

This Page Intentionally Left Blank

Modeling and Tools for Network Simulation

Klaus Wehrle
Mesut Güneş
James Gross
Editors

Modeling and Tools
for Network Simulation

13

Volume Editors

Klaus Wehrle
RWTH Aachen University
Aachen, Germany
E-mail: klaus.wehrle@rwth-aachen.de

Mesut Güneş
FU Berlin
Institut für Informatik
Berlin, Germany
E-mail: guenes@inf.fu-berlin.de

James Gross
RWTH Aachen University
Aachen, Germany
E-mail: gross@umic.rwth-aachen.de

ISBN 978-3-642-12330-6 e-ISBN 978-3-642-12331-3
DOI 10.1007/978-3-642-12331-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: Applied for

ACM Computing Classification (1998): I.6, C.2, C.2.5, D.2.8, C.2.1, I.6.8, C.4, G.1.6

© Springer-Verlag Berlin Heidelberg 2010
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper 219/3180

Springer is part of Springer Science+Business Media (www.springer.com)

In Favour of Network Simulation

A lot of research in computer science and electrical engineering is being car-
ried out in the field of distributed systems and computer networks. Topics
being addressed include the development of new and improved protocols, ap-
plications, architectures, security and quality-of-service techniques, just to
name a few. A crucial step during the design and engineering of communi-
cation systems, respectively protocols, algorithms and architectures, is the
estimation of their performance, and the understanding and visualization of
the micro and macro behavior of the systems and their components. Typically,
this can be (more or less) realized by applying three different methodologies:
(1) experiments with real systems and prototypes, (2) mathematical analysis,
and (3) simulation.

In research and development of communication systems the latter two
methodologies are most important during the conceptual phase, since proto-
typing such systems is mostly infeasible due to financial and technical con-
straints. Simulation is particularly used for systems which are highly dynamic
and whose properties are difficult to capture in a mathematical way. Often,
analytical methods show the borderline behavior of system characteristics or
offer upper and lower bounds for specific research questions. However, more
fine grained analysis often leads to an unacceptable complexity of the analyti-
cal models. In contrast, simulation offers scientists and researchers a controlled
environment in which a system can be investigated in more detail. Different
parameter sets and scenarios can be analyzed with comparably little effort.
Thus, simulation is a powerful and versatile methodology to analyze and visu-
alize the behavior and performance of communication systems and networks.

Considering simulation as the methodology to analyze a communication
system (which may not even exist), one has to consider a very important
fact: All simulations are carried out on models of the system under investiga-
tion and not on the system itself. All models have to be created in advance.
Since analyzing a system without prior modeling is not possible, and as all
inferred knowledge is deducted from the model itself, the process of modeling
is crucial for the overall process of simulation-based evaluation. Considering
the importance of the modeling process for the quality of the observed re-
sults, it is very surprising and disappointing, which techniques are known
and applied to guarantee high-quality simulation models. Typically, next to
some very generic guidelines – like the following – there exist no further rules,
methods, techniques or just a simple cookbook to create and assure adequate
simulation models:

“All actions, events and properties have to be modeled as accurately and
with as much detail as possible.” But on the other hand: “... only as accurately
and with as much detail as actually needed and required.” Another important
aspect of simulation-based evaluation is the comparison of approaches, such
as protocols and algorithms. Up to now, this has rarely been possible in the

VI In Favour of Network Simulation

area of communication systems, since most models are highly specialized for
the respective investigation. Often, models are made for a distinct context of
investigation, and hence, they are neither compatible nor comparable to other
competing models or approaches. This means that a reasonable comparison
between research carried out by different parties is practically impossible.

In our opinion, these problems are fundamental facts about network sim-
ulations. While it appears as if an unified modeling methodology is missing,
there is no such method that suites all considered systems in networking re-
search. In contrast, especially over the last few years, the networking commu-
nity has developed a set of “best-practice” approaches for different problems
at different layers. In addition, a large set of tools have evolved that support
the modeling, the programming and the execution of simulation code for the
evaluation of networks at all layers. However, common text books do not
address these topics, and furthermore, typical simulation courses only focus
on the fundamentals of simulation, but not on best practice or on tools for
network simulations. This was the motivation for this book.

This book is the result of a workshop to which PhD students from all over
Germany were invited to present and discuss their experiences. The intended
audience of this book are graduate students, PhD students, researchers, and
professionals with interest in computer networks, wireless networks, and per-
formance evaluation of networks by means of simulation. The book is orga-
nized in three parts. Part I contains material about tools and methods for
network simulations. In this part two famous and widely used network sim-
ulators and two special simulators are described. Furthermore, the usage of
parallel simulation, the simulation of hardware aspects considering the sim-
ulation of networks, and the integration of simulators with real systems are
addressed. The focus of Part II is on models for simulation of the lower layers
of the network protocol stack, particularly the lower layers of wireless net-
works. The topics covered span the modeling of the physical layer, link layers,
communication channels, mobility, and handover. Part III contains models
for the simulation of higher layers of the protocol stack. Most of the models
discussed in this part can be used for wired networks as well as for wireless
networks.

Finally, this book would not have been finalized without the help and
support of many people. Primarily, we thank all authors for their valuable
contributions. Furthermore, we are grateful for the support of:

– Research Cluster UMIC (Ultra High-Speed Mobile Information and Com-
munication) and RWTH Aachen University

– DFG Research Training Group GK 643: “Software for Mobile Communica-
tion Systems”

In Favour of Network Simulation VII

– Chair of Communication Networks (ComNets, Prof. Dr.-Ing. Bernhard
Walke), RWTH Aachen University

– Gesellschaft für Informatik

More information on the book and slides on selected topics of the book
can be found on this website: www.network-simulation.info.

February 2010 Klaus Wehrle
Mesut Güneş
James Gross

This Page Intentionally Left Blank

Address by the UMIC Cluster

Simulation is an inevitable methodology for specification, design and analysis
of computer and communication networks. It is extensively used at all levels
ranging from hardware to network. However, to obtain valid results that
properly predict the behavior of a real system, all relevant effects must be
captured in the simulation model. This task has become very challenging
today, since one can rarely model and simulate the different levels in isolation.
Rather, advanced system optimization causes dependencies in the behavior
across all layers. Further, systems have become extremely complex and so
have the simulation models. To get relevant statistical results and to cover
critical corner cases the simulated time (i.e., the time elapsed in the simulated
system) has to be sufficiently long. To avoid excessive simulation time even
on high-performance computers, modeling not only has to be proper but also
efficient.

Abstraction of lower layer effects in higher layer simulation models always
has been a formidable task. Because of the increasing cross layer optimization,
however, this task has become significantly more challenging. Finding the
right way of combining the simulation models of different layers is a key issue.
While plain co-simulation of layers yields the highest precision, it usually
results in low simulation speed. Abstraction of effects in other layers and
efficient modeling are a key to higher simulation speed but require a lot of
care to capture all relevant behavior.

Therefore, it has become essential for engineers and computer scientists to
understand the modeling and simulation concepts applied to different layers
of a network. As this book addresses both modeling and simulation tech-
niques at all levels, it is extremely useful and very timely. It should become a
handbook for all engineers involved in computer and communication system
simulation.

Finally, a short word of advice: To understand the behavior of a particular
system it is not sufficient to perform a huge amount of simulations. Simula-
tions must be set up to address the right questions and the results must be
analyzed thoroughly and be interpreted properly. Simulation does not replace
the use of the brain. But when used right, it is an extremely powerful tool.

February 2010 Gerd Ascheid
Coordinator of the UMIC Research Center

RWTH Aachen University
www.umic.rwth-aachen.de

This Page Intentionally Left Blank

Table of Contents

1. Introduction . 1
1.1 Discrete-event Simulation . 2

1.1.1 Terminology and Components of Discrete-event
Simulation . 2

1.1.2 The Principle of Discrete-event Simulation 3
1.1.3 The Event-scheduling Time-advance Algorithm 4
1.1.4 Starting and Stopping of Simulations 5
1.1.5 Types of Simulation Runs . 5

1.2 Modeling for Computer Simulation . 6
1.2.1 Good Performance Models and Good Simulation

Models . 6
1.2.2 Good Modeling Practice for Computer Simulation . . . 8
1.2.3 Common Modeling Practice . 10

Part I. Tools and Methods for Network Simulation

2. The ns–3 Network Simulator . 15
2.1 Introduction . 15
2.2 Modeling the Network Elements in ns–3 17
2.3 Simulating a Computer Network in ns–3 18
2.4 Smart Pointers in ns–3 . 22
2.5 Representing Packets in ns–3 . 23
2.6 Object Aggregation in ns–3 . 24
2.7 Events in ns–3 . 26
2.8 Compiling and Running the Simulation 27
2.9 Animating the Simulation . 28
2.10 Scalability with Distributed Simulation 29
2.11 Emulation Capabilities . 31
2.12 Analyzing the Results . 33

XII Table of Contents

3. OMNeT++ . 35
3.1 Introduction . 35

3.1.1 Overview . 35
3.1.2 The OMNeT++ Approach for Modeling 35
3.1.3 The Simulation IDE . 36
3.1.4 Network Simulation Frameworks 38

3.2 The Component Model . 39
3.2.1 Overview . 39
3.2.2 The NED Language . 40
3.2.3 IDE Support for NED . 42

3.3 Programming . 42
3.3.1 Modules, messages and events . 42
3.3.2 Simulation Time . 43
3.3.3 Library Classes . 44
3.3.4 Ownership Tracking . 44
3.3.5 Representing Network Packets . 45
3.3.6 The Message Compiler . 45
3.3.7 Control Info . 46
3.3.8 Wired Packet Transmission . 46
3.3.9 Wireless Packet Transmission . 46
3.3.10 Signals . 47
3.3.11 Random Number Architecture . 48
3.3.12 Emulation, Distributed Simulation, Co-simulation . . . 49

3.4 Running Simulations . 50
3.4.1 Building Simulation Models . 50
3.4.2 Simulation Programs . 51
3.4.3 Configuration . 51
3.4.4 Parameter Studies . 51
3.4.5 Running Batches . 52
3.4.6 Animation . 53
3.4.7 Debugging and Visualization . 55

3.5 Result Collection and Analysis . 56
3.5.1 Result Collection and Recording 56
3.5.2 Result Files . 57
3.5.3 Visualization using the Simulation IDE 58

4. IKR Simulation Library . 61
4.1 Introduction . 61
4.2 Architecture and Conceptual Structure 62

4.2.1 Basic Concepts . 63
4.2.2 Modeling Concepts . 63
4.2.3 Standard Components . 64
4.2.4 Simple Simulation Model . 64

4.3 Extensions . 65
4.3.1 TCP Library . 65

Table of Contents XIII

4.3.2 Emulation Library . 65
4.4 Editions . 66

4.4.1 C++ Edition . 66
4.4.2 Java Edition . 66

4.5 Application . 67
4.6 Summary . 68

5. openWNS . 69
5.1 Introduction . 69
5.2 The Simulation Platform . 70

5.2.1 Event Scheduler . 70
5.2.2 Random Distributions . 71
5.2.3 Configuration . 71
5.2.4 Evaluation . 71

5.3 Simulation Framework . 72
5.3.1 Simulation Model . 72
5.3.2 Node-Component Model . 72
5.3.3 Layer Development Kit . 73

5.4 Simulation Modules . 74
5.4.1 RISE - Radio Interference Simulation Engine 74
5.4.2 IEEE 802.11 WLAN . 76
5.4.3 IEEE 802.16 WiMAX . 78
5.4.4 TCP/IP Module . 78
5.4.5 Traffic Models . 79

5.5 Cluster Computing Support . 80

6. From Simulations to Deployments . 83
6.1 Introduction . 83

6.1.1 A Protocol or Distributed System Coming to Life . . . 83
6.1.2 Bridging the Gap between Simulation and

Deployment . 84
6.1.3 Chapter Overview . 86

6.2 Design Concepts . 86
6.2.1 Interfaces to System Resources 86
6.2.2 Runtime Execution Model . 88
6.2.3 Programming Language Adaptation 89

6.3 Integration Frameworks . 90
6.3.1 Classification Criteria . 91
6.3.2 Exemplary Frameworks . 92
6.3.3 Comparison of Approaches . 95

6.4 Use Case Examples . 96
6.5 Conclusion . 97

XIV Table of Contents

7. Tools and Modeling Approaches for Simulating Hardware
and Systems . 99
7.1 Introduction . 99

7.1.1 Need for System Models . 99
7.2 Approaches for System Modeling next to Simulation 101
7.3 ISS based Techniques . 102

7.3.1 Pipeline Principle . 103
7.3.2 Cycle Accurate ISS . 104
7.3.3 Instruction Accurate ISS . 105

7.4 Time Based Annotations . 107
7.4.1 Simulation Instrumentation . 108
7.4.2 HySim . 112
7.4.3 VPU . 114

7.5 Comparison . 117

8. Parallel Discrete Event Simulation . 121
8.1 Introduction . 121

8.1.1 Why do we need Parallel Discrete Event Simulation? 121
8.1.2 Challenges of Parallel Discrete Event Simulation 122

8.2 Parallel Simulation Architecture . 123
8.2.1 Conservative Synchronization Algorithms 124
8.2.2 Optimistic Synchronization Algorithms 127

8.3 Parallelization in Practice . 129
8.3.1 OMNeT++ . 129
8.3.2 ns-2 . 129
8.3.3 DSIM . 130
8.3.4 JiST . 130
8.3.5 IKR SimLib . 131

8.4 Conclusion . 131

Part II. Lower Layer Wireless Modeling

9. Physical Layer Modeling . 135
9.1 Overview of the PHY Layer . 135
9.2 Description of the Main Components of the PHY Layer 140

9.2.1 Components of the Bit Domain 140
9.2.2 Components of the Symbol Domain 145
9.2.3 Components of the Sample and Waveform Domain . . 152

9.3 Accurate Simulation of Physical Layers 154
9.4 Physical Layer Modeling for Network Simulations 157

9.4.1 Link-to-System Interface . 158
9.4.2 Equivalent Channel Quality Models 160
9.4.3 Modeling Advanced Transmission Systems 161

Table of Contents XV

9.5 An Example Packet Domain Physical Layer Simulation
Model . 164
9.5.1 Radio Unit . 164
9.5.2 Evaluation Unit . 168

10. Link Layer Modeling . 173
10.1 Medium Access Control (MAC) Protocols 174

10.1.1 Time Domain . 174
10.1.2 Frequency Domain . 178
10.1.3 Space Domain . 180
10.1.4 Code Domain . 180
10.1.5 Resource Management . 181

10.2 Logical Link Control . 186
10.2.1 Forward Error Detection and Correction 186
10.2.2 Backward Error Detection and Correction 187
10.2.3 Queueing and Processing Delay 189

10.3 Summary . 190

11. Channel Modeling . 191
11.1 The Physics of Radiation . 193

11.1.1 The Nature of Electromagnetic Radiation 193
11.1.2 Propagation Phenomena . 197

11.2 Classification of Propagation Models . 199
11.3 Deterministic Approaches by Classical Field

Theory . 200
11.4 Deterministic Geometric Optical Approaches 201

11.4.1 Modeling Phenomena with Geometrical Optics 201
11.4.2 Ray Tracing Algorithms . 202

11.5 Empirical Path Loss Approaches . 203
11.6 Stochastic Shadowing Models . 204
11.7 Stochastic Fading Models . 206

11.7.1 Physics of Fading . 206
11.7.2 Stochastic Models for Fading . 211

11.8 MIMO Channel Models . 212
11.8.1 Multiple Antennas for Wireless Systems 213
11.8.2 MIMO Fading Channel Models 213

11.9 Hybrid Approaches . 218
11.9.1 The Dominant Path Prediction Model 219
11.9.2 Hybrid Ray-Tracing Models for Indoor and Outdoor

Propagation . 219
11.10 Noise and Interference . 220

11.10.1 Noise . 220
11.10.2 Interference . 221

11.11 Modeling the Antenna Impact . 222
11.12 Implementations of Wireless Channels . 226

XVI Table of Contents

11.12.1 Channel Parameters used in Standardization - IEEE
802.11 . 228

11.12.2 Channel Parameters used in Standardization – 3GPP
Long Term Evolution . 230

11.12.3 Channel Parameters used in Standardization – IEEE
802.16a/e . 232

12. Selected System Models . 235
12.1 IEEE 802.11 (WLAN) . 235

12.1.1 System Reference Model . 236
12.1.2 Physical Layer . 237
12.1.3 Logical Link Control (LLC)/Medium Access Control

(MAC) . 243
12.1.4 Introduction of Available Models 247

12.2 IEEE 802.16 (WMAN) . 265
12.2.1 System Reference Model . 266
12.2.2 Physical Layer . 267
12.2.3 Medium Access Control . 267
12.2.4 OFDMA Frame Structure . 270
12.2.5 Important Parameters . 273
12.2.6 Selected Models . 273

12.3 IEEE 802.15.4 . 276
12.3.1 Technical Introduction . 277
12.3.2 IEEE 802.15.4 Reference Model 279
12.3.3 Physical Layer . 281
12.3.4 Medium Access Control Layer . 287
12.3.5 Important Parameters . 293
12.3.6 Introduction of Available Models 294
12.3.7 Summary . 303

13. Wireless Networking Use Cases . 305
13.1 Use Case - Coexistence . 305

13.1.1 Regulatory Constraints . 306
13.1.2 Performance Measures . 308
13.1.3 Simulation Setup . 310
13.1.4 Model . 311
13.1.5 Tips . 315
13.1.6 Conclusion . 317

13.2 IEEE 802.15.4 Performance Analysis . 317
13.2.1 Goal of the Analysis . 318
13.2.2 Metrics for the Analysis . 318
13.2.3 Used Parameters . 319
13.2.4 Modeling the System . 319
13.2.5 Reference Scenarios . 321

Table of Contents XVII

13.2.6 Simulation and Evaluation . 321
13.2.7 Summary . 324

14. Modeling Mobility . 327
14.1 Introduction . 327
14.2 Categorization of Mobility Models . 328

14.2.1 Traces and Synthetic Mobility Models 328
14.2.2 Entity and Group Mobility Models 328
14.2.3 Human, Animal, and Vehicle Mobility Models 329
14.2.4 Normal Situation and Special Situation Mobility

Models . 329
14.2.5 Other Mobility Models . 330

14.3 Mobility Models . 331
14.3.1 Random Walk Model . 331
14.3.2 Random Waypoint Model . 332
14.3.3 Random Direction Model . 333
14.3.4 Gauss-Markov Model . 334
14.3.5 Manhattan Model . 335
14.3.6 Column Model . 336
14.3.7 Pursue Model . 337
14.3.8 Nomadic Community Model . 337

14.4 Selection of Appropriate Mobility Models 338
14.5 Conclusions . 339

15. Modeling Handover from the Access Networks’
Perspective . 341
15.1 Introduction . 341
15.2 Methodology . 342

15.2.1 Taxonomy for Modeling Handovers 342
15.2.2 Wireless System View . 345

15.3 Application Examples . 348
15.3.1 Handover in an IEEE 802.11 Multi-cell Environment 348
15.3.2 Cost Function for an IEEE 802.11a/g System 352

15.4 A Guide for Modeling Handover Approaches 354
15.4.1 Problem Formulation . 355
15.4.2 Classification . 356
15.4.3 Focus of Studies . 356
15.4.4 Level of Detail . 356

Part III. Higher Layer Modeling

16. Modeling the Network Layer and Routing Protocols 359
16.1 Introduction . 359
16.2 Routing . 359

XVIII Table of Contents

16.2.1 Classification and Examples . 360
16.2.2 Components of a Routing Protocol 362
16.2.3 Theoretical Background. 366
16.2.4 Metrics . 369
16.2.5 Virtual Routing on Overlays . 371
16.2.6 Influence from Other Models . 373

16.3 Internet Mobility . 374
16.3.1 Aspects of Mobile IP & Protocol Enhancements 376
16.3.2 Performance Metrics . 379
16.3.3 Evaluation Model . 380

16.4 Conclusion . 383

17. Modeling Transport Layer Protocols . 385
17.1 Introduction . 385
17.2 Existing Simulation Models . 386
17.3 Using Real Implementations in Simulators 388
17.4 Transport Layer Traces . 388
17.5 Analytical Performance Modeling . 389

17.5.1 Inverse Square-root Law for TCP Throughput 390
17.5.2 A Model for TCP Congestion Control 392

17.6 Fluid Models and Integration with Packet-level Simulation . . 393
17.6.1 TCP Fluid Models . 393
17.6.2 Integration with Packet-level Simulations 393

17.7 Conclusion . 395

18. Modeling Application Traffic . 397
18.1 Introduction . 397
18.2 Modeling HTTP Traffic . 398

18.2.1 Survey of HTTP Traffic Models 399
18.2.2 Parametrization . 405

18.3 Modeling FTP Traffic . 406
18.3.1 User Level Modeling . 410
18.3.2 Object Level Modeling . 410
18.3.3 Packet Level Modeling . 411
18.3.4 Discussion . 411

18.4 Modeling Voice Traffic . 411
18.4.1 Entities of an Application for Voice Transmission . . . 412
18.4.2 Speaker Models . 414
18.4.3 Codec Models . 418

18.5 Modeling Video Traffic . 419
18.5.1 Entities of an Application for Video Transmission . . . 419
18.5.2 User Models . 420
18.5.3 Codec Models . 421

18.6 Conclusion . 426

Table of Contents XIX

19. Modeling the Internet Delay Space . 427
19.1 Introduction . 427
19.2 End-to-end Delay and Its Phenomena . 428
19.3 Existing Models in Literature . 430
19.4 Data from two Internet Measurement Projects 431
19.5 Model . 433

19.5.1 Overview . 433
19.5.2 Part I: Embedding CAIDA Hosts into the Euclidean

Space . 434
19.5.3 Part II: Calculation of Jitter . 436
19.5.4 Algorithm and Memory Overhead 437

19.6 Evaluation . 438
19.6.1 Experimental Setup . 438
19.6.2 Metrics . 440
19.6.3 Analysis with Measured CAIDA Data 441
19.6.4 Comparison to Existing Models 441

19.7 Summary . 445

20. Modeling User Behavior in P2P Systems 447
20.1 Introduction . 447
20.2 System Model . 448
20.3 Modeling Churn . 449

20.3.1 Lifetime Models . 450
20.3.2 Session Models . 451

20.4 Workload Model . 453
20.5 User Properties Model . 453
20.6 Use Case: Kademlia . 454
20.7 Evaluation . 456

20.7.1 Methodology . 456
20.7.2 Setup 1: Fixed Network Size, Variable Session

Models . 457
20.7.3 Setup 2: Fixed Session Duration, Variable

Intersession Duration . 458
20.7.4 Setup 3: Fixed Network Size, Variable Event Rate . . . 458
20.7.5 Setup 4: Variable Arrival Processes 460

20.8 Further Reading . 460
20.9 Conclusions . 461

21. Modeling Security Aspects of Networks 463
21.1 Introduction . 463
21.2 Role of Modeling and Simulation in Security Research 464

21.2.1 Security Models . 464
21.3 Evaluation Metrics . 466

21.3.1 Normal System Operation . 466
21.3.2 System under Attack . 467

XX Table of Contents

21.3.3 System under Attack with Activated Security
Measures . 467

21.4 Discussion . 468
21.5 Summary . 469

22. Modeling the Network Topology . 471
22.1 Introduction . 471
22.2 Abstraction of Network Topologies by Graphs 472
22.3 Characterizing Graphs . 473
22.4 Common Topology Models . 476

22.4.1 Random Graphs . 476
22.4.2 Geometric Random Graphs – The Waxman Model . . 478
22.4.3 Hierarchical Topologies . 478
22.4.4 Preferential Linking – The Barabási-Albert Model . . 478
22.4.5 Intermediate Results . 479

22.5 Modeling the Internet . 480
22.5.1 Background . 480
22.5.2 Topology Inference & Data Sources 480
22.5.3 On Internet Topology Properties 482
22.5.4 Topology Generation . 484

22.6 Conclusion . 485

List of Figures . 487

List of Tables . 491

List of Acronyms . 493

List of Authors . 499

References . 501

Index . 537

1. Introduction
James Gross (RWTH Aachen University)
Mesut Güneş (Freie Universität Berlin)

In general there are three different techniques for performance evaluation of
systems and networks: mathematical analysis, measurements, and computer
simulation. All these techniques have their strength and weaknesses. In the
literature there are plenty of discussions about when to use which technique,
how to apply it, and which pitfalls are related to which evaluation technique.

One major question in performance evaluation is whether to use the actual
system or a model. As measurements require an implementation of the system
to be available, often either analysis or computer simulation must be applied
due to cost and effort reasons. Both evaluation techniques are based on a
model which represents the system with respect to the goal of the study
as accurate as possible. As mathematical analysis can often only provide
a limited insight for system design (as detailed mathematical models often
get intractable), in fact computer simulation is very often applied either for
comparing different design alternatives or for optimizing a certain design.

In a computer simulation a real-world process or system is "imitated"
over time [48, 277]. Computer simulations are actually applied in many dif-
ferent fields and there are several different types of computer simulations,
like discrete-event simulation, continuous simulation, Monte Carlo simula-
tion, spreadsheet simulation, trace-driven simulation etc. In the field of com-
puter networks the dominant simulation technique is discrete-event simula-
tion. The key property of discrete-event simulations is that the state of the
simulation model can only change at discrete points in time which are referred
to as events [48].

To date, discrete-event simulation is used to do research on all layers of
computer networks, including signal processing issues in the physical layer,
medium access in the link layer, routing in the network layer, protocol issues
in the transport layer, and finally design questions of the application layer.
The reason behind the success of discrete-event based simulation in computer
networking is on the one hand that the simulation paradigm fits very well
to the considered systems while on the other hand discrete-event based sim-
ulation is easily applied. Hence, discrete-event simulation provides a simple
and flexible way to evaluate their approaches and study their behavior under
different conditions. A further important aspect of computer simulations is
repeatability, i.e. different designs can be evaluated under exactly the same
(random) environment parameters.

2 1. Introduction

In the remainder of this chapter we provide a brief introduction to
discrete-event simulation in Section 1.1 and a discussion about modeling for
network simulations in Section 1.2. Readers familiar with the principle of
discrete-event simulations and with the modeling process can thus skip this
chapter.

1.1 Discrete-event Simulation

In this section we give a brief introduction into discrete-event simulation. For
this, we introduce the basic terminology used in literature and describe their
relationship. Furthermore, we present the core algorithm for a discrete-event
simulator, i.e., the time-advance event-scheduling algorithm. For an in-depth
introduction the reader is referred to [48, 277].

1.1.1 Terminology and Components of Discrete-event Simulation

In this section we introduce some terminology and components that are com-
mon to all discrete-event simulation systems. Unfortunately, there is no stan-
dardized set of terms and the naming may vary in literature. We loosely
adapt the definitions in [48, 277].

An entity is an abstraction of a particular subject of interest. An entity
is described by its attributes, e.g., an entity packet could have attributes
length, source address, and destination address. The term object is often
used as synonymous.

A system is defined by a set of entities and their relationship. The set of
entities and their relationships fulfill a certain purpose, i.e., the system has a
certain goal that it tries to achieve. For example, a network may be defined
by the entities hosts, routers, and links while its goal is to provide end-to-end
connectivity.

A discrete system is a system whose state, defined by the state of all
entities of the system, changes only at discrete points in time. The change of
the state is triggered by the occurrence of an event . What an event exactly
is, depends mainly on the system and on the goal of the study, examples are
the sending of a packet, reception of a packet, or the selection of a hyperlink
on a web page.

Usually, the system of interest is quite complex. In order to evaluate its
performance by means of computer simulation a model is built. The model is
an abstraction of the system, hence it consists of selected entities of the sys-
tem of interest and selected relationships between the entities. By definition,
the model is a system itself, however, in the following we will refer to the ab-
stracted system as the model for clarity. In computer simulations it is always

1.1 Discrete-event Simulation 3

the model that is considered, mainly to reduce the involved complexity and
the associated cost and effort.

1.1.2 The Principle of Discrete-event Simulation

The idea of a discrete-event simulator is to jump from one event to the next,
whereby the occurrence of an event may trigger changes in the system state
as well as the generation of new, so called event notices in future. The events
are recorded as event notices in the future event list (FEL), which is an
appropriate data structure to manage all the events in the discrete-event
simulation. An event notice is composed at least out of two data (time, type)
where time specifies the time when the event will occur and type gives the
kind of the event. The future event list should implement efficient functions
to insert, to find, and to remove event notices, which are placed in the future
event list. Figure 1.1 shows the evolution of a discrete-event simulation over
time. Events occur at time ti and may change the system state. With every
discrete event time ti a snapshot of the system is created in the computer
memory that contains all required data to progress the simulation. In general

Fig. 1.1: Principle of discrete-event simulation. During the simulation the system
state changes only at discrete points ti in time.

all discrete-event simulators share the following components:

– System state: A set of variables that describe the state of the system.
– Clock: The clock gives the current time during the simulation.
– Future event list: A data structure appropriate to manage the events.
– Statistical counters: A set of variables that contain statistical information

about the performance of the system.
– Initialization routine: A routine that initializes the simulation model and

sets the clock to 0.
– Timing routine: A routine that retrieves the next event from the future

event list and advances the clock to the occurrence time of the event.
– Event routine: A routine that is called when a particular event occurs

during the simulation. Usually, for each event type an event routine is
defined. In literature the term handler is often used synonymously.

4 1. Introduction

1.1.3 The Event-scheduling Time-advance Algorithm

In this section we describe the core algorithm of a discrete-event simulator.
During the simulation the system state evolves over time, thus there is a clock
which gives the current time during the simulation. The future event list
contains all event notifications which are ordered according their occurrence
time, i.e., fel = [t1, t2, . . . , tk] where t1 ≤ t2 ≤ . . . ≤ tk. In this case t1 is the
next point in time where an event occurs.

The flow diagram of the event-scheduling time-advance algorithm is de-
picted in Figure 1.2. It consists of three parts: initialization, event processing
loop, and output.

Start

Initialization

Select next event

Terminate?

Output

End

Event routine 1 Event routine 2 Event routine k

Fig. 1.2: Flow diagram of the core of a discrete-event simulator, i.e., the event-
scheduling time-advance algorithm

In the initialization part the clock, entities, and state variables are initial-
ized. Subsequently, the simulator enters the second part. In a loop the events

1.1 Discrete-event Simulation 5

are processed. For this, the next event is retrieved from the future event list
and depending on its type a particular event routine (the handler) is called.
The event routine may change the state variables, entities, update statistics,
and generate new event notices. When the termination condition of the loop
is valid the simulation enters the last part. In the output part statistics are
finally computed and if necessary written into files.

1.1.4 Starting and Stopping of Simulations

In the previous section we did not describe how a simulation starts and termi-
nates . The termination condition for the event processing loop is particularly
important.

Since the future event list is empty at the beginning of the simulation
it is required that somehow the simulation is impinged. Typically, this is
done in the initialization part of the simulation. Here initial event notices
are generated and put into the future event list, e.g., the first packet in a
network.

The termination of a simulation is typically based on:

– Special termination event, e.g., until a packet delay larger than 500 ms,
1000 bytes are transmitted, or 50 dropped packets.

– Specified simulation time, e.g., simulation for 1000 sec.
– Until the future event list gets empty.

In the first and last case the simulation run time is not known a-priori
and may vary from a simulation run to other.

1.1.5 Types of Simulation Runs

Simulation runs can be classified into transient and steady state simulations.
The selection of a simulation type is particularly important for the output
analysis of simulations. A transient simulation is also referred as terminating
simulation, because in this case the simulation runs for a defined simulation
time. The simulation run time may be given by a special termination event
or a specific time.

A steady state simulation is also referred as non-terminating simulation.
The goal in this kind of simulation is to study the long-term behavior of the
system. Thus, the simulation run time in this case has to be set so that initial
conditions do not have influence on the simulation results anymore. A critical
issue is to figure out suitable simulation run times.

6 1. Introduction

1.2 Modeling for Computer Simulation

As mentioned previously, the model of the system under study is an abstrac-
tion, meaning that it only represents selected features and characteristics
while usually not considering a much larger set of features and character-
istics of the system. Hence, the obtained model is a reduced representation
of the considered system based on simplifications and assumptions. Model-
ing is the process of identifying and abstracting the relevant entities and
relationships from the system under study. From the fact that any model is
an abstraction two important questions arise for any researcher or engineer
dealing with performance evaluation:

1. What is a good model?
2. How do I obtain a good model?

If computer simulation is chosen as evaluation method, two further issues
need to be taken care of. (i) Once a performance model is built, it has to be
implemented in software. Hence, the implementation needs to represent the
performance model as good as possible. (ii) Therefore, an appropriate tool
needs to be chosen that suites the evaluation process well.

All together, these are the four cornerstones of modeling for computer
simulations. This section addresses all of them. Unfortunately, the issues are
quite complex and usually require some experience with modeling and sim-
ulation. Still, there are many issues for which recipes are available that lead
to better models and implementations in general.

1.2.1 Good Performance Models and Good Simulation Models

A basic fact about performance models is that "Essentially, all models are
wrong, but some are useful" [75]. Having this in mind, a good performance
model (either for analysis or for simulation) has the following characteristics:

– Simplicity: Good performance models are as simple as possible. This does
not mean that a performance model should not be detailed or should not try
to take complex relationships into account. However, a good performance
model only spends complexity when it serves the purpose of the evaluation
(also referred to as goal of the study). This is an important point as simu-
lation models are often criticized for their lack of accuracy in comparison
to reality. However, this is exactly the nature of computer simulations. If it
is to be avoided, there is no alternative to building the system of interest.
This also has some consequences for the reusability of performance mod-
els. As evaluation studies usually have different goals (especially if they are
going to be published in the scientific community), the used performance
models are likely to differ. To some extent this explains the vast number of
open-source simulation models for networks and the absence of dominant

1.2 Modeling for Computer Simulation 7

or standard simulation models for wide-spread networking systems. There
is no simulation model that serves all purposes. Any simulation model that
is available has been designed with a specific evaluation goal in mind. If
one wants to reuse such a simulation model, one should better first check
the original evaluation purpose that the model served.

– Credibility: A very important feature of performance models is their cred-
ibility. Essentially, a performance model is credible if it is validated and
design decisions can be based on it. Alternatively to making decisions, there
are models which are common ground in research and engineering commu-
nities. For example, there exist IEEE 802.11 simulation models which are
accepted within the IEEE regarding the standardization efforts going on
in the various task groups. However, by far not every IEEE 802.11 simula-
tion model is accepted. Establishing credibility of new performance models
requires at least their validation (see Section 1.2.3).

– Documentation: A good performance model is the result of a thorough
modeling process. At the beginning of this modeling process the purpose
of the evaluation study needs to be defined (among other issues, see Sec-
tion 1.2.3). Next, the assumptions and simplifications of a model need to
be documented as well as its evolution (which changes have been made
due to which reasons etc.). From the documentation it should also be clear
what is not considered in the model, hence, for which purposes the model
is not useful.

Modeling for computer simulation is more specific as the built perfor-
mance model has to be implemented in software. This might lead to addi-
tional modeling assumptions and is a significant source of error. While in
common practice there is often no difference between the performance model
and its implementation (in fact, modeling is interpreted by some as program-
ming the model), it is useful to differentiate between these throughout the
evaluation process. In addition to the characteristics of a good performance
model, a good simulation model should have the following ones:

– Efficiency: With respect to the performance model, it should be im-
plemented efficiently. Therefore, run times of the simulation model are
moderate (in relationship to the model complexity) and allow a thorough
investigation campaign.

– Verified: The implemented simulation model should be verified, i.e. the
match between the performance model and the simulation model must
have been checked by various methods. Note that this step is different
from validating a performance or simulation model (see Section 1.2.3).

– Code Quality: Depending on the used simulation tool, the implementa-
tion should maintain a certain coding style and should make use of object-
orientation in combination with a sufficient documentation.

– Availability: The simulation model should be accessible such that other
groups can verify and validate the model themselves.

8 1. Introduction

As stated above, a performance model is not required to be as detailed as
possible. In fact, finding the right level of accuracy for a performance model
is quite difficult. A common mistake in modeling is to put too much detail
into a model due to a lack either of experience in performance evaluation
or of background knowledge about the system under study. However, too
much modeling depth makes a model more complex and introduces more
parameters on which performance depends on. This slows down the entire
evaluation project and increases the potential sources of an error (either in
the modeling or in the implementation). Finally, a good performance model
does not have to be universal nor generally reusable.

1.2.2 Good Modeling Practice for Computer Simulation

One of the most difficult steps in computer simulations is to build a good
model. In fact, there is no general recipe for coming up with a good model.
The major problem here is that experience in modeling and a deep knowledge
of the system under study is required to come up with a good model. Bot
requirements take time to build up, however, even if both requirements are
fulfilled the resulting model can still be of low quality.

Hence, as computer simulation is always embedded in a performance eval-
uation study, good modeling practice for simulations also depends on good
evaluation practice. This is the best way to ensure that performance and sim-
ulation models are inline with the overall goals of the performance evaluation
and have a good quality. A thorough performance evaluation study based on
simulations contains the following steps [235, 277]:

1. Problem Formulation and Definition of the System/Model: Fun-
damental to any performance evaluation is the definition of the goals of
the study. Typically, an evaluation is either performed to compare several
system designs or to optimize parameters of a specific design. Goals of
an evaluation always need to be unbiased, i.e., the outcome of the eval-
uation must be unknown (also with respect to related work) and there
must not be a preferred outcome of the evaluation study. Once the goals
of the study have been specified, the system/model boundaries must be
defined.

2. Choice of Metrics, Factors, and Levels: The second step in an eval-
uation study is the choice of metrics, factors and levels. The choice of
these three issues basically defines the way the evaluation is conducted
and has a significant impact on the performance model. Factors are pa-
rameters of a system or of a model that are varied during the evaluation
study. Their numerical values that are considered during the evaluation
are called levels.

3. Data Collection and Modeling: Before a performance model can be
built, knowledge about the system under study has to be obtained. Apart

1.2 Modeling for Computer Simulation 9

from gaining insight of the system under study, during this phase also
input-output relationships should be identified by which the performance
model can be validated later on. In other words, data characterizing the
performance of the system under study has to be collected. Once the
system and its operational procedure have been studied, the modeling
process can be started. It is preceded by creating a document on the as-
sumptions about the system and its operation that the model is based on.
Then the performance modeling is conducted. Based on the definition of
the model boundaries, the single elements of the system are described in
detail as well as defining their quantitative and qualitative interactions.
Usually, this is an iterative process which starts with rather simple ele-
ments and interactions. Later on, the model is refined as needed. During
this process it is very important to track the level of detail that is put
into the model. Is it really required with respect to the goal of the study?
Does it make a difference for the considered performance results? Finally,
the obtained performance model should be documented.

4. Choice of Simulation Environment, Model Implementation, and
Verification: Once the performance model is completed, it has to be im-
plemented for computer simulations. This requires first a decision about
the simulation framework to be used. In the networking context, there
are several open-source simulation tools which provide specific model li-
braries for different layers of the protocol stack. Availability of certain
libraries for example for traffic or for lower layer protocols can be factors
that determine the choice. Other factors are the programming language
that the simulation tool is based on, its debugging features, its built-in
functions for statistical analysis, its graphical user interface as well as
its performance. Based on this decision, the performance model is to be
implemented. Different simulation tools offer different support for mod-
ular and structured implementation of performance models. This should
be considered during the decision phase for a simulation environment
as well. Finally, the implemented performance model should be verified.
Verification ensures that the simulation model is implemented right, i.e.,
it is a correct representation of the performance model. Different methods
for verification exist, a thorough discussion is presented in [277].

5. Validation and Sensitivity Analysis: The next step in the evaluation
requires the validation of the performance model. Validation ensures that
the performance model is a correct representation of the system with
respect to the chosen metrics, factors and levels. Validation can be per-
formed by comparing the output of the performance model with the out-
put of the real system. However, usually the real system is not available.
In those cases, a validation can be done by considering performance re-
sults obtained by mathematical analysis based on the same performance
model. Alternatively, often there are already published performance re-
sults either obtained by analysis or by simulations which can be used

10 1. Introduction

for validation. After the model has been validated, a sensitivity analysis
can be performed in order to determine the factors that have a strong
impact on performance. Those factors are the ones to spend more detail
on during a further iteration step (if this is of interest).

6. Experimentation, Analysis and Presentation: Based on a verified
and validated simulation model, the performance evaluation can be con-
ducted. Hence, the production runs of the simulation are started, the
data is collected, analyzed and finally graphically represented.

Obviously, the entire evaluation method is an iterative process due to mis-
takes in the single steps but also due to unexpected behavior of the model or
problems with the complexity. Still, following these guidelines supports the
development of good simulation models. The simplicity of the model is sup-
ported on the one hand by the strict orientation of the performance model
according to the goal of the study. This is a key paradigm: It is the model
that depends on the goal of the study (not vice versa). On the other hand,
modeling should be done iteratively. Each iteration step should contain a
verification and validation. Then a sensitivity analysis is performed which
indicates candidate factors for adding more accuracy. If further elements are
added instead, the next sensitivity analysis quantifies the impact of the ad-
ditional elements on the performance model. Thereby, model complexity is
spent where it pays off in terms of the evaluation study. Next, the credibility
of the model is supported by the methodology as simulation models should be
verified and validated. Ideally, validation can be done based on external data
or on a different evaluation technique (like analysis or experimentation). This
increases the credibility of the model. Finally, the methodology also ensures
a sufficient documentation. Contrarily, the methodology supports neither the
efficiency nor the code quality of the simulation model explicitly. Here, the
experience of the programmer has to ensure these two points.

1.2.3 Common Modeling Practice

The biggest difference between the above mentioned methodology and com-
mon practice is that the implemented simulation model is the performance
model, i.e. performance evaluation studies do not come up with a perfor-
mance model from which an implementation is built. In the consequence,
there is no need for verification as the simulation model only needs to be
validated (which in this case also verifies it). While this common practice
can save time, it makes the validation process more difficult as a mismatch
between the true system behavior and the model behavior can be either due
to a bug or due to a modeling mistake. Nevertheless, the complexity of the
used simulation models today has lead to skipping the explicit development
of a performance model.

1.2 Modeling for Computer Simulation 11

A further difference of the above mentioned methodology and common
practice is that it is often difficult to validate a simulation model at all.
Often, computer simulation is applied at a stage when the future system de-
sign is open and there is no data available from real systems to validate the
simulation models. In this case, one can try to obtain results from mathe-
matical analysis, however, for many cases this does not lead to a sufficient
level of validity at a reasonable effort. These difficulties of validating simu-
lation models is one of the most important reasons why simulation results
are less trustworthy than results achieved either by analysis or (of course) by
measurements.

Finally, in many cases today computational power is a minor concern
for an evaluation by simulations. Hence, simulation models are often reused.
While this can save again much time and effort, it is clear that it can lead
to severe problems during the validation process. Unless the reused simula-
tion models are checked and understood carefully, there is always the danger
that the reused simulation model is based on insufficient assumptions and
functional relationships. As simulation models are usually not accompanied
by a performance model, the programmer has to "read" the source code to
understand the exact scope of the simulation model to be reused. This can
be a demanding task and adds to the potential source of errors during the
evaluation process.

This Page Intentionally Left Blank

Part I

Tools and Methods for Network Simulation

This Page Intentionally Left Blank

2. The ns–3 Network Simulator
George F. Riley (Georgia Tech)
Thomas R. Henderson (University of Washington, and Boeing Research
& Technology)

2.1 Introduction

As networks of computing devices grow larger and more complex, the need
for highly accurate and scalable network simulation technologies becomes
critical. Despite the emergence of large-scale testbeds for network research,
simulation still plays a vital role in terms of scalability (both in size and in
experimental speed), reproducibility, rapid prototyping, and education. With
simulation based studies, the approach can be studied in detail at varying
scales, with varying data applications, varying field conditions, and will result
in reproducible and analyzable results.

For many years, the venerable ns–2 network simulation tool[81] was the
de–facto standard for academic research into networking protocols and com-
munications methods. Countless research papers were written reporting re-
sults obtained using ns–2, and hundreds of new models were written and
contributed to the ns–2 code base. Despite this popularity, and despite the
large number of alternative network simulators documented later in this book
and elsewhere, the authors and other researchers undertook a project in 2005
to design a new network simulator to replace ns–2 for networking research.
Why create a new tool? As the Introduction to this book states, this book is
about how to model network stacks, and the decision to develop a new tool
was motivated by a particular view of how to model networks in a manner
that best suits network research, and by the authors’ collective experiences in
using and maintaining predecessor tools. As this tool was designed to replace
ns–2, the name chosen for this tool was ns–3 (http://www.nsnam.org).

One of the fundamental goals in the ns–3 design was to improve the re-
alism of the models; i.e., to make the models closer in implementation to
the actual software implementations that they represent. Different simula-
tion tools have taken different approaches to modeling, including the use
of modeling-specific languages and code generation tools, and the use of
component-based programming paradigms. While high-level modeling lan-
guages and simulation-specific programming paradigms have certain advan-
tages, modeling actual implementations is not typically one of their strengths.
In the authors’ experience, the higher level of abstraction can cause simula-
tion results to diverge too much from experimental results, and therefore
an emphasis was placed on realism. For example, ns–3 chose C++ as the

16 2. The ns–3 Network Simulator

programming language in part because it better facilitated the inclusion of
C-based implementation code. ns–3 also is architected similar to Linux com-
puters, with internal interfaces (network to device driver) and application
interfaces (sockets) that map well to how computers are built today. As we
describe later, ns–3 also emphasizes emulation capabilities that allow ns–3 to
be used on testbeds and with real devices and applications, again with the
goal of reducing the possible discontinuities when moving from simulation to
experiment.

Another benefit of realism is reuse. ns–3 is not purely a new simulator but
a synthesis of several predecessor tools, including ns–2 itself (random number
generators, selected wireless and error models, routing protocols), the Georgia
Tech Network Simulator (GTNetS)[393], and the YANS simulator[271]. The
software that automates the construction of network routing tables for static
topologies was ported from the quagga routing suite. ns–3 also prioritizes the
use of standard input and output file formats so that external tools (such
as packet trace analyzers) can be used. Users are also able to link external
libraries such as the GNU Scientific Library or IT++.

A third emphasis has been on ease of debugging and better alignment
with current languages. Architecturally, this led the ns–3 team away from
ns–2’s mixture of object-oriented Tcl and C++, which was hard to debug
and was unfamiliar (Tcl) to most students. Instead, the design chosen was to
emphasize purely C++-based models for performance and ease of debugging,
and to provide a Python-based scripting API that allows ns–3 to be integrated
with other Python-based environments or programming models. Users of ns–3
are free to write their simulations as either C++ main() programs or Python
programs. ns–3’s low-level API is oriented towards the power-user but more
accessible “helper” APIs are overlaid on top of the low-level API.

Finally, ns–3 is not a commercially-supported tool, and there are lim-
ited resources to perform long-term maintenance of an ever-growing code-
base. Therefore, software maintenance was a key design issue. Two problems
with ns–2 led the ns–3 team, after careful consideration, to abandon the
goal of backward compatibility with or extension of ns–2. First, ns–2 did
not enforce a coding standard, and accepted models with inconsistent soft-
ware testing and model verification, as well as a lack of overall system design
considerations. This policy allowed the tool to grow considerably over time
but ultimately led users to lose confidence in the results, made the software
less flexible to reconfiguration, and created challenges and disincentives for
maintainers to maintain software once the personnel maintaining the sim-
ulator changed. ns–3 elected to prioritize the use of a single programming
language while exporting bindings to Python and potentially other script-
ing languages in the future. A more rigorous coding standard, code review
process, and test infrastructure has been put into place. It would have been
possible to build ns–3 with full backward compatibility at the Tcl scripting
level, but the ns–3 project does not have the resources to maintain such a

2.2 Modeling the Network Elements in ns–3 17

backward-compatibility layer. Therefore, the decision was made to create a
new simulator by porting the pieces of ns–2 that could be reused without
compromising the long-term maintainability of ns–3.

With significant backing from the U.S. National Science Foundation, IN-
RIA and the French government, the Georgia Institute of Technology, the
University of Washington, and Google’s Summer of Code program, ns–3 has
also been operated as a free, open source software project from the onset,
and has accepted contributions from over forty contributors at the time of
this writing. The remainder of this chapter will further describe a number of
the design decisions that were incorporated into ns–3, and gives some simple
examples of actual simulations created using ns–3.

2.2 Modeling the Network Elements in ns–3

As in virtually all network simulation tools, the ns–3 simulator has models
for all of the various network elements that comprise a computer network. In
particular there are models for:

1. Network nodes, which represent both end–systems such as desktop com-
puters and laptops, as well as network routers, hubs and switches.

2. Network devices which represent the physical device that connects a node
to communications channel. This might be a simple Ethernet network
interface card, or a more complex wireless IEEE 802.11 device.

3. Communications channels which represent the medium used to send the
information between network devices. These might be fiber–optic point–
to–point links, shared broadcast–based media such as Ethernet, or the
wireless spectrum used for wireless communications.

4. Communications protocols, which model the implementation of protocol
descriptions found in the various Internet Request for Comments doc-
uments, as well as newer experimental protocols not yet standardized.
These protocol objects typically are organized into a protocol stack where
each layer in the stack performs some specific and limited function on
network packets, and then passes the packet to another layer for addi-
tional processing.

5. Protocol headers which are subsets of the data found in network pack-
ets, and have specific formats for each of the protocol objects they are
associated with. For example, the IPv4 protocol described in RFC760
has a specified layout for the protocol header associated with IPv4. Most
protocols have a well-defined format for storing the information related
to that protocol in network packets.

6. Network packets are the fundamental unit of information exchange in
computer networks. Nearly always a network packet contains one or more
protocol headers describing the information needed by the protocol im-
plementation at the endpoints and various hops along the way. Further,

18 2. The ns–3 Network Simulator

the packets typically contain payload which represents the actual data
(such as the web page being retrieved) being sent between end systems.
It is not uncommon for packets to have no payload however, such as
packets containing only header information about sequence numbers and
window sizes for reliable transport protocols.

In addition to the models for the network elements mentioned above, ns–3
has a number of helper objects that assist in the execution and analysis of
the simulation, but are not directly modeled in the simulation. These are:

1. Random variables can be created and sampled to add the necessary ran-
domness in the simulation. For example, the behavior of a web browser
model is controlled by a number of random variables specifying distribu-
tions for think time, request object size, response object size, and objects
per web page. Further, various well–known distributions are provided,
including uniform, normal, exponential, Pareto, and Weibull.

2. Trace objects facilitate the logging of performance data during the exe-
cution of the simulation, that can be used for later performance analysis.
Trace objects can be connect to nearly any of the other network element
models, and can create the trace information in several different formats.
A popular trace format in ns–3 is the well known packet capture log,
known as pcap. These pcap traces can then be visualized and analyzed
using one of several analysis tools designed for analyzing actual network
traces, such as WireShark. Alternately, a simple text–based format can
be used that writes in human readable format the various information
about the flow of packets in the simulated network.

3. Helper objects are designed to assist with and hide some of the details
for various actions needed to create and execute an ns–3 simulation.
For example, the Point to Point Helper (described later in this chapter)
provides an easy method to create a point–to–point network.

4. Attributes are used to configure most of the network element models with
a reasonable set of default values (such as the initial time–to–live TTL
value specified when a new IPv4 packet is created). These default values
are easily changed either by specifying new values on the command line
when running the ns–3 simulation, or by calling specific API functions
in the default value objects.

2.3 Simulating a Computer Network in ns–3

The ns–3 simulator is developed and distributed completely in the C++
programming language.1 To construct a simulation using ns–3, the user writes
a C++ main program that constructs the various elements needed to describe
1 The distribution does include some Python bindings for most of the publicly

available API.

2.3 Simulating a Computer Network in ns–3 19

the communication network being simulated and the network activity desired
for that network. The program is then compiled, and linked with the library
of network models distributed with ns–3.

In writing the C++ simulation program, there are four basic steps to
perform:

1. Create the network topology. This consists of instantiating C++ objects
for the nodes, devices, channels, and network protocols that are being
modeled in the simulation.

2. Create the data demand on the network. This consist of creating sim-
ulation models of various network applications that send and receive
information from a network, and cause packets to be either created or
accepted and processed.

3. Execute the simulation. Typically, this results in the simulator enter-
ing the main event loop, which reads and removes events in timestamp
order from the sorted event data structure described earlier. This pro-
cess repeats continually until either the event list becomes empty, or a
predetermined stop time has been reached.

4. Analyze the results. This is typically done by post-analysis of the trace
information produced by the ns–3 program execution. The trace files will
usually have enough information to compute average link utilization on
the communication channels in the simulation, average queue sizes at the
various queue, and drop rate in the queues, just to name a few. Using
the optional pcap trace format, any of the various publicly available tool
for analyzing pcap traces can be used.

To illustrate these steps in the context of ns–3, we next discuss an actual,
albeit quite simple, ns–3 simulation program in detail. The script in question
is a simple two–node point–to–point network that sends one packet from node
zero to node one. The C++ program is shown in listing 2-1.

1. The use of a NodeContainer helper is shown in lines 5 – 6. The Create
method for the NodeContainer object is used to construct exactly two
network nodes. In this particular example, the two nodes both represent
end systems, with one creating and transmitting a packet and the second
receiving the packet.

2. The use of a PointToPointHelper is shown in lines 8 – 10. The
SetDeviceAttribute method in the helper illustrates the use of the at-
tribute system, and the ability to override the default values for most
configuration items with the values desired for the particular simulation
execution. Then the Install method is called at line 12, passing in the
NodeContainer object, and returning a new NetDeviceContainerwhich
contains the network devices that were created when installing the point–
to–point network connecting the two nodes.

3. The use of the InternetStackHelper is shown in lines 14 – 15. The
Install method in the InternetStackHelper is called at line 15, which

20 2. The ns–3 Network Simulator

1 // Simple ns3 simulation with two node point to point network
2
3 int main (int argc, char** argv)
4 {
5 NodeContainer nodes;
6 nodes.Create (2);
7
8 PointToPointHelper pointToPoint;
9 pointToPoint.SetDeviceAttribute ("DataRate", StringValue ("5Mbps"));

10 pointToPoint.SetChannelAttribute ("Delay", StringValue ("2ms"));
11
12 NetDeviceContainer devices = pointToPoint.Install (nodes);
13
14 InternetStackHelper stack;
15 stack.Install (nodes);
16
17 Ipv4AddressHelper address;
18 address.SetBase ("10.1.1.0", "255.255.255.0");
19
20 Ipv4InterfaceContainer interfaces = address.Assign (devices);
21
22 UdpEchoServerHelper echoServer (9);
23
24 ApplicationContainer serverApps = echoServer.Install (nodes.Get (1));
25 serverApps.Start (Seconds (1.0));
26 serverApps.Stop (Seconds (10.0));
27
28 UdpEchoClientHelper echoClient (interfaces.GetAddress (1), 9);
29 echoClient.SetAttribute ("MaxPackets", UintegerValue (1));
30 echoClient.SetAttribute ("Interval", TimeValue (Seconds (1.)));
31 echoClient.SetAttribute ("PacketSize", UintegerValue (1024));
32
33 ApplicationContainer clientApps = echoClient.Install (nodes.Get (0));
34 clientApps.Start (Seconds (2.0));
35 clientApps.Stop (Seconds (10.0));
36
37 Simulator::Run ();
38 Simulator::Destroy ();
39 }

Program 2-1 first.cc

2.3 Simulating a Computer Network in ns–3 21

adds the protocol objects normally associated with a typical Internet
protocol stack, including Address Resolution Protocol (ARP), Internet
Protocol (IPv4), User Datagram Protocol (UDP), and Transmission Con-
trol Protocol (TCP).

4. Next, the use of the Ipv4AddressHelper is shown in lines 17 – 20. The
SetBase call at line 18 specifies the network address and the network
mask for the sequential IPv4 addresses to be assigned. The Assign call
at line 20 assigns sequential addresses to each of the network devices
in the devices container, and returns a new Ipv4InterfaceContainer
which holds all of the IPv4 software interfaces created by the address
assignment. Note that in ns–3, as in actual networks, Internet addresses
are assigned to network layer interface instances, rather than to network
nodes.

5. Lines 22 – 35 illustrate the use of several application helper objects.
The UdpEchoServerHelper constructor at line 22 creates the helper and
specifies the port number on which the UDP Echo application will lis-
ten for packets (9 in this case). Next, the Install method is called on
the UdpEchoServerHelper object, which creates an instance of the UDP
Echo Server on the specified node. Note the use of the call to the Get
method on the NodeContainer. This returns a pointer to the node at
index one in the node container object. The Install method returns a
container of echo server applications. In this particular example, there is
only one application in the container since we only passed a single node
object pointer to the Install method. Had we passed a container object,
the echo server application would have been installed on every node in
the container, and the returned ApplicationContainer would contain a
pointer to the application at each node.

6. The use of the Start and Stop calls in the ApplicationContainerobject
is illustrated in lines 25 and 26. The times specified represent the time
the application is to begin processing (the Start time) and when it is to
stop processing (the Stop time).

7. Lines 28 – 35 illustrate several more features of the application helpers,
including the constructor at line 28 that initializes the destination address
and port for the echo data, and the SetAttribute methods that again
override default values as we saw above.

8. The echo client application is finally installed on a single node (node
zero in the NodeContainer object), and start/stop times are specified
in lines 33 – 35.

9. Lastly, the Simulator method Run is called at line 37, which causes the
simulation be start executing simulated events. In this particular exam-
ple, the echo client only sends one packet and receives one reply, after
which there are no more pending events and the simulation terminates
and the Run method returns to the caller.

22 2. The ns–3 Network Simulator

10. The Destroy method is called explicitly to allow all objects in the ns–3
environment to exit cleanly and return all allocated memory. This call is
not strictly necessary in order to obtain correct simulation results, but
does allow thorough memory leak checking to be done.

2.4 Smart Pointers in ns–3

1 // Code snippet from the ns-3 OnOff application
2 void OnOffApplication::SendPacket()
3 {
4 NS_LOG_FUNCTION_NOARGS ();
5 NS_LOG_LOGIC ("sending packet at " << Simulator::Now());
6 NS_ASSERT (m_sendEvent.IsExpired ());
7 Ptr<Packet> packet = Create<Packet> (m_pktSize);
8 m_txTrace (packet);
9 m_socket->Send (packet);

10 m_totBytes += m_pktSize;
11 m_lastStartTime = Simulator::Now();
12 m_residualBits = 0;
13 ScheduleNextTx();
14 }

Program 2-2 onoff-app.cc

All network simulation tools written in the C++ programming languages
make extensive use of dynamic memory, utilizing the built-in new and delete
operators to allocate and free memory as needed by the application. However,
when allocating memory in this way, a common occurrence is a memory leak.
A leak results when some memory is allocated with the new operator, but
due to a programming mistake the memory is never returned. Memory leaks
are prevalent in C++ programs, and sometimes result in long–running pro-
grams aborting due to apparent memory exhaustion. Additionally, memory
mismanagement by referring to memory that has already been freed often
results in erroneous behavior or fatal crashes in program execution.

The ns–3 simulator makes extensive use of smart pointers to help allevi-
ate these concerns. When using smart pointers, the simulation models do not
call new and delete directly. Rather, they call a special templated Create
method that both allocates the requested memory and increments a spe-
cial reference count value associated with the allocated memory. Whenever
a smart pointer is copied (for example when passing the pointer to another
function by value), the associated reference counter is incremented, indicating
there are additional pointer variables pointing to the underlying memory re-
gion. Whenever an instance of the smart pointer goes out of scope (resulting
in a call to the destructor for the smart pointer object), the reference count is

2.5 Representing Packets in ns–3 23

decremented. If the value decrements to zero, then all outstanding references
to the memory have been destroyed, and at that time the underlying memory
will be returned with the delete operator. This approach greatly eases the
programming of handling dynamic memory, at the expense of some minor
overhead during object creation, copying, and deletion, and the avoidance of
reference cycles among the pointers.

The code snippet in listing 2-2 illustrates the use of a smart pointer to
manage an ns–3 Packet object. At line 7 an object of type Ptr<Packet> is
defined and created by a call to the global static function Create. The type
Ptr<Packet> is an object with several member variables, but primarily con-
sists of the pointer to the actual memory of the Packet object, and a pointer
to a shared reference counter. The Ptr objects have all of the semantics of
pointer variables, and for all intents and purposes can be considered to be
pointers. Also in this example, note that the Create function has an argu-
ment m_pktSize. During the Packet object creation, the argument is passed
to the constructor for the Packet object. This allows large packet payloads
to be modeled without actually requiring that memory be allocated for the
simulated payload. In ns–3, Packet objects may also carry real data buffers
if the application requires them to do so.

Later, at line 9, the packet smart pointer object “packet” is passed as a
parameter to the Send method for the associated socket. It is likely that the
packet will eventually be forwarded to another ns–3 Node object by scheduling
a future event. However, since the smart pointer was passed by value to the
Send method, the reference counter has been incremented to two, indicating
that two different packet pointers to the same packet are in existence. When
the SendPacket function exits at line 14, the reference counter is decremented
to one. Since it is still non–zero, the underlying packet data is not freed. When
the packet eventually reaches the final destination, the reference count will
then become zero and the packet data will be freed and returned to the
available pool.

Readers familiar with the sockets application programming interface
(API) may be surprised to see packets being passed at the application/socket
boundary. However, the ns–3 Packet object at this layer of the simulation can
be simply considered to be a fancy byte buffer. ns–3 also supports a variant
of the Send method that takes a traditional byte buffer as an argument.

2.5 Representing Packets in ns–3

A fundamental requirement for all network simulation tools is the ability to
represent network packets, including both the packet payload and the set
of protocol headers associated with the packet. Further, it is important to
allow for actual payload data in the packets in the case where the payload is
meaningful (such as routing table updates in routing protocols), or to simply

24 2. The ns–3 Network Simulator

represent the existence of the payload but not actual contents (such as when
measuring the behavior of a transport protocol that is data agnostic). Further,
the design must support the presence of any number of protocol headers of
any sizes. Finally, the design should support fragmentation and reassembly
by network or link layer protocol models.

The design of ns–3 allows for all of these capabilities. The size of the
so–called dummy payload can be specified on the object constructor for the
Packet object. If so, the payload size is simply stored as an integer, but no
actual payload is represented.

Then, any object that is a subclass of the class Header can be added to
the packet using the AddHeader method for packets, and any object that is
a subclass of the class Trailer can be added at the end of the packet data
using the AddTrailer method. Removing headers or trailers can easily be
accomplished using the defined RemoveHeader and RemoveTrailer functions.

Another feature of ns–3 packets is the inclusion of copy on write semantics
for packet pointers. Consider the simple example discussed earlier in listing 2-
2. At line 9 the newly created packet is passed as a parameter to the socket
Send function. This will undoubtedly result in the addition of several proto-
col headers to the packet as it progresses down the protocol stack. However,
semantically, passing an object by value, as is done here, should not result in
any changes to the objects passed as arguments. In the ns–3 design this is ac-
complished by the implementation of copy on write. In this design, the actual
packet data and all protocol headers are stored in a separate helper object
called a Buffer. Any time a Buffer associated with a packet is modified and
holders of pointers to the packet need to access the different views of the
buffer contents, the original buffer is replicated and the original packet buffer
pointer points to the original buffer. The replicated packet pointer object
gets pointed to the newly revised buffer, so that two packet pointers for the
same logical packet in fact see two different representation of the packet data.
This is implemented in an efficient manner that avoids actual data copying
as much as possible.

2.6 Object Aggregation in ns–3

In a program design intended to be continually modified and enhanced by a
number of users over a long period of time, it becomes important to allow
flexibility in design, while at the same time having efficiency in memory usage
and simplicity in object class implementation. For example, ns–3 defines a
Node object to that is a model of a network end system or router. However,
not all Node objects have the same requirements. For example, some may
want an implementation of IP version 6 (IPv6) and others may not. Some
may need an indication of physical location while others may not. Some may

2.6 Object Aggregation in ns–3 25

need instances of specialized routing protocols, but others may not. Clearly,
the notion of a one size fits all design for Node objects is not appropriate.

The ns–3 design solves this problem by using a methodology loosely mod-
eled after the Microsoft Component Object Model (COM) design approach[73].
In this approach, objects deriving from a special base class can be aggregated
(associated with) other such objects. After the objects have been aggregated,
later queries to the objects can determine if an object of a specified type
has been previously aggregated, and if so, a pointer to the associated object
is returned. In the example cited above, the model developer might create
an object representing a two–dimensional location value that should be as-
sociated with a given Node object. To achieve this, the Location object is
created, given a value, and then aggregated to the specific Node object. Later,
the model can query each Node and retrieve a pointer to the Location object
associated with each node.

1 // Revised Code snippet from the Dumbbell topology object
2 // Add a node location object to the left side router
3
4 // Get a pointer to the left side router node
5 Ptr<Node> lr = GetLeft();
6 // See if a node location object is already present on this node
7 Ptr<NodeLocation> loc = lr->GetObject<NodeLocation>();
8 if (loc == 0)
9 { // If not, create one and aggregate it to the node.

10 loc = CreateObject<NodeLocation>();
11 lr->AggregateObject(loc);
12 }
13 // Set the associated position for the left side router
14 Vector lrl(leftX, leftY, leftZ);
15 loc->SetLocation(lrl);

Program 2-3 aggregation.cc

This approach is illustrated in the code snippet shown in listing 2-3. The
code snippet is a slightly simplified excerpt from the dumbbell topology helper
object. This illustrates the creation of an object of class NodeLocation and
subsequent aggregation of that object to a specified Node object.

First, line 5 simply obtains a smart pointer to a particular node, the left
side dumbbell router in this case. Line 7 starts by querying if an object of type
NodeLocation is already aggregated to the node by calling the GetObject
method. The returned value is a smart pointer to a NodeLocation object if
one is found, or a null pointer if not. Line 10 creates the new NodeLocation
object (if one was not found), and then line 11 aggregates the location object
with the node by calling the AggregateObject method. Finally, the desired
location information is specified for the NodeLocation object starting at
line 14.

26 2. The ns–3 Network Simulator

2.7 Events in ns–3

In discrete event simulations the engine maintains a sorted list of future
events (sorted in ascending order of event timestamp), and then simply re-
moves the earliest event, advances simulation time to the time for that event,
and then calls the appropriate event handler for the event. Earlier network
simulators written in C++, notably ns–2 and GTNetS, accomplish this design
by defining a base class called Handler that include a pure virtual function
called Handle. The argument to this Handle function is simply a pointer to
any object that subclasses from a base class Event. Then, each object in
the simulation that is designed to handle events (such as the network de-
vice to handle packet reception events) simply subclasses from the base class
Handler and implements the Handle function.

This approach is simple, easy to understand, and easy to implement.
However, it is cumbersome when a given model must process several different
types of events. For example, a network device is likely required to process
packet reception events, transmission complete events, and link up or down
events, just to name a few. This requires somewhat tedious type casting and
definition of a number of different event objects to represent the necessary
data for each different event.

The ns–3 simulator takes a different approach that results in consider-
ably more flexibility for the model developer, at the expense of substantial
complexity in the design and implementation of the event scheduler and sim-
ulator main loop. In ns–3, any static function, or any public member function
for any object can be an event handler. Rather than defining new event sub-
classes for each event type, the ns–3 approach simply specifies the required
information as arguments to the function that creates and schedules new
events. This is implemented by a complex set of templated functions in the
simulator object.

A simple example illustrating this approach to event scheduling and event
handling is shown in listing 2-4. This code snippet is excerpted from the
mac-low.cc implementation of the IEEE 802.11 protocol in ns–3.

Line 4 demonstrates creating and scheduling a new event. The first three
arguments are common to all member function event scheduling calls, and
specify the amount of time in the future the event occurs, the address of
the member function to call, and the object pointer for the event handler
object. In this example, the future time is GetSifs(), the member function
is MacLow::SendCtsAfterRts, and the object pointer is this. The next four
parameters are those specifically required by the event handler function. In
this case those are a 48–bit address of type Mac48Address, a duration of type
Time, an enumeration value of type WifiMode, and a signal to noise ratio of
type double.

Line 13 shows the specified handler function SendCtsAfterRts. Note that
the parameter list expect four arguments, and types of those arguments match

2.8 Compiling and Running the Simulation 27

1 // Code snippet from mac-low.cc, ilustrating event scheduling
2
3 // Excerpt from function MacLow::ReceiveOk
4 m_sendCtsEvent = Simulator::Schedule (
5 GetSifs (),
6 MacLow::SendCtsAfterRts, this,
7 hdr.GetAddr2 (),
8 hdr.GetDuration (),
9 txMode,

10 rxSnr);
11
12 // Excerpt from function MacLow::SendCtsAfterRts
13 void MacLow::SendCtsAfterRts (
14 Mac48Address source,
15 Time duration,
16 WifiMode rtsTxMode,
17 double rtsSnr)
18 {
19 NS_LOG_FUNCTION (this << source << duration
20 << rtsTxMode << rtsSnr);
21 // Remainder of code removed for brevity.

Program 2-4 schedule.cc

those specified earlier during the event scheduling. Should any of the argu-
ment types not match, a compile–time error occurs.

The end result of the call to the Schedule function is that the spec-
ified member function will be called at the appropriate time in the fu-
ture (GetSifs() seconds in this case), and the parameters specified on the
Schedule call will be passed to the event handler. It is easy to see that such
an approach avoids the need to introduce an intermediate, generic event han-
dler object that later dispatches events to specific model functions; instead,
the functions themselves can be the event handlers.

2.8 Compiling and Running the Simulation

As discussed above, ns–3 programs are typically C++ programs that link
against a library providing the ns–3 core and simulation models. The project
uses the Waf build system to configure and manage the build of the simulator
and its documentation. Waf is a Python-based framework supporting configu-
ration, build, installation, packaging, and testing. Once a simulation program
is built, the final executable will be placed in a build/ directory, where it can
be run from a shell like any other program. Waf also provides a custom shell,
which features integration of dynamic library path discovery and support for
debugging tools and memory checkers, that can be used to run programs such
as typing ./waf –run my-program for a program my-program.cc.

28 2. The ns–3 Network Simulator

Because the ns–3 API is also exported as Python bindings, users can also
write Python programs instead of C++ programs, such as in listing 2-5 that
corresponds to listing 2-1 above.

1 import ns3
2 def main(argv):
3 nodes = ns3.NodeContainer()
4 nodes.Create(2)
5
6 pointToPoint = ns3.PointToPointHelper()
7 ...

Program 2-5 first.py

2.9 Animating the Simulation

The ns–3 tool has the ability to create a trace file specifically designed to fa-
cilitate the animation of the flow of packets through the simulation, allowing
visual confirmation that the packets are indeed flowing through the simulated
network as desired. The addition of the animation trace file output is quite
simple, and is illustrated in listing 2-6. This particular example is a snippet
from the test-dumbbell.cc example program. Presently, the animation in-
terface supports only the point–to–point network devices and channels, with
support of other device types planned.

To facilitate the animation, the only requirement is to specify a location for
each node object in the simulation, and to create and configure an object of
class AnimationInterface. In the example, line 11 simply creates a dumbbell
topology with the specified number of leaf nodes on the left and right side, and
the specified helper objects to connect the nodes together. The majority of the
animation work is done by the call to BoundingBox at line 23. This specifies
the upper left X and Y coordinates and the lower right X and Y coordinates
that will contain the nodes in the dumbbell. They are dimensionless units,
and the nodes in the dumbbell are positioned in this box in such a way to
result in a symmetric and visually pleasing animation.

The AnimationInterface object is created at line 26. Then a file name
specified on the command line argument is assigned as the name of the
output trace file. Once all nodes are created and given node locations, the
StartAnimation function is called, which results in the complete list of nodes,
locations, and connectivity being written to the specified trace file. During
the simulation execution initiated by the Run call at line 38, all packet trans-
mission events are written to the trace file, along with sufficient information
to later animate the path of that packet during the animation. Finally, the

2.10 Scalability with Distributed Simulation 29

StopAnimation function at line 40 causes the output file to be closed and all
remaining trace data to be flushed to the trace file.

A sample animation visualization for the test-dumbbell program is
shown in Figure 2.1.

2.10 Scalability with Distributed Simulation

In order to achieve scalability to a very large number of simulated network
elements, the ns–3 simulation tools supports distributed simulation. Rather
than running a single simulation instance that must handle all events and
all network object models, the distributed simulation approach allows the
execution of the simulation on multiple, independent computing platforms.
By doing this, the overall scalability of the simulated networks can increase
considerably.

The approach to supporting distributed simulation in ns–3 is derived from
prior work designing distributed simulation for the Georgia Tech Network
Simulator (GTNetS). Consider the simple topology shown in Figure 2.2.
To execute an ns–3 simulation using distributed simulation, one approach
would be to use four separate simulation processes, each maintaining its own
timestamp–ordered event list, and each modeling a subset of the overall topol-
ogy. For example, simulator 0 would model all of the network elements in
subnet 0, simulator 1 would model subnet 1, and so on. However, if this
approach is used, then the complete global topology is not known by any
one simulator instance. Lacking the global topology picture, the simulators
cannot easily make routing decisions globally, and must resort to models for
routing protocols and the corresponding overhead for maintaining routing
tables.

An alternative approach is shown in Figure 2.3. Here, each simulator
instantiates ns–3 objects for every network element in the complete topology.
However, each instance only maintains the state (and processes events) for
the topology subset assigned to it, as described above. For the remaining
network elements (those assigned to other simulator instances) the only state
created is the existence of the node, device, and link objects. This is called
a Ghost Node in simulation parlance. In the figure below, simulator 0 is
responsible for all elements in subnet 0 (as described above), and additionally
creates ghost nodes for the remaining three subnets. However, no events are
scheduled or processed for ghost nodes. Rather, the responsible simulator for
those nodes handle those events. In this example, simulator 1 would create
complete model elements for the subnet1 objects, and create ghost objects
for subnets 0, 2, and 3.

The ns–3 simulator provides an easy way to create the ghost elements,
by assigning a global simulator id to the simulator instance, and individual
node id values to each network element. If the node id does not match the

30 2. The ns–3 Network Simulator

1 // Excerpt from the test-dumbbell.cc illustrating the animation interface
2
3 // Create the point-to-point link helpers
4 PointToPointHelper pointToPointRouter;
5 pointToPointRouter.SetDeviceAttribute ("DataRate", StringValue ("10Mbps"));
6 pointToPointRouter.SetChannelAttribute ("Delay", StringValue ("1ms"));
7 PointToPointHelper pointToPointLeaf;
8 pointToPointLeaf.SetDeviceAttribute ("DataRate", StringValue ("10Mbps"));
9 pointToPointLeaf.SetChannelAttribute ("Delay", StringValue ("1ms"));

10
11 Dumbbell d(nLeftLeaf, pointToPointLeaf,
12 nRightLeaf, pointToPointLeaf,
13 pointToPointRouter);
14
15 // Assign IP Addresses
16 d.AssignAddresses(Ipv4AddressHelper("10.1.1.0", "255.255.255.0"),
17 Ipv4AddressHelper("10.2.1.0", "255.255.255.0"),
18 Ipv4AddressHelper("10.3.1.0", "255.255.255.0"));
19 // Install on/off app on all right side nodes
20 // Omitted for brevity
21
22 // Set the bounding box for animation
23 d.BoundingBox(1, 1, 10, 10);
24
25 // Create the animation object and configure for specified output
26 AnimationInterface anim;
27 // Check if a file name specified on command line, and set it if so
28 (!animFile.empty())
29 {
30 anim.SetOutputFile(animFile);
31 }
32 anim.StartAnimation();
33
34 // Set up the acutal simulation
35 Ipv4GlobalRoutingHelper::PopulateRoutingTables();
36
37 // Run the simulation
38 Simulator::Run();
39 Simulator::Destroy();
40 anim.StopAnimation();
41 return 0;

Program 2-6 anim.cc

2.11 Emulation Capabilities 31

Fig. 2.1: Sample ns–3 Animation

simulator id, then a ghost node is created. No applications or protocol stacks
should be created for the ghost nodes.

2.11 Emulation Capabilities

In the past decade, experimental research in networking has migrated towards
testbeds and virtualization environments, in large part because of the real-
ism that such environments provide compared to simulation abstractions, and
also because real implementation code can be reused. A design goal in ns–3
has been to offer several options for the support for emulation, virtualization,
and the running of real implementation code, to minimize the experimental
discontinuities when moving between simulation, emulation, and live experi-
ments, and to enable experiments that may want to combine the techniques.

The first emulation capability that was integrated to ns–3 was the Net-
work Simulation Cradle (NSC)[240]. NSC is a framework that largely auto-

32 2. The ns–3 Network Simulator

192.168.2.x

G1

G2

G3

G0

R00

R01

R10 R11

R20

R21

R30R31

H00

H01

H02

H03

H10 H11 H12 H13

H20

H21

H22

H23

H30H31H32H33

192.168.1.x

192.168.3.x

Subnet 1

Subnet 3

Subnet 2Subnet 0

192.168.0.x

Fig. 2.2: Simple Topology

mates the porting of kernel code from several networking stacks to a simula-
tion environment. The NSC-enabled stack in ns–3 allows researchers to use
the actual TCP implementation from recent Linux kernels.

Another emulation capability that has been used to integrate ns–3 with
experimental wireless testbeds is the emulation NetDevice, which allows an
ns–3 process on a physical computer to bind a simulation-based network
interface to a physical interface on the host machine. This capability also
requires the use of a real-time scheduler in ns–3 that aligns the simulation
clock with the host machine clock. One testbed in which this has been used is
the ORBIT testbed at Rutgers University[385]. ORBIT consists of a deploy-
ment of a two dimensional grid of four hundred computers in a large arena,
on which various radios (802.11, Bluetooth, and others) are deployed. ns–3
has been integrated with ORBIT by using their imaging process to load and
run ns-3 simulations on the ORBIT array. The technique uses an emulation
NetDevice to drive the hardware in the testbed, and results are gathered ei-
ther using the ns-3 tracing and logging functions or the native ORBIT data
management framework.

The inverse of the above capability is also an important use case. Rather
than run ns–3 protocol stacks over real network interfaces, one can run real
systems over an ns–3-provided emulation of a (typically wireless) network.
For example, lightweight virtual machines have been developed that provide
varying degrees of system isolation between instances. Specially tailored ma-

2.12 Analyzing the Results 33

192.168.2.x

G1

G2

G3

G0

R00

R01

R10 R11

R20

R21

R30R31

H00

H01

H02

H03

H10 H11 H12 H13

H20

H21

H22

H23

H30H31H32H33

192.168.1.x

192.168.3.x

Subnet 1

Subnet 3

Subnet 2Subnet 0

192.168.0.x

Fig. 2.3: Distributed Topology

chines can be used to virtualize instances of the network stack and provide
partly shared and partly private file systems and access to system resources.
The term “slicing” has often been used to describe this type of virtualization,
such as in PlanetLab[366]. While slices on an experimental testbed run over
real (distributed) network segments, by using ns–3 as an underlay, they can
also be run over simulated networks. This hybrid of emulation and (real-time)
simulation is particularly useful for wireless networking, which is not always
provided or is provided only in a limited fashion on virtualized testbeds.

As the maturity and cost-effectiveness of virtualization software continues
to increase, the authors foresee that blending the use of ns–3 with lightweight
virtual machines will become a very useful research capability. The project
is also exploring new techniques to run multiple instances of unmodified ap-
plication processes in simulations on a single host.

2.12 Analyzing the Results

The design goal for ns–3 has been to equip the core of the simulator with
tools that allow for highly customizable extraction of event logs and output
statistics, to provide a framework for managing large numbers of simulation
runs and output data, and to allow third-party analysis tools to be used
where possible.

34 2. The ns–3 Network Simulator

ns–3 includes a tracing subsystem that allows for the export of simulation
data from trace sources to trace sinks. The key ideas are that, by decoupling
the data generation (trace source) from the consumption of the data (trace
sink), users can customize and write their own trace sinks to generate what-
ever output they desire, without having to edit the core of the simulator.
Model authors declare various trace sources in their models, such as the ar-
rival of a packet or the change in value of a variable such as a congestion
window. Users who want to trace selected behavior from a model will simply
attach their own trace sinks (implemented as C++ functions) to the trace
sources of interest. ns–3 also provides a set of stock trace sinks for common
trace events such as the generation of typical packet traces.

Users often do not run a single instance of a simulation; they run multiple
independent replications with different random variables, or they run a set of
simulations with each set of runs changing slightly the configuration. Frame-
works are needed to manage the simulation runs and to manage and organize
the large amounts of output and configuration data that is generated. ns–3
is presently evaluating a custom statistics framework that provides support
for each of these functions. The framework is organized around the following
principles:

– Define a trial as one instance of a simulation program;
– Provide a control script to execute instances of the simulation, varying

parameters as necessary;
– Collect data and marshal into persistent storage for plotting and analysis

using external scripts and tools;
– Provide a basic statistical framework for core statistics as well as to perform

simulation run-length control based on observed data; and
– Use the ns–3 tracing framework to instrument custom code.

This framework defines metadata to collect run information, and provides
support to dump simulation configuration and output data to a relational
database or to other existing output formats.

ns–3 also supports standardized output formats for trace data, such as
the pcap format used by network packet analysis tools such as tcpdump, and
supports standardized input formats such as importing mobility trace files
from ns-2. By aligning to existing data standards, ns–3 allows users to reuse
a wide range of existing analysis tools. Likewise, the project makes use of
existing support libraries such as the GNU Scientific Library (GSL) to avoid
reinventing statistical and analysis tools.

3. OMNeT++
Andras Varga (Opensim Ltd.)

3.1 Introduction

3.1.1 Overview

OMNeT++ (www.omnetpp.org) is an extensible, modular, component-based
C++ simulation library and framework which also includes an integrated de-
velopment and a graphical runtime environment. Domain-specific function-
ality (support for simulation of communication networks, queuing networks,
performance evaluation, etc.) is provided by model frameworks, developed
as independent projects. There are extensions for real-time simulation, net-
work emulation, support for alternative programming languages (Java, C#),
database integration, SystemC integration, HLA and several other functions.

OMNeT++ has been created with the simulation of communication net-
works and other distributed systems in mind as application area, but instead
of building a specialized simulator, it was designed to be as general as pos-
sible. Since then, the idea has proven to work, and OMNeT++ has been
used in numerous domains from queuing network simulations to wireless and
ad-hoc network simulations, from business process simulation to peer-to-peer
network, optical switch and storage area network simulations.

OMNeT++ is often quoted as a network simulator, when in fact it is
not. It includes the basic machinery and tools to write simulations, but it-
self it does not provide any components specifically for computer networks,
queueing networks or any other domain. Instead, these application areas are
supported by various simulation models and frameworks such as the INET
Framework or Castalia. Model frameworks are developed completely inde-
pendently of the simulation framework, and follow their own release cycles.

3.1.2 The OMNeT++ Approach for Modeling

Many network simulators have a more-or-less fixed way of representing net-
work elements in the model. In contrast, OMNeT++ provides a generic com-
ponent architecture, and it is up to the model designer to map concepts such
as network devices, protocols or the wireless channel into model components.
Model components are termed modules, and, if well designed, modules can
be used in a variety of different environments and can be combined in various

36 3. OMNeT++

ways like LEGO blocks. Modules primarily communicate via message pass-
ing, either directly or via predefined connections. Messages may represent
events, packets, commands, jobs or other entities depending on the model
domain.

The facilities provided by OMNeT++ include a C++ kernel and class
library for building simulation components (modules); infrastructure to as-
semble simulations from these components and to configure them (NED lan-
guage, ini files); graphical and batch mode simulation runtime interfaces;
a simulation IDE for designing, running and evaluating simulations; exten-
sion interfaces for real-time simulation, emulation, MRIP, parallel distributed
simulation, database connectivity and so on.

The simulation library provides a message and event handling mechanism
(scheduling events, sending and receiving messages), support for configuring
and assembling modules, a random number architecture with various distri-
butions, a publish-subscribe style signal mechanism, and utility classes for
queues, statistics collection, topology discovery and routing, and other tasks.

3.1.3 The Simulation IDE

An important part of OMNeT++ is the Eclipse-based Simulation IDE, cf.
Figure 3.1. Although Eclipse (eclipse.org) is best known as a Java IDE,
it is really an integration platform for all sorts of developer-oriented ap-
plications. Core Eclipse projects offer C++ development, web development
and other capabilities, and web sites like the Eclipse Marketplace (market-
place.eclipse.org) and Eclipse Plugins (eclipse-plugins.2y.net) host literally
thousands of Eclipse plug-ins for a wide spectrum of purposes, from UML
designers to database browsers and language IDEs.

The Simulation IDE is a customized Eclipse instance, which extends the
IDE with a graphical-and-text round-trip editor for designing simulation
models, a simulation configuration editor, C++ build support, a simulation
launcher also capable of running simulation batches, a result plotting and
analysis tool, a trace analyzer tool that visualizes simulation execution on a
sequence chart, and other smaller tools like documentation generator. C++
source editing is provided by the Eclipse CDT project, and the IDE also
includes version control system integration, currently subversion and git. Ad-
ditional features can be installed from the Eclipse Marketplace and other
plug-in sites.

In the spirit of Eclipse, the OMNeT++ team intends the Simulation IDE
to become a host and integration platform for various 3rd party simulation
utilities and tools. At the time of writing, there are various UI and command-
line tools for topology generation, network scenario generation, batch launch-
ing, etc, using a variety of languages and widget toolkits. It is our intention
to attract researchers to implement their future tools as Eclipse plug-ins, and

3.1 Introduction 37

port existing ones into Eclipse. For this reason the OMNeT++ Eclipse plug-
ins are well documented, provide public API, and expose several extension
points where new functionality can be plugged in or existing ones can be
customized.

To simplify deployment of plug-ins further, the Simulation IDE loads plug-
ins from user projects as well, not only from the installation directory. This
makes it possible to bundle simulation framework specific plug-ins (such as
INET Framework or MiXiM tools) with the simulation frameworks, so when
a user imports the simulation framework into the IDE, the framework-specific
UI contributions will immediately appear in the IDE.

The IDE also makes it possible to write wizards without any Java or C++
programming, using an XML-based UI description language and a template
language for content generation. This feature offers a relatively quick and
painless way to bring topology generators and file importers into the IDE.

Fig. 3.1: The Simulation IDE

38 3. OMNeT++

3.1.4 Network Simulation Frameworks

The following major network simulation frameworks have been developed for
OMNeT++ and are in common use:

– INET Framework (inet.omnetpp.org) is an open-source communication
networks simulation package, which contains models for several Internet
protocols: UDP, TCP, SCTP, IP, IPv6, Ethernet, PPP, IEEE 802.11,
MPLS, OSPF, and others. The INET Framework also contains emulation
capabilities. Extensions include the INET port of the Quagga routing dae-
mon (quagga.net), and that of the Network Simulation Cradle (NSC) [239]
package. An alternative to NSC is the OppBSD [61] model.

– INETMANET [378] is a fork of the INET Framework, and extends INET
with support for mobile ad-hoc networks. INETMANET supports AODV,
DSR, OLSR, DYMO and other ad-hoc routing protocols.

– OverSim [54] is an open-source overlay and peer-to-peer network simu-
lation framework for OMNeT++. The simulator contains several models
for structured (e.g. Chord, Kademlia, Pastry) and unstructured (e.g. GIA)
P2P systems and overlay protocols. OverSim is also based on the INET
Framework.

– MiXiM [262] supports wireless and mobile simulations. It provides detailed
models of the wireless channel (fading, etc.), wireless connectivity, mobil-
ity models, models for obstacles and many communication protocols espe-
cially at the Medium Access Control (MAC) level. Furthermore, it provides
a user-friendly graphical representation of wireless and mobile networks,
supporting debugging and defining even complex wireless scenarios.

– Castalia [72] is a simulator for Wireless Sensor Networks (WSN), Body
Area Networks and generally networks of low-power embedded devices.
Castalia can be used by researchers and developers to test their distributed
algorithms and/or protocols in a realistic wireless channel and radio model,
with a realistic node behavior especially relating to access of the radio.
Castalia uses the lognormal shadowing model as one of the ways to model
average path loss, which has been shown to explain empirical data in WSN.
It also models temporal variation of path loss in an effort to capture fading
phenomena in changing environments (i.e., the nodes or parts of the envi-
ronment are moving). Castalia’s temporal variation modeling is designed
to be fitted to measured data instead of making specific assumptions on the
creation of fast fading. Other features of Castalia include: physical process
modeling, sensing device bias and noise, node clock drift, and several MAC
and routing protocols implemented.

3.2 The Component Model 39

3.2 The Component Model

3.2.1 Overview

It has been mentioned that an OMNeT++ model consists of modules that
communicate with message passing. The active modules are termed simple
modules; they are implemented in C++, using the simulation class library.
Groups of modules can be encapsulated into compound modules; the number
of hierarchy levels is not limited.

In network simulations, simple modules may represent user agents, traffic
sources and sinks, protocol entities like TCP, network devices like a 802.11
interface card, data structures like routing tables, or user agents that generate
traffic. Simulation-related functions such as controlling the movement of mo-
bile nodes or auto-assigning IP addresses in a network are also often cast as
simple modules. Network nodes such as hosts and routers are typically com-
pound modules assembled from simple modules. Additional hierarchy levels
are occasionally used above node level (to represent subnetworks) or within
nodes (i.e. to group simple modules representing individual protocols of the
IPv6 family into IPv6 compound module).

Both simple and compound modules are instances of module types. While
describing the model, the user defines module types; instances of these module
types serve as components for more complex module types. The network
to be simulated is an instance of a module type. When a module type is
used as a building block, there is no distinction whether it is a simple or
a compound module. This allows the user to transparently split a module
into several simple modules within a compound module, or do the opposite,
re-implement the functionality of a compound module in one simple module,
without affecting existing users of the module type. The feasibility of model
reuse is proven by model frameworks like the INET Framework or Mobility
Framework, and their extensions.

Modules communicate with messages, which, in addition to predefined
attributes such as a timestamp, may contain arbitrary data. Simple modules
typically send messages via gates, but it is also possible to send them directly
to their destination modules. There are input, output and inout gates. An
input and an output gate or two inout gates may be linked with a connection.
Connections are defined as part of a compound module, and may connect
two submodules, a submodule with the parent, or two gates of the parent
module. Connections spanning across hierarchy levels are not permitted, as
it would hinder model reuse. Due to the hierarchical structure of the model,
messages typically travel through a chain of connections, to start and arrive in
simple modules. Compound modules act as “cardboard boxes” in the model,
transparently relaying messages between their inside and the outside world.
Properties such as propagation delay, data rate and bit error rate, can be
assigned to connections. One can also define connection types with specific
properties (termed channels) and reuse them in several places.

40 3. OMNeT++

Modules can have parameters. Parameters are mainly used to pass con-
figuration data to simple modules, and to help defining the model topology.
Supported parameter types are string, integer, double, boolean, and XML
element tree, the latter being used for accessing XML-based custom con-
figuration files. Parameters may have default values, units of measurement
and other attributes attached to them. An interesting concept is volatile pa-
rameters. They are re-evaluated every time the simulation code reads their
value, thus, when they are assigned an expression like exponential(2.0),
the simulation code will get a different random number each time. Volatile
parameters are commonly used to pass stochastic input to modules.

3.2.2 The NED Language

OMNeT++ has its own DSL (Domain Specific Language) called NED for de-
scribing the above component model. XML has been considered but discarded
as being too verbose and generally unsuitable for human consumption.1 The
idea of using a general-purpose programming language such as Tcl, Python,
Ruby or Lua has been discarded as well, because models written that way
cannot be supported with a graphical editor in a round-trip manner. (When
the user hand-modifies the code, there would be no guarantee that the graph-
ical editor can parse and meaningfully display it).

Typical ingredients of a NED description are simple module declara-
tions, compound module definitions and network definitions. Simple mod-
ule declarations describe the interface of the module: gates and parameters.
Compound module definitions consist of the declaration of the module’s ex-
ternal interface (gates and parameters), and the definition of submodules
and their interconnection. Network definitions are compound modules that
qualify as self-contained simulation models. Limited programming constructs
(loop, conditional) allow for parametric topologies, such as a router with an
unbound number of ports, or a hexagonal mesh with parametric dimensions.

In order to be prepared for unforeseen use cases, the NED language sup-
ports adding metadata annotations to types, parameters, submodules, con-
nections and other items. So far, metadata annotations have been used to
store graphics attributes (position, icon, etc.); to override the default choice
of the underlying C++ class name for simple modules and channels; to denote
the C++ namespace; to mark gates that are expected to remain unconnected;
to declare measurement units and the prompt text for parameters; to label
gates for automatic matching by the graphical editor’s connect tool; to de-

1 The NED language has a one-to-one XML binding though, and there are tools
for (lossless) conversion in both directions. This feature is useful for machine
processing of NED sources. The XML format is virtually the abstract syntax
tree (AST) of the NED code, but includes source code comments as well.

3.2 The Component Model 41

note compound modules that represent physical network nodes in the INET
Framework; and for other purposes.

To support simulation in-the-large (the INET Framework contains well
over 150 module types), the NED language has a Java-style package system,
and supports inner types, component inheritance and dependency injection
via parametric submodule types and interfaces.

To give you a feel of the NED language, here is some sample code that
defines a compound module (the code should be mostly self-explanatory):

//
// A "Node" consists of a Routing module, an App module,
// and one L2Queue per port.
//
module Node
{

parameters:
int address;
string appType;
@display("i=misc/node_vs,gold");

gates:
inout port[];

submodules:
app: <appType> like IApp {

address = address;
@display("p=140,60");

}
routing: Routing {

@display("p=140,130");
gates:

in[sizeof(port)];
out[sizeof(port)];

}
queue[sizeof(port)]: L2Queue {

@display("p=80,200,row");
}

connections:
routing.localOut --> app.in;
routing.localIn <-- app.out;
for i=0..sizeof(port)-1 {

routing.out[i] --> queue[i].in;
routing.in[i] <-- queue[i].out;
queue[i].line <--> port[i];

}
}

42 3. OMNeT++

Normally all modules of a simulation are instantiated as descendants of
the system module, but the simulation library provides support for dynamic
instantiation as well. Both simple and compound modules may be created at
runtime, the latter will have its internal structure (submodules, connections)
built automatically as well. Examples when dynamic instantiation can be
useful include loading of the network topology at runtime, and having a
dynamically changing network (for example, mobile devices arriving to or
leaving from the playground, or network links being cut or added).

3.2.3 IDE Support for NED

The Simulation IDE provides a dual-mode (graphical and source) round-trip
editor for NED files. Graphics attributes are stored in display strings, which
are part of the NED source as metadata annotations. The source editor pro-
vides content assist, on-the-fly validation, navigate-to-declaration, and other
features in addition to basic editing and syntax highlighting.

The IDE also provides programmatic access to the ASTs of all NED files
and the details of NED types defined in them, via a public Java API. This
API is helpful for the authors of Eclipse plug-ins who want to extend the IDE
with NED-related functionality.

One example that uses the above API is the NED Documentation Gener-
ator plug-in, which is part of the IDE. The plug-in produces browsable, fully
hyperlinked HTML documentation from NED sources and Javadoc-style com-
ments in them. The resulting documentation contains network graphics, usage
and inheritance diagrams, and can also hyperlink to Doxygen documentation
generated from C++ sources that implement simulation components.

3.3 Programming

3.3.1 Modules, messages and events

Simple modules are implemented as C++ classes, derived from the cSimple
Module library class. Message sending and receiving are the most frequent
tasks in simple modules. Messages are represented with the cMessage class,
and can be sent either via output gates, or directly to other modules.

The simulation kernel deliversmessages to the handleMessage(cMessage*)
method of the module; module authors primarily need to override this method
to add functionality. The alternative to handleMessage() is a process-style de-
scription, where users have to override the activity()method, and messages
can be obtained via blocking receive calls. In general, using activity() is not
recommended because it does not scale due to the underlying coroutine stacks,

3.3 Programming 43

but there are situations when it is extremely useful, such as when porting a
process-based program into simulation.

Timers and timeouts are implemented with normal messages that the
module sends to itself. These self-messages are sent with a schedule call, and
are delivered back to the module in the same way as messages arriving from
other modules. Self-messages can also be canceled. Note that there is no
separate event class, its role is fulfilled by cMessage.

The programmer can provide code to execute on module initialization
and finalization by overriding corresponding methods of the module class.
OMNeT++ also supports multi-stage initialization, and it has proven essen-
tial for large models like the INET Framework. Finalization takes place on
successful simulation termination only, and its code is most commonly used
to record summary simulation results.

Some other simulators implement timers as arbitrary functions or function
objects that are called back from the simulation kernel. OMNeT++ prefers
the handleMessage approach, because we have found handleMessage-based
code to be easier to understand than callback-based, and code readability
is very important for model verification. The reason for greater readability
is that with handleMessage, there is a single place in the component’s code
where a newcomer can start reading. By looking at handleMessage, it is
immediately clear to the reader what inputs (packets, timers, timeouts) the
module is prepared to handle, and all there is left to do for understanding
dynamic behavior is to go into the various if branches and see how each
message or timer type is handled. With the callback approach, there is no
such central place, and with the scheduled code blocks being scattered around
in the code, it is significantly harder for a reader to hunt down the pieces and
assemble the puzzle.

3.3.2 Simulation Time

OMNeT++ represents simulation time with a 64-bit fixed-point number with
a base-10 exponent, wrapped into the SimTime class.2 The exponent is stored
in a global variable to eliminate the need for normalization, and to conserve
memory. We have found that the range provided by 64 bits is more than
enough for practical simulations (approx. ±292 years with nanosecond pre-
cision, or ±107 days with picosecond precision).

2 OMNeT++ versions prior to 4.0 have used double-precision floating-point num-
bers, but precision problems with floating point operations (non-associativity,
diminishing precision as simulation time advances, etc.) have caused problems
in simulations from time to time.

44 3. OMNeT++

3.3.3 Library Classes

Most classes in the OMNeT++ simulation library represent various parts of
the component model: modules, channels, gates, module parameters, objects
and so on. Messages and packets are represented by the cMessage class and
its subclass, cPacket. A frequently used container class is cQueue, which can
also be set up to operate as priority queue.

The library contains a topology discovery class, which can extract the
network topology from a model according to the user’s specification, make
it available as a graph, and supports algorithms such as Dijkstra’s shortest
path.

Random number generation is available via streams provided by the
simulation framework’s random number architecture (see 3.3.11). Several
distributions are available. Continuous ones include uniform, exponential,
normal, truncated normal, gamma, beta, Erlang, chi-square, Student-t, Cauchy,
triangular, lognormal, Weibull, and Pareto; discrete ones include uniform,
Bernoulli, binomial, geometric, negative binomial, and Poisson. It is possible
to add new distributions programmed by the user, and make them available
in the NED language and in the configuration (see 3.4.3). It is also possible
to dynamically load distributions defined as histograms.

There are several statistical classes, from simple ones which collect the
mean and the standard deviation of the samples to a number of distribution
estimation classes. The latter include three highly configurable histogram
classes and the implementations of the P2 [236] and the k-split [472] algo-
rithms. It is also supported to write time series result data into an output
file during simulation execution.

3.3.4 Ownership Tracking

Instances of several classes in the OMNeT++ class library, most notably
cMessage, maintain pointers back to their owners. The owner is usually the
module which has created or received the given message, a queue or other
container object in a module, or the simulation kernel (more precisely, the
future events list). The owner pointer allows the simulation kernel to catch
common mistakes such as sending the same message object twice, sending
out a message while it is sitting in a queue, or accessing a message which is
being held by another module.

Ownership management is transparent for most of the time. The most
frequent case when it needs manual help is when a module passes a message
object to another module by means of a C++ method call; then the target
module explicitly needs to take the object from its current owner. Modules
are soft owners and will yield to such requests, but if the owner is a queue
for example, it is a hard owner and will raise an error instead.

3.3 Programming 45

Since modules maintain a list of owned objects, it is possible to recursively
enumerate all objects in the simulation in a generic way, that is, without using
pointer fields declared in simple module subclasses. This mechanism makes
it possible for the user to inspect the simulation in the graphical runtime
environment on object level, and to find leaked objects.

3.3.5 Representing Network Packets

An important aspect of network simulation is representing network packets.
In OMNeT++, packets are C++ classes derived from cPacket, which is
in turn a subclass of cMessage. cPacket’s fields include the length of the
packet, an error flag used to signal a corrupted packet, and a pointer to the
encapsulated packet. The latter is used by the packet’s encapsulate() and
decapsulate() methods that are used when a message is passed up or down
between protocol layers. These methods automatically update the length of
the outer packet. The encapsulated packet pointer also gives an opportunity to
OMNeT++ to reduce the number of packet object duplications by performing
reference counting and copy-on-access on the encapsulated packet.

3.3.6 The Message Compiler

In OMNeT++, messages and network packets are represented with C++
classes. With getter and setter methods for each field, a copy constructor, as-
signment operator, and a virtual dup() function (network packets are often
copied or duplicated during simulation), plus hand-written reflection infor-
mation needed for displaying packet contents in the graphical runtime Tkenv,
it would be a time-consuming and tedious task to implement packet classes in
plain C++. OMNeT++ takes the burden off the programmers by providing
a simple language (not unlike C structs with metadata annotation support)
for describing messages, and the build system automatically generates C++
classes from them during the build process. Generic classes and structs may
also be generated this way, not only packets and messages. If customizations
are needed, the message compiler can be asked (via metadata annotations)
to generate an intermediate base class only, from which the programmer can
derive the final packet class with the necessary customizations. The success
of the concept is proven by the fact that in modern OMNeT++ models prac-
tically all packet classes are generated.

An example message description:

//
// Represents a packet in the network.
//
packet SamplePacket

46 3. OMNeT++

{
int srcAddr;
int destAddr;
int hopLimit = 32;

}

3.3.7 Control Info

In OMNeT++, protocol layers are usually implemented as modules that ex-
change packets. However, communication between protocol layers often re-
quires sending additional information to be attached to packets. For example,
when a TCP implementation sends down a TCP packet to IP, it needs to spec-
ify the destination IP address and possibly other parameters. When IP passes
up a packet to TCP after decapsulating from an IP datagram, it will want
to let TCP know at least the source and the destination IP addresses. This
additional information is represented by control info objects in OMNeT++.
Control info objects are attached to packets.

3.3.8 Wired Packet Transmission

When modeling wired connections, packets are sent from the transmitter (e.g.
the MAC module) of one network node to the receiver of another node, via a
connection path that contains exactly one channel object. Like modules, chan-
nels are programmable in C++ as well, and they are responsible for modeling
propagation delay, calculating and modeling transmission duration, and per-
forming error modeling. The default channel model, DatarateChannel, per-
forms simple BER and/or PER-based error modeling. Error modeling sets a
flag in the packet, and it is the responsibility of the receiver module to check
this flag and act accordingly.

Normally, the packet object gets delivered to the receiver module at the
simulation time that corresponds to the end of the reception of the packet.
However, the receiver module may request that packets are delivered to it at
the beginning of their reception, by “reprogramming” the receiver gate with
an appropriate API call. The last transmission duration is available in a field
of the packet object, and may be used by the receiver to determine how long
the channel is to be considered busy.

3.3.9 Wireless Packet Transmission

Wireless transmission is based on directly sending the packet to the wireless
nodes within range. Usually there is a separate dedicated module (the channel

3.3 Programming 47

controller) for keeping track which nodes are within range of others, and
which frequency they occupy. The packet (frame) may be encapsulated into
a conceptual air frame which contains the physical properties of the radio
transmission. The (air) frame object needs to be duplicated for each receiving
node.3

Modeling of the wireless channel and the radio reception is done in the
destination node(s), possibly with help from the channel controller. It is up to
the individual model frameworks (MiXiM, INET Framework, Castalia, etc.)
how accurate a propagation, interference and reception model they choose to
implement.

3.3.10 Signals

The OMNeT++ simulation library contains a built-in notification mecha-
nism, which allows for publish-subscribe style communication between simu-
lation components, and has many other uses.4

Signals are emitted by components (modules and channels), and propa-
gate on the module hierarchy up to the root. At any level, one can regis-
ter listeners (callback objects); these listeners will get notified (called back)
whenever a signal is emitted.

The significance of upwards propagation is that listeners registered at a
certain module will receive signals from all components in that submodule
tree. Listeners registered at the top level will receive signals from the whole
simulation. Since a module can register listeners at any other module, it can
get notified about events anywhere it wishes. For example, a simple module
representing a routing protocol may register a listener for the hypothetical
INTERFACE_UP and INTERFACE_DOWN signals at the parent com-
pound module that represents the router, and initiate actions to update the
routing tables accordingly.

Signals are identified by names, but for efficiency, calls use dynamically
assigned numeric signal identifiers. Names and identifiers are globally valid
in the whole simulation.

When a signal is emitted, it can carry a value with it. The value can be
of a basic type (long, double, string, etc.), or a pointer to an arbitrary ob-
ject. Objects can be already existing objects, or ones specially crafted for the
purpose of emitting the signal. Computing the signal value or propagating
the signal may cost valuable CPU cycles, so the signal mechanism was im-
3 Duplicating all protocol layers encapsulated in the frame would be a waste of

CPU cycles because in a wireless network, most frames are immediately discarded
by the receiver due to incorrect reception or wrong destination MAC address.
Hence, OMNeT++ uses reference counting on encapsulated packets, and only
duplicates them if needed, that is, when they actually get decapsulated in a
higher layer protocol module.

4 The notification mechanism appeared in version 4.1.

48 3. OMNeT++

plemented in a way that helps avoid emitting or further propagating signals
for which there are no listeners.

Simulation signals can be used for several purposes:

– for implementing publish-subscribe style communication among modules;
it is advantageous when the producer and consumer of the information do
not know about each other, and possibly there is many-to-one or many-to-
many relationship among them;

– when some module needs to get notified about simulation model changes
such as module creation and deletion, connection creation and deletion,
parameter changes and so on. Such signals, both pre- and post-change ones,
are emitted by the OMNeT++ simulation kernel, with attached objects
that contain the details of the change;

– for emitting variables to be recorded as simulation results, for example
queue lengths, packet drops, or end-to-end delays. Then it is up the sim-
ulation framework to add listeners which record the selected data in some
form;

– for emitting animation primitives or auxiliary information that can be used
by an animation engine;

– for emitting pcap traces that can be captured and written to file by (a)
dedicated module(s) or the simulation framework

A historical note: OMNeT++ models written before the introduction
of signals used specialized modules, such as Blackboard that was intro-
duced as part of the Mobility Framework, and the Blackboard-inspired
NotificationBoard in the INET Framework.

3.3.11 Random Number Architecture

OMNeT++ primarily uses Mersenne Twister [308] for random number gen-
eration.5 A configurable number of global random number streams are pro-
vided to the simulation. Global random number streams are mapped to
module-local ones; module parameters and module code consume random
numbers from these module-local streams. The mapping from global streams
to module-local ones can be configured in a flexible way, allowing the use of
variance reduction techniques and other “tricks” without the need to change
anything in the simulation model.

Seeding is automatic (seeds are auto-assigned using the run number, as
described later), but it is also possible to use manually selected seeds in
the configuration. The simulation requires as many seeds as the number of

5 Mersenne Twister is the RNG class selected by default, but two others are pro-
vided (the LCG-32, a.k.a. “default standard” RNG, and one wrapping random
numbers from the Akaroa library). It is also possible to write others and select
them from the ini file, without changing anything in the simulation framework.

3.3 Programming 49

global RNG streams configured. Due to the practically infinite cycle length
of Mersenne-Twister, overlapping RNG streams is not an issue.

3.3.12 Emulation, Distributed Simulation, Co-simulation

OMNeT++ provides a facility to replace the event scheduler class with a
custom one, which is the key for many features including co-simulation, real-
time simulation, network or device emulation, and distributed simulation.

The job of the event scheduler is to always return the next event to be pro-
cessed by the simulator. The default implementation returns the first event
in the future events list. For real-time simulation, this scheduler is replaced
with one augmented with wait calls (e.g. usleep) that synchronize the sim-
ulation time to the system clock. There are several options on what should
happen if the simulation time has already fallen behind: one may re-adjust
the reference time, leave it unchanged in the hope of catching up later, or
stop with an error message.

For emulation, the real-time scheduler is augmented with code that cap-
tures packets from real network devices, and inserts them into the simula-
tion. The INET Framework contains an emulation scheduler, and uses pcap
to capture packets, and raw sockets to send packets to the real network de-
vice. Emulation in INET also relies on header serializer classes that convert
between protocol headers and their C++ object representations used within
the simulation. The emulation feature has been successfully used to test the
interoperability of INET’s SCTP model with real-life SCTP implementations
[470].

For parallel simulation (OMNeT++ contains support for conservative
parallel simulation via the Null Message Algorithm [108]), the scheduler is
modified to listen for messages arriving from other LPs, and inserts them
into the simulation. The scheduler also blocks the simulation when it is not
safe to execute the next event due to a potential causality violation, until
clearance arrives from other LPs to continue in the form of a null message.
Parallel simulation is covered in detail in Chapter 8.

OMNeT++ supports distributed simulation using HLA (IEEE 1516)6 as
well. The OMNeT++ scheduler also plays the role of the HLA Federate Am-
bassador, is responsible for exchanging messages (interactions, change notifi-
cations, etc.) with other federates, and performs time regulation.

OMNeT++ also supports mixing SystemC (IEEE 1666-2005) modules
with OMNeT++ modules in the simulation. When this feature is enabled,
there are two future event lists in the simulation, OMNeT++’s and Sys-
temC’s, and a special scheduler takes care that events are consumed from
both lists in increasing timestamp order. This method of performing mixed

6 The source code for the HLA and SystemC integration features are not open
source, but they are available to researchers on request free of charge.

50 3. OMNeT++

simulations is orders of magnitude faster and also more flexible than letting
the two simulators execute in separate processes and communicate over a
pipe or socket connection.

3.4 Running Simulations

3.4.1 Building Simulation Models

OMNeT++ uses make to build simulation models. To simplify things for
model developers, OMNeT++ provides a tool named opp_makemake for gen-
erating makefiles. opp_makemake takes into account the source files found in
a given directory, handles translating message files into C++ sources, and
has options to generate a standalone simulation program, a shared library
or a static library. The generated makefile can be customized via further
command-line options, and/or by providing a makefrag file which gets tex-
tually included into the makefile.

A unique feature of the OMNeT++ build system is accessible with the
–deep option. Building deep source directory trees that have complex inter-
dependencies often poses a challenge to C++ developers. The usual approach
to multi-directory builds is recursive make, which, however, tends to lead to
a complicated, fragmented system of makefiles. In order to avoid having a
complicated build system, projects often resort to artificial limitations like
limiting the number of directory levels, mandating that “public” header files
are put into designated include/ directories, and so on.

The authors of OMNeT++ are of the opinion that there is no reason why
the build system for a multi-directory project should be that complicated.
The OMNeT++ approach is to cover the whole source tree with a single
makefile, generated with the opp_makemake –deep command. The problem
of include path is solved in the following way: simply all directories are put on
the include path (-I). As most header files have unique names, this usually
causes no problem at all. In the case of conflicting header files, names in the
#include directive can be qualified with the partial or full path of the header
file. For example, if there is both a base/Util.h and a network/ipv6/Util.h
in the source tree, the former can be included as "base/Util.h" and the
latter as "ipv6/Util.h" or "network/ipv6/Util.h". Paranoid users can
always fully qualify their includes, which essentially leads to something similar
to Java imports.

If there are directories in the tree where the generated makefile is not
suitable for some reason, it is possible to exclude that directory from the
scope of –deep, and let make recurse into it and call a custom makefile.

Large model frameworks, for example the INET Framework which had
about 70 deeply nested directories in its source tree at the time of writing,
are being built using opp_makemake –deep, without the need for custom
makefiles or large makefile fragments.

3.4 Running Simulations 51

3.4.2 Simulation Programs

OMNeT++ simulations are ordinary programs. Usually simple modules are
linked into an executable which links against the simulation kernel, but it
is also possible to build shared libraries from the sources and load them
dynamically into other simulation executables or into the standalone opp_run
program.

Simulation programs are also linked against one or more user interface
libraries. Currently there are two user interfaces: Cmdenv is a console-based
one optimized for batch execution, and Tkenv is a GUI-based user interface
which is most useful during the development, testing, and model validation
phases of the project. One can also write new user interfaces and dynamically
register them without requiring modification to existing OMNeT++ sources;
for example, a Java and SWT-based GUI interface with sophisticated anima-
tion capabilities is currently under development. If a simulation program has
been linked with more than one user interfaces, a command-line option can
be used to select the desired one.

3.4.3 Configuration

The configuration for running the simulation comes from ini files. An ini file
defines the NED type to be instantiated as network; provides values for model
parameters that do not have default values or the default is not suitable; and
contains simulation options such as simulation time limit, RNG configura-
tion, names of output files, or the set of statistics to be recorded to files. At
the time of writing, there are over 80 configuration options; many of them
define executable extensions to the simulation kernel, for example a custom
scheduler class, custom result file writer class, custom synchronizer class for
parallel simulation, or custom random number generator.

Ini files may contain multiple named configurations. Configurations can
build upon each other, adding new settings or overriding existing ones. This
feature practically implements single inheritance among configurations.

The Simulation IDE has a dual-mode (form and text) editor and several
associated views for setting up and editing simulation options, parameter set-
tings and other configuration information. The editor provides wizards, syn-
tax highlighting, content assist, on-the-fly validation and other convenience
features.

3.4.4 Parameter Studies

Ini files may also define parameter studies . A configuration may contain one
or more iteration variables in the syntax ${numHosts=1..5,10,20,50}; the

52 3. OMNeT++

simulation runtime will take the Cartesian product of the sequences, and
generates simulation runs for each. For example, the above numHosts itera-
tion variable together with a ${pkLen=100,200,500} variable will generate
8x3=24 simulation runs. Of course, not all combinations may make sense, so
the user than specify additional constraints to filter out the unwanted ones.
For example, the constraint numHosts>10 || pkLen==500 would mean that
for 10 or fewer hosts, the user is only interested in testing with pkLen = 500.

One can also specify that each run has to be repeated 10 times with differ-
ent random number generator seeds, which will yield 24x10=240 runs. They
are numbered from 0 through 239, and the user can tell the simulation pro-
gram (via command-line options) to execute, say, run #146 of configuration
ThroughputTest in the specified ini file. The seeds for these runs are gener-
ated automatically (but in a configurable way) from the run number and/or
the repetition counter. It is also possible to specify seeds manually, but this
is rarely needed or desired.

Experiment, measurement and replication labels are generated automati-
cally from the configuration name, iteration variables and repetition counter,
respectively; these labels are saved into the result files, and can be used to or-
ganize the data during result analysis. It is not mandatory to use machinery
described above (named configurations, iteration variables, constraint, re-
peat count) to organize parameter studies: the user can set up configurations
or runs manually as well, and if he or she explicitly sets the experiment-
measurement-replication labels in the ini files in the correct way, result anal-
ysis tools will see those runs as part of the same parameter study.

3.4.5 Running Batches

As outlined in the previous section, running parameter studies with OM-
NeT++ usually boils down to running a simulation program several times
with an ini file, a configuration name and a 0..n run number as command-line
arguments.

There are various ways to execute such batches. The simplest way is per-
haps to write a 3-line bash script with a for ((i=0;i<$n;i++)) loop that
launches the simulations one by one. A somewhat more sophisticated way is
to employ GNU Make’s -j n option, which instructs make to launch multiple
processes to keep n (usually 2 or 4) processor cores busy. The opp_runall
program is a simple OMNeT++ utility that supports exactly that: it gen-
erates a makefile with a target for each simulation run, and launches gmake
with the user-specified -j option.

Smaller simulation batches that are expected to finish within minutes
are most conveniently launched from the OMNeT++ Simulation IDE. The
IDE also supports a number of concurrent processes option similar to GNU
Make’s -j.

3.4 Running Simulations 53

To execute larger simulation batches, one may utilize computing clus-
ters. One of the most user-friendly faces of cluster computing is Apple’s
Xgrid, which has also been successfully used with OMNeT++ [413]. Un-
fortunately, Xgrid is only available on Mac OS X computers. RSerPool [282]
is another lightweight solution for distributing jobs to cluster nodes, and
has also been successfully used with OMNeT++, as part of the SimProcTC
toolkit [124]. Further potential candidates for running simulation batches
are clusters running SUN Grid Engine (gridengine.sunsource.net), Condor
(cs.wisc.edu/condor) or other grid middleware.

A more specialized way to make use of clusters is Akaroa [167, 437].
Akaroa is an implementation of the MRIP (Multiple Replications In Paral-
lel) principle, which can be used to speed up steady-state simulations. Akaroa
runs multiple instances of the same simulation program (but with different
seeds) simultaneously on different processors, e.g. on nodes of a computing
cluster, and a central process monitors certain output variables of the sim-
ulation. When Akaroa decides that it has enough observations to form an
estimate of the required accuracy of all variables, it halts the simulation.
When using n processors, simulations need to run only roughly 1/n times
the required sequential execution time. Support for Akaroa is integrated into
OMNeT++.

A related project is oProbe [56]. oProbe aims at providing an instru-
ment that helps OMNeT++ simulation models produce statistically sound
results at known quality. oProbe adds a probe component which applies a
controlled stochastic sampling technique in the simulation model, and pro-
vides a graphical user interface for configuring and running simulations with
it. Unfortunately, oProbe has not yet been ported to OMNeT++ 4.x, and
remains available for OMNeT++ 3.x only.

There have also been attempts to utilize large-scale distributed grid sys-
tems like EGEE (eu-egee.org) with OMNeT++ [265]. However, the main
problem on those grids is the lack of support for proper sandboxing (i.e.
enforcing resource and access limits on submitted jobs), which makes it nec-
essary for the operators of those grids to set up administrative and technical
procedures that make getting access and submitting simulation jobs a lengthy
and complicated procedure. For this reason, running discrete event simula-
tions on large-scale grid systems has not really taken off yet.

3.4.6 Animation

Network animation is provided by the graphical runtime interface Tkenv ,
cf. Figure 3.2. Animation is automatic, that is, the simulation code does
not need to be instrumented with animation requests. The animation is
also generic, that is, not specific for network simulation: it works equally
well for queueing network simulations, process chain simulations and other

54 3. OMNeT++

simulations. Tkenv lets the user open a graphical inspector (animation can-
vas) for any compound module or several compound modules. The canvas
shows the submodules (network nodes, protocols, etc.) and their intercon-
nections. Positions, icons, background image and other graphics attributes
come from module (or channel) display strings. On startup, Tkenv automat-
ically opens a canvas for the toplevel compound module which represents the
network.

During simulation, Tkenv animates as messages or packets travel between
modules, and animates method calls between modules as well. The simulation
author can affect the animation by manipulating display strings (for example,
updating coordinates of a mobile node, or changing the coloring of a protocol
module depending on its state) during simulation.

Tkenv provides live animation, as opposed to playback provided by ns-
2’s nam tool. Compared to playback, live animation has its advantages (all
objects can be examined in detail at any time, see next section; can be com-
bined with C++ debugging) and disadvantages (it is not possible to play
backwards or to re-play parts of the history) as well.

Limitations of Tkenv have been well understood, and it is planned to have
a better animation framework, with support for custom animation effects, and
the possibility to go back and re-play past events.

Fig. 3.2: The Tkenv Graphical Runtime Environment

3.4 Running Simulations 55

3.4.7 Debugging and Visualization

Inspectors

In addition to animation, Tkenv also displays debug log output of modules,
and lets the user inspect the model on object and field level. For example, it
is possible to examine the contents of queues, or peek into network packets.
The contents of the future event list is also visualized on a log-scale time
strip. The simulation runtime knows about all objects in the model, and it
is possible to search, for example, for all IP datagrams in the network.

Event Logs and Sequence Diagrams

OMNeT++ simulations can optionally create an event log file, which records
simulation events such as message creations and deletions, event scheduling
and cancellation; message sends and packet transmissions; model topology
changes; display string changes; debug log messages from simple modules;
and other information. Message and packet fields may also be captured in the
event log file at a configurable level of detail; this feature relies on reflection
information generated by the message compiler. Overall, event log files may
be meaningfully compared to ns-2/ns-3 network animation files.

Fig. 3.3: Sequence Diagram

56 3. OMNeT++

The Simulation IDE can visualize the log using an interactive sequence
diagram, which significantly facilitates the verification of protocol models,
cf. Figure 3.3. The chart can be panned and zoomed, there are several ways
(linear, nonlinear, step, etc.) to map simulation time and events to the x
axis, and the chart can be filtered by modules and by various other criteria.
Tooltips show the properties of events and messages/packets in detail, and it
is also possible to browse the detailed log of actions by simulation event. The
sequence chart can also be exported in the SVG format. During operation,
the tool only keeps parts of the file in memory, so it is feasible to view event
log files of several gigabytes in size.

Simulation Fingerprint

An interesting OMNeT++ concept is the simulation fingerprint. This is prac-
tically a hash code calculated with a simple algorithm during the runtime of
a simulation. The fingerprint can be used as a simple regression testing tool:
very often the development of a new feature or a refactoring on the C++
code (for example adding or removing statistics, or rewriting informal code
to a state machine pattern) is not supposed to change the operation of a sim-
ulation model, and the fingerprint before and after the code change should be
the same. The fingerprint algorithm takes into account variables that are very
likely to differ if the model diverges to another trajectory (event timestamps
and IDs of modules when the events occurred), and ignores non-essentials
like debug output, the set of generated statistics, names in the model, and so
on. It has also been found that simulation fingerprints are largely indepen-
dent of the CPU architecture (modulo 64 vs. 80-bit precision of IEEE 754
floating-point calculations), so they can help in validating models ported to
a new architecture as well.

3.5 Result Collection and Analysis

3.5.1 Result Collection and Recording

OMNeT++ distinguishes three types of results: scalars, vectors, and statis-
tics. A scalar is a single number; vectors are timestamped time series; and
statistics are records composed of statistical properties (mean, variance, min-
imum, maximum, etc.; possibly also histogram data) of time series.

The traditional way of recording scalars and statistics in OMNeT++ is to
collect the values in class variables inside modules, then let the modules out-
put them in the finalization phase with record calls. Vectors are traditionally
recorded via output vector objects. Recording of individual vectors, scalars
and statistics can be enabled or disabled via the configuration (ini file), and
it is also the place to set up recording intervals for vectors. The problem with

3.5 Result Collection and Analysis 57

this approach is that the result types are hardcoded in the simple modules’
code, whereas different experiments (validation run vs. parameter study) of-
ten require one to record the same variable at different detail levels (i.e. all
values as a vector, or only the mean as a scalar).

With the introduction of the signals mechanism, result recording is be-
ing transitioned to use signals for greater flexibility. Modules would act as
signal sources, and the user would be able to decide whether to record a par-
ticular variable as a vector, as a statistic (mean, variance, histogram data,
etc.), or to record only a single property of the variable (mean, time average,
count, maximum value, etc.) as a scalar. The simulation framework would im-
plement result recording by registering listeners on the modules. The signal
framework would also allow for implementing aggregate statistics (such as the
total number of packet drops in the network) and warmup periods (ignoring
an initial time interval when computing scalars or statistics) as well. It would
also allow the user to employ dedicated statistics collection and aggregation
modules in the simulation, without the need to change existing modules.

3.5.2 Result Files

Simulation results are recorded into textual, line-oriented scalar files (which
actually hold statistics results as well) and vector files.7 The file format is
well specified, extensible, and open for other simulators to adapt. There are
standalone implementations (Java) for recording files in this format, and
experimental support for the format is included in the ns-3 simulator as
well. The advantage of a text-based format is that it is very accessible with
a wide range of tools and languages including Matlab, GNU R, Python or
Ruby.

Vectors are recorded into a separate file for practical reasons: vector data
usually consume several magnitudes more disk space than others. Vector
files are self-describing: they contain many attributes of the simulation run:
the network, experiment-measurement-replication labels; iteration variables;
time/date, host, process id of the simulation, etc. By default, each file contains
data from one run only. The vector file contains data clustered by vectors,
and indexed for efficient access. This allows for extracting certain vectors
from the file, and even near random access within vectors, without having to
read the full contents of the vector file even once.

7 Recording is actually configurable. Users can provide their own plug-in output
vector manager and output scalar manager classes, and activate them in the
configuration. Implementations that write into a MySQL database are provided
as examples.

58 3. OMNeT++

3.5.3 Visualization using the Simulation IDE

The OMNeT++ Simulation IDE provides an integrated result analysis tool.
The tool intends to combine the ease of use of graphical user interfaces with
the power of scripting. One of the design goals of the tool was to eliminate
repetitive work: the user does not want to re-do all charts after re-running
simulations due to some change in the code or in the configuration.

The tool lets the user specify a set of result files to work with, and lets
the user browse the data in them. For browsing, data can be displayed in
tables, in a tree organized by experiment-measurement-replication labels or
various other ways, and it can also be filtered.

Fig. 3.4: Line Chart in the Result Analysis Tool

The tool also lets the user create various charts from simulation results:
line charts from vectors, cf. Figure 3.4; bar charts and scatter plots from
scalars; histogram charts, and other charts. These charts can be exported in
various raster and vector image formats. Data for the charts are the result of
filtering operations on the result files (“select all vectors named end-to-end
delay”), possibly followed by other operations (“apply moving average”). The
set of files to operate on can be specified using wildcards; if new matching
files are created or existing files are replaced, charts and data tables in the
UI get updated automatically.

There are several built-in operations. Extensibility is provided via GNU R
(r-project.org), an open-source statistical computing and graphics language.
In the IDE, users can create custom charts and custom processing nodes as
GNU R scripts.

3.5 Result Collection and Analysis 59

Fig. 3.5: Datasets in the Result Analysis Tool

The analysis tool is actually an editor for an analysis file. The analysis
file contains the file names or wildcard patterns for the input files, and var-
ious dataset items that describe the steps of selecting data from the inputs,
the operations to apply, and the charts to draw from them, cf. Figure 3.5.
Datasets serve as “recipes” for drawing the desired charts from raw data, and
can be thought of as a GUI-based script language.

An alternative to the Simulation IDE’s analysis tool is to use the visual-
ization part of SimProcTC [124], a GNU R-based toolset and script library
which also covers the parametrization of OMNeT++ simulation runs and
distributed batch processing.

This Page Intentionally Left Blank

4. IKR Simulation Library
Jörg Sommer (University of Stuttgart, Institute of Communication Net-
works and Computer Engineering)
Joachim Scharf (University of Stuttgart, Institute of Communication
Networks and Computer Engineering)

4.1 Introduction

The Simulation Library (SimLib) of the Institute of Communication Net-
works and Computer Engineering (IKR) [216] at the University of Stuttgart
is a tool for event-driven simulation of complex systems in the area of commu-
nications engineering. The first version of the IKR SimLib was implemented
in Pascal in the 1980s. Later in 1993, during his dissertation [256] Hartmut
Kocher redesigned the Pascal simulation library and developed an object-
oriented class library of the IKR SimLib in C++. Since that time, we have
enhanced and improved the library continuously. Driver for this development
is the wide usage at the IKR as well as the involvement of many programmers.
In 2008, we translated the IKR SimLib to Java while keeping all concepts
and mechanisms of the existing C++ class library. Today, two editions of
the IKR SimLib are available: The C++ edition and the Java edition. Each
edition comes as a separate class library. The IKR SimLib is publicly avail-
able under the GNU Lesser General Public License (LGPL) and thus allows
changes within the libraries itself as well as proprietary programs to use it.

