
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Programming Pig

Alan Gates

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.allitebooks.com

http://www.allitebooks.org

Programming Pig
by Alan Gates

Copyright © 2011 Yahoo!, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Meghan Blanchette
Production Editor: Adam Zaremba
Copyeditor: Genevieve d’Entremont
Proofreader: Marlowe Shaeffer

Indexer: Jay Marchand
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

October 2011: First Edition.

Revision History for the First Edition:
2011-09-27 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449302641 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Programming Pig, the image of a domestic pig, and related trade dress are trademarks
of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-30264-1

[LSI]

1317137246

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449302641
http://www.allitebooks.org

To my wife, Barbara, and our boys, Adam and
Joel. Their support, encouragement, and sacri-
ficed Saturdays have made this book possible.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Preface . ix

1. Introduction . 1
What Is Pig? 1

Pig on Hadoop 1
Pig Latin, a Parallel Dataflow Language 4
What Is Pig Useful For? 7
Pig Philosophy 9

Pig’s History 10

2. Installing and Running Pig . 11
Downloading and Installing Pig 11

Downloading the Pig Package from Apache 11
Downloading Pig from Cloudera 12
Downloading Pig Artifacts from Maven 12
Downloading the Source 13

Running Pig 13
Running Pig Locally on Your Machine 13
Running Pig on Your Hadoop Cluster 15
Running Pig in the Cloud 17
Command-Line and Configuration Options 17
Return Codes 18

3. Grunt . 19
Entering Pig Latin Scripts in Grunt 20
HDFS Commands in Grunt 20
Controlling Pig from Grunt 21

4. Pig’s Data Model . 23
Types 23

Scalar Types 23

v

www.allitebooks.com

http://www.allitebooks.org

Complex Types 24
Nulls 26

Schemas 27
Casts 30

5. Introduction to Pig Latin . 33
Preliminary Matters 33

Case Sensitivity 34
Comments 34

Input and Output 34
Load 34
Store 36
Dump 36

Relational Operations 37
foreach 37
Filter 40
Group 41
Order by 44
Distinct 45
Join 45
Limit 48
Sample 49
Parallel 49

User Defined Functions 51
Registering UDFs 51
define and UDFs 53
Calling Static Java Functions 54

6. Advanced Pig Latin . 57
Advanced Relational Operations 57

Advanced Features of foreach 57
Using Different Join Implementations 61
cogroup 66
union 66
cross 68

Integrating Pig with Legacy Code and MapReduce 69
stream 69
mapreduce 71

Nonlinear Data Flows 72
Controlling Execution 75

set 75
Setting the Partitioner 76

Pig Latin Preprocessor 77

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Parameter Substitution 77
Macros 78
Including Other Pig Latin Scripts 80

7. Developing and Testing Pig Latin Scripts . 81
Development Tools 81

Syntax Highlighting and Checking 81
describe 82
explain 82
illustrate 89
Pig Statistics 90
MapReduce Job Status 92
Debugging Tips 94

Testing Your Scripts with PigUnit 97

8. Making Pig Fly . 101
Writing Your Scripts to Perform Well 102

Filter Early and Often 102
Project Early and Often 103
Set Up Your Joins Properly 104
Use Multiquery When Possible 105
Choose the Right Data Type 105
Select the Right Level of Parallelism 105

Writing Your UDF to Perform 106
Tune Pig and Hadoop for Your Job 106
Using Compression in Intermediate Results 108
Data Layout Optimization 109
Bad Record Handling 109

9. Embedding Pig Latin in Python . 111
Compile 112
Bind 113

Binding Multiple Sets of Variables 114
Run 115

Running Multiple Bindings 116
Utility Methods 116

10. Writing Evaluation and Filter Functions . 119
Writing an Evaluation Function in Java 119

Where Your UDF Will Run 120
Evaluation Function Basics 120
Input and Output Schemas 124
Error Handling and Progress Reporting 127

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

Constructors and Passing Data from Frontend to Backend 128
Overloading UDFs 133
Memory Issues in Eval Funcs 135

Algebraic Interface 135
Accumulator Interface 139
Python UDFs 140
Writing Filter Functions 142

11. Writing Load and Store Functions . 145
Load Functions 146

Frontend Planning Functions 146
Passing Information from the Frontend to the Backend 148
Backend Data Reading 148
Additional Load Function Interfaces 153

Store Functions 157
Store Function Frontend Planning 157
Store Functions and UDFContext 159
Writing Data 159
Failure Cleanup 162
Storing Metadata 163

12. Pig and Other Members of the Hadoop Community . 165
Pig and Hive 165
Cascading 165
NoSQL Databases 166

HBase 166
Cassandra 168

Metadata in Hadoop 169

A. Built-in User Defined Functions and Piggybank . 171

B. Overview of Hadoop . 189

Index . 195

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Preface

Data Addiction
Data is addictive. Our ability to collect and store data has grown massively in the last
several decades. Yet our appetite for ever more data shows no sign of being satiated.
Scientists want to be able to store more data in order to build better mathematical
models of the world. Marketers want better data to understand their customers’ desires
and buying habits. Financial analysts want to better understand the workings of their
markets. And everybody wants to keep all their digital photographs, movies, emails, etc.

The computer and Internet revolutions have greatly increased our ability to collect and
store data. Before these revolutions, the US Library of Congress was one of the largest
collections of data in the world. It is estimated that its printed collections contain ap-
proximately 10 terabytes (TB) of information. Today large Internet companies collect
that much data on a daily basis. And it is not just Internet applications that are pro-
ducing data at prodigious rates. For example, the Large Synoptic Survey Telescope
(LSST) planned for construction in Chile is expected to produce 20 TB of data every day.

Part of the reason for this massive growth in data is our ability to collect much more
data. Every time someone clicks on a website’s links, the web server can record infor-
mation about what page the user was on and which link he clicked. Every time a car
drives over a sensor in the highway, its speed can be recorded. But much of the reason
is also our ability to store that data. Ten years ago, telescopes took pictures of the sky
every night. But they could not store it at the same detail level that will be possible when
the LSST is operational. The extra data was being thrown away because there was
nowhere to put it. The ability to collect and store vast quantities of data only feeds our
data addiction.

One of the most commonly used tools for storing and processing data in computer
systems over the last few decades has been the relational database management system
(RDBMS). But as data sets have grown large, only the more sophisticated (and hence
more expensive) RDBMSs have been able to reach the scale many users now desire. At
the same time, many engineers and scientists involved in processing the data have
realized that they do not need everything offered by an RDBMS. These systems are

ix

http://www2.sims.berkeley.edu/research/projects/how-much-info/datapowers.html
http://www.symmetrymagazine.org/breaking/2010/10/18/astronomical-computing

powerful and have many features, but many data owners who need to process terabytes
or petabytes of data need only a subset of those features.

The high cost and unneeded features of RDBMSs have led to the development of many
alternative data-processing systems. One such alternative system is Apache Hadoop.
Hadoop is an open source project started by Doug Cutting. Over the past several years,
Yahoo! and a number of other web companies have driven the development of Hadoop,
which was based on papers published by Google describing how their engineers were
dealing with the challenge of storing and processing the massive amounts of data they
were collecting. For a history of Hadoop, see Hadoop: The Definitive Guide, by Tom
White (O’Reilly). Hadoop is installed on a cluster of machines and provides a means
to tie together storage and processing in that cluster.

The development of new data-processing systems such as Hadoop has spurred the
porting of existing tools and languages and the construction of new tools, such as
Apache Pig. Tools like Pig provide a higher level of abstraction for data users, giving
them access to the power and flexibility of Hadoop without requiring them to write
extensive data-processing applications in low-level Java code.

Who Should Read This Book
This book is intended for Pig programmers, new and old. Those who have never used
Pig will find introductory material on how to run Pig and to get them started writing
Pig Latin scripts. For seasoned Pig users, this book covers almost every feature of Pig:
different modes it can be run in, complete coverage of the Pig Latin language, and how
to extend Pig with your own User Defined Functions (UDFs). Even those who have
been using Pig for a long time are likely to discover features they have not used before.

Being a relatively young project, Pig has changed and grown significantly over the last
four years. In that time we have released versions 0.1 through 0.9. This book assumes
Pig 0.7 as the base version. Wherever features are only in versions 0.8 or 0.9, this is
called out. The biggest change from 0.6 to 0.7 is that load and store function interfaces
were rewritten, so Chapter 11 will not be usable by those on 0.6 or earlier versions.
However, the rest of the book will still be applicable.

Some knowledge of Hadoop will be useful for readers and Pig users. Appendix B pro-
vides an introduction to Hadoop and how it works. “Pig on Hadoop” on page 1 walks
through a very simple example of a Hadoop job. These sections will be helpful for those
not already familiar with Hadoop.

Small snippets of Java, Python, and SQL are used in parts of this book. Knowledge of
these languages is not required to use Pig, but knowledge of Python and Java will be
necessary for some of the more advanced features. Those with a SQL background may
find “Comparing query and dataflow languages” on page 4 to be a helpful starting
point in understanding the similarities and differences between Pig Latin and SQL.

x | Preface

http://hadoop.apache.org
http://labs.google.com/papers/gfs.html
http://labs.google.com/papers/mapreduce.html
http://oreilly.com/catalog/9781449389734

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Code Examples in This Book
Many of the example scripts, User Defined Functions (UDFs), and data used in this
book are available for download from my GitHub repository. README files are in-
cluded to help you get the UDFs built and to understand the contents of the datafiles.
Each example script in the text that is available on GitHub has a comment at the be-
ginning that gives the filename. Pig Latin and Python script examples are organized by
chapter in the examples directory. UDFs, both Java and Python, are in a separate di-
rectory, udfs. All data sets are in the data directory.

For brevity, each script is written assuming that the input and output are in the local
directory. Therefore, when in local mode, you should run Pig in the directory that the
input data is in. When running on a cluster, you should place the data in your home
directory on the cluster.

Example scripts were tested against Pig 0.8.0 or 0.8.1, except those scripts that use
functionality newly introduced in version 0.9. These were run against builds from the
0.9 branch because 0.9 was not released until much of the book had been written.

Preface | xi

https://github.com/alanfgates/programmingpig

The three data sets used in the examples are real data sets, though quite small. The file
baseball contains baseball player statistics. A second set contains New York Stock Ex-
change data in two files: NYSE_daily and NYSE_dividends. This data was trimmed to
include only stock symbols, starting with C from the year 2009, to make the data small
enough to download easily. However, the schema of the data has not changed. If you
want to download the entire data set and place it on a cluster (only a few nodes would
be necessary), it would be a more realistic demonstration of Pig and Hadoop. Instruc-
tions on how to download the data are in the README files. The third data set is a
very brief web crawl started from Pig’s web page.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Programming Pig by Alan Gates (O’Reilly).
Copyright 2011 Yahoo!, Inc., 978-1-449-30264-1.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

xii | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://shop.oreilly.com/product/0636920018087.do

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

Acknowledgments
A book is like a professional football team. Much of the glory goes to the quarterback
or a running back. But if the team has a bad offensive line, the quarterback never gets
the chance to throw the ball. Receivers must be able to catch, and the defense must be
able to prevent the other team from scoring. In short, the whole team must play well
in order to win. And behind those on the field there is an array of coaches, trainers, and
managers who prepare and guide the team. So it is with this book. My name goes on
the cover. But without the amazing group of developers, researchers, testers, docu-
mentation writers, and users that contribute to the Pig project, there would be nothing
worth writing about.

In particular, I would like to acknowledge Pig contributors and users for their contri-
butions and feedback on this book. Chris Olston, Ben Reed, Richard Ding, Olga Nat-
kovitch, Thejas Nair, Daniel Dai, and Dmitriy Ryaboy all provided helpful feedback
on draft after draft. Julien Le Dem provided the example code for embedding Pig in
Python. Jeremy Hanna wrote the section for Pig and Cassandra. Corrine Chandel
deserves special mention for reviewing the entire book. Her feedback has added greatly
to the book’s clarity and correctness.

Thanks go to Tom White for encouraging me in my aspiration to write this book, and
for the sober warnings concerning the amount of time and effort it would require. Chris

Preface | xiii

http://shop.oreilly.com/product/0636920018087.do
mailto:bookquestions@oreilly.com
http://www.oreilly.com

Douglas of the Hadoop project provided me with very helpful feedback on the sections
covering Hadoop and MapReduce.

I would also like to thank Mike Loukides and the entire team at O’Reilly. They have
made writing my first book an enjoyable and exhilarating experience. Finally, thanks
to Yahoo! for nurturing Pig and dedicating more than 25 engineering years (and still
counting) of effort to it, and for graciously giving me the time to write this book.

xiv | Preface

CHAPTER 1

Introduction

What Is Pig?
Pig provides an engine for executing data flows in parallel on Hadoop. It includes a
language, Pig Latin, for expressing these data flows. Pig Latin includes operators for
many of the traditional data operations (join, sort, filter, etc.), as well as the ability for
users to develop their own functions for reading, processing, and writing data.

Pig is an Apache open source project. This means users are free to download it as source
or binary, use it for themselves, contribute to it, and—under the terms of the Apache
License—use it in their products and change it as they see fit.

Pig on Hadoop
Pig runs on Hadoop. It makes use of both the Hadoop Distributed File System,
HDFS, and Hadoop’s processing system, MapReduce.

HDFS is a distributed filesystem that stores files across all of the nodes in a Hadoop
cluster. It handles breaking the files into large blocks and distributing them across
different machines, including making multiple copies of each block so that if any one
machine fails no data is lost. It presents a POSIX-like interface to users. By default, Pig
reads input files from HDFS, uses HDFS to store intermediate data between MapRe-
duce jobs, and writes its output to HDFS. As you will see in Chapter 11, it can also read
input from and write output to sources other than HDFS.

MapReduce is a simple but powerful parallel data-processing paradigm. Every job in
MapReduce consists of three main phases: map, shuffle, and reduce. In the map phase,
the application has the opportunity to operate on each record in the input separately.
Many maps are started at once so that while the input may be gigabytes or terabytes in
size, given enough machines, the map phase can usually be completed in under one
minute.

1

http://pig.apache.org

Part of the specification of a MapReduce job is the key on which data will be collected.
For example, if you were processing web server logs for a website that required users
to log in, you might choose the user ID to be your key so that you could see everything
done by each user on your website. In the shuffle phase, which happens after the map
phase, data is collected together by the key the user has chosen and distributed to
different machines for the reduce phase. Every record for a given key will go to the same
reducer.

In the reduce phase, the application is presented each key, together with all of the
records containing that key. Again this is done in parallel on many machines. After
processing each group, the reducer can write its output. See the next section for a
walkthrough of a simple MapReduce program. For more details on how MapReduce
works, see “MapReduce” on page 189.

MapReduce’s hello world

Consider a simple MapReduce application that counts the number of times each word
appears in a given text. This is the “hello world” program of MapReduce. In this ex-
ample the map phase will read each line in the text, one at a time. It will then split out
each word into a separate string, and, for each word, it will output the word and a 1 to
indicate it has seen the word one time. The shuffle phase will use the word as the key,
hashing the records to reducers. The reduce phase will then sum up the number of
times each word was seen and write that together with the word as output. Let’s con-
sider the case of the nursery rhyme “Mary Had a Little Lamb.” Our input will be:

 Mary had a little lamb
 its fleece was white as snow
 and everywhere that Mary went
 the lamb was sure to go.

Let’s assume that each line is sent to a different map task. In reality, each map is assigned
much more data than this, but it makes the example easier to follow. The data flow
through MapReduce is shown in Figure 1-1.

Once the map phase is complete, the shuffle phase will collect all records with the same
word onto the same reducer. For this example we assume that there are two reducers:
all words that start with A-L are sent to the first reducer, and M-Z are sent to the second
reducer. The reducers will then output the summed counts for each word.

Pig uses MapReduce to execute all of its data processing. It compiles the Pig Latin scripts
that users write into a series of one or more MapReduce jobs that it then executes. See
Example 1-1 for a Pig Latin script that will do a word count of “Mary Had a Little
Lamb.”

2 | Chapter 1: Introduction

Figure 1-1. MapReduce illustration

Example 1-1. Pig counts Mary and her lamb

-- Load input from the file named Mary, and call the single
-- field in the record 'line'.
input = load 'mary' as (line);

-- TOKENIZE splits the line into a field for each word.
-- flatten will take the collection of records returned by
-- TOKENIZE and produce a separate record for each one, calling the single
-- field in the record word.
words = foreach input generate flatten(TOKENIZE(line)) as word;

-- Now group them together by each word.
grpd = group words by word;

-- Count them.
cntd = foreach grpd generate group, COUNT(words);
-- Print out the results.
dump cntd;

There is no need to be concerned with map, shuffle, and reduce phases when using Pig.
It will manage decomposing the operators in your script into the appropriate MapRe-
duce phases.

What Is Pig? | 3

Pig Latin, a Parallel Dataflow Language
Pig Latin is a dataflow language. This means it allows users to describe how data from
one or more inputs should be read, processed, and then stored to one or more outputs
in parallel. These data flows can be simple linear flows like the word count example
given previously. They can also be complex workflows that include points where mul-
tiple inputs are joined, and where data is split into multiple streams to be processed by
different operators. To be mathematically precise, a Pig Latin script describes a directed
acyclic graph (DAG), where the edges are data flows and the nodes are operators that
process the data.

This means that Pig Latin looks different from many of the programming languages
you have seen. There are no if statements or for loops in Pig Latin. This is because
traditional procedural and object-oriented programming languages describe control
flow, and data flow is a side effect of the program. Pig Latin instead focuses on data
flow. For information on how to integrate the data flow described by a Pig Latin script
with control flow, see Chapter 9.

Comparing query and dataflow languages

After a cursory look, people often say that Pig Latin is a procedural version of SQL.
Although there are certainly similarities, there are more differences. SQL is a query
language. Its focus is to allow users to form queries. It allows users to describe what
question they want answered, but not how they want it answered. In Pig Latin, on the
other hand, the user describes exactly how to process the input data.

Another major difference is that SQL is oriented around answering one question. When
users want to do several data operations together, they must either write separate quer-
ies, storing the intermediate data into temporary tables, or write it in one query using
subqueries inside that query to do the earlier steps of the processing. However, many
SQL users find subqueries confusing and difficult to form properly. Also, using sub-
queries creates an inside-out design where the first step in the data pipeline is the in-
nermost query.

Pig, however, is designed with a long series of data operations in mind, so there is no
need to write the data pipeline in an inverted set of subqueries or to worry about storing
data in temporary tables. This is illustrated in Examples 1-2 and 1-3.

Consider a case where a user wants to group one table on a key and then join it with a
second table. Because joins happen before grouping in a SQL query, this must be ex-
pressed either as a subquery or as two queries with the results stored in a temporary
table. Example 1-3 will use a temporary table, as that is more readable.

4 | Chapter 1: Introduction

www.allitebooks.com

http://www.allitebooks.org

Example 1-2. Group then join in SQL

CREATE TEMP TABLE t1 AS
SELECT customer, sum(purchase) AS total_purchases
FROM transactions
GROUP BY customer;

SELECT customer, total_purchases, zipcode
FROM t1, customer_profile
WHERE t1.customer = customer_profile.customer;

In Pig Latin, on the other hand, this looks like Example 1-3.

Example 1-3. Group then join in Pig Latin

-- Load the transactions file, group it by customer, and sum their total purchases
txns = load 'transactions' as (customer, purchase);
grouped = group txns by customer;
total = foreach grouped generate group, SUM(txns.purchase) as tp;
-- Load the customer_profile file
profile = load 'customer_profile' as (customer, zipcode);
-- join the grouped and summed transactions and customer_profile data
answer = join total by group, profile by customer;
-- Write the results to the screen
dump answer;

Furthermore, each was designed to live in a different environment. SQL is designed for
the RDBMS environment, where data is normalized and schemas and proper con-
straints are enforced (that is, there are no nulls in places they do not belong, etc.). Pig
is designed for the Hadoop data-processing environment, where schemas are some-
times unknown or inconsistent. Data may not be properly constrained, and it is rarely
normalized. As a result of these differences, Pig does not require data to be loaded into
tables first. It can operate on data as soon as it is copied into HDFS.

An analogy with human languages and cultures might help. My wife and I have been
to France together a couple of times. I speak very little French. But because English is
the language of commerce (and probably because Americans and the British like to
vacation in France), there is enough English spoken in France for me to get by. My wife,
on the other hand, speaks French. She has friends there to visit. She can talk to people
we meet. She can explore the parts of France that are not on the common tourist itin-
erary. Her experience of France is much deeper than mine because she can speak the
native language.

SQL is the English of data processing. It has the nice feature that everyone and every
tool knows it, which means the barrier to adoption is very low. Our goal is to make Pig
Latin the native language of parallel data-processing systems such as Hadoop. It may
take some learning, but it will allow users to utilize the power of Hadoop much more
fully.

What Is Pig? | 5

How Pig differs from MapReduce

I have just made the claim that a goal of the Pig team is to make Pig Latin the native
language of parallel data-processing environments such as Hadoop. But does MapRe-
duce not provide enough? Why is Pig necessary?

Pig provides users with several advantages over using MapReduce directly. Pig Latin
provides all of the standard data-processing operations, such as join, filter, group by,
order by, union, etc. MapReduce provides the group by operation directly (that is what
the shuffle plus reduce phases are), and it provides the order by operation indirectly
through the way it implements the grouping. Filter and projection can be implemented
trivially in the map phase. But other operators, particularly join, are not provided and
must instead be written by the user.

Pig provides some complex, nontrivial implementations of these standard data opera-
tions. For example, because the number of records per key in a dataset is rarely evenly
distributed, the data sent to the reducers is often skewed. That is, one reducer will get
10 or more times the data than other reducers. Pig has join and order by operators that
will handle this case and (in some cases) rebalance the reducers. But these took the Pig
team months to write, and rewriting these in MapReduce would be time consuming.

In MapReduce, the data processing inside the map and reduce phases is opaque to the
system. This means that MapReduce has no opportunity to optimize or check the user’s
code. Pig, on the other hand, can analyze a Pig Latin script and understand the data
flow that the user is describing. That means it can do early error checking (did the user
try to add a string field to an integer field?) and optimizations (can these two grouping
operations be combined?).

MapReduce does not have a type system. This is intentional, and it gives users the
flexibility to use their own data types and serialization frameworks. But the downside
is that this further limits the system’s ability to check users’ code for errors both before
and during runtime.

All of these points mean that Pig Latin is much lower cost to write and maintain than
Java code for MapReduce. In one very unscientific experiment, I wrote the same op-
eration in Pig Latin and MapReduce. Given one file with user data and one with click
data for a website, the Pig Latin script in Example 1-4 will find the five pages most
visited by users between the ages of 18 and 25.

Example 1-4. Finding the top five URLs

Users = load 'users' as (name, age);
Fltrd = filter Users by age >= 18 and age <= 25;
Pages = load 'pages' as (user, url);
Jnd = join Fltrd by name, Pages by user;
Grpd = group Jnd by url;
Smmd = foreach Grpd generate group, COUNT(Jnd) as clicks;
Srtd = order Smmd by clicks desc;
Top5 = limit Srtd 5;
store Top5 into 'top5sites';

6 | Chapter 1: Introduction

The first line of this program loads the file users and declares that this data has two
fields: name and age. It assigns the name of Users to the input. The second line applies
a filter to Users that passes through records with an age between 18 and 25, inclusive.
All other records are discarded. Now the data has only records of users in the age range
we are interested in. The results of this filter are named Fltrd.

The second load statement loads pages and names it Pages. It declares its schema to
have two fields, user and url.

The line Jnd = join joins together Fltrd and Pages using Fltrd.name and Pages.user as
the key. After this join we have found all the URLs each user has visited.

The line Grpd = group collects records together by URL. So for each value of url, such
as pignews.com/frontpage, there will be one record with a collection of all records that
have that value in the url field. The next line then counts how many records are col-
lected together for each URL. So after this line we now know, for each URL, how many
times it was visited by users aged 18–25.

The next thing to do is to sort this from most visits to least. The line Srtd = order sorts
on the count value from the previous line and places it in desc (descending) order. Thus
the largest value will be first. Finally, we need only the top five pages, so the last line
limits the sorted results to only five records. The results of this are then stored back to
HDFS in the file top5sites.

In Pig Latin this comes to nine lines of code and took about 15 minutes to write and
debug. The same code in MapReduce (omitted here for brevity) came out to about 170
lines of code and took me four hours to get working. The Pig Latin will similarly be
easier to maintain, as future developers can easily understand and modify this code.

There is, of course, a cost to all this. It is possible to develop algorithms in MapReduce
that cannot be done easily in Pig. And the developer gives up a level of control. A good
engineer can always, given enough time, write code that will out perform a generic
system. So for less common algorithms or extremely performance-sensitive ones, Map-
Reduce is still the right choice. Basically this is the same situation as choosing to code
in Java versus a scripting language such as Python. Java has more power, but due to its
lower-level nature, it requires more development time than scripting languages. De-
velopers will need to choose the right tool for each job.

What Is Pig Useful For?
In my experience, Pig Latin use cases tend to fall into three separate categories: tradi-
tional extract transform load (ETL) data pipelines, research on raw data, and iterative
processing.

The largest use case is data pipelines. A common example is web companies bringing
in logs from their web servers, cleansing the data, and precomputing common aggre-
gates before loading it into their data warehouse. In this case, the data is loaded onto

What Is Pig? | 7

the grid, and then Pig is used to clean out records from bots and records with corrupt
data. It is also used to join web event data against user databases so that user cookies
can be connected with known user information.

Another example of data pipelines is using Pig offline to build behavior prediction
models. Pig is used to scan through all the user interactions with a website and split
the users into various segments. Then, for each segment, a mathematical model is pro-
duced that predicts how members of that segment will respond to types of advertise-
ments or news articles. In this way the website can show ads that are more likely to get
clicked on, or offer news stories that are more likely to engage users and keep them
coming back to the site.

Traditionally, ad-hoc queries are done in languages such as SQL that make it easy to
quickly form a question for the data to answer. However, for research on raw data,
some users prefer Pig Latin. Because Pig can operate in situations where the schema is
unknown, incomplete, or inconsistent, and because it can easily manage nested data,
researchers who want to work on data before it has been cleaned and loaded into the
warehouse often prefer Pig. Researchers who work with large data sets often use script-
ing languages such as Perl or Python to do their processing. Users with these back-
grounds often prefer the dataflow paradigm of Pig over the declarative query paradigm
of SQL.

Users building iterative processing models are also starting to use Pig. Consider a news
website that keeps a graph of all news stories on the Web that it is tracking. In this
graph each news story is a node, and edges indicate relationships between the stories.
For example, all stories about an upcoming election are linked together. Every five
minutes a new set of stories comes in, and the data-processing engine must integrate
them into the graph. Some of these stories are new, some are updates of existing stories,
and some supersede existing stories. Some data-processing steps need to operate on
this entire graph of stories. For example, a process that builds a behavioral targeting
model needs to join user data against this entire graph of stories. Rerunning the entire
join every five minutes is not feasible because it cannot be completed in five minutes
with a reasonable amount of hardware. But the model builders do not want to update
these models only on a daily basis, as that means an entire day of missed serving
opportunities.

To cope with this problem, it is possible to first do a join against the entire graph on a
regular basis, for example, daily. Then, as new data comes in every five minutes, a join
can be done with just the new incoming data, and these results can be combined with
the results of the join against the whole graph. This combination step takes some care,
as the five-minute data contains the equivalent of inserts, updates, and deletes on the
entire graph. It is possible and reasonably convenient to express this combination in
Pig Latin.

8 | Chapter 1: Introduction

One point that is implicit in everything I have said so far is that Pig (like MapReduce)
is oriented around the batch processing of data. If you need to process gigabytes or
terabytes of data, Pig is a good choice. But it expects to read all the records of a file and
write all of its output sequentially. For workloads that require writing single or small
groups of records, or looking up many different records in random order, Pig (like
MapReduce) is not a good choice. See “NoSQL Databases” on page 166 for a discus-
sion of applications that are good for these use cases.

Pig Philosophy
Early on, people who came to the Pig project as potential contributors did not always
understand what the project was about. They were not sure how to best contribute or
which contributions would be accepted and which would not. So, the Pig team pro-
duced a statement of the project’s philosophy that summarizes what Pig aspires to be:

Pigs eat anything
Pig can operate on data whether it has metadata or not. It can operate on data that
is relational, nested, or unstructured. And it can easily be extended to operate on
data beyond files, including key/value stores, databases, etc.

Pigs live anywhere
Pig is intended to be a language for parallel data processing. It is not tied to one
particular parallel framework. It has been implemented first on Hadoop, but we
do not intend that to be only on Hadoop.

Pigs are domestic animals
Pig is designed to be easily controlled and modified by its users.

Pig allows integration of user code wherever possible, so it currently supports user
defined field transformation functions, user defined aggregates, and user defined
conditionals. These functions can be written in Java or in scripting languages that
can compile down to Java (e.g., Jython). Pig supports user provided load and store
functions. It supports external executables via its stream command and MapRe-
duce JARs via its mapreduce command. It allows users to provide a custom parti-
tioner for their jobs in some circumstances, and to set the level of reduce parallelism
for their jobs.

Pig has an optimizer that rearranges some operations in Pig Latin scripts to give
better performance, combines MapReduce jobs together, etc. However, users can
easily turn this optimizer off to prevent it from making changes that do not make
sense in their situation.

Pigs fly
Pig processes data quickly. We want to consistently improve performance, and not
implement features in ways that weigh Pig down so it can’t fly.

What Is Pig? | 9

http://pig.apache.org/philosophy.html

Pig’s History
Pig started out as a research project in Yahoo! Research, where Yahoo! scientists de-
signed it and produced an initial implementation. As explained in a paper presented at
SIGMOD in 2008,* the researchers felt that the MapReduce paradigm presented by
Hadoop “is too low-level and rigid, and leads to a great deal of custom user code that
is hard to maintain and reuse.” At the same time they observed that many MapReduce
users were not comfortable with declarative languages such as SQL. Thus they set out
to produce “a new language called Pig Latin that we have designed to fit in a sweet spot
between the declarative style of SQL, and the low-level, procedural style of MapRe-
duce.”

Yahoo! Hadoop users started to adopt Pig. So, a team of development engineers was
assembled to take the research prototype and build it into a production-quality product.
About this same time, in fall 2007, Pig was open sourced via the Apache Incubator.
The first Pig release came a year later in September 2008. Later that same year, Pig
graduated from the Incubator and became a subproject of Apache Hadoop.

Early in 2009 other companies started to use Pig for their data processing. Amazon also
added Pig as part of its Elastic MapReduce service. By the end of 2009 about half of
Hadoop jobs at Yahoo! were Pig jobs. In 2010, Pig adoption continued to grow, and
Pig graduated from a Hadoop subproject, becoming its own top-level Apache project.

Why Is It Called Pig?
One question that is frequently asked is, “Why is it named Pig?” People also want to
know whether Pig is an acronym. It is not. The story goes that the researchers working
on the project initially referred to it simply as “the language.” Eventually they needed
to call it something. Off the top of his head, one researcher suggested Pig, and the name
stuck. It is quirky yet memorable and easy to spell. While some have hinted that the
name sounds coy or silly, it has provided us with an entertaining nomenclature, such
as Pig Latin for a language, Grunt for a shell, and Piggybank for a CPAN-like shared
repository.

* Christopher Olston et al, “Pig Latin: A Not-So-Foreign Language for Data Processing,” available at http://
portal.acm.org/citation.cfm?id=1376726.

10 | Chapter 1: Introduction

http://portal.acm.org/citation.cfm?id=1376726
http://portal.acm.org/citation.cfm?id=1376726

CHAPTER 2

Installing and Running Pig

Downloading and Installing Pig
Before you can run Pig on your machine or your Hadoop cluster, you will need to
download and install it. If someone else has taken care of this, you can skip ahead to
“Running Pig” on page 13.

You can download Pig as a complete package or as source code that you build. You
can also get it as part of a Hadoop distribution.

Downloading the Pig Package from Apache
This is the official version of Apache Pig. It comes packaged with all of the JAR files
needed to run Pig. It can be downloaded by going to Pig’s release page.

Pig does not need to be installed on your Hadoop cluster. It runs on the machine from
which you launch Hadoop jobs. Though you can run Pig from your laptop or desktop,
in practice, most cluster owners set up one or more machines that have access to their
Hadoop cluster but are not part of the cluster (that is, they are not data nodes or task
nodes). This makes it easier for administrators to update Pig and associated tools, as
well as to secure access to the clusters. These machines are called gateway machines or
edge machines. In this book I use the term gateway machine.

You will need to install Pig on these gateway machines. If your Hadoop cluster is ac-
cessible from your desktop or laptop, you can install Pig there as well. Also, you can
install Pig on your local machine if you plan to use Pig in local mode.

The core of Pig is written in Java and is thus portable across operating systems. The
shell script that starts Pig is a bash script, so it requires a Unix environment. Hadoop,
which Pig depends on, even in local mode, also requires a Unix environment for its
filesystem operations. In practice, most Hadoop clusters run a flavor of Linux. Many
Pig developers develop and test Pig on Mac OS X.

11

http://pig.apache.org/releases.html

Pig requires Java 1.6, and Pig versions 0.5 through 0.9 require Hadoop 0.20. For future
versions, check the download page for information on what version(s) of Hadoop they
require. The correct version of Hadoop is included with the Pig download. If you plan
to use Pig in local mode or install it on a gateway machine where Hadoop is not currently
installed, there is no need to download Hadoop separately.

Once you have downloaded Pig, you can place it anywhere you like on your machine,
as it does not depend on being in a certain location. To install it, place the tarball in
the directory of your choosing and type:

tar xzf filename

where filename is the TAR file you downloaded.

The only other setup in preparation for running Pig is making sure that the environment
variable JAVA_HOME is set to the directory that contains your Java distribution. Pig will
fail immediately if this value is not in the environment. You can set this in your shell,
specify it on the command line when you invoke Pig, or set it explicitly in your copy of
the Pig script pig, located in the bin directory that you just unpacked. You can find the
appropriate value for JAVA_HOME by executing which java and stripping the bin/java
from the end of the result.

Downloading Pig from Cloudera
In addition to the official Apache version, there are companies that repackage and
distribute Hadoop and associated tools. Currently the most popular of these is Clou-
dera, which produces RPMs for Red Hat–based systems and packages for use with APT
on Debian systems. It also provides tarballs for other systems that cannot use one of
these package managers.

The upside of using a distribution like Cloudera’s is that all of the tools are packaged
and tested together. Also, if you need professional support, it is available. The downside
is that you are constrained to move at the speed of your distribution provider. There is
a delay between an Apache release of Pig and its availability in various distributions.

For complete instructions on downloading and installing Hadoop and Pig from Clou-
dera, see Cloudera’s download site. Note that you have to download Pig separately; it
is not part of the Hadoop package.

Downloading Pig Artifacts from Maven
In addition to the official release available from Pig’s Apache site, it is possible to
download Pig from Apache’s Maven repository. This site includes JAR files for Pig, for
the source code, and for the Javadocs, as well as the POM file that defines Pig’s de-
pendencies. Development tools that are Maven-aware can use this to pull down Pig’s
source and Javadoc. If you use maven or ant in your build process, you can also pull the
Pig JAR from this repository automatically.

12 | Chapter 2: Installing and Running Pig

http://www.cloudera.com/downloads
https://repository.apache.org/content/repositories/releases/org/apache/pig/pig

Downloading the Source
When you download Pig from Apache, you also get the Pig source code. This enables
you to debug your version of Pig or just peruse the code to see how it works. But if you
want to live on the edge and try out a feature or a bug fix before it is available in a
release, you can download the source from Apache’s Subversion repository. You can
also apply patches that have been uploaded to Pig’s issue-tracking system but that are
not yet checked into the code repository. Information on checking out Pig using svn or
cloning the repository via git is available on Pig’s version control page.

Running Pig
You can run Pig locally on your machine or on your grid. You can also run Pig as part
of Amazon’s Elastic MapReduce service.

Running Pig Locally on Your Machine
Running Pig locally on your machine is referred to in Pig parlance as local mode. Local
mode is useful for prototyping and debugging your Pig Latin scripts. Some people also
use it for small data when they want to apply the same processing to large data—so
that their data pipeline is consistent across data of different sizes—but they do not want
to waste cluster resources on small files and small jobs.

In versions 0.6 and earlier, Pig executed scripts in local mode itself. Starting with version
0.7, it uses the Hadoop class LocalJobRunner that reads from the local filesystem and
executes MapReduce jobs locally. This has the nice property that Pig jobs run locally
in the same way as they will on your cluster, and they all run in one process, making
debugging much easier. The downside is that it is slow. Setting up a local instance of
Hadoop has approximately a 20-second overhead, so even tiny jobs take at least that
long.*

Let’s run a Pig Latin script in local mode. See “Code Examples in This
Book” on page xi for how to download the data and Pig Latin for this example. The
simple script in Example 2-1 loads the file NYSE_dividends, groups the file’s rows by
stock ticker symbol, and then calculates the average dividend for each symbol.

* Another reason for switching to MapReduce for local mode was that as Pig added features that took advantage
of more advanced MapReduce features, it became difficult or impossible to replicate those features in local
mode. Thus local mode and MapReduce mode were diverging in their feature set.

Running Pig | 13

http://issues.apache.org/jira/browse/PIG
http://pig.apache.org/version_control.html

Example 2-1. Running Pig in local mode

--average_dividend.pig
-- load data from NYSE_dividends, declaring the schema to have 4 fields
dividends = load 'NYSE_dividends' as (exchange, symbol, date, dividend);
-- group rows together by stock ticker symbol
grouped = group dividends by symbol;
-- calculate the average dividend per symbol
avg = foreach grouped generate group, AVG(dividends.dividend);
-- store the results to average_dividend
store avg into 'average_dividend';

If you use head -5 to look at the NYSE_dividends file, you will see:

NYSE CPO 2009-12-30 0.14
NYSE CPO 2009-09-28 0.14
NYSE CPO 2009-06-26 0.14
NYSE CPO 2009-03-27 0.14
NYSE CPO 2009-01-06 0.14

This matches the schema we declared in our Pig Latin script. The first field is the ex-
change this stock is traded on, the second field is the stock ticker symbol, the third is
the date the dividend was paid, and the fourth is the amount of the dividend.

Remember that to run Pig you will need to set the JAVA_HOME environ-
ment variable to the directory that contains your Java distribution.

Switch to the directory where NYSE_dividends is located. You can then run this example
on your local machine by entering:

pig_path/bin/pig -x local average_dividend.pig

where pig_path is the path to the Pig installation on your local machine.

The result should be a lot of output on your screen. Much of this is MapReduce’s
LocalJobRunner generating logs. But some of it is Pig telling you how it will execute the
script, giving you the status as it executes, etc. Near the bottom of the output you should
see the simple message Success!. This means all went well. The script stores its output
to average_dividend, so you might expect to find a file by that name in your local di-
rectory. Instead you will find a directory named average_dividend that contains a file
named part-r-00000. Because Hadoop is a distributed system and usually processes
data in parallel, when it outputs data to a “file” it creates a directory with the file’s
name, and each writer creates a separate part file in that directory. In this case we had
one writer, so we have one part file. We can look in that part file for the results by
entering:

cat average_dividend/part-r-00000 | head -5

14 | Chapter 2: Installing and Running Pig

www.allitebooks.com

http://www.allitebooks.org

which returns:

CA 0.04
CB 0.35
CE 0.04
CF 0.1
CI 0.04

Running Pig on Your Hadoop Cluster
Most of the time you will be running Pig on your Hadoop cluster. As was covered in
“Downloading and Installing Pig” on page 11, Pig runs locally on your machine or your
gateway machine. All of the parsing, checking, and planning is done locally. Pig then
executes MapReduce jobs in your cluster.

When I say “your gateway machine,” I mean the machine from which
you are launching Pig jobs. Usually this will be one or more machines
that have access to your Hadoop cluster. However, depending on your
configuration, it could be your local machine as well.

The only thing Pig needs to know to run on your cluster is the location of your cluster’s
NameNode and JobTracker. The NameNode is the manager of HDFS, and the Job-
Tracker coordinates MapReduce jobs. In Hadoop 0.18 and earlier, these locations are
found in your hadoop-site.xml file. In Hadoop 0.20 and later, they are in three separate
files: core-site.xml, hdfs-site.xml, and mapred-site.xml.

If you are already running Hadoop jobs from your gateway machine via MapReduce
or another tool, you most likely have these files present. If not, the best course is to
copy these files from nodes in your cluster to a location on your gateway machine. This
guarantees that you get the proper addresses plus any site-specific settings.

If, for whatever reason, it is not possible to copy the appropriate files from your cluster,
you can create a hadoop-site.xml file yourself. It will look like the following:

<configuration>
<property>
 <name>fs.default.name</name>
 <value>namenode_hostname:port</value>
</property>

<property>
 <name>mapred.job.tracker</name>
 <value>jobtrack_hostname:port</value>
</property>
</configuration>

You will need to find the names and ports for your NameNode and JobTracker from
your cluster administrator.

Running Pig | 15

Once you have located, copied, or created these files, you will need to tell Pig the
directory they are in by setting the PIG_CLASSPATH environment variable to that direc-
tory. Note that this must point to the directory that the XML file is in, not the file itself.
Pig will read all XML and properties files in that directory.

Let’s run the same script on your cluster that we ran in the local mode example (Ex-
ample 2-1). If you are running on a Hadoop cluster you have never used before, you
will most likely need to create a home directory. Pig can do this for you:

PIG_CLASSPATH=hadoop_conf_dir pig_path/bin/pig -e fs -mkdir /user/username

where hadoop_conf_dir is the directory where your hadoop-site.xml or core-site.xml,
hdfs-site.xml, and mapred-site.xml files are located; pig_path is the path to Pig on your
gateway machine; and username is your username on the gateway machine. If you are
using 0.5 or earlier, change fs -mkdir to mkdir.

Remember, you need to set JAVA_HOME before executing any Pig com-
mands. See “Downloading the Pig Package from Apache” on page 11
for details.

In order to run this example on your cluster, you first need to copy the data to your
cluster:

PIG_CLASSPATH=hadoop_conf_dir pig_path/bin/pig -e fs -copyFromLocal NYSE_dividends
 NYSE_dividends

If you are running Pig 0.5 or earlier, change fs -copyFromLocal to copyFromLocal.

Now you are ready to run the Pig Latin script itself:

PIG_CLASSPATH=hadoop_conf_dir pig_path/bin/pig average_dividend.pig

The first few lines of output will tell you how Pig is connecting to your cluster. After
that it will describe its progress in executing your script. It is important for you to verify
that Pig is connecting to the appropriate filesystem and JobTracker by checking that
these values match the values for your cluster. If the filesystem is listed as file:/// or the
JobTracker says localhost, Pig did not connect to your cluster. You will need to check
that you entered the values properly in your configuration files and properly set
PIG_CLASSPATH to the directory that contains those files.

Near the end of the output there should be a line saying Success!. This means that your
execution succeeded. You can see the results by entering:

PIG_CLASSPATH=hadoop_conf_dir pig_path/bin/pig -e cat average_dividend

which should give you the same connection information and then dump all of the stock
ticker symbols and their average dividends.

In Example 2-1 you may have noticed that I made a point to say that average_divi-
dend is a directory, and thus you have to cat the part file contained in that directory.

16 | Chapter 2: Installing and Running Pig

However, in this example I ran cat directly on average_dividend. If you list average_div-
idend, you will see that it is still a directory in this example, but in Pig, cat can operate
on directories. See Chapter 3 for a discussion of this.

Running Pig in the Cloud
Cloud computing† along with the software as a service (SaaS) model have taken off in
recent years. This has been fortuitous for hardware-intensive applications such as Ha-
doop. Setting up and maintaining a Hadoop cluster is an expensive proposition in terms
of hardware acquisition, facility costs, and maintenance and administration. Many
users find that it is cheaper to rent the hardware they need instead.

Whether you or your organization decides to use Hadoop and Pig in the cloud or on
owned and operated machines, the instructions for running Pig on your cluster are the
same; see “Running Pig on Your Hadoop Cluster” on page 15.

However, Amazon’s Elastic MapReduce (EMR) cloud offering is different. Rather than
allowing customers to rent machines for any type of process (like Amazon’s Elastic
Cloud Computing [EC2] service and other cloud services), EMR allows users to rent
virtual Hadoop clusters. These clusters read data from and write data to Amazon’s
Simple Storage Service (S3). This means users do not even need to set up their own
Hadoop cluster, which they would have to do if they used EC2 or a similar service.

EMR users can access their rented Hadoop cluster via their browser, SSH, or a web
services API. For information about EMR, visit http://aws.amazon.com/elasticmapre
duce. However, I suggest beginning with this nice tutorial, which will introduce you to
the service.

Command-Line and Configuration Options
Pig has a number of command-line options that you can use with it. You can see the
full list by entering pig -h. Most of these options will be discussed later, in the sections
that cover the features these options control. In this section I discuss the remaining
miscellaneous options:

-e or -execute
Execute a single command in Pig. For example, pig -e fs -ls will list your home
directory.

-h or -help
List the available command-line options.

† Being the current flavor of the month, the term cloud computing is being used to describe just about anything
that takes more than one computer and is not located on a person’s desktop. In this chapter I use cloud
computing to mean the ability to rent a cluster of computers and place software of your choosing on those
computers.

Running Pig | 17

http://aws.amazon.com/elasticmapreduce
http://aws.amazon.com/elasticmapreduce
http://s3.amazonaws.com/awsVideos/AmazonElasticMapReduce/ElasticMapReduce-PigTutorial.html

-h properties

List the properties that Pig will use if they are set by the user.

-P or -propertyFile
Specify a property file that Pig should read.

-version

Print the version of Pig.

Pig also uses a number of Java properties. The entire list can be printed out with
pig -h properties. Specific properties are discussed later in sections that cover the
features they control.

Hadoop also has a number of Java properties it uses to determine its behavior. For
example, you can pass options to the JVM that runs your map and reduce tasks by
setting mapred.child.java.opts. In Pig version 0.8 and later, these can be passed to Pig,
and then Pig will pass them on to Hadoop when it invokes Hadoop. In earlier versions,
the properties had to be in hadoop-site.xml so that the Hadoop client itself would pick
them up.

