-serialize	the	values	when	transmitting	and
storing	the	data.	In	order	to	be	used	as	a	key	data	type	of	a	MapReduce	computation,	a
data	type	must	implement	the	org.apache.hadoop.io.WritableComparable<T>	interface.
In	addition	to	the	functionality	of	the	Writable	interface,	the	WritableComparable
interface	further	defines	how	to	compare	the	key	instances	of	this	type	with	each	other	for
sorting	purposes.

Note
Hadoop’s	Writable	versus	Java’s	Serializable

Hadoop’s	Writable-based	serialization	framework	provides	a	more	efficient	and
customized	serialization	and	representation	of	the	data	for	MapReduce	programs	than
using	the	general-purpose	Java’s	native	serialization	framework.	As	opposed	to	Java’s
serialization,	Hadoop’s	Writable	framework	does	not	write	the	type	name	with	each	object
expecting	all	the	clients	of	the	serialized	data	to	be	aware	of	the	types	used	in	the
serialized	data.	Omitting	the	type	names	makes	the	serialization	process	faster	and	results
in	compact,	random	accessible	serialized	data	formats	that	can	be	easily	interpreted	by
non-Java	clients.	Hadoop’s	Writable-based	serialization	also	has	the	ability	to	reduce	the
object-creation	overhead	by	reusing	the	Writable	objects,	which	is	not	possible	with
Java’s	native	serialization	framework.



How	to	do	it…
The	following	steps	show	you	how	to	configure	the	input	and	output	data	types	of	your
Hadoop	MapReduce	application:

1.	 Specify	the	data	types	for	the	input	(key:	LongWritable,	value:	Text)	and	output
(key:	Text,	value:	IntWritable)	key-value	pairs	of	your	Mapper	using	the	generic-
type	variables:

public	class	SampleMapper	extends	Mapper<LongWritable,	Text,	Text,	
IntWritable>	{

		public	void	map(LongWritable	key,	Text	value,
				Context	context)	…	{
……		}
}

2.	 Specify	the	data	types	for	the	input	(key:	Text,	value:	IntWritable)	and	output	(key:
Text,	value:	IntWritable)	key-value	pairs	of	your	Reducer	using	the	generic-type
variables.	The	Reducer’s	input	key-value	pair	data	types	should	match	the	Mapper’s
output	key-value	pairs.

public	class	Reduce	extends	Reducer<Text,	IntWritable,	Text,	
IntWritable>	{

		public	void	reduce(Text	key,
				Iterable<IntWritable>	values,	Context	context)	{
		……		}
}

3.	 Specify	the	output	data	types	of	the	MapReduce	computation	using	the	Job	object	as
shown	in	the	following	code	snippet.	These	data	types	will	serve	as	the	output	types
for	both	the	Reducer	and	the	Mapper,	unless	you	specifically	configure	the	Mapper
output	types	as	in	step	4.

Job	job	=	new	Job(..);
….
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

4.	 Optionally,	you	can	configure	the	different	data	types	for	the	Mapper’s	output	key-
value	pairs	using	the	following	steps,	when	your	Mapper	and	Reducer	have	different
data	types	for	the	output	key-value	pairs.

job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);



There’s	more…
Hadoop	provides	several	primitive	data	types	such	as	IntWritable,	LongWritable,
BooleanWritable,	FloatWritable,	and	ByteWritable,	which	are	the	Writable	versions
of	their	respective	Java	primitive	data	types.	We	can	use	these	types	as	both	the	key	types
as	well	as	the	value	types.

The	following	are	several	more	Hadoop	built-in	data	types	that	we	can	use	as	both	the	key
as	well	as	the	value	types:

Text:	This	stores	UTF8	text
BytesWritable:	This	stores	a	sequence	of	bytes
VIntWritable	and	VLongWritable:	These	store	variable	length	integer	and	long
values
NullWritable:	This	is	a	zero-length	Writable	type	that	can	be	used	when	you	don’t
want	to	use	a	key	or	value	type

The	following	Hadoop	built-in	collection	data	types	can	only	be	used	as	value	types:

ArrayWritable:	This	stores	an	array	of	values	belonging	to	a	Writable	type.	To	use
ArrayWritable	type	as	the	value	type	of	a	Reducer’s	input,	you	need	to	create	a
subclass	of	ArrayWritable	to	specify	the	type	of	the	Writable	values	stored	in	it.

public	class	LongArrayWritable	extends	ArrayWritable	{
		public	LongArrayWritable()	{
				super(LongWritable.class);
		}
}

TwoDArrayWritable:	This	stores	a	matrix	of	values	belonging	to	the	same	Writable
type.	To	use	the	TwoDArrayWritable	type	as	the	value	type	of	a	Reducer’s	input,	you
need	to	specify	the	type	of	the	stored	values	by	creating	a	subclass	of	the
TwoDArrayWritable	type	similar	to	the	ArrayWritable	type.

public	class	LongTwoDArrayWritable	extends	TwoDArrayWritable	{
		public	LongTwoDArrayWritable()	{
				super(LongWritable.class);
		}
}

MapWritable:	This	stores	a	map	of	key-value	pairs.	Keys	and	values	should	be	of	the
Writable	data	types.	You	can	use	the	MapWritable	function	as	follows.	However,
you	should	be	aware	that	the	serialization	of	MapWritable	adds	a	slight	performance
penalty	due	to	the	inclusion	of	the	class	names	of	each	object	stored	in	the	map.

MapWritable	valueMap	=	new	MapWritable();
valueMap.put(new	IntWritable(1),new	Text("test"));

SortedMapWritable:	This	stores	a	sorted	map	of	key-value	pairs.	Keys	should
implement	the	WritableComparable	interface.	Usage	of	SortedMapWritable	is
similar	to	the	MapWritable	function.



See	also
The	Implementing	a	custom	Hadoop	Writable	data	type	recipe
The	Implementing	a	custom	Hadoop	key	type	recipe





Implementing	a	custom	Hadoop	Writable
data	type
There	can	be	use	cases	where	none	of	the	inbuilt	data	types	match	your	requirement	or	a
custom	data	type	optimized	for	your	use	case	may	perform	better	than	a	Hadoop	built-in
data	type.	In	such	scenarios,	we	can	easily	write	a	custom	Writable	data	type	by
implementing	the	org.apache.hadoop.io.Writable	interface	to	define	the	serialization
format	of	your	data	type.	The	Writable	interface-based	types	can	be	used	as	value	types
in	Hadoop	MapReduce	computations.

In	this	recipe,	we	implement	a	sample	Hadoop	Writable	data	type	for	HTTP	server	log
entries.	For	the	purpose	of	this	sample,	we	consider	that	a	log	entry	consists	of	the	five
fields:	request	host,	timestamp,	request	URL,	response	size,	and	the	HTTP	status	code.
The	following	is	a	sample	log	entry:

192.168.0.2	-	-	[01/Jul/1995:00:00:01	-0400]	"GET	/history/apollo/	
HTTP/1.0"	200	6245

You	can	download	a	sample	HTTP	server	log	dataset	from
ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz.

ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz


How	to	do	it…
The	following	are	the	steps	to	implement	a	custom	Hadoop	Writable	data	type	for	the
HTTP	server	log	entries:

1.	 Write	a	new	LogWritable	class	implementing	the	org.apache.hadoop.io.Writable
interface:

public	class	LogWritable	implements	Writable{

		private	Text	userIP,	timestamp,	request;
		private	IntWritable	responseSize,	status;

		public	LogWritable()	{
				this.userIP	=	new	Text();
				this.timestamp=		new	Text();
				this.request	=	new	Text();
				this.responseSize	=	new	IntWritable();
				this.status	=	new	IntWritable();
		}
		public	void	readFields(DataInput	in)	throws	IOException	{
				userIP.readFields(in);
				timestamp.readFields(in);
				request.readFields(in);
				responseSize.readFields(in);
				status.readFields(in);
		}

		public	void	write(DataOutput	out)	throws	IOException	{
				userIP.write(out);
				timestamp.write(out);
				request.write(out);
				responseSize.write(out);
				status.write(out);
		}

………	//	getters	and	setters	for	the	fields
}

2.	 Use	the	new	LogWritable	type	as	a	value	type	in	your	MapReduce	computation.	In
the	following	example,	we	use	the	LogWritable	type	as	the	Map	output	value	type:

public	class	LogProcessorMap	extends	Mapper<LongWritable,
Text,	Text,	LogWritable>	{
….
}

public	class	LogProcessorReduce	extends	Reducer<Text,
LogWritable,	Text,	IntWritable>	{

		public	void	reduce(Text	key,
		Iterable<LogWritable>	values,	Context	context)	{
					……		}
}



3.	 Configure	the	output	types	of	the	job	accordingly.

Job	job	=	……
….
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(LogWritable.class);



How	it	works…
The	Writable	interface	consists	of	the	two	methods,	readFields()	and	write().	Inside
the	readFields()	method,	we	de-serialize	the	input	data	and	populate	the	fields	of	the
Writable	object.

		public	void	readFields(DataInput	in)	throws	IOException	{
				userIP.readFields(in);
				timestamp.readFields(in);
				request.readFields(in);
				responseSize.readFields(in);
				status.readFields(in);
		}

In	the	preceding	example,	we	use	the	Writable	types	as	the	fields	of	our	custom	Writable
type	and	use	the	readFields()	method	of	the	fields	for	de-serializing	the	data	from	the
DataInput	object.	It	is	also	possible	to	use	Java	primitive	data	types	as	the	fields	of	the
Writable	type	and	to	use	the	corresponding	read	methods	of	the	DataInput	object	to	read
the	values	from	the	underlying	stream	as	done	in	the	following	code	snippet:

int	responseSize	=	in.readInt();
String	userIP	=	in.readUTF();

Inside	the	write()	method,	we	write	the	fields	of	the	Writable	object	to	the	underlying
stream.

		public	void	write(DataOutput	out)	throws	IOException	{
				userIP.write(out);
				timestamp.write(out);
				request.write(out);
				responseSize.write(out);
				status.write(out);
		}

In	case	you	are	using	Java	primitive	data	types	as	the	fields	of	the	Writable	object,	then
you	can	use	the	corresponding	write	methods	of	the	DataOutput	object	to	write	the	values
to	the	underlying	stream	as	follows:

out.writeInt(responseSize);
out.writeUTF(userIP);



There’s	more…
Please	be	cautious	about	the	following	issues	when	implementing	your	custom	Writable
data	type:

In	case	you	are	adding	a	custom	constructor	to	your	custom	Writable	class,	make
sure	to	retain	the	default	empty	constructor.
TextOutputFormat	uses	the	toString()	method	to	serialize	the	key	and	value	types.
In	case	you	are	using	the	TextOutputFormat	to	serialize	the	instances	of	your	custom
Writable	type,	make	sure	to	have	a	meaningful	toString()	implementation	for	your
custom	Writable	data	type.
While	reading	the	input	data,	Hadoop	may	reuse	an	instance	of	the	Writable	class
repeatedly.	You	should	not	rely	on	the	existing	state	of	the	object	when	populating	it
inside	the	readFields()	method.



See	also
The	Implementing	a	custom	Hadoop	key	type	recipe.





Implementing	a	custom	Hadoop	key	type
The	instances	of	Hadoop	MapReduce	key	types	should	have	the	ability	to	compare	against
each	other	for	sorting	purposes.	In	order	to	be	used	as	a	key	type	in	a	MapReduce
computation,	a	Hadoop	Writable	data	type	should	implement	the
org.apache.hadoop.io.WritableComparable<T>	interface.	The	WritableComparable
interface	extends	the	org.apache.hadoop.io.Writable	interface	and	adds	the
compareTo()	method	to	perform	the	comparisons.

In	this	recipe,	we	modify	the	LogWritable	data	type	of	the	Implementing	a	custom
Hadoop	Writable	data	type	recipe	to	implement	the	WritableComparable	interface.



How	to	do	it…
The	following	are	the	steps	to	implement	a	custom	Hadoop	WritableComparable	data
type	for	the	HTTP	server	log	entries,	which	uses	the	request	hostname	and	timestamp	for
comparison.

1.	 Modify	the	LogWritable	class	to	implement	the
org.apache.hadoop.io.WritableComparable	interface:

public	class	LogWritable	implements
		WritableComparable<LogWritable>	{

		private	Text	userIP,	timestamp,	request;
		private	IntWritable	responseSize,	status;

		public	LogWritable()	{
				this.userIP	=	new	Text();
				this.timestamp=		new	Text();
				this.request	=	new	Text();
				this.responseSize	=	new	IntWritable();
				this.status	=	new	IntWritable();
		}

		public	void	readFields(DataInput	in)	throws	IOException	{
				userIP.readFields(in);
				timestamp.readFields(in);
				request.readFields(in);
				responseSize.readFields(in);
				status.readFields(in);
		}

		public	void	write(DataOutput	out)	throws	IOException	{
				userIP.write(out);
				timestamp.write(out);
				request.write(out);
				responseSize.write(out);
				status.write(out);
		}

		public	int	compareTo(LogWritable	o)	{
				if	(userIP.compareTo(o.userIP)==0){
									return	(timestamp.compareTo(o.timestamp));
				}else	return	(userIP.compareTo(o.userIP);
		}

		public	boolean	equals(Object	o)	{
				if	(o	instanceof	LogWritable)	{
									LogWritable	other	=	(LogWritable)	o;
									return	userIP.equals(other.userIP)	&&	
timestamp.equals(other.timestamp);
				}
				return	false;
		}

		public	int	hashCode()



		{
				Return	userIP.hashCode();
		}
			………	//	getters	and	setters	for	the	fields
}

2.	 You	can	use	the	LogWritable	type	as	either	a	key	type	or	a	value	type	in	your
MapReduce	computation.	In	the	following	example,	we	use	the	LogWritable	type	as
the	Map	output	key	type:

public	class	LogProcessorMap	extends	Mapper<LongWritable,
Text,	LogWritable,	IntWritable>	{
…
}

public	class	LogProcessorReduce	extends	Reducer<LogWritable,
IntWritable,	Text,	IntWritable>	{

public	void	reduce(LogWritablekey,
Iterable<IntWritable>	values,	Context	context)	{
					……		}
}

3.	 Configure	the	output	types	of	the	job	accordingly.

Job	job	=	……
…
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setMapOutputKeyClass(LogWritable.class);
job.setMapOutputValueClass(IntWritable.class);



How	it	works…
The	WritableComparable	interface	introduces	the	compareTo()	method	in	addition	to	the
readFields()	and	write()	methods	of	the	Writable	interface.	The	compareTo()	method
should	return	a	negative	integer,	zero,	or	a	positive	integer,	if	this	object	is	less	than,	equal
to,	or	greater	than	the	object	being	compared	to	it	respectively.	In	the	LogWritable
implementation,	we	consider	the	objects	equal	if	both	user’s	IP	addresses	and	the
timestamps	are	the	same.	If	the	objects	are	not	equal,	we	decide	the	sort	order,	first	based
on	the	user	IP	address	and	then	based	on	the	timestamp.

		public	int	compareTo(LogWritable	o)	{
				if	(userIP.compareTo(o.userIP)==0){
								return	(timestamp.compareTo(o.timestamp));
				}else	return	(userIP.compareTo(o.userIP);
		}

Hadoop	uses	HashPartitioner	as	the	default	partitioner	implementation	to	calculate	the
distribution	of	the	intermediate	data	to	the	Reducers.	HashPartitioner	requires	the
hashCode()	method	of	the	key	objects	to	satisfy	the	following	two	properties:

Provide	the	same	hash	value	across	different	JVM	instances
Provide	a	uniform	distribution	of	hash	values

Hence,	you	must	implement	a	stable	hashCode()	method	for	your	custom	Hadoop	key
types	satisfying	both	the	earlier-mentioned	requirements.	In	the	LogWritable
implementation,	we	use	the	hash	code	of	the	request	hostname/IP	address	as	the	hash	code
of	the	LogWritable	instance.	This	ensures	that	the	intermediate	LogWritable	data	will	be
partitioned	based	on	the	request	hostname/IP	address.

		public	int	hashCode()
		{
				return	userIP.hashCode();
		}



See	also
The	Implementing	a	custom	Hadoop	Writable	data	type	recipe.





Emitting	data	of	different	value	types
from	a	Mapper
Emitting	data	products	belonging	to	multiple	value	types	from	a	Mapper	is	useful	when
performing	Reducer-side	joins	as	well	as	when	we	need	to	avoid	the	complexity	of	having
multiple	MapReduce	computations	to	summarize	different	types	of	properties	in	a	dataset.
However,	Hadoop	Reducers	do	not	allow	multiple	input	value	types.	In	these	scenarios,
we	can	use	the	GenericWritable	class	to	wrap	multiple	value	instances	belonging	to
different	data	types.

In	this	recipe,	we	reuse	the	HTTP	server	log	entry	analyzing	the	sample	of	the
Implementing	a	custom	Hadoop	Writable	data	type	recipe.	However,	instead	of	using	a
custom	data	type,	in	the	current	recipe,	we	output	multiple	value	types	from	the	Mapper.
This	sample	aggregates	the	total	number	of	bytes	served	from	the	web	server	to	a
particular	host	and	also	outputs	a	tab-separated	list	of	URLs	requested	by	the	particular
host.	We	use	IntWritable	to	output	the	number	of	bytes	from	the	Mapper	and	Text	to
output	the	request	URL.



How	to	do	it…
The	following	steps	show	how	to	implement	a	Hadoop	GenericWritable	data	type	that
can	wrap	instances	of	either	IntWritable	or	Text	data	types:

1.	 Write	a	class	extending	the	org.apache.hadoop.io.GenericWritable	class.
Implement	the	getTypes()	method	to	return	an	array	of	the	Writable	classes	that
you	will	be	using.	If	you	are	adding	a	custom	constructor,	make	sure	to	add	a
parameter-less	default	constructor	as	well.

public	class	MultiValueWritable	extends	GenericWritable	{

		private	static	Class[]	CLASSES	=		new	Class[]{
				IntWritable.class,
				Text.class
		};

		public	MultiValueWritable(){
		}

		public	MultiValueWritable(Writable	value){
				set(value);
		}

		protected	Class[]	getTypes()	{
				return	CLASSES;
		}
}

2.	 Set	MultiValueWritable	as	the	output	value	type	of	the	Mapper.	Wrap	the	output
Writable	values	of	the	Mapper	with	instances	of	the	MultiValueWritable	class.

public	class	LogProcessorMap	extends
				Mapper<Object,	Text,	Text,	MultiValueWritable>	{
		private	Text	userHostText	=	new	Text();
		private	Text	requestText	=	new	Text();
		private	IntWritable	responseSize	=	new	IntWritable();

		public	void	map(Object	key,	Text	value,
																														Context	context)…{
				……//	parse	the	value	(log	entry)	using	a	regex.
				userHostText.set(userHost);
				requestText.set(request);
				bytesWritable.set(responseSize);

				context.write(userHostText,
				new	MultiValueWritable(requestText));
				context.write(userHostText,
				new	MultiValueWritable(responseSize));
		}
}

3.	 Set	the	Reducer	input	value	type	as	MultiValueWritable.	Implement	the	reduce()
method	to	handle	multiple	value	types.



public	class	LogProcessorReduce	extends
		Reducer<Text,MultiValueWritable,Text,Text>	{
		private	Text	result	=	new	Text();

		public	void	reduce(Text	key,	Iterable<MultiValueWritable>values,	
Context	context)…{
		int	sum	=	0;
		StringBuilder	requests	=	new	StringBuilder();
		for	(MultiValueWritable	multiValueWritable	:	values)	{
				Writable	writable	=	multiValueWritable.get();
				if	(writable	instanceof	IntWritable){
						sum	+=	((IntWritable)writable).get();
				}else{
						requests.append(((Text)writable).toString());
						requests.append("\t");
				}
		}
		result.set(sum	+	"\t"+requests);
		context.write(key,	result);
		}
}

4.	 Set	MultiValueWritable	as	the	Map	output	value	class	of	this	computation:

				Job	job	=	…
				job.setMapOutputValueClass(MultiValueWritable.class);



How	it	works…
The	GenericWritable	implementations	should	extend
org.apache.hadoop.io.GenericWritable	and	should	specify	a	set	of	the	Writable	value
types	to	wrap,	by	returning	an	array	of	CLASSES	from	the	getTypes()	method.	The
GenericWritable	implementations	serialize	and	de-serialize	the	data	using	the	index	to
this	array	of	classes.

		private	static	Class[]	CLASSES	=		new	Class[]{
				IntWritable.class,
				Text.class
		};

		protected	Class[]	getTypes()	{
				return	CLASSES;
		}

In	the	Mapper,	you	wrap	each	of	your	values	with	instances	of	the	GenericWritable
implementation:

private	Text	requestText	=	new	Text();
context.write(userHostText,new	MultiValueWritable(requestText));

The	Reducer	implementation	has	to	take	care	of	the	different	value	types	manually.

if	(writable	instanceof	IntWritable){
		sum	+=	((IntWritable)writable).get();
}else{
		requests.append(((Text)writable).toString());
		requests.append("\t");
}



There’s	more…
org.apache.hadoop.io.ObjectWritable	is	another	class	that	can	be	used	to	achieve	the
same	objective	as	GenericWritable.	The	ObjectWritable	class	can	handle	Java	primitive
types,	strings,	and	arrays	without	the	need	of	a	Writable	wrapper.	However,	Hadoop
serializes	the	ObjectWritable	instances	by	writing	the	class	name	of	the	instance	with
each	serialized	entry,	making	it	inefficient	compared	to	a	GenericWritable	class-based
implementation.



See	also
The	Implementing	a	custom	Hadoop	Writable	data	type	recipe.





Choosing	a	suitable	Hadoop	InputFormat
for	your	input	data	format
Hadoop	supports	processing	of	many	different	formats	and	types	of	data	through
InputFormat.	The	InputFormat	of	a	Hadoop	MapReduce	computation	generates	the	key-
value	pair	inputs	for	the	Mappers	by	parsing	the	input	data.	InputFormat	also	performs	the
splitting	of	the	input	data	into	logical	partitions,	essentially	determining	the	number	of
Map	tasks	of	a	MapReduce	computation	and	indirectly	deciding	the	execution	location	of
the	Map	tasks.	Hadoop	generates	a	Map	task	for	each	logical	data	partition	and	invokes
the	respective	Mappers	with	the	key-value	pairs	of	the	logical	splits	as	the	input.



How	to	do	it…
The	following	steps	show	you	how	to	use	FileInputFormat	based
KeyValueTextInputFormat	as	InputFormat	for	a	Hadoop	MapReduce	computation:

1.	 In	this	example,	we	are	going	to	specify	the	KeyValueTextInputFormat	as
InputFormat	for	a	Hadoop	MapReduce	computation	using	the	Job	object	as	follows:

Configuration	conf	=	new	Configuration();
Job	job	=	new	Job(conf,	"log-analysis");
……
job.SetInputFormatClass(KeyValueTextInputFormat.class)

2.	 Set	the	input	paths	to	the	job:

FileInputFormat.setInputPaths(job,	new	Path(inputPath));



How	it	works…
KeyValueTextInputFormat	is	an	input	format	for	plain	text	files,	which	generates	a	key-
value	record	for	each	line	of	the	input	text	files.	Each	line	of	the	input	data	is	broken	into	a
key	(text)	and	value	(text)	pair	using	a	delimiter	character.	The	default	delimiter	is	the	tab
character.	If	a	line	does	not	contain	the	delimiter,	the	whole	line	will	be	treated	as	the	key
and	the	value	will	be	empty.	We	can	specify	a	custom	delimiter	by	setting	a	property	in	the
job’s	configuration	object	as	follows,	where	we	use	the	comma	character	as	the	delimiter
between	the	key	and	value.

conf.set("key.value.separator.in.input.line",	",");

KeyValueTextInputFormat	is	based	on	FileInputFormat,	which	is	the	base	class	for	the
file-based	InputFormats.	Hence,	we	specify	the	input	path	to	the	MapReduce	computation
using	the	setInputPaths()	method	of	the	FileInputFormat	class.	We	have	to	perform
this	step	when	using	any	InputFormat	that	is	based	on	the	FileInputFormat	class.

FileInputFormat.setInputPaths(job,	new	Path(inputPath));

We	can	provide	multiple	HDFS	input	paths	to	a	MapReduce	computation	by	providing	a
comma-separated	list	of	paths.	You	can	also	use	the	addInputPath()	static	method	of	the
FileInputFormat	class	to	add	additional	input	paths	to	a	computation.

public	static	void	setInputPaths(JobConf	conf,Path…	inputPaths)
public	static	void	addInputPath(JobConf	conf,	Path	path)



There’s	more…
Make	sure	that	your	Mapper	input	data	types	match	the	data	types	generated	by
InputFormat	used	by	the	MapReduce	computation.

The	following	are	some	of	the	InputFormat	implementations	that	Hadoop	provides	to
support	several	common	data	formats:

TextInputFormat:	This	is	used	for	plain	text	files.	TextInputFormat	generates	a	key-
value	record	for	each	line	of	the	input	text	files.	For	each	line,	the	key
(LongWritable)	is	the	byte	offset	of	the	line	in	the	file	and	the	value	(Text)	is	the	line
of	text.	TextInputFormat	is	the	default	InputFormat	of	Hadoop.
NLineInputFormat:	This	is	used	for	plain	text	files.	NLineInputFormat	splits	the
input	files	into	logical	splits	of	fixed	numbers	of	lines.	We	can	use
NLineInputFormat	when	we	want	our	Map	tasks	to	receive	a	fixed	number	of	lines
as	the	input.	The	key	(LongWritable)	and	value	(Text)	records	are	generated	for	each
line	in	the	split	similar	to	the	TextInputFormat	class.	By	default,	NLineInputFormat
creates	a	logical	split	(and	a	Map	task)	per	line.	The	number	of	lines	per	split	(or	key-
value	records	per	Map	task)	can	be	specified	as	follows.	NLineInputFormat
generates	a	key-value	record	for	each	line	of	the	input	text	files.

NLineInputFormat.setNumLinesPerSplit(job,50);

SequenceFileInputFormat:	This	is	used	for	Hadoop	SequenceFile	input	data.
Hadoop	SequenceFiles	store	the	data	as	binary	key-value	pairs	and	support	data
compression.	SequenceFileInputFormat	is	useful	when	using	the	result	of	a
previous	MapReduce	computation	in	SequenceFile	format	as	the	input	of	a
MapReduce	computation.	The	following	are	its	subclasses:

SequenceFileAsBinaryInputFormat:	This	is	a	subclass	of	the
SequenceInputFormat	class	that	presents	the	key	(BytesWritable)	and	the
value	(BytesWritable)	pairs	in	raw	binary	format.
SequenceFileAsTextInputFormat:	This	is	a	subclass	of	the
SequenceInputFormat	class	that	presents	the	key	(Text)	and	the	value	(Text)
pairs	as	strings.

DBInputFormat:	This	supports	reading	the	input	data	for	MapReduce	computation
from	a	SQL	table.	DBInputFormat	uses	the	record	number	as	the	key	(LongWritable)
and	the	query	result	record	as	the	value	(DBWritable).



See	also
The	Adding	support	for	new	input	data	formats	–	implementing	a	custom	InputFormat
recipe





Adding	support	for	new	input	data
formats	–	implementing	a	custom
InputFormat
Hadoop	enables	us	to	implement	and	specify	custom	InputFormat	implementations	for	our
MapReduce	computations.	We	can	implement	custom	InputFormat	implementations	to
gain	more	control	over	the	input	data	as	well	as	to	support	proprietary	or	application-
specific	input	data	file	formats	as	inputs	to	Hadoop	MapReduce	computations.	An
InputFormat	implementation	should	extend	the
org.apache.hadoop.mapreduce.InputFormat<K,V>	abstract	class	overriding	the
createRecordReader()	and	getSplits()	methods.

In	this	recipe,	we	implement	an	InputFormat	and	a	RecordReader	for	the	HTTP	log	files.
This	InputFormat	will	generate	LongWritable	instances	as	keys	and	LogWritable
instances	as	the	values.



How	to	do	it…
The	following	are	the	steps	to	implement	a	custom	InputFormat	for	the	HTTP	server	log
files	based	on	the	FileInputFormat	class:

1.	 LogFileInputFormat	operates	on	the	data	in	HDFS	files.	Hence,	we	implement	the
LogFileInputFormat	subclass	extending	the	FileInputFormat	class:

public	class	LogFileInputFormat	extends	FileInputFormat<LongWritable,	
LogWritable>{

		public	RecordReader<LongWritable,	
LogWritable>createRecordReader(InputSplit	arg0,TaskAttemptContext	arg1)	
throws	……	{
				return	new	LogFileRecordReader();
		}

}

2.	 Implement	the	LogFileRecordReader	class:

public	class	LogFileRecordReader	extends	RecordReader<LongWritable,	
LogWritable>{

		LineRecordReader	lineReader;
		LogWritable	value;

		public	void	initialize(InputSplit	inputSplit,	TaskAttemptContext	
attempt)…{
				lineReader	=	new	LineRecordReader();
				lineReader.initialize(inputSplit,	attempt);
		}

		public	boolean	nextKeyValue()	throws	IOException,	..{
				if	(!lineReader.nextKeyValue()){
						return	false;
		}

				String	line		=lineReader.getCurrentValue().toString();
				……………//Extract	the	fields	from	'line'	using	a	regex

				value	=	new	LogWritable(userIP,	timestamp,	request,
								status,	bytes);
				return	true;
		}

		public	LongWritable	getCurrentKey()	throws..{
				return	lineReader.getCurrentKey();
		}

		public	LogWritable	getCurrentValue()	throws	..{
				return	value;
		}

		public	float	getProgress()	throws	IOException	..{



				return	lineReader.getProgress();
		}

		public	void	close()	throws	IOException	{
				lineReader.close();
		}
}

3.	 Specify	LogFileInputFormat	as	InputFormat	for	the	MapReduce	computation	using
the	Job	object	as	follows.	Specify	the	input	paths	for	the	computations	using	the
underlying	FileInputFormat.

Job	job	=	……
……
job.setInputFormatClass(LogFileInputFormat.class);
FileInputFormat.setInputPaths(job,	new	Path(inputPath));

4.	 Make	sure	the	Mappers	of	the	computation	use	LongWritable	as	the	input	key	type
and	LogWritable	as	the	input	value	type:

public	class	LogProcessorMap	extendsMapper<LongWritable,	LogWritable,	
Text,	IntWritable>{
				public	void	map(LongWritable	key,	LogWritable	value,	Context	
context)	throws	……{
				………}
}



How	it	works…
LogFileInputFormat	extends	FileInputFormat,	which	provides	a	generic	splitting
mechanism	for	HDFS-file	based	InputFormat.	We	override	the	createRecordReader()
method	in	LogFileInputFormat	to	provide	an	instance	of	our	custom	RecordReader
implementation,	LogFileRecordReader.	Optionally,	we	can	also	override	the
isSplitable()	method	of	the	FileInputFormat	class	to	control	whether	the	input	files
are	split-up	to	logical	partitions	or	used	as	whole	files.

Public	RecordReader<LongWritable,	LogWritable>createRecordReader(InputSplit	
arg0,TaskAttemptContext	arg1)	throws	……	{
				return	new	LogFileRecordReader();
}

The	LogFileRecordReader	class	extends	the
org.apache.hadoop.mapreduce.RecordReader<K,V>	abstract	class	and	uses
LineRecordReader	internally	to	perform	the	basic	parsing	of	the	input	data.
LineRecordReader	reads	lines	of	text	from	the	input	data:

				lineReader	=	new	LineRecordReader();
				lineReader.initialize(inputSplit,	attempt);

We	perform	custom	parsing	of	the	log	entries	of	the	input	data	in	the	nextKeyValue()
method.	We	use	a	regular	expression	to	extract	the	fields	out	of	the	HTTP	service	log	entry
and	populate	an	instance	of	the	LogWritable	class	using	those	fields.

		public	boolean	nextKeyValue()	throws	IOException,	..{
				if	(!lineReader.nextKeyValue())
						return	false;

				String	line	=	lineReader.getCurrentValue().toString();
				……………//Extract	the	fields	from	'line'	using	a	regex

				value	=	new	LogWritable(userIP,	timestamp,	request,	status,	bytes);
				return	true;
		}



There’s	more…
We	can	perform	custom	splitting	of	input	data	by	overriding	the	getSplits()	method	of
the	InputFormat	class.	The	getSplits()	method	should	return	a	list	of	InputSplit
objects.	An	InputSplit	object	represents	a	logical	partition	of	the	input	data	and	will	be
assigned	to	a	single	Map	task.	InputSplit	classes	extend	the	InputSplit	abstract	class
and	should	override	the	getLocations()	and	getLength()	methods.	The	getLength()
method	should	provide	the	length	of	the	split	and	the	getLocations()	method	should
provide	a	list	of	nodes	where	the	data	represented	by	this	split	is	physically	stored.
Hadoop	uses	a	list	of	data	local	nodes	for	Map	task	scheduling.	The	FileInputFormat
class	we	use	in	the	preceding	example	uses	the
org.apache.hadoop.mapreduce.lib.input.FileSplit	as	the	InputSplit
implementations.

You	can	write	InputFormat	implementations	for	non-HDFS	data	as	well.	The
org.apache.hadoop.mapreduce.lib.db.DBInputFormat	is	one	example	of
InputFormat.DBInputFormat	supports	reading	the	input	data	from	a	SQL	table.



See	also
The	Choosing	a	suitable	Hadoop	InputFormat	for	your	input	data	format	recipe.





Formatting	the	results	of	MapReduce
computations	–	using	Hadoop
OutputFormats
Often	the	output	of	your	MapReduce	computation	will	be	consumed	by	other	applications.
Hence,	it	is	important	to	store	the	result	of	a	MapReduce	computation	in	a	format	that	can
be	consumed	efficiently	by	the	target	application.	It	is	also	important	to	store	and	organize
the	data	in	a	location	that	is	efficiently	accessible	by	your	target	application.	We	can	use
Hadoop	OutputFormat	interface	to	define	the	data	storage	format,	data	storage	location,
and	the	organization	of	the	output	data	of	a	MapReduce	computation.	An	OutputFormat
prepares	the	output	location	and	provides	a	RecordWriter	implementation	to	perform	the
actual	serialization	and	storage	of	data.

Hadoop	uses	the	org.apache.hadoop.mapreduce.lib.output.TextOutputFormat<K,V>
abstract	class	as	the	default	OutputFormat	for	the	MapReduce	computations.
TextOutputFormat	writes	the	records	of	the	output	data	to	plain	text	files	in	HDFS	using	a
separate	line	for	each	record.	TextOutputFormat	uses	the	tab	character	to	delimit	between
the	key	and	the	value	of	a	record.	TextOutputFormat	extends	FileOutputFormat,	which	is
the	base	class	for	all	file-based	output	formats.



How	to	do	it…
The	following	steps	show	you	how	to	use	the	FileOutputFormat	based
SequenceFileOutputFormat	as	the	OutputFormat	for	a	Hadoop	MapReduce	computation.

1.	 In	this	example,	we	are	going	to	specify	the
org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat<K,V>	as
the	OutputFormat	for	a	Hadoop	MapReduce	computation	using	the	Job	object	as
follows:

Job	job	=	……
……
job.setOutputFormatClass(SequenceFileOutputFormat.class)

2.	 Set	the	output	paths	to	the	job:

FileOutputFormat.setOutputPath(job,	new	Path(outputPath));



How	it	works…
SequenceFileOutputFormat	serializes	the	data	to	Hadoop	SequenceFiles.	Hadoop
SequenceFiles	store	the	data	as	binary	key-value	pairs	and	support	data	compression.
SequenceFiles	are	efficient	specially	for	storing	non-text	data.	We	can	use	the
SequenceFiles	to	store	the	result	of	a	MapReduce	computation,	if	the	output	of	the
MapReduce	computation	is	going	to	be	the	input	of	another	Hadoop	MapReduce
computation.

SequenceFileOutputFormat	is	based	on	the	FileOutputFormat,	which	is	the	base	class
for	the	file-based	OutputFormat.	Hence,	we	specify	the	output	path	to	the	MapReduce
computation	using	the	setOutputPath()	method	of	the	FileOutputFormat.	We	have	to
perform	this	step	when	using	any	OutputFormat	that	is	based	on	the	FileOutputFormat.

FileOutputFormat.setOutputPath(job,	new	Path(outputPath));



There’s	more…
You	can	implement	custom	OutputFormat	classes	to	write	the	output	of	your	MapReduce
computations	in	a	proprietary	or	custom	data	format	and/or	to	store	the	result	in	a	storage
other	than	HDFS	by	extending	the	org.apache.hadoop.mapreduce.OutputFormat<K,V>
abstract	class.	In	case	your	OutputFormat	implementation	stores	the	data	in	a	filesystem,
you	can	extend	from	the	FileOutputFormat	class	to	make	your	life	easier.





Writing	multiple	outputs	from	a
MapReduce	computation
We	can	use	the	MultipleOutputs	feature	of	Hadoop	to	emit	multiple	outputs	from	a
MapReduce	computation.	This	feature	is	useful	when	we	want	to	write	different	outputs	to
different	files	and	also	when	we	need	to	output	an	additional	output	in	addition	to	the	main
output	of	a	job.	The	MultipleOutputs	feature	allows	us	to	specify	a	different
OutputFormat	for	each	output	as	well.



How	to	do	it…
The	following	steps	show	you	how	to	use	the	MultipleOutputs	feature	to	output	two
different	datasets	from	a	Hadoop	MapReduce	computation:

1.	 Configure	and	name	the	multiple	outputs	using	the	Hadoop	driver	program:

Job	job	=	Job.getInstance(getConf(),	"log-analysis");
…
FileOutputFormat.setOutputPath(job,	new	Path(outputPath));
MultipleOutputs.addNamedOutput(job,	"responsesizes",	
TextOutputFormat.class,Text.class,	IntWritable.class);
MultipleOutputs.addNamedOutput(job,	"timestamps",	
TextOutputFormat.class,Text.class,	Text.class);

2.	 Write	data	to	the	different	named	outputs	from	the	reduce	function:

public	class	LogProcessorReduce	…{
		private	MultipleOutputs	mos;

		protected	void	setup(Context	context)	..	{
				mos	=	new	MultipleOutputs(context);
		}

		public	void	reduce(Text	key,	…	{
				…
				mos.write("timestamps",	key,	val.getTimestamp());
				…
				mos.write("responsesizes",	key,	result);
		}
}

3.	 Close	all	the	opened	outputs	by	adding	the	following	to	the	cleanup	function	of	the
Reduce	task:

@Override
		public	void	cleanup(Context	context)	throws	IOException,
				InterruptedException	{
						mos.close();
		}

4.	 Output	filenames	will	be	in	the	format	namedoutput-r-xxxxx	for	each	output	type
written.	For	the	current	sample,	example	output	filenames	would	be	responsesizes-
r-00000	and	timestamps-r-00000.



How	it	works…
We	first	add	the	named	outputs	to	the	job	in	the	driver	program	using	the	following	static
method	of	the	MultipleOutputs	class:

public	static	addNamedOutput(Job	job,	String	namedOutput,	Class<?	extends	
OutputFormat>	outputFormatClass,	Class<?>	keyClass,	Class<?>	valueClass)

Then	we	initialize	the	MultipleOutputs	feature	in	the	setup	method	of	the	Reduce	task	as
follows:

protected	void	setup(Context	context)	..	{
		mos	=	new	MultipleOutputs(context);
		}

We	can	write	the	different	outputs	using	the	names	we	defined	in	the	driver	program	using
the	following	method	of	the	MultipleOutputs	class:

public	<K,V>	void	write	(String	namedOutput,	K	key,	V	value)

You	can	directly	write	to	an	output	path	without	defining	the	named	outputs	using	the
following	method	of	the	MultipleOutputs.	This	output	will	use	the	OutputFormat	defined
for	the	job	to	format	the	output.

public	void	write(KEYOUT	key,	VALUEOUT	value,
		String	baseOutputPath)

Finally,	we	make	sure	to	close	all	the	outputs	from	the	cleanup	method	of	the	Reduce	task
using	the	close	method	of	the	MultipleOutputs	class.	This	should	be	done	to	avoid	loss	of
any	data	written	to	the	different	outputs.

public	void	close()

Using	multiple	input	data	types	and	multiple	Mapper	implementations	in
a	single	MapReduce	application
We	can	use	the	MultipleInputs	feature	of	Hadoop	to	run	a	MapReduce	job	with	multiple
input	paths,	while	specifying	a	different	InputFormat	and	(optionally)	a	Mapper	for	each
path.	Hadoop	will	route	the	outputs	of	the	different	Mappers	to	the	instances	of	the	single
Reducer	implementation	of	the	MapReduce	computation.	Multiple	inputs	with	different
InputFormats	are	useful	when	we	want	to	process	multiple	datasets	with	the	same	meaning
but	different	InputFormats	(comma-delimited	dataset	and	tab-delimited	dataset).

We	can	use	the	following	addInputPath	static	method	of	the	MutlipleInputs	class	to	add
the	input	paths	and	the	respective	InputFormats	to	the	MapReduce	computation:

Public	static	void	addInputPath(Job	job,	Path	path,	Class<?
extendsInputFormat>inputFormatClass)

The	following	is	an	example	usage	of	the	preceding	method:

MultipleInputs.addInputPath(job,	path1,	CSVInputFormat.class);
MultipleInputs.addInputPath(job,	path1,	TabInputFormat.class);



Multiple	inputs	feature	with	the	ability	to	specify	different	Mapper	implementations	and
InputFormats	is	useful	when	performing	a	Reduce-side	join	of	two	or	more	datasets:

public	static	void	addInputPath(JobConfconf,Path	path,
					Class<?extendsInputFormat>inputFormatClass,
					Class<?extends	Mapper>mapperClass)

The	following	is	an	example	of	using	multiple	inputs	with	different	InputFormats	and
different	Mapper	implementations:

MultipleInputs.addInputPath(job,	accessLogPath,	TextInputFormat.class,	
AccessLogMapper.class);
MultipleInputs.addInputPath(job,	userDataPath,	TextInputFormat.class,	
UserDataMapper.class);



See	also
The	Adding	support	for	new	input	data	formats	–	implementing	a	custom	InputFormat
recipe.





Hadoop	intermediate	data	partitioning
Hadoop	MapReduce	partitions	the	intermediate	data	generated	by	the	Map	tasks	across
the	Reduce	tasks	of	the	computations.	A	proper	partitioning	function	ensuring	balanced
load	for	each	Reduce	task	is	crucial	to	the	performance	of	MapReduce	computations.
Partitioning	can	also	be	used	to	group	together	related	sets	of	records	to	specific	reduce
tasks,	where	you	want	certain	outputs	to	be	processed	or	grouped	together.	The	figure	in
the	Introduction	section	of	this	chapter	depicts	where	the	partitioning	fits	into	the	overall
MapReduce	computation	flow.

Hadoop	partitions	the	intermediate	data	based	on	the	key	space	of	the	intermediate	data
and	decides	which	Reduce	task	will	receive	which	intermediate	record.	The	sorted	set	of
keys	and	their	values	of	a	partition	would	be	the	input	for	a	Reduce	task.	In	Hadoop,	the
total	number	of	partitions	should	be	equal	to	the	number	of	Reduce	tasks	for	the
MapReduce	computation.	Hadoop	partitioners	should	extend	the
org.apache.hadoop.mapreduce.Partitioner<KEY,VALUE>	abstract	class.	Hadoop	uses
org.apache.hadoop.mapreduce.lib.partition.HashPartitioner	as	the	default
partitioner	for	the	MapReduce	computations.	HashPartitioner	partitions	the	keys	based
on	their	hashcode(),	using	the	formula	key.hashcode()	mod	r,	where	r	is	the	number	of
Reduce	tasks.	The	following	diagram	illustrates	HashPartitioner	for	a	computation	with
two	Reduce	tasks:

There	can	be	scenarios	where	our	computations	logic	would	require	or	can	be	better
implemented	using	an	application’s	specific	data-partitioning	schema.	In	this	recipe,	we
implement	a	custom	partitioner	for	our	HTTP	log	processing	application,	which	partitions
the	keys	(IP	addresses)	based	on	their	geographic	regions.



How	to	do	it…
The	following	steps	show	you	how	to	implement	a	custom	partitioner	that	partitions	the
intermediate	data	based	on	the	location	of	the	request	IP	address	or	the	hostname:

1.	 Implement	the	IPBasedPartitioner	class	extending	the	Partitioner	abstract	class:

public	class	IPBasedPartitioner	extends	Partitioner<Text,	IntWritable>{

		public	int	getPartition(Text	ipAddress,
				IntWritable	value,	int	numPartitions)	{
				String	region	=	getGeoLocation(ipAddress);

				if	(region!=null){
						return	((region.hashCode()	&	Integer.MAX_VALUE)	%	numPartitions);
				}
		return	0;
		}
}

2.	 Set	the	Partitioner	class	parameter	in	the	Job	object:

Job	job	=	……
……
job.setPartitionerClass(IPBasedPartitioner.class);



How	it	works…
In	the	preceding	example,	we	perform	the	partitioning	of	the	intermediate	data,	such	that
the	requests	from	the	same	geographic	region	will	be	sent	to	the	same	Reducer	instance.
The	getGeoLocation()	method	returns	the	geographic	location	of	the	given	IP	address.
We	omit	the	implementation	details	of	the	getGeoLocation()	method	as	it’s	not	essential
for	the	understanding	of	this	example.	We	then	obtain	the	hashCode()	method	of	the
geographic	location	and	perform	a	modulo	operation	to	choose	the	Reducer	bucket	for	the
request.



There’s	more…
TotalOrderPartitioner	and	KeyFieldPartitioner	are	two	of	the	several	built-in
partitioner	implementations	provided	by	Hadoop.

TotalOrderPartitioner
TotalOrderPartitioner	extends
org.apache.hadoop.mapreduce.lib.partition.TotalOrderPartitioner<K,V>.	The	set
of	input	records	to	a	Reducer	are	in	a	sorted	order	ensuring	proper	ordering	within	an
input	partition.	However,	the	Hadoop	default	partitioning	strategy	(HashPartitioner)
does	not	enforce	an	ordering	when	partitioning	the	intermediate	data	and	scatters	the	keys
among	the	partitions.	In	use	cases	where	we	want	to	ensure	a	global	order,	we	can	use	the
TotalOrderPartitioner	to	enforce	a	total	order	to	reduce	the	input	records	across	the
Reducer	task.	TotalOrderPartitioner	requires	a	partition	file	as	the	input	defining	the
ranges	of	the	partitions.	The
org.apache.hadoop.mapreduce.lib.partition.InputSampler	utility	allows	us	to
generate	a	partition	file	for	the	TotalOrderPartitioner	by	sampling	the	input	data.
TotalOrderPartitioner	is	used	in	the	Hadoop	TeraSort	benchmark.

Job	job	=	……
……
job.setPartitionerClass(TotalOrderPartitioner.class);
TotalOrderPartitioner.setPartitionFile(jobConf,partitionFile);

KeyFieldBasedPartitioner
The	org.apache.hadoop.mapreduce.lib.partition.KeyFieldBasedPartitioner<K,V>
abstract	class	can	be	used	to	partition	the	intermediate	data	based	on	parts	of	the	key.	A
key	can	be	split	into	a	set	of	fields	by	using	a	separator	string.	We	can	specify	the	indexes
of	the	set	of	fields	to	be	considered	when	partitioning.	We	can	also	specify	the	index	of	the
characters	within	fields.





Secondary	sorting	–	sorting	Reduce	input
values
MapReduce	frameworks	sort	the	Reduce	input	data	based	on	the	key	of	the	key-value
pairs	and	also	group	the	data	based	on	the	key.	Hadoop	invokes	the	reduce	function	for
each	unique	key	in	the	sorted	order	of	keys	with	the	list	of	values	belonging	to	that	key	as
the	second	parameter.	However,	the	list	of	values	for	each	key	is	not	sorted	in	any
particular	order.	There	are	many	scenarios	where	it	would	be	useful	to	have	the	list	of
Reduce	input	values	for	each	key	sorted	based	on	some	criteria	as	well.	The	examples
include	finding	the	maximum	or	minimum	value	for	a	given	key	without	iterating	the
whole	list,	to	optimize	Reduce-side	joins,	to	identify	duplicate	data	products,	and	so	on.

We	can	use	the	Hadoop	framework	to	sort	the	Reduce	input	values	using	a	mechanism
called	secondary	sorting.	We	achieve	this	by	forcing	Hadoop	framework	to	sort	the	reduce
input	key-value	pairs	using	the	key	as	well	as	using	several	designated	fields	from	the
value.	However,	the	partitioning	of	Map	output	data	and	the	grouping	of	the	Reduce	input
data	is	still	performed	only	using	the	key.	This	assures	that	the	Reduce	input	data	is
grouped	and	sorted	by	the	key,	while	the	list	of	values	belonging	to	a	key	would	be	in	a
sorted	order	as	well.