The design objectives of the IKR SimLib were manifold. The IKR SimLib
is problem-oriented in a sense that it supports an effective implementation
of an abstract communication system model. Each simulation model compo-
nent can consist of submodels and components. This leads to a hierarchical
modeling approach. The components are encapsulated and communicate with
each other by exchanging messages using ports. This offers a high reuse and
an evolutionary redefining of new components by modifying existing ones.

The IKR SimLib includes all components that are necessary to control
and execute an event-driven simulation. Examples for such components are
a global calendar and events . Besides, the library supports a modular I/O
concept. During a simulation run, the IKR SimLib computes statistical data,
e.g., confidence intervals. Therefore, a complex post-processing step is unnec-
essary. In order to reduce large simulation execution times, the IKR SimLib
supports distributed simulation on different CPUs and/or cores in a comput-
ing cluster.

The continuous enhancements and improvements lead to a wide field of
application, also outside of the institute. The IKR SimLib was used and is still

62 4. IKR Simulation Library

used for several publicly and privately funded research projects. Simulations
based on this library are also performed in student projects. Up to now, more
than one hundred of these student projects have been finished. Furthermore,
IKR’s industrial partners use this library for complex simulations.

Since its launch, the IKR SimLib has proved its applicability for per-
formance evaluation in a multitude of communication areas, e.g., for IP,
photonic, mobile, signaling, in-vehicle, and P2P networks. For getting the
latest version of the IKR SimLib, a more detailed list of examples, and
getting selected publications, please visit the website http://www.ikr.uni-
stuttgart.de/IKRSimLib.

4.2 Architecture and Conceptual Structure

The IKR SimLib is structured into three main parts as shown in Figure 4.1.
The basic concepts include simulation support mechanisms as well as I/O
concepts. Besides, the modeling concepts support a hierarchical modeling
approach to create individual components that communicate with each other
by exchanging messages. The standard components are composed entities
like a traffic generator, which provide a simple model implementation. In the
following sections, we describe each part in more detail.

Fig. 4.1: Basic structure of the IKR SimLib

4.2 Architecture and Conceptual Structure 63

4.2.1 Basic Concepts

The basic concepts support mechanisms and components for an event-driven
simulation. One of these mechanisms is the simulation control that handles
the initialization, e.g., when to stop the transient phase and begin with the
actual performance evaluation phase and finally when to stop the simulation
batches. The control also signals the according changes to all objects needing
this information. Furthermore, the basic concepts offer inherent support for
event handling, e.g., by providing a calendar. While processing an event, it
is possible to post new events, which are entered into the calendar. After
processing of an event is finished, the next event in the calendar is processed.

The IKR SimLib supports stochastic processes and on-the-fly statistical
evaluation. One important aspect is the distribution-oriented random num-
ber generation. The IKR SimLib implements many continuous and discrete
random distributions. Statistical evaluation is supported by many different
statistics, too. Examples are the sample, counter, conditional mean, and cor-
relation statistic. One distinguishing feature from many other simulation tools
is the provisioning of metrics dealing with the statistical significance, which
is in case of the IKR SimLib a student t-test based confidence interval. In
addition, the library includes a flexible I/O concept which consists of a file
parser for reading parameters and an XML-based output concept for printing
results.

4.2.2 Modeling Concepts

The next main part of the IKR SimLib provides modeling concepts. In gen-
eral, a model has a hierarchical structure and consists of several components
and entities that communicate with each other. Entities are able to post and
handle events. Each entity is derived from the base class Entity and has a
unique local name which is chosen arbitrarily. This name helps to identify
the entity and to locate it via a central component manager. This base class
defines the common properties of all entities and methods for dealing with
ports and events.

The hierarchical decomposition of an entity into a hierarchy of compo-
nents or entities decreases the complexity. In other words, the division into
components brakes down the complexity. It enables a separate handling and
treatment of each entity. This principle corresponds to the divide-and-conquer
approach and leads to a tree structure of entities and components with the
model itself as the root entity [257]. All entities are strictly encapsulated
and communicate with each other by exchanging messages. This message
exchange works by using so-called ports, which define a generic external in-
terface of an entity. This port concept enables the interconnection of entities
in a plug-n-play manner.

64 4. IKR Simulation Library

Furthermore, filters and meters are connected to ports. Filters inspect
and may change messages based on certain rules, e.g., changing specific fields
within the message. In contrast to this, meters primarily update statistics
with values derived from the messages, e.g., the message length or time of
arrival.

4.2.3 Standard Components

The standard components are the third part. Model components like traf-
fic generators , queues , servers , multiplexers, traffic sinks etc. are provided
to ease model implementation. They have also a hierarchical structure. This
offers a reuse of submodels and components that can be further redefined. To-
gether with further utilities, they allow a simple model generation, especially
for queuing networks.

4.2.4 Simple Simulation Model

For illustrating the concepts of the IKR SimLib, Figure 4.2 depicts a model of
a simple single-server queuing network which comprises the network model, a
traffic generator, and a traffic sink. The port concept and a message transfer
protocol enable that the simulation messages are passed from component to
component. After a component recognizes a new message at the output port,
this port notifies the corresponding input port. For example, in Figure 4.2
each time when the traffic generator generates a new message, its output port
informs the input port of the queue. Then, the receiving component decides
if the message will be accepted.

Because of the flexible port concept, the integration of filters and meters
into the model is easy. They read and evaluate the flow of messages at various
points within the model. In Figure 4.2 the integrated Time Meter measures
the processing time in the network model including the waiting time in the
queue and the holding time in the server. For this purpose, the time meter
adds a time stamp to the message when it passes the output port of the traffic
generator. When the message passes the input port of the traffic sink, the
time meter reads and removes the time stamp. In this figure, we have also
two filters. They observe the messages that are passing the input port of the
queue. For example, one of these filters might record a trace of messages of
a defined traffic class.

4.3 Extensions 65

Fig. 4.2: Message-based simulation

4.3 Extensions

We build two additional libraries on top of the IKR SimLib: The IKR TCP
Library [64] and the IKR Emulation Library [330, 329]. The usage of both
libraries is optional.

4.3.1 TCP Library

The IKR TCP Library (IKR TCPLib) offers a basic implementation with all
important TCP mechanisms (e.g., flow and congestion control). This library
allows simulation of elastic applications and elastic traffic flows. The TCP
components, which are included in this library, enable to model unidirec-
tional TCP connections. This means components on the sender side create
TCP data messages, which they transfer over the network. Components on
the receiver side collect the data messages and send back ACK messages to
the sender components. Sender and receiver side may be represented either
by separate collection entities or by a single collection entity integrating both
parts. A further constraint concerns connection control. We model the connec-
tion setup and release in a simplistic manner by providing Setup and Release
methods which have to be called separately on sender and receiver side. The
simulations results of the IKR TCPLib are comparable to other simulation
environments, such as ns-2 (UC Berkeley, LBL, USC/ISI, and Xerox PARC).

4.3.2 Emulation Library

The second extension library is the IKR Emulation Library (IKR EmuLib).
This library can emulate a system that is specified as a simulation model,
i.e., we can use the same model in simulation and emulation in an efficient
and lightweight manner. Additionally, the effort for enhancing an existing

66 4. IKR Simulation Library

simulation tool with emulation capabilities is minimal. For the emulation, mes-
sages in the simulator are sent as real packets, and vice versa. In the IKR
EmuLib, we substitute the simulation calendar by a real-time calendar. The
simulation program itself uses all these libraries and possibly further external
ones.

4.4 Editions

Currently, we are offering two editions of the IKR SimLib and its extensions:
The C++ edition and the Java edition. Each edition comes as a separate class
library that consists of more than 400 classes and tens of thousands lines of
pure code. We developed both editions in consideration of modern object-
oriented design principles and clean software architecture. As the libraries
have almost no platform dependent code, they run under the most common
operation systems (Linux and MS Windows) without any problems. Although
both editions use the same concepts and mechanisms, there exist differences
concerning base libraries and extensions. In this section, we describe both
editions and their differences.

4.4.1 C++ Edition

The C++ edition utilizes two other libraries, namely the IKR Component
Library [63] and the IKR Utility Library [62] as shown in Figure 4.3 on the
left side. These two libraries provide amongst others simple to use strings,
memory management, an argument parser, as well as data structures like
dynamic lists, arrays, and matrices. With respect to these data structures,
the IKR Component Library is comparable to the C++ Standard Template
Library (STL).

As shown in Figure 4.3, the above mentioned extension libraries are avail-
able for the C++ edition.

4.4.2 Java Edition

As depicted in Figure 4.3 on the right side, the Java edition of the IKR SimLib
does not utilize any other libraries, beside Java’s Base Libraries, which are
part of the Java Standard Edition Runtime Environment (JRE). It takes
advantage of the additions to the Java language. The Java Base Libraries like
the lang and util libraries provide all fundamental data structures, functions,
and a rich set of APIs for managing I/O.

4.5 Application 67

To the best of our knowledge, the Java edition is one of the first network
simulators implemented in Java. As shown in Figure 4.3, currently only the
IKR EmuLib is available for the Java edition.

Fig. 4.3: Simulation program in practical usage (C++ and Java edition)

4.5 Application

Writing a simulation program based on the IKR SimLib requires a basic
understanding of the library. The simulation libraries come along with ex-
tensive documentation, comprehensible tutorials, and examples. These help
to get a fast understanding of the library. The philosophy of the IKR Sim-
Lib is that the challenge lies in the appropriate modeling. The model has
to reflect the object of investigation in an abstract, but specialized manner.
Therefore, the library does not include ready-to-use implementations such as
a HTTP/TCP/IP protocol stack or a WDM network. The library offers basic
components such as queues, statistics, and generators that enables an easy
and fast implementation of a pre-designed model.

The implementation complexity of the simulation program depends on
the complexity of the model, but also on the extent of already existing com-
ponents. As already mentioned, a model of a queuing network can profit
significantly from the standard components. In contrast to this, complex
components and all kind of algorithms have to be implemented by hand.
This step can be rather straightforward or very complex, depending on the
problem. There is no simple rule of thumb to quantify the effort.

After finishing the implementation of the model, the execution of simula-
tions is the next step. An extra tool called SimTree supports a user-friendly
definition of simulation parameters. The defined simulation parameters span a
parameter tree. SimTree generates this parameter tree automatically and con-
trols the simulations runs. The results are written to an XML log file. SimTree
also supports the collection of the results from independent simulation

68 4. IKR Simulation Library

runs and the evaluation of a simulation study. Again, this extra tool is well
documented.

Today’s research problems get more and more complex, which leads to
higher model complexity and consequently to longer duration of simulations.
Currently, the number of CPUs and/or cores in a system is increasing. The
CPU performance increases also, but rather slowly. Therefore, since version
2.7 the IKR SimLib provides a parallel execution of simulation points, i.e.,
a single point in the parameter space. Each simulation run is partitioned
into a number of batches that are statistically independent to each other.
The parallel execution enables to run the batches on different CPUs or cores
independently. This reduces the simulation execution time of specific simula-
tions points.

4.6 Summary

The IKR SimLib is well suited for event-driven simulations but can also be
used for other kinds of simulations, e.g., Monte-Carlo [276] simulation. It is
publicly available and continuously improved. Its key advantages are the clear
design, the number of included components, and the powerful statistical eval-
uation support. The IKR SimLib provides a hierarchical modeling concept.
This enables the decomposition of complex models and the implementation
of reusable submodels and components.

The library showed its applicability and flexibility in many projects.
Thereby, it is not only usable for experts in the field of simulation, but also
for beginners due to the documentation and tutorials.

5. Open WNS
Daniel Bültmann (RWTH Aachen University)
Maciej Mühleisen (RWTH Aachen University)
Sebastian Max (RWTH Aachen University)

5.1 Introduction

Performance evaluation by means of simulation is an integral part of any
standardization, system development or research activity. It allows for con-
ducting repeatable experiments in a controllable low-cost environment. Typi-
cally such activities involve multiple parties, which pursue different interests.
This usually leads to a situation where results of own evaluations need to
be defended and evaluation results of other parties need to be reviewed. In
such situations a common simulation platform has a significant potential for
reduction of cost and effort, quality increase and process speed-up. This was
one of the reasons for the decision to release the simulation platform used
and developed at ComNets to the open source community. For additional
information on openWNS see [6].

Whereas most other open source simulation tools are released under the
GNU General Public License (GPL) for openWNS the Lesser General Public
License (LGPL) license was chosen. Compared to the GPL the LGPL ad-
ditionally allows for closed source simulation modules if you only use (link
against) openWNS, but still all modifications to the openWNS libraries them-
selves must be made open source. This relaxation was accepted to alleviate
the adoption of openWNS within the industry.

The presented simulation tool is highly modular and allows users to se-
lect an extension point, which fits best to their needs. However, most of
the protocol models that were released are based on an implementation of
the Functional Unit Networks (FUNs) [402, 403]. Modularization is conse-
quently applied even to protocol building blocks, such that new protocols can
be easily built by selecting appropriate blocks from the Layer Development
Kit (LDK) - a toolbox of protocol building blocks such as Automatic Repeat
Request (ARQ), Segmentation And Reassembly (SAR), buffers, schedulers,
etc.

openWNS has built-in support for simulation and compilation clusters.
Simulation campaigns can be easily managed by users and results of parallel
simulation runs can be browsed with a graphical front-end. The backend is
built by a relational database and a grid engine such as SUN’s SGE.

70 5. Open WNS

5.2 The Simulation Platform

This section introduces the simulation platform of openWNS, which includes
the core components of an event-driven stochastic simulation tool and is the
basis for the simulation framework and simulation modules (cmp. Figure 5.1).
It is written in C++ and is heavily based on the Boost libraries [1] which
provide already many features of the upcoming C++ standard [10], today.

Fig. 5.1: openWNS Structure

5.2.1 Event Scheduler

The event schedulers used in openWNS can be used to directly schedule
C++ functions. The event schedulers are designed to be used with the Boost
C++ library. With the help of Boost’s function and bind library you can
simply make a complex function call in your code and tell the event scheduler
to actually perform that call at later point in time. There is no need to
implement special Event classes that can be scheduled. Just write down the
call and perform it later. The simulation platform also provides a flavor of the
event scheduler that runs in real time (as long as your CPU is fast enough).

5.2 The Simulation Platform 71

5.2.2 Random Distributions

The random number generator is based on the Mersenne Twister algorithm
[308]. The implementation that is used is the one provided by the Boost
random library (i.e. mt19937). The algorithm provides a period of of 219937−1
and passed a number of stringent statistical tests.

The available random number distributions include Uniform, Normal,
Exponential, Poisson, Ricean, Pareto, Erlang, and Binomial. Furthermore,
the random number distributions provided by the boost random library are
available.

For debugging purposes it is possible to use multiple base generators.
In this way one could use a fixed seed for the mobility components but use
random seeds within the link to system level interface to conduct packet error
rate experiments.

5.2.3 Configuration

The Python language is used for configuration of simulation scenarios (cmp.
Figure 5.1). The most important advantage to choose a programming lan-
guage instead of a data representation language such as XML is its scalabil-
ity. To be useful for a wide range of users the configuration mechanism must
be capable to scale with the scenario size and also scale with increasing com-
plexity of simulation models. With an object oriented programming language
the first scale-up can be achieved by functional decomposition of the scenario
setup task, while the second can be achieved through sub-classing or struc-
tural composition of class hierarchies. Python was chosen for its syntactical
clarity and its wide support within the open source community.

5.2.4 Evaluation

The evaluation subsystem of openWNS provides means to sort measurements
according to a measurement context and compress the data by statistically
processing the measurements during the runtime of the simulator. This is
illustrated on the right hand side of Figure 5.1.

At compile time the developer defines measurement sources within the
model and also defines context information that accompanies each measure-
ment (i.e. the node position, the base station to which it is associated, the
used modulation and coding scheme, etc.).

At configuration time the user of the model can decide on the kind of eval-
uation that suits his investigation best. For instance, the user could configure
an evaluation for a Signal-to-Interference-plus-Noise-Ratio (SINR) measure-
ment source. The Probability Density Function (PDF) for each station and

72 5. Open WNS

for each modulation coding scheme can be gathered to determine the number
of false scheduling decisions.

The major advantage of this approach over post-mortem measurement
evaluation is the support for longer simulation runs. When running large sim-
ulation campaigns storage capacity is soon a problem. For example, consider
a simulation campaign which collects the mean SINR for 100 user terminals
within a cell. Assuming that a double precision float value (8 bytes) is used
for the value and that every frame (2ms) a new measurement is generated,
the data rate for this scenario would be 800 bytes per frame. With 100 drops
(terminal positions are fixed but chosen randomly) and 100 seconds simula-
tion time for each drop the necessary storage capacity would be 4GB - only
for the SINR values.

The online statistical evaluation saves space. Furthermore, the clear dis-
tinction between the measurement source and the sorting stages makes it
easy for users to quickly implement their desired evaluation. No changes to
the original models have to be made.

5.3 Simulation Framework

The development of a simulator often requires the implementation of re-
curring software patterns. The openWNS provides a framework that makes
developing of protocols easy. The goal of the simulation framework is to make
development of simulation models and often used parts of protocol stacks easy
to implement and to configure. This is achieved through well-defined clear in-
terfaces, a rich set of predefined protocol building blocks and a high degree of
code reuse, which is achieved by a component-based development approach.

5.3.1 Simulation Model

There is an indispensable need to simulate both, simple queueing systems
as well as complex simulation scenarios with an entirely equipped protocol
stack. The openWNS provides a software architecture that supports both.
Each simulation is defined through the simulation model which specifies two
basic methods: start() and shutdown(). These methods define the entry
point of the simulation model and a point of notification about the end of
the simulation.

5.3.2 Node-Component Model

As stated above the simulation is based on a simulation model which can be
a simple queueing system or a more complex scenario with several stations.

5.3 Simulation Framework 73

The Node-Component model allows for the flexible specification of protocol
stacks. Therefore, each station is represented by a Node class. Each Node
contains a set of components which represent the protocol layers, equivalent
to protocol layers of the ISO/OSI reference model [218]. Figure 5.1 shows the
structure of the Node-Component Simulation Model. Usually each simulator
module defines a specific component type, that can be instantiated inside a
node, see also Section 5.4.

5.3.3 Layer Development Kit

Protocol layer development is often the fundamental step of developing an
openWNS module. Protocol layers in openWNS correspond to ISO/OSI layers
and are subdivided into Functional Units (FUs). There is a simple mecha-
nism to connect FUs. These connected FUs form a Functional Unit Network
(FUN) and represent the central packet processor of the openWNS layer, see
Figure 5.2.

Compound Handler Flow Control

Buffer

ARQ

SAR

Multiplexer

Command Type
Specifier

ARQ

SAR

Buffer

Fig. 5.2: Functional Unit Network

Messages between and inside layers are transmitted through compounds of
commands, which is similar to the blackboard software pattern [83]. Each FU
defines a unique command type. Each compound contains a single instance
of the specific command, that is defined by the command type specifier and
which can only be accessed by the FU.

The compound handler is the central element of the FU. It defines the
actions that are performed for incoming and outgoing compounds. Often, the
developer has only to define the function of the compound handler. Other
elements of the FU can easily be aggregated by predefined components of the
LDK toolbox.

74 5. Open WNS

Another important aspect of the LDK is flow control. FUs provide flow
control for outgoing packets. Each FU provides an interface that gives infor-
mation, whether a compound would be accepted. Hence upper FUs ask lower
FUs before they send outgoing compounds. For incoming compounds, flow
control in terms of blocking is not necessary.

New protocols can be easily built by selecting appropriate blocks from the
LDK, that contains a predefined toolbox of protocol building blocks such as
ARQ, SAR, buffers, schedulers, multiplexers, de-multiplexers, etc. A detailed
description of the FU concept can be found in [403].

5.4 Simulation Modules

This section presents the simulation modules included in openWNS. Starting
with the channel and interference modeling, the WiMAX and WiFi data link
layer modules are presented. openWNS allows for simulations that include
multi-standard nodes that may operate concurrently below the IP network
layer. The transport layer modules for TCP and UDP are introduced. At the
end of this section the available traffic models are presented which can be
operated either on top of the data link, network or transport layer.

5.4.1 RISE - Radio Interference Simulation Engine

The channel model is used to calculate total received signal strength for every
transmission by using the formula

PR = PT − LPL − LSh − LFF + GT + GR (5.1)

PR is the received power, PT the total emitted power by the transmit-
ter, LPL, LSh, LFF the losses due to path-loss, shadowing, and fast fading,
and GT (φ, θ), GR(φ, θ) are the antenna gains at the transmitter and re-
ceiver. The radio propagation model can be independently chosen for each
transceiver type pair. This can be used for example to have different models
for different moving speeds or to define Line-of-Sight (LOS) and Non-Line-
of-Sight (NLOS) connections.

It is possible to include directive antenna models which depend on φ and
θ. Two antenna types are distinguished. The static antenna is described by
its gain in all directions. The beamforming antenna allows to dynamically
adjust its directivity. The algorithm used to calculate the gain is the optimal
beamformer algorithm described in [178].

Several models to calculate the path loss between transmitter and receiver
are available. Those are:

– Constant (distance independent)

5.4 Simulation Modules 75

– Free space
– Single slope
– Multi slope

Distance ranges can be defined and a model applied for each range. The
single slope model is described by the equation LPL = (λ

4πd)γ . d is the dis-
tance between transmitter and receiver, λ the electromagnetic wavelength
and γ the propagation coefficient. In a logarithmic notation γ becomes the
slope. Free space propagation is a special case of the single slope model with
γ = 2.

The multi slope model is created by defining multiple distance ranges us-
ing single slope propagations with different propagation factors. Constant,
distance independent path loss is usually applied for very short or very long
distances. The pathloss models for the IMT-Advanced evaluation have al-
ready been partly included [228].

Different shadowing models to describe the scenario are available. These
models describe the influence of solid obstacles on radio wave propagation.
Three different models are available:

– Map based
– Scenery object based
– Spatially correlated log-Normal

The map based model assumes fixed base station positions. The shadow-
ing is pre-calculated for each base station by a map of the signal degradation
due to shadowing at several sampling points on the scenario. The signal
strength between sampling points is interpolated.

The scenery object based model includes geometric obstructions with a
fixed penetration loss. The total shadowing is defined by the total penetra-
tion loss of all penetrated walls assuming LOS propagation. This is typically
used to create indoor scenarios with walls or outdoor scenarios with whole
buildings. In contrast to the map based model this model does not require
fixed base stations to be one communication end point. It can therefore be
used for mobile-to-mobile station communication.

Spatially correlated log-Normal shadowing is modeled stochastically. A
description of the model can be found in [486]. It is based on a sequence of
correlated, log-Normal distributed random values.

Additionally to shadowing and path-loss, a fast fading model can be en-
abled. Currently, rician fading [484] as well as time correlated and frequency
selective models are available. Time correlation is modeled according to the
Jakes model [238]. The frequency selective fading process is modeled accord-
ing to [426].

76 5. Open WNS

5.4.2 IEEE 802.11 WLAN

The IEEE 802.11 MAC procedure, based on Carrier Sense Multiple Access
with Collision Avoidance (CSMA-CA), is well known; hence, it is used as
an example how a protocol is implemented using the tools available from
the openWNS. Figure 5.3 shows the data flow graph of the implementation.
Each box in the figure represents a FU which is able to process outgoing
and incoming packets in a certain way. As their interfaces are standardized,
these FUs can be aligned and re-used as required by the protocol. The figure
does not show the additional non-standard interface part which is required by
some components, e. g., to get receive of the current channel state (busy/idle)
from the physical layer below.

The implementation in each FU contains both the functionality of a trans-
mitter and a receiver of a packet. In the figure, outgoing packets flow from
top to bottom, incoming packets the other way around. Depending on the
characteristics of a packet (e. g. size, type), outgoing packets can take dif-
ferent paths; at the receiver side the corresponding incoming packet takes
automatically the same path (in reversed direction, of course). FUs are able
to differentiate between incoming- and outgoing packets via their interface.

The implementation can be divided into two parts. The top part, from the
“Overhead” to the first “Packet Switch” FU, is responsible for the non-timing
relevant parts of the protocol:

– The “Overhead” FU adds a fixed-size header to every outgoing data packet.
– The “Buffer” stores a limited number of outgoing packets if immediate

transmission is not possible (e. g. if the channel is busy); the buffer is
configured as a dropping First-In/First-Out (FIFO) queue.

– The “Stop-And-Wait ARQ” is responsible for the transmission of an
Acknowledgment (ACK) packet for every correctly received data packet;
Furthermore, it stores every outgoing data packet and repeats the trans-
mission until an ACK packet is received or the maximum number of trans-
mission attempts is reached.

– Finally, the “Rate Adaptation” uses information about average number of
required tries of past transmission to select a Modulation- and Coding
Scheme (MCS) which assures efficient operation.

At the end of the non-timing relevant part, the “Packet Switch” FU de-
termines the further processing of outgoing packets.

– ACK frames are transmitted after a constant delay, which is defined by the
IEEE 802.11 standard as the Short Inter Frame Space (SIFS).

– Non-ACK frames with a size less than a (configurable) threshold are trans-
mitted using the Distributed Coordination Function (DCF), i. e. CSMA-
CA with a contention window that grows for retransmissions.

– Non-ACK frames with a size greater or equal than the threshold are
preceded by an exchange of small Ready to Send (RTS) and Clear to

5.4 Simulation Modules 77

Overhead

Buffer (Dropping)

ARQ (StopAndWait)

Rate Adaptation

RTS / CTS

DCF Constant Delay (SIFS)

Packet Switch

Packet Switch

Size > ThresSize < Thres

RTS else

ACK

Rx Filter

Fig. 5.3: The IEEE 802.11 MAC in the openWNS.

78 5. Open WNS

Send (CTS) packets that reserve the channel for the successive longer
transmission. The RTS packet uses same DCF as data packets; all fur-
ther packets of the exchange can be transmitted with a SIFS delay only.
Additionally, the FU stores the outgoing data packet until the CTS is re-
ceived or a timeout occurs. In the later case, the failure is reported to the
ARQ.

Finally, all packets leave the MAC via the receive filter which is only
responsible to filter out incoming packets that are not addressed to the re-
ceiver’s address.

Figure 5.3 also indicates with color the origin of each FU: FUs in red are
all-purpose components taken from the openWNS toolbox, FUs in black are
custom-build for the IEEE 802.11 MAC implementation. It becomes clear
that nearly half of the protocol stack was already available, neither imple-
mentation nor testing or debugging was necessary.

5.4.3 IEEE 802.16 WiMAX

The openWNS additionally supports the IEEE 802.16 protocol, also known
as WiMAX. Since the WiMAX protocol realizes a frame based medium ac-
cess scheme, the openWNS has been enhanced to support periodically timed
frames. The WiMAX medium access control module (WiMAC) supports the
Orthogonal Frequency Division Multiplex (OFDM) physical layer Time Di-
vision Duplex (TDD) profile of the IEEE 802.16e standard. Also, WiMAC
supports the Orthogonal Frequency Division Multiple Access (OFDMA) pro-
file for flat channels. The implementation provides special packets for Frame
Control Header (FCH), Down Link (DL) and Up Link (UL) maps, ranging
messages, association and connection establishment packets and bandwidth
requests.

In the recent years, WiMAC has also be enhanced to support relay en-
hanced multihop communication in cellular scenarios. The IEEE 802.16j task
group has put significant effort in developing medium access techniques for
the relay enhanced cellular system. WiMAC implements the transparent re-
lay mode, which makes multihop operations possible, even for unmodified
subscriber stations.

5.4.4 TCP/IP Module

The Internet Protocol (IP) module included in openWNS implements a subset
of IP version 4. Within each simulation node an unlimited number of data
link layers may be included. Each is handled similar to a device node in a
real computer system. This allows for simulation of hybrid multi-technology
nodes. Virtual services for ARP, Domain Name System (DNS) and Dynamic

5.4 Simulation Modules 79

Host Configuration Protocol (DHCP) have been implemented, whereby vir-
tual denotes that there are no Protocol Data Units (PDUs) actually trans-
mitted, but the service is realized transparently within the simulation tool.
It is possible to include delay models for each of these services.

By now, only static routing tables with Time To Live (TTL) support
have been implemented, but the flexible architecture allows for extension of
routing protocols. Furthermore, the module implements IP Tables and pro-
vides internal tunnel devices (similar to Linux’s tunnel device) to support IP
in IP encapsulation. There is no Internet Control Message Protocol (ICMP)
implemented.

The support of DNS and DHCP has been added to make the scenario
configuration as easy as possible. Higher layers address their traffic streams
by using domain names. Tedious IP address mangling is not needed. The
DHCP sub-module takes care of address allocation and also automatically
updates lookup tables within the DNS service.

UDP and TCP models with accurate UDP and TCP headers are available.
The congestion avoidance and slow start algorithms have been implemented
as strategies and can be exchanged by configuration. Currently Tahoe and
Reno are available.

One very beneficial feature of the TCP/IP modules is their capability to
write Wireshark [11] compatible trace files. In this way the powerful network
analysis tool can be used to visualize protocol behavior. There is also a TUN
device available that actually connects the simulator to the operating system,
allowing for live captures during the simulation run.

5.4.5 Traffic Models

The openWNS load generator is named Constanze. Basically, it consists of
traffic generators and bindings. Traffic generators create packets while the
binding ties the generator to a specific lower layer. Within openWNS it is
possible to connect the traffic generator either to the data link layer, network
layer or transport layer depending on the scenario. The traffic models you
can choose from are:

– Simplistic Point Process (PP) models including Constant Bitrate, Pois-
son distributed traffic or the more generic version that allow for arbitrary
random distributions for both packet inter-arrival time and packet size.

– Markov-Modulated Poisson Process (MMPP) models. The IMT-Advanced
VoIP model [228] or variable bit-rate models like MPEG2.

– Autoregressive Moving Average (ARMA) models. These are typically used
to model variable bit rate video or ATM traffic but have also been applied
to model online game traffic.

Constanze’s traffic generator bindings take care of adapting the traffic
source and sink to the desired protocol layer. Traffic sinks record throughput

80 5. Open WNS

and delay statistics and are called listener bindings. Generators can be bound
to the

– Data Link Layer (DLL). In this case the binding is aware of the MAC
address of source and sink and it injects the generated packets accordingly
into the protocol stack.

– Network Layer (IP). openWNS uses IP as its network layer. The IP bind-
ing is similar to the DLL binding but uses IP-Addresses instead of MAC
addresses.

– Transport Layer (TCP, UDP). The UDP binding additionally is aware of
the destination port. The TCP binding is responsible to open and close a
connection before transmitting any packets.

This structure of the traffic generator module makes its usage very simple.
The traffic source characteristics are configured completely separate from the
deployment within the simulation scenario. Sources can be plugged on any
layer and traffic routing can be decided individually per generator instance.

5.5 Cluster Computing Support

One of the most advanced features of the openWNS simulation platform is
its support for cluster computing. During the development phase, compila-
tion cycles can be significantly accelerated by employing a compile cluster.
openWNS supports icecc out of the box.

Even more important is the support during the simulation phase, par-
allelizing whole simulation campaigns, which consists of multiple simulation
runs, each simulation run with different parameter sets is performed on a
single processor. Many simulation tools do not offer support for this and
leave the implementation of collecting results, extraction of measurements
and parameter plots to the user. openWNS offers the Wrowser (an acronym
for Wireless network simulator Result Browser) which solves this problem
and lets users focus on the research rather than on the scripts that collect
their measurements.

The approach taken by Wrowser is illustrated in Figure 5.4. Wrowser
supports Sun Grid Engine and Postgresql databases as cluster and database
backends. The starting point for running a simulation campaign (i.e. param-
eter sweeps) and analyzing the results is a scenario configuration file. This
file is augmented by the user with definitions of the parameters that should
be altered between different parallel simulation runs on the cluster, e.g. one
could define to increase the offered traffic from 0 to 30 Mbit/s in steps of 1
Mbit/s and for all of these load settings set the packet sizes to 80 byte and
1480 byte.

Once this is done these settings are written to the database and the sim-
ulation directories are prepared. The user queues all simulation runs and
waits for the simulations to finish. Once a job executes on a cluster node it

5.5 Cluster Computing Support 81

Fig. 5.4: Wrowser

first retrieves its simulation parameters from the database and then starts
the simulation run. After the job has finished, all results are written to the
database for further study. All these steps are highly automated and require
no user interaction.

As soon as the first results have been written to the database the graphical
frontend of Wrowser can be used to access the results. Wrowser is aware of
all the simulation parameters and parameter plots can be generated within a
few steps. Figure 5.4 shows a plot of the carried traffic over the offered traffic
for different packet sizes within a WiFi system.

This Page Intentionally Left Blank

6. From Simulations to Deployments
Georg Kunz (RWTH Aachen University)
Olaf Landsiedel (RWTH Aachen University)
Georg Wittenburg (Freie Universität Berlin)

6.1 Introduction

Ever since network simulation was established the community is holding a
never ending discussion on its credibility and degree of realism [35, 147, 149,
150, 270, 359]. Hence, network researchers and developers feel an increas-
ing pressure to deliver experimentation results next to simulation such as
from testbed and real-world settings for a credible and realistic evaluation of
protocols and distributed systems.

In this chapter, we discuss evaluation tools beyond network simulation
and put a special focus on frameworks that enable a seamless transition back
and forth between different evaluation tools such as network simulators and
operation systems to limit the need for protocol reimplementation.

6.1.1 A Protocol or Distributed System Coming to Life

The road that a protocol or distributed system takes from an initial idea to a
deployable version is long and bumpy (see Fig. 6.1). Commonly, after a design
phase, often including mathematical analysis, a distributed system or proto-
col is implemented in a network simulator. Its abstraction from real systems
provides invaluable evaluation features such as controllability, repeatability
and observability which allow to gain an insight and understanding of com-
plex communication systems.

Next, testbeds employ real hardware, and thus promise a protocol evalu-
ation under real-world conditions. This increases accuracy and credibility of
the evaluation results significantly, especially regarding those properties that
are typically hard to model in simulations such as radio propagation, system
artifacts, realistic Internet traffic and topologies. The final step of the proto-
col development process is an initial deployment in kernel or user-space of an
operating system, allowing an exact evaluation in terms of performance un-
der high system load. Finally, a protocol awaits standardization and inclusion
into major operating systems or applications.

Optionally, network emulation and full-system emulation complete the
journey of a protocol from concept to deployment. Network emulation aims at
combining the advantages of simulation, e.g. controllability and observability,

84 6. From Simulations to Deployments

Network
Simulation
Network

Simulation
Network

Emulation
Network

Emulation
TestbedTestbed DeploymentDeploymentDesignDesign

Linux

Network

PlanetLab Windows

Concept
NS-2

Network
Cradle

EmuLab
FlexLab

Windows
Mobile

OMNeT++
Embedded

Linux
Model-

Net Mesh
Testbed

Tossim TinyOS
WSN

Testbed

EmStar

RTOS

Fig. 6.1: During their evolution, communication protocols and distributed systems
pass through a heterogeneous set of evaluation tools, requiring multiple
re-implementations.

with real-world runtime behavior and code compatibility by executing real-
world network stacks or operating systems in simulation environments. Full-
system emulation models the hardware of a target platform and executes its
operating system and application. Figure 6.2 lists the specific advantages and
disadvantages of each of the classes of tools discussed.

During its evolution, a protocol is re-implemented or ported frequently to
match the different APIs and programming languages of the tools required for
its evaluation, resulting in additional implementation and testing effort. This
effect is further amplified by the need for feedback between the individual
steps in the development cycle. Thus, results from testbed based evaluation
are fed back into the design and simulation processes and require multiple
implementations to be maintained in parallel. Overall, we note that network
simulation is only a single step in the process of a protocol coming to life.

6.1.2 Bridging the Gap between Simulation and Deployment

Aiming to ease protocol development and to reduce the need for re-implemen-
tation, a number of tools have emerged to bridge between network simulation
and deployment. Their design bases on the observation that in the domain
of communication protocols simulation models often resemble complete and
fully functional protocol implementations. Hence, these tools provide an ab-
straction layer between a protocol implementation (or even the complete
system) and the evaluation tools. Thus, such an abstraction layer allows a

6.1 Introduction 85

Fig. 6.2: Each class of tools for protocol evaluation provides its own, specific ad-
vantages and disadvantages.

protocol or distributed system to be directly executed and evaluated on a
large number of platforms and evaluation tools without the need for reim-
plementation. Typically, their benefits are (1) simulator interoperability, (2)
co-simulation, (3) testing of OS user space or kernel code in network simu-
lators and – vice versa – testing of simulation models in the real-world. We
briefly discuss each benefit in the following:

Simulator Interoperability. Commonly, network simulators focus on selected
domains of communication systems in terms of available models and visu-
alization capabilities, such as wireless networks, Internet communication or
wireless sensor networks. Thus, an abstraction layer offers a common API
and programming paradigm to a protocol implementation. It allows to move
a protocol seamlessly back and forth between network simulators taking ben-
efits of their individual strength such as the models of underlying network
layers.

Co-Simulation. Co-simulation combines different network simulators, testbeds
and real-world deployments to provide more realistic results while keeping the
scale of an experiment manageable. However, these tools typically have inde-
pendent network models – each with its own level of abstraction and packet
representation, limiting the interoperability of the implementations.

Using the same protocol implementation on different systems via an ab-
straction layer inherently ensures interoperability. Thus, we can connect net-
work simulation and testbed or real-world deployments to achieve advantages
in terms of realism and scalability and gain insight and controllability.

Testing of Simulation Models in Real-World and Vice Versa. Finally, plat-
form abstraction allows to move protocols and distributed systems from net-
work simulators to operating systems and vice versa. Hence, it allows testing
of simulation based implementations in testbeds and also enables model cali-
bration. Furthermore, it allows to move kernel and user-space protocol stacks
to the simulator for large scale evaluation [239, 61, 284] and testing [240].

86 6. From Simulations to Deployments

6.1.3 Chapter Overview

The remainder of this chapter is structured as follows: Section 6.2 discusses
design concepts for abstraction layers to enable the integration of a single
implementation into multiple evaluation tools. We introduce widespread in-
tegration frameworks in Section 6.3. Section 6.4 briefly discusses use cases
and Section 6.5 concludes this chapter.

6.2 Design Concepts

In this section, we address the fundamental design concepts that lay the
ground for the tools discussed above and in Section 6.3. We specifically focus
on the design of their abstraction layers and present design challenges and
trade-offs.

The primary task of an abstraction layer is to enable the execution of
one system or program (guest) on top of another system (host) which is not
its natural execution environment. This is achieved by mimicing the guest’s
execution environment while utilizing the interfaces and properties of the
host execution environment.

At the very core of the design process is the quest for a lightweight ab-
straction layer. This quest is motivated by the desire to reduce the impact
on system properties such as performance, maintainability, and portability,
typically caused by a complex abstraction layer: First, a complex abstraction
layer degrades system performance due to a significant amount of additional
operations that need to be performed within the layer. Second, it reduces
maintainability because changes to the underlying systems may demand time
consuming modifications of the abstraction layer. Finally, a complex abstrac-
tion layer hinders portability since it may require considerable programming
effort to support new platforms.

However, the complexity of the abstraction layer heavily depends on the
properties of the systems involved. In the following, we discuss selected prop-
erties and their influence on the system architecture.

6.2.1 Interfaces to System Resources

Network protocols, just as any other program executed on a computer, require
a distinct and clearly defined set of system resources: i) memory, ii) timer
and obviously iii) network access. In the following, we review these resources
in more detail. Furthermore, we discuss how the complexity of their platform
specific interfaces influences the abstraction layer design.

Memory. Network protocols need to be able to dynamically manage system
memory in order to maintain state information such as routing table entries.

6.2 Design Concepts 87

Fig. 6.3: Mapping two rich interfaces (left) increases the complexity of the abstrac-
tion layer in comparison to slim interfaces (right).

Across most systems, the memory management interface is very similar and
typically provides functions for allocating and freeing memory at runtime.
Differences arise when a platform offers multiple functions for managing mem-
ory with different specific properties as it is often the case in operating system
kernels. Furthermore, embedded operating systems, which are used on sensor
nodes for example (TinyOS , Contiki , etc.), may not support dynamic mem-
ory allocation, but memory usage is often statically determined at compile
time.
Timer. Time-outs are an essential mechanism in network protocols to avoid
deadlocks caused by infinitely waiting for a remote host. Thus, network pro-
tocols make use of timers in order to be notified of time-outs. In accordance
with the event-based runtime execution model, a timer interface usually al-
lows to define a handler function that is executed when the timer duration
expires. Furthermore, protocols need to query the current system time in
order to measure connection properties such as round-trip-times.
Network Access. The ability to send and receive network packets is a basic
requirement for network protocols. While a packet is generally sent by calling
a specific function, receiving is handled using either a synchronous (user-space
sockets) or asynchronous (network simulators and operating system kernels)
mechanism depending on the execution environment.

These resources are available on every operating system and network sim-
ulator, but can only be accessed via system specific and thereby incompati-
ble interfaces . Hence, a program that has been implemented for one specific
system cannot generally be executed on another system. Consequently, the
abstraction layer has to map one set of interfaces to another set.

Network protocols generally require only narrow interfaces to the three
different types of system resources. However, many systems provide a rich set
of interfaces for either convenience or access to platform specific functionality.
For instance, instead of one, the Linux kernel offers several different timers

88 6. From Simulations to Deployments

Fig. 6.4: The interfaces of a typical operating system differ in complexity.

with varying granularity. As a result, mapping those rich interfaces increases
the complexity of the abstraction layer in comparison to systems with simpler
interfaces.

Figure 6.3 further illustrates this fact. In this example. the underlying
system A provides a rich set of interfaces to its resources – indicated by the
sinuous line. The abstraction layer on the left side of the figure intends to
offer a similarly rich interface to system B – indicated by the zigzag line.
In contrast, the abstraction layer on the right side restricts its interfaces
to a minimum as illustrated by a smoothed zigzag line. As a result, the
right abstraction layer is of significantly lower complexity (height) then the
abstraction layer on the left side.

Independently from particular systems, the complexity of resource inter-
faces varies depending on their position in the system architecture. A typical
operating system provides two sets of exceptionally slim interfaces: the socket
interface and the hardware abstraction layer (HAL). Those interfaces form
a "narrow waist" and are hence well suited for platform abstraction. In con-
trast, operating system kernel-space and user-space offer rich sets of interfaces
requiring a considerable amount of glue code in order to map the available
functionality (see Fig. 6.4).

6.2.2 Runtime Execution Model

The runtime execution model defines how the program flow is driven forward
and how the processing of inputs is conducted at runtime. In the event-based
programming model , a program continuously awaits external and internal in-
puts, i.e., events, upon whose occurrence it processes the associated input
data. In terms of communication protocols, sending and receiving of pack-
ets as well as time-outs naturally resemble events. Hence, the event-based

6.2 Design Concepts 89

programming model forms the substrate for implementing communication
protocols across all platforms considered in this chapter.

Within the event-based programming model, we distinguish between two
different execution paradigms: i) synchronous and ii) asynchronous execution.
In the synchronous execution model, the program continuously awaits input
data at certain synchronization points. This data is then subsequently pro-
cessed. In contrast, in the asynchronous execution model the runtime system
executes a specific handler function upon the occurrence of an event.

The abstraction layer is responsible for transparently translating between
different execution models. Fortunately, most of the target systems considered
here such as common network simulators and the network stack of operating
systems employ the asynchronous execution model. The central scheduler of
a discrete event simulator consumes events from an event queue and executes
the associated event handler function. Similarly, the scheduler in an operating
system calls the appropriate handler function when a hardware or software
interrupt is fired, e.g., upon arrival of a network packet. Consequently, frame-
works that focus on bridging these asynchronous systems (e.g., [61, 239]) do
not require a translation between different execution models, but interrupt
and event handling can directly be mapped to the according set of functions.
However, there are exceptions to this observation such as the well-known
socket interface and simulators like SimPy [307] which employ a synchronous
execution model. Thus, when connecting a user application, which typically
communicates via sockets, to a discrete event simulator, an execution model
translation is essential.

6.2.3 Programming Language Adaptation

The third major area that needs to be addressed by the abstraction layer is
programming language adaptation that comprises of two sub-tasks: i) inter-
facing between different programming languages and ii) state isolation of the
systems to be bridged. We discuss both tasks in the following.

Interfacing Programming Languages. Interfacing different programming lan-
guages is not a design issue that first arose in the context of abstraction
frameworks, but it has already been widely used before. Hence, all major
programming languages such as C/C++, Java, and even scripting languages
like Python and Tcl provide libraries for executing code in any of the other
languages. In particular, the network simulators ns-2 and OMNeT++ employ
a bi-language programming approach in which the simulation model core is
defined in C++ and network topology as well as visualization is realized in
Tcl. Especially the OMNeT++ community has recently developed projects
like JSimpleModule [473] and CSharpModule [272] that allow to program the
core functionality in Java and C# respectively instead of C++. Since these

90 6. From Simulations to Deployments

languages provide advanced features such as automatic memory management,
those projects offer easier access to network simulation for beginners.

In general, the most commonly used programming language today is still
C as it is supported on all operating system platforms which themselves, es-
pecially the kernel and thus the network stack, are implemented in C. Since C
is basically a sub-language of C++ and many network simulators are based
on C++ (OMNeT++, ns-2/3, SSFNet), those systems can easily be com-
bined. Hence despite its age, C is still the programming language of choice
when designing an abstraction layer.
State Isolation. Typically, a simulation model consists of multiple instances
of the system under investigation, e.g., a simulated network contains several
nodes that each run an instance of a new network protocol. Hence, being
able to create and maintain multiple instances with isolated state spaces
in parallel is essential. Achieving state isolation is trivial if the model to
be instantiated is implemented in an object oriented language because the
runtime system takes care of separating state variables. If this is not the case
or if the system makes use of global variables, new means of state isolation
need to be enforced by the abstraction layer. We discuss two very different
approaches to this problem in the following.

The first approach to eliminate global variables, taken by the Network
Simulation Cradle [239] (see Sec. 6.3.2), bases on an automatic source code
transformation. The basic idea is to replace all global variables with an array
of variables. Consequently, each instance is assigned one particular array
index. In the second approach, implemented by COOJA [342] (see Sec. 6.3.2),
the simulation framework keeps record of the memory blocks which contain
the states of all instances. At runtime, the framework dynamically swaps the
memory region of one particular instance in place before executing the event
handler and saving the potentially updated memory block again. The latter
does not require changes to the source code, but causes a relatively high
runtime overhead due to extensive memory copy operations.

In conclusion, we observed that i) network protocols require only a well
defined set of system resources and ii) many systems provide very similar
interfaces and execution models. Thus, the design and development of an
abstraction layer is in general feasible with reasonable effort. Furthermore, the
introduction of an additional abstraction layer is achievable with acceptable
performance overhead.

6.3 Integration Frameworks

After introducing the fundamental design concepts in the previous section, we
now present a selection of representative implementations of these concepts.
We start by introducing a set of criteria and requirements to highlight ad-
vantages and disadvantages of each implementation and then continue with

6.3 Integration Frameworks 91

a more in-depth discussion of each of them. Finally, we proceed to classify
the approaches based on the previously established criteria.

6.3.1 Classification Criteria

In order to classify existing approaches to software integration, it makes
sense to focus on the user perspective on the framework. The major con-
cerns fall into three categories: (i) usability, i.e. how difficult is it to work
with a given integration framework, (ii) correctness, i.e. in how far are the
results trustworthy, and (iii) performance, i.e. what is the overhead imposed
by the framework. These concerns can be further subdivided as follows:

– Usability: The usability aspects describe how difficult a framework is to
use, in particular for new developers. This includes the initial learning curve
as well as the repetitive work required for running simulations.
– Complexity: The complexity of the API may range between the very

narrow interface of plain packet and timer handlers and an entire kernel
or firmware API. The more complex the API is, the harder it is for
new developers to port their system or protocol in reasonable time. This
effect may be mitigated by reusing a well-known API in the glue code
(see below).

– Familiarity: Reimplementing a well-established API in the glue code
is preferable to starting from scratch. The drawback is, however, that
established APIs are commonly platform-specific and tend to be rather
complex (see above).

– Integration: If an existing codebase is to be integrated into a simulator,
two problems arise: First, in most cases a number of initial changes need
to be applied to the codebase, and second, an ongoing effort may be
required while continuing work on the project. Some frameworks include
special-purpose tools to help the developer with these issues.

– Correctness: The correctness of a framework depends on in how far the
API has the very same functional properties on all supported platforms
and in how far the lower level components, i.e. those below the API, are
modeled correctly.
– Consistency: The semantics of the API provided by the glue code on

the simulator should be as close as possible to those of the real platform.
Consequently, any code running on top of the API should be completely
agnostic about whether running as part of a simulation or on a real
system.

– Accuracy: Depending on the focus of the simulation, it may be desirable
to evaluate low-level metrics, e.g. the radio signal strength or the number
of bytes transmitted. Especially for high-level APIs, this requires the
framework to properly model and implement all underlying components.

92 6. From Simulations to Deployments

Alternatively, frameworks may also decide against providing low-level
metrics for the sake of speed and simplicity.

– Performance: The performance of a framework relates to how efficient in
term of runtime overhead the integration into the simulator is handled.
– Overhead: Integrating the codebase of a system or protocol into a sim-

ulator usually imposes a runtime overhead over a native implementation
in the simulator. This is due to only part of the simulator API being in-
directly exposed to the codebase via the glue code. Additionally, running
several instances of a non-native system or protocol within the simulator
requires explicit memory management.

The key aspect that influences all of these criteria is the level of abstrac-
tion provided by the integration framework, i.e. at which layer in the network
stack is the glue code inserted to translate between different platforms. Ob-
viously, if a rather high level of abstraction is chosen, e.g. the UNIX socket
API, then it is more challenging for the framework to guarantee correctness
and accuracy of the simulation. In contrast, if a low level of abstraction is
chosen, e.g. DLL frames, then inaccuracies induced by the simulated routing
and transport layers become a non-issue. The choice of which layer of ab-
straction (and consequently which framework) to use depends on the focus
of the system or protocol under development.

6.3.2 Exemplary Frameworks

In the following, we will describe four software integration frameworks and
sketch their focus and internal design. Three of these exemplary frameworks
have their background in the simulation of wireless sensor networks (WSNs)
and are suitable to discuss design alternatives due to the lack of established
software interfaces in this particular field.

Network Simulation Cradle

The aim of the Network Simulation Cradle (NSC) [239] is to integrate existing
kernel-space implementations of networking stacks into the ns-2 network sim-
ulator. The approach is to parse the C code of the network stack, replace the
declarations of global variables with per-node instance variables and compile
the code as a shared library. As part of this library, kernel-level interfaces are
mapped to ns-2 via a layer of architecture-specific glue code. The library can
then be linked against ns-2 and run simulations of the kernel-space protocol
implementations.

The network stacks of both Linux, FreeBSD and OpenBSD have been suc-
cessfully integrated into ns-2. Integration is supported in part by the parser
that semi-automatically handles global symbols. However, exactly which

6.3 Integration Frameworks 93

symbols need to be adapted needs to be set manually for each stack. The
evaluation shows that there is a runtime overhead of running integrated code,
but it is linear in both number of nodes and simulation time and hence large
simulations are still feasible. Further, a comparison of packet traces shows
that real and simulated network stacks generally behave quite similarly, with
the main source of differences being the granularity of timing information.

TOSSIM

TOSSIM [284] is a simulator with the specific goal of transparently running
TinyOS 1applications. It does not follow the approach of integrating existing
code into a simulator via glue code, but rather implements a new simula-
tor from scratch. The component-oriented software architecture of TinyOS
greatly supports integration into a simulator: Hardware abstraction is pro-
vided by software components with specific interfaces which are enforced at
compile time. For the simulation, these components are replaced with pure
software counterparts that model the behavior of the real hardware. In the
code that is to be simulated, the compiler is used to replace global variables
with arrays indexed by the node ID. The simulation is event-driven and radio
communication is modeled with bit error rates for each uni-directional link.

The key advantage of TOSSIM is its seamless integration with TinyOS
and the nesC programming language. As TinyOS applications are already
inherently structured into components, it is relatively easy to replace the
hardware abstraction layer, i.e. the components that interact with the hard-
ware, with a different, simulated one. On the other hand, the radio model is
quite simplistic, e.g. it does not accurately describe interference caused by si-
multaneous transmissions. The simulator is also missing some other features,
e.g. mobility models are not part of TOSSIM.

Avrora

Avrora [465] is a full-system emulator and models widespread sensor nodes.
As full-system emulator it models the hardware of a sensor node, including
micro-controller, radio chips and sensors, representing typical sensor nodes
such as Mica2, Mica2dot and MicaZ . Thus, it is binary compatible to these
platforms and executes a sensor node operating system including its device
drivers and applications without the need for cross-compilation. Avrora pro-
vides highly realistic results in terms of timing and memory usage, as it ex-
ecutes the binary compiled for the sensor node itself. Overall, full-system
emulation provides a very detailed insight into a communication system,

1 TinyOS is a special-purpose operating system for wireless sensor networks de-
veloped at UCLA. It is implemented in the nesC programming language.

94 6. From Simulations to Deployments

operating system, and application. For more details on emulation, please
see Chapter 7.

COOJA

While the previous integration frameworks were always tied to one particular
level of abstraction, COOJA [342] explicitly supports simulation at different
levels and even combining multiple levels in the same simulation. More pre-
cisely, COOJA supports systems or protocols implemented in Java specifically
for the simulation, code written for Contiki2and machine code compiled for
the ScatterWeb ESB3sensor node. The simulator core is a in-house develop-
ment and supports simple unit-disc models for radio propagation as well as
ray tracing. The method used for integration depends on the level of abstrac-
tion, however, in contrast to other approaches, it does not require changes to
the source code. Instead, COOJA swaps the content of the memory region
in which the global variables are located based on which node is currently
active.

By supporting simulations across several levels of abstraction, COOJA al-
lows for more flexibility during the design process of a new system or protocol.
Essentially, it is up to the user to decide which part of the system should be
evaluated at which level of abstraction. An additional bonus is the fact that
no changes to the codebase are required. However, the way global state is
handled in COOJA incurs some additional runtime overhead as compared to
the other frameworks.

Other Approaches

As part of the ActComm project, Liu et al. [293] integrate several user-space
routing protocols into their simulator by redirecting calls to the socket API
into the simulator. Their goal is to compare routing metrics across different
simulators and validate the results using data from a testbed deployment.

The OppBSD project [61] developed an abstraction layer that enables the
integration of the FreeBSD network stack in the OMNeT++ network simu-
lator. Thereby, it allows a detailed analysis of full-featured Internet protocol
implementations such as TCP, IPv4, ARP and ICMP.

6.3 Integration Frameworks 95

Criteria � Framework NSC TOSSIM Avrora COOJA*
Level of Abstraction NET PHY HW variable
Usability 0 + + +

Complexity - 0 - -/0/+
Familiarity + + 0 0/+/-
Integration 0 + + + + ++/+/+ +

Correctness + 0 + + +
Consistency + + + + + +/+/+
Accuracy 0 - + + +/0/-

Performance / Overhead + + - - -/0/+ +
Supported Platforms Linux TinyOS Mica2 ESB

FreeBSD own sim. Mica2dot Contiki
OpenBSD MicaZ own sim.

ns-2
Maintenance - 0 - -

* By level of abstraction (hardware/operating system/network) where applicable.

Table 6.1: Comparison of Integration Frameworks

6.3.3 Comparison of Approaches

There is no single framework that is equally suitable for all use cases. In fact,
the choice of framework will in most cases be dictated by which platforms
need to be supported. However, for projects in their very early stages, it may
well pay off to choose a platform based on the availability of tools for software
integration.

Table 6.1 summarizes the comparison of the frameworks presented in the
previous section. Of all four frameworks, NSC focuses most on the correct-
ness and that at a comparatively high level of abstraction. This is more
challenging to achieve as compared to frameworks that provide an abstrac-
tion closer to the hardware. Furthermore, it is the only one to build upon
a well established simulator as opposed to implementing the simulator and
low-level components from scratch. The main goal of TOSSIM is to provide a
development sandbox for TinyOS applications. As a hardware emulator, it is
comparatively easy for Avrora to achieve very trustworthy results, however,
this comes at the price of a significant runtime overhead. Finally, COOJA
combines the advantages of TOSSIM and Avrora for the Contiki and Scatter-
Web ESB platforms and leaves it up to the user to fine-tune the simulation.

Looking at the internals, NSC and TOSSIM are alike in that they pre-
process the codebase in order to integrate it into the simulator, while this is
not required for Avrora and COOJA. Only the approach taken by TOSSIM
2 Contiki, like TinyOS, is an operating system for wireless sensor nodes developed

at the Swedish Institute of Computer Science (SICS).
3 The ScatterWeb ESB sensor node is based on the TI MSP430 micro-controller

and the TR-1001 radio transceiver and was developed at Freie Universität Berlin.

96 6. From Simulations to Deployments

results in a comparatively low maintenance burden on the framework de-
veloper, because the other three approaches have to ensure consistency and
accuracy for more complex interfaces.

6.4 Use Case Examples

Software integration frameworks can be used to validate the simulation core
and the implementation of low-level components. The following exemplary
use cases run simulated and real systems based on the same software stack
and evaluate the differences in the traces in order to judge the validity of the
simulation.

In [240], the authors of NSC use their framework to generate traces of the
network stacks of Linux, FreeBSD and OpenBSD and compare these traces to
those gathered from an emulation testbed running the same stacks natively.
Generally, the traces are very similar. However, looking at the details of the
traces, e.g. for the Linux stack, there are subtle and yet noteworthy differ-
ences. First, the TCP PUSH flag is set differently on the simulator because
of the way the simulated application interacts with the integrated network
stack. Second, the TCP window size is dependent on the memory allocation
strategy in the network card driver. This behavior needs to be considered in
the simulation glue code in order to achieve a matching progression of win-
dow sizes. The things to be learned from this use case are twofold: On the one
hand, the similarity between the traces supports the validity of simulation-
based results using this stack. And on the other hand, the work on subtle
differences points at shortcomings of the simulation architecture which one
may consider to address in future version of the simulator.

In the domain of wireless sensor networks, energy and consequently execu-
tion time are crucial when developing applications that are to sustain multiple
years of deployment without support. As a result, it is necessary to evaluate
new protocols and applications in terms of energy consumption. We need
to measure the number of processor cycles that were consumed by a certain
protocol or application and the duration that individual device parts, such as
the radio, sensors, etc., were active. As full-system emulator, Avrora provides
extensions for energy models [274] and allows detailed traces of energy con-
sumption. Furthermore, PowerTOSSIM [422] and TimeTOSSIM [275] provide
timing and energy extensions for TOSSIM (see Sec. 6.3.2). As TOSSIM is a
simulator instead of a full-system emulator, these extensions are slightly less
accurate and detailed than the Avrora extensions, but benefit from the high
scalability of simulation and allowing their usage even in large scale scenarios.

In [501], the authors use software integration to evaluate the accuracy of
the radio propagation models as implemented in the ns-2 network simulator.
The experimental setup consists of two ScatterWeb ESB sensor nodes which
are placed at various distances from each other and from these positions send

6.5 Conclusion 97

a fixed number of packets at various transmission power settings. The same
experimental setup is replicated in the simulator and simulations are run
with different parameter sets for the radio model according to several sources
from the literature. The comparison between the packet delivery rates as
measured in the real experiment and gathered from the simulations shows
average differences between 8% and 12%, but for some combinations of inter-
node distance and transmission power settings the data differed by up to 50%.
Software integration was used in this experiment in order to avoid having to
re-implement the required code on multiple platforms. It also turned out that
the API of the glue code had to be extended, as it did not provide hooks for
changing the transmission power at runtime. This underlines that there is
no one-size-fits-all API for software integration, and that adaptations may
be required for experiments that require more fine-grained control over the
simulated system.

6.5 Conclusion

In this chapter we discussed software integration frameworks that enable a
seamless transition of network protocols between different evaluation tools.
These frameworks broaden the evaluation basis available to protocol devel-
opers while at the same time keeping the programming effort low.

The central component of all integration frameworks is an abstraction
layer that transparently translates between two or more systems. We briefly
presented the central design concepts and challenges that require considera-
tion during the development of an abstraction layer.

A set of classification criteria was introduced and discussed. Based on
those criteria, a selection of frameworks was presented and evaluated. Finally,
three use cases showed in detail the benefits of integration frameworks.

This Page Intentionally Left Blank

7. Tools and Modeling Approaches for Simulat-
ing Hardware and Systems
Muhammad Hamad Alizai (RWTH Aachen University)
Lei Gao (RWTH Aachen University)
Torsten Kempf, Olaf Landsiedel (RWTH Aachen University)

7.1 Introduction

Due to its high level of abstraction, flexibility and scalability network sim-
ulation is the standard means for the evaluation of distributed systems. Its
abstraction from implementation details such as target platforms, operat-
ing systems and devices limits the impact of system artifacts and allows a
researcher to solely focus on algorithmic challenges.

However, abstraction can lead to unexpected side effects and make the
implementation of detailed and accurate simulation models challenging [35,
147, 149, 150, 270, 359]. Furthermore, abstraction from system properties in
network simulation makes it prohibitively complex to model properties such
as system load, operating system effects or memory usage.

7.1.1 Need for System Models

In the following we discuss selected use cases to underline the need for
modeling system details at a level of detail that is typically not covered
by network simulation: (1) timing, deadlines and system load (2) energy
consumption, (3) memory usage, and (4) task placement at design and
run-time.

Timing , Deadlines and System Load

For delay sensitive applications such as interactive ones the duration that op-
erations as voice and video coding or cryptography take on a specific hardware
platform are of high interest during system and application design. During
system design a developer has to ensure that time-critical operations, for ex-
ample on a cell phone, will meet application and system specific deadlines.
On systems with severely limited resources such as wireless sensor-nodes with
some 10 KByte of RAM and about 10 MHz CPUs these challenges are fur-
ther aggravated, as the choice of algorithms is strongly influenced by these

100 7. Tools and Modeling Approaches for Simulating Hardware and Systems

limited resources. As network simulation abstracts from target systems and
their properties, it inherently cannot model such details.

Energy Consumption

We expect the batteries of cell phones to last longer than just a couple of
days and hope to deploy wireless sensor networks with a life-time in the or-
der of multiple years. In both cases, we need to include energy considerations
during hardware and software development. While estimates on bandwidth
usage and the number of transmitted and received packets can be derived
from detailed simulation models, an energy model that includes the effects
of CPU, radio and I/O on energy consumption requires a full system model.
Such models include detailed CPU models and a platform specific implemen-
tation of the algorithm to be evaluated. This may either be an implementation
for a general purpose CPU and includes an operating system to evaluate ef-
fects such as scheduling, memory management, interrupt handling and device
drivers or a target-application specific processor such as a DSP or a custom
chip.

Memory Consumption

Next to the resource consumption in terms of computing cycles on a generic
purpose or specialized processor the memory consumption of tasks is an issue.
Especially in the domain of embedded systems it is a goal to equip proces-
sors with the amount of memory required to fulfill its tasks, but not more
than that. This reduces costs and energy usage. However, even when an im-
plementation of an algorithm is available for a specific platform its memory
consumption cannot be derived easily. First off all, load factors such as queued
packets, or stack depth depend on dynamic runtime properties that are deter-
mined not only by the system itself but also by the environment which causes
for example - in case of interference - retransmissions and thereby impacts
queue length.

Task Placement at Design and Run-Time

In addition to the utilization of individual resources such as CPU cycles
or memory, the placement of functionality on dedicated hardware is a key
challenge during the design phase. Developers have to choose from a com-
bination of generic purpose processors, DSPs and custom chips while trying
to keep costs, overall complexity and energy consumption low. Thus, during
the development and design phases one needs to decide where to place which
functionality of a system. This decision can either be done statically at design
time or dynamically changed at run-time.

7.2 Approaches for System Modeling next to Simulation 101

7.2 Approaches for System Modeling next to Simula-
tion

From the electrical engineering perspective low level simulation techniques
like those based on the Register Transfer Level (RTL) are an essential part of
system development. However, those simulation techniques typically provide
simulation speeds in the range of approximately 10-100 Kcycles per second.
For fine-grained hardware simulation those speeds might be acceptable, but
for software development where millions of cycles have to be simulated those
simulation techniques do not scale.

To cope with the demands of software development and debugging the
technique of Instruction Set Simulation (ISS) has been introduced in the
past. Such simulations achieve sufficiently high simulation speeds for up to
a small number of processor cores. For example, the simulation of platforms
like TI OMAP1 achieve simulation speeds close to real-time. Because the sim-
ulation speed of such ISS based simulators behaves anti-proportional to the
number of simulated processor cores, the advent of future Multi-Processor
System-on-Chips puts a particular pressure on the development of such sim-
ulators. A promising alternative technique is based on the principle of timing
annotations. Frameworks like the ones in [404], and [172] increase the ab-
straction level to achieve higher simulation speeds, whereas the framework
in [252] makes use of this technique to allow design space exploration for
hardware/software co-design.

In the remainder or this chapter, we introduce both classes of simulation
techniques in detail:

– Instruction Set Simulation (ISS) based techniques (Section 7.3). The tech-
nique of Instruction Set Simulation allows to imitate the behavior of an
Instruction Set Architecture (ISA), e.g., a processor core. This technique
can be further subdivided:
– Cycle accurate ISS. Cycle accurate ISS operates on the granularity of

processor core cycles.
– Instruction accurate ISS. Instruction accurate ISS operates on the gran-

ularity of instructions.
– Time based annotation of simulation models (Section 7.4). Simulation mod-

els are instrumented with system properties like processing time.

Each (sub-)technique is evaluated and rated in terms of four criteria:
hardware modeling complexity, software modeling complexity, accuracy of
the provided hardware performance metrics, and speed. Finally, we conclude
the chapter by comparing the presented techniques in Section 7.5.

1 TI OMAP platforms are one of the most prominent platforms for wireless hand-
sets like NOKIA’s N- and E-series.

102 7. Tools and Modeling Approaches for Simulating Hardware and Systems

7.3 ISS based Techniques

The technique of Instruction Set Simulation allows to imitate the behavior
of an Instruction Set Architecture (ISA) that may differ from the one the
host machine. Apart from the traditional intention of debugging, testing and
optimizing an application on a different ISA, Instruction Set Simulation (ISS)
can be used to analyze the performance of a given hardware platform during
the design of new processor architectures or embedded systems.

The general principle of ISS is as follows: A given executable is initially
loaded into the memory of the Instruction Set Simulator. During simulation
the simulator sequentially fetches an instruction from memory, decodes it for
the targeted ISA and mimics the behavior of the target processor core by
executing the instruction on the host machine. Figure 7.1 depicts the basic
principle of ISS by means of a simplified example.

Software Development
Source
Code

Executable

Compiler Frontend
•Lexical Analyzes
•Syntax Analyzes
•Semantic Analyzes

Compiler Backend
•Code Selection
•Register Allocation
•Scheduler Allocation

Intermediate
Representation

Assembler
Code

Object

Linker

Assembler

Libraries

Instruction Set simulation

Memory

Fetch
(FE)

Decode
(DE)

Execute
(EX)

Fig. 7.1: ISS Principle

Since the simulated ISA typically differs from the ISA of the host machine,
the software executable has to be compiled by a so called cross-compiler.
The emitted executable is based on the machine code of the targeted ISA.
Typically such cross-compilers are built upon a front- and backend while op-
timizations operate on an Intermediate Representation (IR). Examples for
such cross-compilers are manifold. Probably the most prominent ones are
based on the GNU GCC compiler for ARM and MIPS processor cores. The
advantage of such a compiler structure is that re-targeting the compiler to a

7.3 ISS based Techniques 103

different ISA requires merely the replacement of the backend while the fron-
tend and the optimization engines can remain unchanged. [28] discusses the
frontend-design in detail, whereas [325] focuses on optimization techniques
and the backend.

The technique of Instruction Set Simulation (ISS) can be further subclas-
sified into the two classes of cycle and instruction accurate simulation2. While
both techniques operate on the previously illustrated principle which ensures
the correct execution of the given application. However, in comparison to
instruction accurate simulation, cycle accurate models additionally incorpo-
rate detailed modeling of the timing effects of a hardware platform. These
timing effects are mostly caused by the pipeline structure of today’s modern
processor cores. After introducing the basic pipeline principle the techniques
of cycle and instruction accurate ISS will be discussed.

7.3.1 Pipeline Principle

The concept of pipelining can be found in nearly all modern processor cores
and is a common principle to increase the overall throughput. We explain the
principle of pipelining on the basis of an aircraft assembly line. Assume that
a single aircraft is assembled out of three pieces A, B, and C. The respective
time for adding piece A is 20 time units (tu), whereas for B 5tu and for C
10tu are needed. To assemble the complete aircraft in one stage (20 + 5 +
10)tu = 35tu are necessary with each new aircraft finishing after 35tu. When
applying a 3-staged pipeline, in each stage one piece is added and then the
aircraft is passed on to the next stage. Thus in the first stage piece A is added
to the aircraft and in the latter two stages the other two pieces B and C.
Starting with an initially empty pipeline the first aircraft is ready after 35tu
the second one after 55tu and the third one after 75tu. Further aircraft are
leaving the pipeline every 20tu. Please note that a balanced pipeline is highly
desired to achieve maximum throughput. For example, when assuming an
assembling time of 15tu for piece A and B, a new aircraft would be completed
every 15tu.

As previously mentioned, computer architectures make heavily use of such
pipelines. Common processor architectures such as the Cortex-R4 ARM pro-
cessor have an 8-stage pipeline whereas general purpose processors from Intel
and AMD contain 10 to 20 pipeline stages. Figure 7.2 illustrates a 5-stage
pipeline and its execution characteristic. The example execution does not
include hazards, such as pipeline stalls and flushes. Such hazards can be
classified as control hazards and data hazards – especially read-after-write
(RAW), write-after-write (WAW), and write-after-read (WAR) hazards. In
[202] those issues are discussed in detail.

2 Some technical domains use the term “emulation" for instruction accurate
simulation.

104 7. Tools and Modeling Approaches for Simulating Hardware and Systems

Since the pipeline is key to differentiate cycle and instruction accurate
ISS, its concept should be kept in mind for the following discussion of both
techniques.

Fig. 7.2: Pipeline Principle

7.3.2 Cycle Accurate ISS

Figure 7.2 illustrates a pipeline architecture that executes in regular operation
mode (no occurrence of pipeline stalls or flushes [202]). Here each instruction
is processed within its current pipeline stage and passed to the next stage
in the following cycle. This repeats till the instruction has completely prop-
agated through the pipeline. Following this concept, a cycle accurate ISS
models the complete pipeline in full detail. Being sensitive to the clock of the
processor, each pipeline stage is executed based on the current instruction.
The results of each pipeline stage are – just like in real hardware – passed to
the next pipeline stage and processing starts for each pipeline stage with the
next clock cycle.

In addition to the modeled pipeline, other effects occurring on the real
hardware like memory accesses are modeled accurately on the level of
the processor clock. Please note however, that despite being called “cycle
accurate”, timing differences might occur in comparison to real hardware
due to abstractions. Those timing differences are typically in the range of a

7.3 ISS based Techniques 105

few processor clock cycles. However, final verification and measurements for
highly critical real-time constraints should be performed in an RTL simula-
tion or even on the real hardware.

In today’s markets, processor-core vendors follow two different business
models. Whereas the more general purpose domain processor core vendors
like AMD and Intel sell fabricated IP cores (intellectual property cores), other
vendors like ARM, Tensilica and MIPS are fabless and sell their processor
cores on IP basis. Especially companies selling IP cores require well suited
simulators to provide other partners the possibility to include the processor
IP into their systems. Therefore, cycle accurate as well as instruction accurate
simulation models are mostly provided by the vendors themselves. Examples
for such simulators are the Realview [39] processor models of ARM. Elec-
tronic Design Automation (EDA) companies developing system-level design
tools such as CoWare and Synopsys sell within their portfolio simulators for
different processor models. Open-source approaches are mostly build upon
the GNU project debugger (GDB).

Concluding, Figure 7.3 shows the rating for cycle accurate simulation
models. Since cycle accurate models have to capture all hardware effects,
the hardware modeling complexity is rather high (5 points). Additionally,
the complete software has to be developed and compiled for the targeted
processor core, causing the highest software complexity (5 points). Please
note that this effort is not dissipated since the software executable can be
directly copied to the final real hardware. Due to this detailed modeling and
the required modeling effort, highly accurate performance metrics, which are
close to the real hardware, can be extracted from cycle accurate models (5
points). However, those models suffer from the high level of detail in terms of
simulation speed (0 points) and should therefore only be used for fine-grained
investigations of timing effects and performance issues.

Fig. 7.3: Rating and use-case for cycle accurate Instruction Set Simulation

7.3.3 Instruction Accurate ISS

In today’s embedded systems more and more processor cores are applied.
Likewise the amount of software increases steadily [466] and is key for future
systems. Since for software development and debugging a fast exploration

106 7. Tools and Modeling Approaches for Simulating Hardware and Systems

cycle is needed, simulators of the targeted system have to achieve high sim-
ulation speeds, which run at real-time or at least close to that. Therefore,
research and industry have recently focused on increasing the speed of such
simulators. Results are ISSs achieving high simulation speeds which can be
combined to so called Virtual Platforms (VPs). Such VPs model complete
System-on-Chips (SoCs) including processor cores along with the system’s pe-
ripherals such as USB, Ethernet and VGA-output devices. Prominent EDA
vendors providing such VPs are Synopsys, CoWare, Vast and Virtutech. De-
velopment of such VPs is based on the SystemC language on top of C++.
Recently SystemC has become a IEEE Standard 1666™-2005 [215] and the
so called Transaction Level Modeling (TLM) standard 2.0 [215] has been
announced. Both standards have made a significant impact on the model-
ing efficiency and acceptance of SystemC as the Electronic System Level
(ESL) [45] modeling language.

Fig. 7.4: Cycle versus Instruction Accurate ISS model

A key differentiator of instruction accurate models compared to cycle ac-
curate ones is the abstraction level in which the underlying HW architecture
is modeled. Within instruction accurate models the pipeline is completely
neglected in terms of timing. At each clock cycle the instruction is fetched,
decoded and executed in one clock cycle, whereas in the cycle accurate tech-
nique the pipeline is modeled and each pipeline stage executes per cycle.
Figure 7.4 illustrates the difference of cycle and instruction accurate models.
Since effects like pipeline stalling or flushing have a significant impact on the
real execution time, instruction accurate models that do not include such
effects might be inaccurate in their timing. By simplifying the modeling of
the processor core a much higher simulation speed can be achieved. Since it
is essential that the functionality behaves equally to the real hardware and
cycle accurate model, effects caused by e.g., pipeline interlocking, bypassing,
stalling and flushing have to be captured by the model. [202] discusses those
hardware issues in detail. Today, instruction accurate ISSs include further en-
hancements such as just-in-time (JIT) compilation [337] and binary-to-binary
translation to achieve simulation speeds close to real-time. Based on such ISSs

7.4 Time Based Annotations 107

complete platforms like TI’s OMAP platform including two processor cores
and several peripherals such as video accelerators can be simulated close to
real-time. Hence, instruction accurate models allow for software development
and debugging.

Figure 7.5 presents the rating for instruction accurate simulation. Due to
the increased abstraction the HW model complexity is reduced to 4 points.
The software executed in ISS is equal to the software executed on a cycle ac-
curate one or the real hardware. Thus software modeling complexity remains
at 5 points. To accent the simulation speed-up compared to cycle accurate
models, two points have been selected for simulation speed, which come with
only a minor reduction of HW performance characteristics (4 points).

Fig. 7.5: Rating and use-case for instruction accurate Instruction Set Simulation

7.4 Time Based Annotations

ISS based techniques, as discussed in the previous sections, are designed to
imitate a specific hardware platform. They provide a software based imple-
mentation of all the platform components and executes the binary compiled
for the specific platform and is therefore of high use for a detailed evaluation
of applications, operating systems and the hardware platform. Despite sev-
eral advancements in the field of cycle accurate ISS, it is heavyweight when
compared to more abstract simulation techniques and strongly limits per-
formance and scalability. Hence, for network evaluation, which is typically
carried out on a scale of hundreds and thousands of network nodes, ISS is
not a viable choice.

Next to ISS, test-beds are also used for a detailed evaluation of protocols
and applications. Obviously, test-bed results are highly realistic. However,
commonly test-beds contain some tens of nodes and therefore the scalability
of a proposed design and operations with a large number of interactions are
hard to evaluate. Furthermore, repeatability, controllability and system in-
sight are limited and test-beds are quite cost and space intensive. Concluding,
test-beds are unable to replace simulation as a principle mean for analyzing,
evaluating and validating system design.

108 7. Tools and Modeling Approaches for Simulating Hardware and Systems

In this section, we discuss time annotation based techniques developed to
enable detailed system evaluation while minimizing the need to use expensive
ISS. The idea is to simulate hardware specific behavior but deliver better
speed and scalability, the goal, which instruction set simulators have so far
failed to achieve. Section 7.4.1 presents simulation instrumentation based
techniques, which instrument network simulations - based on the discrete-
event paradigm - with essential hardware properties, like timing and power.
The Hybrid Simulation Framework (HySim) is presented in Section 7.4.2,
which enables switching between native execution of application source code
and instruction set simulation. Finally, Virtual Processing Units (VPU), as
discussed in Section 7.4.3, investigate the mapping of application tasks with
respect to space and time.

7.4.1 Simulation Instrumentation

Discrete-event based simulations model the behavior of a system at event
granularity. Thus, time in simulation is handled discretely, i.e. at the begin-
ning of an event the simulation time is set to the execution time of the event
and remains unadjusted throughout the event execution, resulting in each
event taking zero execution time. As a result, discrete-event based simula-
tions are unable to model the time dependent behavior of the real hardware,
limiting its contribution only to testify the functional correctness of protocols
and applications.

Simulation instrumentation is a technique developed to incorporate es-
sential hardware properties, like timing and power, into the simulation. The
idea is to calibrate the simulation models with timing information obtained
from the platform dependent code to enable time-accurate simulation. This
technique nearly provides the accuracy of ISS while perpetuating the key
properties of simulation, such as speed, scalability and easy adaptation to
new hardware platforms and operating systems. Hence, eliminating the need
to use expensive cycle and instruction accurate ISS.

Instrumenting the simulation with timing properties is possible when
nearly identical application and operating system code is executed in sim-
ulation and on the hardware platform, which is typically the case in sen-
sor network operating systems - such as TinyOS [285]. This technique, even
though it introduces instrumentation overhead, outperforms instruction set
simulators in terms of speed and scalability. Currently, TimeTOSSIM [275]
and PowerTOSSIM [422] - simulation platforms for sensor networks - em-
ploy such instrumentation techniques to achieve accurate timing and energy
modeling in simulation, respectively.

7.4 Time Based Annotations 109

Mica2 Assembly Program

…/TestScheduler/TestSchedulerC.nc:118
18e8: 80 91 lds r24, 0x0100
18ec: 88 23 and r24, r24
18ee: 29 f4 brne .+10

…/TestScheduler/TestSchedulerC.nc:119
18f0: 81 e0 ldi r24, 0x01
18f2: 80 93 sts 0x0100, r24

…/TestScheduler/TestSchedulerC.nc:120
18f6: 0e 94 call 0x1900
18fa: df 91 pop r29
18fc: cf 91 pop r28
18fe: 08 95 ret

A
S

M
P

arser

Transformed C-source file
…/TestScheduler/TestSchedulerC.nc:117
event void Timer0.fired() {

line 118 // line directive
adjustClock(4); rescheduleQueue();
if(!r){

line 119
adjustClock(2); rescheduleQueue();
r = 1;

line 120
adjustClock(8); rescheduleQueue();
call TaskRed.postTask();

}
}

G
ram

m
ar

TOSSIM C-source file
…/TestScheduler/TestSchedulerC.nc:117
event void Timer0.fired() {

line 118 // line directive
if(!r){

line 119
r = 1;
line 120
call TaskRed.postTask();

}
}

Mapping
Data

Line: 118 Cycles = 4
Line: 119 Cycles = 2
Line: 120 Cycles = 8

Fig. 7.6: Source-code line mapping between the mica2 sensor-node platform and
TOSSIM simulation source-code

Code Mapping and Clock Advancement

The timing discrepancy of simulation is resolved by enabling it to track the
system time during event execution. Like many other simulation environ-
ments for sensor networks, TOSSIM compiles directly from the platform de-
pendent source code to the host ISA. Therefore, it is possible to determine
the execution time (clock-cycles) of each source-code line being executed in-
side a simulator-event and then increment the simulation clock accordingly
(see figure 7.6). The underlying technique is to automate the mapping be-
tween simulation source-code and the platform specific executable. This is
only possible when nearly identical application and operating system code
is executed in simulation and on the hardware platform, which is typically
the case in sensor network operating systems. Such a mapping enables to
identify the processor instructions corresponding to a source-code line. The
number of cycles consumed by each instruction can easily be determined from
the respective processor data-sheets. Therefore, we can compute the time to
execute each source code line on the sensor-node platform.

The code mapping technique is particularly suited for embedded CPUs
(such as in sensor-nodes) employing sequential instruction execution without
any pipelining and caching strategies. For such platforms, the execution time
of a binary instruction is static and can be modeled without interpreting each
individual instruction.

110 7. Tools and Modeling Approaches for Simulating Hardware and Systems

NesC and
• Priorities
• HPL mapping

C-code parser
• Instrumentation

extended
TOSSIM
driver

NesC
compiler

avr-gcc /
msp430-gcc /…

assembly code
parser standard

TinyOS
build

process

Time-
Tossim
exten-
sions

Instrumented
C-code

Instrumented
C-code

Instrumented
C-code

TimeTOSSIM
Simulation

TimeTOSSIM
Simulation

TimeTOSSIM
Simulation

Source code
mapping +

cycle counts

Source code
mapping +

cycle counts

Source code
mapping +

cycle counts

Se
ns

or
 N

od
e

Si
m

ul
at

io
n

C - codeC - code

Assembly

Fig. 7.7: Integration of TimeTOSSIM into TinyOS build process

Event-queue Adaptation

Instrumenting each source code line with the corresponding execution time
results in overlapping events. Thus, events in the simulation queue shall be
delayed until the execution of the current event is finished. This overlapping
between events can be removed by assigning a priority to every event and
delaying its execution. In the case of TOSSIM, events in the simulation queue
represent hardware interrupts, hence, it is possible to determine the type of
an event and its execution priority. This technique enables rescheduling of
the event-queue and intensifies the simulation models even further to exhibit
timing as well as interrupting behavior of a hardware platform. Correct or-
dering of events can be achieved by visiting the event queue at the start of
every source-code line after incrementing the simulation clock. The idea is
to reschedule events with lower priority, execute events with higher priority
immediately, and thereby delay or interrupt the execution of currently active
events.

Static Code Mapping

For compiling the source code to the host ISA, TOSSIM replaces low-level
platform specific device drivers with simulation wrappers. Therefore, simu-
lation and platform specific code differ at this level and the code mapping

7.4 Time Based Annotations 111

technique is of limited use for low-level device drivers. However, code at this
level provides direct hardware access and usually does not contain loops and
conditional statements and therefore executes in a constant number of cy-
cles. By profiling different hardware components of a sensor-node platform,
it is possible to determine the number of cycles consumed by different oper-
ations performed by these components. This cycle count information is used
to statically map the simulation-wrappers to reinforce time accuracy when
simulation enters their execution. Although this process does not introduce
inaccuracies in terms of cycles, it is not as fine granular as the commonly
used source line granularity. Thus, interrupts may get delayed by a number
of cycles. However, code sections that provide hardware access are usually 10
to 100 cycles and therefore executed in a couple of micro seconds. Overall,
TimeTOSSIM achieves beyond 99% accuracy when compared to ISS. Figure
7.7 shows the complete process and integration of TimeTOSSIM into TinyOS.

PowerTOSSIM is another tool that employs simulation instrumentation
to model the energy consumption of sensor network applications. It extends
TOSSIM by adding a new PowerState module that records energy-state
transitions of each hardware component. Similarly, for the CPU, a mapping
technique is used at the basic-block granularity to determine the number of
clock-cycles for which the CPU remained in its active state. PowerTOSSIM
obtains power-models for each hardware device (e.g. LEDs, sensors, ADC,
radio, CPU) of a sensor-node platform by profiling its components indepen-
dently and in different modes. For example, the energy consumed by the radio
chip in transmitting and receiving modes, LEDs when on and off, and CPU
in active and idle modes. The TOSSIM simulation is instrumented to record
traces of the usage of each hardware component. Later, i.e. after the simu-
lation run, these traces are combined with the power consumption profiles
of each component to compute the overall energy consumed by the whole
simulated network.

Fig. 7.8: Rating and use-case for Simulation Instrumentation

Simulation instrumentation based techniques are focusing on modeling
execution time and power consumption. As shown in Figure 7.8, the HW
modeling complexity is limited to high level simulation wrappers and their
instrumentation with timing information. Therefore, it has been assigned
one point. Existing simulation instrumentation based techniques execute the

112 7. Tools and Modeling Approaches for Simulating Hardware and Systems

complete OS in simulation. As a result, the SW model complexity is higher
and is assigned with four points. Moreover, only the timing and power related
behavior of the hardware can be traced during simulation (2 points). However,
this technique achieves a very high simulation speed when compared to cycle
and instruction accurate ISS and is therefore assigned with 4 points.

7.4.2 HySim

The previously discussed time based annotation technique delivers an ap-
proximate estimation of the clock advancement, whereas an extremely high
execution speed is provided by compiling the software to the host ISA. How-
ever, some compatibility is lost due to the lack of support of several widely
used programming approaches – e.g., using closed source libraries or inline as-
sembly. Noticing that the limitations of time based annotation are offered by
the aforementioned instruction set simulators, a hybrid approach is proposed.

Fig. 7.9: HySim Infrastructure

HySim [172, 266, 171] is a versatile hybrid simulation framework for early
software performance estimation. It is capable of dynamically switching be-
tween two simulation levels – using a slow ISS or a fast but less accurate
Virtual Simulator (VS, also known as virtual coprocessor). Unlike an ISS,
the VS utilizes the application’s C source code directly to achieve high sim-
ulation speed. The entire execution sequence is temporally partitioned and
mapped to the two execution engines. The partitioning is based on a source
code analysis that detects the target dependent code that cannot be sup-
ported by the VS. In turn, the target dependent code is mapped to the ISS

7.4 Time Based Annotations 113

to permit the rest of the code to be natively executed after proper transfor-
mation.

C Virtualization

To preserve the functional correctness, a unique global execution context that
resides in the ISS is maintained, and the VS refers to it as its virtual resource.
This is implemented by transforming the C source code with redirected global
value accesses before it is compiled by the host compiler [172], as shown in
Figure 7.9. This transformation is called C Virtualization since it virtualizes
the resource accessing of C code.

As an example, a piece of C code and its virtualized form are given in
Figure 7.10. The global variable g is located in memory at a specific mem-
ory address. Using this address, the virtualized code can access the variable
located at the ISS through some helper function.

int g; int * _g = MEMORY_ADDRESS_OF_G;
void foo() void foo()
{ {

g = 1; WriteInt(_g, 1);
} }

a) Original C code b) Virtualized form

Fig. 7.10: Example of C Virtualization

Switching Between VS and ISS

For a C application, it is impossible to stop at an arbitrary statement, where
1) every statement preceding this statement in the source code is already ex-
ecuted, and 2) any statement succeeding this statement is not yet executed.
This is due to the side effect of compiler scheduling [325], out-of-order exe-
cution [202] and instruction pipelining [202]. Moreover, the de facto debug
information [3, 4] is inadequate for indicating the location (memory address
or register index) of every local variable at an arbitrary point of execution.
Therefore, the only possible switching points are the function boundaries
(i.e., function calling and returning), which are natural scheduling barriers
if the functions are not inlined. At these points, the usage of registers and
the stack is clearly specified by the calling conventions, and the values of the
global variables are accessible.

114 7. Tools and Modeling Approaches for Simulating Hardware and Systems

Performance Estimation

Time based annotation is performed by the VS to provide cycle advancement
estimation. Apart from that, dynamic events are also simulated. For exam-
ple, data cache simulation is enabled by instrumenting memory referencing
operations into the source code, and these operations can be simulated at
runtime to provide the statistics of the application’s cache behavior. More-
over, a profiling based approach [171] is also introduced, in which HySim can
use ISS as a profiler to obtain the accurate timing information in order to
further improve the precision of performance estimation.

7.4.3 VPU

Compared to the previously discussed technique of timing annotated models,
other frameworks such as [404],[71],[176] and [252] utilize this technique for
design space exploration in the process of building embedded systems, e.g.,
the TI DaVinci and OMAP platforms.

In comparison to general purpose processors and platforms like a personal
computer (PC) embedded systems especially in the domain of mobile devices
have much tighter energy and real-time constraints. For example, execution
of general purpose applications like Internet browsing and office applications
have no tight timing constraints, while voice communication over a wireless
communication device has significant real-time constraints. Additionally, en-
ergy efficiency is highly mandatory for battery driven devices. In [433] an
experiment is considered, where a general purpose processor is performing
the baseband computation of 20 GOPS with a state of the art battery device
of 1400mAh capacity. The resulting active time would be 40 seconds and
the standby time 30 minutes. In comparison, the latest generation of mobile
devices achieve a 100-1000 times higher energy efficiency.

Due to those demands, embedded systems are typically tailored for a
particular application such as wireless communication. To determine the
structure and components of such systems, design space exploration is a key
technique. In the following the technique of timing annotation for design
space exploration is discussed based on the framework introduced in [252].
Central component of this framework is the so called Virtual Processing Unit
(VPU) which can be configured to imitate the behavior of arbitrary proces-
sor cores within a system level simulation. Compared to ISSs the simulation
is based on timing annotation which allows modeling of software execution
exclusively on the basis of timing annotations. During early design phases
no functionally correct software implementation needs to be available that
must be cross-compiled for the anticipated processor core. In a later refine-
ment stages, functionality, e.g., in terms of C-based software, can be included

7.4 Time Based Annotations 115

(a) VPU Performance Model (b) System level design including
VPUs

Fig. 7.11: Principle and use case of the Virtual Processing Unit

until the final implementation is available. In the following the concept and
principle of such timing annotation will be sketched exemplary on the basis
of the VPU.

The example depicted in Figure 7.11(a) illustrates the timing annotation
and VPU mapping mechanisms. The upper part of the figure illustrates two
tasks with their individual timing characteristics which are mapped to a single
VPU instance. The lower part of Figure 7.11(a) shows the resulting behavior
of the VPU according to an assumed scenario, which will be discussed in the
following:

First task 1 is activated by the external init T1 event and executes the first
portion of the task. The simulated execution time directly corresponds to the
annotated time Δt1,d0. Before entering state B, task 1 initiates an external
data transfer request. Waiting for the response of this request, task 2 can
execute in the meantime. First a task swap e.g., initiated by an Operating
System (OS), is performed which requires 5 time units for the given example
such that task 2 can start execution after 15 time units. The VPU takes
care that this swapping time is taken into account and shields the tasks
from external events. In the given scenario execution of task 2 requires more
time then the response of the data transfer of task 1. Assuming task 1 has
higher priority than task 2, a task preemption occurs and task 2 cannot be
resumed before the second portion of task 1 has completed its functionality.
The request generated by task 2 is delayed by the VPU till the correct point
in time is due. Thus, from the perspective of external system components
the external events are visible at the corresponding time of concurrent task
execution.

116 7. Tools and Modeling Approaches for Simulating Hardware and Systems

The VPU concept allows modeling of processor cores that support con-
current task execution, e.g., by means of OS or hardware multi-threading. For
system level simulation multiple VPUs which mimic the different processor
cores of the system can be assembled like in Figure 7.11(b). This supports the
evaluation of different design decisions in a fast and simple manner. Typical
goals of such system evaluations are:

– Identification of the number and type of processor cores.
– Identification of the application to architecture mapping.

One key issue while utilizing timing annotation based simulation is how
to obtain those timing budgets. Especially at the time of design space explo-
ration (in particular at early stages) no software implementation or merely a
non-optimized functional implementation of the intended application exists.
Hence, the identification of the timing budgets or the execution time for a
particular application can be rather complex. Thus, for efficient design space
exploration an iterative design process is required starting at a high abstrac-
tion level with only rough estimates. In a subsequent refinement loop those
estimates are continuously improved till finally the complete implementation
is available. To allow for such an iterative design process, the VPU supports
different levels of software modeling and timing annotation. The supported
ones are illustrated in Figure 7.12.

At the highest level of abstraction, the timing information is extracted
based on statistical functions. In later stages, when at least a rough un-
derstanding of the algorithm exists, developers can annotate the simulation
models on more fine grained levels. In the first case annotations are based on
complete tasks whereas in later stages annotations can be added within tasks
in the software implementation. Please note that those abstraction levels on
top of the VPU support simulation without having any software implementa-
tion at hand. More fine-grained timing annotation based on the μProfiler [249]
or trace-based instrumentation require naturally a software implementation.
When more detailed information about a task and its execution characteristic
exist, higher abstraction levels can be skipped and the refinement loop can
be entered according to the available knowledge.

Concluding, Figure 7.13 summarizes the rating for the VPU technology.
This technique focuses on efficient design space exploration. The HW mod-
eling complexity is less in comparison to instruction accurate modeling. As
a result it has been assigned 3 points. Considering the SW modeling com-
plexity, the method of timing annotation has a special status since different
complexities are supported. When utilizing trace based simulation, SW com-
plexity is as high as in cycle and instruction accurate ISS (5 points) while at
high levels of abstraction only the timing characteristic has to be extracted
which requires only minor modeling (1 point). HW performance metrics like
resource utilization, timing, or the communication on the system buses can
easily be traced in simulation; therefore 3 points are given. Compared to ISS

7.5 Comparison 117

Fig. 7.12: Support timing annotation models of the VPU

this technique achieves higher simulation speeds, but less then pure simula-
tion instrumentation. Therefore it has been assigned 3 points.

Fig. 7.13: Rating and use-case for Virtual Processing Unit

7.5 Comparison

After discussing different techniques for modeling hardware systems, we now
provide a comparison between these techniques taking into account different
modeling issues like the level of detail, complexity, and performance.

ISS delivers highly accurate performance metrics of a system since it ex-
ecutes platform dependent binary code at a cycle or instruction accurate
level. Providing such a level of detail requires complete implementations
of complex models of the underlying hardware. As a result, instruction set

118 7. Tools and Modeling Approaches for Simulating Hardware and Systems

Fig. 7.14: Comparison of different hardware simulation techniques

simulators have limited speed and restricted scalability. In general, emulation
based techniques are considered more suitable for detailed hardware design
evaluation and validation. However, for evaluating complex software, such as
network protocols, capturing system properties and interactions at cycle and
instruction accurate level is exceedingly heavy and may not be a suitable
choice for software developers.

Next to ISS are time annotation based techniques that try to bridge the
gap between emulation and high speed but abstracting simulation. These
techniques aim at modeling essential hardware properties, timing in partic-
ular, while minimizing the need for using expensive emulation for software
evaluation. In terms of performance and scalability, these techniques outper-
form emulation but are still much slower than the original uninstrumented
discrete-event based simulations. Overall, these techniques are more suitable
for evaluating time critical applications that heavily depend on the behavior
of the underlying hardware.

Finally, discrete-event based simulations offer much higher speed and scal-
ability than emulation as well as simulation instrumentation. Nonetheless, it
completely leaves out the modeling of hardware dependent behavior of the
system. Thus, it only contributes to testing the functionality and algorithmic
properties of a software. Figure 7.14 summarizes and rates all the techniques
that we have discussed in this chapter.

Concluding, it is important to model the hardware dependent behavior
of the system where the underlying platform is limited in resources like en-
ergy, computation power, and communication bandwidth. Typical examples
of such systems include embedded systems and battery driven mobile and
wireless systems. A wide variety of techniques and tools exist to model hard-
ware in simulation. These tools provide different levels of detail, complexity
and use cases. Hence, choosing the right simulation technique depends on
the purpose and the focus of the particular investigation at hand. For ex-
ample, for typical hardware evaluation, instruction set simulation is still the

7.5 Comparison 119

most viable choice. But for more accurate software evaluation, time anno-
tation based techniques are more suitable than ISS or simulation. Similarly,
discrete-event based simulations remain an automatic choice when it comes
to testifying the functionality of a software.

This Page Intentionally Left Blank

8. Parallel Discrete Event Simulation
Georg Kunz (RWTH Aachen University)

8.1 Introduction

Ever since discrete event simulation has been adopted by a large research
community, simulation developers have attempted to draw benefits from ex-
ecuting a simulation on multiple processing units in parallel. Hence, a wide
range of research has been conducted on Parallel Discrete Event Simulation
(PDES). In this chapter we give an overview of the challenges and approaches
of parallel simulation. Furthermore, we present a survey of the parallelization
capabilities of the network simulators OMNeT++, ns-2, DSIM and JiST.

8.1.1 Why do we need Parallel Discrete Event Simulation?

Communication systems are becoming increasingly complex – and so do the
corresponding evaluation tools. In general, two orthogonal trends in terms
of complexity can be identified: an increase in structural complexity on the
one hand and in computational complexity on the other. Both impose high
demands on the simulation architecture and the hardware executing the sim-
ulations.

We denote the size of a simulated network as an indicator of the struc-
tural complexity of a simulation model. Recent developments in the Inter-
net, in particular fast growing systems like peer-to-peer networks, caused an
enormous increase in the size of communication systems. Such large systems
typically posses complex behavioral characteristics which cannot be observed
in networks of smaller size (e.g., testbeds) or captured by analytical mod-
els. Thus, in order to study those characteristics, simulation models comprise
huge numbers of simulated network nodes. Since every network node is rep-
resented in memory and triggers events in the simulation model, memory
consumption and computation time increase significantly.

Even if the investigated network is relatively small, computational com-
plexity becomes an important factor if the simulation model is highly detailed
and involves extensive calculations. In particular wireless networks which
make use of advanced radio technologies such as OFDM(A) [258] and Turbo
Codes [58] fall in this category. Sophisticated radio propagation models, in-
terference modeling, and signal coding models further escalate the overall
complexity.

122 8. Parallel Discrete Event Simulation

Simulation frameworks aim to compensate these issues by enabling simu-
lations to be executed in parallel on multiple processing units. By combining
memory and computation resources of multiple processing units, simulation
time can be restricted to a reasonable amount while at the same time ex-
tremely high memory requirements can be met. Although this approach is
known for more than two decades [162, 164, 365], recent technological ad-
vances greatly reduce prices for parallel computing hardware – thus making
such hardware available to a large research community and moving back into
the focus of simulation developers.

8.1.2 Challenges of Parallel Discrete Event Simulation

The approach taken by PDES is to divide a simulation model in multiple
parts which execute on independent processing units in parallel. The central
challenge of PDES is thereby to maintain the correctness of the simulation
results as we will see in the following.

We first briefly recapitulate the concept of discrete event simulation. Any
discrete event simulation, i.e., the simulation framework and a particular
simulation model, exhibits three central data structures: i) state variables of
the simulation model, ii) a timestamped list of events, and iii) a global clock.
During a simulation run, the scheduler continuously removes the event with
the smallest timestamp

emin = min{T (e)|∀e ∈ E}

from the event list and executes the associated handler function. T denotes
the timestamp function which assigns a time value to each event and E is the
set of all events in the event list. While the handler function is running, events
may be added to or removed from the event list. Choosing emin is crucial as
otherwise the handler function of an event ex with T (emin) < T (ex) could
change state variables which are later accessed when emin is handled. In this
case the future (ex) would have changed the past (emin) which we call a
causal violation.

By complying with this execution model, a sequential network simulator
prevents causal violations. However, this model cannot easily be extended to
support parallel execution since causal violations may occur frequently. The
following example presents a naive approach and illustrates its flaws.

Assume that n processing units, e.g., CPUs, can be utilized by a parallel
simulation framework. In order to keep all available CPUs busy, the central
scheduler continuously removes as many events in timestamp order from the
event queue as there are idle CPUs. Hence, at any time, n events are being
processed concurrently. Now consider two events e1 and e2 with T (e1) <
T (e2) that have been assigned to different CPUs in timestamp order. The
processing of e1 creates a new event e3 with T (e1) < T (e3) and T (e3) < T (e2).

8.2 Parallel Simulation Architecture 123

Since e2 has already been scheduled and may have changed variables that e3

depends on, a causal violation has occurred.
Thus, we formulate the central challenge of PDES as follows:

Given two events e1 and e2, decide if both events do not interfere, hence al-
lowing a concurrent execution, or not, hence requiring a sequential execution.

Parallel simulation frameworks employ a wide variety of synchronization
algorithms to decide this question. The next section presents a selection of
fundamental algorithms and discusses their properties.

8.2 Parallel Simulation Architecture

In this section, we introduce the general architecture of parallel discrete event
simulation. This architecture forms the substrate for algorithms and method-
ologies to achieve high simulation performance while maintaining correctness
of the simulation results.

A parallel simulation model is composed of a finite number of partitions
which are created in accordance to a specific partitioning scheme. Three ex-
emplary partitioning schemes are i) space parallel partitioning scheme, ii)
channel parallel partitioning, and iii) time parallel partitioning.

The space parallel partitioning scheme divides the simulation model along
the connections between simulated nodes. Hence, the resulting partitions
constitute clusters of nodes. The channel parallel partitioning scheme bases
on the assumption that transmissions that utilize different (radio) channels,
mediums, codings etc. do not interfere. Thus, events on non-interfering nodes
are considered independent. As a result, the simulation model is decomposed
in groups of non-interfering nodes. However, channel parallel partitioning is
not generally applicable to every simulation model, thus leaving it for spe-
cialized simulation scenarios [288]. Finally, time parallel partitioning schemes
[290] subdivide the simulation time of a simulation run in time-intervals of
equal size. The simulation of each interval is considered independent from
the others under the premise that the state of the simulation model is known
at the beginning of each interval. However, the state of a network simula-
tion usually comprises a significant complexity and is not known in advance.
Thus, this partitioning scheme is also not applicable to network simulation in
general. Consequently, the remainder of this chapter focuses on space parallel
partitioning.

A Logical Process (LP) constitutes the run-time component which han-
dles the simulation of partitions. In this context, each partition is typically
mapped to exactly one LP. Furthermore, every LP resembles a normal se-
quential simulation as each LP maintains state variables, a timestamped list
of events and a local clock. Additionally, inter-LP communication is con-
ducted by sending timestamped messages via FIFO channels which preserve

124 8. Parallel Discrete Event Simulation

Fig. 8.1: A logical process (LP) maintains a local clock, an event queue and is
connected to other LPs via FIFO channels.

a local FIFO characteristic. This means that all messages arrive at the receiv-
ing LP in exactly the same order as they were send in. Based on the notion
of LPs, the local causality constraint defines an execution model for LPs that
prevents causal violation:

Local Causality Constraint. A discrete-event simulation, consisting of logical
processes that interact exclusively by exchanging time stamped messages
obeys the local causality constraint if and only if each LP processes events in
non-decreasing time stamp order.

In practice, the number or LPs (i.e., partitions) is equal to the number
of CPUs provided by the simulation hardware. Consequently LPs directly
map to physical processes. Furthermore, the timestamped and message-based
communication scheme constitutes two important properties. First, they al-
low a transparent execution of LPs either locally on a multi-CPU computer
or distributed on a cluster of independent computers. Second, and more im-
portantly, timestamps provide the fundamental information used by synchro-
nization algorithms to decide which events to execute and to detect causal
violations. We now present two classes of synchronization algorithms: con-
servative and optimistic algorithms. While conservative algorithms aim to
strictly avoid any causal violation at time of the simulation run, optimistic
algorithms allow causal violations to occur, but provide means for recovering.

8.2.1 Conservative Synchronization Algorithms

Conservative synchronization algorithms strive to strictly avoid causal viola-
tions during a simulation run. Hence, their central task is to determine the
set of events which are safe for execution. In order to decide on this question,
conservative algorithms rely on a set of simulation properties [43].

The Lookahead of a LP is the difference between the current simulation
time and the timestamp of the earliest event it will cause at any other LP. The
Earliest Input Time (EIT) denotes the smallest timestamp of all messages
that will arrive at a given LP via any channel in the future. Accordingly, the

8.2 Parallel Simulation Architecture 125

Fig. 8.2: Three LPs are deadlocked in a circular dependency: Every LP waits for
its neighbor to send a message in order to increase the EIT.

Earliest Output Time (EOT) denotes the smallest timestamp of all messages
that a given LP will send in the future to any other LP.

Based on these definitions, a LP can safely execute all events which have
a smaller timestamp than its current EIT since it is guaranteed that no
messages with a smaller timestamp will arrive later. Figure 8.1 shows an
exemplary LP and the corresponding time values.

Null-Message Algorithm

The simple approach presented above does not solve the synchronization
problem entirely as it can cause the simulation to deadlock. Figure 8.2 illus-
trates this behavior. The LPs can neither execute an event from their local
event queue nor any incoming message since the local EIT is too small. Hence,
each LP waits for a message from its direct neighbor in order to increase the
EIT thereby creating a circular dependency.

This problem is addressed by the Null-Message Algorithm (NMA) which
was first introduced by Misra and Chandra [317]. The algorithm uses null-
messages, i.e., messages which do not contain simulation model related infor-
mation, to continuously increase the EIT of all neighboring LPs. For this
purpose, null-messages carry the LP’s current EOT timestamp, which is
determined by adding the lookahead to its current local time. Hence, null-
messages can be considered as a promise of an LP not to send any mes-
sage with a smaller timestamp than EOT in the future. Upon receiving a
null-message, each LP updates its EIT to a potentially greater value. If the
updated EIT has advanced beyond events in the event queue, those are now
considered safe for execution. This algorithm guarantees to prevent deadlocks
if the simulation model does not contain zero-lookahead cycles.

126 8. Parallel Discrete Event Simulation

Performance Considerations

The performance of conservative synchronization algorithms is highly influ-
enced by the size of the lookahead. If the lookahead is small, a potentially
excessive number of null-messages is exchanged by the simulation without
actually making progress. This system behavior is often called the “time-
creeping” problem: Assume two LPs that are blocked at a simulation time
of 100 seconds and whose next (simulation model) events are scheduled at
a simulation time of 200s. Due to a small lookahead of only 1 second, 100
null-messages have to be transmitted in order to reach the next event.

However, the actual size of the lookahead is an inherent property of the
simulation model – not of the synchronization algorithm. In network simu-
lations the lookahead is usually determined by the link delay between the
nodes. This works well for simulation models of fixed and wired networks
such as the Internet by considering long distance backbone links. Unfortu-
nately, link delays are extremely small in wireless networks, thus decreasing
the lookahead significantly. As a result, extensive research work has been con-
ducted on the development of techniques to extract the maximum lookahead
from a simulation model [291, 315]. The general idea of these approaches is
to exploit standardized protocol-specific properties such as timeouts or wait-
ing periods (e.g., SIFS and DIFS in IEEE 802.11) to increase the available
lookahead.

In consideration of these facts, it is important to determine the potential of
a simulation model for achieving a satisfactory parallel performance. Given a
specific simulation model and particular simulation hardware, Inequality (8.1)
allows for roughly answering this question for the Null-Message Algorithm:

Eseq ≥ nτPλ

L
(8.1)

If (8.1) holds, then the model is expected to perform well under NMA.
Eseq denotes the event density of the simulation model under sequential exe-
cution, i.e., the number of events per simulated second, and n is the number
of LPs under parallel execution. Furthermore, τ measures the messaging la-
tency of the physical simulation hardware, while P characterizes its comput-
ing power in processed events per second. λ represents the coupling factor of
the LPs, describing how fluctuations of E and P effect blocking of LPs, and
finally, L denotes the lookahead. An in-depth discussion of these approxima-
tions can be found in [476].

Ideal-Simulation-Protocol

Researchers have proposed a wide range of synchronization algorithms pro-
viding different properties and characteristics. The Ideal Simulation Protocol

8.2 Parallel Simulation Architecture 127

(ISP) [43] is a means for determining the overhead of any conservative synchro-
nization algorithm, thereby allowing an objective performance comparison.

ISP bases on the observation that each synchronization algorithm im-
poses two types of overhead: messaging overhead which is caused by sending
(simulation model) messages to LPs on remote machines and the actual syn-
chronization overhead which is caused by blocking and additional (synchro-
nization) messages that are only used by the algorithm (e.g., null-messages).
While messaging overhead is a property of the simulation model, the syn-
chronization overhead is a property of a particular algorithm. The idea of
ISP is to eliminate the synchronization overhead while preserving the mes-
saging overhead, hence achieving an optimal simulation performance which
acts as a baseline for any other synchronization algorithm.

ISP is a two-phase synchronization protocol: in the first phase, ISP em-
ploys an arbitrary conservative algorithm for the parallel simulation of a sim-
ulation model of choice. During this phase it collects meta information about
all messages and events that occurred in the simulation run and writes those
to a trace file. In the second phase the simulation is re-run with respect to
the information from the trace file. By utilizing this information, an optimal
synchronization is achieved without the need for inter-LP synchronization.
Thus the efficiency of an algorithm S with respect to a specific simulation
architecture A is given by

Efficiency(S, A) =
Execution time using ISP on A

Execution time using S on A

8.2.2 Optimistic Synchronization Algorithms

In contrast to conservative algorithms, optimistic synchronization algorithms
allow LPs to simply execute all events (in time stamp order) as they come
in, but without ensuring that causal violations will not occur. This probably
counter-intuitive behavior is motivated by the observation that conservative
algorithms sometimes block LPs unnecessarily: Often not enough information
is available to mark a certain event safe, although it actually is. Hence, the
simulation performance is reduced significantly.

Thus, optimistic algorithms assume that an event will not cause a causal
violation. This approach has two primary advantages: First, it allows ex-
ploiting a higher degree of parallelism of a simulation model. If a simulation
model contains two largely independent partitions, which interact only sel-
dom, only infrequent synchronization is actually needed. Second, the overall
performance of the parallel simulation depends less on the lookahead. Thus
making it attractive to models with small lookahead such as in wireless net-
works.

Clearly, the downside is that a causal violation leaves the simulation
in an incorrect state. As a result, optimistic algorithms provide recovery

128 8. Parallel Discrete Event Simulation

mechanisms: during a simulation run, the PDES engine continuously stores
the simulation state. Upon a causal violation, the simulation is rolled-back
to the last state known to be correct.

Time-Warp Algorithm

The Time-Warp Algorithm [241] is a well-known optimistic algorithm. A
causal violation is detected when an LP lpi receives a message m with a
smaller time stamp than its own local clock: T (m) < T (LP). As a result, lpi

restores the latest checkpoint known to be valid. Since the incorrect simula-
tion state not only affects lpi, but also any other LP that recently received
a message from lpi, the subsequent roll-back must also include those LPs.
Hence, lpi initiates the roll-back by sending an anti-message to all neigh-
boring LPs for every message sent since the restored checkpoint. If an anti-
message is enqueued in a channel queue together with the corresponding
original message, i.e., this message was not yet processed by the receiving
LP, both annihilate each other. If, however, the original message was pro-
cessed, the receiving LP also initiates a roll-back. By using this process,
the algorithm recursively drives all incorrect messages and states out of the
system.

Performance Considerations

A major drawback of this class of algorithm is the significant amount of hard-
ware resources needed for storing the simulation state checkpoints. Addition-
ally, I/O operations pose a special problem as they cannot be rolled-back in
general.

One approach to these challenges bases on the notion of Global Virtual
Time (GVT) which is given by the smallest time stamp of all unprocessed
messages in the simulation. Since GVT denotes the oldest message in the
system, it is guaranteed not to be rolled-back. A garbage collector subse-
quently reclaims all resources occupied by older events and commits pending
I/O operations.

Another performance issue of optimistic algorithms is thrashing: a signif-
icant decrease in simulation performance caused by frequent roll-backs. This
behavior is often triggered by fast LPs that rush ahead and induce roll-backs
in the majority of slower LPs. To counteract this behavior, a time window
W is introduced which limits the amount of optimism. LPs may then only
execute events within GV T +W , thus restricting fast LPs from rushing ahead.

8.3 Parallelization in Practice 129

8.3 Parallelization in Practice

In this section we analyze a selection of contemporary network simulators in
terms of their PDES capabilities.

8.3.1 OMNeT++

OMNeT++ natively supports PDES by implementing the conservative Null-
Message Algorithm and the Ideal-Simulation-Protocol [108]. By utilizing dif-
ferent communication libraries, a parallel simulation can furthermore make
use of multi-CPU machines as well as a distributed setup.

In order to distribute a simulation model to a set of LPs, OMNeT++
employs a placeholder approach: A simple placeholder module is automat-
ically created for each module which is assigned to a remote LP. When a
message arrives at a placeholder module, it transparently marshals the mes-
sage and sends it to the real module in the particular LP, which unmarshals
and processes it.

Due to this (almost) transparent integration of PDES into the simulator
architecture, OMNeT++ imposes only very few restrictions on the design
of a simulation model for parallel execution. According to the definition of
the LP-based architecture of PDES (c.f. Section 8.2), parallel OMNeT++
models must not use global variables or direct method calls to other modules.
However, since the lookahead is given by the link delays, currently only static
topologies are supported, making it difficult to parallelize mobile scenarios.

The properties of a parallel simulation setup are entirely specified in the
global omnet.ini configuration file. This file defines the partitioning, which
assigns every module and compound to a specific LP, as well as the synchro-
nization and communication algorithms to use.

8.3.2 ns-2

PDNS [394] constitutes the parallel simulation architecture of ns-2. It is based
on a conservative synchronization algorithm, which coordinates distributed
instances of ns-2 which execute the partitions of the parallel simulation model.
In PDNS terminology these instances are called federates.

PDNS was designed to integrate seamlessly into ns-2 without effecting
existing simulation models. However, parallelization is not transparent to the
simulation models. Instead, the parallelization process requires modifications
of the simulation models in order to make use of the functionality provided
by PDNS. In particular, links between nodes in different federates have to be
replaced by dedicated “remote links", which implement PDES functionality.
For the actual inter-federate communication, PDNS itself builds upon two

130 8. Parallel Discrete Event Simulation

communication libraries (libSynk and RTIKIT), which provide a variety of
communication substrates such as TCP/IP, Myrinet and shared memory for
testing and debugging.

8.3.3 DSIM

DSIM [96] is a parallel simulator which relies on optimistic synchronization.
It is designed to run on large-scale simulation clusters comprised of hundreds
to thousands of independent CPUs.

The core of DSIM is formed by a modified optimistic time warp synchro-
nization algorithm carefully designed for scalability. For instance, the obliga-
tory calculation of the GVT does not require message acknowledgments and
utilizes short messages of constant length in order to reduce latency and
messaging overhead. Furthermore, resource management is performed by a
local fossil collection algorithm (garbage collection), which intends to increase
locality by immediately reusing freed memory regions.

A performance evaluation using the synthetic PHOLD benchmark [163]
indicates that DSIM achieves a linear speedup with an increasing number of
CPUs. However, no evaluations using detailed network simulations are known
to the author.

8.3.4 JiST

JiST [52, 51] is a general purpose discrete-event simulation engine that em-
ploys a virtual machine-based simulation approach. Implemented in Java, it
executes discrete event simulations by embedding simulation time semantics
directly into the execution model of the Java virtual machine. Simulation
models are programmed using standard object-oriented language constructs.
The JiST system then transparently encapsulates each object within a JiST
entity, which forms the basic building block of a simulation model. While pro-
gram execution within an entity follows the normal Java semantics, method
invocations across entities act as synchronization points and are hence han-
dled by the JiST run-time system. Invocations are queued in simulation time
order and delivered to the entity when its internal clock has progressed to
the correct point in time.

By utilizing this approach, entities can independently progress though
simulation time between interactions - thus natively allowing a concurrent
execution. Furthermore, an optimistic execution model can be supported via
check-pointing.

8.4 Conclusion 131

8.3.5 IKR SimLib

The IKR SimLib [216] (see Chapter 4) is a simulation library that uses the
common batch means method. This method seeks to obtain sufficient exact-
ness and small confidence intervals [278]. For this purpose, a simulation run
is divided over time into batches that are statistically independent. The re-
sults of each batch are interpreted as samples and are used to compute mean
values and confidence intervals. The IKR SimLib provides support to execute
these independent batches on multiple CPUs in parallel. Moreover, as soon
as all batches are finished, the library supports aggregation of the statistical
data calculated in each batch. Consequently, the parallel execution of batches
efficiently reduces the time in comparison of sequential batch execution.

Thanks to the assumption of independent batches and their parallel exe-
cution, the IKR SimLib does not need to employ synchronization algorithms.
This avoids the overhead typically imposed by synchronization and increases
the simulation speed. Furthermore, it allows good scalability in terms of pro-
cessing units. However, this approach is less suited for running extremely
complex simulations, which impose huge demands on the hardware as within
one batch the complete model needs to be simulated on one machine. As a
result, very large simulations may not fit in the memory of a single machine
or may take longer in comparison to other parallelization approaches.

8.4 Conclusion

Parallel discrete event simulation has been the field of intensive research in
the last two to three decades. As a result, a plethora of different algorithms,
frameworks and approaches exist today. We could hence sketch selected ap-
proaches only briefly in this chapter.

We first introduced the primary challenges that PDES faces: given a sim-
ulation model, a partitioning of the model needs to be found and distributed
among the parallel simulation hardware. Next, an efficient synchronization
algorithm is needed to maintain the correctness of the distributed simulation
and to avoid causal violations. We presented two major classes of synchro-
nization algorithms: conservative and optimistic synchronization. Along their
discussion, performance considerations were presented. Finally, a selection of
contemporary parallel simulation frameworks was introduced.

Although a wide range of simulation frameworks natively support PDES
today, PDES still hasn’t achieved a final breakthrough in network simulation
due to a lack of performance and challenging programming models. Instead,
often multiple sequential simulations are run on multi-core hardware in paral-
lel. Hence, PDES remains a hard problem today. However, due to the ongoing
development in the hardware sector, which favors an increasing number of
processing units over an increasing speed of a single unit, PDES will remain
an important and active field of research.

This Page Intentionally Left Blank

Part II

Lower Layer Wireless Modeling

This Page Intentionally Left Blank

9. Physical Layer Modeling
A. de Baynast (European Microsoft Innovation Center)
M. Bohge, D. Willkomm (Technische Universität Berlin)
J. Gross (RWTH Aachen University)

The Physical Layer (PHY) is serving as the interface between the Data Link
Layer (DLL) and the environment. Accordingly, it defines the relation be-
tween the device and the physical medium. In wireless systems, the general
task of the PHY is to convert bit streams into radio waves and vice versa.
Though the transmitter and the receiver are dual, they are comprised of dif-
ferent components in the physical layer. The transmitter takes digital input
in form of (payload) bits and converts them into an analog signal, generally
around a given carrier frequency which is then radiated via the antenna. At
the receiver, this analog signal which has been distorted during the propa-
gation is then converted back into a (payload) bit stream. The general goal
of the PHY is to ensure that the bit stream at the transmitter and at the
receiver are identical. This is a very challenging task as the wireless channel
(see Section 11) can distort and corrupt the analog signal in many different,
random ways. In the following, we first provide an overview of the different
functionalities of the PHY at the transmitter and receiver as applied in most
common standards today like for cellular networks (such as Global System
for Mobile Communications (GSM), Universal Mobile Telecommunications
System (UMTS), Long Term Evolution (LTE)) or local/metropolitan area
networks (e.g. IEEE 802.11, IEEE 802.16) as well as for broadcast networks
(Digital Audio Broadcasting (DAB), Digital Video Broadcasting (DVB)).
Then we discuss common simulation approaches used in the PHY and their
shortcomings for network simulation. Finally, we comment on ways to include
selected aspects of the PHY in network simulation models.

9.1 Overview of the PHY Layer

In wireless systems the PHY layer can be subdivided into four domains as
depicted in Figure 9.1: the bit domain, the symbol domain, the sample
domain and the waveform/analog domain. Note that any layer above the
PHY can be considered to be part of a fifth domain referred to as the "packet
domain", as indicated for the DLL in Figure 9.1. Data through the PHY
layer is sequentially represented in each of these domains, i.e., by packets,
bits, symbols, samples and finally by waveforms.

136 9. Physical Layer Modeling

There are historical reasons behind this decomposition. Until the emer-
gence of powerful processors in embedded communication devices during the
last two decades, the bit stream was directly transformed into waveforms,
representing the information either by amplitude levels referred to as Am-
plitude Modulation (AM) [375, Chap. 4, p.169], or by frequencies referred
to as Frequency Modulation (FM) [395]. The corresponding waveform was
directly modulated by an oscillator set to a specific carrier frequency. At the
receiver, the analog signal was filtered by a matched filter in order to reduce
the noise power outside the bandwidth of interest. In the particular case of
FM receiver [395], a simple Phase-Locked Loop (PLL) could be used to lock
to the current frequency of the signal. Whereas the hardware implementation
of such a receiver was extremely cheap, the spectral efficiency (i.e. the ratio
of throughput over the required system bandwidth) remained low.

As the demand for higher data rates increased dramatically over the last
two decades, designs of transmission systems with higher spectral efficiency
over broadband channels were required. Higher spectral efficiency has been
achieved by using more sophisticated transmission schemes, which in turn re-
quire more complex algorithms especially at the receiver. In order to support
complex algorithms, the devices nowadays comprise of one or several digital
signal processors[442] that support a significant number of the operations
represented in Figure 9.1. Besides the historical aspect, this decomposition
into different domains is also fundamental in the comprehension of the results
and the limitations of any wireless network simulator since some of these do-
mains correspond to the different abstraction levels used by simulation tools
as shown later. In this subsection, we first give a functional overview of the
four different domains of the PHY before we discuss single, functional ele-
ments in the next subsection as second step.

Bit Domain. At the transmitter, a packet coming from the DLL enters the
bit domain of the PHY. Three main functions are performed here: Cyclic
Redundancy Check (CRC) coding, Forward Error Correction (FEC) coding
and interleaving. Firstly, CRC bits are added to the packet bits. The main
purpose of CRC code is to detect at the receiver if an error occurred during
a transmission. Note that a CRC code only allows usually the detection of
errors, it does not allow the correction. In order to correct eventual transmis-
sion errors, FEC coding schemes are used. Many different codes with different
characteristics are known today: for correcting only few errors (less than 1
erroneous bit for 1000 bits transmitted) without penalizing the transmis-
sion rate too much, Reed-Solomon (RS) codes are good candidates. If the
transmission channel introduces more errors (like typical GSM channels do),
convolutional codes can be used. Even more efficient error correction codes
are Turbo-codes [58] or Low-Density-Parity-Check (LDPC) codes [170, 300].
While they are more efficient than convolutional codes, their decoding algo-
rithms are more complex as they require several decoding iterations. However,
most of the current communication standards support them at least as option

9.1 Overview of the PHY Layer 137

DATA LINK LAYER

Packet domain
DATA LINK LAYER

PHY LAYER

Bit domain

Resource
manager

Packet domain

CRC Checking

FEC EncodingCRC Insertion

Framing

CRC insertion

Framing

PHY LAYER

Bit domain

Symbol domain

Digital
modulation

Pilot/Preamble
insertion

Spreading OFDM (IFFT)

Symbol domain

Digital
demodulation

Pilot/Preamble
removal

Despreading OFDM (FFT)

FEC Decoding CRC

Frame sync
Channel

estimation/
equalization

Sample domain Sample domain

Pulse shaping
filter Matched filter

Energy
detection/

Carrier sensing

Energy
detection/

Carrier sensing

Synchronizatio
n

Analog domain

DAC

Analog domain

ADCIF up-
conversion

PLL

Antenna
beamforming

ACK

Space-time
coding

Space-time
decoding

IF down-
conversion

Interleaving De-interleaving

Segmentation

TRANSMITTER RECEIVER

ReassemblyACK insertion

...
UPPER LAYERS

...
UPPER LAYERS

Network
Simulator

C,
Matlab
or
Labview

PLL

Fig. 9.1: Decomposition of the MAC and PHY layer into 5 domains for wireless
transmission systems: the packet domain (MAC), the bit domain, the
symbol domain, the sample domain and the analog domain. A tentative
list (non exhaustive) of operations that enable reliable transmission be-
tween the transmitter and the receiver in current transmission systems is
also represented in the figure. The operations are listed by domain which
corresponds to the abstraction level in network simulators.

138 9. Physical Layer Modeling

(like in UMTS, LTE, DVB or IEEE 802.11n). As the transmission errors often
happen in bursts [38], the coded bit stream is interleaved before transmission
so that the corresponding de-interleaver at the receiver will spread the bit
errors uniformly within the received coded bit stream. All these operations
are realized on the bit stream (see the bit domain in Figure 9.1). However,
this binary description of the transmit information is not sufficient for direct
mapping to an analog waveform in systems with higher spectral efficiency.

Symbol Domain. An intermediate step consists of transforming a bit or sev-
eral bits into a symbol. Hence, the transmit information enters now the sym-
bol domain. For instance, in an Amplitude Shift Keying (ASK) radio system,
the symbol value represents the amplitude of the waveform. In Frequency
Shift Keying (FSK) systems, the symbol value corresponds to a specific fre-
quency taken from a pre-defined set. Hence, bits are still represented by
digital values but these are already “place-holders” for specific characteristics
of waveforms. In most today’s systems however, more advanced schemes are
used. Typical bit-to-symbol mapping schemes are Gaussian Minimum Shift
Keying (GMSK) as used in GSM, Quadrature Amplitude Modulation (QAM)
in IEEE 802.11, UMTS, LTE, IEEE 802.16, or Differential Quadrature Phase
Shift Keying (DQPSK) in DAB/DVB. A description and a complete analysis
of all these modulation schemes can be found in [375]. In order to simplify
the design of the receiver, some pilot symbols and preamble or end-preamble
are inserted. For instance, several null symbols are inserted before each packet
in IEEE 802.11 such that the beginning of a packet can be detected using a
double sliding window algorithm. Recently, advanced transmission schemes
for broadband wireless communication have been proposed and some of
them have been deployed successfully. These advanced transmission schemes
are spread-spectrum, multi-carrier modulation and Multiple Input Multiple
Output (MIMO) systems. In the particular case of spread-spectrum (which
is used either for multiple access – see Section 10.1.4 – or for combating fre-
quency selectivity of the transmission channels) each symbol is spread by a
so-called spreading sequence of length equal to the spreading factor. In UMTS
systems, the spreading factor varies from 16 to 1024 such that multiple users
can simultaneously transmit in the same band without interfering with each
other since the spreading sequences are mutually orthogonal. Hence, the bit-
to-symbol mapping leads to a few bits mapped to many modulation symbols
(i.e. “spreading” the information over many symbols). This leads to a better
performance in channels with inter-symbol interference. A further advanced
transmission scheme are multi-carrier modulation systems; the most success-
ful example of such schemes is Orthogonal Frequency Division Multiplex
(OFDM). An OFDM system combats efficiently the inter-symbol interference
occurring in frequency selective propagation channels [375, Chap.12, p.718]
by applying the Digital Fourier Transform (DFT) at the receiver and its in-
verse at the transmitter. This technique considerably simplifies the receiver
implementation in case of frequency-selective channels since it is much easier

9.1 Overview of the PHY Layer 139

to invert the channel effect in the frequency domain, i.e. after taking the DFT
operation as long as it is done at the correct time lag (and assuming that
the inverse of the coherence bandwidth of the channel does not exceed the
guard interval of the system). Finally, a third advanced transmission scheme
consists of utilizing antenna arrays at the transmitter or at the receiver or
at both sides. The main advantage of MIMO systems is to considerably in-
crease the spectral efficiency of the system by exploiting the spatial diversity,
as demonstrated in [158]. Three techniques for MIMO systems are generally
used. Firstly, beamforming consists of steering the energy of the signal to-
wards the receiving antenna(s) by adjusting the weights of the phase array
of the antennas [477]. The second technique is called space-time coding [457]
which in contrary consists of spreading the energy spatially into all directions
in an uniform way such that all potential receivers can receive the signal. Fi-
nally, the third technique consists of spatially multiplexing the emitted signal
over all transmit antennas. Whereas considerable gains in terms of through-
put and reliability are achieved, the drawback of these techniques is their
computational complexity since matrix inversion of the channel coefficients
is often required at the receiver side.