Properties can be passed to Pig on the command line using -D in the same format as
any Java property—for example, bin/pig -D exectype=local. When placed on the
command line, these property definitions must come before any Pig-specific command-
line options (such as -x local). They can also be specified in the conf/pig.properties file
that is part of your Pig distribution. Finally, you can specify a separate properties file
by using -P. If properties are specified on both the command line and in a properties
file, the command-line specification takes precedence.

Return Codes
Pig uses return codes, described in Table 2-1, to communicate success or failure.

Table 2-1. Pig return codes

Value Meaning Comments

0 Success

1 Retriable failure

2 Failure

3 Partial failure Used with multiquery; see “Nonlinear Data

Flows” on page 72

4 Illegal arguments passed to Pig

5 IOException thrown Would usually be thrown by a UDF

6 PigException thrown Usually means a Python UDF raised an exception

7 ParseException thrown (can happen after parsing

if variable substitution is being done)

8 Throwable thrown (an unexpected exception)

18 | Chapter 2: Installing and Running Pig

CHAPTER 3

Grunt

Grunt* is Pig’s interactive shell. It enables users to enter Pig Latin interactively and
provides a shell for users to interact with HDFS.

To enter Grunt, invoke Pig with no script or command to run. Typing:

pig -x local

will result in the prompt:

grunt>

This gives you a Grunt shell to interact with your local filesystem. If you omit the -x
local and have a cluster configuration set in PIG_CLASSPATH, this will put you in a Grunt
shell that will interact with HDFS on your cluster.

As you would expect with a shell, Grunt provides command-line history and editing,
as well as Tab completion. It does not provide filename completion via the Tab key.
That is, if you type kil and then press the Tab key, it will complete the command as
kill. But if you have a file foo in your local directory and type ls fo, and then hit Tab,
it will not complete it as ls foo. This is because the response time from HDFS to connect
and find whether the file exists is too slow to be useful.

Although Grunt is a useful shell, remember that it is not a full-featured shell. It does
not provide a number of commands found in standard Unix shells, such as pipes, re-
direction, and background execution.

To exit Grunt you can type quit or enter Ctrl-D.

* According to Ben Reed, one of the researchers at Yahoo! who helped start Pig, they named the shell “Grunt”
because they felt the initial implementation was so limited that it was not worthy even of the name “oink.”

19

Entering Pig Latin Scripts in Grunt
One of the main uses of Grunt is to enter Pig Latin in an interactive session. This can
be particularly useful for quickly sampling your data and for prototyping new Pig Latin
scripts.

You can enter Pig Latin directly into Grunt. Pig will not start executing the Pig Latin
you enter until it sees either a store or dump. However, it will do basic syntax and
semantic checking to help you catch errors quickly. If you do make a mistake while
entering a line of Pig Latin in Grunt, you can reenter the line using the same alias, and
Pig will take the last instance of the line you enter. For example:

pig -x local
grunt> dividends = load 'NYSE_dividends' as (exchange, symbol, date, dividend);
grunt> symbols = foreach dividends generate symbl;
...Error during parsing. Invalid alias: symbl ...
grunt> symbols = foreach A generate symbol;
...

HDFS Commands in Grunt
Besides entering Pig Latin interactively, Grunt’s other major use is to act as a shell for
HDFS. In versions 0.5 and later of Pig, all hadoop fs shell commands are available. They
are accessed using the keyword fs. The dash (-) used in the hadoop fs is also required:

grunt>fs -ls

You can see a complete guide to the available commands at http://hadoop.apache.org/
common/docs/r0.20.2/hdfs_shell.html. A number of the commands come directly from
Unix shells and will operate in ways that are familiar: chgrp, chmod, chown, cp, du, ls,
mkdir, mv, rm, and stat. A few of them either look like Unix commands you are used to
but behave slightly differently or are unfamiliar, including:

cat filename

Print the contents of a file to stdout. You can apply this command to a directory
and it will apply itself in turn to each file in the directory.

copyFromLocal localfile hdfsfile

Copy a file from your local disk to HDFS. This is done serially, not in parallel.

copyToLocal hdfsfile localfile

Copy a file from HDFS to your local disk. This is done serially, not in parallel.

rmr filename

Remove files recursively. This is equivalent to rm -r in Unix. Use this with caution.

In versions of Pig before 0.5, hadoop fs commands were not available. Instead, Grunt
had its own implementation of some of these commands: cat, cd, copyFromLocal, copy
ToLocal, cp, ls, mkdir, mv, pwd, rm (which acted like Hadoop’s rmr, not Hadoop’s rm),
and rmf. As of Pig 0.8, all of these commands are still available. However, with the

20 | Chapter 3: Grunt

http://hadoop.apache.org/common/docs/r0.20.2/hdfs_shell.html
http://hadoop.apache.org/common/docs/r0.20.2/hdfs_shell.html

exception of cd and pwd, these commands are deprecated in favor of using hadoop fs,
and they might be removed at some point in the future.

In version 0.8, a new command was added to Grunt: sh. This command gives you access
to the local shell, just as fs gives you access to HDFS. Simple shell commands that do
not involve pipes or redirects can be executed. It is better to work with absolute paths,
as sh does not always properly track the current working directory.

Controlling Pig from Grunt
Grunt also provides commands for controlling Pig and MapReduce:

kill jobid

Kill the MapReduce job associated with jobid. The output of the pig command
that spawned the job will list the ID of each job it spawns. You can also find the
job’s ID by looking at Hadoop’s JobTracker GUI, which lists all jobs currently
running on the cluster. Note that this command kills a particular MapReduce job.
If your Pig job contains other MapReduce jobs that do not depend on the killed
MapReduce job, these jobs will still continue. If you want to kill all of the Map-
Reduce jobs associated with a particular Pig job, it is best to terminate the process
running Pig, and then use this command to kill any MapReduce jobs that are still
running. Make sure to terminate the Pig process with a Ctrl-C or a Unix kill, not
a Unix kill -9. The latter does not give Pig the chance to clean up temporary files
it is using, which can leave garbage in your cluster.

exec [[-param param_name = param_value]] [[-param_file filename]] script

Execute the Pig Latin script script. Aliases defined in script are not imported into
Grunt. This command is useful for testing your Pig Latin scripts while inside a
Grunt session. For information on the -param and -param_file options, see “Pa-
rameter Substitution” on page 77.

run [[-param param_name = param_value]] [[-param_file filename]] script

Execute the Pig Latin script script in the current Grunt shell. Thus all aliases ref-
erenced in script are available to Grunt, and the commands in script are accessible
via the shell history. This is another option for testing Pig Latin scripts while inside
a Grunt session. For information on the -param and -param_file options, see
“Parameter Substitution” on page 77.

Controlling Pig from Grunt | 21

CHAPTER 4

Pig’s Data Model

Before we take a look at the operators that Pig Latin provides, we first need to under-
stand Pig’s data model. This includes Pig’s data types, how it handles concepts such as
missing data, and how you can describe your data to Pig.

Types
Pig’s data types can be divided into two categories: scalar types, which contain a single
value, and complex types, which contain other types.

Scalar Types
Pig’s scalar types are simple types that appear in most programming languages. With
the exception of bytearray, they are all represented in Pig interfaces by java.lang classes,
making them easy to work with in UDFs:

int
An integer. Ints are represented in interfaces by java.lang.Integer. They store a
four-byte signed integer. Constant integers are expressed as integer numbers, for
example, 42.

long
A long integer. Longs are represented in interfaces by java.lang.Long. They store
an eight-byte signed integer. Constant longs are expressed as integer numbers with
an L appended, for example, 5000000000L.

float
A floating-point number. Floats are represented in interfaces by java.lang.Float
and use four bytes to store their value. You can find the range of values represent-
able by Java’s Float type at http://java.sun.com/docs/books/jls/third_edition/html/
typesValues.html#4.2.3. Note that because this is a floating-point number, in some
calculations it will lose precision. For calculations that require no loss of precision,
you should use an int or long instead. Constant floats are expressed as a

23

http://java.sun.com/docs/books/jls/third_edition/html/typesValues.html#4.2.3
http://java.sun.com/docs/books/jls/third_edition/html/typesValues.html#4.2.3

floating-point number with an f appended. Floating-point numbers can be ex-
pressed in simple format, 3.14f, or in exponent format, 6.022e23f.

double
A double-precision floating-point number. Doubles are represented in interfaces
by java.lang.Double and use eight bytes to store their value. You can find the range
of values representable by Java’s Double type at http://java.sun.com/docs/books/jls/
third_edition/html/typesValues.html#4.2.3. Note that because this is a floating-
point number, in some calculations it will lose precision. For calculations that
require no loss of precision, you should use an int or long instead. Constant doubles
are expressed as a floating-point number in either simple format, 2.71828, or in
exponent format, 6.626e-34.

chararray
A string or character array. Chararrays are represented in interfaces by
java.lang.String. Constant chararrays are expressed as string literals with single
quotes, for example, 'fred'. In addition to standard alphanumeric and symbolic
characters, you can express certain characters in chararrays by using backslash
codes, such as \t for Tab and \n for Return. Unicode characters can be expressed
as \u followed by their four-digit hexadecimal Unicode value. For example, the
value for Ctrl-A is expressed as \u0001.

bytearray
A blob or array of bytes. Bytearrays are represented in interfaces by a Java class
DataByteArray that wraps a Java byte[]. There is no way to specify a constant
bytearray.

Complex Types
Pig has three complex data types: maps, tuples, and bags. All of these types can contain
data of any type, including other complex types. So it is possible to have a map where
the value field is a bag, which contains a tuple where one of the fields is a map.

Map

A map in Pig is a chararray to data element mapping, where that element can be any
Pig type, including a complex type. The chararray is called a key and is used as an index
to find the element, referred to as the value.

Because Pig does not know the type of the value, it will assume it is a bytearray. How-
ever, the actual value might be something different. If you know what the actual type
is (or what you want it to be), you can cast it; see “Casts” on page 30. If you do not
cast the value, Pig will make a best guess based on how you use the value in your script.
If the value is of a type other than bytearray, Pig will figure that out at runtime and
handle it. See “Schemas” on page 27 for more information on how Pig handles un-
known types.

24 | Chapter 4: Pig’s Data Model

www.allitebooks.com

http://java.sun.com/docs/books/jls/third_edition/html/typesValues.html#4.2.3
http://java.sun.com/docs/books/jls/third_edition/html/typesValues.html#4.2.3
http://www.allitebooks.org

By default there is no requirement that all values in a map must be of the same type. It
is legitimate to have a map with two keys name and age, where the value for name is a
chararray and the value for age is an int. Beginning in Pig 0.9, a map can declare its
values to all be of the same type. This is useful if you know all values in the map will
be of the same type, as it allows you to avoid the casting, and Pig can avoid the runtime
type-massaging referenced in the previous paragraph.

Map constants are formed using brackets to delimit the map, a hash between keys
and values, and a comma between key-value pairs. For example, ['name'#'bob',
'age'#55] will create a map with two keys, “name” and “age”. The first value is a
chararray, and the second is an integer.

Tuple

A tuple is a fixed-length, ordered collection of Pig data elements. Tuples are divided
into fields, with each field containing one data element. These elements can be of any
type—they do not all need to be the same type. A tuple is analogous to a row in SQL,
with the fields being SQL columns. Because tuples are ordered, it is possible to refer to
the fields by position; see “Expressions in foreach” on page 37 for details. A tuple
can, but is not required to, have a schema associated with it that describes each field’s
type and provides a name for each field. This allows Pig to check that the data in the
tuple is what the user expects, and it allows the user to reference the fields of the tuple
by name.

Tuple constants use parentheses to indicate the tuple and commas to delimit fields in
the tuple. For example, ('bob', 55) describes a tuple constant with two fields.

Bag

A bag is an unordered collection of tuples. Because it has no order, it is not possible to
reference tuples in a bag by position. Like tuples, a bag can, but is not required to, have
a schema associated with it. In the case of a bag, the schema describes all tuples within
the bag.

Bag constants are constructed using braces, with tuples in the bag separated by com-
mas. For example, {('bob', 55), ('sally', 52), ('john', 25)} constructs a bag with
three tuples, each with two fields.

Pig users often notice that Pig does not provide a list or set type that can store items of
any type. It is possible to mimic a set type using the bag, by wrapping the desired type
in a tuple of one field. For instance, if you want to store a set of integers, you can create
a bag with a tuple with one field, which is an int. This is a bit cumbersome, but it works.

Types | 25

Bag is the one type in Pig that is not required to fit into memory. As you will see later,
because bags are used to store collections when grouping, bags can become quite large.
Pig has the ability to spill bags to disk when necessary, keeping only partial sections of
the bag in memory. The size of the bag is limited to the amount of local disk available
for spilling the bag.

Memory Requirements of Pig Data Types
In the previous sections I often referenced the size of the value stored for each type (four
bytes for integer, eight bytes for long, etc.). This tells you how large (or small) a value
those types can hold. However, this does not tell you how much memory is actually
used by objects of those types. Because Pig uses Java objects to represent these values
internally, there is an additional overhead. This overhead depends on your JVM, but
it is usually eight bytes per object. It is even worse for chararrays because Java’s
String uses two bytes per character rather than one.

So, if you are trying to figure out how much memory you need in Pig to hold all of your
data (e.g., if you are going to do a join that needs to hold a hash table in memory), do
not count the bytes on disk and assume that is how much memory you need. The
multiplication factor between disk and memory is dependent on your data, whether
your data is compressed on disk, your disk storage format, etc. As a rule of thumb, it
takes about four times as much memory as it does disk to represent the uncompressed
data.

Nulls
Pig includes the concept of a data element being null. Data of any type can be null. It
is important to understand that in Pig the concept of null is the same as in SQL, which
is completely different from the concept of null in C, Java, Python, etc. In Pig a null
data element means the value is unknown. This might be because the data is missing,
an error occurred in processing it, etc. In most procedural languages, a data value is
said to be null when it is unset or does not point to a valid address or object. This
difference in the concept of null is important and affects the way Pig treats null data,
especially when operating on it. See “foreach” on page 37, “Group” on page 41,
and “Join” on page 45 for details of how nulls are handled in expressions and relations
in Pig.

26 | Chapter 4: Pig’s Data Model

Unlike SQL, Pig does not have a notion of constraints on the data. In the context of
nulls, this means that any data element can always be null. As you write Pig Latin scripts
and UDFs, you will need to keep this in mind.

Schemas
Pig has a very lax attitude when it comes to schemas. This is a consequence of Pig’s
philosophy of eating anything. If a schema for the data is available, Pig will make use
of it, both for up-front error checking and for optimization. But if no schema is available,
Pig will still process the data, making the best guesses it can based on how the script
treats the data. First, we will look at ways that you can communicate the schema to
Pig; then, we will examine how Pig handles the case where you do not provide it with
the schema.

The easiest way to communicate the schema of your data to Pig is to explicitly tell Pig
what it is when you load the data:

dividends = load 'NYSE_dividends' as
 (exchange:chararray, symbol:chararray, date:chararray, dividend:float);

Pig now expects your data to have four fields. If it has more, it will truncate the extra
ones. If it has less, it will pad the end of the record with nulls.

It is also possible to specify the schema without giving explicit data types. In this case,
the data type is assumed to be bytearray:

dividends = load 'NYSE_dividends' as (exchange, symbol, date, dividend);

You would expect that this also would force your data into a tuple with
four fields, regardless of the number of actual input fields, just like when
you specify both names and types for the fields. And in Pig 0.9 this is
what happens. But in 0.8 and earlier versions it does not; no truncation
or null padding is done in the case where you do not provide explicit
types for the fields.

Also, when you declare a schema, you do not have to declare the schema of complex
types, but you can if you want to. For example, if your data has a tuple in it, you can
declare that field to be a tuple without specifying the fields it contains. You can also
declare that field to be a tuple that has three columns, all of which are integers. Ta-
ble 4-1 gives the details of how to specify each data type inside a schema declaration.

Schemas | 27

Table 4-1. Schema syntax

Data type Syntax Example

int int as (a:int)

long long as (a:long)

float float as (a:float)

double double as (a:double)

chararray chararray as (a:chararray)

bytearray bytearray as (a:bytearray)

map map[] or map[type], where type is any valid type. This declares all values

in the map to be of this type.

as (a:map[],

b:map[int])

tuple tuple() or tuple(list_of_fields), where list_of_fields is a

comma-separated list of field declarations.

as (a:tuple(),

b:tuple(x:int,

y:int))

bag bag{} or bag{t:(list_of_fields)}, where list_of_fields is a

comma-separated list of field declarations. Note that, oddly enough, the tuple

inside the bag must have a name, here specified as t, even though you will never

be able to access that tuple t directly.

(a:bag{}, b:bag{t:

(x:int, y:int)})

The runtime declaration of schemas is very nice. It makes it easy for users to operate
on data without having to first load it into a metadata system. It also means that if you
are interested in only the first few fields, you only have to declare those fields.

But for production systems that run over the same data every hour or every day, it has
a couple of significant drawbacks. One, whenever your data changes, you have to
change your Pig Latin. Two, although this works fine on data with 5 columns, it is
painful when your data has 100 columns. To address these issues, there is another way
to load schemas in Pig.

If the load function you are using already knows the schema of the data, the function
can communicate that to Pig. (Load functions are how Pig reads data; see
“Load” on page 34 for details.) Load functions might already know the schema be-
cause it is stored in a metadata repository such as HCatalog, or it might be stored in
the data itself (if, for example, the data is stored in JSON format). In this case, you do
not have to declare the schema as part of the load statement. And you can still refer to
fields by name because Pig will fetch the schema from the load function before doing
error checking on your script:

mdata = load 'mydata' using HCatLoader();
cleansed = filter mdata by name is not null;
...

28 | Chapter 4: Pig’s Data Model

But what happens when you cross the streams? What if you specify a schema and the
loader returns one? If they are identical, all is well. If they are not identical, Pig will
determine whether it can adapt the one returned by the loader to match the one you
gave. For example, if you specified a field as a long and the loader said it was an int,
Pig can and will do that cast. However, if it cannot determine a way to make the loader’s
schema fit the one you gave, it will give an error. See “Casts” on page 30 for a list of
casts Pig can and cannot insert to make the schemas work together.

Now let’s look at the case where neither you nor the load function tell Pig what the
data’s schema is. In addition to being referenced by name, fields can be referenced by
position, starting from zero. The syntax is a dollar sign, then the position: $0 refers to
the first field. So it is easy to tell Pig which field you want to work with. But how does
Pig know the data type? It does not, so it starts by assuming everything is a bytearray.
Then it looks at how you use those fields in your script, drawing conclusions about
what you think those fields are and how you want to use them. Consider the following:

--no_schema.pig
daily = load 'NYSE_daily';
calcs = foreach daily generate $7 / 1000, $3 * 100.0, SUBSTRING($0, 0, 1), $6 - $3;

In the expression $7 / 1000, 1000 is an integer, so it is a safe guess that the eighth field
of NYSE_daily is an integer or something that can be cast to an integer. In the same
way, $3 * 100.0 indicates $3 is a double, and the use of $0 in a function that takes a
chararray as an argument indicates the type of $0. But what about the last expression,
$6 - $3? The - operator is used only with numeric types in Pig, so Pig can safely guess
that $3 and $6 are numeric. But should it treat them as integers or floating-point num-
bers? Here Pig plays it safe and guesses that they are floating points, casting them to
doubles. This is the safer bet because if they actually are integers, those can be repre-
sented as floating-point numbers, but the reverse is not true. However, because floating-
point arithmetic is much slower and subject to loss of precision, if these values really
are integers, you should cast them so that Pig uses integer types in this case.

There are also cases where Pig cannot make any intelligent guess:

--no_schema_filter
daily = load 'NYSE_daily';
fltrd = filter daily by $6 > $3;

> is a valid operator on numeric, chararray, and bytearray types in Pig Latin. So, Pig has
no way to make a guess. In this case, it treats these fields as if they were bytearrays,
which means it will do a byte-to-byte comparison of the data in these fields.

Pig also has to handle the case where it guesses wrong and must adapt on the fly.
Consider the following:

--unintended_walks.pig
player = load 'baseball' as (name:chararray, team:chararray,
 pos:bag{t:(p:chararray)}, bat:map[]);
unintended = foreach player generate bat#'base_on_balls' - bat#'ibbs';

Schemas | 29

Because the values in maps can be of any type, Pig has no idea what type
bat#'base_on_balls' and bat#'ibbs' are. By the rules laid out previously, Pig will as-
sume they are doubles. But let’s say they actually turn out to be represented internally
as integers.* In that case, Pig will need to adapt at runtime and convert what it thought
was a cast from bytearray to double into a cast from int to double. Note that it will still
produce a double output and not an int output. This might seem nonintuitive; see
“How Strongly Typed Is Pig?” on page 32 for details on why this is so. It should be
noted that in Pig 0.8 and earlier, much of this runtime adaption code was shaky and
often failed. In 0.9, much of this has been fixed. But if you are using an older version
of Pig, you might need to cast the data explicitly to get the right results.

Finally, Pig’s knowledge of the schema can change at different points in the Pig Latin
script. In all of the previous examples where we loaded data without a schema and then
passed it to a foreach statement, the data started out without a schema. But after the
foreach, the schema is known. Similarly, Pig can start out knowing the schema, but if
the data is mingled with other data without a schema, the schema can be lost. That is,
lack of schema is contagious:

--no_schema_join.pig
divs = load 'NYSE_dividends' as (exchange, stock_symbol, date, dividends);
daily = load 'NYSE_daily';
jnd = join divs by stock_symbol, daily by $1;

In this example, because Pig does not know the schema of daily, it cannot know the
schema of the join of divs and daily.

Casts
The previous sections have referenced casts in Pig without bothering to define how
casts work. The syntax for casts in Pig is the same as in Java—the type name in paren-
theses before the value:

--unintended_walks_cast.pig
player = load 'baseball' as (name:chararray, team:chararray,
 pos:bag{t:(p:chararray)}, bat:map[]);
unintended = foreach player generate (int)bat#'base_on_balls' - (int)bat#'ibbs';

The syntax for specifying types in casts is exactly the same as specifying them in sche-
mas, as shown previously in Table 4-1.

Not all conceivable casts are allowed in Pig. Table 4-2 describes which casts are allowed
between scalar types. Casts to bytearrays are never allowed because Pig does not know
how to represent the various data types in binary format. Casts from bytearrays to any
type are allowed. Casts to and from complex types currently are not allowed, except
from bytearray, although conceptually in some cases they could be.

* That is not the case in the example data. For that to be the case, you would need to use a loader that did load
the bat map with these values as integers.

30 | Chapter 4: Pig’s Data Model

Table 4-2. Supported casts

 To int To long To float To double To chararray

From int Yes. Yes. Yes. Yes.

From long Yes. Any values

greater than

231 or less than

–231 will be

truncated.

 Yes. Yes. Yes.

From

float

Yes. Values will

be truncated to

int values.

Yes. Values will be

truncated to long

values.

 Yes. Yes.

From

double

Yes. Values will

be truncated to

int values.

Yes. Values will be

truncated to long

values.

Yes. Values with preci-

sion beyond what float

can represent will be

truncated.

 Yes.

From

chararray

Yes. Chararrays

with nonnu-

meric characters

result in null.

Yes. Chararrays

with nonnumeric

characters result in

null.

Yes. Chararrays with

nonnumeric charac-

ters result in null.

Yes. Chararrays with

nonnumeric charac-

ters result in null.

One type of casting that requires special treatment is casting from bytearray to other
types. Because bytearray indicates a string of bytes, Pig does not know how to convert
its contents to any other type. Continuing the previous example, both
bat#'base_on_balls' and bat#'ibbs' were loaded as bytearrays. The casts in the script
indicate that you want them treated as ints.

Pig does not know whether integer values in baseball are stored as ASCII strings, Java
serialized values, binary-coded decimal, or some other format. So it asks the load func-
tion, because it is that function’s responsibility to cast bytearrays to other types. In
general this works nicely, but it does lead to a few corner cases where Pig does not know
how to cast a bytearray. In particular, if a UDF returns a bytearray, Pig will not know
how to perform casts on it because that bytearray is not generated by a load function.

Before leaving the topic of casts, we need to consider cases where Pig inserts casts for
the user. These casts are implicit, compared to explicit casts where the user indicates
the cast. Consider the following:

--total_trade_estimate.pig
daily = load 'NYSE_daily' as (exchange:chararray, symbol:chararray,
 date:chararray, open:float, high:float, low:float, close:float,
 volume:int, adj_close:float);
rough = foreach daily generate volume * close;

Schemas | 31

In this case, Pig will change the second line to (float)volume * close to do the operation
without losing precision. In general, Pig will always widen types to fit when it needs to
insert these implicit casts. So, int and long together will result in a long; int or long and
float will result in a float; and int, long, or float and double will result in a double. There
are no implicit casts between numeric types and chararrays or other types.

How Strongly Typed Is Pig?
In a strongly typed computer language (e.g., Java), the user must declare up front the
type for all variables. In weakly typed languages (e.g., Perl), variables can take on values
of different type and adapt as the occasion demands. So which is Pig? For the most part
it is strongly typed. If you describe the schema of your data, Pig expects your data to
be what you said. But when Pig does not know the schema, it will adapt to the actual
types at runtime. (Perhaps we should say Pig is “gently typed.” It is strong but willing
to work with data that does not live up to its expectations.) To see the differences
between these two cases, look again at this example:

--unintended_walks.pig
player = load 'baseball' as (name:chararray, team:chararray,
 pos:bag{t:(p:chararray)}, bat:map[]);
unintended = foreach player generate bat#'base_on_balls' - bat#'ibbs';

In this example, remember we are pretending that the values for base_on_balls and
ibbs turn out to be represented as integers internally (that is, the load function con-
structed them as integers). If Pig were weakly typed, the output of unintended would
be records with one field typed as an integer. As it is, Pig will output records with one
field typed as a double. Pig will make a guess and then do its best to massage the data
into the types it guessed.

The downside here is that users coming from weakly typed languages are surprised,
and perhaps frustrated, when their data comes out as a type they did not anticipate.
However, on the upside, by looking at a Pig Latin script it is possible to know what the
output data type will be in these cases without knowing the input data.

32 | Chapter 4: Pig’s Data Model

CHAPTER 5

Introduction to Pig Latin

It is time to dig into Pig Latin. This chapter provides you with the basics of Pig Latin,
enough to write your first useful scripts. More advanced features of Pig Latin are covered
in Chapter 6.

Preliminary Matters
Pig Latin is a dataflow language. Each processing step results in a new data set, or
relation. In input = load 'data', input is the name of the relation that results from
loading the data set data. A relation name is referred to as an alias. Relation names look
like variables, but they are not. Once made, an assignment is permanent. It is possible
to reuse relation names; for example, this is legitimate:

A = load 'NYSE_dividends' (exchange, symbol, date, dividends);
A = filter A by dividends > 0;
A = foreach A generate UPPER(symbol);

However, it is not recommended. It looks here as if you are reassigning A, but really
you are creating new relations called A, losing track of the old relations called A. Pig is
smart enough to keep up, but it still is not a good practice. It leads to confusion when
trying to read your programs (which A am I referring to?) and when reading error
messages.

In addition to relation names, Pig Latin also has field names. They name a field (or
column) in a relation. In the previous snippet of Pig Latin, dividends and symbol are
examples of field names. These are somewhat like variables in that they will contain a
different value for each record as it passes through the pipeline, but you cannot assign
values to them.

Both relation and field names must start with an alphabetic character, and then they
can have zero or more alphabetic, numeric, or _ (underscore) characters. All characters
in the name must be ASCII.

33

Case Sensitivity
Unfortunately, Pig Latin cannot decide whether it is case-sensitive. Keywords in Pig
Latin are not case-sensitive; for example, LOAD is equivalent to load. But relation and
field names are. So A = load 'foo'; is not equivalent to a = load 'foo';. UDF names
are also case-sensitive, thus COUNT is not the same UDF as count.

Comments
Pig Latin has two types of comment operators: SQL-style single-line comments (--)
and Java-style multiline comments (/* */). For example:

A = load 'foo'; --this is a single-line comment
/*
 * This is a multiline comment.
 */
B = load /* a comment in the middle */'bar';

Input and Output
Before you can do anything of interest, you need to be able to add inputs and outputs
to your data flows.

Load
The first step to any data flow is to specify your input. In Pig Latin this is done with the
load statement. By default, load looks for your data on HDFS in a tab-delimited file
using the default load function PigStorage. divs = load '/data/examples/NYSE_divi
dends'; will look for a file called NYSE_dividends in the directory /data/examples. You
can also specify relative path names. By default, your Pig jobs will run in your home
directory on HDFS, /users/yourlogin. Unless you change directories, all relative paths
will be evaluated from there. You can also specify a full URL for the path, for example,
hdfs://nn.acme.com/data/examples/NYSE_dividends to read the file from the HDFS in-
stance that has nn.acme.com as a NameNode.

In practice, most of your data will not be in tab-separated text files. You also might be
loading data from storage systems other than HDFS. Pig allows you to specify the
function for loading your data with the using clause. For example, if you wanted to
load your data from HBase, you would use the loader for HBase:

divs = load 'NYSE_dividends' using HBaseStorage();

If you do not specify a load function, the built-in function PigStorage will be used. You
can also pass arguments to your load function via the using clause. For example, if you
are reading comma-separated text data, PigStorage takes an argument to indicate which
character to use as a separator:

divs = load 'NYSE_dividends' using PigStorage(',');

34 | Chapter 5: Introduction to Pig Latin

www.allitebooks.com

http://www.allitebooks.org

The load statement also can have an as clause, which allows you to specify the schema
of the data you are loading. (The syntax and semantics of declaring schemas in Pig Latin
is discussed in “Schemas” on page 27.)

divs = load 'NYSE_dividends' as (exchange, symbol, date, dividends);

When specifying a “file” to read from HDFS, you can specify directories. In this case,
Pig will find all files under the directory you specify and use them as input for that
load statement. So, if you had a directory input with two datafiles today and yester-
day under it, and you specified input as your file to load, Pig will read both today and
yesterday as input. If the directory you specify has other directories, files in those di-
rectories will be included as well.

PigStorage and TextLoader, the two built-in Pig load functions that operate on HDFS
files, support globs.* With globs, you can read multiple files that are not under the same
directory or read some but not all files under a directory. Table 5-1 describes globs that
are valid in Hadoop 0.20. Be aware that glob meaning is determined by HDFS under-
neath Pig, so the globs that will work for you depend on your version of HDFS. Also,
if you are issuing Pig Latin commands from a Unix shell command line, you will need
to escape many of the glob characters to prevent your shell from expanding them.

Table 5-1. Globs in Hadoop 0.20

Glob Meaning

? Matches any single character.

* Matches zero or more characters.

[abc] Matches a single character from character set (a,b,c).

[a-z] Matches a single character from the character range (a..z), inclusive. The first character must be lexicographically

less than or equal to the second character.

[^abc] Matches a single character that is not in the character set (a, b, c). The ^ character must occur immediately to the

right of the opening bracket.

[^a-z] Matches a single character that is not from the character range (a..z), inclusive. The ^ character must occur

immediately to the right of the opening bracket.

\c Removes (escapes) any special meaning of character c.

{ab,cd} Matches a string from the string set {ab, cd}.

* Any loader that uses FileInputFormat as its InputFormat will support globs. Most loaders that load data from
HDFS use this InputFormat.

Input and Output | 35

Store
After you have finished processing your data, you will want to write it out somewhere.
Pig provides the store statement for this purpose. In many ways it is the mirror image
of the load statement. By default, Pig stores your data on HDFS in a tab-delimited file
using PigStorage:†

store processed into '/data/examples/processed';

Pig will write the results of your processing into a directory processed in the direc-
tory /data/examples. You can specify relative path names, as well as a full URL for the
path, such as hdfs://nn.acme.com/data/examples/processed.

If you do not specify a store function, PigStorage will be used. You can specify a different
store function with a using clause:

store processed into 'processed' using
 HBaseStorage();

You can also pass arguments to your store function. For example, if you want to store
your data as comma-separated text data, PigStorage takes an argument to indicate
which character to use as a separator:

store processed into 'processed' using PigStorage(',');

As noted in “Running Pig” on page 13, when writing to a filesystem, processed will be
a directory with part files rather than a single file. But how many part files will be
created? That depends on the parallelism of the last job before the store. If it has re-
duces, it will be determined by the parallel level set for that job. See “Paral-
lel” on page 49 for information on how this is determined. If it is a map-only job, it
will be determined by the number of maps, which is controlled by Hadoop and not Pig.

Dump
In most cases you will want to store your data somewhere when you are done processing
it. But occasionally you will want to see it on the screen. This is particularly useful
during debugging and prototyping sessions. It can also be useful for quick ad hoc jobs.
dump directs the output of your script to your screen:

dump processed;

Up through version 0.7, the output of dump matches the format of constants in Pig Latin.
So, longs are followed by an L, and floats by an F, and maps are surrounded by []
(brackets), tuples by () (parentheses), and bags by {} (braces). Starting with version
0.8, the L for longs and F for floats have been dropped, though the markers for the
complex types have been kept. Nulls are indicated by missing values, and fields are
separated by commas. Because each record in the output is a tuple, it is surrounded by
().

† A single function can be both a load and store function, as PigStorage is.

36 | Chapter 5: Introduction to Pig Latin

Relational Operations
Relational operators are the main tools Pig Latin provides to operate on your data. They
allow you to transform it by sorting, grouping, joining, projecting, and filtering. This
section covers the basic relational operators. More advanced features of these operators,
as well as advanced relational operators, are covered in “Advanced Relational Opera-
tions” on page 57. What is covered here will be enough to get you started program-
ming in Pig Latin.

foreach
foreach takes a set of expressions and applies them to every record in the data pipeline,
hence the name foreach. From these expressions it generates new records to send down
the pipeline to the next operator. For those familiar with database terminology, it is
Pig’s projection operator. For example, the following code loads an entire record, but
then removes all but the user and id fields from each record:

A = load 'input' as (user:chararray, id:long, address:chararray, phone:chararray,
 preferences:map[]);
B = foreach A generate user, id;

Expressions in foreach

foreach supports an array of expressions. The simplest are constants and field refer-
ences. The syntax for constants has already been discussed in “Types” on page 23. Field
references can be by name (as shown in the preceding example) or by position. Posi-
tional references are preceded by a $ (dollar sign) and start from 0:

prices = load 'NYSE_daily' as (exchange, symbol, date, open, high, low, close,
 volume, adj_close);
gain = foreach prices generate close - open;
gain2 = foreach prices generate $6 - $3;

Relations gain and gain2 will contain the same values. Positional style references are
useful in situations where the schema is unknown or undeclared.

In addition to using names and positions, you can refer to all fields using * (asterisk),
which produces a tuple that contains all the fields. Beginning in version 0.9, you can
also refer to ranges of fields using .. (two periods). This is particularly useful when you
have many fields and do not want to repeat them all in your foreach command:

prices = load 'NYSE_daily' as (exchange, symbol, date, open,
 high, low, close, volume, adj_close);
beginning = foreach prices generate ..open; -- produces exchange, symbol, date, open
middle = foreach prices generate open..close; -- produces open, high, low, close
end = foreach prices generate volume..; -- produces volume, adj_close

Standard arithmetic operators for integers and floating-point numbers are supported:
+ for addition, - for subtraction, * for multiplication, and / for division. These operators
return values of their own type, so 5/2 is 2, whereas 5.0/2.0 is 2.5. In addition, for

Relational Operations | 37

integers the modulo operator % is supported. The unary negative operator (-) is also
supported for both integers and floating-point numbers. Pig Latin obeys the standard
mathematical precedence rules. For information on what happens when arithmetic
operators are applied across different types (for example, 5/2.0), see
“Casts” on page 30.

Null values are viral for all arithmetic operators. That is, x + null = null for all values
of x.

Pig also provides a binary condition operator, often referred to as bincond. It begins
with a Boolean test, followed by a ?, then the value to return if the test is true, then
a :, and finally the value to return if the test is false. If the test returns null, bincond
returns null. Both value arguments of the bincond must return the same type:

2 == 2 ? 1 : 4 --returns 1
2 == 3 ? 1 : 4 --returns 4
null == 2 ? 1 : 4 -- returns null
2 == 2 ? 1 : 'fred' -- type error; both values must be of the same type

To extract data from complex types, use the projection operators. For maps this is #
(the pound or hash), followed by the name of the key as a string. Keep in mind that the
value associated with a key may be of any type. If you reference a key that does not
exist in the map, the result is a null:

bball = load 'baseball' as (name:chararray, team:chararray,
 position:bag{t:(p:chararray)}, bat:map[]);
avg = foreach bball generate bat#'batting_average';

Tuple projection is done with ., the dot operator. As with top-level records, the field
can be referenced by name (if you have a schema for the tuple) or by position. Refer-
encing a nonexistent positional field in the tuple will return null. Referencing a field
name that does not exist in the tuple will produce an error:

A = load 'input' as (t:tuple(x:int, y:int));
B = foreach A generate t.x, t.$1;

Bag projection is not as straightforward as map and tuple projection. Bags do not guar-
antee that their tuples are stored in any order, so allowing a projection of the tuple
inside the bag would not be meaningful. Instead, when you project fields in a bag, you
are creating a new bag with only those fields:

A = load 'input' as (b:bag{t:(x:int, y:int)});
B = foreach A generate b.x;

This will produce a new bag whose tuples have only the field x in them. You can project
multiple fields in a bag by surrounding the fields with parentheses and separating them
by commas:

A = load 'input' as (b:bag{t:(x:int, y:int)});
B = foreach A generate b.(x, y);

This seemingly pedantic distinction that b.x is a bag and not a scalar value has conse-
quences. Consider the following Pig Latin, which will not work:

38 | Chapter 5: Introduction to Pig Latin

A = load 'foo' as (x:chararray, y:int, z:int);
B = group A by x; -- produces bag A containing all the records for a given value of x
C = foreach B generate SUM(A.y + A.z);

It is clear what the programmer is trying to do here. But because A.y and B.y are bags
and the addition operator is not defined on bags, this will produce an error.‡ The correct
way to do this calculation in Pig Latin is:

A = load 'foo' as (x:chararray, y:int, z:int);
A1 = foreach A generate x, y + z as yz;
B = group A1 by x;
C = foreach B generate SUM(A1.yz);

UDFs in foreach

User Defined Functions (UDFs) can be invoked in foreach. These are called evaluation
functions, or eval funcs. Because they are part of a foreach statement, these UDFs take
one record at a time and produce one output. Keep in mind that either the input or the
output can be a bag, so this one record can contain a bag of records:

-- udf_in_foreach.pig
divs = load 'NYSE_dividends' as (exchange, symbol, date, dividends);
 --make sure all strings are uppercase
upped = foreach divs generate UPPER(symbol) as symbol, dividends;
grpd = group upped by symbol; --output a bag upped for each value of symbol
--take a bag of integers, produce one result for each group
sums = foreach grpd generate group, SUM(upped.dividends);

In addition, eval funcs can take * as an argument, which passes the entire record to the
function. They can also be invoked with no arguments at all.

For a complete list of UDFs that are provided with Pig, see Appendix A. For a discussion
of how to invoke UDFs not distributed as part of Pig, see “User Defined Func-
tions” on page 51.

Naming fields in foreach

The result of each foreach statement is a new tuple, usually with a different schema
than the tuple that was an input to foreach. Pig can infer the data types of the fields in
this schema from the foreach statement. But it cannot always infer the names of those
fields. For fields that are simple projections with no other operators applied, Pig keeps
the same name as before:

divs = load 'NYSE_dividends' as (exchange:chararray, symbol:chararray,
 date:chararray, dividends:float);

‡ You might object and say that Pig could figure out what is intended here and do it, since SUM(A.y + A.z)
could be decomposed to “foreach record in A, add y and z and then take the sum.” This is true. But when
we change the group to a cogroup so that there are two bags A and B involved (see “cogroup” on page 66)
and change the sum to SUM(A.y + B.z), because neither A nor B guarantee any ordering, this is not a well-
defined operation. In designing the language, we thought it better to be consistent and always say that bags
could not be added rather than allow it in some instances and not others.

Relational Operations | 39

sym = foreach divs generate symbol;
describe sym;

sym: {symbol: chararray}

Once any expression beyond simple projection is applied, Pig does not assign a name
to the field. If you do not explicitly assign a name, the field will be nameless and will
be addressable only via a positional parameter, for example, $0. You can assign a name
with the as clause:

divs = load 'NYSE_dividends' as (exchange:chararray, symbol:chararray,
 date:chararray, dividends:float);
in_cents = foreach divs generate dividends * 100.0 as dividend, dividends * 100.0;
describe in_cents;

in_cents: {dividend: double,double}

Notice that in foreach the as is attached to each expression. This is different than
load, where it is attached to the entire statement. The reason for this will become clear
when we discuss flatten in “flatten” on page 57.

Filter
The filter statement allows you to select which records will be retained in your data
pipeline. A filter contains a predicate. If that predicate evaluates to true for a given
record, that record will be passed down the pipeline. Otherwise, it will not.

Predicates can contain the equality operators you expect, including == to test equality,
and !=, >, >=, <, and <=. These comparators can be used on any scalar data type. ==
and != can be applied to maps and tuples. To use these with two tuples, both tuples
must have either the same schema or no schema. None of the equality operators can
be applied to bags.

Pig Latin follows the operator precedence that is standard in most programming lan-
guages, where arithmetic operators have precedence over equality operators. So, x + y
== a + b is equivalent to (x + y) == (a + b).

For chararrays, users can test to see whether the chararray matches a regular expression:

-- filter_matches.pig
divs = load 'NYSE_dividends' as (exchange:chararray, symbol:chararray,
 date:chararray, dividends:float);
startswithcm = filter divs by symbol matches 'CM.*';

Pig uses Java’s regular expression format. This format requires the entire
chararray to match, not just a portion as in Perl-style regular expres-
sions. For example, if you are looking for all fields that contain the string
“fred”, you must say '.*fred.*' and not 'fred'. The latter will match
only the chararray fred.

40 | Chapter 5: Introduction to Pig Latin

http://download.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

You can find chararrays that do not match a regular expression by preceding the test
with not:

-- filter_not_matches.pig
divs = load 'NYSE_dividends' as (exchange:chararray, symbol:chararray,
 date:chararray, dividends:float);
notstartswithcm = filter divs by not symbol matches 'CM.*';

You can combine multiple predicates into one by using the Boolean operators and and
or, and you can reverse the outcome of any predicate by using the Boolean not operator.
As is standard, the precedence of Boolean operators, from highest to lowest, is not, and,
or. Thus a and b or not c is equivalent to (a and b) or (not c).

Pig will short-circuit Boolean operations when possible. If the first (left) predicate of
an and is false, the second (right) will not be evaluated. So in 1 == 2 and udf(x), the
UDF will never be invoked. Similarly, if the first predicate of an or is true, the second
predicate will not be evaluted. 1 == 1 or udf(x) will never invoke the UDF.

For Boolean operators, nulls follow the SQL trinary logic. Thus x == null results in a
value of null, not true (even when x is null also) or false. Filters pass through only
those values that are true. So for a field that had three values 2, null, and 4, if you
applied a filter x == 2 to it, only the first record where the value is 2 would be passed
through the filter. Likewise, x != 2 would return only the last record where the value
is 4. The way to look for null values is to use the is null operator, which returns true
whenever the value is null. To find values that are not null, use is not null.

Likewise, null neither matches nor fails to match any regular expression value.

Just as there are UDFs to be used in evaluation expressions, there are UDFs specifically
for filtering records, called filter funcs. These are eval funcs that return a Boolean value
and can be invoked in the filter statement. Filter funcs cannot be used in foreach
statements.

Group
The group statement collects together records with the same key. It is the first operator
we have looked at that shares its syntax with SQL, but it is important to understand
that the grouping operator in Pig Latin is fundamentally different than the one in SQL.
In SQL the group by clause creates a group that must feed directly into one or more
aggregate functions. In Pig Latin there is no direct connection between group and ag-
gregate functions. Instead, group does exactly what it says: collects all records with the
same value for the provided key together into a bag. You can then pass this to an
aggregate function if you want or do other things with it:

-- count.pig
daily = load 'NYSE_daily' as (exchange, stock);
grpd = group daily by stock;
cnt = foreach grpd generate group, COUNT(daily);

Relational Operations | 41

That example groups records by the key stock and then counts them. It is just as le-
gitimate to group them and then store them for processing at a later time:

-- group.pig
daily = load 'NYSE_daily' as (exchange, stock);
grpd = group daily by stock;
store grpd into 'by_group';

The records coming out of the group by statement have two fields, the key and the bag
of collected records. The key field is named group.§ The bag is named for the alias that
was grouped, so in the previous examples it will be named daily and have the same
schema as the relation daily. If the relation daily has no schema, the bag daily will
have no schema. For each record in the group, the entire record (including the key) is
in the bag. Changing the last line of the previous script from store grpd... to describe
grpd; will produce:

grpd: {group: bytearray,daily: {exchange: bytearray,stock: bytearray}}

You can also group on multiple keys, but the keys must be surrounded by parentheses.
The resulting records still have two fields. In this case, the group field is a tuple with a
field for each key:

--twokey.pig
daily = load 'NYSE_daily' as (exchange, stock, date, dividends);
grpd = group daily by (exchange, stock);
avg = foreach grpd generate group, AVG(daily.dividends);
describe grpd;
grpd: {group: (exchange: bytearray,stock: bytearray),daily: {exchange: bytearray,
 stock: bytearray,date: bytearray,dividends: bytearray}}

You can also use all to group together all of the records in your pipeline:

--countall.pig
daily = load 'NYSE_daily' as (exchange, stock);
grpd = group daily all;
cnt = foreach grpd generate COUNT(daily);

The record coming out of group all has the chararray literal all as a key. Usually this
does not matter because you will pass the bag directly to an aggregate function such as
COUNT. But if you plan to store the record or use it for another purpose, you might want
to project out the artificial key first.

group is the first operator we have looked at that usually will force a reduce phase.
Grouping means collecting all records where the key has the same value. If the pipeline
is in a map phase, this will force it to shuffle and then reduce. If the pipeline is already
in a reduce, this will force it to pass through map, shuffle, and reduce phases.

§ Thus the keyword group is overloaded in Pig Latin. This is unfortunate and confusing, but also hard to change
now.