How	to	do	it…
The	following	steps	show	you	how	to	perform	secondary	sorting	of	the	Reduce	input
values	in	a	Hadoop	MapReduce	computation:

1.	 First,	implement	a	WritableComparable	data	type	that	can	contain	the	actual	key
(visitorAddress)	and	the	fields	(responseSize)	from	the	value	that	needs	to	be
included	in	the	sorted	order.	The	comparator	for	this	new	compound	type	should
enforce	the	sorting	order,	where	the	actual	key	comes	first,	followed	by	the	sorting
criteria	derived	from	the	value	fields	contained	in	this	new	type.	We	use	this
compound	type	as	the	Map	output	key	type.	Alternatively,	you	can	also	use	an
existing	WritableComparable	type	as	the	Map	output	key	type,	which	contains	the
actual	key	and	the	other	fields	from	the	value,	by	providing	a	comparable
implementation	for	that	data	type	to	enforce	the	sorting	order.

public	class	SecondarySortWritable	…	{
		private	String	visitorAddress;
		private	int	responseSize;
		………
		@Override
		public	boolean	equals(Object	right)	{
				if	(right	instanceof	SecondarySortWritable)	{
						SecondarySortWritable	r	=	(SecondarySortWritable)	right;
						return	(r.visitorAddress.equals(visitorAddress)	&&	
(r.responseSize	==	responseSize));
				}	else	{
						return	false;
				}
		}

		@Override
		public	int	compareTo(SecondarySortWritable	o)	{
				if	(visitorAddress.equals(o.visitorAddress))	{
						return	responseSize	<	o.responseSize	?	-1	:	1;
				}	else	{
						return	visitorAddress.compareTo(o.visitorAddress);
				}
		}
}

2.	 Modify	the	map	and	reduce	functions	to	use	the	compound	key	that	we	created:

public	class	LogProcessorMap	extends	Mapper<Object,	LogWritable,	
SecondarySortWritable,	LogWritable	>	{
		private	SecondarySortWritable	outKey	..

		public	void	map(Object	key,	…..{
				outKey.set(value.getUserIP().toString(),	
value.getResponseSize().get());
				context.write(outKey,value);
		}
}



public	class	LogProcessorReduce	extends
		Reducer<SecondarySortWritable,	LogWritable..{
		……
		public	void	reduce(SecondarySortWritable	key,	Iterable<LogWritable>	
values	{
				……
		}
}

3.	 Implement	a	custom	partitioner	to	partition	the	Map	output	data	based	only	on	the
actual	key	(visitorAddress)	contained	in	the	compound	key:

public	class	SingleFieldPartitioner	extends…	{
		public	int	getPartition(SecondarySortWritable	key,	Writable	value,	
int	numPartitions)	{
				return	(int)(key.getVisitorAddress().hashCode()	%	numPartitions);
		}
}

4.	 Implement	a	custom	grouping	comparator	to	group	the	Reduce	inputs	only	based	on
the	actual	key	(visitorAddress):

public	class	GroupingComparator	extends	WritableComparator	{
		public	GroupingComparator()	{
				super(SecondarySortWritable.class,	true);
		}

		@Override
		public	int	compare(WritableComparable	o1,	WritableComparable	o2)	{
				SecondarySortWritable	firstKey	=	(SecondarySortWritable)	o1;
				SecondarySortWritable	secondKey	=	(SecondarySortWritable)	o2;
				return	
(firstKey.getVisitorAddress()).compareTo(secondKey.getVisitorAddress())
;
		}

5.	 Configure	the	partitioner,	GroupingComparator,	and	the	Map	output	key	type	in	the
driver	program:

Job	job	=	Job.getInstance(getConf(),	"log-analysis");
……
job.setMapOutputKeyClass(SecondarySortWritable.class);
……

//	group	and	partition	by	the	visitor	address
job.setPartitionerClass(SingleFieldPartitioner.class);
job.setGroupingComparatorClass(GroupingComparator.class);



How	it	works…
We	first	implemented	a	custom	WritableComparable	key	type	that	would	hold	the	actual
key	and	the	sort	fields	of	the	value.	We	ensure	the	sorting	order	of	this	new	compound	key
type	to	be	the	actual	key	followed	by	the	sort	fields	from	the	value.	This	will	ensure	that
the	Reduce	input	data	would	be	first	sorted	based	on	the	actual	key	followed	by	the	given
fields	of	the	value.

Then	we	implemented	a	custom	partitioner	that	would	partition	the	Map	output	data	only
based	on	the	actual	key	field	from	the	new	compound	key.	This	step	ensures	that	each	key-
value	pair	with	the	same	actual	key	would	be	processed	by	the	same	Reducer.	Finally,	we
implemented	a	grouping	comparator	that	would	consider	only	the	actual	key	field	of	the
new	key	when	grouping	the	reduced	input	key-value	pairs.	This	ensures	that	each	reduce
function	input	will	be	the	new	compound	key	together	with	the	list	of	values	belonging	to
the	actual	key.	The	list	of	values	would	be	in	sorted	order	as	that	is	defined	in	the
comparator	of	the	compound	key.



See	also
The	Adding	support	for	new	input	data	formats	–	implementing	a	custom	InputFormat
recipe.





Broadcasting	and	distributing	shared
resources	to	tasks	in	a	MapReduce	job	–
Hadoop	DistributedCache
We	can	use	the	Hadoop	DistributedCache	to	distribute	read-only	file-based	resources	to
the	Map	and	Reduce	tasks.	These	resources	can	be	simple	data	files,	archives,	or	JAR	files
that	are	needed	for	the	computations	performed	by	the	Mappers	or	the	Reducers.



How	to	do	it…
The	following	steps	show	you	how	to	add	a	file	to	the	Hadoop	DistributedCache	and	how
to	retrieve	it	from	the	Map	and	Reduce	tasks:

1.	 Copy	the	resource	to	the	HDFS.	You	can	also	use	files	that	are	already	there	in	the
HDFS.

$	hadoop	fs	–copyFromLocal	ip2loc.dat	ip2loc.dat

2.	 Add	the	resource	to	the	DistributedCache	from	your	driver	program:

Job	job	=	Job.getInstance……
……
job.addCacheFile(new	URI("ip2loc.dat#ip2location"));

3.	 Retrieve	the	resource	in	the	setup()	method	of	your	Mapper	or	Reducer	and	use	the
data	in	the	map()	or	reduce()	function:

public	class	LogProcessorMap	extends	Mapper<Object,	LogWritable,	Text,	
IntWritable>	{
		private	IPLookup	lookupTable;

		public	void	setup(Context	context)	throws	IOException{

				File	lookupDb	=	new	File("ip2location");
				//	Load	the	IP	lookup	table	(a	simple	hashmap	of	ip
				//	prefixes	as	keys	and	country	names	as	values)	to
				//	memory
				lookupTable	=	IPLookup.LoadData(lookupDb);
		}

		public	void	map(…)	{
					String	country	=	lookupTable.getCountry(value.ipAddress);
					……
		}
}



How	it	works…
Hadoop	copies	the	files	added	to	the	DistributedCache	to	all	the	worker	nodes	before	the
execution	of	any	task	of	the	job.	DistributedCache	copies	these	files	only	once	per	job.
Hadoop	also	supports	creating	symlinks	to	the	DistributedCache	files	in	the	working
directory	of	the	computation	by	adding	a	fragment	with	the	desired	symlink	name	to	the
URI.	In	the	following	example,	we	are	using	ip2location	as	the	symlink	to	the
ip2loc.dat	file	in	the	DistributedCache:

job.addCacheArchive(new	URI("/data/ip2loc.dat#ip2location"));

We	parse	and	load	the	data	from	the	DistributedCache	in	the	setup()	method	of	the
Mapper	or	the	Reducer.	Files	with	symlinks	are	accessible	from	the	working	directory
using	the	provided	symlink’s	name.

private	IPLookup	lookup;
public	void	setup(Context	context)	throws	IOException{

		File	lookupDb	=	new	File("ip2location");
		//	Load	the	IP	lookup	table	to	memory
		lookup	=	IPLookup.LoadData(lookupDb);
}

public	void	map(…)	{
		String	location	=lookup.getGeoLocation(value.ipAddress);
		……
}

We	can	also	access	the	data	in	the	DistributedCache	directly	using	the
getLocalCacheFiles()	method,	without	using	the	symlink:

URI[]	cacheFiles	=	context.getCacheArchives();

Note
DistributedCache	does	not	work	in	Hadoop	local	mode.



There’s	more…
The	following	sections	show	you	how	to	distribute	the	compressed	archives	using
DistributedCache,	how	to	add	resources	to	the	DistributedCache	using	the	command	line,
and	how	to	use	the	DistributedCache	to	add	resources	to	the	classpath	of	the	Mapper	and
the	Reducer.

Distributing	archives	using	the	DistributedCache
We	can	use	the	DistributedCache	to	distribute	archives	as	well.	Hadoop	extracts	the
archives	in	the	worker	nodes.	You	can	also	provide	symlinks	to	the	archives	using	the	URI
fragments.	In	the	next	example,	we	use	the	ip2locationdb	symlink	for	the
ip2locationdb.tar.gz	archive.

Consider	the	following	MapReduce	driver	program:

Job	job	=	……
job.addCacheArchive(new	URI("/data/ip2locationdb.tar.gz#ip2locationdb"));

The	extracted	directory	of	the	archive	can	be	accessible	from	the	working	directory	of	the
Mapper	or	the	Reducer	using	the	symlink	provided	earlier:

Consider	the	following	Mapper	program:

		public	void	setup(Context	context)	throws	IOException{
				Configuration	conf	=	context.getConfiguration();

				File	lookupDbDir	=	new	File("ip2locationdb");
				String[]	children	=	lookupDbDir.list();

				…
		}

You	can	also	access	the	non-extracted	DistributedCache	archived	files	directly	using	the
following	method	in	the	Mapper	or	Reducer	implementation:

URI[]	cachePath;

public	void	setup(Context	context)	throws	IOException{
		Configuration	conf	=	context.getConfiguration();
		cachePath	=	context.getCacheArchives();
				…
}

Adding	resources	to	the	DistributedCache	from	the	command	line
Hadoop	supports	adding	files	or	archives	to	the	DistributedCache	using	the	command	line,
provided	that	your	MapReduce	driver	programs	implement	the
org.apache.hadoop.util.Tool	interface	or	utilize
org.apache.hadoop.util.GenericOptionsParser.	Files	can	be	added	to	the
DistributedCache	using	the	–files	command-line	option,	while	archives	can	be	added
using	the	–archives	command-line	option.	Files	or	archives	can	be	in	any	filesystem
accessible	for	Hadoop,	including	your	local	filesystem.



These	options	support	a	comma-separated	list	of	paths	and	the	creation	of	symlinks	using
the	URI	fragments.

$	hadoop	jar	C4LogProcessor.jar	LogProcessor-files	
ip2location.dat#ip2location		indir	outdir
$	hadoop	jar	C4LogProcessor.jar	LogProcessor-archives	
ip2locationdb.tar.gz#ip2locationdb	indir	outdir

Adding	resources	to	the	classpath	using	the	DistributedCache
You	can	use	DistributedCache	to	distribute	JAR	files	and	other	dependent	libraries	to	the
Mapper	or	Reducer.	You	can	use	the	following	methods	in	your	driver	program	to	add	the
JAR	files	to	the	classpath	of	the	JVM	running	the	Mapper	or	the	Reducer:

public	static	void	addFileToClassPath(Path	file,Configuration	
conf,FileSystem	fs)

public	static	void	addArchiveToClassPath(Path	archive,Configuration	conf,	
FileSystem	fs)

Similar	to	the	–files	and	–archives	command-line	options	we	described	in	the	Adding
resources	to	the	DistributedCache	from	the	command	line	subsection,	we	can	also	add	the
JAR	files	to	the	classpath	of	our	MapReduce	computations	by	using	the	–libjars
command-line	option.	In	order	for	the	–libjars	command-line	option	to	work,
MapReduce	driver	programs	should	implement	the	Tool	interface	or	should	utilize
GenericOptionsParser.

$	hadoop	jar	C4LogProcessor.jar	LogProcessor-libjars	
ip2LocationResolver.jar		indir	outdir





Using	Hadoop	with	legacy	applications	–
Hadoop	streaming
Hadoop	streaming	allows	us	to	use	any	executable	or	a	script	as	the	Mapper	or	the
Reducer	of	a	Hadoop	MapReduce	job.	Hadoop	streaming	enables	us	to	perform	rapid
prototyping	of	the	MapReduce	computations	using	Linux	shell	utility	programs	or	using
scripting	languages.	Hadoop	streaming	also	allows	the	users	with	some	or	no	Java
knowledge	to	utilize	Hadoop	to	process	data	stored	in	HDFS.

In	this	recipe,	we	implement	a	Mapper	for	our	HTTP	log	processing	application	using
Python	and	use	a	Hadoop	aggregate-package-based	Reducer.



How	to	do	it…
The	following	are	the	steps	to	use	a	Python	program	as	the	Mapper	to	process	the	HTTP
server	log	files:

1.	 Write	the	logProcessor.py	python	script:

#!/usr/bin/python
import	sys
import	re
def	main(argv):
		regex	=re.compile('……')
		line	=	sys.stdin.readline()
		try:
				while	line:
						fields	=	regex.match(line)
						if(fields!=None):
								print"LongValueSum:"+fields.group(1)+
										"\t"+fields.group(7)
						line	=sys.stdin.readline()
		except"end	of	file":
				return	None
if	__name__	==	"__main__":
		main(sys.argv)

2.	 Use	the	following	command	from	the	Hadoop	installation	directory	to	execute	the
Streaming	MapReduce	computation:

$	hadoop	jar	\
			$HADOOP_MAPREDUCE_HOME/hadoop-streaming-*.jar	\
			-input	indir	\
			-output	outdir	\
			-mapper	logProcessor.py	\
			-reducer	aggregate	\
			-file	logProcessor.py



How	it	works…
Each	Map	task	launches	the	Hadoop	streaming	executable	as	a	separate	process	in	the
worker	nodes.	The	input	records	(the	entries	or	lines	of	the	log	file,	not	broken	into	key-
value	pairs)	to	the	Mapper	are	provided	as	lines	to	the	standard	input	of	that	process.	The
executable	should	read	and	process	the	records	from	the	standard	input	until	the	end	of	the
file	is	reached.

line	=	sys.stdin.readline()
try:
				while	line:
						………
						line	=sys.stdin.readline()
except	"end	of	file":
				return	None

Hadoop	streaming	collects	the	outputs	of	the	executable	from	the	standard	output	of	the
process.	Hadoop	streaming	converts	each	line	of	the	standard	output	to	a	key-value	pair,
where	the	text	up	to	the	first	tab	character	is	considered	the	key	and	the	rest	of	the	line	as
the	value.	The	logProcessor.py	python	script	outputs	the	key-value	pairs,	according	to
this	convention,	as	follows:

If	(fields!=None):
						print	"LongValueSum:"+fields.group(1)+	"\t"+fields.group(7);

In	our	example,	we	use	the	Hadoop	aggregate	package	for	the	reduction	part	of	our
computation.	The	Hadoop	aggregate	package	provides	Reducer	and	combiner
implementations	for	simple	aggregate	operations	such	as	sum,	max,	unique	value	count,
and	histogram.	When	used	with	Hadoop	streaming,	the	Mapper	outputs	must	specify	the
type	of	aggregation	operation	of	the	current	computation	as	a	prefix	to	the	output	key,
which	is	the	LongValueSum	in	our	example.

Hadoop	streaming	also	supports	the	distribution	of	files	to	the	worker	nodes	using	the	–
file	option.	We	can	use	this	option	to	distribute	executable	files,	scripts,	or	any	other
auxiliary	file	needed	for	the	streaming	computation.	We	can	specify	multiple	–file
options	for	a	computation.

$	hadoop	jar	……	\
			-mapper	logProcessor.py	\
			-reducer	aggregate	\
			-file	logProcessor.py



There’s	more…
We	can	specify	Java	classes	as	the	Mapper	and/or	Reducer	and/or	combiner	programs	of
Hadoop	streaming	computations.	We	can	also	specify	InputFormat	and	other	options	to	a
Hadoop	streaming	computation.

Hadoop	streaming	also	allows	us	to	use	Linux	shell	utility	programs	as	Mapper	and
Reducer.	The	following	example	shows	the	usage	of	grep	as	the	Mapper	of	a	Hadoop
streaming	computation.

$	hadoop	jar	
			$HADOOP_MAPREDUCE_HOME/hadoop-streaming-*.jar	\
			–input	indir	\
			-output	outdir	\	
			-mapper	'grep	"wiki"'

Hadoop	streaming	provides	the	Reducer	input	records	of	each	key	group	line	by	line	to	the
standard	input	of	the	process	that	is	executing	the	executable.	However,	Hadoop	streaming
does	not	have	a	mechanism	to	distinguish	when	it	starts	to	feed	records	of	a	new	key	to	the
process.	Hence,	the	scripts	or	the	executables	for	Reducer	programs	should	keep	track	of
the	last	seen	key	of	the	input	records	to	demarcate	between	key	groups.

Extensive	documentation	on	Hadoop	streaming	is	available	at
http://hadoop.apache.org/mapreduce/docs/stable1/streaming.html.

http://hadoop.apache.org/mapreduce/docs/stable1/streaming.html


See	also
The	Data	preprocessing	using	Hadoop	streaming	and	Python	and	De-duplicating	data
using	Hadoop	streaming	recipes	in	Chapter	10,	Mass	Text	Data	Processing.





Adding	dependencies	between
MapReduce	jobs
Often	we	require	multiple	MapReduce	applications	to	be	executed	in	a	workflow-like
manner	to	achieve	our	objective.	Hadoop	ControlledJob	and	JobControl	classes	provide
a	mechanism	to	execute	a	simple	workflow	graph	of	MapReduce	jobs	by	specifying	the
dependencies	between	them.

In	this	recipe,	we	execute	the	log-grep	MapReduce	computation	followed	by	the	log-
analysis	MapReduce	computation	on	an	HTTP	server	log	dataset.	The	log-grep
computation	filters	the	input	data	based	on	a	regular	expression.	The	log-analysis
computation	analyses	the	filtered	data.	Hence,	the	log-analysis	computation	is
dependent	on	the	log-grep	computation.	We	use	the	ControlledJob	class	to	express	this
dependency	and	use	the	JobControl	class	to	execute	both	the	related	MapReduce
computations.



How	to	do	it…
The	following	steps	show	you	how	to	add	a	MapReduce	computation	as	a	dependency	of
another	MapReduce	computation:

1.	 Create	the	Configuration	and	the	Job	objects	for	the	first	MapReduce	job	and
populate	them	with	the	other	needed	configurations:

Job	job1	=	……
job1.setJarByClass(RegexMapper.class);
job1.setMapperClass(RegexMapper.class);
FileInputFormat.setInputPaths(job1,	new	Path(inputPath));
FileOutputFormat.setOutputPath(job1,	new	Path(intermedPath));
……

2.	 Create	the	Configuration	and	Job	objects	for	the	second	MapReduce	job	and
populate	them	with	the	necessary	configurations:

Job	job2	=	……
job2.setJarByClass(LogProcessorMap.class);
job2.setMapperClass(LogProcessorMap.class);
job2.setReducerClass(LogProcessorReduce.class);
FileOutputFormat.setOutputPath(job2,	new	Path(outputPath));
………

3.	 Set	the	output	directory	of	the	first	job	as	the	input	directory	of	the	second	job:

FileInputFormat.setInputPaths(job2,	new	Path(intermedPath	+"/part*"));

4.	 Create	ControlledJob	objects	using	the	Job	objects	created	earlier:

ControlledJob	controlledJob1	=	new	
ControlledJob(job1.getConfiguration());
ControlledJob	controlledJob2	=	new	
ControlledJob(job2.getConfiguration());

5.	 Add	the	first	job	as	a	dependency	to	the	second	job:

controlledJob2.addDependingJob(controlledJob1);

6.	 Create	the	JobControl	object	for	this	group	of	jobs	and	add	the	ControlledJob
objects	created	in	step	4	to	the	newly	created	JobControl	object:

JobControl	jobControl	=	new		JobControl("JobControlDemoGroup");
jobControl.addJob(controlledJob1);
jobControl.addJob(controlledJob2);

7.	 Create	a	new	thread	to	run	the	group	of	jobs	added	to	the	JobControl	object.	Start
the	thread	and	wait	for	its	completion:

				Thread	jobControlThread	=	new	Thread(jobControl);
				jobControlThread.start();
				while	(!jobControl.allFinished()){
						Thread.sleep(500);
				}
				jobControl.stop();





How	it	works…
The	ControlledJob	class	encapsulates	the	MapReduce	job	and	keeps	track	of	the	job’s
dependencies.	A	ControlledJob	class	with	depending	jobs	becomes	ready	for	submission
only	when	all	of	its	depending	jobs	are	completed	successfully.	A	ControlledJob	class
fails	if	any	of	the	depending	jobs	fail.

The	JobControl	class	encapsulates	a	set	of	ControlledJobs	and	their	dependencies.
JobControl	tracks	the	status	of	the	encapsulated	ControlledJobs	and	contains	a	thread
that	submits	the	jobs	that	are	in	the	READY	state.

If	you	want	to	use	the	output	of	a	MapReduce	job	as	the	input	of	a	dependent	job,	the
input	paths	to	the	dependent	job	have	to	be	set	manually.	By	default,	Hadoop	generates	an
output	folder	per	Reduce	task	name	with	the	part	prefix.	We	can	specify	all	the	part
prefixed	subdirectories	as	input	to	the	dependent	job	using	wildcards.

FileInputFormat.setInputPaths(job2,	new	Path(job1OutPath	+"/part*"));



There’s	more…
We	can	use	the	JobControl	class	to	execute	and	track	a	group	of	non-dependent	tasks	as
well.

Apache	Oozie	is	a	workflow	system	for	Hadoop	MapReduce	computations.	You	can	use
Oozie	to	execute	Directed	Acyclic	Graphs	(DAG)	of	MapReduce	computations.	You	can
find	more	information	on	Oozie	from	the	project’s	home	page	at	http://oozie.apache.org/.

The	ChainMapper	class,	available	in	the	older	version	of	Hadoop	MapReduce	API,
allowed	us	to	execute	a	pipeline	of	Mapper	classes	inside	a	single	Map	task	computation
in	a	pipeline.	ChainReducer	provided	similar	support	for	Reduce	tasks.	This	API	still
exists	in	Hadoop	2	for	backward	compatibility	reasons.

http://oozie.apache.org/




Hadoop	counters	to	report	custom	metrics
Hadoop	uses	a	set	of	counters	to	aggregate	the	metrics	for	MapReduce	computations.
Hadoop	counters	are	helpful	to	understand	the	behavior	of	our	MapReduce	programs	and
to	track	the	progress	of	the	MapReduce	computations.	We	can	define	custom	counters	to
track	the	application-specific	metrics	in	MapReduce	computations.



How	to	do	it…
The	following	steps	show	you	how	to	define	a	custom	counter	to	count	the	number	of	bad
or	corrupted	records	in	our	log	processing	application:

1.	 Define	the	list	of	custom	counters	using	enum:

		public	static	enum	LOG_PROCESSOR_COUNTER	{
					BAD_RECORDS
				};

2.	 Increment	the	counter	in	your	Mapper	or	Reducer:

context.getCounter(LOG_PROCESSOR_COUNTER.BAD_RECORDS).increment(1);

3.	 Add	the	following	to	your	driver	program	to	access	the	counters:

Job	job	=	new	Job(getConf(),	"log-analysis");
……
Counters	counters	=	job.getCounters();
Counter	badRecordsCounter	=	
counters.findCounter(LOG_PROCESSOR_COUNTER.BAD_RECORDS);
System.out.println("#	of	Bad	Records:"+	badRecordsCounter.getValue());

4.	 Execute	your	Hadoop	MapReduce	computation.	You	can	also	view	the	counter
values	in	the	admin	console	or	in	the	command	line.

$	hadoop	jar	C4LogProcessor.jar	\
		demo.LogProcessor	in	out	1
………
12/07/29	23:59:01	INFO	mapred.JobClient:	Job	complete:	
job_201207271742_0020
12/07/29	23:59:01	INFO	mapred.JobClient:	Counters:	30
12/07/29	23:59:01	INFO	mapred.JobClient:			
demo.LogProcessorMap$LOG_PROCESSOR_COUNTER
12/07/29	23:59:01	INFO	mapred.JobClient:			BAD_RECORDS=1406
12/07/29	23:59:01	INFO	mapred.JobClient:			Job	Counters
………
12/07/29	23:59:01	INFO	mapred.JobClient:					Map	output	records=112349
#	of	Bad	Records	:1406



How	it	works…
You	have	to	define	your	custom	counters	using	enum.	The	set	of	counters	in	an	enum	will
form	a	group	of	counters.	The	ApplicationMaster	aggregates	the	counter	values	reported
by	the	Mappers	and	the	Reducers.





Chapter	5.	Analytics
In	this	chapter,	we	will	cover	the	following	recipes:

Simple	analytics	using	MapReduce
Performing	GROUP	BY	using	MapReduce
Calculating	frequency	distributions	and	sorting	using	MapReduce
Plotting	the	Hadoop	MapReduce	results	using	gnuplot
Calculating	histograms	using	MapReduce
Calculating	Scatter	plots	using	MapReduce
Parsing	a	complex	dataset	with	Hadoop
Joining	two	datasets	using	MapReduce



Introduction
In	this	chapter,	we	will	discuss	how	we	can	use	Hadoop	to	process	a	dataset	and	to
understand	its	basic	characteristics.	We	will	cover	more	complex	methods	like	data
mining,	classification,	clustering,	and	so	on,	in	later	chapters.

This	chapter	will	show	how	you	can	calculate	basic	analytics	using	a	given	dataset.	For
the	recipes	in	this	chapter,	we	will	use	two	datasets:

The	NASA	weblog	dataset	available	at	http://ita.ee.lbl.gov/html/contrib/NASA-
HTTP.html	is	a	real-life	dataset	collected	using	the	requests	received	by	NASA	web
servers.	You	can	find	a	description	of	the	structure	of	this	data	at	this	link.	A	small
extract	of	this	dataset	that	can	be	used	for	testing	is	available	inside	the
chapter5/resources	folder	of	the	code	repository.
List	of	e-mail	archives	of	Apache	Tomcat	developers	available	from
http://tomcat.apache.org/mail/dev/.	These	archives	are	in	the	MBOX	format.

Note
The	contents	of	this	chapter	are	based	on	the	Chapter	6,	Analytics,	of	the	previous	edition
of	this	book,	Hadoop	MapReduce	Cookbook.	That	chapter	was	contributed	by	the
coauthor	Srinath	Perera.

Tip
Sample	code

The	example	code	files	for	this	book	are	available	in	GitHub	at
https://github.com/thilg/hcb-v2.	The	chapter5	folder	of	the	code	repository	contains	the
sample	source	code	files	for	this	chapter.

Sample	codes	can	be	compiled	by	issuing	the	gradle	build	command	in	the	chapter5
folder	of	the	code	repository.	Project	files	for	Eclipse	IDE	can	be	generated	by	running	the
gradle	eclipse	command	in	the	main	folder	of	the	code	repository.	Project	files	for
IntelliJ	IDEA	IDE	can	be	generated	by	running	the	gradle	idea	command	in	the	main
folder	of	the	code	repository.

http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
http://tomcat.apache.org/mail/dev/
https://github.com/thilg/hcb-v2




Simple	analytics	using	MapReduce
Aggregate	metrics	such	as	mean,	max,	min,	standard	deviation,	and	so	on,	provide	the
basic	overview	of	a	dataset.	You	may	perform	these	calculations,	either	for	the	whole
dataset	or	to	a	subset	or	a	sample	of	the	dataset.

In	this	recipe,	we	will	use	Hadoop	MapReduce	to	calculate	the	minimum,	maximum,	and
average	size	of	files	served	from	a	web	server,	by	processing	logs	of	the	web	server.	The
following	figure	shows	the	execution	flow	of	this	computation:

As	shown	in	the	figure,	the	Map	function	emits	the	size	of	the	file	as	the	value	and	the
string	msgSize	as	the	key.	We	use	a	single	Reduce	task,	and	all	the	intermediate	key-value
pairs	will	be	sent	to	that	Reduce	task.	Then,	the	Reduce	function	calculates	the	aggregate
values	using	the	information	emitted	by	the	Map	tasks.



Getting	ready
This	recipe	assumes	that	you	have	a	basic	understanding	of	how	the	processing	of	Hadoop
MapReduce	works.	If	not,	please	follow	the	Writing	a	WordCount	MapReduce
application,	bundling	it,	and	running	it	using	the	Hadoop	local	mode	and	Setting	up
Hadoop	YARN	in	a	distributed	cluster	environment	using	Hadoop	v2	recipes	from	Chapter
1,	Getting	Started	with	Hadoop	v2.	You	need	to	have	a	working	Hadoop	installation	as
well.



How	to	do	it…
The	following	steps	describe	how	to	use	MapReduce	to	calculate	simple	aggregate	metrics
about	the	weblog	dataset:

1.	 Download	the	weblog	dataset	from
ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz	and	extract	it.	Let’s	call	the
extracted	location	as	<DATA_DIR>.

2.	 Upload	the	extracted	data	to	HDFS	by	running	the	following	commands:

$	hdfs	dfs	-mkdir	data
$	hdfs	dfs	-mkdir	data/weblogs
$	hdfs	dfs	–copyFromLocal	\
<DATA_DIR>/NASA_access_log_Jul95	\
data/weblogs

3.	 Compile	the	sample	source	code	for	this	chapter	by	running	the	gradle	build
command	from	the	chapter5	folder	of	the	source	repository.

4.	 Run	the	MapReduce	job	by	using	the	following	command:

$	hadoop	jar	hcb-c5-samples.jar	\
chapter5.weblog.MsgSizeAggregateMapReduce	\
data/weblogs	data/msgsize-out

5.	 Read	the	results	by	running	the	following	command:

$	hdfs	dfs	-cat	data/msgsize-out/part*
….
Mean				1150
Max					6823936
Min					0

ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz


How	it	works…
You	can	find	the	source	file	for	this	recipe	from
chapter5/src/chapter5/weblog/MsgSizeAggregateMapReduce.java.

HTTP	logs	follow	a	standard	pattern	as	follows.	The	last	token	is	the	size	of	the	web	page
served:

205.212.115.106	-	-	[01/Jul/1995:00:00:12	-0400]	"GET	
/shuttle/countdown/countdown.html	HTTP/1.0"	200	3985

We	will	use	the	Java	regular	expressions	to	parse	the	log	lines,	and	the
Pattern.compile()	method	at	the	top	of	the	class	defines	the	regular	expression.	Regular
expressions	are	a	very	useful	tool	while	writing	text-processing	Hadoop	computations:

public	void	map(Object	key,	Text	value,	Context	context)	…	{
		Matcher	matcher	=	httplogPattern.matcher(value.toString());
		if	(matcher.matches())	{
				int	size	=	Integer.parseInt(matcher.group(5));
				context.write(new	Text("msgSize"),	new	IntWritable(size));
		}
}

Map	tasks	receive	each	line	in	the	log	file	as	a	different	key-value	pair.	It	parses	the	lines
using	regular	expressions	and	emits	the	file	size	as	the	value	with	msgSize	as	the	key.

Then,	Hadoop	collects	all	the	output	key-value	pairs	from	the	Map	tasks	and	invokes	the
Reduce	task.	Reducer	iterates	all	the	values	and	calculates	the	minimum,	maximum,	and
mean	size	of	the	files	served	from	the	web	server.	It	is	worth	noting	that	by	making	the
values	available	as	an	iterator,	Hadoop	allows	us	to	process	the	data	without	storing	them
in	memory,	allowing	the	Reducers	to	scale	to	large	datasets.	Whenever	possible,	you
should	process	the	reduce	function	input	values	without	storing	them	in	memory:

public	void	reduce(Text	key,	Iterable<IntWritable>	values,…{
		double	total	=	0;
		int	count	=	0;
		int	min	=	Integer.MAX_VALUE;
		int	max	=	0;

		Iterator<IntWritable>	iterator	=	values.iterator();
		while	(iterator.hasNext())	{
				int	value	=	iterator.next().get();
				total	=	total	+	value;
				count++;
				if	(value	<	min)
						min	=	value;

				if	(value	>	max)
						max	=	value;
		}
		context.write(new	Text("Mean"),
				new	IntWritable((int)	total	/	count));
		context.write(new	Text("Max"),	new	IntWritable(max));
		context.write(new	Text("Min"),	new	IntWritable(min));



}

The	main()	method	of	the	job	looks	similar	to	the	WordCount	example,	except	for	the
highlighted	lines	that	have	been	changed	to	accommodate	the	output	data	types:

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);



There’s	more…
You	can	learn	more	about	Java	regular	expressions	from	the	Java	tutorial,
http://docs.oracle.com/javase/tutorial/essential/regex/.

http://docs.oracle.com/javase/tutorial/essential/regex/




Performing	GROUP	BY	using
MapReduce
This	recipe	shows	how	we	can	use	MapReduce	to	group	data	into	simple	groups	and
calculate	metrics	for	each	group.	We	will	use	the	web	server’s	log	dataset	for	this	recipe	as
well.	This	computation	is	similar	to	the	select	page,	count(*)	from	weblog_table
group	by	page	SQL	statement.	The	following	figure	shows	the	execution	flow	of	this
computation:

As	shown	in	the	figure,	the	Map	tasks	emit	the	requested	URL	path	as	the	key.	Then,
Hadoop	sorts	and	groups	the	intermediate	data	by	the	key.	All	values	for	a	given	key	will
be	provided	into	a	single	Reduce	function	invocation,	which	will	count	the	number	of
occurrences	of	that	URL	path.



Getting	ready
This	recipe	assumes	that	you	have	a	basic	understanding	of	how	Hadoop	MapReduce
processing	works.



How	to	do	it…
The	following	steps	show	how	we	can	group	web	server	log	data	and	calculate	analytics:

1.	 Download	the	weblog	dataset	from
ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz	and	extract	it.	Let’s	call	the
extracted	location	as	<DATA_DIR>

2.	 Upload	the	extracted	data	to	HDFS	by	running	the	following	commands:

$	hdfs	dfs	-mkdir	data
$	hdfs	dfs	-mkdir	data/weblogs
$	hdfs	dfs	–copyFromLocal	\
<DATA_DIR>/NASA_access_log_Jul95	\
data/weblogs

3.	 Compile	the	sample	source	code	for	this	chapter	by	running	the	gradle	build
command	from	the	chapter5	folder	of	the	source	repository.

4.	 Run	the	MapReduce	job	using	the	following	command:

$	hadoop	jar	hcb-c5-samples.jar	\
chapter5.weblog.HitCountMapReduce	\
data/weblogs	data/hit-count-out

5.	 Read	the	results	by	running	the	following	command:

$	hdfs	dfs	-cat	data/hit-count-out/part*

You	will	see	that	it	will	print	the	results	as	follows:

/base-ops/procurement/procurement.html		28
/biomed/																																1
/biomed/bibliography/biblio.html								7
/biomed/climate/airqual.html												4
/biomed/climate/climate.html												5
/biomed/climate/gif/f16pcfinmed.gif					4
/biomed/climate/gif/f22pcfinmed.gif					3
/biomed/climate/gif/f23pcfinmed.gif					3
/biomed/climate/gif/ozonehrlyfin.gif				3

ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz


How	it	works…
You	can	find	the	source	for	this	recipe	from
chapter5/src/chapter5/HitCountMapReduce.java.

As	described	in	the	earlier	recipe,	we	will	use	a	regular	expression	to	parse	the	web	server
logs	and	to	extract	the	requested	URL	paths.	For	example,
/shuttle/countdown/countdown.html	will	get	extracted	from	the	following	sample	log
entry:

205.212.115.106	-	-	[01/Jul/1995:00:00:12	-0400]	"GET	
/shuttle/countdown/countdown.html	HTTP/1.0"	200	3985

The	following	code	segment	shows	the	Mapper:

private	final	static	IntWritable	one	=	new	IntWritable(1);
private	Text	word	=	new	Text();
public	void	map(Object	key,	Text	value,	Context	context)	……	{
		Matcher	matcher	=	httplogPattern.matcher(value.toString());
		if	(matcher.matches())	{
				String	linkUrl	=	matcher.group(4);
				word.set(linkUrl);
				context.write(word,	one);
		}
}

Map	tasks	receive	each	line	in	the	log	file	as	a	different	key-value	pair.	Map	tasks	parse
the	lines	using	regular	expressions	and	emit	the	link	as	the	key	and	number	one	as	the
value.

Then,	Hadoop	collects	all	values	for	different	keys	(links)	and	invokes	the	Reducer	once
for	each	link.	Then,	each	Reducer	counts	the	number	of	hits	for	each	link:

private	IntWritable	result	=	new	IntWritable();
public	void	reduce(Text	key,	Iterable<IntWritable>	values,…	{
		int	sum	=	0;
		for	(IntWritable	val	:	values)	{
				sum	+=	val.get();
		}
		result.set(sum);
		context.write(key,	result);
}





Calculating	frequency	distributions	and
sorting	using	MapReduce
Frequency	distribution	is	the	number	of	hits	received	by	each	URL	sorted	in	ascending
order.	We	already	calculated	the	number	of	hits	for	each	URL	in	the	earlier	recipe.	This
recipe	will	sort	that	list	based	on	the	number	of	hits.



Getting	ready
This	recipe	assumes	that	you	have	a	working	Hadoop	installation.	This	recipe	will	use	the
results	from	the	Performing	GROUP	BY	using	MapReduce	recipe	of	this	chapter.	Follow
this	recipe	if	you	have	not	done	so	already.



How	to	do	it…
The	following	steps	show	how	to	calculate	frequency	distribution	using	MapReduce:

1.	 Run	the	MapReduce	job	using	the	following	command.	We	assume	that	the
data/hit-count-out	path	contains	the	output	of	the	HitCountMapReduce
computation	of	the	previous	recipe:

$	bin/hadoop	jar	hcb-c5-samples.jar	\
chapter5.weblog.FrequencyDistributionMapReduce	\
data/hit-count-out	data/freq-dist-out

2.	 Read	the	results	by	running	the	following	command:

$	hdfs	dfs	-cat	data/freq-dist-out/part*

You	will	see	that	it	will	print	the	results	similar	to	the	following:

/cgi-bin/imagemap/countdown?91,175						12
/cgi-bin/imagemap/countdown?105,143					13
/cgi-bin/imagemap/countdown70?177,284			14



How	it	works…
The	Performing	GROUP	BY	using	MapReduce	recipe	of	this	chapter	calculates	the
number	of	hits	received	by	each	URL	path.	MapReduce	sorts	the	Map	output’s
intermediate	key-value	pairs	by	their	keys	before	invoking	the	reduce	function.	In	this
recipe,	we	use	this	sorting	feature	to	sort	the	data	based	on	the	number	of	hits.

You	can	find	the	source	for	this	recipe	from
chapter5/src/chapter5/FrequencyDistributionMapReduce.java.

The	Map	task	outputs	the	number	of	hits	as	the	key	and	the	URL	path	as	the	value:

public	void	map(Object	key,	Text	value,	Context	context)	……	{
		String[]	tokens	=	value.toString().split("\\s");
		context.write(new	IntWritable(Integer.parseInt(tokens[1])),
		new	Text(tokens[0]));
}

The	Reduce	task	receives	the	key-value	pairs	sorted	by	the	key	(number	of	hits):

public	void	reduce(IntWritable	key,	Iterable<Text>	values,	……	{
		Iterator<Text>	iterator	=	values.iterator();
		while	(iterator.hasNext())	{
		context.write(iterator.next(),	key);
		}
}

We	use	only	a	single	Reduce	task	in	this	computation	in	order	to	ensure	a	global	ordering
of	the	results.



There’s	more…
It’s	possible	to	achieve	a	global	ordering	even	with	multiple	Reduce	tasks,	by	utilizing	the
Hadoop	TotalOrderPartitioner.	Refer	to	the	Hadoop	intermediate	data	partitioning
recipe	of	Chapter	4,	Developing	Complex	Hadoop	MapReduce	Applications,	for	more
information	on	the	TotalOrderPartitioner.





Plotting	the	Hadoop	MapReduce	results
using	gnuplot
Although	Hadoop	MapReduce	jobs	can	generate	interesting	analytics,	making	sense	of
those	results	and	getting	a	detailed	understanding	about	the	data	often	requires	us	to	see
the	overall	trends	in	the	data.	The	human	eye	is	remarkably	good	at	detecting	patterns,	and
plotting	the	data	often	yields	a	deeper	understanding	of	the	data.	Therefore,	we	often	plot
the	results	of	Hadoop	jobs	using	a	plotting	program.

This	recipe	explains	how	to	use	gnuplot,	which	is	a	free	and	powerful	plotting	program
used	to	plot	Hadoop	results.



Getting	ready
This	recipe	assumes	that	you	have	followed	the	previous	recipe,	Calculating	frequency
distributions	and	sorting	using	MapReduce.	If	you	have	not	done	this,	follow	this	recipe.
Install	the	gnuplot	plotting	program	by	following	the	instructions	in
http://www.gnuplot.info/.

http://www.gnuplot.info/


How	to	do	it…
The	following	steps	show	how	to	plot	Hadoop	job	results	using	gnuplot:

1.	 Download	the	results	of	the	previous	recipe	to	a	local	computer	by	running	the
following	command:

$	hdfs	dfs	-copyToLocal	data/freq-dist-out/part-r-00000	2.data

2.	 Copy	all	the	*.plot	files	from	the	chapter5/plots	folder	to	the	location	of	the
downloaded	data.

3.	 Generate	the	plot	by	running	the	following	command:

$	gnuplot	httpfreqdist.plot

4.	 It	will	generate	a	file	called	freqdist.png,	which	will	look	like	the	following:

The	preceding	plot	is	plotted	in	log-log	scale,	and	the	first	part	of	the	distribution	follows
the	zipf	(power	law)	distribution,	which	is	a	common	distribution	seen	in	the	Web.	The
last	few	most	popular	links	have	much	higher	rates	than	expected	from	a	zipf	distribution.

Discussion	about	more	details	on	this	distribution	is	out	of	the	scope	of	this	book.
However,	this	plot	demonstrates	the	kind	of	insights	we	can	get	by	plotting	the	analytical
results.	In	most	of	the	future	recipes,	we	will	use	gnuplot	to	plot	and	analyze	the	results.



How	it	works…
The	following	steps	describe	how	plotting	with	gnuplot	works:

You	can	find	the	source	for	the	gnuplot	file	from
chapter5/plots/httpfreqdist.plot.	The	source	for	the	plot	will	look	like	the
following:

set	terminal	png
set	output	"freqdist.png"

set	title	"Frequnecy	Distribution	of	Hits	by	Url";
set	ylabel	"Number	of	Hits";
set	xlabel	"Urls	(Sorted	by	hits)";
set	key	left	top
set	log	y
set	log	x

plot"2.data"	using	2	title	"Frequency"	with	linespoints

Here,	the	first	two	lines	define	the	output	format.	This	example	uses	PNG,	but	the
gnuplot	supports	many	other	terminals	such	as	SCREEN,	PDF,	EPS,	and	so	on.
The	next	four	lines	define	the	axis	labels	and	the	title.
The	next	two	lines	define	the	scale	of	each	axis,	and	this	plot	uses	log	scale	for	both.
The	last	line	defines	the	plot.	Here,	it	is	asking	gnuplot	to	read	the	data	from	the
2.data	file,	and	use	the	data	in	the	second	column	of	the	file	via	using	2	and	to	plot
it	using	lines.	Columns	must	be	separated	by	whitespaces.
Here,	if	you	want	to	plot	one	column	against	another,	for	example,	data	from	column
1	against	column	2,	you	should	write	using	1:2	instead	of	using	2.



There’s	more…
You	can	learn	more	about	gnuplot	from	http://www.gnuplot.info/.

http://www.gnuplot.info/




Calculating	histograms	using	MapReduce
Another	interesting	view	of	a	dataset	is	a	histogram.	A	histogram	makes	sense	only	under
a	continuous	dimension	(for	example,	accessed	time	and	file	size).	It	groups	the	number	of
occurrences	of	an	event	into	several	groups	in	the	dimension.	For	example,	in	this	recipe,
if	we	take	the	accessed	time	as	the	dimension,	then	we	will	group	the	accessed	time	by	the
hour.

The	following	figure	shows	the	execution	summary	of	this	computation.	The	Mapper
emits	the	hour	of	the	access	as	the	key	and	1	as	the	value.	Then,	each	reduce	function
invocation	receives	all	the	occurrences	of	a	certain	hour	of	the	day,	and	it	calculates	the
total	number	of	occurrences	for	that	hour	of	the	day.



Getting	ready
This	recipe	assumes	that	you	have	a	working	Hadoop	installation.	Install	gnuplot.



How	to	do	it…
The	following	steps	show	how	to	calculate	and	plot	a	histogram:

1.	 Download	the	weblog	dataset	from
ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz	and	extract	it.

2.	 Upload	the	extracted	data	to	HDFS	by	running	the	following	commands:

$	hdfs	dfs	-mkdir	data
$	hdfs	dfs	-mkdir	data/weblogs
$	hdfs	dfs	–copyFromLocal	\
<DATA_DIR>/NASA_access_log_Jul95	\
data/weblogs

3.	 Compile	the	sample	source	code	for	this	chapter	by	running	the	gradle	build
command	from	the	chapter5	folder	of	the	source	repository.

4.	 Run	the	MapReduce	job	using	the	following	command:

$	hadoop	jar	hcb-c5-samples.jar	\
chapter5.weblog.HistogramGenerationMapReduce	\
data/weblogs	data/histogram-out

5.	 Inspect	the	results	by	running	the	following	command:

$	hdfs	dfs	-cat	data/histogram-out/part*

6.	 Download	the	results	to	a	local	computer	by	running	the	following	command:

$	hdfs	dfs	-copyToLocal	data/histogram-out/part-r-00000	3.data

7.	 Copy	all	the	*.plot	files	from	the	chapter5/plots	folder	to	the	location	of	the
downloaded	data.

8.	 Generate	the	plot	by	running	the	following	command:

$gnuplot	httphistbyhour.plot

9.	 It	will	generate	a	file	called	hitsbyHour.png,	which	will	look	like	the	following:

ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz




How	it	works…
You	can	find	the	source	code	for	this	recipe	from
chapter5/src/chapter5/weblog/HistogramGenerationMapReduce.java.	Similar	to	the
earlier	recipes	of	this	chapter,	we	use	a	regular	expression	to	parse	the	log	file	and	extract
the	access	time	from	the	log	files.

The	following	code	segment	shows	the	map	function:

public	void	map(Object	key,	Text	value,	Context	context)	…	{
		try	{
				Matcher	matcher	=	httplogPattern.matcher(value.toString());
				if	(matcher.matches())	{
						String	timeAsStr	=	matcher.group(2);
						Date	time	=	dateFormatter.parse(timeAsStr);
						Calendar	calendar	=	GregorianCalendar.getInstance();
						calendar.setTime(time);
						int	hour	=	calendar.get(Calendar.HOUR_OF_DAY);
						context.write(new	IntWritable(hour),	one);
				}
		}	……
}

The	map	function	extracts	the	access	time	for	each	web	page	access	and	extracts	the	hour
of	the	day	from	the	access	time.	It	emits	the	hour	of	the	day	as	the	key	and	one	as	the
value.

Then,	Hadoop	collects	all	key-value	pairs,	sorts	them,	and	then	invokes	the	Reduce
function	once	for	each	key.	Reduce	tasks	calculate	the	total	page	views	for	each	hour:

public	void	reduce(IntWritable	key,	Iterable<IntWritable>	values,..{
		int	sum	=	0;
		for	(IntWritable	val	:	values)	{
				sum	+=	val.get();
		}
		context.write(key,	new	IntWritable(sum));
}





Calculating	Scatter	plots	using
MapReduce
Another	useful	tool	while	analyzing	data	is	a	Scatter	plot,	which	can	be	used	to	find	the
relationship	between	two	measurements	(dimensions).	It	plots	the	two	dimensions	against
each	other.

For	example,	this	recipe	analyzes	the	data	to	find	the	relationship	between	the	size	of	the
web	pages	and	the	number	of	hits	received	by	the	web	page.

The	following	image	shows	the	execution	summary	of	this	computation.	Here,	the	map
function	calculates	and	emits	the	message	size	(rounded	to	1024	bytes)	as	the	key	and	one
as	the	value.	Then,	the	Reducer	calculates	the	number	of	occurrences	for	each	message
size:



Getting	ready
This	recipe	assumes	that	you	have	a	working	Hadoop	installation.	Install	gnuplot.



How	to	do	it…
The	following	steps	show	how	to	use	MapReduce	to	calculate	the	correlation	between	two
datasets:

1.	 Download	the	weblog	dataset	from
ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz	and	extract	it.

2.	 Upload	the	extracted	data	to	HDFS	by	running	the	following	commands:

$	hdfs	dfs	-mkdir	data
$	hdfs	dfs	-mkdir	data/weblogs
$	hdfs	dfs	–copyFromLocal	\
<DATA_DIR>/NASA_access_log_Jul95	\
data/weblogs

3.	 Compile	the	sample	source	code	for	this	chapter	by	running	the	gradle	build
command	from	the	chapter5	folder	of	the	source	repository.

4.	 Run	the	MapReduce	job	using	the	following	command:

$	hadoop	jar	hcb-c5-samples.jar	\
chapter5.weblog.MsgSizeScatterMapReduce	\
data/weblogs	data/scatter-out

5.	 Inspect	the	results	by	running	the	following	command:

$	hdfs	dfs	-cat	data/scatter-out/part*

6.	 Download	the	results	of	the	previous	recipe	to	the	local	computer	by	running	the
following	command	from	HADOOP_HOME:

$	hdfs	dfs	–copyToLocal	data/scatter-out/part-r-00000	5.data

7.	 Copy	all	the	*.plot	files	from	the	chapter5/plots	folder	to	the	location	of	the
downloaded	data.

8.	 Generate	the	plot	by	running	the	following	command:

$	gnuplot	httphitsvsmsgsize.plot

9.	 It	will	generate	a	file	called	hitsbymsgSize.png,	which	will	look	like	the	following
image:

ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz


The	plot	shows	a	negative	correlation	between	the	number	of	hits	and	the	size	of	the
messages	in	the	log	scales.



How	it	works…
You	can	find	the	source	for	the	recipe	from
chapter5/src/chapter5/MsgSizeScatterMapReduce.java.

The	following	code	segment	shows	the	map	function:

public	void	map(Object	key,	Text	value,	Context	context)	……	{
		Matcher	matcher	=	httplogPattern.matcher(value.toString());
		if	(matcher.matches())	{
				int	size	=	Integer.parseInt(matcher.group(5));
				context.write(new	IntWritable(size	/	1024),	one);
		}
}

Map	tasks	parse	the	log	entries	and	emit	the	file	size	in	kilobytes	as	the	key	and	one	as	the
value.

Each	Reducer	walks	through	the	values	and	calculates	the	count	of	page	accesses	for	each
file	size:

public	void	reduce(IntWritable	key,	Iterable<IntWritable>	values,……{
		int	sum	=	0;
		for	(IntWritable	val	:	values)	{
				sum	+=	val.get();
		}
		context.write(key,	new	IntWritable(sum));
}





Parsing	a	complex	dataset	with	Hadoop
The	datasets	we	used	so	far	contained	a	data	item	in	a	single	line,	making	it	possible	for	us
to	use	Hadoop	default	parsing	support	to	parse	those	datasets.	However,	some	datasets
have	more	complex	formats,	where	a	single	data	item	may	span	multiple	lines.	In	this
recipe,	we	will	analyze	mailing	list	archives	of	Tomcat	developers.	In	the	archive,	each	e-
mail	consists	of	multiple	lines	of	the	archive	file.	Therefore,	we	will	write	a	custom
Hadoop	InputFormat	to	process	the	e-mail	archive.