Sample and Waveform Domain. The description of the transmit information
in terms of symbols is still not enough since it corresponds to a stream of con-
secutive discrete values. However, there are several different ways to map the
symbols into waveforms, especially regarding the transition from one symbol
to the next one. Most importantly, these different ways end up in different
bandwidths that the signal consumes in the frequency domain. The exact
transition from one symbol to the next one is governed by the so-called pulse
shaping filters which limit the signal to the required bandwidth. Most of the
current systems are using a square-root raised cosine filter at the transmit-
ter and receiver. This filter reduces the required bandwidth to a minimum
while no symbol interference occurs (theory of the eye pattern [375, Chap.
9]). As digital signal processors have become more and more powerful, the
pulse shaping filtering is nowadays realized digitally. We refer to this level as
sample domain since the output of the filter are sampled at much higher rate
than the incoming symbols. The samples are then converted into an analog
signal by a Digital-to-Analog Converter (DAC) which is finally modulated to
the respective carrier frequency (for instance 2.4 GHz for 802.11, 1.6 GHz for
LTE, 900 MHz or 1800 MHz for GSM, 400-700 MHz for DVB).

It has to be mentioned that the whole process is performed by quite spe-
cialized hardware. In order to support a transmission rate of 10 or 20 megabit
per second, the digital sequence representing the same information at the
sample domain can easily consume a bit rate of several hundred megabit per
second. These information flows are processed by digital signal processing
units which realize all functions on dedicated hardware as ASIC or DSPs.
This obviously also applies to the analog part (D/A conversion, mixing, am-
plification) which is performed by a radio.

140 9. Physical Layer Modeling

Compared to the transmitter, the receiver is far more complex in its func-
tionality. This is mainly due to the processing steps of the sample domain
since the receiver needs to be synchronized in time and frequency (and possi-
bly space for systems with multiple antennas) in order to accurately retrieve
the symbols. In fact, a wireless receiver is usually able to detect and de-
code transmit signals which are only a few decibel above the noise power
of the system (every electromagnetic system features some form of noise
which interferes with very weak signals arriving from some transmitter –
see Section 11.10). This requires quite sophisticated and specialized process-
ing operations to be performed which relies on digital signal processors. After
synchronization the received signal basically works its way through the trans-
mitter components in an opposite way.

In the next section, we detail each operation at the transmitter and the
receiver into independent paragraphs with special emphasize on the compu-
tational complexity. When the description of the operation at the receiver
is dual of the operation at the transmitter, we describe the operation of the
transmitter and its counterpart function at the receiver within the same para-
graph. We would like to insist that the list is not exhaustive. It provides an
overview of the main functions implemented in current wireless transmission
standards. The purpose of the list is to give an overview of the operations
commonly utilized in current wireless transmission standards.

9.2 Description of the Main Components of the PHY
Layer

In this section, a brief description of the aforementioned components at the
transmitter and at the receiver is given. A complete list and explanation of all
techniques used in the PHY layer is beyond the scope of this book. Further-
more, whereas the transmitter steps are clearly described in the standards,
the implementation of the receiver is left free for manufacturers and therefore
the exact operations at the receiver are generally not documented in details.
The following descriptions are intended only to give an overview of the func-
tional blocks present at a transmitter and receiver to the reader. For more
details, the reader is asked to refer to the citations and references therein.

9.2.1 Components of the Bit Domain

Cyclic Redundancy Check Codes. CRC codes are hash functions designed to
detect transmission errors. A CRC-enabled device calculates a short, fixed-
length binary sequence, known as the CRC code, for each block of data
(i.e. usually a frame, a header or a packet) and sends them both together.
Generally, the CRC bits are padded at the end of the block. When a block is
read or received, the device repeats the calculation. If the new CRC does not

9.2 Description of the Main Components of the PHY Layer 141

match the one calculated earlier, then the block contains a data error and
the device may take some action such as discarding the block (DAB, DVB,
GSM, UMTS) or requesting the block to be sent again (WLAN). The term
CRC code originates from the fact that the check code is redundant (it adds
zero information) and the algorithm is based on cyclic codes. CRC codes are
popular because they are simple to implement, and are particularly effective
at detecting common errors caused by noise in transmission channels.

All popular wireless systems are using CRC codes at the PHY (mostly
for header protection) and at the MAC layer (header protection as well as
payload protection). CRC codes are quite efficient at detecting the acciden-
tal alteration of data. Typically, an n-bit CRC, applied to a data block of
arbitrary length, will detect any single error burst not longer than n bits and
will detect a fraction 1 − 2−n of all longer error bursts. As errors in wireless
channels tend to be distributed non-randomly, i.e. they are “bursty”, CRC
codes’ properties are more useful than any alternative schemes.

Forward Error Correction Codes. Encoding and decoding information via
FEC codes is a system of error control for data transmission, whereby the
sender adds redundancy to the transmitted information using a predeter-
mined algorithm, also known as an error-correction code. Each redundant bit
is invariably a complex function of many original information bits. The orig-
inal information may or may not appear in the encoded output; codes that
include the unmodified input in the output are called systematic, while those
that do not are non-systematic. Contrary to CRC, FEC coding schemes allow
the receiver to correct errors (within some upper bound). The advantages of
FEC codes are that a feedback-channel is not required (as in GSM, UMTS
systems and broadcasting systems) or that retransmissions of data are dra-
matically reduced in presence of a feedback-channel (as in IEEE 802.11 or
LTE). This advantage comes at the cost of a lower throughput as redundancy
is added to the bit stream. Given a FEC code of rate 1/3 generates 2 bits of
redundancy per information bit, which triples the bandwidth needed for the
transmission or equivalently reduces the effective throughput of the system
by a factor of three. The maximum fraction of errors that can be corrected
is determined in advance by the design of the code, so different FEC codes
are suitable for different transmission conditions.

There are two main categories of FEC codes: Convolutional codes and
block codes [375, Chapter 8]. Convolutional codes work on bit or symbol
streams of arbitrary length. They are most often decoded with the Viterbi
algorithm [166]. Viterbi decoding allows asymptotically optimal decoding ef-
ficiency with increasing constraint length of the convolutional code, but at
the expense of exponentially increasing complexity with respect to the con-
strained length. Most of the current wireless transmission standards (GSM,
UMTS, LTE, IEEE 802.11, DAB, DVB) are using convolutional codes. The
corresponding coding rate and constrained lengths are shown in Table 9.1.

142 9. Physical Layer Modeling

GSM UMTS LTE IEEE 802.11 DVB-T

Coding rate 1/2 1/2-1/3 1/3-7/8 1/3-5/6 1/2-3/4
Constrained length 7 7 (9) 7-9 7 8

Table 9.1: Coding rate of convolutional codes as used in the wireless transmission
standards GSM, UMTS, LTE, IEEE 802.11, and DVB-T.

Block codes work on fixed-size blocks of bits or symbols of predetermined
size. Practical block codes can generally be decoded fast due to their block
length. There are many types of block codes, but among the classical ones
the most notable is Reed-Solomon (RS) coding. In current systems, block
codes and convolutional codes are frequently combined in concatenated cod-
ing schemes. A short constraint-length convolutional code with low coding
rate does most of the work and a Reed-Solomon code with larger symbol size
and block length corrects the few errors left by convolutional decoder. Due
to their order in the transmission chain, the Reed-Solomon and the convolu-
tional codes are usually referred as outer and inner codes, respectively.

Whereas the convolutional codes provide a good trade off between the
computational complexity and error-correction capability, there are other
FEC coding schemes whose performance is within few tenths of decibels of
the maximal theoretical rate. The maximal theoretical rate is referred as the
Shannon limit in information theory [106]. The best known of these codes
are the Turbo-codes [58] and the LDPC codes [170]. Although the complex-
ity of the decoding is higher than for convolutional codes, their performance
is such that they are proposed in most of the current standards as optional
schemes (for example turbo-code of coding 1/3 in UMTS and LDPC in IEEE
802.11n). The Turbo-codes and LDPC codes share the same decoding algo-
rithm referred to as belief propagation, sum-product or sigma-pi [111, 268].
This is an iterative algorithm for performing inference on graphical models,
such as factor graphs that can be used to represent Turbo-codes and LDPC
codes. Several iterations are required before convergence as illustrated in
Figure 9.2.

FEC codes have often an all-or-nothing tendency, i.e. they can perfectly
extract the transmitted message if the Signal-to-Noise-Ratio (SNR) of the
transmission channel is large enough and cannot correct any error if the SNR
of the transmission channel is too small. Therefore, digital communication
systems that use FEC coding tend to work well above a certain minimum
SNR and not at all below. Typical values are 8 decibels in GSM and 10
decibels for UMTS. This all-or-nothing tendency becomes more pronounced
the more efficient the code works, i.e. the closer the FEC code approaches the
theoretical limit imposed by the Shannon capacity [106]. This is particularly
true for the Turbo-codes, the LDPC codes and the concatenated schemes
with convolutional code as inner code and RS code as outer code.

9.2 Description of the Main Components of the PHY Layer 143

0 1 2 3 4 5 6
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
it

er
ro

r
R

at
e

Uncoded BPSK
1 iteration
2 iterations
3 iterations
6 iterations
18 iterations

Fig. 9.2: Probability of bit error as a function of the signal-to-noise ratio of the
transmission channel and the number of iterations of the decoding algo-
rithm. For Turbo-codes, 5 iterations are usually sufficient. The computa-
tional complexity of the decoding algorithm is linear with respect to the
number of iterations (data taken from [289]).

The performance gain of coded transmission compared to an uncoded
transmission is illustrated in Figure 9.3 and is referred as the coding gain.

Finally, FEC coding schemes are often combined with puncturing (IEEE
802.11, LTE, DVB). Puncturing is a technique used to make the rate of a code
slightly higher than the basic rate of the code [194]. It is reached by deletion
of some bits in the encoder output. Bits are deleted according to a puncturing
matrix. Punctured convolutional codes are also called “perforated”.

Bit Interleaving/De-Interleaving. Data is often transmitted with FEC coding
that enables the receiver to correct a certain number of errors which occur
during transmission. If a burst of bit-error occurs, the number of bit-errors
within the same code word may exceed the threshold under which a correction
would have been possible. In order to reduce the effect of such error bursts,
the bits of a number of consecutive codewords are interleaved before being
transmitted [390]. This way, the wrong bits of an error burst are spread over
several code words, which makes the error correction of the overall bit stream
easier to be accomplished.

144 9. Physical Layer Modeling

0 2 4 6 8 10 12 14
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR (dB)

B
it

er
ro

r
R

at
e

 (255,223,33) RS code

 64−state conv. code

 Uncoded BPSK

 RS + conv. with infinite interleaving

 RS + conv. without interleaving

Fig. 9.3: Probability of bit error as a function of the signal-to-noise ratio of
the transmission channel for several schemes: uncoded antipodal signal
(uncoded BPSK), stand-alone convolutional code, stand-alone RS, con-
catenated scheme (convolutional code + RS) with and without interleav-
ing. For the same spectral efficiency, the performance of concatenated
schemes is superior to the performance of uncoded scheme or stand-
alone FEC schemes especially for lower probability of bit error (data
taken from [375]).

9.2 Description of the Main Components of the PHY Layer 145

9.2.2 Components of the Symbol Domain

Digital Modulation/Demodulation. Digital modulation and demodulation is
the process of transforming a chunk of consecutive bits into one or several
parameters of a sine wave (at the transmitter) and back (at the receiver).
Note that digital modulation does not generate the waveform yet but it pro-
duces a stream of waveform parameters which are turned at a later stage
to an analog waveform. Modulating information onto a waveform usually in-
volves varying one sine waveform in relation to another sine waveform. The
three key parameters of a sine wave that can therefore carry information are
its amplitude, its phase and its frequency. Digital modulation is sometimes
referred to as constellation mapping. The most common digital modulation
techniques are listed in Table. 9.2.

GSM UMTS LTE (IEEE 802.16) IEEE 802.11

GMSK QPSK 4/16/64-QAM BPSK-4/16/64-QAM
4 bits/symb 2 bits/symb 2-8 bits/symb 1-8 bits/symb

Table 9.2: Types of modulation techniques used in wireless transmission standards
GSM, UMTS, LTE, IEEE 802.16, and IEEE 802.11.

In GSM systems, the GMSK modulation technique is employed. GMSK is
a continuous-phase frequency-shift keying modulation scheme. It is similar to
standard Minimum Shift Keying (MSK) modulation [375, Chapter 5], how-
ever the digital data stream is first shaped with a Gaussian filter before being
applied to a frequency modulator. This has the advantage of reducing side-
band power, which in turn reduces out-of-band interference between signal
carriers in adjacent frequency channels. However, the Gaussian filter increases
the modulation memory in the system and causes inter-symbol interference,
making it more difficult to discriminate between different transmitted data
values and requiring more complex channel equalization algorithms such as
an adaptive equalizer at the receiver.

In UMTS, LTE, IEEE 802.16 and IEEE 802.11 systems, QAM is utilized.
It conveys two digital bit streams by modulating the amplitudes of two carrier
waves, using the ASK modulation scheme. These two waves, usually sinusoids,
are out of phase with each other by 90 degrees and are thus called quadrature
carriers or quadrature components – hence the name of the scheme. The
modulated waves are summed, and the resulting waveform is a combination
of both Phase Shift Keying (PSK) and ASK. In the digital QAM case, a
finite number of at least two phases, and at least two amplitudes are used (4-
QAM). However, Binary Phase Shift Keying (BPSK) and Quadrature Phase
Shift Keying (QPSK) modulations can be viewed as special cases of QAM
modulation. QPSK is equivalent to 4-QAM and BPSK has two amplitudes

146 9. Physical Layer Modeling

but a single phase. The operation which consists of mapping bit(s) to a symbol
is illustrated in Figure 9.4 in the case of QAM modulation.

00

01

10

11

Constellation 4−QAM

0000

0001

0011

0010

0100

0101

0111

0110

1100

1101

1111

1110

1000

1001

1011

1010

Constellation 16−QAM

00000 00001

0001100010

00100

00101

00111

00110

01100

01101

01111

01110

01000

01001

01011

01010

11000

11001

11011

11010

11100

11101

11111

11110

10100

10101

10111

10110

1000010001

10011 10010

Constellation 32−QAM

000000

000001

000011

000010

000110

000111

000101

000100

001000

001001

001011

001010

001110

001111

001101

001100

011000

011001

011011

011010

011110

011111

011101

011100

010000

010001

010011

010010

010110

010111

010101

010100

110000

110001

110011

110010

110110

110111

110101

110100

111000

111001

111011

111010

111110

111111

111101

111100

101000

101001

101011

101010

101110

101111

101101

101100

100000

100001

100011

100010

100110

100111

100101

100100

Constellation 64−QAM

Fig. 9.4: Constellation of QAM signaling. Several bits are gathered to form one
QAM symbol. The higher the modulation order the more efficient is the
transmission. However, the distance between symbols becomes smaller as
the number of symbols increase and is more subject to errors in presence
of the transmission noise. In practice, 256 is the maximum supported
order in wireless transmissions.

Pilot/Preamble Insertion and Removal. All digital wireless communication
systems use pilot symbols in order to simplify the design of the receiver.
Pilots are used to transmit data known in advance by the receiver. It uses
them to perform synchronization and channel estimation. There are several
types of pilots: preamble within the packet, few tones for OFDM systems,
preamble for packet detection and null symbols for energy detection. The

9.2 Description of the Main Components of the PHY Layer 147

type of pilots used in current wireless transmission standards are listed in
Table 9.3.

GSM UMTS LTE, IEEE 802.16
Training seq Training seq (Q) Preamble + Pilot Tones

25% of the resources 50% 30%

IEEE 802.11 DAB DVB-T
Preamble + Pilot tones Preamble Preamble + Pilot Tones
30% of the resources 5% 10%

Table 9.3: Types of pilot techniques used in wireless transmission standards.

Spreading/De-spreading. Spreading is an advanced transmission scheme used
for broadband wireless channels. It is in a sense the simplest FEC coding
technique em- ployed in the symbol domain. In spread-spectrum a signal
is generated which has a much larger bandwidth than would be required
for conveying the pure stream of information. There are three basic tech-
niques employed to spread the information signal: direct sequence, frequency
hopping, or a hybrid of these. Spread spectrum makes use of a sequential
noise-like signal structure to spread the information signal over a much wider
band of frequencies. In direct sequence spread-spectrum, for example, each
bit of the information stream is mapped to a sequence of bits (where typical
ratios – the spreading factor – between input bit to output bits are 1/16 or
1/32 in UMTS, 1/11 in IEEE 802.11b). This sequence of bits is well-known in
advance and is referred to as spreading code. Then, the resulting “spreaded”
bit stream is fed to a modulator which generates now many more modulation
symbols than would be required for the information stream. At the receiver
the incoming signal is correlated with the spreading code to retrieve the orig-
inal information signal referred to as de-spreading. Clearly, for de-spreading
to work correctly, the transmit and receive spreading sequences must be the
same and they must be synchronized. This requires the receiver to synchro-
nize its sequence with the transmitter’s sequence by taking the maximum of
the cross-correlation function between the spreading code and received data.
Good spreading codes are designed to appear as random sequences, i.e. not
having long trails of 1’s or 0’s and overall almost the same number of 1’s and
0’s. Due to the pseudo-randomness of the spreading sequence, the resulting
signal resembles white noise. Spreading by frequency hopping works in a simi-
lar manner. Here, a single bit is converted to one or several “hops” in frequency
according to a predetermined sequence. Spread-spectrum has several advan-
tages. First of all, it decreases the potential interference to other receivers
as the transmit power of the spreaded signal is quite low. This does not
harm the reception of the signal as the receiver – which knows the spreading

148 9. Physical Layer Modeling

sequence – sums up the transmit energy over 16 symbols in case of a spreading
factor of 1/16 and can therefore tolerate a transmit power which is lower by a
factor of 16 (equaling 12 dB). Furthermore, spread-spectrum signals mitigate
inter-symbol interference caused by frequency-selective fading channels as a
single bit is converted – in direct sequence spread spectrum with a factor of
1/16 – into 16 channel bits which achieves quite a coding gain. This effect
even can be enhanced to resolve dominant paths of a multipath propagation
environment known as RAKE receiver [446]. It is implemented in most of the
UMTS receivers today. Furthermore, spread-spectrum enhances privacy as
the spreading code has to be known to successfully decode the signal. With-
out knowing the spreading code, it is even hard to only detect the signal as
the required transmit power for a large spreading factor is quite low. Due to
these reasons, spread-spectrum systems were first developed by the military
and are still widely applied there. Finally, spread-spectrum systems enable
multiple access by assigning different data transmissions different spreading
codes (in case of direct sequence spread-spectrum the corresponding multiple
access schemes is referred to as Code Division Multiple Access (CDMA), see
Section 10.1.4).

In current wireless standards, the two main spread-spectrum techniques
are frequency hopping spread-spectrum (Bluetooth) and direct-sequence
spread-spectrum (Global Positioning System (GPS), UMTS, IEEE 802.11b).
In UMTS (and IS-95, CDMA2000) direct-sequence spread-spectrum is also
applied for multiple-access. Its principle is illustrated in Figure 9.5.

−12 MHz −8 MHz −4 MHz 0 MHz 4 MHz 8 MHz 12 MHz

0

0.2

0.4

0.6

0.8

1

X
(f

)

After spreading

No spreading

Fig. 9.5: Illustration of the spread spectrum technique. It consists of spreading
spectrally the transmitted signal such that the signal is less sensitive to
the frequency selectivity of the propagation channel or the interference of
the other users in case of multiple-access scenario. As spreading sequence
the one of IEEE 802.11b is considered: 1,−1, 1, 1,−1, 1, 1, 1,−1,−1,−1.

9.2 Description of the Main Components of the PHY Layer 149

Orthogonal Frequency Division Multiplexing. is an advanced Frequency Di-
vision Multiplex (FDM) transmission scheme for broadband wireless commu-
nication channels. A large number of closely-spaced orthogonal subcarriers
are used to carry data. The payload data is divided into several parallel data
streams or channels, one for each subcarrier. Each subcarrier is modulated
with a conventional modulation scheme (such as QAM, see the description
above on “Digital Modulation”) at a low symbol rate, maintaining total data
rates similar to conventional single-carrier modulation schemes in the same
bandwidth. This is achieved by taking the inverse DFT of the set of modula-
tion symbols (one for each subcarrier) and processing afterwards the stream
of samples representing the time domain signal. At the receiver, the time
domain samples are then transformed back by a DFT to the frequency do-
main to retrieve the modulation symbols per subcarrier. OFDM has devel-
oped into a popular scheme in modems for wired transmission over phone
lines applied in Digital Subscriber Line (DSL) systems as discrete multi-tone
modulation, providing quite large rates for data communications. However,
today it is also applied in wireless digital systems such as DVB, DAB and
wireless local/cellular systems (IEEE 802.11a/g/n, LTE, IEEE 802.16). The
primary advantage of OFDM over single-carrier schemes is its ability to cope
with severe channel conditions - for example, narrow-band interference or
frequency-selective fading due to multipath - without complex equalization
filters. Channel equalization is simplified because OFDM may be viewed as
using many slowly-modulated narrow-band signals rather than one rapidly-
modulated wide-band signal. The low symbol rate makes the use of a guard
interval between symbols affordable, making it possible to eliminate Inter-
symbol Interference (ISI). Although OFDM has been successfully deployed,
it has still some disadvantages compared to single carrier systems: sensitiv-
ity to Doppler shift, sensitivity to frequency synchronization problems which
requires generally a complex synchronization unit at the receiver as well as
a high peak-to-average-power ratio, i.e. large power difference between the
weakest and the strongest amplitudes on subcarriers. Finally, the loss of spec-
tral efficiency caused by cyclic prefix/guard interval might not be negligible.
For instance, the loss is about 20% in IEEE 802.11 a/g/n systems.

OFDM in its primary form is considered as a digital modulation technique
since it is utilized for conveying one bit stream over one communication chan-
nel using one sequence of OFDM symbols. However, OFDM can be combined
with multiple access using time, frequency or coding separation of the users.
One particular important multiple access combination with OFDM is the
frequency separation referred to as OFDMA, see Section 10.1.2. It is applied
today in LTE and IEEE 802.16e systems.

The next two paragraphs discuss three techniques for transmission sys-
tems with multiple inputs or/and multiple outputs (in general summarized

150 9. Physical Layer Modeling

under the acronym MIMO). Interest for MIMO systems has considerably
increased over the last decade for two main reasons: the throughput increases
linearly with the number of inputs and the probability of transmission errors
decreases linearly with the number of receive antennas for basic scheme. The
second reason is that current powerful processors can support such techniques
in wireless standards (UMTS, LTE, IEEE 802.16).

Antenna Beamforming. Beamforming is a signal processing technique used
in wireless transmission systems for directional signal transmission or recep-
tion. It exploits “spatial selectivity” among a single signal transmitted from
multiple antennas, or received by multiple antennas, or both. If beamform-
ing is applied at the transmitter, the same transmit signal is sent from each
antenna. However, a beamformer controls the phase and relative amplitude
of the signal at each antenna in order to create a pattern of constructive and
destructive interference in the wavefront. Effectively, this gives the signal a
preferred direction such that the SNR at the receiver is strongly increased.
However, the transmitter must know the position of the receiver (or even
better, its channel characteristics with respect to each transmit antenna).
When applied for re- ceiving, the incoming signal from different antennas is
combined in such a way by delaying some signals and multiplying with ade-
quate complex coefficients (phase and amplitude). As a result, the received
signal’s SNR is strongly increased (but again the receiver has to know the
direction from which the transmitted signal is received or even better the
exact channel characteristic). If both transmitter and receiver have multi-
ple antennas, beamforming may also be applied both at the transmitter and
the receiver which leads to an even better SNR. However, beamforming can
be computationally expensive if applied for several antennas at the trans-
mitter or receiver (while also requiring control overhead). Hence, only basic
beamforming techniques are being used in wireless standards today: Trans-
mit antenna selection in GSM and UMTS which consists of selecting the
transmit antenna that provides the best SNR for the considered terminal.
For LTE, a pre-coding based beamforming with partial Space Division Mul-
tiple Access (SDMA) can be used optionally if the system supports MIMO
techniques. A flexible system is IEEE 802.11n, which permits the application
of beamforming simultaneously at the transmitter and receiver, based on the
channel state information sent from the receiver to the transmitter by control
frames. This technique is sometimes referred to as closed loop beamforming.

Space-time Coding/Decoding. Also in case of wireless systems with multiple
transmit antenna, Space Time Coding (STC) is another method employed
to improve the reliability of data transmission. Space-time coding relies on
transmitting multiple, redundant copies of a data stream to the receiver in
the hope that at least some of them may “survive” the physical path between
transmission and reception in a good enough state to allow reliable decoding.
Space time codes may be split into two categories:

9.2 Description of the Main Components of the PHY Layer 151

1. Space-time trellis codes [458] distribute a trellis code over multiple anten-
nas and multiple time-slots and provide both coding gain and diversity
gain.

2. Space-time block codes [427],[456] act on a block of data at once (similarly
to block codes) and provide only diversity gain, but are much less complex
in implementation terms than space-time trellis codes.

UMTS, LTE and IEEE 802.11n support the basic Alamouti scheme [427].
Alamouti invented the simplest of all the STBCs in 1998 [427]. It was designed
for a two-transmit antenna system and one receive antenna. It takes two
time-slots to transmit two symbols such that it can achieve its full diversity
gain without needing to sacrifice its data rate. The significance of Alamouti’s
proposal in 1998 is that it was the first demonstration of a method of encoding
which enables full diversity with linear processing at the receiver. Earlier
proposals for transmit diversity required processing schemes which scaled
exponentially with the number of transmit antennas [157]. Furthermore, it
was the first open-loop transmit diversity technique which had this capability.
Subsequent generalizations of Alamouti’s concept have led to a tremendous
impact on the wireless communications industry.

Spatial Multiplexing. If a transmitter has data to be sent to multiple re-
ceivers and if it has multiple transmit antennas, it can actually transmit
the information to all terminals simultaneously. This is referred to as spatial
multiplexing [468]. In spatial multiplexing the transmit signal of the data
for each receiver is concentrated by beamforming on the location of the re-
ceiver. However, this concentration in some preferred direction leads to a
strongly attenuated signal transmitted into several other directions. These
directions are the ones where further receivers can be served without having
them suffer from interference of a simultaneous packet transmission. Hence,
not all receiver distributions can be supported in a similar manner by spatial
multiplexing. Spatial multiplexing is furthermore limited by the number of
antennas the transmitter has, i.e. for n antennas up to n terminals can be
served at the same point in time. In a similar manner a receiver with n an-
tennas can receive up to n packets simultaneously by applying a beamformer.
This is referred to as space division multiple access (see Section 10.1.3). As
with spatial multiplexing, this works well for some transmitter position com-
binations while other combinations can not be resolved by the beamformer
efficiently. Furthermore, if the receiver has multiple antennas then the con-
straint on the positions of the transmitters becomes less significant by the
application of interference cancellation algorithms. In fact, the application of
interference cancellation allows even for several, different packets transmit-
ted over different antennas to the same receiver (if the receiver has multiple
antennas as well). This is the most promiment MIMO scheme which is often
characterized by a linear increase of the system capacity with the (minimal)
number of antennas at the transmitter and receiver side. However, the com-
plexity of especially the receiver is currently a strong limitation factor. Still, it

152 9. Physical Layer Modeling

is expected that this MIMO technique will be strongly used in future wireless
standards.

Symbol Interleaving/De-Interleaving. Symbol interleaving is used in digital
data transmission technology to protect the data against burst errors occur-
ring during the propagation. As with bit interleaving, if a burst error occurs,
too many errors can be made within one code word, and that code word
cannot be correctly decoded. To reduce the effect of such burst errors, the
symbols of a number of frames are interleaved before being transmitted. This
way, a burst error affects only a correctable number of symbols in each frame,
and the decoder can decode the frame correctly. LTE and DVB systems are
using symbol interleaving.

9.2.3 Components of the Sample and Waveform Domain

Frame/Packet Synchronization. Once a digital train of samples is obtained,
the receiving circuits (in the digital domain) first have to synchronize to
the transmitter. This refers to fine tuning to the exact timing with which
the modulation symbols are transmitted and to the exact carrier frequency
used by the transmitter (there is always some frequency shift between any
two oscillators, hence, requiring the receiver to identify the shift and correct
it). Special training sequences (also referred to as preambles) are added by
the transmitter to any data transmission which the receiver can use to easily
acquire a precise enough synchronization. However, if the transmission occurs
over a quite bad communication channel, already the step of synchronization
can become very difficult and requires special design [406].

Channel Estimation and Equalization. After obtaining synchronization, the
receiver has to identify the possible random distortions that the wireless
channel causes to the signal (like phase shifts and attenuations/gains). This
is known as channel estimation. For this, so called pilot signals are added to
the transmit signal which are transmitted with a known strength and with
a known phase. After the channel has been estimated, the distortions of the
channel are compensated which is known as equalization. The proper estima-
tion and equalization of the channel is a prerequisite for decoding the payload
signal (as synchronization is a prerequisite as well). As an alternate solution,
differential modulation (DAB) can be utilized. Since the data information is
contained in the phase difference between two consecutive symbols, the data
can be retrieved if the phase shift occurring during the transmission is equal
for both symbols.

Pulse Shaping Filter/Matched Filter. In digital telecommunication, pulse
shaping is the process of changing the waveform of transmitted pulses. Its
purpose is to make the transmitted signal suit better to the communication
channel by limiting the effective bandwidth of the transmission. By filtering

9.2 Description of the Main Components of the PHY Layer 153

the transmitted pulses this way, ISI caused by the channel can be reduced.
Also, pulse shaping is essential for making the signal fit in its frequency band.
Typically, pulse shaping is nowadays implemented in the digital domain be-
fore the digital-to-analog conversion. Two main pulse-shaping filters are used
today in wireless communication systems: Either a Gaussian filter (like in
GSM) or a raised-cosine filter [375, Chapter 9] (UMTS, LTE, IEEE 802.16,
IEEE 802.11, DAB, DVB). The impulse response and the spectrum of the
raised-cosine filter are plotted in Figure 9.6 for several values of roll-off factor
β ranging from 0 to 1. The bandwidth occupied by the signal beyond the sam-
pling frequency 1/2T is called the excess bandwidth and is usually expressed
as a percentage of the sampling frequency. For example, when β = 0.22 as
in UMTS standard, the excess bandwidth is 22%. The overall raised cosine
spectral characteristic is usually split evenly between the transmitting pulse
shaping filter and the receiving filter.

−3T −2T −T 0 T 2T 3T

−0.2

0

0.2

0.4

0.6

0.8

1

x(
t)

−1/T −1/2T 0 1/2T 1/T

−0.2

0

0.2

0.4

0.6

0.8

1

X
(f

)

β=0.25

β=1

β=0.5

β=0

β=0

β=1
β=0.25

β=0.5

Fig. 9.6: Impulse response (left) and spectrum (right) of the raised cosine filter for
several values of roll-off factor β. Most of the current standards are using
raised cosine filter as pulse evenly split between the transmitter and the
receiver (GSM: 0.2, UMTS: 0.22, DAB: 0.3).

Carrier Sensing/Energy Detection. Carrier sensing is usually employed by
Carrier Sense Multiple Access (CSMA) protocols, as employed for example
in the MAC of IEEE 802.11 systems. Through carrier sensing the transmitter
evaluates the current state of the channel to determine whether the channel is
idle or if it is currently busy with other data transmissions. There are different
possibilities how to implement a carrier sensing algorithm. On the one hand
there is energy detection which is purely checking for the current channel
Received Signal Strength Indication (RSSI). If the RSSI is above a certain
threshold – the so called Clear Channel Assessment (CCA) threshold – the
channel is declared busy. Alternatively, a wireless device might try to sense
a decodable signal on the channel, for example a header of a certain wireless
system. Only if this header is decoded correctly, the channel is declared busy.
The difference between this feature detection and pure energy detection is
that in the first case all devices operating in the corresponding bandwidth

154 9. Physical Layer Modeling

can block the channel (by emitting energy) while in the second case only
specific devices can block the channel. Carrier sensing is also used during
the association process in all cellular networks (GSM, UMTS, LTE) that
comprise multiple channels operating on orthogonal carrier frequencies. In
these cases, the SINR of each channel is evaluated by sensing a beacon on
each carrier.

DA/AD Conversion and IF Up/Down Conversion. In digital communica-
tion digital-to-analog conversion is used to convert the pulse shaping filtered
output into an analog voltage which will be sent to the radio front-end of
the transmitter. At the receiver, the reverse operation is known as analog-
to-digital conversion. By the Nyquist-Shannon sampling theorem, a sampled
signal can be reconstructed perfectly provided that the sampling frequency
is at least twice as big as the Nyquist frequency of the transmitted signal
in absence of noise [106]. However, even with an ideal reconstruction filter,
digital sampling introduces quantization errors that make perfect reconstruc-
tion practically impossible. Increasing the digital resolution (i.e. increasing
the number of bits used in each sample) or introducing sampling dither can
reduce this error.

The performance of current digital-to-analog converters can support data
rates as high as 1 Gigasample per second [217] with 16 bit integer resolution.
Therefore, the up-conversion of the baseband signal to an intermediate fre-
quency with values ranging from 1 MHz to 10 MHz in most of the devices
can be done digitally.

9.3 Accurate Simulation of Physical Layers

With wireless transmission systems becoming more and more complex while
the time-to-market is always decreasing, accurate simulations of upcoming
standards are essential. Wireless communication standards become so in-
volved due to the complexity of the system that the design and elaboration
of the upcoming standards are done by means of using a simulator (and later
in the process a hardware prototype).

Since most of the elementary operations in the components of the PHY
layer are done on vectors of bits or symbols or samples, natural candidates
are scientific programming languages, such as Matlab. As a point-to-point
communication can be modeled as a chain of elementary matrix or vector
operations, it is also natural to consider in addition block diagrams as in
Matlab Simulink or Labview. The simulations consist usually of evaluat-
ing the symbol-, bit-, or packet-error rate of the transmitted PHY frames
that have been corrupted by the modeled transmission channel. In order to
take the randomness of the transmission system into account (randomness
of the propagation medium, randomness of the transmitted data), a simula-
tion provides the average performance for thousands of packet transmissions

9.3 Accurate Simulation of Physical Layers 155

PHY frame
generation of

pseudo-random
bits

Encoding,
modulation,

mapping

Generation of the
equivalent

transmission
channel (noise,

multipath, filtering)

Generation of the received PHY frame

Equalization,
demapping,

demodulation,
decoding

Bit/Packet error
rate updated

Fig. 9.7: Typical flow graph used for simulating performance of PHY layer trans-
mission (Matlab, Labview, or C). The new algorithm(s) is (are) imple-
mented either in the transmitter side (encoding, modulation) or on the
receiver side (equalization which includes interference canceler, decod-
ing,. . .).

with different transmission channel coefficients and different data to transmit.
The simulation flow graph is illustrated in Figure 9.7. Most of these Matlab
implementations consider equivalent symbol timing and bypass network as-
pects beside interference within PHY frames. Queuing, network topology,
network protocols (TCP, IPv6) are rarely considered for complexity issues
since the computational complexity is increasing at least linearly each time
a new random parameter is introduced (depth of the queue, location of the
transmitter/receiver). Moreover, the computational complexity of the sim-
ulations increases polynomially (or even exponentially) with respect to the
number of users so that the computational complexity of a simulation for a
full cell is prohibitive and requires a higher level of abstraction as in the net-
work simulators. However, this is basically not the main focus of Matlab or

156 9. Physical Layer Modeling

Domains Bit rate (Mbits/s)

Bit domain 22.8 Mbits/s
Symbol domain 28.5 Mbits/s
Sample domain > 914 Mbits/s

Table 9.4: Bit rate in the bit, symbol, and sample domains of the PHY layer for
IEEE 802.11 system assuming a raw data rate of 10 Mbits/s at the
MAC layer.

similar tools and there is no built-in libraries that allow networking consid-
erations. Whereas their proposed environment allows fast development and
design of advanced wireless techniques at the PHY layer, the next paragraphs
discuss their main limitations. In the following we focus on three of them:

1. Slow execution speed: Whereas the Matlab environment is very conve-
nient for developers, the fact that it is an interpreted language – especially
when loops cannot be avoided – makes the simulations extremely slow.
To have a better understanding of the computational complexity, the bit
rate in the different domains of the PHY layer is calculated in Tab. 9.4
for IEEE 802.11 system with data rate of 10 megabits per second. From
this example, it is clear that scientific programming languages as Mat-
lab can deal well with the bit and symbol domains, but not with the
sample domains (the computational complexity is 2 orders of magnitude
more). One way to bypass this problem is to determine an equivalent
transmission model in the symbol domain. This is very commonly done.
However, there is a risk that the equivalent model does not capture ac-
curately some effect as sample synchronization or collision at the sample
level. It is also possible to use C for accelerating some functions that are
not vectorial and require large sequential loops as in the Viterbi decoder.
Matlab allows easily the integration of C functions (known as mex files).

2. No discrete-event support: While the sample or symbol processing at
a transmitter or receiver imply a pseudo-continuous model of time, the
processing steps of the higher layers of a wireless network happen much
more asynchronous. In order to simulate this, discrete-event support is
required, which is usually not provided. Furthermore, there is no library
support for functions of the higher layers, meaning that all functionality
needs to be implemented from scratch.

3. Lack of interaction with network simulators: While Matlab can
be used via an interface for example from C code, the interfacing is not
particularly easy to handle nor is it quite fast.

9.4 Physical Layer Modeling for Network Simulations 157

9.4 Physical Layer Modeling for Network Simulations

From the previous sections it is clear that physical layer simulations are
quite demanding with respect to computational complexity and the required
background knowledge. Hence, the question arises how physical layer behavior
can and should be modeled in the context of network simulation, i.e. the
typical simulation approach which only considers the packet domain.

A brute force method interfaces between a network simulator and simu-
lator for the physical layer (like Matlab). While this provides a very detailed
model, for larger deployments the approach does not scale with respect to
complexity. Run times of simulations become so long, even for moderately
complex topologies, that there is no benefit left from the detailed simulation
model. Furthermore, analyzing simulation results becomes much more diffi-
cult as many more parameters have now an influence on the performance.
Finally, as there is also a wide background knowledge required to design, ex-
ecute and analyze such simulations, implementing the considered approach
on a wireless prototyping platform might be a better choice. However, there
is still tool support for fully detailed simulation models of wireless systems. A
particular tool that can combine the different “simulation worlds” of higher
layers (i.e. the simulators of the packet domain) and of the physical layer
(among many other simulation domains) is Ptolemy from UC Berkeley [8].
Still, the above mentioned complexity problems remain.

Due to these reasons the common approach in wireless network simula-
tion is to abstract from the many details of the physical layer. More precisely,
almost all physical layer models in network simulators aim at capturing the
physical layer impact on the transmission of frames or packets in terms of
throughput, error probability and delay under the assumption of perfect syn-
chronization. These models belong to the packet domain from Figure 9.1 and
only take the following functions into account: FEC coding, digital modula-
tion, advanced transmission schemes (like OFDM, spread-spectrum, antenna
beamforming and space-time coding) and carrier sensing. All the other func-
tions are assumed to work perfectly without any performance degradation
(which is a very strong assumption compared to reality). Thus, only the
packet error process (along with throughput and delay) can be taken into
account. These models can not provide a “bit-true” characterization of the
PHY, where the impact of the PHY layer on the transmission of each bit
is modeled accurately. The difference between these two approaches leads
to the important consequence that for packet-domain models only a state-
ment can be derived if a packet/frame is received incorrectly but not which
bits are wrong (which can be obtained from a bit-true model). Knowing the
position of a bit error has some relevance for higher layers. If a header is
corrupted the packet is most likely discarded. On the other hand, if payload
bits are corrupted this may have quite different consequences for multime-
dia applications like video or voice, which can tolerate some bit errors. The
quality degradation depends on the exact position of the bit error. However,

158 9. Physical Layer Modeling

bit-true physical layer simulation models are much more complex regarding
their implementation.

Apart from other issues, two components are essential for all packet-
domain models. On the one hand, most packet-domain models determine
the channel quality between a transmitter and the corresponding receiver.
Aspects of this step relate to considering path loss, shadowing, fading, noise
and interference in combination with the used antenna and possibly advanced
transmission schemes (like OFDM, spreading or MIMO systems). Another as-
pect of this step involves the question if the channel quality is accounted for
on the average or if an instantaneous channel quality is considered, i.e. one
value or even multiple values per transmitted packet. On the other hand,
most packet-domain models translate the channel quality into an error rate
(mostly a bit-error rate). This mapping can be quite complex and involves
the modeling of the digital modulation as well as the FEC scheme. In the
following, we give an overview of both modeling steps. Note that there are
further aspects to be considered for a PHY layer packet-domain model, as
discussed in Section 9.5.

9.4.1 Link-to-System Interface

In the following, we first discuss the mapping of the channel state to a bit-
error probability for narrow-band, single-carrier transmission systems, i.e. for
systems without advanced transmission schemes assuming that the channel
gain is flat (see Section 11.7). For this we make in this section initially the as-
sumption that the channel quality is fixed. This type of model is also referred
to as static channel (see Section 11.12). In this case we can find a mapping of
the channel state and the chosen transmission parameters (modulation type,
transmit power, coding scheme, etc.) into a resulting physical layer behavior
on the packet domain in terms of packet throughput, delay and bit-error rate.
This mapping is referred to as link-to-system interface. In its simplest form,
it is based on the fact that for a certain received channel quality, as measured
by the SNR, the bit error rate can be derived depending on the chosen mod-
ulation type and transmit power. Once the bit error rate is determined, the
corresponding packet error rate can be obtained as explained in Section 10.2.
The SNR is given by

γ =
Ptx · h2

σ2
(9.1)

where Ptx is the transmit power, h2 is the channel gain (see Chapter 11)
and σ2 is the equivalent background noise power of the transmission. The
transmit power Ptx is usually well known during network simulation, even if
it is adapted by the transmit node. Therefore, it is readily available for the
computation of the SNR. This is also true for the noise power which depends

9.4 Physical Layer Modeling for Network Simulations 159

on specific PHY parameters of the receiver (see Section 11.10). Furthermore,
h2 denotes the channel gain between the transmitter and the receiver, which
we assume to be constant initially. In this case the computation of the re-
sulting bit error rate from a given SNR is rather easy and is also quite close
to the real system behavior. Either exact or approximate formulas are used,
as derived in [100] for QAM systems. If no formulas exist, the considered
modulation system might still have been investigated by related work pro-
viding a SNR-to-BER curve. This curve can then be converted into a look-up
table to be used in the simulation. Finally, if no data on the modulation
system exists, the only way to obtain an SNR-to-BER curve is to perform
extensive and accurate PHY simulations, for example using Matlab. Then,
the obtained curve can be be mapped into a look-up table as shown in Ta-
ble 9.5 for the four different modulation types of the IEEE 802.11b standard
as taken from [355]. Given the bit-error rate, the next step is to determine the

SNR BPSK QPSK CCK5.5 CCK11
(dB) (1Mbps) (2Mbps) (5.5Mbps) (11Mbps)

...
-5 6e-2 0.5e0 0.5e0 0.5e0
-4 2e-2 0.5e0 0.5e0 0.5e0
-3 8e-3 0.5e0 0.5e0 0.5e0
-2 4e-3 1e-1 0.5e0 0.5e0
-1 1e-4 8e-2 0.5e0 0.5e0
0 3e-5 2e-2 0.5e0 0.5e0
1 1e-5 5e-3 8e-2 0.5e0
2 1e-6 1.2e-3 4e-2 0.5e0

...

Table 9.5: An example Bit-Error Rate (BER) lookup table for the four different
(uncoded) modulation types of the IEEE 802.11b Wireless Local Area
Network (WLAN) standard.

packet error rate. This step is described in detail in Section 10.2. Once the
packet error probability is obtained, for each transmitted packet a random
decision is performed according to the packet error rate threshold and the
corresponding packet is then marked to be either erroneous or not.

So far we have considered a static channel quality with a single modu-
lation type and a simple (single-carrier) transmission system. The mapping
from SNR to bit-error rate gets already more complicated if a FEC coding
scheme is assumed. To account for FEC coding, two general approaches exist.
Either the coding effect is taken into account by modifying the SNR. In this
case, coding simply “increases” the SNR leading to a better bit error rate.
However, this assumes a constant coding gain between the coded and un-
coded system which is usually not the case at high or low SNRs. Hence, one
has to obtain a detailed look-up table for the coded bit error rate of the FEC

160 9. Physical Layer Modeling

codes in combination with the modulation scheme depending on the SNR.
If such tables are not provided by books and research papers, they have to
be obtained from extensive physical layer simulations (usually performed in
the symbol- or sample domain of Figure 9.1). There are also limited ways to
capture the coded system behavior by formulas, see Section 12.1.2 for an ex-
ample mapping for convolutional coding. Still, ultimately a packet error rate
is obtained and for each transmitted packet a binary decision is performed if
the packet is erroneous or not.

Next, let us consider a varying channel gain. In wireless systems a vary-
ing channel gain is almost always encountered in reality. Hence, it is likely to
be included in a simulation study. The channel gain depends in general on
the distance between transmitter and receiver (therefore, the chosen mobil-
ity model – see Section 14 – has an impact on the channel gain), but there
are also additional time-varying, random components to the channel gain re-
ferred to as shadowing (see Section 11.6) and fading (see Section 11.7). All
these effects ultimately lead to a varying h2 in Equation 9.1 and thus the
SNR γ varies over time. A quite common assumption for such cases is that
the channel gain h2 is constant during a single packet transmission but varies
in between. Such channel models are also referred to as block-fading channels
(see Section 11.12). This leads to determining an instantaneous SNR at the
time a packet is transmitted. From this instantaneous SNR an instantaneous
bit-error rate is determined using the same method as above (formulas or
look-up tables for the modulation and coding scheme considered). Finally,
a packet-error rate is determined and a random decision is performed if the
packet is received correctly or not. Depending on the considered distribution
of the channel gain, this method can lead to a very different average packet
error rate behavior than considering a static channel quality. This is impor-
tant to note if one is only interested in the average PHY layer behavior but
fading or shadowing is to be taken into account.

9.4.2 Equivalent Channel Quality Models

The modeling of the channel quality and the corresponding PHY layer per-
formance becomes more complicated if the channel quality is assumed to be
variable during a packet transmission. This can happen due to fading, as ex-
plained in Section 11. However, interference can also contribute to a varying
channel quality during a packet transmission. If interference is present, the
channel quality is measured by the SINR as given below:

γ =
Ptx · h2

∑
∀j P I

j · h2
j + σ2

(9.2)

In this case, the received power in the numerator is divided by the noise power,
denoted by σ2, as well as the sum over all interfering signals multiplied by the

9.4 Physical Layer Modeling for Network Simulations 161

respective channel gains between the interference sources and the considered
receiver. Note that these channel gains might all be subject to stochastic
variations which makes the analysis of such scenarios quite complicated.

If either fading or interference are time varying within the packet trans-
mission, the common approach is to consider an equivalent SINR, meaning
that a constant substitute SINR has to be found which results in the same
packet error rate as the varying channel has. In general this is quite difficult
and has to be redone every time a new PHY architecture or a new channel
behavior is considered. For example, if three levels of channel quality are
assumed to occur during a packet reception, the equivalent channel quality
can be computed by the average of these three levels (weighted by their du-
rations). However, as the mapping from channel quality to bit error rate is
usually non-linear, a better approach is to average the corresponding bit error
rates of the three levels weighted by the durations. Note that the correctness
of this averaging for an equivalent model depends on the modulation, FEC
coding and interleaving scheme used. Still, it is the best that can be done
for packet-domain models. If more accurate models are to be considered, a
bit-true model must be employed.

9.4.3 Modeling Advanced Transmission Systems

An accurate modeling of the PHY layer for network simulation becomes more
complicated if advanced transmission systems are considered even if the trans-
mitter/receiver pair is assumed to be perfectly synchronized (and hence the
components involved in synchronization are not considered). The main rea-
sons for the modeling difficulties are the following:

1. Interaction between the channel and advanced transmission
schemes: Most current and upcoming standards for wireless systems
employ a system bandwidth which is much larger than 500 kHz. For such
bandwidth the channel becomes frequency-selective (see Section 11.7).
Even for simple transmission schemes the performance on top of a
frequency-selective channel is not easy to characterize. This becomes
much harder if advanced schemes are employed. Even worse, if mobil-
ity is assumed, the channel might become time-selective, which adds to
the modeling complexity. Finally, all these arguments also apply to inter-
fering signals, which interact with the advanced transmission system as
well. Especially if many possible transmitter/receiver/interferer constel-
lations are considered in a large-scale simulation, the scalability of the
simulation model becomes crucial [392].

2. Multi-parameter dependency: Any model of advanced transmission
schemes such as OFDM, MIMO or spread-spectrum requires a lot of pa-
rameters to characterize the input/output behavior. It is difficult to plug
a statistical characterization to each parameter, especially when they are

162 9. Physical Layer Modeling

not mutually independent. This applies for instance to the fading gain
coefficients between the antennas in MIMO systems and/or the fading
gain coefficients between subcarriers in OFDM systems. Some interesting
solution based on the principle of maximum entropy has been presented
recently for MIMO systems [115]. Furthermore, models for so called “out-
age analysis” have been derived recently. The outage probability has been
first considered by Shamai [345] in the context of vehicular networks
for simple transmission systems. Later, this approach has been extended
to more advanced schemes like MIMO [287], OFDM [114], and spread
spectrum [478]. The analysis of the outage probability however has sev-
eral drawbacks. Most importantly, all mentioned work consider Gaussian
signaling instead of discrete constellation settings (i.e. Shannon capac-
ity versus real modulation schemes) and the outage probability can be
determined only for specific channel behaviors like the Rayleigh fading
distribution.

3. Advanced coding schemes on top of advanced transmission
schemes: For advanced FEC coding schemes– especially the decoding
algorithms invoked at the receiver– there is often no analytical rela-
tionship between the input(s) and the output(s) even if simple trans-
mission schemes are considered. Notable examples are Turbo-codes for
which the algorithm was found before any analytical framework was pro-
posed. Hence, the performance gain stemming from these advanced FEC
schemes is difficult to quantify. Several new methods addressing this prob-
lem have been proposed recently [461, 389]. However, they require large
computational power and can only model basic schemes.

4. Adaptation and channel feedback: Finally, many advanced transmis-
sion schemes are applied in an adaptive manner, i.e. there is a feedback
loop from the receiver to the transmitter with channel state information
and the transmitter modifies its behavior depending on this feedback. In
fact, most of the current standards support feedback channels for trans-
mitting periodically some channel state information such as acknowledg-
ment frames (IEEE 802.11, IEEE 802.16 and LTE) or even channel state
information (IEEE 802.16, LTE). Modeling of the behavior of such sys-
tems is generally difficult since it can require for example application of
control system theory (complex Markov process) or some notion of the
transformed channel behavior. Notable works in this field are [326, 179].

Due to these many difficulties, accurate performance models of advanced
transmission schemes in the PHY layer are a challenging and still open re-
search field today while they are essential for network simulation in the fu-
ture. In the next paragraph, we illustrate the problems of modeling an OFDM
system accurately in the context of IEEE 802.11 WLAN

In addition to the time-varying channel behavior, the modeling of the per-
formance of an OFDM system requires some assumption about the frequency-
varying channel behavior. Let us consider a block-fading channel behavior

9.4 Physical Layer Modeling for Network Simulations 163

in the time-domain. The simplest assumption for the frequency domain is to
model it static. In this case, the channel quality, varying from packet to packet
transmission due to the block-fading assumption, is the same for all subcarri-
ers. We further assume that the same modulation type is used per subcarrier.
Hence, all subcarriers have the same SNR and bit-error rate. Based on the
bit error rate, a packet error process can be obtained in a similar way as
discussed above. Even if FEC coding is applied, the coding scheme can be
taken into account by either shifting the SNR (which yields a better bit error
rate) or by considering a direct mapping between input bit error rate and
output bit error rate for the specific code considered.

The modeling already gets much more complicated if no static channel
behavior in frequency can be assumed. In reality, this is the usual case in
broadband OFDM systems, especially in indoor communication scenarios
with multiple reflections recombining at the receiver. A suitable assumption
in this case is to assume a narrow-band flat fading channel attenuation for
the whole subcarrier spacing, but this attenuation varies in general from sub-
carrier to subcarrier, potentially in a correlated manner (see Section 11.7).
Hence, per subcarrier we obtain a different SNR and therefore a different bit
error rate. Mapping this bit error rate to a packet error probability is only
possible without further assumptions if neither coding nor interleaving is ap-
plied. In this case, one simply determines the probability that all bits have
been transmitted correctly (based on the recombination pattern of forming
the payload packets from the parallel subcarrier bits). However, if coding and
interleaving are applied, further simplifying assumptions are required. In par-
ticular, one can assume “perfect” interleaving in frequency. This allows then
to average the bit error rate per subcarrier yielding a joint channel bit error
rate of the system. Next, if coding is applied the joint bit-error rate might
be mapped by an input-output bit-error rate characterization into a joint
coded bit-error rate from which the packet-error probability can be derived.
However, this method is based on a large set of assumptions. It is discussed
in detail in Section 12.1.2 and in [42] for convolutional coding. This method
can also be applied if different modulation types are employed per subcarrier.

From the above discussion it is clear that the probability of error of a
point-to-point transmission in advanced transmission schemes is generally un-
known due to the randomness of the transmission medium and the complex-
ity of the input-output relationship of each component at the receiver. This
also applies to spread spectrum systems and to MIMO systems (and more
generally to any multiple access system with random interference). Even if
sophisticated modeling techniques based on the statistics of the random vari-
ables of the transmission system have been developed in the past years [115],
there is no general technique available. Hence, the only alternative today is
to use look-up tables that can accurately predict the end-to-end performance
of a PHY layer as soon as advanced techniques are used and combined.

164 9. Physical Layer Modeling

9.5 An Example Packet Domain Physical Layer Simu-
lation Model

In addition to the general considerations of modeling the PHY for network
simulations, in the following we present an exemplary packet domain PHY
simulation model that explicitly formulates the PHY functionalities required
in most network simulations. The described model particularly provides the
PHY functionality necessary to support DLL modeling as described in Chap-
ter 10. Figure 9.8 shows the general structure of the presented PHY model
and its interface to the DLL. It generally consists of two units: a radio unit
that models actual radio hardware component functionality, and an evalua-
tion unit that includes all functionality that is necessary for simulation but
has no counterpart in real hardware, including the link-to-system model de-
scribed above. Note that we do not rely on a specific link-to-system model,
but keep the model open for using an arbitrary one. An exemplary implemen-
tation of the model can be found in the MiXiM framework [319, 262, 493] for
OMNeT++ [475].

9.5.1 Radio Unit

In general, each communication entity can act as a transmitter or receiver.
Whether the entity acts as a receiver or transmitter is usually determined
by the state of its radio. In principle, radios can be categorized according to
their dialog modes into simplex, half-duplex, and full-duplex radios. While
full-duplex radios are capable of sending and receiving simultaneously at
all times (e.g. by using different frequency bands), half-duplex radios can
perform one task at a time only. Moreover, in energy aware networks, devices
might support sleeping modes, in which the radio is powered down and, thus,
not able to send or receive frames. In the following, we focus on half-duplex
operation featuring sleeping modes as the most general case. All other cases
can be derived from that by setting parameters accordingly.

A half-duplex radio has three states: send, receive, and sleep. The radio
state is controlled by the DLL, i.e. switching information is passed as PHY
control info via the DLL-PHY interface. Note that it takes time to switch
the radio from one state to another. Depending on the investigation, these
Radio Switching Times might need to be modeled as well.

Transmitting Frames. For an entity to act as a transmitter, its radio has
to be in the send state. Additionally, it has to be ensured that no other
frame is currently being sent from the same node at the same time using the
same resources. Normally, the DLL layer should only pass a message to the
PHY if both conditions are fulfilled. In order to ensure the correct interaction
between DLL and PHY and catch potential errors at an early point, both
conditions should be checked and violations be reported (see Figure 9.9).

9.5 An Example Packet Domain Physical Layer Simulation Model 165

Environment +

Wireless Channel Model

Legend / Caption:

Data Resource Mapping

Antenna Model

Sending and

Receiving

of Frames

Radio Switching Times

Transmission Delay

Antenna Function / Entitity

Delay Parameter / Phenomena

Gain

Propagation Delay

Delay Interface Parameter / Phenomena

Data Message + Control Info

PHY Control Info

Synchronisation and

Frame Detection

Coding and Modulation

Carrier Sensing and

Channel Estimation

Processing Delay

Channel Info

Frame + Evaluation Info

EVALUATION

PHY LAYER

RADIO

Fig. 9.8: Functional blocks of the presented PHY model including the interfaces
to the environment/channel and the DLL.

166 9. Physical Layer Modeling

state = send &&
no msg being sent

add resource mapping
meta data

add antenna properties
meta data

msg to environment

yes

msg from DLL

no
error

add position vector

data resource mapping

antenna model

DLL msg + mapping

DLL msg + mapping
+ TX antenna

DLL msg + mapping
+ TX antenna + position

DLL msg

sending

DLL msg

delay (end of msg)

inform DLL

Fig. 9.9: Sending process

9.5 An Example Packet Domain Physical Layer Simulation Model 167

As mentioned earlier, the detailed effects of FEC coding and interleaving
are modeled by bit-true simulation models on the bit-, symbol-, or sample
domain (see Section 9.2 & 9.3). For packet domain simulations, the impact
of coding and interleaving are not considered per bit, but evaluated in com-
bination with the chosen modulation scheme as well as other transmission
parameters (cf. Section 9.4.1). As all this information has to be processed at
the receiver, meta data is added to the transmitted frame which contains all
information that the receiver needs to accurately determine the reception of
the frame. Appending all information regarding the transmission parameters
is done in the Data Resource Mapping block. In addition to typical transmit-
ter settings (like modulation and coding type or transmit power), also further
scheduling decisions regarding the used resources have to be appended like
the used sub channels in OFDMA systems or the used spatial streams in
multiple antenna systems, see Section 10.1.5. Finally, information is added
regarding the used antenna type and its impact on the transmit power, see
Section 11.11.

The frame with its meta data is then passed to the environment (which
models the channel including interference effects among other elements, cf.
Chapter 11). The environment is responsible for delivering the frame to the
appropriate receiving entities. Since the wireless medium is a broadcast chan-
nel, there might be more entities than the specified receiver of the frame. In
order to correctly calculate the channel gain at the moment of the frame
arrival at the receiver, the transmitter additionally needs to provide its mo-
mentary position, speed and direction of movement (referred to as a position
vector) to the environment. Before passing the frame to the environment, the
sending and receiving block thus attaches the position vector as meta data
to the frame.

Since in simulation the whole frame is “sent” at once, the Transmission
Delay has to be modeled explicitly, i.e. the time between sending of the first
and the last bit of the frame. This is usually done by some delay process. Once
the last bit of the frame is sent, the PHY has to inform the DLL, so that
it can take appropriate actions (e.g. sending the next message or switching
the radio back into the receive or sleep state). A state diagram for the whole
sending process is shown in Figure 9.9.

Data Resource Mapping. The task of this functional block is to map the
data for transmission on the system resources as determined by a resource
manager (see Section 10.1.5). However, since we do not consider a bit-true
model, only PHY frames with an attachment of meta data are considered.
The meta data is necessary for the receiving entity to be able to process
the transmitted frame. It comprises the transmission power that is reflected
by the RSSI in a real system. In adaptive modulation and coding systems,
the selected parameters for modulation and coding need also be attached
in order to enable the receiver to correctly evaluate the transmitted data. In

168 9. Physical Layer Modeling

multi-carrier and/or multi-antenna systems, this information is necessary per
carrier/antenna.

The decision on these transmission parameters is made at the transmitter
by the DLL and then passed as control info to the PHY layer via the DLL-
PHY interface. An example for a complete set of parameters in a MIMO
multi-carrier transmission system can be the following: “use sub-bands 4, 6,
and 8 for transmission on antenna 2: use QPSK and 100 mW on sub-band 4,
QPSK and 50 mW on sub-band 6, and 64-QAM and 200 mW on sub-band
8.”

Receiving Frames. The received analog signal is attenuated and distorted
by the environment it traveled through on its way from the transmitter to
the receiver. Depending on the modeled system, the distortion has to be
calculated for different subcarriers, antennas, and once or multiple times per
frame in the time domain. These effects are described in detail in Chapter 11.
In order to calculate the distortions, the position vector of the receiver (as
well as of the transmitter) is required. All this information is appended to the
frame’s meta data before it is delivered to the receiver’s PHY. The details of
the receiving process are shown in Figure 9.10 and described in the following.

The decision whether an entity is able to receive a frame or not depends
on several parameters. First, its radio has to be in receive mode. Second, only
one frame can be received at a time. Thus, if the PHY is currently in the
process of receiving a frame, all other frames arriving at that time will be
treated as noise (and added to the “noise messages” as shown in Figure 9.10).
Alternatively, the receiver might also lock to the strongest signal received,
even if it arrives later than some other frame (capturing effect). Which frame
to receive and which to treat as noise is determined by the synchronization
and frame detection block. Once the frame is received, bit errors have to be
calculated according to some link-to-system interface.

9.5.2 Evaluation Unit

Synchronization and Frame Detection. For each frame arriving at the PHY
layer, the receiver has to decide whether to receive it or treat it as noise. The
point in time for the decision (denoted as t1 in Figure 9.10) depends on the
chosen model. One possibility is to make the decision immediately after the
packet’s arrival (t1 = 0). This is useful if only a single channel gain value is
present for the whole frame. Another possibility is to decide at a later time,
e.g. after the preamble or header is received and there is at least one channel
gain value corresponding to the preamble transmission. The decision whether
to receive the frame or treat it as noise is based on the channel gain and other
transmissions currently ongoing on the medium. The PHY has to derive the

9.5 An Example Packet Domain Physical Layer Simulation Model 169

msg from environment

add antenna properties
meta data

antenna model

compute transmission delay

compute SINR matrix
until t1

noise?

compute SINR matrix
until t2

delay t1

delay (t2 - t1)

DLL msg + mapping
+ TX antenna + attenuation

DLL msg + mapping + TX antenna
+ attenuation + RX antenna

no

yes

frame detection

noise messages

compute bit-error
probability

transmission error
analysis

DLL msg + bit-error prob.

msg to DLL

receiving

yes

nostate = receive &&
no msg being received

add to
noise messages

Fig. 9.10: Receiving process

170 9. Physical Layer Modeling

SINR values for the frame or the part of the frame it has already received. If
desired, this is also the place to model capturing effects, as mentioned above.

If the message is treated as noise, it is added to the noise power. If not, it
has to be delayed until the end of the frame (t2) and passed to the resource
de-mapping, demodulation, and decoding functional block, which calculates
the bit-error probability and passes the message to the DLL.

An example is shown in Figure 9.11. Here we assume, that a frame is
received, if its header can be decoded. In this case “msg2” is the message
being evaluated. At the start of receiving “msg2” there has already been
“msg1” on the channel, which is assumed to be treated as noise. At time t1,
the header of “msg2” is completely received. In order to evaluate the SINR
at this point, all interfering messages have to be considered. In Figure 9.11
these are “msg1” and “msg3” – “msg4” does not intersect with the header and
thus is not of interest. Later, at time t2, also “msg4” is of interest to calculate
the bit errors as described in the Demodulation, and Decoding sub-section.

Fig. 9.11: Receiving of multiple messages

The attached channel gain h2 and transmission power values Ptx of the
frame in question (“msg2”) and the corresponding values of the interfering
gains h2

j and the interfering transmit powers P I
j of all intersecting frames i

(“msg1” and “msg3”), as well as the noise σ2 are used to calculate the SINR
as shown in Equation (9.3).

γ =
Ptx · h2

∑
∀j P I

j · h2
j + σ2

(9.3)

Note that in general the SINR is not only a single value, but a matrix of
values in frequency (different sub-channels), space (different antennas), and
time (if multiple values are to be considered per frame time or if advanced
transmission schemes are employed).

9.5 An Example Packet Domain Physical Layer Simulation Model 171

Channel Estimation. As mentioned above, channel estimation is performed
on the one hand at the receiver to better decode the modulation symbols.
For a packet domain simulation model, this type of channel estimation is not
considered but is assumed to function perfectly. On the other hand, chan-
nel estimation is required such that the transmitter can adapt transmission
parameters by resource management to the channel state. This type of chan-
nel estimation is often considered by packet domain PHY simulation models.
One way to model this is to let the environment determine the channel state
at frame transmission analytically, according to the estimation algorithm ap-
plied. The resulting channel gains are attached to the frame as meta data
(see Figure 9.10). The channel estimation part is modeled by passing the re-
ceived channel attenuation values on to the DLL that saves it together with
a time stamp and transmitter information for future use. In a Time Divi-
sion Duplex (TDD) system, if channel reciprocity can be assumed, the stored
channel state information can be used for transmission parameter adaptation
(e.g. power, modulation, coding), once the receiver in turn wants to transmit
something to the former transmitter. Whenever channel reciprocity cannot
be assumed, e.g. in a Frequency Division Duplex (FDD) system, the receiver’s
DLL needs to signal the channel information back to the transmitter in order
to enable it to adapt the transmission parameters in the upcoming slots. For
signaling the channel state information back to the transmitter an additional
signaling channel is needed.

Carrier Sensing. Carrier sensing at the transmitter is necessary for partic-
ular MAC protocols such as CSMA (like in 802.11, see Section 12.1). Carrier
sensing is a service provided by the PHY to the DLL. Whenever the MAC
wants to access the channel, it requests the carrier sensing information from
the PHY. The carrier sensing functional block then has to provide the chan-
nel status information and pass this information via the PHY DLL interface.
Based on this information, the MAC decides whether the channel is busy or
idle. Possibilities to model carrier sensing range from simply introducing a
random delay (done at the DLL) to explicitly modeling the carrier sensing
process as described above in Section 9.2.

Depending on the type of carrier sensing, feature detection versus energy
measurement, the PHY either has to calculate the RSSI or evaluate the SINR
to determine whether the signal is decodable or not. One option to decide on
the decodability of a frame is to consider either the SINR or the corresponding
BER. The calculated value (RSSI, SINR or BER) is then compared to some
threshold in order to decide whether the channel is busy or idle. In addition,
the DLL has to specify how long the carrier sensing needs to be performed. In
simulation, it is often assumed that carrier sensing can be done in zero time.
In this case the PHY would just evaluate the most recent SINR available. For
more accurate simulations however, the delay for the carrier sensing should
be simulated.

172 9. Physical Layer Modeling

Demodulation and Decoding. Coding and modulation have a major impact
on the transmission quality of a frame. At the packet domain, this impact
can be accounted for by a link-to-system interface (as explained above) which
takes the SINR as input and determines an instantaneous BER as output. If
no detailed description of the coding impact is at hand, a simple coding gain
can be assumed which is added to the SINR of the frame. The calculation
of transmission errors is usually done once the frame is completely received
(t2). The receiver has to calculate the SINR as described above and shown
in Equation (9.3) and Figure 9.11. The SINR is used together with the BER
curves or tables to get the bit-error probabilities for the message: the combi-
nation of SINR and indicated modulation/coding choice is taken as an input
for the table or curve look-up, the error probability is the output (as shown
in Table 9.5). The level of detail of the bit-error calculation mainly depends
on the number of SINR values available. The simplest model is to only have
one SINR value per frame. More detailed models have multiple values to
evaluate multiple sections of the frame. One example is to have one value for
the PHY header which are usually transmitted at a lower modulation to en-
sure the correct frame detection, and the payload, respectively. Furthermore,
there might be another value to distinguish between the MAC header and
the MAC payload in order to be able to evaluate both of them individually.
The PHY payload is passed to the DLL layer via the PHY-DLL interface
accompanied by the bit-error probability meta data.

10. Link Layer Modeling
M. Mühleisen (RWTH Aachen University)
D. Bültmann (RWTH Aachen University)
K. Klagges, M. Schinnenburg (RWTH Aachen University)

The Data Link Layer (DLL) is located above the PHY layer described in
the previous chapter and below the network layer described in Chapter 16.
All data received from these layers is digital. Today most parts of the DLL
are implemented in software, either as device drivers running on general pur-
pose Central Processing Units (CPUs) or as firmware running on dedicated
network interface hardware.

Segmentation and

Reassembly

Queueing

Error Detection and

Correction (Fwd. & Bwd.)

Neighbourhood Discovery

and Connection Management
Radio Resource

Management

Multiple Access

Duplexing

LINK

DATA LINK LAYER

MAC

Legend / Caption:

Duplexing Function / Entitity

Fig. 10.1: Data Link Layer Reference Model

Figure 10.1 schematically shows the different functions of the DLL. Of-
ten, especially in Institute of Electrical and Electronics Engineers (IEEE)
standards, the term MAC layer is used as a synonym for the DLL while the
ISO/OSI reference model [218] does not even define medium access as a DLL

174 10. Link Layer Modeling

task. Accessing the wireless channel, which is a broadcast medium, is one
of the most challenging tasks in a wireless network. Therefore we dedicate
Section 10.1 of this Chapter to MAC protocols.

In the Section 10.2, we discuss the other functions of the DLL, summa-
rized under the term Logical Link Control (LLC). The functions Queuing,
and Segmentation and Reassembly are typical for both, wireless and wired
communication systems. The very special topic of Neighborhood Discovery
and Connection Management is only briefly discussed in this section and de-
scribed in detail in Chapter 15. Since the wireless channel is very error prone,
we discuss Backward and Forward Error Detection and Correction in detail.
The main focus lies on backward error correction, namely ARQ.

10.1 Medium Access Control (MAC) Protocols

The task of the MAC protocol is to define rules on how the wireless medium
is shared among different nodes. This resource sharing can be realized in dif-
ferent domains as shown in Figure 10.2, namely, frequency, code and space.
These domains can be shared between different logical transmission channels
and nodes (multiplexing, multiple access) and in uplink and downlink direc-
tion (duplex) [425]. MAC protocols can be further distinguished in centrally
and distributed controlled protocols.

Essential for all MAC protocols is the resulting channel state at the re-
ceiver. The channel state at the receiver is the superposition of all received
transmissions at a given time. Each transmission comes from a separate
source, so the receiver has a link to each of these sources. Each link experi-
ences its own path loss from distance between sender and receiver, shadowing
from objects in between them and fading from multi-path propagation. Each
of these effects may change over time as node positions and the environment
change. With a different number of active nodes the number of links to the
receiver also keeps changing.

10.1.1 Time Domain

Time as a physical quantity is always present and therefore the time domain is
always relevant for wireless systems. All current and future wireless network
standards operate in time domain using it for different purposes.

The time domain can be used for division multiplex, multiple access and
duplex. One essential effect when simulating MAC protocols in time domain
is propagation delay. Radio waves propagate at speed of light which is ap-
proximately 300 m in 1 μs. Depending on the possible transmission range of
a communication system, propagation time can therefore become a signifi-
cant factor. Since the time a transmission arrives at a receiver can be long,

10.1 Medium Access Control (MAC) Protocols 175

Time [s]

Fr
eq

ue
nc

y
[H

z]

C
od

e
Position A

Time [s]

Fr
eq

ue
nc

y
[H

z]

C
od

e

Position B

Space

Fig. 10.2: Medium Access in Time, Frequency, Code and Space Domain.

transmissions from further away stations need to start in advance to compen-
sate propagation delay. One commonly used communication standard affected
by propagation delay is GSM. Here the base station provides a so called tim-
ing advance value to each served mobile terminal to assure transmissions
traveling different distances do not overlap in time.

For simulation of such systems, it might be an advantage to not model
propagation delay and therefore not to implement any timing advance pro-
tocols. This saves complexity and implementation effort.

Another aspect in time domain is synchronization of the nodes. In a cen-
trally controlled MAC protocol this is usually done by regular transmissions
like beacons. Distributed MAC protocols can synchronize by common chan-
nel state sensed by all nodes. The clocks of the nodes could for example be
synchronized when the channel is sensed idle. Real system clocks would then
start to drift until they are synchronized again. In a network simulator precise
simulation time is always known by every node. Synchronization is therefore
not an issue. Still the effect of missing a synchronization event like a beacon
could be accounted for, if required. On the one hand beacons are usually
transmitted with high power and robust modulation and coding scheme and
therefore are rarely lost. On the other hand in some systems a missed bea-
con could prohibit a node from any transmissions until it synchronizes again
successfully. Therefore, the effect of not modeling synchronization messages
has to be verified.

In the following we pick the IEEE 802.16 (Worldwide Interoperability
for Microwave Access (WiMAX)) metropolitan area network standard to
point out some aspects of MAC modeling in time domain. More details on
the standard are described in Section 12.2. Figure 10.3 shows the timing of
a WiMAX system only operating in time domain (Time Division Multiple
Access (TDMA)/TDD). WiMAX is a centrally controlled, cellular network
system, having a central controller in each cell called Base Station (BS) and

176 10. Link Layer Modeling

Frame n - 1 Frame n Frame n + 1

Preamble FCH Downlink Subframe Uplink Subframe
R
T
G

T
T
G

Map Burst 1 Burst bD Burst 1 Burst bU
Random
AccessIdle Idle

FCH F C t l H d
PDU 1 PDU k

FCH: Frame Control Header
TTG: Transmit / receive Transition Gap
RTG: Receive / transmit Transition Gap
PDU: Protocol Data Unit

Fig. 10.3: IEEE 802.16 TDMA/TDD frame structure.

one or more Subscriber Stations (SSs) associated to it. The BS decides the
periodic frame structure by periodically transmitting a preamble and FCH
marking the start of a new frame. The SSs try to synchronize to this period.
This is a synchronization on MAC frame time scale which should not be con-
fused with symbol level synchronization done in the PHY layer. The PHY
layer informs the DLL after the preamble has been received completely. Since
the length in bit and the bit rate of the preamble are known, the transmission
start of the preamble and therefore the frame start time can be calculated.
What is not directly known is the propagation delay tprop = d/c caused by the
distance d between BS and SS and the limited radio wave propagation speed
c which is the speed of light. In a simulator, global simulator time is avail-
able in every node and can be used for synchronization. As stated before,
propagation delay causes a delay of approximately 1μs for 300m distance.
This has no impact on the DL since all transmissions originate from the BS.
If no action is taken, UL transmissions from different SSs traveling different
distances would overlap and interfere at the BS. To avoid this interference,
the BS measures the propagation delay to each SS and provides the timing
advance information to each SS, assuring that transmissions do not overlap
at the BS. If propagation delay is not modeled in the channel model, timing
advance is not needed and implementation effort is saved without much loss
of accuracy. For long distances (e.g. satellite links) propagation delay might
form a significant part of total delay and should therefore not be neglected.
Turnaround guard times called Transmit / receive Transition Gap (TTG)
and Receive / transmit Transition Gap (RTG) are also required to protect
against the effects of propagation delay. They should be modeled in a simula-
tor, even if propagation delay is not, since no data can be transmitted during
that time.

In most cases, simulations are used to evaluate user data traffic. It is
therefore not necessary to model control and management traffic in detail.
Still the impact of those traffics, in the following called non-user data traffic,

10.1 Medium Access Control (MAC) Protocols 177

on user data traffic needs to be modeled. Figure 10.3 shows that certain parts
of the MAC frame are not available to user data traffic. Only the UL and
DL subfreez transmit user data. The portion of the frame transmitting the
preamble, FCH, map, and Random Access Slots could be simply modeled as
periods where no transmissions are active. In this case no interference is emit-
ted, the information transmitted during these periods has to be distributed
differently. It is therefore not influenced by the channel model and does not
experience packet loss. The impact of this is discussed in more detail when the
according management and control functions are discussed (Sections 10.2.2,
10.1.5 and 10.1.5).

Preamble FCH Downlink Subframe Uplink Subframe

MAP PDU 1 PDU bD PDU 1 PDU bU
Random
Access

R
T
G

T
T
G

Idle Idle

Downlink Subframe Uplink Subframe

PDU 1 PDU bD PDU 1 PDU bUIdle Idle

Not available for user data

Fig. 10.4: Model of IEEE 802.16 TDMA/TDD frame structure using idle periods.

Figure 10.4 shows a possible frame setup modeling non-user data periods
as idle periods. There can also be non-user data traffic transmitted in the
DL and UL subframes. The duration and amount of those transmissions can
vary from frame to frame and can therefore not be simply modeled as an idle
period of constant duration. An example of this data is the Map. The size of
the Map depends on the number of scheduled users in the frame. Still it can
be modeled as a fixed idle period having the duration of the average Map
length.

Most digital wireless communication systems have a time unit called sym-
bol (see Section 9.1). For a given MCS and, if OFDM is used, with a fixed
number of subcarriers, a fixed amount of bit can be transmitted in one sym-
bol. If the PDU length in bit is not a multiple of the number of bit per
symbol, padding has to be used to fill the gap to the next symbol bound-
ary. In reality, zero bits are inserted. This can be modeled by rounding the
transmission end time to the next symbol boundary rather than just dividing
the PDU length in bit by the data rate to obtain the transmission duration.

178 10. Link Layer Modeling

This way all transmissions start and end at a symbol boundary. If padding is
not modeled, capacity, due to fragmentation effects, could be severely over-
estimated if high MCSs are used. Also PDU size and SAR segment size (see
Section 10.2.2) influence the impact of padding.

10.1.2 Frequency Domain

The frequency domain has recently become more relevant for MAC protocol
development. The reason is that OFDMA technology is used in many modern
wireless telecommunication systems. In an OFDMA system, multiple orthog-
onal subcarriers are used for transmission (see Section 9.2), each, only few
kilohertz wide. Several hundred or even thousand subcarriers together let sys-
tems use an overall bandwidth in the megahertz range. Each single narrow
subcarrier can be seen as a flat-fading channel with a constant gain. From
the MAC perspective point of view OFDMA opens up multiple degrees of
freedom. A system can choose which subcarriers should be used to transmit
to a certain receiver and therefore reach multiple receivers in parallel. It can
adjust each subcarrier to account for different channel conditions for different
links. Therefore transmission power and MCS can be adjusted per subcarrier.
A simulator evaluating how the benefit of OFDMA can be explored needs a
sophisticated channel model describing the characteristics of each subcarrier.
Generally, single carrier models as the ones described in Section 11 also apply
to OFDMA systems. The fact that adjacent subcarriers experience similar
channel conditions has to be accounted for by introducing correlation factors
in the model. More details on this issue of channel modeling can be found
in [102].

If wireless systems would allow any possible amount and combination
of subcarriers to be used for a transmission, signalling overhead would be
enormous. Therefore subcarriers are logically grouped to subchannels . Sub-
channels are the smallest unit which can be addressed in frequency domain.
Complexity and simulation runtime can then be reduced by just evaluating
the channel state per subchannel rather than per subcarrier. All other prop-
erties like MCS and transmission power are then adjusted per subchannel.

Figure 10.5 shows a possibility to model OFDMA in time domain. Rather
than transmitting on four subchannels in parallel, data is transmitted se-
quentially but with four times higher rate. The model is inaccurate when
measuring delays, since data transmitted earlier in the sequence experiences
lower delay. This impact might be insignificant compared to the total delay.
By rotating the sequence of users the data is addressed to, the error gets
independent of the evaluated user.

As done in time domain (see Section 10.1.1), subchannels which are never
used for user data can be modeled as not being available or even not be-
ing present. For example, in OFDM systems the total number of available

10.1 Medium Access Control (MAC) Protocols 179

f

t

User 1

User 2

User 3

User 4

User 2

User 1

User 3

User 4

User 4

User 2

User 3

User 1

U
ser 1

U
ser 2

U
ser 3

U
ser 4

receive 1,2,3,4

receive 1

receive 2

receive 3

receive 4

U
ser 2

U
ser 3

U
ser 4

U
ser 1

U
ser 3

U
ser 4

U
ser 1

U
ser 2

Fig. 10.5: Modeling OFDMA in time domain.

subcarriers could be reduced by the number of subcarriers which are used for
pilot symbols.

OFDMA opens new Radio Resource Management (RRM) possibilities. So
called soft frequency reuse becomes possible in centrally controlled systems
where users at the cell edge are served at different frequencies and powers
than users closer to the center of the cell. This requires knowledge about user
positions which can be obtained through methods described in Section 10.1.3.
Algorithms exploring all degrees of freedom can become very complex and
require high runtime. If processing delay is not modeled in a simulator, al-
gorithm runtime has to be evaluated separately. By reducing the degrees
of freedom and using heuristics, algorithms with applicable runtime can be
developed as presented in [65].

Finally, when modeling OFDMA systems in the uplink, further restric-
tions apply. In the downlink, a single transmitter, i.e. a base station, emits
all subcarriers in parallel. In the uplink, each node transmits on the subcar-
riers assigned to it and transmissions from several sources are received at the
base station with possible impairments in time and frequency. A link level
evaluation of this effect can be found in [352].

180 10. Link Layer Modeling

10.1.3 Space Domain

The position of every node and therefore the space domain always implicitly
plays a role. Distant nodes can suffer from the hidden node problem in CSMA-
CA as described in Section 12.1. Cellular systems are deployed in a manner
to allow to reuse the same frequency from a certain distance, called reuse
distance, on.

The space domain can also explicitly be explored in a MAC protocol. If
position information is present, links that are not interfering because they
are far enough apart can be active simultaneously. This can be used in Mesh
WLAN deployments. Another example for MAC protocol enhancements is
beamforming. While the PHY layer forms the beam the MAC layer has to
decide which nodes should receive simultaneous beams. It therefore relies on
position information to pick nodes apart from each other keeping intra cell
interference low as described in [207]. Both examples have in common that
they rely on position information. The simulator can obtain this information
from the scenario setup. In a real deployment either GPS or power measure-
ments have to be used to estimate positions. Key properties of these methods
are their update frequency and accuracy. GPS has an update frequency of ap-
proximately one second. It also comes with an inaccuracy of up to 100m. Also
it might be required to transmit the position data to a central controller like
a base station. In this case data can become outdated if the node moves away
from the reported position. A multi-antenna array can also be used to esti-
mate the position of a transmitting node. In this case, the update frequency
depends on how often transmissions take place. The accuracy depends on the
channel between the nodes and the antenna array properties as described in
[207]. The inaccuracy of position data can be modeled by adding a normally
distributed, zero mean error on each Cartesian coordinate. The variance can
be used as a simulation parameter. This allows to evaluate how sensible a
protocol reacts to inaccurate position data. The update frequency, which is
only required if mobility (see Chapter 14) is used, can be either modeled by
periodically updating position data using the simulation environment or by
really sending packets over the channel.

10.1.4 Code Domain

In the code domain Code Division Multiple Access (CDMA) can be used to
allow multiple simultaneous transmissions. Here each bit of the signal is bi-
nary added to a pseudo random chipping sequence as shown in Figure 10.6.
This is described in more detail in Section 9.2. CDMA is usually used in
centrally controlled systems like UMTS [483], where each logical channel

10.1 Medium Access Control (MAC) Protocols 181

Binary

Signal

Chipping

Sequence

Resulting

Signal

Fig. 10.6: Spreading a Binary Signal with a Chipping Sequence.

between the central controller and the user nodes has an own chipping se-
quence. Since the length of the chips is shorter than the length of the bits,
the chip frequency is higher than the bit frequency. It therefore requires a
higher transmission bandwidth. The transmission is spread in spectrum. By
using codes of different bit to chip length ratio, different transmission rates
can be achieved. A receiver knowing the chipping sequence of an intended
transmission can decode it. All other simultaneous transmissions add to the
interference power at the receiver. Therefore system capacity is still limited
by the number of allowed simultaneous transmissions to assure the required
SINR.

For CDMA to work, all received powers need to be almost equal at the
receiver. This is challenging since the different channels between transmitters
and receiver experience different attenuation. Transmission Power Control
(TPC) has to be used to adjust transmission power accordingly. Accuracy
and update frequency of channel state measurement and TPC therefore have
an impact on performance and should be modeled in a simulator. Also an
appropriate shadowing model (see Chapter 11.6) providing a varying channel
needs to be used. Otherwise, the impact of changing channel conditions on
the power control algorithm can not be evaluated.

10.1.5 Resource Management

Power Management. Power management serves two purposes. It saves energy
for battery powered devices and limits interference to other nodes.

Wireless communication nodes consume energy when transmitting as well
as when receiving in order to amplify the received signal. The PHY layer can
not know if a received transmission is intended for a given node or not. If
possible, it will decode it and pass it to the DLL. If the transmission was
not intended for the node the whole PDU is dropped. The MAC layer can
prevent this by deactivating the transceiver of the PHY layer (go to sleep

182 10. Link Layer Modeling

mode) whenever it is not expecting any incoming transmissions. In a centrally
controlled system, nodes can go to sleep mode if they know there will not be
any transmission for them for a given duration. In distributed MAC protocols,
nodes can inform their peers that they are planning to switch to sleep mode
for a certain duration. Peer nodes can then delay PDU delivery until the node
is awake again. This can increase the PDU transmission delay.

Energy consumption and interference to other nodes can be decreased
by reducing transmission power. This, as mentioned earlier, is called Trans-
mission Power Control (TPC). For this to work nodes need to know how
much power is required for a peer node to successfully receive a transmission.
They therefore rely on information about received power and transmission
success probability at the peer node. Assuming a symmetric channel, trans-
missions from the peer node can be used to estimate channel attenuation
between the two nodes. Alternatively or additionally explicit protocol sig-
nalling can be used to inform a node about the received power strength.
When using an ARQ protocol (see 10.2.2) the error rate between two nodes
can be estimated and used as input for a TPC algorithm. Systems using
link adaptation (see 10.1.5) experience a trade-off between transmission rate
and emitted power. Using less power reduces SINR and therefore only allows
the use of lower transmission rates. When transmission power is too low to
provide required SINR for error free reception, the transmission can be lost
and needs to be retransmitted which uses up even more energy. On the other
hand, a higher transmission rate reduces the duration of the transmission
and therefore the time in which power is emitted. An example on how power
consumption can be simulated and evaluated can be found in [422].

The following list summarizes effects that should be considered when mod-
eling power management:

– Channel model and channel coherence time: Estimating an invariant chan-
nel is easy. The channel model needs to capture how the channel changes
over time and for how long channel state can be assumed constant when
evaluating TPC.

– How much energy is consumed when transmitting / receiving? When evalu-
ating battery lifetime improvements from TPC, accurate data about power
consumption is required. Especially the knowledge of the share of power
in the overall system which the radio transmission system has, is required.
If the share is not significant proposed and evaluated TPC algorithms are
useless in context of power management.

– How accurate is the estimation of the required power level? Every data fed
back to the sender comes with a certain delay, quantization and measure-
ment error. Trying to improve those may come at the cost of significant
performance losses through control traffic overhead.

10.1 Medium Access Control (MAC) Protocols 183

– Trade-off between link adaptation and TPC: Selecting a MCS and trans-
mission power of own and other nodes is not independent and has influence
on each other. An overview on the topic can be found in [283].

– Higher delays and lower transmission rates due to lower duty cycles: If we
keep the radio turned off, incoming and outgoing data has to wait until the
next duty cycle. Each algorithm therefore needs to be evaluated to check if
it can meet the Quality of Service (QoS) demands of a desired application.

– Quantization when selecting power levels for transmission: Actual hardware
may only allow certain discrete power levels. Algorithms requiring a very
fine resolution are therefore not feasible on such hardware. Quantization
levels therefore need to be implemented in a simulator.

Link Adaptation. Link Adaptation (LA) refers to dynamically choosing an
appropriate Modulation- and Coding Scheme (MCS) for a transmission. Ap-
propriate means that the MCS must assure a targeted packet error rate (PER)
when received at a certain SINR at the receiver. The received SINR depends
on the channel between transmitter and receiver, and the interference situa-
tion at the receiver. Therefore the transmitter needs information about SINR
at the receiver, which in turn either requires an explicit feedback channel or
information from ARQ. LA usually uses an information base with SINR es-
timations for each receiver node. This estimations can become inaccurate
because of changing channel state (shadowing, mobility) and changing inter-
ference conditions.

A multi-cell example: Cell A is very busy, there is almost always an ongo-
ing transmission. Cell B has less ongoing transmissions, it is idle 50% of the
time. The estimated SINR for a node at the cell edge could lead to a MCS
that can be successfully received when cell B is idle but is almost always lost
when cell B transmits. This would cause an unacceptable PER of 0.5. Taking
information from ARQ into account for LA could help in this situation.

When modeling LA the following has to be considered:

– Transmitting with MCSs allowing a higher bit rate occupies the channel
for less time

– MCS with higher bit rates require a higher SINR for successful reception
– The channel and PHY layer model need to accurately calculate SINR to

model the effect (see Chapter 9)
– MCS decision relies on channel state information and can therefore be

inaccurate
– An explicit feedback channel can only periodically provide SINR estima-

tions
– Estimated SINR can only be transmitted with finite quantization

184 10. Link Layer Modeling

Scheduler. Several different possibilities to share the wireless medium were
presented in previous sections. The task of actually assigning these resources
(time, frequency, code, space) with given properties (MCS, transmission
power) to communicating nodes is called scheduling. Goals of scheduling are
to maximize throughput, minimize delays and assure fairness between nodes.
These goals can be concurrent.

SchedulerBuffer Fill Level

History (for Fairness)

SINR Estimation

Input (per User Node)

Available Resources
(Time, Frequency, …)

Strategy (Round

Robin, Max

Throughput,

Proportional Fair, …)

Time

F
re

q
u

en
cy

Map

Fig. 10.7: Input, Output, and Logical Structure of a Resource Scheduler.

If link adaptation is used, nodes closer to the central controller can
use higher transmission rates. A scheduler would therefore maximize sys-
tem throughput by granting all resources to those stations. This Maximal
Throughput scheduling strategy is of course not fair. With a Round Robin
scheduling strategy each node receives the same amount of resources such as
time and frequency bandwidth. Still each node experiences a different QoS
since closer nodes can transmit more data by using higher transmission rates.

Figure 10.7 shows the possible structure of a scheduler in a simulator. As
input, it takes the number and size of buffered PDUs, the estimated SINR
at the receiver and the transmission history of each node. The output is the
schedule. The scheduling strategy decides how the schedule is formed from
the input. An overview of different scheduling strategies can be found in [110]
and [299].

The estimated SINR has to be mapped to a transmission rate R de-
ciding how much resources the scheduled PDU needs. Different mappings
exist: most systems have a finite set of MCS, each requiring a certain
minimal SINR. A simpler implementation might use the Shannon capacity

10.1 Medium Access Control (MAC) Protocols 185

R = Blog2(1 + SINR). Here B is the used frequency bandwidth in MHz.
Since the Shannon capacity is only a theoretical upper bound, the formula
can be shifted to match the data rates of the MCSs used by the system.
Therefore the modified Shannon limit model from [53] can be used, in which
the formula R = Blog2(1 + αSNR) is used to calculate the possible data
rate for a given SINR estimation. The parameter α is system dependant and
needs to be determined or looked up. It has to be chosen so that the formula
matches the data rates of the finite MCS set of the system.

Scheduling history can be used to achieve fairness. Another approach is
to just use buffer fill levels as input. A high buffer fill level indicates high
traffic demands as well as the fact that the node was not able to empty its
buffer in the past. Buffer fill levels therefore help to establish fairness.

Resource Signaling. Resource signalling describes both, distributing the
schedule to each node and collecting required information to form the sched-
ule. The schedule can be transmitted as a broadcast to all nodes simulta-
neously. Some technology standards refer to this schedule as the map. For
each scheduled resource, the schedule contains a unique identifier of the node
it is scheduled to, the MCS to be used and, if not fixed, some or all of the
following: frequency channel(s), time and duration, and chipping sequence.
The interval between the transmission of schedules has a high impact on pro-
tocol performance. The shorter the interval, the better can the system react
to changes in channel state, but shorter frame durations introduce higher
signalling overhead.

For the downlink direction the scheduler has almost all required in-
formation. It knows the traffic requirements for each station by observing
queued PDUs in the buffers. It only requires information which MCS to
use. This information can be gained as described earlier in this section. In
uplink direction, the central controller needs information from the nodes
about their traffic requirements. The central controller could reserve some
resources for a node permanently, for a certain duration, or on a per PDU
basis. Resource requests can be transmitted as control traffic, piggy-backed
attached to normal user data transmissions or even in a random access
channel.

As with many other control signalling, resource signalling is often trans-
mitted using the most robust MCS which is unlikely to be lost. The whole
information could therefore be obtained using the simulator environment.
Still in a real system a node not receiving a schedule would not be able to
send or receive until it is scheduled next time. Resource signalling overhead
can be modeled by assuming a fixed amount of resources to not be available
for user data.

186 10. Link Layer Modeling

10.2 Logical Link Control

10.2.1 Forward Error Detection and Correction

As discussed in Section 9.2, detecting and correcting errors is mainly a task of
the PHY layer. Still different possibilities exist on what is carried out by the
DLL depending on the link-to-system interface. One possibility is that the
PHY layer decides which PDU was received successfully dropping all other
PDUs without informing the DLL. This is especially true for transmissions
that could not be received because PHY layer synchronization or equalization
failed. If the PHY layer model allows to derive error probabilities for different
parts of a PDU, it could do a CRC on the PHY header dropping any PDU
not passing it. PDUs passing the PHY header CRC are passed to the DLL,
which has to take the decision if the DLL-PDU was received successfully. The
PHY layer model presented in Section 9.5 attaches the BER of the DLL-PDU
as additional information for the DLL.

A model is required to map the BER to a Packet Error Rate (PER).
Assuming an independent bit error distribution, the probability of successful
reception (1−PER) can be calculated using a Bernoulli distribution as given
by Equation (10.1). n is the PDU size in bit and k is the maximal number of
errors that can be corrected. Assuming the DLL cannot correct errors, k = 0
is set. Equation (10.1) can then be simplified to 1 − PER = (1 − BER)n.
Some DLLs might implement simple error correction schemes like horizontal
and vertical parity checking. In this case, the value of k has to be adjusted
accordingly.

1 − PER(n, k) =
k∑

i=0

(
n

i

)

(BER)i(1 − BER)n−i (10.1)

After calculating the PER, a Random Number Generator (RNG) can be
used to draw a standard uniformly distributed random number. If the random
number is less than the determined PER the PDU is dropped.

Often standard committees provide a detailed description on how the
PER should be determined. Therefore the openWNS simulator described in
Section 5.1 uses a common PHY layer model delivering each PDU together
with the average SINR it experienced to the technology standard specific
DLL. Here more advanced methods like for example using so called Mutual
Information (MI) to directly map SINR to PER (see [435]) can be applied if
required by the evaluation methodology of a standard.

10.2 Logical Link Control 187

In some systems even PDUs containing errors are used to obtain infor-
mation. If the sender is known, a dropped PDU can help to estimate the
transmission success probability of a link. This is true in point-to-multipoint
systems like cellular networks or in IEEE 802.11 systems operating in Infras-
tructure Mode. Here the DLL can use the unsuccessfully decoded PDU to
obtain new information about the link quality. Systems that have to rely on
address fields to determine the sender cannot gather any additional informa-
tion since bit errors could have altered the address field.

10.2.2 Backward Error Detection and Correction

The term backward error detection and correction refers to Error Detection
and Correction (EDC) done with help from the sender. The sender therefore
needs to detect that the receiver was not able to correctly receive a transmis-
sion. A common way to assure that is Automatic Repeat Request (ARQ).

ARQ uses a back-channel between receiver and sender to inform the
sender whether the transmission was successful or not. Usually this is done
by sending an Acknowledgment (ACK) to confirm successful reception. Se-
quence numbers are used to distinguish which previous transmission is being
acknowledged by an incoming ACK. A missing ACK can therefore indicate
two things: Either the ACK or the data transmission could not be received
successfully. In both cases the PDU is retransmitted. If a PDU is retransmit-
ted due to a lost ACK and the transmission succeeds the receiver will receive
a second copy of a previously received PDU. In this case duplicate detection
by sequence numbers can be used to delete the PDU. An overview of the
different kinds of ARQ protocols can be found in [451].

When modeling ARQ in a network simulator, different levels of detail
are possible. On the one hand, the protocol can be fully implemented hav-
ing data transmissions and ACK transmissions on the channel and being
influenced by the channel model. In this case, data and ACK transmissions
can be lost. A simpler simulator with a simple channel model could model
ARQ as additional delay caused by retransmissions. In this case, a stochas-
tic model for retransmission probability is used and the total transmission
delay is calculated based on it. The accuracy of this model highly depends
on the stochastic retransmission count model. Also the effect of lost ACKs
is not accounted for. Still the loss of ACKs is less likely than the loss of a
data transmission. This is because ACK transmissions are usually short and
often use a more robust MCS than user data transmissions. An even simpler
approach just calculates the overhead introduced by retransmissions by cal-
culating the mean required number of transmissions until successful reception
n̄. For a Stop-and-Wait ARQ with given PER pPER, the following formula is
used: n̄ =

∑∞
i=1 p

(i−1)
PER (1−pPER) = 1

1−pPER
. Channel capacity must therefore

be scaled by 1 − pPER. This can be either achieved by reducing data rate

188 10. Link Layer Modeling

accordingly or by reducing the amount of available resources. This model can
not be used if transmission delays are evaluated.

If a sliding window ARQ is used, the window size has to be chosen ap-
propriately. For a simple full-duplex communication system the window size
W in PDUs needs to be W = 2a + 1 where a is the number of PDUs the
sender has fully transmitted before the receiver has received the first one. For
a single-hop link, a can be calculated as the ratio of propagation delay tprop

and transmission time for a PDU ttrans. In modern communication systems,
even with full-duplex, other considerations are important when choosing W .
Since PDU size can vary, windows size should be set in bit. For a TDD sys-
tem, which is not full-duplex, W needs to be set to the maximal amount of
bit that can be transmitted in one direction, since no ACK can be received
before transmission direction is switched. If LA is used, the maximal amount
of bit needs to be calculated using the highest possible data rate. The fact
that no ACK can be received before the scheduler grants resources for the
back-channel also needs to be considered.

Often Hybrid ARQ (HARQ) is used in modern communication systems.
Hybrid means that forward- and backward error correction are done together.
If forward error correction is not possible in the decoder, it informs the trans-
mitter using an ARQ protocol. The PDU is then retransmitted. The decoder
will then again try to decode the data using information from the first trans-
mission and the retransmission. If an identical retransmission is sent using
same MCS as the first transmission Chase Combining (CC) is used. If the
retransmission is transmitted using a more robust MCS to increase success
probability Incremental Redundancy (IR) is applied. While to the best knowl-
edge of the author no system level models for IR exists, CC can be modeled
in the following way as described in [435]: When calculating resulting SINR
for a received PDU sum up the SINR of the current PDU with SINR values
of all previously received copies of this PDU, in linear scale (not dB).

Segmentation and Reassembly

The DLL has to provide a common interface for the transmission of data
units to the higher layers. As PHY layers differ in the amount of data that
might be transmitted within a single frame transmission, the DLL may pro-
vide functionality to allow a mapping between the data units delivered from
higher layers and the ones transmitted over the physical link. Segmentation
And Reassembly (SAR) performs this task: if a data unit to be transmitted
is larger than the maximum allowed size, it splits the data unit into several
pieces of acceptable size and defines rules on how to transmit them. Depend-
ing on the PHY, several of such fragments may be transmitted right after
each other, or the fragments have to be regarded as completely separate data
frames. In any case, reassembly has to collect the fragments and may only
deliver them to the higher layer as one reassembled data unit. In a model,

10.2 Logical Link Control 189

SAR can impact delays and resource utilization through fragmentation. Error
models depending on PDU length are also influenced by SAR.

10.2.3 Queueing and Processing Delay

Queueing. A wireless medium is always restricted in the amount of data
it might process within a specific interval of time. Clearly, if more data is
provided than can be transmitted, it has to be either discarded or queued.
Typical lower layers provide one or several interface queues in which data that
should be transmitted is stored until it can finally be handled. Models that
describe queueing behavior are often used and widely known. In case queues
have specific characteristics their behavior can be described in an analytical
way. Sometimes it is of interest to analyze the statistics of a queue. The
queueing delay is defined as the difference between the time a PDU enters
it and the time it finally leaves the queue. It is more difficult to obtain the
statistics of the queue size. In most cases the time average of the queue
size is of interest. In general, if queue size is evaluated whenever a PDU
enters or leaves the queue, the results do not represent the average queue size
over time. In some cases a periodic probing with fixed period could produce
wrong results. If the system uses a periodic MAC frame, probing time could
be correlated with MAC frame period. If the system starts emptying its
queues at the beginning of each frame, queue sizes decrease as the time offset
from the frame start increases. Queue sizes therefore are correlated with
the periodic MAC frame and cannot be probed periodically. The solution
is periodic probing with variable period length. As stated by the Poisson
Arrivals see Time Averages (PASTA) theorem [502], period length should
follow an exponential distribution. In this way, the average queue size over
time is obtained.

Processing delay. This type of delay occurs due to the necessity of analyzing,
handling and creating data packets and their corresponding information, e.g.
packet headers. Typically, the delay introduced by a certain module can be
modeled by a mathematical function that provides the amount of time which
has passed until processing a packet is finished. The most simple model for
processing delay is a constant one or a delay depending on the size of data
units. Most simulators do not model processing delay at all. Still any im-
plemented algorithm, for example scheduling algorithms as described in Sec-
tion 10.1.5 must be verified if they can produce results within given time
constraints.

190 10. Link Layer Modeling

10.3 Summary

Previous sections presented different functionalities of a Data Link Layer
(DLL). Some possibilities on how to model the effects and impact of those
functionalities were presented. Most of these models focus on not explicitly
modeling signalling traffic on the wireless channel, but just obtaining the
knowledge from the simulator environment. While in the physical layer and
the channel, abstract models mostly serve the purpose to reduce computa-
tional efforts, two other purposes are essential when simplified DLL models
are used: For one, implementation efforts can be reduced by not implement-
ing certain parts of a protocol. Additionally, by using perfect knowledge from
the simulator environment, the optimal case can be evaluated. Each proposed
solution can then be quantified by how close it comes to this optimal solution.

Any research results drawn from a simulator should include the simplifi-
cations made and an estimation of their impact.

11. Channel Modeling
Arne Schmitz, Marc Schinnenburg, James Gross (RWTH Aachen Uni-
versity)
Ana Aguiar (Faculty of Engineering, University of Porto)

For any communication system the Signal-to-Interference-plus-Noise-Ratio
of the link is a fundamental metric. Recall (cf. Chapter 9) that the SINR is
defined as the ratio between the received power of the signal of interest and
the sum of all “disturbing” power sources (i.e. interference and noise). From
information theory it is known that a higher SINR increases the maximum
possible error-free transmission rate (referred to as Shannon capacity [417] of
any communication system and vice versa1). Conversely, the higher the SINR,
the lower will be the bit error rate in practical systems. While one aspect of
the SINR is the sum of all distracting power sources, another issue is the
received power. This depends on the transmitted power, the used antennas,
possibly on signal processing techniques and ultimately on the channel gain
between transmitter and receiver.

Hence, given a transmitter/receiver pair, the SINR is influenced by factors
internal to the system, like the used antennas and available signal processing
techniques, as well as by three "external" factors: The gain between transmit-
ter and receiver, the sum of received interference power and the noise power.
These three factors are, in general, time-varying and are denoted in the fol-
lowing by h2(t) for the gain,

∑
∀j P I

j (t) ·h2
j (t) for the sum of the interference

power, and n2(t) for the noise power. Given a transmit power of Ptx , the
SINR is defined as:

SINR(t) :=
Ptx · h2(t)

∑
∀j P I

j (t) · h2
j(t) + n2(t)

(11.1)

The gain depends strongly on the medium between transmitter and re-
ceiver. This medium, for example an optical fiber or an infrared link, is re-
ferred to as communication channel. Wireless channels differ a lot from wired
channels because their gain varies with time in a way that is not deterministic.
Alternatively, it can also be said that they are time-selective. In contrast to
wired channels, the gain between two transceivers may change randomly by
magnitudes within a couple of milliseconds. Therefore, performance models

1 This result only holds precisely for Gaussian sources of noise and interference.
However, it is often used as approximation especially for non-Gaussian sources
of interference.

192 11. Channel Modeling

for wireless networks have to deal with this impact by the channel, and use
models for the different effects that can be observed.

Focusing on the channel gain, the results of extensive measurement cam-
paigns [439] allow to distinguish three different components contributing to
the overall gain h2(t). First of all, if the distance between transmitter and
receiver is kept constant and multiple samples of the gain are recorded for
different placements, these samples vary significantly. However, the average
gain over all placements and over time depends only on the distance from
transmitter and frequency. Models have been developed which reliably predict
this average gain depending on the particular propagation environment [384].
This component of the gain is termed path loss and we will denote it by h2

pl.
From here on we drop the time index for simplicity reasons, as we are pri-
marily interested in the decomposition of the total gain in this section. Note
that the designation “loss” comes from the fact that the received signal has
lower power than the transmitted signal.

For a given placement of transmitter and receiver, a path loss model pre-
dicts a certain gain. However, the actually measured gain varies constantly
over time on a time-scale of milliseconds. Even if the average of the gain is
taken over multiple seconds, it is likely to differ from the predicted gain2 [439].
These deviations are due to the surroundings of the transmitter/receiver and
of the path between them. They are modeled stochastically and termed shad-
owing. Shadowing actually models the deviations from the predicted path loss
gain in the range of seconds. We will denote this component of the channel
gain by h2

sh. As with the path loss, shadowing models have to be parameter-
ized according to the particular propagation environment, being different for
rural and urban areas.

Finally, the short-term variations (in the range of milliseconds) of the
gain result from multipath propagation, i. e. the fact that the signal at the
receiver is actually the result of a sum of several components that followed
different propagation paths and suffered different reflection, diffraction and
other propagation phenomena that will be revisited in Section 11.1.2. These
short-term fluctuations are termed fading and are found to follow certain
first- and second-order statistics. They depend on various environmental pa-
rameters such as a possible line-of-sight between transmitter and receiver,
the center frequency etc., and are modeled by distinct stochastic processes
accordingly. This (random) component is denoted in the following by h2

fad.
Combining all three effects yields the overall gain of the wireless chan-

nel. The corresponding model, which is used commonly [93], is given in
Equation 11.2.

h2 = h2
pl · h2

sh · h2
fad (11.2)

2 Recall that the path loss model only predicts an average gain for all placements
with a certain distance, not for a particular placement.

11.1 The Physics of Radiation 193

The aforementioned variations of the wireless channel gain over time re-
sult basically from changes within the propagation environment of transmit-
ter and receiver. First of all, the propagation environment of the transmitter
and receiver might change due to objects moving around, doors or windows
being opened and closed etc. This might affect the shadowing component
and/or the fading component, such that the resulting gain changes over time.
Alternatively (or in combination with moving objects) the propagation envi-
ronment might change due to mobility of the transmitter and/or the receiver.
This usually results in a change of the path loss, the shadowing and the fad-
ing component. However, it is important to note that the fading component
is affected on a much smaller time scale than shadowing and path loss. Note
that in addition to the time-selective nature of the wireless channel, there
might also be a frequency-selective behavior of the gain, i. e. the gain can
vary with frequency. This is due to the fading component and multipath, as
will be discussed in detail in Section 11.7 below.

This chapter focuses on models for wireless channel behavior and other
factors that influence the SINR. First, we summarize the basic physical phe-
nomena that are fundamental to the time- and frequency-selective nature of
the channel gain. Then, we describe various common models which capture
essential aspects of the wireless channel gain with respect to path loss, shad-
owing and fading. Then, we briefly introduce the effect of antennas on the
channel gain between a transmitter and a receiver. Finally, we describe how
the different models can be combined to simulate the variable gain of the
wireless channel in an example.

11.1 The Physics of Radiation

Radio communication works by using electromagnetic radiation, which is one
of the four fundamental forces: strong nuclear, weak nuclear, gravitational,
and electromagnetic force. In the following sections we give a rough overview
of the physical concepts that are needed to understand, correctly model and
simulate the SINR at the receiver end of a wireless communication channel as
a function of the transmitted signal. For a more thorough understanding and
details, we recommend a specialized textbook, like the one by Hecht [200] or
Tse [468].

11.1.1 The Nature of Electromagnetic Radiation

The basic interaction that describes all electromagnetic effects is the electro-
magnetic force. It is the force that keeps electrons and protons together in
the nuclei of an atom, and it also holds the atoms in a molecule together. In

194 11. Channel Modeling

classical particle physics the electromagnetic force is propagated by particles
called photons.

Some of the very basic incarnations of these photons are light and radio
waves. As the last sentence suggests, these photons do not only have a particle
nature, but also the properties of a wave. All observable instances of photons
have a certain wavelength λ and energy E = hc

λ , where h and c are the
Planck constant and the speed of light respectively. Both are not of great
interest in the following anymore, but the last expression states that the
energy of photons is only dependent of their wavelength. This wavelength
can be expressed as a frequency ν = c

λ .
This frequency is what discerns light from radio waves. In the modeling of

wireless networks one mostly wants to deal with the latter. Although current
work also deals with the spectrum in the Terahertz range and there are also
standards for infrared wireless communication. Figure 11.1 shows an intuitive
scale of the observable electromagnetic spectrum. The usable radio spectrum
is to the left, in the order of some Kilohertz to some Gigahertz. For instance
the well known 802.11 networks use frequencies of 2.4, 3.7 or 5 Gigahertz,
depending on the standard used. In general, the radio spectrum consists of
the frequencies ranging up to 300 GHz (or wavelengths larger than 1 mm).

Fig. 11.1: The spectrum of electromagnetic radiation, ranging from radio to
gamma rays.

The area of study that is related to the measuring of electromagnetic
radiation is called radiometry. Its most basic quantity is radiant power, or
flux, also denoted as Φ, it is defined as radiated energy per second and is
measured in Joules per second, or Watts:

Φ =
[
J

s

]

= [W] (11.3)

The second most basic quantities are irradiance (E - not to be mistaken with
the electric field E considered further down) and radiant exitance (B - not to
be mistaken with the magnetic flux B further down), both of which describe
the incoming or outgoing radiation on a surface:

E = B =
dΦ

dA
=
[

W

m2

]

(11.4)

11.1 The Physics of Radiation 195

The last important quantity is dependent on a direction and is called the
radiance. It is the flux over a surface per solid angle.

L =
d2Φ

dA⊥dω
=
[

W

m2 · sr

]

(11.5)

Also note that the surface is now called A⊥, since radiance depends on the
angle at which the radiation hits a surface.

As an example for the specific case of electromagnetic radiation, the ra-
diant power or flux is the total power radiated from an antenna. It is given
in Watt, or alternatively in decibel milliwatt (dBm) or decibel watt (dbW),
although the latter (dBW) is less common. The decibel is a dimensionless
unit and defined as:

LdB = 10 log10

(
P1

P0

)

(11.6)

Usually the decibel notation will be sufficient to describe the propagation phe-
nomena in a model. However, it is important to keep the underlying physical
phenomena and quantities in mind, for example for dealing with antenna
design or for calculating specific absorption rate values (SAR) of bodies, a
measure of the rate at which a body absorbs energy when exposed to an
electromagnetic field.

The Wave Model

Some aspects of electromagnetic radiation can be best explained by seeing
the radiation as being carried by a wave—the wave model for electromagnetic
radiation. The frequency that can be measured, the destructive interference
of signals and phenomena like scattering or diffraction are all best explained
by using a wave model. Electromagnetic radiation behaves like a combination
of orthogonal oscillating components: the electric field

−→
E and the magnetic

field
−→
H , as pictured in Figure 11.2.

Thus, radiation can be viewed as a vector field consisting of both
−→
E and−→

H parts which form a traveling wave. The relationship between the electric
and magnetic fields and their causes (electric charge and electric current)
was first done by James Clerk Maxwell, who formulated three of the four
now famous Maxwell equations in the mid 19th century. The four equations
in their differential form are as follows:

div
−→
D = ∇ · −→D = ρ (11.7)

div
−→
B = ∇ · −→B = 0 (11.8)

rot
−→
E = ∇×−→

E = −∂
−→
B

∂t
(11.9)

rot
−→
H = ∇×−→

H =
−→
J +

∂
−→
D

∂t
(11.10)

196 11. Channel Modeling

Fig. 11.2: A linearly polarized transversal electromagnetic wave. The two compo-
nents are the electric field E and the magnetic field B, which oscillate
orthogonally to each other.

where
−→
D is the electric flux density,

−→
B the magnetic flux density,

−→
E the

electric field,
−→
H the magnetic field,

−→
J the current density, ρ the electric

charge density at a point, and div
−→
X , rot

−→
X , and ∇−→

X are the divergence,
curl and gradient operators for vector fields [369]. For a linear, isotropic and
homogeneous medium, the constitutive relationships that define the equations
above are :

−→
D = εrε0

−→
E (11.11)

−→
H =

−→
B

μrμ0
(11.12)

where ε0 = 1
c2μ0

is the permittivity of free space, μ0 = 4π × 10−7 N
A is the

vacuum permeability; ε, μ and σ are the medium’s characteristic constants
permittivity (also called dielectric constant), permeability and conductivity.
Further interpretations and the integral forms of the equations can be found
in specialized books on Physics or Electromagnetism, as for example in Hecht
[200] or [369]. A good introduction for the understanding and application of
these equations can be found in the introductory course by Fleisch [145].

These equations allow us to model the radio wave propagation problem
as a problem of a vector field and a set of differential equations. The main
application of this model is in antenna design. From these equations, the
equations of the electromagnetic field radiated by an antenna of a specific
shape can be derived. That field can be divided in three regions depending
on the distance from the antenna: the reactive near field, the radiating near
field (also called Fresnel region) and the far field (also Fraunhofer region) [46].

11.1 The Physics of Radiation 197

– The reactive near field lies in the immediate proximity of the antenna, for
distances from the antenna up to 0.62

√
l3

λ , where l is the largest dimension

of the antenna, the
−→
E and

−→
H fields are predominantly reactive.

– In the radiating near field or Fresnel region, for distances from the antenna
between 0.62

√
l3

λ and 2 l2

λ , the
−→
E and

−→
H start being predominantly radi-

ating, but the variations of radiated power as a function of the direction
varies with the distance from the antenna.

– In the far field of the antenna or Fraunhofer region, for distances from
the antenna larger than 2 l2

λ , the variations of radiated power as a function
of the direction—the antenna pattern—remain constant with the distance
from the antenna.

The latter is the main application of Maxwell’s equations: the calculation
of the antenna pattern of an antenna of a certain shape at a certain frequency.
Details on the calculation of antenna patterns can be found in classical books
on antenna theory and design, like the ones by Elliot [130] or Balanis [46]. Due
to the involved computational and spatial complexity, Maxwell’s equations
are not used for propagation simulation. The latter rather use models based
on the particle model, like ray-tracing, or empirical and hybrid models, as we
shall see later on.

The Particle Model

The second interpretation of electromagnetic radiation is that it comes in
small packets or quantums that are called photons. They behave similarly
to ordinary particles, like electrons, protons or neutrons. Photons are stable
particles without mass that have an energy of E = hν, where h is again
Planck’s constant. A simplified model of the photon, without many of the
quantum-effects, will later be used to derive algorithms based on ray optics.

The photoelectric effect states that when metal is hit by electromagnetic
radiation, it emits electrons. This can be explained by the photon model:
Photons get absorbed by atoms, which results in certain electrons in the atom
to be put into a higher energetic state. On the other hand, when an electron
goes from a higher energetic state into its default state, it will emit a photon
with a particular energy and wavelength. Viewed on a macroscopic scale
this effect produces scattering, reflection and refraction of electromagnetic
radiation.

11.1.2 Propagation Phenomena

The Maxwell equations from the previous section enable the deterministic
calculation of the received signal at a certain distance from the antenna in

198 11. Channel Modeling

free space, the free-space loss or path loss. However, on the surface of the
Earth, there are objects in and around the propagation path and a radio
wave is subject to several phenomena like reflection, scattering, refraction
and diffraction, which are illustrated in Figure 11.3 and we briefly introduce
below. For more details on propagation phenomena, refer to specialized books
on radio propagation, like the one from Parsons [353].

(a) Reflection and re-
fraction

(b) Scattering (c) Diffraction

Fig. 11.3: Illustration of the basic propagation phenomena affecting a radio wave.

Path Loss. The propagation of radio waves is governed by the free-space path
loss, which can be calculated from the Maxwell equations 11.10. This value
is valid for a receiver that would be located is the space and for which there
are no objects in or surrounding the direct, or line-of-sight (Line-of-Sight),
propagation path. It expresses the fact that EM waves expand spherically
from their point of origin. The surface of a sphere scales as AS = 4πr2, so the
power received at a point at distance r from the transmitter scales with the
inverse of 4πr2. Additionally, the path loss depends on the frequency of the
radio wave. The free space path loss is the relation between received power
at a distance r from the transmitter, for an EM wave of wavelength λ, for
unit gain antennas on both sides, and is given by:

(
λ

4πr

)2

(11.13)

Reflection and Scattering. When a radio wave hits a border between two
media of different conductivity σ and dielectric constant ε (or of different
optical density), it will be scattered or reflected . In the simplest case this will
be vacuum on one side and some other, dense material on the other side,
like the Earth, a building or a tree. Scattering and reflection are basically
the same effect. Atoms scatter EM radiation, and if those atoms are aligned
in a smooth, possibly even regular grid that is much smaller than the EM
wavelength, the reflection is specular, or mirror-like (Figure 11.3-a). If the
size of the roughnesses of the surface that the wave encounters is not much
smaller than the wavelength, diffuse reflection occurs, more commonly known
as scattering. In this case, an incident wave will lead to several waves of much
less energy scattered in different directions (Figure 11.3-b).

11.2 Classification of Propagation Models 199

Refraction. The effect of refraction can be observed at the same time re-
flection happens (Figure 11.3-a). In fact it is also due to the same physical
processes, since EM radiation gets scattered or reflected into the new medium
although with a different, refracted direction.

Diffraction. Any form of wave is subject to the propagation effect of diffrac-
tion. It describes the behavior of waves that bend around a corner (Fig-
ure 11.3-c). It is implicitly modeled by all approaches that build on the
Maxwell equations (refer to [353] for more details of diffraction for radio
waves), or for particle and ray-tracing based approaches by the geometrical
theory of diffraction [311].

11.2 Classification of Propagation Models

Existing propagation models can be classified mainly into two categories: de-
terministic and empirical approaches. The first group contains the algorithms
based on field and wave theory, as well as ray-tracing algorithms. Whereas
the empirical methods use simpler models that are based on statistics from
large scale propagation measurement and have to be chosen accordingly to
the scenario they will be applied to, like indoor or outdoor or according to
the terrain occupation (urban, suburban, rural). There are also some hybrid
models which combine deterministic ray-tracing with empirical models. This
is usually done to speed up the time consuming ray-tracing process.

Fig. 11.4: Categories of wireless channel models.

Figure 11.4 summarizes this categorization and serves as a guide to the
next sections which will describe with more detail relevant channel models in
each category.

Recall from the beginning of the chapter that the goal of channel models
is to calculate the received signal power at a point considering the transmit-
ted power, and that this is achieved by calculating the channel gain h2(t).

200 11. Channel Modeling

Fig. 11.5: A radio wave propagation computed according to the Maxwell equa-
tions. The E field is color coded with red and green. (a) The initial
configuration with a point-like oscillator in the middle. (b) The EM
field after a few iterations of solving the equations. (c) After several
hundred iterations. (d) An excerpt showing only the B field as vectors
orthogonal to the E field. The images were computed with software
courtesy of Paul Falstad.

The previous sections briefly described the physical meaning of the gain and
the phenomena affecting it and the next sections give an overview of how the
effects of those phenomena on the gain can be modeled, which is ultimately
the wireless channel model. First, Sections 11.3 and 11.4 describe determinis-
tic channel models based on field theory and geometrical optics, respectively.
Then, Sections 11.5, 11.6 and 11.7 describe stochastic channel models for
path loss, shadowing and fast fading gains while Section 11.8 introduces fad-
ing models for systems with multiple antennas. Finally, Section 11.9 presents
hybrid channel models.

11.3 Deterministic Approaches by Classical Field
Theory

The classic view of the electromagnetic radiation as a wave was introduced
in Section 11.1.1. It can be used to compute the wave propagation only by
using the four Maxwell equations, as is done to calculate the free-space loss,
for example. As explained in that section, this approach is very expensive
in terms of time and memory consumption. This is due to the fact that it
needs the simulation domain do be discretized into a grid, or for boundary
element methods [177], to discretize the surface of the modeled objects [195].
Either solution leads to very high memory consumption or high computa-
tional complexity. Thus it is only useful in small simulation domains, e.g.
when computing the radiation pattern of an antenna (see Section 11.1.1) or
to calculate indoor coverage.

11.4 Deterministic Geometric Optical Approaches 201

Fig. 11.6: (a) Reflection. (b) Refraction.

11.4 Deterministic Geometric Optical Approaches

Geometric optics describes the behavior of light and EM radiation through
the use of geometrical concepts, such as rays. A ray is a straight line segment
with a starting point and a direction along which radiation travels:

r(t) = o + t · d (11.14)

11.4.1 Modeling Phenomena with Geometrical Optics

Ray optics often match phenomena that are observed with high frequency
radiation. A ray can be thought of as a point on an expanding spherical
wave, as in the wave based model. Effects such as reflection and refraction
are well-modeled by a ray based approach, as is explained in the following.

Specular Reflection. The reflected ray after a specular reflection can easily
be described as:

ro = 2(n · ri)n − ri (11.15)

An example configuration for a reflected ray can be seen in Figure 11.6.

Refraction. For the case of refraction Snell formulated the following equation:

sin θi

sin θt
=

ηt

ηi
(11.16)

Where ηt and ηi are the indices of refraction for the different materials, and
the θt and θi are the angles of the inbound and transmitted ray respectively,
relative to the boundary normal. See Figure 11.6 for a visualization.

The amount of radiation that is reflected, compared to the one that is
refracted is described by Fresnel’s equation. It depends on the polarization
of the irradiance and the angle with which it hits the medium boundary.
The different forms of Fresnel’s equation can be found in Hecht and other
textbooks. [200]

202 11. Channel Modeling

11.4.2 Ray Tracing Algorithms

Having the ability to model reflection and the like, we can now formulate
algorithms that work on rays and that compute the field strength of EM
radiation with some or all of the above mentioned phenomena.

We distinguish between algorithms that launch rays from the radiation
source, or from the receiver. The first are called ray launching algorithms ,
while the other ones are usually called ray tracing algorithms . There are also
approaches that compute the whole field for a general setting, which usually
launch the rays from the radiation source.

The basic ray launching or tracing algorithm is of a recursive nature. A
number of rays are launched from either source or receiver, and tested for
intersections with the scene. Upon intersection all of the above mentioned
events like reflection, refraction or diffraction may happen. Then the ray will
be recursively traced further, until some criterion is met. In the following we
will give a short overview of some of the most important algorithms that were
developed.

In general it is advisable to speed up the ray-tracing process. The most
costly operation for ray-tracing is the intersection of rays with the scene
geometry. In a naive approach this takes O(n) intersections for each ray.
Using spatial subdivision, e.g. by using kd-trees or Octrees, this can be sped
up to O(log n) tests per ray. Also ray-tracing is highly parallelizable, so that
the utilization of multi-core CPUs and also of GPUs can be used to do many
intersection tests in parallel.

Cube-Oriented Ray-Launching. Instead of tracing rays by intersecting them
with objects in the scene, this approach uses a uniform 3D grid. The rays
are traced in a manner similar to discrete line drawing using the Bresenham
algorithm. The algorithm is especially suited for urban scenarios [305].

Diffraction along horizontal or vertical edges is considered by the algo-
rithm as well as reflection. As with other methods using geometrical optics,
careful optimization of the material parameters is needed to get good results.
This is usually done by taking sparse test samples in the scenario in ques-
tion and using some optimization algorithm or simply good guesses to fit the
simulation result to the measured values.

The Photon Path Map. The algorithm is based on the photon mapping ap-
proach from computer graphics. It is a ray launching approach that computes
the EM field with reflections, refractions and diffraction for a truly three-
dimensional scene. The algorithm is usable for both indoor and outdoor or
urban scenarios. One advantage is that it can also compute the delay spread
of a signal. [409]

The method differs from other ray launching techniques in that it lends
many ideas from classical Monte Carlo path tracing techniques which were
developed for the simulation of visible light. The advantage of such algorithms

11.5 Empirical Path Loss Approaches 203

is that they model the propagation in a more natural fashion by giving pri-
ority to the paths light really takes. This method does not need to trace
propagation paths between each point in the scene and the sending antenna.
Instead it uses a two pass approach.

In the first pass, rays are launched from the sender. They may intersect the
geometry, where they will be reflected, refracted or diffracted. Rays also may
be absorbed, according to a strategy called Russian roulette. This process
randomly chooses if a ray survives the interaction with a material, or if it
will be absorbed. For more detailed information, a good understanding of
Monte Carlo integration and the solving of the Rendering or Heat Transfer
Equation is necessary, which describe the transfer of light or heat radiation.
A good primer on this subject is for example given by Dutre [128].

Diffraction of rays is modeled stochastically as well, so that an explicit
diffraction path construction based on the geometrical theory of diffraction
is not necessary. At the end of the first pass all the computed propagation
paths form the photon path map, which implicitly describes the flux at each
point of the scene.

The second pass now extracts the irradiant energy for each point in the
scene from the photon path map. This is done by computing the flux density,
i.e. by counting how many photons traveled through each point in space. In
practice a kernel density estimator is used for this purpose, to get a continuous
radiance estimate.