42 | Chapter 5: Introduction to Pig Latin

Because grouping collects all records together with the same value for the key, you often
get skewed results. That is, just because you have specified that your job have 100
reducers, there is no reason to expect that the number of values per key will be dis-
tributed evenly. They might have a Gaussian or power law distribution.‖ For example,
suppose you have an index of web pages and you group by the base URL. Certain values
such as yahoo.com are going to have far more entries than most, which means that some
reducers get far more data than others. Because your MapReduce job is not finished
(and any subsequent ones cannot start) until all your reducers have finished, this skew
will significantly slow your processing. In some cases it will also be impossible for one
reducer to manage that much data.

Pig has a number of ways that it tries to manage this skew to balance out the load across
your reducers. The one that applies to grouping is Hadoop’s combiner. For details of
how Hadoop’s combiner works, see “Combiner Phase” on page 190. This does not
remove all skew, but it places a bound on it. And because for most jobs the number of
mappers will be at most in the tens of thousands, even if the reducers get a skewed
number of records, the absolute number of records per reducer will be small enough
that the reducers can handle them quickly.

Unfortunately, not all calculations can be done using the combiner. Calculations that
can be decomposed into any number of steps, such as sum, are called distributive. These
fit nicely into the combiner. Calculations that can be decomposed into an initial step,
any number of intermediate steps, and a final step are referred to as algebraic. Count
is an example of such a function, where the initial step is a count and the intermediate
and final steps are sums. Distributive is a special case of algebraic, where the initial,
intermediate, and final steps are all the same. Session analysis, where you want to track
a user’s actions on a website, is an example of a calculation that is not algebraic. You
must have all the records sorted by timestamp before you can start analyzing their
interaction with the site.

Pig’s operators and built-in UDFs use the combiner whenever possible, because of its
skew-reducing features and because early aggregation greatly reduces the amount of
data shipped over the network and written to disk, thus speeding performance signif-
icantly. UDFs can indicate when they can work with the combiner by implementing
the Algebraic interface. For information on how to make your UDFs use the combiner,
see “Algebraic Interface” on page 135.

For information on how to determine the level of parallelism when executing your
group operation, see “Parallel” on page 49. Also, keep in mind that when using group
all, you are necessarily serializing your pipeline. That is, this step and any step after it
until you split out the single bag now containing all of your records will not be done in
parallel.

‖ In my experience, the vast majority of data tracking human activity follows a power law distribution.

Relational Operations | 43

Finally, group handles nulls in the same way that SQL handles them: by collecting all
records with a null key into the same group. Note that this is in direct contradiction to
the way expressions handle nulls (remember that neither null == null nor null !=
null are true) and to the way join (see “Join” on page 45) handles nulls.

Order by
The order statement sorts your data for you, producing a total order of your output
data. Total order means that not only is the data sorted in each partition of your data,
it is also guaranteed that all records in partition n are less than all records in partition
n - 1 for all n. When your data is stored on HDFS, where each partition is a part file,
this means that cat will output your data in order.

The syntax of order is similar to group. You indicate a key or set of keys by which you
wish to order your data. One glaring difference is that there are no parentheses around
the keys when multiple keys are indicated in order:

--order.pig
daily = load 'NYSE_daily' as (exchange:chararray, symbol:chararray,
 date:chararray, open:float, high:float, low:float, close:float,
 volume:int, adj_close:float);
bydate = order daily by date;

--order2key.pig
daily = load 'NYSE_daily' as (exchange:chararray, symbol:chararray,
 date:chararray, open:float, high:float, low:float,
 close:float, volume:int, adj_close:float);
bydatensymbol = order daily by date, symbol;

It is also possible to reverse the order of the sort by appending desc to a key in the sort.
In order statements with multiple keys, desc applies only to the key it immediately
follows. Other keys will still be sorted in ascending order:

--orderdesc.pig
daily = load 'NYSE_daily' as (exchange:chararray, symbol:chararray,
 date:chararray, open:float, high:float, low:float, close:float,
 volume:int, adj_close:float);
byclose = order daily by close desc, open;
dump byclose; -- open still sorted in ascending order

Data is sorted based on the types of the indicated fields: numeric values are sorted
numerically, chararray fields are sorted lexically, and bytearray fields are sorted lexi-
cally, using byte values rather than character values. Sorting by maps, tuples, or bags
produces errors. For all data types, nulls are taken to be smaller than all possible values
for that type, and thus will always appear first (or last when desc is used).

44 | Chapter 5: Introduction to Pig Latin

www.allitebooks.com

http://www.allitebooks.org

As discussed earlier in “Group” on page 41, skew of the values in data is very common.
This affects order just as it does group, causing some reducers to take significantly longer
than others. To address this, Pig balances the output across reducers. It does this by
first sampling the input of the order statement to get an estimate of the key distribution.
Based on this sample, it then builds a partitioner that produces a balanced total order
(for details on what a partitioner is, see “Shuffle Phase” on page 191). For example,
suppose you are ordering on a chararray field with the values a, b, e, e, e, e, e, e,
m, q, r, z, and you have three reducers. The partitioner in this case would decide to
partition your data such that values a-e go to reducer 1, e goes to reducer 2, and m-z
go to reducer 3. Notice that the value e can be sent to either reducer 1 or 2. Some records
with key e will be sent to reducer 1 and some to 2. This allows the partitioner to dis-
tribute the data evenly. In practice, we rarely see variance in reducer time exceed 10%
when using this algorithm.

An important side effect of the way Pig distributes records to minimize skew is that it
breaks the MapReduce convention that all instances of a given key are sent to the same
partition. If you have other processing that depends on this convention, do not use
Pig’s order statement to sort data for it.

order always causes your data pipeline to go through a reduce phase. This is necessary
to collect all equal records together. Also, Pig adds an additional MapReduce job to
your pipeline to do the sampling. Because this sampling is very lightweight (it reads
only the first record of every block), it generally takes less than 5% of the total job time.

Distinct
The distinct statement is very simple. It removes duplicate records. It works only on
entire records, not on individual fields:

--distinct.pig
-- find a distinct list of ticker symbols for each exchange
-- This load will truncate the records, picking up just the first two fields.
daily = load 'NYSE_daily' as (exchange:chararray, symbol:chararray);
uniq = distinct daily;

Because it needs to collect like records together in order to determine whether they are
duplicates, distinct forces a reduce phase. It does make use of the combiner to remove
any duplicate records it can delete in the map phase.

The use of distinct shown here is equivalent to select distinct x in SQL. To learn
how to do the equivalent of select count(distinct x), see “Nested fore-
ach” on page 59.

Join
join is one of the workhorses of data processing, and it is likely to be in many of your
Pig Latin scripts. join selects records from one input to put together with records from

Relational Operations | 45

another input. This is done by indicating keys for each input. When those keys are
equal,# the two rows are joined. Records for which no match is found are dropped:

--join.pig
daily = load 'NYSE_daily' as (exchange, symbol, date, open, high, low, close,
 volume, adj_close);
divs = load 'NYSE_dividends' as (exchange, symbol, date, dividends);
jnd = join daily by symbol, divs by symbol;

You can also join on multiple keys. In all cases you must have the same number of keys,
and they must be of the same or compatible types (where compatible means that an
implicit cast can be inserted; see “Casts” on page 30):

-- join2key.pig
daily = load 'NYSE_daily' as (exchange, symbol, date, open, high, low, close,
 volume, adj_close);
divs = load 'NYSE_dividends' as (exchange, symbol, date, dividends);
jnd = join daily by (symbol, date), divs by (symbol, date);

Like foreach, join preserves the names of the fields of the inputs passed to it. It also
prepends the name of the relation the field came from, followed by a ::. Adding
describe jnd; to the end of the previous example produces:

jnd: {daily::exchange: bytearray,daily::symbol: bytearray,daily::date: bytearray,
daily::open: bytearray,daily::high: bytearray,daily::low: bytearray,
daily::close: bytearray,daily::volume: bytearray,daily::adj_close: bytearray,
divs::exchange: bytearray,divs::symbol: bytearray,divs::date: bytearray,
divs::dividends: bytearray}

The daily:: prefix needs to be used only when the field name is no longer unique in
the record. In this example, you will need to use daily::date or divs::date if you wish
to refer to one of the date fields after the join. But fields such as open and divs do not
need a prefix because there is no ambiguity.

Pig also supports outer joins. In outer joins, records that do not have a match on the
other side are included, with null values being filled in for the missing fields. Outer
joins can be left, right, or full. A left outer join means records from the left side will
be included even when they do not have a match on the right side. Likewise, a right
outer joins means records from the right side will be included even when they do not
have a match on the left side. A full outer join means records from both sides are taken
even when they do not have matches:

--leftjoin.pig
daily = load 'NYSE_daily' as (exchange, symbol, date, open, high, low, close,
 volume, adj_close);
divs = load 'NYSE_dividends' as (exchange, symbol, date, dividends);
jnd = join daily by (symbol, date) left outer, divs by (symbol, date);

#Actually, joins can be on any condition, not just equality, but Pig only supports joins on equality (called equi-
joins). See “cross” on page 68 for information on how to do non-equi-joins in Pig.

46 | Chapter 5: Introduction to Pig Latin

outer is a noise word and can be omitted. Unlike some SQL implementations, full is
not a noise word. C = join A by x outer, B by u; will generate a syntax error, not a
full outer join.

Outer joins are supported only when Pig knows the schema of the data on the side(s)
for which it might need to fill in nulls. Thus for left outer joins, it must know the schema
of the right side; for right outer joins, it must know the schema of the left side; and for
full outer joins, it must know both. This is because, without the schema, Pig will not
know how many null values to fill in.*

As in SQL, null values for keys do not match anything, even null values from the other
input. So, for inner joins, all records with null key values are dropped. For outer joins,
they will be retained but will not match any records from the other input.

Pig can also do multiple joins in a single operation, as long as they are all being joined
on the same key(s). This can be done only for inner joins:

A = load 'input1' as (x, y);
B = load 'input2' as (u, v);
C = load 'input3' as (e, f);
alpha = join A by x, B by u, C by e;

Self joins are supported, though the data must be loaded twice:

--selfjoin.pig
-- For each stock, find all dividends that increased between two dates
divs1 = load 'NYSE_dividends' as (exchange:chararray, symbol:chararray,
 date:chararray, dividends);
divs2 = load 'NYSE_dividends' as (exchange:chararray, symbol:chararray,
 date:chararray, dividends);
jnd = join divs1 by symbol, divs2 by symbol;
increased = filter jnd by divs1::date < divs2::date and
 divs1::dividends < divs2::dividends;

If the preceding code were changed to the following, it would fail:

--selfjoin.pig
-- For each stock, find all dividends that increased between two dates
divs1 = load 'NYSE_dividends' as (exchange:chararray, symbol:chararray,
 date:chararray, dividends);
jnd = join divs1 by symbol, divs1 by symbol;
increased = filter jnd by divs1::date < divs2::date and
 divs1::dividends < divs2::dividends;

It seems like this ought to work, since Pig could split the divs1 data set and send it to
join twice. But the problem is that field names would be ambiguous after the join, so
the load statement must be written twice. The next best thing would be for Pig to figure

* You may object that Pig could determine this by looking at other records in the join and inferring the correct
number of fields. However, this does not work for two reasons. First, when no schema is present, Pig does
not enforce a semantic that every record has the same schema. So, assuming Pig can infer one record from
another is not valid. Second, there might be no records in the join that match, and thus Pig might have no
record to infer from.

Relational Operations | 47

out that these two load statements are loading the same input and then run the load
only once, but it does not do that currently.

Pig does these joins in MapReduce by using the map phase to annotate each record
with which input it came from. It then uses the join key as the shuffle key. Thus join
forces a new reduce phase. Once all of the records with the same value for the key are
collected together, Pig does a cross product between the records from both inputs. To
minimize memory usage, it has MapReduce order the records coming into the reducer
using the input annotation it added in the map phase. Thus all of the records for the
left input arrive first. Pig caches these in memory. All of the records for the right input
arrive second. As each of these records arrives, it is crossed with each record from the
left side to produce an output record. In a multiway join, the left n - 1 inputs are held
in memory, and the nth is streamed through. It is important to keep this in mind when
writing joins in your Pig queries if you know that one of your inputs has more records
per value of the chosen key. Placing that input on the right side of your join will lower
memory usage and possibly increase your script’s performance.

Limit
Sometimes you want to see only a limited number of results. limit allows you do this:

--limit.pig
divs = load 'NYSE_dividends';
first10 = limit divs 10;

The example here will return at most 10 lines (if your input has less than 10 lines total,
it will return them all). Note that for all operators except order, Pig does not guarantee
the order in which records are produced. Thus, because NYSE_dividends has more than
10 records, the example script could return different results every time. Putting an order
immediately before the limit will guarantee that the same results are returned every
time.

limit causes an additional reduce phase, since it needs to collect the records together
to count how many it is returning. It does optimize this phase by limiting the output
of each map and then applying the limit again in the reducer. In the case where limit
is combined with order, the two are done together on the map and reduce. That is, on
the map side, the records are sorted by MapReduce and the limit applied in the
combiner. They are sorted again by MapReduce as part of the shuffle, and Pig applies
the limit again in the reducer.

One possible optimization that Pig does not do is terminate reading of the input early
once it has reached the number of records specified by limit. So, in the example, if you
hoped to use this to read just a tiny slice of your input, you will be disappointed. Pig
will still read it all.

48 | Chapter 5: Introduction to Pig Latin

Sample
sample offers a simple way to get a sample of your data. It reads through all of your data
but returns only a percentage of rows. What percentage it returns is expressed as a
double value, between 0 and 1. So, in the following example, 0.1 indicates 10%:

--sample.pig
divs = load 'NYSE_dividends';
some = sample divs 0.1;

Currently the sampling algorithm is very simple. The sample A by 0.1 is rewritten to
filter A by random() <= 0.1. Obviously this is nondeterministic, so results of a script
with sample will vary with every run. Also, the percentage will not be an exact match,
but close. There has been discussion about adding more sophisticated sampling tech-
niques, but it has not been done yet.

Parallel
One of Pig’s core claims is that it provides a language for parallel data processing. One
of the tenets of Pig’s philosophy is that Pigs are domestic animals (see “Pig Philoso-
phy” on page 9), so Pig prefers that you tell it how parallel to be. To do this, it provides
the parallel clause.

The parallel clause can be attached to any relational operator in Pig Latin. However,
it controls only reduce-side parallelism, so it makes sense only for operators that force
a reduce phase. These are: group*, order, distinct, join*, limit, cogroup*, and cross.
Operators marked with an asterisk have multiple implementations, some of which force
a reduce and some which do not. For details on this and on operators not covered in
this chapter, see Chapter 6. parallel is ignored in local mode because all operations
happen serially in local mode:

--parallel.pig
daily = load 'NYSE_daily' as (exchange, symbol, date, open, high, low, close,
 volume, adj_close);
bysymbl = group daily by symbol parallel 10;

In this example, parallel will cause the MapReduce job spawned by Pig to have 10
reducers. parallel clauses apply only to the statement to which they are attached; they
do not carry through the script. So if this group were followed by an order, parallel
would need to be set for that order separately. Most likely the group will reduce your
data size significantly and you will want to change the parallelism:

--parallel.pig
daily = load 'NYSE_daily' as (exchange, symbol, date, open, high, low, close,
 volume, adj_close);
bysymbl = group daily by symbol parallel 10;
average = foreach bysymbl generate group, AVG(daily.close) as avg;
sorted = order average by avg desc parallel 2;

Relational Operations | 49

If, however, you do not want to set parallel separately for every reduce-invoking op-
erator in your script, you can set a script-wide value using the set command:

--defaultparallel.pig
set default_parallel 10;
daily = load 'NYSE_daily' as (exchange, symbol, date, open, high, low, close,
 volume, adj_close);
bysymbl = group daily by symbol;
average = foreach bysymbl generate group, AVG(daily.close) as avg;
sorted = order average by avg desc;

In this script, all MapReduce jobs will be done with 10 reduces. When you set a default
parallel level, you can still add a parallel clause to any statement to override the default
value. Thus it can be helpful to set a default value as a base to use in most cases, and
specifically add a parallel clause only when you have an operator that needs a different
value.

All of this is rather static, however. What happens if you run the same script across
different inputs that have different characteristics? Or what if your input data varies
significantly sometimes? You do not want to have to edit your script each time. Using
parameter substitution, you can write your parallel clauses with variables, providing
values for those variables at runtime. See “Parameter Substitution” on page 77 for
details.

So far we have assumed that you know what your parallel value should be. See “Select
the Right Level of Parallelism” on page 105 for information on how to determine that.

Finally, what happens if you do not specify a parallel level? Before version 0.8, Pig lets
MapReduce set the parallelism in that case. The MapReduce default parallelism is
controlled by your cluster configuration. The installation default value is one, and most
people do not change that. This most likely means that you will be running with only
one reducer. This is rarely what you want.

To avoid this situation, Pig added a heuristic in 0.8 to do a gross estimate of what the
parallelism should be set to if it is not set. It looks at the initial input size, assumes there
will be no data size changes, and then allocates a reducer for every 1G of data. It must
be emphasized that this is not a good algorithm. It is provided only to prevent mistakes
that result in scripts running very slowly, and, in some extreme cases, mistakes that
cause MapReduce itself to have problems. This is a safety net, not an optimizer.

Map Parallelism
parallel only lets you set reduce parallelism. What about map parallelism? MapReduce
only allows users to set reduce parallelism: it controls map parallelism itself. Because
Pig cannot control map parallelism, it cannot expose that to its users either.

In MapReduce, data is read using a class called InputFormat. Part of InputFormat’s pur-
pose is to tell MapReduce how many map tasks to run. It also suggests where they
should be run.

50 | Chapter 5: Introduction to Pig Latin

Although Pig cannot give you direct control over how many map tasks to run, it does
let you build and run your own InputFormat as part of building your own load function.
See Chapter 11 for details on how to do this.

User Defined Functions
Much of the power of Pig lies in its ability to let users combine irs operators with their
own or others’ code via UDFs. Up through version 0.7, all UDFs must be written in
Java and are implemented as Java classes.† This makes it very easy to add new UDFs
to Pig by writing a Java class and telling Pig about your JAR file.

As of version 0.8, UDFs can also be written in Python. Pig uses Jython to execute Python
UDFs, so they must be compatible with Python 2.5 and cannot use Python 3 features.

Pig itself comes packaged with some UDFs. Prior to version 0.8, this was a very limited
set, including only the standard SQL aggregate functions and a few others. In 0.8, a
large number of standard string-processing, math, and complex-type UDFs were
added. For a complete list and description of built-in UDFs, see “Built-in
UDFs” on page 171.

Piggybank is a collection of user-contributed UDFs that is packaged and released along
with Pig. Piggybank UDFs are not included in the Pig JAR, and thus you have to register
them manually in your script. See “Piggybank” on page 187 for more information.

Of course you can also write your own UDFs or use those written by other users. For
details of how to write your own, see Chapter 10. Finally, you can use some static Java
functions as UDFs as well.

Registering UDFs
When you use a UDF that is not already built into Pig, you have to tell Pig where to
look for that UDF. This is done via the register command. For example, let’s say you
want to use the Reverse UDF provided in Piggybank (for information on where to find
the Piggybank JAR, see “Piggybank” on page 187):

--register.pig
register 'your_path_to_piggybank/piggybank.jar';
divs = load 'NYSE_dividends' as (exchange:chararray, symbol:chararray,
 date:chararray, dividends:float);
backwards = foreach divs generate
 org.apache.pig.piggybank.evaluation.string.Reverse(symbol);

† This is why UDF names are case-sensitive in Pig.

User Defined Functions | 51

This example tells Pig that it needs to include code from your_path_to_piggybank/pig-
gybank.jar when it produces a JAR to send to Hadoop. Pig opens all of the registered
JARs, takes out the files, and places them in the JAR that it sends to Hadoop to run
your jobs.

In this example, we have to give Pig the full package and class name of the UDF. This
verbosity can be alleviated in two ways. The first option is to use the define command
(see “define and UDFs” on page 53). The second option is to include a set of
paths on the command line for Pig to search when looking for UDFs. So if instead of
invoking Pig as pig register.pig we change our invocation to pig -

Dudf.import.list=org.apache.pig.piggybank.evaluation.string register.pig, we
can change our script to:

register 'your_path_to_piggybank/piggybank.jar';
divs = load 'NYSE_dividends' as (exchange:chararray, symbol:chararray,
 date:chararray, dividends:float);
backwards = foreach divs generate Reverse(symbol);

Using yet another property, we can get rid of the register command as well. If we add
-Dpig.additional.jars=/usr/local/pig/piggybank/piggybank.jar to our command
line, the register command is no longer necessary.

In many cases it is better to deal with registration and definition issues explicitly in the
script via the register and define commands than use these properties. Otherwise,
everyone who runs your script has to know how to configure the command line. How-
ever, in some situations your scripts will always use the same set of JARs and always
look in the same places for them. For instance, you might have a set of JARs used by
everyone in your company. In this case, placing these properties in a shared properties
file and using that with your Pig scripts will make sharing those UDFs easier and assure
that everyone is using the correct versions of them.

In 0.8 and later versions, the register command can also take HDFS paths. If your
JARs are stored in HDFS, you could then say register 'hdfs://user/jar/acme.jar';.
Starting in 0.9, register accepts globs. So if all of the JARs you need are stored in one
directory, you could include them all with register '/usr/local/share/pig/udfs/
*.jar'.

Registering Python UDFs

register is also used to locate resources for Python UDFs that you use in your Pig Latin
scripts. In this case you do not register a JAR, but rather a Python script that contains
your UDF. The Python script must be in your current directory. Using the examples
provided in the example code, copying udfs/python/production.py to the data directory
looks like this:

52 | Chapter 5: Introduction to Pig Latin

--batting_production.pig
register 'production.py' using jython as bballudfs;
players = load 'baseball' as (name:chararray, team:chararray,
 pos:bag{t:(p:chararray)}, bat:map[]);
nonnull = filter players by bat#'slugging_percentage' is not null and
 bat#'on_base_percentage' is not null;
calcprod = foreach nonnull generate name, bballudfs.production(
 (float)bat#'slugging_percentage',
 (float)bat#'on_base_percentage');

The important differences here are the using jython and as bballudfs portions of the
register statement. using jython tells Pig that this UDF is written in Python, not Java,
and it should use Jython to compile that UDF. Pig does not know where on your system
the Jython interpreter is, so you must include jython.jar in your classpath when invok-
ing Pig. This can be done by setting the PIG_CLASSPATH environment variable.

as bballudfs defines a namespace that UDFs from this file are placed in. All UDFs from
this file must now be invoked as bballudfs.udfname. Each Python file you load should
be given a separate namespace. This avoids naming collisions when you register two
Python scripts with duplicate function names.

One caveat: Pig does not trace dependencies inside your Python scripts and send the
needed Python modules to your Hadoop cluster. You are required to make sure the
modules you need reside on the task nodes in your cluster and that the PYTHONPATH
environment variable is set on those nodes such that your UDFs will be able to find
them for import. This issue has been fixed after 0.9, but as of this writing is not yet
released.

define and UDFs
As was alluded to earlier, define can be used to provide an alias so that you do not have
to use full package names for your Java UDFs. It can also be used to provide constructor
arguments to your UDFs. define also is used in defining streaming commands, but this
section covers only its UDF-related features. For information on using define with
streaming, see “stream” on page 69. The following provides an example of using
define to provide an alias for org.apache.pig.piggybank.evaluation.string.Reverse:

--define.pig
register 'your_path_to_piggybank/piggybank.jar';
define reverse org.apache.pig.piggybank.evaluation.string.Reverse();
divs = load 'NYSE_dividends' as (exchange:chararray, symbol:chararray,
 date:chararray, dividends:float);
backwards = foreach divs generate reverse(symbol);

Eval and filter functions can also take one or more strings as constructor arguments. If
you are using a UDF that takes constructor arguments, define is the place to provide
those arguments. For example, consider a method CurrencyConverter that takes two
constructor arguments, the first indicating which currency you are converting from and
the second which currency you are converting to:

User Defined Functions | 53

--define_constructor_args.pig
register 'acme.jar';
define convert com.acme.financial.CurrencyConverter('dollar', 'euro');
divs = load 'NYSE_dividends' as (exchange:chararray, symbol:chararray,
 date:chararray, dividends:float);
backwards = foreach divs generate convert(dividends);

Calling Static Java Functions
Java has a rich collection of utilities and libraries. Because Pig is implemented in Java,
some of these functions can be exposed to Pig users. Starting in version 0.8, Pig offers
invoker methods that allow you to treat certain static Java functions as if they were Pig
UDFs.

Any public static Java function that takes no arguments or some combination of int,
long, float, double, String, or arrays thereof,‡ and returns int, long, float, double, or
String can be invoked in this way.

Because Pig Latin does not support overloading on return types, there is an invoker for
each return type: InvokeForInt, InvokeForLong, InvokeForFloat, InvokeForDouble, and
InvokeForString. You must pick the appropriate invoker for the type you wish to return.
This method takes two constructor arguments. The first is the full package, classname,
and method name. The second is a space-separated list of parameters the Java function
expects. Only the types of the parameters are given. If the parameter is an array, []
(square brackets) are appended to the type name. If the method takes no parameters,
the second constructor argument is omitted.

For example, if you wanted to use Java’s Integer class to translate decimal values to
hexadecimal values, you could do:

--invoker.pig
define hex InvokeForString('java.lang.Integer.toHexString', 'int');
divs = load 'NYSE_daily' as (exchange, symbol, date, open, high, low,
 close, volume, adj_close);
nonnull = filter divs by volume is not null;
inhex = foreach nonnull generate symbol, hex((int)volume);

If your method takes an array of types, Pig will expect to pass it a bag where each
tuple has a single field of that type. So if you had a Java method com.yourcom
pany.Stats.stdev that took an array of doubles, you could use it like this:

define stdev InvokeForDouble('com.acme.Stats.stdev', 'double[]');
A = load 'input' as (id: int, dp:double);
B = group A by id;
C = foreach B generate group, stdev(A.dp);

‡ For int, long, float, and double, invoker methods can call Java functions that take the scalar types but not
the associated Java classes (so int but not Integer, etc.).

54 | Chapter 5: Introduction to Pig Latin

www.allitebooks.com

http://www.allitebooks.org

Invokers do not use the Accumulator or Algebraic interfaces, and are
thus likely to be much slower and to use much more memory than UDFs
written specifically for Pig. This means that before you pass an array
argument to an invoked method, you should think carefully about
whether those inefficiencies are acceptable. For more information on
these interfaces, see “Accumulator Interface” on page 139 and “Alge-
braic Interface” on page 135.

Invoking Java functions in this way does have a small cost because reflection is used to
find and invoke the methods.

Invoker functions throw Java an IllegalArgumentException when they are passed null
input. You should place a filter before the invocation to prevent this.

User Defined Functions | 55

CHAPTER 6

Advanced Pig Latin

In the previous chapter we worked through the basics of Pig Latin. In this chapter we
will plumb its depths, and we will also discuss how Pig handles more complex data
flows. Finally, we will look at how to use macros and modules to modularize your
scripts.

Advanced Relational Operations
We will now discuss the more advanced Pig Latin operators, as well as additional op-
tions for operators that were introduced in the previous chapter.

Advanced Features of foreach
In our introduction to foreach (see “foreach” on page 37), we discussed how it could
take a list of expressions to output for every record in your data pipeline. Now we will
look at ways it can explode the number of records in your pipeline, and also how it can
be used to apply a set of operations to each record.

flatten

Sometimes you have data in a bag or a tuple and you want to remove that level of
nesting. The baseball data available on GitHub (see “Code Examples in This
Book” on page xi) can be used as an example. Because a player can play more than one
position, position is stored in a bag. This allows us to still have one entry per player in
the baseball file.* But when you want to switch around your data on the fly and group

* Those with database experience will notice that this is a violation of the first normal form as defined by E.
F. Codd. This intentional denormalization of data is very common in OLAP systems in general, and in large
data-processing systems such as Hadoop in particular. RDBMS systems tend to make joins common and
then work to optimize them. In systems such as Hadoop, where storage is cheap and joins are expensive, it
is generally better to use nested data structures to avoid the joins.

57

by a particular position, you need a way to pull those entries out of the bag. To do this,
Pig provides the flatten modifier in foreach:

--flatten.pig
players = load 'baseball' as (name:chararray, team:chararray,
 position:bag{t:(p:chararray)}, bat:map[]);
pos = foreach players generate name, flatten(position) as position;
bypos = group pos by position;

A foreach with a flatten produces a cross product of every record in the bag with all
of the other expressions in the generate statement. Looking at the first record in base-
ball, we see it is the following (replacing tabs with commas for clarity):

Jorge Posada,New York Yankees,{(Catcher),(Designated_hitter)},...

Once this has passed through the flatten statement, it will be two records:

Jorge Posada,Catcher

Jorge Posada,Designated_hitter

If there is more than one bag and both are flattened, this cross product will be done
with members of each bag as well as other expressions in the generate statement. So
rather than getting n rows (where n is the number of records in one bag), you will get
n * m rows.

One side effect that surprises many users is that if the bag is empty, no records are
produced. So if there had been an entry in baseball with no position, either because the
bag is null or empty, that record would not be contained in the output of flatten.pig.
The record with the empty bag would be swallowed by foreach. There are a couple of
reasons for this behavior. One, since Pig may or may not have the schema of the data
in the bag, it might have no idea how to fill in nulls for the missing fields. Two, from a
mathematical perspective, this is what you would expect. Crossing a set S with the
empty set results in the empty set. If you wish to avoid this, use a bincond to replace
empty bags with a constant bag:

--flatten_noempty.pig
players = load 'baseball' as (name:chararray, team:chararray,
 position:bag{t:(p:chararray)}, bat:map[]);
noempty = foreach players generate name,
 ((position is null or IsEmpty(position)) ? {('unknown')} : position)
 as position;
pos = foreach noempty generate name, flatten(position) as position;
bypos = group pos by position;

flatten can also be applied to a tuple. In this case, it does not produce a cross product;
instead, it elevates each field in the tuple to a top-level field. Again, empty tuples will
remove the entire record.

If the fields in a bag or tuple that is being flattened have names, Pig will carry those
names along. As with join, to avoid ambiguity, the field name will have the bag’s name
and :: prepended to it. As long as the field name is not ambiguous, you are not required
to use the bagname:: prefix.

58 | Chapter 6: Advanced Pig Latin

If you wish to change the names of the fields, or if the fields initially did not have names,
you can attach an as clause to your flatten, as in the preceding example. If there is
more than one field in the bag or tuple that you are assigning names to, you must
surround the set of field names with parentheses.

Finally, if you flatten a bag or tuple without a schema and do not provide an as clause,
the resulting records coming out of your foreach will have a null schema. This is because
Pig will not know how many fields the flatten will result in.†

Nested foreach

So far, all of the examples of foreach that we have seen immediately generate one or
more lines of output. But foreach is more powerful than this. It can also apply a set of
relational operations to each record in your pipeline. This is referred to as a nested
foreach, or inner foreach. One example of how this can be used is to find the number
of unique entries in a group. For example, to find the number of unique stock symbols
for each exchange in the NYSE_daily data:

--distinct_symbols.pig
daily = load 'NYSE_daily' as (exchange, symbol); -- not interested in other fields
grpd = group daily by exchange;
uniqcnt = foreach grpd {
 sym = daily.symbol;
 uniq_sym = distinct sym;
 generate group, COUNT(uniq_sym);
};

There are several new things here to unpack; we will walk through each. In this example,
rather than generate immediately following foreach, a { (open brace) signals that we
will be nesting operators inside this foreach. In this nested code, each record passed to
foreach is handled one at a time.

In the first line we see a syntax that we have not seen outside of foreach. In fact, sym =
daily.symbol would not be legal outside of foreach. It is roughly equivalent to the top-
level statement sym = foreach grpd generate daily.symbol, but it is not stated that
way inside the foreach because it is not really another foreach. There is no relation for
it to be associated with (that is, grpd is not defined here). This line takes the bag
daily and produces a new relation sym, which is a bag with tuples that have only the
field symbol.

The second line applies the distinct operator to the relation sym. Note that even inside
foreach, relational operators can be applied only to relations; they cannot be applied
to expressions. For example, the statement uniq_sym = distinct daily.symbol will
produce a syntax error because daily.symbol is an expression, not a relation. sym is a
relation. This distinction may seem arbitrary, but it results in Pig Latin having a

† In versions 0.8 and earlier, there is a bug where this flatten is assigned a schema of one field, which is a
bytearray, instead of causing the schema to be null. This bug has been fixed in 0.9.

Advanced Relational Operations | 59

coherent definition as a language. Without this, strange statements such as C = dis
tinct 1 + 2 would be legal. One way to think about this is that the assignment operator
inside foreach can be used to take an expression and create a relation, as happens in
this example.

The last line in a nested foreach must always be generate. This tells Pig how to take
the results of the nested operations and produce a record to be put in the outer relation
(in this case, uniqcnt). So, generate is the operator that takes the inner relations and
turns them back into expressions for inclusion in the outer relation. That is, if the script
read generate group, uniq_sym, uniq_sym would be treated as a bag for the purpose of
the generate statement.

Theoretically, any Pig Latin relational operator should be legal inside foreach. How-
ever, at the moment, only distinct, filter, limit, and order are supported.

Let’s look at a few more examples of how this feature can be useful, such as to sort the
contents of a bag before the bag is passed to a UDF. This is convenient for UDFs that
require all of their input to come in a certain order. Consider a stock-analysis UDF that
wants to track information about a particular stock over time. The UDF will want input
sorted by timestamp:

--analyze_stock.pig
register 'acme.jar';
define analyze com.acme.financial.AnalyzeStock();
daily = load 'NYSE_daily' as (exchange:chararray, symbol:chararray,
 date:chararray, open:float, high:float, low:float,
 close:float, volume:int, adj_close:float);
grpd = group daily by symbol;
analyzed = foreach grpd {
 sorted = order daily by date;
 generate group, analyze(sorted);
};

Doing the sorting in Pig Latin, rather than in your UDF, is important for a couple of
reasons. One, it means Pig can offload the sorting to MapReduce. MapReduce has the
ability to sort data by a secondary key while grouping it. So, the order statement in this
case does not require a separate sorting operation. Two, it means that your UDF does
not need to wait for all data to be available before it starts processing. Instead, it can
use the Accumulator interface (see “Accumulator Interface” on page 139), which is
much more memory efficient.

This feature can be used to find the top k elements in a group. The following example
will find the top three dividends payed for each stock:

--hightest_dividend.pig
divs = load 'NYSE_dividends' as (exchange:chararray, symbol:chararray,
 date:chararray, dividends:float);
grpd = group divs by symbol;
top3 = foreach grpd {
 sorted = order divs by dividends desc;
 top = limit sorted 3;

60 | Chapter 6: Advanced Pig Latin

 generate group, flatten(top);
};

Currently, these nested portions of code are always run serially for each record handed
to them. Of course the foreach itself will be running in multiple map or reduce tasks,
but each instance of the foreach will not spawn subtasks to do the nested operations
in parallel. So if we added a parallel 10 clause to the grpd = group divs by symbol
statement in the previous example, this ordering and limiting would take place in 10
reducers. But each group of stocks would be sorted and the top three records taken
serially within one of those 10 reducers.

There is, of course, no requirement that the pipeline inside the foreach be a simple
linear pipeline. For example, if you wanted to calculate two distinct counts together,
you could do the following:

--double_distinct.pig
divs = load 'NYSE_dividends' as (exchange:chararray, symbol:chararray);
grpd = group divs all;
uniq = foreach grpd {
 exchanges = divs.exchange;
 uniq_exchanges = distinct exchanges;
 symbols = divs.symbol;
 uniq_symbols = distinct symbols;
 generate COUNT(uniq_exchanges), COUNT(uniq_symbols);
};

For simplicity, Pig actually runs this pipeline once for each expression in generate. Here
this has no side effects because the two data flows are completely disjointed. However,
if you constructed a pipeline where there was a split in the flow, and you put a UDF in
the shared portion, you would find that it was invoked more often than you expected.

Using Different Join Implementations
When we covered join in the previous chapter (see “Join” on page 45), we discussed
only the default join behavior. However, Pig offers multiple join implementations,
which we will discuss here.

In RDBMS systems, traditionally the SQL optimizer chooses a join implementation for
the user. This is nice as long as the optimizer chooses well, which it does in most cases.
But Pig has taken a different approach. In the Pig team we like to say that our optimizer
is located between the user’s chair and keyboard. We empower the user to make these
choices rather than having Pig make them. So for operators such as join where there
are multiple implementations, Pig lets the user indicate his choice via a using clause.

This approach fits well with our philosophy that Pigs are domestic animals (i.e., Pig
does what you tell it; see “Pig Philosophy” on page 9). Also, as a relatively new product,
Pig has a lot of functionality to add. It makes more sense to focus on adding imple-
mentation choices and letting the user choose which ones to use, rather than focusing
on building an optimizer capable of choosing well.

Advanced Relational Operations | 61

Joining small to large data

A common type of join is doing a lookup in a smaller input. For example, suppose you
were processing data where you needed to translate a US ZIP code (postal code) to the
state and city it referred to. As there are at most 100,000 zip codes in the US, this
translation table should easily fit in memory. Rather than forcing a reduce phase that
will sort your big file plus this tiny zip code translation file, it makes sense instead to
send the zip code file to every machine, load it into memory, and then do the join by
streaming through the large file and looking up each record in the zip code file. This is
called a fragment-replicate join (because you fragment one file and replicate the other):

--repljoin.pig
daily = load 'NYSE_daily' as (exchange:chararray, symbol:chararray,
 date:chararray, open:float, high:float, low:float,
 close:float, volume:int, adj_close:float);
divs = load 'NYSE_dividends' as (exchange:chararray, symbol:chararray,
 date:chararray, dividends:float);
jnd = join daily by (exchange, symbol), divs by (exchange, symbol)
 using 'replicated';

The using 'replicated' tells Pig to use the fragment-replicate algorithm to execute this
join. Because no reduce phase is necessary, all of this can be done in the map task.

The second input listed in the join (in this case, divs) is always the input that is loaded
into memory. Pig does not check beforehand that the specified input will fit into mem-
ory. If Pig cannot fit the replicated input into memory, it will issue an error and fail.

Due to the way Java stores objects in memory, the size of the data on
disk will not be the size of the data in memory. See “Memory Require-
ments of Pig Data Types” on page 26 for a discussion of how data ex-
pands in memory in Pig. You will need more memory for a replicated
join than you need space on disk to store the replicated input.

Fragment-replicate join supports only inner and left outer joins. It cannot do a right
outer join, because when a given map task sees a record in the replicated input that
does not match any record in the fragmented input, it has no idea whether it would
match a record in a different fragment. So, it does not know whether to emit a record.
If you want a right or full outer join, you will need to use the default join operation.

Fragment-replicate join can be used with more than two tables. In this case, all but the
first (left-most) table are read into memory.

Pig implements the fragment-replicate join by loading the replicated input into Ha-
doop’s distributed cache. The distributed cache is a tool provided by Hadoop that pre-
loads a file onto the local disk of nodes that will be executing the maps or reduces for
that job. This has two important benefits. First, if you have a fragment-replicate join
that is going to run on 1,000 maps, opening one file in HDFS from 1,000 different
machines all at once puts a serious strain on the NameNode and the three data nodes
that contain the block for that file. The distributed cache is built specifically to manage

62 | Chapter 6: Advanced Pig Latin

these kinds of issues without straining HDFS. Second, if multiple map tasks are located
on the same physical machine, the files in the distributed cache are shared between
those instances, thus reducing the number of times the file has to be copied.

Pig runs a map-only MapReduce job to preprocess the file and get it ready for loading
into the distributed cache. If there is a filter or foreach between the load and join,
these will be done as part of this initial job so that the file to be stored in the distributed
cache is as small as possible. The join itself will be done in a second map-only job.

Joining skewed data

As we have seen elsewhere, much of the data you will be processing with Pig has sig-
nificant skew in the number of records per key. For example, if you were building a
map of the Web and joining by the domain of the URL (your key), you would expect
to see significant skew for values such as yahoo.com. Pig’s default join algorithm is very
sensitive to skew, because it collects all of the records for a given key together on a
single reducer. In many data sets, there are a few keys that have three or more orders
of magnitude more records than other keys. This results in one or two reducers that
will take much longer than the rest. To deal with this, Pig provides skew join.

Skew join works by first sampling one input for the join. In that input it identifies any
keys that have so many records that skew join estimates it will not be able to fit them
all into memory. Then, in a second MapReduce job, it does the join. For all records
except those identified in the sample, it does a standard join, collecting records with
the same key onto the same reducer. Those keys identified as too large are treated
differently. Based on how many records were seen for a given key, those records are
split across the appropriate number of reducers. The number of reducers is chosen
based on Pig’s estimate of how wide the data must be split such that each reducer can
fit its split into memory. For the input to the join that is not split, those keys that were
split are then replicated to each reducer that contains that key.‡

For example, let’s look at how the following Pig Latin script would work:

users = load 'users' as (name:chararray, city:chararray);
cinfo = load 'cityinfo' as (city:chararray, population:int);
jnd = join cinfo by city, users by city using 'skewed';

Assume that the cities in users are distributed such that 20 users live in Barcelona,
100,000 in New York, and 350 in Portland. Let’s further assume that Pig determined
that it could fit 75,000 records into memory on each reducer. When this data was
joined, New York would be identified as a key that needed to be split across reducers.
During the join phase, all records with keys other than New York would be treated as
in a default join. Records from users with New York as the key would be split between

‡ This algorithm was proposed in the paper “Practical Skew Handling in Parallel Joins,” presented by David
J. DeWitt, Jeffrey F. Naughton, Donovan A. Schneider, and S. Seshadri at the 18th International Conference
on Very Large Databases.

Advanced Relational Operations | 63

two separate reducers. Records from cityinfo with New York as a key would be dupli-
cated and sent to both of those reducers.

The second input in the join, in this case users, is the one that will be sampled and have
its keys with a large number of values split across reducers. The first input will have
records with those values replicated across reducers.

This algorithm addresses skew in only one input. If both inputs have skew, this algo-
rithm will still work, but it will be slow. Much of the motivation behind this approach
was that it guarantees the join will still finish, given time. Before Pig introduced skew
join in version 0.4, data that was skewed on both sides could not be joined in Pig because
it was not possible to fit all the records for the high-cardinality key values in memory
for either side.

Skew join can be done on inner or outer joins. However, it can take only two join inputs.
Multiway joins must be broken into a series of joins if they need to use skew join.

Since data often has skew, why not use skew join all of the time? There is a small
performance penalty for using skew join, because one of the inputs must be sampled
first to find any key values with a large number of records. This usually adds about 5%
to the time it takes to calculate the join. If your data frequently has skew, it might be
worth it to always use skew join and pay the 5% tax in order to avoid failing or running
very slowly with the default join and then needing to rerun using skewed join.

As stated earlier, Pig estimates how much data it can fit into memory when deciding
which key values to split and how wide to split them. For the purposes of this calcu-
lation, Pig looks at the record sizes in the sample and assumes it can use 30% of the
JVM’s heap to materialize records that will be joined. In your particular case you might
find you need to increase or decrease this size. You should decrease the value if your
join is still failing with out-of-memory errors even when using skew join. This indicates
that Pig is estimating memory usage improperly, so you should tell it to use less. If
profiling indicates that Pig is not utilizing all of your heap, you might want to increase
the value in order to do the join more efficiently; the less ways the key values are split,
the more efficient the join will be. You can do that by setting the property pig.skewed
join.reduce.memusage to a value between 0 and 1. For example, if you wanted it to use
25% instead of 30%, you could add -Dpig.skewedjoin.reduce.memusage=0.25 to your
Pig command line or define the value in your properties file.

Like order, skew join breaks the MapReduce convention that all records
with the same key will be processed by the same reducer. This means
records with the same key might be placed in separate part files. If you
plan to process the data in a way that depends on all records with the
same key being in the same part file, you cannot use skew join.

64 | Chapter 6: Advanced Pig Latin

Joining sorted data

A common database join strategy is to first sort both inputs on the join key and then
walk through both inputs together, doing the join. This is referred to as a sort-merge
join. In MapReduce, because a sort requires a full MapReduce job, as does Pig’s default
join, this technique is not more efficient than the default. However, if your inputs are
already sorted on the join key, this approach makes sense. The join can be done in the
map phase by opening both files and walking through them. Pig refers to this as a merge
join because it is a sort-merge join, but the sort has already been done:

--mergejoin.pig
-- use sort_for_mergejoin.pig to build NYSE_daily_sorted and NYSE_dividends_sorted
daily = load 'NYSE_daily_sorted' as (exchange:chararray, symbol:chararray,
 date:chararray, open:float, high:float, low:float,
 close:float, volume:int, adj_close:float);
divs = load 'NYSE_dividends_sorted' as (exchange:chararray, symbol:chararray,
 date:chararray, dividends:float);
jnd = join daily by symbol, divs by symbol using 'merge';

To execute this join, Pig will first run a MapReduce job that samples the second input,
NYSE_dividends_sorted. This sample builds an index that tells Pig the value of the join
keys, symbol in the first record in every input split (usually each HDFS block). Because
this sample reads only one record per split, it runs very quickly. Pig will then run a
second MapReduce job that takes the first input, NYSE_daily_sorted, as its input. When
each map reads the first record in its split of NYSE_daily_sorted, it takes the value of
symbol and looks it up in the index built by the previous job. It looks for the last entry
that is less than its value of symbol. It then opens NYSE_dividends_sorted at the corre-
sponding block for that entry. For example, if the index contained entries (CA, 1),
(CHY, 2), (CP, 3), and the first symbol in a given map’s input split of NYSE_daily_sor-
ted was CJA, that map would open block 2 of NYSE_dividends_sorted. (Even if CP was
the first user ID in NYSE_daily_sorted’s split, block 2 of NYSE_dividends_sorted would
be opened, as there could be records with a key of CP in that block.) Once NYSE_div-
idends_sorted is opened, Pig throws away records until it reaches a record with sym
bol of CJA. Once it finds a match, it collects all the records with that value into memory
and then does the join. It then advances the first input, NYSE_daily_sorted. If the key
is the same, it again does the join. If not, it advances the second input, NYSE_divi-
dends_sorted, again until it finds a value greater than or equal to the next value in the
first input, NYSE_daily_sorted. If the value is greater, it advances the first input and
continues. Because both inputs are sorted, it never needs to look in the index after the
initial lookup.

All of this can be done without a reduce phase, and so it is more efficient than a default
join. This algorithm, which was introduced in version 0.4, currently supports only two-
way inner joins.