This	recipe	parses	the	complex	e-mail	list	archives,	and	finds	the	owner	(the	person	who
started	the	thread)	and	the	number	of	replies	received	by	each	e-mail	thread.

The	following	figure	shows	the	execution	summary	of	this	computation.	The	Map
function	emits	the	subject	of	the	mail	as	the	key,	and	the	sender’s	e-mail	address	combined
with	the	date	as	the	value.	Then,	Hadoop	groups	the	data	by	the	e-mail	subject	and	sends
all	the	data	related	to	that	thread	to	the	same	Reducer.

Then,	the	Reduce	tasks	identify	the	creator	of	each	e-mail	thread	and	the	number	of	replies
received	by	each	thread.



Getting	ready
This	recipe	assumes	that	you	have	a	working	Hadoop	installation.



How	to	do	it…
The	following	steps	describe	how	to	parse	the	Tomcat	e-mail	list	dataset	that	has	complex
data	format	using	Hadoop	by	writing	an	input	formatter:

1.	 Download	and	extract	the	Apache	Tomcat	developer	list	e-mail	archives	for	the	year
2012	from	http://tomcat.apache.org/mail/dev/.	We	call	the	destination	folder	as
DATA_DIR.

2.	 Upload	the	extracted	data	to	HDFS	by	running	the	following	commands:

$	hdfs	dfs	-mkdir	data
$	hdfs	dfs	-mkdir	data/mbox
$	hdfs	dfs	–copyFromLocal	\
<DATA_DIR>/*	\
data/mbox

3.	 Compile	the	sample	source	code	for	this	chapter	by	running	the	gradle	build
command	from	the	chapter5	folder	of	the	source	repository.

4.	 Run	the	MapReduce	job	using	the	following	command:

$	hadoop	jar	hcb-c5-samples.jar	\
chapter5.mbox.CountReceivedRepliesMapReduce	\
data/mbox	data/count-replies-out

5.	 Inspect	the	results	by	running	the	following	command:

$	hdfs	dfs	-cat	data/count-replies-out/part*

http://tomcat.apache.org/mail/dev/


How	it	works…
As	explained	before,	this	dataset	has	data	items	that	span	multiple	lines.	Therefore,	we
have	to	write	a	custom	InputFormat	and	a	custom	RecordReader	to	parse	the	data.	Source
code	files	for	this	recipe	are	the	CountReceivedRepliesMapReduce.java,
MBoxFileInputFormat.java,	and	MBoxFileReader.java	files	in	the
chapter5/src/chapter5/mbox	directory	of	the	source	code	archive.

We	add	the	new	InputFormat	to	the	Hadoop	job	via	the	Hadoop	driver	program	as
highlighted	in	the	following	code	snippet:

Job	job	=	Job.getInstance(getConf(),	"MLReceiveReplyProcessor");
job.setJarByClass(CountReceivedRepliesMapReduce.class);
job.setMapperClass(AMapper.class);
job.setReducerClass(AReducer.class);
job.setNumReduceTasks(numReduce);

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
job.setInputFormatClass(MBoxFileInputFormat.class);
FileInputFormat.setInputPaths(job,	new	Path(inputPath));
FileOutputFormat.setOutputPath(job,	new	Path(outputPath));

int	exitStatus	=	job.waitForCompletion(true)	?	0	:	1;

As	shown	in	the	following	code,	the	new	formatter	creates	a	RecordReader,	which	is	used
by	Hadoop	to	read	the	key-value	pair	input	to	the	Map	tasks:

public	class	MboxFileFormat	extends	FileInputFormat<Text,	Text>{
		private	MBoxFileReaderboxFileReader	=	null;
		public	RecordReader<Text,	Text>	createRecordReader(
		InputSplit	inputSplit,	TaskAttemptContext	attempt)	…{
				fileReader	=	new	MBoxFileReader();
				fileReader.initialize(inputSplit,	attempt);
				return	fileReader;
		}
}

The	following	code	snippets	show	the	functionality	of	the	RecordReader:

public	class	MBoxFileReader	extends	RecordReader<Text,	Text>	{

		public	void	initialize(InputSplitinputSplit,	…	{
				Path	path	=	((FileSplit)	inputSplit).getPath();
				FileSystem	fs	=	FileSystem.get(attempt.getConfiguration());
				FSDataInputStream	fsStream	=	fs.open(path);
				reader	=	new	BufferedReader(new	InputStreamReader(fsStream));
		}
		public	Boolean	nextKeyValue()	……{
				if	(email	==	null)	{
				return	false;
		}
		count++;
		while	((line	=	reader.readLine())	!=	null)	{
				Matcher	matcher	=	pattern1.matcher(line);



				if	(!matcher.matches())	{
						email.append(line).append("\n");
				}	else	{
						parseEmail(email.toString());
						email	=	new	StringBuffer();
						email.append(line).append("\n");
						return	true;
				}
		}
		parseEmail(email.toString());
		email	=	null;
		return	true;
}
………

The	nextKeyValue()	method	of	the	RecordReader	parses	the	file,	and	generates	key-value
pairs	for	the	consumption	by	the	Map	tasks.	Each	value	has	the	from,	subject,	and	time	of
each	e-mail	separated	by	a	#	character.

The	following	code	snippet	shows	the	Map	task	source	code:

public	void	map(Object	key,	Text	value,	Context	context)	……	{
		String[]	tokens	=	value.toString().split("#");
		String	from	=	tokens[0];
		String	subject	=	tokens[1];
		String	date	=	tokens[2].replaceAll(",",	"");
		subject	=	subject.replaceAll("Re:",	"");
		context.write(new	Text(subject),	new	Text(date	+	"#"	+	from));
}

The	Map	task	receives	each	e-mail	in	the	archive	files	as	a	separate	key-value	pair.	It
parses	the	lines	by	breaking	it	by	the	#,	and	emits	the	subject	as	the	key,	and	time	and
from	as	the	value.

Then,	Hadoop	collects	all	key-value	pairs,	sorts	them,	and	then	invokes	the	Reducer	once
for	each	key.	Since	we	use	the	e-mail	subject	as	the	key,	each	Reduce	function	invocation
will	receive	all	the	information	about	a	single	e-mail	thread.	Then,	the	Reduce	function
will	analyze	all	the	e-mails	of	a	thread	and	find	out	who	sent	the	first	e-mail	and	how
many	replies	have	been	received	by	each	e-mail	thread	as	follows:

public	void	reduce(Text	key,	Iterable<Text>	values,	…{
		TreeMap<Long,	String>replyData	=	new	TreeMap<Long,	String>();

		for	(Text	val	:	values)	{
				String[]	tokens	=	val.toString().split("#");
				if(tokens.length	!=	2)
				throw	new	IOException("Unexpected	token	"+	val.toString());

				String	from	=	tokens[1];
				Date	date	=	dateFormatter.parse(tokens[0]);
				replyData.put(date.getTime(),	from);
		}

		String	owner	=	replyData.get(replyData.firstKey());
		Int	replyCount	=	replyData.size();



		Int	selfReplies	=	0;
		for(String	from:	replyData.values()){
				if(owner.equals(from)){
						selfReplies++;
				}
		}
		replyCount	=	replyCount	-	selfReplies;
		context.write(new	Text(owner),
		new	Text(replyCount+"#"	+	selfReplies));
}



There’s	more…
Refer	to	the	Adding	support	for	new	input	data	formats	–	implementing	a	custom
InputFormat	recipe	of	Chapter	4,	Developing	Complex	Hadoop	MapReduce	Applications,
for	more	information	on	implementing	custom	InputFormats.





Joining	two	datasets	using	MapReduce
As	we	have	already	observed,	Hadoop	is	very	good	at	reading	through	a	dataset	and
calculating	the	analytics.	However,	we	will	often	have	to	merge	two	datasets	to	analyze
the	data.	This	recipe	will	explain	how	to	join	two	datasets	using	Hadoop.

As	an	example,	this	recipe	will	use	the	Tomcat	developer	archives	dataset.	A	common
belief	among	the	open	source	community	is	that	the	more	a	developer	is	involved	with	the
community	(for	example,	by	replying	to	e-mail	threads	in	the	project’s	mailing	lists	and
helping	others	and	so	on),	the	more	quickly	they	will	receive	responses	to	their	queries.	In
this	recipe,	we	will	test	this	hypothesis	using	the	Tomcat	developer	mailing	list.

To	test	this	hypothesis,	we	will	run	the	MapReduce	jobs	as	explained	in	the	following
figure:

We	will	use	the	MBOX-formatted	e-mail	archives	and	use	the	custom	InputFormat	and
RecordReader	explained	in	the	earlier	recipe	to	parse	them.	Map	tasks	will	receive	the
sender	of	the	e-mail	(from),	the	e-mail	subject,	and	the	time	the	e-mail	was	sent,	as	inputs.



1.	 In	the	first	job,	the	map	function	will	emit	the	subject	as	the	key,	and	the	sender’s	e-
mail	address	and	time	as	the	value.	Then,	the	Reducer	step	will	receive	all	the	values
with	the	same	subject	and	it	will	output	the	subject	as	the	key,	and	the	owner	and
reply	count	as	the	value.	We	executed	this	job	in	the	previous	recipe.

2.	 In	the	second	job,	the	map	function	emits	the	sender’s	e-mail	address	as	the	key	and
one	as	the	value.	Then,	the	Reducer	step	will	receive	all	the	e-mails	sent	from	the
same	address	to	the	same	Reducer.	Using	this	data,	each	Reducer	will	emit	the	e-mail
address	as	the	key	and	the	number	of	e-mails	sent	from	that	e-mail	address	as	the
value.

3.	 Finally,	the	third	job	reads	both	the	outputs	from	the	preceding	two	jobs,	joins	the
results,	and	emits	the	number	of	e-mails	sent	by	each	e-mail	address	and	the	number
of	replies	received	by	each	e-mail	address	as	the	output.



Getting	ready
This	recipe	assumes	that	you	have	a	working	Hadoop	installation.	Follow	the	Parsing	a
complex	dataset	with	Hadoop	recipe.	We	will	use	the	input	data	and	the	output	data	of	that
recipe	in	the	following	steps.



How	to	do	it…
The	following	steps	show	how	to	use	MapReduce	to	join	two	datasets:

1.	 Run	the	CountReceivedRepliesMapReduce	computation	by	following	the	Parsing	a
complex	dataset	with	Hadoop	recipe.

2.	 Run	the	second	MapReduce	job	using	the	following	command:

$	hadoop	jar	hcb-c5-samples.jar	\
chapter5.mbox.CountSentRepliesMapReduce	\
data/mbox	data/count-emails-out

3.	 Inspect	the	results	by	using	the	following	command:

$	hdfs	dfs	-cat	data/count-emails-out/part*

4.	 Create	a	new	folder	join-input	and	copy	both	the	results	from	the	earlier	jobs	to	that
folder	in	HDFS:

$	hdfs	dfs	-mkdir	data/join-input
$	hdfs	dfs	-cp	\
data/count-replies-out/part-r-00000	\
data/join-input/1.data
$	hdfs	dfs	-cp	\
data/count-emails-out/part-r-00000	\
data/join-input/2.data

5.	 Run	the	third	MapReduce	job	using	the	following	command:

$	hadoop	jar	hcb-c5-samples.jar	\
chapter5.mbox.JoinSentReceivedReplies	\
data/join-input	data/join-out

6.	 Download	the	results	of	step	5	to	the	local	computer	by	running	the	following
command:

$	hdfs	dfs	-copyToLocal	data/join-out/part-r-00000	8.data

7.	 Copy	all	the	*.plot	files	from	the	chapter5/plots	folder	to	the	location	of	the
downloaded	data.

8.	 Generate	the	plot	by	running	the	following	command:

$	gnuplot	sendvsreceive.plot

9.	 It	will	generate	a	file	called	sendreceive.png,	which	will	look	like	the	following:



The	graph	confirms	our	hypothesis,	and	like	before,	the	data	approximately	follows	a
power	law	distribution.



How	it	works…
You	can	find	the	source	code	for	this	recipe	from
chapter5/src/chapter5/mbox/CountSentRepliesMapReduce.java	and
chapter5/src/chapter5/mbox/JoinSentReceivedReplies.java.	We	have	already
discussed	the	first	job	in	the	earlier	recipe.

The	following	code	snippet	shows	the	map	function	for	the	second	job.	It	receives	the
sender’s	e-mail,	subject,	and	time	separated	by	#	as	the	input,	which	parses	the	input	and
outputs	the	sender’s	e-mail	as	the	key,	and	the	time	the	e-mail	was	sent	as	the	value:

public	void	map(Object	key,	Text	value,	Context	context)	……{
		String[]	tokens	=	value.toString().split("#");
		String	from	=	tokens[0];
		String	date	=	tokens[2];
		context.write(new	Text(from),	new	Text(date));
}

The	following	code	snippet	shows	the	reduce	function	for	the	second	job.	Each	reduce
function	invocation	receives	the	time	of	all	the	e-mails	sent	by	one	sender.	The	Reducer
counts	the	number	of	replies	sent	by	each	sender,	and	outputs	the	sender’s	name	as	the
key,	and	the	number	of	replies	sent	as	the	value:

public	void	reduce(Text	key,	Iterable<Text>	values,	……{
		int	sum	=	0;
		for	(Text	val	:	values)	{
				sum	=	sum	+1;
		}
		context.write(key,	new	IntWritable(sum));
}

The	following	code	snippet	shows	the	map	function	for	the	third	job.	It	reads	the	outputs	of
the	first	and	second	jobs,	and	outputs	them	as	the	key-value	pairs:

public	void	map(Object	key,	Text	value,	……	{
		String[]	tokens	=	value.toString().split("\\s");
		String	from	=	tokens[0];
		String	replyData	=	tokens[1];
		context.write(new	Text(from),	new	Text(replyData));
}

The	following	code	snippet	shows	the	reduce	function	for	the	third	job.	Since	both	the
outputs	of	the	first	and	the	second	job	have	the	same	key,	the	number	of	replies	sent	and
the	number	of	replies	received	by	a	given	user	will	be	processed	by	the	same	Reducer.	The
reduce	function	removes	self-replies	and	outputs	the	number	of	replies	sent	and	the
number	of	replies	received	as	the	key	and	value,	thus	joining	the	two	datasets:

public	void	reduce(Text	key,	Iterable<Text>	values,	……	{
		StringBuffer	buf	=	new	StringBuffer("[");
		try	{
				int	sendReplyCount	=	0;
				int	receiveReplyCount	=	0;
				for	(Text	val	:	values)	{



						String	strVal	=	val.toString();
						if(strVal.contains("#")){
								String[]	tokens	=	strVal.split("#");
								int	repliesOnThisThread	=Integer.parseInt(tokens[0]);
								int	selfRepliesOnThisThread	=	Integer.parseInt(tokens[1]);
								receiveReplyCount	=	receiveReplyCount	+	repliesOnThisThread;
								sendReplyCount	=	sendReplyCount–selfRepliesOnThisThread;
						}else{
								sendReplyCount	=	sendReplyCount	+	Integer.parseInt(strVal);
						}
				}

				context.write(new	IntWritable(sendReplyCount),
				new	IntWritable(receiveReplyCount));
				buf.append("]");
		}	…
}

The	final	job	is	an	example	of	using	the	MapReduce	to	join	two	datasets.	The	idea	is	to
send	all	the	values	that	need	to	be	joined	under	the	same	key	to	the	same	Reducer,	and	join
the	data	there.





Chapter	6.	Hadoop	Ecosystem	–	Apache
Hive
In	this	chapter,	we	will	cover	the	following	recipes:

Getting	started	with	Apache	Hive
Creating	databases	and	tables	using	Hive	CLI
Simple	SQL-style	data	querying	using	Apache	Hive
Creating	and	populating	Hive	tables	and	views	using	Hive	query	results
Utilizing	different	storage	formats	in	Hive	–	storing	table	data	using	ORC	files
Using	Hive	built-in	functions
Hive	batch	mode	–	using	a	query	file
Performing	a	join	with	Hive
Creating	partitioned	Hive	tables
Writing	Hive	User-defined	Functions	(UDF)
HCatalog	–	performing	Java	MapReduce	computations	on	data	mapped	to	Hive
tables
HCatalog	–	Writing	data	to	Hive	tables	from	Java	MapReduce	computations



Introduction
Hadoop	has	a	family	of	projects	that	are	either	built	on	top	of	Hadoop	or	work	very
closely	with	Hadoop.	These	projects	have	given	rise	to	an	ecosystem	that	focuses	on	large-
scale	data	processing,	and	often,	users	can	use	several	of	these	projects	in	combination	to
solve	their	use	cases.	This	chapter	introduces	Apache	Hive,	which	provides	data
warehouse	capabilities	on	top	of	the	data	stored	in	HDFS.	Chapter	7,	Hadoop	Ecosystem
II	–	Pig,	HBase,	Mahout,	and	Sqoop	introduces	a	few	other	key	projects	in	the	Hadoop
ecosystem.

Apache	Hive	provides	an	alternative	high-level	language	layer	to	perform	large-scale	data
analysis	using	Hadoop.	Hive	allows	users	to	map	the	data	stored	in	HDFS	into	tabular
models	and	process	them	using	HiveQL,	the	SQL-like	language	layer,	to	query	very	large
datasets	using	Hadoop.	HiveQL	can	be	used	to	perform	ad-hoc	querying	of	datasets	as
well	as	for	data	summarizations	and	to	perform	data	analytics.	Due	to	its	SQL-like
language,	Hive	is	a	natural	choice	for	users	who	are	experienced	with	data	warehousing
using	relational	databases.

Hive	translates	the	HiveQL	queries	to	one	or	more	MapReduce	computations	that	perform
the	actual	work.	Hive	allows	us	to	define	the	structure	on	existing	datasets	using	table
schemas.	However,	Hive	imposes	this	structure	on	the	data	only	at	the	time	of	reading	and
processing	the	data	(schema	on	read).

Hive	is	very	good	for	analyzing	very	large	datasets	due	to	the	large	aggregate	throughput
it	can	achieve	using	the	parallelism	of	the	Hadoop	cluster.	However,	Hive	is	not	optimal
for	analyzing	smaller	datasets	or	for	interactive	queries	due	to	the	relatively	high	latencies
of	running	MapReduce	computations.	Hive	provides	good	scalability	and	fault	tolerance
capabilities	through	the	use	of	MapReduce	and	HDFS	underneath.	Hive	does	not	support
transactions	or	row-level	updates	of	data.

This	chapter	also	introduces	HCatalog,	which	is	a	component	of	Hive	that	provides	a
metadata	abstraction	layer	for	data	stored	in	HDFS,	making	it	easy	for	different
components	of	the	Hadoop	ecosystem	to	process	those	data.	HCatalog	abstraction	is	based
on	a	tabular	model	and	augments	structure,	location,	and	other	metadata	information	for
the	HDFS	data.	With	HCatalog,	we	can	use	data	processing	tools	such	as	Pig,	Java
MapReduce,	and	others	without	worrying	about	the	structure,	storage	format,	or	the
storage	location	of	the	data.

Tip
Sample	code

The	example	code	and	data	files	for	this	book	are	available	on	GitHub	at
https://github.com/thilg/hcb-v2.	The	chapter6	folder	of	the	code	repository	contains	the
sample	code	for	this	chapter.

Sample	codes	can	be	compiled	and	built	by	issuing	the	gradle	build	command	in	the
chapter6	folder	of	the	code	repository.	Project	files	for	the	Eclipse	IDE	can	be	generated

https://github.com/thilg/hcb-v2


by	running	the	gradle	eclipse	command	in	the	main	folder	of	the	code	repository.
Project	files	for	IntelliJ	IDEA	IDE	can	be	generated	by	running	the	gradle	idea
command	in	the	main	folder	of	the	code	repository.

In	this	chapter,	we	use	the	Book	Crossing	dataset	as	the	sample	data.	This	dataset	is
compiled	by	Cai-Nicolas	Ziegler,	and	comprises	a	list	of	books,	users,	and	ratings.	The
Resources	folder	of	the	source	repository	for	this	chapter	contains	a	sample	of	the	dataset.
You	can	obtain	the	full	dataset	from	http://www2.informatik.uni-
freiburg.de/~cziegler/BX/.

http://www2.informatik.uni-freiburg.de/~cziegler/BX/




Getting	started	with	Apache	Hive
In	order	to	install	Hive,	we	recommend	that	you	use	a	freely	available	commercial	Hadoop
distribution	as	described	in	Chapter	1,	Getting	Started	with	Hadoop	v2.	Another
alternative	is	to	use	Apache	Bigtop	to	install	Hive.	Refer	to	the	Bigtop-related	recipe	in
Chapter	1,	Getting	Started	with	Hadoop	v2	for	steps	on	installation	of	Hive	using	the
Apache	Bigtop	distribution.



How	to	do	it…
This	section	describes	how	to	get	started	with	Hive.

1.	 If	you	already	have	a	working	Hive	installation,	start	the	Hive	Command	Line
Interface	(CLI)	by	executing	hive	in	the	command	prompt	and	skip	to	step	4:

$	hive

2.	 In	case	you	don’t	have	a	working	Hive	and	Hadoop	installation,	the	following	couple
of	steps	will	guide	you	on	how	to	install	Hive	with	the	MapReduce	local	mode.	This
is	recommended	only	for	learning	and	testing	purposes.	Download	and	extract	the
latest	Hive	version	from	http://hive.apache.org/releases.html:

$	tar	-zxvf	hive-0.14.0.tar.gz	

3.	 Start	Hive	by	running	the	following	commands	from	the	extracted	Hive	folder:

$	cd	hive-0.14.0
$	bin/hive

4.	 Optionally,	you	can	set	the	following	Hive	property	to	enable	Hive	to	print	headers
when	displaying	the	results	for	the	queries	in	Hive	CLI:

hive>	SET	hive.cli.print.header=true;

5.	 Optionally,	create	a	.hiverc	file	in	your	home	directory.	Hive	CLI	will	load	this	as
an	initialization	script	whenever	you	start	the	Hive	CLI.	You	can	set	any
customization	properties	such	as	enabling	print	headers	(step	4)	in	this	file.	Other
common	usages	of	this	file	include	switching	to	a	Hive	database	and	to	register	any
libraries	and	custom	UDFs	(refer	to	the	Writing	Hive	User-defined	Functions	recipe
to	learn	more	about	UDFs)	that	you’ll	be	using	regularly.

http://hive.apache.org/releases.html


See	also
Refer	to	https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties	for	a
complete	list	of	configuration	properties	provided	by	Hive.

https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties




Creating	databases	and	tables	using	Hive
CLI
This	recipe	walks	you	through	the	commands	to	create	Hive	databases	and	tables	using	the
Hive	CLI.	Hive	tables	are	used	to	define	structure	(schema)	and	other	metadata
information	such	as	the	location	and	storage	format	on	datasets	stored	in	HDFS.	These
table	definitions	enable	the	data	processing	and	analysis	using	the	Hive	query	language.
As	we	discussed	in	the	introduction,	Hive	follows	a	“schema	on	read”	approach,	where	it
imposes	this	structure	only	when	reading	and	processing	the	data.



Getting	ready
For	this	recipe,	you	need	a	working	Hive	installation.



How	to	do	it…
This	section	depicts	how	to	create	a	Hive	table	and	how	to	perform	simple	queries	on	the
Hive	tables:

1.	 Start	the	Hive	CLI	by	running	the	following	command:

$	hive

2.	 Execute	the	following	command	to	create	and	use	a	Hive	database	for	the	Book-
Crossing	dataset	mentioned	in	the	introduction:

hive>	CREATE	DATABASE	bookcrossing;
hive>	USE	bookcrossing;

3.	 Use	the	following	command	to	view	the	details	and	the	filesystem’s	location	of	the
database:

hive>	describe	database	bookcrossing;
OK
bookcrossing				hdfs://……/user/hive/warehouse/bookcrossing.db

4.	 Let’s	create	a	table	to	map	the	user	information	data	by	running	the	following
command	in	the	Hive	CLI.	A	table	will	be	created	inside	the	Book-Crossing
database:

CREATE	TABLE	IF	NOT	EXISTS	users	
				(user_id	INT,	
				location	STRING,	
				age	INT)	
COMMENT	'Book	Crossing	users	cleaned'	
ROW	FORMAT	DELIMITED	
FIELDS	TERMINATED	BY	'\073'	
STORED	AS	TEXTFILE;

5.	 Let’s	use	the	LOAD	command	to	load	the	data	to	the	table.	The	LOAD	command	copies
the	file	to	the	Hive	warehouse	location	in	HDFS.	Hive	does	not	perform	any	data
validation	or	data	parsing	at	this	step.	Please	note	that	the	OVERWRITE	clause	in	the
Load	command	will	overwrite	and	delete	any	old	data	that	is	already	in	the	table:

hive>	LOAD	DATA	LOCAL	INPATH	'BX-Users-prepro.txt'	OVERWRITE	INTO	TABLE	
users;
Copying	data	from	file:/home/tgunarathne/Downloads/BX-Users-prepro.txt
Copying	file:	file:/home/tgunarathne/Downloads/BX-Users-prepro.txt
Loading	data	to	table	bookcrossing.users
Deleted	/user/hive/warehouse/bookcrossing.db/users
Table	bookcrossing.users	stats:	[num_partitions:	0,	num_files:	1,	
num_rows:	0,	total_size:	10388093,	raw_data_size:	0]
OK
Time	taken:	1.018	seconds

6.	 Now,	we	can	run	a	simple	query	to	inspect	the	data	in	the	created	table.	At	this	point,
Hive	parses	the	data	using	formats	defined	in	the	table	definition	and	performs	the
processing	specified	by	the	query:



hive>	SELECT	*	FROM	users	LIMIT	10;
OK
1		nyc,	new	york,	usa		NULL
2		stockton,	california,	usa		18
3		moscow,	yukon	territory,	russia		NULL
………
10		albacete,	wisconsin,	spain		26
Time	taken:	0.225	seconds,	Fetched:	10	row(s)

7.	 Use	the	following	command	to	view	the	columns	of	a	Hive	table:

hive>	describe	users;																
OK
user_id															int																			None																
location														string																None																
age																			int																			None																
Time	taken:	0.317	seconds,	Fetched:	3	row(s)



How	it	works…
When	we	run	Hive,	we	first	define	a	table	structure	and	load	the	data	from	a	file	into	the
Hive	table.	It	is	worth	noting	that	the	table	definition	must	match	the	structure	of	the	input
data.	Any	type	mismatches	will	result	in	NULL	values,	and	any	undefined	columns	will	be
truncated	by	Hive.	The	LOAD	command	copies	the	files	into	the	Hive	warehouse	location
without	any	changes,	and	these	files	will	be	managed	by	Hive.	Table	schema	will	be
enforced	on	the	data	only	when	the	data	is	read	by	Hive	for	processing:

CREATE	TABLE	IF	NOT	EXISTS	users	
				(user_id	INT,	
				location	STRING,	
				age	INT)	
COMMENT	'Book	Crossing	users	cleaned'	
ROW	FORMAT	DELIMITED	
FIELDS	TERMINATED	BY	'\073'	
STORED	AS	TEXTFILE;

Please	note	that	Hive	table	and	column	names	are	case	insensitive.	The	preceding	table
will	be	created	in	the	bookcrossing	database	as	we	issued	the	use	bookcrossing
command	before	issuing	the	create	table	command.	Alternatively,	you	can	also	qualify	the
table	name	with	the	database	name	as	bookcrossing.users.	ROW	FORMAT	DELIMITED
instructs	Hive	to	use	the	native	SerDe	(Serializer	and	Deserializer	classes,	which	are	used
by	Hive	to	serialize	and	deserialize	data)	with	delimited	fields.	In	the	dataset	used	for	the
preceding	table,	the	fields	are	delimited	using	the	;	character,	which	is	specified	using
\073	because	it	is	a	reserved	character	in	Hive.	Finally,	we	instruct	Hive	that	the	data	file
is	a	text	file.	Refer	to	the	Utilizing	different	storage	formats	in	Hive	-	storing	table	data
using	ORC	files	recipe	for	more	information	on	the	different	storage	format	options
supported	by	Hive.



There’s	more…
In	this	section,	we	explore	Hive	data	types,	Hive	External	tables,	collection	data	types,	and
more	about	the	describe	command.

Hive	data	types
A	list	of	Hive	data	types	that	can	be	used	to	define	the	table	columns	can	be	found	from
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types.	These	include
simple	data	types	such	as	TINYINT(1-byte	signed	integer),	INT	(4-byte	signed	integer),
BIGINT	(8-byte	signed	integer),	DOUBLE	(8-byte	double	precision	floating	point),
TIMESTAMP,	DATE,	STRING,	BOOLEAN,	and	several	others.

Hive	supports	several	complex	collection	data	types	such	as	arrays	and	maps	as	table
column	data	types	as	well.	Hive	contains	several	built-in	functions	to	manipulate	the
arrays	and	maps.	One	example	is	the	explode()	function,	which	outputs	the	items	of	an
array	or	a	map	as	separate	rows.	Refer	to	the	Using	Hive	built-in	functions	recipe	for	more
information	on	how	to	use	Hive	functions.

Hive	external	tables
Hive	external	tables	allow	us	to	map	a	dataset	in	HDFS	to	a	Hive	table	without	letting
Hive	manage	the	dataset.	Datasets	for	external	tables	will	not	get	moved	to	the	Hive
default	warehouse	location.

Also,	dropping	an	external	table	will	not	result	in	the	deletion	of	the	underlying	dataset,	as
opposed	to	dropping	a	regular	Hive	table,	where	the	dataset	would	get	deleted.	This	is	a
useful	feature	when	you	want	to	prevent	accidental	deletion	of	data:

1.	 Copy	the	BX-Books-prepro.txt	file	to	a	directory	in	the	HDFS:

$	hdfs	dfs	-mkdir	book-crossing
$	hdfs	dfs	-mkdir	book-crossing/books
$	hdfs	dfs	-copyFromLocal	BX-Books-prepro.txt	book-crossing/books

2.	 Start	the	Hive	CLI	by	running	the	following	command	and	then	use	the	Book-
Crossing	database:

$	hive
Hive>	use	bookcrossing;

3.	 Create	an	external	table	to	map	the	book	information	data	by	running	the	following
command	in	the	Hive	CLI:

CREATE	EXTERNAL	TABLE	IF	NOT	EXISTS	books
			(isbn	INT,	
			title	STRING,	
			author	STRING,	
			year	INT,	
			publisher	STRING,	
			image_s	STRING,	
			image_m	STRING,	
			image_l	STRING)	

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types


	COMMENT	'Book	crossing	books	list	cleaned'
	ROW	FORMAT	DELIMITED
	FIELDS	TERMINATED	BY	'\073'	
	STORED	AS	TEXTFILE
	LOCATION	'/user/<username>/book-crossing/books';

4.	 Use	the	following	query	to	inspect	the	data	of	the	newly	created	table:

hive>	select	*	from	books	limit	10;
OK
195153448		Classical	Mythology		Mark	P.	O.	Morford		2002		Oxford	
University	Press		
http://images.amazon.com/images/P/0195153448.01.THUMBZZZ.jpg		
http://images.amazon.com/images/P/0195153448.01.MZZZZZZZ.jpg		
http://images.amazon.com/images/P/0195153448.01.LZZZZZZZ.jpg

5.	 Drop	the	table	using	the	following	command:

hive>	drop	table	books;
OK
Time	taken:	0.213	seconds

6.	 Inspect	the	data	files	in	HDFS	using	the	following	command.	Even	though	the	table
is	dropped,	the	data	files	still	exist:

$	hdfs	dfs	-ls	book-crossing/books
Found	1	items
-rw-r--r--			1	tgunarathne	supergroup			73402860	2014-06-19	18:49	
/user/tgunarathne/book-crossing/books/BX-Books-prepro.txt

Using	the	describe	formatted	command	to	inspect	the	metadata	of	Hive
tables
You	can	use	the	describe	command	to	inspect	the	basic	metadata	of	the	Hive	tables.	The
describe	extended	command	will	print	additional	metadata	information	including	the
data	location,	input	format,	created	time,	and	the	like.	The	describe	formatted	command
presents	this	metadata	information	in	a	more	user-friendly	manner:

hive>	describe	formatted	users;
OK
#	col_name														data_type													comment														
user_id															int																			None																
location														string																None																
age																			int																			None																
						
#	Detailed	Table	Information						
Database:													bookcrossing											
Owner:																tgunarathne																			
CreateTime:											Mon	Jun	16	02:19:26	EDT	2014			
LastAccessTime:							UNKNOWN																
Protect	Mode:									None																			
Retention:												0																						
Location:													
hdfs://localhost:8020/user/hive/warehouse/bookcrossing.db/users			
Table	Type:											MANAGED_TABLE										



Table	Parameters:						
		comment															Book	Crossing	users	cleaned
		numFiles														1																			
		numPartitions									0																			
		numRows															0																			
		rawDataSize											0																			
		totalSize													10388093												
		transient_lastDdlTime		1402900035										
						
#	Storage	Information						
SerDe	Library:								org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe			
……
Time	taken:	0.448	seconds,	Fetched:	35	row(s)





Simple	SQL-style	data	querying	using
Apache	Hive
We	can	query	the	datasets	that	have	been	mapped	to	Hive	tables	using	HiveQL,	which	is
similar	to	SQL.	These	queries	can	be	simple	data-exploration	operations	such	as	counts,
orderby,	and	group	by	as	well	as	complex	joins,	summarizations,	and	analytic
operations.	In	this	recipe,	we’ll	explore	simple	data	exploration	Hive	queries.	The
subsequent	recipes	in	this	chapter	will	present	some	of	the	advanced	querying	use	cases.



Getting	ready
Install	Hive	and	follow	the	earlier	Creating	databases	and	tables	using	Hive	CLI	recipe.



How	to	do	it…
This	section	demonstrates	how	to	perform	a	simple	SQL-style	query	using	Hive.

1.	 Start	Hive	by	issuing	the	following	command:

$	hive

2.	 Issue	the	following	query	in	the	Hive	CLI	to	inspect	the	users	aged	between	18	and
34.	Hive	uses	a	MapReduce	job	in	the	background	to	perform	this	data-filtering
operation:

hive>	SELECT	user_id,	location,	age	FROM	users	WHERE	age>18	and	age	<34	
limit	10;																			
Total	MapReduce	jobs	=	1
Launching	Job	1	out	of	1
……
10		albacete,	wisconsin,	spain		26
13		barcelona,	barcelona,	spain		26
….
Time	taken:	34.485	seconds,	Fetched:	10	row(s)

3.	 Issue	the	following	query	in	the	Hive	CLI	to	count	the	total	number	of	users	that
satisfy	the	above	conditions	(that	is,	whose	ages	are	between	18	and	34).	Hive
converts	this	query	to	a	MapReduce	computation	to	calculate	the	result:

hive>	SELECT	count(*)	FROM	users	WHERE	age>18	and	age	<34;													
Total	MapReduce	jobs	=	1
Launching	Job	1	out	of	1
…………
2014-06-16	22:53:07,778	Stage-1	map	=	100%,		reduce	=	100%,	
…………
Job	0:	Map:	1		Reduce:	1			Cumulative	CPU:	5.09	sec			HDFS	Read:	
10388330	HDFS	Write:	6	SUCCESS
Total	MapReduce	CPU	Time	Spent:	5	seconds	90	msec
OK
74339
Time	taken:	53.671	seconds,	Fetched:	1	row(s)

4.	 The	following	query	counts	the	number	of	users	grouped	by	their	age:

hive>	SELECT		age,	count(*)	FROM	users	GROUP	BY	age;																																					
Total	MapReduce	jobs	=	1
………
Job	0:	Map:	1		Reduce:	1			Cumulative	CPU:	3.8	sec			HDFS	Read:	
10388330	HDFS	Write:	1099	SUCCESS
Total	MapReduce	CPU	Time	Spent:	3	seconds	800	msec
OK
….
10		84
11		121
12		192
13		885
14		1961
15		2376



5.	 The	following	query	counts	the	number	of	users	by	their	age	and	orders	the	result	by
the	descending	order	of	the	number	of	users:

hive>	SELECT		age,	count(*)	as	c	FROM	users	GROUP	BY	age	ORDER	BY	c	
DESC;
Total	MapReduce	jobs	=	2
…..
Job	0:	Map:	1		Reduce:	1			Cumulative	CPU:	5.8	sec			HDFS	Read:	
10388330	HDFS	Write:	3443	SUCCESS
Job	1:	Map:	1		Reduce:	1			Cumulative	CPU:	2.15	sec			HDFS	Read:	3804	
HDFS	Write:	1099	SUCCESS
Total	MapReduce	CPU	Time	Spent:	7	seconds	950	msec
OK
NULL		110885
24		5683
25		5614
26		5547
23		5450
27		5373
28		5346
29		5289
32		4778



How	it	works…
You	can	use	the	explain	command	to	view	the	execution	plan	of	a	Hive	query.	This	is
useful	in	identifying	the	bottlenecks	of	large-scale	queries	and	in	optimizing	them.	The
following	is	the	execution	plan	of	one	of	the	queries	we	used	in	the	previous	recipe.	As
you	can	see,	this	query	resulted	in	a	single	MapReduce	computation	followed	by	a	data
output	stage:

hive>	EXPLAIN	SELECT	user_id,	location,	age	FROM	users	WHERE	age>18	and	age	
<34	limit	10;
OK
ABSTRACT	SYNTAX	TREE:
		…

STAGE	PLANS:
		Stage:	Stage-1
				Map	Reduce
						Alias	->	Map	Operator	Tree:
								users	
										TableScan
												alias:	users
												Filter	Operator
														predicate:
																		expr:	((age	>	18)	and	(age	<	34))
																		type:	boolean
														Select	Operator
																expressions:
																						expr:	user_id
																						type:	int
																						expr:	location
																						type:	string
																						expr:	age
																						type:	int
																outputColumnNames:	_col0,	_col1,	_col2
																Limit
																		File	Output	Operator
																				compressed:	false
																				GlobalTableId:	0
																				table:
																								input	format:	
org.apache.hadoop.mapred.TextInputFormat
																								output	format:	
org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat

		Stage:	Stage-0
				Fetch	Operator
						limit:	10



There’s	more…
Hive	provides	several	operators	for	the	ordering	of	query	results,	with	subtle	differences
and	performance	trade-offs:

ORDER	BY:	This	guarantees	the	global	ordering	of	the	data	using	a	single	reducer.
However,	for	any	non-trivial	amount	of	result	data,	the	use	of	a	single	reducer	will
significantly	slow	down	your	computation.
SORT	BY:	This	guarantees	the	local	ordering	of	data	that	is	output	by	each	reduce
task.	However,	the	reduce	tasks	would	contain	overlapping	data	ranges.
CLUSTER	BY:	This	distributes	the	data	to	reduce	tasks,	avoiding	any	range
overlaps,	and	each	reduce	task	will	output	the	data	in	a	sorted	order.	This	ensures	the
global	ordering	of	data,	even	though	the	result	will	be	stored	in	multiple	files.

Refer	to	http://stackoverflow.com/questions/13715044/hive-cluster-by-vs-order-by-vs-
sort-by	for	a	more	detailed	explanation	on	the	differences	of	the	above	mentioned
operators.

Using	Apache	Tez	as	the	execution	engine	for	Hive
Tez	is	a	new	execution	framework	built	on	top	of	YARN,	which	provides	a	lower-level
API	(directed	acyclic	graphs)	than	MapReduce.	Tez	is	more	flexible	and	powerful	than
MapReduce.	Tez	allows	applications	to	improve	performance	by	utilizing	more	expressive
execution	patterns	than	the	MapReduce	pattern.	Hive	supports	the	Tez	execution	engine	as
a	substitute	for	the	background	MapReduce	computations,	where	Hive	would	convert	the
Hive	queries	into	Tez	execution	graphs,	resulting	in	much-improved	performance.	You	can
perform	the	following	procedures:

You	can	instruct	Hive	to	use	Tez	as	the	execution	engine	by	setting	the	following	hive
property:

hive>	set	hive.execution.engine=tez;

You	can	switch	back	to	MapReduce	as	the	execution	engine	as	follows:

hive>	set	hive.execution.engine=mr;

http://stackoverflow.com/questions/13715044/hive-cluster-by%E2%80%A8-vs-order-by-vs-sort-by


See	also
Refer	to	https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Select	for	a
list	of	clauses	and	features	supported	by	the	Hive	select	statement.

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Select




Creating	and	populating	Hive	tables	and
views	using	Hive	query	results
Hive	allows	us	to	save	the	output	data	of	Hive	queries	by	creating	new	Hive	tables.	We
can	also	insert	the	resultant	data	of	a	Hive	query	into	another	existing	table	as	well.



Getting	ready
Install	Hive	and	follow	the	Creating	databases	and	tables	using	Hive	CLI	recipe.



How	to	do	it…
The	following	steps	show	you	how	to	store	the	result	of	a	Hive	query	into	a	new	Hive
table:

1.	 Issue	the	following	query	to	save	the	output	of	the	query	of	step	3	of	the	preceding
recipe	to	a	table	named	tmp_users:

hive>	CREATE	TABLE	tmp_users	AS	SELECT	user_id,	location,	age	FROM	
users	WHERE	age>18	and	age	<34;
…
Table	bookcrossing.tmp_users	stats:	[num_partitions:	0,	num_files:	1,	
num_rows:	0,	total_size:	2778948,	raw_data_size:	0]
74339	Rows	loaded	to	hdfs://localhost:8020/tmp/hive-root/hive_2014-07-
08_02-57-18_301_5868823709587194356/-ext-10000

2.	 Inspect	the	data	of	the	newly	created	table	using	the	following	command:

hive>	select	*	from	tmp_users	limit	10;
OK
10		albacete,	wisconsin,	spain		26
13		barcelona,	barcelona,	spain		26
18		rio	de	janeiro,	rio	de	janeiro,	brazil		25

3.	 Hive	also	allows	us	to	insert	the	result	of	the	Hive	queries	into	an	existing	table	as
follows.	Issue	the	following	query	to	load	the	output	data	of	the	following	query	to
the	tmp_users	Hive	table:

hive>	INSERT	INTO	TABLE	tmp_users	SELECT	user_id,	location,	age	FROM	
users	WHERE	age>33	and	age	<51;
Total	MapReduce	jobs	=	3
Launching	Job	1	out	of	3
…….
Loading	data	to	table	bookcrossing.tmp_users
Table	bookcrossing.tmp_users	stats:	[num_partitions:	0,	num_files:	2,	
num_rows:	0,	total_size:	4717819,	raw_data_size:	0]
52002	Rows	loaded	to	tmp_users

4.	 You	can	also	create	a	view	in	an	existing	table	using	a	query	as	follows.	The	view	can
function	as	a	regular	table	for	query	purposes,	but	the	content	of	the	view	would	get
computed	only	on	demand	by	Hive:

hive>	CREATE	VIEW	tmp_users_view	AS	SELECT	user_id,	location,	age	FROM	
users	WHERE	age>18	and	age	<34;





Utilizing	different	storage	formats	in	Hive
-	storing	table	data	using	ORC	files
In	addition	to	the	simple	text	files,	Hive	also	supports	several	other	binary	storage	formats
that	can	be	used	to	store	the	underlying	data	of	the	tables.	These	include	row-based
storage	formats	such	as	Hadoop	SequenceFiles	and	Avro	files	as	well	as	column-based
(columnar)	storage	formats	such	as	ORC	files	and	Parquet.

Columnar	storage	formats	store	the	data	column-by-column,	where	all	the	values	of	a
column	will	be	stored	together	as	opposed	to	a	row-by-row	manner	in	row-based	storages.
For	example,	if	we	store	the	users	table	from	our	previous	recipe	in	a	columnar	database,
all	the	user	IDs	will	be	stored	together	and	all	the	locations	will	be	stored	together.
Columnar	storages	provide	better	data	compression	as	it’s	easy	to	compress	similar	data	of
the	same	type	that	are	stored	together.	Columnar	storages	also	provide	several
performance	improvements	for	Hive	queries	as	well.	Columnar	storages	allow	the
processing	engine	to	skip	the	loading	of	data	from	columns	that	are	not	needed	for	a
particular	computation	and	also	make	it	much	faster	to	perform	column-level	analytical
queries	(for	example,	calculating	the	maximum	age	of	the	users).

In	this	recipe,	we	store	the	data	from	the	users	table	of	the	Creating	databases	and	tables
using	Hive	CLI	recipe	into	a	Hive	table	stored	in	the	ORC	file	format.



Getting	ready
Install	Hive	and	follow	the	Creating	databases	and	tables	using	Hive	CLI	recipe.



How	to	do	it…
The	following	steps	show	you	how	to	create	a	Hive	table	stored	using	the	ORC	file
format:

1.	 Execute	the	following	query	in	Hive	CLI	to	create	a	user’s	table	stored	using	the
ORC	file	format:

hive>	USE	bookcrossing;

hive>	CREATE	TABLE	IF	NOT	EXISTS	users_orc	
		(user_id	INT,	
		location	STRING,	
		age	INT)	
COMMENT	'Book	Crossing	users	table	ORC	format'	
STORED	AS	ORC;

2.	 Execute	the	following	command	to	insert	the	data	into	the	newly	created	table.	We
have	to	populate	the	data	using	our	earlier	created	table	as	we	can’t	load	text	files
directly	to	the	ORC	file	or	other	storage	format	tables:

hive>	INSERT	INTO	TABLE	users_orc	
		SELECT	*	
		FROM	users;

3.	 Execute	the	following	query	to	inspect	the	data	in	the	users_orc	table:

Hive>	select	*	from	users_orc	limit	10;



How	it	works…
The	STORED	AS	ORC	phrase	in	the	following	command	informs	Hive	that	the	data	for	this
table	will	be	stored	using	ORC	files.	You	can	use	STORED	AS	PARQUET	to	store	the	table
data	using	the	Parquet	format,	and	STORED	AS	AVRO	to	store	the	data	using	Avro	files:

CREATE	TABLE	IF	NOT	EXISTS	users_orc	
		(user_id	INT,	
		location	STRING,	
		age	INT)	
STORED	AS	ORC;





Using	Hive	built-in	functions
Hive	provides	many	built-in	functions	to	aid	us	in	the	processing	and	querying	of	data.
Some	of	the	functionalities	provided	by	these	functions	include	string	manipulation,	date
manipulation,	type	conversion,	conditional	operators,	mathematical	functions,	and	many
more.



Getting	ready
This	recipe	assumes	that	the	earlier	recipe	has	been	performed.	Install	Hive	and	follow	the
earlier	recipe	if	you	have	not	done	already.



How	to	do	it…
This	section	demonstrates	how	to	use	the	parse_url	Hive	function	to	parse	the	content
of	a	URL:

1.	 Start	Hive	CLI	by	running	the	following	command:

$	hive

2.	 Issue	the	following	command	to	obtain	the	FILE	portion	of	the	small	image
associated	with	each	book:

hive>	select	isbn,	parse_url(image_s,	'FILE')	from	books	limit	10;	
Total	MapReduce	jobs	=	1
…..
OK
0195153448		/images/P/0195153448.01.THUMBZZZ.jpg
0002005018		/images/P/0002005018.01.THUMBZZZ.jpg
0060973129		/images/P/0060973129.01.THUMBZZZ.jpg
……
Time	taken:	17.183	seconds,	Fetched:	10	row(s)



How	it	works…
The	parse_url	function	gets	invoked	for	each	data	record	selected	by	the	preceding
query:

parse_url(string	urlString,	string	partToExtract)

The	parse_url	function	parses	the	URL	given	by	the	urlString	parameter	and	supports
HOST,	PATH,	QUERY,	REF,	PROTOCOL,	AUTHORITY,	FILE,	and	USERINFO	as	the
partToExtract	parameter.



There’s	more…
You	can	issue	the	following	command	in	the	Hive	CLI	to	see	the	list	of	functions
supported	by	your	Hive	installation:

hive>	show	functions;

You	can	use	the	describe	<function_name>	and	describe	extended	<function_name>
commands	in	the	Hive	CLI	as	follows	to	access	the	help	and	usage	for	each	of	the
functions.	For	example:

hive>	describe	function	extended	parse_url;
OK
parse_url(url,	partToExtract[,	key])	-	extracts	a	part	from	a	URL
Parts:	HOST,	PATH,	QUERY,	REF,	PROTOCOL,	AUTHORITY,	FILE,	USERINFO
key	specifies	which	query	to	extract
Example:
		>	SELECT	parse_url('http://facebook.com/path/p1.php?query=1',	'HOST')	
FROM	src	LIMIT	1;
		'facebook.com'
		>	SELECT	parse_url('http://facebook.com/path/p1.php?query=1',	'QUERY')	
FROM	src	LIMIT	1;
		'query=1'
		>	SELECT	parse_url('http://facebook.com/path/p1.php?query=1',	'QUERY',	
'query')	FROM	src	LIMIT	1;
		'1'



See	also
Hive	provides	many	different	categories	of	functions,	including	mathematical,	date
manipulation,	string	manipulation,	and	many	more.	Refer	to
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF	for	a	complete
list	of	functions	provided	by	Hive.

See	the	Writing	Hive	User-defined	Functions	(UDF)	recipe	for	information	on	writing
your	own	function	to	use	with	Hive	queries.

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF




Hive	batch	mode	-	using	a	query	file
In	addition	to	the	Hive	interactive	CLI,	Hive	also	allows	us	to	execute	our	queries	in	the
batch	mode,	using	a	script	file.	In	this	recipe,	we	use	a	Hive	script	file	to	create	books,
users,	and	ratings	tables	of	the	Book-Crossing	dataset	and	to	load	the	data	into	the	newly
created	tables.