11.5 Empirical Path Loss Approaches

This section addresses the first set of empirical models for wireless channels
and focuses on path loss. As said before, one has to choose one empirical
model suited for the scenario in question. Both the frequency used, as well
as the geometrical and physical shape of the scenario in question have to
be considered. A good overview of different models is given by Rappaport
[383]. The most widely used models for urban outdoor environments will be
sketched here.

Okumura Model. This model is used for frequencies in the range from
150 MHz to 3 GHz and is applicable for urban scenarios at distances between
1 km and 100 km from the transmitting antenna. The model is described by
Rappaport [383] as

h2
pl[dB] = h2

pl,free + Amu(f, d) − G(hte) − G(hre) − GArea (11.17)

Here h2
pl,free denotes free space propagation loss, Amu is the median attenu-

ation relative to free space, G(hte) is the base station antenna gain, G(hre)
is the mobile antenna gain and GArea describes a gain due to the type of the
terrain. Okumura described different functions for urban, semi-open or open

204 11. Channel Modeling

areas. All the parameters of the model were recorded by extensive measure-
ments, and provided as graphical plots, which is not very useful for imple-
mentation in a simulation. Therefore, Hata provided numerical values for the
Okumura model.

Hata Model. As said above, this model represents an empirical formulation
of the Okumura model. Rappaport again describes the model as follows:

h2
pl[dB] = 69.65 + 26.16 log fc − 13.82 loghte

−a(hre) + ((44.9 − 6.55) · log hte) log d
(11.18)

where fc is the frequency, hte and hre are the base station and receiver
antenna heights respectively. Furthermore a(hre) is a correction factor for
the effective mobile antenna height and d is the distance of the receiver from
the base station.

Walfisch-Ikegami Model. The Okumura-Hata models do not explicitly model
rooftop diffraction effects which are important in urban scenarios, where the
base station is located on rooftops and the mobile receiver usually is on street
level, without a line of sight to the transmitter. The methods proposed by
Walfisch and Ikegami incorporate these effects [482, 211]. The model for the
non-liner-of-sight case is described as follows:

h2
pl[dB] = h2

pl,free + Lrts + Lms (11.19)

where h2
pl,free represents free space path loss and Lrts is the rooftop to street

diffraction term:

Lrts[dB] = −16.9 − 10 log
w

m
+ 10 log

f

Hz
+ 20 log

ΔhMobile

m
+ LOri (11.20)

where w is the average width of roads, f is the frequency, ΔhMobile is the
height difference between sender and receiver and LOri describes the street’s
orientation.

Finally, Equation 11.19 also takes the multi-screen diffraction loss into
account via parameter Lms. It is defined by a set of equations with multi-
ple different input parameters. Details can be found in [482, 211] or in the
definition of COST 231 channel models.

11.6 Stochastic Shadowing Models

The empirical path loss models presented above provide an average gain
which can be expected at a certain distance between transmitter and re-
ceiver. However, it is known from measurements [237, 439] that for a fixed
distance the average gain (over time) varies significantly for several different
positions of the receiver, as objects such as buildings or trees might obstruct

11.6 Stochastic Shadowing Models 205

the transmission paths. These stochastic, location-dependent variations are
referred to as shadowing. Shadowing is modeled as a stochastic process with
an average of 1, as the average over many different location dependent vari-
ations yields exactly the predicted value of the path loss model. Note that
shadowing is an abstraction which represents the result of a sum of several
propagation phenomena which occur when an electromagnetic wave propa-
gates in an environment.

Since shadowing is due to the obstruction by larger objects, it has a high
correlation in space. For example, if the distance between transmitter and
receiver is kept constant and the receiver moves along a circle around the
transmitter, the gain due to shadowing stays constant over several meters, as
a large building obstructs the area around a certain position. Therefore, shad-
owing varies rather over longer time scales such as seconds if the transmitter
and/or receiver are mobile.

From measurements of the gain for a variety of environments and dis-
tances, the variation of the measured signal level relative to the average pre-
dicted path loss can be calculated (see Figures 2.37 to 2.41 from [439]). Its
distribution is normal with 0 mean (in dB), which implies a log-normal dis-
tribution of the received power around the mean value corresponding to the
path loss. This hypothesis has been verified with the χ2 and Kolmogrov-
Smirnov test with a high confidence interval. Thus, the shadowing process
can be modeled by a first-order distribution given by

p
(
h2

sh

)
[dB] =

1
√

2 · π · σ2
sh

· e
− (h2

sh)
2

2σ2
sh , (11.21)

where σ2
sh is the variation and all variables are expressed in dB. The stan-

dard deviation
√

σ2
sh of the shadowing process has been found to take values

between 5 dB and 12 dB [509, 280, 504], depending on the considered envi-
ronment and system.

According to the reasoning above, the values of the shadowing gain at
nearby locations are correlated. Measurements suggest an exponential model
for the shadowing auto-correlation at two points separated by distance r:

ρ(r) =
1
σ2

e
r

rC (11.22)

rC is the correlation distance which, according to measurements, varies be-
tween 25 m and 100 m at 1900 MHz [490] and between a few and a few dozen
meters for 900 MHz [184, 269].

To simulate the shadowing gain h2
sh,b at location b which is r meters

separated from location a for which a shadowing gain of h2
sh,a is known, a

random sample X should be generated from a Gaussian random variable
N(0, σ) and used in the expression [499]:

206 11. Channel Modeling

h2
sh,b[dB] = ρ(r)h2

sh,a +
√

1 − ρ2(r)X (11.23)

11.7 Stochastic Fading Models

Fading is the interference of many scattered signals arriving at an an-
tenna [93]. It is responsible for the most rapid and violent changes of the
signal strength itself as well as its phase. These signal variations are ex-
perienced on a small time scale, mostly a fraction of a second or shorter,
depending on the velocity of the receiver (or transmitter or any object that
reflects the signal). The following discussion is based on [93].

11.7.1 Physics of Fading

The physical basis of fading is given by the reception of multiple copies of
the transmitted signal, each one stemming from a different propagation path.
Depending on the environment of transmitter and receiver, there can be many
or only few objects reflecting the transmitted radio signal. In general these
objects lead to a situation shown in Figure 11.7, which is called a multi-path
signal propagation environment .

In such a typical environment, each path i has a different length li. Due
to this difference, each signal traveling along a path arrives with a different
delay τi = li

c , where c is the speed of light. Some signal copies traveling along
short paths will arrive faster than other copies traveling along longer paths.
Physically, this situation is comparable to an acoustic echo. In communica-
tions, the channel is said to have a memory, since it is able to store signal
copies for a certain time span. The difference between “earliest” and “latest”
received signal copy is often referred to as delay spread Δσ . Apart from the
delay spread, each signal copy is attenuated differently, since the signal paths
have to pass different obstacles like windows, walls of different materials, trees
of different sizes and so on. Also, each signal traveling along its path might
reach the receiver by a different angle. If the receiver or the transmitter is
moving, this leads to different Doppler shifts of all signals, according to their
angle of arrival. This results in a Doppler spread Δfd .

Taking all this into account, the multi-path propagation of a transmitted
radio wave results in a specific self-interference pattern for each propagation
environment, where at certain places the waves interfere constructively while
at other places they interfere destructively. If all elements within the propaga-
tion environment (transmitter, receiver etc.) do not move, the received signal
will only by distorted by the delay spread and the corresponding variable gain
per path. In this case, the interference situation of the channel stays constant
over time and therefore the channel is said to be time invariant. In contrast,

11.7 Stochastic Fading Models 207

Scatterer

Receiver

Transmitter

Fig. 11.7: Multi-path propagation scenario.

208 11. Channel Modeling

if any kind of movement is encountered in the propagation environment, all
or some paths change in time. As a consequence the wireless channel becomes
time variant (see Figure 11.8). Correspondingly, if the delay spread Δσ of
the channel is zero, the channel is said to be frequency invariant. Otherwise,
the channel’s gain varies for different frequencies and therefore the channel
is said to be frequency variant (see Figure 11.8). In contrast to the Doppler
spread, the delay spread is almost always non zero. Thus, almost always a
wireless channel is frequency variant.

0
0.5

1
1.5

2t [ms] 0
1

2
3

4
5

6
7

f [MHz]

-60

-50

-40

-30

-20

-10

0

10

20

|H(f,t)| [dB]

Fig. 11.8: Time and frequency variant gain due to fading of a broadband wire-
less channel. Depending on the observed bandwidth and duration, the
channel might be time and frequency selective or not.

The frequency or time variant behavior of a wireless channel do not have
to be harmful as such. Channels are classified depending on the severity of the
channel’s variance compared to fundamental transmission parameters. The
severity of the time variant behavior caused by the Doppler spread depends
on the time span the receiver processes the incoming communication signal. If
coherent detection3 is assumed, this processing time is the symbol length Ts .
In general, n ·Ts represents the processing time span (as differential detection
or an equalization process cause n > 1). If the fade rate of the time selective
process, given by the Doppler spread Δfd , is larger than the processing rate
(given by 1

n·Ts
), then the fading is called time selective [93]. In contrast, if the

fade rate is much lower than the processing rate, therefore if Δfd ·n ·Ts � 1,
then the fading is not time selective.

Correspondingly, the severity of the frequency variant behavior can be
estimated by the product of the required baseband bandwidth of the signal
3 This refers to perfectly synchronized transmitters and receivers as is often as-

sumed for the PHY layer in network simulation.

11.7 Stochastic Fading Models 209

(denoted by B) and the delay spread. If the delay spread is very small com-
pared to the reciprocal of the bandwidth4, then it has almost no impact on the
reception of the signal (Δσ · B � 1). In this case the transfer function (gain
function) of the channel has no variations within the signal’s bandwidth. The
fading is called to be flat or frequency non selective. On the other hand, if
the delay spread is significant compared to the reciprocal of the bandwidth,
then the channel has a frequency selective behavior. That is, at certain fre-
quency ranges of the baseband signal the received signal is significantly more
attenuated than at other ranges. In this case the receiver observes ISI (see
Figure 11.9), as the time-domain manifestation of the frequency selective be-
havior. If the delay spread is for example half of the symbol time, then signal
copies of two consecutively sent symbols interfere at the receiver, such that
the ’fast’ signal copy of the latter sent symbol interferes with the ’slow’ signal
copy of the previous sent symbol.

In Figure 11.9 the effect of ISI is illustrated. A wireless channel with three
paths is assumed and a delay spread of Δσ = 90 time units (channel impulse
response with three major propagation paths at the top of the picture). On
the left side, the symbol time is Ts = 400 time units, which is much bigger
than the delay spread. Therefore, symbols (shown here as ’high’ or ’low’
values) transmitted are only marginally influenced by ISI. The received signal
eN(t) is almost not corrupted. In contrast, on the right side of the picture,
the resulting signal is shown for a symbol duration of Ts = 100 time units.
Thus, the symbol rate is four times higher. Hence, the delay spread of the
channel is almost identical to the symbol duration. As a consequence, the
transmitted symbols are severely corrupted.

In practice, most of the time both Doppler and delay spread are present.
However, both effects can be of harm or not, depending on the ratio between
the symbol time (baseband bandwidth) and the characteristic values of the
effects Δfd and Δσ . Therefore, a channel might be categorized as one of four
different types, listed in Table 11.1.

Criteria Fading Category
Δσ ·B � 1, Δfd · n · Ts � 1 flat and slow
¬ (Δσ · B � 1), Δfd · n · Ts � 1 frequency selective and slow
Δσ ·B � 1, ¬ (Δfd · n · Ts � 1) flat and fast
¬ (Δσ · B � 1), ¬ (Δfd · n · Ts � 1) frequency selective and fast

Table 11.1: Categories in order to characterize the fading of a wireless channel
depending on the Doppler and delay spread

4 The baseband bandwidth requirement of any communication system is strongly
related to the rate of digital symbols transmitted. Thus, the delay spread might
also be compared to the symbol duration Ts

210 11. Channel Modeling

0 1 0 1 1 1 1 1 1 01 1 1 0 1 0 0 1 0 0

time

si
gn

al

si
gn

al

time

time

timetime

time

si
gn

al

si
gn

al

si
gn

al

si
gn

al

0.7

0.2
0.6

90750

sN(t) sH(t)

eN(t) eH(t)

s(t) e(t)
Wireless
Channel

time

am
pl

itu
de

−1

−0.5

0

0.5

1

0 200 400 600 800 1000 1200 1400 1600
−1

−0.5

0

0.5

1

0 200 400 600 800 1000 1200 1400 160

800 1000 1200 1400 1600 180
−1.5

−1

−0.5

0

0.5

1

1.5

0 200 400 600

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 200 400 600 800 1000 1200 1400 1600 1800
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 200 400 600 800 1000 1200 1400 1600 180

−1.5

−1

−0.5

0

0.5

1

1.5

0 200 400 600 800 1000 1200 1400 1600 1800

Fig. 11.9: Example illustration of the impact of ISI. Top: Channel impulse re-
sponse with a delay spread of Δσ = 90 time units. Left three pictures
below: Transmit signal, propagation path copies of the transmit signal
and resulting interference signal for a symbol duration of Ts = 400 time
units. The received signal is almost not affected. Right three pictures:
Corresponding conditions for a symbol duration of Ts = 100 time units.
The data rate is four times larger, but the received signal is significantly
distorted.

11.7 Stochastic Fading Models 211

11.7.2 Stochastic Models for Fading

Mathematically, fading can be modeled as a stochastic process in time and
frequency. It is common to characterize this process by its first- and second-
order statistics. Regarding the first-order statistics it has been shown that
the so called envelope of the signal can be modeled as Rayleigh distributed
under certain circumstances, as given in Equation 11.245.

p (hfad) = hfad · e
−hfad

2

2 (11.24)

Assuming the envelope of the channel response to be Rayleigh-distributed
is a rather pessimistic model, as this assumes no dominating path to be
present among all paths of the propagation environment between transmitter
and receiver. A plot of the distribution is given in Figure 11.10.

h

p(h)

 0
 0 1 2 3 4 5

 0.6

 0.48

 0.36

 0.24

 0.12

 0.72

 0.84

p(z)

z

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2 4 6 8 10

Fig. 11.10: Probability density functions related to fading: Rayleigh probability
density of the signal magnitude (left) and the resulting exponential
probability density of the instantaneous power (right).

For determining the actual SNR at the receiver, the instantaneous power
has to be obtained rather than the instantaneous envelope. This is given by
the squared envelope z = h2

fad and the distribution of z is given in Equa-
tion 11.25. In fact, z is exponentially distributed with mean z̄ (If we only
focus on the fading process alone the mean z̄ equals 1. However, if we com-
bine the fading model with a shadowing and path loss model, the mean z̄
equals the current gain resulting from shadowing and path loss). A plot of
the distribution is given in Figure 11.10.

p (z) =
1
z̄
· e

−z
z̄ (11.25)

As mentioned, the Rayleigh distribution corresponds to a propagation en-
vironment with a NLOS setting, which is encountered for example in indoor
5 Modeling the fading process requires a complex random process. In the following,

hfad denotes the magnitude of this complex process which is called the envelope.
For a detailed discussion refer to [27, 93].

212 11. Channel Modeling

scenarios, as well as in macrocells of urban areas. Other scenarios require a dif-
ferent distribution (for example the Rice distribution for LOS settings [93]).

As with the first-order statistics of the fading process, models have also
been developed for the second-order statistics. A very common model for
these statistics is the wide-sense stationary uncorrelated scatterer (WSSUS)
model [93, 375]. This model assumes the fading process to be stationary in
time and frequency. Hence, the autocorrelation in time and frequency depends
only on the time or frequency shift, not on the absolute time or frequency.
Therefore, in an WSSUS model the autocorrelation can be easily expressed
given the power delay profile and the power spectrum of the process. One
popular setting for a WSSUS model is to assume the time correlation to be
characterized by a Jakes power spectral density, while the frequency corre-
lation is characterized by an truncated exponential power delay profile. Both
densities are parameterized solely by their corresponding spreads – the Jakes
density by the Doppler spread, the exponential profile by the delay spread.

In order to roughly characterize the correlation in time and frequency, two
metrics have become quite accepted. They are the coherence time and the
coherence frequency. The coherence time indicates the time span the wireless
channel roughly stays constant. One mathematical definition of the coherence
time is given in Equation 11.26, which equals the time shift during which the
autocorrelation function drops to a value of 0.98 [93]. However, this definition
is somewhat subjective and other definitions can be found in [375, 384, 438].

Tc =
1

2πΔfd
(11.26)

The coherence bandwidth measures roughly the frequency spacing for
which the channel does not change significantly. Again the exact mathemat-
ical definition is to some extend subjective. One definition of the coherence
bandwidth is given by Equation 11.27, following [93]. Other definition might
be found in [375, 384, 438].

Wc =
1

2πΔσ
(11.27)

11.8 MIMO Channel Models

So far, it has been assumed that the systems under consideration use a single
antenna at the transmitter and a single antenna at the receiver. However,
performance gains can be obtained from the use of multiple antennas on either
side. This section briefly introduces the uses of multiple antennas in wireless
communications and then explains how to model multiple-input, multiple-
output (MIMO) wireless channels.

11.8 MIMO Channel Models 213

11.8.1 Multiple Antennas for Wireless Systems

Antenna diversity consists of using more than one transmit or receive antenna
for the same signal. As long as the antennas are physically separated by more
than half a wavelength, the receiver can choose the best among the different
received signals, improving the reliability of the wireless link in the presence
of fast fading.

Multiple transmit antennas can be used for beamforming (see Section 9.2).
This consists in dynamically changing the phase of the signal transmitted on
each antenna so that the signals from the different antennas add up coherently
(in-phase) at the receiver and allocating the highest transmit power to the
antenna that corresponds to the best propagation path, thus compensating
for the multipath fading of the channel. This is possible only if the wireless
channel gains between each transmit antenna and the receiver are known at
the transmitter at the time of transmission. Inaccuracies in this information
can lead to strong performance degradation [468].

For antenna diversity and beamforming, the same signal is transmitted on
the different antennas as in the case of a single antenna. However, the most
efficient way to use MIMO channels is to transmit different data streams
simultaneously on different antennas, a technique know as spatial multiplex-
ing [468].

The set of multiple antennas jointly used is often called an antenna array.
In any case mentioned, the antenna arrays on either side of the channel
should have a minimum antenna separation (Dr or Dt in Figure 11.11) of
λ/2 for obtaining the desired performance gains. Hence, λ/2 is called the
critical spacing and sparsely spaced antenna arrays have antenna separations
larger than λ/2. Antenna arrays with equally spaced antennas along a line are
called uniform linear arrays, and these will be assumed here henceforth. For
detailed analysis of multiple antenna techniques for wireless communications,
refer to specialized books like the one from Tse [468].

11.8.2 MIMO Fading Channel Models

In all situations described above, the advantages of using multiple anten-
nas are obtained by signal processing techniques used before the transmitter
and/or after the receiver antennas. Figure 11.11 illustrates the MIMO chan-
nel . Modeling the MIMO channel is about describing the signals received at
the receiving antenna array as a function of the signals transmitted on the
transmitted antenna array. As long as the dimension of the antenna arrays is
much smaller than the distance between them, the path loss and shadowing
components of the channel gain are the same for all antennas on each side and
are modeled as described in sections 11.5and 11.6 for a single antenna case.
The rest of this section is concerned only with modeling fading for MIMO
channels.

214 11. Channel Modeling

Fig. 11.11: MIMO wireless channel.

11.8 MIMO Channel Models 215

A linear, narrowband, time-invariant MIMO channel is described by:

y = Hx + n (11.28)

where y and x are the signal vectors at the output of the receiver and trans-
mitter antenna array, respectively, H is the channel matrix, and n is AWGN
noise. The element hij of the channel matrix is the complex channel gain be-
tween transmit antenna j and receive antenna i, and the matrix H actually
models the narrowband, time-invariant wireless MIMO channel (i.e. channels
which are neither frequency- nor time-selective). For time-variant channels,
when significant Doppler spreads are present (see Table 11.1), the channel
matrix is time-dependent H(t) and so are its elements hij(t). For wideband
channels, when significant delay spreads are present (see Table 11.1), the
channel is frequency-selective and the channel matrix is dependent on the
delay H(τ), as are its elements hij(τ). For details on wideband MIMO chan-
nel models, please refer e. g. to Yu [508] or Paetzold [350].

Fig. 11.12: MIMO wireless channel.

A few concepts that will be helpful in understanding the MIMO fading
model are introduced here with the help of Figure 11.12. This figure shows
the simplified case of a single transmitter antenna and several receiver an-
tennas within Line-of-Sight. The channel gain between the single transmitter
antenna and antenna j at the receiver is

hj1 = aj exp
(

− j2πdj

λ

)

(11.29)

216 11. Channel Modeling

where aj is the gain of path j, dj is the distance between the transmitter
antenna and the receiver antenna j and λ is the wavelength. The vector h
whose elements are hj1 is called the spatial signature of the transmitted signal
on the receiver antenna array.

If the distance between the arrays, d, is much larger than the antenna
spacing Dr, the paths can be assumed to be parallel. As a consequence, the
gains of the paths aj are all the same and the only difference between the
signals received at different antennas is the phase, which depends on the
different lengths of the paths to each antenna. Following Figure 11.12, and
considering the propagation paths parallel (dj >> Dr), the distances to each
antenna will be

d1 ≈ d
d2 ≈ d + Dr cosφ

...
dnr ≈ d + (nr − 1)Dr cosφ

The angle φr is called the angle of arrival (AOA) and its cosine Ω = cosφ
the directional cosine of the wave arriving at the receiver array. According
to the notation introduced so far, the channel model in this case will be the
vector h:

h = a exp
(

− j2π

λ

)

⎡

⎢
⎢
⎢
⎣

d
d + Dr cosφ

...
d + (nr − 1)Dr cosφ)

⎤

⎥
⎥
⎥
⎦

= a exp
(

− j2πd

λ

)

e(Ω)

(11.30)
where e(Ω) is the unitary spatial signature of the incident wave on the receiver
array6:

e(Ω) =
1√
nr

⎡

⎢
⎢
⎢
⎣

1
exp

(
− j2π

λ DrΩ
)

...
exp

(
− j2π

λ (nr − 1)DrΩ
)

⎤

⎥
⎥
⎥
⎦

(11.31)

To optimally combine the signals received on the different antennas, receiver
beamforming, the receiver should delay the signals from the different anten-
nas according to the values in this vector. When there are nt transmitter
antennas and line of sight between transmitter and receiver, the expressions
above can be generalized, and the channel model becomes the matrix H in
Equation 11.28, built by the spatial signatures of the different transmitter
antennas on the receiver array

H = a er(Ωr) et(Ωt)∗ , (11.32)

6 Note that the factor 1√
nr

only serves the normalization of the vector e(Ω) to 1.

11.8 MIMO Channel Models 217

The Angle of Departure (AOD), or φt, is the equivalent for the transmitter
antenna array of the AOA, or φr, for the receiver, and Ωt = cosφt. Similarly
to receiver beamforming, transmitter beamforming should be performed ac-
cording to the unitary spatial signature of the transmitter array e(Ωt).

Fig. 11.13: MIMO wireless channel.

In an environment with obstacles and scatterers as shown in Figure 11.13,
the previous model can be generalized to a multipath MIMO channel. As-
suming that the distance between transmitter and receiver arrays and the
scatterers is much larger than the dimensions of the arrays, the propagation
paths can be assumed to be parallel, as above. The radio waves generated
by the transmitter antenna array will travel parallel to each other and suffer
similar propagation phenomena (reflection, diffraction, etc) along each path
i between transmitter and receiver arrays. For a time invariant channel, the
channel matrix H can be written as the sum of the gains of the n paths
between transmitter and receiver antenna arrays.

H =
∑

i

ai er(Ωri) et(Ωti)∗ , (11.33)

where an is the gain of the i-th path, er(Ωri) and et(Ωti) are the transmitted
and received unit spatial signatures of the i-th path along the direction Ω,
respectively The factors in the sum follow the expressions below.

218 11. Channel Modeling

an =
√

ntnr exp
(

− j2πdn

λ

)

(11.34)

er(Ω) =
1√
nr

⎡

⎢
⎢
⎢
⎣

1
exp(−j2πDrΩ)

...
exp(−j2π(nr − 1)DrΩ)

⎤

⎥
⎥
⎥
⎦

(11.35)

et(Ω) =
1√
nt

⎡

⎢
⎢
⎢
⎣

1
exp(−j2πDtΩ)

...
exp(−j2π(nt − 1)DtΩ)

⎤

⎥
⎥
⎥
⎦

(11.36)

A MIMO channel model that is often used due to its analytical tractability
is the independent and identically distributed (i.i.d.) Rayleigh fading model,
for which the entries of the channel matrix H are uncorrelated and identically
Rayleigh distributed. This is the MIMO equivalent of the Rayleigh fading
model described in Section 11.7.2. This channel model represents a richly
scattered environment, where a large number of paths is received from each
direction and the power is evenly distributed among the different directions.

Often this does not correspond to real physical environments and other
models are used which differ from the i.i.d. Rayleigh fading models, in that
the entries of the channel matrix H are spatially and time correlated. Thus,
a MIMO channel simulator has to generate correlated entries of the channel
matrix, which is achieved by using non-uniform distributions of the angles
of departure (AOD) and arrival (AOA) (or directional cosines) in the previ-
ously mentioned models. A plethora of models have been recently developed,
accounting for different scattering environments and modeling philosophies,
and a thorough overview can be found in [33]. The most commonly used
are finite scatterers models, like the one-ring [421, 24, 349] or two-ring [420]
models which are used for scatterers located close to the receiver. The one
ring model fits a scenario of communication between a base station and mo-
bile station while the two-ring model fits a scenario of communication be-
tween two mobile stations. For details on how to implement/generate finite
scatterer channel models for MIMO wireless channels refer to the work by
Paetzold [349, 348, 515] or the specification of spatial channel models for
MIMO simulations from the 3GPP initiative [18].

11.9 Hybrid Approaches

Hybrid propagation models are models that have complementary determinis-
tic (mostly ray-tracing) and stochastic parts. Hybrid models are often used to
speed up calculations of deterministic ray-tracing models, as is the case of the
dominant path prediction model, or for actually improving the accuracy of

11.9 Hybrid Approaches 219

ray-tracing models, as is the case of the second example below. Although this
sounds counter-intuitive because one expects deterministic wireless channel
models to be more accurate than stochastic ones, one should not forget that
deterministic models base their calculations on models of the real world and
can only be as accurate as the latter, and that often the deterministic models
make assumptions that are not fully valid in the real world.

11.9.1 The Dominant Path Prediction Model

This model combines both ray-tracing and empirical models by use of a
trained neural network. The method is able to find the most dominant prop-
agation paths to minimize the computation time spent on ray-tracing. The
method can be used in modified forms for either indoor or outdoor urban
scenarios [492].

The advantage of this method is it’s speed. On the downside, it depends on
the quality of the neural network to choose the correct dominant propagation
paths. Compared to the other deterministic approaches, it is not as intuitive,
introducing some kind of oracle to pick propagation paths. However, Wölfe
et al. have shown to produce good results with this method, if the neural
network is trained correctly.

11.9.2 Hybrid Ray-Tracing Models for Indoor and Outdoor
Propagation

As was mentioned in Section 11.4.2, ray-tracing models are computationally
very expensive and thus inappropriate for large scale simulations, as are usu-
ally used for calculating the coverage of a base station in a cellular network
and use mainly empirical models calibrated for a specific country and area
(see, for example, Chapter 11 of Parson’s book [353] for details). However,
cellular networks also have small cells, for specific areas of a town or malls,
stadiums and other indoor areas with large concentration of users. In these
cases, common model for cellular network are of little help and ray-tracing
models are often used to calculate the received signal for a transmitting base
station. Another application is the planning of WiFi coverage.

The ray-tracing models used in these cases often use empirical data to
improve the accuracy of the model [353]. The derivation of the mathematical
expressions that are used to model the effects of propagation phenomena on
electromagnetic waves are full of assumptions that are often only partially
valid for the real world. As a consequence, empirical correction factors are
introduced in the models to calibrate them and improve their accuracy [353],
one of the best examples of this being the correction of the prediction by the
Uniform Theory of Diffraction (UTD) [117] for multiple edges.

220 11. Channel Modeling

11.10 Noise and Interference

Two major sources of additive effects are considered in general which poten-
tially distort the signal. The first one is noise. Noise is always of stochastic
nature and varies with time. It is denoted by n(t) .

The second effect corrupting the received signal is interference. Interfer-
ence is caused by other RF transmitting electronic devices. As with the noise,
interference has a stochastic nature and varies with time. It is denoted by∑

∀j P I
j (t) · h2

j(t) which indicates that interference is a sum of single sources
of interference and is subject to channel effects much like the signal of inter-
est itself (therefore, each interfering source is attenuated by a time-varying
channel gain h2

j(t)) . Interference is either caused by other systems operating
in the same frequency band in the case of unlicensed bands or caused by co-
and adjacent-channel interference in licensed bands. Co-channel interference
happens due to frequency re-utilization, for example in a cellular environ-
ment. Adjacent channel interference is due to bandpass filters which produce
a small power interference in neighboring bands.

11.10.1 Noise

Noise is always present and comes from several sources, for example atmo-
spheric disturbances, electronic circuitry, human-made machinery etc. The
first two belong to the group of thermal noise sources, described in depth
below. Noise produced by human-made sources is described in more detail
in [60].

Thermal noise is due to the movement of charged particles inside elec-
tronic components existent in every receiver system and is therefore unavoid-
able. The characteristics of thermal noise were firstly studied for a resistor. It
may be modeled as a zero-mean, wide sense stationary Gaussian stochastic
process. The power spectral density of thermal noise can be obtained using
the maximum power transfer theorem (Equation 11.37).

S = n0/2 = k · T [W/Hz] (11.37)

Here, k = 1.37 · 10−23 J/deg is the Boltzman constant and T refers to the
temperature..

This kind of process is called white, i.e. thermal noise sources are modeled
as having a flat power spectral density. It contains all frequencies, in analogy
to white light, which contains all light frequencies. Accordingly, white noise is
uncorrelated. However, in practical systems of limited bandwidth, the noise
is filtered and is at the output no longer white, taking the shape of the filter’s
transfer function. This means that the noise becomes correlated when it is
low-pass filtered. The noise power at the output of the filter depends on the

11.10 Noise and Interference 221

filter’s bandwidth (B). This average noise power at the output of the filter
can be expressed as given in Equation 11.38.

σ2 = g · n0 · B , (11.38)

where g is the power gain of the filter at the center frequency.

11.10.2 Interference

In general, the source of noise is a source which primarily does not intend
to produce electromagnetic disturbance patterns, for example microwaves
ovens or other electrical or electronic equipment. Another source of noise is
given by the thermal effects existing, for example, in any electric circuit as
in amplifiers.

Apart from these sources of signal distortion, other communication sys-
tems might be active in the environment. Such sources, which have the pri-
mary goal to produce electromagnetic radiation for communication purposes,
are not represented by noise, instead they are represented by interference.
Like noise, interference has an additive distorting impact on the signal. For
example, interference occurs in cellular systems, due to the fact that band-
width is limited and system operators have to reuse certain spectra of the
overall bandwidth. Frequency planning is a traditional method to control
interference in cellular systems. In unlicensed bands, interference may stem
from local wireless networks, which just happen to be deployed quite close to
each other. In general, there are different kinds of interference with a different
impact on the received signal.

First there is co-channel interference [93]. Co-channel interference occurs
if two trans- mission devices operating within the same radio frequency band
are active and a receiver, originally trying to receive the signal from one trans-
mitter also receives a significant signal from the second transmitter. In cellular
systems co-channel interference is an important factor limiting the systems
performance – more important than noise [93]. Determining the power level
of the interfering signal can basically be done in the same manner as for the
signal of interest. The interfering signal is subject to path loss, shadowing
and fading. Hence, for modeling the interfering signal as much detail can be
applied as for the signal of interest. As mentioned in Section 9.4, problems
arise if the interference level varies for example during the transmission of
a single packet. In this case, an equivalent SINR needs to be determined.
This basically also applies to interference signals that overlap partially in fre-
quency. If several interference sources contribute significantly to the SINR,
one might assume for simplicity that the resulting overall interference power
equals a constant average value.

Apart from co-channel interference there is also the possibility that trans-
missions conveyed on different but closely neighboring frequency bands cause

222 11. Channel Modeling

significant interference in a receiver. This is mainly due to imperfect filters in
the analog front-end (see Section 9.2) and it is called adjacent channel inter-
ference [383]. Adjacent channel interference is encountered in cellular systems
as well as in unlicensed bands. In network simulation it is best accounted for
via an equivalent SINR model, see Section 9.4. Therefore its impact is con-
sidered to be of constant power and its variable behavior over frequency and
also over time is not taken into consideration.

11.11 Modeling the Antenna Impact

The antenna of a device transmits or receives the electromagnetic waves
that carry the information to be exchanged between two or more devices.
The (theoretically) simplest antenna, the so-called isotropic antenna, radiates
the radio waves uniformly in each direction. It has no preferred direction of
radiation. An isotropic antenna can be modeled by an additional gain at the
transmitter and receiver (if both use such an antenna). Thus the RX power
Prx,A,B of a transmission from station A to station B can be described as
follows (in decibel):

Prx,A,B[dB] = Ptx,A + h2(t) + GAnt,A + GAnt,B (11.39)

where Ptx,A is the transmit power of station A, h2(t) is the channel gain
between A and B at time t, and GAnt,A and GAnt,B are the gains of the
antennas at station A and B, respectively.

For the above case of two isotropic antennas the gain is negative or (the-
oretically) 0 dB at its best. The practical relevance however is very limited:
Such a radiator exists only in theory as an ideal point source.

If an antenna does not radiate the radio waves uniformly it must have a
preferred direction of radiation. Towards this preferred direction the antenna
shows a positive gain. Consequently, towards other directions a negative gain
or loss is unavoidable. The term "omni-directional antenna" is not to be
confused with isotropic antenna. An omni-directional antenna radiates the
radio waves equally within one plane (e.g. x-y-plane). In another plane (e.g. x-
z-plane) however it has a preferred direction. The gain of an antenna towards
a certain direction is specified as:

G(θ, φ) =
I(θ, φ)
Pin/4π

(11.40)

where θ and φ are the angles as specified in the spherical coordinate
system, Pin is the total power at antenna input and I(θ, φ) is the radiant
intensity in this direction.

Typically an antenna does not radiate the total fed power Pin. The direc-
tivity is defined as

11.11 Modeling the Antenna Impact 223

D(θ, φ) =
I(θ, φ)

Prad/4π
(11.41)

where Prad is the total radiated power. Thus the antenna’s directivity is
always higher than its gain.

The antenna gain in equation 11.39 needs to be extended by an angle for
azimuth and elevation:

Prx,A,B[dB] = Ptx,A + h2(t) + GAnt,A(θ, φ) + GAnt,B(θ, φ) (11.42)

The gain or directivity that is used to characterize an antenna is the
maximum gain or directivity the antenna provides in its preferred direction.
The gain or directivity is given in dBi or dBd. dBi refers to the gain as
compared to an isotropic antenna, where dBd refers to the gain as compared
to a λ/2-dipole. The gain of an isotropic antenna is 0 dB in each direction. A
λ/2-dipole is the simplest practical antenna. It provides a gain of 2.14 dBi in
its preferred direction. Thus, an antenna can either be characterized to have
x dBi gain or (x-2.14) dBd gain (e.g. either 5 dBi or 2.86 dBd) in its preferred
direction.

Figure 11.14 shows the antenna pattern of a λ/2-dipole. The preferred
direction of this antenna is along the z-axis. There it provides a maximum
gain of 2.14 dBi. The gain degrades towards the xy-plane.

From the diagram in Figure 11.14 a 2-dimensional antenna model can be
created. Such a model describes the antenna characteristic within the x-y-
plane (which is most important). Thus it does not take the elevation θ into
account.

3-dimensional antenna models are closer to reality than 2-dimensional
models, although 2-dimensional models may be sufficient for certain investi-
gations. Figure 11.15 depicts the antenna gain versus azimuth and elevation.
Note that the diagram has been normalized to the antenna’s directivity of
18 dBi.

To demonstrate the advantages of a 3-dimensional antenna model, a sim-
ulation with a receiver moving away from a sender along the main lobe has
been performed. The sender uses a transmission power of 33 dBm. The an-
tenna characteristic from Figure 11.15 was used. We only consider a path
loss model between sender and receiver employing a modified Okumura-Hata-
Model as available from UMTS 30.03:

h2
pl[dB] = 40

(
1 − 4 · 10−3Δhb

)
log (R) − 18 log (Δhb) + 21 log (f) + 80 dB

(11.43)
where

– R is the distance between mobile and base station in kilometers
– f is the carrier frequency of 2000 MHz

224 11. Channel Modeling

Fig. 11.14: Radiation pattern of λ/2-dipole

– Δhb, the base station antenna height, in meters, measured from the average
rooftop level, is assumed to be 15 m

Figure 11.16 shows the reception level at the moving station. The dashed
curve is plotted for comparison with an isotropic antenna. The deep fades
from 0 to 100 m result from the antenna characteristic. Remember that the
station moves along the main lobe. Hence, the fades result only from taking
the elevation into account. The expected gain of 18 dB is reached after 200 m.

Taking the antenna pattern into consideration in simulations of the wire-
less channel has the additional cost of the memory needed to store the antenna
pattern and the computational effort necessary to lookup the desired value to
use in the computation. The memory consumption of a 2-dimensional pattern
with a resolution of 1 degree is

M2D = 360 ∗ 8 Byte = 2880 Byte (11.44)

assuming each value is stored as double with 8 Byte.
The memory consumption of a 3-dimensional pattern with the same res-

olution is then
M3D = 180 ∗ M2D = 518400 Byte (11.45)

11.11 Modeling the Antenna Impact 225

Fig. 11.15: 3-dimensional antenna characteristic

0 200 400 600 800 1000
−100

−90

−80

−70

−60

−50

−40

−30

Distance from BS [m]

R
X

 L
ev

el
 o

f C
P

IC
H

 [d
B

m
]

with antenna gain
without antenna gain

G
ant

=18 dB

Fig. 11.16: RX level at receiver

226 11. Channel Modeling

approximately 0.5 MByte. Note that a 10 times higher resolution means
10 times higher memory consumption for the 2-dimensional pattern (ap-
prox. 0.028 MByte), but 100 times higher memory consumption for the 3-
dimensional pattern (approx. 50 MByte).

11.12 Implementations of Wireless Channels

After having discussed the various ways of modeling the behavior of the
wireless channel, we present in this section an implementation method for
the simulation of the wireless channel. The presented approach considers the
SNR as defined below in Equation 11.46.

γ =
P0 (t)
n2(t)

=
h2(t) · Ptx (t)

n2(t)
=

h2
pl(t) · h2

sh(t) · h2
fad(t) · Ptx (t)

n(t)
(11.46)

Hence, we take the path loss, the shadowing, the fading as well as the noise
into account. Let us first assume that we consider a single-carrier system (i.e.
we are only interested in the SNR of a single wireless channel). In the following
we step through each component and discuss different ways of generating
these values.

Let us start with the noise. Noise is often simulated by just considering a
fixed power threshold which is constant over time. In reality it varies strongly
over time. However, these variations are very fast and the simulation of these
variations is only required if a system behavior on this small time scale is
considered (typically in the range of μs for bit-true simulation models of the
PHY layer, see Sections 9.3 and 9.4). For example, if the gain and transmit
power stay constant over a time span of 1 ms, the difference between the
bit error rate obtained from assuming a constant noise threshold and the
bit error rate obtained from modeling a varying noise level is negligible, if
the constant impact of the noise is determined correctly (taking the average
noise power). Therefore, typically in network simulations we substitute in
Equation 11.46 the instantaneous noise power n2(t) with the average noise
power σ2 from Equation 11.38

The impact due to the gain can be decomposed into three different el-
ements, as described by Equation 11.2, which can be added after being in-
dependently generated according to the model chosen for each of them. For
the impact of the path loss, primarily the distance between transmitter and
receiver has to be determined. This is done by a mobility model (see Sec-
tion 14) if terminals are assumed to roam. Otherwise, a static distance value
has to be generated. Once each terminal is associated with a certain distance
to the transmitter, a homogeneous path loss model according to Section 11.5
can be assumed, yielding the path loss for each terminal. As the terminals
do not roam, the path loss is constant. In order to generate such a value,

11.12 Implementations of Wireless Channels 227

the parameterized path loss model must be implemented which is usually
straightforward.

The impact due to shadowing is stochastic, in contrast to the impact due
to path loss. Shadowing varies as objects within the propagation environment
move and circumstances change. Hence, in order to determine a value for the
shadowing a certain distribution has to be assumed and then values have to
be drawn from it, as was seen in Section 11.6. Notice that these values can
be required to be correlated in time or in space. If they are required to be
correlated in space, the sample at distance r (calculated according to the
mobility model r = v · t) should have a shadowing gain calculated according
to Equation 11.23.

Instead of assuming a separate model for path loss and shadowing, ray-
tracing approaches allow a deterministic calculation of the combined impact
of path loss and shadowing on the gain. A further advantage is that they
compute these values from a map or a somewhat realistic characterization of
the environment. On the other hand, this requires the mobility model to take
the area description into account. Furthermore, ray-tracing approaches are
computationally more expensive than the combination of a empirical path
loss model plus a stochastic shadowing model.

The last factor regarding the gain is the fading. Fading is a stochastic
element of the gain and varies on rather short time scales. Apart from be-
ing time selective, it is also frequency selective (depending on the considered
bandwidth). This is in contrast to path loss and shadowing, which are both
not frequency selective (unless rather large bandwidths > 100 MHz are con-
sidered). In order to model fading, one first has to decide on the scale of
variability that should be taken into account. For example, for the time di-
mension one can model the fading statically, i.e. a single fading coefficient
is generated and kept constant during the entire simulated time. This cor-
responds to a static channel model . In contrast, one can consider a variable
fading coefficient, drawing one coefficient per transmitted packet. This model
is termed a block fading model in contrast. In both cases, a common model for
the first-order statistics of the envelope of the received signal is the Rayleigh
distribution (as the SNR is of interest, the square of the envelope has a χ2

distribution). Hence, in order to determine the fading component one can
simply draw a random variate from the exponential distribution each time
a new SNR value is required (either for the static or for the block-fading
model). However, this leads to a quite strong variation of the fading com-
ponent over short periods of time for the block-fading model as the fading
samples are assumed to be uncorrelated (depending of course on the imple-
mentation of the random number generator for the exponential distribution
function considered). In reality, fading can change its state quite rapidly but
there is some correlation in time that governs the behavior. In order to take
this into account for the block-fading model, a second-order statistical model
must be implemented. A common model for this is a Jakes-distributed power

228 11. Channel Modeling

spectrum to characterize the correlation in time. A common implementation
for such correlated fading processes in time is the method of Rice [347]. This
method employs the sum of sinusoids which are parameterized properly to
achieve the statistical characteristics of interest. While these methods can be
used to generate fading processes that are correlated in time [351] as well as
processes that are correlated in time and frequency [485], it has to be men-
tioned that these methods require a very careful parameterization in order
to achieve the desired characteristics especially regarding the correlation (in
time or frequency).

-250

-200

-150

-100

-50

 0

 0 10 20 30 40 50

R
x

S
ig

na
l [

dB
]

distance [m]

PL
PL+SH

(a)

-250

-200

-150

-100

-50

 0

 0 10 20 30 40 50

R
x

S
ig

na
l [

dB
]

distance [m]

PL
PL+SH

PL+SH+Fading

(b)

Fig. 11.17: Example of modeled received signal subject to the different compo-
nents of channel gain: path loss (PL), shadowing (SH) and multipath
fading.

Figure 11.12 shows the superposition of pathloss gain h2
pl, shadowing gain

h2
sh and fast fading h2

fad, generated according to the free-space path loss,
space-correlated shadowing and Rice method for fast fading, respectively, for
a receiver moving away from the transmitter along a radial trajectory.

Some of the above mentioned models and their implementations for path
loss, shadowing and fading are available in the simulation tool ChSim for
Omnet++ maintained by the University of Paderborn.

In the following, we also present briefly some channel models that are
used in standardization. These models mainly provide parameters for the
previously mentioned models for path loss, shadowing and fading. In detail,
we present models and parameters for IEEE 802.11, IEEE 802.16 and 3GPP
LTE.

11.12.1 Channel Parameters used in Standardization - IEEE
802.11

In the following we discuss channel models used in the standardization process
of IEEE 802.11n. They are split into SISO and MIMO types. All of them

11.12 Implementations of Wireless Channels 229

specify the behavior with respect to path loss, shadowing and fading. The
SISO models are first mentioned in the work of Medbo [231] and are divided
into five different models (A to E), while the MIMO ones extend previous
work and consider six different models (A to F). In this case, the new set
of models were introduced due to its enhanced accuracy to represent smaller
environments, such as homes and small offices. Their classification is shown
in Table 11.2.

The MIMO channel model employed in order to characterize the fading
is based on the cluster modeling approach introduced by Saleh and Valen-
zuela [398]. This method basically groups the scatterers into different clusters,
whose number depends on the considered scenario’s type. While in the SISO
channel model a clustering in time is performed, in a MIMO channel model
the clustering considers time and angle properties of the incoming signals. In
indoor environments the number of clusters typically varies between one and
seven [137]. The signal copies coming from each cluster are called taps. These
taps are assumed to follow an exponential decaying power delay profile and
to be time-equidistant within a certain cluster. Furthermore the taps of a
cluster share the same angle of arrival (AoA), angle of departure (AoD) and
angular spread (AS) (variance of the power angular spectrum). The detailed
methodology used to convert the reference SISO channel model [231] into a
valid MIMO channel model can be found in [137]. This work also provides
the chosen values for the tabs’ power and delay, AoA, AoD and AS for the
MIMO A to F channel models.

Model Environment Line of Sight
A Flat Fading LOS / NLOS
B Residential LOS (K = 0) / NLOS
C Small Office LOS (K = 0) / NLOS
D Office LOS (K = 3) / NLOS
E Large Open Space / Office LOS (K = 6) / NLOS
F Large Open Space LOS (K = 6) / NLOS

Table 11.2: MIMO Channel Models Classification

The model details regarding path loss, shadowing and fading are presented
as follows.

Path Loss. For path loss a so-called break point is introduced. For distances
lower than the break point distance dBP a different model is used than for
distances that are larger. Precisely, for any distance below the break point
the path loss due to free space propagation models is assumed with a path
loss exponent of 2. For distances larger than the break point, the following
formula is used:

230 11. Channel Modeling

h2
PL[dB] = 10 · log10

(
λ

4πdBP

)2

+ 35 · log10 (d/dBP) (11.47)

Hence, after the break point a path loss exponent of 3.5 is used. The values
for the break points are given below in Table 11.3.
Shadowing. As with the path loss, different models are assumed for the shad-
owing depending on the considered distance in comparison to the break point.
In general, the shadowing is assumed to be log-normal distributed without
spatial correlation. Up to the break point distance the log-normal distribu-
tion is assumed to have a standard deviation of 3. For larger distances, the
shadowing standard deviation takes on different values according to the con-
sidered model (A-F). Table 11.3 specifies the exact values.
Fading. In the MIMO channel models, fading is divided into LOS (Rician-
distributed signal envelopes) and NLOS (Rayleigh-distributed signal en-
velopes) model, depending on whether the distance between transmitter and
receiver is below the break point distance or above, respectively. The corre-
sponding Rician k-factor for the LOS model is shown in Table 11.2. Different
values are assumed for the root-mean square of the delay spread (assum-
ing an exponentially distributed power delay profile). Table 11.3 holds the
corresponding values for the different channel models. For the fading char-
acterization in time a bell-shaped power spectrum density is assumed (in
contrast to a Jakes power spectrum). For channel models A-E a maximum
Doppler shift of approximately 3 Hz at 2.4 GHz is assumed while the value
doubles for the 5 GHz band. Channel model F assumes in addition a power
spike resulting from a car driving with 40 km/h which yields a modified bell-
shape power spectrum. Further information about the channel models used
in IEEE 802.11n can be found in [137].

Model dBP[m] Shadowing STD after dBP RMS Delay Spread [ns]
A 5 4 0
B 5 4 15
C 5 5 30
D 10 5 50
E 20 6 100
F 30 6 150

Table 11.3: Parameters for channel models of IEEE 802.11n

11.12.2 Channel Parameters used in Standardization – 3GPP
Long Term Evolution

The channel model used in LTE simulations is based on the 3GPP guide-
lines found in [332, 331]. More precisely, the 6-ray Typical Urban channel

11.12 Implementations of Wireless Channels 231

model is assumed [332, p. 123] for non-MIMO simulations for all bandwidth
modes.
Path Loss. In case of LTE, two different cell types are regarded, macro-cells
and micro-cells. The distance dependent path loss d meters away from the
base station can be computed by choosing the appropriate formula from
Table 11.4. It consists of a path loss component and a penetration loss com-
ponent. Macro-cells can be characterized by a cell diameter of more than 500
m, whereas micro-cells have a diameter of less than approximately 150 m.
For a more detailed list refer to [332, p. 120ff].

Environment Modeling approach
Macro-cell Application: Urban / suburban macro-cells

Setting: h2pen = 20 dB, vmax < 350km
h

Basic model :
Formula: h2PL[dB] = 15.3 + h2pen + 37.6 log(d)

Micro-cell Application: Urban micro-cell
Setting: vmax < 30km

h
Basic model : Outdoor to indoor
Formula: h2PL[dB] = 7 + 56 log(d)
Basic model : Outdoor to outdoor
Formula: h2PL[dB] = 39 + 20 log(d) for 10 < d ≤ 45m

−39 + 67 log(d) for d > 45m

Table 11.4: Parameters for 3GPP LTE channel path loss models

Shadowing. In case of the macro-cell scenario, shadowing is assumed to follow
a log-normal distribution with a standard deviation of 8 dB, and to possess a
correlation distance of 50 m. Furthermore, a shadowing correlation between
cells (factor of 0.5) and sectors (factor of 1.0) is modeled. In case of micro-
cells, the standard deviation is set to 10 dB with a correlation distance of 10 m
for outdoor to indoor and 25 m for outdoor to outdoor, while the correlation
between adjacent cells and sectors is neglected.
Fading. According to the 3GPP Typical Urban channel model, the received
signal is assumed to be made up of a multitude of single signal components
traveling along different paths. None of these components is dominant leading
to Rayleigh-distributed envelopes. The channel is modeled based on a WSSUS
approach. Thus, the Doppler spectrum and the average delay profile (median
root-mean-square delay spread of 0.5μs) needs to be determined. The model
provides a certain, discrete number of taps for each of which an average delay
and an average power is provided. The set of proposed parameters is given
in Table 11.5.

Moreover, the Rayleigh-distributed envelope is modified with respect to
the Doppler spectrum. In the context of LTE, the classical Doppler power
spectrum density (also known as Jakes’ spectrum) is commonly used:

232 11. Channel Modeling

Tap number Average delay [ns] Average relative power [dB]
1 0 m −3.0
2 200 m 0.0
3 500 m −2.0
4 1600 m −6.0
5 2300 m −8.0
6 5000 m −10.0

Table 11.5: Parameters for 3GPP LTE channel fading model

S(f) =
1

πfd

√

1 −
(

f
fd

)
2

with f ∈]−fd, fd[(11.48)

where fd = v
λ is the maximum Doppler shift for a receiver traveling at a fixed

speed v and a signal of wavelength λ.

11.12.3 Channel Parameters used in Standardization – IEEE
802.16a/e

The channel modeling in case of a IEEE 802.16a/e based system resorts to the
consideration of different cell sizes – namely macro-cell (r > 1000 m), micro-
cell (100 m < r < 1000 m), pico-cell (r < 100 m) – and different mobility
scenarios [181]. The mobility scenarios encompass two recommended ITU-T
models, namely the Pedestrian-B and Vehicular-A model [212]. Also the ITU-
T Pedestrian-A model could be used, offering a smaller frequency selectivity
due to a smaller number of paths.

Path Loss. The path loss models depend on the considered environment. The
respective information is provided in Table 11.6. In case of the formulas, d
corresponds to the distance between the BS and the MS in meter, fc to the
carrier frequency in MHz, hb and hm to the antenna heights (in meter) of the
BS and the MS, respectively, hs to the height of the surrounding buildings
in meter, and n is an environment-dependent parameter.

Shadowing. Shadowing is modeled via a log-normal distribution. The pro-
posed parameters depend on the considered environment and are listed in
Table 11.7. Furthermore, the IEEE 802.16 working group also proposes one
alternative, common modeling approach for shadowing encompassing a stan-
dard deviation of 8 dB, a spatial correlation of 50 m and a correlation of 0.5
between sectors of different cells and 1.0 between sectors of the same cell.

Fading. The expected mobility determines the fading model parameters
which is based on the ITU-T recommendations. One possible set of parame-
ters is given in Table 11.8, where A.r.p. means average relative power in [dB],
and A.d. means average delay in [ns]. For a more comprehensive set refer

11.12 Implementations of Wireless Channels 233

Environment Modeling approach
Macro-cell Application: Urban macro-cells

Suburban macro-cells
(n =̂ correction term for type of city)

Setting: 150 MHz ≤ fc ≤ 1500 MHz,
1000 m ≤ d ≤ 20000 m,
1 m ≤ hm ≤ 10 m, 30m ≤ hb ≤ 200m

Basic model : Okumura-Hata
Formula: h2PL[dB] = (44.9− 6.55 log(hb)) · log

(
d

1000

)− n
+26.16 log(fc)− 13.82 log(hb) + 69.55

Micro-cell Application: Urban micro-cell
Setting: 800 MHz ≤ fc ≤ 2000 MHz,

20 m ≤ d ≤ 5000 m,
1 m ≤ hm ≤ 3 m, 4m ≤ hb ≤ 50m

Basic model : Walfish-Ikegami NLOS
Formula: h2PL[dB] : Equation 11.19
Basic model : Walfish-Ikegami LOS
Formula: h2PL[dB] = 20 log(fc) + 26 log(d)− 35.4

Pico-cell Application: Indoor pico-cell
(n =̂ number of penetrated floors)

Basic model : COST231 based Indoor model
Formula: h2PL[dB] = 37 + 30 log(d) + 18.3 · n(n+2

n+1−0.46)

Table 11.6: Parameters for IEEE 802.16e channel path loss models

Environment Shadowing
Macro-cell Basic model : Outdoor

Standard Deviation: 10 dB
Micro-cell Basic model : Outdoor

Standard Deviation: 10 dB
Basic model : Indoor
Standard Deviation: 10 dB

Pico-cell Basic model : Indoor
Standard Deviation: 12 dB

Table 11.7: Parameters for IEEE 802.16e channel shadowing models

to [212]. Basically, it is assumed that the signal envelope is Rayleigh and/or
Rician-distributed for lower velocities. Equivalently, the Doppler spectrum is
defined as in Equation 11.48.

234 11. Channel Modeling

Tap number Pedestrian - B Vehicular - A

6 paths, ≤ 3km
h

6 paths, 30km
h

A.r.p. A.d. A.r.p. A.d.
1 0 0 0 0
2 −1 300 −1 200
3 −9 700 −5 800
4 −10 1100 −8 1200
5 −15 1700 −7.8 2300
6 −20 2500 −24 3700

Table 11.8: Power delay profiles for IEEE 802.16e systems

12. Selected System Models
F. Schmidt-Eisenlohr (Karlsruhe Institute of Technology (KIT))
O. Puñal, K. Klagges (RWTH Aachen University)
M. Kirsche (Brandenburg University of Technology Cottbus (BTU))

Apart from the general issue of modeling the channel, the PHY and the
MAC of wireless networks, there are specific modeling assumptions that are
considered for different systems. In this chapter we consider three specific
wireless standards and highlight modeling options for them. These are IEEE
802.11 (as example for wireless local area networks), IEEE 802.16 (as example
for wireless metropolitan networks) and IEEE 802.15 (as example for body
area networks). Each section on these three systems discusses also at the end
a set of model implementations that are available today.

12.1 IEEE 802.11 (WLAN)

The popularization of Internet during the 90’s and the establishment in the
market of notebook computers were responsible for the growing interest in
mobile computing and mobile Internet access. These services could not be
offered by means of a cable-based connection. Therefore, several companies
that had identified there a market niche, started to offer wireless solutions.
However, since there had been no agreement on how to design those solu-
tions, most of them were incompatible with each other. A unified criterion
was required and IEEE took the responsibility of setting up a wireless LAN
standard from scratch. That standard had to provide the same set of services
provided by wired systems (reliable data delivery, high transmission rates
and continuous connection). The major challenge, though, was that it had to
succeed in a wireless manner. The standard they came up with was named
IEEE 802.11 and first released in 1997. It specified the MAC and three differ-
ent PHYs , namely Infrared (IR), Frequency Hopping Spread Spectrum and
Direct Sequence Spread Spectrum. Operating in the 2.4 GHz frequency band,
all three PHYs supported both 1 Mbps and 2 Mbps transmission rates.

As a reaction to the growing throughput demands, the standard was
extended in 1999. The main improvements took place at the PHY, where
two new PHYs were standardized. In the 2.4 GHz band, IEEE 802.11b ex-
tended the Direct Sequence Spread Spectrum (DSSS) PHY, by means of
the Complementary Code Keying (CCK) modulation, to provide data rates
up to 11 Mbps. IEEE 802.11a, which was defined in the 5 GHz band offers
transmission rates up to 54 Mbps by employing OFDM and highly efficient

236 12. Selected System Models

modulation types. In 2003, IEEE 802.11g was released maintaining backward
compatibility with IEEE 802.11b in the 2.4 GHz band, while at the same
time using the IEEE 802.11a OFDM PHY to reach the throughput offered
by the latter. Over the years new standard amendments have been devel-
oped to provide extra services and functionalities that were lacking in the
first versions. Some examples are IEEE 802.11e offering Quality-of-Service,
IEEE 802.11i offering extra security enhancements and IEEE 802.11h fea-
turing dynamic frequency selection and transmit power control. Upcoming
standards, whose progress can be followed at the official IEEE 802.11 working
group’s project website [209], aim at extending features and especially at pro-
viding larger throughput. Currently in finalization, IEEE 802.11n is expected
to deliver a MAC throughput of 100 Mbps, corresponding to PHY rates of
about 600 Mbps by means of Multiple-Input-Multiple-Output (MIMO) trans-
mission techniques, channel bonding, and extended MAC protocol function-
alities, among others. Currently at their initial phase, IEEE 802.11ac and
IEEE 802.11ad strive for the goal of even higher throughput (1 Gbps) at the
bands below 6 GHz and at 60 GHz, respectively. In the following the refer-
ence model that underlies all IEEE 802.11 amendments will be presented in
more detail. The current version of the standard is [15] and a more detailed
description of the standard can be found, e.g. in [175], [339].

12.1.1 System Reference Model

Fig. 12.1: IEEE 802.11 reference model [15]

12.1 IEEE 802.11 (WLAN) 237

In Figure 12.1 is shown the IEEE 802.11 reference model. Since the standard
defines only physical and MAC layers, these are the protocol stack levels
represented in the model. It is important to note that the reference model has
mainly illustration purposes for a proper understanding of the inner structure
and the requirements when developing or discussing the standard.

The functional blocks of the model are interconnected over a set of Service
Access Points (SAPs), each defining several service primitives. The stack is
separated into different functional layers and each layer is again separated
into functional and management entities. Wireless communication is done
throughout the blocks shown in the left column of the figure. The MAC sub-
layer includes all the functionalities to access the medium in a coordinated
way while the two underlying PHY sub-layers, Physical Layer Convergence
Procedure (PLCP) and Physical Medium Dependent (PMD), provide the
functionality to transmit and receive the frames generated by the MAC over
the wireless medium. Specifically, the PLCP sublayer enables the interac-
tion and compatibility between MAC and the corresponding PHY. On the
other hand, the PMD sublayer enables wireless transmission and reception
of data and specifies which of the different available PHY s are being used.
The management architecture of 802.11 consists of three different manage-
ment entities as shown in Figure 12.1, namely the MAC Layer Management
Entity (MLME), the Physical Layer Management Entity (PLME) and the
Station Management Entity (SME). The latter is intentionally not defined in
depth in the standard, since it is an implementation dependent structure and
there is no need to have a unified definition. The first two entities contain
the Management Information Bases (MIBs), which have all the necessary
information to manage the functionality of a wireless station.

12.1.2 Physical Layer

The Physical Layer is the first layer of the OSI stack model. As stated previ-
ously, the current version of the IEEE 802.11 standard defines several PHYs.
All specified PHYs are divided into two sub-layers, namely the Physical Layer
Convergence Procedure and the Physical Medium Dependent sub-layers. The
PLCP sublayer deals with all media-independent elements (like frame struc-
ture including preamble, header and trailer) and any processing steps during
transmission (like scrambling, encoding, interleaving, modulation). It is also
responsible for the frame exchange between the MAC layer (second layer of
the OSI) and the PHY. On the other hand, the PMD sublayer is respon-
sible for actually transmitting the data symbols over the wireless medium,
respecting the frequency specific regulations like transmit power, spectrum
mask and acceptable tolerances. On receiver side PMD forwards the symbols
up to the PLCP sublayer, and provides CCA notification, i.e. the indication
of transmission activity on the wireless medium. The most relevant PHY

238 12. Selected System Models

implementations are briefly described below. Special emphasis is placed on
the OFDM PHY implementation.

Frequency Hopping Physical Layer

Frequency Hopping Spread Spectrum (FHSS) is one of the physical layers
that was already defined in the original IEEE 802.11 standard. The available
bandwidth is mapped into several frequency slots and one of the specified
hopping sequences is selected for frame transmission, i.e. during the trans-
mission, the frequency on which frames are coded switches after the duration
of a defined time slot. Several hopping sequences can be combined to a set
of orthogonal hopping sequences that can be used in parallel. The use of fre-
quency hopping mitigates interference effects that may occur on only one of
the frequency slots, i.e. the influence of frequency selective fading should be
reduced. FHSS in IEEE 802.11 allows a data rate of 1 or 2 Mbps.

Direct Sequence Physical Layer

In DSSS a single frequency is used for data transmission. Again in order
to overcome frequency selective fading, any data symbol is spread over a
chipping sequence of 11 bits, i.e. a ‘0’ is transmitted as a fixed combination
of chips, while a ‘1’ is transmitted as the reverse sequence. To encode these
symbols Differential Phase Shift Keying (DPSK) is used, i.e. phase shifts
define whether the next symbol is a ‘0’ or a ‘1’. in the most simple case, if
the next symbol is a ‘0’ there is no phase shift, and if the next symbol is a
‘1’ there is a 180◦ phase shift. 1 or 2 Mbps are reached with this technique
in IEEE 802.11. Higher data rates up to 11 Mbps can be reached when using
the PHY extension defined in IEEE 802.11b.

OFDM Physical Layer

The concept behind OFDM is already known for more than 40 years [94].
However, it was not until the mid 90’s that OFDM started to be imple-
mented in practice, e.g. in Digital Audio Broadcasting (DAB), Digital Video
Broadcasting Terrestrial (DVB-T) and Asymmetric Digital Subscriber Line
(ADSL), among others. OFDM is a transmission and modulation technique,
although it can also be considered as a multiplexing technique. It extends the
concept of single carrier modulation by splitting the total system’s bandwidth
into multiple sub-channels also known as sub-carriers, on which information
is transmitted at the same time in a parallel manner. These sub-carriers are
designed to be orthogonal to each other, i.e. at the center frequency of each
sub-carrier the transmissions of all other sub-carriers do not contribute to
its waveform, which frees the system from Inter-carrier Interference (ICI).

12.1 IEEE 802.11 (WLAN) 239

The orthogonality is achieved by using a rectangular pulse of symbol time T
for the transmission of each sub-carrier. By means of an Inverse Fast Fourier
Transform (IFFT) the rectangular pulse is transformed into a sinc function
in the frequency domain. This function has the characteristic of presenting
zero amplitude at all frequencies, which are integer multiples of 1/T . Choosing
the carrier frequencies to be separated from the adjacent ones exactly by 1/T
guarantees orthogonality in the system. In addition, since every single sub-
carrier uses a narrow bandwidth compared to the total system’s bandwidth,
the sub-carrier symbol time becomes larger. This reduces the vulnerability
of the system against far-echoed copies of the transmitted signals inherent to
multi-path propagation environments. This robustness against the so-called
ISI is one of the main benefits of OFDM. However, ISI may still appear and
degrade the performance. For further mitigating these effects, redundancy is
added at the beginning of each symbol in form of a Cyclic Prefix.

Fig. 12.2: OFDM transmitter and receiver chain [15]

The OFDM PHY is currently used in the IEEE 802.11a and IEEE 802.11g
amendments and will further be used in the upcoming IEEE 802.11n. The
first two split their 20 MHz wide channel into 52 sub-carriers (4 pilot and
48 payload sub-carriers). Then, data bits are scrambled, redundantly en-
coded by means of convolutional coding, interleaved and then spread over
48 of the sub-carriers so that the probability of error bursts is reduced and
hence, the probability of a successful frame reception increases. Please re-
fer to Figure 12.2 for a schematic representation of the OFDM transceiver
chain. Each sub-carrier transmits at a fixed baud rate of 2.5 · 105 symbols
per second (with a symbol time of 4μs). On each symbol a certain number
of bits is transmitted using different modulation schemes, such as BPSK,
QPSK, 16-QAM and 64-QAM. The resulting transmission rates are shown in
Figure 12.3. The complex symbols of all sub-carriers are converted into time

240 12. Selected System Models

domain using an IFFT. After the addition of the cyclic prefix and the IQ
modulation, the resulting signal is transmitted over the air. At the receiver
side the complex symbols of the sub-carriers are recovered by applying a Fast
Fourier Transform (FFT).
The PHY Protocol Data Unit, whose structure is depicted in Figure 12.4,
is the frame format at the PLCP sublayer. This frame consists of a PLCP
preamble, control information fields and a Data field. The PLCP preamble
(16μs long), consisting of long and short training sequences, is used by the
receiver to obtain a channel estimate, necessary to recover the transmitted
symbols. In addition, it is used by the receiver to acquire the signal and
to synchronize the demodulator. The control fields (4μs long) are transmit-
ted at the base rate (BPSK with convolutional rate R = 1/2) and deliver
information about the rate and the length of the payload data.

Fig. 12.3: IEEE 802.11 a/g PHY modes [15]

Channelization in OFDM Based WLANs. The frequency band, the
number of available channels and bandwidth of those channels depend on
various aspects. IEEE 802.11a operates in the 5 GHz band. Within this band
there are four different sub-bands intended for WLAN transmission, which
are placed within 5.150 GHz and 5.825 GHz where 23 different channels each
being 20 MHz wide are supported. The usage of these frequencies varies de-
pending on the country, e.g. the U-NII upper band, ranging from 5.725 GHz
to 5.825 GHz, is a sub-band exclusively used in the United States. The carrier
frequencies of adjacent channels are separated by 20 MHz and the specifica-
tions of the standard indicate that in order to minimize adjacent channel

12.1 IEEE 802.11 (WLAN) 241

Fig. 12.4: OFDM PPDU frame format [15]

Fig. 12.5: IEEE 802.11a/g spectral mask [15]

242 12. Selected System Models

interference, the power of a channel detected at the carrier frequency of an
adjacent one should be attenuated at least by 28 dB as depicted by Fig-
ure 12.5. IEEE 802.11g operates in the 2.4 GHz band, which is broken down
into 14 different channels each of them being 22 MHz wide. Again, the spec-
trum usage is country dependent, while in the United States 11 channels are
available, Europe defines 13 channels within this band. In IEEE 802.11g (as
well as in IEEE 802.11b), adjacent channels are separated by 5 MHz, which
limits the number of non-overlapping channels to only three (channels 1, 6
and 11).
Packet Error Rate Model. As mentioned previously, convolutional encod-
ing is the forward error correction technique applied in OFDM based WLANs.
The coding is generated by the polynomials g0 = 1338 and g1 = 1718 with
convolutional rate R = 1/2. The convolutional rate indicates the ratio be-
tween input (before coding) and output bits (after coding). A rate R = 1/2
means that for every information bit entering the encoder, two bits are present
at its output. This effectively reduces the throughput efficiency, since half of
the payload bits transmitted are redundant. On the other hand, it increases
the robustness of the system. Higher rates, thus more efficient and less robust,
are achieved by means of puncturing. This mechanism consists of removing
some of the parity bits after encoding. The punctured convolutional rates
used in the current WLAN standard are R = 2/3 and R = 3/4, although
IEEE 802.11n will allow a higher one, namely R = 5/6. Viterbi algorithms
are used in practice for both coding and decoding purposes.
Any WLAN simulator, that aims at realistic results, has to consider the effects
of convolutional (de)coding on the error rate. However, an accurate modeling
of the error rate can only be rarely found, even in state-of-the art simula-
tors. The authors in [180] propose a model for obtaining an upper bound
for the packet error probability, which takes the average bit error probability
as input (calculated over the multiple OFDM subcarriers as function of the
individual channel attenuations and the modulation used). In [70] an upper
bound of the bit error probability is derived for binary convolutional coded
transmission with hard-decision Viterbi decoding and independent bit errors.
The assumption of independent errors at the input of the decoder can be done
since the interleaving block (please refer to Figure 12.2) reduces the error’s
correlation. The resulting (coded) bit-error probability is given by:

Pbit ≤
1
k
·

∞∑

d=dfree

cd · Pd (12.1)

In this equation, k is the number of input bits to the register of the
convolutional encoder, dfree is the free distance of the convolutional code,
Pd is the probability that an incorrect path of distance d is chosen and cd is
the number of bits in error. The values for cd can be obtained from diverse
publications, such as [160] for the rate R = 1/2 and [191] for the punctured
rates R = 2/3 and R = 3/4. Then, Pd can be upper bounded as given by:

12.1 IEEE 802.11 (WLAN) 243

Pd ≤ (2 ·
√

β · (1 − β))d, (12.2)

where β corresponds to the averaged uncoded bit error probability. In
order to obtain this error probability per sub-carrier, the formulas in [100]
for the BPSK, QPSK, 16-QAM and 64-QAM modulations under additive
white Gaussian noise can be used. Given the bound on the resulting bit error
probability Pb, we can obtain the Packet Error Rate for a packet of size ς
bits by:

PER ≤ 1 − (1 − Pbit)ς (12.3)

The upper bound given by Equation 12.3 is accurate and considerably
tight for low input bit error rate (uncoded β), however it loses its precision
under higher values (0.001 and higher). This divergence supposes an overes-
timation of the coded bit error probability (Pbit) and, consequently, of the
packet error rate. The authors propose a correction of the bound by introduc-
ing a scaling factor to the coded bit error probability, which is obtained by
Lagrange interpolation of the factors obtained from (exact) simulated values
for selected uncoded bit error probability. For the purpose of simulating exact
coded bit error probability given a certain convolutional code, MATLAB’s
Communication Toolbox can be used.

12.1.3 LLC/MAC

The LLC and MAC layer is commonly defined for all variants of IEEE
802.11, and different options are provided. The LLC functionality of IEEE
802.11 includes packet segmentation and reassembly (by packet fragmenta-
tion) and backward error correction (by acknowledgment and retransmis-
sions). Concerning MAC three variants are currently defined: Point Coordi-
nation Function (PCF), DCF and Hybrid Coordination Function (HCF).

Frames and Frame Exchange

All IEEE 802.11 MAC frames have a unified principal structure that is shown
in Figure 12.6, from which individual frame types are derived. Each frame
starts with a header sequence that contains all important information on the
frame. The first two bytes contain the frame control field (see Figure 12.7),
in which are included the information on the type and subtype of the frame
and several status and control bits related to the frame. The header further
includes a field indicating the full duration of the frame exchange, the Net-
work Allocation Vector (NAV). The field explicitly reserves the channel for
the complete frame exchange sequence and thus influences the MAC mech-
anism. The following address fields vary in number and meaning depending

244 12. Selected System Models

on the frame type, but typically represent transmitter, receiver, and the Ba-
sic Service Set, an identifier that groups together a set of wireless stations
associated to the same network. Quality of service information is included
in the header as well. The header is followed by the actual payload that is
transmitted. The frame is finalized by a trailer that contains a Frame Con-
trol Sequence (FCS), i.e. a CRC checksum to identify errors in the frame that
occurred during the transmission.

Fig. 12.6: IEEE 802.11 MAC frame structure [15]

Fig. 12.7: IEEE 802.11 MAC frame control field [15]

Frames are exchanged with Layer 2 acknowledgments, i.e. the receiver of
a unicast data frame sends back an acknowledgment frame after a defined
duration, called SIFS. If a transmitter cannot successfully receive the ACK
within this time, it reschedules the transmission until a defined maximum
number of retransmissions is reached, afterwards the frame transmission is
considered unsuccessful. For broadcast transmissions, in contrast, there is no
acknowledgment scheme.

In order to reduce interferences and packet collisions caused by the hidden
terminal problem, an additional RTS/CTS exchange preceding the transmis-
sion of the data frame is a possible option. The transmitter of a message
first sends a short RTS control frame, the receiver replies with a CTS frame.
Ideally, after this exchange of control packets all nodes that may possibly
interfere the data transmission are informed and are not allowed to transmit
for the duration of the data exchange that is encoded in the NAV field of the
RTS and CTS frame. Yet, frames from different nodes can still be transmit-
ted in parallel such that collisions still cannot be completely avoided. This
may be the case when nodes move fast and miss the RTS/CTS exchange or
when both the RTS and CTS frame is not received correctly by a node, e.g.
due to channel fluctuations. The reduced probability of packet collisions and

12.1 IEEE 802.11 (WLAN) 245

consequently the improved possibility of a successful frame exchange trades
off with the additional overhead introduced by the RTS/CTS frame exchange.

The typical frame exchange thus consists of the frame sequence RTS -
CTS - DATA - ACK, where the RTS and CTS frame can be omitted, and
the ACK frame is not transmitted in case of a broadcast transmission. A
successful exchange of frames depends on the transmission quality provided
by the physical layer. In case any of the exchanged frames contains errors,
the complete sequence has to be retransmitted, reducing the effective pay-
load that the wireless channel can transport. Problems with transmission
quality in particular occur when adverse channel conditions exist, e.g. due
to high mobility or strong multi-path fading, or if too many nodes share the
same wireless channel and medium access coordination fails (also see the next
paragraphs).

MAC Schemes

IEEE 802.11 defines several MAC schemes to access the medium in a coordi-
nated way. In the following the most important ones will be described. The
DCF medium access scheme is most often used, while HCF is a further de-
velopment based on DCF principles, but including different quality of service
classes. The PCF scheme can only be used in infrastructure networks, i.e.
with central coordinating access points.

DCF Medium Access. Distributed Coordination Function enables the coor-
dinated usage of the medium following a CSMA access strategy. It bases
on the principle that the status of the medium has to be detected before a
transmission is actually performed. Consequently, a procedure is needed to
detect the current status of the wireless medium as either being idle or being
busy. Two mechanisms, a physical and a virtual one are provided, and the
medium is considered as busy if at least one of them does so. The physical
status indication is provided by the PHY and is called CCA. The medium is
detected as busy if either a valid frame reception is currently detected or if
the energy measured on the medium exceeds a specific threshold. The virtual
mechanism is provided by the NAV described before: all frames contain a
duration field, which indicates how long the related frame exchange sequence
lasts. Nodes that are not part of the data exchange have to keep the medium
virtually busy for that duration.

The distributed medium access is coordinated with the help of two con-
cepts: defined time durations of different length (Inter Frame Spaces (IFSs))
and randomized waiting times prior to the medium access (random backoff).
IFSs are time intervals during which a node has to detect the medium idle
in order to proceed with a next step. The different lengths of IFS prioritize
specific procedures; the SIFS interval is the shortest IFS and gives highest
priority to the related tasks, followed by the Point Coordination Inter Frame
Space (PIFS) and the Distributed Inter Frame Space (DIFS) interval.

246 12. Selected System Models

If a node has data frames to be transmitted and if the medium is con-
sidered idle for the duration of DIFS, the frame can be directly transmitted.
If, instead, the medium is considered busy, a backoff procedure has to be
followed: a number of backoff slots (also having a defined duration) is chosen
randomly within a specific interval, the contention window, and the frame
may not be transmitted before the number of remaining slots reaches 0. The
number of remaining slots is reduced whenever the medium is detected idle
for the duration of DIFS. If the medium becomes busy again, the reduction
of slots is paused and may not be resumed before the next idle period takes
place.

The selection of random backoff slots is performed in order to reduce the
probability that different nodes start to transmit frames at the same point in
time what might lead to frame collisions. The number of selectable waiting
times depends on the size of the contention window. As the number of con-
tending nodes may be unknown the size of the contention window is adapted
dynamically: in case a transmission fails, i.e. an acknowledgment cannot be
successfully received, the frame is retransmitted . A backoff period has to pre-
cede the retransmission and the contention window (and with it the possible
maximum length of the backoff period) is (nearly) doubled (more precisely,
the contention window size always is represented by the term 2i − 1, with
an i increasing by one with each retransmission, up to a maximum value).
Consequently, if a frame is lost due to a collision with another frame, the
probability of colliding again is reduced by the increased number of backoff
slots for the retransmission, but with the trade-off of a possibly longer waiting
time.

The number of retransmissions is restricted to a defined number, after-
wards feedback is given to higher layers, that the frame failed to be trans-
mitted. After every failed or successful transmission, the contention window
is reset to its original value and a backoff algorithm is started, indepen-
dently whether another frame to be transmitted is waiting. This way, other
nodes have the possibility to access the channel before the node that just
transmitted.

PCF Medium Access. The Point Coordination Function is an access scheme,
where the access point controls the medium access in a centralized way. Two
phases are defined: one is the distributed access as described for the DCF and
the other is the Contention Free period in which the access point polls all
nodes that have announced that they want to participate in the Contention
Free (CF) period. This guarantees that nodes gain access to the medium.
However, there is no product known in the market where PCF is actually
implemented.

HCF Medium Access. Hybrid Coordination Functions are defined in the
IEEE 802.11e amendment of the standard and introduce QoS functionality.
Every data packet is assigned a certain access category and is thus han-
dled prioritized, or not. Several types of HCF are defined, the most known

12.1 IEEE 802.11 (WLAN) 247

and used being Enhanced Distributed Channel Access (EDCA). Four access
categories are defined, for each of them exists an own waiting queue and indi-
vidual values for the contention window size and the IFS that has to be idle
before medium access or further backoff is allowed. EDCA does not guaran-
tee any maximum waiting times or strict prioritization; it only increases the
possibility that packets with higher priority access the medium earlier.

12.1.4 Introduction of Available Models

In the previous chapters the general model of IEEE 802.11 was introduced.
In the following are presented simulation models for IEEE 802.11.

NS-2 Wireless Extensions

� Intent:

– The wireless extensions of the Network Simulator 2 (NS-2) allows the per-
formance analysis and evaluation of IEEE 802.11 networks, especially when
using the DCF on the MAC layer. Network Simulator 2 (NS-2) also includes
models for the simulation of different wireless routing protocols like Ad-hoc
On-demand Distance Vector (AODV) or Dynamic Source Routing (DSR).

� Authors / Contributors:

– NS-2 originated as a variant of the REAL simulator in 1989 and was con-
tinuously improved and extended in the following years until today. The
support of wireless networks and mobility was introduced from 1998 on-
wards by the CMU Monarch project at Carnegie Mellon University (CMU)
where was established the basic layout for wireless nodes and radio chan-
nels. Contributions were made from various projects and many research
institutions.

� Model Characteristics:

– The model for wireless networks was first described in [2]. It includes the
major pieces of the IEEE 802.11 reference model, i.e. the communication on
the MAC and PHY layer. Node mobility is supported by the NS-2 frame-
work. Improved MAC schemes, QoS functionality and station management
functionality was not supported originally but there exist several extensions
that extend the model in various ways. Among them is an implementation
for infrastructure support [377], the support of IEEE 802.11e (QoS) [496],
and the support of the dynamic selection of multiple transmission rates [5].

248 12. Selected System Models

� Accuracy / Complexity:

– On the MAC layer the model covers main functionality of IEEE 802.11.
The DCF is covered by the model such that distributed coordinated access
to the medium is modeled, including the backoff behavior due to physical
and virtual medium status notification. The model does not cover PCF
functionality. The PHY model is simplified and leads to low accuracy. The
successful reception of a packet depends on a per-packet reception power
that has to exceed a reception threshold to be configured. The arrival of an-
other frame during an ongoing reception is handled such that the reception
powers of both frames are compared and only if the ratio of the first and
the second frame exceeds a specific threshold the reception is continued,
otherwise the two frames collide and cannot be received successfully.

– The MAC model contains several inaccuracies and restrictions with respect
to wrong collision handling, no preamble and PLCP header modeling, no
cumulative SINR implementation, wrong backoff handling, the mis-usage of
the NAV for Extended Inter Frame Space (EIFS), and incomplete capture
capabilities.

– The default configuration parameters model a non-standard wireless inter-
face. In order to represent IEEE 802.11 the parameters have to be adapted.

– The wireless extensions provide a simulated wireless channel that inter-
connects the wireless nodes and allows the exchange of frames between the
nodes. Each transmitted frame is copied for each possible receiver and a
propagation delay is applied with respect to the distance between nodes.
Every possible receiving nodes uses a definable radio propagation model
to determine signal reception strength on a per-packet basis. Radio propa-
gation models can be either deterministic or probabilistic, and may model
path loss, shadowing and fading effects.

– Higher protocol layers are connected via a callback interface to the LLC.
A packet to be transmitted is either given to the MAC directly if it is idle,
or enqueued in the interface queue otherwise. A received packet is given to
the LLC layer after being handled in the MAC.

� Model Context:

– In order to run simulations of wireless networks, NS-2 as a basic framework
is required. It implements the discrete event simulator, defines packet for-
mats and the composition of nodes, and interlinks the programmatic C++
implementation with the Tcl configuration part of NS-2. The wireless mod-
ules are included in the NS-2 distribution.

– A scenario is described via the script language Tcl, where the network
scenario, the configuration and the parametrization is defined by scripts.
Simulations can be run without adapting the C++ source code. The C++
sources are open such that individual adaptations and extensions can be
included.

12.1 IEEE 802.11 (WLAN) 249

� Inputs:

– The scenarios, models and nodes can be configured via the Tcl scripting
files. A general setup for the scenario can be configured, and individulal
configurations for each node extended. The files are simple text files and
are interpreted on simulation runtime.

� Outputs:

– NS-2 provides the output in the form of trace files. The files contain one
line for each relevant event. The level of detail, models / layers of interest
can be configured in order to reduce the size of the files. Two formats can
be chosen , an old one that is more human-readable, and a new trace file
format, that allows better support for trace file parsing.

– Additional output can be configured by callbacks to methods in the Tcl
script where individual message handling and/or statistics can be per-
formed.

– NS-2 does not include tools for direct statistical evaluation. The tool nam
allows the visualization of scenarios and communication for simple scenarios.

� Structure:

– No UML description are available.

� Implementations:

– All functional components are based on a C/C++ implementation and are
available as source code. Each node consists of two parts, the C/C++ imple-
mentation and a Tcl description that interconnects the different modules
and allows their configuration. The implementation is available online and
included in all versions of NS-2 since ns-2.21 (1999) such that the current
version as well as the development over time can always be reviewed.

� Availability:

– The documentation and source code is available online. The PHY/MAC
components of IEEE 802.11 can be found in the folder ns-x.xx/mac/.

� Author of Model Description:

– Felix Schmidt-Eisenlohr (Karlsruhe Institute of Technology (KIT))

802.11Ext: Overhaul of NS-2 Wireless Extensions

� Intent:

– See previous Section 12.1.4

250 12. Selected System Models

� Authors / Contributors:

– Qi Chen, Daniel Jiang, Luca Delgrossi (Mercedes-Benz Research & Devel-
opment North America)

– Felix Schmidt-Eisenlohr, Marc Torrent-Moreno, Hannes Hartenstein (Karl-
sruhe Institute of Technology (KIT))

� Model Characteristics:

– The model was first described in 2007 in [97]. It includes main pieces of
the IEEE 802.11 reference model, i.e. of the MAC and PHY layer. The
MAC layer includes the DCF structured and detailed. Other MAC schemes,
QoS functionality and station management functionality is not supported
originally, but can be extended. The PHY layer models reception behavior
on a per-packet basis and decides on the successful reception with respect
to the SINR, including noise and all other packets that are present in
parallel. It handles packets transmitted with different rates and supports
capturing technologies. The implementation provides a modular, clear and
extensible design.

� Evolution:

– The model is continuously improved and refined. Documentation, bug fixes,
extensions and scripts are provided on the website [7].

� Accuracy / Complexity:

– With respect to the MAC, the model provides the full functionality of the
DCF mechanism in a modular and structured way. The behavior described
in the standard documents is completely modeled and allows the simulation
of decentralized medium access.

– With respect to the PHY the reception process is modeled as follows. Each
frame that arrives at a node is modeled to be received with a specific recep-
tion power that is determined with the help of radio propagation models.
The node inherits a transmission and reception state machine, and depend-
ing on the state and the reception power the start of a reception is either
successful or not. In case the beginning of a frame can be received success-
fully, i.e. decoding the preamble as well as the header, the state machine
enters payload reception phase of a packet. The reception is successful if the
SINR of the packet remains above a certain threshold all time, otherwise
the reception fails. If the beginning of a frame cannot be successfully de-
coded, the packet only contributes to the interference and noise power that
a node obtains. During a reception, another incoming packet with strong
reception power, i.e. an SINR above a certain threshold may be captured.
Capture means that the receiver chipset stops decoding the bit sequence of

12.1 IEEE 802.11 (WLAN) 251

the current frame and switches to decoding the newly arriving one. Cap-
ture can be activated and deactivated individually for preamble/header
reception phase and payload reception phase.

– The PHY model supports handling different modulation schemes and cod-
ing rates by providing different necessary SINR thresholds for each con-
figuration. Preamble and header are always treated independently as the
header is always encoded with the most simple modulation scheme.

– The model includes configuration parameters that represent IEEE 802.11a
networks. The combination of the detailed PHY/MAC models with prob-
abilistic radio propagation allows the detailed simulation of IEEE 802.11a
and p networks.

– The model handles packets on packet-level accuracy, i.e. variation of recep-
tion power during one frame is not modeled. Further, the reception decision
is based on the lowest achieved SINR during reception. The model may be
extended with a decision based on a derived BER and PER but according
models have to be developed and integrated.

� Model Context:

– See previous Section 12.1.4
– Existing scripts for the standard NS-2 models can be easily adapted to

work with the overhauled version. In principle, the classes for MAC and
PHY defined in the script files only have to be replaced.

– A seamless integration into the existing NS-2 is possible, as the same in-
terfaces are used.

� Inputs:

– See previous Section 12.1.4

� Outputs:

– See previous Section 12.1.4
– The model allows detailed tracing of PHY and MAC and provides addi-

tional output for detailed analysis.

� Structure:

– In [97], SDL diagrams are included that allow detailed understanding of
the PHY and MAC function.

� Implementations:

– The implementation is available online and is included in all versions of
NS-2 since ns-2.33 (2008).

252 12. Selected System Models

– The source code is written in C++ and freely available. Configuration pa-
rameters are provided as Tcl scripts.

� Availability:

– The source code is included in NS-2 releases starting from version ns-2.33
under the folder ns-x.xx/mac/. The file names of the extended modules
end with Ext.

� Related Models:

– The new models are related to original implementation in the sense that
they provide the same interfaces but replace the complete functional im-
plementation. In comparison, a clear structure and a much more detailed
behavior is modeled.

� Author of Model Description:

– Felix Schmidt-Eisenlohr (Karlsruhe Institute of Technology (KIT))

OPNET Modeler WLAN Module

OPNET Modeler is a state-of-the-art network modeling and simulating tool.
It delivers a huge set of functionalities combined with an intuitive and
straightforward user interface. Despite of being a commercial product, a large
number of Universities work with OPNET Modeler under the OPNET Uni-
versity Program. The Wireless LAN Module is available within the latter and
offers a solid design, simulation and analysis tool for IEEE 802.11 wireless
LAN networks. OPNET Modeler is in a continuous development state with
new functionalities being released several times a year.

� Intent:

– Design and performance evaluation of IEEE 802.11 networks.

� Authors / Contributors:

– OPNET Modeler is a commercial simulation tool which falls within the
Research and Development area of OPNET Technologies, Inc.

– Default models can be extended and improved by individual users, which
may upload their work to the on-line section of contributed models.

� Model Characteristics:

– The implementation is based on a hierarchical modeling concept, where
three levels can be distinguished. The Network Editor, the Node Editor and

12.1 IEEE 802.11 (WLAN) 253

the Process Editor. The first serves as graphical representation of the mod-
eled network, where devices and linking mediums can be intuitively com-
bined. The second displays the internal architecture of single objects and
graphically describes the data flow between functional elements, including
protocol layers, radio links and buffers, among others. These functional el-
ements get process models assigned, consisting of finite state machines and
transitions that can be accessed and modified (in C/C++ language) at the
Process Editor. The WLAN MAC layer is a process, modeled as a finite
state machine consisting of about 10000 lines of code. On the other hand,
the radio link (physical layer) is modeled by the Radio Transceiver Pipeline.
It is basically a concatenation of fully customizable C/C++ programmed
stages, with a large set of specifically defined functions for a comfortable
PHY design. At every of the fourteen different stages different effects deal-
ing with transmission, reception and environment are considered. Based on
certain inputs, each stage performs computations to obtain valuable met-
rics including received power, signal-to-noise ratio, interference level and
bit and packet error rate, among others. The OPNET Modeler WLAN
PHY implementation consists of about 2000 lines of code.

– It offers full support for IEEE 802.11a, b, g in both distributed (DCF) and
centralized (PCF) medium access modalities.

– It offer partial support for IEEE 802.11e.
– Support for IEEE 802.11n is available through the on-line OPNET Con-

tributed Model Library.
– It implements full protocol stack including PHY, MAC, IP, Transport and

Application Layers.
– Mobility is available by means of customizable or random trajectories. In

the context of mobility roaming is also supported.
– The supported wireless network configurations range from infrastructure

(Access Point based) and Ad-hoc to extended service set and wireless back-
bone.

– It offers a huge number of drag and drop nodes covering all functionalities:
router, bridge, mobile and fixed stations. Hundreds of protocol and vendor
device models together with their source code are also available.

– It offers an integrated debugging environment that allows the setting of
breakpoints for specific events, to trace simulation execution as well as
memory usage. Furthermore, it offers an animated simulation progress dis-
play (packet transmission, mobility, etc.).

– The WLAN model contains a very solid and fully standard-conform
MAC implementation. Furthermore, OPNET Modeler has been the sim-
ulator selected for the IEEE Task Group E and N for developing the
IEEE 802.11e/n standards.

254 12. Selected System Models

� Evolution:

– Simulation engine and protocol functionalities are being regularly further
developed. Different versions of OPNET Modeler are distinguished by their
release numbering. The current available release (while this book is being
written) is OPNET Modeler 15.0 PL1 (February 2009).

� Applicability:

– OPNET Modeler WLAN model provides support for design and perfor-
mance evaluation of IEEE 802.11 networks, including 802.11a/b/g/e and
both DCF and PCF configurations.

� Accuracy / Complexity:

– The model supports the whole set of DCF functionalities of IEEE 802.11
a/b/g as specified in the standards. CSMA/CA medium access with expo-
nential back-off procedure, RTS/CTS frame exchange, packet fragmenta-
tion and reassembly, backward compatibility between IEEE 802.11b and
802.11g together with mobility and roaming, are the most relevant protocol
characteristics available with the model.

– The PCF configuration is supported as well, however, the model does not
present a correct behavior when noisy links are considered or when the
communication with the access point is lost.

– In a similar way, there are some functionalities of IEEE 802.11e that are
not modeled at all. In the context of this standard amendment only the
Enhanced Distributed Channel Access is supported, including Block Ac-
knowledgment, transmission opportunity frame burst, four different traf-
fic categories linked to different flow priority levels and different proto-
col behaviors, as well as interoperability between IEEE 802.11 b/g and
IEEE 802.11e.

– The physical layers included in the model are Direct Sequence Spread
Spectrum and Orthogonal Frequency Division Multiplex. Other PHY ap-
proaches defined in the IEEE 802.11 standard such as Frequency Hopping
Spread Spectrum and Infrared (IR) are not modeled. Correspondingly, only
the modulations employed by DSSS and OFDM are supported, including
DPSK, BPSK, QPSK, CCK, 16-QAM and 64-QAM.

– The Physical Layer is implemented as a set of pipelined stages, which
model the basic requirement of this layer, namely the data transmission
and reception over the wireless medium. For that purpose a propagation
model, a method for accounting for interferences, as well as a packet error
model, among others, are delivered with the model.

– The accuracy and flexibility of the propagation depends on whether the
OPNET Modeler user has access to the Terrain Modeling Module (TMM)
Package, which requires extra licenses not included in the free-of-charge
University Program. This package supports the inclusion of terrain effects

12.1 IEEE 802.11 (WLAN) 255

in the signal propagation (path loss calculations) and the selection of built-
in propagation models and environmental effects. On the other hand, the
default model includes only the free-space propagation, which is a signifi-
cant shortcoming, since it does not suit well in indoor scenarios.

– Frequency selective fading is not modeled in the default libraries. Again,
this is an significant limitation, as it is well known [42] how important this
effect is when close-to-reality simulations are aimed.

– The Clear Channel Assessment threshold, which indicates the level of en-
ergy that has to be sensed by a node for it to declare the wireless channel
to be busy is treated and modeled in the same way as the receiver sensitiv-
ity. The latter stands for the minimum energy level needed to differentiate
low level signals from noise. These two effects are different and should cor-
respondingly be modeled separately. Nevertheless, multiple contributions
argue that the optimal CCA threshold corresponds to the receiver sensi-
tivity, which in turn would mean that this model limitation may have a
reduced impact on the system performance.

– Regardless of the channel conditions, which in the default model may
change only due to the terminals mobility, the transmission rate is fixed
over the whole simulation run. In other words, there is no link adaptation
mechanism to select the most adequate transmission rate at any time.

– The whole set of PHY limitations are somehow balanced by the customiza-
tion flexibility of the transceiver pipeline stages and extra built-in tools like
the Modulation Editor or the Antenna pattern Editor.

� Model Context:

– The Wireless LAN module is part of OPNET Modeler and requires the
latter to work, since it is not an independent module.

� Inputs:

– Any OPNET Modeler WLAN terminal consists of a large set of parameters
that have to be set prior to the starting of a simulation.

– The most important medium access related parameters are the following:
Access point functionality, since every station can act as an access point.
Rts Threshold indicates the data frame length from which the RTS/CTS
handshake is activated before payload transmission. Similarly, Fragmenta-
tion Threshold stands for the data frame length from which fragmentation
of the packet (and reassembly of the fragments at the receiver) will be ac-
tivated. Short and Long Retry Limits which specify the maximum number
of transmission attempts for the frames whose size is less than or equal
to the above mentioned Rts Threshold. The Beacon Interval is another
customizable parameter indicating the frequency at which Beacon man-
agement frames are transmitted by access points.

256 12. Selected System Models

– Nodes in a PCF or HCF configuration have additional parameters specific
for these configurations.

– Before starting a simulation, traffic has to be added to the network. OP-
NET Modeler offers three distinct ways of generating traffic. First, raw
packet generation can be used. In this case, the user can manually set
the statistical behavior of the traffic in each node (inter-arrival time and
packet size) as well as the destination address (fixed, random, broadcast).
In the second method, the user can employ already built-in applications
like Email, web browsing, FTP, Video Conference and VoIP, among oth-
ers. Furthermore, these applications consist of a considerable number of
parameters modeling internal characteristics of the different traffic choices,
e.g. the type of voice encoder that should be used for the VoIP application.
In the third, method the user can define so-called traffic demand flows to
specifically set a load level at any point in time between a transmitter and
receiver pair.

� Outputs:

– OPNET Modeler offers three different types of simulation’s outputs: Output
Vectors, Output Scalars and Animations.

– An output vector is basically a file containing the value of a system vari-
able (or multiple variables) as a function of the simulation time. Built-in
functions and tools help the user to manage these especial files and to ex-
tract data from them. Only one output vector is generated per simulation
and both the variables’ values and the time information are stored as C
doubles.

– An output scalar is nothing more than the value of a system’s variable
that does not vary as function of the simulation time. Every single value
is stored only once per simulation.

– A graphical representation of the system’s behavior can be viewed during
the simulation run or once it is finished. There are three types of anima-
tions available: Statistic Animation, which plots the value of a selected
statistic in a graph as function of the simulation time. Packet Flow Ani-
mation, which depicts ongoing transmissions as packets traveling over the
wireless medium from senders to receivers. The last modality corresponds
to the Node Mobility Animation, which is active only if mobility also is
and basically shows the mobile terminals moving through the considered
scenario.

– The WLAN model contains a considerable amount of predefined statistics
that can be selected to be stored as output vectors, output scalars or be
graphically displayed as animations. One can differentiate between Global
Statistics (at the network level considering the whole protocol stack but the
PHY), Node Statistics (at the terminal level considering the whole protocol
stack but the PHY) and Module Statistics (at the terminal level considering
in addition transmitter and receiver radio interfaces). Available statistics

12.1 IEEE 802.11 (WLAN) 257

are, e.g. total network load, node throughput, medium access delay, packet
queue size, bit-error-rate, etc.

– Furthermore, the user can customize these outputs adding personalized
statistics.

� Dependencies:

– The Wireless LAN model is an extension of the OPNET Modeler simulator
and is only operative in combination with the latter.

� Structure:

– No UML or SDL descriptions are available.

� Implementations:

– All functional elements of WLAN terminals (queues, processors, radio in-
terfaces, traffic sources, etc.) are based on a C/C++ implementation.

� Availability:

– OPNET Modeler downloads are available at the official OPNET Technolo-
gies Inc. website (www.opnet.com). For educational and research activities
without commercial goals, University members can obtain free-of-charge
licenses for OPNET Modeler Wireless LAN Module.

– OPNET Modeler is available for Windows, Linux and Solaris environments
as well as for 32-bit and 64-bit architectures.

� Related Models:

– Apart from the IEEE 802.11 model, there are other OPNET Modeler based
wireless models available. Some of the most relevant are IEEE 802.15.1
(Blue-tooth), IEEE 802.16 (WiMAX), UMTS and the upcoming cellular
standard LTE. Some of them are available under OPNETs University Pro-
gram.

� Author of Model Description:

– Oscar Puñal (RWTH Aachen University)

OMNeT++ / MiXiM framework

OMNeT++ [474] is a message passing based discrete event simulator. It is
highly modular and scalable and can be used for generic protocol modeling,
queueing networks modeling, multiprocessors modeling and basically for the

258 12. Selected System Models

modeling of any system that can be represented via a sequence of discrete
events. Specific functionalities are provided by different independent frame-
works. The MiXiM framework [319] combines several other existing frame-
works to forge a powerful simulation tool focusing on wireless and mobile
communications. For academic usage OMNeT++ and its associated frame-
works are open source and free of charge. In the commercial area, there exists
another edition of OMNeT++ called OMNEST [214].

� Intent:

– Design and performance evaluation of wireless communication networks.

� Authors / Contributors:

– OMNeT++ is a simulation tool mainly developed and maintained by Andras
Varga. It is free for academic purposes only. Special functionalities are offered
by frameworks provided by individual contributors.

– MiXiM is a combined framework for OMNeT++, which is mainly devel-
oped and maintained by the University of Paderborn, Technische Univer-
siteit Delft and Technische UniversitätBerlin (Telecommunication Networks
Group). This framework is under the GNU General Public License.

� Model Characteristics:

– OMNeT++/MiXiM is a highly modular simulation tool. All components
of a simulation network, such as a WLAN host or the MAC layer of a host
are modules. Modules which contain other modules are called component
modules. The basic or non-concatenated modules are also called simple
modules.

– The Network Description Language (NED) language is used to describe
the structure of the modules, consisting basically in module parameters,
gates and channels. This description is usually the first step of any im-
plementation and results in a NED file for each module. How the single
modules behave is specified via C++ functions in CPP files.

– OMNeT++ is a message passing based discrete event simulator. Modules
pass messages to each other through gates, which act as connection points
between the modules and are defined in NED files. Message files can contain
special data fields that can be customized.

– A WLAN node in MiXiM is implemented as a compound module. It con-
tains a set of modules that provide the required functionalities and also
the corresponding gates inter-connecting the modules. Application layer,
network layer and the network interface card (NIC) conform the protocol
stack of a basic node. The NIC is a compound module enclosing the MAC
and PHY layers. Furthermore, nodes may be suited with a mobility mod-
ule, an Address Resolution Protocol (ARP) module (translation between

12.1 IEEE 802.11 (WLAN) 259

network IP address and MAC address), a battery module (modeling of
battery consumption) and a utility module (statistics gathering).

– The initialization of the module’s parameters is performed in the so-called
INI files. Some specific parameters can also be defined in XML files.

– The simulator supports both command line and graphical interface with
animated simulation progress display.

– OMNeT++/MiXiM provides solely support for IEEE 802.11b with DCF
medium access policy. However, due to its modular nature and clear struc-
ture, further extensions can easily be implemented.

– In MiXiM mobility is treated as a discrete time process. It provides various
parameters like speed, direction and distance of the movement, the ending
position of the host or the amount of time a movement should last. By
combining these parameters, a rich palette of movements can be easily
configured.

� Evolution:

– OMNeT++ was first released in 2001 and the MiXiM framework in June
2009. Both are in continuous development with several releases each year.

– The current available release for OMNeT++ (while this book is being
written) is OMNeT++ 4.0p1 for Linux (December 2009) and OMNeT++
4.0 win32 for Windows (February 2009).

– The current available release for MiXiM (while this book is being written)
is MiXiM 1.1 for all supported platforms (September 2009).

� Applicability:

– OMNeT++/MiXiM supports the detailed modeling of wireless channels
and of any communication protocol at the MAC layer.

– An IEEE 802.11b network with DCF configuration is already implemented.
With extra changes other amendments of the 802.11 family could be eas-
ily added (IEEE 802.11g/a/e/n, among others), providing a tool for the
performance evaluation of WLAN networks.

– The newest release of MiXiM has added an energy framework [142], which
can model the battery consumption of wireless devices.

� Accuracy / Complexity:

– The model supports the whole set of DCF functionalities of IEEE 802.11b
as specified in the standard, such as CSMA/CA medium access with ex-
ponential back-off. The RTS/CTS frame exchange is also fully supported.

– Other 802.11 amendments, like the well known IEEE 802.11e/a/g/n are
not implemented in MiXiM.

– Packet fragmentation and reassembly is not supported.
– PCF configuration is not supported.

260 12. Selected System Models

– A simple signal-to-noise-ratio based rate adaptation scheme is available for
IEEE 802.11b networks.

– MiXiM does not have an accurate implementation of the higher layers of
the Open Systems Interconnection (OSI) protocol stack. Application and
network layers are implemented in a very simple way, providing a reduced
set of capabilities. For instance, instead of Internet Protocol (IP) MiXiM
performs a simple address mapping method between the module’s ID of a
host and a IP address. The IP header encapsulation and decapsulation is
also provided. The transport layer is not implemented at all.

– MiXiM provides full support in 3D for modeling walls and obstacles within
the network scenario. Such modeling improves the accuracy of simulations,
since they have an impact on signal attenuation and may influence the
trajectory of moving nodes.

– MiXiM provides multi-channel support in space and frequency, which en-
ables the modeling of the OFDM and MIMO techniques.

– The wireless channel is based on the implementation of the ChSim [338]
framework for OMNeT, which has been merged in MiXiM. The channel
model includes state-of-the-art models for path-loss, shadowing, large and
small-scale fading. The small-scale fading is based on a Rayleigh distribu-
tion for the signal amplitudes, assuming non-line-of-sight conditions be-
tween transmitter and receiver (typical large office environment).

– The effects of the FEC are translated into a coding gain, which in turn
is used as a gain factor enhancing the SNR. The resulting (effective) SNR
is compared to a pre-defined SNR threshold value to decide if the frame
transmission can be considered as signal, thus if it can be separated from
the noise. In order to obtain the PER of the transmission, the effective SNR
is used as input parameter of well known close-form formulae for the BER
of the corresponding modulation employed. In the case of the IEEE 802.11b
the modulations used are the BPSK, QPSK and CCK.

– In MiXiM the physical layer is implemented as a module (Base PHY Layer)
and a set of classes, the Analogue Model, the Radio, the Channel Info and
the Decider. The Base PHY Layer is responsible for the transmission and
reception of PHY frames, also called Air-frames and the interaction of the
different parts of the PHY. The Analogue Model performs the calculation
of the effects associated with the wireless channel (path-loss, shadowing,
large and small-scale fading). The Radio simulates some of the physical
characteristics of the radio hardware, namely the radio switching times
(e.g. from sleep state to receive state) and the simplex or duplex capability
of the radio device. The Channel Info maintains a list of ongoing transmis-
sions in the vicinity of a receiving node at a certain point in time. Hence,
a node that is receiving a packet is able to track the total level of inter-
ference due to transmissions overlapping in time. Finally, the Decider is
responsible for the classification of the air-frame into the category of signal
or noise, depending on the detected SINR. In addition, this module takes

12.1 IEEE 802.11 (WLAN) 261

care of the air-frame demodulation and the error rate calculation. It also
provides the means to perform channel sensing, an information which is
then forwarded to the MAC. While more than one Analogue Model can be
used simultaneously, only one Decider can be plugged into the Base PHY
Layer.

– Channel capture is also supported, since the Decider can determine at
which point in time a packet should be treated as noise or as an information
signal. Hence, if while receiving a packet another one arrives with a much
higher signal strength, the receiver may lock onto the decoding of the latest
packet, thus dropping the first frame.

� Model Context:

– MiXiM is a framework for OMNeT++. It is not independent and needs
OMNeT++ to work.

� Inputs:

– The initialization of application layer parameters and MAC parameters
(e.g. RTS/CTS threshold, frame retransmission limits, beacon interval,
etc.) is done via INI and XMl files.

– The mobility of the nodes and the PHY parameters (e.g. wireless channel
type, center frequency, transmit power, receiver sensitivity, ...) are initial-
ized via XML files.

– The traffic for the simulation is added by means of specific functions in
the related node’s application module. The only traffic model provided by
MiXiM is a simple broadcast application. The user has to implement the
traffic model himself if different traffic types are required.

� Outputs:

– OMNeT++/MiXiM offers two types of simulation’s outputs: output vec-
tors and output scalars.

– The vector output consists of a file containing the values of a pre-selected
system variable as function of the simulation time. The results are written
always onto the same common file.

– The scalar output records only the value of a variable in the simulation.
Simple statistical results of variables, such as the standard deviation, can
also be recorded in the same file.

– Graphical representation of the outputs can only be done by means of
external applications. There is no built-in tool for statistics representation
provided.

262 12. Selected System Models

� Dependencies:

– MiXiM is a framework for the OMNeT++ simulator and works only in
combination of the latter.

� Structure:

– No SDL descriptions are available. UML descriptions are available for the
classes in the OMNeT++ and MiXiM API.

� Implementations:

– All functional elements are based on C++ implementations. Individual
modules in the network, such as hosts or a wireless interface card, even the
network itself are implemented using the NED language. In some specific
situations, XML implementations are also needed.

� Availability:

– OMNeT++ downloads are available at the official website [474]. It is free
for academic use.

– MiXiM downloads are available at its official website [319]. It is also free
of charge for non-commercial use.

– OMNeT++ and MiXiM are available for Windows and Linux/Mac OS
platforms. Under Linux/Mac OS for 32-bit and 64-bit architectures. Under
windows only for 32-bit architecture.

� Related Models:

– The INET framework for OMNeT++ supports simulation for fixed net-
works. OverSim is a specific framework for peer-to-peer simulations. These
frameworks and other specific ones can all be found under the OMNeT++
project.

� Author of Model Description:

– Wei Hong (RWTH Aachen University)

ns-3

The discrete-event simulator ns-3 was and is being developed as an eventual
replacement for the aging ns-2 simulator, with a strong emphasis on models
that closely resemble their real-world counterparts, and validation of sim-
ulator models. ns-3 is an open-source project under constant development,
with releases several times a year, and free access to the constantly-updated
repositories. It is increasingly being used in research, especially for its ease
of use for scenarios that involve network emulation. The WLAN modules are
part of the ns-3 core, as opposed to being a framework add-on.

12.1 IEEE 802.11 (WLAN) 263

� Intent:

– Design and evaluation of networks, such as IEEE 802.11

� Authors / Contributors:

– ns-3 is being developed by a large group of contributors. The core of the
group is formed by George Riley (Georgia Tech), Tim Henderson (Boeing
Research Seattle), Mathieu Lacage (INRIA), and several other researchers
in the field of networking.

� Model Characteristics:

– While ns-3 was developed with modularity in mind, the main wireless
model at this point in time is taken from the yans network simulator [271],
which was developed by two of the main contributors to ns-3 before they
started their work on it. The model is split into a MAC and a PHY part.

– The MAC layer itself is split into several parts, each encapsulated as a C++
class. The WifiMac class allows the use of QoS and non-QoS setups for ad-
hoc or AP/station networks. It handles tasks such as association and disas-
sociation as well as beacon management. The MacRxMiddle and DcaTxOp
handles sequence numbering of frames, retransmissions, and filtering of
duplicate reception. It is also in charge of fragmenting and reassembling
packets if necessary. Finally, the MacLow class handles RTS/CTS (also
dynamically based on frame size) and interframe space timings.

– The PHY implements the sender and receiver, and determines, based on
potential interference from other frames and an ErrorModel that takes
into account modulation and coding rate, whether reception was errorless
or not.

– The channel provides the medium and determines propagation delay and
loss depending on factors such as position and the chosen loss model.

� Evolution:

– New releases of ns-3 are published several times a year. At the time of
writing, the current release was version 3.6, with 3.7 already in feature
freeze period. A public mercurial server is available to follow the ongoing
development.

� Applicability:

– Being part of a large network simulation environment, it is possible to
model IEEE 802.11 networks in a detailed fashion, while at the same time
having a full network stack and applications to use the modeled network.

264 12. Selected System Models

� Accuracy / Complexity:

– The channel model supports different propagation loss and delay models.
Standard loss models include Nakagami, Friis and Jakes models.

– At the receiver’s end, the PHY layer takes into account the received signal,
receiver gain, modulation, and potential interference from other frames,
and infers the error probability. ns-3 supports DPSK, BPSK, QPSK, 16-
QAM and 64-QAM, as well as OFDM and DSSS.

– The MAC layer supports 802.11a/b/e, with 802.11n under development,
with full DCF support and accurate simulation of interframe space timings.
Also, Ad-hoc network modeling is supported, as well as APs and stations
with beaconing, association, and handover. The MAC layer optionally al-
lows the use of RTS/CTS, also dynamically depending on frame size.

– Not implemented as of yet are PCF in the MAC layer, as well as several
more advanced features regarding the PHY and channel, such as frequency-
selective fading, inter-channel interference, and a mobility model that al-
lows the placement of radio obstacles to model shadowing.

� Model Context:

– As an integral part of ns-3, the IEEE 802.11 model is distributed with the
simulator, and no further dependencies exist.

� Inputs:

– The ns-3 attribute system allows the user to set certain behavior values for
each modeled entity, or standard values for all at the same time. For IEEE
802.11, attributes include among others SSID, number of missed beacons
before reassociation attempt, and transmission and reception gain.

– Traffic is generally generated by application which are an object aggregated
to a simulation node. These work very similarly to real-world applications,
communication with the node’s network stack via a socket, and the stack
then hands over the packets to the IEEE 802.11 subsystem. It is also pos-
sible to use the advanced network emulation capabilities of ns-3, to create
traffic via a real application that is attached to the simulator.

� Outputs:

– For every node in the simulation, it is possible to create a trace of all sent
and received data in the form of a standard packet capture (pcap) file, like it
is used by many network analysis tools. This will show every frame with all
encapsulated protocols and payload data the way it is sent or received over
the device. Radiotap headers that contain additional information such as re-
ception signal strength can be added by the simulation for in-depth analysis.

– Internal variables of the simulation, such as the state of a node or retrans-
mission counters, which are not obvious from the pcap files, can be collected

12.2 IEEE 802.16 (WMAN) 265

via traced variables and callbacks. In this case, the creator of a simulation
setup can attach himself to variable changes or other events that happen
during the runtime of the simulation, and have a custom C++ function
called to aggregate data. This is a very flexible, but sometimes cumber-
some way of data aggregation, because it requires a basic understanding of
the internals of the simulator.

� Dependencies:

– As an integral part of the ns-3 simulator, the IEEE 802.11 subsystem has
no dependencies other than the simulator itself, that is, a C++ compiler
and standard C++ libraries.

� Structure:

– A strong inheritance hierarchy exists, with many parts of the simulation
providing abstract framework classes from which to inherit when creating
new models.

– No UML or SDL descriptions are available.

� Implementations:

– ns-3 is fully written in C++. This includes the simulation setups, which
are written as C++ programs that include the simulator itself as a library.

� Availability:

– New versions are released on a regular basis at http://www.nsnam.org
– At the same site, a public mercurial repository is available to follow the

constantly updated development branch.

� Related Models:

– An IEEE 802.16 (WiMAX) model is currently being merged into the main
ns-3 development tree and slated for release with the next version.

� Author of Model Description:

– Florian Schmidt (RWTH Aachen University)

12.2 IEEE 802.16 (WMAN)

Both, the European Telecommunications Standards Institute and the IEEE
Standardization Association identified the metropolitan area wireless broad-
band access technology as a key driver for future mobile Internet and voice

266 12. Selected System Models

applications. In 1999 both associations started the standardization of broad-
band wireless access technologies. The IEEE established the 802.16 working
group which published the first draft in 2002 as IEEE 802.16-2001. European
Telecommunications Standards Institute (ETSI) Broadband Radio Access
Network (BRAN) published the High Performance Radio Access Network
(HiperACCESS), which was based on the same single carrier physical layer.

12.2.1 System Reference Model

The IEEE reference model follows general IEEE 802 guidelines similar to
other working groups of 802 and specifies the MAC and the PHY layer.
Higher layer protocols as well as the management plane are outside the scope
of the standard. Figure 12.8 shows that the MAC comprises three sublayers.
The service specific Convergence Sublayer (CS) provides interfaces for higher
layers. It classifies external Service Data Units (SDUs) and associates them to
the proper MAC connection. The CS may also process SDUs, e.g., to reduce
overhead by performing Payload Header Suppression (PHS). Two CSs speci-
fications are provided for interfacing Asynchronous Transfer Mode (ATM) as
well as IP, Point-to-Point Protocol (PPP), or IEEE 802.3 (Ethernet).

CS SAP

Service Specific
Convergence Sublayer

MAC SAP

(CS)

PHY SAP

MAC Common
Part Sublayer

Security Sublayer

Physical Layer
(PHY)

Management
Information
Base (MIB)

M
-S

A
P

C
-S

A
P

M
A

C
P
H

Y

Data Plane Management/Control
Plane

802.16 Entity

Fig. 12.8: IEEE 802.16 Reference Model

12.2 IEEE 802.16 (WMAN) 267

The MAC common part sublayer carries key functions such as system and
channel access, connection management, and the application of QoS. Section
details the common part sublayer. Below the MAC common part sublayer
resides the security sublayer that provides authentication procedures, a secure
key exchange, and encryption functions. The IEEE 802.16 PHY specification
defines multiple PHYs, each appropriate to a particular frequency range and
application. Thus, it is left unspecified how to develop, implement and deploy
optimized systems with respect to available frequency bands, cell planning,
equipment cost, and targeted services. Another reason for having several
PHY specifications was the lack of support for a single common PHY during
standardization. The PHY specifications supported by 802.16 are discussed
in Section 12.2.2.

12.2.2 Physical Layer

The initial version of the standard (IEEE 802.16-2001) specified only one
Single-carrier PHY. It targets frequency bands between 10 and 66 GHz, in
which LOS communication is mandatory. The standard IEEE 802.16-2004 su-
persedes all previous versions and specifies three additional PHY techniques.
They were designed for frequency bands below 11 GHz that allow for NLOS
links. The new modes include a single-carrier, an OFDM and OFDMA based
mode. The OFDM based transmission mode has been standardized in close
cooperation with the ETSI standard HiperMAN. Both OFDM based proto-
cols shall comply with each other in order to form the basis for the WiMAX
certified technology. In the following section, the OFDMA based PHY layer
of 802.16 is presented in detail in Section 12.2.4.

12.2.3 Medium Access Control

The scope of the IEEE 802.16 standard comprises the data and control plane
of the MAC and the PHY as illustrated in Figure 12.8. The MAC includes a
service-specific convergence sublayer that interfaces higher layers. The MAC
common part sublayer realizes key functions and security sublayer is located
below the MAC common part sublayer. The management plane is specified in
three IEEE network management standard amendments (IEEE 802.16f/g/i)
for the fixed as well as the mobile Management Information Base (MIB) and
for procedures and services.

Service Specific Convergence Sublayer

The service specific CS provides any transformation or mapping of external
network data, received through the CS SAP. This includes the classification

268 12. Selected System Models

Upper Layer Entity

SDU

SAP

DL Classification
Rule

CID 1

CID 2

CID 3

...

CID n

SAP SAP

SAP

Reconstruction

Upper Layer Entity

Common Part Suplayer Entity Common Part Suplayer Entity

Base Station Subscriber Station

PDU + CID

Fig. 12.9: Classification and ID mapping of packets at the BS

of external network SDUs and (if required) the processing of SDUs. Classi-
fying incoming SDUs means to associate them with the proper connection
identified by the connection identifier which is shown in Figure 12.9. Since a
connection identifier is associated with a certain level of QoS, the association
of an SDU to a connection facilitates the delivery with the corresponding QoS
constraints. The CS processes higher layer SDUs to suppress unused higher
layer protocol information. After classification and payload header suppres-
sion, the SDU is delivered to the corresponding MAC common part sublayer
service access point. At the receiving CS entity, the suppressed header is re-
constructed before it is handed over to the higher layer protocol via the sevice
access point. Since PHS is an optional feature, incoming SDUs can also be
delivered without any modifications. The standard provides two conversion
sublayer specifications, an ATM and a packet CS.

Packet Convergence Sublayer

The packet CS is used for packet-based higher layer protocols such as IP,
PPP and IEEE 802.3 (Ethernet). Classification of SDUs is based on classi-
fiers that consist of a reference to a connection identifier, a classifier priority
and a set of protocol-specific matching criteria. Characteristic protocol en-
tries are used as matching criteria as for instance the IP or Ethernet source
/ destination address, protocol source / destination port range, IP type of

12.2 IEEE 802.16 (WMAN) 269

service / differentiated services codepoint, or the IEEE 802.1D-1998 user pri-
ority. If several classifier rules match with an incoming SDU, the classifier
priority specifies which rule is to be applied. Since the packet CS handles
various higher layer protocols, various header entries might have to be sup-
pressed and reconstructed. Therefore, the optional PHS functionality defines
a mechanism to adaptively suppress specific bytes of an unspecified SDU. All
bytes of a specific region (PHS field) will be suppressed by the sending entity
unless they are masked by the PHS mask. Compressed packet CS SDUs are
prefixed with an 8-bit PHS index. The receiving entity reassembles the orig-
inal SDU by adding the bytes that are stored in the PHS field associated to
the connection identifier.

MAC Common Part Sublayer

The MAC common part sublayer provides system access, bandwidth allo-
cation, connection establishment, and connection maintenance. The MAC
common part sublayer receives from the convergence sublayer data classi-
fied to particular connection identifiers. QoS is applied to the transmission
and scheduling of data over the PHY. IEEE 802.16 is optimized for Point to
Multi Point (PMP) configurations, where several SSs are associated with a
central BS. As an optional feature, the standard allows for a flexible Mesh
deployment where direct communication between stations is possible. Since
the Mesh frame structure is not compatible with the PMP frame, the Mesh
deployment is especially foreseen for wireless backhaul networks based on
IEEE 802.16.

Additional to PMP, an amendment for multi-hop communication in tree-
based deployments is specified in IEEE 802.16j. The introduction of relay
stations, which decode and forward data, extends the coverage area of a
BS or increases the achievable capacity within a given area. The multi-hop
amendment requires being PMP compliant so that legacy SS will be able to
participate in relay enhanced networks.

Section 12.2.2 outlines the specification of four different IEEE 802.16
PHYs, while one single MAC is controlling the access to the medium. Hence,
the MAC protocol is PHY independent in general, but some mechanisms are
PHY specific. PHY specific parts mainly focus on the MAC frame structure
and the corresponding signaling messages.

Duplex Modes

Two duplexing techniques are specified for 802.16, namely TDD and FDD
which are both introduced in Section 12.2.2. In short, FDD operation implies
paired frequency bands, which are typically allocated in licensed spectrum.
Thus, DL and UL operate on separate frequency channels. The asymmetry

270 12. Selected System Models

between DL and UL is predefined by the spectrum allocation and is there-
fore static. Thus, capacity can not be shifted during operation between DL
and UL. In full-duplex FDD, stations simultaneously receive and transmit on
both channels. Consequently, two Radio Frequency (RF) filters, two oscilla-
tors and two synthesizers are required. On the one hand, the increased need
for components makes FDD devices more power consuming and more expen-
sive. On the other hand, the MAC software can be less complex since DL
and UL are not strictly synchronized. In order to avoid expensive hardware a
Half Frequency Division Duplex (HFDD) mode is supported. In HFDD, DL
and UL are still operating on separate frequency channels, but stations do
not simultaneously transmit and receive. The resulting radio complexity is
comparable to the complexity of TDD devices. A desirable network deploy-
ment, in which the BSs operate in FDD and the SSs in HFDD, combines
the possibility to utilize both channels simultaneously with competitive user
devices.

TDD overcomes the static asymmetry of FDD by sharing a common fre-
quency channel for DL and UL transmission in the time-domain. Hence,
capacity can be dynamically shifted in adapting the switching point between
DL and UL in time. Since stations do not receive and transmit at the same
time, only a single RF filter, one oscillator and one synthesizer are required.
This results in cost- and power efficient devices, but the MAC scheduler of
the BS tends to be more complicated since it has to synchronize many sta-
tions time slots in both DL and UL direction . In order to switch between
receive and transmit phases turnaround gaps, i.e., guard intervals, have to be
introduced between both phases. Assuming low mobile SSs, the reciprocity
of the radio channel can be exploited in TDD systems, because the transmit-
ter can take advantage of the channel knowledge available at the receiver. In
license-exempt spectrum, the IEEE 802.16 TDD mode is mandatory.

12.2.4 OFDMA Frame Structure

IEEE 802.16 provides a frame based medium access. The frame duration is
within the range of 2 ms to 20 ms according to Table 12.1.

The OFDMA frame may include multiple zones (such as Partial Usage
of Subchannels (PUSC), Full Usage of Subchannels (FUSC), PUSC with all
subchannels, optional FUSC, Adaptive Modulation and Coding (AMC), Tile
Usage of Subchannels (TUSC), and TUSC, the transition between zones is
indicated in the DL-MAP by the STC DL Zone Information Element (IE) or
AAS DL IE . No DL-MAP or UL-MAP allocations can span over multiple
zones.

In PUSC only a subset of the available data subcarriers are used by the BS.
The subcarriers are grouped into six segments. The assignment of subcarriers

12.2 IEEE 802.16 (WMAN) 271

FCH
D

L
-M

A
P

P
re

am
bl

e U
L
-M

A
P

DL Burst 1

DL Burst 2
DL Burst 5DL

Burst 4

DL Burst 3

DL Burst 6

DL Burst 7

Ranging

UL Burst 1

UL Burst 2

UL Burst 4

UL Burst 3

DL Subframe UL Subframe

Time Slot
Su

bc
ha

nn
el

Fig. 12.10: Structure of the IEEE 802.16 OFDMA frame

Code Frame duration [ms] Frames per second
1 2 500
2 2.5 400
3 4 250
4 5 200
5 8 125
6 10 100
7 12.5 80
8 20 50

Table 12.1: Frame duration codes

to segments is done in a way that makes collision of subcarriers in adjacent
segments unlikely.

As opposed in PUSC, the FUSC allocation schemes allows to allocate
subcarriers in the whole bandwidth. Similar to PUSC, the subcarriers are
grouped into segments that are used by the cells in a way to reduce collision
probability.

The TUSC is similar to the PUSC scheme and allows the operation with
adaptive antenna systems.

The DL Frame Prefix is a data structure transmitted at the beginning
of each frame and contains information regarding the current frame and is
mapped to the FCH.

Used subchannel bitmap
The bitmap is indicating which groups of subchannel are used on the
first PUSC zone and on PUSC zones in which ’use all Subchannel (SC)’
indicator is set to 0 in STC DL Zone IE. A value of 1 means used by this
segment, and 0 means not used by this segment.

272 12. Selected System Models

Repetition coding for the DL-MAP
Indicates the repetition code used for the DL-MAP. Repetition code may
be 0 (no additional repetition), 1 (one additional repetition), 2 (three
additional repetitions) or 3 (five additional repetitions).

Coding indication for the DL-MAP
Indicates the FEC encoding code used for the DL-MAP. The DL-MAP
shall be transmitted with QPSK modulation at FEC rate 1/2. The BS
shall ensure that DL-MAP (and other MAC messages required for SS
operation) are sent with the mandatory coding scheme often enough to
ensure uninterrupted operation of SS supporting only the mandatory
coding scheme.

DL-MAP length
Defines the length in slots of the burst which contains only DL-MAP mes-
sage or compressed DL-MAP message and compressed UL-MAP, if it is
appended, that follows immediately the DL frame prefix after repetition
code is applied.

Figure 12.10 shows the OFDMA frame structure of the IEEE 802.16 sys-
tem.

Despite the FCH the DL-MAP specifies the location of the following DL
bursts. The DL-MAP contains IE for each DL burst of the frame.

Downlink Interval Usage Code (DIUC)
The code is identifying a specific burst profile that can be used for DL.

CID
The connection identifiers represent the assignment of the IE to a broad-
cast, multicast, or unicast address.

OFDMA symbol offset
The offset of the OFDMA symbol in which the burst starts, measured in
OFDMA symbols from the DL symbol in which the preamble is transmit-
ted with the symbol immediately following the preamble being offset 1.
The symbol offset shall follow the normal slot allocation within a zone so
that the difference between OFDMA symbol offsets for all bursts within
a zone is a multiple of the slot length in symbols.

Subchannel offset
The lowest index OFDMA subchannel used for carrying the burst, start-
ing from subchannel 0.

Boosting
Power boost is applied to the allocation’s data subcarriers.

12.2 IEEE 802.16 (WMAN) 273

12.2.5 Important Parameters

The IEEE 802.16 system defines a huge amount of system parameters. Only a
few of them have a considerable impact on system capacity and performance.

System Bandwidth

The system bandwidth defines how many subcarriers can be used for data
transmissions. Consequently, the system bandwidth limits the system capac-
ity. In general the system capacity scales proportional to the system band-
width.

Frame Duration

As shown in Figure 12.10 the frame is divided into uplink- and downlink sub-
frame. As a result uplink packets can not be transmitted during the downlink
subframe and downlink packets can not be transmitted in the uplink sub-
frame. These packets need to be stored in buffers. Hence, the packet delay
directly depends on the frame duration.