Advanced Relational Operations | 65

cogroup
cogroup is a generalization of group. Instead of collecting records of one input based on
a key, it collects records of n inputs based on a key. The result is a record with a key
and one bag for each input. Each bag contains all records from that input that have the
given value for the key:

A = load 'input1' as (id:int, val:float);
B = load 'input2' as (id:int, val2:int);
C = cogroup A by id, B by id;
describe C;

C: {group: int,A: {id: int,val: float},B: {id: int,val2: int}}

Another way to think of cogroup is as the first half of a join. The keys are collected
together, but the cross product is not done. In fact, cogroup plus foreach, where each
bag is flattened, is equivalent to a join—as long as there are no null values in the keys.

cogroup handles null values in the keys similarly to group and unlike join. That is, all
records with a null value in the key will be collected together.

cogroup is useful when you want to do join-like things but not a full join. For example,
Pig Latin does not have a semi-join operator, but you can do a semi-join:

--semijoin.pig
daily = load 'NYSE_daily' as (exchange:chararray, symbol:chararray,
 date:chararray, open:float, high:float, low:float,
 close:float, volume:int, adj_close:float);
divs = load 'NYSE_dividends' as (exchange:chararray, symbol:chararray,
 date:chararray, dividends:float);
grpd = cogroup daily by (exchange, symbol), divs by (exchange, symbol);
sjnd = filter grpd by not IsEmpty(divs);
final = foreach sjnd generate flatten(daily);

Because cogroup needs to collect records with like keys together, it requires a reduce
phase.

union
Sometimes you want to put two data sets together by concatenating them instead of
joining them. Pig Latin provides union for this purpose. If you had two files you wanted
to use for input and there was no glob that could describe them, you could do the
following:

A = load '/user/me/data/files/input1';
B = load '/user/someoneelse/info/input2';
C = union A, B;

66 | Chapter 6: Advanced Pig Latin

Unlike union in SQL, Pig does not require that both inputs share the
same schema. If both do share the same schema, the output of the union
will have that schema. If one schema can be produced from another by
a set of implicit casts, the union will have that resulting schema. If nei-
ther of these conditions hold, the output will have no schema (that is,
different records will have different fields). This schema comparison
includes names, so even different field names will result in the output
having no schema. You can get around this by placing a foreach before
the union that renames fields.

A = load 'input1' as (x:int, y:float);
B = load 'input2' as (x:int, y:float);
C = union A, B;
describe C;

C: {x: int,y: float}

A = load 'input1' as (x:int, y:float);
B = load 'input2' as (x:int, y:double);
C = union A, B;
describe C;

C: {x: int,y: double}

A = load 'input1' as (x:int, y:float);
B = load 'input2' as (x:int, y:chararray);
C = union A, B;
describe C;

Schema for C unknown.

union does not perform a mathematical set union. That is, duplicate records are not
eliminated. In this manner it is like SQL’s union all. Also, union does not require a
separate reduce phase.

Sometimes your data changes over time. If you have data you collect every month, you
might add a new column this month. Now you are prevented from using union because
your schemas do not match. If you want to union this data and force your data into a
common schema, you can add the keyword onschema to your union statement:

A = load 'input1' as (w:chararray, x:int, y:float);
B = load 'input2' as (x:int, y:double, z:chararray);
C = union onschema A, B;
describe C;

C: {w: chararray,x: int,y: double,z: chararray}

union onschema requires that all inputs have schemas. It also requires that a shared
schema for all inputs can be produced by adding fields and implicit casts. Matching of
fields is done by name, not position. So, in the preceding example, w:chararray is added
from input1 and z:chararray is added from input2. Also, a cast from float to double is

Advanced Relational Operations | 67

added for input1 so that field y is a double. If a shared schema cannot be produced by
this method, an error is returned. When the data is read, nulls are inserted for fields
not present in a given input.

cross
cross matches the mathematical set operation of the same name. In the following Pig
Latin, cross takes every record in NYSE_daily and combines it with every record in
NYSE_dividends:

--cross.pig
-- you may want to run this in a cluster, it produces about 3G of data
daily = load 'NYSE_daily' as (exchange:chararray, symbol:chararray,
 date:chararray, open:float, high:float, low:float,
 close:float, volume:int, adj_close:float);
divs = load 'NYSE_dividends' as (exchange:chararray, symbol:chararray,
 date:chararray, dividends:float);
tonsodata = cross daily, divs parallel 10;

cross tends to produce a lot of data. Given inputs with n and m records respectively,
cross will produce output with n x m records.

Pig does implement cross in a parallel fashion. It does this by generating a synthetic
join key, replicating rows, and then doing the cross as a join. The previous script is
rewritten to:

daily = load 'NYSE_daily' as (exchange:chararray, symbol:chararray,
 date:chararray, open:float, high:float, low:float,
 close:float, volume:int, adj_close:float);
divs = load 'NYSE_dividends' as (exchange:chararray, symbol:chararray,
 date:chararray, dividends:float);
A = foreach daily generate flatten(GFCross(0, 2)), flatten(*);
B = foreach divs generate flatten(GFCross(1, 2)), flatten(*);
C = cogroup A by ($0, $1), B by ($0, $1) parallel 10;
tonsodata = foreach C generate flatten(A), flatten(B);

GFCross is an internal UDF. The first argument is the input number, and the second
argument is the total number of inputs. In this example, the output is a bag that contains
four records.§ These records have a schema of (int, int). The field that is the same
number as the first argument to GFCross contains a random number between zero and
three. The other field counts from zero to three. So, if we assume for a given two records,
one in each input, that the random number for the first input is 3 and for the second is
2, then the outputs of GFCross would look like:

A {(3, 0), (3, 1), (3, 2), (3, 3)}
B {(0, 2), (1, 2), (2, 2), (3, 2)}

§ In 0.8 and earlier, the number of records is always 10. In 0.9, this is changed to be the square root of the
parallel factor, rounded up.

68 | Chapter 6: Advanced Pig Latin

When these records are flattened, four copies of each input record will be created in
the map. They then are joined on the artificial keys. For every record in each input, it
is guaranteed that there is one and only one instance of the artificial keys that will match
and produce a record. Because the random numbers are chosen differently for each
record, the resulting joins are done on an even distribution of the reducers.

This algorithm does enable crossing of data in parallel. However, it creates a burden
on the shuffle phase by increasing the number of records in each input being shuffled.
Also, no matter what you do, cross outputs a lot of data. Writing all of this data to disk
is expensive, even when done in parallel.

This is not to say you should not use cross. There are instances when it is indispensable.
Pig’s join operator supports only equi-joins, that is, joins on an equality condition.
Because general join implementations (ones that do not depend on the data being sorted
or small enough to fit in memory) in MapReduce depend on collecting records with
the same join key values onto the same reducer, non-equi-joins (also called theta
joins) are difficult to do. They can be done in Pig using cross followed by filter:

--thetajoin.pig
--I recommend running this one on a cluster too
daily = load 'NYSE_daily' as (exchange:chararray, symbol:chararray,
 date:chararray, open:float, high:float, low:float,
 close:float, volume:int, adj_close:float);
divs = load 'NYSE_dividends' as (exchange:chararray, symbol:chararray,
 date:chararray, dividends:float);
crossed = cross daily, divs;
tjnd = filter crossed by daily::date < divs::date;

Fuzzy joins could also be done in this manner, where the fuzzy comparison is done
after the cross. However, whenever possible, it is better to use a UDF to conform fuzzy
values to a standard value and then do a regular join. For example, if you wanted to
join two inputs on city but wanted to join any time two cities were in the same met-
ropolitan area (e.g., you wanted “Los Angeles” and “Pasadena” to be viewed as equal),
you could first run your records through a UDF that generated a single join key for all
cities in a metropolitan area and then do the join.

Integrating Pig with Legacy Code and MapReduce
One tenet of Pig’s philosophy is that Pig allows users to integrate their own code with
Pig wherever possible (see “Pig Philosophy” on page 9). The most obvious way Pig does
that is through its UDFs. But it also allows you to directly integrate other executables
and MapReduce jobs.

stream
To specify an executable that you want to insert into your data flow, use stream. You
may want to do this when you have a legacy program that you do not want to modify

Integrating Pig with Legacy Code and MapReduce | 69

or are unable to change. You can also use stream when you have a program you use
frequently, or one you have tested on small data sets and now want to apply to a large
data set. Let’s look at an example where you have a Perl program highdiv.pl that filters
out all stocks with a dividend below $1.00:

-- streamsimple.pig
divs = load 'NYSE_dividends' as (exchange, symbol, date, dividends);
highdivs = stream divs through `highdiv.pl` as (exchange, symbol, date, dividends);

Notice the as clause in the stream command. This is not required. But Pig has no idea
what the executable will return, so if you do not provide the as clause, the relation
highdivs will have no schema.

The executable highdiv.pl is invoked once on every map or reduce task. It is not invoked
once per record. Pig instantiates the executable and keeps feeding data to it via stdin.
It also keeps checking stdout, passing any results to the next operator in your data flow.
The executable can choose whether to produce an output for every input, only every
so many inputs, or only after all inputs have been received.

The preceding example assumes that you already have highdiv.pl installed on your grid,
and that it is runnable from the working directory on the task machines. If that is not
the case, which it usually will not be, you can ship the executable to the grid. To do
this, use a define statement:

--streamship.pig
define hd `highdiv.pl` ship('highdiv.pl');
divs = load 'NYSE_dividends' as (exchange, symbol, date, dividends);
highdivs = stream divs through hd as (exchange, symbol, date, dividends);

This define does two things. First, it defines the executable that will be used. Now in
stream we refer to highdiv.pl by the alias we gave it, hp, rather than referring to it directly.
Second, it tells Pig to pick up the file ./highdiv.pl and ship it to Hadoop as part of this
job. This file will be picked up from the specified location on the machine where you
launch the job. It will be placed in the working directory of the task on the task ma-
chines. So, the command you pass to stream must refer to it relative to the current
working directory, not via an absolute path. If your executable depends on other mod-
ules or files, they can be specified as part of the ship clause as well. For example, if
highdiv.pl depends on a Perl module called Financial.pm, you can send them both to
the task machines:

define hd `highdiv.pl` ship('highdiv.pl', 'Financial.pm');
divs = load 'NYSE_dividends' as (exchange, symbol, date, dividends);
highdivs = stream divs through hd as (exchange, symbol, date, dividends);

Many scripting languages assume certain paths for modules based on their hierarchy.
For example, Perl expects to find a module Acme::Financial in Acme/Financial.pm.
However, the ship clause always puts files in your current working directory, and it
does not take directories, so you could not ship Acme. The workaround for this is to
create a TAR file and ship that, and then have a step in your executable that unbundles

70 | Chapter 6: Advanced Pig Latin

the TAR file. You then need to set your module include path (for Perl, -I or the PERL
LIB environment variables) to contain . (dot).

ship moves files into the grid from the machine where you are launching your job. But
sometimes the file you want is already in the grid. If you have a grid file that will be
accessed by every map or reduce task in your job, the proper way to access it is via the
distributed cache. The distributed cache is a mechanism Hadoop provides to share files.
It reduces the load on HDFS by preloading the file to the local disk on the machine that
will be executing the task. You can use the distributed cache for your executable by
using the cache clause in define:

crawl = load 'webcrawl' as (url, pageid);
normalized = foreach crawl generate normalize(url);
define blc `blacklistchecker.py` cache('/data/shared/badurls#badurls');
goodurls = stream normalized through blc as (url, pageid);

The string before the # is the path on HDFS, in this case, /data/shared/badurls. The
string after the # is the name of the file as viewed by the executable. So, Hadoop will
put a copy of /data/shared/badurls into the task’s working directory and call it badurls.

So far we have assumed that your executable takes data on stdin and writes it to
stdout. This might not work, depending on your executable. If your executable needs
a file to read from, write to, or both, you can specify that with the input and output
clauses in the define command. Continuing with our previous example, let’s say that
blacklistchecker.py expects to read its input from a file specified by -i on its command
line and write to a file specified by -o:

crawl = load 'webcrawl' as (url, pageid);
normalized = foreach crawl generate normalize(url);
define blc `blacklistchecker.py -i urls -o good` input('urls') output('good');
goodurls = stream normalized through blc as (url, pageid);

Again, file locations are specified from the working directory on the task machines. In
this example, Pig will write out all the input for a given task for blacklistchecker.py to
urls, then invoke the executable, and then read good to get the results. Again, the exe-
cutable will be invoked only once per map or reduce task, so Pig will first write out all
the input to the file.

mapreduce
Beginning in Pig 0.8, you can also include MapReduce jobs directly in your data flow
with the mapreduce command. This is convenient if you have processing that is better
done in MapReduce than Pig but must be integrated with the rest of your Pig data flow.
It can also make it easier to incorporate legacy processing written in MapReduce with
newer processing you want to write in Pig Latin.

MapReduce jobs expect to read their input from and write their output to a storage
device (usually HDFS). So to integrate them with your data flow, Pig first has to store
the data, then invoke the MapReduce job, and then read the data back. This is done

Integrating Pig with Legacy Code and MapReduce | 71

via store and load clauses in the mapreduce statement that invoke regular load and store
functions. You also provide Pig with the name of the JAR that contains the code for
your MapReduce job.

As an example, let’s continue with the blacklisting of URLs that we considered in the
previous section. Only now let’s assume that this is done by a MapReduce job instead
of a Python script:

crawl = load 'webcrawl' as (url, pageid);
normalized = foreach crawl generate normalize(url);
goodurls = mapreduce 'blacklistchecker.jar'
 store normalized into 'input'
 load 'output' as (url, pageid);

mapreduce takes as its first argument the JAR containing the code to run a MapReduce
job. It uses load and store phrases to specify how data will be moved from Pig’s data
pipeline to the MapReduce job. Notice that the input alias is contained in the store
clause. As with stream, the output of mapreduce is opaque to Pig, so if we want the
resulting relation goodurls to have a schema, we have to tell Pig what it is. This example
also assumes that the Java code in blacklistchecker.jar knows which input and output
files to look for and has a default class to run specified in its manifest. Often this will
not be the case. Any arguments you wish to pass to the invocation of the Java command
that will run the MapReduce task can be put in backquotes after the load clause:

crawl = load 'webcrawl' as (url, pageid);
normalized = foreach crawl generate normalize(url);
goodurls = mapreduce 'blacklistchecker.jar'
 store normalized into 'input'
 load 'output' as (url, pageid)
 `com.acmeweb.security.BlackListChecker -i input -o output`;

The string in the backquotes will be passed directly to your MapReduce job as is. So if
you wanted to pass Java options, etc., you can do that as well.

The load and store clauses of the mapreduce command have the same syntax as the
load and store statements, so you can use different load and store functions, pass
constructor arguments, and so on. See “Load” on page 34 and “Store” on page 36 for
full details.

Nonlinear Data Flows
So far our examples have been linear data flows or trees. In a linear data flow, one input
is loaded, processed, and stored. We have looked at operators that combine multiple
data flows: join, cogroup, union, and cross. With these you can build tree structures
where multiple inputs all flow to a single output. But in complex data-processing sit-
uations, you often also want to split your data flow. That is, one input will result in
more than one output. You might also have diamonds, places where the data flow is
split and eventually joined back together. Pig supports these directed acyclic graph
(DAG) data flows.

72 | Chapter 6: Advanced Pig Latin

Splits in your data flow can be either implicit or explicit. In an implicit split, no specific
operator or syntax is required in your script. You simply refer to a given relation mul-
tiple times. Let’s consider data from our baseball example data. You might, for example,
want to analyze players by position and by team at the same time:

--multiquery.pig
players = load 'baseball' as (name:chararray, team:chararray,
 position:bag{t:(p:chararray)}, bat:map[]);
pwithba = foreach players generate name, team, position,
 bat#'batting_average' as batavg;
byteam = group pwithba by team;
avgbyteam = foreach byteam generate group, AVG(pwithba.batavg);
store avgbyteam into 'by_team';
flattenpos = foreach pwithba generate name, team,
 flatten(position) as position, batavg;
bypos = group flattenpos by position;
avgbypos = foreach bypos generate group, AVG(flattenpos.batavg);
store avgbypos into 'by_position';

The pwithba relation is referred to by the group operators for both the byteam and
bypos relations. Pig builds a data flow that takes every record from pwithba and ships
it to both group operators.

Splitting data flows can also be done explicitly via the split operator, which allows you
to split your data flow as many ways as you like. Let’s take an example where you want
to split data into different files depending on the date the record was created:

wlogs = load 'weblogs' as (pageid, url, timestamp);
split wlogs into apr03 if timestamp < '20110404',
 apr02 if timestamp < '20110403' and timestamp > '20110401',
 apr01 if timestamp < '20110402' and timestamp > '20110331';
store apr03 into '20110403';
store apr02 into '20110402';
store apr01 into '20110401';

At first glance, split looks like a switch or case statement, but it is not. A single record
can go to multiple legs of the split since you use different filters for each if clause. And
a record can go to no leg. In the preceding example, if a record were found with a date
of 20110331, it would be dropped. And there is no default clause—no way to send any
leftover records to a particular alias.

split is semantically identical to an implicit split that users filters. The previous ex-
ample could be rewritten as:

wlogs = load 'weblogs' as (pageid, url, timestamp);
apr03 = filter wlogs by timestamp < '20110404';
apr02 = filter wlogs by timestamp < '20110403' and timestamp > '20110401';
apr01 = filter wlogs by timestamp < '20110402' and timestamp > '20110331';
store apr03 into '20110403';
store apr02 into '20110402';
store apr01 into '20110401';

In fact, Pig will internally rewrite the original script that has split in exactly this way.

Nonlinear Data Flows | 73

Let’s take a look at how Pig executes these nonlinear data flows. Whenever possible,
it combines them into single MapReduce jobs. This is referred to as a multiquery. In
cases where all operators will fit into a single map task, this is easy. Pig creates separate
pipelines inside the map and sends the appropriate records to each pipeline. The ex-
ample using split to store data by date will be executed in this way.

Pig can also combine multiple group operators together in many cases. In the example
given at the beginning of this section, where the baseball data is grouped by both team
and position, this entire Pig Latin script will be executed inside one MapReduce job.
Pig accomplishes this by duplicating records on the map side and annotating each
record with its pipeline number. When the data is partitioned during the shuffle, the
appropriate key is used for each record. That is, records from the pipeline grouping by
team will use team as their shuffle key, and records from the pipeline grouping by
position will use position as their shuffle key. This is done by declaring the key type
to be tuple and placing the correct values in the key tuple for each record. Once the
data has been collected to reducers, the pipeline number is used as part of the sort key
so that records from each pipeline and group are collected together. In the reduce task,
Pig instantiates multiple pipelines, one for each group operator. It sends each record
down the appropriate pipeline based on its annotated pipeline number. In this way,
input data can be scanned once but grouped many different ways. An example of how
one record flows through this pipeline is shown in Figure 6-1. Although this does not
provide linear speedup, we find it often approaches it.

Figure 6-1. Multiquery illustration

There are cases where Pig will not combine multiple operators into a single MapReduce
job. Pig does not use multiquery for any of the multiple-input operators: join, union,

74 | Chapter 6: Advanced Pig Latin

cross, or cogroup. It does not use multiquery for order statements either. Also, if it has
multiple group statements and some would use Hadoop’s combiner and some would
not, it combines only those statements that use Hadoop’s combiner into a multiquery.
This is because we have found that combining the Hadoop combiner and non-Hadoop
combiner jobs together does not perform well.

Multiquery scripts tend to perform better than loading the same input multiple times,
but this approach does have limits. Because it requires replicating records in the map,
it does slow down the shuffle phase. Eventually the increased cost of the shuffle phase
outweighs the reduced cost of rescanning the input data. Pig has no way to estimate
when this will occur. Currently, the optimizer is optimistic and always combines jobs
with multiquery whenever it can. If it combines too many jobs and becomes slower
than splitting some of the jobs, you can turn off multiquery or you can rewrite your Pig
Latin into separate scripts so Pig does not attempt to combine them all. To turn off
multiquery, you can pass either -M or -no_multiquery on the command line or set the
property opt.multiquery to false.

We must also consider what happens when one job in a multiquery fails but others
succeed. If all jobs succeed, Pig will return 0, meaning success. If all of the jobs fail, Pig
will return 2. If some jobs fail and some succeed, Pig will return 3. By default, if one of
the jobs fails, Pig will continue processing the other jobs. However, if you want Pig to
stop as soon as one of the jobs fails, you can pass -F or -stop_on_failure. In this case,
any jobs that have not yet been finished will be terminated, and any that have not started
will not be started. Any jobs that are already finished will not be cleaned up.

Controlling Execution
In addition to providing many relational and dataflow operators, Pig Latin provides
ways for you to control how your jobs execute on MapReduce. It allows you to set
values that control your environment and details of MapReduce, such as how your data
is partitioned.

set
The set command is used to set the environment in which Pig runs the MapReduce
jobs. Table 6-1 shows Pig-specific parameters that can be controlled via set.

Table 6-1. Pig-specific set parameters

Parameter Value
type

Description

debug string Sets the logging level to DEBUG. Equivalent to passing -debug DEBUG on the

command line.

default_parallel integer Sets a default parallel level for all reduce operations in the script. See “Paral-

lel” on page 49 for details.

Controlling Execution | 75

Parameter Value
type

Description

job.name string Assigns a name to the Hadoop job. By default the name is the filename of the script

being run, or a randomly generated name for interactive sessions.

job.priority string If your Hadoop cluster is using the Capacity Scheduler with priorities enabled for queues,

this allows you to set the priority of your Pig job. Allowed values are very_low, low,

normal, high, and very_high.

For example, to set the default parallelism of your Pig Latin script and set the job name
to my_job:

set default_parallel 10;
set job.name my_job;
users = load 'users';

In addition to these predefined values, set can be used to pass Java property settings
to Pig and Hadoop. Both Pig and Hadoop use a number of Java properties to control
their behavior. Consider an example where you want to turn multiquery off for a given
script, and you want to tell Hadoop to use a higher value than usual for its map-side
sort buffer:

set opt.multiquery false;
set io.sort.mb 2048; --give it 2G

You can also use this mechanism to pass properties to UDFs. All of the properties are
passed to the tasks on the Hadoop nodes when they are executed. They are not set as
Java properties in that environment; rather, they are placed in a Hadoop object called
JobConf. UDFs have access to the JobConf. Thus, anything you set in the script can be
seen by your UDFs. This can be a convenient way to control UDF behavior. For infor-
mation on how to retrieve this information in your UDFs, see “Constructors and Pass-
ing Data from Frontend to Backend” on page 128.

Values that are set in your script are global for the whole script. If they are reset later
in the script, that second value will overwrite the first and be used throughout the whole
script.

Setting the Partitioner
Hadoop uses a class called Partitioner to partition records to reducers during the
shuffle phase. For details on partitioners, see “Shuffle Phase” on page 191. Pig does
not override the default partitioner, except for order and skew join. The balancing
operations in these require special Partitioners.

Beginning in version 0.8, Pig allows you to set the partitioner, except in the cases where
it is already overriding it. To do this, you need to tell Pig which Java class to use to
partition your data. This class must extend Hadoop’s org.apache.hadoop.mapre
duce.Partitioner<KEY,VALUE>. Note that this is the newer (version 0.20 and later) map
reduce API and not the older mapred:

76 | Chapter 6: Advanced Pig Latin

register acme.jar; --jar containing the partitioner
users = load 'users' as (id, age, zip);
grp = group users by id partition by com.acme.userpartitioner parallel 100;

Operators that reduce data can take the partition clause. These operators are cogroup,
cross, distinct, group, and join (again, not in conjunction with skew join).

Pig Latin Preprocessor
Pig Latin has a preprocessor that runs before your Pig Latin script is parsed. In 0.8 and
earlier, this provided parameter substitution, roughly similar to a very simple version
of #define in C. Starting with 0.9, it also provides inclusion of other Pig Latin scripts
and function-like macro definitions, so that you can write Pig Latin in a modular way.

Parameter Substitution
Pig Latin scripts that are used frequently often have elements that need to change based
on when or where they are run. A script that is run every day is likely to have a date
component in its input files or filters. Rather than edit and change the script every day,
you want to pass in the date as a parameter. Parameter substitution provides this ca-
pability with a basic string-replacement functionality. Parameters must start with a
letter or an underscore and can then have any amount of letters, numbers, or under-
scores. Values for the parameters can be passed in on the command line or from a
parameter file:

--daily.pig
daily = load 'NYSE_daily' as (exchange:chararray, symbol:chararray,
 date:chararray, open:float, high:float, low:float, close:float,
 volume:int, adj_close:float);
yesterday = filter daily by date == '$DATE';
grpd = group yesterday all;
minmax = foreach grpd generate MAX(yesterday.high), MIN(yesterday.low);

When you run daily.pig, you must provide a definition for the parameter DATE; other-
wise, you will get an error telling you that you have undefined parameters:

pig -p DATE=2009-12-17 daily.pig

You can repeat the -p command-line switch as many times as needed. Parameters can
also be placed in a file, which is convenient if you have more than a few of them. The
format of the file is parameter=value, one per line. Comments in the file should be
preceded by a #. You then indicate the file to be used with -m or -param_file:

pig -param_file daily.params daily.pig

Parameters passed on the command line take precedence over parameters provided in
files. This way, you can provide all your standard parameters in a file and override a
few as needed on the command line.

Pig Latin Preprocessor | 77

Parameters can contain other parameters. So, for example, you could have the following
parameter file:

#Param file
YEAR=2009-
MONTH=12-
DAY=17
DATE=$YEAR$MONTH$DAY

A parameter must be defined before it is referenced. The parameter file here would
produce an error if the DAY line came after the DATE line. The other caveat is that there
is no special character to delimit the end of a parameter. Any alphanumeric or under-
score character will be interpreted as part of the parameter, and any other character
will be interpreted as itself. So, if you had a script that ran at the first of every month,
you could not do the following:

wlogs = load 'clicks/$YEAR$MONTH01' as (url, pageid, timestamp);

This would try to resolve a parameter MONTH01 when you meant MONTH.

When using parameter substitution, all parameters in your script must be resolved after
the preprocessor is finished. If not, Pig will issue an error message and not continue.
You can see the results of your parameter substitution by using the -dryrun flag on the
Pig command line. Pig will write out a version of your Pig Latin script with the parameter
substitution done, but it will not execute the script.

You can also define parameters inside your Pig Latin script using %declare and %default.
%declare allows you to define a parameter in the script itself. %default is useful to
provide a common default value that can be overridden when needed. Consider a case
where most of the time your script is run on one Hadoop cluster, but occasionally it is
run on a different cluster with different hardware:

%default parallel_factor 10;
wlogs = load 'clicks' as (url, pageid, timestamp);
grp = group wlogs by pageid parallel $parallel_factor;
cntd = foreach grp generate group, COUNT(wlogs);

When running your script in the usual configuration, there is no need to set the pa-
rameter parallel_factor. On the occasions it is run in a different setup, the parallel
factor can be changed by passing a value on the command line.

Macros
Starting in 0.9, Pig added the ability to define macros. This makes it possible to make
your Pig Latin scripts modular. It also makes it possible to share segments of Pig Latin
code among users. This can be particularly useful for defining standard practices and
making sure all data producers and consumers use them.

Macros are declared with the define statement. A macro takes a set of input parameters,
which are string values that will be substituted for the parameters when the macro is
expanded. By convention, input relation names are placed first before other parameters.

78 | Chapter 6: Advanced Pig Latin

The output relation name is given in a returns statement. The operators of the macro
are enclosed in {} (braces). Anywhere the parameters—including the output relation
name—are referenced inside the macro, they must be preceded by a $ (dollar sign). The
macro is then invoked in your Pig Latin by assigning it to a relation:

--macro.pig
-- Given daily input and a particular year, analyze how
-- stock prices changed on days dividends were paid out.
define dividend_analysis (daily, year, daily_symbol, daily_open, daily_close)
returns analyzed {
 divs = load 'NYSE_dividends' as (exchange:chararray,
 symbol:chararray, date:chararray, dividends:float);
 divsthisyear = filter divs by date matches '$year-.*';
 dailythisyear = filter $daily by date matches '$year-.*';
 jnd = join divsthisyear by symbol, dailythisyear by $daily_symbol;
 $analyzed = foreach jnd generate dailythisyear::$daily_symbol,
 $daily_close - $daily_open;
};

daily = load 'NYSE_daily' as (exchange:chararray, symbol:chararray,
 date:chararray, open:float, high:float, low:float, close:float,
 volume:int, adj_close:float);
results = dividend_analysis(daily, '2009', 'symbol', 'open', 'close');

It is also possible to have a macro that does not return a relation. In this case, the
returns clause of the define statement is changed to returns void. This can be useful
when you want to define a macro that controls how data is partitioned and sorted before
being stored to a particular output, such as HBase or a database.

These macros are expanded inline. This is where an important difference between
macros and functions becomes apparent. Macros cannot be invoked recursively. Mac-
ros can invoke other macros, so a macro A can invoke a macro B, but A cannot invoke
itself. And once A has invoked B, B cannot invoke A. Pig will detect these loops and throw
an error.

Parameter substitution (see “Parameter Substitution” on page 77) cannot be used inside
of macros. Parameters should be passed explicitly to macros, and parameter substitu-
tion should be used only at the top level.

You can use the -dryrun command-line argument to see how the macros are expanded
inline. When the macros are expanded, the alias names are changed to avoid collisions
with alias names in the place the macro is being expanded. If we take the previous
example and use -dryrun to show us the resulting Pig Latin, we will see the following
(reformatted slightly to fit on the page):

daily = load 'NYSE_daily' as (exchange:chararray, symbol:chararray,
 date:chararray, open:float, high:float, low:float, close:float,
 volume:int, adj_close:float);
macro_dividend_analysis_divs_0 = load 'NYSE_dividends' as (exchange:chararray,
 symbol:chararray, date:chararray, dividends:float);
macro_dividend_analysis_divsthisyear_0 =
 filter macro_dividend_analysis_divs_0 BY (date matches '2009-.*');

Pig Latin Preprocessor | 79

macro_dividend_analysis_dailythisyear_0 = filter daily BY (date matches '2009-.*');
macro_dividend_analysis_jnd_0 =
 join macro_dividend_analysis_divsthisyear_0 by (symbol),
 macro_dividend_analysis_dailythisyear_0 by (symbol);
results = foreach macro_dividend_analysis_jnd_0 generate
 macro_dividend_analysis_dailythisyear_0::symbol, close - open;

As you can see, the aliases in the macro are expanded with a combination of the macro
name and the invocation number. This provides a unique key so that if other macros
use the same aliases, or the same macro is used multiple times, there is still no
duplication.

Including Other Pig Latin Scripts
For a long time in Pig Latin, the entire script needed to be in one file. This produced
some rather unpleasant multithousand-line Pig Latin scripts. Starting in 0.9, the pre-
processor can be used to include one Pig Latin script in another. Taken together with
the macros (also added in 0.9; see “Macros” on page 78), it is now possible to write
modular Pig Latin that is easier to debug and reuse.

import is used to include one Pig Latin script in another:

--main.pig
import '../examples/ch6/dividend_analysis.pig';

daily = load 'NYSE_daily' as (exchange:chararray, symbol:chararray,
 date:chararray, open:float, high:float, low:float, close:float,
 volume:int, adj_close:float);
results = dividend_analysis(daily, '2009', 'symbol', 'open', 'close');

import writes the imported file directly into your Pig Latin script in place of the
import statement. In the preceding example, the contents of dividend_analysis.pig will
be placed immediately before the load statement. Note that a file cannot be imported
twice. If you wish to use the same functionality multiple times, you should write it as
a macro and import the file with that macro.

In the example just shown, we used a relative path for the file to be included. Fully
qualified paths also can be used. By default, relative paths are taken from the current
working directory of Pig when you launch the script. You can set a search path by setting
the pig.import.search.path property. This is a comma-separated list of paths that will
be searched for your files. The current working directory, . (dot), is always in the search
path:

set pig.import.search.path '/usr/local/pig,/grid/pig';
import 'acme/macros.pig';

Imported files are not in separate namespaces. This means that all macros are in the
same namespace, even when they have been imported from separate files. Thus, care
should be taken to choose unique names for your macros.

80 | Chapter 6: Advanced Pig Latin

CHAPTER 7

Developing and Testing
Pig Latin Scripts

The last few chapters focused on Pig Latin the language. Now we will turn to the
practical matters of developing and testing your scripts. This chapter covers helpful
debugging tools such as describe and explain. It also covers ways to test your scripts.
Information on how to make your scripts perform better will be covered in the next
chapter.

Development Tools
Pig provides several tools and diagnostic operators to help you develop your applica-
tions. In this section we will explore these and also look at some tools others have
written to make it easier to develop Pig with standard editors and integrated develop-
ment environments (IDEs).

Syntax Highlighting and Checking
Syntax highlighting often helps users write code correctly, at least syntactically, the first
time around. Syntax highlighting packages exist for several popular editors. The pack-
ages listed in Table 7-1 were created and added at various times, so how their high-
lighting conforms with current Pig Latin syntax varies.

Table 7-1. Pig Latin syntax highlighting packages

Tool URL

Eclipse http://code.google.com/p/pig-eclipse

Emacs http://github.com/cloudera/piglatin-mode, http://sf.net/projects/pig-mode

TextMate http://www.github.com/kevinweil/pig.tmbundle

Vim http://www.vim.org/scripts/script.php?script_id=2186

81

http://code.google.com/p/pig-eclipse
http://github.com/cloudera/piglatin-mode
http://sf.net/projects/pig-mode
http://www.github.com/kevinweil/pig.tmbundle
http://www.vim.org/scripts/script.php?script_id=2186

In addition to these syntax highlighting packages, Pig will also let you check the syntax
of your script without running it. If you add -c or -check to the command line, Pig will
just parse and run semantic checks on your script. The -dryrun command-line option
will also check your syntax, expand any macros and imports, and perform parameter
substitution.

describe
describe shows you the schema of a relation in your script. This can be very helpful as
you are developing your scripts. It is especially useful as you are learning Pig Latin and
understanding how various operators change the data. describe can be applied to any
relation in your script, and you can have multiple describes in a script:

--describe.pig
divs = load 'NYSE_dividends' as (exchange:chararray, symbol:chararray,
 date:chararray, dividends:float);
trimmed = foreach divs generate symbol, dividends;
grpd = group trimmed by symbol;
avgdiv = foreach grpd generate group, AVG(trimmed.dividends);

describe trimmed;
describe grpd;
describe avgdiv;

trimmed: {symbol: chararray,dividends: float}
grpd: {group: chararray,trimmed: {(symbol: chararray,dividends: float)}}
avgdiv: {group: chararray,double}

describe uses Pig’s standard schema syntax. For information on this syntax, see “Sche-
mas” on page 27. So, in this example, the relation trimmed has two fields: symbol, which
is a chararray, and dividends, which is a float. grpd also has two fields, group (the name
Pig always assigns to the group by key) and a bag trimmed, which matches the name of
the relation that Pig grouped to produce the bag. Tuples in trimmed have two fields:
symbol and dividends. Finally, in avgdiv there are two fields, group and a double, which
is the result of the AVG function and is unnamed.

explain
One of Pig’s goals is to allow you to think in terms of data flow instead of MapReduce.
But sometimes you need to peek into the barn and see how Pig is compiling your script
into MapReduce jobs. Pig provides explain for this. explain is particularly helpful when
you are trying to optimize your scripts or debug errors. It was written so that Pig de-
velopers could examine how Pig handled various scripts, thus its output is not the most
user-friendly. But with some effort, explain can help you write better Pig Latin.

There are two ways to use explain. You can explain any alias in your Pig Latin script,
which will show the execution plan Pig would use if you stored that relation. You can
also take an existing Pig Latin script and apply explain to the whole script in Grunt.

82 | Chapter 7: Developing and Testing Pig Latin Scripts

This has a couple of advantages. One, you do not have to edit your script to add the
explain line. Two, it will work with scripts that do not have a single store, showing
how Pig will execute the entire script:

--explain.pig
divs = load 'NYSE_dividends' as (exchange, symbol, date, dividends);
grpd = group divs by symbol;
avgdiv = foreach grpd generate group, AVG(divs.dividends);
store avgdiv into 'average_dividend';

bin/pig -x local -e 'explain -script explain.pig'

This will produce a printout of several graphs in text format; we will examine this
output momentarily. When using explain on a script in Grunt, you can also have it
print out the plan in graphical format. To do this, add -dot -out filename to the pre-
ceding command line. This prints out a file in DOT language containing diagrams
explaining how your script will be executed. Tools that can read this language and
produce graphs can then be used to view the graphs. For some tools, you might need
to split the three graphs in the file into separate files.

Pig goes through several steps to transform a Pig Latin script to a set of MapReduce
jobs. After doing basic parsing and semantic checking, it produces a logical plan. This
plan describes the logical operators that Pig will use to execute the script. Some opti-
mizations are done on this plan. For example, filters are pushed as far up* as possible
in the logical plan. The logical plan for the preceding example is shown in Figure 7-1.
I have trimmed a few extraneous pieces to make the output more readable (scary that
this is more readable, huh?). If you are using Pig 0.9, the output will look slightly
different, but close enough that it will be recognizable.

The flow of this chart is bottom to top so that the Load operator is at the very bottom.
The lines between operators show the flow. Each of the four operators created by the
script (Load, CoGroup, ForEach, and Store) can be seen. Each of these operators also has
a schema, described in standard schema syntax. The CoGroup and ForEach operators
also have expressions attached to them (the lines dropping down from those operators).
In the CoGroup operator, the projection indicates which field is the grouping key (in this
case, field 1). The ForEach operator has a projection expression that projects field 0 (the
group field) and a UDF expression, which indicates that the UDF being used is
org.apache.pig.builtin.AVG. Notice how each of the Project operators has an Input
field, indicating from which operator they are drawing their input. Figure 7-2 shows
how this plan looks when the -dot option is used instead.

* Or down, whichever you prefer. Database textbooks usually talk of pushing filters down, closer to the scan.
Because Pig Latin scripts start with a load at the top and go down, we tend to refer to it as pushing filters up
toward the load.

Development Tools | 83

Figure 7-1. Logical plan

Figure 7-2. Logical plan diagram

84 | Chapter 7: Developing and Testing Pig Latin Scripts

After optimizing the logical plan, Pig produces a physical plan. This plan describes the
physical operators Pig will use to execute the script, without reference to how they will
be executed in MapReduce. The physical plan for our plan in Figure 7-1 is shown in
Figure 7-3.

Figure 7-3. Physical plan

This looks like the logical plan, but with a few differences. The load and store functions
that will be used have been resolved (in this case to org.apache.pig.builtin.PigStor
age, the default load and store function), and the actual paths that will be used have
been resolved. This example was run in local mode, so the paths are local files. If it had
been run on a cluster, it would have showed a path like hdfs://nn.machine.domain/
filepath.

The other noticeable difference is that the CoGroup operator was replaced by three op-
erators, Local Rearrange, Global Rearrange, and Package. Local Rearrange is the oper-
ator Pig uses to prepare data for the shuffle by setting up the key. Global Rearrange is
a stand-in for the shuffle. Package sits in the reduce phase and directs records to the
proper bag. Figure 7-4 shows a graphical representation of this plan.

Finally, Pig takes the physical plan and decides how it will place its operators into one
or more MapReduce jobs. First, it walks the physical plan looking for all operators that
require a new reduce. This occurs anywhere there is a Local Rearrange, Global Rear
range, and Package. After it has done this, it sees whether there are places that it can do
physical optimizations. For example, it looks for places the combiner can be used, and
whether sorts can be avoided by including them as part of the sorting Hadoop does in
the shuffle. After all of this is done, Pig has a MapReduce plan. This plan describes the

Development Tools | 85

maps, combines, and reduces, along with the physical operations Pig will perform in
each stage. Completing our example, the MapReduce plan is shown in Figure 7-5.

This looks much the same as the physical plan. The pipeline is now broken into three
stages: map, combine, and reduce. The Global Rearrange operator is gone because it
was a stand-in for the shuffle. The AVG UDF has been broken up into three stages:
Initial in the map, Intermediate in the combiner, and Final in the reduce. If there
were multiple MapReduce jobs in this example, they would all be shown in this output.
The graphical version is shown in Figure 7-6.

Figure 7-4. Physical plan diagram

86 | Chapter 7: Developing and Testing Pig Latin Scripts

Figure 7-5. MapReduce plan

Development Tools | 87

Figure 7-6. MapReduce plan diagram

88 | Chapter 7: Developing and Testing Pig Latin Scripts

illustrate
Often one of the best ways to debug your Pig Latin script is to run your data through
it. But if you are using Pig, the odds are that you have a large data set. If it takes several
hours to process your data, this makes for a very long debugging cycle. One obvious
solution is to run your script on a sample of your data. For simple scripts this works
fine. But sampling has another problem: it is not always trivial to pick a sample that
will exercise your script properly. For example, if you have a join, you have to be careful
to sample records from each input such that at least some have the same key. Otherwise,
your join will return no results.

To address this issue, the scientists in Yahoo! Research built illustrate into Pig. illus
trate takes a sample of your data and runs it through your script, but as it encounters
operators that remove data (such as filter, join, etc.), it makes sure that some records
pass through the operator and some do not. When necessary, it will manufacture re-
cords that look like yours (i.e., that have the same schema) but are not in the sample
it took. For example, if your script had B = filter A by x > 100; and every record that
illustrate sampled had a value of less than 100 for x, illustrate would keep at least
one of these records (to show the filter removing a record), and it would manufacture
a record with x greater than 100.

To use illustrate, apply it to an alias in your script, just as you would describe.
Figure 7-7 shows the results of illustrating the following script:

--illustrate.pig
divs = load 'NYSE_dividends' as (e:chararray, s:chararray, d:chararray, div:float);
recent = filter divs by d > '2009-01-01';
trimmd = foreach recent generate s, div;
grpd = group trimmd by s;
avgdiv = foreach grpd generate group, AVG(trimmd.div);
illustrate avgdiv;

For each relation here, illustrate shows us records as they look coming out of the
relation. For the line recent = filter divs by d > '2009-01-01';, I intentionally chose
a filter that would remove no records in the input to show how illustrate manufactures
a record that will be removed—in this case, the last record shown in the divs output.

Like explain, illustrate can be given as a command-line option rather than modifying
your script; for example, bin/pig -e 'illustrate -script illustrate.pig'.

illustrate was added to Pig in version 0.2, but it was not well maintained for a time.
In version 0.9, it has been revived. In versions 0.7 and 0.8, it works for some Pig oper-
ators but not for others.

Development Tools | 89

Figure 7-7. illustrate output

Pig Statistics
Beginning in version 0.8, Pig produces a summary set of statistics at the end of every run:

--stats.pig
a = load '/user/pig/tests/data/singlefile/studenttab20m' as (name, age, gpa);
b = load '/user/pig/tests/data/singlefile/votertab10k'
 as (name, age, registration, contributions);
c = filter a by age < '50';
d = filter b by age < '50';
e = cogroup c by (name, age), d by (name, age) parallel 20;
f = foreach e generate flatten(c), flatten(d);
g = group f by registration parallel 20;
h = foreach g generate group, SUM(f.d::contributions);
i = order h by $1, $0 parallel 20;
store i into 'student_voter_info';

Running stats.pig produces the statistics shown in Figure 7-8, reformatted slightly so
it will fit on the page.

The first couple of lines give a brief summary of the job. StartedAt is the time Pig submits
the job, not the time the first job starts running the Hadoop cluster. Depending on how
busy your cluster is, these may vary significantly. Similarly, FinishedAt is the time Pig
finishes processing the job, which will be slightly after the time the last MapReduce job
finishes.

90 | Chapter 7: Developing and Testing Pig Latin Scripts

The section labeled Job Stats gives a breakdown of each MapReduce job that was run.
This includes how many map and reduce tasks each job had, statistics on how long
these tasks took, and a mapping of aliases in your Pig Latin script to the jobs. This last
feature is especially useful when trying to understand which operators in your script
are running in which MapReduce job, which can be helpful when determining why a
particular job is failing or producing unexpected results.

The Input, Output, and Counters sections are self-explanatory. The statistics on spills
record how many times Pig spilled records to local disk to avoid running out of memory.
In local mode the Counters section will be missing because Hadoop does not report
counters in local mode.

The Job DAG section at the end describes how data flowed between MapReduce jobs.
In this case, the flow was linear.

Figure 7-8. Statistics output of stats.pig

Development Tools | 91

MapReduce Job Status
When you are running your Pig Latin scripts on your Hadoop cluster, finding the status
and logs of your job can be challenging. Logs generated by Pig while it plans and man-
ages your query are stored in the current working directory. You can select a different
directory by passing -l logdir on the command line. However, Hadoop does not pro-
vide a way to fetch back the logs from its tasks. So, the logfile created by Pig contains
only log entries generated on your machine. Log entries generated during the execution,
including those generated by your UDFs, stay on the task nodes in your Hadoop cluster.
All data written to stdout and stderr by map and reduce tasks is also kept in the logs
on the task nodes.

The first step to locating your logs is to connect to the JobTracker’s web page. This
page gives you the status of all jobs currently running on your Hadoop cluster, plus the
list of the last hundred or so finished jobs. Generally, it is located at http://
jt.acme.com:50030/jobtracker.jsp, where jt.acme.com is the address of your Job-
Tracker. Figure 7-9 shows a sample page taken from a cluster running in pseudodis-
tributed mode on a Linux desktop.

In this screenshot there, is only one job that has been run on the cluster recently. The
user who ran the job, the job ID, and the job name are all listed. Jobs started by Pig are
assigned the name of the Pig Latin script that you ran, unless you use the command-
line option to change the job name. All jobs started by a single script will share the same
name. In most cases you will have more than one MapReduce job resulting from your
Pig job. As discussed earlier in “Pig Statistics” on page 90, Pig prints a summary at the
end of its execution telling you which aliases and operators were placed in which jobs.
When you have multiple jobs with the same name, this will help you determine which
MapReduce job you are interested in. For the job in the screenshot shown in Fig-
ure 7-9, the relevant portions of the summary look like this:

Job Stats (time in seconds):
JobId ... Alias Feature
job_201104081526_0019 daily,grpd,uniqcnt GROUP_BY,COMBINER

Given this job ID, you now know which job to look at on the JobTracker page.

