

TE
AM
FL
Y

Team-Fly®

Page i

Linux Socket Programming by Example

Warren W. Gay

Page ii

Linux Socket Programming by Example

Copyright © 2000 by Que®

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of the
information contained herein. Although every precaution has been taken in the preparation of this
book, the publisher and author assume no responsibility for errors or omissions. Nor is any liability
assumed for damages resulting from the use of the information contained herein.

International Standard Book Number: 0-7897-2241-0

Library of Congress Catalog Card Number: 99-66454

Printed in the United States of America

First Printing: April 2000

02 01 00 4 3 2 1

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Que cannot attest to the accuracy of this information. Use of a term in this
book should not be regarded as affecting the validity of any trademark or service mark.

Linux® is a registered trademark of Linus Torvalds. Red Hat®

LinuxTM is a registered trademark of Red Hat Software.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an "as is" basis. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book.

Associate Publisher
Tracy Dunkelberger

Acquisitions Editor
Todd Green

Development Editor
Laura Bulcher

Managing Editor
Thomas F. Hayes

Project Editor
Karen S. Shields

Copy Editor
Victoria Elzey

Indexer
Aamir Burki

Proofreader
Jeanne Clark

Technical Editor
William Ray

Team Coordinator
Cindy Teeters

Media Developer
Jay Payne

Interior Designer
Karen Ruggles

Cover Designer
Rader Design

Copywriter
Eric Borgert

Production
Lisa England
Steve Geiselman
Liz Johnston

Page iii

CONTENTS AT A GLANCE

Introduction 1

Part 1: Basic Socket Concepts 5

1
Introducing Sockets

7

2
Domains and Address Families

35

3
Address Conversion Functions

65

4
Socket Types and Protocols

93

5
Binding Addresses to a Socket

115

6
Connectionless-Oriented Protocols

133

7
Connection-Oriented Protocols for Clients

159

8
Connection-Oriented Protocols for Servers

183

9
Hostname and Network Name Lookups

203

Part 2: Advanced Socket Programming 227

10
Using Standard I/O on Sockets

229

11
Concurrent Client Servers

269

12
Socket Options

305

13
329

Broadcasting with UDP

14
Out-of-Band Data

349

15
Using the inetd Daemon

379

16
Network Security Programming

393

17
Passing Credentials and File Descriptors

427

18
A Practical Network Project

473

Appendixes 505

A
Socket Function Quick Reference

507

B
Socket-Related Structures Reference

519

C
Useful Network Tables

525

Glossary 529

Index 537

Page iv

TABLE OF CONTENTS

Introduction 1

Part 1
Basic Socket Concepts

5

1
Introducing Sockets

7

A Brief Historical Introduction 8

Understanding Sockets 9

Defining a Socket 9

Using Sockets 10

Referencing Sockets 11

Comparing Sockets to Pipes 12

Creating Sockets 13

Using socketpair(2) in an Example 14

Running the Demonstration Program 16

Performing I/O on Sockets 17

Closing Sockets 21

The shutdown(2) Function 22

Shutting Down Writing to a Socket 22

Dealing with Duplicated Sockets 23

Shutting Down Reading from a Socket 24

Knowing When Not to Use shutdown(2) 24

Writing a Client/Server Example 24

2
Domains and Address Families

35

Nameless Sockets 36

Anonymous Calls 36

Generating Addresses 36

Understanding Domains 36

Forming Socket Addresses 37

Examining the Generic Socket Address 37

Forming Local Addresses 38

Forming Traditional Local Addresses 39

Forming Abstract Local Addresses 44

Forming Internet (IPv4) Socket Addresses 47

Understanding Network Byte Order 49

Performing Endian Conversions 50

Page v

Initializing a Wild Internet Address 51

Initializing a Specific Internet Address 52

Specifying an X.25 Address 55

Specifying Other Address Families 58

The AF_UNSPEC Address Family 61

3
Address Conversion Functions

65

Internet IP Numbers 66

Internet Address Classes 66

Understanding Netmask Values 67

Allocating IP Addresses 72

Private IP Numbers 72

Reserved IP Numbers 73

Manipulating IP Numbers 73

Using the inet_addr(3) Function 73

The inet_aton(3) Function 77

Using the inet_ntoa(3) Function 80

Using inet_network(3) 83

Using the inet_lnaof(3) Function 85

Using the inet_netof(3) Function 86

Using the inet_makeaddr(3) Function 87

4
Socket Types and Protocols

93

Specifying the Domain of a Socket 94

Choosing PF_INET or AF_INET 94

Using the PF_LOCAL and AF_LOCAL Macros 95

Using the socket(2) Function 96

Choosing a Socket Type 96

Understanding the SOCK_STREAM Socket
Type

97

Understanding the SOCK_DGRAM Socket Type 99

Understanding the SOCK_SEQPACKET Socket Type 100

Choosing a Protocol 101

Using PF_LOCAL and SOCK_STREAM 102

Using PF_LOCAL and SOCK_DGRAM 103

Using PF_INET and SOCK_STREAM 103

Using PF_INET and SOCK_DGRAM 105

Socket Domain and Type Summary 106

Other Linux-Supported Protocols 107

Researching Other Protocols 109

Page vi

5
Binding Addresses to a Socket

115

The Purpose of the bind(2) Function 116

Using the bind(2) Function 116

Obtaining the Socket Address 120

Writing a sock_addr() Function 121

Obtaining a Peer Socket Address 125

Interfaces and Addressing 128