Scheduler and Resource Allocation Strategy

The IEEE 802.16 standard defines resource allocation formats with the help
of DL- and UL-MAPs. The standard does not say anything about scheduling
strategies or resource allocation rules. As a result, the implementation of the
packet scheduling strategies is up to the manufacturer of 802.16 equipment.
For evaluation of the IEEE 802.16 protocol the packet scheduler strategy is
an important factor for QoS and system capacity.

12.2.6 Selected Models

WiMAX Medium Access Control Module of the openWNS -
WiMAC

The WiMAC is the IEEE 802.16 protocol model of the openWNS simulator
framework.

The module uses the Frame Configuration Framework (FCF), provided
by the libWNS to create the periodic frame. The FCF has been developed to
make frame based protocols easy to configure. For this, the frame is divided
into several logical phases that do not overlap in time. For each of these phases
a Compound Collector takes control of the frame phase. This FU completely
describe the type of compounds that are created during the specific phase and

274 12. Selected System Models

when the compounds are transmitted. A set of compound collectors define
the whole frame.

� Intent:

– The open Wireless Network Simulator (openWNS) provides a model of the
IEEE 802.16 protocol. The model implements the main protocol functions
like radio resource management and packet scheduling.

� Authors / Contributors:

– Karsten Klagges (ComNets, RWTH Aachen University, Germany)
– Christian Hoymann (Ericsson Eurolab, Aachen, Germany)
– Benedikt Wolz (ComNets, RWTH Aachen University, Germany)

� Model Characteristics:

– Creation of MAC frames, including broadcast messages, DL and UL sub-
frames and contention access period.

– Signaling of FCH, DL and UL - MAP
– Link Adaption with all available modulation and coding schemes specified

by the standard
– Scheduling strategies

– Round Robin
– Exhaustive Round Robin
– Proportional Fair
– Maximum Throughput

– Support for adaptive antennas and SDMA
– Service flow and connection management
– Unsolicited grant service, bandwidth requests, persistent resource alloca-

tion

� Evolution

– Since the IEEE 802.16 protocol has a lot of features in common with the
ETSI HiperLAN/2 protocol, the WiMAC module has been built upon the
HiperLAN/2 simulator sWARP, a simulator at ComNets.

– Major parts of the WiMAC are realized though the class library libWNS,
which is a derived work of the SPEETCL class library.

� Applicability

– System level simulation of multi cellular deployments.
– Investigation of radio resource management schemes.

12.2 IEEE 802.16 (WMAN) 275

� Accuracy / Complexity

– With the help of the openWNS simulation framework, the module pro-
vides detailed load generators, radio resource schedulers and interference
simulation.

� Known Use Cases

– Scientific research at several Universities in the field of the IEEE 802.16
network.

� Model Context

–

WiMAX module of the NS-3

The WiMAX module provides the main functionality of the WiMAX stan-
dard. The core part of the MAC layer, which includes the generation of the
MAC frames (in TDD mode), divided into downlink and uplink MAC sub-
frames, and the construction and transmission of the key MAC management
(control) messages (namely DL-MAP, UL-MAP, DCD, UCD, RNG-REQ and
RNG-RSP). The first four management messages are the essential part of the
WiMAX MAC as they are used to define the downlink and uplink channels
and to allocate access to these channels. More specifically, the DL-MAP and
UL-MAP are generated by the BS to allocate time-slots to the stations for the
downlink and uplink transmissions. Furthermore this also includes the cre-
ation of the uplink and downlink burst profiles, the specific MAC layer data
structures which define the PHY specific parameters to be used for receiving
and transmitting in a particular downlink or uplink burst.

� Intent:

– NS-3 module of the IEEE 802.16 protocol.

� Authors / Contributors:

– Jahanzeb Farooq (INRIA, Sophia Antipolis, France)
– Thierry Turletti (INRIA, Sophia Antipolis, France)
– Mohamed Amine Ismail (INRIA, Sophia Antipolis, France)

� Model Characteristics:

– Model was first proposed and published in [517]
– The model implements the main components of the IEEE 802.16 2004

protocol.
– The module divides the protocol into Conversion Sublayer, Common Part

Sublayer and Physical Layer.

276 12. Selected System Models

� Evolution:

– The INRIA ns-3 module has been completely written from scratch.

� Applicability:

– Simulation of the PMP mode of the IEEE 802.16 protocol
– Support of two physical layers: trivial forwarding, OFDM physical layer
– QoS schemes according to IEEE 802.16
– Simulation of link and service flow management
– Basic packet scheduler
– Simulation of bandwidth management

� Accuracy / Complexity:

– Due to the detailed implementation of many protocol features the model
has a high complexity

� Known Use Cases:

– Capacity analysis of IEEE 802.16.
– Protocol functions of the IEEE 802.16 system.

� Model Context:

– The model requires network simulator NS-3 as ground laying framework
– The model needs further NS-3 components like network protocols and load

generators

� Dependencies:

– Model needs the NS-2 framework, depends on NS-2 components like energy
and channel models and components for example

� Implementations:

– The source code of the 802.16 module of the ns-3 simulator framework is
available online: http://code.nsnam.org/iamine/ns-3-wimax/

12.3 IEEE 802.15.4

The IEEE 802.15.4 standard focuses on near-field and short-range commu-
nication, suitable to cover the Personal Operating Space (POS) of a per-
son or device. A communication within a range of 1 to 25 meters is defined
as short-range or personal area communication. Consequently the so-called

12.3 IEEE 802.15.4 277

Wireless Personal Area Networks (WPANs) are introduced by the standard.
These networks are suited for low cost communication with little or no un-
derlying infrastructure. Applications and technologies from this field have
fundamentally different requirements compared to IEEE 802.11 WLANs or
IEEE 802.16 (WiMAX). This section summarizes these differences and in-
troduces different models for IEEE 802.15.4. Other technologies for personal
area communication (e.g. Bluetooth, Z-Wave, IrDA) are not covered in this
section.

12.3.1 Technical Introduction

The IEEE 802.15 working group consists of several task groups, all engaged in
the area of personal area or short range communication. The IEEE 802.15.4
standard and its associated task groups are characterized by low data rates,
very long battery lifetime (e.g. months or years), very low complexity and
low hardware costs. IEEE 802.15.4 hardware is often used to provide low-
power radios for small sensor nodes, long-running health care applications or
transceivers for monitoring and sensing applications. The support for a high
number of devices inside a single network is another feature of the standard.
Other personal area technologies like high-rate Ultra-Wideband (UWB), for
example, are used in non-battery-powered scenarios with less participants
and much higher data rates.

The standard was first published in [428], later revised by [429] and
enhanced with amendments like [430] to support an UWB PHY. Several
PHYs with different data rates and modulation schemes are specified in the
standard, current standard conform devices operate on 868/915 MHz and
2.45 GHz. Apart from the PHY, a MAC is defined by the standard. The typ-
ical protocol stack of a compliant device is shown in Figure 12.11. The upper
layers provide a network layer to support network configuration and mes-
sage routing. It also provides an application layer, which defines the intended
function of the sole device. The definition of these upper layers is outside the
scope of the standard.

IEEE 802.15.4 supports features for low-rate and low-power communica-
tion. Important features are the support for real-time communication (via
reservation of guaranteed time slots), the use of a collision avoidance mech-
anism (via CSMA-CA) and the support for secure communication (via AES
encryption). The standard also defines power management functions like Link
Quality Indication (LQI) and Energy Detection (ED). Different device types
are specified: Full-Function Devices (FFDs) support the whole standard,
while the Reduced-Function Devices (RFDs) support just a subset of the
mandatory parts. RFDs, who are only able to communicate with FFDs, are
used for simple operations like temperature or humidity sensing. FFDs sup-
port the whole standard and are used to build and set up networks. Two basic

278 12. Selected System Models

Upper Layers

802.2 LLC
(Logical Link Control)

SSCS
(service specific convergence sublayer)

MAC

PHY

Physical Medium

MCPS-SAP MLME-SAP

PD-SAP PLME-SAP

MAC Sublayer

Management Entity

Service Access Point

MLME-SAP:

MAC Common Part

Sublayer Service

Access Point

MCPS-SAP:

Physical Layer

Management Entity

Service Access Point

PLME-SAP:

PHY Data

Service Access Point
PD-SAP:

Fig. 12.11: IEEE 802.15.4 device architecture (based on [429])

topologies are defined in the standard: the Peer-to-Peer (P2P) Topology and
the Star Topology. Both topologies and their specific communication flows
are depicted in Figure 12.12.

The FFD that starts and builds up a new network, is usually selected
as the Personal Area Network (PAN) coordinator , the central control and
management entity inside a network. In a star topology, all messages are
transfered over this PAN coordinator. In P2P topologies, the coordinator
still provides important management functionalities, but normal communi-
cation takes place directly between entities, without the assistance of a PAN
coordinator. Different usage scenarios are hence possible with the help of
these two different network topologies.

Since the IEEE 802.15.4 standard does not specify the upper layers, ad-
ditional frameworks or standards are required. ZigBee™ [32] is an example of
an industry standard that incorporates IEEE 802.15.4 and defines the net-
work layer and application framework on top of the standardized PHY and
MAC. ZigBee provides additional security features and different application
profiles. The Cluster-Tree Topology is defined in ZigBee as an enhancement
to the two topologies provided by IEEE 802.15.4. In ZigBee, routing, network
management, data transmissions between entities, and security functions are
specified and standardized. For simplification reasons, researchers often use
the sole IEEE 802.15.4 standard as the basic underlying framework for their
own developed higher layer protocols. Modeling and simulation of ZigBee is

12.3 IEEE 802.15.4 279

Star Topology

PAN

Coordinator

Peer-to-Peer Topology

PAN

Coordinator

Full Function Device (FFD)

Communication Flow

Reduced Function Device (RFD)

Fig. 12.12: IEEE 802.15.4 topologies (based on [429])

more interesting for industrial research. For academic research, though, the
lower layers of IEEE 802.15.4 are often favored. Therefore, the focus of this
section lies on IEEE 802.15.4 and its functionalities rather than on ZigBee.

12.3.2 IEEE 802.15.4 Reference Model

The subsequent paragraphs and subsections contain descriptions of the mod-
eling of IEEE 802.15.4 WPANs. First, the reference model of IEEE 802.15.4 is
analyzed. Subsequently, the consecutive subsections summarize descriptions
for the modeling of the reference model components and layers. Descriptions
for available models are presented in Subsection 12.3.6.

The area of WPAN modeling is quite complex. The important aspects in
the modeling process are related to the structure, the setup and the protocol
stack of IEEE 802.15.4 (refer to Figure 12.11). Many other details are also
important in a simulation, for example the channel propagation system (refer
to Chapter 11). Such components determine the modeling process of the IEEE
802.15.4 system itself. Descriptions of relevant surrounding components can
be found in Chapter 9, Chapter 10 and Chapter 11 for example. Specifics and
important characteristics will be outlined throughout this section.

Concept of Service Primitives

IEEE 802.15.4 uses the concept of service primitives, like many other ISO/IEC
standards (for example the IEEE 802.11 standard - refer to Section 12.1.1).
The following descriptions are only an introduction, for additional informa-
tion see [518]. The capabilities of an specific layer are offered as services, the

280 12. Selected System Models

layer is therefore a service provider. Services are offered to the next higher
layer, the service user. These users build functions upon the offered services.
A service is specified by the information flow between user and provider.
The information flow consists of discrete events that characterize the pro-
vision of the service. An event consists of an exchange of service primitives
from provider to user. These primitives are exchanged through Service Access
Points (SAPs). In general, there are four generic primitive types: Request, In-
dication, Response, and Confirm. Figure 12.13 shows the basic concept and
the four primitive types.

Service Provider

(N-layer)Service User

(N-User)

Service User

(N-User)

Request

Response

Indication

Confirm

Fig. 12.13: Concept of service primitives (based on [429])

It is important to understand that this concept is the base for all oper-
ations inside a IEEE 802.15.4 entity. All functions provided by the different
layers (e.g. changing the channel or sending an acknowledgment) are accessed
and performed via service primitives. For a proper IEEE 802.15.4 protocol
stack this concept has to be implemented for all components. Since most
of the available models stick to this basic concept, a good understanding of
service primitives is needed to work with the available models.

System Reference Model Overview

Protocol stack and architecture of IEEE 802.15.4 entities were introduced in
Subsection 12.3.1 and illustrated in Fig. 12.11. The 802.2 LLC exists above
the MAC. It can access the MAC sublayer through the Service Specific Con-
vergence Sublayer (SSCS). Upper layer can send SDUs over the provided
interface, the SDUs are then sent over the associated MAC connections. Re-
fer to [429, Annex A] for information about the specific 802.2 LLC and SSCS.

The MAC sublayer provides two services: a MAC data and a MAC man-
agement service. The MAC data service enables the transmission and recep-
tion of MAC Protocol Data Units (MPDUs). It is accessed from upper layers
via the MAC Common Part Sublayer SAP (MCPS-SAP). The particular
PDUs are sent or received over the PHY data service and the appropri-
ate SAP. The MAC management services are used to control the functions

12.3 IEEE 802.15.4 281

provided by the MAC through the associated MAC Sublayer Management
Entity SAP (MLME-SAP). Functions of the MAC are: provision of channel
access, beacon and Guaranteed Time Slot (GTS) management, frame valida-
tion and association and disassociation of network devices. It also provides
functions and hooks for the implementation of application-appropriate secu-
rity mechanisms. This is important when additional security functions are
going to be implemented. Additional details about the MAC modeling are
given in Subsection 12.3.4.

The PHY sublayer also provides a data service and a management service.
The PHY data service enables the reception and transmission of PHY Pro-
tocol Data Units (PPDUs) across the physical radio channel. The PDUs are
then sent from the PHY over the PHY Data Service SAP (PD-SAP) to the
MAC. The management service provides different control functionalities that
can be accessed through the PHY Management Entity SAP (PLME-SAP).
Features of the PHY are the management of the radio transceiver, channel
estimation and selection, CCA, and transmitting and receiving of packets
across the physical medium. Refer to Subsection 12.3.3 for additional infor-
mation on the PHY.

The IEEE 802.15.4 system reference model shares many similarities with
the example packet domain PHY and DLL simulation model proposed in this
book. For the PHY example part refer to Section 9.5 and Fig. 9.8, for the
DLL part refer to Chapter 10 and Fig. 10.1. One can find all the functional
blocks from the proposed example PHY model in the IEEE 802.15.4 reference
model. Most functional blocks are either operations or services, like the car-
rier sensing and channel estimation block. These examples are represented
in IEEE 802.15.4 as services provided by the PHY, accessible through the
various SAPs of the PHY. A detailed description of the IEEE 802.15.4 PHY
and DLL part follows in the next subsections.

12.3.3 Physical Layer

After the publication of the original standard in 2003, revisions and amend-
ments added more features and specifications, especially for the physical layer
(e.g. higher data rates and additional modulation schemes). Table 12.2 and
Table 12.3 present important parameters for the PHYs specified in the 2006
revision [429]. UWB enhancements and the corresponding PHYs introduced
through the 2007 amendment are not included in the tables (refer to [430]
for more information on IEEE 802.15.4 UWB). While the first revision of
the standard aimed at low-rate transceivers, the introduction of the UWB
PHYs enabled the support for higher data rates like 851 kbit/s, 6.81 Mbit/s and
27.24 Mbit/s, and therewith new application fields.

The Direct Sequence Spread Spectrum (DSSS) modulation tech-
nique is used in combination with Binary Phase Shift Keying (BPSK) and

282 12. Selected System Models

Channel parameters Spreading parameters

Frequency Channel Channel Chip Chip rate
bands bandwidth distance modulation (kchip/s)

868 - 868.6 MHz 300 kHz - BPSK 300
902 - 928 MHz 600 kHz 2MHz BPSK 600

868 - 868.6 MHz 300 kHz - ASK 400
902 - 928 MHz 600 kHz 2MHz ASK 1600

868 - 868.6 MHz 300 kHz - O-QPSK 400
902 - 928 MHz 600 kHz 2MHz O-QPSK 1000

2400 - 2483.5 MHz 2MHz 5MHz O-QPSK 1600

Table 12.2: IEEE 802.15.4-2006 PHYs with channel and spreading parameters

Data parameters

Frequency Symbol rate Bit rate Symbols
bands (ksymbol/s) (kbit/s)

868 - 868.6 MHz 20 20 Binary
902 - 928 MHz 40 40 Binary

868 - 868.6 MHz 12.5 250 20-bit PSSS
902 - 928 MHz 50 250 5-bit PSSS

868 - 868.6 MHz 25 100 16-ary Orthogonal
902 - 928 MHz 62.5 250 16-ary Orthogonal

2400 - 2483.5 MHz 62.5 250 16-ary Orthogonal

Table 12.3: IEEE 802.15.4-2006 PHYs with data and transmission parameters

Offset Quadrature Phase Shift Keying (O-QPSK) in the 868/915 MHz and
the 2.45 GHz frequency bands. Parallel Sequence Spread Spectrum (PSSS)
is only used in combination with Amplitude Shift Keying (ASK) for the
868/915 MHz frequency bands. Another interesting parameter for the model-
ing of IEEE 802.15.4 is the transmission output power . It is fixed in the range
of -25 to 0 dBm. A transmission power of 0 dBm equals 1 mW. The transmis-
sion output power is an important parameter for coexistence or interference
evaluations.

Choosing an appropriate PHY is an important task in the WPAN model-
ing process. A decision should depend on local regulations, application types,
requirements, and personal preferences. General advices for this decision are
hard to give, however, one should keep the application type, needed data
rates, and available energy amounts in mind. Since the different PHYs use

12.3 IEEE 802.15.4 283

different energy amounts for their operations, the total amount of energy
available is especially important. The modeling of energy consumption should
therefore be examined and considered before energy related choices can be
made.

There is no standard energy model for IEEE 802.15.4. Different realiza-
tions exist in the research community today. A common approach for power
and energy consumption modeling is the consideration of working states of
the radio transceiver and the measurement of time spent in one of the working
states. This method is of course not 100% accurate compared to real life ex-
periments and testbeds. Depending on the provided simulation environment
accuracy and the basic consumption values, the behavior and performance
observed might be similar compared to real life experiments. Additional con-
sumption aspects (e.g. CPU calculation time, energy spent through sensing,
data processing) must also be considered if a more detailed and accurate en-
ergy consumption analysis is desired. Another interesting aspect in this case
is the modeling of the energy source. Since certain sources (e.g. battery) have
characteristics (e.g. recovery effect in batteries) that are important for the
energy consumption, the modeling of energy sources should also be consid-
ered when accurate simulation results are needed. Further information on the
topic of power modeling for IEEE 802.15.4 can be found in [327].

The general reference model for IEEE 802.15.4 was introduced in Sub-
section 12.3.2. Figure 12.14 shows an extract of this reference model: the
PHY sublayer reference model. In addition to the already introduced SAPs,
the PHY model contains the management entity of the physical layer and
the PAN Information Base (PIB). The PIB comprises the different at-
tributes required to manage the PHY of a device. The PHY Management
Entity (PLME) manages and maintains the PIB. Examples of entries in this
database are attributes for the current channel or the list of available chan-
nels, the CCA mode or other radio front-end constants. More information
about these parameters and constants can be found in Subsection 12.3.5.

The connection to the MAC is provided by the two displayed SAPs: the
PD-SAP and the PLME-SAP. Through the PD-SAP, PD-DATA primitives
can be sent. General information about the concept of primitives were al-
ready presented in Subsection 12.3.2. There are three different PD-DATA
primitives: Request, Confirm and Indication. The request primitive requests
the transfer from a PDU from the MAC to the local PHY, while the confirm
primitive confirms the end of the transmission. The indication primitive indi-
cates the transfer of a PDU from the PHY to the MAC. This indication prim-
itive contains a PDU length parameter and the Link Quality Indication (LQI)
value measured during the receiving process.

Management commands between the MAC sublayer and the PHY sub-
layer are transfered over the PLME-SAP. The standard supports the follow-
ing five primitives, each with a request and a confirm:

284 12. Selected System Models

Physical Layer

(PHY)

PLME

Physical Layer

Management Entity

Service Access Point

PLME-SAP:

PHY Data

Service Access Point
PD-SAP:

PHY

PIB
Radio Front-End

Service Access Point
RF-SAP:

Physical Layer

PAN Information Base
PHY-PIB:RF - SAP

PD - SAP PLME - SAP

Fig. 12.14: IEEE 802.15.4 PHY sublayer reference model (based on [429])

• PLME-SET-TRX-STATE:
The MAC can request an operating state change of the transceiver
through this service primitive. Three main states are distinguished in
the IEEE 802.15.4 standard: transmitter enabled (TX_ON), receiver
enabled (RX_ON), and transceiver disabled (TRX_OFF). The associ-
ated confirm primitive enables a feedback about the change of state. An
important parameter connected with this primitive is the Transceiver-
TurnaroundTime, which describes the time that the hardware needs until
the transceiver switched from receive into send state or back. Accurate
modeling of IEEE 802.15.4 should consider this waiting period.

• PLME-CCA:
When the PLME-CCA.request primitive is issued, a Clear Channel
Assessment (CCA) is performed by the PHY. The PLME-CCA.confirm
primitive reports the results (IDLE, BUSY, TRX_OFF) of the conducted
CCA back to the MAC. An inquiry about the radio channel state can be
made with these service primitives.

• PLME-ED:
The PLME-ED.request primitive enables the MAC to request an Energy
Detection (ED) operation. Depending on the transceiver state, either
a SUCCESS, a TRX_OFF, or a TX_ON are reported back with the
PLME-ED.confirm primitive. The confirm primitive also contains the
ED result (energy level, a 8-bit integer value) in case of an enabled re-
ceiver and a successful energy detection operation.

• PLME-SET:
The PLME-SET.request primitive enables the setting of PHY PIB at-
tributes through the MAC. The attribute name and the according value

12.3 IEEE 802.15.4 285

are parameters of the request primitive. The confirm primitive reports
back the results of the attempted setting operation.

• PLME-GET:
With the PLME-GET.request primitive, a request about a given PHY
PIB attribute can be made. If the requested PHY PIB is found in the
database, the PLME-GET.confirm is issued with a SUCCESS status and
the value of the given attribute.

Additional functional details of these service primitives depend on the ac-
tual hardware and the available firmware. In order to simulate the effects of
these primitives it is necessary to implement them. In many existing models,
these functions are only implemented in a simplified manner, which depends
on the simulation environment functionalities. This depends on the function-
ality of the simulation environment. If a complex simulation environment
with channel state information supply is available, then functions like en-
ergy detection and the according service primitives can be implemented. If
the simulation environment or the simulator does not provide such a level
of detail, then many of the introduced service primitives must be simplified.
More information regarding the physical parameters, functionalities, modu-
lation schemes, chipping sequences, and encoding and decoding functions are
available in [429] and [430].

ED, CCA and LQI

Three PHY functions are important for the channel access management and
should therefore be considered in the modeling process: Energy Detection
(ED), Clear Channel Assessment (CCA), and Link Quality Indication (LQI).
These three functions are used in the channel selection process, in the channel
sampling of the CSMA-CA algorithm and in the evaluation of the transmis-
sion quality.

Different approaches for the physical radio channel estimation were al-
ready presented in Subsection 9.2. The standard defines the ED functional-
ity, which provides a measurement of the received signal power within the
bandwidth of the selected channel. Possible signals on the channel are not
identified or decoded here, just a power value is reported back to the MAC
management entity. The standard proposes a certain mapping of received
power values to integer values which are then reported back to the upper lay-
ers. This process is highly dependent on the receiver type and the hardware
sensitivity. The user must be careful with the modulation and simulation
process. The mapping of signal power and the accuracy always depends on
the simulation environment and the channel simulation capabilities.

The PHY provides three different methods for the Clear Channel Assess-
ment (CCA) (estimation of channel usage):

286 12. Selected System Models

– CCA Mode 1 - Energy above threshold measurement
– CCA Mode 2 - Carrier sensing only
– CCA Mode 3 - Carrier sensing and energy above threshold measurement

In the first CCA Mode, the PHY measures the energy on the physical
channel; if the detected energy level is above a certain threshold, the medium
is reported back busy. In the second CCA mode, the PHY samples the channel
and tries to detect a IEEE 802.15.4 compliant signal. The PHY checks the
modulation and spreading characteristics; the energy level of the signal is not
checked at this point. In the third CCA mode, the PHY tries to determine
if a signal is being sent on the active channel and if the energy level of that
signal is above a certain threshold. The threshold value should be set to a
level where the receiver can still recover the signal at a certain quality. If the
signal quality is too low, the receiver needs a higher sensitivity, the frame
needs more redundancy data or the antenna gains needs to be increased.
Parameters for the threshold value are again depending on the employed
hardware or simulation environment.

The modeling of the different CCA modes is complex and difficult. In
today’s IEEE 802.15.4 simulation models, CCA is often reduced to the simple
decision if either all devices in radio range are currently receiving, sleeping, or
idling, or if at least one device in radio range is transmitting. The important
aspect here is the radio range. For homogeneous network environments, path
loss models are used to calculate the transmission and interference range and
therewith the number of relevant devices for the CCA decision. Heterogeneous
network environments represent challenging situations where different path
loss or other more complex models need to be combined. More research in the
area of interference in heterogeneous network scenarios (e.g. [286]) is needed.

Modulation and spreading characteristics, which are necessary for the sec-
ond and third CCA mode, are not supported by most packet level simulation
environments. Complex PHY models, which are necessary for the analysis
and evaluation of energy measurements in heterogeneous and homogeneous
network scenarios, are also not included in today’s IEEE 802.15.4 simulation
models. New simulation frameworks like MiXiM [262, 319] include a better
support for complex and realistic PHY models, bit simulation capabilities
and heterogeneous network environments. Future IEEE 802.15.4 models can
hopefully use the abilities of new simulation frameworks like MiXiM and
therewith model all CCA modes. For further information on CCA refer to
[380], where an analysis of the different CCA modes is described. The pa-
per illustrates the different modes, their metrics, and their impacts on MAC
performance and power consumption.

The Link Quality Indication (LQI) is a PHY function, which provides the
means for feeding back strength measurements of incoming packets. LQI can
be realized in different ways: receiver ED or a signal-to-noise ratio estimation.
Even combinations of different methods are possible. The standard does not
specify how LQI is implemented, consequently different hardware vendors

12.3 IEEE 802.15.4 287

offer different solutions. In simulations, LQI is often reduced to a plain RSSI
measurement, depending on the simulator’s channel model type. Nowadays
simple path loss models are often used in connection with IEEE 802.15.4
models to model the reduction of the signal power over the distance. The
accuracy of LQI values in comparison to real life scenarios is therefore not
guaranteed. Refer to Chapter 11 for more information on channel modeling.

12.3.4 Medium Access Control Layer

The MAC layer handles the access from the upper layers to the physical
radio channel. Next to this basic function, it also provides the management
and synchronization of beacon frames, the association of devices to networks,
several security features, the handling of channel access, and the provision of
a reliable link between the MAC entities of two peers/devices.

MAC and link layer are separated from each other in the standard [429].
In modeling and simulations, these two layers are usually modeled together.
The MAC provides an interface between the SSCS and the PHY, as shown
in Fig. 12.11. The necessary SAPs are shown in Fig. 12.15. They provide the
interface connections to the management entity (MLME) and the common
part. The MAC Sublayer Management Entity (MLME) is also responsible
for the management and maintenance of the MAC sublayer PIB database
with the important parameters and constants that are required for all MAC
operations. Important MAC parameters are described in Subsection 12.3.5.
The connections of the SAPs and the interfaces are shown in Fig. 12.15.

MAC Common

Part Sublayer

MLME

Physical Layer

Management Entity

Service Access Point

PLME-SAP:

PHY Data

Service Access Point
PD-SAP:

MAC

PIB

MAC Sublayer

Management Entity

Service Access Point

MLME-SAP:

MAC Sublayer

PAN Information Base
MAC-PIB:PD - SAP PLME - SAP

MCPS-SAP MLME-SA P

MAC Common

Part Sublayer

Service Access Point

MCPS-SAP:

Fig. 12.15: IEEE 802.15.4 MAC sublayer reference model (based on [429])

288 12. Selected System Models

The MAC data service, which runs through the MCPS-SAP, supports
two different service primitives: MCPS-DATA and MCPS-PURGE. The data
primitive is used for requesting, confirming, and indicating the transfer of
SDUs from and to other entities. The purge primitive allows upper layers
to delete a SDU from the transaction queue in the MAC layer. Refer to the
standard [429] for more information on the ongoing processes, the exchanged
data frames, and the primitive parameters. The following list describes all
available service primitives:

• MLME-ASSOCIATE:
The MLME-ASSOCIATE primitives (Request, Indication, Response,
Confirm) enable the association of a device with a coordinator, and there-
with with a PAN. The indication and response primitive are optional for
RFDs. During the association process, information about the PAN as-
sociated 16-bit short address, about the security level and the device
capabilities are exchanged. The message sequence chart for the exchange
of service primitives is shown in [429, Figure 31].

• MLME-DISASSOCIATE:
These primitives (request, indication, and confirm) are used by associ-
ated devices to announce their intent of leaving the PAN to the PAN
coordinator. It can also be used by the coordinator to instruct an asso-
ciated device to leave the PAN. The according message sequence charts
are shown in [429, Figure 32, Figure 33].

• MLME-BEACON-NOTIFY:
The MLME-BEACON-NOTIFY.indication primitive is used to send pa-
rameters from received beacon frames from the MAC layer to the next
higher layer. The computed beacon LQI value and the reception time of
the beacon are also provided by this service primitive.

• MLME-GET/SET:
The GET and SET primitives (request and confirm) are used to get or
set information from the PIB. They provide the connection of the PIB
to the next higher layer. These primitives are important for management
operations and should therefore always be included in the modeling.

• MLME-GTS:
The GTS primitives (request, indication, confirm) are optional for both
RFDs and FFDs. They are used to request and maintain GTSs. The us-
age of these primitives and the GTS is, in general, only possible when a
device is tracking the beacon frames of its associated PAN coordinator.
According message sequence charts are shown in [429, Figure 34, Fig-
ure 35]. GTS and superframes are described in detail in the successive
subsection.

12.3 IEEE 802.15.4 289

• MLME-ORPHAN:
The MLME-ORPHAN primitives (indication and response only) are used
by the coordinator to issue a notification of an orphaned device. Or-
phaned devices have lost the synchronization with their coordinator. If
wanted, a coordinator realignment process can be started after the indi-
cation and response to re-synchronize the orphaned device with its PAN
coordinator. These primitives are optional for RFDs.

• MLME-RESET:
This self-explanatory primitive is used to reset the MAC sublayer to its
initial conditions (including the MAC PIB, if enabled).

• MLME-RX-ENABLE:
The MLME-RX-ENABLE primitives (request and confirm) allow a de-
vice to enable or disable its receiver. These receiver state primitives are
optional for all devices. These primitives are always secondary to other
responsibilities of the device. This must be considered during the model-
ing process. A message sequence chart for a change of the receiver state
can be found in [429, Figure 37].

• MLME-SCAN:
The SCAN primitives are used to initiate channel scan processes, energy
measurements, search for associated coordinators, or searches for all bea-
con transmitting coordinators within the receiver range of the scanning
device. These primitives are used by other operation and primitives (e.g.
channel scan before a network is set-up). They are therefore crucial for
the correct functionality of IEEE 802.15.4. The precise modeling of these
primitives depends on the capabilities of the simulation environment and
the level of detail that is required in the simulations.

• MLME-COMM-STATUS:
The MLME-COMM-STATUS.indication primitive allows the MAC sub-
layer to indicate the status of communication (e.g. transmission status,
channel access failures, security problems) to the next higher layer. It
is again a crucial primitive as it enables a feedback about the current
transmission status to higher layers.

• MLME-START:
The MLME-START primitives (request and confirm) are mandatory for
FFDs and optional for RFDs. A PAN coordinator can start a new PAN
with the help of these primitives. Connected with these primitives are
operations like starting or aborting beacon transmissions or the setup
up of a new superframe configuration. If only static and pre-configured
network scenarios are considered, these primitives can be simplified and
reduced to ease the implementation.

290 12. Selected System Models

• MLME-SYNC:
This request primitive requests the synchronization, and if specified, the
tracking of beacon frames of a PAN coordinator. By synchronizing with
the beacons, a PAN coordinator can be enabled. The primitive is optional
for both device types.

• MLME-SYNC-LOSS:
This indication primitive reports the loss of synchronization with a PAN
coordinator. If synchronization is lost, a coordinator realignment proce-
dure is started to regain synchronization.

• MLME-POLL:
The POLL primitives (request and confirm) are issued by higher layers
to prompt the device to request data from the PAN coordinator. A data
request command is sent from the device to the coordinator. An accord-
ing message sequence chart is shown in [429, Figure 40].

Since many of these service primitives are optional for RFDs and some
even for FFDs, one can simplify during the modeling process and reduce the
number of primitives for modeling and implementation. PAN management
functionalities, for example, could be left out of the modeling process if only
performance aspects of plain data transmissions are of interest. Depending on
the type of simulation and the required simulation aspects, a choice of neces-
sary service primitives has to be made. A profound check of interconnections
and interdependences between the different service primitives is important so
that required primitives are not left out during the modeling process. Addi-
tional information on the service primitives can be found in [429, Table 46]
and the referenced subclauses.

Superframes and Beacons

IEEE 802.15.4 introduces the so-called superframe structure. The PAN co-
ordinator defines the format of the superframe by setting the necessary pa-
rameters. The superframe itself regulates the sending periods of all devices
inside the local PAN. The superframe boundaries are network beacons , which
are sent by the PAN coordinator (see Fig. 12.16). Format descriptions and
parameters are included in these network beacons. As shown in Figure 12.16,
the superframe can have an active and an inactive portion. The inactive peri-
ods can be used to put devices and transceivers to sleep, power management
therefore goes hand in hand with the usage of superframe structures.

If a coordinator does not wish to use superframes, it simply turns off the
transmission of beacons. The beacons are used to synchronize the associated
devices inside the PAN. Devices inside the network listen for beacon transmis-
sions and evaluate the parameters from received beacon frames. Depending

12.3 IEEE 802.15.4 291

Period of Activity of the PAN = Superframe

Beacon

Guaranteed

Time Slot

(GTS)

GTS

1 2 1514131211109876543

Inactive Period

Period of Inactivity of PAN #1

Contention Access Period (CAP)
Contention Free

Period (CFP)

Beacon

Fig. 12.16: IEEE 802.15.4 superframe structure (based on [429])

on the structure of the superframe, devices can use the contention period to
content for channel access. Concurrent transmissions are avoided with the
help of the CSMA-CA algorithm. The other option is the usage of Guaran-
teed Time Slot (GTS), where devices can reserve time frames for undisturbed
transmissions. Inside a GTS, devices transmit without using CSMA-CA. GTS
are often used for time-critical or low-latency applications.

The modeling of beacons and superframes is often skipped in simulation
models, when the creator is not interested in these features. The modeling
is not very complex, however, the implementation is extensive, since super-
frames and beacons influence many other functions of IEEE 802.15.4.

Frame Structure

Frames are always a critical part of any standard. On the one hand, they
should avoid complex structures and minimize overhead. On the other hand,
they should be extensible and suited for various usage scenarios. The IEEE
802.15.4 standard tries to keep the complexity low while including some ef-
forts to keep the frames robust enough for transmissions over noisy channels.
Therefore, each frame type is equipped with a 16-bit frame check sequence
where a CRC algorithm is used. There are four different frame types specified
in the standard:

– MAC command frame
– DATA frame
– BEACON frame
– ACKNOWLEDGMENT frame

Each protocol layer adds to the structure of these frames layer-specific
headers and footers. The MAC frame is used for the handling of control
transmissions while the DATA frame is used for all data transmissions. AC-
KNOWLEDGMENT frames are used for the confirmation of successful re-
ception processes and the BEACON frames are used by the PAN coordinator
for beacon distribution. The structures of the different frame types are listed

292 12. Selected System Models

in [429], an explicit description is out of the scope of this book. The detec-
tion of frame types and borders is also not described here, this is a task of
the PHY hard- and firmware. Details for the modeling of these tasks can be
found in Subsection 9.2.

Data Transfer Model

The model for data transfers in IEEE 802.15.4 consists of three different
transaction types. The first one is the data transfer from a normal device
to the PAN coordinator. Acknowledgments are sent only if requested by the
normal device. The second type is the data transfer from the PAN coordinator
to the normal device. The normal device requests data from the coordinator,
that sends the data afterwards. All transmissions are acknowledged in this
case. The last transaction type specifies the data transfer between two normal
peer devices. Star topology networks only support the first two transaction
types, as shown in Figure 12.12. Devices can only send and receive data from
and to a PAN coordinator. In P2P topologies, data can be exchanged between
all devices freely, all transaction types can be used in this topology type.

CSMA-CA

General information about the functionality and the modeling of CSMA are
described in Subsection 9.2. The IEEE 802.15.4 standard uses two types of
CSMA-CA: a slotted and a unslotted version. PANs that do not use beacons
(non-beacon-enabled PANs) use the unslotted CSMA-CA algorithm for the
channel access management. Each time a device wants to transmit data, it
waits for a random time period (backoff). The device samples the channel
after this backoff period. If the channel is idle, the device accesses the channel
and transmits its data. If the channel is found busy after the backoff period,
the device refrains from accessing the channel and waits for another backoff
interval. Acknowledgment frames are sent without using CSMA-CA in IEEE
802.15.4. Three parameters manage CSMA-CA: the Backoff Exponent (BE),
the Contention Window Length (CW), and the Number of Backoffs (NB).
NB specifies the number of times that CSMA-CA was required to perform
a backoff while trying to access and transmit on the channel. CW (used for
slotted CSMA-CA) specifies the length of the contention window, where no
channel activity should occur prior to any transmission start. BE is used to
calculate a random value of initial backoff periods before a device samples
the radio channel.

Beacon-enabled PANs use the slotted version of CSMA-CA for channel
access. The backoff periods are aligned with the start of beacon transmissions.
If a device wants to access the channel during a contention period (active
superframe portion) it waits for a random number of backoff slots. If the
channel is busy, the device waits for another random number of backoff slots

12.3 IEEE 802.15.4 293

before trying to access the channel again. The contention period boundaries
are transmitted in the beacon frame, the devices listen for this frame to align
their backoff periods to the start of the beacon. In this operational mode,
acknowledgments and beacon frames are sent without using CSMA-CA.

The different CSMA-CA parameters (BE, CW, NB) can be adjusted on
the different layers. There are many research papers available where different
parameter combinations for the optimization of the channel access are ana-
lyzed (e.g. [99, 263, 381, 382]). General guidelines are hard to give for the
modeling of CSMA-CA and the parameter settings. For a start in this field
refer to the standard and the proposed parameters ([429, Table 86]).

12.3.5 Important Parameters

The overall list of available PHY and MAC parameters for IEEE 802.15.4
is exhaustive. Starting points are the information about the attributes from
the PHY and the MAC PAN Information Bases. These information can be
found in [429, Table 23] for the PHY attributes and [429, Table 86] for the
MAC attributes. Depending on the type of research or simulation, different
parameters might be more or less useful. The following list is an example of
adaptable parameters, which can be useful for IEEE 802.15.4 performance
evaluations:

– Payload and/or packet size
– Addressing mode and address size (16-bit or 64-bit addresses supported)
– Packet overhead
– Type of node (PAN coordinator, RFD, FFD)
– Superframe parameters (Superframe Duration, Superframe Order)
– Beacon parameters (Beacon Interval, Beacon Order)
– CSMA-CA parameters
– CCA modes and characteristics
– GTS usage parameters

Several other parameters can not be influenced with GET or SET MAC
management commands through the protocol stack in contrast to the listed
parameters. The following incomplete listing presents several examples:

– Channel model parameters (values and influence depend on the simulation
framework and the used channel model)

– Receivers sensitivity and transmitter power (either defined by the standard
or taken from hardware data sheets)

– Antenna gain (taken from hardware data sheets)
– Interference type and interference characteristics (depend on simulation

framework and used PHY models)
– Transmission or packet error model characteristics and parameters

294 12. Selected System Models

These values also have a certain impact on the performance of WPANs
and devices, but they are not alterable from the device itself (exceptions
might be the delay values in case of mobile devices). Most of the time, these
values and parameters are accessible through the simulation environment.
Criteria for the selection of parameter values depend on the investigation
scenario and the desired outcomes. Hardware-related parameters are usually
taken directly from data sheets of real life hardware (e.g. Texas Instruments
C2420 transceiver). Predetermined values for the other parameters are hard
to predict since they depend on the chosen channel, error, or PHY model.
Refer to the according sections in this book (e.g. Section 11.1 or Section 11.2)
or example evaluations from the research community (e.g. [368, 423, 517]) for
more information.

12.3.6 Introduction of Available Models

The previous subsections introduced the reference model for IEEE 802.
15.4. The focus of this subsection lies on the description of existing mod-
els from the network simulation research community.

Models for WPANs and IEEE 802.15.4 are diverse. Some models are just
used for the evaluation of single parameter alterations, while other models
reproduce complex WPAN scenarios. Most of them are connected to a certain
simulation software, like NS-2 [116] or OMNeT++ [474]. These connections
and other important information, for example the abstraction level of the
model, applied simplifications, and model characteristics, are presented for
different models on the following pages. The described models are all avail-
able for free. Other existing models (e.g. OPNET 802.15.4 model) are not
described here, since they are not published yet or not available for free.

NS-2 Simulator for IEEE 802.15.4

� Intent:

– Comprehensive platform for simulations and performance analysis of IEEE
802.15.4, developed especially for NS-2 [116] on Linux (and Cygwin).

� Also Known As:

– IEEE 802.15.4 Model of NS-2
– WPAN NS-2 Simulation Model

� Authors / Contributors:

– Jianliang Zheng (Dept. of Electrical Engineering, City University of NY)
(http://ees2cy.engr.ccny.cuny.edu/zheng/index.html)

12.3 IEEE 802.15.4 295

– Myung J. Lee (Dept. of Electrical Engineering, City University of NY)
(http://www-ee.ccny.cuny.edu/faculty/people/lee.html)

� Model Characteristics:

– The model was first proposed and published in [517]
– The model implements the main layers of the IEEE 802.15.4 standard,

most functionalities of the original reference model are also provided
– Special features of the model are the support for different routing protocols

and the possibility to define wireless usage scenarios

� Evolution:

– ZigBee routing is not included anymore starting from releases v1.1

� Applicability:

– Simulation of routing protocols, e.g. AODV
– Simulation of beacon-enabled star and tree networks
– Simulation of P2P tree and cluster tree formations
– Performance evaluations of IEEE 802.15.4
– Direct and indirect data transmissions are supported
– Model does not support GTS, scenarios with GTS are not supported
– Contention Free Period (CFP) is not supported by the model
– This WPAN model does not define a specific energy model, it uses the one

from the simulation platform NS-2 instead

� Accuracy / Complexity:

– The model has a high complexity (many similarities to the reference model)
– Accuracy of the model depends on the usage and parameter setting in

combination with the simulation platform (NS-2 for this model)
– Accuracy of energy usage and energy depletion is low, since the model does

not implement its own energy sub-module, but uses the generic energy
model of the NS-2 framework instead [376, Chapter 19]

– PHY and channel modeling (e.g. two-ray ground reflection model, omni-
directional antenna model) is provided by NS-2, for more information on
this topic refer to the NS-2 documentation [376, Chapter 18] and the source
code [116], or the appropriate sections of this book

� Known Use Cases:

– Performance analysis of IEEE 802.15.4
– Analysis of Superframe performance options
– Realization of ubiquitous networks with IEEE 802.15.4 nodes

296 12. Selected System Models

– Performance studies of IEEE 802.15.4 slotted and unslotted CSMA-CA
– Formation of Star and P2P Tree networks and performance investigations

of these networks

� Model Context:

– Model requires network simulator NS-2 as ground laying framework
– Model needs description of network scenarios (via script language Tcl)
– Definition of deterministic error models for nodes and links needed, if

wanted by user (samples are provided by simulation platform NS-2)
– Definition of traffic type (e.g. constant, random or Poisson distributed)

needed (samples provided by simulation platform NS-2)

� Inputs:

– Model supports two interfaces: the traditional link layer call-back (compa-
rable to IEEE 802.11) and the IEEE 802.15.4 primitives

– The primitives are the main interface, the traditional link layer call-back
is for users who are not familiar with IEEE 802.15.4 primitives

� Outputs:

– Main output is a trace file, which can be visualized and analyzed with
NAM (the Network ANimator of NS-2)

– Format of the trace file is the same as that of general NS-2 simulations,
only new frame types for IEEE 802.15.4 were defined, more information
can be found in the source code documentation of the trace format

� Dependencies:

– Model needs the NS-2 framework, depends on NS-2 components, e.g. energy
and channel models and components

� Structure:

– No UML description available

� Implementations:

– Implementation available online (refer to � Availability) and included in
all versions of NS-2 since ns-2.28

– Source code written in C++ (main components) and Tcl (simulation scripts)
– Implementation includes: IEEE 802.15.4 PHY and MAC, SSCS, routing

layer, wireless scenario definition components, several demos and different
routing algorithms for testing purposes

12.3 IEEE 802.15.4 297

� General Issues:

– GTS is not a part of the model
– Problem of Task Overflow :

– IEEE 802.15.4 functions are primitives (described in Subsection 12.3.2)
– When the upper layer sends down a request, it should wait for a confirma-

tion, if it sends down another request before it receives the confirmation,
a task overflow will happen

– This overflow could be prevented with a task queue at the SSCS, but it
is currently not implemented

– Sleep Mode of IEEE 802.15.4 is not supported:
– The WPAN module does not implement its own energy model, it uses

the generic one from NS-2
– The NS-2 energy model does not distinguish between idle and sleep mode
– Different energy consumptions for these two modes are therefore not

supported at the moment, alterations of the source code for support of
sleep mode are possible for everyone (might be fixed in future releases)

� Availability:

– Source code included in NS-2 releases starting from version ns-2.28 under
the folder ns-x.xx/wpan/

– Source code available online
(http://ees2cy.engr.ccny.cuny.edu/zheng/pub/index.html)

� Related Models:

– No related models

� Author of Model Description:

– Michael Kirsche (BTU Cottbus)

IEEE 802.15.4 CAP Model for NS-2

� Intent:

– Model developed for the analysis of the performance of the Contention Ac-
cess Period (CAP) of IEEE 802.15.4 in star topologies and beacon-enabled
modes, implemented for NS-2 [116] on Linux (and Cygwin).

� Also Known As:

– IEEE 802.15.4 MAC Implementation in NS-2

298 12. Selected System Models

� Authors / Contributors:

– Iyappan Ramachandran (Fundamentals of Networking Laboratory (Fun-
lab), University of Washington, Seattle)

– Arindam K. Das (Funlab, University of Washington)
– Sumit Roy (Funlab, University of Washington)

� Model Characteristics:

– The model was first described and published in [381]
– The model provides several modifications of the previously described IEEE

802.15.4 model for NS-2
– The performance analysis of the CAP and the superframe structure of

IEEE 802.15.4 are important parts of this model, therefore several simpli-
fications are made in comparison to the reference model

� Motivation and Simplifications:

– Since the model creators were just interested in the CAP, they proposed
simplifications of the original reference model

– The model assumes that there is no Contention Free Period (CFP) in the
superframe, the CAP contains the complete superframe period

– Only star topologies are supported by the model
– All packets are transfered over the PAN coordinator of the star topology
– No routing algorithm and no routing layer is supported by the model
– All nodes are assumed to be within the carrier sensing range of each other,

no hidden nodes and no collisions from transmissions of hidden nodes are
therefore possible or supported

– MAC level acknowledgments are not supported by the model
– The MAC layer does not have an interface queue (e.g. for message transfer)

� Applicability:

– Simulation of beacon-enabled star topology networks
– Performance evaluations of IEEE 802.15.4 CAP

� Accuracy / Complexity:

– Model has a lower complexity compared to the reference model
– Accuracy for certain scenarios (especially CAP scenarios) might be high,

for all other scenarios the accuracy is supposed to be lower
– Since this model is an extension of the previously introduced NS-2 IEEE

802.15.4 model, stated comments about the accuracy and use of NS-2 PHY
and channel models apply to this model too

� Known Use Cases:

– Performance analysis of IEEE 802.15.4 CAP

12.3 IEEE 802.15.4 299

� Model Context:

– Model requires network simulator NS-2 as the basic framework

� Inputs:

– The model supports the same interfaces like the previously described NS-2
Simulator for IEEE 802.15.4

� Outputs:

– Main output is a trace file, which can be visualized and analyzed with
NAM (the Network ANimator of NS-2)

� Dependencies:

– Model needs components and other models from the NS-2 framework

� Structure:

– No UML description available

� Implementations:

– Implementation available online (refer to � Availability)
– Source code written in C++ (main components) and Tcl (simulation scripts)
– Most parts of the implementation were taken from the NS-2 Simulator for

IEEE 802.15.4 from J. Zheng and M. J. Lee
– Modifications include the correction of certain NS-2 bugs, the incorporation

of a new energy model that supports sleep modes, the incorporation of a
shutdown command for nodes and more changes for the support of the
proposed simplifications

– A description of code changes can be found on-line
(http://www.ee.washington.edu/research/funlab/802_15_4/)

� General Issues:

– No known problems or general issues

� Availability:

– Source code and modifications available online
(http://www.ee.washington.edu/research/funlab/802_15_4/)

� Related Models:

– NS-2 Simulator for IEEE 802.15.4 (refer to page 294)

300 12. Selected System Models

� Author of Model Description:

– Michael Kirsche (BTU Cottbus)

IEEE 802.15.4 Model for OMNeT++/INET Framework

� Intent:

– Simulation model of IEEE 802.15.4, developed especially for OMNeT++
[474] and the INET framework

� Also Known As:

– IEEE 802.15.4 Model for INET

� Authors / Contributors:

– M.Sc. Feng Chen (Dept. of CS 7, University of Erlangen-Nuremberg)
(http://www7.informatik.uni-erlangen.de/~fengchen/)

– PD Dr.-Ing. habil. Falko Dressler (Dept. of CS 7, University of Erlangen-
Nuremberg)
(http://www7.informatik.uni-erlangen.de/~dressler/)

� Model Characteristics:

– First description and publication in [95]
– The model was developed for performance evaluation
– The model was built to be conform with the standard’s 2006 revision [429]
– The developed model consists of two sub-modules for PHY and MAC layers

respectively, while supporting star and cluster tree topologies
– The model supports modifications of all important parameters of the IEEE

802.15.4 protocol stack (refer to Subsection 12.3.5)
– An energy model was developed to enable consumption measurements
– A configurable traffic generator is included in the model
– Different traffic schemes can be generated and used with the help of an

incorporated traffic generator
– Through an XML-based parameter structure, several traffic types (e.g.

Constant Bit Rate (CBR) traffic, ON-OFF-traffic, exponentially distributed
traffic) can be generated and changed during simulation runtime

� Motivation:

– Since performance evaluations were the main interest of the creators, the
traffic generator and the energy consumption measurement are two of the
most important components

12.3 IEEE 802.15.4 301

– These features distinguish this model from other models where traffic pat-
terns cannot be changed during runtime and where energy consumption
(and the according measurements) are only supported in a rudimentary
way

� Applicability:

– Performance evaluations of IEEE 802.15.4
– Simulation of beacon-enabled star topology networks
– Evaluation of energy consumption of IEEE 802.15.4 nodes and networks

under different traffic patterns
– Workload evaluation of IEEE 802.15.4 networks

� Accuracy / Complexity:

– The model has a high complexity, comparable to the reference model itself
– Accuracy for many scenarios seems to be high, but it depends on the sim-

ulation platform and the settings
– This model builds upon OMNeT++ and INET framework PHY, propaga-

tion, channel, and error models
– For information on these models, refer to the OMNeT++ website [474] and

the INET framework website (http://inet.omnetpp.org/)

� Known Use Cases:

– Performance analysis of IEEE 802.15.4
– Analysis of IEEE 802.15.4 under QoS aspects
– Analysis of the superframe structure of IEEE 802.15.4

� Model Context:

– The model requires simulation platform OMNeT++ and the INET frame-
work

� Inputs:

– Interface for traffic generation to describe traffic types

� Outputs:

– Vector and scalar files (OMNeT++ file formats), which contain informa-
tion about traffic, packet exchange, time usage, network and performance
statistics, energy consumption, end-to-end delay, and other predefined per-
formance metrics

302 12. Selected System Models

� Dependencies:

– Model needs OMNeT++ and the INET framework
– Requires traffic patterns, described within a XML file

� Structure:

– No UML description available

� Implementations:

– Implementation available online (refer to � Availability)
– Source code written in C++ (main components) and script language (NED

files, OMNeT++ specific network descriptions)
– Implementation includes: the IEEE 802.15.4 PHY and MAC modules, an

interface queue module, a routing and a traffic module and battery and
mobility modules

� General Issues:

– Pre-release of this model only supports beacon-enabled star networks

� Availability:

– Source code available online
(http://www7.informatik.uni-erlangen.de/~fengchen/omnet/802154/)

� Related Models:

– No related models

� Author of Model Description:

– Michael Kirsche (BTU Cottbus)

This listing of IEEE 802.15.4 models is not complete. Because further
information (and hands-on experience) on proprietary models (e.g. IEEE
802.15.4 OPNET model) could not be obtained, such models are not con-
sidered and described in this section. Refer to [246] for information on a
IEEE 802.15.4 simulation model for OPNET . Current research work in this
area is the development of standard-compliant implementations of the IEEE
802.15.4 MAC and the ZigBee protocol for the tinyOS 2 platform. Refer to
the according working group websites [196] and [264] for more information.

A validation of simulation models against the standard or available hard-
ware is often not made in research publications. This topic still needs more
work and consideration, since only validated models will finally be accepted

12.3 IEEE 802.15.4 303

throughout the research community. Some researchers validate their own ana-
lytical models and simulations against the introduced NS-2 model from Zheng
[517]. This model therefore seems to be the most distributed model in the
community today. However, a complete and full validation of this or any other
IEEE 802.15.4 model is still pending work.

12.3.7 Summary

The reference model of the IEEE 802.15.4 standard for WPANs and a tech-
nical introduction were presented in this section. The different layers of the
standard were introduced along with specifics, parameters and important as-
pects of IEEE 802.15.4. Advices for simulations and investigations were given
throughout this section. The section closed with an introduction and evalu-
ation of available simulation models from the network research community.
In Section 13.2, information regarding the use of available models in terms of
simulation and evaluation of WPANs is given together with hints for practical
usage in connection with a specific use case.

This Page Intentionally Left Blank

13. Wireless Networking Use Cases
M. Mühleisen, R. Jennen (RWTH Aachen University)
M. Kirsche (Brandenburg University of Technology Cottbus (BTU))

In this chapter two example use cases are presented on how a simulation
study for a particular scenario is conducted and which modeling decisions
are taken with respect to the goal of the study. These two sections are built
on top of the previous chapters but focused on particular questions for inves-
tigation. Also they highlight important modeling options and their respective
performance impact. In particular, we consider next the issue of coexistence
for wireless local area networks as well as the issue of wireless body area
network performance.

13.1 Use Case - Coexistence

The term coexistence refers to multiple wireless systems operating on a shared
resource. These systems usually operate on the same frequency channel. Fig-
ure 13.1 shows a common example of coexistence scenario. Here two house-
holds establish WLANs following the IEEE 802.11 standard. The IEEE
802.11 standard is described in more detail in Section 12.1. The WLANs
are established by Access Points (APs) providing Internet access through
a router. Both follow the IEEE 802.11g standard operating in the Indus-
trial, Scientific, and Medical (ISM) band and form two separate networks,
since they have different Basic Service Set Identifiers (BSSIDs). However,
they could be operating on the same frequency channel. In this case, they
receive data from the other network enabling virtual carrier sensing using the
Network Allocation Vector (NAV) as described in Section 12.1.3. They could
also be operating on different, partly overlapping channels. Then frames from
the other network cannot be decoded but the systems suffer from interfer-
ence. Besides the APs, multiple other nodes can be present in the network.
Most common application is Internet access for PCs and notebooks. New
applications including Voice over IP (VoIP), IP-TV, and wireless access to
hard-disks providing videos and music are currently emerging. It could be
that all nodes are within mutual interference range and no hidden nodes are
present. In general not all nodes interfere with each other. Nowadays it is
very likely to have multiple systems operating in close proximity as more and
more households deploy WLANs.

In the following we focus on inter-system interference emitted from nodes
of one system to nodes from other systems. To narrow down the topic we

306 13. Wireless Networking Use Cases

Intended Signal

Interference

Access Point

Fig. 13.1: Example scenario with two households each using a WLAN for various
applications

consider networks with a dedicated central node forming a star topology
(e.g. the AP in IEEE 802.11). Therefore, we do not consider Mesh or P2P
networks. We mainly discuss coexistence from a Data Link Layer (DLL)
point of view, so Transmission Control Protocol (TCP) (see Chapter 17) is
not considered. Layers between the application and the DLL do not delay the
PDUs. To further narrow down the topic we assume that networks cannot
directly communicate, but they can sense the emitted power of surrounding
nodes.

13.1.1 Regulatory Constraints

Previous section already introduced the ISM band, which can be used for
coexisting systems. The only regulatory constraint in this band is a limitation
on the total emitted power. Luckily the dominant system in the ISM band is
IEEE 802.11b/g, which uses Listen Before Talk (LBT) to assure every node
in any system gets a fair share of the channel. Other systems in the ISM
band are IEEE 802.15.1 (Bluetooth) [12] and IEEE 802.15.4 (ZigBee) (see
Section 12.3).

Other unlicensed spectrum is present at 5 GHz at most geographic lo-
cations. In the US this band is called Unlicensed National Information
Infrastructure (U-NII). Besides limiting emitted power, many countries en-
force Transmission Power Control (TPC) (see Section 10.1.5) in this band.
The dominant system in this band is IEEE 802.11a. The IEEE 802.16h [21]
standard draft currently develops protocol improvements allowing WiMAX
systems (see Section 12.2) to also operate in this unlicensed band.

New opportunities for unlicensed systems are currently established through
the so called non-exclusive licensing. If a license is not used at a certain time
and geographic location, other systems may use the spectrum. This is called
vertical coexistence. Systems operated by the license holder are called primary

13.1 Use Case - Coexistence 307

systems, and the ones operating if the primary user is absent are called sec-
ondary systems. If multiple secondary systems operate in the spectrum, the
same situation as in the ISM and U-NII band is created. In [14], non-exclusively
licensed operations of systems in unused TV bands in the US is regulated by
the Federal Communication Commission (FCC). Secondary systems must in-
stantly stop transmitting if the primary system starts operating. Additionally,
the FCC requires secondary systems to

“allow multiple users to share the same spectrum by defining the
events that must occur when two or more devices attempt to simul-
taneously access the same channel and establishing rules by which
each device is provided a reasonable opportunity to operate.”

This is still not very specific but more restrictive than just limiting emitted
power and enforcing TPC.

There are also unlicensed bands reserved to single technologies. Here "un-
licensed" refers to the fact that the systems are set up by end-users and not
operators. One example is the Digital Enhanced Cordless Telephone (DECT)
system [138] operating at 1800 MHz - 1900 MHz in Europe. In such systems,
the end-user buys and deploys the BSs creating a scenario similar to the
example scenario in Figure 13.1. DECT systems in nearby households can
interfere, but the protocol specifies rules on how to limit the impact. This
kind of licensing enforces the most restrictive regulations, and only systems
following defined media access rules may be deployed. Currently the ITU-T
evaluates candidate systems within the IMT-Advanced process [16] for next
generation mobile radio. Besides cellular scenarios, systems also have to prove
their performance in a so called "Indoor hotspot" scenario at 3.4 GHz. Such
a scenario may be formed of Femto Cells , where end-users deploy low power
BSs to improve indoor coverage. It is therefore likely that the IMT-Advanced
candidate systems LTE [19] and IEEE 802.16m [20] will also need the capa-
bilities to deal with end-user deployed scenarios.

Finally the IEEE Standard Coordination Committee 41 [374] and the
DARPA XG project [360] develop novel approaches for unlicensed operation.
Here machine readable rules, so called policies, are downloaded by nodes
operating in a given frequency band. In this way protocol behavior can dy-
namically be changed depending on frequency band, location, time, total load
in the band etc. As new and more efficient systems are introduced to the mar-
ket, authorities might change the policies for older and less efficient systems.
Older systems which are not able to reach the state of the art efficiency might
be banned from certain bands or forced to a subset of available resources.

This shows that multiple opportunities for unlicensed operation exist.
Different bands have different restrictions. While the 2.4 GHz and 5 GHz
bands are less regulated, they are already dominated by IEEE 802.11 sys-
tems. Any new technology operating in these bands must be able to coexist
with IEEE 802.11. Other bands are currently becoming available with pos-
sibly higher restrictions. It is up to researchers in the field of coexistence to

308 13. Wireless Networking Use Cases

develop protocols outperforming IEEE 802.11 in terms of QoS support and
spectral efficiency. In the following we present how system performance can
be measured.

13.1.2 Performance Measures

As mentioned before, different applications for wireless communication ex-
ist. Each application has its specific demands. Real time services, like VoIP
for example, require a low packet delay. Our focus lies on the impact of
layer 2 to coexistence, including the MAC protocol and scheduling. Layer 2
does not have specific information to which application an IP-Protocol Data
Unit (PDU) belongs. Many technology standards define QoS classes to map
application demands to different priorities in layer 2. Each standard may have
a different set of QoS classes and names them differently. The IEEE 802.16
standard for example defines the classes Unsolicited Grant Service (UGS), Ex-
tended Real-time Polling Service (ertPS), Real-time Polling Service (rtPS),
Non-real-time Polling Service (nrtPS), and Best Effort (BE). When evaluat-
ing system performance with QoS classes, performance measures of the same
class must be compared. In coexistence scenarios the same performance mea-
sures like in single system scenarios can be used. In both single system and
coexistence scenarios, these measures can be evaluated separately by direc-
tion (uplink and downlink), QoS class and node. In addition, in a coexistence
scenario, they can also be evaluated per system.

Utilization

The utilization describes the ratio between maximal possible data rate R and
actual throughput T . It can also be defined by:

U =
ttranspMin

ttotal
. (13.1)

Assuming constant PDU length in bit L, ttranspMin = L/RMax is the
time required to transmit a PDU at the highest possible data rate defined
by the available MCSs. ttotal accumulates all waiting times of the PDU from
the point it is ready to be transmitted (head of queue) up to the point when
it is successfully received. This includes some or all of the following:

– Propagation delay tprop

– Transmission time n · ttransp, with n retries if ARQ is used
– Channel idle time tidle caused by backoff, turn-around times and inter

frame spaces
– Time tcol the channel is occupied by unsuccessful transmissions (collisions)

13.1 Use Case - Coexistence 309

– Additional overhead time tctrl introduced by the MAC or PHY protocol
including for example beacons, RTS, CTS, ACK, pilot tones, preambles,
Channel Quality Indicator (CQI) feedback, and all other control channel
transmissions

An optimal ratio 1 is therefore reached if the system constantly transmits
at maximal data rate. In general, some of the components of ttotal are not
constant. In this case the mean utilization can be measured.

Utilization can be measured per system, especially if the systems have dif-
ferent maximal transmission rates. Alternatively, the highest possible trans-
mission rate of all systems can be used as a reference.

Delay and Jitter

Assuming single-hop communication and no delays in the layers above layer 2,
the delay is the sum of previously described ttotal together with the queuing
delay in layer 2. Systems using scheduling, like LTE or IEEE 802.16, can
introduce an additional delay caused by the offset in the frame where the
PDU is scheduled as described in Section 10.1.2. The jitter is the standard
deviation of the delay. Acceptable values for this indicators depend on the
application. Since we map applications with different demands to different
QoS classes, delay should be measured and compared per class. Depending
on their position, nodes can experience different interference from a coexisting
system. Delay should therefore be measured per node.

Loss

PDU losses occur if no ARQ is used, or if a maximum number of retries is
reached with ARQ. Another possible reason for packet loss is drop tail queues.
Since tolerable loss depends on the application it should be measured per QoS
class and per node.

Throughput and Spectral Efficiency

The throughput describes how many bit were successfully received per unit
time. Since different QoS classes have different throughput demands, it is
measured per QoS class. If the distribution of the throughput is not of inter-
est, its mean value can be derived as the ratio of all received bit over total
simulation time, as long as the simulation has reached its stationary phase.
In this way side effects from too short averaging windows are suppressed.
Again results should be collected per node.

The spectral efficiency is the throughput normalized to frequency band-
width and area and therefore measured in Bit/(s ·Hz ·m2). Since all systems
use the same spectrum and are located in the same area, the spectral efficiency

310 13. Wireless Networking Use Cases

should be measured as a global performance indicator taking into account all
successfully received bits in all systems. It may be collected separately for
the uplink and downlink.

Fairness

A common index to measure fairness is Jain’s fairness index [234] shown in
Equation (13.2).

f =
(
∑

xi)2

n ·
∑

x2
i

(13.2)

xi can be any collected performance measure, e.g. delay. The index i
stands for one of the n nodes of all systems. It makes no sense to compare
measurements from different QoS classes. Previously collected performance
measures, delay, jitter, and throughput can be evaluated for their fairness.
There is usually a trade-off between maximizing throughput and maximizing
fairness.

13.1.3 Simulation Setup

Simulations should be set up in a way that all factors influencing above
performance measures are considered.

Deployment

Since we evaluate coexistence, the smallest number of systems is two. As de-
scribed earlier in the example scenario, there can be more coexisting systems
in general. Since node positions play an important role, a sufficient number of
nodes with different distances to the own and the interfering systems should
be deployed on the area covered by each system. It is possible to use mul-
tiple drops with random node positioning as described in [16]. In a cellular
network the cell size limits the coverage area of a BS. Assuming no inter-
ference, a single end-user deployed system would be power limited, which
for example allows IEEE 802.11 APs to cover areas up to 300m. In coexis-
tence scenarios interference is an important factor, so the assumption of a
power limited system does not hold. One possible reference scenario is the
IMT-Advanced Indoor hotspot scenario [16] mentioned before. Other scenar-
ios could be based on our example scenario and include walls and different
floors.

A simplified scenario can be created in a way where any simultaneous
transmission causes data loss. Here no spatial reuse is possible. This can be
seen as a two state or binary interference model.

13.1 Use Case - Coexistence 311

Traffic

Suitable application models as described in Chapter 18 must be found and
mapped to layer 2 QoS classes. The example scenario described above already
gives some possible applications like IP-TV, video- and music streaming, and
VoIP. Other traffic types like web browsing and file download using TCP can
be modeled as full-buffer traffic using the QoS class with lowest priority.

Technology Standards

In Section 13.1.1 we give an overview of different bands where unlicensed
operation and therefore coexistence is possible. Systems operating in such
bands will likely have to coexist with other allowed systems. When evaluating
performance, all possible other systems should be considered. On the other
hand, it is not always required to include the most widely deployed standard,
IEEE 802.11, in the scenario. The reason is that there can be bands in the
future allowing unlicensed operation but not permitting operation of legacy
IEEE 802.11 systems.

Multiple general methods exist to improve coexistence. Those methods
can either be enforced by the technology standard, e.g. mandatory CSMA-
CA in IEEE 802.11, or can be optionally applied such as TPC or Dynamic
Frequency Selection (DFS). Further methods might be allowed within the
parts of a standard left to the implementer. In a centrally controlled system
with a scheduler this includes the scheduling algorithm. The GTS assignment
for IEEE 802.15.4 described in Section 12.3 could for example be extended
to allow multiple IEEE 802.15.4 systems to coexist. A general scenario might
include systems extended by such coexistence improvements together with
legacy systems.

13.1.4 Model

Besides simulation setup, the employed simulation model should also cover
all factors influencing collected results.

From our DLL point of view the key factor for performance evaluation is
what happens to user data PDUs as they pass through the protocol stack.
We therefore track the journey of an application PDU from the traffic source
to the sink and identify each component which influences our chosen perfor-
mance indicators. Figure 13.2 shows the model created for our use case. Since
we did not select a specific technology standard, some components remain
generic.

We will now describe the components, their relation to our performance
indicators and parameters of each component. We also have a look on infor-
mation exchange between the components.

312 13. Wireless Networking Use Cases

Traffic Source

UDP/IP

Data Link
Layer

Concatenation / Fragmentation /
Overhead / Interleaving / Padding

MAC / Scheduling

PHY Layer &
Channel

Traffic Sink

Channel Error Model

Receiver

Lost

ARQ

Transmitter
Receiver

Feedback

Transceiver Side
Channel State

Other Transmitters

Interference

Queues Overload

Retry limit reached

D
el

ay
lim

it
cr

os
se

d

C
h

an
n

el
 E

rr
o

r
Fig. 13.2: Coexistence simulator model

Traffic Source

The traffic source generates application PDUs according to the traffic models
for evaluated applications. Each application PDU has a size in bits. Informa-
tion to map applications to DLL QoS classes is available.

UDP/IP

As explained in our assumptions in the beginning of this section, we do not
consider TCP and assume User Datagram Protocol (UDP) and IP layers only
add additional overhead and do not create any delays. The overhead size is
28 byte which is added to the size of the PDU. Total PDU length must me
realistic since it is directly related to the transmission time ttransp influencing
utilization, delay, and jitter. The layers might also perform segmentation.
UDP PDUs have a maximum size of 65535 byte. IP PDU size is limited to
the Maximum transmission unit (MTU) of used layer 2 technology. A typical
value is 1500 byte which is the MTU for Ethernet.

13.1 Use Case - Coexistence 313

Queues

As we use QoS classes, we assume there is one queue per class. Some systems
might even implement a dedicated queue per receiving node. Overflowing
drop tail queues are a possible reason for traffic loss, shown by the arrow
to the right in Figure 13.2. The maximum queue length decides if arriving
PDUs are accepted to the queue. It should, in general, provide enough space
for queuing of PDUs waiting for channel access. Coexistence scenarios might
require even larger buffers because channel access might be further delayed
while waiting for other systems to stop transmitting. At least the queue with
highest priority should not drop any PDUs as long as the channel is not in
overload.

Concatenation, Fragmentation, Protocol Overhead, Interleaving,
and Padding

This component is not specially related to coexistence scenarios. Still it has
two important influences. First, it transforms the PDUs to the actual du-
ration transmitted on the channel. Second it may be related to the channel
error model since Packet Error Rate (PER) might depend on the PDU length
and it might be that multiple fragments have to be received successfully to
retrieve the original PDU. Fragmentation and interleaving can have consid-
erable influence on the delay. Possible parameters can usually be found in the
technology standard.

ARQ

The ARQ component is responsible to retransmit PDUs not received suc-
cessfully. Some technology standards like LTE and IEEE 802.16 implement
multiple ARQs. In LTE Hybrid ARQ (HARQ) is used in the PHY layer and
another traditional ARQ in the upper part of the DLL. The use of ARQ
might be optional depending on the QoS class, e.g. some applications such as
VoIP might tolerate a certain loss. Additional delay caused by ARQ retrans-
missions might have a stronger negative impact on user experience than the
loss. If ARQ is used, PDUs are usually dropped if not transmitted success-
fully up to a specified retry limit. Therefore the ARQ component can also be
a source of loss. Section 10.2.2 gives multiple possibilities on how to model
ARQ.

MAC / Scheduling

In this component, the actual decision is made when to transmit a PDU.
As described in more detail in Section 10.1.5, possible input parameters
can be the amount and size of queued PDUs per QoS class and receiver,

314 13. Wireless Networking Use Cases

information about the link to the receiver, transmission error probability, and
the channel state at the transmitter. In this evaluation the MAC / Scheduler
component plays the most important role. The decision in all nodes on when
and how long to transmit forms the channel state at all receivers. This chan-
nel state is represented by the current SINR at the receiver and is used by
the channel model to decide if a PDU was received successfully. Most possible
protocol improvements for coexistence would be implemented in this compo-
nent. It is therefore very important how the information, especially the one
gained at the receiver, is modeled. Explicit signalling might be used providing
channel state information from the receiver at defined intervals with defined
quantization. Another approach allows to obtain the information from the
simulation environment. In this case the information is available without de-
lay and without transmission errors.

Receiver

The receiver has to take into account all simultaneous transmissions and
calculate the SINR of a transmission before passing it to the channel error
model component. Some requirements for the channel model used to derive
the SINR are described below in Section 13.1.5.

Channel Error Model

Taking into account properties like PDU size, used MCS, and SINR the chan-
nel error model decides if a PDU was received successfully as described in
Section 10.2.1. If not, it is considered as lost. If provided by the protocol, the
transmitter might be immediately informed about the loss, for example by
a Negative ACKs (NACKs) when using HARQ. The channel model might
base its decision about transmission success on multiple PDUs and therefore
depends on information from the concatenation, fragmentation, overhead,
interleaving, and padding component to know which PDUs belong together.

Successfully received PDUs are transformed to their original state when
leaving the traffic source. For that, all headers and padding bit are removed,
and concatenations and fragmentations are undone. The PDUs are then
passed to the traffic sink for final evaluation.

Traffic Sink

The traffic sink evaluates the received data. For some application classes
maximum delays might be defined. Received PDUs which are not received
within the maximal delay are then also considered as lost.

In this single-hop communication scenario PDUs are always delivered in
order to the traffic sink. Sequence numbers can therefore be used to detect

13.1 Use Case - Coexistence 315

PDU loss. Additionally the used layer 2 QoS class, source, delay, size, and ar-
rival time of each PDU should be probed. In this way, all previously described
performance indicators can be obtained.

13.1.5 Tips

In this section, a few tips on what should be considered when extending
or creating a suitable simulator for coexistence evaluation are described. A
special focus lies on what should be checked when using a simulator previously
used for single system scenarios.

Control Traffic

Available simulators previously created to evaluate user data traffic perfor-
mance might come with modeling assumptions not suitable in coexistence sce-
narios. In Section 10.1.1 possible modeling assumptions are described which
control traffic does not have to be explicitly transmitted. The underlying
assumption is that this traffic is transmitted with a very robust MCS. Coex-
istence scenarios can create interference levels high enough to cause a signif-
icant error probability for such traffic. In this case, it must be modeled. In
a frame based scheduled WiMAX or LTE Femto Cell, nodes not being able
to decode the preamble at the frame start or the map might not be able to
communicate for a whole frame.

Also pilot channels, often not explicitly modeled, can influence perfor-
mance. In [414] the authors show how a Bluetooth system transmitting at a
pilot channel of a IEEE 802.11g system severely degrades the performance
of the WLAN system. Also pilot channels often transmit at higher powers
resulting in more interference.

Modeling of Resources

Channel and physical layer models of simulators designed for a specific tech-
nology standard often come with assumptions about channel bandwidth and
center frequency. Technology standards usually provide a mapping of this
parameters to integer channel-, subchannel , or subcarrier numbers (see Sec-
tion 10.1.2). If systems following different technology standards coexist, trans-
mission bandwidth can be partly overlapping. In this case the channel model
needs to be adjusted to decrease the interference accordingly. Some systems,
for example IEEE 802.11b, do not have an uniformly distributed Power Spec-
tral Density (PSD). Figure 13.3 shows the PSD of a coexisting IEEE 802.15.4
and IEEE 802.11b system approximated by an SI-function (see [210] for the
exact shape). It is visible that spectral density, and therefore interference,
decreases towards the edge of the transmission bandwidth. IEEE 802.15.4

316 13. Wireless Networking Use Cases

operates on 2 MHz bandwidth, IEEE 802.11b on 22 MHz. Therefore a factor
of 1/11 must be introduced for interference calculation. The PSD of IEEE
802.11b introduces another factor c(foffset) depending on the center fre-
quency offset foffset of the systems. c can be calculated by integration over
the normalized PSD of the IEEE 802.11b system within the limits of the 2
MHz used by the IEEE 802.15.4 system. Since only a finite set of frequency
offsets is possible, correction factor c can be stored in a lookup table.

2.401 2.412 2.417 2.423
10

-2

10
-1

10
0

Frequency [GHz]

N
o
rm

a
liz

e
d
 P

o
w

e
r

S
p
e
c
tr

a
l
D

e
n
s
it
y

IEEE 802.11b

IEEE 802.15.4

Fig. 13.3: Approximated Power Spectral Density of 802.11b and 802.15.4 with
5MHz Center Frequency Offset.

The same applies to possible modeling assumptions and optimization in
the time domain. Simulators for cellular systems like LTE or IEEE 802.16
might assume synchronized systems operating on defined time slots. The
assumption made is that a station granted resources occupies a full time slot
transmitting at equal power. This assumption does not hold for user-deployed
coexisting systems. The channel model needs to be adjusted to support time
weighted averaging as the model presented in Section 9.5 does.

Channel Sensing

In a simulator, very precise channel knowledge might be available at a re-
ceiver. It is possible to obtain the exact power of an intended signal together
with the exact interference power. One could even implement receivers fur-
ther distinguishing measured interference power by interference source. The
information about the power is usually available as a high precision float-
ing point value and can be obtained at arbitrary intervals. Alternatively an
event-based approach measuring whenever power levels change is possible.

In reality this is not possible. The signal at the receiver is a superposition
of all currently ongoing transmissions. Many systems have pilot channels

13.2 IEEE 802.15.4 Performance Analysis 317

and known preamble sequences which can be used to gain further knowledge
about the current channel state. In this case the knowledge can only be
refreshed when a new known sequence is received. In the case of OFDMA,
this knowledge only applies to the subcarrier where the pilot symbol was
received. The information about current power levels is usually passed to the
DLL at a resolution of a few dB. Some technology standards can have the
possibility to inform the DLL whenever a certain threshold is crossed or the
channel has changed its power level by a certain magnitude since the last
information. In other technology standards like IEEE 802.15.4 layer 2 has
to explicitly request the PHY layer to perform channel measurement. The
measurement duration then depends on the standard. The measuring result
is therefore the average power over the measurement time.

Proposed coexistence algorithms relying on channel measurement must
be applicable with channel state information available in the real system.
It might be required to extend a simulator to model this aspect with more
detail. Alternatively a random error on the measurement can be introduced to
evaluate the sensitivity of a proposed algorithm. Finally it might be enough to
have a close look at the proposed algorithm and establish an argumentation
why it will work in the real system.

13.1.6 Conclusion

In this section we stressed the importance of the use case on the selection
and development of an appropriate simulation model. We started by deciding
which performance indicators we want to use and then inspected what influ-
ences them. If we cannot assure a sufficient modeling detail of this influences,
we cannot draw general conclusions from our simulation results. Still it is not
always required to evaluate the most generic and most realistic deployment
with detailed modeling of all influences. Researchers are encouraged to iso-
late certain aspects influencing performance, while modeling other aspects
less detailed or even neglecting them.

Above use-case description was kept general and should therefore be ap-
plicable to a variety of problems. The openWNS network simulator described
in Section 5.1 is available for public download [6] and comes with an exam-
ple scenario formed by a coexisting IEEE 802.11 and IEEE 802.16 system.
The scenario and the simulation model were created considering the aspects
described in this use-case.

13.2 IEEE 802.15.4 Performance Analysis

This section connects the introduction of IEEE 802.15.4 from Section 12.3
with a practical use case. The range of possible use cases is rather large:

318 13. Wireless Networking Use Cases

plain parameter measurements, complex performance evaluations, evaluation
of network topologies, etc. Performance evaluation was chosen as an exam-
ple. In this section a performance analysis use case of IEEE 802.15.4 under
the viewpoint of achievable performance in coexistence scenarios is described.
This use case is based on the introduction of the coexistence term and the
connected problems for wireless communication systems from Section 13.1.
The following subsections present the general goal of the analysis, the used
metrics, parameters, characteristics, and the modeling process of the con-
sidered system. The section concludes with a brief examination of example
simulation results and a short summary.

13.2.1 Goal of the Analysis

Important for an analysis is the definition of a goal. Without a defined goal,
modeling and simulation would fail to produce proper outcomes. The goal
of this use case is an analysis of the influence of coexisting IEEE 802.15.4
devices on the overall achievable performance of an examined IEEE 802.15.4
star topology network. The impact of packet buffer sizes on the MAC layer on
this achievable performance is also studied. A single IEEE 802.15.4 network
with one sink and a varying number of traffic sources with different traffic
loads and buffer sizes is considered. By means of simulation it is expected to
gain insight into the influence of IEEE 802.15.4 intra-technology interference
in coexistence scenarios. The term intra-technology interference describes the
interference caused by coexisting devices from the same technology class.

13.2.2 Metrics for the Analysis

Several metrics can be used to examine and analyze the performance of a
IEEE 802.15.4 network. Usually, a subset of suitable metrics is selected from
the range of available ones. This subset is then used to verify the achievement
of the defined goal. An extensive list of commonly used performance metrics
can be found in [235, pp. 37-40]. The following two metrics are defined and
used for this example:

– Application goodput at the sink (throughput on the application layer)
– Efficiency (data sent by sources compared to data received at the sink)

Other typical metrics, which are not considered here, are the access delay,
the plain throughput, and the packet loss ratio. For further usage the two
mentioned metrics need to be specified. The application goodput stands for
the total number of bits received at the application layer of the destination
divided by the simulation time. The considered bits are just payload, since
protocol overhead and packet headers are not included in the computation.

13.2 IEEE 802.15.4 Performance Analysis 319

Application goodput can therefore be used to measure the performance of
application layer traffic. The efficiency metric describes the ratio between
the application traffic received at the sink and the application traffic sent by
the sources. Mathematical definitions for both metrics are as follows:

Application Goodput =
∑

Bytes Received at Application Layer

(Simulation Time − First Packet Time)

Efficiency Ratio =
∑

Received Application Traffic
∑

Sent Application Traffic
× 100 %

Important for the measurement of these metrics are statistics, which are
logged throughout a simulation run. The simulation model of the considered
system should therefore include possibilities for statistical logging. If a pre-
determined implemented simulation model is used, the choice of metrics can
be limited depending on the model characteristics and its implementation.

13.2.3 Used Parameters

The next step in the performance evaluation of a given system is the definition
of parameters, which are used as adjustable screws to analyze the performance
of the system under changing conditions. Parameters have to be considered in
the modeling process, so that the necessary parameters are already included
in the system model. In the presented example, the following parameters are
considered, due to their significant influence on the achievable performance
of a IEEE 802.15.4 network:

– Superframe parameters BO and SO
– Number of traffic sources
– Packet buffer size on the MAC layer
– Application traffic load (e.g. packets/second) and related parameters:

– Traffic scheme (e.g. on-off or interval traffic)
– Inter-arrival-time of data from application layer
– Payload size

This is an example listing. Depending on the examination goal, other
parameters might be considered. It is important to consider all parameters
which might have a relevant influence on the evaluation objective; in this case
the network performance.

13.2.4 Modeling the System

After defining metrics and parameters, the system under investigation can be
modeled. First, it has to be decided which components and characteristics of

320 13. Wireless Networking Use Cases

the system should be included in the modeling process and which ones should
not be considered at all. A good model should be as simple as possible,
without missing any parts that may have an influence on the objective of
the examination. Therefore, the system modeling has to consider the goal of
the study and the necessary level of detail in order to achieve that goal in
a qualitative and quantitative sufficient way. The following list summarizes
important characteristics and components of the modeling process of the
investigated system:

– IEEE 802.15.4 superframe structure with according parameters
– Distribution of superframe parameters through network beacons
– Packet buffer on the MAC layer
– IEEE 802.15.4 medium access protocol CSMA-CA
– IEEE 802.15.4 frame structures
– IEEE 802.15.4 PHY functions like channel sensing, CCA, ED
– Necessary IEEE 802.15.4 service primitives for data transmissions
– Star topology and its requirements
– IEEE 802.15.4 node roles (e.g. PAN coordinator, FFD)
– PHY parameters, such as propagation and radio models
– Transmission failure and packet error aspects

Depending on the goal, further aspects have to be included, e.g. node
mobility models in case of mobile scenarios. All the listed components and
aspects have a significant influence on the overall performance of a IEEE
802.15.4 network and need to be modeled. Information about the modeling
of these various components and aspects can be found, e.g. in Section 12.3
and other related parts of this book.

The level of detail required for the modeling of the system characteristics
depends on the influence they may have on the goal of the study. If, for exam-
ple, the radio propagation model has a significant influence on the achievable
application goodput, a more detailed radio propagation model should be used
to get more accurate results. If, on the other hand, the frame structure (head-
ers, payload, footers) have only a small influence on the achievable goodput,
the level of detail of the frame structure modeling can be lowered down to a
grade where the influence is still accurate enough but the model is simplified.

While many aspects must be included in the modeling process, some parts
can also be left out to simplify the model and its creation process. Since
this example use case only considers star topology networks, the model does
not need to include other network topologies. Additional simplifications can
be introduced for the PAN management procedures, the PAN coordinator
selection and other management issues. For a simple performance evaluation,
it could be assumed that the investigation starts with the network already
set-up by a predetermined PAN coordinator. The procedure of nodes joining
or leaving the network could also be left out to further simplify the model.

During this modeling process it can be determined if a suitable model
already exists in the community or if an adequate model has to be created.

13.2 IEEE 802.15.4 Performance Analysis 321

Usually, existing models need to be extended, because relevant parts are miss-
ing or have not been implemented with the necessary level of detail. For this
example case, the existing IEEE 802.15.4 model for the OMNeT++/INET
Framework (refer to Subsection 12.3.6) can be used, since it is an extendable
model that provides support for all the required model characteristics.

13.2.5 Reference Scenarios

The reference scenario is the parameterization of the created model. It com-
bines the chosen parameters with the newly created or extended existing
system model. The reference scenario defines the boundaries in which sim-
ulations and evaluations take place. Within a reference scenario, important
parameters (e.g. node count, traffic load, transmission range) and interac-
tions between all relevant actors (sources and sink in the example use case)
have to be declared before the simulation starts.

Three example reference scenarios with one, three, and ten data sources
are displayed in Figure 13.4. These three scenarios are exemplifications of
a generic reference scenario with different numbers of nodes (data traffic
sources) inside the WPAN. The carrier sensing and the transmission range of
the data sources and the data sink is set, so that all devices inside the WPAN
can reach and overhear each other. The playground size for the reference
scenario is limited so that all devices are in the same interference range. The
interference range is an interesting parameter in scenarios where a larger
playground size with hidden nodes is considered.

The different specified parameters (e.g. number of nodes, traffic load, pay-
load size, MAC packet buffer size) from Subsection 13.2.3 are varied through-
out various simulation runs to enable an evaluation of the influence of those
parameters on the overall system performance. An outcome of the different
simulation runs are statistics, which are then used for the analysis of the met-
rics of interest. These metrics are intended to provide a better understanding
of the influence of the studied parameters on the achievable performance in
this coexistence scenario. Examples for parameter values are given along with
comments for the simulation and evaluation in the next subsection.

13.2.6 Simulation and Evaluation

After the specification of metrics and parameters and the creation of a model
or the extension of an existing one, simulations can be started on the defined
reference scenarios. The simulation process itself depends again on the goal of
the study, the research type (e.g. performance evaluation or proof-of-concept)
and the desired outcomes. For the considered use case, various simulation runs

322 13. Wireless Networking Use Cases

Data Source

Data

Source

Data

Source

Data

Source

Data Sink

Data Sink

Reference Scenario with 1 Source Reference Scenario with 3 Sources

Data SinkData

Source Data

Source

Data

Source

Data

Source

Data

Source

Data

Source

Data

Source

Data

Source

Data

Source Data

Source

 Data Source – Sensors that generate data

 Data Sink – PAN coordinator that receives data

– Communication Flow

Reference Scenario with 10 Sources

Fig. 13.4: Reference scenarios with one, three, and ten IEEE 802.15.4 data sources

with varying parameters are conducted to gain information on the influence
of such parameters on the overall achievable system performance.

The described reference scenario from Figure 13.4 is transferred to a sim-
ulation environment (for this use case OMNeT++). The influence of the de-
fined parameters is analyzed through various simulation runs. To exemplify
this, simulations with the following parameter values are conducted:

– Payload size = 100 Byte
– Superframe parameters:

– Beacon Order (BO) = 5; Superframe Order (SO) = 4
– Duty cycle = 50%

– MAC packet buffer size = 1 and 10
– Traffic load:

– Packets per second = 1; 4; 10; 20; 40; 100
– Byte / s = 100; 400; 1000; 2000; 4000; 10000

– Number of data sources = 1; 3; 5; 10
– Other PHY and MAC parameters are set to standard values [429]

13.2 IEEE 802.15.4 Performance Analysis 323

The payload size and the superframe parameters BO and SO are kept
constant during all simulation runs. The number of data sources, the MAC
packet buffer size and the traffic load are varied to determine their influence
on the system performance. Statistical data is recorded during the simulation
to compute the application goodput and efficiency ratio (according to the for-
mulas presented in Subsection 13.2.2). With the calculated metric values, the
outcome charts displayed in Figure 13.5 are generated after post-processing
with a spreadsheet tool.

Efficiency Ratio - Received Traffic vs. Sent Traffic

Parameter Values: BO=5; SO=4; MAC Packet Buffer Size=1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Traffic Load (in Bytes/sec)

E
ff
ic

ie
n
c
y
 R

a
ti
o

(i
n
 %

)

1 3 5 10

Number of Data Sources

Efficiency Ratio - Received Traffic vs. Sent Traffic

Parameter Values: BO=5; SO=4; MAC Packet Buffer Size=10

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Traffic Load (in Bytes/sec)

E
ff
ic

ie
n
c
y
 R

a
ti
o

(i
n
 %

)

1 3 5 10

Number of Data Sources

Fig. 13.5: Efficiency ratio with various number of sources and traffic loads

324 13. Wireless Networking Use Cases

The application goodput metric is used to calculate the efficiency ratio
(sent traffic compared to received traffic), shown in the two charts in Fig-
ure 13.5. All packets sent and received during the simulation time are added
up to get the application goodput values. An initial transient phase can be
ignored for this example case, since the overall simulation time period is con-
sidered. For other evaluations (e.g. channel access delay, routing delays), a
transient recovery time has to be considered explicitly, because it may have
significant influence on the metrics.

The efficiency ratio values are plotted on the y-axis while the varied traffic
loads are plotted on the x-axis, as shown in Figure 13.5. This way, one can
easily deduct how higher or lower traffic loads influence the efficiency ratio
(amount of data received at the sink compared to sent data). As expected, the
efficiency ratio drops with higher traffic loads and a larger number of data
sources, since collisions on the radio channel, blocks radio channel access,
and network interference rise with more coexisting data sources. The second
outcome chart shows that with a larger MAC packet buffer size the efficiency
ratio increases compared to the other outcome chart with a packet buffer size
of 1. The reason for this lies on the fact that data packets get dropped at
the MAC layer if they cannot be transmitted until the next packet arrives
from the upper application layer. If statistics are only logged or measured on
higher layers, such effects are often not easily visible. This is one of the reasons
why it is important to think about the exact layer on which statistics and
data are collected and recorded (in the example use case on the MAC or the
PHY layer for example). Another important remark is that the lines between
the plotted dots are only connection lines. Values were only calculated for
the given parameters. There might be significant deviations in the intervals
between the measured parameters.

Performance evaluations are always a crucial part. More information on
typical problems and approaches for successful performance evaluations of
computer networks and systems can be found in [235]. To enable a com-
parison of simulation results, the used system parameters should always be
presented together with the simulation results. Many parameters have a di-
rect or indirect influence on the performance; for the IEEE 802.15.4 example
use case, such parameters could be the backoff and channel access times,
scanning intervals, or PHY turnaround times. It is therefore always a good
idea to give a list of set parameters, especially if the settings differ from the
values specified in the standard [429].

13.2.7 Summary

This section presented a practical use case for the modeling of a performance
evaluation of IEEE 802.15.4 WPANs. A typical approach for the modeling,
simulation, and evaluation was described along with comments for the system

13.2 IEEE 802.15.4 Performance Analysis 325

modeling, the choice of metrics and parameters, and the creation of reference
scenarios. Example outcome charts were presented and evaluated and general
hints for practical appliance were also given.

This Page Intentionally Left Blank

14. Modeling Mobility
Andras Berl (University of Passau)

14.1 Introduction

In wireless networks, communication can take place based on an infrastructure
(e.g. WLAN access point or GPRS base station) or it can take place in ad-
hoc mode, where mobile devices are connected directly to each other and care
for the routing by themselves (mobile ad-hoc networks). When such wireless
networks are investigated and simulations are performed, it is often necessary
to consider the movement of entities within the simulated environment. There
are several common examples of scenarios that involve a movement of entities:

– A number of WLAN access points are installed in a building and config-
ured in infrastructure mode. Users are moving within the building and are
roaming between the different access points without loosing connectivity.

– Users with cell phones are walking in a city. While moving, the cell phone
changes the base stations it is connected to (handover, see Chapter 15).
The user is able to continue a telephone call without interruption.

– Cars (e.g. driving on a highway) use car-to-car communication to pass
each other information about congestion or an accident. To do so, a mobile
ad-hoc network is set up between cars that are near to each other. Such
networks are often called vehicular networks.

– In an emergency situation (e.g. an earthquake or a fire in a big building) the
fire brigade, ambulance, and police are setting up a mobile ad-hoc network
to clarify further proceedings.

In such scenarios (and many others) the mobility of entities in the network
plays an important role when communication has to be established. Protocols
(e.g. routing or handover algorithms) need to be optimized with respect to
the experienced mobility. Actually, the results of network simulations that
include mobility of entities can vary significantly when the mobility patterns
of moving entities are changed (see Section 14.4).

Often, it is difficult to gather real movement data (also known as traces,
see Section 14.2) of a sufficient number of entities for simulations. To over-
come this problem, synthetic mobility models have been developed that are
generating simplified virtual movement data for a number of entities. There
are several mobility models with different properties. Section 14.2 catego-
rizes mobility model approaches. Section 14.3 presents several approaches of
mobility models in detail. Section 14.4 discusses the appropriate selection

328 14. Modeling Mobility

of mobility models for certain simulation scenarios and gives hints for the
selection. Section 14.5 concludes this chapter.

14.2 Categorization of Mobility Models

This section describes different categories of synthetic mobility models. Due
to the vast amount of available models and scenarios, the categorization pre-
sented in this Section is not exhaustive, there are further categories of mobil-
ity models which are not discussed in this section. Furthermore, the categories
are not disjunctive to each other. A single mobility model may fit in several
of the presented categories. In spite of this incompleteness, the presented
categorization helps to get an overview of mobility models and to get an
impression of the diversity of available models and simulation scenarios.

14.2.1 Traces and Synthetic Mobility Models

Traces are mobility patterns that are logged from real life situations. Tuduce
et al. [469] give an example for the logging of traces. The study monitored
350 WLAN access points spread over 32 buildings for three months. The ac-
cess points were configured to run in infrastructure mode. MAC addresses of
network interface cards identified the users. The access points were polled ev-
ery minute for user association information. This way, the location of WLAN
users was gathered (as long as the users were online) and implicitly also an
estimation of the users movements. In another example, Tang et al. [453]
traced the mobility of 74 users in a campus network for 12 weeks. Addition-
ally, operators of mobile cellular networks might provide interesting traces of
users that are using cell phones.

Synthetic mobility models, which are the main focus of this chapter, are not
directly based on the logging of users’ movement behavior. Instead, mobility
patterns are generated by algorithms that specify virtual behavior of users
and predict their movements. These movements of virtual users are usually
constrained to a simulation area with limited border lengths. On one hand,
synthetic mobility models can be inspired by traces, attempting to model the
users’ behavior in realistic situations. On the other hand, traces can be used
to verify synthetic mobility models by comparison.

14.2.2 Entity and Group Mobility Models

Mobility models can be categorized by the number of entities that are de-
scribed by a single mobility model.

14.2 Categorization of Mobility Models 329

Entity mobility models consider the movement of a single individual en-
tity, e.g., a human being or an animal. If there are several entities, they are
typically considered independently from each other and their movements are
predicted independent from each other. Also the number of entities that are
existing in the simulation area is not considered in the algorithm that pre-
dicts a single entity’s movement. Examples of entity mobility models are the
Random Walk Model, the Random Waypoint Model, the Random Direction
Model, the Gauss-Markov Model, or the Manhattan Model (see Section 14.3).

Group mobility models in contrast, consider a set of individual entities
as a group, which is moving as a whole. The movement of entities is related
to each other. Usually, there is a group leader or another moving point of
orientation. The group entities gather around this orientation point and follow
its movements with specified deviations. Group models are often said to be
more realistic than entity mobility models. In reality, the movement of human
beings is usually not independent from each other. People are walking around
in groups or have similar directions (e.g. towards a shopping center). Animals
are often moving in herds or swarms. Examples of group mobility models are
the Pursue Model, the Column Model, the Nomadic Community Model (see
Section 14.3), or the Reference Point Group Model [44].

14.2.3 Human, Animal, and Vehicle Mobility Models

Another categorization of mobility models is based on the nature of the en-
tity that causes the movement. The criteria of this categorization is not the
amount of entities, but the behavior of the entities.

Human mobility models are describing the movements of human beings in
certain scenarios. Examples for such scenarios are pedestrians in inner cities
or employees during work in a building. Examples of human mobility models
are the Random Walk Model, or the Random Waypoint Model.

Animal mobility models are analogously based the movement of animals,
e.g. in herds or swarms. Examples of animal mobility models are the Random
Walk Model, the Pursue Model, or the Nomadic Community Model.

Vehicle mobility models are predicting the movement of vehicles (e.g. cars
or tanks). Often the mobility of vehicles is restricted to streets and traffic
rules, which imposes particular restrictions on their mobility patterns. Exam-
ples of vehicle mobility models are the Freeway Model [44], or the Manhattan
Model.

14.2.4 Normal Situation and Special Situation Mobility Models

Mobility models can also be categorized by looking at the character of the
situations which they are describing.

330 14. Modeling Mobility

Normal situation mobility models are assuming ordinary scenarios with-
out special influences. People are walking in a pedestrian area, working in
a building, or driving on streets, for instance. Examples of human mobility
models are the Random Walk Model, the Random Waypoint Model, or the
Manhattan Model.

Special situation mobility models are modeling unusual situations in which
entities show specialized movement behavior. Emergency situations are ex-
amples of such special situations, e.g. a fire in a building or an earthquake.
Examples of Special Situation Mobility Models are the Pursue Model or the
Column Model.

14.2.5 Other Mobility Models

Apart from the presented categorization of mobility models there are further
mobility models that are specialized to certain scenarios. These kinds of mo-
bility models can often be found in special literature or they can be derived
from available mobility models, if needed.

Fig. 14.1: Boundless simulation area

An example of such a special problem is the railway problem where trains
run on rails without collisions. Another example is the correlation of move-
ment to technical aspects (feedback). If a cell phone user looses contact to the
base station, for instance, he might change his current movement in order to
get a better quality of service. In some cases collisions of users are influencing
the movement, e.g., avatars of computer games. Social mobility models [204],
for instance, consider the interactions and relationships between mobile users.
Mobility models can also be derived from natural or physical phenomena, e.g.
the movement of molecules or fluids.

Sometimes specialized simulation areas are needed in mobility models.
The question has to be answered, what happens to the mobile entity, when

14.3 Mobility Models 331

it reaches the boundary of the simulated area. Possible solutions are, for
instance, slowing down, changing direction, or bouncing back. One example
for such a special simulation area is the Boundless Simulation Area [87].
If a moving entity reaches the border of the simulation area, it appears at
the opposite side. Therefore, entities can never reach the boundary of the
simulation area. By applying the Boundless Simulation Area algorithm, the
simulation area is mapped to a torus. This mapping is illustrated in Figure
14.1. When a Boundless Simulation Area is used, it is important to see that
the metric of the mobility model has to be adapted to it.

Another problem related to simulation areas is the appearance of obstacles
within the area. The Obstacle Mobility Model [44] provides an example for
such a specialized simulation area. It allows to define obstacles that directly
influence the movement of the entities.

14.3 Mobility Models

This section discusses several examples of widely used mobility models in
detail. A more detailed description of the presented mobility models can be
found in Camp et al. [87], Bai et al. [44], and Sanchez et al. [399].

The most important properties of the presented models are described and
illustrated in figures that show possible movement patterns of the models.

14.3.1 Random Walk Model

The Random Walk Mobility Model is a widely used model that is based on the
idea that entities in nature move in unpredictable ways. In this mobility model
an entity moves from its current location to a following location by choosing
randomly a new direction and speed. Direction and speed are limited to
predefined ranges, i.e. they are chosen from [speedmin; speedmax] and [0;2π].
Every movement is limited to a constant time interval. After a movement,
the direction and speed for the next movement is calculated. When the entity
reaches the boundary of the simulation area, it bounces off the boundary
with an angle that depends on the incoming direction and continues its path.
Sometimes the movement is not limited to a constant time interval but to a
constant distance.

In Figure 14.2 the Random Walk Mobility Model is illustrated. The square
illustrates the simulation area, with the 0/0 coordinate as origin and the rel-
ative distance on the X and Y axis to the origin. The walk begins in the
center of a simulation area. It can be seen, that this model utilizes especially
the area around the starting point. It can also be seen that the algorithm
generates movements with sharp turns and stops, which might be unrealistic

332 14. Modeling Mobility

Fig. 14.2: Random Walk Mobility Model with constant time interval

for certain scenarios. This is caused by the fact that the Random Walk Mo-
bility Model is a memoryless mobility pattern. In the calculation of the next
movement, no knowledge of previous movements is used. The current speed
and direction of a movement is completely independent of its past speed and
direction.

14.3.2 Random Waypoint Model

The Random Waypoint Mobility Model is also a widely used model and is
very similar to the Random Walk Mobility Model. In this mobility model,
an entity chooses a random destination coordinate (within the simulation
area) and a random speed (from [speedmin; speedmax]). Then it moves from
its current location to the destination location. Additionally, the Random
Waypoint Mobility Model defines pause times between two movements. After
a pause, the new movement is calculated. If pause times are set to zero and
the speed ranges are chosen to be similar, the Random Waypoint Mobility
Model is identical to the Random Walk Mobility Model

Figure 14.3 illustrates a traveling pattern of an entity that uses the Ran-
dom Waypoint Mobility Model. It starts in the center of the simulation area.
Again, the algorithm generates movements with sharp turns and stops.

14.3 Mobility Models 333

Fig. 14.3: Random Way Point Mobility Model

14.3.3 Random Direction Model

In the Random Direction Mobility Model, an entity chooses a random di-
rection (in the range [0;π]) and a random speed (in the range [speedmin;
speedmax]), similar to the Random Walk Mobility Model. The entity moves
with the chosen direction and speed towards the boundary of the simulation
area until reaching it. There it pauses for a predefined time, before choosing
the next direction and speed, to move again.

Fig. 14.4: Random Direction Mobility Model

334 14. Modeling Mobility

In a variation of this model the entity does not move to the boundary,
but stops on its way at some point along the destination path. This behavior
can be also simulated using Random Waypoint Mobility Model.

A sample moving pattern for the Random Direction Mobility Model is
illustrated in Figure 14.4. It can be seen that in comparison to the Random
Walk and the Random Waypoint, the Random Direction Mobility Model
utilizes the whole simulation area and is not focused on the center of the
area.

14.3.4 Gauss-Markov Model

In the Gauss-Markov Mobility Model the moving entity gets initially assigned
a speed and a direction. At fixed intervals of time, an update of direction and
speed is applied to the entity. In contradiction to the models described before,
the Gauss-Markov Mobility Model enables movements that are depending on
previous movements. The degree of dependence on previous movements is
adapted by a parameter α (α = [0,1]).

– α = 0: The new movement does not depend on previous movement and
results similar to the random walk are achieved

– 0 < α < 1: Intermediate levels of randomness are obtained
– α = 1: The entity moves in a linear manner

Fig. 14.5: Gauss-Markov Model

Additionally an average speed can be specified for an entity. To avoid
collisions with the boundary of the simulation area, the direction of the entity

14.3 Mobility Models 335

is adapted when it approaches the boundary. When a certain distance to the
boundary is met, the entity is forced away from the boundary. The current
direction is adapted to directly move away from the boarder as a basis for
the calculations of the next step. This avoids, that an entity remains near a
boundary for a long period of time.

When the predefined time interval expires, a new direction and speed is
calculated, based on the current location, speed and direction. Other imple-
mentations of this model with different properties exist.

Figure 14.5 illustrates an example traveling pattern of an entity using the
Gauss-Markov Mobility Model, beginning in the center of the simulation area.
By adapting the direction and speed updates based on the current direction
and speed, the Gauss-Markov Mobility Model does not show the same sharp
stops and turns than the mobility models described before.

14.3.5 Manhattan Model

The Manhattan Mobility Model is a widely used model which is based on the
idea that the movement of entities is often bound to streets or highways.

Fig. 14.6: Manhattan Model

A map is specified with streets (both directions) and crossings on which
the entities move. A realistic acceleration can be defined (e.g. for cars) and
also an average velocity. Additionally a safety distance between two entities
is set.

336 14. Modeling Mobility

Entities are moving on predefined streets and are changing the street at
a crossing with a certain probability. An example configuration is:

– P(onwards) = 0.5
– P(left) = 0.25
– P(right) = 0.25

Figure 14.6 illustrates an example of a map with streets for the Manhattan
Mobility Model. A moving entity will move on the predefined streets and
change to another street at a crossing with the given probability.

14.3.6 Column Model

The Column Mobility Model is a group mobility model in which each mobile
entity follows a reference point. Reference points are arranged in a line. The
line itself is moving, following an entity mobility model. The angle of the line
may be fixed or the line may be rotating. The mobile nodes are not directly
approaching the reference points. Instead they are are moving towards a
coordinate that is chosen randomly nearby their reference point. Examples
for this group mobility model are

– a convoy of trucks which are driving one after another in a row
– or tanks which are side by side approaching an enemy.

Fig. 14.7: Column Model

Figure 14.8 illustrates the group movement of the Column Mobility Model.
It is shown that a group of mobile entities is following reference points on a

14.3 Mobility Models 337

vertical line. Every mobile node is approaching an own reference point, having
small deviations in its direction. The line is moving as a whole, depicted by
the direction vectors.

14.3.7 Pursue Model

The Pursue Mobility Model is a group mobility model in which a group of
mobile entities is pursuing a single reference entity. The reference entity is
using an entity mobility model, e.g. the Random Walk Mobility Model. The
other entities are pursuing the reference entity, however, small deviations are
added to their direction. Additionally, acceleration is simulated in this model.
An example of this scenario is a group of tourists which are following a guide
in a museum.

Fig. 14.8: Pursue Model

Figure 14.8 illustrates the group movement of the Pursue Mobility Model.
A reference entity is illustrated which is moving in a certain direction (de-
picted by a vector). The other entities are approaching the reference entity
with slightly varying directions (also depicted by vectors).

14.3.8 Nomadic Community Model

In the Nomadic Community Mobility Model the mobile entities are following
a single reference point. All nodes are sharing the same reference point and are
randomly moving around it. The reference point itself is moving, following

338 14. Modeling Mobility

an an entity mobility model (e.g. Random Walk Mobility Model). When
the reference point stops its movement, the mobile nodes are continuing to
move around the reference point. Examples for this group mobility model are
nomads which are moving from one place to another.

Fig. 14.9: Nomadic Model

Figure 14.9 illustrates the group movement of the Nomadic Community
Mobility Model. A reference entity is illustrated which is moving in a certain
direction (depicted by a vector). The other entities are randomly moving
around the reference entity.

14.4 Selection of Appropriate Mobility Models

Similar to the use of other simulation models, a trade-off has to be made
between the accuracy of a mobility model and its costs. The more accurate
a mobility model is and the more it fits to the real-life scenario which is
modeled, the more realistic results will be produced. However such realistic
mobility models usually impose high complexity. This increases the costs in
terms of implementation efforts and also in terms of slow performance in
simulations which might be a serious problem. If the mobility model is kept
simple on the other hand, its implementation is easy and the algorithms will
allow for a good simulation performance. However, the results of the model
will be also simplified.

Although the simple models are often used in simulations (e.g. in ad-
hoc network research), it is reasonable to adapt the mobility model to the
actual problem space. In [87] Camp et al. illustrated that mobility models are

14.5 Conclusions 339

significantly influencing the results of simulations. The paper concludes, that
the performance of ad-hoc protocols varies significantly under the influence
of different mobility models. This implies that it is important to chose a
mobility model which actually fits to the described problem. Also in [188] the
appropriate selection of well known models for mobility and radio propagation
is discussed with respect to the simulation of mobile ad-hoc networks.

Usually it is not a good idea to just take a simple model like the Ran-
dom Walk without verifying that it fits to the problem. However the simple
models can provide a good starting point for simulations. They can also be
used as an alternative for more complex models. Results received with com-
plex models can be compared to the results received with simplified models
to validate that the behavior of mobile entities actually has impact on the
results. However, even the use of a simple model (as described in Section
14.3, needs some thought. Each of the simple models shows different special
movement patters that might be more realistic to special scenarios, than oth-
ers. The Random Direction Model, for instance, utilizes the whole simulation
area and is not focused on the center of the area as the Random Walk and
the Random Waypoint model.

To find a suitable mobility model for a certain scenario, it is a good idea
to review mobility models that solve comparable problems in other scenarios.
Either the models can be used directly as they are or they can be adapted to
the new problem space. Another approach is to simply use the same mobility
models that other researchers use in the same research field (e.g. to investigate
mobile ad-hoc network protocols), if possible. This approach provides at least
comparability between different solutions for a problem.

14.5 Conclusions

There is a high number of mobility models that are used for simulations in
wireless networks. This chapter has presented several categories of mobility
models and has described a number of mobility models in detail.

It has been shown that it is important to find the appropriate mobility
model for a certain research scenario, because mobility models usually have
significant impact on simulation results. The model has to be complex enough
to provide representative results and it has to be simple enough to be easily
implemented and to provide fast simulation performance.

The most accurate entity movement patterns are, of course, achieved by
gathering traces from real moving entities. If available, such traces can also
be used to verify the mobility approximation of synthetic mobility models
against real user behavior.

This Page Intentionally Left Blank

15. Modeling Handover from the Access Net-
works’ Perspective
Sven Wiethoelter (Technische Universität Berlin)
Marc Emmelmann (Technische Universität Berlin)

15.1 Introduction

Simulation of handover processes is a complex methodological approach to
performance evaluation as it involves modeling user mobility as well as tech-
nical details of the underlying communication system. On the one hand, de-
pending on the degree of detail considered for both aspects, corresponding
simulation models may become highly complex in terms of reflecting char-
acteristics of the system under investigation. On the other hand, a thorough
understanding and analysis of the research question to be elaborated, as well
as considering handover-specific aspects of the analyzed technology can very
well lead to a simple, compact, and satisfactory simulation model. This chap-
ter provides a consistent methodology for modeling handover from the access
networks’ perspective. By following the presented approach, the reader may
acquire the knowledge on how to gauge simulation models’ required level of
detail against employed simplifications and underlying assumptions yielding
to well proportioned model designs and implementations.

The chapter is divided into three parts presenting the employed modeling
methodology (c.f. Section 15.2), application examples (c.f. Section 15.3), and
a general check-list for modeling handovers (c.f. Section 15.4).

Part one starts with a taxonomy for modeling handovers (Section 15.2.1).
Herein, the reader acquires an understanding on how different levels of detail
may be applicable for the modeling process as well as on which different taxo-
nomic groups affect the handover. Section 15.2.2 complements the taxonomy
by presenting the wireless system view of the modeling process. It therefore
classifies the different handover types and presents a choice of specific han-
dover scenarios finally yielding to different model categories applicable in the
modeling process.

Part two applies the presented methodology to two application examples:

– a handover scenario in a homogeneous 802.11-based wireless network study-
ing the effect of a particular handover phase on the experienced service
interruption time (Section 15.3.1) and

– a heterogeneous 802.11a/g system (c.f. Section 15.3.2) identifying the in-
fluence of each traffic flow on the wireless cells and performing handover
decisions based on this assessment.

342 15. Modeling Handover from the Access Networks’ Perspective

These two examples correspondingly illustrate the decision process yielding to
a multi-cell model with a high to moderate level of detail of the underlying
technology, and an abstract model allowing isolated studies in radio cells
being involved in the handover process.

Finally, Part three provides the reader with a guide for modeling handover
approaches and hereby summarizes the presented methodology.

15.2 Methodology

15.2.1 Taxonomy for Modeling Handovers

Modeling Aspects

For modeling handovers , two major aspects have to be considered: the level
of detail describing the functional components of the handover process itself,
and the amount of information that the model shall provide regarding the
impact of a handover occurrence on a single user within the communication
system respectively the system in its whole.

A typical application of the latter case is a model revealing the effects of
arriving and departing users (as the result of handover) on the experienced
quality of service within a radio cell or a particular user itself. Hereby, the
handover process can most likely be modeled by a concatenation of all in-
volved handover steps condensed in a single departure and arrival process
which can include knowledge on the costs associated with each user in order
to decide on the latter’s departure, i.e., the disappearance due to a handover
to another access network. Whereas the handover process can be modeled
in a rather abstract way, the model of the radio access system itself might
require a higher level of detail to accurately reveal the effects of the resource
consumption by new mobile users respectively the benefits from their depar-
ture. Such a model of the access technology is comparable with those used
to consider network behavior for systems supporting (mobile) users but not
experiencing handover; aspects might include a granulated representation of
the medium access and modulation and coding schemes, radio propagation
models, as well as the user’s mobility pattern within a cell affecting the over-
all system performance. Such models are not primarily driven by modeling
handover itself and are hence not further elaborated.1

In contrast, a study may focus on the effects of a particular aspect of
a handover–e.g., the time required to detect alternative access networks as
potential handover candidates–on a single user or the overall system perfor-
mance. Application examples include an evaluation of the experienced ser-
vice interruption due to various handover schemes or an assessment of the
1 Applicable models and modeling techniques are discussed in Chapters 9, 10, 12,

11, and 14.

15.2 Methodology 343

influence of handover related signaling load on guaranteed QoS levels within
a radio cell. In such a case, a subset of, or even all conceptual aspects of
the handover process have to be modeled in detail. The following section
discusses facets of the handover process which might be subject to such a
thorough modulation.

Taxonomic Groups Affecting the Handover Process

Taxonomic Groups

Fig. 15.1: Mechanisms affecting the handover process

Several mechanisms influence the handover process and, therefore, have to
be considered in the process of modeling handover. Figure 15.1 depicts these
generic mobility functions including mainly neighborhood discovery, handover
decision, link (re-) establishment , mobility management , as well as AAA (au-
thentication, authorization, and accounting). Also referred to as handover
phases, they may occur sequentially, in parallel, or may be skipped depend-
ing on the modeled technology or the required abstraction level of the model
itself [131].

Within the cell / neighborhood exploration phase, the mobile becomes
aware of available radio cells serving as a potential handover target. To ob-
tain such information, mechanisms characterized by the underlying technolo-
gies as well as technology independent methods are applicable. The former
typically involve scanning procedures in which the mobile either passively lis-
tens on the wireless channel for possible communication partners or actively
probes potential interlocutors. The latter may involve an (external) informa-
tion service which can be queried for neighborhood information depending
on the mobile’s current position. The hereby involved signaling may be spe-
cific to the underlying wireless technology (e.g., IEEE 802.11k MAC level

344 15. Modeling Handover from the Access Networks’ Perspective

neighborhood reports) or technology independent (c.f. IEEE 802.21’s media
independent information service) [133].

The main goal of the handover decision and criteria is to determine when
to conduct a handover of which mobile user to which target radio cell. The
inceptive choice, i.e., the decision which mobile has to conduct a handover,
may be based on the station’s mobility causing a degradation of the link
eventually resulting in a connectivity loss, up to metrics representing the
perceived quality of service at application level which a handover could im-
prove. Typical mobility-related metrics are RSSI- or location-based triggers,
whereas higher layer metrics may consider the jitter imposed by the wireless
system or employ an abstract cost function combining several parameters
and their effects on a single user or the wireless system in its whole. Such
abstract cost functions may also be used to predict the effect of the mobile
being subject for a handover on the target cell hence influencing the decision
to which access network a mobile should connect to. The handover decision
process might involve an admission control entity usually located in the in-
frastructure part of the access network. Such an entity monitors parameters
of the network (e.g. network load , transmission delay, or packet loss ratio)
and, based on this assessment, grants access for a terminal to the network or
even induces a handover to another wireless cell. The policies implemented in
the admission control entity are usually specific to the service provider and
may even vary from one access technology to another.

In order to conduct a handover, the mobile has to set-up a layer-2 con-
nection with the new access point referred to as link establishment. This
can be either done reactively (break-before-make handover) or proactively
(make-before-break handover). Whereas the former approach is most typical
for intra-technology handover , the latter approach is more likely to be found
for heterogeneous handover as they involve systems having multiple network
interface cards hence being able to establish multiple layer-2 links in parallel.
Another degree of freedom in classifying the handover is given by deciding
which entity controls the handover process. For example, the latter may en-
tirely be under the control of the mobile terminal or it may be controlled by a
network entity in the backbone or base station. In addition to this distinction
between mobile vs. network controlled handover, the mobile may also establish
several link-layer connections in parallel during the handover process. Doing
so, may result in receiving packets via several network connection points si-
multaneously which avoids packet loss and is hence denoted soft handover.
In contrast, hard handover only have one simultaneous link layer connection
at a time. Typical examples for mobile-controlled, hard handover are IEEE
802.11 WLAN systems whereas 3G UMTS enables network-controlled, soft
handover. In either way, regardless of the classification, link establishment
involves signaling between the mobile terminal and the access point which
can, depending on the system model and underlying wireless technologies,
even extend beyond the mere wireless link into the wired backbone.

15.2 Methodology 345

A handover results in a change of the network topology as the mobile
accesses the network via a different wireless attachment point. Mobility man-
agement schemes cope with the effects of this alteration and generally result
in the delivery of traffic destined for the mobile via the new attachment point.
Possible schemes range from layer-2 based mechanisms, over transport layer
solutions, up to approaches on application level. Hence, the creation of a
model for the handover under investigation has to account for the involved
signaling cost, consider resulting delays (and delay jitter) of arriving packets
at the mobile, or decide if the influence of the mobility management can be
neglected under given modeling assumptions.

In addition to previously discussed, access-technology-related aspects,
handover may also require a (re-) authentication of the mobile and the tar-
get access network, authorization for the usage, and accounting for costs.
Included functions may be specific of the access technology, such as the key
exchange of IEEE 802.11 to authenticate the mobile or to establish a wired
equivalent privacy, or include signaling above layer-2.2

In order to model the handover process, a detailed understanding of each
taxonomic group is necessary for every considered technology. This knowledge
in combination with the considered system model and assumptions yields to
the option of either modeling each aspect in detail, approximating its behavior
by an abstract cost function, or discarding it entirely.

15.2.2 Wireless System View

Fig. 15.2: Handover Taxonomy

This section firstly introduces a classification of different handover types.
From this, we derive a set of specific handover scenarios. Finally, an ab-
straction of these scenarios leads to three distinct model approaches. They
comprise of all aspects required to focus a simulation study on the important
parts in wireless access networks.
2 Please refer the Chapter 21 on Security and Privacy for some further aspects to

consider.

346 15. Modeling Handover from the Access Networks’ Perspective

Classification of handover types

The four general types of handovers are shown in Figure 15.2. Similar to [129]
we classify handovers regarding the four properties of intra-/inter-technology
and intra-/inter-domain approaches.

In an intra-technology handover (aka horizontal handover), a mobile just
moves between cells of the same radio access technology. These kind of han-
dovers are usually performed with one network interface card (NIC). In the
following we refer to this as a homogeneous handover.

In case that a mobile has several NICs of different access technologies
(ATs), e.g., WLAN and UMTS, it can perform an inter-technology handover
(aka vertical handover) by switching from one to another technology. This
type is denoted as heterogeneous handover .

A mobile may stay within the same administrative domain or move be-
tween several domains—the latter is denoted as inter-domain handover. As
a domain, we understand here the network that is under control of one ad-
ministrative instance such as a provider or a company. Since an inter-domain
handover implies also a change of the IP subnet, it requires not only mobility
management schemes at Layer 3 or above, but also appropriate procedures
for authentication, authorization, and accounting.3

Further degrees of freedom for this handover taxonomy are achieved when
including specifics on how the link-layer connections are established during
the handover process. As mentioned before, the system under consideration
may conduct a mobile vs. network controlled handover. Also, the mobile may
establish several layer-2 links in parallel to conduct a soft handover or only
uphold one physical connection at a time (hard handover).

Specific Scenarios

From the classification of handover types, we identify five specific scenarios
when focusing on issues arising in access networks:

1. multiple cells (potentially of several technologies) with no overlap in
space,

2. multiple homogeneous, overlapping cells,
3. heterogeneous cells, single cell of each access technology AT1 and AT2,
4. heterogeneous cells, single cell AT1, more than one cell AT2 (and vice

versa),
5. heterogeneous cells, multiple cells of each technology.

The first case is a representative of the situation where the mobile is just
associated with one cell having no overlap in space with other cells. Therefore,

3 For an investigation regarding handover interruption times of different mobility
management schemes, the reader is referred to [506].

15.2 Methodology 347

the mobile can perform a handover only with interruptions, i.e., sooner or
later, movements will bring the mobile in the coverage of another cell again.

The cases two to five represent the typical multi-cell scenarios that ap-
pear in today’s wireless networks. Note that the focus is solely on the access
networks themselves. Thus there’s conceptually no difference whether cells
are within one or several administrative domains.

Model Categories

Full-blown simulation models with lots of cells belonging to different technolo-
gies generate a high degree of complexity. Firstly, it requires an appropriate
coupling of (heterogeneous) cells within the model. Secondly, a mobility man-
agement scheme is indispensable to conduct a handover. Thirdly, the behavior
of the MAC scheme needs to represent a sufficient level of detail for modeling
handovers. All three issues may increase the complexity of a complete model
and make a validation as well as a verification extremely difficult due to the
increase in functionality.

The time-consuming development process of a full-blown model gives rea-
son to think about alternative time-saving simplifications to the modeling
process first. This section presents a proposal for three conceptual model
categories of increasing complexity that are suitable for handover investiga-
tions of increasing detail.

Single-Cell Model. The single-cell model comprises two conceptual parts: the
originator and the recipient cell. The originator cell is the one with which the
handover candidate was associated before actually executing the handover. In
contrast, the recipient cell is the one which is supposed to accommodate the
handover candidate afterwards. Following the conceptual view, a handover
is nothing else than an arrival (or departure) process from the view of the
recipient (or originator) cell. Assuming that originator and recipient cell do
not influence each other, e.g. due to non-interfering channels, this approach
allows for an isolated evaluation of both cells.

Note, that this approach is only feasible if one is interested in studying
the impact of a handover on the originator (or recipient) cell and their asso-
ciated terminals. It is not suitable for studies on the effect of a handover on
the candidate itself, e.g, investigations of the interruption duration and QoS
degradation during the handover.

The single-cell model may be applicable for multiple cells having no over-
lap in space (Scenario 1), for multiple homogeneous, overlapping cells having
no interfering channels (Scenario 2), and for heterogeneous cells with a single
cell of each access technology (Scenario 3).

Multi-Cell Model. Contrary to the single-cell model, the multi-cell approach
covers studies which cannot neglect either the coupling of cells, the impact
of the handover on the candidate, or interactions between originator and

348 15. Modeling Handover from the Access Networks’ Perspective

recipient cells. These cases require the simultaneous investigation of multiple
cells. Here, modeling of the handover includes a chain of all important steps.
Note, that this does not necessarily mean that really all steps have to be
included in the model. If one decides to go for a multi-cell model, it will really
simplify the modeling process by firstly identifying relevant steps discussed
in Section 15.2.1. Note that the multi-cell model may be applicable for all
Scenarios described in Section 15.2.2.

Cost-function Model. The cost function model basically extends the single-
cell approach. The design rationale for this concept is the idea to represent
each single cell by its own cost function. Such a cost function is nothing else
than a collection of (system) parameters reflecting effort and revenue to serve
a specific user in the corresponding cell. The advantages of such an approach
are twofold. Firstly, it allows studies for optimal access selection and han-
dover candidate selection regarding specific criteria being represented by the
cost functions. Secondly, it is beneficial especially for simulation studies of
handovers in heterogeneous networks. The reason lies in the fact that appro-
priate cost functions allow a technology-independent comparison regarding
the suitability of handover candidates for a specific access network. This al-
lows fine-grained handover decisions.

This approach is beneficial if one is interested in studying the impact of
a handover on the originator (or recipient) cell and its associated terminals.
The cost-function approach allows for separate studies of each cell regard-
ing arrival and departure process of mobile terminals. Extending this idea,
even distinct methodological means (e.g., analysis, simulations, and measure-
ments) are applicable for originator and recipient cell, i.e., while conducting
simulations for one cell, analysis may be applied for the other.

Similar to the single-cell model, the cost-function approach may be ap-
plicable for multiple cells having no overlap in space (Scenario 1), for multi-
ple homogeneous, overlapping cells having no interfering channels (Scenario
2), and for heterogeneous cells with a single cell of each access technology
(Scenario 3).

15.3 Application Examples

15.3.1 Handover in an IEEE 802.11 Multi-cell Environment

IEEE 802.11 is today’s most predominant WLAN technology and have be-
come future a standard component of mobile devices such as cellular phones
or Portable Digital Assistants (PDAs). As these devices do not only offer no-
madic mobility but also allow their users to communicate while moving from
one radio cell to another, the question comes up how well the IEEE 802.11
handover performs in terms of service interruption times.

15.3 Application Examples 349

More specifically, we focus on the handover decision phase. There, the
longer it takes to decide for a handover, e.g. due to a bad channel, the longer
the service of an application may be interrupted. We consider two approaches
for deciding on a handover: a simple RSSI-based decision and a scheme trig-
gering a handover if no beacon is received within three target beacon trans-
mission times. As shown later, these two approaches can be modeled at a
different level of detail and hereby illustrate how different abstraction levels
may have significant impact on the required simulation time. Please note that
the choice of the presented algorithms is not dominated by the most novel
approaches reducing the handover delay, but rather by didactical reasons as
it allows to model different mechanisms affecting the handover at different
abstraction levels.

System Model

As the comparison of different mechanisms for the handover decision phase is
subject of the investigation, the (homogeneous) multi-cell model as described
in Section 15.2.2 is chosen. Depending on the model’s level of detail regarding
the underlying technology, it allows to specifically identify the effects of a
particular handover phase on the experienced handover delay. Without loss
of generality of this application example, only two overlapping IEEE 802.11
radio cells are considered and a single mobile terminal moves on a straight
line from one AP to the other.4

The IEEE 802.11 working group has also conducted work on a common
metric set to evaluate the performance of WLAN equipment [17]. The defined
access point transition time (APTT) [47] metric is the most appropriate to
describe the duration of the handover including all its sub-phases such as
handover decision, neighborhood discovery, and link re-establishment. This
metric classifies the times between the last successful reception of a user
datagram via the originating AP and the first successful reception of a user
datagram via the destination AP. Obviously, the resolution of the correspond-
ing measurement depends on the packet inter-arrival time (IAT) of the user
datagrams. If they derive from a point-to-point connection even possibly es-
tablished on top of IP, the APTT would also include any time needed to move
the connection within the backbone / distribution system from the originat-
ing AP to the new AP hence reflecting all possible effects of higher layer
protocols (dealing with routing, spanning tree algorithms, etc.). In order to
only focus on the pure handover phases using the APTT metric, we rather
transmit broadcast user data frames via both APs. As a result, the mobile

4 Please note, that other, more complex deployments of APs as well as other mo-
bility models do not result in any change regarding the methodology for modeling
the handover in this particular example and are hence not considered for the sake
of simplicity.