Note that jobs are shown on the JobTracker page only once they start to execute on
your Hadoop cluster. It takes Pig a few seconds to parse your script and plan the Map-
Reduce jobs it will run. It then takes a few seconds after Pig submits the first job before
Hadoop begins running it. Also, the necessary resources might not be available, in
which case your job will not appear until it has been assigned resources.

Clicking on the job ID will take you to a screen that summarizes the execution of the
job, including when the job started and stopped, how many maps and reduces it ran,
and the results of all of the counters, as shown in Figure 7-10.

Let’s say you want to look at the logs for the single map task in this job. In the table
toward the top of the page that summarizes the results of the map and reduce tasks,

92 | Chapter 7: Developing and Testing Pig Latin Scripts

clicking on “map” in the far-left column produces a list of all map tasks that were run
as part of this job. Selecting any particular task will show you the machine the task ran
on, its status, its start and end times, and will then provide a link to its logfile. Clicking
on that link will (finally) allow you to see the log for that individual task.

Of course, in this example, finding the map task we wanted was easy because there was
only one. But what happens when your job has 10,000 map tasks? How do you know
which one to look at? This is a good question that does not always have a concise
answer. If your tasks are failing only periodically, you can examine the logs of the failing
tasks. If they are all failing, you should be able to pick any of them, since they are all
running the same code. If your job is running slower than it seems like it should, you
can look for tasks that took much longer than others. It is also often useful to look to
see if all maps or all reduces take about the same amount of time. If not, you have a
skew problem.

Figure 7-9. JobTracker web page

Development Tools | 93

Figure 7-10. Job web page

94 | Chapter 7: Developing and Testing Pig Latin Scripts

Debugging Tips
Beyond the tools covered previously, there are a few things I have found useful in de-
bugging Pig Latin scripts. First, if illustrate does not do what you need, use local mode
to test your script before running it on your Hadoop cluster. In most cases, this requires
you to work with a sample of your data, which could be difficult, as explained earlier
in “illustrate” on page 89. But local mode has several advantages. One, despite its
slowness, it is a faster turnaround than using a Hadoop grid, where you may have to
wait to get slots, and the minimum job setup time is 30 seconds (versus about 10 sec-
onds in local mode). Two, the logs for your operations appear on your screen, instead
of being left on a task node somewhere. Three, local mode runs all in your local process.
This means that you can attach a debugger to the process. This is particularly useful
when you need to debug your UDFs.

A second tip I have found useful is that sometimes you need to turn off particular
features to see whether they are the source of your problem. These can include partic-
ular optimizations that Pig attempts or new features that have not had all the bugs
worked out yet.† Table 7-2 lists features that can be turned off. All of these are options
that can be passed to Pig on the command line.

Table 7-2. Turning off features

Command-line option What it does When you might want to turn it
off

-t SplitFilter Prevents Pig from splitting filter pred-

icates so portions of them can be

pushed higher in the data flow.

Your filter is not removing the rows

you expect.

-t MergeFilter Prevents Pig from merging adjacent

filter operators to evaluate them more

efficiently.

Your filter is not removing the rows

you expect.

-t PushUpFilter Prevents Pig from pushing filter oper-

ators in front of adjacent operators in

the data flow.

Your filter is not removing the rows

you expect.

-t PushDownForEachFlatten Prevents Pig from pushing foreach

operators with a flatten behind ad-

jacent operators in the data flow.

Your foreach is not producing

the rows or fields you expect.

-t ColumnMapKeyPrune Prevents Pig from determining all

fields your script uses and telling the

loader to load only those fields.

Your load function is not returning

the fields you expect.

-t LimitOptimizer Prevents Pig from pushing limit op-

erators in front of adjacent operators

in the data flow.

Your limit is not returning the

number of rows you expect.

† If you find you are turning off a feature to avoid a bug, please file a JIRA ticket so that the problem can be fixed.

Development Tools | 95

https://issues.apache.org/jira/browse/PIG

Command-line option What it does When you might want to turn it
off

-t AddForEach Prevents Pig from placing foreach

operators in your script to trim out un-

needed fields.

Your results do not contain the

fields you expect.

-t MergeForEach Prevents Pig from merging adjacent

foreach operators to evaluate them

more efficiently.

Your foreach is not producing

the rows or fields you expect.

-t LogicalExpressionsSimplifier Prevents Pig from doing some expres-

sion simplifications.

Your foreach is not producing

the values you expect.

-t All Turns off all logical optimizations.

Physical optimizations (such as use of

combiner, multiquery, etc.) will still be

done.

Your script is not producing the

rows you expect and you want to

understand whether the logical op-

timizer is part of the problem.

-D pig.usenewlogicalplan=false Prevents Pig from using the new logical

plan introduced in 0.8. This works only

in 0.8 and 0.8.1.

Scripts that worked in previous ver-

sions of Pig stop working in 0.8.

-D pig.exec.nocombiner=true Prevents Pig from using Hadoop’s

combiner.

Helps you check if your UDF has a

problem in its Algebraic imple-

mentation, as this is called only

when the combiner is used.

-D opt.multiquery=true Prevents Pig from combining multiple

data pipelines into a single MapReduce

job.

Your multiquery scripts are running

out of memory, underperforming,

or otherwise failing.

-D pig.noSplitCombination=true Prevents Pig from combining input

splits to reduce the number of map

tasks.

Some input formats, such as HBase,

cannot have their splits combined.

In Pig 0.8.0, the logical optimizer and logical plan were completely re-
written. The new optimizer and plan are used by default in 0.8.0, but
old ones are available as a backup. After releasing 0.8.0, a number of
issues were found with the new optimizer and plan. If you are using
0.8.0, I strongly encourage you to upgrade to Pig 0.8.1. As of the time
of this writing, all known logical plan and optimizer issues in 0.8.0 were
fixed in 0.8.1. If upgrading is not an option, the workaround is to turn
off the new logical plan as described in Table 7-2. In Pig 0.9, the old
logical plan has been removed.

96 | Chapter 7: Developing and Testing Pig Latin Scripts

Testing Your Scripts with PigUnit
As part of your development, you will want to test your Pig Latin scripts. Even once
they are finished, regular testing helps assure that changes to your UDFs, to your scripts,
or in the versions of Pig and Hadoop that you are using do not break your code.
PigUnit provides a unit-testing framework that plugs into JUnit to help you write unit
tests that can be run on a regular basis. PigUnit was added in Pig 0.8.

Let’s walk through an example of how to test a script with PigUnit. First, you need a
script to test:

--pigunit.pig
divs = load 'NYSE_dividends' as (exchange, symbol, date, dividends);
grpd = group divs all;
avgdiv = foreach grpd generate AVG(divs.dividends);
store avgdiv into 'average_dividend';

Second, you will need the pigunit.jar JAR file. This is not distributed as part of the
standard Pig distribution, but you can build it from the source code included in your
distribution. To do this, go to the directory your distribution is in and type ant jar
pigunit-jar. Once this is finished, there should be two files in the directory: pig.jar and
pigunit.jar. You will need to place these in your classpath when running PigUnit tests.

Third, you need data to run through your script. You can use an existing input file, or
you can manufacture some input in your test and run that through your script. We will
look at how to do both.

Finally, you need to write a Java class that JUnit can use to run your test. Let’s start
with a simple example that runs the preceding script:

 // java/example/PigUnitExample.java
public class PigUnitExample {
 private PigTest test;
 private static Cluster cluster;

 @Test
 public void testDataInFile() throws ParseException, IOException {
 // Construct an instance of PigTest that will use the script
 // pigunit.pig.
 test = new PigTest("../pigunit.pig");

 // Specify our expected output. The format is a string for each line.
 // In this particular case we expect only one line of output.
 String[] output = { "(0.27305267014925455)" };

 // Run the test and check that the output matches our expectation.
 // The "avgdiv" tells PigUnit what alias to check the output value
 // against. It inserts a store for that alias and then checks the
 // contents of the stored file against output.
 test.assertOutput("avgdiv", output);
 }
}

Testing Your Scripts with PigUnit | 97

You can also specify the input inline in your test rather than relying on an existing
datafile:

// java/example/PigUnitExample.java
 @Test
 public void testTextInput() throws ParseException, IOException {
 test = new PigTest("../pigunit.pig");

 // Rather than read from a file, generate synthetic input.
 // Format is one record per line, tab-separated.
 String[] input = {
 "NYSE\tCPO\t2009-12-30\t0.14",
 "NYSE\tCPO\t2009-01-06\t0.14",
 "NYSE\tCCS\t2009-10-28\t0.414",
 "NYSE\tCCS\t2009-01-28\t0.414",
 "NYSE\tCIF\t2009-12-09\t0.029",
 };

 String[] output = { "(0.22739999999999996)" };

 // Run the example script using the input we constructed
 // rather than loading whatever the load statement says.
 // "divs" is the alias to override with the input data.
 // As with the previous example, "avgdiv" is the alias
 // to test against the value(s) in output.
 test.assertOutput("divs", input, "avgdiv", output);
 }

It is also possible to specify the Pig Latin script in your test and to test the output against
an existing file that contains the expected results:

 // java/example/PigUnitExample.java
 @Test
 public void testFileOutput() throws ParseException, IOException {
 // The script as an array of strings, one line per string.
 String[] script = {
 "divs = load '../../../data/NYSE_dividends' as (exchange, symbol,
 "grpd = group divs all;",
 "avgdiv = foreach grpd generate AVG(divs.dividends);",
 "store avgdiv into 'average_dividend';",
 };
 test = new PigTest(script);

 // Test output against an existing file that contains the
 // expected output.
 test.assertOutput(new File("../expected.out"));
 }

Finally, let’s look at how to integrate PigUnit with parameter substitution, and how to
specify expected output that will be compared against the stored result (rather than
specifying an alias to check):

 // java/example/PigUnitExample.java
 @Test
 public void testWithParams() throws ParseException, IOException {
 // Parameters to be substituted in Pig Latin script before the

98 | Chapter 7: Developing and Testing Pig Latin Scripts

 // test is run. Format is one string for each parameter,
 // parameter=value
 String[] params = {
 "input=../../../data/NYSE_dividends",
 "output=average_dividend2"
 };
 test = new PigTest("../pigunitwithparams.pig", params);

 String[] output = { "(0.27305267014925455)" };

 // Test output in stored file against specified result
 test.assertOutput(output);
 }

These examples can be run by using the build.xml file included in the examples from
this chapter. These examples are not exhaustive; see the code itself for a complete
listing. For more in-depth examples, you can check out the tests for PigUnit located in
test/org/apache/pig/test/pigunit/TestPigTest.java in your Pig distribution. This file exer-
cises most of the features of PigUnit.

Testing Your Scripts with PigUnit | 99

CHAPTER 8

Making Pig Fly

Who says Pigs can’t fly? Knowing how to optimize your Pig Latin scripts can make a
significant difference in how they perform. Pig is still a young project and does not have
a sophisticated optimizer that can make the right choices. Instead, consistent with Pig’s
philosophy of user choice, it relies on you to make these choices. Beyond just optimizing
your scripts, Pig and MapReduce can be tuned to perform better based on your work-
load. And there are ways to optimize your data layout as well. This chapter covers a
number of features you can use to help Pig fly.

Before diving into the details of how to optimize your Pig Latin, it is worth under-
standing what items tend to create bottlenecks in Pig jobs:

Input size
It does not seem that a massively parallel system should be I/O bound. Hadoop’s
parallelism reduces I/O bound but does not entirely remove it. You can always add
more map tasks. However, the law of diminishing returns comes into effect. Ad-
ditional maps take more time to start up, and MapReduce has to find more slots
in which to run them. If you have twice as many maps as you have slots to run
them, it will take twice your average map time to run all of your maps. Adding one
more map in that case will actually make it worse because the map time will increase
to three times the average. Also, every record that is read might need to be decom-
pressed and will need to be deserialized.

Shuffle size
By shuffle size I mean the data that is moved from your map tasks to your reduce
tasks. All of this data has to be serialized, sorted, moved over the network, merged,
and deserialized. Also, the number of maps and reduces matters. Every reducer has
to go to every mapper, find the portion of the map’s output that belongs to it, and
copy that. So if there are m maps and r reduces, the shuffle will have m x r network
connections. And if reducers have too many map inputs to merge in one pass, they
will have to do a multipass merge, reading the data from and writing it to disk
multiple times (see “Combiner Phase” on page 190 for details).

101

Output size
Every record written out by a MapReduce job has to be serialized, possibly com-
pressed, and written to the store. When the store is HDFS, it must be written to
three separate machines before it is considered written.

Intermediate results size
Pig moves data between MapReduce jobs by storing it in HDFS. Thus the size of
these intermediate results is affected by the input size and output size factors men-
tioned previously.

Memory
Some calculations require your job to hold a lot of information in memory, for
example, joins. If Pig cannot hold all of the values in memory simultaneously, it
will need to spill some to disk. This causes a significant slowdown, as records must
be written to and read from disk, possibly multiple times.

Writing Your Scripts to Perform Well
There are a number of things you can do when writing Pig Latin scripts to help reduce
the bottlenecks discussed earlier. It may be helpful to review which operators force new
MapReduce jobs in Chapters 5 and 6.

Filter Early and Often
Getting rid of data as quickly as possible will help your script perform better. Pushing
filters higher in your script can reduce the amount of data you are shuffling or storing
in HDFS between MapReduce jobs. Pig’s logical optimizer will push your filters up
whenever it can. In cases where a filter has multiple predicates joined by and, and one
or more of the predicates can be applied before the operator preceding the filter, Pig
will split the filter at the and and push the eligible predicate(s). This allows Pig to push
parts of the filter when it might not be able to push the filter as a whole. Ta-
ble 8-1 describes when these filter predicates will and will not be pushed once they
have been split.

Table 8-1. When Pig pushes filters

Preceding
operator

Filter will be
pushed before?

Comments

cogroup Sometimes The filter will be pushed if it applies to only one input of the cogroup and

does not contain a UDF.

cross Sometimes The filter will be pushed if it applies to only one input of the cross.

distinct Yes

filter No Will seek to merge them with and to avoid passing data through a second operator.

This is done only after all filter pushing is complete.

102 | Chapter 8: Making Pig Fly

Preceding
operator

Filter will be
pushed before?

Comments

foreach Sometimes The filter will be pushed if it references only fields that exist before and after

the foreach, and foreach does not transform those fields.

group Sometimes The filter will be pushed if it does not contain a UDF.

join Sometimes The filter will be pushed if it applies to only one input of the join, and if the

join is not outer for that input.

load No

mapreduce No mapreduce is opaque to Pig, so it cannot know whether pushing will be safe.

sort Yes

split No

store No

stream No stream is opaque to Pig, so it cannot know whether pushing will be safe.

union Yes

Also, consider adding filters that are implicit in your script. For example, all of the
records with null values in the key will be thrown out by an inner join. If you know
that more than a few hundred of your records have null key values, put a filter input
by key is not null before the join. This will enhance the performance of your join.

Project Early and Often
For earlier versions of Pig, we told users to employ foreach to remove fields they were
not using as soon as possible. As of version 0.8, Pig’s logical optimizer does a fair job
of removing fields aggressively when it can tell that they will no longer be used:

-- itemid does not need to be loaded, since it is not used in the script
txns = load 'purchases' as (date, storeid, amount, itemid);
todays = filter txns by date == '20110513'; -- date not needed after this
bystore = group todays by storeid;
avgperstore = foreach bystore generate group, AVG(todays.amount);

However, you are still smarter than Pig’s optimizer, so there are situations where you
can tell that a field is no longer needed but Pig cannot. If AVG(todays.amount) were
changed to COUNT(todays) in the preceding example, Pig would not be able to determine
that, after the filter, only storeid and amount were required. It cannot see that COUNT
does not need all of the fields in the bag it is being passed. Whenever you pass a UDF
the entire record (udf(*)) or an entire complex field, Pig cannot determine which fields
are required. In this case, you will need to put in the foreach yourself to remove un-
needed data as early as possible.

Writing Your Scripts to Perform Well | 103

Set Up Your Joins Properly
Joins are one of the most common data operations, and also one of the costliest.
Choosing the correct join implementation can improve your performance significantly.
The flowchart in Figure 8-1 will help you make the correct selection.

Figure 8-1. Choosing a join implementation

Once you have selected your join implementation, make sure to arrange your inputs
in the correct order as well. For replicated joins, the small table must be given as the
last input. For skewed joins, the second input is the one that is sampled for large keys.
For the default join, the rightmost input has its records streamed through, whereas the
other input(s) have their records for a given key value materialized in memory. Thus if
you have one join input that you know has more records per key value, you should
place it in the rightmost position in the join. For merge join, the left input is taken as
the input for the MapReduce job, and thus the number of maps started are based on

104 | Chapter 8: Making Pig Fly

this input. If one input is much larger than the other, you should place it on the left in
order to get more map tasks dedicated to your jobs. This will also reduce the size of the
sampling step that builds the index for the right side. For complete details on each of
these join implementations, see the sections “Join” on page 45 and “Using Different
Join Implementations” on page 61.

Use Multiquery When Possible
Whenever you are doing operations that can be combined by multiquery, such as
grouping and filtering, these should be written together in one Pig Latin script so that
Pig can combine them. Although adding extra operations does increase the total pro-
cessing time, it is still much faster than running jobs separately.

Choose the Right Data Type
As discussed elsewhere, Pig can run with or without data type information. In cases
where the load function you are using creates data that is already typed, there is little
you need to do to optimize the performance. However, if you are using the default
PigStorage load function that reads tab-delimited files, then whether you use types will
affect your performance.

On the one hand, converting fields from bytearray to the appropriate type has a cost.
So, if you do not need type information, you should not declare it. For example, if you
are just counting records, you can omit the type declaration without affecting the out-
come of your script.

On the other hand, if you are doing integer calculations, types can help your script
perform better. When Pig is asked to do a numeric calculation on a bytearray, it treats
that bytearray as a double because this is the safest assumption. But floating-point
arithmetic is much slower than integer arithmetic on most machines. For example, if
you are doing a SUM over integer values, you will get better performance by declaring
them to be of type integer.

Select the Right Level of Parallelism
Setting your parallelism properly can be difficult, as there are a number of factors.
Before we discuss the factors, a little background will be helpful. It would be natural
to think more parallelism is always better; however, that is not the case. Like any other
resource, parallelism has a network cost, as discussed under the shuffle size perform-
ance bottleneck.

Second, increasing parallelism adds latency to your script because there is a limited
number of reduce slots in your cluster, or a limited number that your scheduler will
assign to you. If 100 reduce slots are available to you and you specify parallel 200, you
still will be able to run only 100 reduces at a time. Your reducers will run in two separate

Writing Your Scripts to Perform Well | 105

waves. Because there is overhead in starting and stopping reduce tasks, and the shuffle
gets less efficient as parallelism increases, it is often not efficient to select more reducers
than you have slots to run them. In fact, it is best to specify slightly fewer reducers than
the number of slots that you can access. This leaves room for MapReduce to restart a
few failed reducers and use speculative execution without doubling your reduce time.
See “Handling Failure” on page 192 for information on speculative execution.

Also, it is important to keep in mind the effects of skew on parallelism. MapReduce
generally does a good job partitioning keys equally to the reducers, but the number of
records per key often varies radically. Thus a few reducers that get keys with a large
number of records will significantly lag the other reducers. Pig cannot start the next
MapReduce job until all of the reducers have finished in the previous job. So the slowest
reducer defines the length of the job. If you have 10G of input to your reducers and you
set parallel to 10, but one key accounts for 50% of the data (not an uncommon case),
nine of your reducers will finish quite quickly while the last lags. Increasing your par-
allelism will not help; it will just waste more cluster resources. Instead, you need to use
Pig’s mechanisms to handle skew.

Writing Your UDF to Perform
Pig has a couple of features intended to enable aggregate functions to run significantly
faster. The Algebraic interface allows UDFs to use Hadoop’s combiner (see “Combiner
Phase” on page 190). The Accumulator interface allows Pig to break a collection of
records into several sets and give each set to the UDF separately. This avoids the need
to materialize all of the records simultaneously, and thus spill to disk when there are
too many records. For details on how to use these interfaces, see “Algebraic Inter-
face” on page 135 and “Accumulator Interface” on page 139. Whenever possible, you
should write your aggregate UDFs to make use of these features.

Pig also has optimizations to help loaders minimize the amount of data they load. Pig
can tell a loader which fields it needs and which keys in a map it needs. It can also push
down certain types of filters. For information on this, see “Pushing down projec-
tions” on page 156 and “Loading metadata” on page 153.

Tune Pig and Hadoop for Your Job
On your way out of a commercial jet airliner, have you ever peeked around the flight
attendant to gaze at all the dials, switches, and levers in the cockpit? This is sort of what
tuning Hadoop is like: many, many options, some of which make an important differ-
ence. But without the proper skills, it can be hard to know which is the right knob to
turn. Table 8-2 looks at a few of the important features.

106 | Chapter 8: Making Pig Fly

This table is taken from Tables 6-1 and 6-2 in Hadoop: The Definitive
Guide, Second Edition, by Tom White (O’Reilly), used with permission.
See those tables for a more complete list of parameters.

Table 8-2. MapReduce performance-tuning properties

Property name Type Default
value

Description

io.sort.mb int 100 The size, in megabytes, of the memory buffer to use while

sorting map output. Increasing this will decrease the number

of spills from the map and make the combiner more efficient,

but will leave less memory for your map tasks.

io.sort.factor int 10 The maximum number of streams to merge at once when

sorting files. It is fairly common to increase this to 100.

min.num.spills.for.com

bine

int 3 The minimum number of spill files (from the map) needed for

the combiner to run.

mapred.job.shuf

fle.input.buffer.percent

float 0.7 The proportion of total heap size to be allocated to the map

outputs buffer (reducer buffer for storing map outputs) during

the copy phase of the shuffle.

mapred.job.shuf

fle.merge.percent

float 0.66 The threshold usage proportion for the map outputs buffer

(defined by mapred.job.shuffle.input.buf

fer.percent) for starting the process of merging the out-

puts and spilling to disk.

Compared to Hadoop, tuning Pig is much simpler. There are a couple of memory-
related parameters that will help ensure Pig uses its memory in the best way possible.
These parameters are covered in Table 8-3.

Table 8-3. Pig performance-tuning properties

Property name Type Default
value

Description

pig.cached

bag.memusage

float 0.1 Percentage of the heap that Pig will allocate for all of the bags in a map or

reduce task. Once the bags fill up this amount, the data is spilled to disk.

Setting this to a higher value will reduce spills to disk during execution but

increase the likelihood of a task running out of heap.

pig.skewed

join.reduce.mem

usage

float 0.3 Percentage of the heap Pig will use during a skew join when trying to ma-

terialize one side in memory. Setting this to a higher value will reduce the

number of ways that large keys are split and thus how many times their

records must be replicated, but it will increase the likelihood of a reducer

running out of memory.

All of these values for Pig and MapReduce can be set using the set option in your Pig
Latin script (see “set” on page 75) or by passing them with -D on the command line.

Tune Pig and Hadoop for Your Job | 107

http://oreilly.com/catalog/9781449389734/
http://oreilly.com/catalog/9781449389734/

Using Compression in Intermediate Results
As is probably clear by now, some of the biggest costs in Pig are moving data between
map and reduce phases and between MapReduce jobs. Compression can be used to
reduce the amount of data to be stored to disk and written over the network. By default,
compression is turned off, both between map and reduce tasks and between MapRe-
duce jobs.

To enable compression between map and reduce tasks, two Hadoop parameters are
used: mapred.compress.map.output and mapred.map.output.compression.codec. To turn
on compression, set mapred.compress.map.output to true. You will also need to select
a compression type to use. The most commonly used types are gzip and LZO. gzip is
more CPU-intensive but compresses better. To use gzip, set mapred.map.output.com
pression.codec to org.apache.hadoop.io.compress.GzipCodec. In most cases, LZO pro-
vides a better performance boost. See the sidebar “Setting Up LZO on Your Clus-
ter” on page 108 for details. To use LZO as your codec, set mapred.map.output.com
pression.codec to com.hadoop.compression.lzo.LzopCodec.

Compressing data between MapReduce jobs can also have a significant impact on Pig
performance. This is particularly true of Pig scripts that include joins or other operators
that expand your data size. To turn on compression, set pig.tmpfilecompression to
true. Again, you can choose between gzip and LZO by setting pig.tmpfilecompres
sion.codec to gzip or lzo, respectively. In the testing we did while developing this
feature, we saw performance improvements of up to four times when using LZO, and
slight performance degradation when using gzip.

Setting Up LZO on Your Cluster
LZO is licensed under the GNU Public License (GPL) and thus cannot be distributed
as part of Apache Hadoop or Apache Pig. To use it, you first need to build and install
the LZO plug-in for Hadoop and configure your cluster to use it.

To download LZO, go to http://code.google.com/a/apache-extras.org/p/hadoop-gpl-com
pression and click on the Downloads tab. Download the hadoop-gpl-compression tarball
onto your machine and untar it. Then you will need to build the native LZO library on
your system. Be sure to do this build on a system that matches your grid machines, as
this is C code and not portable. Once you have built the native library, you need to
install it on your cluster. Details for both of these tasks are given at http://code.google
.com/a/apache-extras.org/p/hadoop-gpl-compression/wiki/FAQ. A number of fixes for
bugs found in this tarball have been committed to GitHub. You might want to clone
and build this version if you have issues with the official tarball.

108 | Chapter 8: Making Pig Fly

http://code.google.com/a/apache-extras.org/p/hadoop-gpl-compression
http://code.google.com/a/apache-extras.org/p/hadoop-gpl-compression
http://code.google.com/a/apache-extras.org/p/hadoop-gpl-compression/wiki/FAQ
http://code.google.com/a/apache-extras.org/p/hadoop-gpl-compression/wiki/FAQ
https://github.com/kevinweil/hadoop-lzo

Data Layout Optimization
How you lay out your data can have a significant impact on how your Pig jobs perform.
On the one hand, you want to organize your files such that Pig can scan the minimal
set of records. For example, if you have regularly collected data that you usually read
on an hourly basis, it likely makes sense to place each hour’s data in a separate file. On
the other hand, the more files you create, the more pressure you put on your Name-
Node. And MapReduce operates more efficiently on larger files than it does on files
that are less than one HDFS block (64 MB by default). You will need to find a balance
between these two competing forces.

Beginning in 0.8, when your inputs are files and they are smaller than half an HDFS
block, Pig will automatically combine the smaller sections when using the file as input.
This allows MapReduce to be more efficient and start fewer map tasks. This is almost
always better for your cluster utilization. It is not always better for the performance of
your individual query, however, because you will be losing locality of data reads for
many of the combined blocks, and your map tasks may run longer. If you need to turn
this feature off, pass -Dpig.noSplitCombination=true on your command line or set the
property in your pig.properties file.

Bad Record Handling
When processing gigabytes or terabytes of data, the odds are overwhelming that at least
one row is corrupt or will cause an unexpected result. An example is division by zero,
even though no records were supposed to have a zero in the denominator. Causing an
entire job to fail over one bad record is not good. To avoid these failures, Pig inserts a
null, issues a warning, and continues processing. This way, the job still finishes. Warn-
ings are aggregated and reported as a count at the end. You should check the warnings
to be sure that the failure of a few records is acceptable in your job. If you need to know
more details about the warnings, you can turn off the aggregation by passing -w on the
command line.

Bad Record Handling | 109

CHAPTER 9

Embedding Pig Latin in Python

Pig Latin is a dataflow language. Unlike general-purpose programming languages, it
does not include control flow constructs such as if and for. For many data-processing
applications, the operators Pig provides are sufficient. But there are classes of problems
that either require the data flow to be repeated an indefinite number of times or need
to branch based on the results of an operator. Iterative processing, where a calculation
needs to be repeated until the margin of error is within an acceptable limit, is one
example. It is not possible to know beforehand how many times the data flow will need
to be run before processing begins.

Blending data flow and control flow in one language is difficult to do in a way that is
useful and intuitive. Building a general-purpose language and all the associated tools,
such as IDEs and debuggers, is a considerable undertaking; also, there is no lack of
such languages already. If we turned Pig Latin into a general-purpose language, it would
require users to learn a much bigger language to process their data. For these reasons,
we decided to embed Pig in existing scripting languages. This avoids the need to invent
a new language while still providing users with the features they need to process their
data.*

As with UDFs, we chose to use Python for the initial release of embedded Pig in version
0.9. The embedding interface is a Java class, so a Jython interpreter is used to run these
Python scripts that embed Pig. This means Python 2.5 features can be used but Python
3 features cannot. In the future we hope to extend the system to other scripting lan-
guages that can access Java objects, such as JavaScript† and JRuby. Of course, since
the Pig infrastructure is all in Java, it is possible to use this same interface to embed Pig
into Java scripts.

* In some of the documentation, wiki pages, and issues on JIRA, embedded Pig is referred to as Turing Complete
Pig. This was what the project was called when it first started, even though we did not make Pig itself Turing
complete.

† There is already an experimental version of JavaScript in 0.9.

111

This embedding is done in a JDBC-like style, where your Python script first compiles
a Pig Latin script, then binds variables from Python to it, and finally runs it. It is also
possible to do filesystem operations, register JARs, and perform other utility operations
through the interface. The top-level class for this interface is org.apache.pig.script
ing.Pig.

Throughout this chapter we will use an example of calculating page rank from a web
crawl. You can find this example under examples/ch9 in the example code. This code
iterates over a set of URLs and links to produce a page rank for each URL.‡ The input
to this example is the webcrawl data set found in the examples. Each record in this
input contains a URL, a starting rank of 1, and a bag with a tuple for each link found
at that URL:

http://pig.apache.org/privacypolicy.html 1 {(http://www.google.com/privacy.html)}
http://www.google.com/privacypolicy.html 1 {(http://www.google.com/faq.html)}
http://desktop.google.com/copyrights.html 1 {}

Even though control flow is done via a Python script, it can still be run using Pig’s bin/
pig script. bin/pig looks for the #! line and calls the appropriate interpreter. This allows
you to use these scripts with systems that expect to invoke a Pig Latin script. It also
allows Pig to include UDFs from this file automatically and to give correct line numbers
for error messages.

In order to use the Pig class and related objects, the code must first import them into
the Python script:

from org.apache.pig.scripting import *

Compile
Calling the static method Pig.compile causes Pig to do an initial compilation of the
code. Because we have not bound the variables yet, this check cannot completely verify
the script. Type checking and other semantic checking is not done at this phase—only
the syntax is checked. compile returns a Pig object that can be bound to a set of variables:

pagerank.py
P = Pig.compile("""
previous_pagerank = load '$docs_in' as (url:chararray, pagerank:float,
 links:{link:(url:chararray)});
outbound_pagerank = foreach previous_pagerank generate
 pagerank / COUNT(links) as pagerank,
 flatten(links) as to_url;
cogrpd = cogroup outbound_pagerank by to_url,
 previous_pagerank by url;
new_pagerank = foreach cogrpd generate group as url,
 (1 - $d) + $d * SUM (outbound_pagerank.pagerank)
 as pagerank,
 flatten(previous_pagerank.links) as links,

‡ The example code was graciously provided by Julien Le Dem.

112 | Chapter 9: Embedding Pig Latin in Python

 flatten(previous_pagerank.pagerank) AS previous_pagerank;
store new_pagerank into '$docs_out';
nonulls = filter new_pagerank by previous_pagerank is not null and
 pagerank is not null;
pagerank_diff = foreach nonulls generate ABS (previous_pagerank - pagerank);
grpall = group pagerank_diff all;
max_diff = foreach grpall generate MAX (pagerank_diff);
store max_diff into '$max_diff';
""")

The only pieces of this Pig Latin script that we have not seen before are the four pa-
rameters, marked in the script as $d, $docs_in, $docs_out, and $max_diff. The syntax
for these parameters is the same as for parameter substitution. However, Pig expects
these to be supplied by the control flow script when bind is called.

There are three other compilation methods in addition to the one shown in this exam-
ple. compile(String name, String script) takes a name in addition to the Pig Latin to
be compiled. This name can be used in other Pig Latin code blocks to import this block:

P1 = Pig.compile("initial", """
A = load 'input';
...
""")
 P2 = Pig.compile("""
import initial;
B = load 'more_input';
...
""")

There are two compilation methods called compileFromFile. These take the same ar-
guments as compile, but they expect the script argument to refer to a file containing the
script, rather than the script itself.

Bind
Once your script has been compiled successfully, the next step is to bind variables in
the control flow to variables in Pig Latin. In our example script this is done by providing
a map to the bind call. The keys are the name of the variables in Pig Latin. The values
in the following example are literal string values that are updated as the script pro-
gresses. They also could be references to Python variables:

pagerank.py
params = { 'd': '0.5', 'docs_in': 'data/webcrawl' }

for i in range(10):
 out = "out/pagerank_data_" + str(i + 1)
 max_diff = "out/max_diff_" + str(i + 1)
 params["docs_out"] = out
 params["max_diff"] = max_diff
 Pig.fs("rmr " + out)
 Pig.fs("rmr " + max_diff)
 bound = P.bind(params)

Bind | 113

 stats = bound.runSingle()
 if not stats.isSuccessful():
 raise 'failed'
 mdv = float(str(stats.result("max_diff").iterator().next().get(0)))
 print "max_diff_value = " + str(mdv)
 if mdv < 0.01:
 print "done at iteration " + str(i)
 break
 params["docs_in"] = out

For the initial run, the Pig Latin $d will take on the value of 0.5, $docs_in the filename
webcrawl, $docs_out out/pagerank_data_1, and $max_diff out/max_diff_1.

bind returns a BoundScript object. This object can be run, explained, described, or
illustrated. As is shown in this script, a single Pig object can be bound multiple times.
A compile is necessary only on the first pass, with different values being bound to it
each time.

In our example, bind is given a mapping of the variables to bind. If all of your Python
variables and Pig Latin variables have the same name, you can call bind with no argu-
ments. This will cause bind to look in the Python context for variables of the same name
as the parameters in Pig and use them. If it cannot find appropriate variables, it will
throw an error. We could change our example script to look like this:

pagerankbindnoarg.py
d = 0.5
docs_in = 'data/webcrawl'

for i in range(10):
 docs_out = "out/pagerank_data_" + str(i + 1)
 max_diff = "out/max_diff_" + str(i + 1)
 Pig.fs("rmr " + docs_out)
 Pig.fs("rmr " + max_diff)
 bound = P.bind()
 stats = bound.runSingle()
 if not stats.isSuccessful():
 raise 'failed'
 mdv = float(str(stats.result("max_diff").iterator().next().get(0)))
 print "max_diff_value = " + str(mdv)
 if mdv < 0.01:
 print "done at iteration " + str(i)
 break
 docs_in = docs_out

Binding Multiple Sets of Variables
Our example page rank script binds its compiled Pig Latin to different variables multiple
times in order to iterate over the data. Each of these jobs is run separately, as is required
by the iterative nature of calculating page rank. However, sometimes you want to run
a set of jobs together; for example, consider calculating census data from countries all
over the world. You want to run the same Pig Latin for each country, but you do not
want to run them separately. There is no point in having a massively parallel system

114 | Chapter 9: Embedding Pig Latin in Python

such as Hadoop if you are going to run jobs one at a time. You want to tell Pig to take
your script and run it against input from all the countries at the same time.

There is a form of bind that provides this capability. Instead of taking a map of param-
eters, it takes a list of maps of parameters. It still returns a single BoundScript object,
but when run is called on this object, all of the separate instantiations of the script will
be run together:

#!/usr/bin/python
from org.apache.pig.scripting import *
pig = Pig.compile("""
 input = load '$country' using CensusLoader();
 ...
 store output into '$country_out';
""")

 params = [{'country': 'Afghanistan', 'country_out': 'af.out'},
 ...
 {'country': 'Zimbabwe', 'country_out': 'zw.out'}]

 bound = pig.bind(params)
 stats = bound.run()

Run
Once we have our BoundScript object, we can call runSingle to run it. This tells Pig to
run a single Pig Latin script. This is appropriate when you have bound your script
to just one set of variables. runSingle returns a PigStats object. This object allows you
to get your results and examine what happened in your script, including status, error
codes and messages if there was an error, and statistics about the run itself. Table 9-1
summarizes the more important methods available for PigStats.

Table 9-1. PigStats methods

Method Returns

result(String alias) Given an alias, returns an OutputStats object that describes the output

stored from that alias. You can get a results iterator from OutputStats.

isSuccessful() Returns true if all went well, and false otherwise.

getReturnCode() Gets the return code from running Pig. See Table 2-1 for return code details.

getErrorMessage() Returns the error message if the run failed. This will try to pick the most

relevant error message that was returned, most likely the last.

getAllErrorMessages() Returns a list of all of the error messages if the run failed.

getOutputLocations() Returns a list of location strings that were stored in the script. For example,

if you wrote output to a file on HDFS, this will return the filename.

getOutputNames() Returns a list of aliases that were stored in the script.

getRecordWritten() Returns the total number of records written by the script.

getBytesWritten() Returns the total number of bytes written by the script.

Run | 115

Method Returns

getNumberRecords(String location) Given an output location, returns the number of records written to that

location.

getNumberBytes(String location) Given an output location, returns the number of bytes written to that location.

getDuration() Wall clock time it took the script to run.

getNumberJobs() Number of MapReduce jobs run by this script.

As seen in the example, the OutputStats object returned by result() can be used to get
an iterator on the result set. With this you can iterate through the tuples of your data,
processing them in your Python script. Standard Tuple methods such as get() can be
used to inspect the contents of each record. See “Interacting with Pig val-
ues” on page 122 for a discussion of working with Tuples. Based on the results read in
the iterator, your Python script can decide whether to cease iteration and declare suc-
cess, raise an error, or continue with another iteration.

For this iterator to work, the store function you use to store results from
the alias must also be a load function. Pig attempts to use the same class
to load the results as was used to store it. The default PigStorage works
well for this.

Running Multiple Bindings
If you bound your Pig object to a list of maps of parameters, rather than call runSin
gle, you should call run. This will cause Pig to start a thread for each binding and run
it. All these jobs will be submitted to Hadoop at the same time, making use of Hadoop’s
parallelism. run returns a list of PigStats objects. The PigStats objects are guaranteed
to be in the same order in the list as in the maps of bound variables passed to bind.
Thus the results of the first binding map are in the first position of the PigStats list, etc.

Utility Methods
In addition to the compile, bind, and run methods presented so far, there are also utility
methods provided by Pig and BoundScript.

Filesystem operations can be done by calling the static method Pig.fs. The string
passed to it should be a valid string for use in the Grunt shell (see Chapter 3). The return
code from running the shell command will be returned.

You can use register, define, and set in your compiled Pig Latin statements as you do
in nonembedded Pig Latin. However, you might wish to register a JAR, define a func-
tion alias, or set a value that you want to be effective through all your Pig Latin code
blocks. In these cases you can use the static methods of Pig described in Table 9-2. The
registers, defines, and sets done by these methods will affect all Pig Latin code com-
piled after they are called:

116 | Chapter 9: Embedding Pig Latin in Python

register etc. will not affect this block.
p1 = Pig.compile("...")

Pig.registerJar("acme.jar")
Pig.registerUDF("acme_python.py", "acme")
Pig.define("d_to_e", "com.acme.financial.CurrencyConverter('dollar', 'euro'"))
Pig.set("default_parallel", "100")

register etc. will affect p2 and p3
p2 = Pig.compile("...")
p3 = Pig.compile("...")

Table 9-2. Pig utility methods

Method Arguments Pig Latin equivalent

registerJar(String jar

file)

jarfile is the JAR to register. register jarfile;

registerUDF(String udf

file, String namespace)

udffile is the UDF file to register.

namespace is the namespace to place the UDF in.

register udffile

using jython as name

space;

define(String alias, String

definition)

alias is the name of the definition.

definition is the string being aliased.

define alias defini

tion;

set(String variable, String

value)

variable is the variable to set.

value is the value to set the variable to.

set variable value;

Once a script has been bound and a BoundScript returned, in addition to running the
script you can also call describe, explain, or illustrate. These do exactly what they
would if they were in a nonembedded Pig Latin script. However, they do not return the
resulting output to your script; instead, it is dumped to the standard out. (These op-
erators are intended for use in debugging rather than for returning data directly to your
script.)

Utility Methods | 117

CHAPTER 10

Writing Evaluation and Filter Functions

It is time to turn our attention to how you can extend Pig. So far we have looked at the
operators and functions Pig provides. But Pig also makes it easy for you to add your
own processing logic via User Defined Functions (UDFs). These are written in Java
and, starting with version 0.8, in Python.* This chapter will walk through how you can
build evaluation functions, UDFs that operate on single elements of data or collections
of data. It will also cover how to write filter functions, UDFs that can be used as part of
filter statements.

UDFs are powerful tools, and thus the interfaces are somewhat complex. In designing
Pig, our goal was to make easy things easy and hard things possible. So, the simplest
UDFs can be implemented in a single method, but you will have to implement a few
more methods to take advantage of more advanced features. We will cover both cases
in this chapter.

Throughout this chapter we will use several running examples of UDFs. Some of these
are built-in Pig UDFs, which can be found in your Pig distribution at src/org/apache/
pig/builtin/. The others can be found on GitHub with the other example UDFs, in the
directory udfs.

Writing an Evaluation Function in Java
Pig and Hadoop are implemented in Java, and so it is natural to implement UDFs in
Java. This allows UDFs access to the Hadoop APIs and to many of Pig’s facilities.

Before diving into the details, it is worth considering names. Pig locates a UDF by
looking for a Java class that exactly matches the UDF name in the script. For details on
where it looks, see “Registering UDFs” on page 51 and “define and
UDFs” on page 53. There is not an accepted standard on whether UDF names should
be all uppercase, camelCased (e.g., MyUdf), or all lowercase. Even the built-in UDFs

* In 0.9, eval funcs can also be written in JavaScript, though this is experimental and has not yet been fully
tested.

119

provided by Pig vary in this regard. Keep in mind that, whatever you choose, you and
all of the users of your UDF will have a better user experience if you make the name
short, easy to remember, and easy to type.

Where Your UDF Will Run
Writing code that will run in a parallel system presents challenges. A separate instance
of your UDF will be constructed and run in each map or reduce task. It is not possible
to share state across these instances because they may not all be running at the same
time. There will be only one instance of your UDF per map or reduce task, so you can
share state within that context.†

When writing code for a parallel system, you must remember the power of parallelism.
Operations that are acceptable in serial programs may no longer be advisable. Consider
a UDF that, when it first starts, connects to a database server to download a translation
table. In a serial or low-parallelism environment, this is a reasonable approach. But if
you have 10,000 map tasks in your job and they all connect to your database at once,
you will most likely hear from your DBA, and the conversation is unlikely to be pleasant.

In addition to an instance in each task, Pig will construct an instance of your UDF on
the frontend during the planning stage. It does this for a couple of reasons. One, it
wants to test early that it can construct your UDF; it would rather fail during planning
than at runtime. Two, as we will cover later in this chapter, it will ask your UDF some
questions about schemas and types it accepts as part of the execution planning. It will
also give your UDF a chance to store information it wants to make available to the
instances of itself that will be run in the backend.

Evaluation Function Basics
All evaluation functions extend the Java class org.apache.pig.EvalFunc. This class uses
Java generics. It is parameterized by the return type of your UDF. The core method in
this class is exec. It takes one record and returns one result, which will be invoked for
every record that passes through your execution pipeline. As input it takes a tuple,
which contains all of the fields the script passes to your UDF. It returns the type by
which you parameterized EvalFunc. For simple UDFs, this is the only method you need
to implement. The following code gives an example of a UDF that raises an integer to
an integral power and returns a long result:

// java/com/acme/math/Pow.java
/**
 * A simple UDF that takes a value and raises it to the power of a second
 * value. It can be used in a Pig Latin script as Pow(x, y), where x and y
 * are both expected to be ints.
 */

† Assuming there is one instance of your UDF in the script. Each reference to a UDF in a script becomes a
separate instance on the backend, even if they are placed in the same map or reduce task.

120 | Chapter 10: Writing Evaluation and Filter Functions

public class Pow extends EvalFunc<Long> {

 public Long exec(Tuple input) throws IOException {
 try {
 /* Rather than give you explicit arguments, UDFs are always handed
 * a tuple. The UDF must know the arguments it expects and pull
 * them out of the tuple. These next two lines get the first and
 * second fields out of the input tuple that was handed in. Since
 * Tuple.get returns Objects, we must cast them to Integers. If
 * the case fails, an exception will be thrown.
 */
 int base = (Integer)input.get(0);
 int exponent = (Integer)input.get(1);
 long result = 1;

 /* Probably not the most efficient method...*/
 for (int i = 0; i < exponent; i++) {
 long preresult = result;
 result *= base;
 if (preresult > result) {
 // We overflowed. Give a warning, but do not throw an
 // exception.
 warn("Overflow!", PigWarning.TOO_LARGE_FOR_INT);
 // Returning null will indicate to Pig that we failed but
 // we want to continue execution.
 return null;
 }
 }
 return result;
 } catch (Exception e) {
 // Throwing an exception will cause the task to fail.
 throw new IOException("Something bad happened!", e);
 }
 }
}

EvalFunc is also used to implement aggregation functions. Because the group operator
returns a record for each group, with a bag containing all the records in that group,
your eval func still takes one record and returns one record. As an example of this, let’s
take a look at the implementation of exec in Pig’s COUNT function. Some of the error-
handling code has been removed for ease of reading:

// src/org/apache/pig/builtin/COUNT.java
public Long exec(Tuple input) throws IOException {
 try {
 // The data bag is passed to the UDF as the first element of the
 // tuple.
 DataBag bag = (DataBag)input.get(0);
 Iterator it = bag.iterator();
 long cnt = 0;
 while (it.hasNext()){
 Tuple t = (Tuple)it.next();
 // Don't count nulls or empty tuples
 if (t != null && t.size() > 0 &&
 t.get(0) != null) {

Writing an Evaluation Function in Java | 121

 cnt++;
 }
 }
 return cnt;
 } catch (Exception e) {
 ...
 }
}

Just as UDFs can take complex types as input, they also can return complex types as
output. You could, for example, create a SetIntersection UDF that took two bags as
input and returned a bag as output.

UDFs can also be handed the entire record by passing * to the UDF. You might expect
that in this case the input Tuple argument passed to the UDF would contain all the
fields passed into the operator the UDF is in. But it does not. Instead, it contains one
field, which is a tuple that contains all those fields. Consider a Pig Latin script like this:

data = load 'input' as (x, y, z);
processed = foreach data generate myudf(*);

In this case, myudf.exec will get a tuple with one field, which will be a tuple that will
have three fields: x, y, and z. To access the y field of data, you will need to call
t.get(0).get(1).