How	to	do	it…
This	section	demonstrates	how	to	create	tables	and	load	data	using	a	Hive	script	file.
Proceed	with	the	following	steps:

1.	 Extract	the	data	package	provided	in	the	source	repository	of	this	chapter:

$	tar	–zxvf	chapter6-bookcrossing-data.tar.gz

2.	 Locate	the	create-book-crossing.hql	Hive	query	file	in	the	Hive-scripts	folder	of
the	source	repository	for	this	chapter.	Execute	this	Hive	script	file	as	follows	by
providing	the	location	of	the	extracted	data	package	for	the	DATA_DIR	parameter.
Please	note	that	the	execution	of	the	following	script	file	will	overwrite	any	existing
data	in	users,	books,	and	ratings	tables,	if	these	exist	beforehand,	of	the	Book-
Crossing	database:

$	hive	\
		-hiveconf	DATA_DIR=…/hcb-v2/chapter6/data/	\
		-f	create-book-crossing.hql	
……
Copying	data	from	file:……/hcb-v2/chapter6/data/BX-Books-Prepro.txt
……
Table	bookcrossing.books	stats:	[num_partitions:	0,	num_files:	1,	
num_rows:	0,	total_size:	73402860,	raw_data_size:	0]
OK
……
OK
Time	taken:	0.685	seconds

3.	 Start	the	Hive	CLI	and	issue	the	following	commands	to	inspect	the	tables	created	by
the	preceding	script:

$	hive
hive>	use	bookcrossing;	
……
hive>	show	tables;					
OK
books
ratings
users
Time	taken:	0.416	seconds,	Fetched:	3	row(s)
hive>	select	*	from	ratings	limit	10;
OK
276725		034545104X		0
276726		0155061224		5
276727		0446520802		0



How	it	works…
The	hive	–f	<filename>	option	executes	the	HiveQL	queries	contained	in	the	given	file
in	a	batch	mode.	With	the	latest	Hive	versions,	you	can	even	specify	a	file	in	HDFS	as	the
script	file	for	this	command.

The	create-book-crossing.hql	script	contains	the	commands	to	create	the	Book-Crossing
database	and	to	create	and	load	data	to	users,	books,	and	ratings	tables:

CREATE	DATABASE	IF	NOT	EXISTS	bookcrossing;
USE	bookcrossing;

CREATE	TABLE	IF	NOT	EXISTS	books
		(isbn	STRING,	
		title	STRING,	
		author	STRING,	
		year	INT,	
		publisher	STRING,	
		image_s	STRING,	
		image_m	STRING,	
		image_l	STRING)	
COMMENT	'Book	crossing	books	list	cleaned'
ROW	FORMAT	DELIMITED
FIELDS	TERMINATED	BY	'\073'	
STORED	AS	TEXTFILE;

LOAD	DATA	LOCAL	INPATH	'${hiveconf:DATA_DIR}/BX-Books-Prepro.txt'	OVERWRITE	
INTO	TABLE	books;

You	can	set	properties	and	pass	parameters	to	Hive	script	files	using	the	–hiveconf
<property-name>=<property-value>	option	when	invoking	the	Hive	command.	You	can
refer	to	these	properties	inside	the	script	using	${hiveconf:<property-name>}.	Such
property	usages	inside	the	Hive	queries	will	get	substituted	by	the	value	of	that	property
before	the	query	executes.	An	example	of	this	can	be	seen	in	the	current	recipe	where	we
used	the	DATA_DIR	property	to	pass	the	location	of	the	data	files	to	the	Hive	script.	Inside
the	scripts,	we	used	the	value	of	this	property	using	${hiveconf:DATA_DIR}.

The	–hiveconf	option	can	be	used	to	set	Hive	configuration	variables	as	well.



There’s	more…
You	can	use	the	hive	–e	'<query>'	option	to	run	a	batch	mode	Hive	query	directly	from
the	command	line.	The	following	is	an	example	of	such	a	usage:

$	hive	-e	'select	*	from	bookcrossing.users	limit	10'



See	also
Refer	to	https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Cli	for	more
information	on	the	options	supported	by	the	Hive	CLI.

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Cli




Performing	a	join	with	Hive
This	recipe	will	guide	you	on	how	to	use	Hive	to	perform	a	join	across	two	datasets.	The
first	dataset	is	the	book	details	dataset	of	the	Book-Crossing	database	and	the	second
dataset	is	the	reviewer	ratings	for	those	books.	This	recipe	will	use	Hive	to	find	the
authors	with	the	most	number	of	ratings	of	more	than	3	stars.



Getting	ready
Follow	the	previous	Hive	batch	mode	–	using	a	query	file	recipe.



How	to	do	it…
This	section	demonstrates	how	to	perform	a	join	using	Hive.	Proceed	with	the	following
steps:

1.	 Start	the	Hive	CLI	and	use	the	Book-Crossing	database:

$	hive
hive	>	USE	bookcrossing;

2.	 Create	the	books	and	book	ratings	tables	by	executing	the	create-book-
crossing.hql	Hive	query	file	after	referring	to	the	previous	Hive	batch	mode
commands	using	a	query	file	recipe.	Use	the	following	commands	to	verify	the
existence	of	those	tables	in	the	Book-Crossing	database:

hive	>	SELECT	*	FROM	books	LIMIT	10;
….
hive	>	SELECT	*	FROM	RATINGS	LIMIT	10;
….

3.	 Now,	we	can	join	the	two	tables	using	Hive’s	SQL-like	join	command:

SELECT
		b.author	AS	author,	
		count(*)	AS	count	
FROM	
		books	b	
JOIN
		ratings	r	
ON	(b.isbn=r.isbn)	and	r.rating>3	
GROUP	BY	b.author	
ORDER	BY	count	DESC	
LIMIT	100;

4.	 If	successful,	it	will	print	the	following	along	with	the	results	to	the	console:

Total	MapReduce	jobs	=	4
...
2014-07-07	08:09:53		Starting	to	launch	local	task	to	process	map	join;		
maximum	memory	=	1013645312
...
Launching	Job	2	out	of	4
....
Launching	Job	3	out	of	4
...
2014-07-07	20:11:02,795	Stage-2	map	=	100%,		reduce	=	100%,	Cumulative	
CPU	8.18	sec
MapReduce	Total	cumulative	CPU	time:	8	seconds	180	msec
Ended	Job	=	job_1404665955853_0013
Launching	Job	4	out	of	4
....
Total	MapReduce	CPU	Time	Spent:	21	seconds	360	msec
OK
Stephen	King		4564
Nora	Roberts		2909



John	Grisham		2505
James	Patterson		2334
J.	K.	Rowling		1742
...
Time	taken:	116.424	seconds,	Fetched:	100	row(s)



How	it	works…
When	executed,	Hive	first	converts	the	join	command	into	a	set	of	MapReduce
computations.	These	MapReduce	computations	will	first	load	and	parse	both	the	datasets
according	to	the	given	schema.	Then,	the	data	will	be	joined	using	the	MapReduce
computation	according	to	the	given	join	condition.

Hive	supports	inner	joins	as	well	as	left,	right,	and	full	outer	joins.	Currently,	Hive	only
supports	equality-based	conditions	as	join	conditions.	Hive	is	capable	of	performing
several	optimizations	to	optimize	the	performance	of	the	joins	based	on	the	nature	and	size
of	the	datasets.



See	also
For	more	information,	refer	to
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Joins.
The	Joining	two	datasets	using	MapReduce	recipe	of	Chapter	5,	Analytics	shows	how
to	implement	a	join	operation	using	MapReduce.

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Joins




Creating	partitioned	Hive	tables
This	recipe	will	show	how	to	use	partitioned	tables	to	store	data	in	Hive.	Partitioned	tables
allow	us	to	store	datasets	partitioned	by	one	or	more	data	columns	for	efficient	querying.
The	real	data	will	reside	in	separate	directories,	where	the	names	of	the	directories	will
form	the	values	of	the	partition	column.	Partitioned	tables	can	improve	the	performance	of
some	queries	by	reducing	the	amount	of	data	that	Hive	has	to	process	by	reading	only
select	partitions	when	using	an	appropriate	where	predicate.	A	common	example	is	to
store	transactional	datasets	(or	other	datasets	with	timestamps	such	as	web	logs)
partitioned	by	the	date.	When	the	Hive	table	is	partitioned	by	the	date,	we	can	query	the
data	that	belongs	to	a	single	day	or	a	date	range,	reading	only	the	data	that	belongs	to
those	dates.	In	a	non-partitioned	table,	this	would	result	in	a	full	table	scan,	reading	all	the
data	in	that	table,	which	can	be	very	inefficient	when	you	have	terabytes	of	data	mapped
to	a	Hive	table.



Getting	ready
This	recipe	assumes	that	the	earlier	Hive	batch	mode	-	using	a	query	file	recipe	has	been
performed.	Install	Hive	and	follow	the	that	recipe	if	you	have	not	done	already.



How	to	do	it…
This	section	demonstrates	how	to	dynamically	create	a	partitioned	table	in	Hive.	Proceed
with	the	following	steps:

1.	 Start	Hive	CLI.
2.	 Run	the	following	commands	to	enable	the	dynamic	partition	creation	in	Hive:

hive>	set	hive.exec.dynamic.partition=true;														
hive>	set	hive.exec.dynamic.partition.mode=nonstrict;
hive>	set	hive.exec.max.dynamic.partitions.pernode=2000;	

3.	 Execute	the	following	query	to	create	the	new	partitioned	table	using	the	results	of
the	select	statement.	In	this	case,	we	partition	the	table	using	the	published	year	of	the
books.	Typically,	years	and	dates	serve	as	good	partition	columns	for	data	that	spans
across	time	(for	example,	log	data).	When	dynamically	inserting	data	to	a	partitioned
table,	the	partition	column	should	be	the	last	column	in	the	insert	statement:

hive>	INSERT	INTO	TABLE	books_partitioned
				>	partition	(year)
				>	SELECT	
				>			isbn,
				>			title,
				>			author,
				>			publisher,
				>			image_s,
				>			image_m,
				>			image_l,
				>			year
				>	FROM	books;
Total	MapReduce	jobs	=	3
Launching	Job	1	out	of	3
……	
Loading	data	to	table	bookcrossing.books_partitioned	partition	
(year=null)
		Loading	partition	{year=1927}
		Loading	partition	{year=1941}
		Loading	partition	{year=1984}
…….	
Partition	bookcrossing.books_partitioned{year=1982}	stats:	[num_files:	
1,	num_rows:	0,	total_size:	1067082,	raw_data_size:	0]
…

4.	 Execute	the	following	query.	Due	to	the	use	of	the	year	partition	column,	this	query
will	only	look	at	the	data	stored	in	the	1982	data	partition	of	the	Hive	table.	If	not	for
the	partitioning,	this	query	would	have	required	a	MapReduce	computation	that
processes	the	whole	dataset:

hive>	select	*	from	books_partitioned	where	year=1982	limit	10;
OK
156047624		All	the	King's	Men		Robert	Penn	Warren		Harvest	Books		
http://images.amazon.com/images/P/0156047624.01.THUMBZZZ.jpg		
http://images.amazon.com/images/P/0156047624.01.MZZZZZZZ.jpg		
http://images.amazon.com/images/P/0156047624.01.LZZZZZZZ.jpg		1982



5.	 Exit	the	Hive	CLI	and	execute	the	following	commands	in	the	command	prompt.	You
can	see	the	partition	directories	created	by	Hive:

$	hdfs	dfs	-ls	/user/hive/warehouse/bookcrossing.db/books_partitioned
Found	116	items
drwxr-xr-x			-	root	hive										0	2014-07-08	20:24	
/user/hive/warehouse/bookcrossing.db/books_partitioned/year=0
drwxr-xr-x			-	root	hive										0	2014-07-08	20:24	
/user/hive/warehouse/bookcrossing.db/books_partitioned/year=1376
drwxr-xr-x			-	root	hive										0	2014-07-08	20:24	
/user/hive/warehouse/bookcrossing.db/books_partitioned/year=1378
….





Writing	Hive	User-defined	Functions
(UDF)
As	mentioned	in	the	Using	Hive	built-in	functions	recipe,	Hive	supports	many	built-in
functions	for	data	manipulation	and	analysis.	Hive	also	allows	us	to	write	our	own
customized	functions	to	be	used	with	the	Hive	queries.	These	functions	are	called	user-
defined	functions,	and	this	recipe	will	show	you	how	to	write	a	simple	User-defined
Function	(UDF)	for	Hive.	Hive	UDFs	allow	us	to	extend	the	capabilities	of	Hive	for	our
customized	requirements,	without	having	to	resort	to	implementing	Java	MapReduce
programs	from	scratch.



Getting	ready
This	recipe	assumes	that	the	earlier	recipe	has	been	performed.	Install	Hive	and	follow	the
earlier	recipe	if	you	have	not	done	already.

Make	sure	you	have	Apache	Ant	installed	in	your	system.



How	to	do	it…
This	section	demonstrates	how	to	implement	a	simple	Hive	UDF.	Perform	the	following
steps:

1.	 Use	the	Gradle	build	file	in	the	source	repository	for	this	chapter	to	build	the	user-
defined	function	JAR	file:

$	gradle	build

2.	 Start	Hive	CLI:

$	hive
hive	>	USE	bookcrossing;

3.	 Add	the	newly	created	JAR	file	to	the	environment	using	the	full	path	of	the	JAR	file
created	in	step	1:

hive>	ADD	JAR	/home/../	hcb-c6-samples.jar;

4.	 Define	the	new	UDF	inside	Hive	using	the	following	command:

hive>	CREATE	TEMPORARY	FUNCTION	filename_from_url	as	'chapter6.udf.	
ExtractFilenameFromURL';

5.	 Issue	the	following	command	to	obtain	the	filename	portion	of	the	small	image
associated	with	each	book	using	our	newly	defined	UDF:

hive>	select	isbn,	filename_from_url(image_s,	'FILE')	from	books	limit	
10;	



How	it	works…
Hive	UDFs	should	extend	the	UDF	class	of	Hive	and	implement	the	evaluate	method	to
perform	the	custom	computation	that	you	need	to	perform.	The	input	and	output
parameters	of	the	evaluate	method	needs	to	be	provided	using	the	appropriate	Hadoop
Writable	type	that	corresponds	to	the	Hive	data	type	that	you	want	to	process	and	receive
back	from	the	UDF:

public	class	ExtractFilenameFromURL	extends	UDF	{
		public	Text	evaluate(Text	input)	throws	MalformedURLException	{
				URL	url	=	new	URL(input.toString());
				Text	fileNameText	=	new	Text(FilenameUtils.getName(url.getPath()));
				return	fileNameText;
		}
}

We	can	use	annotations	like	the	following	to	add	a	description	to	the	UDF.	These	would	be
emitted	if	you	issue	a	describe	command	to	this	UDF	from	the	Hive	CLI:

@UDFType(deterministic	=	true)
@Description(
				name	=	"filename_from_url",	
				value	=	"Extracts	and	return	the	filename	part	of	a	URL.",	
				extended	=	"Extracts	and	return	the	filename	part	of	a	URL.	"
								+	"filename_from_url('http://test.org/temp/test.jpg?key=value')	
returns	'test.jpg'."
)





HCatalog	–	performing	Java	MapReduce
computations	on	data	mapped	to	Hive
tables
HCatalog	is	a	meta-data	abstraction	layer	for	files	stored	in	HDFS	and	makes	it	easy	for
different	components	to	process	data	stored	in	HDFS.	HCatalog	abstraction	is	based	on
tabular	table	model	and	augments	structure,	location,	storage	format	and	other	meta-data
information	for	the	data	sets	stored	in	HDFS.	With	HCatalog,	we	can	use	data	processing
tools	such	as	Pig,	Java	MapReduce	and	others	read	and	write	data	to	Hive	tables	without
worrying	about	the	structure,	storage	format	or	the	storage	location	of	the	data.	HCatalog
is	very	useful	when	you	want	to	execute	a	Java	MapReduce	job	or	a	Pig	script	on	a	data
set	that	is	stored	in	Hive	using	a	binary	data	format	such	as	ORCFiles.	The	topology	can
be	seen	as	follows:

HCatalog	achieves	this	capability	by	providing	an	interface	to	the	Hive	MetaStore
enabling	the	other	applications	to	utilize	the	Hive	table	metadata	information.	We	can
query	the	table	information	in	HCatalog	using	the	HCatalog	Command	Line	Interface
(CLI).	HCatalog	CLI	is	based	on	Hive	CLI	and	supports	Hive	Data	Definition	Language
(DDL)	statements	except	for	statements	that	require	running	a	MapReduce	query.
HCatalog	also	exposes	a	REST	API	called	WebHCat.

In	this	recipe	we’ll	be	looking	at	using	Java	MapReduce	computations	on	top	of	the	data
stored	in	Hive	tables	by	utilizing	the	meta-data	available	from	HCatalog.	HCatalog
provides	HCatInputFormat	class	to	retrieve	data	from	the	Hive	tables.



Getting	ready
Make	sure	HCatalog	is	installed	with	Hive	in	your	system.



How	to	do	it…
This	section	demonstrates	how	to	process	Hive	table	data	using	MapReduce	computations.
Perform	the	following	steps:

1.	 Follow	the	Hive	batch	mode	commands	using	a	query	file	recipe	of	this	chapter	to
create	and	populate	the	bookcrossing.user	Hive	table	that	we’ll	be	using	in	this
recipe.

2.	 Compile	the	sample	source	code	for	this	chapter	by	running	the	following	gradle
command	from	the	chapter6	folder	of	the	source	repository.

$	gradle	clean	build	uberjar

3.	 Run	the	MapReduce	job	using	the	following	command.	The	first	parameter	is	the
database	name,	second	parameter	is	the	input	table	name	and	the	third	parameter	is
the	output	path.	This	job	counts	the	number	of	users	aged	between	18	and	34	grouped
by	the	year:

$	hadoop	jar	build/libs/hcb-c6-samples-uber.jar	\
chapter7.hcat.HCatReadMapReduce	\
bookcrossing	users	hcat_read_out	

4.	 Inspect	the	results	of	this	computation	by	running	the	following	command:

$	hdfs	dfs	-cat	hcat-read-out/part*



How	it	works…
You	can	find	the	source	code	for	this	recipe	from	chapter6/hcat/
HCatReadMapReduce.java	file	in	the	source	folder	of	this	chapter.

Following	lines	in	the	run()	function	specify	the	HCatalogInputFormat	as	the
InputFormat	for	the	computation	and	configures	it	with	the	input	database	name	and	table
name.

//	Set	HCatalog	as	the	InputFormat
job.setInputFormatClass(HCatInputFormat.class);
HCatInputFormat.setInput(job,	dbName,	tableName);

The	map()	function	receives	the	records	from	the	Hive	table	as	HCatRecord	values,	while
the	map()	input	key	does	not	contain	any	meaningful	data.	HCatRecord	contains	the	data
fields	parsed	according	to	the	column	structure	of	the	Hive	table	and	we	can	extract	the
fields	from	the	HCatRecord	as	follows	in	the	map	function:

public	void	map(	WritableComparable	key,HCatRecord	value,…)
								throws	IOException,	InterruptedException	{
		HCatSchema	schema	=	
HCatBaseInputFormat.getTableSchema(context.getConfiguration());
		//	to	avoid	the	"null"	values	in	the	age	field	
		Object	ageObject	=	value.get("age",	schema);
		if	(ageObject	instanceof	Integer)	{
				int	age	=	((Integer)	ageObject).intValue();
				//	emit	age	and	one	for	count
				context.write(new	IntWritable(age),	ONE);
				}
					}
		}

HCatalog	jars,	Hive	jars	and	their	dependencies	are	needed	in	the	Hadoop	Classpath	to
execute	the	HCatalog	MapReduce	programs.	We	also	need	to	supply	these	jars	to	Map	and
Reduce	tasks	by	specifying	the	dependency	libraries	using	the	libjars	parameter	at	the
command	line	when	invoking	the	Hadoop	JAR	command.	An	alternative	to	solve	both	the
Hadoop	Classpath	and	the	libjars	requirements	is	to	package	all	the	dependency	jars	in
to	a	single	fat-jar	and	use	it	to	submit	the	MapReduce	program.

In	this	sample,	we	use	the	second	approach	and	create	a	fat-jar	(hcb-c6-samples-
uber.jar)	using	the	Gradle	build	as	follows:

task	uberjar(type:	Jar)	{
		archiveName	=	"hcb-c6-samples-uber.jar"
		from	files(sourceSets.main.output.classesDir)
		from	{configurations.compile.collect	{zipTree(it)}}	{
						exclude	"META-INF/*.SF"
						exclude	"META-INF/*.DSA"
						exclude	"META-INF/*.RSA"
		}
}





HCatalog	–	writing	data	to	Hive	tables
from	Java	MapReduce	computations
HCatalog	also	allows	us	to	write	data	to	Hive	tables	from	Java	MapReduce	computations
using	the	HCatOutputFormat.	In	this	recipe,	we’ll	be	looking	at	how	to	write	data	to	a
Hive	table	using	a	Java	MapReduce	computation.	This	recipe	extends	the	computation	of
the	previous	HCatalog	–	performing	Java	MapReduce	computations	on	data	mapped	to
Hive	tables	recipe	by	adding	table	write	capability.



Getting	ready
Make	sure	HCatalog	is	installed	with	Hive	in	your	system.



How	to	do	it…
This	section	demonstrates	how	to	write	data	to	a	Hive	table	using	a	MapReduce
computation.	Perform	the	following	steps:

1.	 Follow	the	Hive	batch	mode	–	using	a	query	file	recipe	of	this	chapter	to	create	and
populate	the	user	Hive	table	that	we’ll	be	using	in	this	recipe.

2.	 Compile	the	sample	source	code	for	this	chapter	by	running	the	following	gradle
command	from	the	chapter6	folder	of	the	source	repository:

$	gradle	clean	build	uberjar

3.	 Use	Hive	CLI	to	create	a	hive	table	to	store	the	results	of	the	computation.

hive>	create	table	hcat_out(age	int,	count	int);

4.	 Run	the	MapReduce	job	using	the	following	command.	The	first	parameter	is	the
database	name,	second	parameter	is	the	input	table	name	and	the	third	parameter	is
the	output	table	name.	This	job	counts	the	number	of	users	aged	between	18	and	34
grouped	by	the	year	and	writes	the	results	to	the	hcat_out	table	we	created	in	step	3:

$	hadoop	jar	hcb-c6-samples-uber.jar	\	
chapter6.hcat.HCatWriteMapReduce	\
bookcrossing	users	hcat_out

5.	 Read	the	results	by	running	the	following	command	in	the	hive	CLI:

hive>	select	*	from	bookcrossing.hcat_out	limit	10;
OK
hcat_out.age				hcat_out.count
19				3941
20				4047
21				4426
22				4709
23				5450
24				5683



How	it	works…
You	can	find	the	source	for	the	recipe	from	chapter6/src/chapter6/hcat/
HCatWriteMapReduce.java	file.

In	addition	to	the	configurations	we	discussed	in	the	previous	HCatalog	–	performing
Java	MapReduce	computations	on	data	mapped	to	Hive	tables	recipe,	we	specify
HCatalogOutputFormat	as	the	OutputFormat	for	the	computation	in	the	run()	function	as
follows.	We	also	configure	the	output	database	and	table	name:

job.setOutputFormatClass(HCatOutputFormat.class);

HCatOutputFormat.setOutput(job,
				OutputJobInfo.create(dbName,	outTableName,	null));

We	have	to	use	the	DefaultHCatRecord	as	the	job	output	value	when	writing	data	to	a
Hive	table:

job.setOutputKeyClass(WritableComparable.class);
job.setOutputValueClass(DefaultHCatRecord.class);

We	set	the	schema	for	the	output	table	as	follows:

HCatSchema	schema	=	HCatOutputFormat.getTableSchema(job
																										.getConfiguration());
HCatOutputFormat.setSchema(job,	schema);

The	reduce()	function	outputs	the	data	as	HCatRecord	values.	HCatOutputFormat	ignores
any	output	keys:

public	void	reduce(IntWritable	key,	Iterable<IntWritable>	values,
								Context	context)	…	{
		if	(key.get()	<	34	&	key.get()	>	18)	{
					int	count	=	0;
					for	(IntWritable	val	:	values)	{
				count	+=	val.get();
					}
					
						HCatRecord	record	=	new	DefaultHCatRecord(2);
					record.set(0,	key.get());
					record.set(1,	count);
					context.write(null,	record);
		}
}





Chapter	7.	Hadoop	Ecosystem	II	–	Pig,
HBase,	Mahout,	and	Sqoop
In	this	chapter,	we	will	cover	the	following	topics:

Getting	started	with	Apache	Pig
Joining	two	datasets	using	Pig
Accessing	a	Hive	table	data	in	Pig	using	HCatalog
Getting	started	with	Apache	HBase
Data	random	access	using	Java	client	APIs
Running	MapReduce	jobs	on	HBase
Using	Hive	to	insert	data	into	HBase	tables
Getting	started	with	Apache	Mahout
Running	K-means	with	Mahout
Importing	data	to	HDFS	from	a	relational	database	using	Apache	Sqoop
Exporting	data	from	HDFS	to	a	relational	database	using	Apache	Sqoop



Introduction
Hadoop	ecosystem	has	a	family	of	projects	that	are	either	built	on	top	of	Hadoop	or	work
very	closely	with	Hadoop.	These	projects	have	given	rise	to	an	ecosystem	that	focuses	on
large-scale	data	processing,	and	often	users	can	use	several	of	these	projects	in
combination	to	solve	their	big	data	problems.

This	chapter	introduces	several	key	projects	in	the	Hadoop	ecosystem	and	shows	how	to
get	started	with	each	of	these	projects.

We	will	focus	on	the	following	four	projects:

Pig:	A	dataflow-style	data	processing	language	for	large-scale	processing	of	data
stored	in	HDFS
HBase:	A	NoSQL-style	highly	scalable	data	store,	which	provides	low	latency,
random	accessible	and	highly	scalable	data	storage	on	top	of	HDFS
Mahout:	A	toolkit	of	machine-learning	and	data-mining	tools
Sqoop:	A	data	movement	tool	for	efficient	bulk	data	transfer	between	Apache
Hadoop	ecosystem	and	ralational	databases

Note
Some	of	the	HBase	and	Mahout	recipes	of	this	chapter	are	based	on	the	Chapter	5,
Hadoop	Ecosystem	chapter	of	the	previous	edition	of	this	book,	Hadoop	MapReduce
Cookbook.	Those	recipes	were	originally	authored	by	Srinath	Perera.

Note
Sample	code

The	sample	code	and	data	files	for	this	book	are	available	in	GitHub	at
https://github.com/thilg/hcb-v2.	The	chapter7	folder	of	the	code	repository	contains	the
sample	code	for	this	chapter.

Sample	codes	can	be	compiled	and	built	by	issuing	the	gradle	build	command	in	the
chapter7	folder	of	the	code	repository.	Project	files	for	Eclipse	IDE	and	IntelliJ	IDEA
IDE	can	be	generated	by	running	the	gradle	eclipse	and	gradle	idea	commands
respectively	in	the	main	folder	of	the	code	repository.

Some	of	the	recipes	of	this	chapter	use	the	Book	Crossing	dataset	as	the	sample	data.	This
dataset	is	compiled	by	Cai-Nicolas	Ziegler	and	comprises	a	list	of	books,	list	of	users,	and
a	list	of	ratings.	The	chapter6	folder	of	the	source	repository	contains	a	cleaned	sample	of
this	dataset.	You	can	obtain	the	full	dataset	from	http://www2.informatik.uni-
freiburg.de/~cziegler/BX/.

https://github.com/thilg/hcb-v2
http://www2.informatik.uni-freiburg.de/~cziegler/BX/




Getting	started	with	Apache	Pig
Apache	Pig	is	a	high-level	language	framework	for	Hadoop	that	makes	it	easy	to	analyze
very	large	datasets	stored	in	HDFS	without	having	to	implement	complex	Java
MapReduce	applications.	The	language	of	Pig	is	called	Pig	Latin,	which	is	a	data	flow
language.	While	the	goal	of	both	Pig	and	Hive	frameworks	is	similar,	the	language	layers
of	these	two	frameworks	complement	each	other	by	providing	a	procedural	language	and	a
declarative	language,	respectively.

Pig	converts	Pig	Latin	queries	in	to	a	series	of	one	or	more	MapReduce	jobs	in	the
background.

In	order	to	install	Pig,	we	recommend	you	use	one	of	the	freely	available	commercial
Hadoop	distributions	as	described	in	Chapter	1,	Getting	Started	with	Hadoop	v2.	Another
alternative	is	to	use	Apache	Bigtop	to	install	Pig.	Refer	to	the	Bigtop-related	recipe	in
Chapter	1,	Getting	Started	with	Hadoop	v2	for	steps	on	installing	Pig	using	the	Apache
Bigtop	distribution.

Note
In	case	you	don’t	have	a	working	Pig	and	Hadoop	installation,	the	following	steps	show
you	how	to	install	Pig	with	MapReduce	local	mode	using	the	local	file	system	as	the	data
storage.	This	is	recommended	only	for	learning	and	testing	purposes.

Download	and	extract	the	latest	version	of	Pig	from	http://pig.apache.org/releases.html.
Add	the	bin	directory	of	the	extracted	folder	to	your	PATH	environment	variable	as
follows:

$	export	PATH=pig-0.13.0/bin:$PATH

Use	the	pig	command	with	the	local	flag	to	start	the	Grunt	shell,	as	follows:

$	pig	-x	local
grunt>

This	recipe	demonstrates	how	to	use	Pig	queries	to	process	data	in	HDFS.	We	will	use	the
BookCrossing	dataset	for	this	recipe.	This	recipe	will	use	Pig	to	process	the	BookCrossing
user	dataset	and	select	a	list	of	users	who	are	aged	between	18	and	34,	ordered	by	their
age.

http://pig.apache.org/releases.html


Getting	ready
This	recipe	requires	a	working	Pig	installation	integrated	with	a	Hadoop	YARN	cluster.
You	can	run	these	samples	using	the	Pig	local	mode	as	well.	However,	in	such	cases	you’ll
have	to	use	the	local	file	system	instead	of	HDFS	to	load	the	data.



How	to	do	it…
This	section	describes	how	to	use	Pig	Latin	queries	to	find	users	aged	between	18	and	34
sorted	by	the	age	from	the	BookCrossing	user	dataset.	Proceed	with	the	following	steps:

1.	 Copy	and	extract	the	BookCrossing	sample	dataset	(chapter6-bookcrossing-
data.tar.gz)	from	the	chapter6	folder	of	the	code	repository.

2.	 Create	a	directory	in	HDFS	and	copy	the	BookCrossing	user	dataset	into	that
directory,	as	follows:

$	hdfs	dfs	–mkdir	book-crossing
$	hdfs	dfs	-copyFromLocal	\
chapter6/data/BX-Users-Prepro.txt	book-crossing

3.	 Start	the	Pig	Grunt	shell	and	issue	the	following	Pig	commands:

$	pig
grunt>	A	=	LOAD	'book-crossing/BX-Users-Prepro.txt'	USING	
PigStorage(';')		AS	(userid:int,	location:chararray,	age:int);
grunt>	B	=	FILTER	A	BY	age	>	18	AND	age	<	34	;
grunt>	C	=	ORDER	B	BY	age;

4.	 Print	the	output	of	the	processing	flow	by	using	the	DUMP	operator	in	the	same
grunt	shell.	The	queries	we	issued	in	step	3	get	executed	only	after	we	issue	the
following	command	(or	any	other	data	output	command).	You	should	notice	a	series
of	MapReduce	jobs	after	issuing	the	following	two	commands:

grunt>	D	=	LIMIT	C	10;
grunt>	DUMP	D;

The	output	of	the	preceding	command	is	as	follows:

5.	 You	can	also	use	the	ILLUSTRATE	operator	to	test	your	queries.	The	Illustrate	operator
retrieves	a	small	sample	of	data	from	your	input	data	and	runs	your	queries	on	that
data,	giving	faster	turnaround	times	to	review	and	test	the	Pig	queries:



grunt>	ILLUSTRATE	B;

The	output	of	the	preceding	command	is	as	follows:



How	it	works…
When	we	issue	Pig	queries,	Pig	internally	converts	them	to	a	set	of	MapReduce	jobs	and
executes	them	in	the	Hadoop	cluster	to	obtain	the	desired	result.	For	almost	all	the	data
queries,	Pig	queries	are	much	easier	to	write	and	manage	than	MapReduce	applications.

The	following	line	instructs	Pig	to	load	the	data	file	in	to	a	relation	named	A.	We	can
provide	either	a	single	file	or	a	directory	to	the	load	command.	Using	PigStorage(';')
instructs	Pig	to	load	the	data	using	the	default	load	function	with	;	as	the	separator.	When
the	MapReduce	job	is	executed,	Pig’s	load	function	parses	the	input	data	and	assigns	it	to
the	fields	of	the	schema	described	in	the	AS	clause.	Any	data	point	that	doesn’t	fit	in	to
the	given	schema	would	result	in	an	error	or	a	NULL	value	at	the	time	of	execution:

grunt>	A	=	LOAD	'book-crossing/BX-Users-Prepro.txt'	USING	PigStorage(';')		
AS	(userid:int,	location:chararray,	age:int);

The	FILTER	operator	selects	data	from	the	relation	based	on	a	given	condition.	In	the
following	line	of	code,	we	select	the	data	points,	where	the	age	of	the	user	is	between	18
and	34:

grunt>	B	=	FILTER	A	BY	age	>	18	AND	age	<	34;

The	ORDER	BY	operator	sorts	the	data	in	a	relation	based	on	one	or	more	data	fields.	In	the
following	query,	we	sort	the	relation	B	by	the	age	of	the	user:

grunt>	C	=	ORDER	B	BY	age;

The	LIMIT	operator	limits	the	number	of	data	points	(tuples)	in	a	relation	using	the	given
number.	In	the	following	query,	we	limit	relation	C	to	only	10	tuples.	The	following	step
makes	it	easy	to	inspect	the	data	using	the	DUMP	operator:

grunt>	D	=	LIMIT	C	10;



There’s	more…
Pig	Latin	also	contains	a	large	set	of	built-in	functions	providing	functionalities	in	the
areas	of	math,	string	processing,	data	time	processing,	basic	statistics,	data	loading	and
storing,	and	several	others.	A	list	of	Pig’s	built-in	functions	can	be	found	from
http://pig.apache.org/docs/r0.13.0/func.html.	You	can	also	implement	Pig	User	Defined
Functions	to	perform	any	custom	processing	that	you	require.

http://pig.apache.org/docs/r0.13.0/func.html


See	also
Refer	to	http://pig.apache.org/docs/r0.13.0/basic.html	for	documentation	on	Pig	Latin
data	types,	operators,	and	other	basics
Refer	to	http://pig.apache.org/docs/r0.13.0/test.html	for	documentation	on	Pig	Latin
testing	operators	such	as	ILLUSTRATE,	DUMP,	and	DESCRIBE

http://pig.apache.org/docs/r0.13.0/basic.html
http://pig.apache.org/docs/r0.13.0/test.html




Joining	two	datasets	using	Pig
This	recipe	explains	how	to	join	two	datasets	using	Pig.	We	will	use	the	BookCrossing
dataset	for	this	recipe.	This	recipe	will	use	Pig	to	join	the	Books	dataset	with	the	Book-
Ratings	dataset	and	find	the	distribution	of	high	ratings	(with	rating>3)	with	respect	to
authors.



How	to	do	it…
This	section	describes	how	to	use	a	Pig	Latin	script	to	find	author’s	review	rating
distribution	by	joining	the	Books	dataset	with	the	Ratings	dataset:

1.	 Extract	the	BookCrossing	sample	dataset	(chapter6-bookcrossing-data.tar.gz)
from	the	chapter6	folder	of	the	code	repository.

2.	 Create	a	directory	in	HDFS	and	copy	the	BookCrossing	Books	dataset	and	the	Book-
Ratings	dataset	to	that	directory,	as	follows:

$	hdfs	dfs	–mkdir	book-crossing
$	hdfs	dfs	-copyFromLocal	\
chapter6/data/BX-Books-Prepro.txt	book-crossing
$	hdfs	dfs	-copyFromLocal	\
BX-Book-Ratings-Prepro.txt	book-crossing

3.	 Review	the	chapter7/pig-scripts/book-ratings-join.pig	script.
4.	 Execute	the	preceding	Pig	Latin	script	using	the	following	command:

$	pig	–f	pig-scripts/book-ratings-join.pig

The	output	of	the	preceding	command	is	as	follows:



How	it	works…
The	following	Pig	commands	load	the	data	to	the	Books	and	BookRatings	relations.	As
described	in	the	earlier	recipe,	PigStorage(';')	instructs	Pig	to	use	';'	as	the	field
separator:

Books	=	LOAD	'book-crossing/BX-Books-Prepro.txt'	
USING	PigStorage(';')		AS	(
				isbn:chararray,	
				title:chararray,	
				author:chararray,	
				year:int,	
				publisher:chararray,	
				image_s:chararray,	
				image_m:chararray,	
				image_l:chararray);
Ratings	=	LOAD	'book-crossing/BX-Book-Ratings-Prepro.txt'	
		USING	PigStorage(';')		AS	(
				userid:int,	
				isbn:chararray,	
				ratings:int);

We	select	only	the	reviews	with	good	ratings	using	the	following	FILTER	operation:

GoodRatings	=	FILTER	R	BY	ratings	>	3;

Then,	we	join	the	Books	and	GoodRatings	relations	using	ISBN	as	the	common	criteria.
This	is	an	inner	equi	join	and	produces	a	Cartesian	product	of	all	the	records	filtered	by
the	join	criteria.	In	other	words,	the	resultant	relation	contains	a	record	for	each	matching
book	and	a	book	rating	(number	of	matching	books	X	number	of	good	ratings):

J	=	JOIN	Books	BY	isbn,	GoodRatings	by	isbn;

The	following	statement	groups	the	join	result	by	the	author.	Each	group	now	contains	all
the	records	belonging	to	an	author.	Assuming	we	have	a	matching	book	for	each	good
rating,	the	number	of	records	in	a	group	would	be	the	number	of	good	reviews	the	author
of	that	group	has	received.

JA	=	GROUP	J	BY	author;

The	following	statement	counts	the	number	of	records	in	each	group	of	relation	JA	and
output	the	author	name	and	the	count	of	good	reviews	for	books	written	by	that	author:

JB	=	FORACH	JA	GENERATE	group,	COUNT(J);
OA	=	LIMIT	JB	100;
DUMP	OA;

You	can	manually	issue	the	preceding	commands	in	the	Pig	Grunt	shell	to	gain	a	more
detailed	understanding	of	the	data	flow.	While	doing	so,	you	can	use	LIMIT	and	DUMP
operators	to	understand	the	result	of	each	step.



There’s	more…
Pig	supports	outer	joins	as	well.	However,	currently	Pig	only	supports	equi	joins,	where
the	join	condition	has	to	be	based	on	equality.





Accessing	a	Hive	table	data	in	Pig	using
HCatalog
There	can	be	scenarios	where	we	want	to	access	the	same	dataset	from	both	Hive	and	Pig.
There	can	also	be	scenarios	where	we	want	to	process	the	results	of	a	Hive	query	that’s
mapped	to	a	Hive	table	using	Pig.	In	such	cases,	we	can	take	advantage	of	the	HCatalog
integration	in	Pig	to	access	HCatalog	managed	Hive	tables	from	Pig	without	worrying
about	the	data	definition,	data	storage	format,	or	the	storage	location.



Getting	ready
Follow	the	Hive	batch	mode	-	using	a	query	file	recipe	from	Chapter	6,	Hadoop
Ecosystem	–	Apache	Hive	to	create	the	Hive	table	that	we’ll	be	using	in	this	recipe.



How	to	do	it…
This	section	demonstrates	how	to	access	a	Hive	table	from	Pig.	Proceed	with	the
following	steps:

1.	 Start	the	Pig’s	Grunt	shell	with	the	-useHCatalog	flag,	as	follows.	This	will	load	the
HCatalog	JARs	that	are	necessary	to	access	HCatalog	managed	tables	in	Hive:

$	pig	-useHCatalog

2.	 Use	the	following	command	in	the	Grunt	shell	to	load	the	users	table	from	the
bookcrossing	Hive	database	into	a	Pig	relation	named	users.	HCatLoader	facilitates
the	reading	of	data	from	HCatalog	managed	tables:

grunt>	users	=	LOAD	'bookcrossing.users'	USING	
org.apache.hive.hcatalog.pig.HCatLoader();

3.	 Use	the	describe	operator	as	follows	to	inspect	the	schema	of	the	users	relation:

grunt>	DESCRIBE	users;
users:	{user_id:	int,location:	chararray,age:	int}

4.	 Inspect	the	data	of	the	users	relation	by	issuing	the	following	command	in	the	Pig
Grunt	shell.	The	relations	loaded	through	Hive	can	be	used	similarly	to	any	other
relation	in	Pig:

grunt>	ILLUSTRATE	users;	

The	output	of	the	preceding	command	is	as	follows:



There’s	more…
You	can	also	store	data	in	Hive	tables	from	Pig	using	the	HCatStorer	interface	to	write
data	to	HCatalog	managed	tables,	as	follows:

grunt>	STORE	r	INTO	'database.table'	
							USING	org.apache.hcatalog.pig.HCatStorer();



See	also
The	HCatalog	–	performing	Java	MapReduce	computations	on	data	mapped	to	Hive
tables	and	HCatalog	–	writing	data	to	Hive	tables	from	Java	MapReduce	computations
recipes	of	Chapter	6,	Hadoop	Ecosystem	–	Apache	Hive.





Getting	started	with	Apache	HBase
HBase	is	a	highly	scalable	distributed	NoSQL	data	store	that	supports	columnar-style	data
storage.	HBase	is	modeled	after	Google’s	Bigtable.	HBase	uses	HDFS	for	data	storage	and
allows	random	access	of	data,	which	is	not	possible	in	HDFS.

The	HBase	table	data	model	can	be	visualized	as	a	very	large	multi-dimensional	sorted
map.	HBase	tables	consist	of	rows,	each	of	which	has	a	unique	Row	Key,	followed	by	a
list	of	columns.	Each	row	can	have	any	number	of	columns	and	doesn’t	have	to	adhere	to
a	fixed	schema.	Each	data	cell	(column	in	a	particular	row)	can	have	multiple	values	based
on	timestamps,	resulting	in	a	three-dimensional	table	(row,	column,	timestamp).	HBase
stores	all	the	rows	and	columns	in	a	sorted	order	making	it	possible	to	randomly	access	the
data.

Although	the	data	model	has	some	similarities	with	the	relational	data	model,	unlike
relational	tables,	different	rows	in	the	HBase	data	model	may	have	different	columns.	For
instance,	the	second	row	may	contain	completely	different	name-value	pairs	from	the	first
one.	HBase	also	doesn’t	support	transactions	or	atomicity	across	the	rows.	You	can	find
more	details	about	this	data	model	from	the	Google’s	Bigtable	paper,
http://research.google.com/archive/bigtable.html.

HBase	supports	the	storage	of	very	large	datasets	and	provides	low-latency	high-
throughput	reads	and	writes.	HBase	powers	some	of	the	very	demanding	real-time	data
processing	systems	such	as	online	advertisement	agencies;	it	has	powered	Facebook
Messenger	as	well.	The	data	stored	in	HBase	can	also	be	processed	using	MapReduce.

HBase	cluster	architecture	consists	of	one	or	more	master	nodes	and	a	set	of	region
servers.	HBase	tables	are	horizontally	split	into	regions,	which	are	served	and	managed	by
region	servers.	Regions	are	further	broken	down	vertically	by	column	families	and	saved
in	HDFS	as	files.	Column	families	are	a	logical	grouping	of	columns	in	a	table,	which
results	in	physical	grouping	of	columns	at	the	storage	layer.

Obtaining	the	maximum	performance	out	of	HBase	requires	careful	designing	of	tables,
taking	its	distributed	nature	in	to	consideration.	RowKeys	play	an	important	role	in	the
performance	as	the	region	distribution	and	any	querying	is	based	on	RowKeys.	Recipes	in
this	book	do	not	focus	on	such	optimizations.

In	order	to	install	HBase,	we	recommend	that	you	use	one	of	the	freely	available
commercial	Hadoop	distributions	as	described	in	Chapter	1,	Getting	Started	with	Hadoop
v2.	Another	alternative	is	to	use	an	HBase	cluster	on	the	Amazon	cloud	environment	as
described	in	Chapter	2,	Cloud	Deployments	–	Using	Hadoop	YARN	on	Cloud
Environments.

http://research.google.com/archive/bigtable.html


Getting	ready
This	recipe	requires	an	Apache	HBase	installation	integrated	with	a	Hadoop	YARN
cluster.	Make	sure	to	start	all	the	configured	HBase	Master	and	RegionServer	processes
before	we	begin.



How	to	do	it…
This	section	demonstrates	how	to	get	started	with	Apache	HBase.	We	are	going	to	create	a
simple	HBase	table	and	insert	a	row	of	data	to	that	table	using	the	HBase	shell.	Proceed
with	the	following	steps:

1.	 Start	the	HBase	shell	by	executing	the	following	command:

$	hbase	shell
……
hbase(main):001:0>	

2.	 Issue	the	following	command	in	the	HBase	shell	to	check	the	version:

hbase(main):002:0>	version
0.98.4.2.2.0.0-2041-hadoop2,	r18e3e58ae6ca5ef5e9c60e3129a1089a8656f91d,	
Wed	Nov	19	15:10:28	EST	2014

3.	 Create	an	HBase	table	named	test	table.	List	all	the	tables	to	verify	the	creation	of
the	test	table,	as	follows:

hbase(main):003:0>	create	'test',	'cf'
0	row(s)	in	0.4210	seconds
=>	Hbase::Table	-	test	

hbase(main):004:0>	list
TABLE		
SYSTEM.CATALOG		
SYSTEM.SEQUENCE		
SYSTEM.STATS	
test
4	row(s)	in	0.0360	seconds

4.	 Now,	insert	a	row	to	the	test	table	using	the	HBase	put	command	as	follows.	Use
row1	as	the	RowKey,	cf:a	as	the	column	name	and	10	as	the	value

hbase(main):005:0>	put	'test',	'row1',	'cf:a',	'10'
0	row(s)	in	0.0080	seconds

5.	 Scan	the	test	table	using	the	following	command,	which	prints	all	the	data	in	the
table:

hbase(main):006:0>	scan	'test'
ROW						COLUMN+CELL																																																																												
row1column=cf:a,	timestamp=1338485017447,	value=10																																							
1	row(s)	in	0.0320	seconds

6.	 Retrieve	the	value	from	the	table	using	the	following	command	by	giving	test	as	the
table	name	and	row1	as	RowKey:

hbase(main):007:0>	get	'test',	'row1'
COLUMN				CELL																																																																																			
cf:atimestamp=1338485017447,	value=10																																																				
1	row(s)	in	0.0130	seconds

7.	 Disable	and	drop	the	test	table	using	the	disable	and	drop	commands,	as	follows:



hbase(main):014:0>	disable	'test'
0	row(s)	in	11.3290	seconds

hbase(main):015:0>	drop	'test'
0	row(s)	in	0.4500	seconds



There’s	more…
In	addition	to	the	next	several	recipes	in	this	chapter,	the	following	recipes	in	this	book
also	use	HBase	and	provide	more	use	cases	for	HBase:

The	Loading	large	datasets	to	an	Apache	HBase	data	store	-	importtsv	and	bulkload
recipe	of	Chapter	10,	Mass	Text	Data	Processing
The	Creating	TF	and	TF-IDF	vectors	for	the	text	data	recipe	of	Chapter	10,	Mass
Text	Data	Processing
The	Generating	the	in-links	graph	for	crawled	web	pages	recipe	of	Chapter	8,
Searching	and	Indexing
The	Deploying	an	Apache	HBase	cluster	on	Amazon	EC2	using	EMR	recipe	of
Chapter	2,	Cloud	Deployments	–	Using	Hadoop	YARN	on	Cloud	Environments



See	also
Extensive	documentation	on	HBase	is	available	at	http://hbase.apache.org/book.html.

http://hbase.apache.org/book.html




Data	random	access	using	Java	client
APIs
The	previous	recipe	introduced	the	command-line	interface	for	HBase.	This	recipe
demonstrates	how	we	can	use	the	Java	API	to	interact	with	HBase.



Getting	ready
This	recipe	requires	an	Apache	HBase	installation	integrated	with	a	Hadoop	YARN
cluster.	Make	sure	to	start	all	the	configured	HBase	Master	and	RegionServer	processes
before	we	begin.



How	to	do	it…
The	following	step	executes	an	HBase	Java	client	to	store	and	retrieve	data	from	an	HBase
table.

Run	the	HBaseClient	Java	program	by	running	the	following	command	from	the	chapter
7	folder	of	the	sample	source	repository:

$	gradle	execute	HBaseClient



How	it	works…
The	source	code	for	the	preceding	Java	program	is	available	in	the
chapter7/src/chapter7/hbase/HBaseClient.java	file	in	the	source	repository.	The
following	code	creates	an	HBase	configuration	object	and	then	creates	a	connection	to	the
test	HBase	table.	This	step	obtains	the	HBase	hostnames	and	ports	using	ZooKeeper.	In
high	throughput	production	scenarios,	it’s	recommended	to	connect	to	HBase	tables	using
HConnection	instances.

Configuration	conf	=	HBaseConfiguration.create();
HTable	table	=	new	HTable(conf,	"test");

The	following	commands	will	add	a	data	row	to	the	HBase	table:

Put	put	=	new	Put("row1".getBytes());
put.add("cf".getBytes(),	"b".getBytes(),	"val2".getBytes());
table.put(put);

Search	for	data	by	performing	a	scan,	as	follows:

Scan	s	=	new	Scan();
s.addFamily(Bytes.toBytes("cf"));	
ResultScanner	results	=	table.getScanner(s);





Running	MapReduce	jobs	on	HBase
This	recipe	explains	how	to	run	a	MapReduce	job	that	reads	and	writes	data	directly	to
and	from	HBase	storage.

HBase	provides	abstract	mapper	and	reducer	implementations	that	users	can	extend	to
read	and	write	directly	from	HBase.	This	recipe	explains	how	to	write	a	sample
MapReduce	application	using	these	mappers	and	reducers.

We	will	use	the	World	Bank’s	Human	Development	Report	(HDR)	data,	by	country,
which	shows	Gross	National	Income	(GNI)	per	capita	of	each	country.	The	dataset	can
be	found	at	http://hdr.undp.org/en/statistics/data/.	A	sample	of	this	dataset	is	available	in
the	chapter7/resources/hdi-data.csv	file	in	the	sample	source	code	repository.	Using
MapReduce,	we	will	calculate	average	value	of	GNI	per	capita,	by	country.

http://hdr.undp.org/en/statistics/data/


Getting	ready
This	recipe	requires	an	Apache	HBase	installation	integrated	with	a	Hadoop	YARN
cluster.	Make	sure	to	start	all	the	configured	HBase	Master	and	RegionServer	processes
before	we	begin.