350 15. Modeling Handover from the Access Networks’ Perspective

STA immediately receives user datagrams after link re-establishment without
depending on any higher layer protocols.

Regarding the radio channel, we simply assume distance-based path loss.
In order to evaluate effects of short term fading as well as other mobility
patterns for the mobile, the reader is kindly asked to decide on modeling
alternatives as described in Chapter 11.

Modeling of the Handover Phases

IEEE 802.11 [15] as well as the by now withdrawn recommended practice
802.11.1 [13] discuss various mechanisms affecting the handover process. For
the sake of simplicity, only neighborhood discovery (aka network discovery),
handover decision, and link reestablishment are discussed. For the remaining
aspects, the reader is referred to [133, 132] as well as to Section 12.1 and
Chapter 21. Assuming an open system authentication and the given APTT
metric, this abstraction from AAA and higher layer handover mechanisms
is reasonable and can be, e.g., accounted for by a constant additional delay
added to the measurements.5

The goal of the following paragraphs is to demonstrate to the reader three
different abstraction levels in modeling handover phases. Two abstraction
levels are applied when modeling the handover decision phase: a very detail
model capturing most of the actual 802.11 specific exchange of signaling
messages, and a simplification eliminating such a detailed modeling. For the
latter simplification, explicit knowledge on the system model (such as channel
model and load of the network imposed during the simulation) is used. A
third abstraction level found within the modeling process is applied to the
neighborhood discovery & link-layer re-establishment phase. Again, explicitly
applying knowledge on the system (model) results in simply representing
this phase by a constant delay without any further modeling of the actually
involved signaling messages.
Handover Decision. The IEEE 802.11 standard does not specify any decision
schemes when to switch from one AP to another. Accordingly, one has to
choose how to model the handover decision phase. Existing devices commonly
implement either an approach based on the reception of beacons, or simply
decide to conduct a handover if the RSSI value drops below a given threshold.

For the first approach, a STA should decide to start the neighborhood
discovery phase (scanning) if a beacon is not received within three target
beacon transmission times. Obviously, evaluating this approach requires a
more detailed modeling of 802.11 itself: the model of the AP has to regularly
transmit beacons. Also those beacons have to be recognized by the model at
the receiving STA which has to remember when the last beacon was received
5 The reader is kindly asked to study the corresponding sections of the IEEE

802.11 standard [15] when deciding on his/her own modeling abstractions as it
is out of scope of this chapter to introduce the IEEE 802.11 technology itself.

15.3 Application Examples 351

in order to decide on starting neighborhood discovery after three target bea-
con transmission times. This very detailed model would give a rather precise
description of the WLAN behavior and would even reveal effects of short
term fading (which could theoretically cause the loss of beacons close to the
AP and hence a handover to be triggered even though the STA is very well
within the coverage of the AP). But this accurate model comes at the cost
of simulation time.

Having knowledge on the overall system model, as described in section
15.3.1, a more simulation-time-saving model could be implemented. As the
system model only considers simply path loss, short-term fading cannot occur.
Additionally, we assume only a low channel load and non-interfering STAs.
As a result, for this specific simulation model beacons can only be lost if a
STA’s distance to the AP exceeds a given distance. Based on the parameters
of the channel model, this distance can be pre-computed if an RSSI based
handover decision is analyzed. Accordingly, beacons no longer need to be
transmitted but the handover decision can be condensed to a simple query if
the STA is farther away from the AP than a given cut-off distance. Such a
modeling approach could significantly increase simulation speed.

Neighborhood Discovery and Link Reestablishment. The IEEE 802.11 stan-
dard defines two mechanisms to actively discover the neighborhood of a
station (STA), namely active and passive scanning [15]. For the former, a
STA merely listens on a channel for a beacon transmitted by APs in its sur-
rounding whereas for the latter, a STA may actively probe for existing APs.
As the standard does only apply the sequence and format of the employed
protocol messages but not the algorithm behind them, e.g. if a STA should
scan all available channels or merely a subset of them, we herein model the
neighborhood discovery phase according to the following algorithm: A station
scans for all available channels and listens on each channel for three target
beacon transmission times.

Assuming open authentication, the link reestablishment consists of a sim-
ple four-way handshake which we herein assume to occur at the cell’s border
hence being transmitted at the most robust modulation and coding scheme.

Based on these two mechanisms, it is valid to model the neighborhood
discovery (scanning) and link reestablishment phase with a constant delay
and allow the mobile STA to immediately exchange user data at the MAC
level after the handover decision scheme.

Conclusion

This application example showed how a very simplified and yet, considering
the scenario constraints and underlying assumptions, valid simulation model
for IEEE 802.11 clients can be built. On the other hand, the reader will most
likely encounter an existing simulation environment with existing models for
both, the underlying technology and the handover process. As these models

352 15. Modeling Handover from the Access Networks’ Perspective

are complex and in themselves based on simplifying assumptions, it is more
than essential to analyze the employed models and understand how they
abstract from the real world and how these abstractions could affect the
topic under consideration.

15.3.2 Cost function for an IEEE 802.11a/g System

This part presents an example for the cost function model described in Sec-
tion 15.2.2. The example is based on a system with two heterogeneous IEEE
802.11 cells, namely one IEEE 802.11g and one IEEE 802.11a cell. All mobile
terminals are equipped with separate network interface cards for each IEEE
802.11 flavor, such that a handover can be performed by switching from one
to the other interface. For this simple example, we assume that all mobile
terminals are in the coverage of both cells. This approach is applicable if
one is interested in studying the impact of a handover on the originator (or
recipient) cell and their associated terminals as well as for investigations of
optimal allocation of users to cells regarding specific criteria as performed
in [495].

The following section gives an example for the construction of cost func-
tions. It is followed by an illustration how handover decisions can be based
upon these cost functions.

Construction of Cost Functions

Regarding the cost function, we follow the common approach to combine costs
and revenues for serving a specific user. Both aspects reflect the provider as
well as the user perspective. The revenue could be represented by monetary
incomes for the provider and resulting QoS level for the specific user. Con-
trary, costs may consider the load level in the network, signaling overhead,
or effort for prioritized medium access for high-priority traffic.

For the sake of simplicity, this example focuses on one representative for
each part. For the revenue, we select the QoS level of a specific user i. Costs
are represented by the load level evoked by the transportation of user’s traffic
flow. Here, we consider a cost function that linearly combines weighted and
scaled parameters for both parts:

cWLAN (i) = ω1
ta(i)
Δt

+ ω2QoS(i)

with ω1 + ω2 = 1
(15.1)

The QoS parameter separates into several parts dependent on the re-
quested service. Here, we distinct dependent on different QoS classes. For
VoIP, it would consist of the end-to-end delay, jitter, and packet loss (nor-
malized by their maximum tolerable values).

15.3 Application Examples 353

Fig. 15.3: Handover Decision Process

The load evoked for the transportation of user i’s traffic is reflected by the
airtime metric ta measured over a certain interval Δt.6 Basically the airtime
is nothing else than the duration for which the wireless channel is occupied
for a transmission. It is similar to the airtime link metric of the amendment
IEEE 802.11s, which however uses link probe packets instead of measuring
the actual traffic. The airtime is calculated as

Δtai = tIFS + td(Ratej) + tack (15.2)

Δtai represents the amount of time that the wireless medium is occupied
(or reserved, in case of inter-frame spaces and NAV settings7):This includes
the whole transmission sequence consisting of the inter-frame spaces DIFS or
AIFS and SIFS (tIFS), the duration td of the complete data frame "on air",
where the data part is encoded with a certain modulation scheme Ratej and
the acknowledgment tack.

Handover Decisions on the basis of cost functions

For the handover decision process, the involved access networks are divided
into the two conceptual parts described in Section 15.2.2—the originator and
the recipient cell. In principal, there exist three general concepts regarding the
placement of the handover decision. This can be realized within the originator
network, the recipient network, or by a separate arbitration entity.

6 For a discussion about the choice of the interval, the reader is referred to [494].
7 The backoff duration does not apply here, since only the occupation of the chan-

nel is of interest.

354 15. Modeling Handover from the Access Networks’ Perspective

In the following, we discuss the outstanding tasks for a handover if the
decision is made in the originator network. Figure 15.3 displays all involved
entities and the work-flow for a handover decision that is discussed in the
following. The originator network, in this example the IEEE 802.11g cell,

1. identifies user(s) as potential handover candidate(s),
2. estimates the gain due to the potential handovers,
3. requests cost function value estimates from the recipient network via

appropriate means of signaling,
4. compares candidates’ cost function values within originator and recipient

network, and
5. finally decides for or against a vertical handover for each candidate.

Contrary, the recipient network

1. estimates the cost function value for each potential handover candidate
currently served by the originator network, and

2. assesses the impact of a handover on other users.

A handover for user i from the 11g to the 11a cell takes place, if

c11g(i) > c11g(j) ∀ users j �= i (15.3)

c11g(i) > c11a(i) (15.4)

Eq. (15.3) represents the identification of potential handover candidates
within the IEEE 802.11g cell, i.e., the selection of the user with the high-
est cost function value. Eq. (15.4) describes the comparison of candidate’s
cost function value in IEEE 802.11g and IEEE 802.11a. Only in case that
his value is significantly better in the IEEE 802.11a cell, a handover will be
triggered. This part is indispensable, since serving the user with the high-
est costs in IEEE 802.11g may still be cheaper than putting him into IEEE
802.11a.

15.4 A Guide for Modeling Handover Approaches

The following guideline summarizes all methodological parts discussed in Sec-
tion 15.2 and may hence be used by the reader during the initial planning
phase of the simulation to carefully consider all relevant aspects of modeling
handovers. In summary, stressing the importance to firstly decide on which
modeling approach may be conceptually feasible, which models may be use-
ful, and which level of detail is required in the modeling process are a major
concern of this section. Figure 15.4 presents such a guide whose four main
parts are shortly discussed in the following subsections.

15.4 A Guide for Modeling Handover Approaches 355

 - Purpose of simulation study
 - System view
 - Set of metrics

 - Selection of HO type
 - Choice of specific scenario

 - Originator & recipient cell
 - Impact on other terminals

 - Coupling of cells
 - Impact on HO Candidate
 - Interaction between cells

Single
cell

model

Cost
function
model

Multi
Cell

model

Multi
Cell

model

Problem
Formulation

Classification

Focus
of studies

Level of detail

Fig. 15.4: Guide for modeling handovers

15.4.1 Problem Formulation

The first step of a simulative investigation is nothing else than asking your-
self "What do I really want to investigate?" Without clarifying the goal of
the simulations, one will likely have difficulties later on during the choice of
simulation models and considerations regarding the level of detail. In a worst
case this may lead to a waste of time not only for modeling but also regarding
the computational effort—obviously, the more detailed a simulation model is,
the longer will a simulation last.

A precise formulation of a problem being studied should consist of three
main parts. First of all, the purpose of the simulation study must be very
clear. This allows in a second step to define a detailed system view ("the
big picture") including the choice of specific systems, traffic and user type
selection, as well as the definition of requirements and assumptions. Finally,

356 15. Modeling Handover from the Access Networks’ Perspective

one should carefully think about how to evaluate the system under study,
which leads to a set of metrics.

15.4.2 Classification

After formulating the problem precisely, one is able to perform a classification
regarding the handover. Firstly, the handover type can now be specified by
selecting one of the four general types discussed in Section 15.2.2. Secondly,
the choice of the specific scenario (Section 15.2.2) results directly from the
problem formulation. The specific scenario comprises the number of wireless
cells, their degree of overlap, and potentially different technologies.

15.4.3 Focus of Studies

The choice of a certain model type from the three categories discussed in
Section 15.2.2 greatly depends on the focus of the study. Conceptually, there
exist two fundamentally different approaches.

The first focuses on independent effects of a handover, e.g., on cells either
emitting or receiving a terminal, or on the impact on other terminals in these
cells. Thus, this approach covers also models not considering the impact of
a handover on the candidate himself. This may lead to simplified models
namely the single-cell as well as the cost-function model.

Studies belonging to the second approach focus on cases which require a
simultaneous investigation of multiple cells. This includes studies considering
the signaling in the backplane, the impact on the handover candidate himself,
or interactions between cells.

15.4.4 Level of Detail

Finally, determining the required level of detail leads to the selection of a
certain model type. For this, one should carefully revise the taxonomic groups
affecting the handover process (Section 15.2.1). Here, it is important to decide
how detailed each handover phase must be modeled such that the overall
complexity remains as low as possible but still meets the purpose of the
simulation study.

Together with the requirements, the specified level of details further helps
later on for the selection of external (already existing) simulation model
implementations.

This Page Intentionally Left Blank

Part III

Higher Layer Modeling

16. Modeling the Network Layer and Routing
Protocols
Pengfei Di (Universität Karlsruhe (TH) & TU München)
Matthias Wählisch (Freie Universität Berlin & HAW Hamburg)
Georg Wittenburg (Freie Universität Berlin)

16.1 Introduction

The network layer is in charge of ensuring end-to-end connectivity among
the nodes of a network. This goal comprises the subtasks of providing a way
of addressing all participating nodes, setting up a forwarding mechanism for
packets on the nodes, and establishing paths along which packets are to be
routed. The major challenge in achieving this goal is the scalability of the
routing algorithms with regard to data structures and signaling overhead,
especially in the light of a changing network topology.

In this chapter, we first cover the basics of routing protocols (Section 16.2)
and then proceed to describe the impact of node mobility on routing (Sec-
tion 16.3). For brevity, we limit our discussion on connectionless, i.e. packet-
switched, networks as opposed to connection-oriented networks. The concepts
presented here are thus mostly applicable to traditional Internet-style net-
works as well as all kinds of wireless ad hoc networks.

Models for the network layer are closely related to the data link layer as
introduced in Section 10.1 and the network topology as discussed in Chap-
ter 22. For most simulations, it is quite common that the simulated routing
protocol consists of a slimmed-down implementation of the real protocol with
special attention paid to the distinguishing features of the protocol. In such
cases, one may also consider integrating a real-world implementation of the
protocol as described in Chapter 6.

16.2 Routing

In the first part of this chapter, we discuss basic routing in wired and wireless
networks. We start with a classification of routing protocols with examples
for quick reference (Section 16.2.1), and then proceed to review the compo-
nents of a routing protocol (Section 16.2.2), introduce the theoretical back-
ground (Section 16.2.3), describe commonly used metrics
(Section 16.2.4), briefly cover issues related to virtual or overlay routing
(Section 16.2.5), and conclude with some issues to keep in mind when

360 16. Modeling the Network Layer and Routing Protocols

Fig. 16.1: Classification of Routing Protocols by Network Organization

simulating routing protocols (Section 16.2.6). For more in-depth information
we suggest the discussions in [452, 367, 401].

16.2.1 Classification and Examples

Multiple taxonomies for routing protocols have been proposed in the litera-
ture, most of them focussing on specific types of networks ranging from the
Internet backbone [452, Chapter 5] to sensor networks [29]. These classifi-
cations schemes emphasize different properties of the routing protocol, e.g.
network organization, algorithmic concepts or delivery semantics, and we fol-
low these approaches in our overview.

Routing protocols may be classified depending on the organizational struc-
ture of the network they are operating on (see Figure 16.1). Networks gener-
ally fall into two categories in that they are either infrastructure-based or of
ad hoc nature, but the network may also follow a virtual higher-level structure
in case of overlay networks which we cover separately in Section 16.2.5. For
infrastructure-based networks, routing mechanisms can be subdivided into
static mechanisms and dynamic routing protocols. Static mechanisms usu-
ally require a human administrator to setup the routes and thus emphasize
predictability over scalability, while the opposite is true for dynamic pro-
tocols. Dynamic protocols are further subdivided into internal and external
protocols based on whether the routers are part of the same administrative
domain or not. Popular examples for internal, dynamic routing protocols in
infrastructure-based networks are RIP [304] and OSPF [324], an example for
an external routing protocol for the same type of network is BGP [386].

In ad hoc networks , routing protocols are commonly divided into proac-
tive (or table-driven) protocols and reactive (or on-demand) protocols. The
key difference between these two approaches is that proactive protocols peri-
odically exchange neighborhood information to keep a global routing table on
each node up to date, while reactive protocols only start the route discovery
process when packets to specific nodes are handed down from the transport

16.2 Routing 361

Distance Vector Link State
Infrastructure RIP [304] OSPF [324]

BGP [386]
Ad hoc DSDV [362] OLSR [233]

AODV [363]

Table 16.1: Exemplary Routing Protocols by Network Organization and
Algorithm

layer. As the data transfer can only be initiated once the route is in place,
reactive routing protocols require appropriate models for the delays on the
lower layers for an accurate simulation. Widely used reactive protocols in-
clude DSR [244] and AODV [363], while DSDV [362] and OLSR [233] are
typical representatives for proactive protocols. Hybrid approaches, such as
ZRP [190], combine the advantages of both proactive and reactive schemes.

Looking at the algorithmic aspects of routing protocols , they are com-
monly divided into two main categories: Distance vector protocols base their
routing decision on destination-specific next-hop information which is dissem-
inated hop by hop throughout the networks. Link state protocols construct
a graph of the network on all participating nodes by flooding information
about connectivity in their respective one-hop neighborhood. Each node can
then locally extract routing information from this graph by running one of the
shortest-path algorithms presented in Section 16.2.3. Of the routing protocols
mentioned above, RIP, AODV, DSDV and at its core also BGP are distance
vector protocols, while OSPF and OLSR are link state protocols. The rela-
tion between organizational and algorithmic concepts of these protocols is
illustrated in Table 16.1.

For different delivery semantics, the routing schemes can be further clas-
sified into unicast, broadcast, multicast, concast and anycast. In unicast, the
destination of a packet is a dedicated node; in broadcast, all nodes within the
same logical network (referred to as broadcast domain) are the destination; in
multicast, nodes are grouped and the group members should receive the pack-
ets destined to the group; in concast data will be sent by several sources to a
single receiver, thus, being the counterpart of multicast; in anycast, nodes are
also grouped, but only the closest group member should receive the packet.
Most aforementioned routing protocols are unicast protocols with partial sup-
port for broadcast operation.

For a quick reference, Table 16.2 illustrates the available implementations
of the routing protocols mentioned above in various simulators. Ns2 is one
of the most widely used simulators in academic area. The routing models in
OMNeT++ are integrated within its frameworks INET and INETMANET
respectively. OPNET is a commercial simulator, but it provides free license
for academic research and teaching. SWANS is a wireless network simulator
and thus includes only ad-hoc routing protocols.

362 16. Modeling the Network Layer and Routing Protocols

routing protocols/simulators OMNeT[474] ns2[116] OPNET[213] SWANS[9]
RIP + + + −
BGP − − + −
OSPF + + + −
AODV + + + +
DSR + + + +
OLSR + − + −
DSDV − + + −
ZRP − − − +

Table 16.2: Implemented Routing Protocols in Common Simulators

16.2.2 Components of a Routing Protocol

A routing protocol contains the following components : node addressing, topol-
ogy maintenance, path selection and cross-layer operation.

Node Addressing

As a prerequisite for routing packets, each node in the network needs an
address to identify itself. Addresses are normally unique in a network do-
main; however, in some cases duplicated addresses are also permitted, e.g.,
in networks supporting anycast.

Addressing schemes can be split into two groups: structured addressing
and unstructured addressing. Unstructured addressing means normally a ran-
dom ID allocation in a flat numerical space. An unstructured addressing
scheme can be easily implemented in a distributed manner, since every node
can assign itself an address locally and randomly. This addressing scheme
is often used in ad hoc networks and overlay networks, while traditional IP
network (like the Internet) rely on external administration, e.g. by using
DHCP [125] or stateless address auto-configuration in IPv6 [464].

Many routing protocols assume a unique address assignment and do not
have a mechanism to check for duplicate addresses. When modeling these
kinds of protocols, the address length should be taken into consideration in
order to reduce the probability of address duplication.

Assume that a uniform distribution is used to allocate m addresses to n
nodes, the probability without address duplication is:

p(m, n) = 1 × (1 − 1
m

) × (1 − 2
m

) · · · (1 − n − 1
m

) =
n−1∏

i=1

(1 − i

m
)

For a large m and n, the computational cost of the function above will be
enormous. In this case, the Taylor series expansion can be used to calculate
the approximation result. For a small x:

16.2 Routing 363

ex = 1 + x +
x2

2!
+ · · · ≈ 1 + x

we get then

p(m, n) ≈ 1 × e−
1
m × e−

2
m · · · e−

n−1
m = e

−n(n−1)
2·m

For example, if assigning 32-bit addresses randomly to an ad hoc network with
50,000 nodes, the probability of address duplication will be approximately
25%. Obviously, this 32-bit random address assignment is not suitable for
large networks.

Structured addressing subdivides the addresses into two or more parts in
order to structure the network into static subnetworks or dynamic clusters.
Such an addressing scheme is normally used in infrastructure-based networks.
For example, the IPv4 addresses in the Internet should follow the addressing
guideline [165]. As a consequence of structured addressing, routing path in-
formation to all hosts in these subnetworks can be stored in the routing tables
using one or a few prefixes [314] or address intervals [281]. It is important
to note that the current Internet does not possess a fully summable address
space mainly due to provider independent addresses.

Although structured addressing scheme is usually applied in infra-
structure-based networks, there are some efforts [136] trying to apply this
scheme to ad-hoc networks, where node movement can exist. Nodes using
this addressing scheme have to update their addresses when they change
their position, and that in turn introduces the overhead because some lookup
service is now needed.

It is worth noting that some current topology generators , like Georgia
Tech Internetwork Topology Model (GT-ITM) [511] and Boston University
Representative Internet Topology Generator (BRITE) [312], generate only
pure topologies without assigning any address to the nodes. However, some
address assignment schemes [127] can utilize the topology information and
increase the degree of address aggregation, thus reducing the average routing
table size per node and making the simulation more similar and realistic to
real networks.

Note that one node can also have multiple addresses. For example, a node
having multiple network interface cards usually has one address for each card.
Obviously, this is beneficial for the connectivity of such multi-homed nodes
(cf. Section 16.3).

Finally, for networks in which the physical location of a host is central
to the application, an addressing scheme based on the geographical coor-
dinates of the hosts may be used, e.g. Greedy Perimeter Stateless Routing
(GPSR) [248].

364 16. Modeling the Network Layer and Routing Protocols

Topology Maintenance

The knowledge of a partial or complete network topology is fundamental to
run any routing protocol. In a medium or large-scale network, it is impossi-
ble to manually configure the nodes with topology information due to cost
and potential errors. Consequently, the routing protocol must be designed to
detect the topology. Link-state routing protocols require complete topology
knowledge, while distance-vector protocols need only to know neighborhood
information and aggregate topology information from it, e.g. the distance
from the neighbors to every other node.

When and how frequently the topology information should be obtained
and refreshed depends mostly on the stability of the network topology. In
proactive routing protocols, the topology information is exchanged regularly,
thus resulting in a relatively constant signaling overhead. For example, RIP
topology information is exchanged between neighbors about every 30 seconds.
In reactive routing protocols, the topology information is exchanged only
when a node needs to establish a path to unknown destinations. This may
lead to signaling bursts. Note that in reactive routing protocols only the
topology information related to the destination is exchanged.

For unstable network topologies, in which mobility and link failures are
common, the topology information is just valid temporarily. Therefore, proac-
tive routing protocols have to exchange the topology information to keep the
route information up-to-date. For networks, in which node mobility and node
failure rates are very high, the maintenance overhead would be enormous.
This is the reason why proactive routing protocols are not feasible in these
kinds of networks. In contrast, reactive routing protocols have to timeout the
topology information frequently in order to avoid using paths based on ob-
solete information. However, as we know that every new route establishment
causes signaling bursts, designing a routing protocol for large and unstable
networks is still a challenging topic in current research.

Path Selection

The core task of a routing protocol is to find a path to any destination node.
After the node has obtained the complete topology information either by
proactive manner or reactive manner and has chosen a routing metric, it can
run some routing algorithm (cf. Section 16.2.1) to select the path for any
destination.

In classic routing protocols for wired networks, the number of forwarding
hops is widely used as a metric, thus selecting the path with the least hops
to a destination. In wireless ad hoc networks, a shortest path measured in
hops is not always the optimal solution. Transmission time, radio interfer-
ence, load balancing, etc. are also important metrics. For example, in link-
state routing protocols, the link weight could be the transmission time rather

16.2 Routing 365

than hop count, and the resulted path will be the “fastest” instead of the
topologically “shortest” one. Generally speaking, the shortest path denotes a
least-cost path with respect to a specific metric. Each routing protocol has a
path selection metric, which comprises one or more aspects mentioned above.
Common metrics will be covered in Section 16.2.4.

Some routing protocols, e.g., GPSR [248], Virtual Ring Routing (VRR)
[84] and Scalable Source Routing (SSR) [161] maintain only limited topology
information. The path to some destinations cannot be selected directly, and
the packet has to be delivered to another node, called intermediator, to whom
the path is already known. The intermediator has to accept this packet and
continue the routing process. This is not to be confused with reactive routing
protocols, in which a node generates a signal burst to collect enough infor-
mation and establish the path to an unknown destination. In these routing
protocols, some metrics have to be introduced to select the intermediator
node. The metrics employed in the intermediator selection process will be
discussed in Section 16.2.4.

Cross-Layer Operation

Additional to the operations described above, a network-layer routing pro-
tocol should also interact with the layers above and below it. At the sender,
the routing layer should receive messages from the upper layer, encapsulate
them and deliver them to the lower layer. At the receiver, the routing layer
receives packets from the lower layer and hands the decapsulated message to
the higher layer. If more than one module exist above the routing layer, mul-
tiplexing is also one task of the implementation of the network-layer protocol.
Cross-layering neglects or weakens this basic interaction between neighboring
layers: It intends to communicate between non-adjacent tiers.

Generally, a router only inspects the packet header and does not deliver
the packet to the upper layer until the destination has been reached. However,
some routing protocols enable intermediate nodes to intercept the packet. For
example, Resource Reservation Protocol (RSVP)[76] with the Router Alert
Option in the IP header[250] lets the routers examine the contents of the IP
packet more closely. Some applications can benefit from such interceptions,
in particular in wireless networks [415, 436]. Note that such layer violation
may only optimize or add new features to the routing process, and must not
hurt the end-to-end service semantic.

The network layer routing protocol cannot only provide its routing infor-
mation to the upper layers, but it can also utilize the under-lay information
to improve the network performance. For example, energy efficient routing
protocols for wireless sensor networks [412, 520] are developed with the con-
sideration of limited energy supply on the nodes.

366 16. Modeling the Network Layer and Routing Protocols

Service Mode

While path discovery and packet delivery is the basic service offered by a
routing protocol, there are optional services that a routing protocol can pro-
vide additionally, e.g., bandwidth guarantee, no-loss guarantee and ordering.
Although these services are not widely supported in the Internet, they are
important for certain networks with more specific requirement, e.g., 3G tele-
phone networks.

ATM[341] has several service modes in its network layer: Constant Bit
Rate (CBR), Variable Bit Rate (VBR), Available Bit Rate (ABR) and Un-
specified Bit Rate (UBR). For different applications, various service modes
are applied, e.g., CBR for video conferencing. In contrast, the Internet oper-
ates on the basic service mode: best effort.

16.2.3 Theoretical Background

Computer networks are commonly modeled as a graph G = (V, E) with
the vertices V representing the nodes in the network and the edges E the
links between them. The graph may be directed or undirected depending
on whether it models a network with unidirectional or bidirectional links.
Weights may be assigned to the edges of the graph to specify some property of
the link, e.g. bandwidth, delay, reliability or combinations thereof. Chapter 22
discusses procedures and alternatives for modeling the topology of a network
in more detail.

Shortest Path Algorithms

With the graph abstraction in place, routing problems in the network trans-
late into finding paths in the graph that satisfy certain constraints, e.g. being
the shortest path between two nodes. The fundamental shortest path algo-
rithms are due to Dijkstra [118], Bellman and Ford [55, 155] and Floyd and
Warshall [146, 487]. For brevity, we omit a detailed presentation of these al-
gorithms, but merely point out their key ideas. A more in-depth discussion
of these algorithms is available in [105].

Dijkstra’s algorithm is a single-source shortest path algorithm, i.e. for a
given vertex it finds the shortest paths to all other vertices. The algorithmic
idea is to iterate over the vertices sorted by their shortest currently known
distance to the source and set their respective distance to the smallest sum
of the distance of any neighbor and the weight of the edge connecting to
that neighbor. The shortest paths are then formed by storing for each vertex
the information about which vertex was used in the above assignment. The
runtime of the algorithm is quadratic in the number of vertices of the graph

16.2 Routing 367

Algorithm Applicability Complexity Comments
Dijkstra single-source O(|V |log|V |+ |E|) Edge weights must

shortest path be non-negative.
Bellman-Ford single-source O(|V | × |E|) Edge weights may

shortest path be negative.
Floyd-Warshall all-pairs O(|V |3) Edge weights may

shortest paths be negative.

Table 16.3: Comparison of Graph Algorithms

and can even be further reduced if the graph is sparse. However, the algorithm
is only applicable to graphs whose edges have non-negative weights.

The Bellman-Ford algorithm is another single-source shortest path algo-
rithm with its main difference to Dijkstra’s algorithm being that it relaxes
the requirement that all edges in the graph must have a positive weight. This
is achieved by processing all the edges in the graph in each iteration as op-
posed to Dijkstra’s algorithm which only processes the edges of the currently
selected vertex with the shortest known distance to the source. The runtime
of the algorithm is thus increased and is linear in the product of the number
of vertices and the number of edges. The algorithm also works correctly on
graphs with negative edge weights, as long as the edges do not form a cycle
of negative weight.

The Floyd-Warshall algorithm solves the all-pairs shortest paths problem,
i.e. for a given graph it finds the shortest paths between all pairs of vertices.
The key idea to this algorithm is to iteratively allow for an increasing subset of
the vertices to be considered as intermediate vertices on a path. It starts with
no vertices being allowed as intermediates – thus only considering vertices
directly connected by an edge – and than iteratively checks whether the
addition of a vertex to the set of allowed intermediates makes a shorter path
available. The algorithm can deal with negative weights on edges, but not
with negative circles in the graph. The runtime of the algorithm is cubic in
the number of vertices.

The key properties of these three algorithms are summarized in Table 16.3.
It is important to note, that the original versions of these algorithms require
complete and global knowledge of the entire network graph, which is generally
not available in real networks or changes over time. However, distributed
versions of the algorithm exists and are used as building blocks for some
of the routing algorithms presented in Section 16.2.1. Furthermore, in the
context of simulation, the optimal paths found by these algorithms may be
used to evaluate the quality of the routes discovered by simulated routing
protocols.

368 16. Modeling the Network Layer and Routing Protocols

Queuing Theory

Additionally to the path selection algorithms discussed above, one can ex-
tend the model by considering traffic patterns (see Chapter 18) and available
resources on each node, in particular memory used as part of the store-and-
forward procedure. With these additions, the routing problem effectively be-
comes a problem that can – at least in part – be described using queueing
theory.

Queueing theory [254] applies probability theory to systems described by
their storage capacity, number of service stations, queueing discipline (poten-
tially considering priorities) and availability. Given probability distributions
for the interarrival time of entities (e.g. tasks or packets) and their service
time, it is possible to derive system properties such as waiting time, number
of entities present in the system, length of busy and idle periods and backlog.
Multiple queues may be interconnected by moving entities from one queue
to another. The resulting queueing networks [66, Chapter 7] can be used to
model packet-switched computer networks, with the entities mapped to pack-
ets, waiting time mapped to delay, and storage capacity mapped to memory
allocated for packet queues.

Specific optimization problems that can be addressed using these tools are
the capacity assignment (CA) problem, the flow assignment (FA) problem,
the capacity and flow assignment (CFA) problem, and the topology, capacity,
and flow assignment (TCFA) problem [255, Chapter 5]. In this context, capac-
ity corresponds to the maximal data transfer rate of physical links and flows
describe the utilization of each channel. All of the aforementioned problems
try to minimize the average message delay under the constraint of a given
total network cost, or, if stated in their dual form, minimize the total cost
under the constraint of a given maximal tolerable delay. The CA problem
does so by considering which capacities to procure for each channel given a
set of flows and a topology, and the FA problem deals with assigning flows to
channels given their capacity and the topology. The CFA problem considers
both capacities and flows simultaneously for a given network topology, while
for the TCFA problem neither capacities, flows, nor topology are given. Ana-
lytical solutions exist for the CA (using simple models for the cost function)
and FA problems. The CFA problem is solved by iteratively applying the
solutions to the CA and FA problems, which has the drawback that it may
not find the global optimum. Finally, in order to solve the TCFA problem
heuristics employing multiple iterations of the CFA solution with different
initial topologies are used.

For an in-depth discussion how queueing theory is applied to a specific
computer network, namely the ARPANET in the mid-1970s, the interested
reader is referred to [255, Chapter 6].

16.2 Routing 369

16.2.4 Metrics

When the node has enough topology information, either obtained by regular
signaling or collected on demand, to establish one or more path to the desti-
nation, the least-cost path with respect to a specific metric will be preferred.
Thus, a path selection metric is required. If there is not enough information
to obtain the path to the destination, an intermediator selection metric is
needed to choose the proper intermediator node, which will route the packet
to its destination.

The path selection metric depends on the network properties. For exam-
ple, in wired networks, hop count is usually chosen as metric. The packet loss
rate and interference from neighboring nodes are typically ignored. However,
in wireless network, they can impact the route performance heavily, thus
should be considered into the metric.

Intermediator selection metrics vary between routing protocols. For ex-
ample, in geographic routing, the intermediator node is the neighbor node
with shortest physical distance to the destination.

Requirements for Metrics

In wired networks, the hop count is the commonly used as the routing metric,
while in wireless networks, a lot of path selection metrics have been proposed,
taking different network characteristics into account. These metrics have to
obey the following requirements [505]: route stability, efficient algorithm and
loop-free routing.

– Route stability means a stable route metric, in which the link weight varies
rarely. For example, hop count and transmission time are stable, thus they
are preferred for static network and mesh network. On the contrary, link
traffic load, delay, etc. are not proper routing metrics, because they may
change frequently and can result in route oscillations and even routing
loops.

– Algorithmic efficiency indicates a low complexity of route calculations.
Although the route calculation is not a critical issue for regular Inter-
net routers, it plays important role in the networks with power-restricted
nodes, e.g., Wireless Sensor Network (WSN).

– Loop-free routing means that no endless routing loop can be formed in a
stable network. When the network is instable, loops can be formed, but they
should be detected and solved by the routing protocol. Note that temporary
routing loops are allowed even in stable networks in some routing protocols,
e.g., hot-potato routing [143].

370 16. Modeling the Network Layer and Routing Protocols

Proposed Metrics

In practice, quite a few path selection metrics have been proposed, such as
hop count, bandwidth, Expected Transmission Count (ETX) [112], Expected
Transmission Time (ETT) [123], Weighted Cumulative Expected Transmis-
sion Time (WCETT) [503], Metric of Interference and Channel-switching
(MIC) [503], Exclusive Expected Transmission Time (EETT) [243], Inter-
ference Aware Routing Metric (iAWARE) [449], WCETT-Load Balancing
(WCETT-LB) [298]. As listed in the following sequence, each routing metric
was proposed as an improvement over the previous one. (Since the link loss
rate in wired network is very low and can be ignored in most cases, only the
first two metrics are usually applied in wired network.)

– Hop count is the count of the intermediate nodes which a packet traverse
from the source to the destination. Hop count is the most commonly used
metric of routing protocols in both wired networks and wireless networks,
e.g., AODV and RIP. The routing protocols using hop count as metric
assume that all links have similar properties across the network. If a link
property, e.g., capacity, varies largely, this metric does not result in good
performance [113].

– Bandwidth assigns smaller weights to the high-capacity links, thus making
them more likely to be selected.

– Expected Transmission Count (ETX) is the expected total transmission
count along the path. Since some links may be lossy, and it cannot be indi-
cated by hop count, ETX is used to capture this characteristic of wireless
links.

– Expected Transmission Time (ETT) is proposed to improve ETX metric
with the consideration of the different data rates on each link. ETT is the
expected total transmission time along the selected path.

– Weighted Cumulative ETT (WCETT) was proposed for wireless networks,
in which nodes support multiple physical channels. This metric is actually
the ETT added by the maximal channel repeat times along the path. If
only one channel is used in the network, it is equal to ETT.

– Metric of Interference and Channel-switching (MIC) considers the intra-
flow interference as well as the inter-flow interference in a wireless network.
Inter-flow interference means the interference to the packets in one traffic
flow from the same source and destination; intra-flow interference means
the interference to the packets from different traffic flows. MIC contains two
parts: Interference-aware Resource Usage (IRU) and Channel Switching
Cost (CSC). IRU is defined as ETT weighted by its physical neighbor
number; CSC describes how diversified the channels are assigned: The more
they are diversified, the higher the metric.

– Exclusive Expected Transmission Time (EETT) improves MIC by taking
the fact into account that interference range is always much larger than the
transmission range. EETT groups the links into interference sets and sums

16.2 Routing 371

the ETT for each set. This metric considers just the intra-flow interference
rather than inter-flow interference.

– Interference Aware Routing Metric (iAWARE) is also an improvement of
MIC. MIC considers the inter-flow interference to be merely dependent
on the physical neighbor number, while iWARE also takes the Signal to
Interference-plus-Noise Ratio (SINR) from each neighbor into account.

– WCETT-Load Balancing (WCETT-LB) is another enhancement of
WCETT. It introduces the congestion state of node into the routing met-
ric. The congestion state is in turn represented by the node’s relative queue
length.

From the examples, we can see that the more characteristics a network
has, the larger its metric design space is. Note that the metrics mentioned
above are only for path selection, not for intermediator selection.

In some hybrid routing protocols, like VRR [84], the topology information
at the node is not complete and nodes will always forward the packet to some
intermediator node, which is “closer” to the destination, until the packet
reaches its destination. The metric used to choose an intermediator node is
the space distance to the destination with respect to the overlay structure
used.

Using virtual distance as metric guarantees the success of the routing
process, but it does not considered the physical distance it may introduce.
Proximity Neighbor Selection (PNS) [185] selects the physically closest node
in its routing table as the intermediator node, which has also a closer virtual
distance to the destination at the same time. Methods for measuring the
physical distance are covered in Chapter 20.2. The virtual distance is also
used in overlay routing protocols covered Section 16.2.5.

An intermediator node is also used in geographic routing protocols, in
which the metric is the physical distance. That means the physical neighbor
who is closest to the destination should forward the packet for the local
node. Here, the measurement of the physical distance can be achieved by
GPS receivers or other location devices.

It is worth noting that in theory the link weights are used as an input for
the calculation of the optimal path. However, in practice, the order may be
reversed. The network operator could configure the link weight in order to
achieve certain traffic goals, e.g., distribute the traffic over more links, limit
the link load, or limit the use of some special links.

16.2.5 Virtual Routing on Overlays

Overlay networks represent interconnections on top of an existing logical
network. Data forwarding is based on a separate routing schema and carried
by the underlay. In this section, we focus on overlay networks located at the

372 16. Modeling the Network Layer and Routing Protocols

application layer. Such overlays are typically constructed by P2P-technologies.1
In the following, we give a short overview about general modeling aspects of
overlay routing.

Overlay routing should be analyzed under two perspectives: (a) the in-
herent structural properties of the overlay routing mechanism and (b) its
interaction with the underlay. It may be sufficient to neglect network layer
properties (e.g. topology or link delays) in the modeling process if pure over-
lay characteristics are under observation.

P2P protocols can be classified in structured and unstructured approaches.
The first distributes routing information among all peers. The latter estab-
lishes neighborship relations and distributes data using flooding or random
walks. The decision for a next (overlay) hop or an adjacent peer can be com-
pletely agnostic of the underlay routing structure, or incorporate information
of the network layer to reduce underlay load. There are commonly two metrics
to measure the performance penalty caused by overlay routing:

Delay Stretch quantifies the ratio of the underlay path length (induced by
the overlay routing) and the native path length.

Link Stress counts the number of identical copies of a packet traversing the
same physical link.

The analysis of these metrics requires a careful modeling of the native
network in terms of the underlay topology and link delay (cf. Chapter 20.2)
respectively. It is worth noting that the calculation of the link stress assumes
an identification of each intermediate underlay link.

Depending on the class of overlay protocols approaches may scale up to a
very large number of nodes. Performance properties, e.g., routing table size
or path length, may be logarithmically bounded, which is typically for struc-
tured P2P routing. Protocol effects, thus, will only be visible if the overlay
dimension varies by several orders of magnitude. Although simulating such
large networks can be very time-consuming it is inappropriate to consider
only some thousands nodes in this case.

Application layer-based overlay networks are usually maintained at end
devices. The P2P paradigm reflects the assumption that peers have equal
functionality. Each peer, for example, should be capable to forward data.
End devices of the current Internet, however, form per se a heterogeneous
group of nodes. In contrast to traditional Internet routing or even ad hoc
networks, overlay peers may be quite different, e.g., in processing capacity or
provided bandwidth.2 More importantly, peers are typically volatile, which
results in higher fluctuations of routers in the (overlay) network. Joining and
leaving of overlay nodes is mentioned as churn. The modeling of this process
is described in Chapter 20.

1 For a comprehensive introduction of P2P networks we refer to [379].
2 The heterogeneity of P2P nodes has been in studied in [440] with a special focus

on server-like capabilities.

16.2 Routing 373

16.2.6 Influence from Other Models

As stated in Section 16.2.2, routing model must interact with the surrounding
models and the characteristics of these models should be taken into account
when designing a routing metric and a routing algorithm.

Most of the network characteristics relevant to the path selection metric
(cf. Section 16.2.4, except the hop count) are from the underlay, like link
capacity and interference. Additionally to the aforementioned characteristics,
there are some other important aspects: unidirectional links, shared-medium
link, link detection time and others.

Quite a few routing protocols assume a bidirectional link . However, this
assumption in wrong for wireless networks. Some routing protocols just ignore
this problem, some exclude the usage of these unidirectional links , and just a
few use these asymmetric links to optimize the network performance. While
it is not required to use the existing unidirectional links, the routing protocol
must detect them and distinguish them from bidirectional links.

Shared-medium links can exist in both wired network and wireless net-
work. In graph theory, these links are typically replaced by several point-to-
point links. Such a representation is not wrong, but eliminates the character-
istic of the shared-medium, according to which the link cost cannot be just
split up or duplicated to each point-to-point link.

Although the layer on top of the network layer is the transport layer, the
network layer can be used directly by higher-layer components. Especially in
sensor networks there are also cross-layer approaches. For different applica-
tion scenarios, different routing models are required. In some sensor networks,
the application traffic is always directed from a sensor node to the fixed sink
node. Hence, the routing algorithm only has to calculate the optimal path
for one node. As another example in sensor networks, the traffic may also be
highly related, i.e., two traffic flows from adjacent nodes contain similar infor-
mation. These flows can be aggregated along the path to the sink. Therefore,
the network performance can be improved by aggregating the paths from
the sensors to the sink. With different traffic patterns, the performance of a
routing model will be affected. Hence, the traffic pattern from the application
should also be considered when modeling a routing protocol.

The routing model interacts not only with the models above and below,
but also with other models, e.g., energy consumption model and positioning
model.

More and more work focus on wireless networks, in which many devices
are battery-equipped. Energy efficiency is thus an emerging challenge in de-
veloping routing protocols. Since the transmission mode as well as receiv-
ing mode of the hardware has large impact on the energy consumption,
they should be taken into consideration in the design process of a routing
protocol.

374 16. Modeling the Network Layer and Routing Protocols

Fig. 16.2: Network layer mobility scenarios including typical Mobile IP
components

Not all the models limit the design space of a routing protocol. Instead,
the positioning model provides the physical positional information of the
node, from which the design of routing protocols can benefit. For instance,
geographic routing utilizes the positional information and greedily forwards
the packet towards the destination.

16.3 Internet Mobility

Mobility on the network layer describes the layer three address change of a
continuously operating node. This change may result from physical movement
in mobile regimes, but can likewise be initiated in wired networks. The first
case occurs, if logical domains are bound to geographical space. The latter
can be caused by network failures, reconfiguration (renumbering) or similar.
Thus, not every physical movement necessarily leads to network layer mobil-
ity, and network layer mobility is also possible without physical movement
(cf. Figure 16.2).

In general, an address change raises two issues: On the one hand, new
communciation parties require up-to-date contact information or application
layer address mapping has to be refreshed. On the other hand, established
transport connections break, as socket identifiers invalidate. It is worth noting
that applications on top of connection-oriented and connection-less transport
protocols are likewise affected. Current UDP applications, e.g., RTP-based
tools, use source addresses to identify communication end points.

16.3 Internet Mobility 375

In this section, we focus on the modeling of protocols which support net-
work layer mobility.3 There are several attempts to cope with mobility on
the network layer. The most fundamental approach to obtain mobility is the
Mobile IP (MIP) protocol [361, 245]. MIP transparently operates address
changes on the IP layer as a device moves from one network to the other
by sustaining original IP addresses. In this way, hosts are enabled to main-
tain transport and higher layer connections when they change locations. An
additional component, the MIP Home Agent (HA), preserves global address-
ability, while the mobile node is away from home.

An inventive idea to obtain mobility on the IP layer is built on the location
independence of multicast addresses [201]: If each mobile node is equipped
with an individual multicast address, a correspondent node can send packets
without knowing the current location of the mobile. To preserve connec-
tion oriented transport ability, an additional header is used. Handoff speed
is supported by a vicinity argument of geographical close movement, which
may reduce reconstruction complexity of multicast branches. Besides secu-
rity issues, the major drawback of the multicast based mobility is due to
the asymmetry of multicast routing: Correspondent nodes cannot be mobile,
themselves. Further on, multicast routing is not globally deployed at present.

A transport layer approach to application persistence mobility is grounded
on the Stream Control Transmission Protocol (SCTP) [444]. Initially designed
for network redundancy, SCTP allows for multihoming of a single socket. The
“Add IP” option [445] of extending this functionality to adding and deleting
IP addresses gives rise to an address handover on the transport layer. Mobile
SCTP (MSCTP) [391] carries the justification of performing a rapid handover
on the client side, only, without any dedicated assistance of the infrastructure.
MSCTP, though, conflicts with single bound layer 2 protocols such as 802.11,
connectionless flows and multicast traffic.

As an application layer protocol, the Session Initiation Protocol (SIP) [396]
provides some mobility management to session-based services. Employing the
SIP server as an application specific anchor, handoff notifications are traded
via regular SIP messages to the home server via register and the correspon-
dent node via reinvite. As SIP mobility operates above the transport layer, it
inherits all underlying delays in addition to its own signaling efforts. In many
situations SIP mobility thus comprises a latency problem.

This section is exemplarily concerned with mobility based on Mobile IP, as
it naturally extends the network layer with a mobility-transparent protocol.
MIP, on the one hand, conducts changes of networks instantaneously and
independent of the subnetwork layer technology. Mobile IP handovers, on
the other hand, currently may cause an inaccessibility of nodes up to seconds
on top of layer 2 delays.

3 We limit our discussion to client-based mobility protocols. There are also ap-
proaches for network-based mobility management, e.g., PMIP [187].

376 16. Modeling the Network Layer and Routing Protocols

In the following section, we will elaborate aspects of Mobile IP and gen-
eralize approaches to extend the MIP protocol. We will discuss common per-
formance metrics to evaluate protocols coping with network layer mobility.
Based on our abstraction, we will introduce a simulation model.

16.3.1 Aspects of Mobile IP & Protocol Enhancements

Mobile IP [361, 245] is standardized for IPv4 and IPv64. It considers the
scenario, where a Mobile Node (MN) moves between IP networks while con-
tinuously communicating with a Correspondent Node (CN). The IP interface
of the MN keeps a permanent address derived from its home network, the
Home Address (HoA), while it simultaneously configures changing addresses
of visited networks, the Care-of Addresses (CoAs). The core objective of MIP
lies in transport layer transparency, i.e., the persistent presentation of HoA to
the socket layer, while performing local routing using the topological correct
CoA on the network layer. An additional component, the MIP Home Agent,
preserves global addressability, while the mobile node is away from home.

While at home, the MN uses its permanent HoA and communicates like a
stationary IP device, but has a (pre-)configured Home Agent. When moving
to a new IP network, i.e., after the discovery of a network change, the MN
will use stateless (IPv6) or stateful (IPv4 and IPv6) automatic configura-
tion to apply an IP address valid in the visited network. Having acquired a
topological correct Care-of Address (CoA), the MN immediately submits an
(acknowledged) binding update to its HA. A binding denotes the association
of a HoA with the correspondent CoA for a MN. At this stage, it regained the
ability to send and receive packets using its permanent HoA and IP tunneling
mechanisms.

Depending on the Internet Protocol in use, MIP differs in detail. As an au-
tomatic address configuration and IP encapsulation support is not mandatory
in IPv4, Mobile IPv4 (MIPv4) introduces the so called Foreign Agent (FA).
This infrastructure component residing in the foreign network provides an
address for each MN and may additionally serve as tunnel endpoint towards
the HA. The FA can be omitted by the setup of DHCP servers in external
networks and the implementation of a tunnel protocol on the MN, which
removes a single point of failure. Thus, MIPv4 scenarios need not include a
FA, even though it may be the more realistic deployment assumption.

In MIPv4, the MN communicates directly with its CN without any MIP
specific binding by sending packets using its HoA as source address. This pro-
cedure is motivated with simplicity in mind, however, routing strategies do
not commonly tolerate topologically incorrect source addresses. It is common
practice to protect networks with ingress filters admitting only topological

4 A very good presentation and detailed discussion for newcomers about Mobile
IPv6 and beyond is given in [431] and in [261] for advanced learners.

16.3 Internet Mobility 377

IP-Subnet 1

IP-Subnet 2

Binding Update

Binding Update

Address Reconfiguration
Sending Binding Updates

HA

MNMN

CN

MN

Fig. 16.3: Principle mobility management signaling (dashed lines) and data flow
(solid lines) before and after a subnet change

correct addresses. For this reason, MIPv4 provides an optional reverse tun-
neling mechanism [322], which allows the MN to send packets back to the
CN via the HA.

The Correspondent Node is not equipped with any MIPv4 protocol spe-
cific extension. For this entity, only the Mobile Node’s HoA is visible. Con-
sequently, packets sent from the CN to the MN are forwarded to the home
network and tunneled by the Home Agent to the current CoA.

Mobile communication bears a phenomenon known as address duality:
The technical address, which is used to identify and locate a stationary de-
vice, in the mobility case splits up into a permanent logical identifier (HoA)
and a transient topological locator (CoA). In contrast to IPv4, IPv6 has been
designed with respect to a flexible header architecture which eases protocol
extensions. To achieve a direct, unencapsulated packet exchange with its cor-
respondents Mobile IPv6 (MIPv6)5 establishes a HoA-CoA binding between
MN and MIP-aware CN on the one hand, and records the Home Address
within a separate header on the other hand. Using such a route optimization,
the MN needs to inform also its communication partners (CNs) about its
new location. It does so by sending an additional binding update. HA and
CN keep these binding update information within their binding caches. It
is worth noting that a MIPv6 Mobile Node may fall back to a reverse tun-
neling if the CN does not support IP mobility. A model should consider the
extended interaction between MN and CN, and tunnel mechanisms cannot
generally be avoided for CNs.

After a subnet change, the MN has to update its current Mobile IP bind-
ings before packets can be delivered with the correct Care-of Address (cf.
Figure 16.3). The time to be IP connected again depends on the distances

5 In the following, we only mention MIPv6 as this is based on the upcoming In-
ternet Protocol.

378 16. Modeling the Network Layer and Routing Protocols

of the MN to the HA and CN. The “Two Chinese in New York” scenario6

illustrates the problem: Mobile communication partners may even share the
visited network, but still experience poor handover performance, whenever
their Home Agent is far away. To overcome this distance dependency, sev-
eral protocol extensions have been proposed. In the following we will shortly
present the main ideas of standardized MIPv6 compliant approaches, as their
general concepts are applicable to other mobility optimization extensions.

Current attempts to improve handover performance rank around two
ideas: A proxy architecture of Home Agents is introduced by the Hierar-
chical Mobile IPv6 (HMIPv6) [432], whereas latency hiding by means of han-
dover prediction assisted by access routers is proposed by the Fast Mobile
IPv6 (FMIPv6) [260].

Handover Acceleration by Proxy

A concept for representing Home Agents in a distributed fashion by proxies
has been developed within the HMIPv6 [432]. While away from home, the
MN registers with a nearby Mobility Anchor Point (MAP) and passes all its
traffic through it. The vision of HMIPv6 presents MAPs as part of the regular
routing infrastructure. The MN in the concept of HMIPv6 is equipped with
a Regional Care-of Address (RCoA) local to the MAP in addition to its On-
link Care-of Address (LCoA). When corresponding to hosts on other links,
the RCoA is used as MN’s source address, thereby hiding micro-mobility,
i.e., local movements within a MAP-domain. HMIPv6 reduces the number
of ’visible’ handover instances, but – once a MAP domain change occurs –
binding update procedures need to be performed with the original HA and
the CN.

Handover Acceleration by Delay Hiding

An alternate approach is introduced in the FMIPv6 scheme [260]. FMIPv6
attempts to anticipate layer 3 handovers and to redirect traffic to the new lo-
cation, where the MN is about to move. The MN, thereby combines to receive
data packets via its previous designated router up until the binding update
is completed. A severe functional risk arises from a conceptual uncertainty:
As the exact moment of layer 2 handover generally cannot be foreseen, and
even flickering may occur, a traffic anticipating redirect may lead to data
disturbances largely exceeding a regular MIPv6 handover without any opti-
mization [407].

FMIPv6 extensively relies on layer 2 information and a layer 2 to 3
topology map, which is not present in current networks. Consequently, this

6 This scenario assumes that the MN and CN are currently located in New York,
but the HA is located in China.

16.3 Internet Mobility 379

approach requests for layer 2 specific extensions. FMIPv6 aims at hiding the
entire handover delay to communicating end nodes at the price of placing
heavy burdens onto layer 2 intelligence.

16.3.2 Performance Metrics

A layer 3 mobility protocol performs a transparent handover on the network
layer. With respect to the objectives of such protocol the procedures should
remain unnoticeable to applications and their users. The quality of the pro-
tocol can be measured on two general metric classes: protocol overhead and
performance degradation at the end device.

In the event of a Mobile Node switching between access networks, a
complex reconfiguration chain is initiated. At first, the mobile device may
completely disconnect from the link layer, demanding layer 2-specific reas-
sociation times (cf. Chapter 15). Thereafter it needs to perform a local IP
reconfiguration and Binding Updates to its HA and CNs. Until completion
of all these operations, the Mobile Node is likely to experience disruptions
or disturbances of service, as are the result of packet loss, delay and jitter
increases.

In synchronous real-time regimes, such as in voice and video scenarios,
packet loss, delay and jitter need careful simultaneous control. A spoken syl-
lable is about the payload of 100 ms continuous voice traffic. Each individual
occurrence of packet loss above 1 %, latencies over 100 − 150 ms or jitter
exceeding 50 ms will clearly alienate or even distract the user [229]. Delay
and jitter are added by the handover procedure, if packets are buffered or
transmitted via indirect paths.

These metrics can be measured by transmitting a Constant Bit Rate
(CBR) stream of probe packets. For ease of use in multi-receiver scenarios,
measurements should be done on the MN. This can be implemented by send-
ing ICMP echo packets from the Mobile Node and awaiting replies, e.g., using
ping. The resolution of gauging depends on the transmission interval. With
respect to the values described above, transmission intervals starts at one
packet per 10 ms. Real-world experiments can be complicated as operating
systems may be specifically configured to allow corresponding rates.

The measurement of the handover performance may include impacts from
different layers. A typical example are large layer 2 handover times. Interrup-
tion times range from 0 to several hundred milliseconds, the latter for poorly
optimized 802.11b equipment [316]. This significantly increases packet loss
independent of the mobility protocol in use. Thus, a performance analysis
should clearly identify the causes of handover effects, as well as the layer
they originated from.

Movement of the Mobile Node also affects the underlying network per-
formance. Binding Updates will be sent by the MN to update contact

380 16. Modeling the Network Layer and Routing Protocols

information on the one hand. Agent assisted handover schemes like FMIPv6
may initiate signaling between infrastructure componentes on the other hand.
This additional packet load can be summarized as network costs.

16.3.3 Evaluation Model

The simplest Mobile IP scenario consists of one Mobile Node sending data to a
(MIP-aware or -unaware) Correspondent Node. Along the way, the MN moves
between two subnets assisted by its agents. During the handover process,
several layers will be crossed and influence performance results. Complex and
sophisticated simulations need to be carefully conducted, as submodules may
disturb the experiment, e.g., an incorrect layer 2 buffering. That complicates
comparability. A full layer stack behavior is even more difficult to incorporate
in analytical evaluation.

In this section, we try to reduce the complexity and focus on the main
parts of MIP modeling.

Simple Topology Model

The plain Mobile IP handover process decomposes into the steps:

1. Link layer handoff which may be instantaneous or connection oriented,
single- or multi-homed, depending on the technologies in use.

2. Layer 3 movement detection can be achieved in a passive or active man-
ner. It will result in configuration of a new IP address and initiate update
procedures of the mobility protocol. A MN may learn about a subnet
change by regular router advertisements. In the presence of link-layer
triggers [462], it may actively solicit a new IP address subsequent to
layer 2 handoff to verify if the subnet changed as well.

3. Care-of Address configuration will follow without delay, after a valid ad-
dress has been learned. This can be realized by stateful (e.g. DHCP) or
stateless (e.g. autoconfiguration in IPv6) address setup.
Dynamic address assignment includes a Duplicate Address Detection
(DAD) scheme, which guides the MN into a timeout, in case a unique
address has been configured that is already in use. To overcome this
delay, asynchronous DAD processing has been suggested and widely im-
plemented [323, 156].

4. Binding Update will be performed at least between MN and HA. Depend-
ing on the protocol in use, the MN also informs the CN about the address
change. Typically, Binding Update (BU) requires binding acknowledge-
ment from the HA and thus will take a round-trip time between MN
and HA. Corresponding signalling to the CN is usually accompanied by
authentication mechanisms, which may produce additional delay.

16.3 Internet Mobility 381

l4

HA CN

MAP1 /

AR1

l2l1

MN MN

m1 m2

MAP2 /

AR2

l3

Fig. 16.4: A simple topological model for Mobile IP

Let tL2 denote the Layer 2 handoff duration, tlocal−IP the time for local IP
reconfiguration including movement detection, and tBU the Binding Update
time. Then the following temporal decomposition for handovers holds:

thandoff = tL2 + tlocal−IP + tBU .

While the first two summands represent local, topology-independent op-
erations, Binding Updates depend on the sum of roundtrip times between
nodes. Binding update times are defined by the topological set-up beyond
the control of MIP and router stacks. Similar holds for inter-agent signal-
ing to bridge the disconnection time. One crucial ingredients in performance
modeling of a mobility protocol, thus, is the network topology.

The simplest topology model, which includes all MIP entities and the
distances among each other, is displayed in Figure 16.4. Let tl denote the
transmission time of a packet along link l. A MN moves from access router 1
(AR1) to access router 2 (AR2) with intermediate link l3. For simplification,
the wireless link dimensions m1 and m2 to the MN can be assumed small.
Distances l1 and l2 to HA or CN must be viewed as possibly large and rep-
resent the strongest topological dependence within the model. The distance
between the access routers should be viewed as a variable, but characteristic
geometric entity. As the MN moves between routers, their separation repre-
sents the gap to be bridged by forwarding, somewhat the “mobility step size”,
i.e., l3.

Based on this model, for an unoptimized Mobile IP scenario the packet
loss can be estimated, which is proportional (∝) to the packet injection rate:

Packet loss ∝ tL2 + tlocal−IP + tm2 + tl2 .

382 16. Modeling the Network Layer and Routing Protocols

The simple model covers the underlying network topology, while focusing
only on distances – measured in router hops or milliseconds – between MIP
components. It thus simplifies analytical evaluations and avoids side effects7
in simulations. Corresponding values for path lengths can be modeled ac-
cording to Chapter 22 and 20.2. It is worth noting, that there is a correlation
between logical and geographical movement. Geographical vicinity will also
be reflected in corresponding network delays [408].

Depending on the topology in use modeling should account for the place-
ment of the point of attachment for end-devices. Typically, inter-provider
networks associate the MN with edge nodes, whereas intra-provider topolo-
gies should consider all nodes.

Advanced Modeling: Mobile Node Mobility

A further ingredients in the Mobile IP modeling is the subnet change. Fo-
cusing on a physically moving Mobile Node two items are of interest: The
expected number of handovers and the accuracy of handover predictions. In-
correct predictions may impose packet loss and additional signaling overhead.
Physical movement can be modeled based on traces or analytical approaches,
e.g., random waypoint model (cf. Chapter 14). To observe a subnet change,
we suppose that a radio cell is directly connected to an access router.

In Mobile IP performance modeling, it is a common assumption that
cell geometry is of honeycomb type, i.e., abutting hexagons completely fill
the 2d-plane.8 The ranges of radio transmission are modeled as (minimal)
circles enclosing the combs. Thus, regions of prediction are the overlapping
circle edges. One may argue, that such modeling is insufficient. However,
with respect to lightweight, universal mobility stacks this restriction is indeed
appropriate.

The handoff frequency clearly depends on the Mobile Node’s motion
within cell geometry. Two measures for quantizing mobility have been estab-
lished in the literature: The cell residence time and the call holding time [141].
Both quantities fluctuate according to the overall scenery and the actual mo-
bility event. Let us make the common assumption that the cell residence time
is exponentially distributed with parameter η and that the call holding time
is exponentially distributed, as well, but with parameter α. Then the prob-
ability for the occurrence of a handover from MNs residence cell into some
neighboring can be calculated analytically to

PHO =
1

1 + ρ
, where ρ =

α

η

is known as the call–to–mobility factor [141]. For an extension to proxy
schemes compare [407]. It can be observed that the handoff probability
7 For example, incorrectly modeled behaviour of re-used components.
8 Note, this is usually the case in general wireless network simulation, as well.

16.4 Conclusion 383

increases as ρ decreases. Note that all probability distributions are homo-
geneous in space, e.g., PHO is independent of the current cell or the number
of previously occurred handovers. Spatial scaling can be applied, accordingly.

Additional complexity arises in the case of proxy and delay hiding
schemes. Delay hiding schemes like FMIPv6 predict the handover and react
in advance to reduce packet loss (cf. Section 16.3.1). Mobility modeling thus
should account for crossing overlapping transmission ranges without changing
radio cells. Further on, configuration of the anticipation time, defining the
period prior to handover, influences results significantly. A predictive han-
dover is optimal, iff anticipation time matches á priori router negotiation.
This parameter should be varied on the scale of access router distances, but
chosen with large perturbations with respect to large uncertainty.

Proxy-based approaches show their advantages when a MN moves be-
tween Access Routers (ARs) covered by the same Mobility Anchor Point.
Looking on the extrema, a single MAP – responsible for the whole Internet
– is equivalent to a MIPv4 scenario with reverse tunneling. In contrast, a
MAP directly linked with the MN’s access point complies with a traditional
MIPv6 handover. The AR-to-MAP ratio is not predefined in any standard
and depends on the operators design choice. In general, a placement will be
guided by an appropriate delay for the MN (distance MAP to ARs) and
the maximum traffic caused by MNs. An evaluation should include different
AR-to-MAP ratios.

16.4 Conclusion

The network layer bridges the logical gap between direct host-to-host and
network-wide multi-hop communication. Hence, any model for the network
layer builds upon several other models that describe link-level characteris-
tics or per-node processing and routing issues. Both of these models are in
turn closely related to the underlying network topology model. The key chal-
lenge is to derive metrics of global significance from the descriptions of local
phenomena.

In this chapter, we introduced and classified a set of representative routing
protocols and dissected them into their key components. With these examples
in mind, we turned to the theoretical basics and discussed how graph and
queuing theory may be utilized to model certain aspects of a routing protocol.
We then elaborated on several metrics used in conjunction with path selection
and the influence of models from the surrounding protocol layers. We then
proceeded to motivate the problems specifically related to node mobility in
an IP-based network, introduced potential solutions and discussed modeling
alternatives.

For a bottom-up approach to network simulation modeling, the next log-
ical step is to consider modeling the transport layer and application traffic

384 16. Modeling the Network Layer and Routing Protocols

as introduced in Chapters 17 and 18 respectively. Alternatively, as far as
simulation methodology is concerned, Chapter 6 discusses how software com-
ponents, such as a routing protocol, may be efficiently implemented to run
on a simulator as well as on real systems.

17. Modeling Transport Layer Protocols
Raimondas Sasnauskas (RWTH Aachen University)
Elias Weingaertner (RWTH Aachen University)

17.1 Introduction

In a layered communication architecture, transport layer protocols handle
the data exchange between processes on different hosts over potentially
lossy communication channels. Typically, transport layer protocols are either
connection-oriented or are based on the transmission of individual datagrams.
Well known transport protocols are the connection-oriented Transmission
Control Protocol (TCP) [372] and the User Datagram Protocol (UDP) [370]
as well as the Stream Control Transmission Protocol (SCTP) [340] and
DCCP, the Datagram Congestion Control Protocol [259]. In this chapter,
we focus on the modeling process of the transport layer. While we mostly
use TCP and UDP as a base of comparison from this point, we emphasize
that the methodologies discussed further on are conferrable to virtually any
transport layer in any layered communication architecture.

There are two different general approaches concerning transport layer
models. Direct transport layer models implement the actual protocol using
event-based network simulators (see Section 17.2). This way, the actual proto-
col interactions are recreated within a network simulator. Such an approach is
important especially in the case if someone is interested in studying properties
of the transport layer protocol itself, or if the investigation of an application
layer protocol that uses the transport layer as base technology is desired.
Another method following this goal is to integrate existing code, for example
complete network stacks, into the simulation framework. This approach is
discussed in Section 17.3.

Later in this chapter (Section 17.4ff.), we will discuss indirect modeling
techniques not attempting to recreate the protocol behavior directly. Instead,
they aim at the recreation of the footprint of a transport protocol on the
network. This may be required if one needs to model background traffic or
needs to obtain traffic patterns which resemble those produced by common
transport layer protocols. The first obvious approach is to use actual net-
work traffic that has been captured in a real computer network. We discuss
this approach and its limitations in Section 17.4. Another option is to model
certain performance metrics explicitly, e.g. throughput or delay. Such mod-
els are called performance models and are usually expressed using analytic
expressions. We will further discuss performance modeling in Section 17.5.
In Section 17.6, we conclude this chapter with an approach that integrates

386 17. Modeling Transport Layer Protocols

a special type of performance models, so called fluid models, with network
simulations.

17.2 Existing Simulation Models

Existing transport layer simulation models offer the standardized protocol
algorithmics on different levels of abstraction. They all provide a coherent
end-to-end transport service between processes of a communication system.
The details (e.g. technology, topology, addressing) of the underlying network
are by definition abstracted. Both connection-oriented and connection-less
transport layer protocols offer the service of transparent data exchange. In
addition, the connection-oriented service implements connection establish-
ment and termination.

Most transport layer simulation models are tightly integrated into larger
network simulation frameworks such as INET in OMNeT++ [475]. Internet
transport protocols (e.g. TCP, UDP) are built on top of the unreliable IP
network layer, thus their implementations are bounded. Nevertheless, in par-
ticular cases the accuracy of the protocols below the transport layer should
be sufficiently high. For example, the Fast Retransmit algorithm in TCP is
a congestion control [491] strategy to reduce the time before retransmitting
a lost data segment. It heavily relies on the simulation accuracy of IP and
the protocol layers below. In Section 17.6.2, we will discuss in detail the
combination of network fluid models and packet-level simulation which ad-
dress this issue. Furthermore, when simulating wireless networks one may
observe performance degradation since wireless connections show different
characteristics [328]. Transmission errors on lossy links, frequent handoffs,
and latencies due to error correction mechanisms on medium access layer are
incorrectly interpreted as congestion.

In general, the abstraction level found in different transport protocol mod-
els provides the basic protocol functionality. However, the implementation
details of the same protocol slightly differ. Furthermore, not all models are
equipped with full-featured extensions which are found in real-world oper-
ating systems code. Table 17.1 provides an overview of network simulators
and their support for the features of widely known connection-oriented trans-
port protocols TCP and SCTP. Because of its simplicity, the connection-less
protocol UDP is very easy to implement and it is supported by all known
network simulators.

Although all prevalent simulators offer the basic transport layer function-
ality, the implementations still lack subtle protocol details. For example not
modeling the receiver buffer size or absence of standard-conform handling of
PSH (“push”) and URG (“urgent”) bits in TCP may impact the correctness
of simulation results.

17.2 Existing Simulation Models 387

Features OMNeT++ ns2 ns3 SWANS GTNetS
TCP

RFC793 + + + + +
TCP Tahoe + + + + +
TCP Reno + + − − +
TCP NewReno − + − − +
TCP Vegas − + − − −
Finite receive buffer − − − + −
TCP header options − + − − −
Timer granularity − + − − +

UDP + + + + +
STCP

Basic operation + + − − −
Experimental ext. − + − − −

Table 17.1: Comparison of simulator support for TCP, UDP and SCTP protocols.

Moreover, the question arises how the given simulation models facilitate
the study of certain performance metrics, for example throughput or the
end-to-end delay between different hosts in a network. The core idea here is
that the models reflect the behavior of the real world, and hence that the
phenomena regarding those metrics are constituted by the model itself. This
is achieved by the implementation of the protocol within the simulation. In
the following, we describe the methodology behind the observation of such
metrics.

One important measure in a network is the throughput of a transmission
between two hosts, which is given by the ratio of sent bytes to the duration of
the transmission. First of all, it is noteworthy that most models of transport
protocols do not contain any actual payload in related message structures or
objects. Instead, most transport models include only the number of payload
bytes in the transmission segments. In order to compute the throughput,
these payload bytes are simply added if a message is received. Once the
transmission has ended, the throughput is retrieved by dividing the counted
bytes by the time of the transmission.

While the end-to-end delay can be observed on the transport layer, it
is mostly influenced by the underlying network, where the end-to-end delay
is constituted by individual channel delays of the network links. Hence, these
phenomena are in fact mostly covered by the models discussed in chapter
16. However, as processing of transport layer protocols may add additional
delays, such a behavior can be reflected in a corresponding model as well. For
example, if it is known that the verification of a checksum of a network packet
takes 50μs, this delay can be easily incorporated in the protocol model, if one
is interested in obtaining more precise results in this regard. However, it is
up to the modeler to decide which accuracy according to timing is needed to
obtain meaningful results, as such processing times and hence the influence on
the delay is very dependent on the actual system. As one is usually interested

388 17. Modeling Transport Layer Protocols

in more general results, processing delays at the transport layer are mostly
neglected.

All modeling aspects of the end-to-end delay on the transport layer are
essentially the same for the packet delay variation, often referred to as
jitter. Here, the delay variation is directly dependent on the delay variation
on deeper layers. Of course, the delay variation can be increased or also
decreased at the transport layer models, as additional delays may occur or
mechanisms such as token-buckets may homogenize the delay.

17.3 Using Real Implementations in Simulators

As previously mentioned, the simulation models of transport layer protocols
are not complete and differ in the level of detail of their abstraction. To
overcome this issue and model the system behavior more accurately one can
use real-world implementations found in operating systems. Such software
integration frameworks provide wrappers where OS protocol stacks can run
and interact with the simulator without any further modifications. Please
refer to chapter 6 where three exemplary frameworks are described in detail.

Although running real transport protocol code gives necessary implemen-
tation accuracy, this approach has several limitations compared to real proto-
col execution. First, the code execution within a simulator has no processing
delays which is not the case in real network code. Second, the OS side effects
are not modeled at all having impact on simulation result exactness. And
third, real-world OS network stacks (e.g. Linux TCP/IP stack) are highly
optimized and thus lack fine-grained modularity. Consequently, this might
increase simulation performance overhead.

17.4 Transport Layer Traces

Network traces are probably the easiest method one can think of for the
purpose of indirectly modeling the behavior of the transport layer: Traffic is
captured on an actual networked system using a network traffic analyzer like
Wireshark [104]. All recorded network packets are stored in so-called trace
files. In order to feed those traces into the network simulation, the trace files
are usually pre-processed. Network traces may contain packets of any protocol
being used in the network in which the trace was recorded. Hence, the first
step is to filter out unwanted packets from the trace. In the case of transport
protocols, typically only the corresponding packets remain in the trace, e.g.,
TCP segments or UDP datagrams. In fact, it may eventually make sense to
strip out the payload of the transport protocol during the pre-processing step
in order to retrieve a file which exclusively contains descriptive information
of the transport flow. Such an approach is discussed in [344].

17.5 Analytical Performance Modeling 389

Once the condensed trace file is available, the trace is usually fed into
the network simulation through a trace replaying node which simply creates
simulation messages from the information available in the trace file. In this
step, the derived simulation messages may contain information from other
layers as well. As the simulations’ protocol implementation are usually ab-
stracted from the real world, much of the information prevalent in the trace
file is usually not needed for this step: For example, most implementations
of transport protocols within network simulators usually do not use actual
payloads. Hence, the payload information present in the trace is simply dis-
regarded by the trace replaying node.

While trace files are easy to utilize and to implement into event-based net-
work simulations, the accuracy of such an approach is generally limited. Many
transport protocols, like TCP and SCTP, implement flow control and conges-
tion avoidance mechanisms, which interactively adjust protocol parameters
according to network effects, such as packet loss or end-to-end delay. How-
ever, as trace files consist of static, pre-recorded packets, trace files cannot be
used for the reproduction of any interactive protocol behavior. For example,
the Slow-start algorithm used for congestion control in TCP directly affects
the throughput of the protocol. However, in order to adjust the window size,
it requires feedback information from the receiver. If trace files are used, the
packet data fed to the network is static. It can not incorporate the feed-
back information from the receiver. Hence, if a receiver in a TCP simulation
reports congestion, the window size in the pre-recorded TCP segments will
not be diminished, thus leading to potentially wrong performance results.
Therefore, any protocol behavior which relies on feedback information is not
modeled by trace files consisting of transport protocol segments.

Although trace files are not capable of modeling any interactive protocol
behavior, they still may serve to model background traffic in a network sim-
ulation. However, in such a case, it is important to assure that the mutual
influence of the investigated protocol’s traffic and the background traffic is
negligible, as otherwise this so-called open-loop behavior of trace files may
corrupt the obtained results.

17.5 Analytical Performance Modeling

Direct simulation models as discussed in Section 17.2 employ packet process-
ing and simple algorithmic calculations. Furthermore, the simulation itself
can be combined with actual inputs and real hardware revealing further per-
formance details or long-term behavior of the simulated system.

On the contrary, the analytical modeling attempts to predict a specific
performance metric using a set of parametrized functions and initial con-
ditions. Such mathematical models concentrate only on the essential prop-
erties of a certain phenomenon. The view of the hardware and software is

390 17. Modeling Transport Layer Protocols

abstracted. This leads to modeling results for large network setups much
faster than simulation. Nonetheless, one needs to find and set up the correct
model assumptions to simplify the equations without loosing the accuracy of
the results. Such models are often based on stochastic techniques (for example
[34], [318]).

Currently, almost all reliable connections in the Internet are based on
TCP. Hence, the main focus in the research community has been drawn on
TCP congestion control mechanisms and their impact on throughput behav-
ior. In the following, we briefly present two analytical performance models
for the derivation of the throughput and discuss the results.

17.5.1 Inverse Square-root Law for TCP Throughput

The basic idea how Internet congestion control can be modeled analytically
is presented in [306]. The authors propose a simple TCP Reno [320] through-
put model of a single, steady-state connection over a link with moderate
packet loss. The model assumes sufficient bandwidth and no competing data
flows inside the network. The impact of the underlying network topology and
router queueing disciplines is neglected as well. Under these very simplifying
assumptions the round trip time (RTT) of data packets is constant and hence
no transmission timeouts due to packet drops may occur.

The packet loss probability is the only parameter considered to derive the
throughput. The authors suppose packet loss which occurs after 1/p pack-
ets are successfully delivered, where p is constant and describes the ratio
of dropped packets. Once a packet is dropped, TCP sender detects the loss
through three duplicate ACKs from the receiver. Then it enters the con-
gestion avoidance phase with the half of the congestion window (W/2) and
continues data transmission until the next packet loss is detected. In this way
the details of TCP data retransmission are neglected and the loss recovery
completes in one round trip time. The resulting periodic TCP window size
evolution is depicted in Figure 17.1.

During the congestion avoidance phase each acknowledged packet in-
creases the congestion window size W: Wnew = Wold + 1/Wold. TCP Reno
adopts additionally the delayed ACK option where two consecutive data pack-
ets are acknowledged with a single cumulative ACK. Thus, the duration of
a transmission cycle is bW/2 · RTT , where b is the number of delayed ACKs
[443]. The throughput has been already defined in Section 17.2 as

Throughput =
Number of bytes sent

Duration of the transmission
.

In this model, the number of sent bytes is the number of acknowledged
packets per cycle. This corresponds to the area under the sawtooth in Figure
17.1, which equals b 3W 2

8 .

17.5 Analytical Performance Modeling 391

RTT

W

2

W

0
0

b
W

2
bW b

3W

2

W Congestion window size

b Number of delayed ACKs

RTT Round Trip Time

W(RTT)

Packet loss p

Fig. 17.1: TCP window size behavior (modified version from [306])

Solving the packet delivery rate 1/p for W per cycle, this leads to

W =
√

8
3pb

.

Taking the transmission cycle duration

b
W

2
· RTT

and the maximum segment size (MSS) we get the mean throughput

Throughput =
b 3W 2

8 · MSS

bW
2 · RTT

=
√

3
2bp

· MSS

RTT
.

As a result, the throughput is proportional to the maximum packet size
and inversely proportional to the square root of loss probability and the
round trip time. Consequently, large RTTs and high packet loss ratio result
in poor TCP throughput. Furthermore, the constant

√
3
2b can be seen an

indicator for different loss and ACK strategy assumptions [306]. The authors
show that the model can predict the bandwidth under many loss conditions
with congestion avoidance-based TCP implementations. However, this model
still remains very optimistic. First, it does not capture the timeout driven
behavior of wide-spread TCP implementations occurring at high packet loss
rates. With multiple packet losses within one transmission cycle the timeout
expires before the sender can recover (Fast Recovery) and the congestion
window W is reduced to 1 MSS. In this case the actual throughput can be
much lower than predicted by the model. Second, the losses in the Internet

392 17. Modeling Transport Layer Protocols

are not random, mostly due to the existence of drop-tail queues in the routers
[139, 148]. It follows that the model may not be able to predict the throughput
in the Internet scenario accurately.

17.5.2 A Model for TCP Congestion Control

In addition to the observations so far, Padhye et al. propose also a more
detailed model [346], which analytically characterizes the throughput as a
function of packet loss rate. It captures not only the congestion avoidance
phase, but also considers the timeouts and their impact on throughput. Con-
trary to the model described in Section 17.5.1, several confirmed assumptions
[139, 148, 306, 343] have been made to ease the derivation:

– Slow-start and Fast Recovery phases of TCP are neglected. The reason is
their minimal appearance in the measured traces.

– Packet losses within one round are correlated due to drop-tail queueing
behavior in the Internet routers.

– Packet losses in one round are independent of losses in other rounds. Dif-
ferent TCP rounds are separated by one or more RTTs, hence, very likely
resulting in independent router buffer states.

– The RTT is independent of the window size W .

A concise mathematical derivation of the throughput can be found in
[346] which results in a well known TCP bandwidth equation

Throughput =
1

RTT ·
√

2bp
3 + T0 · min(1, 3

√
3bp
8) · p · (1 + 32p2)

where T0 denotes the period of time the sender waits before he starts to
retransmit the non-acknowledged packets.

In summary, live experiments have validated the model for a wide range of
loss rates and indirectly validate the assumptions as well. Another important
finding captured by the model is that timeouts have a significant impact on
the overall TCP performance. Real measured traces showed that the majority
of packet loss indications in a bottleneck bandwidth scenario occurred due to
timeouts, rather than fast retransmits. Nonetheless, this model reflects long-
term and bulky transmissions only. At the present time, short-lived TCP flows
dominate the Internet [189] and, hence, further effects of TCP (Slow-start,
Fast Retransmit, Fast Recovery) should be considered in more detail.

Both presented models have one major drawback: they do not consider
data flows of the underlying network and their correlation with packet loss.
In next section, fluid models are introduced which are aiming to capture the
complete behavior of the system. In addition, section 17.6.2 presents the idea
of integrating fluid models into packet-level simulations.

17.6 Fluid Models and Integration with Packet-level Simulation 393

17.6 Fluid Models and Integration with Packet-level
Simulation

Fluid models are a special type of performance models which describe the
behavior of a network as a set of fluids that are modeled using arithmetic
expressions. In the first part of this section, we will briefly survey the notion
of those models. In the following, we introduce an approach by Gu, Liu and
Towsley [183], which allows the integration of fluid models with discrete event-
based simulations operating on the packet level. The mathematical details are
omitted for the matter of concision. The original publications [183, 292, 294]
provide additional insight in this respect. The authors of these publications
emphasize that the major advantage of fluid based models is their scalability;
as the representation of the entire network is given by equations and as the
evaluation is not based on individual packets, much larger topologies may be
investigated.

17.6.1 TCP Fluid Models

Fluid models describe the transport of data within a network as a set of
fluids. Following the notation in [183], a fluid model consists of a directed
graph, consisting of a set of routers and a set of links. A set of differential
equations is used to describe the information flows in the network and the
behavior of its elements over time. More specifically, those equations model
e.g. TCP window sizes, queue lengths as well as departure and arrival rates.
Further on, the performance evaluation of a network is carried out by first
applying a set of parameters to the network which is done by simply putting
them into the equations. In the next step, the main performance evaluation
is achieved by solving the set of equations.

17.6.2 Integration with Packet-level Simulations

In recent years, the demand of modeling large computer networks has grown
steadily. Network simulations, however, are usually carried out only for sce-
narios with up to a couple of thousand nodes. For this purpose, different
optimization approaches, such as the parallelization of network simulations
(discussed in chapter 8), have been proposed and implemented to address
such scalability concerns.

On the contrary, many analytical models scale to a much higher degree
than network simulations. In this case, the integration of such into an event-
based simulations enables the investigation of larger networks, using a hybrid
methodology that combines analytical models with event-based simulations.
One example of such an approach is the incorporation of fluid models with
packet-level simulations, as proposed by Lu, Yong and Towsley [292]. The

394 17. Modeling Transport Layer Protocols

Fig. 17.2: Architecture for the integration of fluid models with packet-based sim-
ulation (cf. Towsley, 2004)

concept is outlined in Figure 17.2. The core idea behind this hybrid simula-
tion methodology is to model the transport layer traffic of large background
networks using a fluid model. Smaller networks, which operate on the packet
level, interact with the fluid model, which is responsible to reproduce the
background network’s effect on inter-network traffic.

The challenge in combining fluid models with event-based simulation is
given by the fact that both employ totally different modeling paradigms. As
discussed earlier, packet-based network simulations usually utilize discrete
events which are triggered, for example, when a packet is sent from one host
to another. The simulation is constituted by serially processing all scheduled
events. The fluid model, on the other hand, merely consists of a set of differen-
tial equations, which needs to be solved in order to investigate the TCP char-
acteristics it models. While the equations conceptually can be solved for any
point in time, the solving is usually carried out in an incremental fashion. So
how does the interaction between the fluid model and the packet-level simu-
lation take place? In their original publication, Lu, Yong et al. distinguish be-
tween two integrational modes for traffic interaction between those two worlds:
a one-pass traffic interaction model and a two-pass traffic interaction model.

In the one pass traffic model, it is assumed that the influence of the packet-
based traffic on the fluid network is insignificant. Thus, the fluid model is
solved synchronously as the event-based simulation proceeds. At any point
of the simulation time, the fluid model provides measures e.g. for the delay
between two nodes in the fluid network. Hence, if a packet is about to travel
through the fluid network, the end-to-end delay is obtained from the fluid
model and the receiving events are scheduled using this delay.

The underlying assumption of the two-pass traffic interaction model is
different. Here the packets originating at the event-based simulation influ-
ence the fluid model’s outcome. This is achieved by twice passing through

17.7 Conclusion 395

the simulation time. In the first pass, the packets created by the network
simulations are converted into a so called "forward flow". This forward flow
is then incorporated into the fluid model over the simulation time. In the
second phase, the simulation is driven synchronously through the time, while
the data is obtained from the altered flow model. This way, the reciprocal
influence between the flow model and the packet level simulation is covered.
Yong et al. have implemented the presented approach for ns-2. The evalua-
tion of this approach presented in the original publication shows that it is a
viable approach for a scalable simulation of transport layer protocols.

17.7 Conclusion

In this chapter, we have surveyed different approaches and techniques to
model transport layer protocols, with an emphasis on event-based network
simulations. Directly modeling the transport layer behavior is straightfor-
ward, as it is carried out by implementing the protocol semantics and their
functional behavior in a network simulator. The accuracy of the results, how-
ever, requires a proper modeling of the lower layers. This is clearly demon-
strated by TCP/IP, whose overall performance is the result of a complex
interplay of the transport layer as well as the link and network layers. Be-
sides the description of pure simulation models, we provided a brief overview
of performance models which abstract from individual network packets and
communication layers. Instead, these models describe the exchange of infor-
mation as a set of flows using differential equations. Especially the incorpo-
ration of the latter concept with event-based network simulations operating
on the packet-level is a promising concept for the analysis of transport pro-
tocols in large network topologies. However, this modeling approach requires
a analytical performance model of the respective protocol. Obtaining a per-
formance model for a transport protocol is not trivial. Moreover, one must
prove the accuracy of the mathematical abstraction, for example by compar-
ing the model output with real-world measurements. While this makes such
an approach difficult to use for the development of new transport protocols,
accurate analytical models exist for well-established network protocols. The
integration of such performance models with network simulations is worth
considering for very large networks that cannot be analyzed using a simula-
tion alone.

This Page Intentionally Left Blank

18. Modeling Application Traffic
Ismet Aktas (RWTH Aachen University)
Thomas King (Universität Mannheim)
Cem Mengi (RWTH Aachen University)

18.1 Introduction

Communication networks require a deep understanding of the source of gen-
erated traffic, i.e., the application. A multitude number of applications exist
that generate different types of traffic, for example web, peer-to-peer, voice,
and video traffic. Within the scope of performance analysis of protocols for
communication networks, modeling and generating of such traffic is essential
to achieve accurate and credible results. This requires that the most rele-
vant aspects are captured by analyzing the traffic and subsequently properly
represented in the application model .

But to determine the relevant aspects is a challenging task due to the het-
erogeneity of applications which require specific considerations. For example,
the used codec in a video stream is an important aspect for modeling video
traffic, while this aspect is not important for File Transfer Protocol (FTP)
models. Additionally, heterogeneity within one application hinders the se-
lection of relevant modeling aspects. For example, the number of users in a
voice conversation influences the design of the voice model (two vs. multi user
conversation).

If the relevant aspects are somehow pointed out, measuring is required
in order to find the suitable parameterization. Different approaches exist to
collect data from traffic, e.g., client logs, server logs, or packet traces.

The next step after measuring is to represent the characteristics of the
aspects in the application model. For example, some aspects such as the inter-
arrival time do not require a specific data model, but other aspects such as a
video sequence can be modeled with a more sophisticated data model, e.g.,
a markov chain.

This chapter gives the reader an understanding in building application
models which generate traffic with accurate and credible results. For this
purpose, we have chosen four applications: web browsing, bulk file transfer ,
voice, and video. We explain the relevant aspects for these applications and
how to determine them in general. Furthermore, we explain in detail how to
measure the relevant aspects. Finally, we give an idea about how to represent
these aspects in the application model.

398 18. Modeling Application Traffic

18.2 Modeling HTTP Traffic

World Wide Web (WWW) traffic is a substantial part in the Internet. If we
want to simulate and subsequently evaluate a system that uses WWW traffic,
we need accurate models. But modeling WWW traffic is a difficult task due
to several reasons. Firstly, a lot of system components like Web browsers and
servers coexist and interact with each other in a complex way. Particularly,
each of these components has their proprietary version and probably behaves
slightly different, e.g., a browser that allows multiple downloads in parallel
generates different traffic compared to a browser that only allows to download
sequentially. Besides that heterogeneity, the immense size and the permanent
changing property of the Internet, i.e., topology or used protocols, make the
modeling challenging. A further varying aspect that also should be taken
into account is the user behavior , which has been varied over time based
on the functionality that the browsers has been offered. As a result, the
aforementioned diversity lead to various modeling approaches for Web traffic
modeling. But nevertheless, the unit or rather the terminology Web page has
been commonly used in most publications as a central building block for Web
traffic modeling [91, 101, 467, 302, 50, 387, 296].

The basic structure of a Web page is explained next in order to give an
understanding of a Web page transmission. A Web page primarily consists of
Hypertext Markup Language (HTML) code described in ASCII. The content
of the HTML code defines the structure and the interconnections of a Web
page. In the remainder of this chapter this part of a Web page will be referred
to as the main object. In the main object usually HTML code is embedded
that has references to files on the same or other servers. For example, the
main object may have references to images or further Web objects created
with scripting languages. These embedded objects are referred to as inline
objects in the remainder of this chapter.

The downloading procedure of the Web page starts commonly with a
link that has a reference to this page or alternatively a precise Universal
Resource Locator (URL) of the Web page is inquired (clicked). In that case,
immediately a Hypertext Transfer Protocol (HTTP) GetRequest message is
sent to the appropriate server. In order to transmit the web page between
the client and the server, a Transmission Control Protocol (TCP) connection
is established. After receiving the GetRequest message, the server sends the
main object to the client. Subsequently, the HTML code is parsed and if
necessary further inline objects are requested from the adequate server.

The way of downloading the inline objects heavily depends on the used
HTTP version. In HTTP 1.0 [57] for each object (i.e., main and inline) a
TCP connection is opened and immediately closed after the download of
the object. The establishment of a new TCP connection requires a 3-way
handshake. The opening of a TCP connection for each inline object impli-
cates an increase of user-perceived latency. In order to handle this additional
processing overload caused by the 3-way handshake, the HTTP version 1.1

18.2 Modeling HTTP Traffic 399

[144] introduced persistent connections: Once an object is delivered from the
server to the client, a persistent connection remains open until a time-out
at the server expires. As a result, the client is able to send several objects
via the persistent connection, which leads to shorter user-perceived latency
compared to the early HTTP 1.0 version. But, in the later version of HTTP
1.0, the idea of persistent connections is imitated by the utilization of the
so-called “”keep-alive“” messages. A keep-alive message is send periodically
by the client if the connection should stay open. Therefore, according to [91]
there is no significant difference between HTTP 1.1 (persistent connections)
and the later HTTP 1.0 version (keep-alive). As a consequence of the re-
sults (similarity of HTTP 1.0 and 1.1) shown in [91], the authors in [296]
ignore in their HTTP traffic modeling for example any detail about the TCP
connections.

Although it seems to be that there is no significant difference between
the modeling of HTTP 1.0 and 1.1, the reason why the two schemes are
introduced in this section has two reasons. The first intention is to show
that there was a difference in the past and it was accordingly regarded when
models for HTTP traffic are designed. Second, to give an understanding that
the connection establishment scheme has a heavy correlation between the user
behavior and the generated traffic at TCP level. In the following section,
we give an overview about proposed and approved models for web traffic
modeling.

18.2.1 Survey of HTTP Traffic Models

Several approaches to model Web traffic has been proposed in the past. But
before creating such models, most of the authors at first tried to collect
important data in order to have a credible basis for their models. In this
context, there are three ways of gathering data for web traffic modeling. The
first approach is called server logs. At this, the server is able to keep track of
the files it serves. With the gathered information a workload model from the
server perspective can be created. An important but neglected aspect here is
that the user behavior is not considered and therefore not modeled.

A second approach is to do the same on the client side. But in this case,
the used browser needs to be modified in order to enable data gathering. In
the past, the mosaic browser was modified to enable the collection of data
[92, 109]. But the studies with this browser are not up to date anymore since
today’s browsers offer a lot more functionality and techniques for downloading
objects (e.g., HTTP 1.0 vs 1.1). The question arises why we are not able to
modify today’s browsers. A simple answer is that some are unfortunately not
open source and some require too much effort and time to understand all the
internals.

400 18. Modeling Application Traffic

The third and most popular approach is the gathering of so-called packet
traces [467]. In this case, the measurements gathered from packet traces are
taken from a distinct network. A typical network could be Campus or Local
Area Network (LAN) in own administration where traces can be collected
from own routers. Today a lot of tools exists like Wireshark [500] or TCP-
Dump [459] to collect packet traces. While observing passing packets, headers
are logged that can be analyzed later on. Considering Web traffic, typically
the transport layer (TCP) is a point of interest, although there also exists
studies like [101] which inspects HTTP headers in the application layer. In
a next step, based on the analysis taken from the collected traces a so-called
synthetic model is designed. The synthetic model consists of events that are
important from the model designer’s point of view. After figuring out the
important events, appropriate distributions and their parametrization are se-
lected until the outcomes of the synthetic model matches the real measured
values or rather the traces. The third approach suppresses the drawbacks of
the two previous approaches and nevertheless enables the aspect of user be-
havior modeling. A deeper discussion about these three approaches are given
in [467, 302].

Some well-known models derived from packet traces and client logs will
be presented in the following section. These models can be classified into the
categories “page-oriented ” and “ON/OFF ” models. First, we discuss the page-
oriented modeling and review existing approaches like Reyes [387, 91, 89] and
Luo [296]. In the later part of this section, the ON/OFF modeling of Mah
[302] and Choi [101] will be covered. Finally, a model proposed by Tran-Gia
in [467] will be presented that puts all aspects of both categories and their
details together into one common model.

Page-oriented Modeling

The page-oriented model has been first presented in [387] where a hierarchical
model of three levels, namely the session level, page level, and packet level
has been introduced. In [91, 89] the model has been extended by the insertion
of the connection level in-between the page and packet level. The description
of each level taken from [91] is given in the following.

Session level: Describes the user behavior in terms of the number of Web
sessions per period (day, week, month, or year) and the distribution of
the session along this period.

Page level: Focuses on determining the number of web pages per session and
the distribution of the time between web pages.

Connection level: A web page in turn consists of a bunch of objects (text,
images, sound files, etc.), which are conveyed through one ore more TCP
connections. Therefore, for this level it is necessary to model the number

18.2 Modeling HTTP Traffic 401

of connections for each page, the time between two consecutive connec-
tions as well as the distribution of the connection sizes.

Packet level: Allows a low granularity of modeling. Thus, the total amount
of bytes for each connection has to be split in TCP/IP packets. For this
purpose, this level must characterize the distribution of the packet sizes
and their inter-arrival times.

In the following we will present two page-oriented models suggested by
Reys [387] and Luo [296]. In Reyes’ model [387] the first step of constructing
was the way of how a user generates traffic by browsing the web. According
to their definition, in the session level a user begins a new session if the time
between two consecutive packets exceeds a certain threshold (30 minutes).
During the session the user browses several web pages and take up time for
reading the web page. Thus, a session is a set of pages that are separated by
a viewing time. The important parameters are time between starting points
of two consecutive sessions (session inter-arrival time) and the number of
web pages that the user visits within a session. Note, that in this modeling
approach pages do not overlap, i.e., if a subsequent page is requested while
the previous page is not completely downloaded is not considered. The au-
thors argument that the amount of packets from a previous page is less than
1% of total number of received packets and therefore can be neglected. As
a result, at the session level it is important to know what time between the
end of one page and the beginning of the next page (within the same ses-
sion) is. Another interesting parameter is the total amount of information
transferred per page. Reyes et al. distinguish between uplink and downlink
information. In [91] the connection level models a web page by distinguishing
it into main and inline objects which may conveyed through one ore multiple
(depending on the HTTP version) TCP connections. Two TCP connections
that began less than 30s apart were considered as belonging to the same page.
Thus, in this level the inter-arrival time, number and size of connections are
relevant parameters. At the packet level a connection is split into multiple
(IP) packets. Important parameters at the packet level are the inter-arrival
time (distinguished by uplink and downlink traffic) and the packet sizes. Be-
sides, the end of a page is determined by the last packet received before the
beginning of the next page. Remark, for web traffic modeling typically the
granularity of packet level modeling is not considered since the packet level
is more shaped by the conditions in the network while higher levels like the
page level are independent from network influences.

Luo et al. have slightly modified this approach in [296] where they on
the one hand neglect the packet level and on the other hand use a different
definition for the beginning of a session and a page. In their definition a new
session starts if consecutive packets exceeds 30 minutes (remember in case of
Reyes’ model the same threshold indicates a new page). Another difference is
the starting points of two consecutive TCP connections, which should indicate
the time of two mouse clicks (i.e., the request for two successive web pages

402 18. Modeling Application Traffic

by a user). Remember, in Reyes’ model the threshold of 30 seconds has been
used. In contrary, in Luo’s model this threshold is much lower namely one
second. The reason for the shorter period is that they conducted experiments
in wired networks that show that one second is more appropriate for such a
scenario. In contrary, in Reyes’ work the focus is rather on wireless networks.
In the following a slightly different methodology of web traffic modeling is
presented.

ON/OFF Modeling

A slightly different web traffic modeling approach is given in [302] and [101]
where they used a two phase model. The first phase is the ON phase that
indicates the page download period. The adjacent phase, which we refer to
as the OFF phase, is the duration between the end of a download process
of one page and the beginning of the download process of another page.
Note that the term ON/OFF model is our classification, particularly we are
inspired from [467]. The authors of the introduced models use a different
nomenclature for their approach.
In Mah’s model [302] central entities for modeling are the ON phase length
(that is comparable with the page length) and the OFF phase length (viewing
time in Reyes’ model). For determining the length of the ON phase, two
simple heuristics are used. First, the page request has to be originating from
the same client. Second, if too much time (determined by a threshold of 30
seconds) lies between two HTTP connections this indicates the start of a
new page. In case of a HTTP connection, the client sends a HTTP request
message to the server. The server replies with one or more reply messages. The
number of reply messages depends on the number of inline objects. Mah used
their measured Cumulative Distribution Functions (CDFs) (heavy-tailed) for
modeling the size of a whole page as well as for the size of the main and inline
objects. Unfortunately, a distribution or rather measurements for the number
of inline objects are not specified. Only measured mean values for the number
of downloaded web pages (four pages per server) are given. For describing the
HTTP request size a binomial distribution has been suggested. For the OFF
phase (Mah called it user thinking time) no distribution is suggested. Again,
measured CDFs are used that have a mean of about 15 seconds. All in all,
in Mah’s work no distribution are suggested, instead measured CDFs are
presented and utilized for their simulation. Furthermore, an interruption of
downloads which can be caused for example by a user (who sends a new
HTTP request before the previous request gets a reply) is not considered. In
contrary, Choi does not only considers these aspects but also provides more
details for the coherences.
Choi’s model is the most famous for web traffic modeling. It is also known as
the behavioral model which consists of hierarchical layers as shown in Figure
18.1. The ON phase describes the page loading duration and the OFF phase

18.2 Modeling HTTP Traffic 403

describes the viewing time respectively. So far, the modeling does not differ
from Mah’s modeling. But if we look into the details, in Choi’s model the ON
phase as well as the OFF phase is described in more detail. The ON phase
(called HTTP-ON) describes the downloading and the viewing in parallel
which starts after a web-request of a user. A web-request is defined as page
or a set of pages that result from an action of a user. If a single user request
(click) on a link generates multiple pages than all of these pages belong
to the same web-request. Therefore, it is possible to view a page without
downloading it completely, i.e., a user can view a page while downloading
the remaining parts of a web-request. Moreover, a user can decide to request
further web pages by clicking on already available links while downloading,
which starts another web-request. The OFF phase (called HTTP-OFF) is a
period between two web-requests where the browser is inactive. This time
also indicates the viewing time of a user. The structure of a web page is
also taken into account in Choi’s as well as in Mah’s model but again with
much more details. When a user generates a web-request a HTTP request is
generated. Choi’s models the HTTP request with a Lognormal distribution.
Remember, Mah used a binomial distribution. Choi distinguishes explicitly
between main and inline objects. In contrary to Mah, Choi gives a distribution
for the number of inline objects. A further parameter that Choi considers in
its model is the parsing time of the main object. The parsing time is the time
that is spent for fetching the main object in order to download necessary inline
objects. For the parsing time a Gamma distribution is used. An interesting
point in Choi’s model is that he also considers the local caching mechanism,
i.e., before an HTTP request is sent, the browser checks its local cache for
availability of the web page. If the web page is available in the cache, the
validity time is checked. If the page is up-to-date, the server does not need
to be contacted for requesting the web page. This fact influences obviously
the generated network traffic. Choi also differentiates in its model between
the different HTTP versions for its TCP modeling level.

Tran-Gia et al. give a good overview about the presented modeling
approaches. Furthermore, Tran-Gia combines some of these models with
their respective details in one comprehensive model. In particular, the page-
oriented and the ON/OFF models are merged as shown in Figure 18.2. We
don’t discuss all shown aspects as it is a conflation and we already described
the basic issues in the previous models.

Almost all above mentioned parameters or rather entities are taken into
account. Therefore, the parameters that are explained above will not be dis-
cussed here again. Note, that most modeling aspects are taken from Choi.
In the next section, an overview about the most important entities that are
introduced above are given.

404 18. Modeling Application Traffic

Web request Web request

HTTP ON
(Loading and Viewing)

HTTP OFF
(Viewing) HTTP ONTwo phases

mainmain inlineinline inlineinline
inlineinline

inline
inlineinlineObject loading

TCP connectionTCP connection

TCP connectionTCP connections TCP connection

TCP connectionTCP connection

TCP connections

Fig. 18.1: Choi’s “behavioral” model: HTTP-ON describes the downloading and
the viewing in parallel, whereas HTTP-OFF indicates the period be-
tween two web-requests.

S i User WWW Activity User WWW Activity
User WWW
I ti itSession

level

Page 1 Page 2 Page n

User WWW Activity User WWW ActivityInactivity

HTPP ON HTTP OFFON/OFF HTPP ON
(Loading and Viewing)

main

HTTP OFF
(Viewing)

inline inline

HTTP ON

Obj t

Page
level

ON/OFF
phase

main inline inline
inlineinline

inlineinline
inlineinline

Object
loading

TCP connectionTCP connection

TCP connectionTCP connection

TCP connection

Connection
level

Fig. 18.2: Tran-Gia’s comprehensive model: Utilizes Choi’s model but also consid-
ers user activity. For this, the page-oriented modeling is used. A page
is similar to Choi’s HTTP-ON phase.

18.2 Modeling HTTP Traffic 405

18.2.2 Parametrization

So far, we have described several web traffic modeling approaches. In the
following, we give an overview about the main important entities regarding
web traffic modeling and their parametrization. This overview can be used
for simulation or for comparison reasons. The available entities are sorted in
levels as in the page oriented design. Characterizations regarding the packet
level are not given since almost all web traffic models do not consider this level
of granularity. For clearness reasons, we utilize the following mathematical
symbols within the presented parameterization tables: μ refers to the mean
value, σ refers to the standard deviation and x̃ refers to the median.

Session Level

Regarding the session level , important parameters are the session inter-
arrival time (Table 18.1), the viewing time (Table 18.2), and the number
of pages or rather web-requests per session (Table 18.3).

Reference Proposed Distribution Proposed Parametrization
Choi [101] Exponential μ depend on desired traffic load
Tran [467]
CDMA2000 [182]
UMTS [321]
Barford [50] Pareto α: 1.5, k: 1

Table 18.1: Session inter-arrival time.

Reference Proposed Distribution Proposed Paramterization
Choi [101] Weibull μ: 39.5s, x̃: 11s, σ: 92.6s
Barford [50] Weibull α: 1.46, β: 0.38
Reyes [387] Gamma μ: 25-35s, σ: 133s-147s
CDMA2000 [182] Geometric μ: 120s
UMTS [321] Geometric μ: 412s
Tran [467] Weibull μ: 39.5s, x̃: 11s, σ: 92.6s

Table 18.2: Viewing time.

Page Level

At the page level , important parameters are the time between two con-
secutive pages within the same session (Table 18.4), main or rather inline

406 18. Modeling Application Traffic

Reference Proposed Distribution Proposed Parametrization
Choi [101] Weibull μ: 39.5s, x̃: 11s, σ: 92.6s
Barford [50] Not modeled -
Reyes [387] Lognormal μ: 22-25, σ: 78-166
CDMA2000 [182] Geometric μ: 5
UMTS [321] Geometric μ: 5
Tran [467] Lognormal α = 1.8, β = 1.68, μ: 25, σ: 100
Vicari [479] Not modeled μ: 40.8

Table 18.3: Number of pages (web-requests) per session.

object relevant characterizations (Table 18.5) and the parsing time of the
main object (Table 18.6).

Reference Proposed Distribution Proposed Parametrization
Choi i[101] Weibull μ: 39.5
Tran [467] Weibull μ: 39.5
Reyes [387] Gamma μ: 25-35
Vicari [479] Pareto μ: 43.5
Barford [50] Pareto μ: 3
UMTS [321] Geometrical μ: 12
Khaunte [253] Weibull μ: 21

Table 18.4: Time between two consecutive pages within the same session.

Connection Level

At the connection level important parameters are the number of connections
per page (Table 18.7), the time between two consecutive connections within
the same page (Table 18.8), and the connection size (Table 18.9).

18.3 Modeling FTP Traffic

Nowadays, File Transfer Protocol (FTP) [373] traffic is only responsible for
0.5 percent of the total traffic that flows through the Internet [219]. However,
FTP is still important to transfer huge amounts of data between computers,
because it is efficient and reliable.

The FTP protocol is a typical client-server application: The FTP client
initiates a session with the FTP server and issues requests that are handled
by the server. Typical requests are to list the files that are stored on the server
and a file copy command to transfer files from the server to the client or the
other way round. A FTP client is often operated by a user and sometimes
controlled by an automatic script or an application. Depending on who is

18.3 Modeling FTP Traffic 407

Reference Proposed Distribution Proposed Parametrization
Choi [101] Lognormal - main obj. size μ: 10KB, x̃: 6KB, σ: 25KB

Lognormal - inline obj. size μ: 7.7KB, x̃: 2KB, σ: 126KB
Gamma - no. of inline obj. μ: 5.55, x̃: 2, σ: 11.4KB

Tran [467] Lognormal - main obj. size μ: 10KB, x̃: 6KB, σ: 25KB
Lognormal - inline obj. size μ: 7.7KB, x̃: 2KB, σ: 126KB
Gamma - no. of inline obj. μ: 5.55, x̃: 2, σ: 11.4KB

Mah [302] Pareto - main obj. size α: 0.85 - 0.97, x̃: 2 - 2.4KB
Pareto - inline obj. size α: 1.12 - 1.39, x̃: 1.2 - 2KB
CDFs - no. of inline obj. μ: 2.8 - 3.2, x̃: 1

Reyes [387] Pareto - main and inline α: 1.5 - 1.7, β: 30000 - 31000
Barford [50] Pareto - main and inline α: 1, k: 1000

Pareto - no. of inline obj. α: 2.43, k: 1

Table 18.5: Main and inline object size and the corresponding distribution for the
number of inline objects.

Reference Proposed Distribution Proposed Parametrization
Choi [101] Weibull μ: 39.5
Tran [467] Weibull μ: 39.5
UMTS [321] Exponential μ: 0.13

Table 18.6: Parsing time of the main object.

Reference Proposed Distribution Proposed Parametrization
Choi [101] Gamma μ: 5.5 (for inline objects)
Mah [302] Measured CDFs μ: 2.8 - 3.2
Vicari [479] Measured μ: 3.5
Barford [50] Pareto μ: 2.7
Khaunte [253] Gamma μ: 1.9

Table 18.7: Number of connections per page.

Reference Proposed Distribution Proposed Parametrization
Choi [101] Gamma μ: 0.860s (between inline objects)
Khaunte [253] Gamma μ: 0.148s (between the first

connection of the page and the rest)
Deterministic μ: 0s (between the second and

consecutive connections)

Table 18.8: Time between two consecutive connections within the same page.

Reference Proposed Distribution Proposed Parametrization
Barford [50] Lognormal & Pareto μ: 7.2-14.8KB
Khaunte [253] Lognormal μ: 8.3KB
Reyes [387] Lognormal μ: 7.7-10.7KB
Mah [302] Heavy-tailed μ: 8-10KB

Table 18.9: Connection sizes.

408 18. Modeling Application Traffic

operating the client, a time span between the response of the server and the
next request issued by the client can be seen. This time span is typically
called viewing time. This layer is often called user level.

If we dig a bit deeper and leave the user level to descend to what is
often called the object level we have to distinguish between so-called control
connections and data connections. The control connection is initiated once
at the beginning of a FTP session and alive as long as the session is alive.
The FTP client initiates the control connection by connecting to the server.
The control connection is used to transfer requests from the client to the
server. It is also used to transfer answers containing status messages from
the server back to the client. To transfer bulk data between the client and
the server or the other way round a data connection is initiated. Such a data
connection is only used for one request and closed after the single request is
completed. For instance, if a client wants to see which files are stored in the
current directory of the server it sends a “list” request to the server. To handle
the data that has to be transferred in order to complete the request a data
connection is established. Over this data connection the list of files that are
stored on the current directory of the server is transferred. After the list of
files is transferred, the data connection is shut down. Afterwards, the server
replies with an answer over the control connection that tells the client that
the “list” request is executed successfully. Originally, the data connection was
initiated by the server by connecting to a port that has been announced by
the client. This procedure is often called active FTP. However, due to firewalls
and Internet connectivity issues (e.g., Network Address Translation (NAT))
[205]), it is often not possible for a server to connect to a client that is
behind a firewall or behind a NAT. To resolve this problem a technique called
passive FTP has been invented. With passive FTP the client initiates both
connections to the server, solving the problem of firewalls filtering incoming
connections requests. For this, the client issues a “PASV” command to tell
the server that it is requesting passive FTP. The server answers with the port
that it reserves for data connections that are associated with this session.

There is a close connection between the object level and the user level:
The term control connection as coined in the object level means exactly the
same thing as the term FTP session used in the user level . The only difference
is the abstraction level.

If we split up each connection into the packets that convey the actual
information we have reached what is often called the packet level. FTP is a
TCP-only service which means no User Datagram Protocol (UDP)-based or
any other transport layer based specification exists. So, all packets that are
generated throughout a FTP session are TCP packets.

The different abstraction levels, as described in the previous section, are
depicted in Figure 18.3.

18.3 Modeling FTP Traffic 409

Fig. 18.3: Different abstraction levels of FTP traffic.

410 18. Modeling Application Traffic

Based on the previous description how FTP works and depending on
the abstraction level that should be modeled the following objectives are of
interest:

– User level
– FTP session inter-arrival time
– FTP session duration
– FTP request inter-arrival time
– Number of FTP requests per FTP session
– Viewing time duration
– Amount of data transferred during FTP session

– Object level
– Control Connection
• Inter-arrival time
• Length
• Amount of data transferred

– Data Connection
• Inter-arrival time
• Length
• Amount of data transferred
• Active vs. passive

– Packet level
• Packet calls per FTP session
• Packet inter-arrival time
• Packet size

The following sections review the existing literature and describe which
values and distribution functions have been found in order to model the
objectives described above. Unfortunately, not all objectives as listed above
have been covered by the literature.

18.3.1 User Level Modeling

Paxson and Floyd showed in [358] that the inter arrival times of FTP sessions
are well-modeled as homogeneous Poisson processes with fixed hourly rates.
They also showed that the arrivals are dominated by a 24-hour pattern.
During night time less FTP sessions are initiated than during day time.

18.3.2 Object Level Modeling

Paxson and Floyd state that data connection inter-arrival times within a FTP
session are bursty and difficult to model [358]. The reason for this is that dur-
ing file transfers many data connections are typically established at the same

18.4 Modeling Voice Traffic 411

time. The authors investigated the amount of data that is transported during
data connections. They found that a quite heavy-tailed distribution fits best.
Half of the total FTP traffic comes from the largest 0.5 % of data connections.
This finding means that modeling small FTP sessions or data collections is
irrelevant. These results are backed up by Luo and Marin in [296], Jena et
al. [242], and by the 3GPP2 project [23].

According to Paxson and Floyd, the number of connections per burst can
be well-modeled as a Pareto distribution. In [242], the authors state that they
observed many control connections without any data connection associated.
The reason for this might be that applications automatically without doing
any action. However, they also confirm that a Pareto distribution fits well.

18.3.3 Packet Level Modeling

Paxson and Floyd state that it is difficult to find a pattern that describes the
inter-arrival times of packet during a FTP session, because the inter-arrival
times are largely determined by network factors such as available bandwidth,
congestion, and details of the congestion control algorithm of TCP [358].
However, they state that the inter-arrivals times are far from exponential.

18.3.4 Discussion

The previous sections reviewed the existing literature about the modeling
of popular applications that rely mainly on TCP. If we compare the list
of objectives that are of interest for FTP modeling (as listed above) with
the objectives covered by the literature, we see a huge research gap. For
instance, the packet sizes and viewing time duration are not studied for FTP
so far. The question that arises is why are these uncovered objectives still
unstudied? Especially, if you have in mind how long FTP and the Internet
are around, it is questionable whether these uncovered objectives have any
merit for modeling FTP. On a certain detail level it might be of interest to
answer this questions. However, on a more abstract view, it looks like this
questions are not of any importance.

18.4 Modeling Voice Traffic

Today there are many applications to realize the transmission of voice over
digital networks for conversations between two or multi users. Examples are
Skype, Google Talk or Windows Live Messenger. One reason for this variety
is that a user requires low-cost services and a trend is observable that more
applications of this kind are introduced to the market. Obviously, the impact

412 18. Modeling Application Traffic

of voice traffic in digital communication networks will therefore increase.
Therefore, it is essential to include accurate models for voice traffic, when
evaluating protocols of communication networks. The models should be able
to initiate a session, simulate the speaker behaviors, and transmit coded voice
packets. The goal of this section is to give the reader an idea about voice
traffic modeling. Particularly, we give an overview of the entities, which are
involved in a model for voice transmission and describe their most important
attributes. Thereby, we also give hints about which of the entities have to
be taken into consideration and which of the entities could be neglected in
certain scenarios.

18.4.1 Entities of an Application for Voice Transmission

Figure 18.4 gives an overview of entities which should be considered to model
voice conversations over digital networks. We have divided the model elements
in two levels, user level and packet level.

User Level

Packet Level

Speaker Model Session Model

Six-State

Model

Four-State

Model

Three-State

Model

Two-State

Model

SIP

Model

Codec Model

RTP Model

G.711

Model

G.722

Model

...

Data Transmission

Model

Transmission Control

Model

H.323

Model

integrated in

usesuses

initiates

Fig. 18.4: Overview of involved entities in an application for voice transmission.

18.4 Modeling Voice Traffic 413

The user level includes all entities, that contribute to or interact with the
user or the user behavior. Here, we have two main parts, the speaker model
and the session model.

The speaker model comprises the user behavior in a voice conversation.
Note that we regard only the modeling of conversations between two speakers
in this section. There exists different models for two way conversations. Fig-
ure 18.4 shows four possible models, namely the six-state model, four-state
model, three-state model, and two-state model. These models are mainly de-
veloped by Brady [77, 78, 79]. Depending on the accuracy requirement for a
voice model one of these speaker models could be chosen.

Before starting a conversation between two users, a session should be
initiated, i.e., one user initiate the session by involving the session model.
The session model includes for example the SIP model or the H.323 model.

SIP was developed by the Internet Engineering Task Force (IETF) and
published for the first time in 1999. In 2002 an enhanced version of the spec-
ification was published under RFC 3261 [396]. SIP is a transaction-based
service, where sessions could be initiated, modified, and terminated. Further-
more, users could be integrated in running sessions. This is an important
feature for multicast conferences. Therefore, UDP should be preferred as
transport protocol.

In the same way, H.323 fulfills the same tasks as SIP with the difference
that it was published by the International Telecommunication Union (ITU)
in 2003 [226]. Depending on the accuracy requirements, one of the models
could be integrated to the voice model. It is also possible to neglect a session
model completely, if this would not violate the requirements for the scenario.

In the packet level, we prepare the data, or rather the information, that
comes from the user level and packetize them. The information from the
speaker models uses the codec model which is integrated in the Real-Time
Transport Protocol (RTP) model. The information from the session model
is not further regarded here. For example, a UDP model could be used for
session information.

The transmission of voice over digital networks is feasible only via com-
pression methods, which are integrated in the codec. This means, that an
analog signal, such as voice, has to be digitalized and compressed to send
them over small bandwidth networks. Table 18.10 presents some examples
for voice codecs which are widely used [220, 221, 222]. For example, the
codec G.711 samples an analog signal 8000 times per second and each sample
is quantized with 8 bits, which results in a bit rate of 64 kbit/s. Since a codec
influences the transmission of voice data essentially, a codec model should be
integrated in the overall voice model.

As voice, but also video transmissions, are multimedia applications, which
have real-time requirements, appropriate transport protocols have to be con-
sidered. For this purpose, the IETF has developed RTP and published it
under RFC 1889. In the meantime, a revised version of the standard was

414 18. Modeling Application Traffic

Voice Codec bits/sample sample rate bit rate
G.711 8 8000/s 64 kbit/s
G.722 8 16000/s 64 kbit/s
G.726 5 8000/s 40 kbit/s

4 8000/s 32 kbit/s
3 8000/s 24 kbit/s
2 8000/s 16 kbit/s

Table 18.10: Examples for voice codecs.

published under RFC 3550. RTP enables the transmission of data with real-
time requirements. The protocol has two parts [410, 364]:

1. RTP Data Transfer Protocol : This part of the protocol controls the
data transmission. Packet losses are not addressed. It is also not ensured,
that packets will be received in the correct order. It depends rather on
the underlying transport protocol. RTP is often used in connection with
UDP, but it can also used with TCP.

2. RTP Control Protocol : RTP Control Protocol (RTCP) records the
quality-of-service and informs the user about the participants of the cur-
rent session (the number of participants could be changed during one
session, e.g., in an audiovisual conference). Even RTCP measures Qual-
ity of Service (QoS), there are no mechanisms to guarantee them.

As depicted in Figure 18.4 we have introduced an RTP model, which includes
both the transmission protocol and the control protocol. Depending on the
accuracy requirements, an RTP model has to be integrated in the overall
voice model. Since the model characteristics belongs more to the modeling of
transport protocols, we will not look into details in this section.

18.4.2 Speaker Models

In this section we describe the speaker models of two users in a voice conver-
sation. Before we can design a speaker model, we have to think about which
speech events we want to capture in our model. When we have defined the
speech events we have to measure them, in order to rebuild their statistical
characteristics in our model. There are mainly two attributes, that have to
be regarded in a speaker model:

– Session duration: This attribute models the duration of one session be-
tween two users in a voice conversation. There are basically two ways to
realize this attribute. Firstly, it could be projected to the target CDF, that
is achieved from the measured data. Secondly, a standard CDF, e.g., a
normal distribution, could be used to fit the statistical characteristics of a
session duration in voice conversations.

18.4 Modeling Voice Traffic 415

– Duration of speech events: These attributes model the duration of the
defined speech events. As for the session duration, these events could also
be realized by first projecting the target CDF or second by using a standard
CDF.

In the following, we will give a list of speech events, that should be analyzed
when designing a speaker model.

Speech Events

In the literature their are ten events defined [77]. We will present these events
with an example. Note that these events regard two speakers, A and B, in a
conversation.

1. Talkspurt: A continuous sequence of speech.

2. Pause: A continuous sequence without speech.

3. Doubletalk: A time period within A and B are talking simultaneously.

4. Mutual-Silence: A time period within A and B are not talking.

5. Alternation-Silence: The talkspurt of A ends. Then a time period
begins, within A and B are not talking. Afterward, B’s talkspurt be-
gins. The time period within both speakers are not talking describes the
alternation-silence event.

6. Pause-in-Isolation: The talkspurt of A ends. Then a time period be-
gins, within A and B are not talking. Afterward, once again A’s talkspurt
begins. The time period, within both speakers are not talking describes
the pause-in-isolation event.

416 18. Modeling Application Traffic

7. Solitary-Talkspurt: The talkspurt of A, that completely lies in the
pause of B.

8. Interruption: B interrupts A. The time, when B’s talkspurt begins,
illustrates the time of the interruption. The interruption ends, when B’s
talkspurt ends, except for the case, when A’s talkspurt ends and this time
A interrupts the talkspurt of B. In this case, the interruption of B ends
at the time, when A has interrupted.

9. Speech-after-Interruption: B interrupts A. The rest of A’s talkspurt
describes this event. A special case is, if B’s talkspurt ends and a renewed
interruption inside the same talkspurt of A takes place. In that case the
speech-after-interruption ends at the second interruption of B.

10. Speech-before-Interruption: B interrupts A. The time from begin of
A’s talkspurt until the time of the interruption describes this event. If
B’s interruption (B’s talkspurt) ends in time t1 and B begins a new
interruption inside the same talkspurt of A in time t2, the time (t2 − t1)
is regarded as the speech-before-interruption. If B’s talkspurt hold up
and A’s talkspurt ends and this time A interrupts the talkspurt of B,
then the pause time of A is measured as the speech-before-interruption.

The described ten events represents a basis for modeling the speech behavior
of two speakers. Depending on the accuracy requirements of the model, all
or some of these events have to be rebuild in the model. There exists dif-
ferent suggestions to model the behavior. In the following, we present these
possibilities.

18.4 Modeling Voice Traffic 417

State Models

After defining the speech events, we can now define the models themselves. In
this section we describe four models, which should model the above mentioned
speech events more or less.

Six-State Model. Figure 18.5(a) illustrates the six-state model . It describes
the speech behavior of two speakers A and B. Speaker A is active in states
1, 2, and 3, while Speaker B is active in states 6, 2, and 3. The states 2
and 3 describe events, where both speakers are talking (doubletalk), while
the states 4 and 5 describes events, where both speakers are silent (mutual-
silence). Both doubletalk states, i.e., states 2 and 3, are distinguished by
the additional information, which of the speakers is interrupted. In the same
way the mutual-silence states, i.e., states 4 and 5, are differentiated by the
additional information, which speaker has spoken last.

(a) Six-state model. (b) Four-state model.

(c) Three-state model. (d) Two-state model.

Fig. 18.5: State models for modeling the behavior of two speakers in a conver-
staion.

Four-State Model. Figure 18.5(b) illustrates the four-state model . In this
model states 2, 3, and 4, 5 respectively of the six-state model are integrated
into one state. Speaker A is now active in states 1 and 2, while speaker B is
active in states 2 and 4. The state 3 describes the event, where both speakers

418 18. Modeling Application Traffic

are silent. With the four-state model we loose the additional information,
that could be modeled with the six-state model, i.e., which speaker has in-
terrupted and which speaker has spoken last respectively, but the model is
capable to rebuild enough events.

Three-State Model. Figure 18.5(c) shows the three-state model . In that model
state 2 of the four-state model is deleted, so that the doubletalk state can
not be modeled yet. Speaker A is now only in state 1 active, while Speaker
B is active in state 3. State 2 represents the mutual-silence event, i.e., both
speakers are not talking.

Two-State Model. Figure 18.5(d) depicts the two-state model . This model is
a simplification of the three-state model by deleting the state 2 of the three-
state model. Now there exists only the possibility, that only speaker A is
active, i.e., state 1, or only speaker B, i.e., state 2.

18.4.3 Codec Models

Codecs have a significant impact to the transmission of voice data, as they de-
termine the time intervals, where voice packets are sent in a specified bit rate.
For our purposes there are mainly two attributes, that have to be regarded:

– Packet inter-arrival time: This attribute specifies the time intervals,
where packets are sent. The value for the packet inter-arrival time depends
on the used codec.

– Packet size: In this attribute we distinguish two types of packets, voice
packets and comfort-noise packets. Voice packets includes speech data,
which are sent inside one interval. The size of one voice packet is specified
by the used codec. Comfort-noise packets comprise data for regenerating
background noise, and are sent in intervals, where no speech is detected.
The size of one comfort-noise packet is also defined by the used codec.

In Table 18.11 we have listed some codecs and their attributes, which could be
used in a codec model. For example, the codec G.722 has a packet inter-arrival
time of 20 ms. Inside one interval we have to prepare a voice packet of 160
bytes, which have to be integrated into a transport protocol. If we model the
codec in this way, we can reach the predefined 64 kbit/s of the G.722 codec.
Packet-based networks has the advantage compared to connection-oriented
networks, such as the telecommunication network, that in speechless intervals
either no packets or comfort-noise packets are sent, so that bandwidth could
be saved. In the example of the G.722 codec a comfort-noise packet of one
byte could be sent in intervals where no speech is detected.

18.5 Modeling Video Traffic 419

G.723 G.728 G.729 G.722
packet inter-arrival time [ms] 30 20 20 20
voice packet size [Byte] 24 40 20 160
comfort-noise packet size [Byte] 4 1 2 1
bit rate [kbit/s] 6.3 16 8 64

Table 18.11: Examples for some codecs with their attributes.

18.5 Modeling Video Traffic

Regarding the traffic in digital communication networks we can observe that
the transmission of video data requires most of the capabilities. This is not
surprising, when we see services such as video-on-demand, live-streaming,
but also websites with integrated video services such as Youtube. For the
evaluation of current and future communication networks we need therefore
accurate video models, which is the topic of this section. As for a voice model,
a video model should also be able to initiate a session, simulate the user
behavior, and transmit coded video packets.

18.5.1 Entities of an Application for Video Transmission

User Level

Packet Level

User Model Session Model

Client

Model Server

Model

RTSP

Model

Codec Model

RTP Model

MPEG-1

Model

MPEG-2

Model

H.264

Model

...

Data Transmission

Model

Transmission

Control Model

integrated in

informs

informs

uses

responses

initiates

requests

uses

Fig. 18.6: Overview of involved entities in an application for video transmission.

420 18. Modeling Application Traffic

Figure 18.6 illustrates the entities, which are involved in an application for
video transmission. Similar to the overview diagram for voice transmission
(see Figure 18.4), it is divided in two levels, user level and packet level.

The user level consists of a user model and a session model. In contrast
to the speaker models in the voice model, where the two speakers are partici-
pated in a peer-to-peer manner, the user model in the video model comprises
of a client model which requests to the server model, which responses with a
service.

The client model initiates the session model, which is responsible for ses-
sion establishment. For example, a Real-Time Streaming Protocol (RTSP)
model should be used for this purpose. RTSP was published by the IETF
in 1998 under RFC 2326 [411]. RTSP enables the transmission of streaming
information and the control of them. However, the protocol does not send
the streaming data. For this purpose, the use of RTP is possible. In RTSP
there is no explicit session initiation. Control information could be sent both
over TCP and UDP. If an RTSP model is involved into a video model, the
tasks are to inform both the client model and server model about the ongoing
session. As the RTSP model does not transmit video data it is also possible
to neglect this model, if it does not violate the accuracy requirements for the
scenario under investigation. In this section we will not further consider the
design of an RTSP model.