Interacting with Pig values

Evaluation functions and other UDFs are exposed to the internals of how Pig represents
data types. This means that when you read a field and expect it to be an integer, you
need to know that it will be an instance of java.lang.Integer. For a complete list of
Pig types and how they are represented in Java, see “Types” on page 23. For most of
these types, you construct the appropriate Java objects in the normal way. However,
this is not the case for tuples and bags. These are interfaces, and they do not have direct
constructors. Instead, you must use factory classes for each of these. This was done so
that users and developers could build their own implementations of tuple and bag and
instruct Pig to use them.

TupleFactory is an abstract singleton class that you must use to create tuples. You can
also configure which TupleFactory is used, since users who provide their own tuples
will need to provide their own factory to produce them. To get an instance of Tuple
Factory to construct tuples, call the static method TupleFactory.getInstance().

You can now create new tuples with either newTuple() or newTuple(int size). When-
ever possible you should use the second method, which preallocates the tuple with the
right number of fields. This avoids the need to dynamically grow the tuple later and is
much more efficient. The method creates a tuple with size number of fields, all of which
are null. You can now set the fields using the Tuple’s set(int fieldNum, Object val)
method. As an example, we can look at how the example load function we will build
in the next chapter creates tuples:

122 | Chapter 10: Writing Evaluation and Filter Functions

// JsonLoader.java
private TupleFactory tupleFactory = TupleFactory.getInstance();

private Object readField(JsonParser p,
 ResourceFieldSchema field,
 int fieldnum) throws IOException {
 ...
 ResourceSchema s = field.getSchema();
 ResourceFieldSchema[] fs = s.getFields();
 Tuple t = tupleFactory.newTuple(fs.length);

 for (int j = 0; j < fs.length; j++) {
 t.set(j, readField(p, fs[j], j));
 }
 ...
}

If you do not know the number of fields in the tuple when it is constructed, you can
use newTuple(). You can then add fields using Tuple’s append(Object val) method,
which will append the field to the end of the tuple.

To read data from tuples, use the get(int fieldNum) method. This returns a Java
Object because the tuple does not have a schema instance and does not know what
type this field is. You must either cast the result to the appropriate type or use the utility
methods in org.apache.pig.data.DataType to determine the type.

Similar to tuples, BagFactory must be used to construct bags. You can get an instance
using BagFactory.getInstance(). To get a new, empty bag, call newDefaultBag(). You
can then add tuples to it as you construct them using DataBag’s add(Tuple t) method.
You should do this rather than constructing a list of tuples and then passing it using
newDefaultBag(List<Tuple> listOfTuples), because bags know how to spill to disk
when they grow so large that they cannot fit into memory. Again we can look at Json
Loader to see an example of constructing bags:

// JsonLoader.java
private BagFactory bagFactory = BagFactory.getInstance();

private Object readField(JsonParser p,
 ResourceFieldSchema field,
 int fieldnum) throws IOException {
 ...
 DataBag bag = bagFactory.newDefaultBag();

 JsonToken innerTok;
 while ((innerTok = p.nextToken()) != JsonToken.END_ARRAY) {

 t = tupleFactory.newTuple(fs.length);
 for (int j = 0; j < fs.length; j++) {
 t.set(j, readField(p, fs[j], j));
 }

 p.nextToken(); // read end of object
 bag.add(t);

Writing an Evaluation Function in Java | 123

 }
 ...
}

To read data from a bag, use the iterator provided by iterator(). This also implements
Java’s Iterable, so you can use the construct for (Tuple t : bag).

Bags make the assumption that once data is being read from them, no
new data will be written to them. Their implementation of how they
spill and reread data depends on this assumption. So once you call
iterator, you should never call add again on the same bag.

Input and Output Schemas
Pig typechecks a script before running it. EvalFunc includes a method to allow you to
turn on type checking for your UDF as well, both for input and output.

When your UDF returns a simple type, Pig uses Java reflection to determine the return
type. However, because exec takes a tuple, Pig has no way to determine what input you
expect your UDF to take. You can check this at runtime, of course, but your develop-
ment and testing will go more smoothly if you check it at compile time instead. For
example, we could use the Pow UDF example in the previous section like this:

register 'acme.jar';
A = load 'input' as (x:chararray, y :int);
B = foreach A generate y, com.acme.math.Pow(x, 2);
dump B;

Pig will start a job and run your tasks. All the tasks will fail, and you will get an error
message ERROR 2078: Caught error from UDF: com.acme.math.Pow [Something bad hap
pened!]. Runtime exceptions like this are particularly expensive in Hadoop, both be-
cause scheduling can take a while on a busy cluster and because each task is tried three
times before the whole job is declared a failure. Let’s fix this UDF so it checks up front
that it was given reasonable input.

The method to declare the input your UDF expects is outputSchema. The method is
called this because it returns the schema that describes the UDF’s output. If your UDF
does not override this method, Pig will attempt to ascertain your return type from the
return type of your implementation of EvalFunc, and pass your UDF whatever input
the script indicates. If your UDF does implement this method, Pig will pass it the schema
of the input that the script has indicated to pass into the UDF. This is also your UDF’s
opportunity to throw an error if it receives an input schema that does not match its
expectations. An implementation of this method for Pow looks like this:

 // java/com/acme/math/Pow.java
public Schema outputSchema(Schema input) {
 // Check that we were passed two fields
 if (input.size() != 2) {
 throw new RuntimeException(
 "Expected (int, int), input does not have 2 fields");

124 | Chapter 10: Writing Evaluation and Filter Functions

 }

 try {
 // Get the types for both columns and check them. If they are
 // wrong, figure out what types were passed and give a good error
 // message.
 if (input.getField(0).type != DataType.INTEGER ||
 input.getField(1).type != DataType.INTEGER) {
 String msg = "Expected input (int, int), received schema (";
 msg += DataType.findTypeName(input.getField(0).type);
 msg += ", ";
 msg += DataType.findTypeName(input.getField(1).type);
 msg += ")";
 throw new RuntimeException(msg);
 }
 } catch (Exception e) {
 throw new RuntimeException(e);
 }

 // Construct our output schema, which is one field that is a long
 return new Schema(new FieldSchema(null, DataType.LONG));
}

With this method added to Pow, when we invoke the previous script that mistakenly
tries to pass a chararray to Pow, it now fails almost immediately with java.lang.Runti
meException: Expected input of (int, int), but received schema (chararray, int).

Pig’s Schema is a complicated class, and we will not delve into all its complexities here.
The following summary will be enough to help you build your own schemas for out
putSchema. At its core, Schema is a list of FieldSchemas and a mapping of aliases to
FieldSchemas. Each FieldSchema contains an alias and a type. The types are stored as
Java bytes, with constants for each type defined in the class org.apache.pig.data.Data
Type. Schema is a recursive structure. Each FieldSchema also has a Schema member. This
member is nonnull only when the type is complex. In the case of tuples, it defines the
schema of the tuple. In the case of bags, it defines the schema of the tuples in the bag.
Starting in 0.9, if a schema is present for a map, it indicates the data type of values in
the map. Before 0.9, maps did not have schemas:

public class Schema implements Serializable, Cloneable {

 // List of all fields in the schema.
 private List<FieldSchema> mFields;

 // Map of alias names to field schemas, so that lookup can be done by alias.
 private Map<String, FieldSchema> mAliases;

 // A FieldSchema represents a schema for one field.
 public static class FieldSchema implements Serializable, Cloneable {

 // Alias for this field.
 public String alias;

 // Datatype, using codes from org.apache.pig.data.DataType.

Writing an Evaluation Function in Java | 125

 public byte type;

 // If this is a tuple itself, it can have a schema. Otherwise, this field
 // must be null.
 public Schema schema;

 /**
 * Constructor for any type.
 * @param a Alias, if known. If unknown, leave null.
 * @param t Type, using codes from org.apache.pig.data.DataType.
 */
 public FieldSchema(String a, byte t) { ... }
 }

 /**
 * Create a schema with more than one field.
 * @param fields List of field schemas that describes the fields.
 */
 public Schema(List<FieldSchema> fields) { ... }

 /**
 * Create a schema with only one field.
 * @param fieldSchema field to put in this schema.
 */
 public Schema(FieldSchema fieldSchema) { ... }

 /**
 * Given an alias name, find the associated FieldSchema.
 * @param alias Alias to look up.
 * @return FieldSchema, or null if no such alias is in this tuple.
 */
 public FieldSchema getField(String alias) throws FrontendException {
 // some error checking omitted.
 return mAliases.get(alias);
 }

 /**
 * Given a field number, find the associated FieldSchema.
 *
 * @param fieldNum Field number to look up.
 * @return FieldSchema for this field.
 */
 public FieldSchema getField(int fieldNum) throws FrontendException {
 // some error checking omitted.
 return mFields.get(fieldNum);
 }
}

As mentioned earlier, when your UDF returns a scalar type, Pig can use reflection to
figure out that return type. When your UDF returns a bag or a tuple, however, you will
need to implement outputSchema if you want Pig to understand the contents of that bag
or tuple.

126 | Chapter 10: Writing Evaluation and Filter Functions

Error Handling and Progress Reporting
Our previous examples have given some hints of how to deal with errors. When your
UDF encounters an error, you have a couple of choices on how to handle it. The most
common case is to issue a warning and return a null. This tells Pig that your UDF failed
and its output should be viewed as unknown.‡ We saw an example of this when the
Pow function detected overflow:

for (int i = 0; i < exponent; i++) {
 long preresult = result;
 result *= base;
 if (preresult > result) {
 // We overflowed. Give a warning, but do not throw an
 // exception.
 warn("Overflow!", PigWarning.TOO_LARGE_FOR_INT);
 // Returning null will indicate to Pig that we failed but
 // we want to continue execution.
 return null;
 }
}

warn, a method of EvalFunc, takes a message that you provide as well as a warning code.
The warning codes are in org.apache.pig.PigWarning, including several user-defined
codes that you can use if none of the provided codes matches your situation. These
warnings are aggregated by Pig and reported to the user at the end of the job.

Warning and returning null is convenient because it allows your job to continue. When
you are processing billions of records, you do not want your job to fail because one
record out of all those billions had a chararray where you expected an int. Given enough
data, the odds are overwhelming that a few records will be bad, and most calculations
will be fine if a few data points are missing.

For errors that are not tolerable, your UDF can throw an exception. If Pig catches an
exception, it will assume that you are asking to stop everything, and it will cause the
task to fail. Hadoop will then restart your task. If any particular task fails three times,
Hadoop will not restart it again. Instead, it will kill all the other tasks and declare the
job a failure.

When you have concluded that you do need an exception, you should also issue a log
message so that you can read the task logs later and get more context to determine what
happened. EvalFunc has a member log that is an instance of org.apache.commons.log
ging.Log. Hadoop prints any log messages into logfiles on the task machine, which are
available from the JobTracker UI. See “MapReduce Job Status” on page 92 for details.
You can also print info messages into the log to help you with debugging.

In addition to error reporting, some UDFs will need to report progress. Hadoop listens
to its tasks to make sure they are making progress. If it does not hear from a task for

‡ Recall that in Pig null means that the value is unknown, not that it is 0 or unset.

Writing an Evaluation Function in Java | 127

five minutes, it concludes that the task died or went into an infinite loop. It then kills
the task if it is still running, cleans up its resources, and restarts the task elsewhere. Pig
reports progress to Hadoop on a regular basis. However, if you have a UDF that is very
compute-intensive and a single invocation of it might run for more than five minutes,
you should also report progress. To do this, EvalFunc provides a member reporter. By
invoking report.progress() or report.progress(String msg) (where msg can say what-
ever you want) at least every five minutes, your UDF will avoid being viewed as a
timeout.

Constructors and Passing Data from Frontend to Backend
Our discussion so far assumes that your UDF knows everything it needs to know at
development time. This is not always the case. Consider a UDF that needs to read a
lookup table from HDFS. You would like to be able to declare the filename when you
use the UDF. You can do that by defining a nondefault constructor for your UDF.

By default, EvalFuncs have a no-argument constructor, but you can provide a construc-
tor that takes one or more String arguments. This alternate constructor is then refer-
enced in Pig Latin by using the define statement to define the UDF; see “define and
UDFs” on page 53 for details.

As an example, we will look at a new UDF, MetroResolver. This UDF takes a city name
as input and returns the name of the larger metropolitan area that city is part of. For
example, given Pasadena, it will return Los Angeles. Based on which country the input
cities are in, a different lookup table will be needed. The name of a file in HDFS that
contains this lookup table can be provided as a constructor argument. The class dec-
laration, members, and constructor for our UDF look like this:

// java/com/acme/marketing/MetroResolver.java
/**
 * A lookup UDF that maps cities to metropolitan areas.
 */
public class MetroResolver extends EvalFunc<String> {

 String lookupFile;
 HashMap<String, String> lookup = null;

 /*
 * @param file - File that contains a lookup table mapping cities to metro
 * areas. The file must be located on the filesystem where this UDF will
 * run.
 */
 public MetroResolver(String file) {
 // Just store the filename. Don't load the lookup table, since we may
 // be on the frontend or the backend.
 lookupFile = file;
 }
}

The UDF can now be invoked in a Pig Latin script like this:

128 | Chapter 10: Writing Evaluation and Filter Functions

register 'acme.jar';
define MetroResolver com.acme.marketing.MetroResolver('/user/you/cities/us');
A = load 'input' as (city:chararray);
B = foreach A generate city, MetroResolver(city);
dump B;

The filename /user/you/cities/us will be passed to MetroResolver every time Pig con-
structs it. However, our UDF is not yet complete because we have not constructed the
lookup table. In fact, we explicitly set it to null. It does not make sense to construct it
in the constructor, because the constructor will be invoked on both the frontend and
backend. There are forms of dark magic that will allow the UDF to figure out whether
it is being invoked on the frontend or backend, but I cannot recommend them, because
they are not guaranteed to work the same between releases. It is much better to do the
lookup table construction in a method that we know will be called only in the backend.

EvalFunc does not provide an initialize method that it calls on the backend before it
begins processing. You can work around this by keeping a flag to determine whether
you have initialized your UDF in a given task. The exec function for MetroResolver does
this by tracking whether lookup is null:

public String exec(Tuple input) throws IOException {
 if (lookup == null) {
 // We have not been initialized yet, so do it now.

 lookup = new HashMap<String, String>();
 // Get an instance of the HDFS FileSystem class so
 // we can read a file from HDFS. We need a copy of
 // our configuration to do that.
 // Read the configuration from the UDFContext.
 FileSystem fs = FileSystem.get(UDFContext.getUDFContext().getJobConf());
 DataInputStream in = fs.open(new Path(lookupFile));
 String line;
 while ((line = in.readLine()) != null) {
 String[] toks = new String[2];
 toks = line.split(":", 2);
 lookup.put(toks[0], toks[1]);
 }
 in.close();
 }
 return lookup.get((String)input.get(0));
}

This initialization section handles opening the file and reading it. In order to open the
file, it must first connect to HDFS. This is accomplished by FileSystem.get. This
method in turn needs a JobConf object, which is where Hadoop stores all its job infor-
mation. The JobConf object can be obtained using UDFContext, which we will cover in
more detail later. Note that obtaining JobConf in this way works only on the backend,
as no job configuration exists on the frontend.

Once we are connected to HDFS, we open the file and read it as we would any other
file. It is parsed into two fields and put into the hash table. All subsequent calls to
exec will just be lookups in the hash table.

Writing an Evaluation Function in Java | 129

Loading the distributed cache

Our MetroResolver UDF opens and reads its lookup file from HDFS, which you will
often want. However, having hundreds or thousands of map tasks open the same file
on HDFS at the same time puts significant load on the NameNode and the DataNodes
that host the file’s blocks. To avoid this situation, Hadoop provides the distributed
cache, which allows users to preload HDFS files locally onto the nodes their tasks will
run on. For details, see “Distributed Cache” on page 191.

Let’s write a second version of MetroResolver that uses the distributed cache. Beginning
in version 0.9, EvalFunc provides a method getCacheFiles that is called on the frontend.
Your UDF returns a list of files from this method that it wants in the distributed cache.
The format of each file is client_file#task_file, where client_file is the path to the
file on your client, and task_file is the name the file will be given on your task node.
task_file is relative to your UDF’s working directory on the backend. You should place
any files in your working directory rather than using an absolute path. task_file will
be a local file on the task node and should be read using standard Java file utilities. It
should not be read using HDFS’s FileSystem:

// java/com/acme/marketing/MetroResolverV2.java
/**
 * A lookup UDF that maps cities to metropolatin areas, this time using the
 * Distributed Cache.
 */
public class MetroResolverV2 extends EvalFunc<String> {

 String lookupFile;
 HashMap<String, String> lookup = null;

 /*
 * @param file - File that contains a lookup table mapping cities to metro
 * areas. The file must be located on the filesystem where this UDF will
 * run.
 */
 public MetroResolverV2(String file) {
 // Just store the filename. Don't load the lookup table, since we may
 // be on the frontend or the backend.
 lookupFile = file;
 }

 public String exec(Tuple input) throws IOException {
 if (lookup == null) {
 // We have not been initialized yet, so do it now.
 lookup = new HashMap<String, String>();

 // Open the file as a local file.
 FileReader fr = new FileReader("./mrv2_lookup");
 BufferedReader d = new BufferedReader(fr);
 String line;
 while ((line = d.readLine()) != null) {
 String[] toks = new String[2];
 toks = line.split(":", 2);

130 | Chapter 10: Writing Evaluation and Filter Functions

 lookup.put(toks[0], toks[1]);
 }
 fr.close();
 }
 return lookup.get((String)input.get(0));
 }

 public List<String> getCacheFiles() {
 List<String> list = new ArrayList<String>(1);
 // We were passed the name of the file on HDFS. Append a
 // name for the file on the task node.
 list.add(lookupFile + "#mrv2_lookup");
 return list;
 }
}

UDFContext

Constructor arguments work as a way to pass information into your UDF, if you know
the data at the time the script is written. You can extend this using parameter substi-
tution (see “Parameter Substitution” on page 77) so that data can be passed when the
script is run. But some information you want to pass from frontend to backend cannot
be known when the script is run, or it might not be accessible in String form on the
command line. An example is collecting properties from the environment and passing
them.

To allow UDFs to pass data from the frontend to the backend, starting in version 0.8,
Pig provides a singleton class, UDFContext. Your UDF obtains a reference to it by calling
getUDFContext. We have already seen that UDFs can use UDFContext to obtain a copy
of the JobConf. Beginning in version 0.9, UDFContext also captures the System properties
on the client and carries them to the backend. Your UDF can then obtain them by
calling getClientSystemProperties.

UDFContext also provides mechanisms for you to pass a properties object explicitly for
your UDF. You can either pass a properties object for all UDFs of the same class or
pass a specific object for each instance of your UDF. To use the same one for all in-
stances of your UDF, call getUDFProperties(this.getClass()). This will return a Prop
erties object that is a reference to a properties object kept by UDFContext. UDFContext
will capture and transmit to the backend any changes made in this object. You can call
this in outputSchema, which is guaranteed to be called in the frontend. When you want
to read the data, call the same method again in your exec method. When using the
object in the exec method, keep in mind that any changes made to the returned Prop
erties will not be transmitted to other instances of the UDF on the backend, unless
you happen to have another instance of the same UDF in the same task. This is a
mechanism for sending information from the frontend to the backend, not between
instances in the backend.

Sometimes you will want to transmit different data to different instances of the same
UDF. By different instances I mean different invocations in your Pig Latin script, not

Writing an Evaluation Function in Java | 131

different instantiations in various map and reduce tasks. To support this, UDFContext
provides getUDFProperties(Class, String[]). The constructor arguments to your UDF
are a good candidate to be passed as the array of String. This allows each instance of
the UDF to differentiate itself. If your UDF does not take constructor arguments, or all
arguments have the same value, you can add one unused argument that is solely to
distinguish separate instances of the UDF.

Consider a UDF that has its own properties file, which might be useful if you want to
pass different properties to different UDFs, or if you have many UDF-specific properties
that you want to change without changing your Pig properties file. Let’s write a second
version of the stock analyzer UDF that we used in Chapter 6:

// java/com/acme/financial/AnalyzeStockV2.java
/**
 * This UDF takes a bag of information about a stock and
 * produces a floating-point score between 1 and 100,
 * 1 being sell, 100 being buy.
 */
public class AnalyzeStockV2 extends EvalFunc<Float> {

 Random r = new Random();
 Properties myProperties = null;

 @Override
 public Float exec(Tuple input) throws IOException {
 if (myProperties == null) {
 // Retrieve our class-specific properties from UDFContext.
 myProperties =
 UDFContext.getUDFContext().getUDFProperties(this.getClass());
 }

 // Make sure the input isn't null and is of the right size.
 if (input == null || input.size() != 1) return null;

 DataBag b = (DataBag)input.get(0);
 for (Tuple t : b) {
 // Do some magic analysis, using properites from myProperties to
 // decide how ...
 }
 return r.nextFloat() * 100;
 }
 @Override
 public Schema outputSchema(Schema input) {
 try {
 // Read our properties file.
 Properties prop = new Properties();
 prop.load(new FileInputStream("/tmp/stock.properties"));
 // Get a properties object specific to this UDF class.
 UDFContext context = UDFContext.getUDFContext();
 Properties udfProp = context.getUDFProperties(this.getClass());
 // Copy our properties into it. There is no need to pass it
 // back to UDFContext.
 for (Map.Entry<Object, Object> e : prop.entrySet()) {
 udfProp.setProperty((String)e.getKey(), (String)e.getValue());

132 | Chapter 10: Writing Evaluation and Filter Functions

 }
 } catch (Exception e) {
 throw new RuntimeException(e);
 }

 return new Schema(new Schema.FieldSchema(null, DataType.FLOAT));
 }

}

Overloading UDFs
Sometimes you want different UDF implementations depending on the data type the
UDF is processing. For example, MIN(long) should return a long, whereas MIN(int)
should return an int. To enable this, EvalFunc provides the method getArgToFuncMap
ping. If this method returns a null, Pig will use the current UDF. To provide a list of
alternate UDFs based on the input types, this function returns a list of FuncSpecs. A
FuncSpec is a Pig class that describes a UDF. Each of these FuncSpecs describes a set of
expected input arguments and the UDF, as a Java class, that should be used to handle
them. Pig’s typechecker will use this list to determine which Java class to place in the
execution pipeline (more on this later). The getArgToFuncMapping of Pig’s built-in MIN
function looks like this:

// src/org/apache/pig/builtin/MIN.java
public List<FuncSpec> getArgToFuncMapping()
throws FrontendException {
 List<FuncSpec> funcList = new ArrayList<FuncSpec>();

 // The first element in the list is this class itself, which is built to
 // handle the case where the input is a bytearray. So we return our own
 // classname and a schema that indicates this function expects a BAG with
 // tuples that have one field, which is a bytearray. generateNestedSchema is a
 // helper method that generates schemas of bags that have tuples with one
 // field.
 funcList.add(new FuncSpec(this.getClass().getName(),
 Schema.generateNestedSchema(DataType.BAG, DataType.BYTEARRAY)));

 // If our input schema is a bag with tuples with one field that is a double,
 // then we use the class DoubleMin instead of MIN to implement min.
 funcList.add(new FuncSpec(DoubleMin.class.getName(),
 Schema.generateNestedSchema(DataType.BAG, DataType.DOUBLE)));

 // and so on...
 funcList.add(new FuncSpec(FloatMin.class.getName(),
 Schema.generateNestedSchema(DataType.BAG, DataType.FLOAT)));

 funcList.add(new FuncSpec(IntMin.class.getName(),
 Schema.generateNestedSchema(DataType.BAG, DataType.INTEGER)));

 funcList.add(new FuncSpec(LongMin.class.getName(),
 Schema.generateNestedSchema(DataType.BAG, DataType.LONG)));

Writing an Evaluation Function in Java | 133

 funcList.add(new FuncSpec(StringMin.class.getName(),
 Schema.generateNestedSchema(DataType.BAG, DataType.CHARARRAY)));

 return funcList;
}

Pig’s typechecker goes through a set of steps to determine which FuncSpec is the closest
match, and thus which Java class it should place in this job’s execution pipeline. At
each step, if it finds a match, it uses that match. If it finds more than one match at a
given step, it will return an error that gives all the matching possibilities. If it finds no
match in the whole list, it will also give an error. As an example of this, let’s consider
another version of the Pow UDF we built above. We will call this one PowV2. It takes
either two longs or two doubles as input. Its getArgToFuncMapping looks like the
following:

// java/com/acme/math/PowV2.java
public List<FuncSpec> getArgToFuncMapping() throws FrontendException {
 List<FuncSpec> funcList = new ArrayList<FuncSpec>();
 Schema s = new Schema();
 s.add(new Schema.FieldSchema(null, DataType.DOUBLE));
 s.add(new Schema.FieldSchema(null, DataType.DOUBLE));
 funcList.add(new FuncSpec(this.getClass().getName(), s));
 s = new Schema();
 s.add(new Schema.FieldSchema(null, DataType.LONG));
 s.add(new Schema.FieldSchema(null, DataType.LONG));
 funcList.add(new FuncSpec(LongPow.class.getName(), s));
 return funcList;
}

In the typechecker’s search for the best UDF to use, step one is to look for an exact
match, where all of the expected input declared by the UDF is matched by the actual
input passed in Pig Latin. Pow(2.0, 3.1415) passes two doubles, so Pig Latin will choose
PowV2. Pow(2L, 3L) passes two longs, so LongPow will be used.

Step two is to look for bytearrays that are passed into the UDF and see whether a match
can be made by inserting casts for those bytearrays. For example, Pig will rewrite Pow(x,
2L), where x is a bytearray, as Pow((long)x, 2L) and use LongPow. This rule can confuse
Pig when all arguments are bytearrays, because bytearrays can be cast to any type.
Pow(x, y), where both x and y are bytearrays, results in an error message:

Multiple matching functions for com.acme.math.PowV2 with input schema:
 ({double,double}, {long,long}). Please use an explicit cast.

Step three is to look for an implicit cast that will match one of the provided schemas.
The implicit cast that is “closest” will be used. Implicit casting of numeric types goes
from int to long to float to double, and by closest I mean the cast that requires the least
steps in that list. So, Pow(2, 2) will use LongPow, whereas Pow(2.0, 2) will use PowV2.

Step four is to look for a working combination of steps two and three, bytearray casts
plus implicit casts. Pow(x, 3.14f), where x is a bytearray, will use PowV2 by promoting
3.14f to a double and casting x to a double.

134 | Chapter 10: Writing Evaluation and Filter Functions

If after all these steps Pig still has not found a suitable method, it will fail and say it
cannot determine which method to use. Pow('hello', 2) gives an error message:

Could not infer the matching function for com.acme.math.PowV2 as multiple or none of
them fit. Please use an explicit cast.

Memory Issues in Eval Funcs
Some operations you will perform in your UDFs will require more memory than is
available. As an example, you might want to build a UDF that calculates the cumulative
sum of a set of inputs. This will return a bag of values because, for each input, it needs
to return the intermediate sum at that input.

Pig’s bags handle spilling data to disk automatically when they pass a certain size
threshold or when only a certain amount of heap space remains. Spilling to disk is
expensive and should be avoided whenever possible. But if you must store large
amounts of data in a bag, Pig will manage it.

Bags are the only Pig data type that know how to spill. Tuples and maps must fit into
memory. Bags that are too large to fit in memory can still be referenced in a tuple or a
map; this will not be counted as those tuples or maps not fitting into memory.

Algebraic Interface
I have already mentioned in a number of other places that there are significant
advantages to using Hadoop’s combiner whenever possible. It lowers skew in your
reduce tasks, as well as the amount of data sent over the network between map and
reduce tasks. For details on the combiner and when it is run, see “Combiner
Phase” on page 190.

Use of the combiner is interesting when you are working with sets of data, usually sets
you intend to aggregate and then compute a single or small set of values for. There are
two classes of functions that fit nicely into the combiner: distributive and algebraic. A
function is distributive if the same result is obtained by 1) dividing its input set into
subsets, applying the function to those subsets, and then applying the function to those
results; or 2) applying the function to the original set. SUM is an example of this. A
function is said to be algebraic if it can be divided into initial, intermediate, and final
functions (possibly different from the initial function), where the initial function is
applied to subsets of the input set, the intermediate function is applied to results of the
initial function, and the final function is applied to all of the results of the intermediate
function. COUNT is an example of an algebraic function, with count being used as the
initial function and sum as the intermediate and final functions. A distributive function
is a special case of an algebraic function, where the initial, intermediate, and final func-
tions are all identical to the original function.

Algebraic Interface | 135

An EvalFunc can declare itself to be algebraic by implementing the Java interface Alge
braic. Algebraic provides three methods that allow your UDF to declare Java classes
that implement its initial, intermediate, and final functionality. These classes must ex-
tend EvalFunc:

// src/org/apache/pig/Algebraic.java
public interface Algebraic{

 /**
 * Get the initial function.
 * @return A function name of f_init. f_init should be an eval func.
 */
 public String getInitial();

 /**
 * Get the intermediate function.
 * @return A function name of f_intermed. f_intermed should be an eval func.
 */
 public String getIntermed();

 /**
 * Get the final function.
 * @return A function name of f_final. f_final should be an eval func
 * parameterized by the same datum as the eval func implementing this interface.
 */
 public String getFinal();
}

Each of these methods returns a name of a Java class, which should itself implement
EvalFunc. Pig will use these UDFs to rewrite the execution of your script. Consider the
following Pig Latin script:

input = load 'data' as (x, y);
grpd = group input by x;
cnt = foreach grpd generate group, COUNT(input);
store cnt into 'result';

The execution pipeline for this script would initially look like:

Map
load

Reduce
foreach(group, COUNT), store

After being rewritten to use the combiner, it would look like:

Map
load

foreach(group, COUNT.Initial)

Combine
foreach(group, COUNT.Intermediate)

136 | Chapter 10: Writing Evaluation and Filter Functions

Reduce
foreach(group, COUNT.Final), store

As an example, we will walk through the implementation for COUNT. Its algebraic func-
tions look like this:

// src/org/apache/pig/builtin/COUNT.java
public String getInitial() {
 return Initial.class.getName();
}

public String getIntermed() {
 return Intermediate.class.getName();
}

public String getFinal() {
 return Final.class.getName();
}

Each of these referenced classes is a static internal class in COUNT. The implementation
of Initial is:

// src/org/apache/pig/builtin/COUNT.java
static public class Initial extends EvalFunc<Tuple> {

 public Tuple exec(Tuple input) throws IOException {
 // Since Initial is guaranteed to be called
 // only in the map, it will be called with an
 // input of a bag with a single tuple - the
 // count should always be 1 if bag is nonempty,
 DataBag bag = (DataBag)input.get(0);
 Iterator it = bag.iterator();
 if (it.hasNext()){
 Tuple t = (Tuple)it.next();
 if (t != null && t.size() > 0 && t.get(0) != null)
 return mTupleFactory.newTuple(Long.valueOf(1));
 }
 return mTupleFactory.newTuple(Long.valueOf(0));
 }
}

Even though the initial function is guaranteed to receive only one record in its input,
that record will match the schema of the original function. So, in the case of COUNT, it
will be a bag. Thus, this initial method determines whether there is a nonnull record
in that bag. If so, it returns one; otherwise, it returns zero. The return type of the initial
function is a tuple. The contents of that tuple are entirely up to you as the UDF im-
plementer. In this case, the initial returns a tuple with one long field.

COUNT’s Intermediate class sums the counts seen so far:

// src/org/apache/pig/builtin/COUNT.java
static public class Intermediate extends EvalFunc<Tuple> {

 public Tuple exec(Tuple input) throws IOException {
 try {

Algebraic Interface | 137

 return mTupleFactory.newTuple(sum(input));
 } catch (ExecException ee) {
 ...
 }
 }
}

static protected Long sum(Tuple input)
throws ExecException, NumberFormatException {
 DataBag values = (DataBag)input.get(0);
 long sum = 0;
 for (Iterator<Tuple> it = values.iterator(); it.hasNext();) {
 Tuple t = it.next();
 sum += (Long)t.get(0);
 }
 return sum;
}

The input to the intermediate function is a bag of tuples that were returned by the initial
function. The intermediate function may be called zero, one, or many times. So, it needs
to output tuples that match the input tuples it expects. The framework will handle
placing those tuples in bags. COUNT’s intermediate function returns a tuple with a long.
As we now want to sum the previous counts, this function implements SUM rather than
COUNT.

The final function is called in the reducer and is guaranteed to be called only once. Its
input type is a bag of tuples that both the initial and intermediate implementations
return. Its return type needs to be the return type of the original UDF, which in this
case is long. In COUNT’s case, this is the same operation as the intermediate because it
sums the intermediate sums:

// src/org/apache/pig/builtin/COUNT.java
static public class Final extends EvalFunc<Long> {
 public Long exec(Tuple input) throws IOException {
 try {
 return sum(input);
 } catch (Exception ee) {
 ...
 }
 }
}

Implementing Algebraic does not guarantee that the algebraic implementation will
always be used. Pig chooses the algebraic implementation only if all UDFs in the same
foreach statement are algebraic. This is because our testing has shown that using the
combiner with data that cannot be combined significantly slows down the job. And
there is no way in Hadoop to route some data to the combiner (for algebraic functions)
and some straight to the reducer (for nonalgebraic). This means that your UDF must
always implement the exec method, even if you hope it will always be used in algebraic
mode. An additional motivation is to implement algebraic mode for your UDFs when
possible.

138 | Chapter 10: Writing Evaluation and Filter Functions

Accumulator Interface
Some calculations cannot be done in an algebraic manner. In particular, any function
that requires its records to be sorted before beginning is not algebraic. But many of
these methods still do not need to see their entire input at once; they can work on
subsets of the data as long as they are guaranteed it is all available. This means Pig does
not have to read all of the records into memory at once. Instead, it can read a subset of
the records and pass them to the UDF. To handle these cases, Pig provides the Accumu
lator interface. Rather than calling a UDF once with the entire input set in one bag,
Pig will call it multiple times with a subset of the records. When it has passed all the
records in, it will then ask for a result. Finally, it will give the UDF a chance to reset its
state before passing it records for the next group:

// src/org/apache/pig/Accumulator.java
public interface Accumulator <T> {
 /**
 * Pass tuples to the UDF.
 * @param b A tuple containing a single field, which is a bag. The bag will
 * contain the set of tuples being passed to the UDF in this iteration.
 */
 public void accumulate(Tuple b) throws IOException;

 /**
 * Called when all tuples from current key have been passed to accumulate.
 * @return the value for the UDF for this key.
 */
 public T getValue();

 /**
 * Called after getValue() to prepare processing for next key.
 */
 public void cleanup();
}

As an example, let’s look at COUNT’s implementation of the accumulator:

// src/org/apache/pig/builtin/COUNT.java
private long intermediateCount = 0L;

public void accumulate(Tuple b) throws IOException {
 try {
 DataBag bag = (DataBag)b.get(0);
 Iterator it = bag.iterator();
 while (it.hasNext()){
 Tuple t = (Tuple)it.next();
 if (t != null && t.size() > 0 && t.get(0) != null) {
 intermediateCount += 1;
 }
 }
 } catch (Exception e) {
 ...
 }
}

Accumulator Interface | 139

public void cleanup() {
 intermediateCount = 0L;
}

public Long getValue() {
 return intermediateCount;
}

By default, Pig passes accumulate 20,000 records at once. You can modify this value by
setting the property pig.accumulative.batchsize either on the command line or using
set in your script.

As mentioned earlier, one major class of methods that can use the accumulator are
those that require sorted input, such as session analysis. Usually such a UDF will want
records within the group sorted by timestamp. As an example, let’s say you have log
data from your web servers that includes the user ID, timestamp, and the URL the user
viewed, and you want to do session analysis on this data:

logs = load 'serverlogs' as (id:chararray, ts: long, url: chararray);
byuser = group logs by id;
results = foreach byuser {
 sorted = order logs by ts;
 generate group, SessionAnalysis(sorted);
};

Pig can move the sort done by the order statement to Hadoop, to be done as part of
the shuffle phase. Thus, Pig is still able to read a subset of records at a time from Hadoop
and pass those directly to SessionAnalysis. This important optimization allows accu-
mulator UDFs to work with sorted data.

Whenever possible, Pig will choose to use the algebraic implementation of a UDF over
the accumulator. This is because the accumulator helps avoid spilling records to disk,
but it does not reduce network cost or help balance the reducers. If all UDFs in a
foreach implement Accumulator and at least one does not implement Algebraic, Pig will
use the accumulator. If at least one does not use the accumulator, Pig will not use the
accumulator. This is because Pig already has to read the entire bag into memory to pass
to the UDF that does not implement the accumulator, so there is no longer any value
in the accumulator.

Python UDFs
Pig and Hadoop are implemented in Java, so Java is a natural choice for UDFs as well.
But not being forced into Java would be nice. For simple UDFs of only a few lines, the
cycle of write, compile, package into a JAR, and deploy is an especially heavyweight
process. To allow users to write UDFs in scripting languages, we added support for
UDFs in Python to Pig 0.8. We did it in such a way that supporting any scripting
language that compiles down to the JVM requires only a few hundred lines of code.
We hope to keep expanding the supported languages in the future.

140 | Chapter 10: Writing Evaluation and Filter Functions

Python UDFs consist of a single function that is used in place of the exec method of a
Java function. They can be annotated to indicate their schema. The more advanced
features of evaluation functions—such as overloading, constructor arguments, and al-
gebraic and accumulator interfaces—are not available yet.

Python UDFs are executed using the Jython framework. The benefit is that Python
UDFs can be compiled to Java bytecode and run with relatively little performance pen-
alty. The downside is that Jython is compatible with version 2.5 of Python, so Python
3 features are not available to UDF writers.

To register and define your Python UDFs in Pig Latin, see “Registering Python
UDFs” on page 52. In this section we will focus on writing the UDFs themselves. Let’s
take a look at the production UDF we used in that earlier section:

production.py
@outputSchema("production:float")
def production(slugging_pct, onbase_pct):
 return slugging_pct + onbase_pct

The code is self-explanatory. The annotation of @outputSchema tells Pig that this UDF
will return a float and that the name of the field is “production”. The output schema
annotation can specify any Pig type. The syntax for tuples and bags matches the syntax
for declaring a field to be a tuple or a bag in load; see “Schemas” on page 27 for details.

Sometimes schemas are variable and not statically expressible. For these cases you can
provide a schema function that will define your schema. Let’s write a Python UDF that
squares a number, always returning a number of the same type:

square.py
@outputSchemaFunction("schema")
def square(num):
 return num * num

@schemaFunction("schema")
def schema(input):
 # Return whatever type we were handed
 return input

The input to the schema function is in the same format as the one specified in @output
Schema: colname:type. Its output is expected to be in the same format.

If neither @outputSchema nor @outputSchemaFunction is provided for a Python function,
it will be assumed to return a single bytearray value. Because there will be no load
function for the value, Pig will not be able to cast it to any other type, so it will be
worthless for anything but store or dump.

In order to pass data between Java and Python, Pig must define a mapping of types.
Table 10-1 describes the mapping between Pig and Python types.

Python UDFs | 141

Table 10-1. Pig-Python type translations

Pig type Python type

int number

long number

float number

double number

chararray string

bytearray string

map dictionary

tuple tuple

bag list of tuples

Any value that is null in Pig will be translated to the None object in Python. Similarly,
any time the None object is returned by Python, Pig will map it to a null of the expected
type.

One issue that Pig does not handle for your Python UDFs is bringing along dependent
modules. If your Python file imports other modules, you will need to wrap those in a
JAR and register that file as part of your Pig script.§

One last issue to consider is performance. What is the cost of using Python instead of
Java? Of course it depends on your script, the computation you are doing, and your
data. And because Python UDFs do not yet support advanced features such as algebraic
mode, it can be harder to optimize them. Given all those caveats, tests have shown that
Jython functions have a higher instantiation overhead. Once that is paid, they take
about 1.2 times the amount of time as the equivalent Java functions. Due to the in-
stantiation overhead, tests with few input lines (10,000 or so) took twice as long as
their Java equivalents. These tests were run on simple functions that did almost no
processing, so it is not a measure of Jython versus Java, but rather of Pig’s overhead in
working with Jython.

Writing Filter Functions
Filter functions are evaluation functions that return a Boolean value. Pig does not sup-
port Boolean as a full-fledged type, so filter functions cannot appear in statements such
as foreach where the results are output to another operator. However, filter functions
can be used in filter statements. Consider a “nearness” function that, given two zip

§ Code has been checked in that allows Pig to determine the dependency tree for your Python code, fetch all
the needed modules, and ship them as part of the job. As of this writing, it has not yet been released. See
PIG-1824 for details.

142 | Chapter 10: Writing Evaluation and Filter Functions

https://issues.apache.org/jira/browse/PIG-1824

codes, returns true or false depending on whether those two zip codes are within a
certain distance of each other:

/**
 * A filter UDF that determines whether two zip codes are within a given distance.
 */
public class CloseEnough extends FilterFunc {

 int distance;
 Random r = new Random();

 /*
 * @param miles - Distance in miles that two zip codes can be apart and
 * still be considered close enough.
 */
 public CloseEnough(String miles) {
 // UDFs can only take strings; convert to int here.
 distance = Integer.valueOf(miles);
 }

 public Boolean exec(Tuple input) throws IOException {
 // expect two strings
 String zip1 = (String)input.get(0);
 String zip2 = (String)input.get(1);
 // do some lookup on zip code tables
 return r.nextBoolean();
 }
}

Writing Filter Functions | 143

CHAPTER 11

Writing Load and Store Functions

We will now consider some of the more complex and most critical parts of Pig: data
input and output. Operating on huge data sets is inherently I/O-intensive. Hadoop’s
massive parallelism and movement of processing to the data mitigates but does not
remove this. Having efficient methods to load and store data is therefore critical. Pig
provides default load and store functions for text data and for HBase, but many users
find they need to write their own load and store functions to handle the data formats
and storage mechanisms they use.

As with evaluation functions, the design goal for load and store functions was to make
easy things easy and hard things possible. Also, we wanted to make load and store
functions a thin wrapper over Hadoop’s InputFormat and OutputFormat. The intention
is that once you have an input format and output format for your data, the additional
work of creating and storing Pig tuples is minimal. In the same way evaluation functions
were implemented, more complex features such as schema management and projection
push down are done via separate interfaces to avoid cluttering the base interface. Pig’s
load and store functions were completely rewritten between versions 0.6 and 0.7. This
chapter will cover only the interfaces for 0.7 and later releases.

One other important design goal for load and store functions is to not assume that the
input sources and output sinks are HDFS. In the examples throughout this book, A =
load 'foo'; has implied that foo is a file, but there is no need for that to be the case.
foo is a resource locator that makes sense to your load function. It could be an HDFS
file, an HBase table, a database JDBC connection string, or a web service URL. Because
reading from HDFS is the most common case, many defaults and helper functions are
provided for this case.

In this chapter we will walk through writing a load function and a store function for
JSON data on HDFS, JsonLoader and JsonStorage, respectively. These are located in
the example code in udfs/java/com/acme/io. They use the Jackson JSON library, which
is included in your Pig distribution. However, the Jackson JAR is not shipped to the
backend by Pig, so when using these UDFs in your script, you will need to register the
Jackson JAR in addition to the acme examples JAR:

145

register 'acme.jar';
register 'src/pig/trunk/build/ivy/lib/Pig/jackson-core-asl-1.6.0.jar';

These UDFs will serve as helpful examples, but they will not cover all of the function-
ality of load and store functions. For those sections not shown in these examples, we
will look at other existing load and store functions.

Load Functions
Pig’s load function is built on top of a Hadoop InputFormat, the class that Hadoop uses
to read data. InputFormat serves two purposes: it determines how input will be split
between map tasks, and it provides a RecordReader that produces key-value pairs as
input to those map tasks. The load function takes these key-value pairs and returns a
Pig Tuple.

The base class for the load function is LoadFunc. This is an abstract class, which allows
it to provide helper functions and default implementations. Many load functions will
only need to extend LoadFunc.

Load functions’ operations are split between Pig’s frontend and backend. On the fron-
tend, Pig does job planning and optimization, and load functions participate in this in
several ways that we will discuss later. On the backend, load functions get each record
from the RecordReader, convert it to a tuple, and pass it on to Pig’s map task. Load
functions also need to be able to pass data between the frontend and backend invoca-
tions so they can maintain state.

Frontend Planning Functions
For all load functions, Pig must do three things as part of frontend planning: 1) it needs
to know the input format it should use to read the data; 2) it needs to be sure that the
load function understands where its data is located; and 3) it needs to know how to
cast bytearrays returned from the load function.

Determining InputFormat

Pig needs to know which InputFormat to use for reading your input. It calls getInput
Format to get an instance of the input format. It gets an instance rather than the class
itself so that your load function can control the instantiation: any generic parameters,
constructor arguments, etc. For our example load function, this method is very simple.
It uses TextInputFormat, an input format that reads text data from HDFS files:

// JsonLoader.java
public InputFormat getInputFormat() throws IOException {
 return new TextInputFormat();
}

146 | Chapter 11: Writing Load and Store Functions

Determining the location

Pig communicates the location string provided by the user to the load function via
setLocation. So, if the load operator in Pig Latin is A = load 'input';, “input” is the
location string. This method is called on both the frontend and backend, possibly mul-
tiple times. Thus you need to take care that this method does not do anything that will
cause problems if done more than one time. Your load function should communicate
the location to its input format. For example, JsonLoader passes the filename via a helper
method on FileInputFormat (a superclass of TextInputFormat):

// JsonLoader.java
public void setLocation(String location, Job job) throws IOException {
 FileInputFormat.setInputPaths(job, location);
}

The Hadoop Job is passed along with the location because that is where input formats
usually store their configuration information.

setLocation is called on both the frontend and backend because input formats store
their location in the Job object, as shown in the preceding example. For MapReduce
jobs, which always have only one input, this works. For Pig jobs, where the same input
format might be used to load multiple different inputs (such as in the join or union
case), one instance of the input path will overwrite another in the Job object. To work
around this, Pig remembers the location in an input-specific parameter and calls set
Location again on the backend so that the input format can get itself set up properly
before reading.