How	to	do	it…
This	section	demonstrates	how	to	run	a	MapReduce	job	on	data	stored	in	HBase.	Proceed
with	the	following	steps:

1.	 Execute	the	gradle	build	command	from	the	chapter7	folder	of	the	source
repository	to	compile	the	source	code,	as	follows:

$	gradle	build	

2.	 Run	the	following	command	from	the	chapter7	folder	to	upload	the	sample	data	to
HBase.	This	command	uses	the	chapter7/src/chapter7/hbase/HDIDataUploader
to	upload	the	data:

$	gradle	executeHDIDataUpload

3.	 Run	the	MapReduce	job	by	running	the	following	command	from	HADOOP_HOME:

$	hadoop	jar	hcb-c7-samples.jar	\
		chapter7.hbase.AverageGINByCountryCalcualtor

4.	 View	the	results	in	HBase	by	running	the	following	command	from	the	HBase	shell:

$	hbase	shell
hbase(main):009:0>	scan		'HDIResult'



How	it	works…
You	can	find	the	Java	HBase	MapReduce	sample	in
chapter7/src/chapter7/hbase/AverageGINByCountryCalcualtor.java.	Since	we	are
going	to	use	HBase	to	read	the	input	as	well	as	to	write	the	output,	we	use	the	HBase
TableMapper	and	TableReducer	helper	classes	to	implement	our	MapReduce	application.
We	configure	the	TableMapper	and	the	TableReducer	using	the	utility	methods	given	in
the	TableMapReduceUtil	class.	The	Scan	object	is	used	to	specify	the	criteria	to	be	used
by	the	mapper	when	reading	the	input	data	from	the	HBase	data	store.





Using	Hive	to	insert	data	into	HBase
tables
Hive-HBase	integration	gives	us	the	ability	to	query	HBase	tables	using	the	Hive	Query
Language	(HQL).	Hive-HBase	integration	supports	mapping	of	existing	HBase	tables	to
Hive	tables	as	well	as	the	creation	of	new	HBase	tables	using	HQL.	Both	reading	data
from	HBase	tables	and	inserting	data	into	HBase	tables	are	supported	through	HQL,
including	performing	joins	between	Hive-mapped	HBase	tables	and	traditional	Hive
tables.

The	following	recipe	uses	HQL	to	create	an	HBase	table	to	store	the	books	table	of	the
bookcrossing	dataset	and	populate	that	table	using	sample	data.



Getting	ready
Follow	the	Hive	batch	mode	-	using	a	query	file	recipe	of	Chapter	6,	Hadoop	Ecosystem	–
Apache	Hive	to	create	the	Hive	table	that	we’ll	be	using	in	this	recipe.



How	to	do	it…
This	section	demonstrates	how	to	access	a	Hive	table	from	Pig.	Proceed	with	the
following	steps:

1.	 Start	the	Hive	shell	with	the	following	command:

$	hive

2.	 Issue	the	following	command	in	the	Hive	shell	to	create	the	HBase	table.	The
HBaseStorageHandler	class	takes	care	of	the	data	communication	with	HBase.	We
have	to	specify	the	hbase.column.mapping	property	to	instruct	Hive	on	how	to	map
the	columns	of	the	HBase	table	into	the	corresponding	Hive	table:

CREATE	TABLE	IF	NOT	EXISTS	books_hbase
		(key	STRING,
		title	STRING,
		author	STRING,
		year	INT,
		publisher	STRING,
		image_s	STRING,
		image_m	STRING,
		image_l	STRING)
STORED	BY	'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH	SERDEPROPERTIES	('hbase.columns.mapping'	=			
':key,f:title,f:author,f:year,f:publisher,img:image_s,img:image_m,img:i
mage_l')
TBLPROPERTIES	('hbase.table.name'	=	'bx-books');

3.	 Issue	the	following	Hive	query	to	insert	data	into	the	newly	created	HBase	table.
RowKeys	in	HBase	tables	have	to	be	unique.	When	there	is	more	than	one	row	with
duplicate	RowKeys,	HBase	stores	only	one	of	them	and	discards	the	others.	Use	the
book	ISBN,	which	is	unique	for	each	book,	as	the	RowKey	in	the	following	example:

hive>	insert	into	table	books_hbase	select	*	from	bookcrossing.books;
….
Total	MapReduce	CPU	Time	Spent:	23	seconds	810	msec
OK
books.isbn				books.title				books.author				books.year				
books.publisher				books.image_s				books.image_m				books.image_l
Time	taken:	37.817	seconds

4.	 Use	the	following	command	to	inspect	the	data	inserted	to	the	Hive	mapped	HBase
table:

hive>	select	*	from	books_hbase	limit	10;

5.	 We	can	also	perform	Hive	functions,	such	as	count,	on	the	table	we	just	created,	as
follows:

hive>	select	count(*)	from	books_hbase;							
...
Total	MapReduce	CPU	Time	Spent:	22	seconds	510	msec
OK
_c0



271379

6.	 Start	the	HBase	shell	and	issue	the	list	command	to	see	the	list	of	tables	in	HBase,
as	follows:

$	hbase	shell
hbase(main):001:0>	list
TABLE
……			
SYSTEM.STATS
bx-books
……			
8	row(s)	in	1.4260	seconds

7.	 Inspect	the	data	of	the	bx-books	HBase	table	using	the	following	command:

hbase(main):003:0>	scan	'bx-books',	{'LIMIT'	=>	5}

The	output	of	the	preceding	command	is	as	follows:



See	also
The	HCatalog	–	performing	Java	MapReduce	computations	on	data	mapped	to	Hive
tables	and	HCatalog	–	writing	data	to	Hive	tables	from	Java	MapReduce
computations	recipes	of	Chapter	6,	Hadoop	Ecosystem	–	Apache	Hive.





Getting	started	with	Apache	Mahout
Mahout	is	an	effort	to	implement	well-known	machine	learning	and	data	mining
algorithms	using	the	Hadoop	MapReduce	framework.	Users	can	use	Mahout	algorithm
implementations	in	their	data	processing	applications	without	going	through	the
complexity	of	implementing	these	algorithms	using	Hadoop	MapReduce	from	scratch.

This	recipe	explains	how	to	get	started	with	Mahout.

In	order	to	install	Mahout,	we	recommend	you	use	one	of	the	freely	available	commercial
Hadoop	distributions	as	described	in	Chapter	1,	Getting	Started	with	Hadoop	v2.	Another
alternative	is	to	use	Apache	Bigtop	to	install	Mahout.	Refer	to	the	Bigtop-related	recipe	in
Chapter	1,	Getting	Started	with	Hadoop	v2	for	steps	on	installing	Mahout	using	the
Apache	Bigtop	distribution.



How	to	do	it…
This	section	demonstrates	how	to	get	started	with	Mahout	by	running	a	sample	KMeans
Clustering	computation.	You	can	run	and	verify	the	Mahout	installation	by	carrying	out
the	following	steps:

1.	 Download	the	input	data	from
http://archive.ics.uci.edu/ml/databases/synthetic_control/synthetic_control.data	as
follows:

$	wget	
http://archive.ics.uci.edu/ml/databases/synthetic_control/synthetic_con
trol.data		

2.	 Create	an	HDFS	directory	named	testdata	and	copy	the	downloaded	file	to	that
directory	using	the	following	command:

$	hdfs	dfs	–mkdir	testdata
$	hdfs	dfs	–copyFromLocal	synthetic_control.data		testdata

3.	 Run	the	K-mean	sample	by	running	the	following	command:

$	mahout	org.apache.mahout.clustering.syntheticcontrol.kmeans.Job

4.	 If	all	goes	well,	it	will	process	and	print	out	the	clusters:

12/06/19	21:18:15	INFO	kmeans.Job:	Running	with	default	arguments
12/06/19	21:18:15	INFO	kmeans.Job:	Preparing	Input
12/06/19	21:18:15	WARN	mapred.JobClient:	Use	GenericOptionsParser	for	
parsing	the	arguments.	Applications	should	implement	Tool	for	the	same.
.....
2/06/19	21:19:38	INFO	clustering.ClusterDumper:	Wrote	6	clusters
12/06/19	21:19:38	INFO	driver.MahoutDriver:	Program	took	83559	ms	
(Minutes:	1.39265)

http://archive.ics.uci.edu/ml/databases/synthetic_control/synthetic_control.data


How	it	works…
Mahout	is	a	collection	of	MapReduce	jobs	and	you	can	run	them	using	the	mahout
command.	The	preceding	instructions	installed	and	verified	Mahout	by	running	a	K-
means	sample	that	comes	with	the	Mahout	distribution.



There’s	more…
In	addition	to	the	next	recipe	in	this	chapter,	the	following	recipes	in	Chapter	10,	Mass
Text	Data	Processing	of	this	book	also	use	Mahout:

The	Creating	TF	and	TF-IDF	vectors	for	the	text	data	recipe	of	Chapter	10,	Mass
Text	Data	Processing
The	Clustering	text	data	using	Apache	Mahout	recipe	of	Chapter	10,	Mass	Text	Data
Processing
The	Topic	discovery	using	Latent	Dirichlet	Allocation	(LDA)	recipe	of	Chapter	10,
Mass	Text	Data	Processing
The	Document	classification	using	Mahout	Naive	Bayes	Classifier	recipe	of	Chapter
10,	Mass	Text	Data	Processing





Running	K-means	with	Mahout
K-means	is	a	clustering	algorithm.	A	clustering	algorithm	takes	data	points	defined	in	an
N-dimensional	space	and	groups	them	into	multiple	clusters	by	considering	the	distance
between	those	data	points.	A	cluster	is	a	set	of	data	points	such	that	the	distance	between
the	data	points	inside	the	cluster	is	much	less	than	the	distance	from	data	points	within
cluster	to	data	points	outside	the	cluster.	More	details	about	the	K-means	clustering	can	be
found	from	lecture	4	(http://www.youtube.com/watch?v=1ZDybXl212Q)	of	the	Cluster
computing	and	MapReduce	lecture	series	by	Google.

In	this	recipe,	we	will	use	a	dataset	that	includes	the	Human	Development	Report
(HDR)	by	country.	The	HDR	describes	different	countries	based	on	several	human
development	measures.	You	can	find	the	dataset	at	http://hdr.undp.org/en/statistics/data/.	A
sample	of	this	dataset	is	available	in	the	chapter7/resources/hdi-data.csv	file	in	the
sample	source	code	repository.	This	recipe	will	use	K-means	to	cluster	countries	based	on
HDR	dimensions.

http://www.youtube.com/watch?v=1ZDybXl212Q
http://hdr.undp.org/en/statistics/data/


Getting	ready
This	recipe	needs	a	Mahout	installation.	Follow	the	previous	recipe	to	install	Mahout,	if
you	haven’t	already	done	so.



How	to	do	it…
This	section	demonstrates	how	to	use	the	Mahout	K-means	algorithm	to	process	a	dataset.
Proceed	with	the	following	steps:

1.	 Use	the	following	Gradle	command	to	compile	the	sample:

$	gradle	build	

2.	 Copy	the	file,	chapter7/resources/countries4Kmean.data,	to	the	testdata
directory	in	HDFS.	Create	the	testdata	directory.

3.	 Run	the	sample	by	running	the	following	command:

$	gradle	executeKMeans



How	it	works…
The	preceding	sample	shows	how	you	can	configure	and	use	K-means	implementation
from	Java.	You	can	find	the	source	of	this	sample	in	the
chapter7/src/chapter7/KMeansSample.java	file.	When	we	run	the	code,	it	initializes
the	K-means	MapReduce	job	and	executes	it	using	the	MapReduce	framework.





Importing	data	to	HDFS	from	a	relational
database	using	Apache	Sqoop
Apache	Sqoop	is	a	project	that	enables	efficient	bulk	transfer	of	data	between	Apache
Hadoop	ecosystem	and	relational	data	stores.	Sqoop	can	be	used	to	automate	the	process
of	importing	data	from	or	exporting	data	to	RDBMSs	such	as	MySQL,	PostgreSQL,
Oracle,	and	so	on.	Sqoop	also	supports	database	appliances	such	as	Netezza	and	Teradata,
as	well.	It	supports	parallel	import/export	of	data	using	multiple	Map	tasks	and	also
supports	throttling	to	reduce	the	load	on	the	external	RDBMSs.

In	this	recipe,	we’ll	be	using	Sqoop2	to	import	data	from	a	PostgreSQL	database	in	to
HDFS.	We	also	include	instructions	for	Sqoop	1.4.x	as	well,	due	to	the	wide	availability
and	usage	of	that	Sqoop	version	in	the	current	Hadoop	distributions.

We	recommend	that	you	use	one	of	the	freely	available	commercial	Hadoop	distributions
as	described	in	Chapter	1,	Getting	Started	with	Hadoop	v2,	to	install	Apache	Sqoop2	or
Sqoop	1.4.x.	Another	alternative	is	to	use	Apache	Bigtop	to	install	Apache	Sqoop2.



Getting	ready
A	working	Hadoop2	cluster	with	a	Sqoop2	or	Sqoop	1.4.x	installation	is	required	for	this
recipe.

We	will	be	using	a	PostgreSQL	database.	You	can	also	use	another	RDBMS	for	this
purpose,	but	certain	steps	of	the	following	recipe	will	have	to	be	changed	accordingly.



How	to	do	it…
This	section	demonstrates	how	to	import	data	from	a	PostgreSQL	database	in	to	HDFS
using	SQOOP.	Proceed	with	the	following	steps:

1.	 Download	the	appropriate	PostgreSQL	JDBC	driver	from
http://jdbc.postgresql.org/download.html	and	copy	it	to	the	lib	directory	of	the
SQOOP	web	app	using	the	following	command	and	restart	the	SQOOP	server:

$	cp	postgresql-XXXX.jdbcX.jar	\
/usr/lib/sqoop/webapps/sqoop/WEB-INF/lib/

Note
For	Sqoop	1.4.x,	copy	the	PostgreSQL	JDBC	driver	jar	to	the	lib	folder	of	the	Sqoop
installation.

2.	 Create	an	user	and	a	database	in	the	PostgreSQL,	as	follows.	Use	your	OS	username
as	the	user	in	the	PostgreSQL	database	as	well.	For	this	recipe,	you	can	use	an
existing	PostgreSQL	user	and	an	existing	database	as	well:

$	sudo	su	-	postgres
$	psql
postgres=#	CREATE	USER	aluck	WITH	PASSWORD	'xxx123';
CREATE	ROLE
postgres=#	CREATE	DATABASE	test;
CREATE	DATABASE
postgres=#	GRANT	ALL	PRIVILEGES	ON	DATABASE	test	TO	aluck;
GRANT
postgres=#	\q

3.	 Log	in	to	the	newly	created	database.	Create	a	schema	and	a	database	table	using	the
following	statements	in	the	PostgreSQL	shell:

$	psql	test

test=>	CREATE	SCHEMA	bookcrossing;
CREATE	SCHEMA
test=>	CREATE	TABLE	bookcrossing.ratings	
							(user_id	INT,	
								isbn	TEXT,	
								rating	TEXT);
CREATE	TABLE

4.	 Load	the	book-ratings.txt	dataset	in	the	chapter7	folder	of	the	Git	repository	into
the	table	we	just	created,	using	the	following	command:

test=>	\COPY	bookcrossing.ratings	FROM	'…/chapter7/book-ratings.txt'	
DELIMITER	';'
test=#	select	*	from	bookcrossing.ratings	limit	10;

	user_id	|				isbn				|	rating	
---------+------------+--------
		276725	|	034545104X	|	0
		276726	|	0155061224	|	5

http://jdbc.postgresql.org/download.html


		276727	|	0446520802	|	0
		276729	|	052165615X	|	3
		276729	|	0521795028	|	6
		276733	|	2080674722	|	0
		276736	|	3257224281	|	8
		276737	|	0600570967	|	6
		276744	|	038550120X	|	7
		276745	|	342310538		|	10
(10	rows)

Note
Following	steps	(6	to	9)	are	for	Sqoop2.	Skip	to	step	10	for	instructions	on	Sqoop
1.4.x.

5.	 Create	a	SQOOP	connection	using	the	following	command	in	the	SQOOP	command
line	client	and	answer	the	prompted	questions:

$	sqoop
sqoop:000>	create	connection	--cid	1							
Creating	connection	for	connector	with	id	1
Please	fill	following	values	to	create	new	connection	object
Name:	t2

Connection	configuration

JDBC	Driver	Class:	org.postgresql.Driver																					
JDBC	Connection	String:	jdbc:postgresql://localhost:5432/test
Username:	testuser
Password:	****
JDBC	Connection	Properties:	
There	are	currently	0	values	in	the	map:
…
New	connection	was	successfully	created	with	validation	status	FINE	and	
persistent	id	3

6.	 Create	a	SQOOP	job	to	import	data	into	HDFS,	as	follows:

sqoop:000>	create	job	--xid	1	--type	import
Creating	job	for	connection	with	id	1
Please	fill	following	values	to	create	new	job	object
Name:	importest			
Database	configuration
Schema	name:	bookcrossing
Table	name:	ratings
Table	SQL	statement:	
Table	column	names:	
Partition	column	name:	user_id
Boundary	query:	

Output	configuration
Storage	type:	
		0	:	HDFS
Choose:	0
Output	format:	
		0	:	TEXT_FILE



		1	:	SEQUENCE_FILE
Choose:	0
Output	directory:	/user/test/book_ratings_import
New	job	was	successfully	created	with	validation	status	FINE		and	
persistent	id	8

7.	 Submit	the	Sqoop	job	with	the	following	command:

sqoop:000>	submission	start	--jid	8								
Submission	details
Job	id:	8
Status:	BOOTING	
Creation	date:	2014-10-15	00:01:20	EDT

8.	 Monitor	the	job	status	using	this	command:

sqoop:000>	submission	status	--jid	8
Submission	details
Job	id:	8
Status:	SUCCEEDED
Creation	date:	2014-10-15	00:01:20	EDT

9.	 Check	the	HDFS	directory	for	the	data.	You	can	map	this	data	to	Hive	tables	for
further	querying.	Next	two	steps	are	only	for	Sqoop	1.4.x.	Skip	them	if	you	are	using
Sqoop	2.

10.	 Issue	the	following	Sqoop	command	to	import	the	data	from	PostgreSQL	directly	in
to	a	Hive	table.	Substitute	the	PostgreSQL	database	IP	address	(or	hostname),
database	port	and	database	username	accordingly.	After	the	successful	execution	of
the	following	command,	a	folder	named	‘ratings’	containing	the	data	imported	from
PostgreSQL	will	be	created	in	your	HDFS	home	directory:

$	sqoop	import	\
--connect	jdbc:postgresql://<ip_address>:5432/test	\
--table	ratings	\
--username	aluck	-P	\
--direct—--schema	bookcrossing

11.	 Issue	the	following	Sqoop	command	to	import	the	data	from	PostgreSQL	in	to	your
HDFS	home	directory.	Substitute	the	PostgreSQL	database	IP	address	(or	hostname),
database	port	and	database	username	accordingly.	After	the	successful	execution	of
the	following	command,	a	Hive	table	named	‘ratings’	containing	the	data	imported
from	PostgreSQL	will	be	created	in	your	current	Hive	database:

$	sqoop	import	\
--connect	jdbc:postgresql://<ip_address>:5432/test	\
--table	ratings	\
--username	aluck	-P	\
--hive-import	\
--direct—--schema	bookcrossing





Exporting	data	from	HDFS	to	a	relational
database	using	Apache	Sqoop
In	this	recipe,	we’ll	be	using	Sqoop2	or	Sqoop	1.4.x	to	export	data	from	HDFS	to	a
PostgreSQL	database.



Getting	ready
A	working	Hadoop2	cluster	with	a	Sqoop2	or	Sqoop	1.4.x	installation	is	required	for	this
recipe.

We	will	be	using	a	PostgreSQL	database.	You	can	also	use	another	RDBMS	for	this
purpose	as	well,	but	the	following	recipe	steps	will	have	to	be	changed	accordingly.

Follow	the	previous	recipe,	Importing	data	to	HDFS	from	a	relational	database	using
Apache	Sqoop.



How	to	do	it…
This	section	demonstrates	how	to	export	data	from	HDFS	to	a	PostgreSQL	database	using
SQOOP.	Proceed	with	the	following	steps:

1.	 Follow	the	step	1	of	the	previous	Importing	data	to	HDFS	from	a	relational	database
using	Apache	Sqoop	recipe	to	create	a	user	and	a	database	in	the	PostgreSQL
database.

2.	 Create	a	database	table	using	the	following	statements	in	the	PostgreSQL	shell:

$	psql	test
test=>	CREATE	TABLE	bookcrossing.ratings_copy
		(user_id	INT,
		isbn	TEXT,	
		rating	TEXT);

Note
Following	steps	(3	to	5)	are	for	Sqoop2.	Skip	to	step	6	for	instructions	on	Sqoop
1.4.x.

3.	 Create	a	SQOOP	job	to	export	data	from	HDFS,	as	follows:

sqoop:000>	create	job	--xid	1	--type	export
Creating	job	for	connection	with	id	1
Please	fill	following	values	to	create	new	job	object
Name:	exporttest

Database	configuration
Schema	name:	bookcrossing
Table	name:	ratings_copy
Table	SQL	statement:	
Table	column	names:	
Input	configuration
Input	directory:	/user/test/book_ratings_import
Throttling	resources
Extractors:	
Loaders:	
New	job	was	successfully	created	with	validation	status	FINE		and	
persistent	id	13

4.	 Submit	the	Sqoop	job	with	the	following	command:

sqoop:000>	submission	start	--jid	13							
Submission	details
Job	id:	13
Status:	BOOTING	
				…..

5.	 Monitor	the	job	status	using	this	command.	Skip	to	step	7:

sqoop:000>	submission	status	--jid	13
Submission	details
Job	id:	13
Status:	SUCCEEDED



6.	 This	step	is	only	for	Sqoop	1.4.x.	Reexecute	the	step	11	of	the	previous	Importing
data	to	HDFS	from	a	relational	database	using	Apache	Sqoop	recipe	to	make	sure
you	have	the	“ratings”	folder	with	the	imported	data	in	your	HDFS	home	directory.
Issue	the	following	Sqoop	command	to	export	the	data	from	HDFS	directly	in	to	the
PostgreSQL	table.	Substitute	the	PostgreSQL	database	IP	address	(or	hostname),
database	port,	database	username,	export	data	source	directory	accordingly.
Execution	of	this	step	will	result	in	a	Hadoop	MapReduce	job:

$	sqoop	export	\
--connect	jdbc:postgresql://<ip_address>:5432/test	\
--table	ratings_copy	\
--username	aluck	-P	\
--export-dir	/user/aluck/ratings
--input-fields-terminated-by	','
--lines-terminated-by	'\n'
--	--schema	bookcrossing

7.	 Log	in	to	the	PostgreSQL	shell	and	check	the	imported	data:

test=#	select	*	from	bookcrossing.ratings_copy	limit	10;
	user_id	|				isbn				|	rating	
---------+------------+--------
		276725	|	034545104X	|	0
		276726	|	0155061224	|	5
		276727	|	0446520802	|	0
		276729	|	052165615X	|	3
		276729	|	0521795028	|	6





Chapter	8.	Searching	and	Indexing
In	this	chapter,	we	will	cover	the	following	recipes:

Generating	an	inverted	index	using	Hadoop	MapReduce
Intradomain	web	crawling	using	Apache	Nutch
Indexing	and	searching	web	documents	using	Apache	Solr
Configuring	Apache	HBase	as	the	backend	data	store	for	Apache	Nutch
Whole	web	crawling	with	Apache	Nutch	using	a	Hadoop/HBase	cluster
Elasticsearch	for	indexing	and	searching
Generating	the	in-links	graph	for	crawled	web	pages



Introduction
MapReduce	frameworks	are	well	suited	for	large-scale	search	and	indexing	applications.
In	fact,	Google	came	up	with	the	original	MapReduce	framework	specifically	to	facilitate
the	various	operations	involved	with	web	searching.	The	Apache	Hadoop	project	was	also
started	as	a	subproject	for	the	Apache	Nutch	search	engine,	before	spawning	off	as	a
separate	top-level	project.

Web	searching	consists	of	fetching,	indexing,	ranking,	and	retrieval.	Given	the	very	large
size	of	data,	all	these	operations	need	to	be	scalable.	In	addition,	the	retrieval	should	be
low	latency	as	well.	Typically,	fetching	is	performed	through	web	crawling,	where	the
crawlers	fetch	a	set	of	pages	in	the	fetch	queue,	extract	links	from	the	fetched	pages,	add
the	extracted	links	back	to	the	fetch	queue,	and	repeat	this	process	many	times.	Indexing
parses,	organizes,	and	stores	the	fetched	data	in	a	manner	that	is	fast	and	efficient	for
querying	and	retrieval.	Search	engines	perform	offline	ranking	of	the	documents	based	on
algorithms	such	as	PageRank	and	real-time	ranking	of	the	results	based	on	the	query
parameters.

In	this	chapter,	we	introduce	several	tools	that	you	can	use	with	Apache	Hadoop	to
perform	large-scale	searching	and	indexing.

Tip
Sample	code

The	example	code	files	for	this	book	are	available	in	GitHub	at
https://github.com/thilg/hcb-v2.	The	chapter8	folder	code	repository	contains	the	sample
code	for	this	chapter.

Sample	codes	can	be	compiled	and	built	by	issuing	the	gradle	build	command	in	the
chapter8	folder	of	the	code	repository.	The	project	files	for	Eclipse	IDE	can	be	generated
by	running	the	gradle	eclipse	command	in	the	main	folder	of	the	code	repository.	The
project	files	for	IntelliJ	IDEA	IDE	can	be	generated	by	running	the	gradle	idea
command	in	the	main	folder	of	the	code	repository.

https://github.com/thilg/hcb-v2




Generating	an	inverted	index	using
Hadoop	MapReduce
Simple	text	searching	systems	rely	on	inverted	index	to	look	up	the	set	of	documents	that
contain	a	given	word	or	a	term.	In	this	recipe,	we	implement	a	simple	inverted	index
building	application	that	computes	a	list	of	terms	in	the	documents,	the	set	of	documents
that	contains	each	term,	and	the	term	frequency	in	each	of	the	documents.	Retrieval	of
results	from	an	inverted	index	can	be	as	simple	as	returning	the	set	of	documents	that
contains	the	given	terms	or	can	involve	much	more	complex	operations	such	as	returning
the	set	of	documents	ordered	based	on	a	particular	ranking.



Getting	ready
You	must	have	Apache	Hadoop	v2	configured	and	installed	to	follow	this	recipe.	Gradle	is
needed	for	the	compiling	and	building	of	the	source	code.



How	to	do	it…
In	the	following	steps,	we	use	a	MapReduce	program	to	build	an	inverted	index	for	a	text
dataset:

1.	 Create	a	directory	in	HDFS	and	upload	a	text	dataset.	This	dataset	should	consist	of
one	or	more	text	files.

$	hdfs	dfs	-mkdir	input_dir
$	hdfs	dfs	-put	*.txt	input_dir

Note
You	can	download	the	text	versions	of	the	Project	Gutenberg	books	by	following	the
instructions	given	at
http://www.gutenberg.org/wiki/Gutenberg:Information_About_Robot_Access_to_our_Pages
Make	sure	to	provide	the	filetypes	query	parameter	of	the	download	request	as	txt.
Unzip	the	downloaded	files.	You	can	use	the	unzipped	text	files	as	the	text	dataset	for
this	recipe.

2.	 Compile	the	source	by	running	the	gradle	build	command	from	the	chapter	8
folder	of	the	source	repository.

3.	 Run	the	inverted	indexing	MapReduce	job	using	the	following	command.	Provide	the
HDFS	directory	where	you	uploaded	the	input	data	in	step	2	as	the	first	argument	and
provide	an	HDFS	path	to	store	the	output	as	the	second	argument:

$	hadoop	jar	hcb-c8-samples.jar	\
						chapter8.invertindex.TextOutInvertedIndexMapReduce	\
						input_dir	output_dir

4.	 Check	the	output	directory	for	the	results	by	running	the	following	command.	The
output	of	this	program	will	consist	of	the	term	followed	by	a	comma-separated	list	of
filename	and	frequency:

$	hdfs	dfs	-cat	output_dir/*
ARE	three.txt:1,one.txt:1,four.txt:1,two.txt:1,
AS	three.txt:2,one.txt:2,four.txt:2,two.txt:2,
AUGUSTA	three.txt:1,
About	three.txt:1,two.txt:1,
Abroad	three.txt:2,

5.	 We	used	the	text	outputting	inverted	indexing	MapReduce	program	in	step	3	for	the
clarity	of	understanding	the	algorithm.	The
chapter8/invertindex/InvertedIndexMapReduce.java	MapReduce	program	in	the
source	folder	of	chapter8	repository	outputs	the	inverted	index	using	the	Hadoop
SequenceFiles	and	MapWritable	class.	This	index	is	friendlier	for	machine
processing	and	more	efficient	for	storage.	You	can	run	this	version	of	the	program	by
substituting	the	command	in	step	3	with	the	following	command:

$	hadoop	jar	hcb-c8-samples.jar	\
						chapter8.invertindex.InvertedIndexMapReduce	\
						input_dir	seq_output_dir

http://www.gutenberg.org/wiki/Gutenberg:Information_About_Robot_Access_to_our_Pages




How	it	works…
The	Map	Function	receives	a	chunk	of	an	input	document	as	the	input	and	outputs	the
term	and	<docid,1>	pair	for	each	word.	In	the	Map	function,	we	first	replace	all	the	non-
alphanumeric	characters	from	the	input	text	value	before	tokenizing	it	as	follows:

public	void	map(Object	key,	Text	value,	………	{
		String	valString	=	value.toString().replaceAll("[^a-zA-Z0-9]+","	");
		StringTokenizer	itr	=	new	StringTokenizer(valString);
			StringTokenizer(value.toString());

		FileSplit	fileSplit	=	(FileSplit)	context.getInputSplit();
		String	fileName	=	fileSplit.getPath().getName();
		while	(itr.hasMoreTokens())	{
				term.set(itr.nextToken());
				docFrequency.set(fileName,	1);
				context.write(term,	docFrequency);
		}
}

We	use	the	getInputSplit()	method	of	MapContext	to	obtain	a	reference	to	InputSplit
assigned	to	the	current	Map	task.	The	InputSplits	class	for	this	computation	are
instances	of	FileSplit	due	to	the	usage	of	a	FileInputFormat	based	InputFormat.	Then
we	use	the	getPath()	method	of	FileSplit	to	obtain	the	path	of	the	file	containing	the
current	split	and	extract	the	filename	from	it.	We	use	this	extracted	filename	as	the
document	ID	when	constructing	the	inverted	index.

The	Reduce	function	receives	IDs	and	frequencies	of	all	the	documents	that	contain	the
term	(Key)	as	the	input.	The	Reduce	function	then	outputs	the	term	and	a	list	of	document
IDs	and	the	number	of	occurrences	of	the	term	in	each	document	as	the	output:

public	void	reduce(Text	key,	Iterable<TermFrequencyWritable>	values,Context	
context)	…………{

		HashMap<Text,	IntWritable>	map	=	new	HashMap<Text,	IntWritable>();
		for	(TermFrequencyWritable	val	:	values)	{
				Text	docID	=	new	Text(val.getDocumentID());
				int	freq	=	val.getFreq().get();
				if	(map.get(docID)	!=	null)	{
						map.put(docID,	new	IntWritable(map.get(docID).get()	+	freq));
				}	else	{
						map.put(docID,	new	IntWritable(freq));
				}
		}
		MapWritable	outputMap	=	new	MapWritable();
		outputMap.putAll(map);
		context.write(key,	outputMap);
}

In	the	preceding	model,	we	output	a	record	for	each	word,	generating	a	large	amount	of
intermediate	data	between	Map	tasks	and	Reduce	tasks.	We	use	the	following	combiner	to
aggregate	the	terms	emitted	by	the	Map	tasks,	reducing	the	amount	of	Intermediate	data
that	needs	to	be	transferred	between	Map	and	Reduce	tasks:



public	void	reduce(Text	key,	Iterable<TermFrequencyWritable>	values	……	{
		int	count	=	0;
		String	id	=	"";
		for	(TermFrequencyWritable	val	:	values)	{
				count++;
				if	(count	==	1)	{
						id	=	val.getDocumentID().toString();
				}
		}
		TermFrequencyWritable	writable	=	new	TermFrequencyWritable();
		writable.set(id,	count);
		context.write(key,	writable);
}

In	the	driver	program,	we	set	the	Mapper,	Reducer,	and	the	Combiner	classes.	Also,	we
specify	both	Output	Value	and	the	MapOutput	Value	properties	as	we	use	different	value
types	for	the	Map	tasks	and	the	reduce	tasks.

…
job.setMapperClass(IndexingMapper.class);
job.setReducerClass(IndexingReducer.class);
job.setCombinerClass(IndexingCombiner.class);
…
job.setMapOutputValueClass(TermFrequencyWritable.class);
job.setOutputValueClass(MapWritable.class);
job.setOutputFormatClass(SequenceFileOutputFormat.class);



There’s	more…
We	can	improve	this	indexing	program	by	performing	optimizations	such	as	filtering	stop
words,	substituting	words	with	word	stems,	storing	more	information	about	the	context	of
the	word,	and	so	on,	making	indexing	a	much	more	complex	problem.	Luckily,	there	exist
several	open	source	indexing	frameworks	that	we	can	use	for	indexing	purposes.	The	later
recipes	of	this	chapter	will	explore	indexing	using	Apache	Solr	and	Elasticsearch,	which
are	based	on	the	Apache	Lucene	indexing	engine.

The	upcoming	section	introduces	the	usage	of	MapFileOutputFormat	to	store
InvertedIndex	in	an	indexed	random	accessible	manner.

Outputting	a	random	accessible	indexed	InvertedIndex
Apache	Hadoop	supports	a	file	format	called	MapFile	that	can	be	used	to	store	an	index
into	the	data	stored	in	SequenceFiles.	MapFile	is	very	useful	when	we	need	to	random
access	records	stored	in	a	large	SequenceFile.	You	can	use	the	MapFileOutputFormat
format	to	output	MapFiles,	which	would	consist	of	a	SequenceFile	containing	the	actual
data	and	another	file	containing	the	index	into	the	SequenceFile.

The	chapter8/invertindex/MapFileOutInvertedIndexMR.java	MapReduce	program	in
the	source	folder	of	chapter8	utilizes	MapFiles	to	store	a	secondary	index	into	our
inverted	index.	You	can	execute	that	program	by	using	the	following	command.	The	third
parameter	(sample_lookup_term)	should	be	a	word	that	is	present	in	your	input	dataset:

$	hadoop	jar	hcb-c8-samples.jar	\
						chapter8.invertindex.MapFileOutInvertedIndexMR	\
						input_dir	indexed_output_dir	sample_lookup_term

If	you	check	indexed_output_dir,	you	will	be	able	to	see	folders	named	as	part-r-
xxxxx	with	each	containing	a	data	and	an	index	file.	We	can	load	these	indexes	to
MapFileOutputFormat	and	perform	random	lookups	for	the	data.	An	example	of	a	simple
lookup	using	this	method	is	given	in	the	MapFileOutInvertedIndexMR.java	program	as
follows:

MapFile.Reader[]	indexReaders	=	MapFileOutputFormat.getReaders(new	
Path(args[1]),	getConf());
MapWritable	value	=	new	MapWritable();
Text	lookupKey	=	new	Text(args[2]);
//	Performing	the	lookup	for	the	values	if	the	lookupKey
Writable	map	=	MapFileOutputFormat.getEntry(indexReaders,	new	
HashPartitioner<Text,	MapWritable>(),	lookupKey,	value);

In	order	to	use	this	feature,	you	need	to	make	sure	to	disable	Hadoop	from	writing	a
_SUCCESS	file	in	the	output	folder	by	setting	the	following	property.	The	presence	of	the
_SUCCESS	file	might	cause	an	error	when	using	MapFileOutputFormat	to	lookup	the	values
in	the	index:

job.getConfiguration().setBoolean("mapreduce.fileoutputcommitter.marksucces
sfuljobs",	false);



See	also
The	Creating	TF	and	TF-IDF	vectors	for	the	text	data	recipe	in	Chapter	10,	Mass
Text	Data	Processing.





Intradomain	web	crawling	using	Apache
Nutch
Web	crawling	is	the	process	of	visiting	and	downloading	all	or	a	subset	of	web	pages	on
the	Internet.	Although	the	concept	of	crawling	and	implementing	a	simple	crawler	sounds
simple,	building	a	full-fledged	crawler	takes	a	great	deal	of	work.	A	full-fledged	crawler
needs	to	be	distributed,	has	to	obey	the	best	practices	such	as	not	overloading	servers	and
obey	robots.txt,	performing	periodic	crawls,	prioritizing	the	pages	to	crawl,	identifying
many	formats	of	documents,	and	so	on.	Apache	Nutch	is	an	open	source	search	engine
that	provides	a	highly	scalable	crawler.	Apache	Nutch	offers	features	such	as	politeness,
robustness,	and	scalability.

In	this	recipe,	we	are	going	to	use	Apache	Nutch	in	the	standalone	mode	for	small-scale
intradomain	web	crawling.	Almost	all	the	Nutch	commands	are	implemented	as	Hadoop
MapReduce	applications	as	you	would	notice	when	executing	steps	10	to	18	of	this	recipe.
Nutch	standalone	executed	these	applications	using	the	Hadoop	in	local	mode.

This	recipe	builds	on	the	instructions	given	at	http://wiki.apache.org/nutch/NutchTutorial.

http://wiki.apache.org/nutch/NutchTutorial


Getting	ready
Set	the	JAVA_HOME	environmental	variable.	Install	Apache	Ant	and	add	it	to	the	PATH
environmental	variable.



How	to	do	it…
The	following	steps	show	you	how	to	use	Apache	Nutch	in	standalone	mode	for	small
scale	web	crawling:

1.	 Apache	Nutch	standalone	mode	uses	the	HyperSQL	database	as	the	default	data
storage.	Download	HyperSQL	from	http://sourceforge.net/projects/hsqldb/.	Unzip	the
distribution	and	go	to	the	data	directory:

$	cd	hsqldb-2.3.2/hsqldb

2.	 Start	a	HyperSQL	database	using	the	following	command.	The	following	database
uses	data/nutchdb.*	as	the	database	files	and	uses	nutchdb	as	the	database	alias
name.	We’ll	be	using	this	database	alias	name	in	the	gora.sqlstore.jdbc.url
property	in	step	7:

$	java	-cp	lib/hsqldb.jar	\
org.hsqldb.server.Server	\
--database.0	file:data/nutchdb	\
--dbname.0	nutchtest
......
[Server@79616c7]:	Database	[index=0,	id=0,	db=file:data/nutchdb,	
alias=nutchdb]	opened	sucessfully	in	523	ms.
......

3.	 Download	Apache	Nutch	2.2.1	from	http://nutch.apache.org/	and	extract	it.
4.	 Go	to	the	extracted	directory,	which	we	will	refer	as	NUTCH_HOME.	Change	the	gora-

core	dependency	version	to	0.2.1	and	uncomment	the	gora-sql	dependency	by
modifying	the	Gora	artifacts	section	of	the	ivy/ivy.xml	file	as	follows:

<!--================-->
<!--	Gora	artifacts	-->
<!--================-->
<dependency	org="org.apache.gora"	name="gora-core"	rev="0.2.1"	conf="*-
>default"/>
		
<dependency	org="org.apache.gora"	name="gora-sql"	rev="0.1.1-
incubating"	conf="*->default"	/>

Note
You	can	also	use	a	MySQL	database	as	the	backend	database	for	the	Nutch
standalone	mode	web	crawling	by	updating	the	necessary	database	configurations	in
the	Default	SqlStore	properties	section	of	the	conf/gora.properties	file.
You’ll	also	have	to	uncomment	the	mysql-connector-java	dependency	in	the	Gora
artifacts	section	of	the	ivy/ivy.xml	file.

5.	 Build	Apache	Nutch	using	the	following	command:

$	ant	runtime

6.	 Ensure	you	have	the	following	in	the
NUTCH_HOME/runtime/local/conf/gora.properties	file.	Provide	the	database	alias

http://sourceforge.net/projects/hsqldb/
http://nutch.apache.org/


name	used	in	step	2:

###############################
#	Default	SqlStore	properties	#
###############################
gora.sqlstore.jdbc.driver=org.hsqldb.jdbc.JDBCDriver
gora.sqlstore.jdbc.url=jdbc:hsqldb:hsql://localhost/nutchtest
gora.sqlstore.jdbc.user=sa

7.	 Go	to	the	runtime/local	directory	and	run	the	bin/nutch	command	to	verify	the
Nutch	installation.	A	successful	installation	would	print	out	the	list	of	Nutch
commands	as	follows:

$	cd	runtime/local
$	bin/nutch	
Usage:	nutch	COMMAND
where	COMMAND	is	one	of:…..

8.	 Add	the	following	to	NUTCH_HOME/runtime/local/conf/nutch-site.xml.	You	can
give	any	name	to	the	value	of	http.agent.name:

<configuration>
<property>
		<name>storage.data.store.class</name>
		<value>org.apache.gora.sql.store.SqlStore</value>
</property>
<property>
		<name>http.agent.name</name>
		<value>NutchCrawler</value>
</property>
<property>
		<name>http.robots.agents</name>
		<value>NutchCrawler,*</value>
</property>
</configuration>

9.	 You	can	restrict	the	domain	names	you	wish	to	crawl	by	editing	the	regex-
urlfiler.txt	file	located	at	NUTCH_HOME/runtime/local/conf/.	For	example,	in
order	to	restrict	the	domain	to	http://apache.org,	replace	the	following	line	at
NUTCH_HOME/runtime/local/conf/regex-urlfilter.txt:

#	accept	anything	else
+.

10.	 Using	the	following	regular	expression:

+^http://([a-z0-9]*\.)*apache.org/

11.	 Create	a	directory	named	urls	and	create	a	file	named	seed.txt	inside	that	directory.
Add	your	seed	URLs	to	this	file.	Seed	URLs	are	used	to	start	the	crawling	and	would
be	pages	that	are	crawled	first.	We	use	http://apache.org	as	the	seed	URL	in	the
following	example:

$	mkdir	urls
$	echo	http://apache.org/	>	urls/seed.txt

http://apache.org
http://apache.org


12.	 Inject	the	seed	URLs	into	the	Nutch	database	using	the	following	command:

$	bin/nutch	inject	urls/
InjectorJob:	starting
InjectorJob:	urlDir:	urls
……
Injector:	finished

13.	 Use	the	following	command	to	verify	the	injection	of	the	seeds	to	the	Nutch	database.
TOTAL	urls	printed	by	this	command	should	match	the	number	of	URLs	you	had	in
your	seed.txt	file.	You	can	use	the	following	command	in	the	later	cycles	as	well	to
get	an	idea	about	the	number	of	web	page	entries	in	your	database:

$	bin/nutch	readdb		-stats
WebTable	statistics	start
Statistics	for	WebTable:	
min	score:		1.0
....
TOTAL	urls:		1

14.	 Use	the	following	command	to	generate	a	fetch	list	from	the	injected	seed	URLs.
This	will	prepare	the	list	of	web	pages	to	be	fetched	in	the	first	cycle	of	the	crawling.
Generation	will	assign	a	batch-id	to	the	current	generated	fetch	list	that	can	be	used	in
the	subsequent	commands:

$	bin/nutch	generate	–topN	1
GeneratorJob:	Selecting	best-scoring	urls	due	for	fetch.
GeneratorJob:	starting
GeneratorJob:	filtering:	true
GeneratorJob:	done
GeneratorJob:	generated	batch	id:	1350617353-1356796157

15.	 Use	the	following	command	to	fetch	the	list	of	pages	prepared	in	step	12.	This	step
performs	the	actual	fetching	of	the	web	pages.	The	–all	parameter	is	used	to	inform
Nutch	to	fetch	all	the	generated	batches:

$	bin/nutch	fetch	-all
FetcherJob:	starting
FetcherJob:	fetching	all
FetcherJob:	threads:	10
......

fetching	http://apache.org/
......
	
-activeThreads=0
FetcherJob:	done

16.	 Use	the	following	command	to	parse	and	extract	the	useful	data	from	fetched	web
pages,	such	as	the	text	content	of	the	pages,	metadata	of	the	pages,	the	set	of	pages
linked	from	the	fetched	pages	and	so	on.	We	call	the	set	of	pages	linked	from	a
fetched	page	the	out-links	of	that	particular	fetched	page.	Out-links	data	would	be
used	to	discover	new	pages	to	fetch	as	well	as	to	rank	pages	using	link	analysis
algorithms	such	as	PageRank:



$	bin/nutch	parse	-all
ParserJob:	starting
......
ParserJob:	success

17.	 Execute	the	following	command	to	update	the	Nutch	database	with	the	data	extracted
in	the	preceding	step.	This	step	includes	updating	the	contents	of	the	fetched	pages	as
well	as	adding	new	entries	of	the	pages	discovered	through	the	links	contained	in	the
fetched	pages.

$	bin/nutch	updatedb
DbUpdaterJob:	starting
……
DbUpdaterJob:	done

18.	 Execute	the	following	command	to	generate	a	new	fetch	list	using	the	information
from	the	previously	fetched	data.	The	topN	parameter	limits	the	number	of	URLs
generated	for	the	next	fetch	cycle:

$	bin/nutch	generate	-topN	100
GeneratorJob:	Selecting	best-scoring	urls	due	for	fetch.
GeneratorJob:	starting
......
GeneratorJob:	done
GeneratorJob:	generated	batch	id:	1350618261-1660124671

19.	 Fetch	the	new	list,	parse	it,	and	update	the	database.

$	bin/nutch	fetch	–all
......
$	bin/nutch	parse	-all	
......
$	bin/nutch	updatedb
......

20.	 Repeat	steps	17	and	18	till	you	get	the	desired	number	of	pages	or	the	desired	depth
from	your	starting	URLs.



See	also
The	Whole	web	crawling	with	Apache	Nutch	using	a	Hadoop/HBase	cluster	and
Indexing	and	searching	web	documents	using	Apache	Solr	recipes.
Refer	to	http://www.hsqldb.org/doc/2.0/guide/index.html	for	more	information	on
using	HyperSQL.

http://www.hsqldb.org/doc/2.0/guide/index.html




Indexing	and	searching	web	documents
using	Apache	Solr
Apache	Solr	is	an	open	source	search	platform	that	is	part	of	the	Apache	Lucene	project.
It	supports	powerful	full-text	search,	faceted	search,	dynamic	clustering,	database
integration,	rich	document	(for	example,	Word	and	PDF)	handling,	and	geospatial	search.
In	this	recipe,	we	are	going	to	index	the	web	pages	crawled	by	Apache	Nutch	for	use	by
Apache	Solr	and	use	Apache	Solr	to	search	through	those	web	pages.



Getting	ready
1.	 Crawl	a	set	of	web	pages	using	Apache	Nutch	by	following	the	Intradomain	web
crawling	using	Apache	Nutch	recipe

2.	 Solr	4.8	and	later	versions	require	JDK	1.7



How	to	do	it…
The	following	steps	show	you	how	to	index	and	search	your	crawled	web	pages	dataset:

1.	 Download	and	extract	Apache	Solr	from	http://lucene.apache.org/solr/.	We	use
Apache	Solr	4.10.3	for	the	examples	in	this	chapter.	From	here	on,	we	call	the
extracted	directory	as	$SOLR_HOME.

2.	 Replace	the	schema.xml	file	located	under
$SOLR_HOME/examples/solr/collection1/conf/	using	the	schema.solr4.xml	file
located	under	$NUTCH_HOME/runtime/local/conf/	as	follows:

$	cp	$NUTCH_HOME/conf/schema-solr4.xml	\
							$SOLR_HOME/example/solr/collection1/conf/schema.xml

3.	 Add	the	following	configuration	to
$SOLR_HOME/examples/solr/collection1/conf/schema.xml	under	the	<fields>
tag:

<fields>
		<field	name="_version_"	type="long"	indexed="true"	stored="true"/>
……
</fields>

4.	 Start	Solr	by	executing	the	following	command	from	the	example	directory	under
$SOLR_HOME/:

$	java	-jar	start.jar

5.	 Go	to	the	URL	http://localhost:8983/solr	to	verify	the	Apache	Solr	installation.
6.	 Index	the	data	fetched	using	Apache	Nutch	into	Apache	Solr	by	issuing	the	following

command	from	the	$NUTCH_HOME/runtime/local	directory.	This	command	pushes
the	data	crawled	by	Nutch	into	Solr	through	the	Solr	web	service	interface:

$	bin/nutch	solrindex	http://127.0.0.1:8983/solr/	-reindex	

7.	 Go	to	Apache	Solr	search	UI	at
http://localhost:8983/solr/#/collection1/query.	Enter	a	search	term	in	the	q
textbox	and	click	on	Execute	Query,	as	shown	in	the	following	screenshot:

http://lucene.apache.org/solr/


8.	 You	can	also	issue	your	search	queries	directly	using	the	HTTP	GET	requests.	Paste
the	http://localhost:8983/solr/collection1/select?
q=hadoop&start=5&rows=5&wt=xml	URL	to	your	browser.



How	it	works…
Apache	Solr	is	built	using	the	Apache	Lucene	text	search	library.	Apache	Solr	adds	many
features	on	top	of	Apache	Lucene	and	provides	a	text	search	web	application	that	works
out	of	the	box.	The	preceding	steps	deploy	Apache	Solr	and	import	the	data	crawled	by
Nutch	into	the	deployed	Solr	instance.