The packet level comprises a codec model and an RTP model. The codec
model includes the models for existing video codecs. For example, an MPEG-
2 model could be used. In Table 18.12 we give an overview of existing
video codecs. To get accurate results for a video model, the codec should be
integrated.

The RTP model could be used in the same way as for the voice model.
Since it has characteristics of a transport protocol we do not further look on
it in detail.

18.5.2 User Models

In this section we describe the user models for a video model. The most
important two attributes for these models are:

– Session duration: This attribute models the duration of one session be-
tween the client and server. There are basically two ways to realize this
attribute. First, it could be projected to the target CDF, that is achieved
from the measured data. Second, a standard CDF, e.g., a normal distribu-
tion, could be used to fit the statistical characteristics of a session duration.

– Session inter-arrival time: This attribute models the inter-arrival time
of video requests at a server. Again, we can project to the target CDF or
use a standard CDF.

18.5 Modeling Video Traffic 421

Year Name of the standards
1990 ITU-T Recommendation H.261 [223],

“Video Codec for Audiovisual Services at p × 64 kbit/s”
1993 ISO/IEC 11172-2 [151],

“Information Technology - Coding of Moving Pictures and Asso-
ciated Audio for Digital Storage Media at up to about 1.5 Mbit/s:
Video” (MPEG-1)

1995 ITU-T Recommendation H.262 [224],
“Information Technology - Generic coding of moving pictures and
associated audio information: Video”

ISO/IEC 13818-2 [152],
“Information Technology - Generic coding of moving pictures and
associated audio information: Video” (MPEG-2)

1996 ITU-T Recommendation H.263 [225],
“Video Coding for Low Bit Rate Communication”
(1998 → H.263+, 2000 → H.263++)

2003 ITU-T Recommendation H.264 [227],
“Advanced Video Coding for Generic Audiovisual Services”

ISO/IEC 14496-2 [153],
“Coding of Audiovisual Objects: Visual” (MPEG-4/ASP)

ISO/IEC 14496-10 [154],
“Advanced Video Coding” (MPEG-4/AVC)

Table 18.12: Activity of the development of video codecs over time.

The session duration could be managed in the client model and sent with the
first request for a session initiation to the server model. Note, that this infor-
mation could also be handled in a session model, if one would be integrated.
The session inter-arrival time resembles the time of incoming video requests
at a server. This information could also managed in the client model. The
server model responses to the incoming requests by sending the video data
to the client. Therefore, it uses the codec model that prepare the compressed
video data, which is explained in the following section.

18.5.3 Codec Models

As video is coded before it will be sent over the network, it is important
to build the attributes of a codec model correctly. The following attributes
should be regarded, when a codec model is considered:

– Packet inter-arrival time: This attribute specifies the time intervals,
where packets are sent. It is influenced by the settings of the used codec,
e.g., quality of a video sequence.

422 18. Modeling Application Traffic

– Packet size: This attribute reflects the size of one video frame, which
are sent inside one interval. Typically a codec has different frame types
with different characteristics, which would result in different packet types.
There exists different methods to generate a frame size. We will look on
this beneath.

A coded video sequence exhibit characteristics, that are reflected in the frame
sizes. These characteristics have to be rebuild for the video model. We will
now investigate this in more detail.

A typical frame consists of complex objects, e.g., an explosion in an action
movie. Furthermore, the filmed objects are not always fixed in a place, but
rather are moving, e.g., a car on a street. Besides, the camera is also moving,
so that even for fixed objects the position in a frame sequence could change.
When a codec is applied to this kind of frame sequence, we would get variable
bit rates as an output. To determine the packet size for the transmission of
video data, we have to consider this characteristic. Usually, this property
could be determined through analyzing the CDF (alternatively the PDF) of
such a sequence.

Normally, a movie consists of scenes. Inside a scene there are not so much
changes, because the filmed objects persist equal. This means that the frames
in a sequence inside a scene are correlated to each other. This is a characteris-
tic that have to be considered when a sequence of packet sizes are generated
for a scene. This characteristic could be investigated by analyzing the au-
tocorrelation function of the frame sequence. The effect is reflected through
high values in the first lags of the autocorrelation coefficient and is denoted
as Short Range Dependency (SRD).

Beside of correlation inside one scene, there exists also similarities between
different scenes, i.e., frames, which do not belong to the same scene or are
temporarily away from each other, could also have correlations. The reason
for this characteristic is, that frames of different scenes could exhibit the
same complexity and movement intensity. In the same way as for the SRD,
this characteristic could also be investigated by analyzing the autocorrelation
function of the frame sequence. The effect is reflected with a low decay of
the autocorrelation function and positive autocorrelation coefficients and is
denoted as Long Range Dependency (LRD).

In the following, we look on how we could model the above mentioned
characteristics, that is:

1. The CDF of frame sizes,
2. the SRD, and
3. the LRD.

In the literature there are different modeling strategies published to rebuild
these statistical characteristics. Figure 18.7 illustrates a classification based
on [90].

18.5 Modeling Video Traffic 423

Fig. 18.7: Classification of different modeling strategies for capturing the statisti-
cal characteristics of a sequence of video frame sizes.

The statistical characteristics are illustrated in ellipsoidal circles, while
the modeling strategies are visualized with rectangles. The arrows denote,
which strategy could model which statistical characteristic.

Projected White Noise model the CDF by generating a white noise process
which then is projected to the target CDF. Another alternative for modeling
is to use standard CDFs. For example, a lognormal or a gamma distribution
are standard CDFs, which could be used to rebuild the frame size statistics.
These strategies have the disadvantage, that they could not model the SRD
and LRD.

To model the SRD their exists models, such as the Autoregressive (AR) or
Autoregressive Moving Average (ARMA) processes [74]. However with these
processes we are neither able to model the LRD nor the CDF. This means
that we have to combine this process with other strategies.

Autoregressive Integrated Moving Average (ARIMA) and Fractional Au-
toregressive Integrated Moving Average (FARIMA) processes are able to
model SRD as well as LRD. However the CDF could not be modeled with
these processes, so that further strategies have to be considered.

Markov chains could be used during modeling in a flexible manner. For
example a markov chain could model the Group of Picture (GOP) configu-
ration of an MPEG codec video sequence. Furthermore, scene changes could
also be modeled. With this modeling strategy we are able to model both the
SRD and CDF.

Scene-based models are able to model all three statistical characteristics
by introducing scenes to model the SRD. Inside one scene the frame sizes
are modeled with an appropriate CDF. The division into scenes effect that
also LRD could be modeled. Another modeling strategy, which can rebuild
all three statistical characteristics is the projection of the FARIMA process
to a CDF.

424 18. Modeling Application Traffic

Example: Generating frame sizes by using a FARIMA process

In this section we illustrate an example for establishing a model with a pro-
jected FARIMA process. For this purpose, we use for each frame type an
appropriate projected FARIMA model in order to generate frame sizes with
the specifics of the frame type. This results in a more precise modeling of
the statistical characteristic. Depending on the analyzed trace files we have
to define a GOP configuration. In our case, we use the GOP configuration
IBBPBBPBBPBBIBBP. . . , because we have analyzed trace files with these
GOP configuration. To get a representative model it is a good way to intro-
duce a classification scheme, where the most important attributes of a video
model are captured. The genre, quality, format, and used codec are examples
for attributes in such a classification.

In the following, the process of generating the frame sizes are explained
in detail. At first the required parameters are described. Then the generation
of the FARIMA process are explained and subsequent to this the projection
to a lognormal CDF is shown. Note that these steps have to be done for all
frame types.

Parameter. The required parameters for generating a projected FARIMA
process are the following ones:

– Autoregressive parameter φ1, φ2, . . . , φp

– Moving average parameter θ1, θ2, . . . , θq

– Fractional differencing level d
– Mean value μ and standard deviation σ of the lognormal distribution, which

is used for the projection

Before the autoregressive and moving average parameter could be deter-
mined, we have to define first the order of the process. In the literature
this order was never larger than two [74]. In our scenario we use p = 1 and
q = 1.

The parameters φ and θ are determined through the Yule-Walker equa-
tions [74]. Parameter d is defined by the equation d = H − 0.5, where H de-
notes the Hurst parameter [208]. Therefore we have to define first the Hurst
parameter to determine d. There exists basically three methods to calculate
the Hurst parameter:

– Rescaled Adjusted Range Analysis (R/S Analysis)
– Variance-Time Analysis
– Periodogram Analysis

Cano and Manzoni compare in their paper [88] these three methods. The
results of this investigation are, that the periodogram analysis was the eas-
iest one to implement, but the R/S analysis the most robust one, while the
variance-time analysis seems to be very unstable. Therefore, it should be
appropriate to use the R/S analysis to determine the Hurst parameter.

18.5 Modeling Video Traffic 425

FARIMA process. After the parameters are calculated, we have to generate a
FARIMA(p, d, q) process (see [74] for more information). A FARIMA process
of order (p, d, q) is defined as

φ (B)Δdzn = θ (B) an.

This equation could be transformed into an ARIMA(p, q) process of the
following form:

zn = φ−1 (B) θ (B)xn, (18.1)

where

xn = Δ−dan. (18.2)

The series xn is a FARIMA(0, d, 0) process, also denoted as Fractional
Differencing Noise (FDN), and could be calculated through the Hosking
algorithm [206]. Therefore there are basically two steps for generating a
FARIMA(p, d, q) process required:

1. Generate an FDN process xn with equation (18.2)
2. Generate a FARIMA(p, d, q) process zn by using the equation (18.1)

Step 1 is calculated with the Hoskings algorithm as follows (see [206]):

– Calculate the autocorrelation function by the equation

ρk =
d(1 + d) · · · (k − 1 + d)

(1 − d)(2 − d) · · · (k − d)
.

– Draw a random number for x0 from a normal distribution N(0, v0). Set
N0 = 0 and D0 = 1.

– Generate n values through iteration of the following steps (k = 1, 2, . . . , n):

– Nk = ρk −
∑k−1

j=1 φk−1,j · ρk−j ,

– Dk = Dk−1 − N2
k−1/Dk−1,

– φk,k = Nk/Dk,

– φk,j = φk−1,j − φk,k · φk−1,k−j , j = 1, . . . , k − 1,

– mk =
∑k

j=1 φk,j · xk−j ,

– vk = (1 − φ2
k,k)vk−1

– Draw xk from N(mk, vk)

In step 2 we have to generate an ARMA process. Instead using a white noise
process, we use here the equation (18.1) of the FDN process xn, so that we
could generate a FARIMA(p, d, q) process.

426 18. Modeling Application Traffic

Fig. 18.8: An example projection of normal distributed random numbers to an
inverse lognormal distribution.

Projection. After a FARIMA(p, d, q) process is generated, each generated
value of the process must be projected to a lognormal distribution. The pro-
jection is illustrated in Figure 18.8. The generated series of the FARIMA
process is a normal distribution with mean value μN and variance σ2

N . Each
value is first projected on its own CDF, so that we get a sequence of random
numbers between [0, 1]:

FN(μN ,σ2
N)(zn) ∈ [0, 1]

Each random number is then delivered to the inverse lognormal distribution,
which generates a value with the calculated lognormal parameters mean value
μL and variance σ2

L:

F−1
LogN(μL,σ2

L)
(FN(μN ,σ2

N)(zn))

18.6 Conclusion

Designing and evaluating a system without the proper understanding of the
traffic can lead to unexpected performance behavior. Therefore, it is impor-
tant to have a deep understanding about the source of generated traffic, i.e.,
the application traffic. In this chapter, we have shown four classic examples
for application traffic and their modeling approaches. First, in Section 18.2 a
survey about most popular HTTP traffic models are presented and a parame-
terization overview for the most relevant entities are given. Second, modeling
approaches for FTP traffic and the research gap for such traffics are discussed
in Section 18.3. Third, in Section 18.4 models regarding voice traffic are il-
lustrated. For this case, the most relevant entities, i.e., speaker and codec
models, and their interaction are presented in detail. Finally, in Section 18.5
modeling of video traffic has been described. Again, the most relevant entities,
i.e., the user and codec models, are identified and subsequently described.

19. Modeling the Internet Delay Space and its
Application in Large Scale P2P Simulations
Sebastian Kaune (Technische Universität Darmstadt)
Matthias Wählisch (Freie Universität Berlin & HAW Hamburg)
Konstantin Pussep (Technische Universität Darmstadt)

19.1 Introduction

The peer-to-peer (P2P) paradigm has greatly influenced the design of Internet
applications nowadays. It gained both user popularity and significant atten-
tion from the research community, aiming to address various issues arising
from the decentralized, autonomous, and the self-organizing nature of P2P
systems [379]. In this regard, quantitative and qualitative analysis at large
scale is a crucial part of that research. When evaluating widely deployed peer-
to-peer systems an analytical approach becomes, however, ineffective due to
the large number of simplifications required. Therefore, conclusions about the
real-world performance of P2P systems can only be drawn by either launch-
ing an Internet-based prototype or by creating a simulation environment that
accurately captures the major characteristics of the heterogeneous Internet,
e.g. round-trip times, packet loss, and jitter. Running large scale experiments
with prototypes is a very challenging task due to the lack of sufficiently sized
testbeds. While PlanetLab [36] consists of about 800 nodes, it is still too
small and not diverse enough [434] to provide a precise snapshot for a quali-
tative and quantitative analysis of a P2P system. For that reason, simulation
is often the most appropriate evaluation method.

Internet properties, and especially their delay characteristics, often di-
rectly influence the performance of protocols and systems. In delay-optimized
overlays, for instance, proximity neighbor selection (PNS) algorithms select
the closest node in the underlying network from among those that are con-
sidered equivalent by the routing table. The definition of closeness is typi-
cally based on round-trip time (RTT). In addition, many real time streaming
systems (audio and video) have inherent delay constraints. Consequently,
the Internet end-to-end delay is a significant parameter affecting the user’s
satisfaction with the service. Therefore, in order to obtain accurate results,
simulations must include an adequate model of the Internet delay space.

We begin by discussing the factors that may affect the Internet end-to-
end delay in Section 19.2. Section 19.3 gives an overview on state-of-the
art Internet delay models. In Section 19.4 and 19.5, we present background

428 19. Modeling the Internet Delay Space

information and details on a novel delay model, which we evaluate in Section
19.6. Concluding remarks are given in Section 19.7.

19.2 End-to-end Delay and Its Phenomena

In order to accurately model the Internet delay characteristics, the influencing
entities and their inherent phenomena must be identified. We define the term
Internet end-to-end delay as the length of time it takes for a packet to travel
from the source host to its destination host. In more detail, this packet is
routed to the destination host via a sequence of intermediate nodes. The
Internet end-to-end delay is therefore the sum of the delays experienced at
each hop on the way to the destination. Each such delay in turn consists of
two components, a fixed and a variable component [68]. The fixed component
includes the transmission delay at a node and the propagation delay on the
link to the next node. The variable component, on the other side, includes
the processing and queuing delays at the node.

Normally, end-to-end delays vary over time[410]. We denote this delay
variation as end-to-end delay jitter. According to [126], there are three major
factors that may affect the end-to-end delay variation: queueing delay varia-
tions at each hop along the Internet path; intra-domain multi-path routing,
and inter-domain route alterations.

Thus, the main challenges in creating a Internet delay space model can
be summarized as follows:

– The model must be able to predict lifelike delays and jitter between a given
pair of end-hosts.

– The computation of delays must scale with respect to time.
– The model must have a compact representation.

We argue that the first requirement is subject to the geographical position
of the sender and the receiver. First, the minimal end-to-end delay between
two hosts is limited by the propagation speed of signals in the involved links
which increases proportionally with the link length. Second, the state of the
Internet infrastructure varies significantly in different countries. As long-term
measurement studies reveal (cf. Sec. 19.4), jitter and packet loss rates are
heavily influenced by the location of participating nodes. For example, the
routers in a developing country are more likely to suffer from overload than
those in a more economically advanced country.

Asymmetric Delays
The Internet end-to-end delay refers to the packet travel time from a source
to its receiver. This one-way delay (OWD) will typically be calculated

19.2 End-to-end Delay and Its Phenomena 429

by halving the measured RTT between two hosts, which consists of the for-
ward and reverse portion. Such an estimation most likely holds true, if the
path is symmetric. Symmetric paths, however, are not an obvious case. Radio
devices, for instance, may experience inhomogeneous connectivity depending
on coverage and interferences. Home users attached via ADSL possess inher-
ently different up- and downstream rates. Independent of the access tech-
nology in use, Internet routing is generally not symmetric, i.e., intermediate
nodes traversed from the source to the receiver may differ from the reverse di-
rection. In the mid of 1996, Paxson revealed that 50 % of the virtual Internet
paths are asymmetric [357]. Nevertheless, implications for the corresponding
delays are not evident. Although router-level paths may vary, the forward
and reverse OWD can be almost equal due to similar path lengths, router
load etc.

Internet delay asymmetry has been studied in [354]. The authors show
that an asymmetric OWD implies different forward and reverse paths. How-
ever, unequal router-level paths do not necessarily imply asymmetric de-
lays [354]. An asymmetric OWD could be mainly identified for commercial
networks compared to research and education backbones. It is worth noting
that the end-to-end delay between two hosts within different autonomous
systems (ASes) is significantly determined by the intra-AS packet travel time
[512]. Combining the observations in [354] and [512] thus suggest that in par-
ticular delays between hosts located in different provider domains are poorly
estimated by the half of RTT.

The approximation of the OWD by RTT/2 may over- or underestimate
the delay between two hosts. In contrast to the RTT, measuring the OWD is
a more complex and intrinsic task as it requires the dedicated cooperation of
the source as well as its receiver [416], [480]. Consequently, hosts cannot in-
stantaneously discover the OWD. Protocols and applications therefore use the
RTT, e.g., P2P applications while applying this metric for proximity neighbor
selection. The modeling process of network structures which include end-to-
end delays should be aware of the asymmetric delay phenomena. Neglecting
this Internet property seems reasonable when deployment issues allow for the
simplification, or it is common practice in the specific context. Otherwise, the
approximation is unreasonable.

In the following sections of this chapter, we will focus on geometric
schemes to model the delay space. These approaches calculate the packet
travel time based on the Euclidean distance of artificial network coordinates.
Obviously, such models cannot account for delay asymmetry as the Euclidean
distance between two points is symmetric per definition. Further, we often
use the term delay as synonym for end-to-end or one-way delay.

430 19. Modeling the Internet Delay Space

19.3 Existing Models in Literature

Currently, there are four different approaches to obtaining an Internet de-
lay model: analytical functions, the king method, topology generators, and
Euclidean embedding. In this section, we will briefly discuss each of those
approaches.

Analytical function. The simplest approach to predict delay is to randomly
place hosts into an two-dimensional Euclidean space. The delay is then com-
puted by an analytical function that uses as an input the distance between any
two hosts, for example, the Euclidean distance. While this approach requires
only simple run-time computations and does not introduce any memory over-
head, it has one major drawback: it neglects the geographical distribution and
locations of hosts on earth, which are needed for both the realistic modeling
of lifelike delays (i) and jitter (ii).

King method. The second approach uses the King tool [247] to compute
the all-pair end-to-end delays among a large number (typically dozens of
thousands) of globally distributed DNS servers. In more detail, each server
is located in a distinct domain, and the measured delays therefore repre-
sent the Internet delay space among the edge networks [513]. Due to the
quadratic time requirement for collecting this data, the amount of measured
data is often limited. For example, [247] provides a delay matrix with 1740
rows/columns. This is a non-trivial amount of measurement data to obtain,
but might be too less for huge P2P systems consisting over several thousands
of nodes. To tackle this issue, a delay synthesizer may be used that uses
the measured statistical data as an input in order to produce Internet de-
lay spaces at a large scale [513]. Nevertheless, this synthesizer only produces
static delays and neglect the delay variation.

Topology generators. The third approach is based on using artificial link
delays assigned by topology generators such as Inet [232] or GT-ITM [511].
This scheme initially generates a topology file for a predefined number of
nodes n. A strategy for the final computation of the end-to-end delay depends
on the specific scenario and should consider two issues: (a) on-demand vs. pre-
computation and (b) the single-source path (SSP) vs. all-pair shortest path
(ASP) problem1. In contrast to an on-demand calculation, a pre-calculation
may reduce the overall computational costs if delays are required several
times, but increases the memory overhead. The ASP problem, which causes
high computational power and squares the memory overhead to O(n2), should
be solved in the case that delays between almost all nodes are needed. It is
sufficient to separately calculate the SSP, if only a small subset of nodes will
be analyzed.

1 We refer to the SSP and ASP problem as example for solving a routing decision
for some or all nodes.

19.4 Data from two Internet Measurement Projects 431

Model Computation Memory Comment
cost overhead

Analytical function low O(1) static delays
neglects geographical pos.

King method low O(n2) static delays
very high precision

complicated data acquisition
Topology generators low O(n2) static delays
(pre-computation) neglects geographical pos.
Topology generators very high low static delays
(on-demand) (Dijkstra’s SSP) neglects geographical pos.
Euclidean embedding low O(n) data freely available

Table 19.1: Different approaches for modeling the Internet delay space. The num-
ber of end-hosts is denoted by n.

Euclidean embedding. The fourth approach is based on the data of Internet
measurement projects, e.g. Surveyor [450], CAIDA [85], and AMP [25], which
are freely available. These projects typically perform active probing up to a
million destination hosts, derived from a small number of globally distributed
monitor hosts. This data is used as an input to generate realistic delay by
embedding hosts into a multi-dimensional Euclidean space [168].

Table 19.1 gives an overview about the properties of the aforementioned
approaches. Unfortunately, none of them considers realistic delay and jitter
based on the geographical position of hosts. That is, these approaches aim
to predict static delays, either the average or minimum delay between two
hosts. Furthermore, most of them do not accurately reflect delay character-
istics caused by different geographical regions of the world. This issue can,
however, highly influence the performance of P2P systems, as we will see
in Section 19.5.3. Only the Euclidean embedding seems to be an optimal
tradeoff between computational costs and memory overhead.

In the remainder of this chapter, we therefore present an alternative ap-
proach of obtaining end-to-end delays that fulfills the requirements stated in
the previous section. It exploits the compact and scalable representation of
hosts in an Euclidean embedding, whilst considering the geographical posi-
tion of hosts to calculate delays and lifelike jitter. This approach is based on
rich data from two measurement projects as input.

19.4 Data from two Internet Measurement Projects

This section provides background information on the measured Internet de-
lay data we use in our model. Firstly, we use the measurement data of the
CAIDA’s macroscopic topology probing project [85]. This data contains a
large volume of RTT measurements taken between 20 globally distributed

432 19. Modeling the Internet Delay Space

monitor hosts2 and nearly 400,000 destination hosts. Within this project, each
monitor actively probes every host stored in the so-called destination list by
sending ICMP [371] echo-requests. This lists account for 313,471 hosts cov-
ering the routable IPv4 space, alongside 58,312 DNS clients. Each monitor-
to-destination link is measured 5-10 times a month, resulting in an overall
amount of 40 GB of measurement data. As an example, Fig. 19.1 plots the
data of August 2007 in relation to the geographical distance between each
monitor host and its destinations. Both, the geographical locations of the
monitors and the destination hosts are determined by MaxMind GeoIP ser-
vice3 [309]. It can be observed that there is a proportionality of the RTT to
the length of the transmission medium. The ’islands’ at 8000 - 12000 km and
300 - 400 ms RTT arises from countries in Africa and South Asia.

Fig. 19.1: The measured round-trip times in relation to the geographical distance
in August 2007

To study the changes of delay over time, we additionally incorporate the
data of the PingER project [463]. This project currently has more than 40
monitoring sites in 20 countries and about 670 destination sites in 150 coun-
tries. This number of monitor hosts is double than that of the CAIDA project,
whereas the amount of remote sites is by order of magnitudes smaller. Nev-
ertheless, the RTT for one monitor-to-destination link is measured up to 960
times a day, in contrast to 5-10 times per month by the CAIDA project.
2 For more information about the monitor hosts, see

http://www.caida.org/projects/ark/statistics/index.xml
3 The obviously impossible RTT values below the propagation time of the speed

of light in fiber can be explained by a false positioning through MaxMind.

19.5 Model 433

As seen later on, this allows us to accurately predict the inter-packet delay
variation between any two hosts located in different countries or continents.

19.5 Model

This section details our model that aims to realistically predict end-to-end
delays between two arbitrary hosts chosen from a predefined host set. This
model approximates the OWD between two hosts by halving the measured
RTTs as obtained from the above mentioned measurement projects. However,
we are aware that this approach may over- or underestimate the actual OWD
in reality (cf. Sec 19.2). Nevertheless, the obtained delays are non-static, and
consider the geographical location of both the source and destination host.
Further, the model properties in terms of computation and memory overhead
are given.

19.5.1 Overview

We split up the modelling of delay into a two-part architecture. The first part
computes the minimum one-way delay between two distinct hosts based on
the measured round-trip time samples of CAIDA, and is therefore static. The
second part, on the other hand, is variable and determines the jitter.

Thus, the OWD between two hosts H1 and H2 is given by

delay(H1,H2) =
RTTmin

2
+ jitter. (19.1)

Fig. 19.2 gives an overview of our model. The static part (top left) gener-
ates a set of hosts from which the simulation framework can choose a subset
from. More precisely, this set is composed of the destination list of the CAIDA
measurement project. Using the MaxMind GeoIP database, we are able to
look up the IP addresses of these hosts and find out their geographic position,
i.e., continent, country, region, and ISP. In order to calculate the minimum
delay between any two hosts, the Internet is modelled as a multidimensional
Euclidean spaceS. Each host is then mapped to a point in this space so that
the minimum round-trip time between any two nodes can be predicted by
their Euclidean distance.

The random part (top right), on the other hand, determines the inter-
packet delay variation of this minimum delay; it uses the rich data of the
PingER project to reproduce end-to-end link jitter distributions. These dis-
tributions can then be used to calculate random jitter values at simulation
runtime.

Basically, both parts of our architecture require an offline computation
phase to prepare the data needed for the simulation framework. Our overall

434 19. Modeling the Internet Delay Space

Static part

MaxMind

H1 = <(c1, … cD), GeoData>

Host set with GeoData

Embedding into Euclidean space

…

End-to-end-link jiiter distribution

H1

H2

60 ms PingER

60 ms

CAIDA

Simulation Framework

MinimumRTT
2

Delay(H1, H2) = + Jitter

Random part

HN = <(c1, … cD), GeoData>

P
D

F

Fig. 19.2: Overview of our delay space modeling techniques

goal is then to have a very compact and scalable presentation of the underlay
at simulation runtime without introducing a significant computational over-
head. In the following, we describe each part of the architecture in detail.

19.5.2 Part I: Embedding CAIDA hosts into the Euclidean Space

The main challenge of the first part is to position the set of destination hosts
into a multidimensional Euclidean space, so that the computed minimum
round-trip times approximate the measured distance as accurately as pos-
sible. To do so, we follow the approach of [335] and apply the technique of
global network positioning. This results in an optimization problem of min-
imizing the sum of the error between the measured RTT and the calculated
distances.

In the following, we denote the coordinate of a host H in a D-dimensional
coordinate space S as cH = (cH,1, ..., cH,D). The measured round-trip time
between the hosts H1 and H2 is given by dH1H2 whilst the computed distance
d̂H1H2 is defined by a distance function that operates on those coordinates:

d̂H1H2 =
√

(cH1,1 − cH2,1)2 + ... + (cH1,D − cH2,D)2. (19.2)

As needed for the minimization problems described below, we introduce
a weighted error function ε(·) to measure the quality of each performed em-
bedding:

ε(dH1H2 , d̂H1H2) =

(
dH1H2 − d̂H1H2

dH1H2

)2

. (19.3)

19.5 Model 435

Basically, this function calculates the squared error between the predicted
and measured RTT in a weighted fashion and has been shown to produce
accurate coordinates, compared to other error measures [335].

At first, we calculate the coordinates of a small sample of N hosts, also
known as landmarks L1 to LN . A precondition for the selected landmarks is
the existence of measured round-trip times to each other. In our approach,
these landmarks are chosen from the set of measurement monitors from the
CAIDA project, since these monitors fulfill this precondition. In order to
achieve a good quality of embedding, the subset of N monitors must, however,
be selected with care.

Formally, the goal is to obtain a set of coordinates cL1 , ..., cLN for the
selected N monitors. These coordinates then serve as reference points with
which the position of any destination host can be oriented in S. To do so, we
seek to minimize the following objective function fobj1:

fobj1(cL1 , ..., cLN) =
N∑

i=1|i>j

ε(dLiLj , d̂LiLj). (19.4)

There are many approaches with different computational costs that can
be applied [295], [335]. Recent studies have shown that a five dimensional
Euclidean embedding approximates the Internet delay space very well [397].
Therefore, we select N(=6) nodes out of all available monitors using the max-
imum separation method4 [168]. For this method, we consider, however, only
the minimum value across the samples of inter-monitor RTT measurements.

In the second step, each destination host is iteratively embedded into
the Euclidean space. To do this, round-trip time measurements to all N
monitor hosts must be available. Similarly to the previous step, we take the
minimum value across the monitor-to-host RTT samples. While positioning
the destination hosts coordinate into S, we aim to minimize the overall error
between the predicted and measured monitor-to-host RTT by solving the
following minimization problem fobj2:

fobj2(cH) =
N∑

i=1

ε(dHLi , d̂HLi). (19.5)

Because an exact solution of this non-linear optimization problem is very
complex and computationally intensive, an approximative solution can be
found by applying the generic downhill simplex algorithm of Nelder and
Mead [230].

4 This method determines the subset of N monitors out of all available monitors
which produces the maximum sum for all inter-monitor round-trip times.

436 19. Modeling the Internet Delay Space

19.5.3 Part II: Calculation of Jitter

Since the jitter constitutes the variable part of the delay, a distribution func-
tion is needed that covers its lifelike characteristics. Inspection of the mea-
surement data from the PingER project shows that this deviation clearly
depends on the geographical region of both end-hosts. Table 19.2 depicts an
excerpt of the two way-jitter variations of end-to-end links between hosts
located in different places in the world. These variations can be monthly ac-
cessed on a regional-, country-, and continental level [463]. We note that these
values specify the interquartile range (iqr) of the jitter for each end-to-end
link constellation. This range is defined by the difference between the upper
(or third) quartile Q3 and the lower (or first) quartile Q1 of all measured sam-
ples within one month. The remarkably high iqr-values between Africa and
the rest of the world are explained by the insufficient stage of development
of the public infrastructure.

To obtain random jitter values based on the geographical position of hosts,
for each end-to-end link constellation we generate a log-normal distribution5

with the following probability distribution function:

f(x; μ, σ) =

⎧
⎨

⎩

1√
2πσx

exp
(

− 1
2

(
lnx−μ

σ

)2
)

if x > 0

0 otherwise.
(19.6)

The main challenge is then to identify the parameters μ (mean) and
σ (standard deviation) by incorporating the measurement data mentioned
above. Unfortunately, both values cannot be obtained directly from PingER.
That is, we are in fact able to determine the expectation value of each con-
stellation, which is given by the difference between the average RTT and the
minimum RTT. Both values are also measured by the PingER project, and
are available in the monthly summary reports, too. The variance or standard
deviation is, however, missing.

For this reason, we formulate an optimization problem that seeks to find a
parameter configuration for μ and σ having two different goals in mind. First,
the chosen configuration should minimize the error between the measured
inter quartile range iqrm and iqr(X) which is generated by the log-normal
distribution. Second, it should also minimize the measured and generated
expectation, Em and E(X) respectively. Formally, this optimization problem
is given by

ferror =
(

E(X)− Em

Em

)2

+
(

iqr(X) − iqrm
iqrm

)2

. (19.7)

5 In [168], it is shown based on real measurements that jitter values can be ap-
proximated by a log-normal distribution.

19.5 Model 437

Europe Africa S. America N. America Asia
Europe 1.53 137.14 3.07 1.29 1.19
Africa 26.91 78.17 3.69 31.79 1.11
S. America 14.17 69.66 13.14 10.78 14.16
N. America 2.02 73.95 3.63 0.96 1.33
Oceania 4.91 86.28 4.19 1.31 2.03
Balkans 1.83 158.89 3.89 1.43 1.25
E. Asia 1.84 114.55 3.02 1.38 0.87
Russia 2.29 161.34 4.79 2.53 1.59
S. Asia 7.96 99.36 8.99 16.48 7.46
S.E. Asia 0.86 83.34 4.43 13.36 1.27
Middle East 9.04 120.23 11.39 10.87 10.20

Table 19.2: End-to-end link inter-packet delay variation in msec (January 2008).

where E(X)= eμ+σ2/2 and iqr(X)= Q3 − Q1 as described above. To
solve this, we apply the downhill simplex algorithm [230]. Observation of
measurement data shows that the iqr-values are usually in the range of 0
to 20 milliseconds6. With respect to this, the three initial solutions are set
to (μ = 0.1, σ = 0.1), (μ = 0.1, σ = 5), and (μ = 5, σ = 0.1), because
these parameters generate random jitter values fitting this range exactly.
The minimization procedure iterates then only 100 times to obtain accurate
results.

We note that the obtained values for μ and σ describe the distribution of
the two-way jitter for a specific end-to-end link constellation. The one-way
jitter is then obtained by dividing the randomly generated values by two.
Further, each end-to-end link constellation is directed from a geographical
region. For example, the delay variation of a packet that travels from Eu-
rope to Africa is significantly higher than the one from Africa to Europe (cf.
Tab. 19.2). By using two directed end-to-end link constellations, one starting
from Europe and the other one starting from Africa, we are able to reflect
this asymmetry.

19.5.4 Algorithm and Memory Overhead

In this section, we briefly describe the properties of our model in terms of
computational costs and storage overhead. These properties are of major
importance since they significantly influence the applicability of the model in
large scale simulations.

First of all, the embedding of all hosts n into a D-dimensional Euclidean
space has a scalable representation of O(n) while it adequately preserves the
properties of the data measured by the CAIDA project. Since the process

6 Africa constitutes a special case. For this, we use another initial configuration as
input for the downhill simplex algorithm.

438 19. Modeling the Internet Delay Space

involved in obtaining this representation is complex and computationally
expensive, it is typically done once. The resulting data can be reused for
each simulation run, e.g., in terms of an XML file. In order to obtain the
minimum delay between any two hosts in this embedding, the evaluation of
the distance function takes then O(D) time which is negligible.

The calculation of the jitter parameters of μ and σ for each possible
end-to-end link constellation is also done once, either before the simulation
starts or offline. Thus, similar to the pre-computation of the host coordi-
nates, this process does not introduce any computational overhead into the
actual simulation process. Nevertheless, the storage of the both parameters
μ and σ takes at first sight a quadratic overhead of O(n2). Due to the fact
that the amount of regions, countries and continents is limited, the required
amount of memory is, however, negligible. For example, the processing of the
data provided in the PingER summary report of January 2008 result in 1525
distinct link constellations. For each of them, the two parameters μ and σ
must be precomputed and stored resulting in a overall storage overhead of
(1525× 2)× 4 bytes≈ 12kB.

19.6 Evaluation

This section describes the setup of our experiments, and any metrics we
think significantly influence the performance of P2P systems. We perform
a comparative study against three existing approaches for obtaining end-to-
end delays: (i) the King method, (ii) topology generators and (iii) analytical
function. Our aim is to show that our model realistically reflects the prop-
erties of the Internet delay space. To this end, we show that the calculated
delay between non-measured end-to-end links is also a suitable presumption
compared to the delays that occur in the Internet.

19.6.1 Experimental Setup

The King method serves as a reference point in our analysis because it pro-
vides measured Internet delay data among a large number of globally dis-
tributed DNS servers. We use the measurement data of [513] collected in
October 2005. This matrix contains 3997 rows/columns representing the all-
pair delays between IP hosts located in North America, Europe and Asia.

With regard to the topology generators, we are especially interested in the
GT-ITM and Inet generators because they are often used in P2P simulations.
For GT-ITM, we create a 9090 node transit-stub topology. For Inet, we create
a topology for a network size of 10000 nodes. We use the default settings of
placing nodes on a 10000 by 10000 plane with 30% of total nodes as degree-
one nodes.

19.6 Evaluation 439

As seen in Section 19.4, there is a correlation between the measured RTTs
and the geographical distance of peers. In order to obtain an analytical func-
tion that reflects this correlation, we perform a least squares analysis so
that the sum of the squared differences between the calculated and the mea-
sured RTT is minimized. Applying linear regression with this least squares
method on the measurement data of 40 GB is, however, hardly possible.
Therefore, we classify this data into equidistant intervals of 200 km (e.g.
(0km, 200km], (200km, 400km] ...), and calculate the median round-trip time
of each interval. Finally, linear regression gives us the following estimation
for the RTT in milliseconds:

fworld(da,b) = 62 + 0.02 ∗ da,b (19.8)

whereas da,b is the distance between two hosts in kilometers. The delay is
then given by f(da,b) divided by two. Fig. 19.3 illustrates this function and
the calculated median RTT times of each interval.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5000 10000 15000 20000

M
ea

su
re

d
ro

un
d-

tr
ip

 ti
m

e
(in

 m
se

c)

Distance (in kilometres)

Speed of light in fiber
Linear regression (world)

Fig. 19.3: Results of linear regression with least square analysis on CAIDA mea-
surement data.

440 19. Modeling the Internet Delay Space

19.6.2 Metrics

To benchmark the different approaches on their ability to realistically reflect
Internet delay characteristics, we apply a set of metrics that are known to
significantly influence the performance of P2P systems [513]:

• Cutoff delay clustering – In the area of P2P content distribution net-
works, topologically aware clustering is a very important issue. Nodes are
often grouped into clusters based on their delay characteristics, in order to
provide higher bandwidth and to speed up access [169]. The underlying delay
model must therefore accurately reflect the Internet’s clustering properties.
Otherwise, analysis of system performance might lead to wrong conclusions.

To quantify this, we use a clustering algorithm which iteratively merges
two distinct clusters into a larger one until a cutoff delay value is reached. In
more detail, at first each host is treated as a singleton cluster. The algorithm
then determines the two closest clusters to merge. The notion of closeness
between two clusters is defined as the average delay between all nodes con-
tained in both cluster. The merging process stops if the delay of the two
closest clusters exceeds the predefined cutoff value. Afterwards, we calculate
the fraction of hosts contained in the largest cluster compared to the entire
host set under study.

• Spatial growth metric – In many application areas of P2P systems, such
as in mobile P2P overlays, the cost of accessing a data object grows as the
number of hops to the object increases. Therefore, it is often advantageous to
locate the ’closest’ copy of a data object to lower operating costs and reduce
response times. Efficient distributed nearest neighbor selection algorithms
have been proposed to tackle this issue for growth-restricted metric spaces
[22]. In this metric space, the number of nodes contained in the radius of delay
r around node p, increases at most by a constant factor c when doubling this
delay radius. Formally, let Bp(r) denote the number of nodes contained in
a delay radius r, then Bp(r) ≤ c · Bp(2r). The function Bp(r)/Bp(2r) can
therefore be used to determine the spatial growth c of a delay space.

• Proximity metric – In structured P2P overlays which apply proximity
neighbor selection (PNS), overlay neighbors are selected by locating nearby
underlay nodes [185]. Thus, these systems are very sensitive to the underlying
network topology, and especially to its delay characteristics. An insufficient
model of the Internet delay space would result in routing table entries that
do not occur in reality. This would in turn directly influence the routing
performance and conclusions might then be misleading. To reflect the neigh-
borhood from the point of view of each host, we use the D(k)-metric. This
metric is defined by D(k) = 1

|N |
∑

p∈N d(p, k), whereas d(p, k) is the average
delay from node p to its k-closest neighbors in the underlying network [297].

19.6 Evaluation 441

19.6.3 Analysis with Measured CAIDA data

Before we compare our system against existing approaches, we briefly show
that our delay model produces lifelike delays even though their calculation is
divided into two distinct parts.

As an illustration of our results, Fig. 19.4 depicts the measured RTT
distribution for the Internet as seen from CAIDA monitors in three differ-
ent geographical locations, as well as the RTTs predicted by our model. We
note that these distributions now contain all available samples to each dis-
tinct host, as opposed to the previous section where we only considered the
minimum RTT.

First, we observe that our predicted RTT distribution accurately matches
the measured distribution of each monitor host. Second, the RTT distribu-
tion varies substantially in different locations of the world. For example, the
measured path latencies from China to end-hosts spread across the world
have a median RTT more than double that of the median RTT measured
in Europe, and even triple that of the median RTT measured in the US.
Additionally, there is a noticeable commonality between all these monitors
regarding to the fact that the curves rise sharply in a certain RTT interval,
before they abruptly flatten out. The former fact indicates a very high latency
distribution within these intervals, whereas the latter shows that a significant
fraction of the real-world RTTs are in the order of 200 ms and above.

In contrast to this, Fig. 19.5 shows the RTT distribution as seen from
a typical node of the network when using the topologies generated by Inet
and GT-ITM as stated before. When comparing Fig. 19.4 and Fig. 19.5,
it can be observed that the real-world RTT distributions significantly differ
from the RTT distributions created by the topology generators. In particular,
around 10-20% of the real-world latencies are more than double than their
median RTT. This holds especially true for the monitor hosts located in
Europe and in the US (see Fig. 19.4). Topology generators do not reflect this
characteristic. Additionally, our experiments showed that in the generated
topologies, the RTT distribution seen by different nodes does not significantly
vary, even though they are placed in different autonomous subsystems and/or
router levels. Thus, current topology generators do not accurately reflect the
geographical position of peers, something which heavily influences the node’s
latency distribution for the Internet.

19.6.4 Comparison to Existing Models

We compare our model (coordinate-based) against existing approaches for
obtaining end-to-end delays using the metrics presented before. The refer-
ence point for each metric is the all-pair delay matrix received by the King
method. We use this because the data is directly derived from the Internet.
However, we are aware that this data only represents the delay space among

442 19. Modeling the Internet Delay Space

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400

C
D

F

Round-trip time (in msec)

Cambridge, UK (measured)
Cambridge, UK (predicted)

Eugene, OR, US (measured)
Eugene, OR, US (predicted)

Shenyang, CN (measured)
Shenyang, CN (predicted)

Fig. 19.4: The measured and predicted round-trip time distribution as seen from
different locations in the world.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400

C
D

F

Round-trip time (in msec)

GT-ITM
Inet

Fig. 19.5: The round-trip time distribution as seen from a typical node generated
by topology generators.

19.6 Evaluation 443

the edge networks. To enable a fair comparison, we select, from our final host
set, all hosts that are marked as DNS servers in CAIDA’s destination list.
We only utilize those that are located in Europe, Northern America or Asia.
These nodes form the host pool for our coordinate-based model, and the an-
alytical function, from which we chose random sub-samples later on. For the
generated GT-ITM topology, we select only stub routers for our experiments
to obtain the delays among the edge networks. For the Inet topology, we
repeat this procedure for all degree-1 nodes. To this end, we scale the delays
derived from both topologies such that their average delays matches the av-
erage delay of our reference model. While this process does not affect delay
distribution’s properties, it alleviates the direct comparison of results.

The results presented in the following are the averages over 10 random
sub-samples of each host pool whereas the sample size for each run amounts
to 3000 nodes7.

We begin to analyse the cluster properties of the delay spaces produced by
each individual approach. Fig. 19.6 illustrates our results after applying the
clustering algorithm with varying cutoff values. It can be observed that for
the reference model, our approach , and the distance function, the curves rise
sharply at three different cutoff values. This indicates the existence of three
major clusters. By inspecting the geographical origin of the cluster members
of the latter two models, we find that these clusters exactly constitute the
following three regions: Europe, Asia and North America. Further, the three
cutoff values of the analytical function are highly shifted to the left, compared
to the values of the reference model. Nevertheless, the basic cluster properties
are preserved. The curve of our delay model most accurately follows the one
of the reference model, but it is still shifted by 10-20 ms to the left. Finally,
both topology generated delays do not feature any clear clustering property.
This confirms the findings that have already been observed in [513].

To analyse the growth properties of each delay space, we performed several
experiments each time incrementing the radius r by one millisecond. Fig. 19.7
depicts our results. The x-axis illustrates the variation of the delay radius r
whereas the y-axis shows the median of all obtained Bp(2r) / Bp(r) samples
for each specific value of r. Regarding the reference model, it can be seen that
the curves oscillates two times having a peak at delay radius values 20 ms
and 102 ms. Also, our coordinate-based approach and the analytical function
produces these two characteristic peaks at 26 ms and 80 ms, and 31 ms and
76 ms respectively8.

In all of the three mentioned delay spaces, the increase of the delay radius
firstly covers most of the nodes located in each of the three major clusters.
Afterwards, the spatial growth decreases as long as r is high enough to cover
7 It is shown in [513] that the properties we are going to ascertain by our metrics

are independent of the sample size. Thus, it does not matter if we set it to 500
or 3000 nodes.

8 The minimum delay produced by the analytical function is 31 ms, no matter the
distance. This is why there are no values for the first 30 ms of r.

444 19. Modeling the Internet Delay Space

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

La
rg

e
C

lu
st

er
 P

er
ce

nt
ag

e

Cutoff delay (in msec)

Measured (King)
Coordinate-based

Analytical
Inet

GT-ITM

Fig. 19.6: Simulation results for cutoff delay clustering.

nodes located in another major cluster. Lastly, it increases again until all
nodes are covered, and the curves flatten out. The derived growth constant
for this first peak of the analytical function is, however, an order of magni-
tude higher than the constants of the others. This is clearly a consequence
of our approximation through linear regression. Since this function only rep-
resents an average view on the global RTTs, it cannot predict lifelike delays
with regard to the geographical location of peers. Nevertheless, this function
performs better than both topology generated delay spaces. More precisely,
none of both reflect the growth properties observed by our reference delay
space.

The experiments with the D(k)-metric confirm the trend of our previ-
ous findings. The predicted delays of our coordinate-based model accurately
matches the measured delays of the reference model. Fig. 19.8 illustrates the
simulation results. While varying the number of k (x-axis), we plot the de-
lay derived by the D(k)-function over the average to all-node delay. Whilst
especially the measured delays and the one predicted by our model show the
noticeable characteristic that there are a few nodes whose delay are signifi-
cantly smaller than the overall average, the topology generated delays do not
resemble this. As a consequence, it is likely that the application of PNS mech-
anisms in reality will lead to highly different results when compared to the
ones forecasted with GT-ITM or Inet topologies. The analytical function, on
the other hand, performs significantly better than the topology generators,

19.7 Summary 445

 1

 10

 100

 0 100 200 300 400 500

M
ed

ia
n

B
(2

r)
/B

(r
)

Radius r (in msec)

Measured (King)
Coordinate-based

Analytical
Inet

GT-ITM

Fig. 19.7: Simulation results for spatial growth of the modelled delay spaces.

even though there is also a noticeable difference in the results obtained by
former two delay spaces.

19.7 Summary

Simulation is probably the most important tool for the validation and perfor-
mance evaluation of P2P systems. However, the obtained simulation results
may strongly depend on a realistic Internet model. Several different models
for the simulation of link delays have been proposed in the past. Most ap-
proaches do not incorporate the properties of the geographic region of the
host. Hosts in a generated topology thus have overly uniform delay proper-
ties. The analytical approach, on the other hand, does not provide a jitter
model that reflects the different regions and the absolute delays differ from
more realistic approaches. Both the King model and our proposed coordinate-
based system incorporating data from real-world measurements yield similar
results. The only major drawback of King is its limited scalability. It requires
memory proportional to n2 and available datasets are currently limited to
3997 measured hosts. Statistical scaling of this data allows to preserve delay
properties, but produces solely static delay values [513].

446 19. Modeling the Internet Delay Space

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

D
(k

)/
D

(N
)

k/N

Measured (King)
Coordinate-based

Analytical
Inet

GT-ITM

Fig. 19.8: Simulation results for the D(k)-function as proximity metric.

The model presented in this chapter has only linear memory costs and
provides a much larger dataset of several hundred thousand hosts. Com-
pared to topology generators the delay computation time is low. In summary,
coordinate-based delay models seem to be an optimal tradeoff between many
conflicting properties.

20. Modeling User Behavior in P2P Systems
Konstantin Pussep (Technische Universität Darmstadt)
Christof Leng (Technische Universität Darmstadt)
Sebastian Kaune (Technische Universität Darmstadt)

20.1 Introduction

The evaluation of peer-to-peer (P2P) systems is crucial for understanding
their performance and therefore their feasibility in the real world. Different
techniques, such as testbeds, analytical analysis, and simulations, can be used
to evaluate system performance. For peer-to-peer systems, simulations are
often the most reasonable approach, simply because P2P systems are both
inherently large-scale and complex.

While simulations are a popular technique for estimating the performance
of large scale P2P systems with an acceptable level of detail, the modeling of
the system is crucial to obtain realistic results. Aside from a proper model of
the underlying network, a proper evaluation has to take user behavior into
account, since it is a critical factor of the system dynamics. The modeling
of user behavior is already important in traditional client/server environ-
ments, because it heavily influences the workload. In addition to their role
as consumers, users become providers in P2P systems which aggravates their
importance to system performance.

In general, a good model of user behavior for P2P systems has to cap-
ture both the consumer and provider nature of the participating peers. For
example, churn, which describes peers connecting to and disconnecting from
the system, has a severe impact on data availability and consistency, while
resource distribution and popularity have a significant impact on load bal-
ancing. Therefore, a user behavior model must be abstract enough to allow
efficient implementations but at the same time capture the most relevant
components.

In this chapter we describe a general user behavior model for the simu-
lation of P2P systems, and show how it can be applied to Distributed Hash
Tables (DHTs), using Kademlia [310] as an example. We discuss a general
model and the alternative approaches for individual components and present
their impact on evaluation results.

448 20. Modeling User Behavior in P2P Systems

20.2 System Model

The behavior of P2P users is rather complex. We aim to break it down into
understandable and independent components. The main categories shown in
Figure 20.1 are churn, workload, and user properties.

Churn describes the participation dynamics of P2P nodes. Users join the
network, leave, and come back several times. Sometimes they even leave for-
ever because they do not use the system anymore. For example, in systems
such as BitTorrent [103] the user is interested in exactly one download per
torrent and will normally not join a distribution overlay in which he already
completed downloading.

Churn consists of the lifetime of a node which starts with its initial cre-
ation and ends with its permanent departure. During its lifetime, a node goes
through several online and offline cycles (see Figure 20.2). The time span a
node is online is called a session. The time between sessions is accordingly
called intersession.

Joining and leaving are system-specific operations. In most overlays join-
ing includes finding neighbors, initializing routing tables, replicating data,
and other setup operations. Leaving cleans up the session state. A regular
leave normally includes the notification of neighbors to help them reorganiz-
ing their state. Not all nodes leave the network orderly, some simply crash,
i.e., they disappear from the overlay without any notification. This can be
caused by software crashes, hardware crashes, or loss of connectivity.

A node in a P2P system is both a server and a client. As such it provides
resources and executes requests for available resources. The provision and
consumption of resources specifies the workload of the system. A realistic
workload model is crucial for sensible performance evaluation. For example,
if resources are shared files in filesharing systems, a request would stand for
downloading a file. As previous studies [186] have shown, the workload is not
uniform over all resources. Some resources are abundant, many are scarce.
The same is true for requests, some resources are far more popular than the
others.

Both churn and workload operate directly on the simulated system which
itself relies on an underlay model of the Internet in the simulator framework
(see Figure 20.1). The use properties (especially his strategy) interact with
churn and workload. The properties also include the goals and interests of
a user. Similar to the global popularity of resources in the workload, a user
has no uniform interest in all resources, but consumes only certain types or
even very specific resources. This interest clustering is especially important
for reputation systems, but has also been used to build specialized content-
clustered overlays [107]. Also part of the strategy is the user’s willingness to
cooperate. Some users try to maximize their benefit, e.g., by not uploading
at all or tricking a reputation system. On the other hand, many users do not
leave the network immediately after a completed download [279]. Thus, the
user strategy does influence both workload and churn.

20.3 Modeling Churn 449

System
under Test

User Properties:
Strategy

Churn:
Arrival

Sessions
Departure

Workload:
Resources
Popularity
Requests

Underlay

Fig. 20.1: P2P system under test. The system is controlled by the workload and
churn components. Different users are modeled by user properties. Fi-
nally, the underlay decides about the transmission delays.

The underlay, the network infrastructure the overlay operates on, is im-
portant for a reasonable performance evaluation as well. Bandwidth, latency,
message loss and other properties of the underlay links have to reflect the
conditions of the target real-world environment. However, the modeling of
underlays is out of scope for this chapter as it is mostly orthogonal to the
user behavior (See Chapter for underlay modeling).

In the next three sections we discuss the components in more detail.

20.3 Modeling Churn

One of the most well-studied and analyzed components of user behavior in
P2P systems is churn, i.e., the property of peers in the system to leave it and
come again at will. Studies such as [448] by Stutzbach et al. measured and
analyzed the churn behavior in different P2P systems, focusing on session
and intersession times. They found churn characteristics being significantly
different across systems.

A churn model can capture the change of online and offline events by
considering the total lifetime of a peer and online sessions. Typically, a user
participates in the system over a certain time, the user lifetime in the sys-
tem. During this time a user may connect and disconnect from the system
many times, therefore creating online sessions. Figure 20.2 shows an example
lifetime of a peer with three sessions.

We divide the modeling of churn into lifetime and session models. The
first model describes when a peer appears in the system for the first and the

450 20. Modeling User Behavior in P2P Systems

last time. The latter covers peer’s online sessions during its lifetime in the
system.

In a simulation run, there is a number of N peers instantiated and avail-
able for simulations. At any point of time a subset of these peers is online
resulting in the actual network size. This network size depends on four factors:
arrival rate, join rate, leave rate, and departure rate.

Because scalability is an important property of P2P systems, simulations
have to show how the system performs for a given network size. Here the
number of online hosts is relevant. We will see how the network size can be
predicted and how long it might take to reach a steady network state.

Arrival Departure

leave
rejoin

leave
rejoin

Session Session Session

Lifetime

time

Fig. 20.2: Peer’s lifetime can consist of several online sessions with different dura-
tions.

20.3.1 Lifetime Models

The lifetime of a peer is determined by two events: arrival and departure.
The peers’ arrivals in a system can be influenced by many factors, such as
the application deployment process or the dynamics of social networks where
people start using the system recommended by their friends. These factors
are difficult to capture exactly and therefore a stochastic model appears rea-
sonable to describe this behavior.

Similar arguments apply to peer departures, because users might stop
using an obsolete system and switch to a new one. However, this process is
typically of less interest for a simulation scenario.

Moreover, in real systems the lifetime of a peer in the system is much
longer than the session time. The lifetime can be several days or even months
long while the sessions are few hours long on average [59]. As the simulated
time often ranges in the order of hours only, the rate of departures is so low
that they can be ignored.

However, this is different for systems such as BitTorrent where peers are
only interested in downloading one single file and depart from the system

20.3 Modeling Churn 451

permanently afterwards. This applies because for each file a distinct short-
living overlay is created.

In the following we consider two possibilities of modeling the arrival
process :

Deterministic Arrival Process

Here all peers arrive with a constant inter-arrival interval τ . The complete
network of N peers is built up after the fixed time N · τ .

A possible downside of this approach is the lack of randomness, often
observed in real system. Furthermore, the fixed inter-arrival intervals can
cause a synchronization of periodic events. For example, consider a network
with 1000 peers that arrive with the interval of 1 minute. Upon arrival each
peer starts some periodic maintenance operation each 10 minutes after the
bootstrap process. In this case each minute 100 concurrent maintenance op-
erations can occur.

Poisson Arrival Process

If peers are assumed to arrive independently from each other a Poisson arrival
process can be applied [197]. Given a peer arrival rate λ, peer arrivals are
distributed exponentially with the same rate λ resulting in the mean inter-
arrival interval τ = 1

λ . For each arrival event an absent peer is selected
and connected to the system. Therefore, for N peers the network will be
completely built up after (roughly) the time N

λ .
This is a more realistic model because arrival events happen with different

intervals.

20.3.2 Session Models

An online session model describes peers going online and offline after they
joined the system for the first time. This model contains two events: join and
leave. The reason why it can be important to distinguish join and arrival
events in a system is that peers coming back to the system can reuse contact
information of other peers and the data items stored locally.

The modeling of online sessions can be done either globally or per peer.
In the first case, there is a global rate of join and leave events. Here, when
a global join event occurs an offline peer is selected to join the network. The
same can apply to leave events. In a simulation environment this method
requires only one periodic join and leave event to be scheduled.

The second method schedules one session join/leave event per peer. Once
a peer has arrived to the system, its session length is computed and the re-
spective leave event is scheduled. After this time is reached and the event

452 20. Modeling User Behavior in P2P Systems

is fired, the intersession length is computed and the join event is scheduled.
While this method has a larger memory footprint due to the number of sched-
uled events, it offers high flexibility. The session and intersession durations
can follow any desired distribution: exponential, Weibull etc. Furthermore,
the peers can be divided into groups, where some peers are long-lasting while
others connect and disconnect frequently.

In the following we consider examples for each of both methods.

Exponential Session and Inter-Session Durations

In this model both the session and intersession time of peers follow an expo-
nential distribution with the (possibly different) rates λs and λi respectively.

The mean session duration of a single peer is means = 1
λs

and the mean
intersession duration is meani = 1

λi
. Then the expected probability of a peer

being online at a given time is the connectivity factor c = means

means+meani
.

Therefore, for N available peers only approximately c ·N peers will be online
for any given time.

This rises an interesting trade-off: If we want to simulate with a fixed
number of online peers and have realistic session and intersession times, then
we might end up with a much larger number of peers that must be available
for the algorithm. This can be a problem if memory is the limiting resource
in the simulation environment.

Global Leave Rate with Peer Replacement

In order to reduce the global number of join and leave events a global leave
rate can be applied, as used e.g., in [388]. Here we can use only one periodic
event that dictates when a peer will leave the network. Each time the event
is triggered one randomly selected online peer leaves the system.

For the join process no additional events are used. Instead an offline peer
is randomly selected and joins the network to replace the peer going offline.
Therefore, the network size is constant.

In more detail, when the churn process starts, there is a Poisson process
deciding when the next leave event should occur. If the leave process is timed
by an exponential distribution with the rate of λleave, then the expected inter-
event interval is 1/λleave and the corresponding session time is expected to
be tmean = N0

λleave
where N0 is the desired network size.

A benefit of this model is that the memory consumption can be easily
limited, e.g we can keep 10,000 peers online from the set of 11,000 available
peers, while still keeping the desired mean session duration. For example, if
the desired session duration is 50 minutes than the global leave rate is set to
10, 000/50 = 200 events per minute.

20.4 Workload Model 453

20.4 Workload Model

This model comprises two parts: the resource distribution that describes the
resources offered and used in the system and the user requests specifying how
these resources are requested and consumed.

Since in a P2P application the users are accessing resources residing on
other peers, the question arises how the information is distributed among the
users. The content items are spread in the system according to some distri-
bution and again depending on the application type and the user structure.

The resource distribution defines how many resources are present in the
system. The replication distribution specifies how many replicas of each file
are present in the system. Finally, the popularity specifies how often single
resources are requested by users.

Several works consider the specifics of P2P file sharing systems regard-
ing the user request patterns, e.g., [186] and [400]. One interesting result is
that systems where users consume multimedia content (so most file sharing
systems, too) show a download-once behavior, e.g., the user almost never re-
quest the same content twice. This leads to a different popularity distribution
compared to classical client-server systems, such as web servers.

The actual requests to the system are issued depending on offered re-
sources, resource popularity and user’s interests. In a simple model a user
issues requests on a regular basis, e.g., each m time units. In a more realistic
approach the users issue queries following a distribution, e.g., an exponential
distribution.

For systems dealing with content (file sharing, video streaming) the
skewed popularity of content can be expressed by heavy-tailed distributions
of content replicas and queries. In real P2P systems Zipf or Zipf-Mandelbrot
were found to fit the content and query distributions well [186].

20.5 User Properties Model

This section briefly captures user specific properties, e.g., interests, strategy.
The interests define which resources the user is interested in, this can be
captured by a resource category the user is interested in and results in dif-
ferent request rates and targets per peer. Therefore, for user u it defines the
interesting content as a subset of all available resources.

The strategy typically describes the cooperativeness of the peer, as some
users are willing to contribute more resources than others. For this reason,
altruistic users will stay online longer and offer more resources, e.g., files,
to the network, while other strategic users will try to minimize their contri-
bution. A model can further include malicious users who try to break the
systems specification. There are many works dealing with the strategies of
the users, such as [251].

454 20. Modeling User Behavior in P2P Systems

User properties are very specific to the used application, which makes it
difficult to discuss them in a general way. Nonetheless, in most cases user
properties simply influence other aspects of the user’s behavior, e.g., online
time, resources, and requests. Thus, it is generally a good idea to model user
properties on top of the churn and workload models.

20.6 Use Case: Kademlia

In this subsection we analyze how to model realistic user behavior for dis-
tributed hash tables in order to evaluate the performance of the Kademlia
overlay routing protocol. Kademlia is probably the most popular DHT rout-
ing overlay, used in large-scale file sharing applications such as the different
BitTorrent clients or the eMule client. It differs from other DHTs in two as-
pects: its large routing table that makes it more resilient to churn and the
usage of the symmetric XOR metric, that creates a local tree view of the
overlay for each peer.

As a generic DHT Kademlia has many use cases. We consider a file-sharing
application in which the DHT is used to locate files offered by peers using
a file ID. That results in rare lookup and store requests because users only
use the DHT while searching for file sources but not within the actual file
transfer. For example, in eMule KAD [447], a variant of Kademlia protocol
is used.

In the BitTorrent [103] derivative Azureus1, Kademlia is used as a decen-
tralized alternative to a centralized tracker. Here the peers can obtain the
addresses of other peers downloading the same file and publish their own
addresses.

1. Arrive

2. Publish
items

4.
Disconnect

5.
Rejoin

3. Perform
lookups

Connectivity
Event

Workload
Event

Fig. 20.3: User activities in a DHT. The events that cause the change the current
activities are differentiated by the responsible component.

The general activity diagram of a Kademlia user is shown in Figure 20.3.
At peer’s arrival the Kademlia join procedure takes place. In the two following

1 www.azureus.com

20.6 Use Case: Kademlia 455

Component Model
resources model Zipf distributed popularity
request model Zipf distributed popularity
lifetime model constant arrival intervals

exponential arrival intervals
session model exponentially distributed sessions and intersessions

Weibull distributed sessions/intersessions based
Global (Poisson) leave rate with peer replacement
no churn (for comparison)

departure rate no permanent departure
user type model simple user model
lookup rate (per peer) 1 lookup each 10 minutes

Table 20.1: Kademlia modeling parameters

phases, lookups and store operations are executed. Here especially the lookup
rate and distribution are timed by the applied workload.

The arrival, leave and join events are timed by the churn component. If
a peer goes offline then it cancels all running queries. Upon a peer’s return
to the system the workload component takes over the control of the peer
and issues new publish and lookup operations. It further specifies the objects
(representing any kind of resources to be published and looked up) available
in the system together with their popularity and replication.

The following most useful characteristics for modeling user behavior in
DHTs:

– Peer arrival rate: this one is important from two points of view: the initial
creation of the network and the avoidance of event synchronization across
peers. The latter might happen because of periodic maintenance operations
running in the background (see Section 20.3.1) .

– Join and leave events: Performance of a DHT depends on the quality of the
routing tables. Stale contacts in the table might cause expensive lookup
timeouts and even the lookup success rate can degrade.

– Lookup/store activity: Bulk requests can overload peers responsible for
popular content. Furthermore, Kademlia tries to minimize the maintenance
overhead by refreshing routing tables during regular lookup operations. If
there are no user requests over certain time intervals, active probing is done
that increases maintenance overhead.

– Resources distribution, replication and popularity: Different popularity of
content will distribute the load in the system unevenly. Also, resources with
a low replication factor might become unavailable under churn and result
in failed lookups.

456 20. Modeling User Behavior in P2P Systems

20.7 Evaluation

In this section we analyze the impact of user behavior on the performance
of the Kademlia protocol. Table 20.1 lists the different components of user
behavior under consideration. We focus on the impact of churn being the
main issue for the performance of search overlays. In detail, we compare
the impact of varying churn setups: different churn models as introduced in
Section 20.3 and the impact of single parameters: network size, session and
intersession durations.

20.7.1 Methodology

Our simulation platform for the experiments is the discrete event-based simu-
lator PeerfactSim.KOM2. The simulator offers a generic framework for differ-
ent overlays and network models. We use the implementation of the Kademlia
routing protocol with the basic setup as shown in Table 20.2.

Parameter Value Description
ID-Length 80 length of Kademlia id space
b 2 order of the routing tree
k 10 number of contacts per bucket
refresh-interval 1 hour routing table refresh interval
α 3 number of concurrent messages
republish-interval 1 hour how often the items are republished

Table 20.2: Kademlia setup

In order to estimate the impact of user behavior on overlay routing the
following metrics are used:

– Routing table quality measured as the ratio of fresh contacts, i.e., con-
tacts that are online at the given time. This metric is measured globally
for all peers in periodic intervals of 5 minutes.

– Success rate determines the ratio of lookups being able to find the de-
sired objects. The success rate is aggregated over intervals of 5 minutes. A
lookup can fail either if the object is not available at online peers or the
peers holding the object are not found by the routing protocol due to the
inconsistency of routing tables.

– Dropped messages per peer reflects the impact of stale (offline) con-
tacts in the routing tables. Overlay messages in Kademlia are sent via UDP
and, hence, get dropped if the destination peer is offline.

2 www.peerfactsim.org

20.7 Evaluation 457

 0

 200

 400

 600

 800

 1000

 50 100 150 200 250 300

N
et

w
or

k
si

ze

Simulation time (min)

No Churn
Exp

Weibull
Global leave rate

(a) Network size

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

S
uc

ce
ss

 r
at

e
(%

)

Simulation time (min)

No Churn
Exponential

Weibull
Global leave rate

(b) Success rates

Fig. 20.4: Impact of churn model on performance.

20.7.2 Setup 1: Fixed Network Size, Variable Session Models

At first we evaluate the impact of the session model used on the system
performance. The following models are considered:

– Exponentially distributed session and intersession durations (see Section
20.3.2). Both the session and intersession rates are set to 0.05 events per
minute (accordingly the means are 20 minutes each).

– Weibull distributed session and intersession durations (following the mea-
surements of Steiner et al. in [441]). The Weibull distribution parameters
scale and shape are set to 169.5385 and 0.61511 for session durations. The
parameters for the intersession durations are set to 413.6765 and 0.47648
respectively.

– Global leave rate with peer replacement (see Section 20.3.2). Here the rate
of leave events is set to 10 events per minute and the target network size
to 800 peers.

– No churn for comparison. Here all peers are online once they arrived in the
system.

The network sizes of each model during the simulation run are shown
in Figure 20.4(a). As we can see here, depending on the distribution size
the actual number of online peers is different. Most of them are similar,
ranging between 800 and 1000 peers once the network is built up. Only
the exponential churn model has different network sizes. For the exponen-
tial model with short session durations (both session and intersession means
are set to 20 minutes) the network size oscillates around the expected mean
of N ·means

means+meani
= 1000·20

20+20 = 500 peers.
For the model with a global leave rate the network size reaches the target

size of 800 peers after 200 minutes. Here 100 minutes are required for all
1000 peers to arrive at the system and 100 more minutes to reach the desired

458 20. Modeling User Behavior in P2P Systems

 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500 600

N
et

w
or

k
si

ze

Simulation time (min)

s=30,is=5
s=30,is=30
s=30,is=60

s=30,is=120

(a) Network size

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500 600

R
at

io
 o

f f
re

sh
 c

on
ta

ct
s

Simulation time (min)

s=30,is=5
s=30,is=30
s=30,is=60

s=30,is=120

(b) Routing table quality

Fig. 20.5: Impact of varying intersession durations (is = {5, 30, 60, 120} minutes)
with the fixed session duration (s = 30 minutes).

network size of 800 peers. Later the network size stays unchanged, because
each leaving peer is immediately replaced by an offline peer.

Figure 20.4(b) presents the impact of the churn model used on the success
rate. For most of the models no significant difference is visible except the
exponential session model, where the success rate degrades dramatically. The
explanation is that because of the high churn rate, some objects become
unavailable and therefore the lookups for these objects fail. We conclude
that the impact of the network size is more relevant than the actual model
being used.

20.7.3 Setup 2: Fixed Session Duration, Variable Intersession
Duration

In order to evaluate the impact of intersession duration times on the overlay
performance we fix the model to the exponential session model and vary
the intersession durations. Four different values are used: 5, 30, 60, and 120
minutes. Figure 20.5(a) shows the network sizes for each of them. We can
see that after the arrival process is finished the system reaches the expected
size and the curve oscillates slightly. The quality of routing tables (shown in
Figure 20.5(b)) reflects the network size. For example, the network size of 500
peers out of 1000 available (curve s=30, is=30) results in the fresh contact
ratio of roughly 50%.

20.7.4 Setup 3: Fixed Network Size, Variable Event Rate

Furthermore, we analyzed the impact of varying online and offline event
rates for the constant connectivity factor. Because the equation for connec-
tivity c = means

means+meanis
applies we obtain means = meanis

1−c . We fix the

20.7 Evaluation 459

 0

 100
 200

 300
 400

 500

 600
 700

 800
 900

 1000

 0 50 100 150 200 250 300

N
et

w
or

k
si

ze

Simulation time (min)

s=10,is=10
s=30,is=30
s=60,is=60

s=120,is=120

(a) Network size

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

R
at

io
 o

f f
re

sh
 c

on
ta

ct
s

Simulation time (min)

s=10,is=10
s=30,is=30
s=60,is=60

s=120,is=120

(b) Routing table quality

 0

 10
 20

 30
 40

 50

 60
 70

 80
 90

 100

 0 50 100 150 200 250 300

S
uc

ce
ss

 r
at

e

Simulation time (min)

s=10,is=10
s=30,is=30
s=60,is=60

s=120,is=120

(c) Success rates

 0

 10
 20

 30
 40

 50

 60
 70

 80
 90

 100

 0 200 400 600 800 1000 1200 1400 1600

P
(X

<
x)

Messages per peer

s=10, is=10
s=60, is=60

(d) Dropped messages per peer

Fig. 20.6: Impact of varying intersession (is) and session duration (s) with the
fixed network size of 500 peers.

connectivity factor to 0.5 and therefore obtain equal durations for the session
and intersession intervals.

The experiments conducted have expected interval durations of 10, 30,
60, and 120 minutes for both sessions and intersessions. Hence, the expected
network size is 0.5 · 1000 = 500 peers.

As shown in Figure 20.6(a) the network sizes are very similar. Similarly,
the quality of routing tables is around 50%. (see Figure 20.6(b)). However,
the success rate is very differently as shown in Figure 20.6(c). It drops sig-
nificantly if the intersession durations are cut to 10 minutes. Here the global
leave rate is 500 · 1

5 = 100 events per minute and reduces the success rate
from 80 to 60%. We further observe that session times of 10 minutes result
in an unstable success rate.

Additionally, 20.6(d) presents the distribution of dropped messages in the
network per peer for the two extreme setups. We observe that this metric
also suffer under high churn rates.

The direct implication of these results is that the replication rate has to
be adjusted to the churn rate in order to assure successful lookups. In a real

460 20. Modeling User Behavior in P2P Systems

system where, the churn cannot be easily known in advance the replication
mechanism has to be adaptive. For example, in Kademlia an adaptive repli-
cation factor k can result in a high recall rate without too much overhead.

20.7.5 Setup 4: Variable Arrival Processes

We further analyzed the impact of different peer arrival rates on Kademlia
but found them having a negligible effect on the system performance. The
alternatives compared were the deterministic and the stochastic processes
as described in Section 20.3.1. Due to the lack of space the graphs are not
shown.

Even if during the arrival process a part of objects is unavailable, once
their holders arrive, the routing tables get repaired quickly. Hence, in the
steady state we measured almost the same success rates despite the arrival
process applied. Especially, we found no difference between a Poisson pro-
cess and peer arrivals with the constant inter-arrival interval. However, this
effect, even if not relevant for Kademlia, is expected to have higher impact
on systems such as BitTorrent [103].

20.8 Further Reading

A substantial number of work exists on modeling of user behavior for single
P2P overlays, such as Gnutella and DHTs. Herrera et al. proposed a group-
based model [203] to model churn in a P2P system, where peers are divided
into three groups, benefactors, peers and peepers, showing different character-
istics regarding their session and intersession lengths. The modeling is based
on the connectivity factor, that specifies the fraction of all available peers be-
ing online at any given point of time. This value is probabilistic, because the
session and intersession times of peers are probabilistic and therefore fluctu-
ate around the desired network size defined by the connectivity factor. This
connectivity factor is computed by Cf = OS

OS+IS where OS is the average
session length and IS is the average intersession length.

The performance of different Distributed Hash Tables (DHTs) under
churn was analyzed by Rhea et al. [388]. Here additionally to the churn the
arrival process, i.e., with which rate and distribution the peers connect to
the system is considered. This model is suitable especially for search overlays
and we use it for comparison. The interesting property of the churn model
applied, is that it allows a stable size of the network, i.e., the number of
peers being online is constant during the simulation time. This is achieved by
replacing each peer going offline by another peer connecting to the network
immediately. This is different to pure probabilistic models and allows more
control of the simulation parameters.

20.9 Conclusions 461

A work on DHTs with mobile participants [519] distinguishes churn be-
havior for heterogeneous networks, including mobile peers. Such peers might
use mobile phones for Internet access and therefore show much higher churn
rates due to expensive online access and failure rate. The modeling here is
based on peer classes with different mean online times, failure probabilities,
number of shared objects and average query rate.

Specific models can be applied for applications such as Gnutella, where
the query circle model was introduced by Schlosser et al. [405]. They focus
mostly on the query inter-arrival times and content popularity. Another work
on Gnutella from Aggarwal et al. [26] concentrates on the impact of realis-
tic and extreme user behavior types on the system. In their model, content
replication, session length and query strings are considered.

Andreolini et al. characterized the resources distributed in Gnutella net-
work [37], especially the file types (video, audio, archives), their sizes and
popularity distributions.

20.9 Conclusions

In this chapter, we have studied the modeling of user behavior when simulat-
ing P2P systems. We presented modeling alternatives to represent the user
behavior in a P2P system. As an example, we showed how it can be applied
to Distributed Hash Tables.

We studied and demonstrated the impact of different modeling approaches
using Kademlia as use case. In particular, arrival rates and churn have sig-
nificant impact on the system performance resulting in diverging drop and
success rates.

This Page Intentionally Left Blank

21. Modeling Security Aspects of Network
Elmar Schoch (Ulm University)

21.1 Introduction

With more and more widespread usage of computer systems and networks,
dependability becomes a paramount requirement. Dependability typically de-
notes tolerance or protection against all kinds of failures, errors and faults.
Sources of failures can basically be accidental, e.g., in case of hardware er-
rors or software bugs, or intentional due to some kind of malicious behavior.
These intentional, malicious actions are subject of security. A more complete
overview on the relations between dependability and security can be found
in [31]. In parallel to the increased use of technology, misuse also has grown
significantly, requiring measures to deal with it.

Generally, security can be seen from different perspectives. For instance,
looking from an attacker’s perspective, one can investigate attack motivation,
attack technique, attack target etc. From the opposite, it is important to know
about potential threats, which security goals need to be fulfilled and how
security measures can be implemented. Table 21.1 lists important security
goals and corresponding threats.

At first glance, the link between simulation and security is difficult to see.
Security work mostly consists of penetration testing, bug fixes and software
updates, code reviews, policies, system hardening, monitoring etc. Hence, the
question is how simulation can help research on security? The answer to this
question is included in the basic motivation why we use simulation generally:
whenever it is too costly, not repeatable, too dangerous or simply impossible
to do the same in real world, simulation can be an alternative. A typical case
is that a fully deployed system comprises so many active instances that it is
very hard to create a reliable testbed. For example, consider a wireless ad
hoc network with hundreds or thousands of nodes.

One field of application for security simulation is to get insight how attacks
affect the overall system, such as a complex network [336]. This may comprise
a detailed understanding of the attack in progress or an analysis of the impact
of an attack . For instance, the impact of a denial of service attack on a load-
balancing system could be simulated. This can help to estimate potential
damage as well as the likelihood of an attack. If the simulation results show
that only few stations are needed to bring down the load balancer, the attack
is much more likely than an attack with thousands of hosts involved.

Another usage of simulation considers experimentation during the design
of security measures. First, the effectiveness of a security mechanism against

464 21. Modeling Security Aspects of Network

Goal Threat
Authenticity Identity theft
Integrity Manipulation
Availability Denial of service
Privacy, Confidentiality Eavesdropping
Access Control Intrusion
Non-repudiation, Liability Impersonation

Table 21.1: Security Goals and Threats

an attack can be tested, and second, one can get insight on the additional
efforts it introduces.

21.2 Role of Modeling and Simulation in Security Re-
search

Dealing with security is a very widespread and multi-faceted field of work.
One of the first steps usually comprises an overview on the system to inspect
and an assessment of goals and risks. This delivers a rough picture of elements
to protect. Based on that, one typically has to consider practically all parts
of a system regarding their strengths and weaknesses. Then, one also has
to adopt the viewpoint of an attacker and elaborate on potential goals and
subsequent attacks on the system. With all that knowledge, one can start
to think about measures to be integrated into the system, which help to
prevent attacks or to mitigate the effect of attacks. However, often attackers
also adapt their behavior to new preconditions and thus, the circle has to go
another round.

Figure 21.1 shows an overview on the described procedure, from the per-
spective of simulation. This section first gives an introduction, what elements
of security research can be modeled and how this fits into the overall simu-
lation world. Another relevant aspect are the different kinds of metrics that
the models deliver during a simulation. Finally, the discussion also names
elements of security work that simulation cannot be used for.

21.2.1 Security Models

The typical starting point for security research is a security problem — which
is mostly part of an existing system or a system under development. Hence,
the first step towards simulation is to model the system itself. Models that
are used in simulation basically are a simplified imitation of the real behavior
of a certain portion of the system to be simulated. A (partial) simulation of
a system comprises many single models. For example, in case of wireless ad

21.2 Role of Modeling and Simulation in Security Research 465

MetricsSystem model

System model

Attack modifications

Metrics

System model

Attack modifications

Security mechanisms

Metrics

Metrics

Fig. 21.1: Overview on process, involved models and metrics in simulation of
security

466 21. Modeling Security Aspects of Network

hoc networks, one has to model the environment (such as obstacles, signal
propagation, etc.) and the network participants (movement, physical signal
transmission, medium access, routing protocols, applications and so on).

As depicted in Figure 21.1, the next step towards simulation of security is
to introduce attacks on the system. To thwart the attacks and their impact,
security measures follow the attacks. Hence, simulation of security adds two
additional model dimensions to the general system modeling:

– Modeling of attacks
– Modeling of security measures

Attacks typically manifest themselves by a modified behavior compared
to normal system operation. For instance, an attacker may use a protocol in
a not specification-conformant way or he may produce exceptional conditions
for the system such as increased traffic. All of this has its correspondent in
the basic simulation as a model. For example, a generic attack on a routing
protocol can be to drop specific messages or to tunnel messages to a colluding
attacker (wormhole attack [507]). In order to generate load, traffic models are
used to imitate usage of the system. An attack that increases the load of the
system therefore relates to the traffic model. Generally speaking, modeling
an attack typically means to alter or to extend one or multiple models of the
base simulation.

The subsequent step, which often follows the attack analysis, is the devel-
opment and evaluation of security mechanisms. While a number of security
mechanisms are useless to simulate (such as cryptographic authentication),
modeling and simulation of many measures can provide insight on their ef-
fectiveness and overhead. Models of security mechanisms often closely relate
to the protected part of the system. Therefore, models of security measures
also often consist of extensions of the basic simulation model.

21.3 Evaluation Metrics

Evaluating the system from the security point of view can be a three-step
approach, just like the development of models for attacks and countermea-
sures.

21.3.1 Normal System Operation

The first step is to simulate the system without attack. The models of the sys-
tem deliver numerous metrics that subsequently serve as basis for comparison.
For example, one can measure average delivery success, delay, throughput etc.
in a wireless ad hoc network.

21.3 Evaluation Metrics 467

21.3.2 System under Attack

The simulation of a system under attack uses both, regular models and mod-
ified attacker models. From the usual metrics of the system, it is possible to
draw conclusions on the impact of the attack on the overall system. As an
output of two simulations, one normal and one including attack model(s),
these metrics can be compared and thus, the influence of the attack can be
estimated. In the example of the ad hoc network and an attack that disturbs
correct routing, one probably observes reduced delivery success or longer de-
lay. Moreover, more specific metrics can reveal the reason why an attack
is successful or not and therefore deliver more insight on potential security
measures.

21.3.3 System under Attack with Activated Security Measures

The outcome of such an attack analysis may subsequently be used during the
design of security mechanisms to thwart attacks. Again, security mechanisms
mostly modify or extend existing system models in order to secure the system
against attacks. As a third step, one can conduct simulations of that including
the attack model as well as the secured system component models.

One can distinguish the following metrics derived out of step three:

– Regular system performance metrics
– Explicit security mechanism metrics

e.g., detection success of attacks, false positives of an intrusion detection
system, metrics on achieved level of privacy/entropy

– Overhead of security mechanisms
e.g., additional processing load, additional network load

Like before, system-immanent metrics deliver indications on the effective-
ness of the introduced security mechanisms. In an ideal case, the attack has
no impact on the system any more when security mechanisms are active, i.e.,
the normal system operation can be kept up. In addition, specifics metrics
deliver information on the security mechanisms itself. For example, many
security mechanisms also have their drawbacks such as false detections of
attacks or additional overhead. If the system creates a "false alarm" (or false
positive), the performance or the user experience can be affected. If messages
are cryptographically authenticated, it may be required to compute, trans-
port, and verify the signature of a message The computational overhead for
asymmetric cryptographic operations can potentially exceed the capabilities
of small devices.

In summary, the metrics delivered by the simulation can be used to opti-
mize the security of the system.

468 21. Modeling Security Aspects of Network

21.4 Discussion

While many attacks and security measures can be simulated using modified
or extended models, there are other issues of security which can hardly be
addressed by simulation or which do not make sense to simulate.

The models hard to simulate are often related to specific real world phe-
nomena. For example, when the user of a system is the initial target of an
attack, like in social engineering attacks, a sophisticated model of the user
would be required. In the simplest case, this is an empirical model where the
user is tricked by an attack with a certain probability. However, in fact, so
many real world factors influence the effectiveness of such an attack that it is
hard to give an appropriate number for such a probability. Another example
of such highly real world dependent attacks are exploits of implementation
flaws such as buffer overflows. It would not make sense to model such an
attack in detail, because one could simply assume success of such an attack
in a certain percentage.

Like with attacks, some security measures that should be taken to secure
a system can hardly be simulated. For example, the security of a server not
only depends on the software that it is running, but also on the availability
of a safe place. If the server can simply be shut down by a power outage or by
physical destruction, the overall system is not secure. However, such security
measures of course cannot be included in a simulation.

Besides these issues, there is often no need for accurate models of se-
curity measures. Cryptographic functions play a vital role in many security
mechanisms, e.g., to encrypt data or to sign data. Their computational foot-
print is very expensive, i.e., they often require complex calculations. Simulat-
ing the complete calculation of the cryptographic operations is not needed,
since simulation may simply assume a correct calculation of a cryptographic
function.

Another issue for the simulation of security is the cyclic nature of attacks
and corresponding countermeasures. Typically, security measures are intro-
duced to cope with some specific attacks. Then, attackers may adapt their
behavior and mount more sophisticated attacks. Based on these attacks, im-
proved security measures are likely to be added and so on. Game theoretic
models of attack and countermeasures investigate this cycle of adaption. Such
an approach would require intelligent and self-adapting models of attackers
and security measures, which is currently not feasible with simulation.

Beyond that, modeling security for simulation has the same typical prob-
lems of simulation in general. One of them is the credibility of a model,
particularly regarding attacker models. Because there are so many different
potential attacks and attack sequences, it is hard to set up an equally concise
and wide-ranged attacker model.

21.5 Summary 469

21.5 Summary

Simulation can be very beneficial for security assessment and development.
Particularly in very large and complex systems, other approaches (Markov
models, Petri nets, etc.) come to their limits. Simulations can be used to
quantify the impact of attacks. Based on the insight, specific security solu-
tions can be developed and also verified against the attack models. Often, a
three-step approach is useful, comparing normal system operation with the
system behavior under attack, and with the results when security measures
are applied.

Nevertheless, simulation of security struggles with the same issues that
simulation has in general. Therefore, conclusions from simulation results must
be drawn carefully as well.

22. Modeling the Network Topology
Matthias Wählisch (FU Berlin & HAW Hamburg)

22.1 Introduction

Network topologies are one major building block for data communication.
They describe how network entities are directly interconnected with each
other and thus define how information may flow. Such a structure of node
relations can be built on different layers resulting in a physical or logical
topology. The first will be constructed while connecting devices by a physical
medium. On top of this structure, data exchange can be arranged via the
network and application layer creating a logical or overlay topology.

Network communication depends on its underlying structure. This drives
protocol performance, and has impact on routing behavior and complexity.
Choosing an appropriate topology for simulations, analytical studies, or ex-
periments is an important task. As a simple example consider Figure 22.1(a)
and 22.1(b). Both scenarios represent a local area network that connects end
devices via routers to the Internet, but differ in topological properties. Pro-
tocol evaluation thus may lead to completely different results. For instance,
failover mechanisms of a routing protocol cannot be observed for a setting
shown in Figure 22.1(a), as redundant paths are not available to bridge bro-
ken connections.

The network topology and its properties are important ingredients for
protocol and system evaluation. They should be chosen characteristic of the
problem under observation. Thus, the first step in selecting an appropriate
topology is to clarify the scenario, in which the protocol will operate. In
many cases, though, the characteristic properties of the underlying network
are unknown or only vaguely specified. For this reason, there is a tendency to
enrich topology modeling by network measurement. However, working with
real data especially for large, evolving networks such as the Internet cause
specific problems. First, it is an intricate task to retrieve real data for such
structures. Second, every measurement represents only a snapshot, which may
quickly obsolete. Moreover, sets of realistically large sizes may be difficult to
process with currently available memory and CPU cycles. Thus, instead of
applying the problem to a dedicated network topology, the corresponding
topology space should be explored.

In this chapter, we will introduce some common topology models. The
remainder is structured as follows: We present the basic abstraction principle
for network topologies in Section 22.2, and explain how network models can

472 22. Modeling the Network Topology

(a) Non-redundant net-
work

(b) Redundant network

Fig. 22.1: Different network topologies

be characterized in Section 22.3. Section 22.4 describes basic topology models.
Finally, we discuss approaches to model the Internet in Section 22.5.

22.2 Abstraction of Network Topologies by Graphs

Physical and logical topologies consist of entities which are in a relationship
with each other. In most networks, these entities represent different types.
The topology of a computer network, for example, includes end hosts linked
to switches (layer 2) connected via routers (layer 3), cf. Figure 22.2(a). In
this chapter, we address the modeling of the resulting structures, i.e., the
network.

The modeling process includes several levels of abstraction. A network
topology model forms the structural properties of the network. Dedicated
instances of network devices such as different types of routers, switches, or
end system nodes are neglected based on unification (cf. Figure 22.2(a)).
The second step ’eliminates’ all entities that are transparent to the layer
under observation and subsumes devices. In our example, we focus on the lo-
cal routing structure. Thus, switches will be omitted and end devices can be
merged to a domain represented by a single entity (cf. Figure 22.2(b)). At this
stage, our network includes routers, end user domains and an inter-network
connection. From a structural point of view, the inter-network connection as
illustrated does not include any further information. The last step transforms

22.3 Characterizing Graphs 473

(a) Redundant network (b) Redundant net-
work

(c) Graph represen-
tation

Fig. 22.2: Abstraction process of network topologies

the concrete network in an abstract graph representation (cf. Figure 22.2(c)).
Nodes and links equal edges and vertices, respectively.1

A graph G is a set of vertices connected via edges. The set of vertices
is usually denoted by V , and the set of edges by E. Edges may be directed
or undirected, and hence allow to model uni- and bidirectional, as well as
symmetric and asymmetric links. Figure 22.2(c) shows an undirected graph.
Vertices and edges can be extended by attributes, e.g., weighted edges, which
represent link costs. Each vertex possesses an inherent structural property:
its degree, usually denoted by k. The degree of a node is the number of its
connections (which equal its number of nearest neighbors). In the case of
directed edges, the degree can be split in in- and out-degree.

The degree property enables the indirect modeling of different node types.
Considering the example in Figure 22.2, an end user domain has been merged
to a single vertex. The inner structure of such domains is not under consider-
ation, and they are connected to a single router. Consequently, the domains
can be identified by vertices with a degree of 1. This simplification does not
allow the modeling of multi-homed or redundant sites.

Typically, the characterization of a dedicated vertex is not very helpful
and does not reflect the whole graph (or network). In the following, we de-
scribe properties of the complete graph.

22.3 Characterizing Graphs

The graph model can be based on two approaches: ad-hoc and measurement-
based. An ad-hoc model is developed independently of real measurements.
In contrast to this, a measurement-based model tries to reconstruct graph

1 In the following, we will use both, the network engineering and graph term,
interchangeably.

474 22. Modeling the Network Topology

properties or to reproduce the reasons for it. Ad-hoc as well as measurement-
based approaches require a characterization of graphs to verify the approxi-
mation of the real network.

In this section, we summarize some basic properties of graphs. Based on
graph metrics, we can describe and compare networks. Each type of net-
work exhibits a different structure. A mesh network, for example, includes
significantly more inter-connections than a local area network. This property
should be preserved in the corresponding topology model. However, usually
a network cannot be described by a single (simple) metric, but metrics may
be correlated. The latter may be used to restrict the set of properties.

Metrics have a global or local meaning for the graph.
The basic property of a graph is the number of edges |E| and vertices |V |.

For an undirected graph, it follows the average node degree 〈k〉 by 〈k〉 =
2|E|/|V |. More significant (and often used) is the degree distribution P (k),
which calculates the probability that a randomly selected node has degree k.
We denote the number of nodes with degree k by n(k), then:

P (k) =
n(k)
|V | (22.1)

It is worth noting that based on this probability distribution the average
value 〈k〉 can be evaluated. In this case, 〈k〉 =

∑kmax

k=0 k · P (k).
Equation 22.1 calculates the degree distribution for a general instance of a

network. Several realizations of networks may belong to the same (statistical)
class of graphs that admit equal distributions. There are three common degree
distributions [122]:2

Poisson distribution

P (k) = e−〈k〉 · 〈k〉
k

k!
Exponential distribution

P (k) ∝ e−k/〈k〉

Power-law distribution

P (k) ∝ k−γ , k �= 0, γ > 0

A closer insight into the interconnection properties of the graphs is given
by the joint degree distribution. This correlation law defines the probability
that a randomly selected edge connects nodes with degree k1 and k2. Let
m(k1, k2) denote the number of edges out of the total |E| edges that connect
two nodes of degrees k1 and k2 in an undirected graph. Then the correctly
normalized joint degree distribution is calculated as

2 The symbol ∝ means “proportional to”.

22.3 Characterizing Graphs 475

(a) Full Mesh (b) Star (c) Chain

Fig. 22.3: Three extreme graph topologies

P (k1, k2) =
m(k1, k2)

2|E|
It does not only describe the one hop neighborhood structure of an average
k-degree node, but can also be used to derive other well-known measures
[333], [303]. Note that the single node degree distribution P (k) does not
directly follow from integration, but requires a bias correction factor, i.e.,
P (k) ∝

∑
j P (k, j)/k.

Delay sensitive applications or routing protocols are affected by the num-
ber of intermediate nodes between the source and destination. They adjust
buffers or decide on a forwarding path based on the distance between nodes.
The distance between two nodes is the length of the shortest path between
them. In graph theory, this class of paths is also called geodesic. The distance
distribution d(x) measures the probability that two randomly selected nodes
are connected via distance x, which typically is calculated in hops. The length
of the longest shortest path taken over all pairs of nodes is called diameter of
a graph, but in general the metric is not well-defined. In some publications,
the diameter describes the average shortest path length [122], as well.

The average shortest path length 〈d〉 for an undirected graph is quantified
as follows: Let d(i, j) denote the distance of a shortest path between the two
nodes i and j, then the normalized average path length is given by:

〈d〉 =
2

|V |(|V | − 1)
·
∑

i�=j

d(i, j)

In any forwarding scenario, intermediate nodes between source and re-
ceiver attain a distinct role. The number of shortest paths passing through
a node m (or link) is quantified by the metric betweenness B(m). To calcu-
late the relative amount, we count all shortest paths between any two nodes
passing m, and divide this by the number of shortest paths of all node pairs
excluding m. Thus, if the total number of shortest paths between two nodes i
and j is B(i, j), and the number of these paths going through m is B(i, m, j),
than the betweenness of m is defined as follows [122], [159]:

476 22. Modeling the Network Topology

Figure 〈k〉 〈d〉 B(v1) B(v2) B(v3) B(v4) B(v5)

Full Mesh 22.3(a) 4 1 0 0 0 0 0
Star 22.3(b) 8/5 8/5 0 0 0 0 6
Chain 22.3(c) 8/5 2 0 3 4 3 0

Table 22.1: Structural properties of the graphs shown in Figure 22.3

B(m) =
∑

i�=m �=j,i�=j

B(i, m, j)
B(i, j)

Betweenness is a common metric in the context of traffic engineering, or
social networks. This measurement quantifies the importance of a node in
information exchange, and the load on such intermediate vertex. Assuming
uniformly distributed traffic that follows shortest paths, the traffic passing
through a node coincides with its betweenness. For comparison of different
sized, directed networks, the betweenness of nodes and edges can be normal-
ized by (|V | − 1)(|V | − 2) and (|V |(|V | − 1)), respectively [159].3 Note that
undirected graphs require an additional dividing factor of 2. The calculation
of the betweenness in unweighted and weighted networks requires O(|V ||E|)
and O(|V ||E| + |V |2 log(|V |) time, respectively, consuming O(|V | + |E|) of
memory [80].

Networks agreeing on one property may still differ in others. Table 22.1
presents the average node degree, the mean path length, and the betweenness
for nodes of the graphs shown in Figure 22.3. For example, a star and a chain
topology with the same number of nodes exhibit the same average node
degree. Nevertheless, both topologies differ significantly in their robustness
against attacks (average distance), and in their characteristic traffic flow per
node (betweenness). In the case of a full mesh, the betweenness reveals that
no vertex attains a dedicated role in the forwarding process. On the other
hand, the central entity in the star topology can be identified easily.

22.4 Common Topology Models

In this section, we want to address the question of how to construct a graph
that satisfy specific properties.

22.4.1 Random Graphs

The basic random graph model, and the corresponding theory have been de-
rived by Erdős and Rényi [134, 135]. A random graph, which is also called
3 The maximum value of betweenness is |V |(|V | − 1). For simplification, some

authors use this for normalization of node and link betweenness [303].

22.4 Common Topology Models 477

(a) Random graph (b) Geometric ran-
dom graph

(c) Barabási-Albert
graph

Fig. 22.4: Visualization of differently generated topologies

Erdős-Rényi-graph, will be constructed as follows: Given a fixed number
of nodes and a probability p, then each edge between two vertices will be
constructed independently with probability p. The pseudocode is presented
in Random Graph Algorithm:

Random Graph Algorithm n, p

� A denotes the adjacency matrix of G with n vertices
� p denotes the probability that two arbitrary vertices are connected
� getRandom() returns uniformly distributed a number over [0, 1]

1 for all 0 ≤ i , j ≤ n− 1
2 do Ai,j ← 0
3 for all 0 ≤ i , j ≤ n− 1
4 do if p ≤ getRandom()
5 then Ai,j ← 1
6 return A

Another variant of the Erdős-Rényi-graph considers a fixed number of
edges: Given the set of all graphs that have n vertices and m edges, one is
uniformly selected. Both models generate a class of graphs with equal sta-
tistical degree properties. For large n, the random graph exhibits a Poisson
degree distribution. All connections are distributed with equal probability
over node pairs. Consequently, the classical random graph does not model
clustering properties, which makes it almost unsuitable for implementing re-
alistic networks. However, there are contributions on generalizing the random
graph to correct these issues [334]. Detailed mathematical background in the
theory of random graphs is presented in [67].

It is worth noting that the following construction procedure does not
reflect the random graph model: Consider all graphs of a fixed number of
vertices. They differ in numbers and combinations of edges, and attain topolo-
gies of differing degree properties. Choosing random elements from this set
of graphs, will not lead to an unbiased sample of random graph. For exam-
ple, the graph with no edges, or the full mesh topology represent a single
instance. The selection process is thus inherently biased preferring graphs
with the maximal number of link combinations.

478 22. Modeling the Network Topology

22.4.2 Geometric Random Graphs – The Waxman Model

Physical connections between nodes of a computer network are not created
arbitrarily but may follow cost aspects of cable lengths. An enhancement
of the Erdős-Rényi-model are geometric random graphs. They account for
the distance between two nodes and thus introduce preference aspects. The
most well-established model for this class of graphs is the so called Waxman
graph, which has been introduced to compare Steiner tree algorithms [489].
In this model, vertices are placed randomly on a Cartesian coordinate grid;
the probability P that an edge connects two nodes u, v depends on their
Euclidean distance d(u, v):

P (u, v) = β · e−d(u,v)/Lα, 0 < α, β ≤ 1

L denotes the maximal distance of two vertices. An increasing β increases
the edge density. A decreasing α reduces the ratio of long to short edges.
Based on these parameters, we can also adjust the average node degree.
The Waxman graph is an appropriate model for small networks that include
locality aspects.

22.4.3 Hierarchical Topologies

Larger computer networks typically consist of several levels. Hierarchical
models decompose the network into tiers, e.g., transit domains connect stub
domains that connect local area networks (LANs) [86]. The general idea is
that each tier is represented by multiple graphs with identical properties.
For this purpose a 2d–grid is divided into separate sub-regions with a scaling
dependent on the network type. This approach allows for inherent support by
Waxman graphs. LANs are modeled as star. Sub-regions are connected step
by step following a top–down creation process. The properties of constructing
a network rely on the (sub–)graph models in use.

There are two common, basic hierarchical models in the context of
computer networks: The Transit–Stub [511] and Tiers [120] model. The
transit–stub graph supports two tiers, and node labels contain hierarchical
information. Edges are associated with policy weights. In contrast, the Tier
model supports a three level hierarchy. All nodes in a single domain are con-
nected by a minimum spanning tree algorithm. Inter-domain connections are
based on the Waxman model.

22.4.4 Preferential Linking – The Barabási-Albert Model

A preferential linking model implements the key concept that highly con-
nected vertices are likely to become even more connected. The first model

22.4 Common Topology Models 479

combining network evolution and preferential linking is the Barabási-Albert
model [49]. Motivated by their analysis of the web link structure, Barabási
and Albert observed that complex networks evolve continuously by the emer-
gence of additional vertices, and that new vertices prefer the establishment of
links with already well-connected vertices. Let ki denote the degree of node
i, then the probability P that a new vertex attaches to i is:

P (ki) =
ki∑
j kj

The basic construction algorithm works as follows: Starting with m0 con-
nected vertices, and a predefined fixed degree k, at each time step a new
k–degree vertex l is added and linked with probability P (kl) to j randomly
selected, already existing different vertices. An extended version including a
rewiring option has been presented in [30].

All new nodes follow the same weight in preferential attachment. To dy-
namically adjust the weight of the preference, the Generalized Linear Prefer-
ence Model (GLP) has been introduced with a weighting parameter β [82]:

P (ki) =
ki − β

∑
j(kj − β)

, with β ∈ (−∞, 1)

This model addresses representative path length and clustering. Both,
the Barabási-Albert model and the GLP model exhibit a power law degree
distribution.

22.4.5 Intermediate Results

Based on the models presented so far, we can create random topologies with-
out clustering, networks that reflect preferences in locality or popularity, and
hierarchical structures. Hierarchical models typically inherit properties from
sub-models. The random graph, the Waxman model, and Transit-Stub as
well as Tiers model can be summarized as ad-hoc models, which are typi-
cally inappropriate for large-scale, evolving networks. The Barabási-Albert
model is an example for measurement-driven approaches trying to reproduce
empirically observed properties of real-world structures.

Figure 22.4 visualizes the (geometric) random graph as well as the
Barabási-Albert model. This illustration tries to give some intuition be-
hind these models. However, it is worth noting that the same instance of a
graph may be drawn differently resulting in quite different pictures. A graph
should not be identified based on its visual structure but on its measurable
properties.

480 22. Modeling the Network Topology

22.5 Modeling the Internet

In this section, we focus on the modeling of the Internet topology. The
Internet is a multi-tier network, which involves communicating components
of the applications down to the network, and even the physical layer. Referring
to the Internet topology means looking at the structure that is responsible
for packet forwarding. We thus exclude structures such as the World Wide
Web graph [359, 150].

22.5.1 Background

The term Internet topology is not well-defined. The Internet consists of edge
domains (or access networks) connected to at least one router, which may
serve several IP networks. Such an access router is typically part of a larger
domain, consolidating multiple IP prefixes. Routers administrated by a sin-
gle authority are aggregated within an Autonomous System (AS). Border
routers of ASes peer with each other. Routing within ASes may follow differ-
ent protocols, routing between ASes is based on a single protocol, currently
BGP [386]. In contrast to intra-domain routing, inter-domain routing need
not follow shortest path selection, but economical or political rules, for ex-
ample. Peering between ASes may be private, or publicly located at Internet
Exchange Points (IXPs). An AS of an Internet Service Provider (ISP) that
agrees to accept and forward traffic to other ISPs, but does not run own
access networks, is called a transit domain.

Modeling the Internet topology implies the choice of granularity, i.e., the
type of resolved entities (the AS-level, router-level or IP-level), or a com-
bination. Augmenting an AS structure with access networks (router-level
networks) is not trivial as autonomous systems are not homogeneous and
the inner structures may differ. Autonomous systems can be classified by
administrative categories or peering relationships (cf. [119] and related work
therein).

22.5.2 Topology Inference & Data Sources

The accurate modeling and analysis of the Internet topology require the
observation of its current state. Gathering the complete Internet structure
is a complex challenge, which cannot be entirely successful as there is no
global view on all connections, nor do we have a method to validate routes
and guarantee global consistency. Nevertheless, several measurement studies
have been pursued over the last decade to understand the Internet structure
and to provide researchers with a realistic Internet topology. For a detailed

22.5 Modeling the Internet 481

overview about Internet topology inference and its problems, we refer to the
surveys [192], [121].

Topology inference is done on different levels of the Internet. IP paths
may be discovered by traceroute. Using alias resolution mechanisms [121], IP
interface addresses can be summarized and mapped to a single router. Both
steps, however, are not trivial: ISPs filter ICMP messages used by traceroute
causing incomplete data sets. Additionally, VPNs, tunnels, or MPLS paths
cannot be revealed by such technique. The aggregation of different IP hops to
a single router usually follows heuristic approaches. Further on, routing paths
need not be symmetric, and source routing is almost everywhere prohibited.
This complicates traceroute measurement and require several vantage points
to explore the diversity of the routing layer. There are studies around which
evaluate the accuracy of traceroute-based data, e.g., [40].

The IP-level can be transformed into the AS-level based on an IP prefix
to AS number mapping.4 However, a prefix can be announced by multiple
ASes, known as the multiple origin AS problem (MOAS) [516]. Inferring the
AS-level Internet paths from router-level traces is a well-known issue, but still
an unsolved problem. In contrast to active measurement, we can infer the AS-
level topology by the usage of publicly available data. There are two sources:
Internet registries, and BPG routing services. Routing registry information
is based on data which is provided by the ISPs and may be incomplete or
obsolete. Typically, this information is used to enhance other sources. AS
topology information can also be derived from BGP routing table dumps
and updates, route servers, and looking glasses. A route server is member
of the BGP peering. It provides limited telnet-access to query BGP routing
information. A looking glass is basically a web interface that acts as telnet-
wrapper for route servers. An offline version of BGP tables provide BGP
dumps. Projects such as RouteViews5 globally distribute route collectors,
which periodically store snapshots of the BGP table. To reconstruct routing
changes, this is done in combination with a dump of all BGP updates obtained
between current and preceding snapshot. BGP updates can also be used to
include fluctuating, e.g., backup links [514]. It is worth noting that the peering
with a route server is voluntary. There are several route servers, which may
have different views on the BGP topology. BGP tables are location dependent.
Consequently, the set of information will be merged.

There are two popular IP traceroute projects, CAIDA6 and DIMES [419].
In contrast to CAIDA, DIMES establishes vantage points at end user sys-
tems, similar to SETI@home, and thus collects data from significantly more
Internet perspectives (i.e., ASes). For a comparison of both data sets we re-
fer to [481]. As mentioned before there are objections to derive the AS graph

4 See http://www.team-cymru.org/Services/ip-to-asn.html, for example.
5 http://www.routeviews.org/
6 Actually, CAIDA is an organization that operates several measurement projects,

e.g, Ark (formerly Skitter).

482 22. Modeling the Network Topology

Data Source Granularity URL
DatCat – http://www.datcat.org
CAIDA AS, IP(, Router) http://www.caida.org/projects/ark
DIMES AS, IP, Router http://www.netdimes.org
RIPE RIS AS http://www.ripe.net/ris
RouteViews AS http://www.routeviews.org
UCLA AS http://irl.cs.ucla.edu/topology
NEC AS http://topology.neclab.eu

Table 22.2: Selection of sources for periodically updated measurement data

from traceroute. The RouteViews project as well as the RIPE Routing Infor-
mation Service (RIS), for example, provide BGP table dumps. The routing
table dumps must be post-processed to generate AS relations. The Internet
Topology Collection of the UCLA incorporates these both sources, and ad-
ditional route servers and looking glasses to provide a merged data set on a
daily base. Based on the processing of BGP updates, the created AS graph
is particularly aware of backup links, which are not visible in the snapshots
of BGP routing tables [514]. The project annotates the graph with AS re-
lationships. A simplified AS graph based on RouteViews, RIPE RIS, and
UCLA data, is calculated within the project of NEC [498]. It represents an
unweighted and weighted next hop matrix, a shortest path calculation (using
policy-free and weighted edges), and classifies the ASes in three tiers.

The Internet Measurement Data Catalog (DatCat) [418] indexes Internet
measurements in a broader context. It does not only include Internet network
topologies, but also DNS traces, P2P measurements, etc. It facilitates search-
ing for and sharing of data among researchers. DatCat is a comprehensive
database, which is freely accessible by the research community in the context
of Internet measurement to allow for reproducible data.

All data sources are summarized in Table 22.2.

22.5.3 On Internet Topology Properties

Although the real Internet structure is unknown in absent of a complete Inter-
net map, there has been various work on analyzing the measured portions.
One of the most controversial assumptions of the Internet topology is the
scaling relations of several properties according to power laws . In their semi-
nal work, Faloutsos et al. [140] analyzed the Internet AS-level topology based
on RouteViews BGP tables. They observed that the out-degree of a node, the
degree distribution, and the Eigenvalue of a graph adjacency matrix follow
power laws. The power law exponent has been related to basic graph char-
acteristics (e.g., number of nodes and edges). The authors thus found a very
elegant way to describe the evolving inter-domain Internet structure. Several
researchers verified this work [424], [301], and tried to understand the origin

22.5 Modeling the Internet 483

of power laws [313]. A common model in this context is the Barabási-Albert
model (cf., Section 22.4.4). Inspired by the work of Faloutsos et al., Bu and
Townsley [82] empirically analyzed measured Internet topologies. They show
that the AS-level topology is a small world graph [488].

Although the observations by Faloutsos et al. have been verified, there
are indications contradicting power laws. Chen et al. [98] argue that the de-
rived AS-level topology is not representative for the Internet connectivity as
at least 20 − 50% of the physical links are missing. Using an extended data
set they show that strict power law relationship does not hold for the node
degree distribution. In a subsequent paper, Siganos, Faloutsos et al. [424] re-
analyze their initial work [424] based on the extended AS map and reclaim
power law observation using linear regression evaluation. A fundamental ob-
servation concerning power law relationship of the node degree distribution
and sampling biases has been presented by Lakhina et al. [273]. The au-
thors construct a subgraph which is based on a larger structure without any
power-law characteristics (e.g., random graph). They show that this subgraph
appears to have power-law degree distribution. Thus, an uneven sampling of
a non-power law structure may lead to power law properties.

The inner structure of an AS domain with respect to its IP path diversity
has been studied by Teixeira et al. [460]. Path diversity measures the number
of available routes between two nodes. The analysis is based on real network
information provided by the ISP Sprint, and inferred topologies. Teixeira et
al. show that approximately 90% of pairs of Sprint’s 17 Point-of-Presence
(PoPs) in the US exhibit at least four link-disjoint paths, and that 40% of
pairs are linked by eight or more routes. In contrast to this, the topologies
derived from active measurements overestimate the number of disjoint paths.

The routing behaviour between two end hosts has been initially analyzed
by Paxson [356]. Employing network probe daemons distributed over 37 In-
ternet hosts located in 34 different stub networks, Paxson measured that
about 30% of the site pairs cross at least one different AS in the forward or
reverse path, and approximately 50% visited at least one different city. For
further work on this topic see, for example, [198].

Routing on the AS-level structure depends on the Autonomous System
relationships. They determine routing export and selection policies. Links
between AS domains are classified in (1) provider-to-customer, (2) customer-
to-provider, (3) peer-to-peer, and (4) sibling-to-sibling relationships [173].
No transit traffic is allowed along peer-to-peer-links, and ISPs typically pre-
fer customer routes over peering or provider links. Following specific policies,
which are bound to the relation type, realistically chosen AS paths (measured
in router hops) are elongated in contrast to shortest path routing. Neglecting
inter-ISP relationships and using a simplified shortest AS path policy model,
Tangmunarunkit et al. [455] analyzed that 20% of Internet paths are inflated
by more than 5 router-level hops. In their subsequent work, the authors
extended the policy model but observed that 96% of paths still have the

484 22. Modeling the Network Topology

Generator AS-level Router-level Hierarchy URL
GT-ITM Yes No Yes http://www.cc.gatech.

edu/projects/gtitm
Inet Yes No No http://topology.eecs.

umich.edu/inet
BRITE Yes Yes Yes http://www.cs.bu.edu/

brite
IGen No Yes Yes http://www.info.ucl.

ac.be/~bqu/igen

Table 22.3: Network topology generators

same length independently of the model in use [454]. Based on a routing pol-
icy model that reflects commercial relationships, Gao et al. [174] derive the
path elongation in AS hops. More than 45% of all AS paths are inflated by
at least one AS hop.

22.5.4 Topology Generation

A standardized Internet topology cannot be provided as long as the Internet
structure is not completely understood. One may import real measurement
data (cf. Section 22.5.2) into the simulator but the created topology remains
incomplete (e.g., missing peering links at the AS-level [41], [199]). Addition-
ally, for most simulators the inferred number of nodes and links is too large.
Krishnamurthy et al. [267], for example, introduce a sampling method in
order to reduce the graph size on the one hand, and preserve power law
metrics and slope on the other hand. The created structure is an undirected
graph at the AS level. To allow for realistic inter-domain routing, edges need
to be annotated with AS relationships as included in some measurement
data [514], [498].

There are several network generators available to create synthetic topolo-
gies (cf. Table 22.3). One of the first well-established generators was GT-
ITM. It provides flat random graphs, and a hierarchical transit-stub model
to reflect the AS structure. Inet-3.0 is also an Autonomous System level
Internet topology generator. It creates a random network and tries to re-
produce inter-domain properties based on the input parameters: number of
nodes, and the fraction of degree-one nodes. The characteristics are similar
to Internet observations between November 1997 and February 2002 [497].
The authors mention that the model does not represent the Internet well
with respect to clique and clustering properties. A topology generator that
reflects the Internet AS-level and router-level is BRITE. BRITE is suitable
for large scale power law graphs. It uses the Waxman, two Barabási-Albert
models , and the generalized preference model to create flat AS, flat Router,
and hierarchical topologies. BRITE also implements several import and

22.6 Conclusion 485

export schemes to transform graphs between different topology generators
and simulators. BRITE, and GT-ITM are pure degree-based generators. More
recently, the IGen generator has been introduced that attempts to create
end-to-end paths. IGen follows a new generation approach, which includes
network design heuristics and geographic restrictions.

22.6 Conclusion

The network topology represents the interconnection of communication en-
tities. It describes the paths which information can flow, and may largely
affect evaluation of communication protocols. Understanding existing struc-
tures, such as the Internet, is a prerequisite to model realistic topologies. The
specification of a graph can be generally descriptive based on a sufficient set
of properties, or constructive using generation rules. A constructive creation
may again be distinguished in two different approaches: Pure algorithmic con-
struction that defines the procedures to create a graph with specific properties
independent of the actual reasons, derived from the network. In contrast, a
causality inspired construction models the understanding of the graph evo-
lution as synthesizing the underlying network building process. It is worth
noting that the two construction mechanisms follow orthogonal perspectives
and may lead to unwanted results when mixed without care.

In this chapter, we introduced basic background on topology modeling,
in which we focused on fixed networks. We started with the first modeling
step: the abstraction of the real network by a graph, which includes the elim-
ination of unnecessary details. Subsequently, we discussed essential metrics
to describe a graph, and to analyze existing structures. The presented ex-
amples are not complete, but should be considered as starting point. The
selection of metrics and the understanding of their interplay with the subject
of investigation are an important part in the modeling. After characterizing
graphs, we introduced common topology models. All of them are not directly
applicable to the Internet topology, as Internet connections are neither built
by random, nor do they follow simple geometric or preferential attachment
rules. We discussed Internet topology modeling in the last section.

The modeling of the Internet is an intricate task. First and foremost, we
are not able to capture the complete Internet, and thus there is no complete
understanding of its structure. There are measurement projects. Processing
their output (e.g., merging different sources) can be part of the modeling.
Presenting an Internet topology without mentioning its level of granularity
(i.e., AS-, router-, or IP-level) is meaningless. Recent discussions [193] advise
to enrich the topology generation by some level of randomness to reflect the
various evolutionary aspects of the Internet.

486 22. Modeling the Network Topology

Subsequent steps may include the modeling of the network layer (Chap-
ter 16), augmenting connections by corresponding link delays (Chapter 19),
and the evaluation of protocols based on realistic traffic patterns (Chap-
ter 18). For an in-depth treatment of network topologies in the context of
communication networks, we refer to the excellent books [69], [122], and [471].

This Page Intentionally Left Blank

List of Figures

1.1 Principle of discrete-event simulation. 3
1.2 Flow diagram of the core of a discrete-event simulator 4

2.1 Sample ns–3 Animation . 31
2.2 Simple Topology . 32
2.3 Distributed Topology . 33

3.1 The Simulation IDE . 37
3.2 The Tkenv Graphical Runtime Environment 54
3.3 Sequence Diagram . 55
3.4 Line Chart in the Result Analysis Tool . 58
3.5 Datasets in the Result Analysis Tool . 59

4.1 Basic structure of the IKR SimLib . 62
4.2 Message-based simulation . 65
4.3 Simulation program in practical usage (C++ and Java edition) . . 67

5.1 openWNS Structure . 70
5.2 Functional Unit Network . 73
5.3 The IEEE 802.11 MAC in the openWNS. 77
5.4 Wrowser . 81

6.1 Development cycle of communication protocols and systems 84
6.2 Development tool advantages/disadvantages 85
6.3 Abstraction layer complexity . 87
6.4 The interfaces of a typical operating system differ in complexity. . 88

7.1 ISS Principle . 102
7.2 Pipeline Principle . 104
7.3 Rating and use-case for cycle accurate Instruction Set Simulation 105
7.4 Cycle versus Instruction Accurate ISS model 106
7.5 Instruction accurate Instruction Set Simulation 107
7.6 Source-code line mapping for hardware simulation 109
7.7 Integration of TimeTOSSIM into TinyOS build process 110
7.8 Rating and use-case for Simulation Instrumentation 111

488 List of Figures

7.9 HySim Infrastructure . 112
7.10 Example of C Virtualization . 113
7.11 Principle and use case of the Virtual Processing Unit 115
7.12 Support timing annotation models of the VPU 117
7.13 Rating and use-case for Virtual Processing Unit 117
7.14 Comparison of different hardware simulation techniques 118

8.1 Logical process . 124
8.2 Example of a deadlock . 125

9.1 Domain model of the PHY layer . 137
9.2 Bit error rate performance of iterative FEC coding schemes 143
9.3 Bit error rate performance of non-iterative FEC coding schemes . 144
9.4 Example constellation of QAM signaling . 146
9.5 Illustration of direct sequence spread spectrum 148
9.6 Impulse response and spectrum of the raised cosine filer 153
9.7 Flowgraph of accurate PHY layer simulation 155
9.8 Functional blocks of a particular PHY model 165
9.9 Sending process . 166
9.10 Receiving process . 169
9.11 Receiving of multiple messages . 170

10.1 Data Link Layer Reference Model . 173
10.2 Medium Access in Time, Frequency, Code and Space Domain. . . . 175
10.3 IEEE 802.16 TDMA/TDD frame structure . 176
10.4 IEEE 802.16 frame structure with idle periods 177
10.5 Modeling OFDMA in time domain . 179
10.6 Spreading a Binary Signal with a Chipping Sequence. 181
10.7 Input, Output, and Logical Structure of a Resource Scheduler. . . 184

11.1 Electromagnetic spectrum . 194
11.2 Linearly polarized transversal electromagnetic wave 196
11.3 Basic propagation phenomena . 198
11.4 Categories of wireless channel models. 199
11.5 Maxwell field simulation . 200
11.6 Reflection and refraction . 201
11.7 Multi-path propagation scenario. 207
11.8 Time- and frequency variant fading . 208
11.9 Impact of intersymbol interference . 210
11.10 Rayleigh fading PDF . 211
11.11 MIMO wireless channel. 214
11.12 MIMO wireless channel. 215
11.13 MIMO wireless channel. 217
11.14 Radiation pattern of λ/2-dipole . 224
11.15 3-dimensional antenna characteristic . 225

List of Figures 489

11.16 RX level at receiver . 225
11.17 Example of different propagation effects . 228

12.1 IEEE 802.11 reference model . 236
12.2 OFDM transmitter and receiver chain . 239
12.3 IEEE 802.11 a/g Physical Layer (PHY) modes 240
12.4 OFDM PPDU frame format . 241
12.5 IEEE 802.11a/g spectral mask . 241
12.6 IEEE 802.11 MAC frame structure . 244
12.7 IEEE 802.11 MAC frame control field . 244
12.8 IEEE 802.16 Reference Model . 266
12.9 Classification and ID mapping of packets at the BS 268
12.10 Structure of the IEEE 802.16 OFDMA frame 271
12.11 IEEE 802.15.4 device architecture . 278
12.12 IEEE 802.15.4 topologies . 279
12.13 Concept of service primitives . 280
12.14 IEEE 802.15.4 PHY sublayer reference model 284
12.15 IEEE 802.15.4 MAC sublayer reference model 287
12.16 IEEE 802.15.4 superframe structure . 291

13.1 Coexistence scenario with two WLAN cells . 306
13.2 Coexistence simulator model . 312
13.3 Power spectral density of IEEE 802.11b and 802.15.4 316
13.4 Reference scenario for IEEE 802.15.4 . 322
13.5 Efficiency ratio with various number of sources and traffic loads . 323

14.1 Boundless simulation area . 330
14.2 Random Walk Mobility Model with constant time interval 332
14.3 Random Way Point Mobility Model . 333
14.4 Random Direction Mobility Model . 333
14.5 Gauss-Markov Model . 334
14.6 Manhattan Model . 335
14.7 Column Model . 336
14.8 Pursue Model . 337
14.9 Nomadic Model . 338

15.1 Mechanisms affecting the handover process . 343
15.2 Handover Taxonomy . 345
15.3 Handover Decision Process . 353
15.4 Guide for modeling handovers . 355

16.1 Classification of Routing Protocols by Network Organization 360
16.2 Network layer mobility scenarios . 374
16.3 Mobility management signaling . 377
16.4 A simple topological model for Mobile IP . 381

490 List of Figures

17.1 TCP window size behavior (modified version from [306]) 391
17.2 Integration of fluid models . 394

18.1 Choi’s “behavioral” model . 404
18.2 Tran-Gia’s comprehensive model . 404
18.3 Different abstraction levels of FTP traffic . 409
18.4 Entities in an application for voice transmission 412
18.5 State models for conversation . 417
18.6 Entities in an application for video transmission 419
18.7 Classification of video characteristics modeling strategies 423
18.8 Projection of normal distributed numbers . 426

19.1 Measured round trip times . 432
19.2 Overview of delay space modeling techniques 434
19.3 Results of regression on CAIDA data . 439
19.4 Measured vs. predicted round-trip time distributions 442
19.5 Round-trip time distribution as seen from a typical node 442
19.6 Simulation results for cutoff delay clustering. 444
19.7 Results for spatial growth of delay spaces . 445
19.8 Simulation results for the D(k)-function as proximity metric. 446

20.1 P2P system under test. 449
20.2 Lifetime of peers. 450
20.3 User activities in a DHT. 454
20.4 Impact of churn model on performance. 457
20.5 Impact of varying intersession durations. 458
20.6 Impact of varying intersession and session duration. 459

21.1 Overview of simulation components in security 465

22.1 Different network topologies . 472
22.2 Abstraction process of network topologies . 473
22.3 Three extreme graph topologies . 475
22.4 Visualization of differently generated topologies 477

List of Tables

6.1 Comparison of Integration Frameworks . 95

9.1 Coding rate of convolution codes . 142
9.2 Types of modulation techniques in wireless standards 145
9.3 Types of pilot techniques used in wireless transmission standards. 147
9.4 Bit rate at different domains in the PHY . 156
9.5 Example BER look-up table . 159

11.1 Fading categories of wireless channels . 209
11.2 MIMO Channel Models Classification . 229
11.3 Parameters for channel models of IEEE 802.11n 230
11.4 Parameters for 3GPP LTE channel path loss models 231
11.5 Parameters for 3GPP LTE channel fading model 232
11.6 Parameters for IEEE 802.16e channel path loss models 233
11.7 Parameters for IEEE 802.16e channel shadowing models 233
11.8 Power delay profiles for IEEE 802.16e systems 234

12.1 Frame duration codes . 271
12.2 IEEE 802.15.4 PHY parameters I . 282
12.3 IEEE 802.15.4 PHY parameters II . 282

16.1 Routing Protocols . 361
16.2 Implemented Routing Protocols in Common Simulators 362
16.3 Comparison of Graph Algorithms . 367

17.1 Simulator support for TCP, UDP and SCTP 387

18.1 Session inter-arrival time. 405
18.2 Viewing time. 405
18.3 Number of pages (web-requests) per session. 406
18.4 Time between two consecutive pages within the same session. . . . 406
18.5 Object size and corresponding distribution . 407
18.6 Parsing time of the main object. 407
18.7 Number of connections per page. 407
18.8 Time between two consecutive connections within the same page. 407

492 List of Tables

18.9 Connection sizes. 407
18.10 Examples for voice codecs. 414
18.11 Examples for some codecs with their attributes. 419
18.12 Activity of the development of video codecs over time. 421

19.1 Approaches for modeling Internet delay space 431
19.2 End-to-end link inter-packet delay variation in msec (January

2008). 437

20.1 Kademlia modeling parameters . 455
20.2 Kademlia setup. 456

21.1 Security Goals and Threats . 464

22.1 Structural properties of the graphs shown in Figure 22.3 476
22.2 Selection of sources for periodically updated measurement data . . 482
22.3 Network topology generators . 484

List of Acronyms

ACK Acknowledgment
AES Advanced Encryption

Standard
AM Amplitude Modulation
AMC Adaptive Modulation

and Coding
AODV Ad-hoc On-demand

Distance Vector
AP Access Point
AR Autoregressive
ARMA Autoregressive Moving

Average
ARIMA Autoregressive

Integrated Moving
Average

ARP Address Resolution
Protocol

ARQ Automatic Repeat
Request

ASCII American Standard
Code for Information
Interchange

ASK Amplitude Shift
Keying

ATM Asynchronous Transfer
Mode

BI Beacon Interval
BE Backoff Exponent
BER Bit-Error Rate
BO Beacon Order
BPSK Binary Phase Shift

Keying

BRAN Broadband Radio
Access Network

BRITE Boston University
Representative
Internet Topology
Generator

BS Base Station
BSS Basic Service Set
BSSID Basic Service Set

Identifier
BU Binding Update
CAP Contention Access

Period
CBR Constant Bit Rate
CC Chase Combining
CCA Clear Channel

Assessment
CCK Complementary Code

Keying
CDF Cumulative

Distribution Function
CDMA Code Division Multiple

Access
CF Contention Free
CFP Contention Free Period
CN Correspondent Node
CoA Care-of Address
CPU Central Processing

Unit
CQI Channel Quality

Indicator
CRC Cyclic Redundancy

Check

494 Acronyms

CS Convergence Sublayer
CSMA Carrier Sense Multiple

Access
CSMA-CA Carrier Sense Multiple

Access with Collision
Avoidance

CTS Clear to Send
CW Contention Window

Length
DAB Digital Audio

Broadcasting
DAC Digital-to-Analog

Converter
DAD Duplicate Address

Detection
DCF Distributed

Coordination Function
DECT Digital Enhanced

Cordless Telephone
DFS Dynamic Frequency

Selection
DFT Digital Fourier

Transform
DHCP Dynamic Host

Configuration Protocol
DIFS Distributed Inter

Frame Space
DIUC Downlink Interval

Usage Code
DL Down Link
DLL Data Link Layer
DNS Domain Name System
DPSK Differential Phase

Shift Keying
DQPSK Differential

Quadrature Phase
Shift Keying

DSL Digital Subscriber Line
DSR Dynamic Source

Routing
DSSS Direct Sequence

Spread Spectrum
DVB Digital Video

Broadcasting

ED Energy Detection
EDC Error Detection and

Correction
EDCA Enhanced Distributed

Channel Access
EETT Exclusive Expected

Transmission Time
EIFS Extended Inter Frame

Space
EIT Earliest Input Time
EOT Earliest Output Time
ertPS Extended Real-time

Polling Service
ETSI European

Telecommunications
Standards Institute

ETT Expected Transmission
Time

ETX Expected Transmission
Count

FA Foreign Agent
FARIMA Fractional

Autoregressive
Integrated Moving
Average

FCC Federal
Communication
Commission

FCF Frame Configuration
Framework

FCH Frame Control Header
FCS Frame Control

Sequence
FDD Frequency Division

Duplex
FDM Frequency Division

Multiplex
FDN Fractional Differencing

Noise
FEC Forward Error

Correction
FFD Full-Function Device
FFT Fast Fourier Transform

Acronyms 495

FHSS Frequency Hopping
Spread Spectrum

FM Frequency Modulation
FSK Frequency Shift

Keying
FU Functional Unit
FUN Functional Unit

Network
FUSC Full Usage of

Subchannels
FMIPv6 Fast Mobile IPv6
FTP File Transfer Protocol
GMSK Gaussian Minimum

Shift Keying
GOP Group of Picture
GPL GNU General Public

License
GPS Global Positioning

System
GPSR Greedy Perimeter

Stateless Routing
GSM Global System for

Mobile
Communications

GTS Guaranteed Time Slot
GT-ITM Georgia Tech

Internetwork Topology
Model

HA Home Agent
HARQ Hybrid Automatic

Repeat
Request (ARQ)

HCF Hybrid Coordination
Function

HMIPv6 Hierarchical Mobile
IPv6

HoA Home Address
HFDD Half Frequency

Division Duplex
HTML Hypertext Markup

Language
HTTP Hypertext Transfer

Protocol

iAWARE Interference Aware
Routing Metric

ICMP Internet Control
Message Protocol

IE Information Element
IEEE Institute of Electrical

and Electronics
Engineers

IETF Internet Engineering
Task Force

IFFT Inverse Fast Fourier
Transform

IFS Inter Frame Space
IP Internet Protocol
IR Incremental

Redundancy
IrDA Infrared Data

Association
ISM Industrial, Scientific,

and Medical
ISO International

Standardization
Organization

ISP Ideal Simulation
Protocol

ITU International
Telecommunication
Union

LA Link Adaptation
LAN Local Area Network
LBT Listen Before Talk
LCoA On-link Care-of

Address
LDK Layer Development Kit
LDPC Low-Density-Parity-

Check
LGPL Lesser General Public

License
LLC Logical Link Control
LOS Line-of-Sight
LP Logical Process
LRD Long Range

Dependency
LTE Long Term Evolution

496 Acronyms

LQI Link Quality
Indication

MAC Medium Access
Control

MAP Mobility Anchor Point
MCPS MAC Common Part

Sublayer
MCS Modulation- and

Coding Scheme
MI Mutual Information
MIB Management

Information Base
MIC Metric of Interference

and Channel-switching
MIMO Multiple Input

Multiple Output
MIP Mobile IP
MIPv4 Mobile IPv4
MIPv6 Mobile IPv6
MLME MAC Sublayer

Management Entity
MN Mobile Node
MPDU MAC Protocol Data

Unit
MSCTP Mobile SCTP
MSK Minimum Shift Keying
MTU Maximum

transmission unit
NACK Negative

Acknowledgment
(ACK)

NAT Network Address
Translation

NAV Network Allocation
Vector

NB Number of Backoffs
NMA Null-Message

Algorithm
NLOS Non-Line-of-Sight
nrtPS Non-real-time Polling

Service
NS-2 Network Simulator 2
OFDM Orthogonal Frequency

Division Multiplex

OFDMA Orthogonal Frequency
Division Multiple
Access

O-QPSK Offset Quadrature
Phase Shift Keying

openWNS open Wireless Network
Simulator

OSI Open Systems
Interconnection

P2P Peer-to-Peer
PAN Personal Area Network
PASTA Poisson Arrivals see

Time Averages
pcap packet capture
PCF Point Coordination

Function
PD PHY Data Service
PDA Portable Digital

Assistant
PDES Parallel Discrete Event

Simulation
PDF Probability Density

Function
PDU Protocol Data Unit
PER Packet Error Rate
PHS Payload Header

Suppression
PHY Physical Layer
PIB PAN Information Base
PIFS Point Coordination

Inter Frame Space
PLCP Physical Layer

Convergence
Procedure

PLL Phase-Locked Loop
PLME PHY Management

Entity
PMD Physical Medium

Dependent
PMP Point to Multi Point
POS Personal Operating

Space
PPDU PHY Protocol Data

Unit

Acronyms 497

PPP Point-to-Point
Protocol

PSD Power Spectral
Density

PSK Phase Shift Keying
PSSS Parallel Sequence

Spread Spectrum
PUSC Partial Usage of

Subchannels
QAM Quadrature Amplitude

Modulation
QoS Quality of Service
QPSK Quadrature Phase

Shift Keying
ICI Inter-carrier

Interference
ISI Inter-symbol

Interference
RCoA Regional Care-of

Address
RF Radio Frequency
RFD Reduced-Function

Device
RNG Random Number

Generator
RRM Radio Resource

Management
RS Reed-Solomon
RSSI Received Signal

Strength Indication
RSVP Resource Reservation

Protocol
RTCP RTP Control Protocol
RTG Receive / transmit

Transition Gap
RTP Real-Time Transport

Protocol
rtPS Real-time Polling

Service
RTS Ready to Send
RTSP Real-Time Streaming

Protocol
SAP Service Access Point

SAR Segmentation And
Reassembly

SC Subchannel
SCTP Stream Control

Transmission Protocol
SD Superframe Duration
SDMA Space Division

Multiple Access
SDU Service Data Unit
SIFS Short Inter Frame

Space
SINR Signal-to-Interference-

plus-Noise-Ratio
SIP Session Initiation

Protocol
SNR Signal-to-Noise-Ratio
SO Superframe Order
SRD Short Range

Dependency
SS Subscriber Station
SSCS Service Specific

Convergence Sublayer
SSID Service Set Identifier
STA station
STC Space Time Coding
TCP Transmission Control

Protocol
TDD Time Division Duplex
TDMA Time Division

Multiple Access
TPC Transmission Power

Control
TTG Transmit / receive

Transition Gap
TTL Time To Live
TUSC Tile Usage of

Subchannels
UDP User Datagram

Protocol
UGS Unsolicited Grant

Service
UL Up Link

498 Acronyms

UMTS Universal Mobile
Telecommunications
System

U-NII Unlicensed National
Information
Infrastructure

URL Universal Resource
Locator

UWB Ultra-Wideband

VoIP Voice over IP

VRR Virtual Ring Routing

SSR Scalable Source
Routing

WCETT Weighted Cumulative
Expected Transmission
Time

WCETT-LB WCETT-Load
Balancing

WiMAX Worldwide
Interoperability for
Microwave Access

WLAN Wireless Local Area
Network

WPAN Wireless Personal Area
Network

WSN Wireless Sensor
Network

WWW World Wide Web

List of Authors
A. Aguiar, University of Porto
I. Aktas, RWTH Aachen University
M. H. Alizai, RWTH Aachen University
A. de Baynast, European Microsoft Innovation Center
A. Berl, University of Passau
M. Bohge, Technische Universität Berlin
D. Bültmann, RWTH Aachen University
P. Di, Universität Karlsruhe (TH) & TU München
M. Emmelmann, Technische Universität Berlin
L. Gao, RWTH Aachen University
J. Gross, RWTH Aachen University
M. Güneş, Freie Universität Berlin
T. R. Henderson, University of Washington, and Boeing Research &

Technology
R. Jennen, RWTH Aachen University
S. Kaune, Technische Universität Darmstadt
T. Kempf, RWTH Aachen University
T. King, Universität Mannheim
M. Kirsche, Brandenburg University of Technology Cottbus (BTU)
K. Klagges, RWTH Aachen University
G. Kunz, RWTH Aachen University
O. Landsiedel, RWTH Aachen University
C. Leng, Technische Universität Darmstadt
S. Max, RWTH Aachen University
C. Mengi, RWTH Aachen University
M. Mühleisen, RWTH Aachen University
O. Puñal, RWTH Aachen University
K. Pussep, Technische Universität Darmstadt
G. F. Riley, Georgia Tech
R. Sasnauskas, RWTH Aachen University
J. Scharf, University of Stuttgart
M. Schinnenburg, RWTH Aachen University
F. Schmidt-Eisenlohr, Karlsruhe Institute of Technology (KIT)
A. Schmitz, RWTH Aachen University
E. Schoch, Ulm University
J. Sommer, University of Stuttgart
A. Varga, Opensim Ltd.
M. Wählisch, Freie Universität Berlin & HAW Hamburg
K. Wehrle, RWTH Aachen University
E. Weingaertner, RWTH Aachen University
S. Wiethoelter, Technische Universität Berlin
D. Willkomm, Technische Universität Berlin
G. Wittenburg, Freie Universität Berlin

This Page Intentionally Left Blank

References

[1] Boost C++ Libraries. http://www.boost.org.
[2] CMU Monarch Project. http://www.monarch.cs.rice.edu/.
[3] The DWARF debugging standard. http://dwarfstd.org.
[4] Microsoft portable executable and common object file format specifi-

cation.
[5] Ns-miracle: Multi-interface cross-layer extension library for the network

simulator. http://www.dei.unipd.it/wdyn/?IDsezione=3966
[6] openWNS - open Wireless Network Simulator.

http://www.openwns.org.
[7] Overhaul of IEEE 802.11 modeling and simulation in ns-2.

http://dsn.tm.uni-karlsruhe.de/english/Overhaul_NS-2.php.
[8] Ptolemy Project Home Page. http://ptolemy.eecs.berkeley.edu/.
[9] Scalable wireless ad hoc network simulator. http://jist.ece.

cornell.edu/people.html.
[10] International Standards Organization: Technical Report on C++ Li-

brary Extensions. International Standard ISO/IEC TR 19768:2007.
[11] Wireshark. http://www.wireshark.org/.
[12] IEEE 802.15.1-2002 IEEE Standard for information technology -

Telecommunication and information exchange between systems -
LAN/MAN - Part 15.1: Wireless Medium Access Control (MAC) and
Physical Layer (PHY) specications for Wireless Personal Area Net-
works(WPANs), 2002.