For files on HDFS, the location provided by the user might be relative rather than
absolute. To deal with this, Pig needs to resolve these to absolute locations based on
the current working directory at the time of the load. Consider the following Pig Latin:

cd /user/joe;
input1 = load 'input';
cd /user/fred;
input2 = load 'input';

These two load statements should load different files. But Pig cannot assume it under-
stands how to turn a relative path into an absolute path, because it does not know what
that input is. It could be an HDFS path, a database table name, etc. So it leaves this to
the load function. Before calling setLocation, Pig passes the location string to relative
ToAbsolutePath to do any necessary conversion. Because most loaders are reading from
HDFS, the default implementation in LoadFunc handles the HDFS case. If your loading
will never need to do this conversion, it should override this method and return the
location string passed to it.

Getting the casting functions

Some Pig functions, such as PigStorage and HBaseStorage, load data by default without
understanding its type information, and place the data unchanged in DataByteArray
objects. At a later time, when Pig needs to cast that data to another type, it does not

Load Functions | 147

know how to because it does not understand how the data is represented in the byte-
array. Therefore, it relies on the load function to provide a method to cast from byte-
array to the appropriate type.

Pig determines which set of casting functions to use by calling getLoadCaster on the
load function. This should return either null, which indicates that your load function
does not expect to do any bytearray casts, or an implementation of the LoadCaster
interface, which will be used to do the casts. We will look at the methods of LoadCas
ter in “Casting bytearrays” on page 156.

Our example loader returns null because it provides typed data based on the stored
schema and, therefore, does not expect to be casting data. Any bytearrays in its data
are binary data that should not be cast.

Passing Information from the Frontend to the Backend
As with evaluation functions, load functions can make use of UDFContext to pass in-
formation from frontend invocations to backend invocations. For details on UDFCon
text, see “UDFContext” on page 131. One significant difference between using UDF
Context in evaluation and load functions is determining the instance-specific signature
of the function. In evaluation functions, constructor arguments were suggested as a
way to do this. For load functions, the input location usually will be the differentiating
factor. However, LoadFunc does not guarantee that it will call setLocation before other
methods where you might want to use UDFContext. To work around this, setUDFCon
textSignature is provided. It provides an instance-unique signature that you can use
when calling getUDFProperties. This method is guaranteed to be called before any other
methods on LoadFunc in both the frontend and backend. Your UDF can then store this
signature and use it when getting its property object:

// JsonLoader.java
private String udfcSignature = null;

public void setUDFContextSignature(String signature) {
 udfcSignature = signature;
}

setLocation is the only method in the load function that is guaranteed to be called on
the frontend. It is therefore the best candidate for storing needed information to UDF
Context. You might need to check that the data you are writing is available and nonnull
to avoid overwriting your values when setLocation is called on the backend.

Backend Data Reading
On the backend, your load function takes the key-value pairs produced by its input
format and produces Pig Tuples.

148 | Chapter 11: Writing Load and Store Functions

Getting ready to read

Before reading any data, Pig gives your load function a chance to set itself up by calling
prepareToRead. This is called in each map task and passes a copy of the RecordReader,
which your load function will need later to read records from the input. RecordReader
is a class that InputFormat uses to read records from an input split. Pig obtains the record
reader it passes to prepareToRead by calling getRecordReader on the input format that
your store function returned from getInputFormat. Pig also passes an instance of the
PigSplit that contains the Hadoop InputSplit corresponding to the partition of input
this instance of your load function will read. If you need split-specific information, you
can get it from here.

Our example loader, beyond storing the record reader, also reads the schema file that
was stored into UDFContext in the frontend so that it knows how to parse the input file.
Notice how it uses the signature passed in setUDFContextSignature to access the ap-
propriate properties object. Finally, it creates a JsonFactory object that is used to gen-
erate a parser for each line:

// JsonLoader.java
public void prepareToRead(RecordReader reader, PigSplit split)
throws IOException {
 this.reader = reader;

 // Get the schema string from the UDFContext object.
 UDFContext udfc = UDFContext.getUDFContext();
 Properties p =
 udfc.getUDFProperties(this.getClass(), new String[]{udfcSignature});
 String strSchema = p.getProperty("pig.jsonloader.schema");
 if (strSchema == null) {
 throw new IOException("Could not find schema in UDF context");
 }

 // Parse the schema from the string stored in the properties object.
 ResourceSchema schema =
 new ResourceSchema(Utils.getSchemaFromString(strSchema));
 fields = schema.getFields();

 jsonFactory = new JsonFactory();
}

Reading records

Now we have reached the meat of your load function, reading records from its record
reader and returning tuples to Pig. Pig will call getNext and place the resulting tuple
into its processing pipeline. It will keep doing this until getNext returns a null, which
indicates that the input for this split has been fully read.

Pig does not copy the tuple that results from this method, but instead feeds it directly
to its pipeline to avoid the copy overhead. This means this method cannot reuse objects,
and instead must create a new tuple and contents for each record it reads. On the other
hand, record readers may choose to reuse their key and value objects from record to

Load Functions | 149

record; most standard implementations do. So, before writing a loader that tries to be
efficient and wraps the keys and values from the record reader directly into the tuple
to avoid a copy, you must make sure you understand how the record reader is managing
its data.

For information on creating the appropriate Java objects when constructing tuples for
Pig, see “Interacting with Pig values” on page 122.

Our sample load function’s implementation of getNext reads the value from the Ha-
doop record (the key is ignored), constructs a JsonParser to parse it, parses the fields,
and returns the resulting tuple. If there are parse errors, it does not throw an exception.
Instead, it returns a tuple with null fields where the data could not be parsed. This
prevents bad lines from causing the whole job to fail. Warnings are issued so that users
can see which records were ignored:

// JsonLoader.java
public Tuple getNext() throws IOException {
 Text val = null;
 try {
 // Read the next key-value pair from the record reader. If it's
 // finished, return null.
 if (!reader.nextKeyValue()) return null;

 // Get the current value. We don't use the key.
 val = (Text)reader.getCurrentValue();
 } catch (InterruptedException ie) {
 throw new IOException(ie);
 }
 // Create a parser specific for this input line. This might not be the
 // most efficient approach.
 ByteArrayInputStream bais = new ByteArrayInputStream(val.getBytes());
 JsonParser p = jsonFactory.createJsonParser(bais);

 // Create the tuple we will be returning. We create it with the right
 // number of fields, as the Tuple object is optimized for this case.
 Tuple t = tupleFactory.newTuple(fields.length);

 // Read the start object marker. Throughout this file if the parsing
 // isn't what we expect, we return a tuple with null fields rather than
 // throwing an exception. That way a few mangled lines don't fail the job.
 if (p.nextToken() != JsonToken.START_OBJECT) {
 log.warn("Bad record, could not find start of record " + val.toString());
 return t;
 }

 // Read each field in the record.
 for (int i = 0; i < fields.length; i++) {
 t.set(i, readField(p, fields[i], i));
 }

 if (p.nextToken() != JsonToken.END_OBJECT) {
 log.warn("Bad record, could not find end of record " +
 val.toString());

150 | Chapter 11: Writing Load and Store Functions

 return t;
 }
 p.close();
 return t;
}

private Object readField(JsonParser p,
 ResourceFieldSchema field,
 int fieldnum) throws IOException {
 // Read the next token.
 JsonToken tok = p.nextToken();
 if (tok == null) {
 log.warn("Early termination of record, expected " + fields.length
 + " fields bug found " + fieldnum);
 return null;
 }

 // Check to see if this value was null.
 if (tok == JsonToken.VALUE_NULL) return null;

 // Read based on our expected type.
 switch (field.getType()) {
 case DataType.INTEGER:
 // Read the field name.
 p.nextToken();
 return p.getValueAsInt();

 case DataType.LONG:
 p.nextToken();
 return p.getValueAsLong();

 case DataType.FLOAT:
 p.nextToken();
 return (float)p.getValueAsDouble();

 case DataType.DOUBLE:
 p.nextToken();
 return p.getValueAsDouble();

 case DataType.BYTEARRAY:
 p.nextToken();
 byte[] b = p.getBinaryValue();
 // Use the DBA constructor that copies the bytes so that we own
 // the memory.
 return new DataByteArray(b, 0, b.length);

 case DataType.CHARARRAY:
 p.nextToken();
 return p.getText();

 case DataType.MAP:
 // Should be a start of the map object.
 if (p.nextToken() != JsonToken.START_OBJECT) {
 log.warn("Bad map field, could not find start of object, field "
 + fieldnum);

Load Functions | 151

 return null;
 }
 Map<String, String> m = new HashMap<String, String>();
 while (p.nextToken() != JsonToken.END_OBJECT) {
 String k = p.getCurrentName();
 String v = p.getText();
 m.put(k, v);
 }
 return m;

 case DataType.TUPLE:
 if (p.nextToken() != JsonToken.START_OBJECT) {
 log.warn("Bad tuple field, could not find start of object, "
 + "field " + fieldnum);
 return null;
 }

 ResourceSchema s = field.getSchema();
 ResourceFieldSchema[] fs = s.getFields();
 Tuple t = tupleFactory.newTuple(fs.length);

 for (int j = 0; j < fs.length; j++) {
 t.set(j, readField(p, fs[j], j));
 }

 if (p.nextToken() != JsonToken.END_OBJECT) {
 log.warn("Bad tuple field, could not find end of object, "
 + "field " + fieldnum);
 return null;
 }
 return t;

 case DataType.BAG:
 if (p.nextToken() != JsonToken.START_ARRAY) {
 log.warn("Bad bag field, could not find start of array, "
 + "field " + fieldnum);
 return null;
 }

 s = field.getSchema();
 fs = s.getFields();
 // Drill down the next level to the tuple's schema.
 s = fs[0].getSchema();
 fs = s.getFields();

 DataBag bag = bagFactory.newDefaultBag();

 JsonToken innerTok;
 while ((innerTok = p.nextToken()) != JsonToken.END_ARRAY) {
 if (innerTok != JsonToken.START_OBJECT) {
 log.warn("Bad bag tuple field, could not find start of "
 + "object, field " + fieldnum);
 return null;
 }

152 | Chapter 11: Writing Load and Store Functions

 t = tupleFactory.newTuple(fs.length);
 for (int j = 0; j < fs.length; j++) {
 t.set(j, readField(p, fs[j], j));
 }

 if (p.nextToken() != JsonToken.END_OBJECT) {
 log.warn("Bad bag tuple field, could not find end of "
 + "object, field " + fieldnum);
 return null;
 }
 bag.add(t);
 }
 return bag;

 default:
 throw new IOException("Unknown type in input schema: " +
 field.getType());
 }

}

Additional Load Function Interfaces
Your load function can provide more complex features by implementing additional
interfaces. (Implementation of these interfaces is optional.)

Loading metadata

Many data storage mechanisms can record the schema along with the data. Pig does
not assume the ability to store schemas, but if your storage can hold the schema, it can
be very useful. This frees script writers from needing to specify the field names and
types as part of the load operator in Pig Latin. This is user-friendly and less error-prone,
and avoids the need to rewrite scripts when the schema of your data changes.

Some types of data storage also partition the data. If Pig understands this partitioning,
it can load only those partitions that are needed for a particular script. Both of these
functions are enabled by implementing the LoadMetadata interface.

getSchema in the LoadMetadata interface gives your load function a chance to provide a
schema. It is passed the location string the user provides as well as the Hadoop Job
object, in case it needs information in this object to open the schema. It is expected to
return a ResourceSchema, which represents the data that will be returned. Resource
Schema is very similar to the Schema class used by evaluation functions. (See “Input and
Output Schemas” on page 124 for details.) There is one important difference, however.
In ResourceFieldSchema, the schema object associated with a bag always has one field,
which is a tuple. The schema for the tuples in the bag is described by that tuple’s
ResourceFieldSchema.

Load Functions | 153

Our example load and store functions keep the schema in a side file* named _schema
in HDFS. Our implementation of getSchema reads this file and also serializes the schema
into UDFContext so that it is available on the backend:

// JsonLoader.java
public ResourceSchema getSchema(String location, Job job)
throws IOException {
 // Open the schema file and read the schema.
 // Get an HDFS handle.
 FileSystem fs = FileSystem.get(job.getConfiguration());
 DataInputStream in = fs.open(new Path(location + "/_schema"));
 String line = in.readLine();
 in.close();

 // Parse the schema.
 ResourceSchema s = new ResourceSchema(Utils.getSchemaFromString(line));
 if (s == null) {
 throw new IOException("Unable to parse schema found in file " +
 location + "/_schema");
 }

 // Now that we have determined the schema, store it in our
 // UDFContext properties object so we have it when we need it on the
 // backend.
 UDFContext udfc = UDFContext.getUDFContext();
 Properties p =
 udfc.getUDFProperties(this.getClass(), new String[]{udfcSignature});
 p.setProperty("pig.jsonloader.schema", line);

 return s;
}

Once your loader implements getSchema, load statements that use your loader do not
need to declare their schemas in order for the field names to be used in the script. For
example, if we had data with a schema of user:chararray, age:int, gpa:double, the
following Pig Latin will compile and run:

register 'acme.jar';
register 'src/pig/trunk/build/ivy/lib/Pig/jackson-core-asl-1.6.0.jar';

A = load 'input' using com.acme.io.JsonLoader();
B = foreach A generate user;
dump B;

LoadMetadata also includes a getStatistics method. Pig does not yet make use of sta-
tistics in job planning; this method is for future use.

* A file in the same directory that is not a part file. Side files start with an underscore character. MapReduce’s
FileInputFormat knows to ignore them when reading input for a job.

154 | Chapter 11: Writing Load and Store Functions

Using partitions

Some types of storage partition their data, allowing you to read only the relevant sec-
tions for a given job. The LoadMetadata interface also provides methods for working
with partitions in your data. In order for Pig to request the relevant partitions, it must
know how the data is partitioned. Pig determines this by calling getPartitionKeys. If
this returns a null or the LoadMetadata interface is not implemented by your loader, Pig
will assume it needs to read the entire input.

Pig expects getPartitionKeys to return an array of strings, where each string represents
one field name. Those fields are the keys used to partition the data. Pig will look for a
filter statement immediately following the load statement that includes one or more
of these fields. If such a statement is found, it will be passed to setPartitionFilter. If
the filter includes both partition and nonpartition keys and it can be split,† Pig will
split it and pass just the partition-key-related expression to setPartitionFilter. As an
example, consider an HCatalog‡ table web_server_logs that is partitioned by two fields,
date and colo:

logs = load 'web_server_logs' using HCatLoader();
cleaned = filter logs by date = '20110614' and NotABot(user_id);
...

Pig will call getPartitionKeys, and HCatLoader will return two key names, date and
colo. Pig will find the date field in the filter statement and rewrite the filter as shown
in the following example, pushing down the date = '20110614' predicate to HCat
Loader via setPartitionFilter:

logs = load 'web_server_logs' using HCatLoader();
cleaned = filter logs by NotABot(user_id);
...

It is now up to HCatalog loader to assure that it only returns data from
web_server_logs where date is 20110614.

The one exception to this is fields used in eval funcs or filter funcs. Pig assumes that
loaders do not understand how to invoke UDFs, so Pig will not push these expressions.

Our example loader works on file data, so it does not implement getPartitionKeys or
setPartitionFilter. For an example implementation of these methods, see the
HCatalog code at http://svn.apache.org/viewvc/incubator/hcatalog/trunk/src/java/org/
apache/hcatalog/pig/HCatLoader.java?view=markup.

† Meaning that the filter can be broken into two filters—one that contains the partition keys and one that does
not—and produce the same end result. This is possible when the expressions are connected by and but not
when they are connected by or.

‡ HCatalog is a table-management service for Hadoop. It includes Pig load and store functions. See “Metadata
in Hadoop” on page 169 for more information on HCatalog.

Load Functions | 155

http://svn.apache.org/viewvc/incubator/hcatalog/trunk/src/java/org/apache/hcatalog/pig/HCatLoader.java?view=markup
http://svn.apache.org/viewvc/incubator/hcatalog/trunk/src/java/org/apache/hcatalog/pig/HCatLoader.java?view=markup

Casting bytearrays

If you need to control how binary data that your loader loads is cast to other data types,
you can implement the LoadCaster interface. Because this interface contains a lot of
methods, implementers often implement it as a separate class. This also allows load
functions to share implementations of LoadCaster, since Java does not support multiple
inheritance.

The interface consists of a series of methods: bytesToInteger, bytesToLong, etc. These
will be called to convert a bytearray to the appropriate type. Starting in 0.9, there are
two bytesToMap methods. You should implement the one that takes a ResourceField
Schema; the other one is for backward-compatibility. The bytesToBag, bytesToTuple, and
bytesToMap methods take a ResourceFieldSchema that describes the field being conver-
ted. Calling getSchema on this object will return a schema that describes this bag, tuple,
or map, if one exists. If Pig does not know the intended structure of the object, get
Schema will return null. Keep in mind that the schema of the bag will be one field, a
tuple, which in turn will have a schema describing the contents of that tuple.

A default load caster, Utf8StorageConverter, is provided. It handles converting UTF8-
encoded text to Pig types. Scalar conversions are done in a straightforward way. Maps
are expected to be surrounded by [] (square brackets), with keys separated by values
with # (hash) and key-value pairs separated by , (commas). Tuples are surrounded by
() (parentheses) and have fields separated by , (commas). Bags are surrounded by {}
(braces) and have tuples separated by , (commas). There is no ability to escape these
special characters.

Pushing down projections

Often a Pig Latin script will need to read only a few fields in the input. Some types of
storage formats store their data by fields instead of by records (for example, Hive’s
RCFile). For these types of formats, there is a significant performance gain to be had
by loading only those fields that will be used in the script. Even for record-oriented
storage formats, it can be useful to skip deserializing fields that will not be used.

As part of its optimizations, Pig analyzes Pig Latin scripts and determines what fields
in an input it needs at each step in the script. It uses this information to aggressively
drop fields it no longer needs. If the loader implements the LoadPushDown interface, Pig
can go a step further and provide this information to the loader.

Once Pig knows the fields it needs, it assembles them in a RequiredFieldList and passes
that to pushProjection. In the load function’s reply, it indicates whether it can meet the
request. It responds with a RequiredFieldResponse, which is a fancy wrapper around a
Boolean. If the Boolean is true, Pig will assume that only the required fields are being
returned from getNext. If it is false, Pig will assume that all fields are being returned by
getNext, and it will handle dropping the extra ones itself.

156 | Chapter 11: Writing Load and Store Functions

The RequiredField class used to describe which fields are required is slightly complex.
Beyond allowing a user to specify whether a given field is required, it provides the ability
to specify which subfields of that field are required. For example, for maps, certain keys
can be listed as required. For tuples and bags, certain fields can be listed as required.

Load functions that implement LoadPushDown should not modify the schema object
returned by getSchema. This should always be the schema of the full input. Pig will
manage the translation between the schema having all of the fields and the results of
getNext having only some.

Our example loader does not implement LoadPushDown. For an example of a loader that
does, see HCatLoader at http://svn.apache.org/viewvc/incubator/hcatalog/trunk/src/java/
org/apache/hcatalog/pig/HCatLoader.java?view=markup.

Store Functions
Pig’s store function is, in many ways, a mirror image of the load function. It is built on
top of Hadoop’s OutputFormat. It takes Pig Tuples and creates key-value pairs that its
associated output format writes to storage.

StoreFunc is an abstract class, which allows it to provide default implementations for
some methods. However, some functions implement both load and store functionality;
PigStorage is one example. Because Java does not support multiple inheritance, the
interface StoreFuncInterface is provided. These dual load/store functions can imple-
ment this interface rather than extending StoreFunc.

Store function operations are split between the frontend and backend of Pig. Pig does
planning and optimization on the frontend. Store functions have an opportunity at this
time to check that a valid schema is being used and set up the storage location. On the
backend, store functions take a tuple from Pig, convert it to a key-value pair, and pass
it to a Hadoop RecordWriter. Store functions can pass information from frontend in-
vocations to backend invocations via UDFContext.

Store Function Frontend Planning
Store functions have three tasks to fulfill on the frontend:

• Instantiate the OutputFormat they will use to store data.

• Check the schema of the data being stored.

• Record the location where the data will be stored.

Determining OutputFormat

Pig calls getOutputFormat to get an instance of the output format that your store function
will use to store records. This method returns an instance rather than the classname or
the class itself. This allows your store function to control how the class is instantiated.

Store Functions | 157

http://svn.apache.org/viewvc/incubator/hcatalog/trunk/src/java/org/apache/hcatalog/pig/HCatLoader.java?view=markup
http://svn.apache.org/viewvc/incubator/hcatalog/trunk/src/java/org/apache/hcatalog/pig/HCatLoader.java?view=markup

The example store function JsonStorage uses TextOutputFormat. This is an output for-
mat that stores text data in HDFS. We have to instantiate this with a key of LongWrita
ble and a value of Text to match the expectations of TextInputFormat:

// JsonStorage.java
public OutputFormat getOutputFormat() throws IOException {
 return new TextOutputFormat<LongWritable, Text>();
}

Setting the output location

Pig calls setStoreLocation to communicate the location string the user provides to your
store function. Given the Pig Latin store Z into 'output';, “output” is the location
string. This method, called on both the frontend and the backend, could be called
multiple times; consequently, it should not have any side effects that will cause a prob-
lem if this happens. Your store function will need to communicate the location to its
output format. Our example store function uses the FileOutputFormat utility function
setOutputPath to do this:

// JsonStorage.java
public void setStoreLocation(String location, Job job) throws IOException {
 FileOutputFormat.setOutputPath(job, new Path(location));
}

The Hadoop Job is passed to this function as well. Most output formats store the lo-
cation information in the job.

Pig calls setStoreLocation on both the frontend and backend because output formats
usually store their location in the job, as we see in our example store function. This
works for MapReduce jobs, where a single output format is guaranteed. But due to the
split operator, Pig can have more than one instance of the same store function in a
job. If multiple instances of a store function call FileOutputFormat.setOutputPath,
whichever instance calls it last will overwrite the others. Pig avoids this by keeping
output-specific information and calling setStoreLocation again on the backend so that
it can properly configure the output format.

For HDFS files, the user might provide a relative path. Pig needs to resolve these to
absolute paths using the current working directory at the time the store is called. To
accomplish this, Pig calls relToAbsPathForStoreLocation with the user-provided loca-
tion string before calling setStoreLocation. This method translates between relative
and absolute paths. For store functions writing to HDFS, the default implementation
in StoreFunc handles the conversion. If you are writing a store function that does not
use file paths (e.g., HBase), you should override this method to return the string it is
passed.

Checking the schema

As part of frontend planning, Pig gives your store function a chance to check the schema
of the data to be stored. If you are storing data to a system that expects a certain schema

158 | Chapter 11: Writing Load and Store Functions

for the output (such as an RDBMS) or you cannot store certain data types, this is the
place to perform those checks. Oddly enough, this method returns a void rather than
a Boolean. So if you detect an issue with the schema, you must throw an IOException.

Our example store function does not have limitations on the schemas it can store.
However, it uses this function as a place to serialize the schema into UDFContext so that
it can be used on the backend when writing data:

// JsonStorage.java

public void checkSchema(ResourceSchema s) throws IOException {
 UDFContext udfc = UDFContext.getUDFContext();
 Properties p =
 udfc.getUDFProperties(this.getClass(), new String[]{udfcSignature});
 p.setProperty("pig.jsonstorage.schema", s.toString());
}

Store Functions and UDFContext
Store functions work with UDFContext exactly as load functions do, but with one ex-
ception: the signature for store functions is passed to the store function via setStore
FuncUDFContextSignature. See “Passing Information from the Frontend to the Back-
end” on page 148 for a discussion of how load functions work with UDFContext. Our
example store function stores the signature in a member variable for later use:

// JsonStorage.java
public void setStoreFuncUDFContextSignature(String signature) {
 udfcSignature = signature;
}

Writing Data
During backend processing, the store function is first initialized, and then takes Pig
tuples and converts them to key-value pairs to be written to storage.

Preparing to write

Pig calls your store function’s prepareToWrite method in each map or reduce task before
writing any data. This call passes a RecordWriter instance to use when writing data.
RecordWriter is a class that OutputFormat uses to write individual records. Pig will get
the record writer it passes to your store function by calling getRecordWriter on the
output format your store function returned from getOutputFormat. Your store function
will need to keep this reference so that it can be used in putNext.

The example store function JsonStorage also uses this method to read the schema out
of the UDFContext. It will use this schema when storing data. Finally, it creates a Json
Factory for use in putNext:

// JsonStorage.java
public void prepareToWrite(RecordWriter writer) throws IOException {

Store Functions | 159

 // Store the record writer reference so we can use it when it's time
 // to write tuples.
 this.writer = writer;

 // Get the schema string from the UDFContext object.
 UDFContext udfc = UDFContext.getUDFContext();
 Properties p =
 udfc.getUDFProperties(this.getClass(), new String[]{udfcSignature});
 String strSchema = p.getProperty("pig.jsonstorage.schema");
 if (strSchema == null) {
 throw new IOException("Could not find schema in UDF context");
 }

 // Parse the schema from the string stored in the properties object.
 ResourceSchema schema =
 new ResourceSchema(Utils.getSchemaFromString(strSchema));
 fields = schema.getFields();

 // Build a Json factory.
 jsonFactory = new JsonFactory();
 jsonFactory.configure(
 JsonGenerator.Feature.WRITE_NUMBERS_AS_STRINGS, false);
}

Writing records

putNext is the core method in the store function class. Pig calls this method for every
tuple it needs to store. Your store function needs to take these tuples and produce the
key-value pairs that its output format expects. For information on the Java objects in
which the data will be stored and how to extract them, see “Interacting with Pig val-
ues” on page 122.

JsonStorage encodes the contents of the tuple in JSON format and writes the resulting
string into the value field of TextOutputFormat. The key field is left null:

// JsonStorage.java
public void putNext(Tuple t) throws IOException {
 // Build a ByteArrayOutputStream to write the JSON into.
 ByteArrayOutputStream baos = new ByteArrayOutputStream(BUF_SIZE);
 // Build the generator.
 JsonGenerator json =
 jsonFactory.createJsonGenerator(baos, JsonEncoding.UTF8);

 // Write the beginning of the top-level tuple object.
 json.writeStartObject();
 for (int i = 0; i < fields.length; i++) {
 writeField(json, fields[i], t.get(i));
 }
 json.writeEndObject();
 json.close();

 // Hand a null key and our string to Hadoop.
 try {
 writer.write(null, new Text(baos.toByteArray()));

160 | Chapter 11: Writing Load and Store Functions

 } catch (InterruptedException ie) {
 throw new IOException(ie);
 }
}

private void writeField(JsonGenerator json,
 ResourceFieldSchema field,
 Object d) throws IOException {

 // If the field is missing or the value is null, write a null.
 if (d == null) {
 json.writeNullField(field.getName());
 return;
 }

 // Based on the field's type, write it out.
 switch (field.getType()) {
 case DataType.INTEGER:
 json.writeNumberField(field.getName(), (Integer)d);
 return;

 case DataType.LONG:
 json.writeNumberField(field.getName(), (Long)d);
 return;

 case DataType.FLOAT:
 json.writeNumberField(field.getName(), (Float)d);
 return;

 case DataType.DOUBLE:
 json.writeNumberField(field.getName(), (Double)d);
 return;

 case DataType.BYTEARRAY:
 json.writeBinaryField(field.getName(), ((DataByteArray)d).get());
 return;

 case DataType.CHARARRAY:
 json.writeStringField(field.getName(), (String)d);
 return;

 case DataType.MAP:
 json.writeFieldName(field.getName());
 json.writeStartObject();
 for (Map.Entry<String, Object> e : ((Map<String, Object>)d).entrySet()) {
 json.writeStringField(e.getKey(), e.getValue().toString());
 }
 json.writeEndObject();
 return;

 case DataType.TUPLE:
 json.writeFieldName(field.getName());
 json.writeStartObject();

 ResourceSchema s = field.getSchema();

Store Functions | 161

 if (s == null) {
 throw new IOException("Schemas must be fully specified to use "
 + "this storage function. No schema found for field " +
 field.getName());
 }
 ResourceFieldSchema[] fs = s.getFields();

 for (int j = 0; j < fs.length; j++) {
 writeField(json, fs[j], ((Tuple)d).get(j));
 }
 json.writeEndObject();
 return;

 case DataType.BAG:
 json.writeFieldName(field.getName());
 json.writeStartArray();
 s = field.getSchema();
 if (s == null) {
 throw new IOException("Schemas must be fully specified to use "
 + "this storage function. No schema found for field " +
 field.getName());
 }
 fs = s.getFields();
 if (fs.length != 1 || fs[0].getType() != DataType.TUPLE) {
 throw new IOException("Found a bag without a tuple "
 + "inside!");
 }
 // Drill down the next level to the tuple's schema.
 s = fs[0].getSchema();
 if (s == null) {
 throw new IOException("Schemas must be fully specified to use "
 + "this storage function. No schema found for field " +
 field.getName());
 }
 fs = s.getFields();
 for (Tuple t : (DataBag)d) {
 json.writeStartObject();
 for (int j = 0; j < fs.length; j++) {
 writeField(json, fs[j], t.get(j));
 }
 json.writeEndObject();
 }
 json.writeEndArray();
 return;
 }
}

Failure Cleanup
When jobs fail after execution has started, your store function may need to clean up
partially stored results. Pig will call cleanupOnFailure to give your store function an
opportunity to do this. It passes the location string and the job object so that your store
function knows what it should clean up. In the HDFS case, the default implementation

162 | Chapter 11: Writing Load and Store Functions

handles removing any output files created by the store function. You need to implement
this method only if you are storing data somewhere other than HDFS.

Storing Metadata
If your storage format can store schemas in addition to data, your store function can
implement the interface StoreMetadata. This provides a storeSchema method that is
called by Pig as part of its frontend operations. Pig passes storeSchema a Resource
Schema, the location string, and the job object so that it can connect to its storage. The
ResourceSchema is very similar to the Schema class described in “Input and Output Sche-
mas” on page 124. There is one important difference, however. In ResourceField
Schema, the schema object associated with a bag always has one field, which is a tuple.
The schema for the tuples in the bag is described by that tuple’s ResourceFieldSchema.

The example store function JsonStorage stores the schema in a side file named
_schema in the same directory as the data. The schema is stored as a string, using the
toString method provided by the class:

// JsonStorage.java
public void storeSchema(ResourceSchema schema, String location, Job job)
throws IOException {
 // Store the schema in a side file in the same directory. MapReduce
 // does not include files starting with "_" when reading data for a job.
 FileSystem fs = FileSystem.get(job.getConfiguration());
 DataOutputStream out = fs.create(new Path(location + "/_schema"));
 out.writeBytes(schema.toString());
 out.writeByte('\n');
 out.close();
}

StoreMetadata also has a storeStatistics function, but Pig does not use this yet.

Store Functions | 163

CHAPTER 12

Pig and Other Members of the
Hadoop Community

The community of applications that run on Hadoop has grown significantly as the
adoption of Hadoop has increased. Many (but not all) of these applications are Apache
projects. Some are quite similar in functionality. It can be confusing, especially for those
new to Hadoop, to understand how these different applications integrate, complement,
and overlap. In this chapter we will look at the different projects from a Pig perspective,
focusing on how they complement, integrate, or compete with Pig.

Pig and Hive
Apache Hive provides a SQL layer on top of Hadoop. It takes SQL queries and translates
them to MapReduce jobs, much in the same way that Pig translates Pig Latin. It stores
data in tables and keeps metadata concerning those tables, such as partitions and sche-
mas. Many view Pig and Hive as competitors. Since both provide a way for users to
operate on data stored in Hadoop without writing Java code, this is a natural conclu-
sion. However, as was discussed in “Comparing query and dataflow lan-
guages” on page 4, SQL and Pig Latin have different strengths and weaknesses. Because
Hive provides SQL, it is a better tool for doing traditional data analytics. Most data
analysts are already familiar with SQL, and business intelligence tools expect to speak
to data sources in SQL. Pig Latin is a better choice when building a data pipeline or
doing research on raw data.

Cascading
Another data-processing framework available for Hadoop is Cascading, available at
http://www.cascading.org. The goal of Cascading is similar to Pig in that it enables users
to build data flows on Hadoop. However, its approach differs significantly. Rather than
presenting a new language, Cascading data flows are written in Java. A library of

165

http://hive.apache.org
http://www.cascading.org

operators is provided so that users can string together data operators as well as imple-
ment their own. This allows users more control but requires more low-level coding.

NoSQL Databases
Over the last few years a number of NoSQL databases have arisen. These databases
break one or more of the traditional rules of relational database systems. They do not
expect data to be normalized. Instead, the data accessed by a single application lives in
one large table so that few or no joins are necessary. Many of these databases do not
implement full ACID semantics.*

Like MapReduce, these systems are built to manage terabytes of data. Unlike MapRe-
duce, they are focused on random reads and writes of data. Where MapReduce and
technologies built on top of it (such as Pig) are optimized for reading vast quantities of
data very quickly, these NoSQL systems optimize for finding a few records very quickly.
This different focus does not mean that Pig does not work with these systems. Users
often want to analyze the data stored in these systems. Also, because these systems offer
good random lookup, certain types of joins could benefit from having the data stored
in these systems.

Two NoSQL databases have been integrated with Pig: HBase and Cassandra.

HBase
Apache HBase is a NoSQL database that uses HDFS to store its data. HBase presents
its data to users in tables. Within each table, every row has a key. Reads in HBase are
done by a key, a range of keys, or a bulk scan. Users can also update or insert individual
rows by keys. In addition to a key, rows in HBase have column families, and all rows
in a table share the same column families. Within each column family there are col-
umns. There is no constraint that each row have the same columns as any other row
in a given column family. Thus an HBase table T might have one column family F, which
every row in that table would share, but a row with key x could have columns a, b,
c in F, while another row with key y has columns a, b, d in F. Column values also have
a version number. HBase keeps a configurable number of versions, so users can access
the most recent version or previous versions of a column value. All keys and column
values in HBase are arrays of bytes.

Pig provides HBaseStorage to read data from and write data to HBase tables. All these
reads and writes are bulk operations. Bulk reads from HBase are slower than scans in
HDFS. However, if the data is already in HBase, it is faster to read it directly than it is
to extract it, place it in HDFS, and then read it.

* Atomicity, Consistency, Isolation, and Durability. See http://en.wikipedia.org/wiki/ACID for a discussion of
these properties in relational databases.

166 | Chapter 12: Pig and Other Members of the Hadoop Community

http://en.wikipedia.org/wiki/ACID

When loading from HBase, you must tell Pig what table to read from and what column
families and columns to read. You can read individual columns or, beginning in version
0.9, whole column families. Because column families contain a variable set of columns
and their values, they must be cast to Pig’s map type. As an example, let’s say we have
an HBase table users that stores information on users and their links to other users. It
has two column families: user_info and links. The key for the table is the user ID. The
user_info column family has columns such as name, email, etc. The links column family
has a column for each user that the user is linked to. The column name is the linked
user’s ID, and the value of these columns is the type of the link—friend, relation, col-
league, etc.:

user_links = load 'hbase://users'
 using org.apache.pig.backend.hadoop.hbase.HBaseStorage(
 'user_info:name, links:*', '-loadKey true -gt 10000')
 as (id, name:chararray, links:map[]);

The load location string is the HBase table name. The appropriate HBase client con-
figuration must be present on your machine to allow the HBase client to determine
how to connect to the HBase server. Two arguments are passed as constructor argu-
ments to HBaseStorage. The first tells it which column families and columns to read,
and the second passes a set of options.

In HBase, columns are referenced as column_family:column. In the preceding example,
user_info:name indicates the column name in the column family user_info. When you
want to extract a whole column family, you give the column family and an asterisk, for
example, links:*. You can also get a subset of the columns in a column family. For
example, links:100* would result in a map having all columns that start with “100”.
The map that contains a column family has the HBase column names as keys and the
column values as values.

The options string allows you to configure HBaseStorage. This can be used to control
whether the key is loaded, which rows are loaded, and other features. All of these
options are placed in one string, separated by spaces. Table 12-1 describes each of these
options.

Table 12-1. HBaseStorage options

Option Valid values Default Description

loadKey Boolean false If true, the key will be loaded as the first column in the input.

gt Row key None Only loads rows with a key greater than the provided value.

gte Row key None Only loads rows with a key greater than or equal to the provided value.

lt Row key None Only loads rows with a key less than the provided value.

lte Row key None Only loads rows with a key less than or equal to the provided value.

caching Integer 100 The number of rows the scanners should cache.

limit Integer None Read at most this many rows from each HBase region.

NoSQL Databases | 167

Option Valid values Default Description

caster Java classname Utf8Storage

Converter

The Java class to use to do casting between Pig types and the bytes that

HBase stores. This class must implement Pig’s LoadCaster and

StoreCaster interfaces. The default Utf8StorageConverter

can be used when the data stored in HBase is in UTF8 format and the

numbers are stored as strings (rather than in binary). HBaseBinary

Converter uses Java’s Byte.toInt, Byte.toString, etc., meth-

ods. It is not possible to cast to maps using this converter, so you cannot

read entire column families.

As of the time of this writing, Pig is able to read only the latest version of a column
value. There have been discussions about what the best interface and data type mapping
would be to enable Pig to read multiple versions. This feature will most likely be added
at some point in the future.

HBaseStorage stores data into HBase as well. When storing data, you specify the table
name as the location string, just as in load. The constructor arguments are also similar
to the load case. The first describes the mapping of Pig fields to the HBase table, which
uses the same column_family:column syntax as in load. Any Pig value can be mapped
to a column. A Pig map can be mapped to a column family by saying column_fam
ily:* (again, only in 0.9 and later). The row key is not referenced in this argument, but
it is assumed to be the first field in the Pig tuple. The only valid option in the optional
second argument in the store case is -caster.

Assume at the end of processing that our Pig data has a schema of id: long, name:char
array, email:chararray, links:map. Storing into our example HBase table we used
earlier looks like this:

// Schema of user_links is (id, name, email, links).
// Notice how the id (key) field is omitted in the argument.
store user_links into 'hbase://users'
 using org.apache.pig.backend.hadoop.hbase.HBaseStorage(
 'user_info:name, user_info:email, links:*');

Cassandra
Apache Cassandra is another scalable database used for high-volume random reading
and writing of data. It differs from HBase in its approach to distribution. Whereas
HBase guarantees consistency between its servers, Cassandra has an eventual consis-
tency model, meaning that servers might have different values for the same data for
some period of time. For more information about Cassandra, see Cassandra: The De-
finitive Guide, by Eben Hewitt (O’Reilly).

Cassandra comes with support for Pig, which means that you can load data from and
store data to Cassandra column families. This works just as it does with any other
storage mechanism that is used with Pig, such as HDFS. This includes data locality for
input splits.

168 | Chapter 12: Pig and Other Members of the Hadoop Community

http://oreilly.com/catalog/0636920010852
http://oreilly.com/catalog/0636920010852

Pig and Cassandra can be used together in a number of ways. Pig can be used to do
traditional analytics while Cassandra performs real-time operations. Because Pig and
MapReduce can be run on top of Cassandra, this can be done without moving data
between Cassandra and HDFS. HDFS is still required for storing intermediate results;
however, Pig can be used to do data exploration, research, testing, validation, and
correction over Cassandra data as well. It can be used to populate the data store with
new data as new tables or column families are added.

The Pygmalion project was written to ease development when using Pig with data
stored in Cassandra. It includes helpful UDFs to extract column values from the results,
marshal the data back to a form that Cassandra accepts, and others.

In order to properly integrate Pig workloads with data stored in Cassandra, the Cas-
sandra cluster needs to colocate the data with Hadoop task trackers. This allows the
Hadoop job tracker to move the data processing to the nodes where the data resides.
Traditionally, Cassandra is used for heavy writes and real-time, random-access queries.
Heavy Hadoop analytic workloads can be performed on Cassandra without degrading
the performance of real-time queries by splitting the cluster by workload type. A set of
nodes is dedicated to handling analytic batch processing and another set is dedicated
to handling real-time queries. Cassandra’s cross-datacenter replication copies data
transparently between these sections of the cluster so that manual copying of data is
never required, and the analytic section always has updated data.

Metadata in Hadoop
Apache HCatalog provides a metadata and table management layer for Hadoop. It
allows Hadoop users—whether they use MapReduce, Pig, Hive, or other tools—to
view their data in HDFS as if it were in tables. These tables are partitioned and have
consistent schemas. As a consequence of this abstraction, Pig users do not need to be
concerned with where a file is located, which load and store function should be used,
and whether the file is compressed. It also makes it much easier for Pig, MapReduce,
and Hive users to share data because HCatalog provides a single schema and data type
model for all of these tools. That data type model, taken from Hive, varies slightly from
Pig’s, but the load and store functions take care of mapping between the models. HCa-
talog uses Hive’s metastore to store metadata. For full details of HCatalog, see http://
incubator.apache.org/hcatalog.

HCatalog includes the load function HCatLoader. The location string for HCatLoader is
the name of the table. It implements LoadMetadata, so you do not need to specify the
schema as part of your load statement; Pig will get it from HCatLoader. Also, because it
implements this interface, Pig can work with HCatalog’s partitioning. If you place the
filter statement that describes which partitions you want to read immediately after
the load, Pig will push that into the load so that HCatalog returns only the relevant
partitions.

Metadata in Hadoop | 169

https://github.com/jeromatron/pygmalion
http://incubator.apache.org/hcatalog
http://incubator.apache.org/hcatalog

HCatStorer is the store function for HCatalog. As with the load function, the location
string indicates the table to store records to. The store function also requires a con-
structor argument to indicate the partition key values for this store. At this time (version
0.1) only one partition can be written to in a single store. There are plans to allow
writing to multiple partitions in version 0.2. HCatStorer expects the schema of the alias
being stored to match the schema of the table that records are being stored to.

As an example, let’s consider a very simple data pipeline that reads in raw web logs
from a table web_server_logs, does some processing, and stores them back into HCa-
talog in a table named processed_logs. web_server_log’s schema is (userid:chararray,
date:chararray, time:chararray, url:chararray), and processed_log’s schema is
(userid:chararray, user_ref:int, date:chararray, time:chararray, pageid:int,

url:chararray). A Pig Latin script to do this processing would look like the following:

logs = load 'web_server_logs' using HCatalogLoader();
-- use parameter substitution so script doesn't have to be rewritten every day
-- filter will be split and date portion pushed to the loader
today = filter logs by date = '$DATE' and NotABot(user_id);
...
-- schema of output must exactly match HCatalog schema
-- of processed_logs, including field names
output = foreach rslvd generate userid, user_ref, date, time, pageid, url;
store output into 'processed_logs' using HCatStorer('date=$DATE');

170 | Chapter 12: Pig and Other Members of the Hadoop Community

APPENDIX A

Built-in User Defined Functions
and Piggybank

This appendix covers UDFs that come as part of the Pig distribution, including built-
in UDFs and user-contributed UDFs in Piggybank.

Built-in UDFs
Pig comes prepackaged with many UDFs that can be used directly in Pig without using
register or define. These include load, store, evaluation, and filter functions.

Built-in Load and Store Functions
Pig’s built-in load functions are listed in Table A-1; Table A-2 lists the store functions.

Table A-1. Load functions

Function Location String
indicates

Constructor arguments Description

HBaseStorage HBase table The first argument is a string describing

column family and column to Pig field

mapping.

The second is an option string (optional).

Load data from HBase (see

“HBase” on page 166).

PigStorage HDFS file The first argument is a field separator (op-

tional; defaults to Tab).

Load text data from HDFS (see

“Load” on page 34).

TextLoader HDFS file None. Reads lines of text, each line as a tu-

ple with one chararray field.

171

Table A-2. Store functions

Function Location String
indicates

Constructor arguments Description

HBaseStorage HBase table The first argument is a string describing

Pig field to HBase column family and col-

umn mapping.

The second is an option string (optional).

Store data to HBase (see

“HBase” on page 166).

PigStorage HDFS file The first argument is a field separator (op-

tional; defaults to Tab).

Store text to HDFS in text format (see

“Store” on page 36).

Built-in Evaluation and Filter Functions
The evaluation functions can be divided into math functions that mimic many of the
Java math functions; aggregate functions that take a bag of values and produce a single
result; functions that operate on or produce complex types; chararray and bytearray
functions; filter functions; and miscellaneous functions.

Each of the built-in evaluation and filter functions is discussed in the following lists. In
these lists, for brevity, a bag of tuples with a given type is specified by braces surround-
ing parentheses and a list of the tuples’ fields. For example, a bag of tuples with one
integer field is denoted as {(int)}.