The	metadata	of	the	documents	we	plan	to	index	and	search	using	Solr	needs	to	be
specified	through	the	Solr	schema.xml	file.	The	Solr	schema	file	should	define	the	data
fields	in	our	documents	and	how	these	data	fields	should	be	processed	by	Solr.	We	use	the
schema	file	provided	with	Nutch	($NUTCH_HOME/conf/schema-solr4.xml),	which	defines
the	schema	for	the	web	pages	crawled	by	Nutch,	as	the	Solr	schema	file	for	this	recipe.
More	information	about	the	Solr	schema	file	can	be	found	at
http://wiki.apache.org/solr/SchemaXml.

http://wiki.apache.org/solr/SchemaXml


See	also
The	Elasticsearch	for	indexing	and	searching	recipe.
Follow	the	tutorial	given	at	http://lucene.apache.org/solr/tutorial.html	for	more
information	on	using	Apache	Solr.
SolrCloud	provides	distributed	indexing	and	searching	capabilities	for	Apache	Solr.
More	information	on	SolrCloud	can	be	found	at
https://cwiki.apache.org/confluence/display/solr/Getting+Started+with+SolrCloud.

http://lucene.apache.org/solr/tutorial.html
https://cwiki.apache.org/confluence/display/solr/Getting+Started+with+SolrCloud




Configuring	Apache	HBase	as	the
backend	data	store	for	Apache	Nutch
Apache	Nutch	integrates	Apache	Gora	to	add	support	for	different	backend	data	stores.	In
this	recipe,	we	are	going	to	configure	Apache	HBase	as	the	backend	data	storage	for
Apache	Nutch.	Similarly,	it	is	possible	to	plug	in	data	stores	such	as	RDBMS	databases,
Cassandra,	and	others	through	Gora.

This	recipe	builds	upon	the	instructions	given	at
http://wiki.apache.org/nutch/Nutch2Tutorial.

Note
As	of	Apache	Nutch	2.2.1	release,	the	Nutch	project	has	not	officially	migrated	to	Hadoop
2.x	and	still	depends	on	Hadoop	1.x	for	the	whole	web	crawling.	However,	it	is	possible	to
execute	the	Nutch	jobs	using	a	Hadoop	2.x	cluster	utilizing	the	backward	compatibility
nature	of	Hadoop.

Nutch	HBaseStore	integration	further	depends	on	HBase	0.90.6,	which	doesn’t	support
Hadoop	2.	Hence,	this	recipe	works	only	with	a	Hadoop	1.x	cluster.	We	are	looking
forward	to	a	new	Nutch	release	with	full	Hadoop	2.x	support.

http://wiki.apache.org/nutch/Nutch2Tutorial


Getting	ready
1.	 Install	Apache	Ant	and	add	it	to	the	PATH	environmental	variable.



How	to	do	it…
The	following	steps	show	you	how	to	configure	Apache	HBase	local	mode	as	the	backend
data	store	for	Apache	Nutch	to	store	the	crawled	data:

1.	 Install	Apache	HBase.	Apache	Nutch	2.2.1	and	Apache	Gora	0.3	recommend	HBase
0.90.6	release.

2.	 Create	two	directories	to	store	the	HDFS	data	and	Zookeeper	data.	Add	the	following
to	the	hbase-site.xml	file	under	$HBASE_HOME/conf/	replacing	the	values	with	the
paths	to	the	two	directories.	Start	HBase:

<configuration>
<property>
				<name>hbase.rootdir</name>
				<value>file:///u/software/hbase-0.90.6/hbase-data</value>
		</property>
<property>
				<name>hbase.zookeeper.property.dataDir</name>
				<value>file:///u/software/hbase-0.90.6/zookeeper-data</value>
		</property>
</configuration>

Tip
Test	your	HBase	installation	using	the	HBase	Shell	before	proceeding.

3.	 In	case,	you	have	not	downloaded	Apache	Nutch	for	the	earlier	recipes	in	this
chapter,	download	Nutch	from	http://nutch.apache.org	and	extract	it.

4.	 Add	the	following	to	the	nutch-site.xml	file	under	$NUTCH_HOME/conf/:

<property>
	<name>storage.data.store.class</name>
	<value>org.apache.gora.hbase.store.HBaseStore</value>
	<description>Default	class	for	storing	data</description>
</property>
<property>
	<name>http.agent.name</name>
	<value>NutchCrawler</value>
</property>
<property>
		<name>http.robots.agents</name>
		<value>NutchCrawler,*</value>
</property>

5.	 Uncomment	the	following	in	the	Gora	artifacts	section	of	the	ivy.xml	file	under
$NUTCH_HOME/ivy/.	Revert	the	changes	you	made	to	the	ivy/ivy.xml	file	in	the	earlier
recipe	and	make	sure	that	the	gora-core	dependency	version	is	0.3.	Also,	make	sure
to	comment	the	gora-sql	dependency:

<dependency	org="org.apache.gora"	name="gora-hbase"	rev="0.3"	conf="*-
>default"	/>

6.	 Add	the	following	to	the	gora.properties	file	under	$NUTCH_HOME/conf/	to	set	the
HBase	storage	as	the	default	Gora	data	store:

http://nutch.apache.org


gora.datastore.default=org.apache.gora.hbase.store.HBaseStore

7.	 Execute	the	following	commands	in	the	$NUTCH_HOME	directory	to	build	Apache
Nutch	with	HBase	as	the	backend	data	storage:

$	ant	clean
$	ant	runtime

8.	 Follow	steps	9	to	19	of	the	Intradomain	web	crawling	using	Apache	Solr	recipe.
9.	 Start	the	Hbase	shell	and	issue	the	following	commands	to	view	the	fetched	data:

$	hbase	shell
HBase	Shell;	enter	'help<RETURN>'	for	list	of	supported	commands.
Type	"exit<RETURN>"	to	leave	the	HBase	Shell
Version	0.90.6,	r1295128,	Wed	Feb	29	14:29:21	UTC	2012
hbase(main):001:0>	list
TABLE																																																																																																
webpage																																																																																														
1	row(s)	in	0.4970	seconds

hbase(main):002:0>	count	'webpage'
Current	count:	1000,	row:	org.apache.bval:http/release-management.html																															
Current	count:	2000,	row:	org.apache.james:http/jspf/index.html																																						
Current	count:	3000,	row:	org.apache.sqoop:http/team-list.html																																							
Current	count:	4000,	row:	org.onesocialweb:http/																																																					
4065	row(s)	in	1.2870	seconds

hbase(main):005:0>	scan	'webpage',{STARTROW	=>	
'org.apache.nutch:http/',	LIMIT=>10}
ROW																																			COLUMN+CELL
	org.apache.nutch:http/															column=f:bas,	
timestamp=1350800142780,	value=http://nutch.apache.org/
	org.apache.nutch:http/															column=f:cnt,	
timestamp=1350800142780,	value=<....
......
10	row(s)	in	0.5160	seconds

10.	 Follow	the	steps	in	the	Indexing	and	searching	web	documents	using	Apache	Solr
recipe	and	search	the	fetched	data	using	Apache	Solr.



How	it	works…
The	preceding	steps	configure	and	run	Apache	Nutch	using	Apache	HBase	as	the	storage
backend.	When	configured,	Nutch	stores	the	fetched	web	page	data	and	other	metadata	in
HBase	tables.	In	this	recipe,	we	use	a	standalone	HBase	deployment.	However,	as	shown
in	the	Whole	web	crawling	with	Apache	Nutch	using	a	Hadoop/HBase	cluster	recipe,
Nutch	can	be	used	with	a	distributed	HBase	deployment	as	well.	Usage	of	HBase	as	the
backend	data	store	provides	more	scalability	and	performance	for	Nutch	crawling.



See	also
HBase	recipes	in	Chapter	7,	Hadoop	Ecosystem	II	–	Pig,	HBase,	Mahout,	and	Sqoop.
Refer	to	http://techvineyard.blogspot.com/2010/12/build-nutch-20.html	for
instructions	on	configuring	Cassandra	or	MySql	as	the	storage	backend	for	Nutch.

http://techvineyard.blogspot.com/2010/12/build-nutch-20.html




Whole	web	crawling	with	Apache	Nutch
using	a	Hadoop/HBase	cluster
Crawling	a	large	amount	of	web	documents	can	be	done	efficiently	by	utilizing	the	power
of	a	MapReduce	cluster.

Note
As	of	Apache	Nutch	2.2.1	release,	the	Nutch	project	has	not	officially	migrated	to	Hadoop
2.x	and	still	depends	on	Hadoop	1.x	for	the	whole	web	crawling.	However,	it	is	possible	to
execute	the	Nutch	jobs	using	a	Hadoop	2.x	cluster	utilizing	the	backward	compatibility
nature	of	Hadoop.

Nutch	HBaseStore	integration	further	depends	on	HBase	0.90.6,	which	doesn’t	support
Hadoop	2.	Hence,	this	recipe	works	only	with	a	Hadoop	1.x	cluster.	We	are	looking
forward	to	a	new	Nutch	release	with	full	Hadoop	2.x	support.



Getting	ready
We	assume	you	already	have	your	Hadoop	1.x	and	HBase	cluster	deployed.



How	to	do	it…
The	following	steps	show	you	how	to	use	Apache	Nutch	with	a	Hadoop	MapReduce
cluster	and	an	HBase	data	store	to	perform	large-scale	web	crawling:

1.	 Make	sure	the	hadoop	command	is	accessible	from	the	command	line.	If	not,	add	the
$HADOOP_HOME/bin	directory	to	the	PATH	environmental	variable	of	your	machine	as
follows:

$	export	PATH=$PATH:$HADOOP_HOME/bin/

2.	 Follow	steps	3	to	7	of	the	Configuring	Apache	HBase	as	the	backend	data	store	for
Apache	Nutch	recipe.	You	can	skip	this	step	if	you	have	already	followed	that	recipe.

3.	 Create	a	directory	in	HDFS	to	upload	the	seed	urls.

$	hadoop	dfs	-mkdir	urls

4.	 Create	a	text	file	with	the	seed	URLs	for	the	crawl.	Upload	the	seed	URLs	file	to	the
directory	created	in	the	preceding	step.

$	hadoop	dfs	-put	seed.txt	urls

Note
You	can	use	the	Open	Directory	project	RDF	dump	(http://rdf.dmoz.org/)	to	create
your	seed	URLs.	Nutch	provides	a	utility	class	to	select	a	subset	of	URLs	from	the
extracted	DMOZ	RDF	data	as	bin/nutch	org.apache.nutch.tools.DmozParser
content.rdf.u8	-subset	5000	>	dmoz/urls.

5.	 Issue	the	following	command	from	$NUTCH_HOME/runtime/deploy	to	inject	the	seed
URLs	to	the	Nutch	database	and	to	generate	the	initial	fetch	list:

$	bin/nutch	inject	urls
$	bin/nutch	generate

6.	 Issue	the	following	commands	from	$NUTCH_HOME/runtime/deploy:

$	bin/nutch	fetch	-all
14/10/22	03:56:39	INFO	fetcher.FetcherJob:	FetcherJob:	starting
14/10/22	03:56:39	INFO	fetcher.FetcherJob:	FetcherJob:	fetching	all
......

$	bin/nutch	parse	-all
14/10/22	03:48:51	INFO	parse.ParserJob:	ParserJob:	starting
......

14/10/22	03:50:44	INFO	parse.ParserJob:	ParserJob:	success

$	bin/nutch	updatedb
14/10/22	03:53:10	INFO	crawl.DbUpdaterJob:	DbUpdaterJob:	starting
....
14/10/22	03:53:50	INFO	crawl.DbUpdaterJob:	DbUpdaterJob:	done

http://rdf.dmoz.org/


$	bin/nutch	generate	-topN	10
14/10/22	03:51:09	INFO	crawl.GeneratorJob:	GeneratorJob:	Selecting	
best-scoring	urls	due	for	fetch.
14/10/22	03:51:09	INFO	crawl.GeneratorJob:	GeneratorJob:	starting
....
14/10/22	03:51:46	INFO	crawl.GeneratorJob:	GeneratorJob:	done
14/10/22	03:51:46	INFO	crawl.GeneratorJob:	GeneratorJob:	generated	
batch	id:	1350892269-603479705

7.	 Repeat	the	commands	in	step	6	as	many	times	as	needed	to	crawl	the	desired	number
of	pages	or	the	desired	depth.

8.	 Follow	the	Indexing	and	searching	web	documents	using	Apache	Solr	recipe	to	index
the	fetched	data	using	Apache	Solr.



How	it	works…
All	the	Nutch	operations	we	used	in	this	recipe,	including	fetching	and	parsing,	are
implemented	as	MapReduce	programs.	These	MapReduce	programs	utilize	the	Hadoop
cluster	to	perform	the	Nutch	operations	in	a	distributed	manner	and	use	the	HBase	to	store
the	data	across	the	HDFS	cluster.	You	can	monitor	these	MapReduce	computations
through	the	monitoring	UI	of	your	Hadoop	cluster.

Apache	Nutch	Ant	build	creates	a	Hadoop	job	file	containing	all	the	dependencies	in	the
deploy	folder	under	$NUTCH_HOME/runtime/.	The	bin/nutch	script	uses	this	job	file	to
submit	the	MapReduce	computations	to	the	Hadoop	cluster.



See	also
The	Intradomain	web	crawling	using	Apache	Nutch	recipe.





Elasticsearch	for	indexing	and	searching
Elasticsearch	(http://www.elasticsearch.org/)	is	an	Apache	2.0	licensed	open	source	search
solution	built	on	top	of	Apache	Lucene.	Elasticsearch	is	a	distributed,	multi-tenant,	and
document-oriented	search	engine.	Elasticsearch	supports	distributed	deployments,	by
breaking	down	an	index	into	shards	and	by	distributing	the	shards	across	the	nodes	in	the
cluster.	While	both	Elasticsearch	and	Apache	Solr	use	Apache	Lucene	as	the	core	search
engine,	Elasticsearch	aims	to	provide	a	more	scalable	and	a	distributed	solution	that	is
better	suited	for	the	cloud	environments	than	Apache	Solr.

http://www.elasticsearch.org/


Getting	ready
Install	Apache	Nutch	and	crawl	some	web	pages	as	per	the	Intradomain	web	crawling
using	Apache	Nutch	or	Whole	web	crawling	with	Apache	Nutch	using	a	Hadoop/HBase
cluster	recipe.	Make	sure	the	backend	Hbase	(or	HyperSQL)	data	store	for	Nutch	is	still
available.



How	to	do	it…
The	following	steps	show	you	how	to	index	and	search	the	data	crawled	by	Nutch	using
Elasticsearch:

1.	 Download	and	extract	Elasticsearch	from	http://www.elasticsearch.org/download/.
2.	 Go	to	the	extracted	Elasticsearch	directory	and	execute	the	following	command	to

start	the	Elasticsearch	server	in	the	foreground:

$	bin/elasticsearch

3.	 Run	the	following	command	in	a	new	console	to	verify	your	installation:

>	curl	localhost:9200
{
		"status"	:	200,
		"name"	:	"Talisman",
		"cluster_name"	:	"elasticsearch",
		"version"	:	{
		"number"	:	"1.4.2",
		……
		"lucene_version"	:	"4.10.2"
		},
		"tagline"	:	"You	Know,	for	Search"
}

4.	 Go	to	the	$NUTCH_HOME/runtime/deploy	(or	$NUTCH_HOME/runtime/local	in	case
you	are	running	Nutch	in	the	local	mode)	directory.	Execute	the	following	command
to	index	the	data	crawled	by	Nutch	into	the	Elasticsearch	server:

$	bin/nutch	elasticindex	elasticsearch	-all		
14/11/01	06:11:07	INFO	elastic.ElasticIndexerJob:	Starting
…...

5.	 Issue	the	following	command	to	perform	a	search:

$	curl	-XGET	'http://localhost:9200/_search?q=hadoop'
....
{"took":3,"timed_out":false,"_shards":
{"total":5,"successful":5,"failed":0},"hits":
{"total":36,"max_score":0.44754887,"hits":
[{"_index":"index","_type":"doc","_id":	100	30551		100		30551	
"org.apache.hadoop:http/","_score":0.44754887,	....

http://www.elasticsearch.org/download/


How	it	works…
Similar	to	Apache	Solr,	Elasticsearch	too	is	built	using	the	Apache	Lucene	text	search
library.	In	the	preceding	steps,	we	export	the	data	crawled	by	Nutch	into	an	instance	of
Elasticsearch	for	indexing	and	searching	purposes.

You	can	also	install	Elasticsearch	as	a	service	as	well.	Refer	to
http://www.elasticsearch.org/guide/reference/setup/installation.html	for	more	details	on
installing	Elasticsearch	as	a	service.

We	use	the	ElasticIndex	job	of	Nutch	to	import	the	data	crawled	by	Nutch	into	the
Elasticsearch	server.	Usage	of	the	elasticindex	command	is	as	follows:

bin/nutch		elasticindex		<elastic	cluster	name>	\
					(<batchId>	|	-all	|	-reindex)	[-crawlId	<id>]

The	elastic	cluster	name	is	reverted	to	the	default	that	is	elasticsearch.	You	can	change	the
cluster	name	by	editing	the	cluster.name	property	in	the	elasticsearch.yml	file	under
config/.	Cluster	name	is	used	for	autodiscovery	purposes	and	should	be	unique	for	each
Elasticsearch	deployment	in	a	single	network.

http://www.elasticsearch.org/guide/reference/setup/installation.html


See	also
The	Indexing	and	searching	web	documents	using	Apache	Solr	recipe.





Generating	the	in-links	graph	for	crawled
web	pages
The	number	of	links	to	a	particular	web	page	from	other	pages,	the	number	of	in-links,	is
widely	considered	a	good	metric	to	measure	the	popularity	or	the	importance	of	a	web
page.	In	fact,	the	number	of	in-links	to	a	web	page	and	the	importance	of	the	sources	of
those	links	have	become	integral	components	of	most	of	the	popular	link	analysis
algorithms	such	as	PageRank	introduced	by	Google.

In	this	recipe,	we	are	going	to	extract	the	in-links	information	from	a	set	of	web	pages
fetched	by	Apache	Nutch	and	stored	in	Apache	HBase	backend	data	store.	In	our
MapReduce	program,	we	first	retrieve	the	out-links	information	for	the	set	of	web	pages
stored	in	the	Nutch	HBase	data	store	and	then	use	that	information	to	calculate	the	in-links
graph	for	this	set	of	web	pages.	The	calculated	in-link	graph	will	contain	the	link
information	from	the	fetched	subset	of	the	web	graph	only.



Getting	ready
Follow	the	Whole	web	crawling	with	Apache	Nutch	using	a	Hadoop/HBase	cluster	recipe
or	the	Configuring	Apache	HBase	as	the	backend	data	store	for	Apache	Nutch	recipe	and
crawl	a	set	of	web	pages	using	Apache	Nutch	to	the	backend	HBase	data	store.



How	to	do	it…
The	following	steps	show	you	how	to	extract	out-links	graph	from	the	web	pages	stored	in
Nutch	HBase	data	store	and	how	to	calculate	the	in-links	graph	using	that	extracted	out-
links	graph:

1.	 Start	the	HBase	shell:

$	hbase	shell

2.	 Create	an	HBase	table	with	the	name	linkdata	and	a	column	family	named	il.	Exit
the	HBase	shell:

hbase(main):002:0>	create	'linkdata','il'
0	row(s)	in	1.8360	seconds
hbase(main):002:0>	quit

3.	 Unzip	the	source	package	for	this	chapter	and	compile	it	by	executing	gradle	build
from	the	chapter8	source	directory.

4.	 Run	the	Hadoop	program	by	issuing	the	following	command:

$	hadoop	jar	hcb-c8-samples.jar	\
chapter8.InLinkGraphExtractor

5.	 Start	the	HBase	shell	and	scan	the	linkdata	table	using	the	following	command	to
check	the	output	of	the	MapReduce	program:

$	hbase	shell
hbase(main):005:0>	scan	'linkdata',{COLUMNS=>'il',LIMIT=>10}
ROW																												COLUMN+CELL																					
....



How	it	works…
Since	we	are	going	to	use	HBase	to	read	input	as	well	as	to	write	the	output,	we	use	the
HBase	TableMapper	and	TableReducer	helper	classes	to	implement	our	MapReduce
application.	We	configure	the	TableMapper	and	TableReducer	classes	using	the	utility
methods	given	in	the	TableMapReduceUtil	class.	The	Scan	object	is	used	to	specify	the
criteria	to	be	used	by	the	mapper	when	reading	the	input	data	from	the	HBase	data	store:

Configuration	conf	=	HBaseConfiguration.create();
Job	job	=	new	Job(conf,	"InLinkGraphExtractor");
job.setJarByClass(InLinkGraphExtractor.class);
Scan	scan	=	new	Scan();
scan.addFamily("ol".getBytes());
TableMapReduceUtil.initTableMapperJob("webpage",	scan,	……);
TableMapReduceUtil.initTableReducerJob("linkdata",……);

The	map	implementation	receives	the	HBase	rows	as	the	input	records.	In	our
implementation,	each	of	the	rows	corresponds	to	a	fetched	web	page.	The	input	key	to	the
Map	function	consists	of	the	web	page	URL	and	the	value	consists	of	the	web	pages	linked
from	this	particular	web	page.	The	Map	function	emits	a	record	for	each	of	the	linked	web
pages,	where	the	key	of	a	Map	output	record	is	the	URL	of	the	linked	page	and	the	value	of
a	Map	output	record	is	the	input	key	to	the	Map	function	(the	URL	of	the	current	processing
web	page):

public	void	map(ImmutableBytesWritable	row,	Result	values,……){
		List<KeyValue>	results	=	values.list();						
		for	(KeyValue	keyValue	:	results)	{
				ImmutableBytesWritable	userKey	=	new					
ImmutableBytesWritable(keyValue.getQualifier());
				try	{
						context.write(userKey,	row);
				}	catch	(InterruptedException	e)	{
						throw	new	IOException(e);
				}
		}
}

The	reduce	implementation	receives	a	web	page	URL	as	the	key	and	a	list	of	web	pages
that	contain	links	to	that	web	page	(provided	in	the	key)	as	the	values.	The	reduce	function
stores	this	data	into	an	HBase	table:

public	void	reduce(ImmutableBytesWritable	key,
		Iterable<ImmutableBytesWritable>	values,	……{
		
Put	put	=	new	Put(key.get());
		for	(ImmutableBytesWritable	immutableBytesWritable	:values)			{
				put.add(Bytes.toBytes("il"),	Bytes.toBytes("link"),
												immutableBytesWritable.get());
		}
		context.write(key,	put);
}



See	also
The	Running	MapReduce	jobs	on	HBase	recipe	in	Chapter	7,	Hadoop	Ecosystem	II	–
Pig,	HBase,	Mahout,	and	Sqoop.





Chapter	9.	Classifications,
Recommendations,	and	Finding
Relationships
In	this	chapter,	we	will	cover:

Performing	content-based	recommendations
Classification	using	the	naïve	Bayes	classifier
Assigning	advertisements	to	keywords	using	the	Adwords	balance	algorithm



Introduction
This	chapter	discusses	how	we	can	use	Hadoop	for	more	complex	use	cases	like
classifying	a	dataset	and	making	recommendations.

The	following	are	a	few	instances	of	some	such	scenarios:

Making	product	recommendations	to	users	either	based	on	similarities	between
products	(for	example,	if	a	user	liked	a	book	about	history,	he/she	might	like	another
book	on	the	same	subject)	or	on	user	behavior	patterns	(for	example,	if	two	users	are
similar,	they	might	like	books	the	other	has	read)
Clustering	a	dataset	to	identify	similar	entities;	for	example,	identifying	users	with
similar	interests
Classifying	data	into	several	groups	based	on	historical	data

In	this	recipe,	we	will	apply	these	and	other	techniques	using	MapReduce.	For	recipes	in
this	chapter,	we	will	use	the	Amazon	product	co-purchasing	network	metadata	dataset
available	at	http://snap.stanford.edu/data/amazon-meta.html.

Note
The	contents	of	this	chapter	are	based	on	Chapter	8,	Classifications,	Recommendations,
and	Finding	Relationships,	of	the	previous	edition	of	this	book,	Hadoop	MapReduce
Cookbook.	That	chapter	was	contributed	by	the	co-author	Srinath	Perera.

Tip
Sample	code

The	sample	code	and	data	files	for	this	book	are	available	in	GitHub	at
https://github.com/thilg/hcb-v2.	The	chapter9	folder	of	the	code	repository	contains	the
sample	source	code	files	for	this	chapter.	Sample	codes	can	be	compiled	and	built	by
issuing	the	gradle	build	command	in	the	chapter9	folder	of	the	code	repository.	The
project	files	for	Eclipse	IDE	can	be	generated	by	running	the	gradle	eclipse	command
in	the	main	folder	of	the	code	repository.	The	project	files	for	IntelliJ	IDEA	IDE	can	be
generated	by	running	the	gradle	idea	command	in	the	main	folder	of	the	code	repository.

http://snap.stanford.edu/data/amazon-meta.html
https://github.com/thilg/hcb-v2




Performing	content-based
recommendations
Recommendations	are	suggestions	to	someone	about	things	that	might	be	interesting	to
him.	For	example,	you	would	recommend	a	good	book	to	a	friend	who	you	know	has
similar	interests	as	you.	We	often	find	use	cases	for	recommendations	in	online	retail.	For
example,	when	you	browse	a	product,	Amazon	suggests	other	products	also	bought	by
users	who	bought	that	particular	item.

An	online	retail	site	such	as	Amazon	has	a	very	large	collection	of	items.	Although	books
are	found	under	several	categories,	often	each	category	has	too	many	to	browse	one	after
the	other.	Recommendations	make	the	user’s	life	easier	by	helping	him	find	the	best
product	for	his	tastes,	and	at	the	same	time	increase	sales.

There	are	many	ways	to	make	recommendations:

Content-based	recommendations:	One	could	use	information	about	the	product	to
identify	similar	products.	For	instance,	you	could	use	categories,	content	similarities,
and	so	on,	to	identify	products	that	are	similar	and	recommend	them	to	users	who
have	already	bought	a	particular	product.
Collaborative	filtering:	The	other	option	is	to	use	user	behavior	to	identify
similarities	between	products.	For	example,	if	the	same	user	gave	a	high	rating	to	two
products,	there	is	some	similarity	between	those	two	products.

This	recipe	uses	a	dataset	collected	from	Amazon	about	products	to	make	content-based
recommendations.	In	the	dataset,	each	product	has	a	list	of	similar	items	which	is	provided
to	the	user,	predetermined	by	Amazon.	In	this	recipe,	we	will	use	that	data	to	make
recommendations.



How	to	do	it…
1.	 Download	the	dataset	from	the	Amazon	product	co-purchasing	network	metadata

available	at	http://snap.stanford.edu/data/amazon-meta.html	and	unzip	it.	We	call	this
directory	as	DATA_DIR.

Upload	the	data	to	HDFS	by	running	the	following	commands.	If	the	data	directory	is
already	there,	clean	it	up.

$	hdfs	dfs	-mkdir	data
$	hdfs	dfs	-mkdir	data/input1
$	hdfs	dfs	-put	<DATA_DIR>/amazon-meta.txt	data/input1

2.	 Compile	the	source	by	running	the	gradle	build	command	from	the	chapter9
directory	of	the	source	repository	and	obtain	the	hcb-c9-samples.jar	file.

3.	 Run	the	most	frequent	user	finder	MapReduce	job	using	the	following	command:

$	hadoop	jar	hcb-c9-samples.jar	\
		chapter9.MostFrequentUserFinder	\
		data/input1	data/output1

4.	 Read	the	results	by	running	the	following	command:

$	hdfs	dfs	-cat	data/output1/*

5.	 You	will	see	that	the	MapReduce	job	has	extracted	the	purchase	data	from	each
customer,	and	the	results	will	look	like	the	following:

customerID=A1002VY75YRZYF,review=ASIN=0375812253#title=Really	Useful	
Engines	(Railway	Series)#salesrank=623218#group=Book	
#rating=4#similar=0434804622|0434804614|0434804630|0679894780|037582743
9|,review=ASIN=B000002BMD#title=EverythingMustGo#salesrank=77939#group=
Music#rating=4#similar=B00000J5ZX|B000024J5H|B00005AWNW|B000025KKX|B000
008I2Z

6.	 Run	the	recommendation	MapReduce	job	using	the	following	command:

$	hadoop	jar	hcb-c9-samples.jar	\
chapter9.ContentBasedRecommendation	\
data/output1	data/output2

7.	 Read	the	results	by	running	the	following	command:

$	hdfs	dfs	-cat	data/output2/*

You	will	see	that	it	will	print	the	results	as	follows.	Each	line	of	the	result	contains	the
customer	ID	and	a	list	of	product	recommendations	for	that	customer.

A10003PM9DTGHQ		[0446611867,	0446613436,	0446608955,	0446606812,	
0446691798,	0446611867,	0446613436,	0446608955,	0446606812,	0446691798]

http://snap.stanford.edu/data/amazon-meta.html


How	it	works…
The	following	listing	shows	an	entry	for	one	product	from	the	dataset.	Here,	each	data
entry	includes	an	ID,	title,	categorization,	items	similar	to	this	item,	and	information	about
users	who	have	reviewed	the	item.	In	this	example,	we	assume	that	the	customer	who	has
reviewed	the	item	has	bought	the	item.

Id:			13
ASIN:	0313230269
		title:	Clockwork	Worlds	:	Mechanized	Environments	in	SF	(Contributions	to	
the	Study	of	Science	Fiction	and	Fantasy)
		group:	Book
		salesrank:	2895088
		similar:	2		1559360968		1559361247
		categories:	3
			|Books[283155]|Subjects[1000]|Literature	&	Fiction[17]|History	&	
Criticism[10204]|Criticism	&	Theory[10207]|General[10213]
			|Books[283155]|Subjects[1000]|Science	Fiction	&	
Fantasy[25]|Fantasy[16190]|History	&	Criticism[16203]
			|Books[283155]|Subjects[1000]|Science	Fiction	&	Fantasy[25]|Science	
Fiction[16272]|History	&	Criticism[16288]
		reviews:	total:	2		downloaded:	2		avg	rating:	5
				2002-8-5		cutomer:	A14OJS0VWMOSWO		rating:	5		votes:			2		helpful:			1
				2003-3-21		cutomer:		A2C27IQUH9N1Z		rating:	5		votes:			4		helpful:			4

We	have	written	a	Hadoop	InputFormat	to	parse	the	Amazon	product	data;	the	data	format
works	similar	to	the	format	we	have	written	in	the	Simple	analytics	using	MapReduce
recipe	of	Chapter	5,	Analytics.	The	source	files,
src/chapter9/amazondata/AmazonDataReader.java	and
src/chapter9/amazondata/AmazonDataFormat.java,	contain	the	code	for	the	Amazon
data	formatter.

The	Amazon	data	formatter	will	parse	the	dataset	and	emit	the	data	about	each	Amazon
product	as	key-value	pairs	to	the	map	function.	Data	about	each	Amazon	product	is
represented	as	a	string,	and	the	AmazonCustomer.java	class	includes	code	to	parse	and
write	out	the	data	about	Amazon	customers.

This	recipe	includes	two	MapReduce	computations.	The	source	for	these	tasks	can	be
found	from	src/chapter9/MostFrequentUserFinder.java	and	src/chapter9/
ContentBasedRecommendation.java.	The	Map	task	of	the	first	MapReduce	job	receives
data	about	each	product	in	the	log	file	as	a	different	key-value	pair.

When	the	Map	task	receives	the	product	data,	it	emits	the	customer	ID	as	the	key	and
product	information	as	the	value	for	each	customer	who	has	bought	the	product.

public	void	map(Object	key,	Text	value,	Context	context)	throws	
IOException,	InterruptedException	{
				List<AmazonCustomer>	customerList	=	
AmazonCustomer.parseAItemLine(value.toString());
				for(AmazonCustomer	customer:	customerList){
								context.write(new	Text(customer.customerID),
								new	Text(customer.toString()));



				}
}

Then,	Hadoop	collects	all	values	for	the	key	and	invokes	the	Reducer	once	for	each	key.
There	will	be	a	reduce	function	invocation	for	each	customer,	and	each	of	those
invocations	will	receive	all	products	that	have	been	bought	by	a	customer.	The	Reducer
emits	the	list	of	items	bought	by	each	customer,	thus	building	a	customer	profile.	Each	of
the	items	contains	a	list	of	similar	items	as	well.	In	order	to	limit	the	size	of	the	dataset,
the	Reducer	will	emit	only	the	details	of	a	customer	who	has	bought	more	than	five
products.

public	void	reduce(Text	key,	Iterable<Text>	values,	Context	context)	throws	
IOException,	InterruptedException	{
				AmazonCustomer		customer	=	new	AmazonCustomer();
				customer.customerID	=	key.toString();

				for(Text	value:	values){
								Set<ItemData>	itemsBought	=new	AmazonCustomer(
								value.toString()).itemsBought;
								for(ItemData	itemData:	itemsBrought){
												customer.itemsBought.add(itemData);
								}
				}
				if(customer.itemsBought.size()	>	5){
								context.write(
								new	IntWritable(customer.itemsBrought.size()),
								new	Text(customer.toString()));
				}
}

The	second	MapReduce	job	uses	the	data	generated	from	the	first	MapReduce	task	to
make	recommendations	for	each	customer.	The	Map	task	receives	data	about	each
customer	as	the	input,	and	the	MapReduce	job	makes	recommendations	using	the
following	three	steps:

1.	 Each	product	(item)	data	from	Amazon	includes	items	similar	to	that	item.	Given	a
customer,	the	map	function	creates	a	list	of	all	similar	items	for	each	item	that
customer	has	bought.

2.	 Then,	the	map	function	removes	any	item	that	the	customer	has	already	bought	from
the	similar	items	list.

3.	 Finally,	the	map	function	selects	ten	items	as	recommendations.

public	void	map(Object	key,	Text	value,	Context	context)
throws	IOException,	InterruptedException	{
		AmazonCustomer	amazonCustomer	=
		new	AmazonCustomer(value.toString()
		.replaceAll("[0-9]+\\s+",	""));

		List<String>	recommendations	=	new	ArrayList<String>();
		for	(ItemData	itemData	:	amazonCustomer.itemsBrought)	{
				recommendations.addAll(itemData.similarItems);
		}



		for	(ItemData	itemData	:	amazonCustomer.itemsBrought)	{
				recommendations.remove(itemData.itemID);
		}

		ArrayList<String>	finalRecommendations	=
		new	ArrayList<String>();
		for	(int	i	=	0;
		i	<	Math.min(10,	recommendations.size());i++)	{
				finalRecommendations.add(recommendations.get(i));
		}
		context.write(new	Text(amazonCustomer.customerID),
		new	Text(finalRecommendations.toString()));
}



There’s	more…
You	can	learn	more	about	content-based	recommendations	from	Chapter	9,
Recommendation	Systems,	of	the	book,	Mining	of	Massive	Datasets,	Cambridge
University	Press,	by	Anand	Rajaraman	and	Jeffrey	David	Ullman.

Apache	Mahout,	introduced	in	Chapter	7,	Hadoop	Ecosystem	II	–Pig,	HBase,	Mahout,
and	Sqoop,	and	used	in	Chapter	10,	Mass	Text	Data	Processing,	contains	several
recommendation	implementations.	The	following	articles	will	give	you	information	on
using	user-based	and	item-based	recommenders	in	Mahout:

https://mahout.apache.org/users/recommender/userbased-5-minutes.html
https://mahout.apache.org/users/recommender/intro-itembased-hadoop.html

https://mahout.apache.org/users/recommender/userbased-5-minutes.html
https://mahout.apache.org/users/recommender/intro-itembased-hadoop.html




Classification	using	the	naïve	Bayes
classifier
A	classifier	assigns	inputs	into	one	of	the	N	classes	based	on	some	properties	(also	known
as	features)	of	inputs.	Classifiers	have	widespread	applications,	such	as	e-mail	spam
filtering,	finding	the	most	promising	products,	selecting	customers	for	closer	interactions,
and	taking	decisions	in	machine	learning	situations.	Let’s	explore	how	to	implement	a
classifier	using	a	large	dataset.	For	instance,	a	spam	filter	will	assign	each	e-mail	to	one	of
the	two	clusters:	spam	mail	or	not	spam	mail.

There	are	many	classification	algorithms.	One	of	the	simplest,	but	effective,	algorithm	is
the	naïve	Bayesian	classifier	that	uses	the	Bayes	theorem	involving	conditional
probability.

In	this	recipe,	we	will	also	focus	on	the	Amazon	metadata	dataset	as	before.	We	will	look
at	several	features	of	a	product,	such	as	the	number	of	reviews	received,	positive	ratings,
and	known	similar	items	to	identify	a	product	with	potential	to	be	within	the	first	10,000
sales	rank.	We	will	use	the	naïve	Bayesian	classifier	for	this	classification.

Note
You	can	learn	more	about	the	naïve	Bayer	classifier	at
http://en.wikipedia.org/wiki/Naive_Bayes_classifier.

http://en.wikipedia.org/wiki/Naive_Bayes_classifier


How	to	do	it…
1.	 Download	the	dataset	from	the	Amazon	product	co-purchasing	network	metadata

available	at	http://snap.stanford.edu/data/amazon-meta.html	and	unzip	it.	We	will	call
this	directory	DATA_DIR.

2.	 Upload	the	data	to	HDFS	by	running	the	following	commands.	If	the	data	directory	is
already	there,	clean	it	up.

$	hdfs	dfs	-mkdir	data
$	hdfs	dfs	-mkdir	data/input1
$	hdfs	dfs	-put	<DATA_DIR>/amazon-meta.txt	data/input1

3.	 Compile	the	source	by	running	the	gradle	build	command	from	the	chapter9
directory	of	the	source	repository	and	obtain	the	hcb-c9-samples.jar	file.

4.	 Run	the	MapReduce	job	using	the	following	command:

$	hadoop	jar	hcb-c9-samples.jar	\	
chapter9.NaiveBayesProductClassifier	\
data/input1	data/output5

5.	 Read	the	results	by	running	the	following	command:

$	hdfs	dfs	-cat	data/output5/*

6.	 You	will	see	that	it	will	print	the	following	results.	You	can	use	these	values	with	the
Bayes	classifier	to	classify	the	inputs:

postiveReviews>30							0.635593220338983
reviewCount>60		0.62890625
similarItemCount>150				0.5720620842572062

http://snap.stanford.edu/data/amazon-meta.html


How	it	works…
The	classifier	uses	the	following	features	as	indicators	that	the	product	can	fall	within	the
first	10,000	products:

Number	of	reviews	for	a	given	product
Number	of	positive	reviews	for	a	given	product
Number	of	similar	items	for	a	given	product

We	first	run	the	MapReduce	task	to	calculate	the	following	probabilities,	and	then	we	will
use	those	with	the	preceding	formula	to	classify	a	given	product:

P1:	Probability	that	a	given	item	is	within	the	first	10,000	products	if	it	has	more	than
60	reviews
P2:	Probability	that	a	given	item	is	within	the	first	10,000	products	if	it	has	more	than
30	positive	reviews
P3:	Probability	that	a	given	item	is	within	the	first	10,000	products	if	it	has	more	than
150	similar	items

You	can	find	the	source	for	the	classifier	in	the	file,	src/chapter9/
NaiveBayesProductClassifier.java.	The	Mapper	function	looks	like	this:

public	void	map(Object	key,	Text	value,	Context	context)	throws	
IOException,	InterruptedException	{
		List<AmazonCustomer>	customerList	=	
AmazonCustomer.parseAItemLine(value.toString());
		int	salesRank	=	-1;
		int	reviewCount	=	0;
		int	postiveReviews	=	0;
		int	similarItemCount	=	0;

		for	(AmazonCustomer	customer	:	customerList)	{
				ItemData	itemData	=		customer.itemsBrought.iterator().next();
				reviewCount++;
				if	(itemData.rating	>	3)	{
						postiveReviews++;
				}
				similarItemCount	=	similarItemCount	+
						itemData.similarItems.size();
				if	(salesRank	==	-1)	{
						salesRank	=	itemData.salesrank;
				}
		}

		boolean	isInFirst10k	=	(salesRank	<=	10000);
		context.write(new	Text("total"),
		new	BooleanWritable(isInFirst10k));
		if	(reviewCount	>	60)	{
				context.write(new	Text("reviewCount>60"),
				new	BooleanWritable(isInFirst10k));
		}
		if	(postiveReviews	>	30)	{
				context.write(new	Text("postiveReviews>30"),



				new	BooleanWritable(isInFirst10k));
		}
		if	(similarItemCount	>	150)	{
				context.write(new	Text("similarItemCount>150"),
				new	BooleanWritable(isInFirst10k));
		}
}

The	Mapper	function	walks	though	each	product	and	evaluates	its	features.	If	the	feature
evaluates	as	true,	it	emits	the	feature	name	as	the	key	and	whether	the	product	is	within
the	first	10,000	products	as	the	value.

MapReduce	invokes	the	Reducer	once	for	each	feature.	Then,	each	Reduce	job	receives	all
values	for	which	the	feature	is	true,	and	it	calculates	the	probability	that	the	product	is
within	the	first	10,000	products	in	the	sales	rank,	given	the	feature	is	true.

public	void	reduce(Text	key,	Iterable<BooleanWritable>	values,	Context	
context)	throws	IOException,
		InterruptedException	{
				int	total	=	0;
				int	matches	=	0;
				for	(BooleanWritable	value	:	values)	{
						total++;
						if	(value.get())	{
								matches++;
						}
				}
		context.write(new	Text(key),	new	DoubleWritable((double)	matches	/	
total));
		}

Given	a	product,	we	will	examine	and	decide	the	following:

Does	it	have	more	than	60	reviews?
Does	it	have	more	than	30	positive	reviews?
Does	it	have	more	than	150	similar	items?

We	can	decide	the	probabilities	of	events	A,	B,	and	C	and	we	can	calculate	the	probability
of	the	given	item	being	within	the	top	10,000	products	using	the	Bayes	theorem.	The
following	code	implements	this	logic:

public	static	boolean	classifyItem(int	similarItemCount,	int	reviewCount,	
int	postiveReviews){
		double	reviewCountGT60	=	0.8;
		double	postiveReviewsGT30	=	0.9;
		double	similarItemCountGT150	=	0.7;
		double	a	,	b,	c;

		if	(reviewCount	>	60)	{
				a	=	reviewCountGT60;
		}else{
				a=	1	-	reviewCountGT60;
		}
		if	(postiveReviews	>	30)	{
				b	=	postiveReviewsGT30;



		}else{
				b	=	1-	postiveReviewsGT30;
		}
		if	(similarItemCount	>	150)	{
				c	=	similarItemCountGT150;
		}else{
				c	=	1-	similarItemCountGT150;
		}
		double	p	=	a*b*c/	(a*b*c	+	(1-a)*(1-b)*(1-c));
		return	p	>	0.5;
}

When	you	run	the	classifier	testing	logic,	it	will	load	the	data	generated	by	the
MapReduce	job	and	classify	1,000	randomly	selected	products.





Assigning	advertisements	to	keywords
using	the	Adwords	balance	algorithm
Advertisements	have	become	a	major	medium	of	revenue	for	the	Web.	It	is	a	billion	dollar
business	and	is	the	source	for	revenue	of	most	leading	companies	in	Silicon	Valley.
Further,	it	has	made	it	possible	for	companies	such	as	Google,	Facebook,	Yahoo!,	and
Twitter	to	run	their	main	services	for	free	while	collecting	their	revenue	through
advertisements.

Adwords	lets	people	bid	for	keywords.	For	example,	advertiser	A	can	bid	for	the	keyword,
Hadoop	Support,	for	$2	and	provide	a	maximum	budget	of	$100.	Advertiser	B	can	bid	for
the	keyword,	Hadoop	Support,	for	$1.50	and	provide	a	maximum	budget	of	$200.	When	a
user	searches	for	a	document	with	the	given	keywords,	the	system	will	choose	one	or
more	advertisements	among	the	bids	for	these	keywords.	Advertisers	will	pay	only	if	a
user	clicks	on	the	advertisement.

The	goal	is	to	select	advertisements	such	that	they	will	maximize	revenue.	There	are
several	factors	in	play	when	designing	such	a	solution:

We	want	to	show	advertisements	that	are	more	likely	to	be	clicked	often,	as	often
times	only	clicks,	not	showing	the	advertisement,	will	get	us	money.	We	measure	this
as	the	fraction	of	times	an	advertisement	was	clicked	as	opposed	to	the	number	of
times	it	was	shown.	We	call	this	click-through	rate	for	a	keyword.
We	want	to	show	advertisements	belonging	to	advertisers	with	higher	budgets	as
opposed	to	those	with	lower	budgets.

In	this	recipe,	we	will	implement	a	simplified	version	of	the	Adwords	balance	algorithm
that	can	be	used	in	such	situations.	For	simplicity,	we	will	assume	that	advertisers	only	bid
on	single	words.	Also,	since	we	cannot	find	a	real	bid	dataset,	we	will	generate	a	sample
bid	dataset.	Have	a	look	at	the	following	figure:



Assume	that	you	are	to	support	keyword-based	advertisements	using	the	Amazon	dataset.
The	recipe	will	work	as	follows:

1.	 The	first	MapReduce	job	will	approximate	the	click-through	rate	of	the	keyword
using	the	Amazon	sales	index.	Here,	we	assume	that	keywords	that	are	found	in	the
title	of	products	with	higher	sales	rank	will	have	better	click-through	rates.

2.	 Then,	we	will	run	a	Java	program	to	generate	a	bid	dataset.
3.	 Now,	the	second	MapReduce	task	will	group	bids	for	the	same	product	together	and

create	an	output	that	can	be	used	by	an	advertisement	assignment	program.
4.	 Finally,	we	will	use	an	advertisement	assignment	program	to	assign	keywords	to

advertisers.	We	will	use	the	following	formula	to	implement	the	Adword	balance
algorithm.	The	formula	assigns	priority	based	on	the	fraction	of	unspent	budget	of
each	advertiser,	bid	value,	and	click-through	rate:

Measure	=	bid	value	*	click-through	rate	*	(1-e^(-1*current	budget/	
initial	budget))



How	to	do	it…
1.	 Download	the	dataset	from	the	Amazon	product	co-purchasing	network	metadata

available	from	http://snap.stanford.edu/data/amazon-meta.html	and	unzip	it.	We	will
call	this	directory	DATA_DIR.

2.	 Upload	the	data	to	HDFS	by	running	the	following	commands.	If	data	directory	is
already	there,	clean	it	up.

$	hdfs	dfs	-mkdir	data
$	hdfs	dfs	-mkdir	data/input1
$	hdfs	dfs	-put	<DATA_DIR>/amazon-meta.txt	data/input1

3.	 Compile	the	source	by	running	the	gradle	build	command	from	the	chapter9
directory	of	the	source	repository	and	obtain	the	hcb-c9-samples.jar	file.

4.	 Run	the	MapReduce	job	using	the	following	command:

$	hadoop	jar	hcb-c9-samples.jar	\	
chapter9.adwords.ClickRateApproximator	\
data/input1	data/output6

5.	 Download	the	results	to	your	computer	by	running	the	following	command:

$	hdfs	dfs	-get	data/output6/part-r-*	clickrate.data

6.	 You	will	see	that	it	will	print	the	following	results.	You	may	use	these	values	with	the
Bayes	classifier	to	classify	the	inputs:

keyword:(Annals	74
keyword:(Audio		153
keyword:(BET				95
keyword:(Beat			98
keyword:(Beginners)					429
keyword:(Beginning						110

7.	 Generate	a	bid	dataset	by	running	the	following	command.	You	can	find	the	results	in
a	biddata.data	file.

$	java	-cp	hcb-c9-samples.jar	\
		chapter9.adwords.AdwordsBidGenerator	\
		clickrate.data

8.	 Create	a	directory	called	data/input2	and	upload	the	bid	dataset	and	results	from	the
earlier	MapReduce	task	to	the	data/input2	directory	of	HDFS	with	the	following
command:

$	hdfs	dfs	-put	clickrate.data	data/input2
$	hdfs	dfs	-put	biddata.data	data/input2

9.	 Run	the	second	MapReduce	job	as	follows:

$	hadoop	jar	hcb-c9-samples.jar	\
		chapter9.adwords.AdwordsBalanceAlgorithmDataGenerator	\
		data/input2	data/output7

10.	 Download	the	results	to	your	computer	by	running	the	following	command:

http://snap.stanford.edu/data/amazon-meta.html


$	hdfs	dfs	-get	data/output7/part-r-*	adwords.data

11.	 Inspect	the	results:

(Animated							client23,773.0,5.0,97.0|
(Animated)						client33,310.0,8.0,90.0|
(Annals									client76,443.0,13.0,74.0|
client51,1951.0,4.0,74.0|
(Beginners)					client86,	210.0,6.0,429.0|
			client6,236.0,5.0,429.0|
(Beginning						client31,23.0,10.0,110.0|

12.	 Perform	matches	for	random	sets	of	keywords	by	running	the	following	command:

$	java	jar	hcb-c9-samples.jar	\
		chapter9.adwords.AdwordsAssigner	adwords.data



How	it	works…
As	we	discussed,	this	recipe	consists	of	two	MapReduce	jobs.	You	can	find	the	source	for
the	first	MapReduce	job	from	the	file,
src/chapter9/adwords/ClickRateApproximator.java.

The	Mapper	function	parses	the	Amazon	dataset	using	the	Amazon	data	format,	and	for
each	word	in	each	product	title,	it	emits	the	word	and	the	sales	ranks	of	that	product.	The
function	looks	something	like	this:

public	void	map(Object	key,	Text	value,	Context	context)	{
......
				String[]	tokens	=	itemData.title.split("\\s");
				for(String	token:	tokens){
								if(token.length()	>	3){
												context.write(new	Text(token),	new	
IntWritable(itemData.salesrank));
								}
				}
}

Then,	the	MapReduce	framework	sorts	the	emitted	key-value	pairs	by	key	and	invokes	the
Reducer	once	for	each	key.	As	shown	here,	the	reducer	calculates	an	approximation	for
click	rate	using	sales	ranks	emitted	against	the	key:

public	void	reduce(Text	key,	Iterable<IntWritable>	values,	Context	context)	
throws	IOException,	InterruptedException	{
				double	clickrate	=	0;
				for(IntWritable	val:	values){
								if(val.get()	>	1){
												clickrate	=	clickrate	+	1000/Math.log(val.get());
								}else{
												clickrate	=	clickrate	+	1000;
								}
				}
				context.write(new	Text("keyword:"	+key.toString()),
				new	IntWritable((int)clickrate));
}

There	is	no	publicly	available	bid	dataset.	Therefore,	we	will	generate	a	random	bid
dataset	for	our	recipe	using	the	AdwordsBidGenerator	program.	It	will	read	the	keywords
generated	by	the	preceding	recipe	and	generate	a	random	bid	dataset.