[13] IEEE 802.11F – trial-use recommended practice for multi-vendor access
point interoperability via an inter-access point protocol across distri-
bution systems supporting IEEE 802.11, June 12 2003.

[14] FCC Report and Order 05-56, Wireless Operation in the 3650-3700
MHz, Mar 2005.

[15] IEEE 802.11-2007, Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications, June 2007.

[16] Guidelines for Evaluation of Radio Interface Technologies for IMT-
Advanced, November 2008.

[17] IEEE 802.11.2 – recommended practice for the evaluation of 802.11
wireless performance, 2008.

502 References

[18] 3GPP TR 25.996 V9.0.0: Spatial channel model for Multiple Input Mul-
tiple Output (MIMO) simulations (Release 9). 3rd Generation Part-
nership Project; Technical Specification Group Radio Access Network,
December 2009.

[19] Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved
Universal Terrestrial Radio Access Network (E-UTRAN); Overall de-
scription , September 2009.

[20] IEEE 802.16m System Description Document, 2009.
[21] IEEE Std 802.16h/D13, IEEE Standard Draft for Local and Metropoli-

tan Area Networks. Part 16: Air Interface for Fixed Broadband Wireless
Access Systems. Improved Coexistence Mechanisms for License-Exempt
Operation, November 2009.

[22] D. R. Karger and M. Ruhl. Finding nearest neighbors in growth re-
stricted metrics. In STOC ’02: Proceedings of the thiry-fourth annual
ACM symposium on Theory of computing, pages 741–750. ACM, 2002.

[23] Third Generation Partnership Project Two (3GPP2). CDMA2000 Eval-
uation Methodology. Website: http://www.3gpp2.org/Public_html/
specs/C.R1002-0_v1.0_041221.pdf, December 2004.

[24] A. Abdi and M. Kaveh. A space-time correlation model for multiele-
ment antenna systems in mobile fading channels. IEEE Journal on
Selected Areas in Communications, 20(3), April 2002.

[25] Active measurement project. http://watt.nlanr.net.
[26] Vinay Aggarwal, Obi Akonjang, and Anja Feldmann. Improving user

and isp experience through isp-aided p2p locality. In Proceedings of
11th IEEE Global Internet Symposium 2008 (GI’08), Washington, DC,
USA, April 2008. IEEE Computer Society.

[27] A. Aguiar and J. Gross. Wireless channel models. Technical Report
TKN-03-007, Telecommunication Networks Group, Technische Univer-
sität Berlin, April 2003.

[28] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: princi-
ples, techniques, and tools. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1986.

[29] Kemal Akkaya and Mohamed Younis. A survey on routing protocols for
wireless sensor networks. Elsevier Ad Hoc Network Journal, 3:325–349,
2005.

[30] Réka Albert and Albert-László Barabási. Topology of Evolving
Networks: Local Events and Universality. Physical Review Letters,
85(24):5234–5237, 2000.

[31] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl
E. Landwehr. Basic Concepts and Taxonomy of Dependable and Se-
cure Computing. IEEE Transactions on Dependable Secure Computing,
1(1):11–33, 2004.

[32] Zigbee™Alliance. Zigbee-2006 specification - revision 13. Technical
report, ZigBee Standards Organization, 2006.

References 503

[33] P. Almers, E. Bonek, and A. Burr et al. Survey of channel and ra-
dio propagation models for wireless mimo systems. EURASIP Journal
on Wireless Communications and Networking, 2007, 2007. Article ID
19070, doi:10.1155/2007/19070.

[34] Eitan Altman, Konstantin Avrachenkov, and Chadi Barakat. A stochas-
tic model of TCP/IP with stationary random losses. IEEE/ACM
Trans. Netw., 13(2):356–369, 2005.

[35] Mostafa Ammar. Why we still don‘t know how to simulate networks. In
MASCOTS ’05: Proceedings of the 13th IEEE International Symposium
on Modeling, Analysis, and Simulation of Computer and Telecommu-
nication Systems, 2005.

[36] An Open Platform for Developing, Deploying, and Accessing Planetary-
Scale Services. http://www.planetlab.com.

[37] M. Andreolini, R. Lancellotti, and Philip S. Yu. Analysis of peer-to-peer
systems: workload characterization and effects on traffic cacheability.
In Modeling, Analysis, and Simulation of Computer and Telecommuni-
cations Systems, 2004.(MASCOTS 2004), pages 95–104, 2004.

[38] Chi-chao Chao and Yuh-Lin Yao. Hidden Markov models for the burst
error statistics of Viterbi decoding. IEEE Transactions on Communi-
cations, 44(12):1620 – 1622, Dec. 1996.

[39] Arm. Realview development suite.
http://www.arm.com/products/DevTools/.

[40] Brice Augustin, Xavier Cuvellier, Benjamin Orgogozo, Fabien Viger,
Timur Friedman, Matthieu Latapy, Clémence Magnien, and Renata
Teixeira. Avoiding Traceroute Anomalies with Paris Traceroute. In
Proceedings of the 6th ACM SIGCOMM conference on Internet mea-
surement (IMC’06), pages 153–158, New York, NY, USA, 2006. ACM.

[41] Brice Augustin, Balachander Krishnamurthy, and Walter Willinger.
IXPs: Mapped? In Proceedings of the 9th ACM SIGCOMM confer-
ence on Internet measurement conference (IMC’09), pages 336–349,
New York, NY, USA, 2009. ACM.

[42] O. Awoniyi and F. Tobagi. Packet Error Rate in OFDM-based Wire-
less LANs Operating in Frequency Selective Channels. In Proc. IEEE
INFOCOM, April 2006.

[43] Rajive L. Bagrodia and Mineo Takai. Performance Evaluation of Con-
servative Algorithms in Parallel Simulation Languages. IEEE Transac-
tions on Parallel Distributed Systems, 11(4):395–411, 2000.

[44] F. Bai and A. Helmy. A Survey of Mobility Models. Wireless Ad Hoc
and Sensor Networks, Kluwer Academic Publishers, 2004.

[45] B. Bailey, G. Martin, and A. Piziali. ESL Design and Verification.
Morgan Kaufmann, 1 edition, 2007.

[46] Constantine A. Balanis. Antenna Theory: Analysis and Design. John
Wiley and Sons, 1997.

504 References

[47] S. Bangolae, C. Wright, C. Trecker, M. Emmelmann, and F. Mli-
narsky. Test methodology proposal for measuring fast BSS/BSS tran-
sition time. doc. 11-05/537, IEEE 802.11 TGt Wireless Performance
Prediction Task Group, Vancouver, Canada, November, 14 – 18 2005.
Substantive Standard Draft Text. Accepted into the IEEE P802.11.2
Draft Reccomended Practice.

[48] Jerry Banks, John S. Carson II, Barry L. Nelson, and David M. Nicol.
Discrete-Event System Simulation. Prentice Hall, fourth edition, 2005.

[49] Albert-László Barabási and Réka Albert. Emergence of Scaling in Ran-
dom Networks. Science, 286(5439):509–512, 1999.

[50] P. Barford and M. Crovella. Generating representative work loads for
network and server performance evaluation. Proceedings of ACM SIG-
MATRICS 98, pages 151–160, June 1998.

[51] Rimon Barr, Zygmunt J. Haas, and Robbert van Renesse. JiST: An
Efficient Approach to Simulation using Virtual Machines. Software
Practice & Experience, 35(6):539–576, 2005.

[52] Rimon Barr, Haas J. Zygmunt, and Robbert van Renesse. JiST: Em-
bedding Simulation Time into a Virtual Machine. In Proceedings of
EuroSim Congress on Modelling and Simulation, 2004.

[53] K. L. Baum, T. A. Kostas, P. J. Sartori, and B. K. Classon. Perfor-
mance characteristics of cellular systems with different link adaptation
strategies. IEEE Transactions on Vehicular Technology, 52(6):1497–
1507, 2003.

[54] I. Baumgart, B. Heep, and S. Krause. Oversim: A flexible overlay
network simulation framework. In IEEE Global Internet Symposium,
2007, pages 79–84, 2007.

[55] R. E. Bellman. On a routing problem. Quarterly of Applied Mathemat-
ics, 16:87–90, 1958.

[56] Tore J Berg. oprobe - an OMNeT++ extension module. http://
sourceforge/projects/oprobe, 2008.

[57] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext transfer protocl
- http/1.0. RFC145, May 1996.

[58] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit
error-correcting coding and decoding: Turbo-codes (1). IEEE Interna-
tional Conference on Communications (ICC), 2, May 1993.

[59] Bhagwan, Savage, and Voelker. Understanding availability. In Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS), LNCS, volume 2,
2003.

[60] K. Blackard, T. Rappaport, and C. Bostian. Measurements and models
of radio frequency impulsive noise for indoor wireless communications.
IEEE Journal on Selected Areas in Communications, 11(7):991–1001,
1993.

References 505

[61] Roland Bless and Mark Doll. Integration of the FreeBSD TCP/IP-
stack into the discrete event simulator OMNeT++. In Proc. of the
36th conference on Winter simulation (WSC), 2004.

[62] Stefan Bodamer, Klaus Dolzer, Christoph Gauger, Michael Kutter,
Thomas Steinert, and Marc Barisch. IKR Utility Library 2.6 User
Guide. Technical report, University of Stuttgart, IKR, December 2006.

[63] Stefan Bodamer, Klaus Dolzer, Christoph Gauger, Michael Kutter,
Thomas Steinert, Marc Barisch, and Marc C. Necker. IKR Compo-
nent Library 2.6 User Guide. Technical report, University of Stuttgart,
IKR, December 2006.

[64] Stefan Bodamer, Martin Lorang, and Marc Barisch. IKR TCP Library
1.2 User Guide. Technical report, University of Stuttgart, IKR, June
2004.

[65] M. Bohge, J. Gross, M. Meyer, and A. Wolisz. A New Optimiza-
tion Model for Dynamic Power and Sub-Carrier Allocations in Packet-
Centric OFDMA Cells. Frequenz, 59:7–8, 2005.

[66] Gunter Bolch, Stefan Greiner, Hermann de Meer, and Kishor S. Trivedi.
Queueing Networks and Markov Chains: Modeling and Performance
Evaluation with Computer Science Applications. Wiley-Interscience,
2nd edition, April 2006.

[67] Béla Bollobás. Random Graphs, volume 73 of Cambridge studies in
advanced mathematics. Cambridge University Press, New York, USA,
2nd edition, 2001.

[68] J. Bolot. Characterizing end-to-end packet delay and loss in the inter-
net. Journal of High Speed Networks, 2:305–323, 1993.

[69] Stefan Bornholdt and Heinz Georg Schuster, editors. Random graphs
as models of networks. Wiley–VCH, Berlin, 2003.

[70] M. Bossert. Channel Coding for Telecommunications. John Wiley &
Sons, Inc., 2000.

[71] A. Bouchhima, I. Bacivarov, W. Youssef, M. Bonaciu, and A. A. Jer-
raya. Using abstract CPU subsystem simulation model for high level
HW/SW architecture exploration. In Proc. Asia and South Pacific De-
sign Automation Conference the ASP-DAC 2005, pages 969–972, 2005.

[72] Athanassios Boulis. Castalia: revealing pitfalls in designing distributed
algorithms in wsn. In SenSys ’07: Proceedings of the 5th international
conference on Embedded networked sensor systems, pages 407–408, New
York, NY, USA, 2007. ACM.

[73] Don Box. Essential COM. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1997. Foreword By-Booch, Grady and Fore-
word By-Kindel, Charlie.

[74] George Box, Gwilym M. Jenkins, and Gregory Reinsel. Time Series
Analysis: Forecasting & Control (3rd Edition). Prentice Hall, February
1994.

506 References

[75] George E. P. Box and Norman R. Draper. Empirical Model-Building
and Response Surfaces. Wiley, 1987.

[76] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource
ReSerVation Protocol (RSVP) — Version 1 Functional Specification.
RFC 2205, September 1997.

[77] P. T. Brady. A Technique for Investigating On-Off Patterns of Speech.
The Bell System Technical Journal, 44:1–22, 1965.

[78] P. T. Brady. A Statistical Analysis of On-Off Patterns in 16 Conversa-
tions. The Bell System Technical Journal, 47:73–91, 1968.

[79] P. T. Brady. A Model for Generating On-Off Speech Patterns in Two-
Way Conversation. The Bell System Technical Journal, 48:2445–2472,
1969.

[80] Ulrik Brandes. A Faster Algorithm for Betweenness Centrality. Journal
of Mathematical Sociology, 25(2):163–177, 2001.

[81] Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John Heide-
mann, Ahmed Hemy, Polly Huang, Steven McCanne, Kannan Varad-
han, Ya Xu, and Haobo You. Advances in Network Simulation. Com-
puter, 33(5):59–67, May 2000.

[82] Tian Bu and Don Towsley. On Distinguishing between Internet Power
Law Topology Generators. In Proceedings IEEE INFOCOM 2002, vol-
ume 2, pages 638–647, New York, USA, 2002. IEEE Computer Society.

[83] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
and Michael Stal. Pattern-oriented Software Architecture Volume 1.
John Wiley & Sons, 1996.

[84] Matthew Caesar, Miguel Castro, Edmund B. Nightingale, Greg O’Shea,
and Antony Rowstron. Virtual Ring Routing: Network Routing In-
spired by DHTs. In Proc. ACM SIGCOMM ’06, Pisa, Italy, September
2006.

[85] CAIDA. Macroscopic Topology Project.
http://www.caida.org/analysis/topology/macroscopic/.

[86] Kenneth L. Calvert, Matthew B. Doar, and Ellen W. Zegura. Modeling
Internet Topology. IEEE Communications Magazine, 35(6):160–163,
1997.

[87] T. Camp, J. Boleng, and V. Davies. A survey of mobility models for
ad hoc network research. Wireless Communications and Mobile Com-
puting, 2(5):483–502, 2002.

[88] J. C. Cano and P. Manzoni. On the use and calculation of the Hurst
parameter with MPEG videos data traffic. In Euromicro Conference,
2000. Proceedings of the 26th, volume 1, pages 448–455 vol.1, 2000.

[89] E. Casilari, F.J. Gonzblez, and F. Sandoval. Modeling of http traffic.
Communications Letters, IEEE, 5(6):272–274, Jun 2001.

[90] E. Casilari, A. Reyes, A. Diaz-Estrella, and F. Sandoval. Classification
and comparison of modelling strategies for VBR video traffic. TELE-
TRAFFIC ENGINEERING IN A COMPETITIVE WORLD, 1999.

References 507

[91] E. Casilari, A. Reyes-Lecuona, F.J. Gonzalez, A. Diaz-Estrella, and
F. Sandoval. Characterisation of web traffic. Global Telecommunications
Conference, 2001. GLOBECOM ’01. IEEE, 3:1862–1866 vol.3, 2001.

[92] L.D. Catledge and J.E. Pitkow. Characterizing browsing strategies
in the World-Wide Web. Computer Networks and ISDN systems,
27(6):1065–1073, 1995.

[93] J. Cavers. Mobile Channel Characteristics. Kluwer Academic, 2000.
[94] R. Chang. Synthesis of band limited orthogonal signals for multichannel

data transmission. Bell Systems Technical Journal, 45:1775–1796, 1966.
[95] Feng Chen and Falko Dressler. A simulation model of IEEE 802.15.4 in

OMNeT++. In 6. GI/ITG KuVS Fachgespräch Drahtlose Sensornetze,
Poster Session, pages 35–38, Aachen, Germany, 2007.

[96] Gilbert Chen and Boleslaw K. Szymanski. DSIM: Scaling Time Warp
to 1,033 processors. In Proceedings of the 37th Winter Simulation Con-
ference, pages 346–355, 2005.

[97] Qi Chen, Felix Schmidt-Eisenlohr, Daniel Jiang, Marc Torrent-Moreno,
Luca Delgrossi, and Hannes Hartenstein. Overhaul of IEEE 802.11
modeling and simulation in ns-2. In MSWiM ’07: Proceedings of the
10th ACM Symposium on Modeling, analysis, and simulation of wireless
and mobile systems, pages 159–168, New York, NY, USA, 2007. ACM.

[98] Qian Chen, Hyunseok Chang, R. Govindan, and S. Jamin. The Ori-
gin of Power Laws in Internet Topologies Revisited. In Proc. of the
21th IEEE INFOCOM, volume 2, pages 608–617, Piscataway, NJ, USA,
2002. IEEE Press.

[99] Zhijia Chen, Chuang Lin, Hao Wen, and Hao Yin. An analytical model
for evaluating ieee 802.15.4 csma/ca protocol in low-rate wireless appli-
cation. In Advanced Information Networking and Applications Work-
shops, 2007, AINAW ’07. 21st International Conference on, volume 2,
pages 899–904, 2007.

[100] K. Cho and D. Yoon. On the general BER expressions of one-
and two-dimensional amplitude modulations. IEEE Trans. Commun.,
50(7):1074–1080, 2002.

[101] H. Choi and J. O. Limb. A behavioral model of web traffic. Network
Protocols, 1999. (ICNP ’99) Proceedings. Seventh International Con-
ference on, pages 327–334, Oct.-3 Nov. 1999.

[102] L. Cimini. Analysis and Simulation of a Digital Mobile Channel using
Orthogonal Frequency Division Multiplexing. Communications, IEEE
Transactions on [legacy, pre-1988], 33(7):665–675, 1985.

[103] B. Cohen. Incentives build robustness in bittorrent. In Proceedings of
the Workshop on Economics of Peer-to-Peer Systems, Berkeley, CA,
USA, 2003.

[104] Gerald Combs. Wireshark Network Analyzer - User’s Guide, July 2008.
[105] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-

ford Stein. Introduction to Algorithms. MIT Press, second edition,
September 2001.

508 References

[106] T.M. Cover and J.A. Thomas. Elements of Information Theory. John
Wiley & Sons, 1991.

[107] Crespo, A., Garcia-Molina, H.: Semantic overlay networks for P2P
systems. In: Moro, G., Bergamaschi, S., Aberer, K. (eds.) AP2PC 2004.
LNCS (LNAI), vol. 3601, pp. 1–13. Springer, Heidelberg (2005)
http://www.springerlink.com/content/3u446458qk72504x/

[108] Ahmet Y. Şekercioğlu, András Varga, and Gregory K. Egan. Parallel
Simulation made easy with OMNeT++. In Proceedings of European
Simulation Symposium, Delft, The Netherlands, 2003.

[109] C.R. Cunha, A. Bestavros, and M.E. Crovella. Characteristics of
WWW client-based traces. Computer Science Department, Boston
University, 1995.

[110] E. Dahlman. 3G Evolution: HSPA and LTE for Mobile Broadband.
Elsevier Academic Press, 2007.

[111] Adnan Darwiche and Judea Pearl. On the logic of iterated belief revi-
sion. Artificial intelligence, 89:1–29, 1996.

[112] Douglas S. J. De Couto, Daniel Aguayo, John Bicket, and Robert Mor-
ris. A high-throughput path metric for multi-hop wireless routing. In
Proceedings of the 9th ACM International Conference on Mobile Com-
puting and Networking (MobiCom ’03), San Diego, California, 2003.

[113] Douglas S. J. De Couto, Daniel Aguayo, Benjamin A. Chambers, and
Robert Morris. Performance of multihop wireless networks: shortest
path is not enough. SIGCOMM Comput. Commun. Rev., 33(1):83–88,
2003.

[114] M. Debbah, P. Loubaton, and M. de Courville. Asymptotic performance
of successive interference cancellation in the context of linear precoded
OFDM systems. IEEE Transactions on Communications, 52(9):1444 –
1448, Sep. 2004.

[115] M. Debbah and R.R. Muller. MIMO channel modeling and the princi-
ple of maximum entropy. IEEE Transactions on Information Theory,
51(5):1667 – 1690, May. 2005.

[116] Ns-2 Developers. The network simulator - ns-2. [online]
http://www.isi.edu/nsnam/ns/.

[117] J. Deygout. Correction factor for multiple knife-edge diffraction. IEEE
Trans Antennas and Propagation, 39, August 1991.

[118] E. Dijkstra. A note on two problems in connection with graphs. Nu-
merische Mathematik, 1:269–271, 1959.

[119] Xenofontas Dimitropoulos, Dmitri Krioukov, George Riley, and
kc claffy. Revealing the Autonomous System Taxonomy: The Machine
Learning Approach. In Mark Allman and M. Roughan, editors, Pro-
ceedings of the Passive and Active Measurement Conference. PAM2006,
pages 91–100, March 2006.
http://www.pamconf.net/2006/papers/pam06-proceedings.pdf.

References 509

[120] Matthew B. Doar. A Better Model for Generating Test Networks. In
Proc. of the IEEE Global Telecommunications Conference (GLOBE-
COM’96), pages 86–93, Piscataway, NJ, USA, 1996. IEEE Press.

[121] Benoit Donnet and Timur Friedman. Internet Topology Discovery:
A Survey. IEEE Communications Surveys and Tutorials, 9(4):56–69,
2007.

[122] Sergei N. Dorogovtsev and Jose F. F. Mendes. Evolution of Networks.
From Biological Nets to the Internet and the WWW. Oxford University
Press, New York, 2003.

[123] Richard Draves, Jitendra Padhye, and Brian Zill. Routing in multi-
radio, multi-hop wireless mesh networks. In MobiCom ’04: Proceedings
of the 10th annual international conference on Mobile computing and
networking, pages 114–128, New York, NY, USA, 2004. ACM.

[124] Thomas Dreibholz, Xing Zhou, and Erwin Rathgeb. Simproctc – the
design and realization of a powerful tool-chain for OMNeT++ sim-
ulations. In OMNeT++ 2009: Proceedings of the 2nd International
Workshop on OMNeT++ (hosted by SIMUTools 2009), ICST, Brus-
sels, Belgium, Belgium, 2009. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering). poster.

[125] R. Droms. Dynamic Host Configuration Protocol. RFC 2131, March
1997.

[126] Z. Duan, K. Xu, and Z. Zhang. Understanding delay variations on the
internet paths.

[127] Jonathon Duerig, Robert Ricci, John Byers, and Jay Lepreau. Auto-
matic ip address assignment on network topologies. Technical report,
University of Utah Flux Group, 2006.

[128] Philip Dutre, Philippe Bekaert, and Kavita Bala. Advanced Global
Illumination. AK Peters, Ltd., July 2002.

[129] A. Dutta, Y. Ohba, H. Yokota, and H. Schulzrinne. Problem state-
ment for heterogeneous handover. Internet-Draft, MOBOTS Research
Group, draft-ohba-mobopts-heterogeneous-requirement-01, February
2006.

[130] Robert S. Elliot. Antenna Theory and Design. Prentice Hall Interna-
tional, 1981.

[131] Marc Emmelmann, Berthold Rathke, and Adam Wolisz. Mobility sup-
port for wireless PAN, LAN, and MAN. In Y. Zhang and H. Chen, ed-
itors, Mobile WiMAX: Toward Broadband Wireless Metropolitan Area
Networks. Auerbach Publications, CRC Press, 2007. ISBN: 0849326249.

[132] Marc Emmelmann, Sven Wiethoelter, Andreas Koepsel, Cornelia Kap-
pler, and Adam Wolisz. Moving towards seamless mobility: State of the
art and emerging aspects in standardization bodies. In WPMC 2006,
San Diego, CA, USA, September, 17 – 20 2006. Invited Paper.

510 References

[133] Marc Emmelmann, Sven Wiethoelter, Andreas Koepsel, Cornelia Kap-
pler, and Adam Wolisz. Moving towards seamless mobility – state of the
art and emerging aspects in standardization bodies. Springer’s Interna-
tional Journal on Wireless Personal Communication – Special Issue on
Seamless Handover in Next Generation Wireless/Mobile Networks, 2007.

[134] Paul Erdős and Alréd Rényi. On random graphs I. Publicationes Math-
ematicae Debrecen, 6:290–297, 1959.

[135] Paul Erdős and Alréd Rényi. On the evoluation of random graphs.
Publ. Math. Inst. Hung. Acad. Sci., 5:17–61, 1960.

[136] Jakob Eriksson, Michalis Faloutsos, and Srikanth Krishnamurty. Peer-
Net: Pushing Peer-to-Peer Down the Stack. In Proceedings of IPTPS ’03,
Claremont Hotel, Berkeley, CA, USA, February 2003. Springer Verlag.

[137] V. Erceg et al. TGn Channel Models. IEEE 802.11 document 11-
03/0940r4, May 2004.

[138] Kevin Fall and Sally Floyd. Simulation-based comparisons of Tahoe,
Reno and SACK TCP. SIGCOMM Comput. Commun. Rev., 26(3):5–
21, 1996.

[139] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On
Power-Law Relationships of the Internet Topology. In SIGCOMM ’99:
Proceedings of the conference on Applications, technologies, architec-
tures, and protocols for computer communication, pages 251–262, New
York, NY, USA, 1999. ACM Press.

[140] Yuguang Fang and Imrich Chlamtac. Analytical Generalized Results
for Handoff Probability in Wireless Networks. IEEE Transactions on
Communications, 50(3):396–399, March 2002.

[141] L. M. Feeney. Modeling battery consumption of wireless devices using
omnet++.

[142] Uriel Feige and Prabhakar Raghavan. Exact analysis of hot-potato
routing. In SFCS ’92: Proceedings of the 33rd Annual Symposium on
Foundations of Computer Science, pages 553–562, Washington, DC,
USA, 1992. IEEE Computer Society.

[143] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter an P. Leach,
and T. Berners-Lee. Hypertext transfer protocl - http/1.1. RFC2616,
June 1999.

[144] Daniel Fleisch. A Student’s Guide to Maxwell’s Equations. Cambridge
University Press, 2008.

[145] Robert W. Floyd. Algorithm 97: Shortest path. Communications of
the ACM, 5(6):345+, June 1962.

[146] Sally Floyd. Maintaining a critical attitude towards simulation results
(invited talk). In WNS2 ’06: Proceeding from the 2006 workshop on
ns-2: the IP network simulator, October 2006.

[147] Sally Floyd and Van Jacobson. Random early detection gateways for
congestion avoidance. IEEE/ACM Trans. Netw., 1(4):397–413, 1993.

References 511

[148] Sally Floyd and Eddie Kohler. Internet research needs better models.
Computer Communication Review, 33(1):29–34, 2003.

[149] Sally Floyd and Vern Paxson. Difficulties in simulating the internet.
IEEE/ACM Trans. Netw., 9(4):392–403, 2001.

[150] International Organization for Standardization (ISO). Information
technology – Coding of moving pictures and associated audio for digital
storage media at up to about 1,5 Mbit/s – Part 2: Video. ISO/IEC
11172-2, 1993.

[151] International Organization for Standardization (ISO). Information
technology – Generic coding of moving pictures and associated audio
information: Video. ISO/IEC 13818-2, 2000.

[152] International Organization for Standardization (ISO). Information
technology – Coding of audio-visual objects – Part 2: Visual. ISO/IEC
14496-2, 2004.

[153] International Organization for Standardization (ISO). Information
technology – Coding of audio-visual objects – Part 10: Advanced Video
Coding. ISO/IEC 14496-10, 2005.

[154] Lestor R. Ford and D. R. Fulkerson. Flows in Networks. Princeton
University Press, 1962.

[155] Andrea G. Forte, Sangho Shin, and Henning Schulzrinne. Passive Dupli-
cate Address Detection for the Dynamic Host Configuration Protocol
for IPv4 (DHCPv4). Internet Draft - work in progress (expired) 03,
IETF, October 2006.

[156] G. Foschini and M. Gans. On limits of wireless communications in a
fading environment when using multiple antennas. Wireless Personal
Communications, 6(3):311–335, 1998.

[157] G.J. Foschini. Layered space-time architecture for wireless communica-
tion in fading environments when using multiple antennas. Bell Labs.
Tech. Journal, 2, 1996.

[158] Linton C. Freeman. A Set of Measures of Centrality Based on Between-
ness. Sociometry, 40(1):35–41, 1977.

[159] P. Frenger, P. Orten, and T. Ottoson. Convolutional codes with opti-
mum distance spectrum. IEEE Trans. Commun., 3(11):317–319, 1999.

[160] Thomas Fuhrmann. Scalable routing for networked sensors and actua-
tors. In Proc. 2nd Annual IEEE Communications Society Conference on
Sensor and Ad Hoc Communications and Networks, September 2005.

[161] Richard M. Fujimoto. Parallel Discrete Event Simulation. Communi-
cations of the ACM, 33(10):30–53, 1990.

[162] Richard M. Fujimoto. Performance of Time Warp under synthetic work-
loads. In Proceedings of 22nd SCS Multiconference on Distributed Sim-
ulation, 1990.

[163] Richard M. Fujimoto. Parallel and Distributed Simulation. In Proceed-
ings of the 31st Winter Simulation Conference, New York, NY, USA,
1999. ACM Press.

512 References

[164] V. Fuller and T. Li. Classless inter-domain routing (cidr): The internet
address assignment and aggregation plan. RFC 4632, August 2006.

[165] G. D. Forney, Jr. The viterbi algorithm. Proceedings of the IEEE,
61(3):268– 278, March 1973.

[166] K. Pawlikowski G. Ewing and D. McNickle. Akaroa2: Exploiting net-
work computing by distributing stochastic simulation. In ESM’900:
Proc. European Simulation Multiconference, pages 175–181. Interna-
tional Society for Computer Simulation, 1999.

[167] G. Kunzmann and R. Nagel and T. Hossfeld and A. Binzenhofer and
K. Eger. Efficient simulation of large-Scale p2p networks: modeling
network transmission times. In MSOP2P ’07, 2007.

[168] G. Tyson and A. Mauthe. A topology aware clustering mechanism.
In In Proc. 8th EPSRC Annual Postgraduate Symposium on the Con-
vergence of Telecommunications, Networking and Broadcasting. ACM
Press, 2007.

[169] R.G. Gallager. Low Density Parity Check Codes (Monograph). M.I.T.
Press, 1963.

[170] Lei Gao, Kingshuk Karuri, Stefan Kraemer, Rainer Leupers, Gerd As-
cheid, and Heinrich Meyr. Multiprocessor performance estimation using
hybrid simulation. In DAC ’08: Proceedings of the 45th annual confer-
ence on Design automation, 2008.

[171] Lei Gao, Stefan Kraemer, Rainer Leupers, Gerd Ascheid, and Heinrich
Meyr. A fast and generic hybrid simulation approach using C virtual
machine. In CASES ’07: Proceedings of Compilers, architecture and
synthesis for embedded systems, 2007.

[172] Lixin Gao. On Inferring Autonomous System Relationships in the In-
ternet. IEEE/ACM Trans. Netw., 9(6):733–745, 2001.

[173] Lixin Gao and Feng Wang. The Extent of AS Path Inflation by Routing
Policies. In Proc. of the IEEE Global Telecommunications Conference
(GLOBECOM’02), volume 3, pages 2180–2184, Piscataway, NJ, USA,
2002. IEEE Press.

[174] Matthew Gast. 802.11 Wireless Networks: The Definitive Guide, Sec-
ond Edition. O’Reilly Media, Inc., April 2005.

[175] A. Gerstlauer, Haobo Yu, and D. D. Gajski. RTOS modeling for sys-
tem level design. In Proc. Design, Automation and Test in Europe
Conference and Exhibition, pages 130–135, 2003.

[176] Walton C. Gibson. The method of moments in electromagnetics. CRC
Press, 2008.

[177] L. C. Godara. Application of Antenna Arrays to Mobile Communica-
tions, Part II: Beam-Forming and Direction-of-Arrival Considerations.
In Proceedings of the IEEE, volume 85, pages 1195–1245, 1997.

[178] J. Gross. Admission control based on OFDMA channel transformations.
In Proc. of 10th IEEE International Symposium on a World of Wireless,
Mobile and Multimedia Networks (WoWMoM), June 2009.

References 513

[179] J. Gross, M. Emmelmann, O. Puñal, and A. Wolisz. Dynamic
Single-User OFDM Adaptation for IEEE 802.11 Systems. In Proc.
ACM/IEEE International Symposium on Modeling, Analysis and Sim-
ulation of Wireless and Mobile Systems (MSWIM 2007), pages 124–132,
Chania, Crete Island, October 2007.

[180] IEEE 802.16 Broadband Wireless Access Working Group. Channel
models for fixed wireless applications. Technical Report Rev. of IEEE
802.16.3c-01/29r4, IEEE, 2003.

[181] Radio Communication Study Group. The radio cdma2000 rtt candidate
submission. Technical report, ETSI, Tech. Rept. TR 101 112 v3.2.0,
June 1998.

[182] Yu Gu, Yong Liu, and Don Towsley. On Integrating Fluid Models with
Packet Simulation. In In Proceedings of IEEE INFOCOM, volume 2856,
2004.

[183] M. Gudmundson. Correlation model for shadow fading in mobile radio
systems. IEEE Electronics Letters, 27(23):2145–2146, November 1991.

[184] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and
I. Stoica. The impact of dht routing geometry on resilience and prox-
imity. In SIGCOMM ’03: Proceedings of the 2003 conference on Ap-
plications, technologies, architectures, and protocols for computer com-
munications, pages 381–394, New York, NY, USA, 2003. ACM.

[185] Krishna P. Gummadi, Richard J. Dunn, Stefan Saroiu, Steven D. Grib-
ble, Henry M. Levy, and John Zahorjan. Measurement, modeling, and
analysis of a peer-to-peer file-sharing workload. In SOSP ’03: Proceed-
ings of the nineteenth ACM symposium on Operating systems princi-
ples, pages 314–329, New York, NY, USA, 2003. ACM.

[186] S. Gundavelli, K. Leung, V. Devarapalli, K. Chowdhury, and B. Patil.
Proxy Mobile IPv6. RFC 5213, IETF, August 2008.

[187] Mesut Günes and Martin Wenig. Models for realistic mobility and
radiowave propagation for ad-hoc network simulations. In Sudip Misra,
Isaac Woungang, and Subhas Chandra, editors, Guide to Wireless Ad
Hoc Networks, chapter 11, pages 255–280. Springer, 2009.

[188] Liang Guo and Ibrahim Matta. The War Between Mice and Elephants,
2001.

[189] Zygmunt J. Haas, Marc R. Pearlman, and Prince Samar. The Zone
Routing Protocol (ZRP) for Ad Hoc Networks. IETF Internet Draft,
July 2002.

[190] D. Haccoun and G. Begin. High-rate punctured convolutional codes for
viterbi and sequential decoding. IEEE Trans. Commun., 37(11):1113–
1125, 1989.

[191] Hamed Haddadi, Miguel Rio, Gianluca Iannaccone, Andrew W. Moore,
and Richard Mortier. Network Topologies: Inference, Modeling, and
Generation. IEEE Communications Surveys and Tutorials, 10(2):48–
69, 2008.

514 References

[192] Hamed Haddadi, Steve Uhlig, Andrew Moore, Richard Mortier, and
Miguel Rio. Modeling Internet Topology Dynamics. SIGCOMM Com-
put. Commun. Rev., 38(2):65–68, 2008.

[193] J. Hagenauer. Rate-compatible punctured convolutional codes (RCPC
codes) and their applications. IEEE Transactions on Communications,
36(4):389 – 400, April 1998.

[194] Roger F. Harrington. Field Computation by Moment Methods. Krieger
Publishing Company, 1982.

[195] Jan-Hinrich Hauer. Tinyos IEEE 802.15.4 working group. [online]
http://tinyos.stanford.edu:8000/15.4_WG, 2009.

[196] B.R. Haverkort. Performance of Computer Communication Systems:
A Model-Based Approach. John Wiley & Sons, Inc. New York, NY,
USA, 1998.

[197] Y. He, M. Faloutsos, S. Krishnamurthy, and B. Huffaker. On Routing
Asymmetry in the Internet. In Proceedings of the IEEE Global Telecom-
munications Conference (GLOBECOM’05), volume 2, Piscataway, NJ,
USA, 2005. IEEE Press.

[198] Yihua He, Georgos Siganos, Michalis Faloutsos, and Srikanth Krishna-
murthy. Lord of the Links: A Framework for Discovering Missing Links
in the Internet Topology. IEEE/ACM Trans. Netw., 17(2):391–404,
2009.

[199] Eugene Hecht. Optics. Addison-Wesley, 2002.
[200] A. Helmy. A Multicast–based Protocol for IP Mobility Support. In

Proc. of 2nd International Workshop of Networked Group Communica-
tion (NGC2000), pages 49–58, New York, 2000. ACM Press.

[201] John L. Hennessy and David A. Patterson. Computer Architecture,
Fourth Edition: A Quantitative Approach. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 2006.

[202] Octavio Herrera and Taieb Znati. Modeling churn in P2P networks. In
Annual Simulation Symposium, pages 33–40. IEEE Computer Society,
2007.

[203] K. Herrmann. Modeling the sociological aspects of mobility in ad hoc
networks. Proceedings of the 6th international workshop on Modeling
analysis and simulation of wireless and mobile systems, pages 128–129,
2003.

[204] M. Holdrege and P. Srisuresh. Protocol Complications with the IP Net-
work Address Translator. Website: http://tools.ietf.org/html/
rfc3027, January 2001.

[205] J. R. M. Hosking. Fractional differencing. Biometrika, 68(1):165–176,
April 1981.

[206] C. Hoymann. IEEE 802.16 Metropolitan Area Network with SDMA
Enhancement. PhD thesis, Aachen University, Lehrstuhl für Kommu-
nikationsnetze, Jul 2008.

References 515

[207] H. E. Hurst. Long-Term Storage Capacity of Reservoirs. American
Society of Civil Engineering, 76, 1950.

[208] IEEE. Official IEEE 802.11 working group project timelines.
http://www.ieee802.org/11/Reports/802.11_Timelines.htm

[209] IEEE Computer Society. IEEE Std 802.11b-1999:Wireless LANMedium
Access Control (MAC) and Physical Layer (PHY) specifications: Higher-
Speed Physical Layer Extension in the 2.4 GHz Band, 1999.

[210] F. Ikegami, S. Yoshida, T. Takeuchi, and M. Umehira. Propagation
factors controlling mean field strength on urban streets. IEEE Trans-
actions on Antennas and Propagation, 32(8):822–829, Aug 1984.

[211] ITU IMT-2000. Guidelines for evaluation of radio transmission tech-
nologies for imt-2000. Technical Report Recommendation ITU-R
M.1225, ITU, 1997.

[212] OPNET Technologies Inc. OPNET Modeler.
http://opnet.com/solutions/network_rd/modeler.html.

[213] Simulcraft Inc. Omnet++ enterprise edition.
http://www.omnest.com/.

[214] Open S. Initiative. Systemc. http://www.systemc.org.
[215] European Telecommunications Standards Institute. "EN 300 175-3:

Digital Enhanced Cordless Telecommunications (DECT); Common In-
terface (CI); Part 3: Medium Access Control (MAC) layer", September
1996.

[216] Institute of Communication Networks and Computer Engineering.
IKR Simulation and Emulation Library, 2008. [Online]. Available:
http://www.ikr.uni-stuttgart.de/IKRSimLib.

[217] Texas Instrument. 16-BIT, 1.0 GSPS 2x-4x INTERPOLATING DAC
(Rev. D). Texas Instrument, 2009.

[218] International Standardisation Organisation. Open System Interconnec-
tion (OSI) - Basic Reference Model. Standard ISO/IEC 7489-1:1994(E),
ISO, Nov 1994.

[219] Ipoque. www.ipoque.com/, August 2008.
[220] International Telecommunication Union (ITU). G.711: Pulse code mod-

ulation (PCM) of voice frequencies. SERIES G: TRANSMISSION
SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS;
General Aspects of Digital Transmission Systems: Terminal Equip-
ments, November 1988.

[221] International Telecommunication Union (ITU). G.722: 7 kHz audio-
coding within 64 kbit/s. SERIES G: TRANSMISSION SYSTEMS AND
MEDIA, DIGITAL SYSTEMS AND NETWORKS; General Aspects of
Digital Transmission Systems: Terminal Equipments, November 1988.

[222] International Telecommunication Union (ITU). G.726: 40, 32, 24, 16
kbit/s Adaptive Differential Pulse Code Modulation (ADPCM). SE-
RIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYS-
TEMS AND NETWORKS; General Aspects of Digital Transmission
Systems: Terminal Equipments, December 1990.

516 References

[223] International Telecommunication Union (ITU). H.261: Video codec
for audiovisual services at p x 64 kbit/s. SERIES H: AUDIOVISUAL
AND MULTIMEDIA SYSTEMS; Line Transmission of non-Telephone
Signals, March 1993.

[224] International Telecommunication Union (ITU). H.262: Information
technology - Generic coding of moving pictures and associated audio
information: Video. SERIES H: AUDIOVISUAL AND MULTIMEDIA
SYSTEMS; Infrastructure of audiovisual services - Coding of moving
video, February 2002.

[225] International Telecommunication Union (ITU). H.263: Video coding for
low bit rate communication. SERIES H: AUDIOVISUAL AND MUL-
TIMEDIA SYSTEMS; Infrastructure of audiovisual services - Coding
of moving video, January 2005.

[226] International Telecommunication Union (ITU). H.323: Packet-based
multimedia communications systems. SERIES H: AUDIOVISUAL
AND MULTIMEDIA SYSTEMS; Infrastructure of audiovisual services
- Systems and terminal equipment for audiovisual services, February
2006.

[227] International Telecommunication Union (ITU). H.264: Advanced video
coding for generic audiovisual services. SERIES H: AUDIOVISUAL
AND MULTIMEDIA SYSTEMS; Infrastructure of audiovisual services
- Coding of moving video, November 2007.

[228] International Telecommunication Union (ITU). ITU-R M.2135 : Guide-
lines for evaluation of radio interface technologies for IMT-Advanced.
Technical report, ITU, 2008.

[229] ITU-T Recommendation. G.114 - One-way transmission time. Tech-
nical report, Telecommunication Union Standardization Sector, May
2003.

[230] J. A. Nelder and R. Mead. A simplex method for function minimization.
Computer Journal, 7:308–313, 1965.

[231] P. Schramm J. Medbo. Channel models for hiperlan/2, etsi/bran doc.
no.3eri085b, 1998.

[232] J. Winick and S. Jamin. Inet-3.0: Internet topology generator. Techni-
cal report, University of Michigan, 2002.

[233] P. Jacquet, P. Mühlethaler, T. Clausen, A. Laouiti, A. Qayyum, and
L. Viennot. Optimized Link State Routing Protocol for Ad Hoc Net-
works. In Proceedings of the 2001 IEEE International Multi Topic
Conference (IEEE INMIC), pages 62–68, Lahore, Pakistan, December
2001.

[234] R. Jain, D. Chiu, and W. Hawe. A Quantitative Measure of Fairness and
Discrimination for Resource Allocation in Shared Computer Systems.
Arxiv preprint cs/9809099, 1998.

References 517

[235] Raj Jain. The Art of Computer Systems Performance Analysis: tech-
niques for experimental design, measurement, simulation, and model-
ing. Wiley, 1991.

[236] Raj Jain and Imrich Chlamtac. The p2 algorithm for dynamic calcu-
lation of quantiles and histograms without storing observations. Com-
mun. ACM, 28(10):1076–1085, 1985.

[237] W. C. Jakes. Microwave Mobile Communications. IEEE Press, Wiley
Interscience, 1994.

[238] William C. Jakes. Microwave Mobile Communications. Wiley & Sons,
1975.

[239] Sam Jansen and Anthony Mcgregor. Simulation with Real World Net-
work Stacks. In Proceedings of the 2005 Winter Simulation Conference,
December 2005.

[240] Sam Jansen and Anthony Mcgregor. Validation of Simulated Real
World TCP Stacks. In Proceedings of the 2007 Winter Simulation Con-
ference, 2007.

[241] D. R. Jefferson and H. A. Sowizral. Fast Concurrent Simulation Using
the Time Warp Mechanism. In Proceedings of SCS Distributed Simu-
lation Conference, 1985.

[242] Ajit K. Jena, Adrian Popescu, and Arne A. Nilsson. Modelling and
Evaluation of Internet Applications. Research Report 2002:8, Blekinge
Institute of Technology, Department of Telecommunications and Sig-
nal Processing, Dept. of Telecommunications and Signal Processing S-
37225 Ronneby, 2002.

[243] Weirong Jiang, Shuping Liu, Yun Zhu, and Zhiming Zhang. Optimizing
routing metrics for large-scale multi-radio mesh networks. In Proceed-
ings of the International Conference on Wireless Communications, Net-
working and Mobile Computing, 2007. WiCom 2007., Shanghai, China,
2007.

[244] David B. Johnson and David A. Maltz. Dynamic Source Routing in
Ad Hoc Wireless Networks. Mobile Computing, 353:153–181, February
1996.

[245] David B. Johnson, Charles Perkins, and Jari Arkko. Mobility Support
in IPv6. RFC 3775, IETF, June 2004.

[246] Petr Jurčík and Anis Koubâa. The IEEE 802.15.4 opnet simulation
model: Reference guide v2.0. Technical report, IPP-HURRAY!, May
2007.

[247] K. P. Gummadi and S. Saroiu and S. D. Gribble. King: estimating
latency between arbitrary internet end hosts. In IMW ’02: Proceedings
of the 2nd ACM SIGCOMM Workshop on Internet measurment, pages
5–18. ACM, 2002.

[248] Brad Karp and H. T. Kung. GPSR: Greedy perimeter stateless routing
for wireless networks. In Sixth Annual ACM/IEEE International Con-
ference on Mobile Computing and Networking (Mobicom 2000), pages
243–254, Boston, MA, August 2000.

518 References

[249] Karuri, K., Al Faruque, M.A., Kraemer, S., Leupers, R., Ascheid, G.
and H. Meyr. Fine-grained Application Source Code Profiling for ASIP
Design. In 42nd Design Automation Conference, Anaheim, California,
USA, June 2005.

[250] D. Katz. Ip router alert option. RFC 2113, February 1997.
[251] Sebastian Kaune, Konstantin Pussep, Gareth Tyson, Andreas Mauthe,

and Ralf Steinmetz. Cooperation in p2p systems through sociological
incentive patterns. In Third International Workshop on Self-Organizing
Systems (IWSOS ’08). Springer LNCS, Dec 2008.

[252] Kempf, T., Dörper, M., Leupers, R., Ascheid, G. and H. Meyr (ISS
Aachen, DE); Kogel, T. and B. Vanthournout (CoWare Inc., BE). A
Modular Simulation Framework for Spatial and Temporal Task Map-
ping onto Multi-Processor SoC Platforms. In Proceedings of the Con-
ference on Design, Automation & Test in Europe (DATE), Munich,
Germany, March 2005.

[253] Sunil U. Khaunte and John O. Limb. Statistical characterization of
a world wide web browsing session. Technical Report CC Technical
Report; GIT-CC-97-17, Georgia Institute of Technology, 1997.

[254] Leonard Kleinrock. Queueing Systems, Volume I: Theory. Wiley In-
terscience, New York, 1975.

[255] Leonard Kleinrock. Queueing Systems, Volume II: Computer Applica-
tions. Wiley Interscience, New York, 1976.

[256] Hartmut Kocher. Entwurf und Implementierung einer Simulations-
bibliothek unter Anwendung objektorientierter Methoden. PhD thesis,
University of Stuttgart, IKR, 1994.

[257] Hartmut Kocher and Martin Lang. An object-oriented library for sim-
ulation of complex hierarchical systems. In Proceedings of the Object-
Oriented Simulation Conference (OOS ’94), pages 145–152, 1994.

[258] I. Koffman, V. Roman, and R. Technol. Broadband wireless access
solutions based on OFDM access in IEEE 802.16. Communications
Magazine, IEEE, 40(4):96–103, 2002.

[259] E. Kohler, M. Handley, and S. Floyd. Datagram Congestion Control
Protocol (DCCP). RFC 4340 (Proposed Standard), March 2006.

[260] Rajeev Koodli. Fast Handovers for Mobile IPv6. RFC 5268, IETF,
June 2008.

[261] Rajeev S. Koodli and Charles E. Perkins. Mobile Inter–Networking
with IPv6. Concepts, Principles and Practices. John Wiley & Sons,
Hoboken, New Jersey, 2007.

[262] Andreas Köpke, Michael Swigulski, Karl Wessel, Daniel Willkomm, Pe-
terpaul, Tom E. V. Parker, Otto W. Visser, Hermann S. Lichte, and Ste-
fan Valentin. Simulating wireless and mobile networks in OMNeT++
the MiXiM vision. In Proceeding of the 1. International Workshop on
OMNeT++, March 2008.

References 519

[263] A. Koubaa, M. Alves, and E. Tovar. A comprehensive simulation study
of slotted CSMA/CA for IEEE 802.15.4 wireless sensor networks. In
Factory Communication Systems, 2006 IEEE International Workshop
on, pages 183–192, 2006.

[264] Anis Koubâa. Tinyos 2.0 zigbee working group. [online]
http://www.hurray.isep.ipp.pt/activities/ZigBee_WG/, 2009.

[265] Miklós Kozlovszky, Ákos Balaskó, and András Varga. Enabling
OMNeT++-based simulations on grid systems. In OMNeT++ 2009:
Proceedings of the 2nd International Workshop on OMNeT++ (hosted
by SIMUTools 2009), ICST, Brussels, Belgium, Belgium, 2009. ICST
(Institute for Computer Sciences, Social-Informatics and Telecommu-
nications Engineering).

[266] Stefan Kraemer, Lei Gao, Jan Weinstock, Rainer Leupers, Gerd As-
cheid, and Heinrich Meyr. HySim: a fast simulation framework for
embedded software development. In CODES+ISSS ’07: Proceedings
of the 5th IEEE/ACM international conference on Hardware/software
codesign and system synthesis, 2007.

[267] Vaishnavi Krishnamurthy, Michalis Faloutsos, Marek Chrobak, Jun-
Hong Cui, Li Lao, and Allon G. Percus. Sampling Large Internet
Topologies for Simulation Purposes. Computer Networks, 51(15):4284–
4302, 2007.

[268] Frank R. Kschischang, Brendan J. Frey, and Hans-Andrea Loeliger.
Factor graphs and the sum-product algorithm. IEEE Transactions on
Information Theory, 47:498–519, 1998.

[269] K. Kumaran and S. Borst. Advances in Wireless Communications,
Chapter Statistical Model of Spatially Correlated Shadow-fading Pat-
terns in Wireless Systems, pages 329–336. Springer US, 1998.

[270] Stuart Kurkowski, Tracy Camp, and Michael Colagrosso. Manet simu-
lation studies: the incredibles. Mobile Computing and Communications
Review, 9(4):50–61, 2005.

[271] Mathieu Lacage and Thomas R. Henderson. Yet another network sim-
ulator. In Proceedings from the 2006 workshop on ns-2: the IP network
simulator (WNS2 ’06), Pisa, Italy, October 2006. ACM.

[272] Andreas Lagemann and Jörg Nolte. Csharpsimplemodule – writing
OMNeT++ modules with c# and mono. In OMNeT++ Workshop,
March 2008.

[273] Anukool Lakhina, John W. Byers, Mark Crovella, and Peng Xie. Sam-
pling Biases in IP Topology Measurements. In Proc. of the 22nd IEEE
INFOCOM, Piscataway, NJ, USA, 2003. IEEE Press.

[274] O. Landsiedel, K. Wehrle, and S. Gotz. Accurate prediction of power
consumption in sensor networks. In EmNets ’05: Proceedings of the 2nd
IEEE workshop on Embedded Networked Sensors, pages 37–44, Wash-
ington, DC, USA, 2005. IEEE Computer Society.

520 References

[275] Olaf Landsiedel, Hamad Alizai, and Klaus Wehrle. When timing mat-
ters: Enabling time accurate and scalable simulation of sensor network
applications. In IPSN ’08: Proceedings of the 7th international con-
ference on Information processing in sensor networks, pages 344–355,
Washington, DC, USA, 2008. IEEE Computer Society.

[276] A. M. Law and W. D. Kelton. Simulation Modeling and Analysis.
McGraw-Hill Inc., December 1990.

[277] Averill M. Law. Simulation Modeling and Analysis. McGrawHill, fourth
edition, 2007.

[278] Averill M. Law and David W. Kelton. Simulation Modeling and Anal-
ysis. McGraw Hill, third edition, 2000.

[279] Uichin Lee, Min Choi, Junghoo Cho, M. Y. Sanadidi, and Mario Gerla.
Understanding pollution dynamics in p2p file sharing. In 5th Interna-
tional Workshop on Peer-toPeer Systems (IPTPS’06), 2006.

[280] W.C.Y. Lee. Mobile Cellular Telecommunications. McGraw-Hill Inter-
national Editions, 1995.

[281] Jan Van Leeuwen and Richard B. Tan. Interval routing. The Computer
Journal, 30:298–307, 1987.

[282] P. Lei, L. Ong, M. Tuexen, and T. Dreibholz. An Overview of Reliable
Server Pooling Protocols. RFC 5351 (Informational), September 2008.

[283] K. K. Leung and L. C. Wang. Integrated link adaptation and power
control for wireless IP networks. In IEEE Vehicular Technology Con-
ference, volume 3, pages 2086–2092. IEEE; 1999, 2000.

[284] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. TOSSIM:
Accurate and Scalable Simulation of Entire TinyOS Applications. In
Proceedings of the First ACM Conference on Embedded Networked Sen-
sor Systems (SenSys ’03), 2003.

[285] Philip Levis, Sam Madden, David Gay, Joseph Polastre, Robert
Szewczyk, Alec Woo, Eric Brewer, and David Culler. The emergence of
networking abstractions and techniques in tinyos. In NSDI’04: Proceed-
ings of the 1st conference on Symposium on Networked Systems Design
and Implementation, 2004.

[286] Andreas Lewandowski, Volker Köster, and Christian Wietfeld. A new
dynamic co-channel interference model for simulation of heterogeneous
wireless networks. In Olivier Dalle, Gabriel A. Wainer, Felipe L. Per-
rone, and Giovanni Stea, editors, SimuTools, page 71. ICST, 2009.

[287] L. Li, A.M. Tulino, and S. Verdu. Design of reduced-rank MMSE mul-
tiuser detectors using random matrix methods. IEEE Transactions on
Information Theory, 50(6):986 – 1008, June 2004.

[288] Michael Liljenstam and Rassul Ayani. Partitioning PCS for Parallel
Simulation. In Proceedings of the 5th International Workshop on Mod-
eling, Analysis, and Simulation of Computer and Telecommunications
Systems, 1997.

References 521

[289] Shu Lin and Daniel J. Costello. Error Control Coding, Second Edition.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2004.

[290] Yi B. Lin and Edward D. Lazowska. A Time-Division Algorithm for
Parallel Simulation. ACM Transactions on Modeling and Computer
Simulation, 1(1):73–83, 1991.

[291] J. Liu and D. M. Nicol. Lookahead revisited in wireless network sim-
ulations. In Proceedings of 16th Workshop on Parallel and Distributed
Simulation, 2002.

[292] Jason Liu. Packet-level integration of fluid TCP models in real-time
network simulation. In WSC ’06: Proceedings of the 38th Conference on
Winter Simulation, pages 2162–2169. Winter Simulation Conference,
2006.

[293] Jason Liu, Yougu Yuan, David M. Nicol, Robert S. Gray, Calvin C.
Newport, David Kotz, and Luiz F. Perrone. Empirical Validation of
Wireless Models in Simulations of Ad Hoc Routing Protocols. Simula-
tion: Transactions of The Society for Modeling and Simulation Inter-
national, 81(4):307–323, April 2005.

[294] Yong Liu, Francesco Lo Presti, Vishal Misra, Don Towsley, and Yu Gu.
Fluid models and solutions for large-scale IP networks. In In Proc. of
ACM SIGMETRICS, pages 91–101, 2003.

[295] L.Tang and M. Crovella. Geometric exploration of the landmark selec-
tion problem. In Passive and Active Network Measurement, 5th Inter-
national Workshop, volume 3015, pages 63–72, 2004.

[296] Song Luo and G.A. Marin. Realistic internet traffic simulation through
mixture modeling and a case study. Simulation Conference, 2005 Pro-
ceedings of the Winter, pages 9 pp.–, Dec. 2005.

[297] M. Castro and P. Druschel and Y. C. Hu and A. Rowstron. Proxim-
ity neighbor selection in tree-based structured p2p overlays. Technical
report, Microsoft Research, 2003.

[298] Liang Ma and Mieso K. Denko. A routing metric for load-balancing in
wireless mesh networks. In AINAW ’07: Proceedings of the 21st Inter-
national Conference on Advanced Information Networking and Appli-
cations Workshops, Washington, DC, USA, 2007.

[299] Maode Ma, editor. Current Technology Developments of WiMax Sys-
tems. Springer Publishing Company, Incorporated, 2009.

[300] David J.C. MacKay and Radford M. Neal. Near Shannon Limit Per-
formance of Low Density Parity Check Codes. Electronics Letters,
32(18):1645, July 1996.

[301] Damien Magoni and Jean Jacques Pansiot. Analysis of the Autonomous
System Network Topology. SIGCOMM Computer Communication Re-
view, 31(3):26–37, 2001.

522 References

[302] Bruce A. Mah. An empirical model of http network traffic. In IN-
FOCOM ’97: Proceedings of the INFOCOM ’97. Sixteenth Annual
Joint Conference of the IEEE Computer and Communications Soci-
eties. Driving the Information Revolution, page 592, Washington, DC,
USA, 1997. IEEE Computer Society.

[303] Priya Mahadevan, Dmitri Krioukov, Marina Fomenkov, Bradley Huf-
faker, Xenofontas Dimitropoulos, kc claffy, and Amin Vahdat. The
Internet AS-Level Topology: Three Data Sources and One Definitive
Metric. ACM SIGCOMM Computer Communication Review, 36(1):17–
26, January 2006.

[304] G. Malkin. Rip version 2. RFC 2453, November 1998.
[305] R. Mathar, M. Reyer, and M. Schmeink. A cube oriented ray launch-

ing algorithm for 3d urban field strength prediction. In IEEE Inter-
national Conference on Communications (ICC ’07), pages 5034–5039,
June 2007.

[306] Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi, and Teunis Ott.
The Macroscopic Behavior of the TCP Congestion Avoidance Algo-
rithm. SIGCOMM Comput. Commun. Rev., 27(3):67–82, 1997.

[307] Norm Matloff. Introduction to Discrete-Event Simulation and the
SimPy Language, February 2008.

[308] Makoto Matsumoto and Takuji Nishimura. Mersenne Twister: A 623-
Dimensionally Equidistributed Uniform Pseudo-Random Number Gen-
erator. ACM Trans. Model. Comput. Simul., 8(1):3–30, 1998.

[309] MaxMind Geolocation Technology. http://www.maxmind.com/.
[310] Petar Maymounkov and David Mazières. Kademlia: A peer-to-peer in-

formation system based on the XOR metric. In International Workshop
on Peer-to-Peer Systems, (IPTPS), 2002.

[311] D. A. McNamara, C. W. I. Pistotius, and J. A. G. Malherbe. Introduc-
tion to the Uniform Geometrical Theory of Diffraction. Artech House
Inc, 1990.

[312] Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers.
Brite: An approach to universal topology generation. In MASCOTS
’01: Proceedings of the Ninth International Symposium in Modeling,
Analysis and Simulation, page 346, Washington, DC, USA, 2001. IEEE
Computer Society.

[313] Alberto Medina, Ibrahim Matta, and John Byers. On the Origin of
Power Laws in Internet Topologies. SIGCOMM Computer Communi-
cation Review, 30(2):18–28, 2000.

[314] Xiaoqiao Meng, Zhiguo Xu, Beichuan Zhang, Geoff Huston, Songwu
Lu, and Lixia Zhang. Ipv4 address allocation and the bgp routing table
evolution. SIGCOMM Comput. Commun. Rev., 35(1):71–80, 2005.

[315] Richard A. Meyer and Rajive L. Bargrodia. Path lookahead: A data
flow view of pdes models. In Proceedings of the 13th Workshop on Par-
allel and Distributed Simulation (PADS ’99), pages 12–19, Washington,
DC, USA, 1999. IEEE Computer Society.

References 523

[316] Arunesh Mishra, Minho Shin, and William Arbaugh. An Empirical
Analysis of the IEEE 802.11 MAC Layer Handoff Process. SIGCOMM
Computer Communications Review, 33(2):93–102, 2003.

[317] J. Misra and K. M. Chandy. Distributed Simulation: A Case Study in
Design and Verification of Distributed Programs. IEEE Transactions
on Software Engineering, SE-5(5):440–452, 1978.

[318] Vishal Misra, Wei-Bo Gong, and Don Towsley. Stochastic differential
equation modeling and analysis of TCP-windowsize behavior, 1999.

[319] A. Köpke. Mixim simulator for wireless and mobile networks using
OMNeT++. [online] http://mixim.sourceforge.net/.

[320] J. Mo, R. J. La, V. Anantharam, and J. Walrand. Analysis and compar-
ison of TCP Reno and Vegas. In INFOCOM ’99. Eighteenth Annual
Joint Conference of the IEEE Computer and Communications Soci-
eties. Proceedings. IEEE, volume 3, 1999.

[321] ETSI: Universal mobile telecommunication system (UMTS). Selection
procedures for chice of radio transmission technologies of the umts.
Technical report, ETSI; Tech. Rept. TR 101 112 v3.2.0, April 1998.

[322] Gabriel E. Montenegro. Reverse Tunneling for Mobile IP, revised. RFC
3024, IETF, January 2001.

[323] Nick ’. Moore. Optimistic Duplicate Address Detection (DAD) for IPv6.
RFC 4429, IETF, April 2006.

[324] J. Moy. OSPF Version 2. RFC 2328, April 1998.
[325] Steven S. Muchnick. Advanced compiler design and implementation.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1997.
[326] K.K. Mukkavilli, A. Sabharwal, E. Erkip, and B. Aazhang. On beam-

forming with finite rate feedback in multiple-antenna systems. IEEE
Transactions on Information Theory, 49(10):2562 – 2579, Oct. 2003.

[327] Marcello Mura, Marco Paolieri, Fabio Fabbri, Luca Negri, and Maria G.
Sami. Power modeling and power analysis for ieee 802.15.4: a con-
current state machine approach. In Consumer Communications and
Networking Conference, 2007. CCNC 2007. 4th IEEE, pages 660–664,
2007.

[328] Ashish Natani, Jagannadha Jakilnki, Mansoor Mohsin, and Vijay
Sharma. TCP for Wireless Networks, 2001.

[329] M. C. Necker, C. M. Gauger, S. Kiesel, and U. Reiser. IKR EmuLib:
A Library for Seamless Integration of Simulation and Emulation. In
Proceedings of the 13th GI/ITG Conference on Measurement, Model-
ing, and Evaluation of Computer and Communication Systems (MMB
2006), 2006.

[330] Marc C. Necker and Ulrich Reiser. IKR Emulation Library 1.0 User
Guide. Technical report, University of Stuttgart, IKR, December 2006.

[331] Technical Specification Group GSM/EDGE Radio Access Network. Ra-
dio transmission and reception. Technical Report 3GPP TS 05.05,
v8.20.0, 3rd Generation Partnership Project, 2005.

524 References

[332] Technical Specification Group Radio Access Network. Physical layer
aspects for evolved universal terrestrial radio access (utra). Technical
Report 3GPP TR 25.814, v7.1.0, 3rd Generation Partnership Project,
2006.

[333] Mark E. J. Newman. Assortative Mixing in Networks. Physical Review
Letters, 89(20):208701, November 2002.

[334] Mark E. J. Newman. Random graphs as models of networks. In Stefan
Bornholdt and Heinz Georg Schuster, editors, Handbook of Graphs and
Networks, pages 35–68. Wiley–VCH, Berlin, 2003.

[335] E. Ng and H. Zhang. Towards global network positioning. In Proceed-
ings of the First ACM SIGCOMM Workshop on Internet Measurement,
pages 25–29. ACM, 2001.

[336] D. M. Nicol. Modeling and simulation in security evaluation. IEEE
Security and Privacy, 3(5):71–74, September 2005.

[337] Nohl, A., Greive, V., Braun, G., Hoffmann, A., Leupers, R.,
Schliebusch, O. and H. Meyr. Instruction Encoding Synthesis for Ar-
chitecture Exploration using Hierarchical Processor Models. In 40th
Design Automation Conference (DAC), Anaheim (USA), June 2003.

[338] University of Paderborn. Chsim: Wireless channel simulator for
omnet++. http://www.cs.uni-paderborn.de/en/fachgebiete/
research-group-computer-networks/projects/chsim.html.

[339] B. O’Hara and A. Petrick. IEEE802.11 Handbook: A Designer’s Com-
panion. IEEE Press, 1999.

[340] L. Ong and J. Yoakum. An Introduction to the Stream Control Trans-
mission Protocol (SCTP). RFC 3286 (Informational), May 2002.

[341] Raif O. Onvural. Asynchronous Transfer Mode Networks: Performance
Issues,Second Edition. Artech House, Inc., Norwood, MA, USA, 1995.

[342] Fredrik Österlind, Adam Dunkels, Joakim Eriksson, Niclas Finne, and
Thiemo Voigt. Cross-Level Sensor Network Simulation with COOJA.
In Proceedings of the First IEEE International Workshop on Practi-
cal Issues in Building Sensor Network Applications (SenseApp ’06),
Tampa, Florida, USA, November 2006.

[343] T. Ott, J. Kemperman, and M. Mathis. The stationary behavior of
ideal TCP congestion avoidance.

[344] Philippe Owezarski and Nicolas Larrieu. A trace based method for
realistic simulation. In International Conference on Communication
(ICC), Paris, France, june 2004.

[345] L.H. Ozarow, S. Shamai, and A.D. Wyner. Information theoretic con-
siderations for cellular mobile radio. IEEE Transactions on Vehicular
Technology, 43(2):359–378, May 1994.

[346] J. Padhye, V. Firoiu, D. Towsley, and J. Krusoe. Modeling TCP
Throughput: A Simple Model and its Empirical Validation. Proceedings
of the ACM SIGCOMM ’98 conference on Applications, technologies,
architectures, and protocols for computer communication, pages 303–
314, 1998.

References 525

[347] M. Paetzold. Mobile Fading Channels, chapter 4.1. J. Wiley & Sons,
Inc., 2002.

[348] M. Paetzold. Modeling, analysis, and simulation of mimo mobile-to-
mobile fading channels. IEEE Trans. on Wireless Communications, 7,
February 2008.

[349] M. Paetzold and B. O. Hogstad. A space-time channel simula-
tor for mimo channels based on the geometrical one-ring scattering
model. Wireless Communications and Mobile Computing, Special Is-
sue on Multiple-Input Multiple-Output (MIMO) Communications, 4(7),
November 2004.

[350] M. Paetzold and B. O. Hogstad. A wideband mimo channel model de-
rived from the geometrical elliptical scattering model. Wireless Com-
munications and Mobile Computing, 8, May 2007.

[351] M. Paetzold, U. Killat, F. Laue, and Y. Li. On the statistical properties
of deterministic simulation models for mobile fading channels. IEEE
Transactions on Vehicular Technology, 47(1):254 – 269, 1998.

[352] M. Park, K. Ko, H. Yoo, and D. Hong. Performance analysis of OFDMA
uplink systems with symbol timing misalignment. IEEE Communica-
tions letters, 7(8):376–378, 2003.

[353] J. D. Parsons. Mobile Radio Propagation Channel. John Wiley and
Sons, 2000.

[354] A. Pathak, H. Pucha, Y. Zhang, Y. C. Hu, and Z. M. Mao. A Mea-
surement Study of Internet Delay Asymmetry. In Mark Claypool and
Steve Uhlig, editors, Passive and Active Network Measurement. 9th In-
ternational Conference, PAM 2008. Proceedings, pages 182–191, Berlin
Heidelberg, 2009. Springer-Verlag.

[355] J. Pavon and S. Choi. Link adaptation strategy for ieee 802.11 wlan via
received signal strength measurement. In Prodeedings of the IEEE In-
ternational Conference on Communications (ICC ’03), volume 2, pages
1108–1113, 2003.

[356] Vern Paxson. End-to-End Routing Behavior in the Internet. In Proc.
of the ACM SIGCOMM Conference 1996, pages 25–38, New York, NY,
USA, 1996. ACM.

[357] Vern Paxson. End-to-End Routing Behavior in the Internet.
IEEE/ACM Transactions on Networking, 5(5):601–615, 1997. An ear-
lier version appeared in Proc. of ACM SIGCOMM’96.

[358] Vern Paxson and Sally Floyd. Wide area traffic: the failure of Pois-
son modeling. IEEE/ACM Transactions on Networking, 3(3):226–244,
1995.

[359] Vern Paxson and Sally Floyd. Why we don’t know how to simulate the
internet. In WSC ’97: Proceedings of the 29th conference on Winter
simulation, 1997.

526 References

[360] F. Perich. Policy-based network management for next generation spec-
trum access control. In New Frontiers in Dynamic Spectrum Access
Networks, 2007. (DySPAN) 2007. 2nd IEEE International Symposium
on, pages 496–506, April 2007.

[361] Charles Perkins. IP Mobility Support for IPv4. RFC 3344, IETF,
August 2002.

[362] Charles E. Perkins and Pravin Bhagwat. Highly Dynamic Destination-
Sequenced Distance-Vector Routing (DSDV) for Mobile Computers. In
Proceedings of the ACM SIGCOMM 1994 Conference, pages 234–244,
London, United Kingdom, 1994.

[363] Charles E. Perkins and Elizabeth M. Royer. Ad hoc On-Demand Dis-
tance Vector Routing. In Proc. 2nd IEEE Workshop on Mobile Comput-
ing Systems and Applications, pages 90–100, New Orleans, LA, USA,
February 1999.

[364] Colin Perkins. RTP: Audio and Video for the Internet. Addison-Wesley
Professional, June 2003.

[365] Kalyan S. Perumalla. Parallel and Distributed Simulation: Traditional
Techniques and recent Advances. In Proceedings of the 38th Winter
Simulation Conference. Winter Simulation Conference, 2006.

[366] Larry Peterson and Timothy Roscoe. The design principles of planetlab.
SIGOPS Oper. Syst. Rev., 40(1):11–16, 2006.

[367] Larry L. Peterson and Bruce S. Davie. Computer Networks: A Systems
Approach. Morgan Kaufmann, third edition, May 2003.

[368] M. Petrova, J. Riihijarvi, P. Mahonen, and S. Labella. Performance
study of ieee 802.15.4 using measurements and simulations. In Wire-
less Communications and Networking Conference, 2006. WCNC 2006.
IEEE, volume 1, pages 487–492, 2006.

[369] Martin Plonus. Applied Electromagnetics. McGraw-Hill Internation
Editions, 1978.

[370] J. Postel. User Datagram Protocol. RFC 768 (Standard), August 1980.
[371] J. Postel. Internet Control Message Protocol. RFC 792 (Standard),

1981. Updated by RFCs 950, 4884.
[372] J. Postel. Transmission Control Protocol. RFC 793 (Standard),

September 1981.
[373] J. Postel and J. Reynolds. File Transfer Protocol (FTP). Website:

http://tools.ietf.org/html/rfc959, October 1985.
[374] R. V. Prasad, P. Pawczak, J. A. Hoffmeyer, and H. S. Berger. Cognitive

Functionality in Next Generation Wireless Networks: Standardization
Efforts. IEEE Communications Magazine, 46(4):72, 2008.

[375] J. Proakis. Digital Communications. McGraw-Hill, 1995.
[376] Vint Project. The NS Manual. The VINT Project, August 2008.
[377] Ilango Purushothaman. IEEE 802.11 Infrastructure Extensions for

NS-2.

References 527

[378] Alfonso Ariza Quintana, Eduardo Casilari, and Alicia Triviño. Im-
plementation of manet routing protocols on OMNeT++. In OM-
NeT++ 2008: Proceedings of the 1st International Workshop on OM-
NeT++ (hosted by SIMUTools 2008), ICST, Brussels, Belgium, Bel-
gium, 2008. ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering). poster.

[379] K. Wehrle R. Steinmetz. Peer-to-Peer Systems and Applications (Lec-
ture Notes in Computer Science). Springer-Verlag New York, Inc., 2005.

[380] I. Ramachandran and S. Roy. Clear channel assessment in energycon-
strained wideband wireless networks. Wireless Communications, IEEE
[see also IEEE Personal Communications], 14(3):70–78, 2007.

[381] Iyappan Ramachandran, Arindam K. Das, and Sumit Roy. Analysis of
the contention access period of IEEE 802.15.4 mac. ACM Trans. Sen.
Netw., 3(1), 2007.

[382] Vaddina Rao and Dimitri Marandin. Adaptive backoff exponent al-
gorithm for zigbee (ieee 802.15.4). In Next Generation Teletraffic and
Wired/Wireless Advanced Networking, pages 501–516. Springer, 2006.

[383] Theodore S. Rappaport. Wireless Communications - Principles and
Practice. Prentice Hall, 1996.

[384] Theodore S. Rappaport. Wireless Communications. Prentice Hall,
1999.

[385] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramach, H. Kremo,
R. Siracusa, H. Liu, and M. Singh. Overview of the orbit radio grid
testbed for evaluation of next-generation wireless network protocols. In
in Proceedings of the IEEE Wireless Communications and Networking
Conference (WCNC, pages 1664–1669, 2005.

[386] Yakov Rekhter, Tony Li, and Susan Hares. A Border Gateway Protocol
4 (BGP-4). RFC 4271, IETF, January 2006.

[387] A. Reyes-Lecuona, E. GonzâĂąles-Parada, E. Casilari, and A. DâĂŹaz-
Estrella. A page-oriented www traffic model for wireless system sim-
ulations. Proceedings of the 16th International Teletraffic Congress
(ITC’16), pages pp. 275–287, 1999. Edinburgh, United Kingdom.

[388] Sean C. Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz.
Handling churn in a DHT. In USENIX Annual Technical Conference,
General Track, pages 127–140. USENIX, 2004.

[389] T. Richardson, M. Shokrollahi, and R. Urbanke. Design of capacity-
approaching irregular low-density parity-check codes. IEEE Transac-
tions on Information Theory, 47(2):619–637, 2001.

[390] I. Richer. A Simple Interleaver for Use with Viterbi Decoding. IEEE
Transactions on Communications, 26(3):406 – 408, Mar 1978.

[391] Maximilian Riegel and Michael Tuexen. Mobile SCTP. Internet Draft
- work in progress 09, IETF, November 2007.

[392] J. Riihijärvi, Mähönen P., and M. Rübsamen. Characterizing Wireless
Networks by Spatial Correlations. IEEE Comm Letters, 11(1):37–39,
2007.

528 References

[393] George F. Riley. The Georgia Tech Network Simulator. In Proceedings
of the ACM SIGCOMM workshop on Models, methods and tools for
reproducible network research, pages 5–12. ACM Press, 2003.

[394] George F. Riley, Richard M. Fujimoto, and Mostafa H. Ammar. A
Generic Framework for Parallelization of Network Simulations. In Pro-
ceedings of the 7th International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems, 1999.

[395] H. Roder. Amplitude, Phase, and Frequency Modulation. Proceedings
of the IRE, 19(12):2145 – 2176, 12 1931.

[396] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler. SIP: Session Initiation Proto-
col. Internet Engineering Task Force (IETF): RFC 3261, 2002.

[397] S. Lee and Z. Zhang and S. Sahu and D. Saha. On suitability of eu-
clidean embedding of internet hosts. In SIGMETRICS ’06: Proceedings
of the joint international conference on Measurement and modeling of
computer systems, pages 157–168. ACM, 2006.

[398] A. Saleh and R. Valenzuela. A statistical model for indoor multipath
propagation. IEEE Journal on Selected Areas in Communications,
5(2):128–137, Feb 1987.

[399] M. Sanchez and P. Manzoni. A java-based ad hoc networks simulator.
Proceedings of the SCS Western Multiconference Web-based Simulation
Track, 1999.

[400] Stefan Saroiu, P. Krishna Gummadi, Richard J. Dunn, Steven D. Grib-
ble, and Henry M. Levy. An analysis of internet content delivery sys-
tems. In Proceedings of the 5th ACM Symposium on Operating System
Design and Implementation (OSDI-02), 2002.

[401] Jochen Schiller. Mobile Communications. Addison Wesley, second edi-
tion, May 2003.

[402] M. Schinnenburg, F. Debus, A. Otyakmaz, L. Berlemann, and R. Pabst.
A Framework for Reconfigurable Functions of a Multi-Mode Protocol
Layer. In Proceedings of SDR Forum 2005, page 6, Los Angeles, U.S.,
Nov 2005.

[403] M. Schinnenburg, R. Pabst, K. Klagges, and B. Walke. A Software
Architecture for Modular Implementation of Adaptive Protocol Stacks.
In MMBnet Workshop, pages 94–103, Hamburg, Germany, Sep 2007.

[404] G. Schirner, A. Gerstlauer, and R. Domer. Abstract, Multifaceted Mod-
eling of Embedded Processors for System Level Design. In Proc. Asia
and South Pacific Design Automation Conference ASP-DAC ’07, pages
384–389, 2007.

[405] M.T. Schlosser, T.E. Condie, and S.D. Kamvar. Simulating a file-
sharing p2p network. In Workshop on Semantics in Peer-to-Peer and
Grid Computing, 2003.

[406] T. Schmidl and D. Cox. Robust frequency and timing synchronization
for ofdm. IEEE Transactions on Communications, 45(12):1613–1621,
1997.

References 529

[407] Thomas C. Schmidt and Matthias Wählisch. Predictive versus Reactive
— Analysis of Handover Performance and Its Implications on IPv6 and
Multicast Mobility. Telecommunication Systems, 30(1/2/3):123–142,
November 2005.

[408] Thomas C. Schmidt, Matthias Wählisch, and Ying Zhang. On the
Correlation of Geographic and Network Proximity at Internet Edges
and its Implications for Mobile Unicast and Multicast Routing. In
Cosmin Dini, Zdenek Smekal, Emanuel Lochin, and Pramode Verma,
editors, Proceedings of the IEEE ICN’07, Washington, DC, USA, April
2007. IEEE Computer Society Press.

[409] Arne Schmitz and Leif Kobbelt. Wave propagation using the photon
path map. In PE-WASUN ’06, pages 158–161, New York, NY, USA,
2006.

[410] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A
Transport Protocol for Real-Time Applications. Internet Engineering
Task Force (IETF): RFC 3550, 2003.

[411] H. Schulzrinne, A. Rao, and R. Lanphier. Real Time Streaming Pro-
tocol (RTSP). Internet Engineering Task Force (IETF): RFC 2326,
1998.

[412] Curt Schurgers and Mani B. Srivastava. Energy efficient routing in
wireless sensor networks. In Proceedings of MILCOM ’01, October
2001.

[413] Robin Seggelmann, Irene Rüngeler, Michael Tüxen, and Erwin P.
Rathgeb. Parallelizing OMNeT++ simulations using xgrid. In OM-
NeT++ 2009: Proceedings of the 2nd International Workshop on OM-
NeT++ (hosted by SIMUTools 2009), ICST, Brussels, Belgium, Bel-
gium, 2009. ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering).

[414] S. Selby, A. Amini, and C. Edelman. Simulating Interference Issues
between Bluetooth PANs, and 802.11 b and 802.11 g WLANs.

[415] S. Shakkottai, T. S. Rappaport, and P. C. Karlsson. Cross–Layer Design
for Wireless Networks. IEEE Communications Magazine, 41(10):74–80,
October 2003.

[416] S. Shalunov, B. Teitelbaum, A. Karp, J. Boote, and M. Zekauskas. A
One-way Active Measurement Protocol (OWAMP). RFC 4656, IETF,
September 2006.

[417] C. Shannon. A mathematical theory of communication. Bell
Sys. Tech. Journal, 1948.

[418] Colleen Shannon, David Moore, Ken Keys, Marina Fomenkov, Bradley
Huffaker, and k claffy. The Internet Measurement Data Catalog. SIG-
COMM Compututer Communication Review, 35(5):97–100, 2005.

[419] Yuval Shavitt and Eran Shir. DIMES: Let the Internet Measure It-
self. ACM SIGCOMM Computer Communication Review, 35(5):71–74,
2005.

530 References

[420] D.S. Shiu. Wireless Communication Using Dual Antenna Arrays.
Kluwer Academic Publishers, 1 edition, 2000.

[421] D.S. Shiu, G.R. Foschini, M.J. Gans, and J.M. Kahn. Fading correlation
and its effect on the capacity of multielement antenna systems. IEEE
Transactions on Communications, 48(3), March 2000.

[422] Victor Shnayder, Mark Hempstead, Bor R. Chen, Geoff W. Allen, and
Matt Welsh. Simulating the power consumption of large-scale sensor
network applications. In SenSys ’04: Proceedings of the 2nd interna-
tional conference on Embedded networked sensor systems, pages 188–
200, 2004.

[423] Khaled Shuaib, Maryam Alnuaimi, Mohamed Boulmalf, Imad Jawhar,
Farag Sallabi, and Abderrahmane Lakas. Performance evaluation of
ieee 802.15.4: Experimental and simulation results. Journal of Com-
munications, 2(4):29–37, 2007.

[424] Georgos Siganos, Michalis Faloutsos, Petros Faloutsos, and Chris-
tos Faloutsos. Power Laws and the AS-Level Internet Topology.
IEEE/ACM Trans. Netw., 11(4):514–524, 2003.

[425] B. Sklar. Digital Communications: Fundamentals and Applications.
Prentice-Hall, Inc. Upper Saddle River, NJ, USA, 1988.

[426] B. Sklar. Rayleigh Fading Channels in Mobile Digital Communication
Systems, Part I: Characterization. IEEE Communications Magazine,
35(9):136–146, Sept 1997.

[427] S.M. S.M. Alamouti. A simple transmit diversity technique for wireless
communications. IEEE Journal on Selected Areas in Communications,
16(8):1451–1458, Oct. 1998.

[428] IEEE Computer Society. Part 15.4: Wireless Medium Access Control
(MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless
Personal Area Networks (WPANs) – Amendment 1: Add Alternate
PHYs. The Institute of Electrical and Electronics Engineers, Inc., 2007.

[429] IEEE Computer Society. Part 15.4: Wireless Medium Access Control
(MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless
Personal Area Networks (WPANs). The Institute of Electrical and
Electronics Engineers, Inc., 2006.

[430] IEEE Computer Society. Part 15.4: Wireless Medium Access Control
(MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless
Personal Area Networks (LR-WPANs). The Institute of Electrical and
Electronics Engineers, Inc., 2003.

[431] Hesham Soliman. Mobile IPv6. Mobility in a Wireless Internet.
Addison-Wesley, Boston, 2004.

[432] Hesham Soliman, Claude Castelluccia, Karim Elmalki, and Ludovic
Bellier. Hierarchical Mobile IPv6 (HMIPv6) Mobility Management.
RFC 5380, IETF, October 2008.

References 531

[433] M. Speth, H. Dawid, and F. Gersemsky. Design & Verification Chal-
lenges for 3G/3.5G/4G Wireless Baseband MPSoCs. In MPSoC’08,
June 2008.

[434] N. Spring, L. Peterson, A. Bavier, and V. Pai. Using planetlab for
network research: myths, realities, and best practices. ACM SIGOPS
Operating Systems Review, 40(1):17–24, 2006.

[435] R. Srinivasan, J. Zhuang, L. Jalloul, R. Novak, and J. Park. Draft
IEEE 802.16 m Evaluation Methodology Document. IEEE C802. 16m-
07/080r2, 2007.

[436] V. Srivastava and M. Motani. Cross-Layer Design: A Survey and the
Road Ahead. IEEE Communications Magazine, 43(12):112–119, De-
cember 2005.

[437] Steffen Sroka and Holger Karl. Using akaroa2 with OMNeT++, 2002.
[438] R. Steele. Mobile Radio Communications. Pentech Press, 1992.
[439] R. Steele and L. Hanzo, editors. Mobile Radio Communications. J.

Wiley & Sons Ltd, 2000.
[440] P. Krishna Gummadi Stefan Saroiu and Steven D. Gribble. Measure-

ment Study of Peer-to-Peer File Sharing Systems. In Proceedings of
Multimedia Computing and Networking 2002 (MMCN’02), volume 4673
of Proc. of SPIE, pages 156–170, Bellingham, WA, USA, 2001. SPIE.

[441] M. Steiner, T. En-Najjary, and E.W. Biersack. A global view of kad. In
Proceedings of the 7th ACM SIGCOMM conference on Internet mea-
surement, pages 117–122. ACM New York, NY, USA, 2007.

[442] J. Stevens. DSPs in communications. IEEE Spectrum, 35(9):39–46,
Sep. 1998.

[443] W. Richard Stevens. TCP/IP Illustrated, Volume I: The Protocols.
Addison-Wesley, Reading, MA, 1994.

[444] Randall R. Stewart. Stream Control Transmission Protocol. RFC 4960,
IETF, September 2007.

[445] Randall R. Stewart, Qiaobing Xie, Michael Tuexen, Shin Maruyama,
and Masahiro Kozuka. Stream Control Transmission Protocol (SCTP)
Dynamic Address Reconfiguration. RFC 5061, IETF, September 2007.

[446] G.L. Stuber and C. Kchao. Analysis of a multiple-cell direct-sequence
CDMA cellular mobile radio system. IEEE Journal on Selected Areas
in Communications, 10(4):669 – 679, May 1992.

[447] D. Stutzbach and R. Rejaie. Improving lookup performance over a
widely-deployed dht. In Proceedings of 25th IEEE International Confer-
ence on Computer Communications (INFOCOM 2006), volume 6, 2006.

[448] D. Stutzbach and R. Rejaie. Understanding churn in peer-to-peer net-
works. In Proceedings of the 6th ACM SIGCOMM on Internet mea-
surement, pages 189–202. ACM Press New York, NY, USA, 2006.

[449] Anand Prabhu Subramanian, Milind M. Buddhikot, and Scott Miller.
Interference aware routing in multi-radio wireless mesh networks. In
Proceedings of the 2nd IEEE Workshop on Wireless Mesh Networks,
Reston, VA, USA, 2006.

532 References

[450] Surveyor. http://www.advance.org/csg-ippm/.
[451] A. S. Tanenbaum. Computer Networks. Prentice Hall, 2002.
[452] Andrew S. Tanenbaum. Computer Networks. Prentice Hall PTR, 4th

edition, August 2002.
[453] D. Tang and M. Baker. Analysis of a local-area wireless network. Pro-

ceedings of the 6th annual international conference on Mobile comput-
ing and networking, pages 1–10, 2000.

[454] Hongsuda Tangmunarunkit, Ramesh Govindan, Scott Shenker, and
Deborah Estrin. Internet Path Inflation Due to Policy Routing. In
Proc. SPIE International Symposium on Convergence of IT and Com-
munication (ITCom), 2001.

[455] Hongsuda Tangmunarunkit, Ramesh Govindan, Scott Shenker, and
Deborah Estrin. The Impact of Routing Policy on Internet Paths. In
Proc. of the 20th IEEE INFOCOM, volume 2, pages 736–742, Piscat-
away, NJ, USA, 2001. IEEE Press.

[456] V. Tarokh, H. Jafarkhani, and A.R. Calderbank. Space-time block
codes from orthogonal designs. IEEE Transactions on Information
Theory, 45(5):744–765, July 1999.

[457] V. Tarokh, N. Seshadri, and A. R. Calderbank. Space-time codes for
high data rate wireless communication: Performance criterion and code
construction. IEEE Trans. Inform. Theory, 44(2):774–765, 1998.

[458] V. Tarokh, N. Seshadri, and A.R. Calderbank. Space-time codes for
high data rate wireless communication: Performance analysis and code
construction. IEEE Transactions on Information Theory, 44(2):744–
765, March 1998.

[459] TCPDump. www.tcpdump.org, August 2008.
[460] Renata Teixeira, Keith Marzullo, Stefan Savage, and Geoffrey M.

Voelker. In Search of Path Diversity in ISP Networks. In Proceed-
ings of the 3rd ACM SIGCOMM conference on Internet measurement
(IMC’03), pages 313–318, New York, NY, USA, 2003. ACM.

[461] S. ten Brink. Convergence behavior of iteratively decoded parallel con-
catenated codes. IEEE Transactions on Communications, 49(10):1727–
1737, 2001.

[462] Fumio Teraoka, Kazutaka Gogo, Koshiro Mitsuya, Rie Shibui, and Koki
Mitani. Unified Layer 2 (L2) Abstractions for Layer 3 (L3)-Driven Fast
Handover. RFC 5184, IETF, May 2008.

[463] The PingER Project.
http://www-iepm.slac.stanford.edu/pinger/.

[464] S. Thomson, T. Narten, and T. Jinmei. IPv6 Stateless Address Auto-
configuration. RFC 4862, September 2007.

[465] Ben L. Titzer, Daniel K. Lee, and Jens Palsberg. Avrora: Scalable
Sensor Network Simulation with Precise Timing. In Proceedings of the
Fourth International Conference on Information Processing in Sensor
Networks (IPSN ’05), pages 477–482, Los Angeles, USA, April 2005.

References 533

[466] Jim Tourley. Survey says: software tools more important than chips,
April 2005.

[467] P. Tran-Gia, K. Leibnitz, and D. Staehle. Source traffic modelling of
wireless applications. In P. Tran-Gia, D. Staehle, and K. Leibnitz, edi-
tors, AEU - International Journal of Electronics and Communications,
volume 55, Issue 1, pages pp 27–36, 2000.

[468] David Tse and Pramod Viswanath. Fundamentals of Wireless Commu-
nication. Cambridge University Press, 2005.

[469] C. Tuduce and T. Gross. A mobility model based on WLAN traces and
its validation. INFOCOM 2005. 24th Annual Joint Conference of the
IEEE Computer and Communications Societies. Proceedings IEEE, 1,
2005.

[470] Michael Tüxen, Irene Rüngeler, and Erwin P. Rathgeb. Interface con-
necting the inet simulation framework with the real world. In Simu-
tools ’08: Proceedings of the 1st international conference on Simula-
tion tools and techniques for communications, networks and systems &
workshops, pages 1–6, ICST, Brussels, Belgium, Belgium, 2008. ICST
(Institute for Computer Sciences, Social-Informatics and Telecommu-
nications Engineering).

[471] Piet Van Mieghem. Performance Analysis of Communications Net-
works and Systems. Cambridge University Press, New York, USA, 2006.

[472] A. Varga and B. Fakhamzadeh. The k-split algorithm for the pdf ap-
proximation of multi-dimensional empirical distributions without stor-
ing observations. In ESS’97: 9th European Simulation Symposium,
pages 94–98, 1997.

[473] András Varga. JSimpleModule.
[474] András Varga. OMNeT++ discrete event simulation system. [online]

http://www.omnetpp.org/.
[475] András Varga. The OMNeT++ discrete event simulation system.

Proceedings of the European Simulation Multiconference (ESM’2001),
2001.

[476] András Varga, Ahmet Y. Şekercioğlu, and Gregory K. Egan. A Practi-
cal Efficiency Criterion for the Null-Message-Algorithm. In Proceedings
of European Simulation Symposium, Delft, The Netherlands, 2003.

[477] B. D. V. Veen and K. M. Buckley. Beamforming: A versatile approach
to spatial filtering. IEEE ASSP Magazine, pages 4 – 24, Apr. 1988.

[478] S. Verdu and S. Shamai. Spectral efficiency of CDMA with random
spreading. IEEE Transactions on Information Theory, 45(2):622 – 640,
March 1999.

[479] N. Vicari. Models of www traffic: A comparison of pareto and loga-
rithmic histogram models. Technical Report Report No. 198, Research
Report Series, Institute of Computer Science, University of Wurzburg
(Germany), 1998.

534 References

[480] L. Vito, S. Rapuano, and L. Tomaciello. One-Way Delay Measure-
ment: State of the Art. IEEE Transactions on Instrumentation and
Measurement, 57(12):2742–2750, December 2008.

[481] Matthias Wählisch, Thomas C. Schmidt, and Waldemar Spät. What
is Happening from Behind? - Making the Impact of Internet Topology
Visible. Campus–Wide Information Systems, 25(5):392–406, November
2008.

[482] J. Walfisch and H.L. Bertoni. A theoretical model of UHF propagation
in urban environments. IEEE Transactions on Antennas and Propaga-
tion, 36(12):1788–1796, December 1988.

[483] B. Walke, P. Seidenberg, and M. P. Althoff. UMTS: The Fundamentals.
Wiley, 2003.

[484] B. H. Walke. Mobile Radio Networks 2nd Edition. John Wiley & Sons,
2002.

[485] C. Wang, M. Paetzold, and Q. Yao. Stochastic modeling and simulation
of frequency-correlated wideband fading channels. IEEE Transactions
on Vehicular Technology, 56(3):1050–1063254 – 269, 2007.

[486] Zhenyu Wang, E. K. Tameh, and A. R. Nix. Joint Shadowing Process
in Urban Peer-to-Peer Radio Channels. Vehicular Technology, IEEE
Transactions on, 57(1):52–64, Jan 2008.

[487] Stephen Warshall. A theorem on boolean matrices. Journal of the
ACM, 9(1):11–12, January 1962.

[488] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ’small-
world’ networks. Nature, 393:440–442, June 1998.

[489] Bernard M. Waxman. Routing of Multipoint Connections. IEEE Jour-
nal on Selected Areas in Comm., 6(9):1617–1622, 1988.

[490] J. Weitzen and T.J. Lowe. Measurement of angular and distance cor-
relation properties of log-normal shadowing at 1900 mhz and its ap-
plication to design of pcs systems. IEEE Transations on Vehicular
Technology, 51(2), March 2002.

[491] Michael Welzl. Network Congestion Control: Managing Internet Traffic
(Wiley Series on Communications Networking & Distributed Systems).
John Wiley & Sons, 2005.

[492] P. Wertz, R. Wahl, G. Wölfle, P. Wildbolz, and F. Landstorfer. Dom-
inant path prediction model for indoor scenarios. German Microwave
Conference (GeMiC) 2005, University of Ulm, 2005.

[493] Karl Wessel, Michael Swigulski, Andreas Köpke, and Daniel Willkomm.
MiXiM - the physical layer: An architecture overview. In Proceeding of
the 2. International Workshop on OMNeT++, pages 1–8, March 2009.

[494] Sven Wiethoelter. Virtual Utilization and VoIP Capacity of WLANs
Supporting a Mix of Data Rates. Technical Report TKN-05-004,
Telecommunication Networks Group, Technische Universität Berlin,
2005.

References 535

[495] Sven Wiethoelter and Adam Wolisz. Selecting vertical handover can-
didates in IEEE 802.11 mesh networks. In Proc. of IEEE WoWMoM
Workshop on Hot Topics in Mesh Networking, Kos, Greece, June 2009.

[496] Sven Wiethoelter and Christian Hoene. IEEE 802.11e EDCA and CFB
simulation model for ns-2.

[497] Jared Winick and Sugih Jamin. Inet-3.0: Internet Topology Generator.
Technical Report CSE-TR-456-02, University of Michigan, 2002.

[498] Rolf Winter. Modeling the Internet Routing Topology – In Less than
24h. In Proceedings of the 2009 ACM/IEEE/SCS 23rd Workshop on
Principles of Advanced and Distributed Simulation (PADS ’09), pages
72–79, Washington, DC, USA, 2009. IEEE Computer Society.

[499] T. Winter, U. Türke, E. Lamers, R. Perera, A. Serrador, and L. Cor-
reia. Advanced simulation approach for integrated static and short-
term dynamic UMTS performance evaluation. Technical Report D2.7,
IST-2000-28088 MOMENTUM, 2003.

[500] Wireshark. www.wireshark.org, August 2008.
[501] Georg Wittenburg and Jochen Schiller. A Quantitative Evaluation of

the Simulation Accuracy of Wireless Sensor Networks. In Proceedings
of 6. Fachgespräch “Drahtlose Sensornetze” der GI/ITG-Fachgruppe
“Kommunikation und Verteilte Systeme”, pages 23–26, Aachen, Ger-
many, July 2007.

[502] R. W. Wolff. Poisson Arrivals See Time Averages. Operations Research,
pages 223–231, 1982.

[503] Jun Wang Yaling Yang and Robin Kravets. Interference-aware load
balancing for multihop wireless networks. Technical report, Department
of Computer Science, University of Illinois at Urbana-Champaign, 2005.

[504] S. C. Yang. CDMA RF System Engineering. Mobile Communications
Series. Artech House Publishers, 1998.

[505] Yaling Yang, Jun Wang, and Robin Kravets. Designing routing metrics
for mesh networks. In Proceedings of the First IEEE Workshop on
Wireless Mesh Networks, Santa Clara, CA, September 2005.

[506] Svetoslav Yankov and Sven Wiethoelter. Handover blackout duration
of layer 3 mobility management schemes. Technical Report TKN-
06-002, Telecommunication Networks Group, Technische Universität
Berlin, 2006.

[507] Yih-Chun Hu, Adrian Perrig, and David B. Johnson. Packet Leashes:
A Defense Against Wormhole Attacks in Wireless Sensor Networks. In
The 22nd Annual Joint Conference of the IEEE Computer and Commu-
nications Societies (INFOCOM’03), San Francisco, CA, USA, March
2003.

[508] K. Yu and B. Ottersten. Models for mimo propagation channels: a
review. Wireless Communications and Mobile Computing, February
2002.

536 References

[509] J. Zander and S.-L. Kim. Radio Resource Managements for Wireless
Networks. Mobile Communications Series. Artech House Publishers,
2001.

[510] Ellen W. Zegura, Kenneth L. Calvert, and Michael J. Donahoo. A
Quantitative Comparison of Graph-Based Models for Internet Topol-
ogy. IEEE/ACM Transactions on Networking, 5(6):770–783, 1997.

[511] E.W. Zegura, K.L. Calvert, and S. Bhattacharjee. How to model an
internetwork. In INFOCOM ’96. Fifteenth Annual Joint Conference of
the IEEE Computer Societies. Networking the Next Generation. Pro-
ceedings IEEE, volume 2, pages 594–602, 1996.

[512] Amgad Zeitoun, Chen-Nee Chuah, Supratik Bhattacharyya, and
Christophe Diot. An AS-level Study of Internet Path Delay Character-
istics. In Proceedings of the IEEE Global Telecommunications Confer-
ence (GLOBECOM’04), volume 3, pages 1480–1484, Piscataway, NJ,
USA, 2004. IEEE Press.

[513] B. Zhang, T. S. Eugene Ng, A. Nandi, R. Riedi, P. Druschel, and
G. Wang. Measurement-based analysis, modeling, and synthesis of
the internet delay space. In IMC ’06: Proceedings of the 6th ACM
SIGCOMM conference on Internet measurement, pages 85–98. ACM,
2006.

[514] Beichuan Zhang, Raymond Liu, Daniel Massey, and Lixia Zhang. Col-
lecting the Internet AS-level Topology. ACM SIGCOMM Computer
Communication Review, 35(1):53–61, 2005.

[515] H. Zhang, D. Yuan, M. Pätzold, Y. Wu, and V.D. Nguyen. A novel
wideband space-time channel simulator based on the geometrical one-
ring model with applications in mimo-ofdm systems. Wireless Com-
munications and Mobile Computing, March 2009. Published online:
10.1002/wcm.787.

[516] Xiaoliang Zhao, Dan Pei, Lan Wang, Dan Massey, Allison Mankin,
S. Felix Wu, and Lixia Zhang. An Analysis of BGP Multiple Origin
AS (MOAS) Conflicts. In Proceedings of the 1st ACM SIGCOMM
Workshop on Internet Measurement (IMW’01), pages 31–35, New York,
NY, USA, 2001. ACM.

[517] Jianliang Zheng and Myung J. Lee. A comprehensive performance
study of ieee 802.15.4. Sensor Network Operations, pages 218–237,
2006.

[518] H. Zimmermann. OSI reference model–the ISO model of architecture
for open systems interconnection. IEEE Transactions on Communica-
tions, 28(4):425–432, 1980.

[519] Stefan Zöls, Zoran Despotovic, and Wolfgang Kellerer. On hierarchical
DHT systems - an analytical approach for optimal designs. Computer
Communications, 31(3):576–590, 2008.

[520] Gil Zussman and Adrian Segall. Energy efficient routing in ad hoc
disaster recovery networks. Ad Hoc Networks, 1:405–421, 2003.

Index

AAA, 343
Abstraction, 6
Access point transition time, 349
Ad hoc network, 360
Ad hoc On Demand Distance Vector

(AODV), 361
Address duality, 377
Adjacent channel interference, 222
Admission Control, 344
Alias resolution, 481
Animation, 53
Antenna, 222
Antenna gain, 222
Application goodput, 318
Application model, 397
AR, 423
ARIMA, 423
Ark, see CAIDA
ARMA, 423
ARQ, 187, 313
AS, see Autonomous System
Attack
– Impact, 463
– Model, 466
authentication, authorization, and ac-

counting, 346
Autonomous System, 480
– Mapping, 481
– Relationship, 480, 483
Autoregressive Moving Average, 79
Avrora, 93

backoff, 246

Barabási-Albert model, 478, 484
Beamforming, 74, 150, 180
behavioral model, 402
Bellman-Ford algorithm, 367
Betweenness, 475
BGP, 481, 482
BGP tables, 481
BGP topology, 481
Bidirectional link, 373
Bit domain, 136
Block fading model, 227
Border Gateway Protocol (BGP), 360
BRITE, 484
Bulk File Transfer, 397

CAIDA, 481
Calendar, 61
Call–to–mobility factor, 382
Carrier sensing, 153
Causal Violation, 122
CCA, 245
CDMA, 180
Centrality, see Betweenness
channel error model, 314
Channel estimation, 152
Channel Model, 74
channel sensing, 316
channel state, 317
Channelization WLAN, 240
Chase Combining, 188
Churn, 448, 449
Clear Channel Assessment, 285

538 Index

Cluster Computing, 80
cluster computing, 53
Co-channel interference, 221
Code Mapping, 109
Codec model, 418
codec model, 413, 420
comfort-noise, 418
Communication
– low-power, 277
– low-rate, 277
– Near-field, 276
– Personal area, 276
– Short-range, 276
Connection level, 401
connection level, 400, 406
Contiki, 87, 94
control traffic, 315
convolutional coding, 239
COOJA, 94
Correctness, 91
Cost Function, 344
– Model, 348, 352
Cryptographic functions, 468
CSMA, 245
Cyclic redundancy check (CRC) code,

140

DARPA XG, 307
DatCat, 482
DCF, 245
Deadlines, 99
Decibel, 195
– Milliwatt (dBm), 195
– Watt (dBW), 195
DECT, 307
Degree distribution, 474
Delay, 427
– Analytical, 430
– Asymmetry, 428
– End-to-end, 428
– Euclidean embedding, 431
– Generators, see Topology genera-

tor
– Geographic location, 432
– Internet, 427

– Model, 433
– One-way delay, 428, 433
– Variation, see Jitter
delay, 309
Delay spread, 206
Deployment, 83
Destination-Sequenced Distance Vec-

tor (DSDV), 361
Diameter, 475
Differential modulation, 152
Diffraction, 199
Digital modulation, 145
Digital-to-analog conversion, 154
Dijkstra’s algorithm, 366
DIMES, 481
Discrete system, 2
discrete-event simulation, 1
Distance, 475
Distance distribution, 475
Doppler spread, 206
DSSS, 238
Dynamic Source Routing (DSR), 361

Earliest Input Time, 124
Earliest Output Time, 125
EDCA, 247
Efficiency, 318
Empirical path loss model, 203
Emulation, 65
– Full-System Emulation, 83
– Network Emulation, 83
emulation, 49
End-to-end delay, see Delay
Energy Consumption, 100
Energy Detection, 285
Entity, 2, 63
Equalization, 152
Equivalent SINR, 161, 221
Erdős-Rényi, see Random graph
Error Model WLAN, 242
Event, 2, 61
– Handling, 63
Event notice, 3
Event Scheduler, 70
Event-based Programming Model, 88

Index 539

Event-driven simulation, 61

Fading, 206
– Coherence frequency, 212
– Coherence time, 212
– Exponential power delay profile, 212
– flat, 209
– frequency-selective, 209
– Jakes power spectral density, 212
– Rayleigh, 211
– Rice, 212
– time selective, 208
– WSSUS, 212
fairness, 310
Far field, 197
FARIMA, 423, 424
FDN, 425
Femto Cell, 307
FHSS, 238
Filter, 64
Floyd-Warshall algorithm, 367
FMIPv6, 378
Forward error correction (FEC) cod-

ing, 141
four-state model, 413, 417
frame retransmission, 246
Free-space path loss, 198
Frequency selective fading, 255
FTP, 397, 406
– Active, 408
– Passive, 408
Full Function Device, 277, 290
Future Event List, 3

Geodesic, 475
Geometric random graphs, see Ran-

dom graph
GPS, 180
Graph metrics, 473
GSM, 175
– Timing advance, 175
GT-ITM, 484
Guaranteed Time Slot, 291

H.323, 413

Handover
– Break-before-make, 344
– Classification, 345
– Decision, 343, 344, 350, 353
– Frequency, 382
– Hard, 344, 346
– Heterogeneous, 344, 346
– Horizontal, 346
– Inter-technology, 346
– Intra-technology, 344
– Make-before-break, 344
– Performance, 378, 379
– Proactive, 344
– Reactive, 344
– Soft, 344
– Taxonomic groups, 343
– Taxonomy, 345, 489
– Vertical, 346
Hardware Abstraction Layer, 88
HCF, 246
hidden terminal, 244
Hierarchical Topologies, 478
HMIPv6, 378
Hosking algorithm, 425
HTML, 398
HTTP, 398, 399, 402, 403
– Persistent connections, 399
Hurst parameter, 424
Hybrid ARQ, 188, 313

Ideal Simulation Protocol, 127
IEEE 802.11, 76, 235, 305, 317, 348
IEEE 802.11a, 235, 352
IEEE 802.11b, 235
IEEE 802.11e, 236
IEEE 802.11g, 236, 352
IEEE 802.11n, 236
IEEE 802.15.1, 306
IEEE 802.15.4, 276, 306, 317
– beacons, 290
– CAP simulation model for NS-2,

297
– energy model, 283
– MAC, 287
– Modeling, 279

540 Index

– NS-2 simulation model, 294
– OMNeT++/INET simulation model,

300, 321
– OPNET simulation model, 302
– PHY, 281
– protocol stack, 277
– Reference model, 279
– superframe, 290
– use case, 317
IEEE 802.16, XIV, 78, 175, 265, 266,

306, 316, 317
– convergence sublayer, 268
– frame structure, 272
– MAC, 267
– reference model, 266, 267
– zones, 270
IGen, 485
IKR
– EmuLib, 65
– SimLib, 61
– TCPLib, 65
IMT-Advanced, 79, 307
Incremental Redundancy, 188
Inet-3.0, 484
Infrastructure-based networks, 360
Instruction Set Simulation
– Principle, 102
Inter-carrier Interference, 238
inter-domain handover, 346
Inter-symbol Interference, 239
Interface Abstraction Layer, 84
Interference, 220
Interleaver, 143
Intermediator selection metric, 369
Internet
– Delay space, see Delay
– RTT, 432
Internet Mobility, 374
Internet Topology, 480
Internet topology
– Power law, 482
– Properties, 482
Intersymbol interference, 209
intra-technology handover, 346

Intra-Technology Interference, 318
IP Mobility, see Mobile IP
ISM, 306
ISO/OSI, 73
ISP, 480

Jain’s fairness index, 310
Jakes model, 75
Jitter, 428
– Modeling, 436
jitter, 309
Joint degree distribution, 474

King method, 430

libWNS, 273
link (re-) establishment, 343
Link Adaptation, 183
Link Quality Indication, 285
Link-to-system interface, 158
Local Causality Constraint, 124
Logical Process, 123
Lookahead, 124
Looking glass, 481
LRD, 422
LTE, 307, 316

MAC, 314
Map, 185
map, 315
Markov-Modulated Poisson Process,

79
MaxMind, 432
Maxwell equations, 195
Medium Access Control Protocol (MAC),

174
Memory Consumption, 100
Meter, 64
Mica Sensor Nodes, 93
MIMO channel, 213
MiXiM (Framework for OMNeT++),

164
MOAS, 481
Mobile IP, 376
– Evaluation model, 380

Index 541

– Handover, 380
– Metrics, 379
– Performance, 381
– Real-time scenarios, 379
Mobility, 327
– Boundless simulation area, 330, 489
– Entity Models, 328
– Gauss-Markov, 334
– Group Models, 328
– Manhattan Model, 335
– Model, 327
– Random Direction, 333
– Random Walk, 331
– Random Waypoint, 332
– Synthetic Models, 328
Mobility management, 345
mobility management, 343
Model
– ON/OFF, 400
– Page-oriented, 400
– Synthetic, 400
Modeling, 6
– Concepts, 62, 63
– Handover, 342
– Page-oriented, 400
– Web Traffic, 398
Modeling process
– IEEE 802.15.4, 320
– level of detail, 320
Modified Shannon Limit, 185
Multi-path propagation, 206
Multiplexer, 64
Mutual Information, 186

NAV, 243
Neighborhood
– Discovery, 351
Neighborhood discovery, 343
Network Load, 344
Network Simulation Cradle, 92
Network topology, see Topology
Node addressing, 362
– Structured addressing, 362
– Unstructured addressing, 362
Node degree, average, 474

Noise, 220
non-exclusive licensing, 306
ns–3, IX, 15
– Events, IX, 26
– Modeling, IX, 17
NS-2 Simulator, 247
ns-3 Simulator, 262
Null-Message Algorithm, 125

object level, 408, 410
OFDM, 235
OFDM PHY, 238
OFDMA, 178
OMNeT++, 35, 164, 322
– Castalia, 38
– Component architecture, 35
– Compound modules, 39
– INET Framework, 38
– INETMANET, 38
– MiXiM, 38
– NED language, 40
– OverSim, 38
– Simple modules, 39
– Simulation IDE, X, 36
– Tkenv, 53
ON/OFF modeling, 402, 403
One-way delay, see Delay, 429
Open Shortest Path First (OSPF),

360
openWNS, 69, 317
Operating System, 83
OPNET Modeler, 252
Optimized Link State Routing (OLSR),

361
Orthogonal frequency division multi-

plexing, 149
OWD, see One-way delay

Packet Error rate, 186
Packet level, 401
packet level, 401, 408, 411, 412, 420
Packet Loss Ratio, 344
Packet trace, 400
Padding, 177
page level, 400, 405

542 Index

parameter study, 51
Partitioning
– Channel Parallel, 123
– Space Parallel, 123
– Time Parallel, 123
PASTA theorem, 189
Path length, 475
Path selection metric, 369
PCF, 246
Peer-to-Peer, 447
Peering relationship, see Autonomous

System
Performance, 91
Performance evaluation, 8, 318
Periodogram Analysis, 424
Personal Operating Space, 276
PHY
– Evaluation unit, 168
– example packet domain simulation

model, 164
– Modeling carrier sensing, 171
– Modeling channel estimation, 171
– Modeling coding and modulation,

172
– Modeling data resource mapping,

167
– radio unit, 164
– Receiving process state diagram,

168
– Sending process state diagram, 167
Physical distance, 371
Physical Layer, 235
Pilot symbols, 146
PingER, 432
Pipeline (Hardware Pipeline), 103
PLCP Sublayer, 237
PMD Sublayer, 237
Power Spectral Distribution, 315
Preferential linking, 478
Processing delay, 189
Programming Language Adaptation,

89
Propagation model, 199
Protocol

– Development Cycle, 84
protocol stack, 237
Proximity Neighbor Selection, 371, 427
Pulse shaping, 152
Python, 71

QoS class, 308
Queue, 64
Queueing, 189
Queueing theory, 368
queuing, 313

Radiating near field, 197
Radio spectrum, 194
Radio Switching Times, 164
Random graph, 476
– Geometric, 478
Ray launching algorithms, 202
Ray tracing algorithms, 202
Reactive near field, 197
Reduced Function Device, 277, 290
Reflection, 198
Refraction, 199
Requirements for Metrics
– Algorithmic efficiency, 369
– Loop-free routing, 369
– Route stability, 369
Rescaled Adjusted Range Analysis,

424
Resource Interface, 87
Reuse Distance, 180
RIPE RIS, 482
Round-trip time, 427, see Delay
Route server, 481
RouteViews, 482
Routing
– Asymmetric, 429
– Inter-domain, 480
– Intra-domain, 480
Routing Information Protocol (RIP),

360, 364
Routing metrics
– Bandwidth, 370
– Exclusive Expected Transmission Time

(EETT), 370

Index 543

– Expected Transmission
Count (ETX), 370

– Expected Transmission Time (ETT),
370

– Hop count, 370
– Interference Aware Routing Metric

(iAWARE), 371
– Metric of Interference and Channel-

switching (MIC), 370
– WCETT-Load Balancing

(WCETT-LB), 371
– Weighted Cumulative ETT

(WCETT), 370
Routing protocols
– Algorithm, 361
– Classification, 360
– Component, 362
– Path selection, 364
– Theory, 366
– Topology maintenance, 364
RTP, 413, 420
– Control Protocol, 414
– Data Transfer Protocol, 414
RTS-CTS protection, 244
RTSP, 420
RTT, see Round-trip time

Sample domain, 139
SAR, 178
Scattering, 198
ScatterWeb Sensor Nodes, 94, 96
Scheduler, 314
Scheduling, 184
Security, 463
– Model, 466
Server, 64
Service primitive, 279
– SAP, 280
Session level, 401
session level, 400, 405
session model, 413, 420
Shadowing, 74
Shadowing model, 205
Shannon limit, 142
Shared-medium link, 373

Shortest path length, average, 475
Simulation, 61
– Abstraction, 99
– Accuracy, 83
– Co-Simulation, 85
– Credibility, 83
– Evaluation, 63
– Flexibility, 99
– Hybrid Simulation, 112
– Instruction Set Simulation
– – Cycle Accurate Simulation, 104
– – Instruction Accurate Simulation,

105
– – Principle, 102
– Interoperability, 85
– Parallel Simulation, 121
– Real-World, 85
– Scalability, 99
– Simulation Instrumentation, 108
– Software Integration Frameworks,

90
– Start, 5
– Steady state, 5
– System Details, 99
– Termination, 5
– Time Based Annotation Techniques,

107
– Transient, 5
– Virtual Processing Unit, 114
Simulation Library, 61
SINR, 191
SIP, 413
six-state model, 413, 417
Skitter, see CAIDA
Socket Interface, 88, 89
Soft Frequency Reuse, 179
Space division multiple access, 151
Space-time coding, 150
Spatial multiplexing, 151
speaker model, 413
spectral efficiency, 309
speech events, 414
Speech-before-Interruption:, 416
Spread-spectrum, 147

544 Index

SRD, 422
Standardization, 83
Static channel model, 227
Stochastic process, 63
sub-carriers, 238
Subcarrier, 178, 315
Subchannel, 178, 315
Sun Grid Engine, 80
Symbol domain, 138
Symbol interleaving, 152
Synchronization, 152, 175
Synchronization Algorithms
– Conservative, 124
– Optimistic, 127
System, 2
System Load, 99
System Resources, 86

Talkspurt, 415
Task Placement, 100
TCP, 65
TCP/IP, 78
Testbed, 83
three-state model, 413, 418
throughput, 309
Time-Warp Algorithm, 128
Timing, 99
TinyOS, 87, 93
Topology, 471
– Abstraction, 472
– Chain, 476
– Full mesh, 476
– generation, 484
– Hierarchical, 478
– Inference, 480
– Internet, 480
– Measurement, 480
– Metrics, 473
– Preferential linking, 478
– Star, 476
Topology generator, 363
– Delay, 430
TOSSIM, 93
TPC, 182
Traffic generator, 64

Traffic Model, 79
Traffic sink, 64
Transmission Delay, 344
Transmission delay modeling, 167
Transmission Output Power, 282
Transport layer, 385
– Analytical Model, 389
– Fluid Model, 393
– Simulation Model, 386
– Transport Protocol Trace, 388
two-state model, 413, 418

U-NII, 306
UDP, 312
Underlay, 449
Unidirectional link, 373
Usability, 91
User behavior, 398, 447
– Arrival process, 451
– Lifetime, 448
– Online sessions, 449
user level, 408, 410, 412, 420
user model, 420
utilization, 308
UWB, 277

Validation, 9
Variance-Time Analysis, 424
Verification, 9
vertical coexistence, 306
Video, 397
video model, 419
viewing time, 408
Virtual distance, 371
Voice, 397
Voice model, 397
voice traffic, 412
VoIP, 79

Waxman model, 478, 484
Web page, 398
web-request, 403
WiMAC, 273
Wireless channel, 191
Wireshark, 79

Index 545

WLAN frames, 243
WLAN Standard, 235
WPAN, 277, 321
– coordinator, 278
Wrowser, 80
WWW traffic, 398

Yule-Walker equations, 424

ZigBee, 278
Zone Routing Protocol (ZRP), 361

	Cover
	Front Matter
	In Favour of Network Simulation
	Address by the UMIC Cluster

	Table of Contents
	1. Introduction
	2. The ns–3 Network Simulator
	3. OMNeT++
	4. IKR Simulation Library
	5. Open WNS
	6. From Simulations to Deployments
	7. Tools and Modeling Approaches for Simulating Hardware and Systems
	8. Parallel Discrete Event Simulation
	9. Physical Layer Modeling
	10. Link Layer Modeling
	11. Channel Modeling
	12. Selected System Models
	13. Wireless Networking Use Cases
	14. Modeling Mobility
	15. Modeling Handover from the Access Networks’ Perspective
	16. Modeling the Network Layer and Routing Protocols
	17. Modeling Transport Layer Protocols
	18. Modeling Application Traffic
	19. Modeling the Internet Delay Space and itsApplication in Large Scale P2P Simulations
	20. Modeling User Behavior in P2P Systems
	21. Modeling Security Aspects of Network
	22. Modeling the Network Topology
	List of Figures
	List of Tables
	List of Acronyms
	List of Authors
	References
	Index