Built-in math UDFs

double ABS(double input)

Parameter:
input

Returns:
Absolute value

Since version:
0.8

double ACOS(double input)

Parameter:
input

Returns:
Arc cosine

Since version:
0.8

double ASIN(double input)

Parameter:
input

172 | Appendix A: Built-in User Defined Functions and Piggybank

Returns:
Arc sine

Since version:
0.8

double ATAN(double input)

Parameter:
input

Returns:
Arc tangent

Since version:
0.8

double CBRT(double input)

Parameter:
input

Returns:
Cube root

Since version:
0.8

double CEIL(double input)

Parameter:
input

Returns:
Next-highest double value that is a mathematical integer

Since version:
0.8

double COS(double input)

Parameter:
input

Returns:
Cosine

Since version:
0.8

double COSH(double input)

Parameter:
input

Returns:
Hyperbolic cosine

Built-in UDFs | 173

Since version:
0.8

double EXP(double input)

Parameter:
input

Returns:
Euler’s number (e) raised to the power of input

Since version:
0.8

double FLOOR(double input)

Parameter:
input

Returns:
Next-lowest double value that is a mathematical integer

Since version:
0.8

double LOG(double input)

Parameter:
input

Returns:
Natural logarithm of input

Since version:
0.8

double LOG10(double input)

Parameter:
input

Returns:
Logarithm base 10 of input

Since version:
0.8

long ROUND(double input)

Parameter:
input

Returns:
Long nearest to the value of input

Since version:
0.8

174 | Appendix A: Built-in User Defined Functions and Piggybank

double SIN(double input)

Parameter:
input

Returns:
Sine

Since version:
0.8

double SINH(double input)

Parameter:
input

Returns:
Hyperbolic sine

Since version:
0.8

double SQRT(double input)

Parameter:
input

Returns:
Square root

Since version:
0.8

double TAN(double input)

Parameter:
input

Returns:
Tangent

Since version:
0.8

double TANH(double input)

Parameter:
input

Returns:
Hyperbolic tangent

Since version:
0.8

Built-in UDFs | 175

Built-in aggregate UDFs

int AVG({(int)} input)

Parameter:
input

Returns:
Average of all values in input; nulls are ignored

Since version:
0.2

long AVG({(long)} input)

Parameter:
input

Returns:
Average of all values in input; nulls are ignored

Since version:
0.2

float AVG({(float)} input)

Parameter:
input

Returns:
Average of all values in input; nulls are ignored

Since version:
0.2

double AVG({(double)} input)

Parameter:
input

Returns:
Average of all values in input; nulls are ignored

Since version:
0.2

double AVG({(bytearray)} input)

Parameter:
input

Returns:
Average of all bytearrays, cast to doubles, in input; nulls are ignored

Since version:
0.1

long COUNT

A version of COUNT that matches SQL semantics for COUNT(col)

176 | Appendix A: Built-in User Defined Functions and Piggybank

Parameter:
input

Returns:
Number of records in input, excluding null values

Since version:
0.1

long COUNT_STAR

A version of COUNT that matches SQL semantics for COUNT(*)

Parameter:
input

Returns:
Number of all records in input, including null values

Since version:
0.4

int MAX({(int)} input)

Parameter:
input

Returns:
Maximum value in input; nulls are ignored

Since version:
0.2

long MAX({(long)} input)

Parameter:
input

Returns:
Maximum value in input; nulls are ignored

Since version:
0.2

float MAX({(float)} input)

Parameter:
input

Returns:
Maximum value in input; nulls are ignored

Since version:
0.2

double MAX({(double)} input)

Parameter:
input

Built-in UDFs | 177

Returns:
Maximum value in input; nulls are ignored

Since version:
0.2

chararray MAX

Parameter:
input

Returns:
Maximum value in input; nulls are ignored

Since version:
0.2

double MAX({(bytearray)} input)

Parameter:
input

Returns:
Maximum of all bytearrays, cast to doubles, in input; nulls are ignored

Since version:
0.1

int MIN({(int)} input)

Parameter:
input

Returns:
Minimum value in input; nulls are ignored

Since version:
0.2

long MIN({(long)} input)

Parameter:
input

Returns:
Minimum value in input; nulls are ignored

Since version:
0.2

float MIN({(float)} input)

Parameter:
input

Returns:
Minimum value in input; nulls are ignored

178 | Appendix A: Built-in User Defined Functions and Piggybank

Since version:
0.2

double MIN({(double)} input)

Parameter:
input

Returns:
Minimum value in input; nulls are ignored

Since version:
0.2

chararray MIN

Parameter:
input

Returns:
Minimum value in input; nulls are ignored

Since version:
0.2

double MIN({(bytearray)} input)

Parameter:
input

Returns:
Minimum of all bytearrays, cast to doubles, in input; nulls are ignored

Since version:
0.1

long SUM({(int)} input)

Parameter:
input

Returns:
Sum of all values in the bag; nulls are ignored

Since version:
0.2

long SUM({(long)} input)

Parameter:
input

Returns:
Sum of all values in the bag; nulls are ignored

Since version:
0.2

Built-in UDFs | 179

double SUM({(float)} input)

Parameter:
input

Returns:
Sum of all values in the bag; nulls are ignored

Since version:
0.2

double SUM({(double)} input)

Parameter:
input

Returns:
Sum of all values in the bag; nulls are ignored

Since version:
0.2

double SUM({(bytearray)} input)

Parameter:
input

Returns:
Sum of all bytearrays, cast to doubles, in input; nulls are ignored

Since version:
0.1

Built-in chararray and bytearray UDFs

chararray CONCAT(chararray c1, chararray c2)

Parameters:
c1

c2

Returns:
Concatenation of c1 and c2

Since version:
0.1

bytearray CONCAT(bytearray b1, bytearray b2)

Parameters:
b1

b2

Returns:
Concatenation of b1 and b2

180 | Appendix A: Built-in User Defined Functions and Piggybank

Since version:
0.1

int INDEXOF(chararray source, chararray search)

Parameters:
source: the chararray to search in

search: the chararray to search for

Returns:
Index of the first instance of search in source; -1 if search is not in source

Since version:
0.8

int LAST_INDEX_OF(chararray source, chararray search)

Parameters:
source: the chararray to search in

search: the chararray to search for

Returns:
Index of the last instance of search in source; -1 if search is not in source

Since version:
0.8

chararray LCFIRST(chararray input)

Parameter:
input

Returns:
input, with the first character converted to lowercase

Since version:
0.8

chararray LOWER(chararray input)

Parameter:
input

Returns:
input with all characters converted to lowercase

Since version:
0.8

chararray REGEX_EXTRACT(chararray source, chararray regex, int n)

Parameters:
source: the chararray to search in

regex: the regular expression to search for

n: take the nth match, counting from 0

Built-in UDFs | 181

Returns:
nth subset of the source matching regex; null if there are no matches

Since version:
0.8

(chararray) REGEX_EXTRACT_ALL(chararray source, chararray regex)

Parameters:
source: the chararray to search in

regex: the regular expression to search for

Returns:
Tuple containing all subsets of source matching regex; null if there are no
matches

Since version:
0.8

chararray REPLACE(chararray source, chararray toReplace, chararray newValue)

Parameters:
source: the chararray to search in

toReplace: the chararray to be replaced

newValue: the new chararray to replace it with

Returns:
source with all instances of toReplace changed to newValue

Since version:
0.8

long SIZE(chararray input)

Parameter:
input

Returns:
Number of characters in input

Since version:
0.2

long SIZE(bytearray input)

Parameter:
input

Returns:
Number of bytes in input

Since version:
0.2

(chararray) STRSPLIT(chararray source)

Split a chararray by whitespace

182 | Appendix A: Built-in User Defined Functions and Piggybank

Parameter:
source: the chararray to split

Returns:
Tuple with one field for each section of source

Since version:
0.8

(chararray) STRSPLIT(chararray source, chararray regex)

Split a chararray by a regular expression

Parameters:
source: the chararray to split

regex: the regular expression to use as the delimiter

Returns:
Tuple with one field for each section of source

Since version:
0.8

(chararray) STRSPLIT(chararray source, chararray regex, int maxsplits)

Split a chararray by a regular expression

Parameters:
source: the chararray to split

regex: the regular expression to use as the delimiter

max: the maximum number of splits

Returns:
Tuple with one field for each section of source; if there are more than one
maxsplits sections, only the first maxsplits sections will be in the tuple

Since version:
0.8

chararray SUBSTRING(chararray source, int start, int end)

Parameters:
source: the chararray to split

start: the start position (inclusive), counting from 0

end: the end position (exclusive), counting from 0

Returns:
Subchararray; error if any input value has a length shorter than start

Since version:
0.8

{(chararray)} TOKENIZE(chararray input)

Parameter:
source: the chararray to split

Built-in UDFs | 183

Returns:
input split on whitespace, with each resulting value being placed in its own
tuple and all tuples placed in the bag

Since version:
0.1

chararray TRIM(chararray input)

Parameter:
input

Returns:
input with all leading and trailing whitespace removed

Since version:
0.8

chararray UCFIRST(chararray input)

Parameter:
input

Returns:
input with the first character converted to uppercase

Since version:
0.8

chararray UPPER(chararray input)

Parameter:
input

Returns:
input with all characters converted to uppercase

Since version:
0.8

Built-in complex type UDFs

{(chararray, chararray, double)} COR({(double)} b1, {(double)} b2)

Calculate the correlation between two bags of doubles

Parameters:
b1

b2

Returns:
First chararray is the name of b1, second chararray is the name of b2, double is
the correlation between b1 and b2

Since version:
0.8

184 | Appendix A: Built-in User Defined Functions and Piggybank

{(chararray, chararray, double)} COV({(double)} b1, {(double)} b2)

Calculate the covariance of two bags of doubles

Parameters:
b1

b2

Returns:
First chararray is the name of b1, second chararray is the name of b2, double is
the covariance of b1 and b2

Since version:
0.8

bag DIFF(bag b1, bag b2)

Parameters:
b1

b2

Returns:
All records from b1 that are not in b2, and all records from b2 that are not in b1

Since version:
0.1

long SIZE(map input)

Parameter:
input

Returns:
Number of key-value pairs in input

Since version:
0.2

long SIZE(tuple input)

Parameter:
input

Returns:
Number of fields in input

Since version:
0.2

long SIZE(bag input)

Parameter:
input

Returns:
Number of tuples in input

Built-in UDFs | 185

Since version:
0.2

bag TOBAG(...)

Parameter:
Variable

Returns:
If all inputs have the same schema, the resulting bag will have that schema,
else it will have a null schema; if the parameters are tuples, all schemas must
have the same field names in addition to types

Since version:
0.8

map TOMAP(...)

Parameter:
Variable

Returns:
Input parameters are paired up and placed in a map as key/value, key/value;
all keys must be chararrays; an odd number of arguments will result in an error

Since version:
0.9

bag TOP(int numRecords, int field, bag source)

Parameters:
numRecords: the number of records to return

field: the field to sort on

source: the bag to return records from

Returns:
A bag with numRecords

Since version:
0.8

tuple TOTUPLE(...)

Parameter:
Variable

Returns:
A tuple with all of the fields passed in as arguments

Since version:
0.8

186 | Appendix A: Built-in User Defined Functions and Piggybank

Built-in filter functions

boolean IsEmpty(bag)

Parameter:
input

Returns:
Boolean

Since version:
0.1

boolean IsEmpty(tuple)

Parameter:
input

Returns:
Boolean

Since version:
0.1

Miscellaneous built-in UDF

double RANDOM()

Returns:
A random double between 0 and 1

Since version:
0.4

Piggybank
Piggybank is Pig’s repository of user-contributed functions. Piggybank functions are
distributed as part of the Pig distribution, but they are not built in. You must regis
ter the Piggybank JAR to use them, which you can do in your distribution at contrib/
piggybank/java/piggybank.jar.

At the time of writing, there is no central website or set of documentation for Piggybank.
To find out what is in there, you will need to browse through the code. You can see all
of the included functions by looking in your distribution under contrib/piggybank/.
Piggybank does not yet include any Python functions, but it is set up to allow users to
contribute functions in languages other than Java, so hopefully this will change in time.

Piggybank | 187

APPENDIX B

Overview of Hadoop

This appendix gives a brief overview of Hadoop, focusing on elements that are of in-
terest to Pig users. For a thorough discussion of Hadoop, see Hadoop: The Definitive
Guide, by Tom White (O’Reilly). Hadoop’s two main components are MapReduce and
HDFS.

MapReduce
MapReduce is the framework for running jobs in Hadoop. It provides a simple and
powerful paradigm for parallelizing data processing.

The JobTracker is the central coordinator of jobs in MapReduce. It controls which jobs
are being run, which resources they are assigned, etc. On each node in the cluster there
is a TaskTracker that is responsible for running the map or reduce tasks assigned to it
by the JobTracker.

MapReduce views its input as a collection of records. When reading from HDFS, a
record is usually a single line of text. Each record has a key and a value. There is no
requirement that data be sorted by key or that the keys must be unique. Similarly,
MapReduce produces a set of records, each with a key and value.

MapReduce operates on data in jobs. Every job has one input and one output.* Map-
Reduce breaks each job into a series of tasks. These tasks are of two primary types: map
and reduce.

* It is possible to bend this rule, as Pig and many other applications do. For example, the one input can be a
concatenation of multiple input files, and files can be opened on the side in tasks and written to or read from.
But, conceptually, each job has one primary input and one primary output.

189

http://oreilly.com/catalog/9781449389734/
http://oreilly.com/catalog/9781449389734/

Map Phase
In the map phase, MapReduce gives the user an opportunity to operate on every record
in the data set individually. This phase is commonly used to project out unwanted
fields, transform fields, or apply filters. Certain types of joins and grouping can also be
done in the map (e.g., joins where the data is already sorted or hash-based aggregation).
There is no requirement that for every input record there should be one output record.
Maps can choose to remove records or explode one record into multiple records.

Every MapReduce job specifies an InputFormat. This class is responsible for determin-
ing how data is split across map tasks and for providing a RecordReader.

In order to specify how data is split across tasks, an InputFormat divides the input data
into a set of InputSplits. Each InputSplit is given to an individual map. In addition to
information on what to read, the InputSplit includes a list of nodes that should be used
to read the data. In this way, when the data resides on HDFS, MapReduce is able to
move the computation to the data.

The RecordReader provided by an InputFormat reads input data and produces key-value
pairs to be passed into the map. This class controls how data is decompressed (if nec-
essary), and how it is converted to Java types that MapReduce can work with.

Combiner Phase
The combiner gives applications a chance to apply their reducer logic early on. As the
map phase writes output, it is serialized and placed into an in-memory buffer. When
this buffer fills, MapReduce will sort the buffer and then run the combiner if the ap-
plication has provided an implementation for it. The resulting output is then written
to local disk, to be picked up by the shuffle phase and sent to the reducers. MapReduce
might choose not to run the combiner if it determines it will be more efficient not to.

After the shuffle, each reducer will have one input for each map. The reducer needs to
merge these inputs in order to begin processing. It is not efficient to merge too many
inputs simultaneously. Thus, if the number of inputs exceeds a certain value, the data
will be merged and rewritten to disk before being given to the reducer. During this
merge, the combiner will be applied in an attempt to reduce the size of the input data.
See Hadoop’s documentation for a discussion of how and when this prereduce merge
is triggered.

Because the combine phase will be run zero, one, or multiple times, the input and
output keys and values of the combiner must be of the same type.

190 | Appendix B: Overview of Hadoop

http://hadoop.apache.org/common/docs/r0.20.2/mapred_tutorial.html#Shuffle%2FReduce+Parameters

Shuffle Phase
During the shuffle phase, MapReduce partitions data among the various reducers.

MapReduce uses a class called Partitioner to partition records to reducers during the
shuffle phase. An implementation of Partitioner takes the key and value of the record,
as well as the total number of reduce tasks, and returns the reduce task number that
the record should go to. By default, MapReduce uses HashPartitioner, which calls
hashCode() on the key and returns the result modulo of the number of reduce tasks.
MapReduce users can override this default to use their own implementation of
Partitioner. See the Hadoop documentation for more details on Partitioners.

Data arriving on the reducer has been partitioned and sorted by the map, combine, and
shuffle phases. By default, the data is sorted by the partition key. For example, if a user
has a data set partitioned on user ID, in the reducer it will be sorted by user ID as well.
Thus, MapReduce uses sorting to group like keys together. It is possible to specify
additional sort keys beyond the partition key. So, for example, the user could choose
to partition by user ID and also sort by timestamp. This feature is useful, as the user
does not have to implement her own sorting on the reduce data.

Reduce Phase
The input to the reduce phase is each key from the shuffle plus all of the records asso-
ciated with that key. Because all records with the same value for the key are now col-
lected together, it is possible to do joins and aggregation operations such as counting.
The MapReduce user explicitly controls parallelism in the reduce. MapReduce jobs
that do not require a reduce phase can set the reduce count to zero. These are referred
to as map-only jobs.

Output Phase
The reducer (or map in a map-only job) writes its output via an OutputFormat. Output
Format is responsible for providing a RecordWriter, which takes the key-value pairs
produced by the task and stores them. This includes serializing, possibly compressing,
and writing them to HDFS, HBase, etc. The OutputFormat is also responsible for pro-
viding the OutputCommitter, which is used to do post-output operations such as cleaning
up after failure and indicating to the storage medium that data is available (e.g., a
database commit).

Distributed Cache
Sometimes all or many of the tasks in a MapReduce job will need to access a single file
or a set of files. For example, when joining a large file with a small file, one approach
is to open the small file as a side file (that is, open it directly in your map task rather
than specify it as an input to your MapReduce job), load it into memory, and do the

MapReduce | 191

http://hadoop.apache.org/common/docs/r0.20.0/api/org/apache/hadoop/mapreduce/Partitioner.html

join in the map phase. When thousands of map or reduce tasks attempt to open
the same HDFS file simultaneously, this puts a large strain on the NameNode and the
DataNodes storing that file. To avoid this situation, MapReduce provides the distrib-
uted cache. The distributed cache allows users to specify—as part of their MapReduce
job—any HDFS files they want every task to have access to. These files are then copied
onto the local disk of the task nodes as part of the task initiation. Map or reduce tasks
can then read these as local files.

Handling Failure
Part of the power of MapReduce is that it handles failure and retry for the user. If you
have a MapReduce job that involves 10,000 map tasks (not an uncommon situation),
the odds are reasonably high that at least one machine will fail during that job. Rather
than trying to remove failure from the system, MapReduce is designed with the as-
sumption that failure is common and must be coped with. When a given map or reduce
task fails, MapReduce handles spawning a replacement task to do the work. Sometimes
it does not even wait for tasks to fail. When a task is slow, it might spawn a duplicate
to see if it can get the task done sooner. This is referred to as speculative execution. After
a task fails a certain number of times (four by default), MapReduce gives up and declares
the task and the job a failure.

Hadoop Distributed File System
The Hadoop Distributed File System (HDFS) stores files across all of the nodes in a
Hadoop cluster. It handles breaking the files into large blocks and distributing them
across different machines. It also makes multiple copies of each block so that if any one
machine fails, no data is lost or unavailable. By default it makes three copies of each
block, though this value is configurable. One copy is always written locally to the node
where the write is executed. If your Hadoop cluster is spread across multiple racks,
HDFS will write one copy of the block on the same rack as the machine where the write
is happening, and one copy on a machine in a different rack. When a machine or disk
dies or blocks are corrupted, HDFS will handle making another copy of the lost blocks
to ensure that the proper number of replicas are maintained.

HDFS is designed specifically to support MapReduce. The block sizes are large, 64 MB
by default. Many users set them higher, to 128 MB or even 256 MB. Storing data in
large blocks works well for MapReduce’s batch model, where it is assumed that every
job will read all of the records in a file. Modern disks are much faster at sequential read
than seek. Thus for large data sets, if you require more than a few records, sequentially
reading the entire data set outperforms random reads. The three-way duplication of
data, beyond obviously providing fault tolerance, also serves MapReduce because it
gives the JobTracker more options for locating map tasks on the same machine as one
of the blocks.

192 | Appendix B: Overview of Hadoop

HDFS presents a POSIX-like interface to users and provides standard filesystem fea-
tures such as file ownership and permissions, security, and quotas.

The brain of HDFS is the NameNode. It is responsible for maintaining the master list
of files in HDFS, and it handles the mapping of filenames to blocks, knowing where
each block is stored, and making sure each block is replicated the appropriate number
of times. DataNodes are machines that store HDFS data. They store each block in a
separate file. Each DataNode is colocated with a TaskTracker to allow moving of the
computation to data.

Hadoop Distributed File System | 193

Index

Symbols
!= inequality operator, 40
dereference operator for maps, 25
$ macro parameter, 79
$ parameter substitution target, 77
% modulo operator, 38
() tuple parentheses, 36
* all fields, 37
* multiplication operator, 37
* zero or more characters glob, 35
+ addition operator, 37
- subtraction operator, 37
- unary negative operator, 38
-- single line comment operator, 34
.. range of fields, 37
/ division operator, 37
/* */ multiline comment operator, 34
< inequality operator, 40
<= inequality operator, 40
== equality operator, 40
> inequality operator, 40
>= inequality operator, 40
? any character glob, 35
? bincond operator, 38
[] map brackets, 36
\ escape character, 35
{} bag braces, 36
{} macro operator, 79

A
ABS function, 172
accumulator interface, 139
ACID, 166
ACOS function, 172

AddForEach optimization, 96
algebraic calculations, 43, 135
algebraic interface, 135–138
aliases, 33, 53
Amazon Elastic MapReduce (EMR), 10, 17
Apache HBase, 166–168
Apache HCatalog, 169
Apache Hive, 165
Apache open source, 1, 11
arithmetic operators, 37
as clause (load function), 35, 40
as clause (stream command), 70
ASIN function, 172
ATAN function, 173
AVG functions, 176

B
bad records, handling, 109
bag data type, 25, 28, 123, 135, 142
bag DIFF function, 185
bag projection, 38
bag TOBAG function, 186
bag TOP function, 186
BagFactory class, 123
baseball examples

base on balls and IBBs, 29
batting average, 38
data set, xii, 57
players by position and team, 74
slugging percentage, 52

behavior prediction models, 8
binary condition operator, 38
bind call, 113
bindings, multiple, 114, 116
boolean IsEmpty functions, 187

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

195

Boolean operators, 41
bottlenecks, 101
built-in aggregate UDFs, 176–180
built-in chararray and bytearray UDFs, 180–

184
built-in complex type UDFs, 184–186
built-in filter functions, 187
built-in load and store functions, 171
built-in math UDFs, 172
bytearray CONCAT functions, 180
bytearray type, 24, 28, 105, 142, 156

C
cache clause (define statement), 71
caching option (HBase), 167
Cascading, 165
case sensitivity

Pig Latin, 34
UDF names, 51, 119

Cassandra, Apache, 168
Cassandra: The Definitive Guide (Hewitt),

168
caster option (HBase), 168
casts, 30–32, 147, 156
cat command, 20, 44
CBRT function, 173
CEIL function, 173
chararray functions

CONCAT, 180
LCFIRST, 181
LOWER, 181
MAX, 178
MIN, 179
REGEX_EXTRACT, 181
REGEX_EXTRACT_ALL, 182
REPLACE, 182
STRSPLIT, 182
SUBSTRING, 183
TOKENIZE, 183
TRIM, 184
UCFIRST, 184
UPPER, 184

chararray type, 24, 28, 40, 142
checking syntax, 81
Cloud computing, 17
Cloudera, downloading Pig from, 12
cluster

running Pig on your, 15
setting up LZO on your, 108

cogroup operator, 49, 66, 75, 77, 83, 85, 102
columnMapKeyPrune optimization, 95
combiner phase, 43, 135, 190
combiner, turning off, 96
command tab completion, 19
command-line options, 17
comment operators (Pig Latin), 34
compile method, 112
complex data types, 24–27, 122, 125, 172,

184
compression, using in intermediate results,

108
CONCAT functions, 180
constructors, 128–132
controlling execution, 75
copyFromLocal command, 20
copyToLocal command, 20
COR function, 184
corrupted data, handling, 109
COS function, 173
COSH function, 173
COUNT function, 121, 135, 137, 139, 176
COUNT_STAR function, 177
COV function, 185
cross operator, 49, 68–69, 74, 77, 102

D
-D passing properties, 18
DAG (directed acyclic graph), 4, 72
data

layout optimization, 109
passing, 128
pipelines, 7, 96, 165, 170
types, 23–27, 105
writing, 159–162

data sets, example, xii
dataflow languages, 4, 111
DataNodes, 130, 192, 193
debugging, 95
%declare, 78
declaring

a filename, 128
a macro, 78
a schema, 27, 124
a type, 74, 105

%default, 78
define statement, 52, 53, 70, 78, 128
define utility method, 117
describe operator, 82

196 | Index

development tools, 81–96
DeWitt, David J., 63
DIFF function, 185
directed acyclic graph (DAG), 4, 72
distinct operator, 45, 49, 59, 60, 77, 102
distributed cache, 62, 71, 130, 192
distributive calculations, 43, 135
double functions

ABS, 172
ACOS, 172
ASIN, 172
ATAN, 173
AVG, 176
CBRT, 173
CEIL, 173
COS, 173
COSH, 173
EXP, 174
FLOOR, 174
LOG, 174
LOG10, 174
MAX, 177, 178
MIN, 179
RANDOM, 187
SIN, 175
SINH, 175
SQRT, 175
SUM, 180
TAN, 175
TANH, 175

double type, 24, 28, 142
-dryrun command line option, 79, 82
dump statement, 36

E
Eclipse syntax highlighting, 81
Elastic MapReduce (EMR), 17
Emacs syntax highlighting, 81
embedding Pig Latin in Python, 111–117
EMR (Elastic MapReduce), Amazon, 17
equality operators, 40
errors

checking in Grunt, 20
debugging with explain, 82
in evaluation functions, 127
failure cleanup, 162, 192
getErrorMessage function, 115
parse, 150
in Pig Latin scripts, 6

runtime exceptions, 124
schema, 27, 28, 68
sorting by maps, tuples, bags, 44

escape characters (Unix shell command line),
35

ETL (extract transform load) data pipelines, 7
evaluation functions

basics, 39, 120
built-in, 172–187
error handling and progress reporting, 127
input and output schemas, 124–126
memory issues in, 135
where your UDF will run, 120
writing in Java, 119

examples, 2, 38
(see also baseball examples)
(see also NYSE examples)
blacklisting URLs, 71–72
calculating page rank from web crawl, xii,

71–72, 112–117
determining metropolitan area, 69
finding the top five URLs, 6
group then join in SQL and Pig Latin, 4
HBase table, 167
“hello world”, 2
JsonLoader, 145
JsonStorage, 145
MetroResolver, 128–130
running Pig in local mode, 13
running Pig on your cluster, 16
store function, 157–159, 163
user distribution by city, 63, 69
word count, 2
ZIP code lookup, 62

exec command, 21
-execute (-e) command-line option, 17
EXP function, 174
explain operator, 82–86
explicit splits, 73

F
failure cleanup, 162, 192
fields, 33
FileOutputFormat, 158
filesystem operations, 116
filter functions, 41, 53, 119, 142, 187
filter operator, 6, 40–41, 60, 119, 142, 155,

169
filters

Index | 197

MergeFilter optimization, 95
pushing, 102
PushUpFilter optimization, 95
SplitFilter optimization, 95

Finding the Top Five URLs example, 6
flatten statement, 57–59
float functions

AVG, 176
MAX, 177
MIN, 178

float type, 23, 28, 142
FLOOR function, 174
foreach operator, 37, 39, 57–61, 83, 103
fragment-replicate join, 62
frontend planning functions, 146–148, 157–

159
frontend/backend invocation, 129–132
fs keyword, 20
fuzzy joins, 69

G
gateway machine, 15
Gaussian distribution, 43
getAllErrorMessages method, 115
getBytesWritten method, 115
getDuration method, 116
getErrorMessage method, 115
getNumberBytes method, 116
getNumberJobs method, 116
getNumberRecords method, 116
getOutputFormat method, 157
getOutputLocations, getOutputNames

methods, 115
getRecordWritten method, 115
getReturnCode method, 115
getUDFContext method, 131
Global Rearrange operator, 85
globs, 35
GNU Public License (GPL) for LZO, 108
group by clause, 41–44
group by operator, 6
group operator, 41–44, 49, 73, 77, 103, 121
“Group then join in SQL and Pig Latin”

example, 4
Grunt, 19

controlling Pig from, 21
entering Pig Latin scripts in, 20
explain Pig Latin script in, 82
HDFS commands in, 20

gt option (HBase), 167
gte option (HBase), 167
gzip compression type, 108

H
-h properties command-line option, 18
Hadoop

fs shell commands, 20
HDFS (Hadoop Distributed File System), 1,

20, 129–130, 145–147, 192
Java properties used, 18
metadata in, 169
overview, 189–193
running Pig on your cluster, 15
tarball, 108
tuning, 106

hadoop-site.xml file, 15
Hadoop: The Definitive Guide (White), 107,

189
handling failure, 192
hashCode function, 191
HashPartitioner, 191
HBase, Apache, 166–168
HBaseStorage function, 147, 166–168, 171,

172
HCatalog, Apache, 169
HCatLoader, 155, 157
heap size, 64, 107, 135
hello world example, 2
-help (-h) command-line option, 17
Hewitt, Eben, 168
highlighting syntax, 81
Hive, Apache, 165

I
illustrate operator, 89
implicit splits, 73
import command, 80
including other Pig Latin scripts, 80
INDEXOF function, 181
inner joins, 47, 65
input clause (define command), 71
input schemas, 124
input size, 101
InputFormat, determining, 146
int AVG function, 176
int functions

INDEXOF, 181

198 | Index

LAST_INDEX_OF, 181
MAX, 177
MIN, 178

int type, 23, 28, 142
intermediate results size, 102
invoker methods, 54
isSuccessful method, 115
iterative processing, 8, 111, 114

J
Jackson JSON library, 145
JAR files

downloading, 12
Jackson, 145
Jython, 53
Piggybank, 51, 187
pigunit, 97
registering, 116, 142

Java
and Cascading data flows, 165
casting and HBase, 168
compared with Python, 142
data types used by Pig, 23–27, 125
embedding interface, 111
evaluation functions in, 119–135, 172
integration with Pig, 9, 11
Iterable, 124
JUnit, 97
and MapReduce, 190
memory requirements of, 26, 62
multiple inheritance workaround, 156, 157
passing arguments to, 72
properties used by Pig and Hadoop, 18, 76
reflection, 55, 124, 126
regular expressions, 40
setting JAVA_HOME, 12
setting the Partitioner, 76
static functions, 54
UDFs and, 51, 53, 124, 130, 133

JobTracker, 15, 92, 127, 189
join operator, 49
joining small to large data, 62, 191
joining sorted data, 65
joins

default behavior, 45–48
and filter pushing, 103
how to update every five minutes, 8
inner, 47, 65
input path overwritten, 147

no multiquery for, 74
other implementations, 61–69, 104
outer, 46, 62
parallel clause and, 49
partition clause and, 77
in Pig Latin versus MapReduce, 6
in Pig Latin versus SQL, 4
and sample records, 89
sort-merge, 65

JSON, 28
JsonLoader example, 122, 145–154
JsonStorage example, 158–163

JUnit, 97
Jython, 51, 53, 141

K
keys, 2, 7
kill command, 21

L
LAST_INDEX_OF function, 181
LCFIRST function, 181
Le Dem, Julien, 112
licensing, 1, 108
limit operator, 48, 49, 60
limit option (HBase), 167
LimitOptimizer optimization, 95
linear data flows, 72
load clause (mapreduce statement), 72
load function (PigStorage), 105
load functions (Pig), 146–157

additional interfaces, 153–157
backend data reading, 148–150
built-in, 171
frontend planning functions, 146–148
loading metadata, 153
passing info frontend to backend, 148

load operator, 34, 83, 103
loadKey option (HBase), 167
local mode, 13
Local Rearrange operator, 85
LOG function, 174
LOG10 function, 174
logical optimizer, 96
logical plan, 83, 96
LogicalExpressionsSimplifier optimization, 96
logs, 92, 127
long AVG function, 176

Index | 199

long functions
COUNT, 176
COUNT_STAR, 177
MAX, 177
MIN, 178
ROUND, 174
SIZE, 182, 185
SUM, 179

long type, 23, 28, 142
lookup table, constructing, 128
LOWER function, 181
lt option (HBase), 167
lte option (HBase), 167
LZO compression type, 108

M
macros, 78
map data type, 24, 28, 142
map only jobs, 191
map parallelism, 50
map phase, 1, 190
map projection operator (#), 38
map TOMAP function, 186
MapReduce, 1, 189

how Pig differs from, 6–7
integrating with Pig, 71
job status, 92
performance tuning properties, 107

mapreduce operator, 71, 103
“Mary had a Little Lamb” example, 2
Maven, downloading Pig from, 12
MAX functions, 177
memory

buffer size, 107
requirements for Pig data types, 26
size, 102

merge join, 65, 104
MergeFilter optimization, 95
MergeForEach optimization, 96
metadata

in Hadoop, 169
loading, 153
storing, 163

metropolitan name example, 128–130
MIN functions, 133, 178
multiple bindings, running, 116
multiple joins, 47
multiple keys, grouping on, 42
multiquery, 74, 105

multiway joins, 64

N
NameNode, 15, 62, 109, 130, 192, 193
namespaces, 53
nested foreach, 59–61
noise words, 47
nonlinear data flows, 72–75
NoSQL databases, 166
null, 26, 38, 41, 47, 127
NYSE examples

average dividends, 13
buy/sell analyzer, 132
daily sorted dividends, 65
data set, xii
dividends increased between two dates, 47
filter out low-dividend stocks, 70
find list of ticker symbols, 45
number of unique stock symbols, 59
stock-price changes on dividend days, 79
top three dividends, 60
total trade estimate, 31
tracking a stock over time, 60

O
Olston, Christopher, 10
optimizations, turning off, 95, 96
optimizing scripts, 101–109
order by operator, 6, 44
order operator, 44, 45, 49, 60, 76
outer joins, 46, 62
output clause (define command), 71
output location, 158
output phase, 191
output schemas, 124
output size, 102
OutputFormat, 157, 191
overloading, 54, 133

P
Package operator, 85
page rank, calculating from web crawl, 112–

117
parallel clause, 49
parallel dataflow language, 4
parallelism, 105, 120, 145
parameter substitution, 77–78
partition clause, 77

200 | Index

Partitioner class, 76, 191
partitions, using, 155
performance tuning properties (MapReduce),

107
philosophy of Pig, 9
physical plan, 85
Pig

downloading and installing, 11–13
fs method, 116
history, 10
integrating with legacy code and

MapReduce, 69–72
issue-tracking system, 13
performance tuning, 107
philosophy, 9
portability, 11
release page, 11
running, 13–18
strength of typing, 32
translation to Python types, 141
version control page, 13

“Pig counts Mary and her lamb” example, 3
Pig Latin, 1

best use cases for, 7
case sensitivity, 34
comment operators, 34
developing and testing scripts, 81–99
embedding in Python, 111–117
fields, 33
input and output, 34–36
preprocessor, 77–80
relational operations, 37–51
relations, 33
syntax highlighting packages, 81

“Pig Latin: A Not-So-Foreign Language for
Data Processing” (Olston), 10

Piggybank, 51, 187
PigStats methods, 115
PigStorage function, 36, 147, 171, 172
PigUnit, 97–99
pipelines, data, 7, 96, 165, 170
POSIX, 1, 193
power law distribution, 43
“Practical Skew Handling in Parallel Joins”

(DeWitt et al.), 63
prepareToRead, 149
prepareToWrite method, 159
prereduce merge, 190
projections, pushing down, 156

-propertyFile (-P) command-line option, 18
PushDownForeachFlatten feature, 95
PushUpFilter optimization, 95
Pygmalion project, 169
Python

embedding Pig Latin in, 111–117
UDFs, 51, 52, 140–142

Q
query languages, 4

R
RANDOM functions, 187
raw data, 7, 165
RDBMS versus Hadoop environments, 5, 61
RecordWriter class, 159, 191
reduce phase, 2, 191
reducers, 6, 43, 45, 63, 105, 190
reflection, 55, 124, 126
REGEX_EXTRACT function, 181
REGEX_EXTRACT_ALL function, 182
register command, 51
registerJar utility method, 117
registerUDF utility method, 117
regular expressions, 40
relational operations, 37–51, 57–69
relations, 33
REPLACE function, 182
result method, 115
return codes, 18, 115
returns clause (define statement), 79
rmr command, 20
ROUND function, 174
run command, 21
running multiple bindings, 116
“Running Pig in Local Mode” example, 13
“Running Pig On Your Cluster” example, 16
runSingle command, 115
runtime declaration (schemas), 28
runtime exceptions, 124

S
sampling

illustrate tool, 89
sample operator, 49

scalar types, 23
schemas, 27–32, 124–126, 141, 153, 158
scripts

Index | 201

optimizing, 101–109
testing with PigUnit, 97–99

self joins, 47
semi-join, 66
set command, 75
set utility method, 117
setLocation, 147
setOutputPath utility function, 158
setStoreLocation function, 158
setting the Partitioner, 76
ship clause, 70
shuffle phase, 2, 191
shuffle size, 101
SIN function, 175
SINH function, 175
SIZE functions, 182, 185
skew joins, 63, 76, 104, 107
skew, handling of, 6, 43, 106

Hadoop combiner, 43, 135, 190
order by operator, 45
skew joins, 63, 76, 104, 107

sort command, 103
sort-merge join, 65
source code, 13
speculative execution, 106, 192
spill files, number of, 107
spilling to disk, 135
split operator, 73, 103
SplitCombination optimization, 96
SplitFilter optimization, 95
SQL compared/contrasted with Pig

Apache Hive, 165
constraints on data, 26
dataflow and query languages, 4–5
group operator, 41
long COUNT, 176
noise words, 47
nulls, 41, 47
optimizers, 61
trinary logic, 41
tuples, 25
union, 67
use of distinct statement, 45

SQL layer (Apache Hive), 165
SQRT function, 175
static Java functions, 54
statistics summary, 90
stats command, 90
stock analyzer example, 132

store clause (mapreduce statement), 72
store functions

built-in, 171
writing, 145, 157–163

store operator, 36, 83, 103
StoreFunc class, 157
storing metadata, 163
stream operator, 69, 103
streams, number of, 107
STRSPLIT functions, 182
subqueries, Pig alternative to, 4
SUBSTRING functions, 183
SUM functions, 135, 179, 180
svn version control, 13
syntax highlighting and checking, 81
synthetic join, 68

T
tab delimited files, 105
TAN function, 175
TANH function, 175
tarball, Hadoop, 12, 108
TaskTracker, 189, 193
testing scripts with PigUnit, 97–99
TextLoader function, 171
TextMate syntax highlighting, 81
theta joins, 69
threshold usage, 107
TOBAG function, 186
TOKENIZE function, 183
TOMAP function, 186
TOP function, 186
TOTUPLE function, 186
TRIM function, 184
trinary logic, 41
tuning Pig and Hadoop, 106
tuple data type, 25, 28, 122, 142
tuple projection operator (.), 38
tuple TOTUPLE function, 186
TupleFactory class, 122
Turing Complete Pig, 111
turning off features, 95
typechecking, 124, 133
types, data, 23–27, 141

U
UCFIRST function, 184
UDFContext class, 131, 159

202 | Index

UDFs (User Defined Functions), xi, 51
built-in, 171–187
define and, 53
error handling, 127
in foreach, 39
naming, 119
optimizing, 106
overloading, 133
registering, 51–53
where your UDF will run, 120

union operator, 6, 66, 74, 103, 147
UPPER function, 184
User Defined Functions (see UDFs)
using clause (load function), 34
using clause (store function), 36
Utf8StorageConverter, 156
utility methods, 116

V
variables, binding multiple sets of, 114
-version command-line option, 18
version control with git, 13
version differences in Hadoop

file locations, 15
globs, 35

version differences in Pig
.. field range, 37
built-in eval and filter functions, 172–187
bytesToMap methods, 156
column families, 167
data layout optimization, 109
dependencies inside Python scripts, 53
dump output, 36
EvalFunc, 130
flatten schema bug, 59
globs accepted by register, 52
Grunt command sh, 21
hadoop fs shell commands, 16, 20
Hadoop requirements, 12
handling of Java properties, 18
HDFS paths for register, 52
illustrate, 89
invoker methods, 54
Java eval funcs, 119
joins, 64, 65
load and store functions, 145
local mode execution, 13
logical optimizer and plan, 96, 103
macros, 78

map declared values, 25
map schemas, 125
mapreduce command, 71
non-Java UDFs, 51
number of output records in a bag, 68
parallel level, 50
PigUnit, 97
preprocessor actions, 77, 80
Python, 111, 119, 140
runtime adaption code, 30
setting the Partitioner, 76
summary statistics, 90
truncation and null padding, 27
UDFContext class, 131
UDFs languages, 51

Vim syntax highlighting, 81

W
warn method, 127
web crawl

calculating page rank from, 112–117
data set, 112–117

White, Tom, 107, 189
word count example, 2
writing MapReduce in Java, compared to Pig

Latin, 6
writing records, 160–162

Y
Yahoo!, 10

Index | 203

About the Author
Alan Gates is an original member of the engineering team that took Pig from a Yahoo!
Labs research project to a successful Apache open source project. In that role, he over-
saw the implementation of the language, including programming interfaces and the
overall design. He has presented Pig at numerous conferences and user groups, uni-
versities, and companies. Alan is a member of the Apache Software Foundation and a
cofounder of Hortonworks. He has a BS in Mathematics from Oregon State University
and an MA in Theology from Fuller Theological Seminary.

Colophon
The animal on the cover of Programming Pig is a domestic pig (Sus scrofa domesticus
or Sus domesticus). While the larger pig family is naturally distributed in Africa, Asia,
and Europe, domesticated pigs can now be found in nearly every part of the world that
people inhabit. In fact, some pigs have been specifically bred to best equip them for
various climates; for example, heavily coated varieties have been bred in colder cli-
mates. People have brought pigs with them almost wherever they go for good reason:
in addition to their primary use as a source of food, humans have been using the skin,
bones, and hair of pigs to make various tools and implements for millennia.

Domestic pigs are directly descended from wild boars, and evidence suggests that there
have been three distinct domestication events; the first took place in the Tigris River
Basin as early as 13,000 BC, the second in China, and the third in Europe, though the
last likely occurred after Europeans were introduced to domestic pigs from the Middle
East. Despite the long history, however, taxonomists do not agree as to the proper
classification for the domestic pig. Some believe that domestic pigs remain simply a
subspecies of the larger pig group including the wild boar (Sus scrofa), while others
insist that they belong to a species all their own. In either case, there are several hundred
breeds of domestic pig, each with its own particular characteristics.

Perhaps because of their long history and prominent role in human society, and their
tendency toward social behavior, domestic pigs have appeared in film, literature, and
other cultural media with regularity. Examples include “The Three Little Pigs,” Miss
Piggy, and Porky the Pig. Additionally, domestic pigs have recently been recognized for
their intelligence and their ability to be trained (similar to dogs), and have consequently
begun to be treated as pets.

The cover image is from the Dover Pictorial Archive. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad Con-
densed; and the code font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Preface
	Data Addiction
	Who Should Read This Book
	Conventions Used in This Book
	Code Examples in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction
	What Is Pig?
	Pig on Hadoop
	MapReduce’s hello world

	Pig Latin, a Parallel Dataflow Language
	Comparing query and dataflow languages
	How Pig differs from MapReduce

	What Is Pig Useful For?
	Pig Philosophy

	Pig’s History

	Chapter 2. Installing and Running Pig
	Downloading and Installing Pig
	Downloading the Pig Package from Apache
	Downloading Pig from Cloudera
	Downloading Pig Artifacts from Maven
	Downloading the Source

	Running Pig
	Running Pig Locally on Your Machine
	Running Pig on Your Hadoop Cluster
	Running Pig in the Cloud
	Command-Line and Configuration Options
	Return Codes

	Chapter 3. Grunt
	Entering Pig Latin Scripts in Grunt
	HDFS Commands in Grunt
	Controlling Pig from Grunt

	Chapter 4. Pig’s Data Model
	Types
	Scalar Types
	Complex Types
	Map
	Tuple
	Bag

	Nulls

	Schemas
	Casts

	Chapter 5. Introduction to Pig Latin
	Preliminary Matters
	Case Sensitivity
	Comments

	Input and Output
	Load
	Store
	Dump

	Relational Operations
	foreach
	Expressions in foreach
	UDFs in foreach
	Naming fields in foreach

	Filter
	Group
	Order by
	Distinct
	Join
	Limit
	Sample
	Parallel

	User Defined Functions
	Registering UDFs
	Registering Python UDFs

	define and UDFs
	Calling Static Java Functions

	Chapter 6. Advanced Pig Latin
	Advanced Relational Operations
	Advanced Features of foreach
	flatten
	Nested foreach

	Using Different Join Implementations
	Joining small to large data
	Joining skewed data
	Joining sorted data

	cogroup
	union
	cross

	Integrating Pig with Legacy Code and MapReduce
	stream
	mapreduce

	Nonlinear Data Flows
	Controlling Execution
	set
	Setting the Partitioner

	Pig Latin Preprocessor
	Parameter Substitution
	Macros
	Including Other Pig Latin Scripts

	Chapter 7. Developing and Testing Pig Latin
 Scripts
	Development Tools
	Syntax Highlighting and Checking
	describe
	explain
	illustrate
	Pig Statistics
	MapReduce Job Status
	Debugging Tips

	Testing Your Scripts with PigUnit

	Chapter 8. Making Pig Fly
	Writing Your Scripts to Perform Well
	Filter Early and Often
	Project Early and Often
	Set Up Your Joins Properly
	Use Multiquery When Possible
	Choose the Right Data Type
	Select the Right Level of Parallelism

	Writing Your UDF to Perform
	Tune Pig and Hadoop for Your Job
	Using Compression in Intermediate Results
	Data Layout Optimization
	Bad Record Handling

	Chapter 9. Embedding Pig Latin in Python
	Compile
	Bind
	Binding Multiple Sets of Variables

	Run
	Running Multiple Bindings

	Utility Methods

	Chapter 10. Writing Evaluation and Filter Functions
	Writing an Evaluation Function in Java
	Where Your UDF Will Run
	Evaluation Function Basics
	Interacting with Pig values

	Input and Output Schemas
	Error Handling and Progress Reporting
	Constructors and Passing Data from Frontend to Backend
	Loading the distributed cache
	UDFContext

	Overloading UDFs
	Memory Issues in Eval Funcs

	Algebraic Interface
	Accumulator Interface
	Python UDFs
	Writing Filter Functions

	Chapter 11. Writing Load and Store Functions
	Load Functions
	Frontend Planning Functions
	Determining InputFormat
	Determining the location
	Getting the casting functions

	Passing Information from the Frontend to the Backend
	Backend Data Reading
	Getting ready to read
	Reading records

	Additional Load Function Interfaces
	Loading metadata
	Using partitions
	Casting bytearrays
	Pushing down projections

	Store Functions
	Store Function Frontend Planning
	Determining OutputFormat
	Setting the output location
	Checking the schema

	Store Functions and UDFContext
	Writing Data
	Preparing to write
	Writing records

	Failure Cleanup
	Storing Metadata

	Chapter 12. Pig and Other Members of the Hadoop
 Community
	Pig and Hive
	Cascading
	NoSQL Databases
	HBase
	Cassandra

	Metadata in Hadoop

	Appendix A. Built-in User Defined Functions and
 Piggybank
	Built-in UDFs
	Built-in Load and Store Functions
	Built-in Evaluation and Filter Functions
	Built-in math UDFs
	Built-in aggregate UDFs
	Built-in chararray and bytearray UDFs
	Built-in complex type UDFs
	Built-in filter functions
	Miscellaneous built-in UDF

	Piggybank

	Appendix B. Overview of Hadoop
	MapReduce
	Map Phase
	Combiner Phase
	Shuffle Phase
	Reduce Phase
	Output Phase
	Distributed Cache
	Handling Failure

	Hadoop Distributed File System

	Index