Then,	we	will	use	the	second	MapReduce	job	to	merge	the	bid	dataset	with	the	click-
through	rate	and	generate	a	dataset	that	has	bid	information	sorted	against	the	keyword.
You	can	find	the	source	for	the	second	MapReduce	task	from	the	file,
src/chapter9/adwords/AdwordsBalanceAlgorithmDataGenerator.java.	The	Mapper
function	looks	like	this:

public	void	map(Object	key,	Text	value,	Context	context)	throws	
IOException,	InterruptedException	{
		String[]	keyVal	=	value.toString().split("\\s");
		if	(keyVal[0].startsWith("keyword:"))	{



				context.write(
				new	Text(keyVal[0].replace("keyword:",	"")),
				new	Text(keyVal[1]));
		}	else	if	(keyVal[0].startsWith("client"))	{
				List<String[]>	bids	=	new	ArrayList<String[]>();
				double	budget	=	0;
				String	clientid	=	keyVal[0];
				String[]	tokens	=	keyVal[1].split(",");
				for	(String	token	:	tokens)	{
						String[]	kp	=	token.split("=");
						if	(kp[0].equals("budget"))	{
								budget	=	Double.parseDouble(kp[1]);
						}	else	if	(kp[0].equals("bid"))	{
								String[]	bidData	=	kp[1].split("\\|");
								bids.add(bidData);
						}
				}

				for	(String[]	bid	:	bids)	{
						String	keyword	=	bid[0];
						String	bidValue	=	bid[1];
						Double.parseDouble(bidValue);
						context.write(new	Text(keyword),
						new	Text(new	StringBuffer()
						.append(clientid).append(",")
						.append(budget).append(",")
						.append(bidValue).toString()));
				}
		}
}

The	Mapper	function	reads	both,	the	bid	dataset	and	click-through	rate	dataset	and	emits
both	types	of	data	against	the	keyword.	Then,	each	Reducer	receives	all	bids	and	the
associated	click-through	data	for	each	keyword.	Next,	the	reducer	merges	the	data	and
emits	a	list	of	bids	against	each	keyword.

public	void	reduce(Text	key,	Iterable<Text>	values,
Context	context)	throws	IOException,	InterruptedException	{
		String	clientid	=	null;
		String	budget	=	null;
		String	bid	=	null;
		String	clickRate	=	null;

		List<String>	bids	=	new	ArrayList<String>();
		for	(Text	val	:	values)	{
				if	(val.toString().indexOf(",")	>	0)	{
						bids.add(val.toString());
				}	else	{
						clickRate	=	val.toString();
				}
		}
		StringBuffer	buf	=	new	StringBuffer();
		for	(String	bidData	:	bids)	{
				String[]	vals	=	bidData.split(",");
				clientid	=	vals[0];



				budget	=	vals[1];
				bid	=	vals[2];
				buf.append(clientid).append(",")
				.append(budget).append(",")
				.append(Double.valueOf(bid)).append(",")
				.append(Math.max(1,	Double.valueOf(clickRate)));
				buf.append("|");
		}
		if	(bids.size()	>	0)	{
				context.write(key,	new	Text(buf.toString()));
		}
}

Finally,	the	Adwords	assigner	loads	the	bid	data	and	stores	it	against	keywords	to	memory.
Given	a	keyword,	the	Adwords	assigner	finds	the	bid	that	has	the	maximum	value	for	the
following	equation	and	selects	a	bid	among	all	the	bids	for	advertisement:

Measure	=	bid	value	*	click-through	rate	*	(1-e^(-1*current	budget/	initial	
budget))



There’s	more…
The	preceding	recipe	assumes	that	the	Adwords	assigner	can	load	all	the	data	into	memory
to	make	advertisement	assignment	decisions.	In	reality,	these	computations	are	handled	by
large	clusters	making	real-time	decisions	combining	streaming	technologies	such	as
Apache	Storm	and	high-throughput	databases	such	as	HBase,	due	to	the	millisecond	level
response	times	and	the	large	datasets	required	by	advertisement	bidding	systems.

This	recipe	assumes	that	users	only	bid	for	single	words.	However,	to	support	multiple
keyword	bids,	we	would	need	to	combine	the	click-through	rates,	and	the	rest	of	the
algorithm	can	proceed	as	earlier.

More	information	about	online	advertisement	can	be	found	in	the	book,	Mining	of	Massive
Datasets,	Cambridge	University	Press,	by	Anand	Rajaraman	and	Jeffrey	David	Ullman.





Chapter	10.	Mass	Text	Data	Processing
In	this	chapter,	we	will	cover	the	following	topics:

Data	preprocessing	(extract,	clean,	and	format	conversion)	using	Hadoop	streaming
and	Python
De-duplicating	data	using	Hadoop	streaming
Loading	large	datasets	to	an	Apache	HBase	data	store	–	importtsv	and	bulkload
Creating	TF	and	TF-IDF	vectors	for	the	text	data
Clustering	text	data	using	Apache	Mahout
Topic	discovery	using	Latent	Dirichlet	Allocation	(LDA)
Document	classification	using	Mahout	Naive	Bayes	Classifier



Introduction
Hadoop	MapReduce	together	with	the	supportive	set	of	projects	makes	it	a	good
framework	of	choice	to	process	large	text	datasets	and	to	perform	extract-transform-load
(ETL)	type	operations.

In	this	chapter,	we’ll	be	exploring	how	to	use	Hadoop	streaming	to	perform	data
preprocessing	operations	such	as	data	extraction,	format	conversion,	and	de-duplication.
We’ll	also	use	HBase	as	the	data	store	to	store	the	data	and	will	explore	mechanisms	to
perform	large	bulk	data	loads	to	HBase	with	minimal	overhead.	Finally,	we’ll	look	into
performing	text	analytics	using	the	Apache	Mahout	algorithms.

We	will	be	using	the	following	sample	dataset	for	the	recipes	in	this	chapter:

20	Newsgroups	dataset	available	at	http://qwone.com/~jason/20Newsgroups.	This
dataset	contains	approximately	20,000	newsgroup	documents	originally	collected	by
Ken	Lang.

Tip
Sample	code

The	example	code	files	for	this	book	are	available	in	GitHub	at
https://github.com/thilg/hcb-v2.	The	chapter10	folder	of	the	code	repository	contains	the
sample	code	for	this	chapter.

http://qwone.com/~jason/20Newsgroups
https://github.com/thilg/hcb-v2




Data	preprocessing	using	Hadoop
streaming	and	Python
Data	preprocessing	is	an	important	and	often	required	component	in	data	analytics.	Data
preprocessing	becomes	even	more	important	when	consuming	unstructured	text	data
generated	from	multiple	different	sources.	Data	preprocessing	steps	include	operations
such	as	cleaning	the	data,	extracting	important	features	from	data,	removing	duplicate
items	from	the	datasets,	converting	data	formats,	and	many	more.

Hadoop	MapReduce	provides	an	ideal	environment	to	perform	these	tasks	in	parallel
when	processing	massive	datasets.	Apart	from	using	Java	MapReduce	programs	or	Pig
scripts	or	Hive	scripts	to	preprocess	the	data,	Hadoop	also	contains	several	other	tools	and
features	that	are	useful	in	performing	these	data	preprocessing	operations.	One	such
feature	is	the	InputFormats,	which	provides	us	with	the	ability	to	support	custom	data
formats	by	implementing	custom	InputFormats.	Another	feature	is	the	Hadoop	streaming
support,	which	allows	us	to	use	our	favorite	scripting	languages	to	perform	the	actual	data
cleansing	and	extraction,	while	Hadoop	will	parallelize	the	computation	to	hundreds	of
compute	and	storage	resources.

In	this	recipe,	we	are	going	to	use	Hadoop	streaming	with	a	Python	script-based	Mapper
to	perform	data	extraction	and	format	conversion.



Getting	ready
Check	whether	Python	is	already	installed	on	the	Hadoop	worker	nodes.	If	not,	install
Python	on	all	the	Hadoop	worker	nodes.



How	to	do	it…
The	following	steps	show	how	to	clean	and	extract	data	from	the	20news	dataset	and	store
the	data	as	a	tab-separated	file:

1.	 Download	and	extract	the	20news	dataset	from
http://qwone.com/~jason/20Newsgroups/20news-19997.tar.gz:

$	wget	http://qwone.com/~jason/20Newsgroups/20news-19997.tar.gz
$	tar	–xzf	20news-19997.tar.gz

2.	 Upload	the	extracted	data	to	the	HDFS.	In	order	to	save	the	compute	time	and
resources,	you	can	use	only	a	subset	of	the	dataset:

$	hdfs	dfs	-mkdir	20news-all
$	hdfs	dfs	–put		<extracted_folder>	20news-all

3.	 Extract	the	resource	package	for	this	chapter	and	locate	the	MailPreProcessor.py
Python	script.

4.	 Locate	the	hadoop-streaming.jar	JAR	file	of	the	Hadoop	installation	in	your
machine.	Run	the	following	Hadoop	streaming	command	using	that	JAR.
/usr/lib/hadoop-mapreduce/	is	the	hadoop-streaming	JAR	file’s	location	for	the
Bigtop-based	Hadoop	installations:

$	hadoop	jar	\
/usr/lib/hadoop-mapreduce/hadoop-streaming.jar	\
-input	20news-all/*/*	\
-output	20news-cleaned	\
-mapper	MailPreProcessor.py	\
-file	MailPreProcessor.py

5.	 Inspect	the	results	using	the	following	command:

>	hdfs	dfs	–cat	20news-cleaned/part-*	|	more

http://qwone.com/~jason/20Newsgroups/20news-19997.tar.gz


How	it	works…
Hadoop	uses	the	default	TextInputFormat	as	the	input	specification	for	the	previous
computation.	Usage	of	the	TextInputFormat	generates	a	Map	task	for	each	file	in	the
input	dataset	and	generates	a	Map	input	record	for	each	line.	Hadoop	streaming	provides
the	input	to	the	Map	application	through	the	standard	input:

line	=		sys.stdin.readline();
while	line:
….
		if	(doneHeaders):
				list.append(	line	)
		elif	line.find(	"Message-ID:"	)	!=	-1:
				messageID	=	line[	len("Message-ID:"):]
		….
		elif	line	==	"":
				doneHeaders	=	True

			line	=	sys.stdin.readline();

The	preceding	Python	code	reads	the	input	lines	from	the	standard	input	until	it	reaches
the	end	of	the	file.	We	parse	the	headers	of	the	newsgroup	file	till	we	encounter	the	empty
line	that	demarcates	the	headers	from	the	message	contents.	The	message	content	will	be
read	in	to	a	list	line	by	line:

value	=	'	'.join(	list	)
value	=	fromAddress	+	"\t"	……"\t"	+	value
print	'%s\t%s'	%	(messageID,	value)

The	preceding	code	segment	merges	the	message	content	to	a	single	string	and	constructs
the	output	value	of	the	streaming	application	as	a	tab-delimited	set	of	selected	headers,
followed	by	the	message	content.	The	output	key	value	is	the	Message-ID	header	extracted
from	the	input	file.	The	output	is	written	to	the	standard	output	by	using	a	tab	to	delimit
the	key	and	the	value.



There’s	more…
We	can	generate	the	output	of	the	preceding	computation	in	the	Hadoop	SequenceFile
format	by	specifying	SequenceFileOutputFormat	as	the	OutputFormat	of	the	streaming
computations:

$	hadoop	jar	\
/usr/lib/Hadoop-mapreduce/hadoop-streaming.jar	\
-input	20news-all/*/*	\
-output	20news-cleaned	\
-mapper	MailPreProcessor.py	\
-file	MailPreProcessor.py	\
-outputformat	\
										org.apache.hadoop.mapred.SequenceFileOutputFormat	\
-file	MailPreProcessor.py

It	is	a	good	practice	to	store	the	data	as	SequenceFiles	(or	other	Hadoop	binary	file
formats	such	as	Avro)	after	the	first	pass	of	the	input	data	because	SequenceFiles	takes
up	less	space	and	supports	compression.	You	can	use	hdfs	dfs	-text
<path_to_sequencefile>	to	output	the	contents	of	a	SequenceFile	to	text:

$	hdfs	dfs	–text	20news-seq/part-*	|	more

However,	for	the	preceding	command	to	work,	any	Writable	classes	that	are	used	in	the
SequenceFile	should	be	available	in	the	Hadoop	classpath.



See	also
Refer	to	the	Using	Hadoop	with	legacy	applications	-	Hadoop	streaming	and	Adding
support	for	new	input	data	formats	-	implementing	a	custom	InputFormat	recipes	of
Chapter	4,	Developing	Complex	Hadoop	MapReduce	Applications.





De-duplicating	data	using	Hadoop
streaming
Often,	the	datasets	contain	duplicate	items	that	need	to	be	eliminated	to	ensure	the
accuracy	of	the	results.	In	this	recipe,	we	use	Hadoop	to	remove	the	duplicate	mail	records
in	the	20news	dataset.	These	duplicate	records	are	due	to	the	users	cross-posting	the	same
message	to	multiple	newsboards.



Getting	ready
Make	sure	Python	is	installed	on	your	Hadoop	compute	nodes.



How	to	do	it…
The	following	steps	show	how	to	remove	duplicate	mails	due	to	cross-posting	across	the
lists,	from	the	20news	dataset:

1.	 Download	and	extract	the	20news	dataset	from
http://qwone.com/~jason/20Newsgroups/20news-19997.tar.gz:

$	wget	http://qwone.com/~jason/20Newsgroups/20news-19997.tar.gz
$	tar	–xzf	20news-19997.tar.gz

2.	 Upload	the	extracted	data	to	the	HDFS.	In	order	to	save	the	compute	time	and
resources,	you	can	use	only	a	subset	of	the	dataset:

$	hdfs	dfs	-mkdir	20news-all
$	hdfs	dfs	–put		<extracted_folder>	20news-all

3.	 We	are	going	to	use	the	MailPreProcessor.py	Python	script	from	the	previous
recipe,	Data	preprocessing	using	Hadoop	streaming	and	Python	as	the	Mapper.
Locate	the	MailPreProcessorReduce.py	file	in	the	source	repository	of	this	chapter.

4.	 Execute	the	following	command:

$	hadoop	jar	\
/usr/lib/hadoop-mapreduce/hadoop-streaming.jar	\
-input	20news-all/*/*	\
-output	20news-dedup\
-mapper	MailPreProcessor.py	\
-reducer	MailPreProcessorReduce.py	\
-file	MailPreProcessor.py\
-file	MailPreProcessorReduce.py

5.	 Inspect	the	results	using	the	following	command:

$	hdfs	dfs	–cat	20news-dedup/part-00000	|	more

http://qwone.com/~jason/20Newsgroups/20news-19997.tar.gz


How	it	works…
The	Mapper	Python	script	outputs	the	MessageID	as	the	key.	We	use	the	MessageID	to
identify	the	duplicated	messages	that	are	a	result	of	cross-posting	across	different
newsgroups.

Hadoop	streaming	provides	the	Reducer	input	records	of	each	key	group	line	by	line	to	the
streaming	reducer	application	through	the	standard	input.	However,	Hadoop	streaming
does	not	have	a	mechanism	to	distinguish	a	new	key-value	group.	The	streaming	reducer
applications	need	to	keep	track	of	the	input	key	to	identify	new	groups	when	Hadoop
starts	to	feed	records	of	a	new	Key	to	the	process.	Since	we	output	the	Mapper	results
using	the	MessageID,	the	Reducer	input	gets	grouped	by	the	MessageID.	Any	group	with
more	than	one	value	(aka	a	message)	per	MessageID	contains	duplicates.	In	the	following
script,	we	use	only	the	first	value	(message)	of	the	record	group	and	discard	the	others,
which	are	the	duplicate	messages:

#!/usr/bin/env	python
import	sys;

currentKey	=	""

for	line	in	sys.stdin:
		line	=	line.strip()
		key,	value	=	line.split('\t',1)
		if	currentKey	==	key	:
				continue
		print	'%s\t%s'	%	(key,	value)



See	also
The	Using	Hadoop	with	legacy	applications	–	Hadoop	streaming	recipe	of	Chapter	4,
Developing	Complex	Hadoop	MapReduce	Applications	and	the	Data	preprocessing
using	Hadoop	streaming	and	Python	recipe	of	this	chapter.





Loading	large	datasets	to	an	Apache
HBase	data	store	–	importtsv	and
bulkload
The	Apache	HBase	data	store	is	very	useful	when	storing	large-scale	data	in	a	semi-
structured	manner,	so	that	it	can	be	used	for	further	processing	using	Hadoop	MapReduce
programs	or	to	provide	a	random	access	data	storage	for	client	applications.	In	this	recipe,
we	are	going	to	import	a	large	text	dataset	to	HBase	using	the	importtsv	and	bulkload
tools.



Getting	ready
1.	 Install	and	deploy	Apache	HBase	in	your	Hadoop	cluster.
2.	 Make	sure	Python	is	installed	in	your	Hadoop	compute	nodes.



How	to	do	it…
The	following	steps	show	you	how	to	load	the	TSV	(tab-separated	value)	converted
20news	dataset	in	to	an	HBase	table:

1.	 Follow	the	Data	preprocessing	using	Hadoop	streaming	and	Python	recipe	to
perform	the	preprocessing	of	data	for	this	recipe.	We	assume	that	the	output	of	the
following	step	4	of	that	recipe	is	stored	in	an	HDFS	folder	named	“20news-cleaned“:

$	hadoop	jar	\
				/usr/lib/hadoop-mapreduce/hadoop-streaming.jar	\
				-input	20news-all/*/*	\
				-output	20news-cleaned	\
				-mapper	MailPreProcessor.py	\
				-file	MailPreProcessor.py

2.	 Start	the	HBase	shell:

$	hbase	shell

3.	 Create	a	table	named	20news-data	by	executing	the	following	command	in	the	HBase
shell.	Older	versions	of	the	importtsv	(used	in	the	next	step)	command	can	handle
only	a	single	column	family.	Hence,	we	are	using	only	a	single	column	family	when
creating	the	HBase	table:

hbase(main):001:0>	create	'20news-data','h'

4.	 Execute	the	following	command	to	import	the	preprocessed	data	to	the	HBase	table
created	earlier:

$	hbase	\
		org.apache.hadoop.hbase.mapreduce.ImportTsv	\
		-Dimporttsv.columns=HBASE_ROW_KEY,h:from,h:group,h:subj,h:msg	\
		20news-data	20news-cleaned

5.	 Start	the	HBase	Shell	and	use	the	count	and	scan	commands	of	the	HBase	shell	to
verify	the	contents	of	the	table:

hbase(main):010:0>	count	'20news-data'
		12xxx	row(s)	in	0.0250	seconds

hbase(main):010:0>	scan	'20news-data',	{LIMIT	=>	10}
		ROW																																							COLUMN+CELL																																																																												
		<1993Apr29.103624.1383@cronkite.ocis.te	column=h:c1,				
timestamp=1354028803355,	value=	katop@astro.ocis.temple.edu	(Chris	
Katopis)>
		<1993Apr29.103624.1383@cronkite.ocis.te	column=h:c2,		
timestamp=1354028803355,	value=	sci.electronics			
......

The	following	are	the	steps	to	load	the	20news	dataset	to	an	HBase	table	using	the
bulkload	feature:

1.	 Follow	steps	1	to	3,	but	create	the	table	with	a	different	name:



hbase(main):001:0>	create	'20news-bulk','h'

2.	 Use	the	following	command	to	generate	an	HBase	bulkload	datafile:

$	hbase	\
		org.apache.hadoop.hbase.mapreduce.ImportTsv	\
-Dimporttsv.columns=HBASE_ROW_KEY,h:from,h:group,h:subj,h:msg\
-Dimporttsv.bulk.output=hbaseloaddir	\
20news-bulk–source	20news-cleaned

3.	 List	the	files	to	verify	that	the	bulkload	datafiles	are	generated:

$	hadoop	fs	-ls	20news-bulk-source
......
drwxr-xr-x			-	thilina	supergroup										0	2014-04-27	10:06	
/user/thilina/20news-bulk-source/h

$	hadoop	fs	-ls	20news-bulk-source/h
-rw-r--r--			1	thilina	supergroup						19110	2014-04-27	10:06	
/user/thilina/20news-bulk-source/h/4796511868534757870

4.	 The	following	command	loads	the	data	to	the	HBase	table	by	moving	the	output	files
to	the	correct	location:

$	hbase	\
		org.apache.hadoop.hbase.mapreduce.LoadIncrementalHFiles	\
		20news-bulk-source	20news-bulk
......
14/04/27	10:10:00	INFO	mapreduce.LoadIncrementalHFiles:	Trying	to	load	
hfile=hdfs://127.0.0.1:9000/user/thilina/20news-bulk-
source/h/4796511868534757870	first=	
<1993Apr29.103624.1383@cronkite.ocis.temple.edu>last=	
<stephens.736002130@ngis>
......

5.	 Start	the	HBase	Shell	and	use	the	count	and	scan	commands	of	the	HBase	shell	to
verify	the	contents	of	the	table:

hbase(main):010:0>	count	'20news-bulk'														
hbase(main):010:0>	scan	'20news-bulk',	{LIMIT	=>	10}



How	it	works…
The	MailPreProcessor.py	Python	script	extracts	a	selected	set	of	data	fields	from	the
newsboard	message	and	outputs	them	as	a	tab-separated	dataset:

value	=	fromAddress	+	"\t"	+	newsgroup	
+"\t"	+	subject	+"\t"	+	value
print	'%s\t%s'	%	(messageID,	value)

We	import	the	tab-separated	dataset	generated	by	the	Streaming	MapReduce	computations
to	HBase	using	the	importtsv	tool.	The	importtsv	tool	requires	the	data	to	have	no	other
tab	characters	except	for	the	tab	characters	that	separate	the	data	fields.	Hence,	we	remove
any	tab	characters	that	may	be	present	in	the	input	data	by	using	the	following	snippet	of
the	Python	script:

line	=	line.strip()
line	=	re.sub('\t','	',line)

The	importtsv	tool	supports	the	loading	of	data	into	HBase	directly	using	the	Put
operations	as	well	as	by	generating	the	HBase	internal	HFiles	as	well.	The	following
command	loads	the	data	to	HBase	directly	using	the	Put	operations.	Our	generated	dataset
contains	a	Key	and	four	fields	in	the	values.	We	specify	the	data	fields	to	the	table	column
name	mapping	for	the	dataset	using	the	-Dimporttsv.columns	parameter.	This	mapping
consists	of	listing	the	respective	table	column	names	in	the	order	of	the	tab-separated	data
fields	in	the	input	dataset:

$	hbase	\
		org.apache.hadoop.hbase.mapreduce.ImportTsv	\
		-Dimporttsv.columns=<data	field	to	table	column	mappings>	\	
		<HBase	tablename>	<HDFS	input	directory>

We	can	use	the	following	command	to	generate	HBase	HFiles	for	the	dataset.	These
HFiles	can	be	directly	loaded	to	HBase	without	going	through	the	HBase	APIs,	thereby
reducing	the	amount	of	CPU	and	network	resources	needed:

$	hbase	\
		org.apache.hadoop.hbase.mapreduce.ImportTsv	\
		-Dimporttsv.columns=<filed	to	column	mappings>	\	
		-Dimporttsv.bulk.output=<path	for	hfile	output>	\
		<HBase	tablename>	<HDFS	input	directory>

These	generated	HFiles	can	be	loaded	into	HBase	tables	by	simply	moving	the	files	to	the
right	location.	This	moving	can	be	performed	by	using	the	completebulkload	command:

$	hbase	\org.apache.hadoop.hbase.mapreduce.LoadIncrementalHFiles	\
		<HDFS	path	for	hfiles>	<table	name>



There’s	more…
You	can	use	the	importtsv	tool	that	has	datasets	with	other	data-filed	separator	characters
as	well	by	specifying	the	‘-Dimporttsv.separator’	parameter.	The	following	is	an	example
of	using	a	comma	as	the	separator	character	to	import	a	comma-separated	dataset	in	to	an
HBase	table:

$	hbase	\
		org.apache.hadoop.hbase.mapreduce.ImportTsv	\
		'-Dimporttsv.separator=,'	\
		-Dimporttsv.columns=<data	field	to	table	column	mappings>	\	
		<HBase	tablename>	<HDFS	input	directory>

Look	out	for	Bad	Lines	in	the	MapReduce	job	console	output	or	in	the	Hadoop
monitoring	console.	One	reason	for	Bad	Lines	is	to	have	unwanted	delimiter	characters.
The	Python	script	we	used	in	the	data-cleaning	step	removes	any	extra	tabs	in	the
message:

14/03/27	00:38:10	INFO	mapred.JobClient:			ImportTsv
14/03/27	00:38:10	INFO	mapred.JobClient:					Bad	Lines=2

Data	de-duplication	using	HBase
HBase	supports	the	storing	of	multiple	versions	of	column	values	for	each	record.	When
querying,	HBase	returns	the	latest	version	of	values,	unless	we	specifically	mention	a	time
period.	This	feature	of	HBase	can	be	used	to	perform	automatic	de-duplication	by	making
sure	we	use	the	same	RowKey	for	duplicate	values.	In	our	20news	example,	we	use
MessageID	as	the	RowKey	for	the	records,	ensuring	duplicate	messages	will	appear	as
different	versions	of	the	same	data	record.

HBase	allows	us	to	configure	the	maximum	or	minimum	number	of	versions	per	column
family.	Setting	the	maximum	number	of	versions	to	a	low	value	will	reduce	the	data	usage
by	discarding	the	old	versions.	Refer	to
http://hbase.apache.org/book/schema.versions.html	for	more	information	on	setting	the
maximum	or	minimum	number	of	versions.

http://hbase.apache.org/book/schema.versions.html


See	also
The	Running	MapReduce	jobs	on	HBase	recipe	of	Chapter	7,	Hadoop	Ecosystem	II	–
Pig,	HBase,	Mahout,	and	Sqoop.
Refer	to	http://hbase.apache.org/book/ops_mgt.html#importtsv	for	more	information
on	the	ImportTsv	command.

http://hbase.apache.org/book/ops_mgt.html#importtsv




Creating	TF	and	TF-IDF	vectors	for	the
text	data
Most	of	the	text	analysis	data-mining	algorithms	operate	on	vector	data.	We	can	use	a
vector	space	model	to	represent	text	data	as	a	set	of	vectors.	For	example,	we	can	build	a
vector	space	model	by	taking	the	set	of	all	terms	that	appear	in	the	dataset	and	by
assigning	an	index	to	each	term	in	the	term	set.	The	number	of	terms	in	the	term	set	is	the
dimensionality	of	the	resulting	vectors,	and	each	dimension	of	the	vector	corresponds	to	a
term.	For	each	document,	the	vector	contains	the	number	of	occurrences	of	each	term	at
the	index	location	assigned	to	that	particular	term.	This	creates	the	vector	space	model
using	term	frequencies	in	each	document,	which	is	similar	to	the	result	of	the	computation
we	performed	in	the	Generating	an	inverted	index	using	Hadoop	MapReduce	recipe	of
Chapter	8,	Searching	and	Indexing.

The	vectors	can	be	seen	as	follows:

The	term	frequencies	and	the	resulting	document	vectors

However,	creating	vectors	using	the	preceding	term	count	model	gives	a	lot	of	weight	to
the	terms	that	occur	frequently	across	many	documents	(for	example,	the,	is,	a,	are,	was,
who,	and	so	on),	although	these	frequent	terms	have	a	very	minimal	contribution	when	it
comes	to	defining	the	meaning	of	a	document.	The	Term	frequency-inverse	document
frequency	(TF-IDF)	model	solves	this	issue	by	utilizing	the	inverted	document
frequencies	(IDF)	to	scale	the	term	frequencies	(TF).	IDF	is	typically	calculated	by	first
counting	the	number	of	documents	(DF)	the	term	appears	in,	inversing	it	(1/DF)	and
normalizing	it	by	multiplying	with	the	number	of	documents	and	using	the	logarithm	of
the	resultant	value	as	shown	roughly	by	the	following	equation:



In	this	recipe,	we’ll	create	TF-IDF	vectors	from	a	text	dataset	using	a	built-in	utility	tool
of	Apache	Mahout.



Getting	ready
Install	Apache	Mahout	in	your	machine	using	your	Hadoop	distribution	or	install	the	latest
Apache	Mahout	version	manually.



How	to	do	it…
The	following	steps	show	you	how	to	build	a	vector	model	of	the	20news	dataset:

1.	 Download	and	extract	the	20news	dataset	from
http://qwone.com/~jason/20Newsgroups/20news-19997.tar.gz:

$	wget	http://qwone.com/~jason/20Newsgroups/20news-19997.tar.gz
$	tar	–xzf	20news-19997.tar.gz

2.	 Upload	the	extracted	data	to	the	HDFS.	In	order	to	save	the	compute	time	and
resources,	you	may	use	only	a	subset	of	the	dataset:

$	hdfs	dfs	-mkdir	20news-all
$	hdfs	dfs	–put		<extracted_folder>	20news-all

3.	 Go	to	MAHOUT_HOME.	Generate	the	Hadoop	sequence	files	from	the	uploaded	text	data:

$	mahout	seqdirectory	-i	20news-all	-o	20news-seq

4.	 Generate	TF	and	TF-IDF	sparse	vector	models	from	the	text	data	in	the	sequence
files:

$	mahout	seq2sparse	-i	20news-seq		-o	20news-vector			

The	preceding	command	launches	a	series	of	MapReduce	computations.	Wait	for	the
completion	of	these	computations:

5.	 Check	the	output	directory	using	the	following	command.	The	tfidf-vectors	folder
contains	the	TF-IDF	model	vectors,	the	tf-vectors	folder	contains	the	term	count
model	vectors,	and	the	dictionary.file-0	contains	the	term	to	term-index	mapping:

http://qwone.com/~jason/20Newsgroups/20news-19997.tar.gz


$	hdfs	dfs	-ls	20news-vector

Found	7	items
drwxr-xr-x			-	u	supergroup										0	2012-11-27	16:53	/user/u/20news-
vector	/df-count
-rw-r--r--			1	u	supergroup							7627	2012-11-27	16:51	/user/u/20news-
vector/dictionary.file-0
-rw-r--r--			1	u	supergroup							8053	2012-11-27	16:53	/user/u/20news-
vector/frequency.file-0
drwxr-xr-x			-	u	supergroup										0	2012-11-27	16:52	/user/u/20news-
vector/tf-vectors
drwxr-xr-x			-	u	supergroup										0	2012-11-27	16:54	/user/u/20news-
vector/tfidf-vectors
drwxr-xr-x			-	u	supergroup										0	2012-11-27	16:50	/user/u/20news-
vector/tokenized-documents
drwxr-xr-x			-	u	supergroup										0	2012-11-27	16:51	/user/u/20news-
vector/wordcount

6.	 Optionally,	you	can	use	the	following	command	to	dump	the	TF-IDF	vectors	as	text.
The	key	is	the	filename	and	the	contents	of	the	vectors	are	in	the	format	<term
index>:<TF-IDF	value>:

$	mahout	seqdumper	-i	20news-vector/tfidf-vectors/part-r-00000

……
Key	class:	class	org.apache.hadoop.io.Text	Value	Class:	class	
org.apache.mahout.math.VectorWritable
Key:	/54492:	Value:	
{225:3.374729871749878,400:1.5389964580535889,321:1.0,324:2.38629436492
9199,326:2.386294364929199,315:1.0,144:2.0986123085021973,11:1.08701133
72802734,187:2.652313232421875,134:2.386294364929199,132:2.098612308502
1973,......}
……



How	it	works…
Hadoop	SequenceFiles	store	the	data	as	binary	key-value	pairs	and	support	data
compression.	Mahout’s	seqdirectory	command	converts	the	text	files	into	a	Hadoop
SequenceFile	by	using	the	filename	of	the	text	file	as	the	key	and	the	contents	of	the	text
file	as	the	value.	The	seqdirectory	command	stores	all	the	text	contents	in	a	single
SequenceFile.	However,	it’s	possible	for	us	to	specify	a	chunk	size	to	control	the	actual
storage	of	the	SequenceFile	data	blocks	in	the	HDFS.	The	following	are	a	selected	set	of
options	for	the	seqdirectory	command:

mahout	seqdirectory	–i	<HDFS	path	to	text	files>	-o	<HDFS	output	directory	
for	sequence	file>					
	-ow																			If	present,	overwrite	the	output	directory	
	-chunk	<chunk	size>			In	MegaBytes.	Defaults	to	64mb	
	-prefix	<key	prefix>		The	prefix	to	be	prepended	to	the	key	

The	seq2sparse	command	is	an	Apache	Mahout	tool	that	supports	the	generation	of
sparse	vectors	from	SequenceFiles	that	contain	text	data.	It	supports	the	generation	of	both
TF	as	well	as	TF-IDF	vector	models.	This	command	executes	as	a	series	of	MapReduce
computations.	The	following	are	a	selected	set	of	options	for	the	seq2sparse	command:

mahout	seq2sparse	-i	<HDFS	path	to	the	text	sequence	file>	-o	<HDFS	output	
directory>
	-wt	{tf|tfidf}	
	-chunk	<max	dictionary	chunk	size	in	mb	to	keep	in	memory>	
	--minSupport	<minimum	support>
	--minDF	<minimum	document	frequency>
	--maxDFPercent	<MAX	PERCENTAGE	OF	DOCS	FOR	DF

The	minSupport	command	is	the	minimum	frequency	for	the	word	to	be	considered	as	a
feature.	minDF	is	the	minimum	number	of	documents	the	word	needs	to	be	in.
maxDFPercent	is	the	maximum	value	of	the	expression	(document	frequency	of	a
word/total	number	of	document)	in	order	for	that	word	to	be	considered	as	a	good	feature
in	the	document.	This	helps	remove	high-frequency	features	such	as	stop	words.

You	can	use	the	Mahout	seqdumper	command	to	dump	the	contents	of	a	SequenceFile	that
uses	the	Mahout	writable	data	types	as	plain	text:

mahout	seqdumper	-i	<HDFS	path	to	the	sequence	file>
	-o	<output	directory>
	--count									Output	only	the	number	of	key	value	pairs.
	--numItems						Max	number	of	key	value	pairs	to	output
	--facets								Output	the	counts	per	key.



See	also
The	Generating	an	inverted	index	using	Hadoop	MapReduce	recipe	of	Chapter	9,
Classifications,	Recommendations,	and	Finding	Relationships.
Refer	to	the	Mahout	documentation	on	creating	vectors	from	text	data	at
https://cwiki.apache.org/confluence/display/MAHOUT/Creating+Vectors+from+Text.

https://cwiki.apache.org/confluence/display/MAHOUT/Creating+Vectors+from+Text




Clustering	text	data	using	Apache	Mahout
Clustering	plays	an	integral	role	in	data-mining	computations.	Clustering	groups	together
similar	items	of	a	dataset	using	one	or	more	features	of	the	data	items	based	on	the	use
case.	Document	clustering	is	used	in	many	text-mining	operations	such	as	document
organization,	topic	identification,	information	presentation,	and	so	on.	Document
clustering	shares	many	of	the	mechanisms	and	algorithms	with	traditional	data	clustering
mechanisms.	However,	document	clustering	has	its	unique	challenges	when	it	comes	to
determining	the	features	to	use	for	clustering	and	when	building	vector	space	models	to
represent	the	text	documents.

The	Running	K-means	with	Mahout	recipe	of	Chapter	7,	Hadoop	Ecosystem	II	–	Pig,
HBase,	Mahout,	and	Sqoop	focuses	on	using	Mahout	KMeansClustering	to	cluster	a
statistics	data.	The	Clustering	an	Amazon	sales	dataset	recipe	of	Chapter	8,
Classifications,	Recommendations,	and	Finding	Relationships	of	the	previous	edition	of
this	book	focuses	on	using	clustering	to	identify	customers	with	similar	interests.	These
two	recipes	provide	a	more	in-depth	understanding	of	using	Clustering	algorithms	in
general.	This	recipe	focuses	on	exploring	two	of	the	several	clustering	algorithms
available	in	Apache	Mahout	for	document	clustering.



Getting	ready
Install	Apache	Mahout	in	your	machine	using	your	Hadoop	distribution	or	install	the
latest	Apache	Mahout	version	manually	in	your	machine.



How	to	do	it…
The	following	steps	use	the	Apache	Mahout	KmeansClustering	algorithm	to	cluster	the
20news	dataset:

1.	 Refer	to	the	Creating	TF	and	TF-IDF	vectors	for	the	text	data	recipe	in	this	chapter
and	generate	TF-IDF	vectors	for	the	20news	dataset.	We	assume	the	TF-IDF	vectors
are	in	the	20news-vector/tfidf-vectors	folder	of	HDFS.

2.	 Execute	the	following	command	to	run	the	Mahout	KMeansClustering	computation:

$	mahout	kmeans	\
	--input	20news-vector/tfidf-vectors	\
	--clusters	20news-seed/clusters
	--output	20news-km-clusters\
	--distanceMeasure	\
org.apache.mahout.common.distance.SquaredEuclideanDistanceMeasure-k	10	
--maxIter	20	--clustering
Execute	the	following	command	to	convert	the	clusters	to	text:
$	mahout	clusterdump	\
	-i	20news-km-clusters/clusters-*-final\
	-o	20news-clusters-dump	\
	-d	20news-vector/dictionary.file-0	\
	-dt	sequencefile	\
	--pointsDir	20news-km-clusters/clusteredPoints

$	cat	20news-clusters-dump



How	it	works…
The	following	code	shows	the	usage	of	the	Mahout	KMeans	algorithm:

mahout	kmeans	
		--input	<tfidf	vector	input>
		--clusters	<seed	clusters>
		--output	<HDFS	path	for	output>
		--distanceMeasure	<distance	measure>-k	<number	of	clusters>--maxIter	
<maximum	number	of	iterations>--clustering

Mahout	will	generate	random	seed	clusters	when	an	empty	HDFS	directory	path	is	given
to	the	--clusters	option.	Mahout	supports	several	different	distance	calculation	methods
such	as	Euclidean,	Cosine,	and	Manhattan.

The	following	is	the	usage	of	the	Mahout	clusterdump	command:

mahout	clusterdump	-i	<HDFS	path	to	clusters>-o	<local	path	for	text	
output>
		-d	<dictionary	mapping	for	the	vector	data	points>
		-dt	<dictionary	file	type	(sequencefile	or	text)>
		--pointsDir	<directory	containing	the	input	vectors	to							clusters	
mapping>



See	also
The	Running	K-means	with	Mahout	recipe	of	Chapter	7,	Hadoop	Ecosystem	II	–	Pig,
HBase,	Mahout,	and	Sqoop.





Topic	discovery	using	Latent	Dirichlet
Allocation	(LDA)
We	can	use	Latent	Dirichlet	Allocation	(LDA)	to	cluster	a	given	set	of	words	into	topics
and	a	set	of	documents	into	combinations	of	topics.	LDA	is	useful	when	identifying	the
meaning	of	a	document	or	a	word	based	on	the	context,	without	solely	depending	on	the
number	of	words	or	the	exact	words.	LDA	is	a	step	away	from	raw	text	matching	and
towards	semantic	analysis.	LDA	can	be	used	to	identify	the	intent	and	to	resolve
ambiguous	words	in	a	system	such	as	a	search	engine.	Some	other	example	use	cases	of
LDA	are	identifying	influential	Twitter	users	for	particular	topics	and	Twahpic
(http://twahpic.cloudapp.net)	application	uses	LDA	to	identify	topics	used	on	Twitter.

LDA	uses	the	TF	vector	space	model	as	opposed	to	the	TF-IDF	model	as	it	needs	to
consider	the	co-occurrence	and	correlation	of	words.

http://twahpic.cloudapp.net


Getting	ready
Install	Apache	Mahout	in	your	machine	using	your	Hadoop	distribution,	or	install	the
latest	Apache	Mahout	version	manually.



How	to	do	it…
The	following	steps	show	you	how	to	run	the	Mahout	LDA	algorithm	on	a	subset	of	the
20news	dataset:

1.	 Download	and	extract	the	20news	dataset	from
http://qwone.com/~jason/20Newsgroups/20news-19997.tar.gz:

$	wget	http://qwone.com/~jason/20Newsgroups/20news-19997.tar.gz
$	tar	–xzf	20news-19997.tar.gz

2.	 Upload	the	extracted	data	to	the	HDFS.	In	order	to	save	the	compute	time	and
resources,	you	may	use	only	a	subset	of	the	dataset:

$	hdfs	dfs	-mkdir	20news-all
$	hdfs	dfs	–put		<extracted_folder>	20news-all

3.	 Generate	sequence	files	from	the	uploaded	text	data:

$	mahout	seqdirectory	-i	20news-all	-o	20news-seq	

4.	 Generate	a	sparse	vector	from	the	text	data	in	the	sequence	files:

$	mahout	seq2sparse	\
–i	20news-seq		-o	20news-tf	\
-wt	tf	-a	org.apache.lucene.analysis.WhitespaceAnalyzer

5.	 Convert	the	TF	vectors	from	SequenceFile<Text,	VectorWritable>	to
SequenceFile<IntWritable,Text>:

$	mahout	rowid	-i	20news-tf/tf-vectors	-o	20news-tf-int

6.	 Run	the	following	command	to	perform	the	LDA	computation:

$	mahout	cvb	\
-i	20news-tf-int/matrix	-o	lda-out	\
-k	10		-x	20		\
-dict	20news-tf/dictionary.file-0	\
-dt	lda-topics	\
-mt	lda-topic-model

7.	 Dump	and	inspect	the	results	of	the	LDA	computation:

$	mahout	seqdumper	-i	lda-topics/part-m-00000

Input	Path:	lda-topics5/part-m-00000
Key	class:	class	org.apache.hadoop.io.IntWritable	Value	Class:	class	
org.apache.mahout.math.VectorWritable
Key:	0:	Value:	
{0:0.12492744375758073,1:0.03875953927132082,2:0.1228639250669511,3:0.1
5074522974495433,4:0.10512715697420276,5:0.10130565323653766,6:0.061169
131590630275,7:0.14501579630233746,8:0.07872957132697946,9:0.0713565527
2850545}
.....

8.	 Join	the	output	vectors	with	the	dictionary	mapping	of	term-to-term	indexes:

http://qwone.com/~jason/20Newsgroups/20news-19997.tar.gz


$	mahout	vectordump	\
-i	lda-topics/part-m-00000	\
--dictionary	20news-tf/dictionary.file-0	\
--vectorSize	10		-dt	sequencefile	

......

{"Fluxgate:0.12492744375758073,&:0.03875953927132082,
(140.220.1.1):0.1228639250669511,(Babak:0.15074522974495433,
(Bill:0.10512715697420276,(Gerrit:0.10130565323653766,
(Michael:0.061169131590630275,(Scott:0.14501579630233746,
(Usenet:0.07872957132697946,(continued):0.07135655272850545}
{"Fluxgate:0.13130952097888746,&:0.05207587369196414,
(140.220.1.1):0.12533225607394424,(Babak:0.08607740024552457,
(Bill:0.20218284543514245,(Gerrit:0.07318295757631627,
(Michael:0.08766888242201039,(Scott:0.08858421220476514,
(Usenet:0.09201906604666685,(continued):0.06156698532477829}
.......



How	it	works…
The	Mahout	CVB	version	of	LDA	implements	the	Collapse	Variable	Bayesian	inference
algorithm	using	an	iterative	MapReduce	approach:

mahout	cvb	\
-i	20news-tf-int/matrix	\
-o	lda-out	-k	10		-x	20	\
-dict	20news-tf/dictionary.file-0	\
-dt	lda-topics	\
-mt	lda-topic-model

The	-i	parameter	provides	the	input	path,	while	the	-o	parameter	provides	the	path	to
store	the	output.	The	-k	parameter	specifies	the	number	of	topics	to	learn	and	–x	specifies
the	maximum	number	of	iterations	for	the	computation.	The	-dict	parameter	points	to	the
dictionary	that	contains	the	mapping	of	terms	to	term-indexes.	The	path	given	in	the	–dt
parameter	stores	the	training	topic	distribution.	The	path	given	in	–mt	is	used	as	a
temporary	location	to	store	the	intermediate	models.

All	the	command-line	options	of	the	cvb	command	can	be	queried	by	invoking	the	help
option	as	follows:

mahout		cvb		--help

Setting	the	number	of	topics	to	a	very	small	value	brings	out	extremely	high-level	topics.
A	large	number	of	topics	produces	more	descriptive	topics	but	takes	longer	to	process.	The
maxDFPercent	option	can	be	used	to	remove	common	words,	thereby	speeding	up	the
processing.



See	also
A	Collapsed	Variational	Bayesian	Inference	Algorithm	for	Latent	Dirichlet	Allocation
by	Y.W.	Teh,	D.	Newman,	and	M.	Welling.	In	NIPS,	volume	19,	2006	which	can	be
found	at	http://www.gatsby.ucl.ac.uk/~ywteh/research/inference/nips2006.pdf.

http://www.gatsby.ucl.ac.uk/~ywteh/research/inference/nips2006.pdf




Document	classification	using	Mahout
Naive	Bayes	Classifier
Classification	assigns	documents	or	data	items	to	an	already	known	set	of	classes	with
already	known	properties.	Document	classification	or	categorization	is	used	when	we	need
to	assign	documents	to	one	or	more	categories.	This	is	a	frequent	use	case	in	information
retrieval	as	well	as	library	science.

The	Classification	using	the	naïve	Bayes	classifier	recipe	in	Chapter	9,	Classifications,
Recommendations,	and	Finding	Relationships	provides	a	more	detailed	description	about
classification	use	cases,	and	also	gives	you	an	overview	of	using	the	Naive	Bayes
classifier	algorithm.	This	recipe	focuses	on	highlighting	the	classification	support	in
Apache	Mahout	for	text	documents.



Getting	ready
Install	Apache	Mahout	in	your	machine	using	your	Hadoop	distribution,	or	install	the
latest	Apache	Mahout	version	manually.



How	to	do	it…
The	following	steps	use	the	Apache	Mahout	Naive	Bayes	algorithm	to	cluster	the	20news
dataset:

1.	 Refer	to	the	Creating	TF	and	TF-IDF	vectors	for	the	text	data	recipe	in	this	chapter
and	generate	TF-IDF	vectors	for	the	20news	dataset.	We	assume	that	the	TF-IDF
vectors	are	in	the	20news-vector/tfidf-vectors	folder	of	the	HDFS.

2.	 Split	the	data	into	training	and	test	datasets:

$	mahout	split	\
			-i	20news-vectors/tfidf-vectors	\
			--trainingOutput	/20news-train-vectors	\
			--testOutput	/20news-test-vectors		\
			--randomSelectionPct	40	\
--overwrite	--sequenceFiles	

3.	 Train	the	Naive	Bayes	model:

$	mahout	trainnb	\
			-i	20news-train-vectors	-el	\
			-o		model	\
			-li	labelindex	

4.	 Test	the	classification	on	the	test	dataset:

$	mahout	testnb	\
				-i	20news-train-vectors	\
				-m	model	\
				-l	labelindex	\
				-o	20news-testing	



How	it	works…
Mahout’s	split	command	can	be	used	to	split	a	dataset	into	a	training	dataset	and	a	test
dataset.	This	command	works	with	text	datasets	as	well	as	with	Hadoop	SequenceFile
datasets.	The	following	is	the	usage	of	the	Mahout	data-splitting	command.	You	can
use	the	--help	option	with	the	split	command	to	print	out	all	the	options:

mahout	split	\
		-i	<input	data	directory>	\
		--trainingOutput	<HDFS	path	to	store	the	training	dataset>	\
		--testOutput	<HDFS	path	to	store	the	test	dataset>		\
		--randomSelectionPct	<percentage	to	be	selected	as	test	data>	\		
		--sequenceFiles	

The	sequenceFiles	option	specifies	that	the	input	dataset	is	in	Hadoop	SequenceFiles.

The	following	is	the	usage	of	the	Mahout	Naive	Bayes	classifier	training	command.	The	-
-el	option	informs	Mahout	to	extract	the	labels	from	the	input	dataset:

mahout	trainnb	\
		-i	<HDFS	path	to	the	training	data	set>	\
		-el	\
		-o	<HDFS	path	to	store	the	trained	classifier	model>	\
		-li	<Path	to	store	the	label	index>	\

The	following	is	the	usage	of	the	Mahout	Naive	Bayes	classifier	testing	command:

mahout	testnb	\
				-i	<HDFS	path	to	the	test	data	set>
				-m	<HDFS	path	to	the	classifier	model>\
				-l	<Path	to	the	label	index>	\
				-o	<path	to	store	the	test	result>



See	also
The	Classification	using	the	naïve	Bayes	classifier	recipe	of	Chapter	9,
Classifications,	Recommendations,	and	Finding	Relationships



Index
A

advertisements
about	/	Assigning	advertisements	to	keywords	using	the	Adwords	balance
algorithm

advertisements,	to	keywords
assigning,	Adwords	balance	algorithm	used	/	Assigning	advertisements	to
keywords	using	the	Adwords	balance	algorithm,	How	to	do	it…,	How	it
works…

adwords
about	/	Assigning	advertisements	to	keywords	using	the	Adwords	balance
algorithm

Adwords	balance	algorithm
used,	for	assigning	advertisements	to	keywords	/	Assigning	advertisements	to
keywords	using	the	Adwords	balance	algorithm,	How	to	do	it…,	How	it
works…

Amazon	EC2
Apache	HBase	cluster,	deploying	on	/	Deploying	an	Apache	HBase	cluster	on
Amazon	EC2	using	EMR,	How	to	do	it…,	See	also

Amazon	EC2	console
URL	/	How	to	do	it…

Amazon	EC2	Spot	Instances
used,	with	EMR	/	Saving	money	using	Amazon	EC2	Spot	Instances	to	execute
EMR	job	flows,	There’s	more…
URL	/	Saving	money	using	Amazon	EC2	Spot	Instances	to	execute	EMR	job
flows

Amazon	EMR	console
URL	/	How	to	do	it…,	How	to	do	it…,	Starting	a	Pig	interactive	session,	How	to
do	it…,	How	to	do	it…,	How	to	do	it…

Amazon	EMR	job	flow
creating,	AWS	CLI	used	/	Creating	an	Amazon	EMR	job	flow	using	the	AWS
Command	Line	Interface,	How	to	do	it…,	See	also

Amazon	product	co-purchasing	network	metadata	dataset
reference	link	/	Introduction,	How	to	do	it…

Amazon	S3	monitoring	console
URL	/	How	to	do	it…,	How	to	do	it…

Amazon	Web	Services	(AWS)	/	Running	Hadoop	MapReduce	v2	computations	using
Amazon	Elastic	MapReduce
analytics

performing,	MapReduce	used	/	Simple	analytics	using	MapReduce,	Getting
ready,	How	it	works…

Apache	Hadoop	cluster



deploying,	Apache	Whirr	used	/	Using	Apache	Whirr	to	deploy	an	Apache
Hadoop	cluster	in	a	cloud	environment,	How	to	do	it…,	How	it	works…

Apache	HBase
about	/	Getting	started	with	Apache	HBase,	How	to	do	it…
URL	/	See	also
configuring,	as	backend	data	store	for	Apache	Nutch	/	Configuring	Apache
HBase	as	the	backend	data	store	for	Apache	Nutch,	Getting	ready,	How	to	do
it…

Apache	HBase	cluster
deploying,	on	Amazon	EC2	/	Deploying	an	Apache	HBase	cluster	on	Amazon
EC2	using	EMR,	How	to	do	it…,	See	also

Apache	Hive
used,	for	querying	SQL-style	data	/	Simple	SQL-style	data	querying	using
Apache	Hive,	How	to	do	it…,	There’s	more…

Apache	Lucene	project
about	/	Indexing	and	searching	web	documents	using	Apache	Solr

Apache	Mahout
about	/	Getting	started	with	Apache	Mahout,	How	it	works…,	There’s	more…
K-means,	running	with	/	Running	K-means	with	Mahout,	How	it	works…
references	/	There’s	more…
used,	for	clustering	text	data	/	Clustering	text	data	using	Apache	Mahout,	How	it
works…

Apache	Nutch
used,	for	intradomain	web	crawling	/	Intradomain	web	crawling	using	Apache
Nutch,	How	to	do	it…
Apache	HBase,	configuring	as	backend	data	store	for	/	Configuring	Apache
HBase	as	the	backend	data	store	for	Apache	Nutch,	Getting	ready,	How	to	do
it…
URL	/	How	to	do	it…

Apache	Nutch	2.2.1
URL	/	How	to	do	it…

Apache	Nutch	search	engine
about	/	Introduction

Apache	Oozie
about	/	There’s	more…

Apache	Pig
about	/	Getting	started	with	Apache	Pig,	How	to	do	it…,	How	it	works…,
There’s	more…

Apache	Solr
about	/	Indexing	and	searching	web	documents	using	Apache	Solr
used,	for	indexing	web	documents	/	Indexing	and	searching	web	documents
using	Apache	Solr,	How	to	do	it…,	How	it	works…
used,	for	searching	web	documents	/	Indexing	and	searching	web	documents
using	Apache	Solr,	How	to	do	it…,	How	it	works…



URL	/	How	to	do	it…
Apache	Sqoop

used,	for	importing	data	to	HDFS	from	relational	database	/	Importing	data	to
HDFS	from	a	relational	database	using	Apache	Sqoop,	How	to	do	it…
used,	for	exporting	data	from	HDFS	to	relational	database	/	Exporting	data	from
HDFS	to	a	relational	database	using	Apache	Sqoop,	How	to	do	it…

Apache	Tez
used,	as	execution	engine	for	Hive	/	Using	Apache	Tez	as	the	execution	engine
for	Hive
about	/	Using	Apache	Tez	as	the	execution	engine	for	Hive

Apache	Whirr
used,	for	deploying	Apache	Hadoop	cluster	/	Using	Apache	Whirr	to	deploy	an
Apache	Hadoop	cluster	in	a	cloud	environment,	How	to	do	it…,	How	it	works…

Apache	Whirr	binary	distribution
URL	/	How	to	do	it…

ApplicationMaster
about	/	Hadoop	YARN

archives
distributing,	DistributedCache	used	/	Distributing	archives	using	the
DistributedCache

AWS	account
URL	/	How	to	do	it…

AWS	CLI
used,	for	creating	Amazon	EMR	job	flow	/	Creating	an	Amazon	EMR	job	flow
using	the	AWS	Command	Line	Interface,	How	to	do	it…,	See	also

AWS	IAM	console
URL	/	How	to	do	it…



B
Bigtable	paper

URL	/	Getting	started	with	Apache	HBase
bulkload

used,	for	loading	large	datasets	to	Apache	HBase	data	store	/	Loading	large
datasets	to	an	Apache	HBase	data	store	–	importtsv	and	bulkload,	How	to	do
it…,	How	it	works…



C
Capacity	scheduler

used,	for	shared	user	Hadoop	clusters	/	Shared	user	Hadoop	clusters	–	using	Fair
and	Capacity	schedulers,	How	it	works…
about	/	Shared	user	Hadoop	clusters	–	using	Fair	and	Capacity	schedulers
URL	/	There’s	more…

classification
performing,	naïve	Bayes	classifier	used	/	How	to	do	it…,	How	it	works…

classifier
about	/	Classification	using	the	naïve	Bayes	classifier

classpath	precedence
setting,	to	user-provided	JARs	/	Setting	classpath	precedence	to	user-provided
JARs

CLI
about	/	Creating	an	Amazon	EMR	job	flow	using	the	AWS	Command	Line
Interface

cloud	environments
advantages	/	Introduction

Cloudera	CDH
about	/	Setting	up	Hadoop	ecosystem	in	a	distributed	cluster	environment	using
a	Hadoop	distribution
URL	/	Setting	up	Hadoop	ecosystem	in	a	distributed	cluster	environment	using	a
Hadoop	distribution

cluster	deployments
Hadoop	YARN	configuration,	optimizing	for	/	Optimizing	Hadoop	YARN	and
MapReduce	configurations	for	cluster	deployments,	How	to	do	it…,	There’s
more…
MapReduce	configuration,	optimizing	for	/	Optimizing	Hadoop	YARN	and
MapReduce	configurations	for	cluster	deployments,	How	to	do	it…,	There’s
more…

collaborative	filtering
about	/	Performing	content-based	recommendations

combiner
about	/	Adding	a	combiner	step	to	the	WordCount	MapReduce	program

combiner	step
adding,	to	WordCount	MapReduce	program	/	Adding	a	combiner	step	to	the
WordCount	MapReduce	program,	How	to	do	it…,	There’s	more…

command	line
resources	adding,	to	DistributedCache	from	/	Adding	resources	to	the
DistributedCache	from	the	command	line

Command	Line	Interface	(CLI)	/	How	to	do	it…
common	configuration

URL	/	There’s	more…



complex	dataset
parsing,	with	Hadoop	/	Parsing	a	complex	dataset	with	Hadoop,	How	it	works…

containers
about	/	Hadoop	YARN

content-based	recommendations
about	/	Performing	content-based	recommendations
performing	/	How	to	do	it…,	How	it	works…
references	/	There’s	more…

crawled	web	pages
in-links	graph,	generating	for	/	Generating	the	in-links	graph	for	crawled	web
pages,	How	it	works…

custom	Hadoop	key	type
implementing	/	Implementing	a	custom	Hadoop	key	type,	How	to	do	it…,	How
it	works…

custom	Hadoop	Writable	data	type
implementing	/	Implementing	a	custom	Hadoop	Writable	data	type,	How	to	do
it…,	There’s	more…

custom	InputFormat
implementing	/	Adding	support	for	new	input	data	formats	–	implementing	a
custom	InputFormat,	How	to	do	it…,	How	it	works…,	There’s	more…

custom	metrics
reporting,	Hadoop	counters	used	for	/	Hadoop	counters	to	report	custom	metrics,
How	it	works…



D
data

importing,	to	HDFS	from	relational	database	/	Importing	data	to	HDFS	from	a
relational	database	using	Apache	Sqoop,	How	to	do	it…
exporting,	from	HDFS	to	relational	database	/	Exporting	data	from	HDFS	to	a
relational	database	using	Apache	Sqoop,	How	to	do	it…
de-duplicating,	Hadoop	streaming	used	/	De-duplicating	data	using	Hadoop
streaming,	How	it	works…

data,	of	different	value	types
emitting,	from	Mapper	/	Emitting	data	of	different	value	types	from	a	Mapper,
How	to	do	it…,	How	it	works…

Data	Definition	Language	(DDL)	/	HCatalog	–	performing	Java	MapReduce
computations	on	data	mapped	to	Hive	tables
data	formats

TextInputFormat	/	There’s	more…
NLineInputFormat	/	There’s	more…
SequenceFileInputFormat	/	There’s	more…
DBInputFormat	/	There’s	more…

data	mining	algorithm	/	Getting	started	with	Apache	Mahout
DataNode

about	/	Hadoop	Distributed	File	System	–	HDFS
adding	/	Adding	a	new	DataNode,	How	to	do	it…

DataNodes
decommissioning	/	Decommissioning	DataNodes,	How	to	do	it…

data	preprocessing
performing,	Hadoop	streaming	used	/	Data	preprocessing	using	Hadoop
streaming	and	Python,	How	to	do	it…,	How	it	works…
performing,	Python	used	/	Data	preprocessing	using	Hadoop	streaming	and
Python,	How	to	do	it…,	How	it	works…

dependencies
adding,	between	MapReduce	jobs	/	Adding	dependencies	between	MapReduce
jobs,	How	it	works…,	There’s	more…

Directed	Acyclic	Graphs	(DAG)	/	There’s	more…
DistributedCache

about	/	Introduction
used,	for	distributing	archives	/	Distributing	archives	using	the	DistributedCache
resources,	adding	to	/	Adding	resources	to	the	DistributedCache	from	the
command	line
used,	for	adding	resources	to	classpath	/	Adding	resources	to	the	classpath	using
the	DistributedCache

distributed	cluster	environment
Hadoop	YARN,	setting	up	in	/	Setting	up	Hadoop	YARN	in	a	distributed	cluster
environment	using	Hadoop	v2,	Getting	ready,	How	to	do	it…



Hadoop	ecosystem,	setting	up	in	/	Setting	up	Hadoop	ecosystem	in	a	distributed
cluster	environment	using	a	Hadoop	distribution,	How	to	do	it…
WordCount	program,	running	in	/	Running	the	WordCount	program	in	a
distributed	cluster	environment,	How	to	do	it…

document	classification
performing,	Mahout	Naive	Bayes	Classifier	used	/	Document	classification
using	Mahout	Naive	Bayes	Classifier,	How	to	do	it…,	How	it	works…



E
e-mail	archives

URL	/	Introduction
EC2	console

URL	/	How	to	do	it…
Elasticsearch

for	indexing	/	Elasticsearch	for	indexing	and	searching,	How	to	do	it…
for	searching	/	Elasticsearch	for	indexing	and	searching,	How	to	do	it…
URL	/	Elasticsearch	for	indexing	and	searching,	How	to	do	it…,	How	it
works…

EMR
used,	for	running	Hadoop	MapReduce	v2	computations	/	Running	Hadoop
MapReduce	v2	computations	using	Amazon	Elastic	MapReduce,	How	to	do	it…
Amazon	EC2	Spot	Instances,	used	with	/	Saving	money	using	Amazon	EC2
Spot	Instances	to	execute	EMR	job	flows,	There’s	more…
used,	for	executing	Pig	script	/	Executing	a	Pig	script	using	EMR,	How	to	do
it…,	Starting	a	Pig	interactive	session
used,	for	executing	Hive	script	/	Executing	a	Hive	script	using	EMR,	How	to	do
it…,	Starting	a	Hive	interactive	session
used,	for	deploying	Apache	HBase	cluster	/	Deploying	an	Apache	HBase	cluster
on	Amazon	EC2	using	EMR,	How	to	do	it…,	See	also

EMR	bootstrap	actions
used,	for	configuring	VM	/	Using	EMR	bootstrap	actions	to	configure	VMs	for
the	Amazon	EMR	jobs,	How	to	do	it…,	There’s	more…
about	/	Using	EMR	bootstrap	actions	to	configure	VMs	for	the	Amazon	EMR
jobs

extract-transform-load	(ETL)
about	/	Introduction



F
Fair	scheduler

used,	for	shared	user	Hadoop	clusters	/	Shared	user	Hadoop	clusters	–	using	Fair
and	Capacity	schedulers,	How	it	works…
about	/	Shared	user	Hadoop	clusters	–	using	Fair	and	Capacity	schedulers

file
adding,	to	Hadoop	DistributedCache	/	Broadcasting	and	distributing	shared
resources	to	tasks	in	a	MapReduce	job	–	Hadoop	DistributedCache,	How	it
works…,	There’s	more…

file	replication	factor
setting	/	Setting	the	file	replication	factor,	How	it	works…

FileSystem	object
configuring	/	Configuring	the	FileSystem	object

FILTER	operator
about	/	How	it	works…

First	in	First	out	(FIFO)	/	Shared	user	Hadoop	clusters	–	using	Fair	and	Capacity
schedulers
frequency	distributions

calculating,	MapReduce	used	/	Calculating	frequency	distributions	and	sorting
using	MapReduce,	How	to	do	it…,	There’s	more…
about	/	Calculating	frequency	distributions	and	sorting	using	MapReduce



G
gnuplot

used,	for	plotting	Hadoop	MapReduce	results	/	Plotting	the	Hadoop	MapReduce
results	using	gnuplot,	How	to	do	it…,	How	it	works…
URL	/	There’s	more…

Google	File	System
URL	/	Introduction

Google	MapReduce
URL	/	Introduction

Gradle	distribution
URL	/	Hadoop	installation	modes

Gross	National	Income	(GNI)	/	Running	MapReduce	jobs	on	HBase
GROUP	BY

performing,	MapReduce	used	/	Performing	GROUP	BY	using	MapReduce,
How	to	do	it…,	How	it	works…



H
Hadoop

built-in	data	types	/	There’s	more…
Text	/	There’s	more…
BytesWritable	/	There’s	more…
VLongWritable	/	There’s	more…
VIntWritable	/	There’s	more…
NullWritable	/	There’s	more…
ArrayWritable	/	There’s	more…
TwoDArrayWritable	/	There’s	more…
MapWritable	/	There’s	more…
SortedMapWritable	/	There’s	more…
used,	with	legacy	applications	/	Using	Hadoop	with	legacy	applications	–
Hadoop	streaming,	How	it	works…,	There’s	more…
complex	dataset,	parsing	with	/	Parsing	a	complex	dataset	with	Hadoop,	How	it
works…
about	/	Introduction
advantages	/	Introduction

Hadoop	configurations
configuration	files	/	How	it	works…

Hadoop	counters
used,	for	reporting	custom	metrics	/	Hadoop	counters	to	report	custom	metrics,
How	it	works…

Hadoop	data	types
selecting	/	Choosing	appropriate	Hadoop	data	types,	How	to	do	it…,	There’s
more…

Hadoop	DistributedCache
file,	adding	to	/	Broadcasting	and	distributing	shared	resources	to	tasks	in	a
MapReduce	job	–	Hadoop	DistributedCache,	How	it	works…,	There’s	more…

Hadoop	distribution
used,	for	setting	up	Hadoop	ecosystem	/	Setting	up	Hadoop	ecosystem	in	a
distributed	cluster	environment	using	a	Hadoop	distribution,	How	to	do	it…

Hadoop	ecosystem
setting	up,	in	distributed	cluster	environment	/	Setting	up	Hadoop	ecosystem	in	a
distributed	cluster	environment	using	a	Hadoop	distribution,	How	to	do	it…

Hadoop	InputFormat
selecting,	for	input	data	format	/	Choosing	a	suitable	Hadoop	InputFormat	for
your	input	data	format,	How	it	works…,	There’s	more…

Hadoop	installation	mode
about	/	Hadoop	installation	modes

Hadoop	intermediate	data	partitioning
about	/	Hadoop	intermediate	data	partitioning,	How	it	works…
TotalOrderPartitioner	/	TotalOrderPartitioner



KeyFieldBasedPartitioner	/	KeyFieldBasedPartitioner
Hadoop	local	mode

used,	for	running	WordCount	MapReduce	application	/	Writing	a	WordCount
MapReduce	application,	bundling	it,	and	running	it	using	the	Hadoop	local
mode,	How	to	do	it…,	How	it	works…,	See	also

Hadoop	MapReduce
about	/	Hadoop	MapReduce
benchmarking,	TeraSort	used	/	Benchmarking	Hadoop	MapReduce	using
TeraSort,	How	to	do	it…
used,	for	generating	inverted	index	/	Generating	an	inverted	index	using	Hadoop
MapReduce,	How	to	do	it…,	How	it	works…,	There’s	more…

Hadoop	MapReduce	applications
unit	testing,	MRUnit	used	/	Unit	testing	Hadoop	MapReduce	applications	using
MRUnit,	How	to	do	it…
integration	testing,	YARN	mini	cluster	used	/	Integration	testing	Hadoop
MapReduce	applications	using	MiniYarnCluster,	How	to	do	it…

Hadoop	MapReduce	results
plotting,	gnuplot	used	/	Plotting	the	Hadoop	MapReduce	results	using	gnuplot,
How	to	do	it…,	How	it	works…

Hadoop	MapReduce	v2	computations
running,	EMR	used	/	Running	Hadoop	MapReduce	v2	computations	using
Amazon	Elastic	MapReduce,	How	to	do	it…

Hadoop	OutputFormats
used,	for	formatting	results	of	MapReduce	computations	/	Formatting	the	results
of	MapReduce	computations	–	using	Hadoop	OutputFormats,	How	it	works…

Hadoop	Streaming
about	/	Using	Hadoop	with	legacy	applications	–	Hadoop	streaming,	How	it
works…,	There’s	more…
URL	/	There’s	more…

Hadoop	streaming
used,	for	data	preprocessing	/	Data	preprocessing	using	Hadoop	streaming	and
Python,	How	to	do	it…,	How	it	works…
used,	for	de-duplicating	data	/	De-duplicating	data	using	Hadoop	streaming,
How	it	works…

Hadoop	v2
setting	up,	on	local	machine	/	Setting	up	Hadoop	v2	on	your	local	machine
used,	for	setting	up	Hadoop	YARN	/	Setting	up	Hadoop	YARN	in	a	distributed
cluster	environment	using	Hadoop	v2,	Getting	ready,	How	to	do	it…

Hadoop	v2,	installation
local	mode	/	Hadoop	installation	modes
pseudo	distributed	mode	/	Hadoop	installation	modes
distributed	mode	/	Hadoop	installation	modes

Hadoop	YARN
about	/	Hadoop	YARN



setting	up,	in	distributed	cluster	environment	/	Setting	up	Hadoop	YARN	in	a
distributed	cluster	environment	using	Hadoop	v2,	How	to	do	it…

Hadoop	YARN	configuration
optimizing,	for	cluster	deployments	/	Optimizing	Hadoop	YARN	and
MapReduce	configurations	for	cluster	deployments,	How	to	do	it…,	There’s
more…

HashPartitioner
about	/	Hadoop	intermediate	data	partitioning

HBase
about	/	Introduction
Java	client	APIs,	used	for	interacting	with	/	Data	random	access	using	Java
client	APIs,	How	it	works…
MapReduce	jobs,	running	on	/	Running	MapReduce	jobs	on	HBase,	How	to	do
it…
used,	for	data	de-duplication	/	Data	de-duplication	using	HBase

HBase	cluster
used,	for	web	crawling	with	Apache	Nutch	/	Getting	ready,	How	to	do	it…,
How	it	works…

HBase	tables
Hive	used,	for	inserting	data	into	/	Using	Hive	to	insert	data	into	HBase	tables,
How	to	do	it…

HCatalog
about	/	HCatalog	–	performing	Java	MapReduce	computations	on	data	mapped
to	Hive	tables,	How	to	do	it…,	How	it	works…
used,	for	performing	Java	MapReduce	computations	/	HCatalog	–	performing
Java	MapReduce	computations	on	data	mapped	to	Hive	tables,	How	to	do	it…,
How	it	works…
used,	for	writing	data	to	Hive	tables	/	HCatalog	–	writing	data	to	Hive	tables
from	Java	MapReduce	computations,	How	to	do	it…,	How	it	works…
used,	for	accessing	Hive	table	data	in	Pig	/	Accessing	a	Hive	table	data	in	Pig
using	HCatalog,	How	to	do	it…,	There’s	more…

HDFS
about	/	Introduction,	Hadoop	Distributed	File	System	–	HDFS,	Setting	up	HDFS
setting	up	/	Setting	up	HDFS,	How	to	do	it…
benchmarking	/	Benchmarking	HDFS	using	DFSIO,	How	to	do	it…
rebalancing	/	Rebalancing	HDFS

HDFS	block	size
setting	/	Setting	the	HDFS	block	size,	How	to	do	it…

HDFS	command-line	file
operations	/	HDFS	command-line	file	operations,	How	to	do	it…

HDFS	configuration
URL	/	There’s	more…

HDFS	disk	usage
limiting	/	Using	multiple	disks/volumes	and	limiting	HDFS	disk	usage



HDFS	Java	API
using	/	Using	the	HDFS	Java	API,	How	to	do	it…,	How	it	works…,	Retrieving
the	list	of	data	blocks	of	a	file
about	/	Using	the	HDFS	Java	API

HDFS	replication	factor
about	/	Setting	the	file	replication	factor

High	Availability	(HA)
about	/	Hadoop	Distributed	File	System	–	HDFS

High	Performance	Computing	(HPC)
about	/	Introduction

histograms
calculating,	MapReduce	used	/	Calculating	histograms	using	MapReduce,	How
to	do	it…,	How	it	works…
about	/	Calculating	histograms	using	MapReduce

Hive
defining	/	Getting	started	with	Apache	Hive,	How	to	do	it…
data	types	/	Hive	data	types
external	tables	/	Hive	external	tables
ORDER	BY	/	There’s	more…
SORT	BY	/	There’s	more…
CLUSTER	BY	/	There’s	more…
join,	performing	with	/	Performing	a	join	with	Hive,	How	to	do	it…,	How	it
works…
used,	for	inserting	data	into	HBase	tables	/	Using	Hive	to	insert	data	into	HBase
tables,	How	to	do	it…

Hive	batch	mode
query	file,	used	for	/	Hive	batch	mode	-	using	a	query	file,	How	to	do	it…,	How
it	works…,	There’s	more…

Hive	built-in	functions
using	/	Using	Hive	built-in	functions,	There’s	more…

Hive	databases
creating,	Hive	CLI	used	/	Creating	databases	and	tables	using	Hive	CLI,	How	to
do	it…,	How	it	works…

Hive	interactive	session
starting	/	Starting	a	Hive	interactive	session

Hive	Query	Language	(HQL)	/	Using	Hive	to	insert	data	into	HBase	tables
Hive	script

executing,	EMR	used	/	Executing	a	Hive	script	using	EMR,	How	to	do	it…,
Starting	a	Hive	interactive	session

Hive	table	data,	in	Pig
accessing,	HCatalog	used	/	Accessing	a	Hive	table	data	in	Pig	using	HCatalog,
How	to	do	it…,	There’s	more…

Hive	tables
creating,	Hive	CLI	used	/	Creating	databases	and	tables	using	Hive	CLI,	How	to



do	it…,	How	it	works…
describe	formatted	command	used,	for	inspecting	metadata	/	Using	the	describe
formatted	command	to	inspect	the	metadata	of	Hive	tables
creating,	Hive	query	results	used	/	Creating	and	populating	Hive	tables	and
views	using	Hive	query	results,	How	to	do	it…
populating,	Hive	query	results	used	/	Creating	and	populating	Hive	tables	and
views	using	Hive	query	results,	How	to	do	it…
Java	MapReduce	computations,	performing	on	data	mapped	to	/	HCatalog	–
performing	Java	MapReduce	computations	on	data	mapped	to	Hive	tables,	How
to	do	it…,	How	it	works…
data,	writing	from	Java	MapReduce	computations	/	HCatalog	–	writing	data	to
Hive	tables	from	Java	MapReduce	computations,	How	to	do	it…,	How	it
works…

Hive	User-defined	Functions
writing	/	Writing	Hive	User-defined	Functions	(UDF),	How	it	works…

Hive	version
URL	/	How	to	do	it…

Hive	views
populating,	Hive	query	results	used	/	Creating	and	populating	Hive	tables	and
views	using	Hive	query	results,	How	to	do	it…
creating,	Hive	query	results	used	/	Creating	and	populating	Hive	tables	and
views	using	Hive	query	results,	How	to	do	it…

Hortonworks	Data	Platform	(HDP)
about	/	Setting	up	Hadoop	ecosystem	in	a	distributed	cluster	environment	using
a	Hadoop	distribution
URL	/	Setting	up	Hadoop	ecosystem	in	a	distributed	cluster	environment	using	a
Hadoop	distribution

HTTP	server	log	data	set
URL	/	Implementing	a	custom	Hadoop	Writable	data	type

Human	Development	Report	(HDR)	/	Running	MapReduce	jobs	on	HBase,	Running
K-means	with	Mahout
Human	Development	Reports	data

URL	/	Executing	a	Pig	script	using	EMR
HyperSQL

URL	/	How	to	do	it…



I
importtsv

used,	for	loading	large	datasets	to	Apache	HBase	data	store	/	Loading	large
datasets	to	an	Apache	HBase	data	store	–	importtsv	and	bulkload,	How	to	do
it…,	How	it	works…

in-links	graph
generating,	for	crawled	web	pages	/	Generating	the	in-links	graph	for	crawled
web	pages,	How	it	works…

input	data	format
Hadoop	InputFormat,	selecting	for	/	Choosing	a	suitable	Hadoop	InputFormat
for	your	input	data	format,	How	it	works…,	There’s	more…

intradomain	web	crawling
Apache	Nutch,	used	for	/	Intradomain	web	crawling	using	Apache	Nutch,	How
to	do	it…

inverted	document	frequencies	(IDF)	/	Creating	TF	and	TF-IDF	vectors	for	the	text
data
inverted	index

generating,	Hadoop	MapReduce	used	/	Generating	an	inverted	index	using
Hadoop	MapReduce,	How	to	do	it…,	How	it	works…,	There’s	more…



J
Java	client	APIs

used,	for	interacting	with	HBase	/	Data	random	access	using	Java	client	APIs,
How	it	works…

Java	Integrated	Development	Environment	(IDE)
about	/	There’s	more…

Java	MapReduce	computations
performing,	on	data	mapped	to	Hive	tables	/	HCatalog	–	performing	Java
MapReduce	computations	on	data	mapped	to	Hive	tables,	How	to	do	it…,	How
it	works…
data,	writing	to	Hive	tables	from	/	HCatalog	–	writing	data	to	Hive	tables	from
Java	MapReduce	computations,	How	to	do	it…,	How	it	works…

Java	regular	expressions
URL	/	There’s	more…

Java	Virtual	Machine	(JVM)
about	/	Setting	up	Hadoop	v2	on	your	local	machine

JobTracker	process
about	/	Hadoop	MapReduce

join
performing,	with	Hive	/	Performing	a	join	with	Hive,	How	to	do	it…,	How	it
works…



K
K-means

running,	with	Apache	Mahout	/	Running	K-means	with	Mahout,	How	it
works…

KeyFieldBasedPartitioner	/	KeyFieldBasedPartitioner
KeyValueTextInputFormat

about	/	How	it	works…



L
large	datasets,	to	Apache	HBase	data	store

loading,	importtsv	used	/	Loading	large	datasets	to	an	Apache	HBase	data	store
–	importtsv	and	bulkload,	How	to	do	it…,	How	it	works…
loading,	bulkload	used	/	Loading	large	datasets	to	an	Apache	HBase	data	store	–
importtsv	and	bulkload,	How	to	do	it…,	How	it	works…,	There’s	more…

LDA
used,	for	topic	discovery	/	Topic	discovery	using	Latent	Dirichlet	Allocation
(LDA),	How	to	do	it…,	How	it	works…

legacy	applications
Hadoop,	using	with	/	Using	Hadoop	with	legacy	applications	–	Hadoop
streaming,	How	it	works…,	There’s	more…

LIMIT	operator
about	/	How	it	works…

list	of	data	blocks
retrieving	/	Retrieving	the	list	of	data	blocks	of	a	file



M
machine	learning	algorithm	/	Getting	started	with	Apache	Mahout
Mahout

about	/	Introduction
Mahout	Naive	Bayes	Classifier

used,	for	document	classification	/	Document	classification	using	Mahout	Naive
Bayes	Classifier,	How	to	do	it…,	How	it	works…

MapFile
about	/	Outputting	a	random	accessible	indexed	InvertedIndex

MapFileOutputFormat	format	/	Outputting	a	random	accessible	indexed
InvertedIndex
Map	function	/	Simple	analytics	using	MapReduce

about	/	Parsing	a	complex	dataset	with	Hadoop
Mapper

data	of	different	value	types,	emitting	from	/	Emitting	data	of	different	value
types	from	a	Mapper,	How	to	do	it…,	How	it	works…

MapReduce	/	Introduction
used,	for	simple	analytics	/	Simple	analytics	using	MapReduce,	Getting	ready,
How	it	works…
used,	for	performing	GROUP	BY	/	Performing	GROUP	BY	using	MapReduce,
How	to	do	it…,	How	it	works…
used,	for	calculating	frequency	distributions	/	Calculating	frequency
distributions	and	sorting	using	MapReduce,	How	to	do	it…,	There’s	more…
used,	for	calculating	sorting	/	Calculating	frequency	distributions	and	sorting
using	MapReduce,	How	to	do	it…,	There’s	more…
used,	for	calculating	histograms	/	Calculating	histograms	using	MapReduce,
How	to	do	it…,	How	it	works…
used,	for	calculating	Scatter	plots	/	Calculating	Scatter	plots	using	MapReduce,
How	to	do	it…,	How	it	works…
used,	for	joining	two	datasets	/	Joining	two	datasets	using	MapReduce,	How	to
do	it…,	How	it	works…

MapReduce	computation
multiple	outputs,	writing	from	/	Writing	multiple	outputs	from	a	MapReduce
computation,	How	to	do	it…,	How	it	works…

MapReduce	computations,	results
formatting,	Hadoop	OutputFormats	used	/	Formatting	the	results	of	MapReduce
computations	–	using	Hadoop	OutputFormats,	How	it	works…

MapReduce	configuration
optimizing,	for	cluster	deployments	/	Optimizing	Hadoop	YARN	and
MapReduce	configurations	for	cluster	deployments,	How	to	do	it…,	There’s
more…
URL	/	There’s	more…

MapReduce	jobs



dependencies,	adding	between	/	Adding	dependencies	between	MapReduce
jobs,	How	it	works…,	There’s	more…
running,	on	HBase	/	Running	MapReduce	jobs	on	HBase,	How	to	do	it…

MapReduce	programming	model
Map	function	/	Hadoop	MapReduce
Reduce	function	/	Hadoop	MapReduce

MRUnit
used,	for	unit	testing	Hadoop	MapReduce	applications	/	Unit	testing	Hadoop
MapReduce	applications	using	MRUnit,	How	to	do	it…
about	/	Unit	testing	Hadoop	MapReduce	applications	using	MRUnit
URL	/	See	also

multiple	disks/volumes
using	/	Using	multiple	disks/volumes	and	limiting	HDFS	disk	usage

multiple	input	data	types
used,	in	single	MapReduce	application	/	Using	multiple	input	data	types	and
multiple	Mapper	implementations	in	a	single	MapReduce	application

multiple	Mapper	implementations
used,	in	single	MapReduce	application	/	Using	multiple	input	data	types	and
multiple	Mapper	implementations	in	a	single	MapReduce	application

multiple	outputs
writing,	from	MapReduce	computation	/	Writing	multiple	outputs	from	a
MapReduce	computation,	How	to	do	it…,	How	it	works…



N
20	Newsgroups	dataset

URL	/	Introduction
N-dimensional	space	/	Running	K-means	with	Mahout
NameNode

about	/	Hadoop	Distributed	File	System	–	HDFS
NASA	weblog	dataset

URL	/	Introduction
naïve	Bayer	classifier

URL	/	Classification	using	the	naïve	Bayes	classifier
naïve	Bayes	classifier

used,	for	classification	/	How	to	do	it…,	How	it	works…



O
Oracle	JDK

URL	/	Getting	ready
ORC	files

used,	for	storing	table	data	/	Utilizing	different	storage	formats	in	Hive	-	storing
table	data	using	ORC	files,	How	to	do	it…

ORDER	BY	operator
about	/	How	it	works…



P
partitioned	Hive	tables

creating	/	Creating	partitioned	Hive	tables,	How	to	do	it…
Partitioner

about	/	Introduction
password-less	SSH

configuring	/	How	to	do	it…
Pig

about	/	Introduction
URL	/	Getting	started	with	Apache	Pig
used,	for	joining	two	datasets	/	Joining	two	datasets	using	Pig,	How	it	works…

Pig	interactive	session
starting	/	Starting	a	Pig	interactive	session

Pig	Latin
about	/	Getting	started	with	Apache	Pig

Pig	script
executing,	EMR	used	/	Executing	a	Pig	script	using	EMR,	How	to	do	it…,
Starting	a	Pig	interactive	session

PostgreSQL	JDBC	driver
URL	/	How	to	do	it…

predefined	bootstrap	actions
configure-daemons	/	There’s	more…
configure-hadoop	/	There’s	more…
memory-intensive	/	There’s	more…
run-if	/	There’s	more…

Puppet-based	cluster	installation
URL	/	There’s	more…

Python
used,	for	data	preprocessing	/	Data	preprocessing	using	Hadoop	streaming	and
Python,	How	to	do	it…,	How	it	works…



Q
query	file

used,	for	Hive	batch	mode	/	Hive	batch	mode	-	using	a	query	file,	How	to	do
it…,	How	it	works…,	There’s	more…



R
random	accessible	indexed	InvertedIndex

outputting	/	Outputting	a	random	accessible	indexed	InvertedIndex
recommendations

about	/	Performing	content-based	recommendations
making,	ways	/	Performing	content-based	recommendations

Reduce	function	/	Simple	analytics	using	MapReduce
Reduce	input	values

sorting	/	Secondary	sorting	–	sorting	Reduce	input	values,	How	to	do	it…,	How
it	works…

repository	files
URL	/	Hadoop	installation	modes



S
S3	bucket

about	/	How	to	do	it…
URL	/	How	to	do	it…

sample	code,	GitHub
URL	/	Introduction

Scatter	plots
calculating,	MapReduce	used	/	Calculating	Scatter	plots	using	MapReduce,	How
to	do	it…,	How	it	works…
about	/	Calculating	Scatter	plots	using	MapReduce

SequenceFileInputFormat
subclasses	/	There’s	more…

shared	user	Hadoop	clusters
Capacity	scheduler,	used	for	/	Shared	user	Hadoop	clusters	–	using	Fair	and
Capacity	schedulers,	How	it	works…
Fair	scheduler,	used	for	/	Shared	user	Hadoop	clusters	–	using	Fair	and	Capacity
schedulers,	How	it	works…

shuffling
about	/	Introduction

Simple	Storage	Service	(S3)	/	Running	Hadoop	MapReduce	v2	computations	using
Amazon	Elastic	MapReduce
single	MapReduce	application

multiple	input	data	types,	used	in	/	Using	multiple	input	data	types	and	multiple
Mapper	implementations	in	a	single	MapReduce	application
multiple	Mapper	implementations,	used	in	/	Using	multiple	input	data	types	and
multiple	Mapper	implementations	in	a	single	MapReduce	application

SolrCloud
URL	/	See	also

sorting
calculating,	MapReduce	used	/	Calculating	frequency	distributions	and	sorting
using	MapReduce,	How	to	do	it…,	There’s	more…

SQL-style	data
querying,	Apache	Hive	used	/	Simple	SQL-style	data	querying	using	Apache
Hive,	How	to	do	it…,	There’s	more…

Sqoop
about	/	Introduction

stragglers
about	/	Speculative	execution	of	straggling	tasks

straggling	tasks
executing	/	Speculative	execution	of	straggling	tasks



T
table	data

storing,	ORC	files	used	/	Utilizing	different	storage	formats	in	Hive	-	storing
table	data	using	ORC	files,	How	to	do	it…

TaskTrackers
about	/	Hadoop	MapReduce

TeraSort
used,	for	benchmarking	Hadoop	MapReduce	/	Benchmarking	Hadoop
MapReduce	using	TeraSort,	How	to	do	it…

term	frequencies	(TF)	/	Creating	TF	and	TF-IDF	vectors	for	the	text	data
Term	frequency-inverse	document	frequency	(TF-IDF)	/	Creating	TF	and	TF-IDF
vectors	for	the	text	data
text	data

TF-IDF	vector,	creating	for	/	Creating	TF	and	TF-IDF	vectors	for	the	text	data,
How	to	do	it…,	How	it	works…
TF	vector,	creating	for	/	Creating	TF	and	TF-IDF	vectors	for	the	text	data,	How
to	do	it…,	How	it	works…
clustering,	Apache	Mahout	used	/	Clustering	text	data	using	Apache	Mahout,
How	it	works…

TF-IDF	vector
creating,	for	text	data	/	Creating	TF	and	TF-IDF	vectors	for	the	text	data,	How
to	do	it…,	How	it	works…

TF	vector
creating,	for	text	data	/	Creating	TF	and	TF-IDF	vectors	for	the	text	data,	How
to	do	it…,	How	it	works…

TotalOrderPartitioner	/	TotalOrderPartitioner
Twahpic

URL	/	Topic	discovery	using	Latent	Dirichlet	Allocation	(LDA)
two	datasets

joining,	MapReduce	used	/	Joining	two	datasets	using	MapReduce,	How	to	do
it…,	How	it	works…
joining,	Pig	used	/	Joining	two	datasets	using	Pig,	How	it	works…



U
User-defined	Function	(UDF)

about	/	Writing	Hive	User-defined	Functions	(UDF)
user-provided	JARs

classpath	precedence,	setting	to	/	Setting	classpath	precedence	to	user-provided
JARs



V
VM,	for	Amazon	EMR	jobs

configuring,	EMR	bootstrap	actions	used	/	Using	EMR	bootstrap	actions	to
configure	VMs	for	the	Amazon	EMR	jobs,	How	to	do	it…,	There’s	more…



W
web	crawling

about	/	Intradomain	web	crawling	using	Apache	Nutch
web	crawling,	with	Apache	Nutch

performing,	Hadoop	cluster	used	/	Whole	web	crawling	with	Apache	Nutch
using	a	Hadoop/HBase	cluster,	How	to	do	it…,	How	it	works…
performing,	HBase	cluster	used	/	Whole	web	crawling	with	Apache	Nutch	using
a	Hadoop/HBase	cluster,	How	to	do	it…,	How	it	works…

web	documents
indexing,	Apache	Solr	used	/	Indexing	and	searching	web	documents	using
Apache	Solr,	How	to	do	it…,	How	it	works…
searching,	Apache	Solr	used	/	Indexing	and	searching	web	documents	using
Apache	Solr,	How	to	do	it…,	How	it	works…

web	searching
about	/	Introduction

Whirr	configuration
URL	/	How	it	works…

WordCount	MapReduce	application
writing	/	Writing	a	WordCount	MapReduce	application,	bundling	it,	and	running
it	using	the	Hadoop	local	mode,	How	to	do	it…,	How	it	works…
bundling	/	Writing	a	WordCount	MapReduce	application,	bundling	it,	and
running	it	using	the	Hadoop	local	mode,	How	to	do	it…,	How	it	works…,
There’s	more…
running,	Hadoop	local	mode	used	/	Writing	a	WordCount	MapReduce
application,	bundling	it,	and	running	it	using	the	Hadoop	local	mode,	How	to	do
it…,	How	it	works…,	There’s	more…

WordCount	MapReduce	program
combiner	step,	adding	to	/	Adding	a	combiner	step	to	the	WordCount
MapReduce	program,	How	to	do	it…,	There’s	more…

WordCount	program
running,	in	distributed	cluster	environment	/	Running	the	WordCount	program
in	a	distributed	cluster	environment,	How	to	do	it…



Y
YARN	(Yet	Another	Resource	Negotiator)

about	/	Hadoop	YARN
YARN	configuration

URL	/	There’s	more…
YARN	mini	cluster

used,	for	integration	testing	Hadoop	MapReduce	applications	/	Integration
testing	Hadoop	MapReduce	applications	using	MiniYarnCluster,	How	to	do	it…



Z
zipf	(power	law)	distribution

about	/	How	to	do	it…


	Hadoop MapReduce v2 Cookbook Second Edition
	Credits
	About the Author
	Acknowledgments
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why Subscribe?
	Free Access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Getting Started with Hadoop v2
	Introduction
	Hadoop Distributed File System – HDFS
	Hadoop YARN
	Hadoop MapReduce
	Hadoop installation modes
	Setting up Hadoop v2 on your local machine
	Getting ready
	How to do it...
	How it works...
	Writing a WordCount MapReduce application, bundling it, and running it using the Hadoop local mode
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Adding a combiner step to the WordCount MapReduce program
	How to do it...
	How it works...
	There's more...
	Setting up HDFS
	Getting ready
	How to do it...
	See also
	Setting up Hadoop YARN in a distributed cluster environment using Hadoop v2
	Getting ready
	How to do it...
	How it works...
	See also
	Setting up Hadoop ecosystem in a distributed cluster environment using a Hadoop distribution
	Getting ready
	How to do it...
	There's more...
	HDFS command-line file operations
	Getting ready
	How to do it...
	How it works...
	There's more...
	Running the WordCount program in a distributed cluster environment
	Getting ready
	How to do it...
	How it works...
	There's more...
	Benchmarking HDFS using DFSIO
	Getting ready
	How to do it...
	How it works...
	There's more...
	Benchmarking Hadoop MapReduce using TeraSort
	Getting ready
	How to do it...
	How it works...
	2. Cloud Deployments – Using Hadoop YARN on Cloud Environments
	Introduction
	Running Hadoop MapReduce v2 computations using Amazon Elastic MapReduce
	Getting ready
	How to do it...
	See also
	Saving money using Amazon EC2 Spot Instances to execute EMR job flows
	How to do it...
	There's more...
	See also
	Executing a Pig script using EMR
	How to do it...
	There's more...
	Starting a Pig interactive session
	Executing a Hive script using EMR
	How to do it...
	There's more...
	Starting a Hive interactive session
	See also
	Creating an Amazon EMR job flow using the AWS Command Line Interface
	Getting ready
	How to do it...
	There's more...
	See also
	Deploying an Apache HBase cluster on Amazon EC2 using EMR
	Getting ready
	How to do it...
	See also
	Using EMR bootstrap actions to configure VMs for the Amazon EMR jobs
	How to do it...
	There's more...
	Using Apache Whirr to deploy an Apache Hadoop cluster in a cloud environment
	How to do it...
	How it works...
	See also
	3. Hadoop Essentials – Configurations, Unit Tests, and Other APIs
	Introduction
	Optimizing Hadoop YARN and MapReduce configurations for cluster deployments
	Getting ready
	How to do it...
	How it works...
	There's more...
	Shared user Hadoop clusters – using Fair and Capacity schedulers
	How to do it...
	How it works...
	There's more...
	Setting classpath precedence to user-provided JARs
	How to do it...
	How it works...
	Speculative execution of straggling tasks
	How to do it...
	There's more...
	Unit testing Hadoop MapReduce applications using MRUnit
	Getting ready
	How to do it...
	See also
	Integration testing Hadoop MapReduce applications using MiniYarnCluster
	Getting ready
	How to do it...
	See also
	Adding a new DataNode
	Getting ready
	How to do it...
	There's more...
	Rebalancing HDFS
	See also
	Decommissioning DataNodes
	How to do it...
	How it works...
	See also
	Using multiple disks/volumes and limiting HDFS disk usage
	How to do it...
	Setting the HDFS block size
	How to do it...
	There's more...
	See also
	Setting the file replication factor
	How to do it...
	How it works...
	There's more...
	See also
	Using the HDFS Java API
	How to do it...
	How it works...
	There's more...
	Configuring the FileSystem object
	Retrieving the list of data blocks of a file
	4. Developing Complex Hadoop MapReduce Applications
	Introduction
	Choosing appropriate Hadoop data types
	How to do it...
	There's more...
	See also
	Implementing a custom Hadoop Writable data type
	How to do it...
	How it works...
	There's more...
	See also
	Implementing a custom Hadoop key type
	How to do it...
	How it works...
	See also
	Emitting data of different value types from a Mapper
	How to do it...
	How it works...
	There's more...
	See also
	Choosing a suitable Hadoop InputFormat for your input data format
	How to do it...
	How it works...
	There's more...
	See also
	Adding support for new input data formats – implementing a custom InputFormat
	How to do it...
	How it works...
	There's more...
	See also
	Formatting the results of MapReduce computations – using Hadoop OutputFormats
	How to do it...
	How it works...
	There's more...
	Writing multiple outputs from a MapReduce computation
	How to do it...
	How it works...
	Using multiple input data types and multiple Mapper implementations in a single MapReduce application
	See also
	Hadoop intermediate data partitioning
	How to do it...
	How it works...
	There's more...
	TotalOrderPartitioner
	KeyFieldBasedPartitioner
	Secondary sorting – sorting Reduce input values
	How to do it...
	How it works...
	See also
	Broadcasting and distributing shared resources to tasks in a MapReduce job – Hadoop DistributedCache
	How to do it...
	How it works...
	There's more...
	Distributing archives using the DistributedCache
	Adding resources to the DistributedCache from the command line
	Adding resources to the classpath using the DistributedCache
	Using Hadoop with legacy applications – Hadoop streaming
	How to do it...
	How it works...
	There's more...
	See also
	Adding dependencies between MapReduce jobs
	How to do it...
	How it works...
	There's more...
	Hadoop counters to report custom metrics
	How to do it...
	How it works...
	5. Analytics
	Introduction
	Simple analytics using MapReduce
	Getting ready
	How to do it...
	How it works...
	There's more...
	Performing GROUP BY using MapReduce
	Getting ready
	How to do it...
	How it works...
	Calculating frequency distributions and sorting using MapReduce
	Getting ready
	How to do it...
	How it works...
	There's more...
	Plotting the Hadoop MapReduce results using gnuplot
	Getting ready
	How to do it...
	How it works...
	There's more...
	Calculating histograms using MapReduce
	Getting ready
	How to do it...
	How it works...
	Calculating Scatter plots using MapReduce
	Getting ready
	How to do it...
	How it works...
	Parsing a complex dataset with Hadoop
	Getting ready
	How to do it...
	How it works...
	There's more...
	Joining two datasets using MapReduce
	Getting ready
	How to do it...
	How it works...
	6. Hadoop Ecosystem – Apache Hive
	Introduction
	Getting started with Apache Hive
	How to do it...
	See also
	Creating databases and tables using Hive CLI
	Getting ready
	How to do it...
	How it works...
	There's more...
	Hive data types
	Hive external tables
	Using the describe formatted command to inspect the metadata of Hive tables
	Simple SQL-style data querying using Apache Hive
	Getting ready
	How to do it...
	How it works...
	There's more...
	Using Apache Tez as the execution engine for Hive
	See also
	Creating and populating Hive tables and views using Hive query results
	Getting ready
	How to do it...
	Utilizing different storage formats in Hive - storing table data using ORC files
	Getting ready
	How to do it...
	How it works...
	Using Hive built-in functions
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Hive batch mode - using a query file
	How to do it...
	How it works...
	There's more...
	See also
	Performing a join with Hive
	Getting ready
	How to do it...
	How it works...
	See also
	Creating partitioned Hive tables
	Getting ready
	How to do it...
	Writing Hive User-defined Functions (UDF)
	Getting ready
	How to do it...
	How it works...
	HCatalog – performing Java MapReduce computations on data mapped to Hive tables
	Getting ready
	How to do it...
	How it works...
	HCatalog – writing data to Hive tables from Java MapReduce computations
	Getting ready
	How to do it...
	How it works...
	7. Hadoop Ecosystem II – Pig, HBase, Mahout, and Sqoop
	Introduction
	Getting started with Apache Pig
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Joining two datasets using Pig
	How to do it...
	How it works...
	There's more...
	Accessing a Hive table data in Pig using HCatalog
	Getting ready
	How to do it...
	There's more...
	See also
	Getting started with Apache HBase
	Getting ready
	How to do it...
	There's more...
	See also
	Data random access using Java client APIs
	Getting ready
	How to do it...
	How it works...
	Running MapReduce jobs on HBase
	Getting ready
	How to do it...
	How it works...
	Using Hive to insert data into HBase tables
	Getting ready
	How to do it...
	See also
	Getting started with Apache Mahout
	How to do it...
	How it works...
	There's more...
	Running K-means with Mahout
	Getting ready
	How to do it...
	How it works...
	Importing data to HDFS from a relational database using Apache Sqoop
	Getting ready
	How to do it...
	Exporting data from HDFS to a relational database using Apache Sqoop
	Getting ready
	How to do it...
	8. Searching and Indexing
	Introduction
	Generating an inverted index using Hadoop MapReduce
	Getting ready
	How to do it...
	How it works...
	There's more...
	Outputting a random accessible indexed InvertedIndex
	See also
	Intradomain web crawling using Apache Nutch
	Getting ready
	How to do it...
	See also
	Indexing and searching web documents using Apache Solr
	Getting ready
	How to do it...
	How it works...
	See also
	Configuring Apache HBase as the backend data store for Apache Nutch
	Getting ready
	How to do it...
	How it works...
	See also
	Whole web crawling with Apache Nutch using a Hadoop/HBase cluster
	Getting ready
	How to do it...
	How it works...
	See also
	Elasticsearch for indexing and searching
	Getting ready
	How to do it...
	How it works...
	See also
	Generating the in-links graph for crawled web pages
	Getting ready
	How to do it...
	How it works...
	See also
	9. Classifications, Recommendations, and Finding Relationships
	Introduction
	Performing content-based recommendations
	How to do it...
	How it works...
	There's more...
	Classification using the naïve Bayes classifier
	How to do it...
	How it works...
	Assigning advertisements to keywords using the Adwords balance algorithm
	How to do it...
	How it works...
	There's more...
	10. Mass Text Data Processing
	Introduction
	Data preprocessing using Hadoop streaming and Python
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	De-duplicating data using Hadoop streaming
	Getting ready
	How to do it...
	How it works...
	See also
	Loading large datasets to an Apache HBase data store – importtsv and bulkload
	Getting ready
	How to do it…
	How it works...
	There's more...
	Data de-duplication using HBase
	See also
	Creating TF and TF-IDF vectors for the text data
	Getting ready
	How to do it…
	How it works…
	See also
	Clustering text data using Apache Mahout
	Getting ready
	How to do it...
	How it works...
	See also
	Topic discovery using Latent Dirichlet Allocation (LDA)
	Getting ready
	How to do it…
	How it works…
	See also
	Document classification using Mahout Naive Bayes Classifier
	Getting ready
	How to do it...
	How it works...
	See also
	Index