Specifying an Interface Address Example 128

Binding a Specific Interface Address 129

Binding for Any Interface 130

6
Connectionless-Oriented Protocols

133

The Methods of Communication 134

Understanding the Advantages 134

Understanding the Disadvantages of Connectionless
Communications

135

Performing Input/Output of Datagrams 136

Introducing the sendto(2) Function 136

Introducing the recvfrom(2) Function 138

Writing a UDP Datagram Server 140

Writing a UDP Datagram Client 146

Testing the Datagram Client and Server 150

Testing with No Server 152

TE
AM
FL
Y

Team-Fly®

Testing with Other IP Numbers 153

Leaving out bind(2) in Client Programs 154

Replying to a Wild Address 154

7
Connection-Oriented Protocols for Clients

159

Reviewing the Methods of Communication 160

TCP/IP Handles Lost Packets 160

TCP/IP Handles Duplicated Packets 161

TCP/IP Handles Sequencing 161

TCP/IP Handles Flow Control 161

Understanding the Advantages of TCP/IP 161

Internet Services 162

Examining the /etc/services File 162

Using Function getservent(3) 163

Using the setservent(3) Function 166

Using the endservent(3) Function 167

Page vii

Looking up a Service by Name and Protocol 167

Looking up a Service by Port and Protocol 168

Consulting the /etc/protocols File 168

Using the setprotoent(3) Function 171

Using the endprotoent(3) Function 172

Looking up a Protocol by Name 172

Looking up a Protocol by Number 172

Writing a TCP/IP Client Program 173

Introducing the connect(2) Function 173

Preparing to Write the Client Program 174

The daytime Client Program 176

Using connect(2) on SOCK_DGRAM Sockets 180

8
Connection-Oriented Protocols for Servers

183

Understanding the Role of the Server 184

The listen(2) Function 185

Understanding the Connect Queue 186

Specifying a Value for backlog 187

The accept(2) Function Call 188

Understanding the Role of accept(2) 189

Writing a TCP/IP Server 190

Running a Wild Server 196

Modifying the Client Program 197

9
Hostname and Network Name Lookups

203

Understanding the Need for Names 204

Using the uname(2) Function 204

Obtaining Hostnames and Domain Names 207

Using Function gethostname 207

Using the getdomainname(2) Function 208

Testing gethostname(2) and getdomainname(2) 208

Resolving Remote Addresses 210

Error Reporting 210

Reporting an h_errno Error 211

Using the gethostbyname(3) Function 212

Applying the gethostbyname(3) Function 214

The gethostbyaddr(3) Function 217

Using the sethostent(3) Function 223

Using the endhostent(3) Function 224

Page viii

Part 2
Advanced Socket Programming

227

10
Using Standard I/O on Sockets

229

Understanding the Need for Standard I/O 230

Associating a Socket with a Stream 230

Using fdopen(3) to Associate a Socket with a Stream 231

Closing a Socket Stream 232

Using Separate Read and Write Streams 233

Duplicating a Socket 234

Closing the Dual Streams 234

Winding up Communications 235

Shutting Down the Write Side Only 235

Shutting Down the Read Side Only 237

Shutting Down Both Read and Write Sides 237

Handling Interrupts 238

Handling EINTR for Other Functions 240

Denning Buffer Operation 240

Applying FILE Streams to Sockets 243

Presenting the mkaddr() Function 243

The RPN Calculator Engine Code 249

Trying out the RPN Server 264

11
Concurrent Client Servers

269

Understanding the Multiple-Client Problem 270

Overview of Server Functions 271

Using fork(2) to Service Multiple Clients 275

Understanding the Overall Server Process 280

Understanding the Child Server Process Flow 281

Understanding Process Termination Processing 282

Designing Servers That Use select(2) 282

Introducing the select(2) Function 283

Manipulating File Descriptor Sets 285

Applying select(2) to a Server 287

Testing the select(2) -Based Server 299

Limitations of the Example 301

12
Socket Options

305

Getting Socket Options 306

Applying getsockopt(2) 307

Page ix

Setting Socket Options 310

Applying the setsockopt(2) Function 311

Retrieving the Socket Type (SO_TYPE) 315

Setting the SO_REUSEADDR Option 317

Setting the SO_LINGER Option 320

Setting the SO_KEEPALIVE Option 323

Setting the SO_BROADCAST Option 324

Setting the SO_OOBINLINE Option 325

Options SO_PASSCRED and SO_PEERCRED 326

13
Broadcasting with UDP

329

Understanding Broadcast Addresses 330

Broadcasting on 255.255.255.255 330

Enhancing the mkaddr.c Subroutine 331

Broadcasting from a Server 332

Receiving Broadcasts 338

Demonstrating the Broadcasts 342

Broadcasting to a Network 343

Starting Broadcasts 343

Receiving Broadcasts 345

Receiving Broadcasts from a Remote Host 345

Troubleshooting Hints 346

14
Out-of-Band Data

349

Defining Out-of-Band 350

Understanding the Need for Out-of-Band Data 350

Sockets and Out-of-Band Data 351

Variations in Implementation 351

Using Out-of-Band Data 353

Writing Out-of-Band Data 353

Reading Out-of-Band Data 354

Understanding the Signal SIGURG 355

Supporting Subprograms 356

Receiving with the SIGURG Signal 359

Sending Out-of-Band Data 362

Testing the oobrecv and oobsend Programs 365

Page x

Understanding the Urgent Pointer 366

Understanding TCP Urgent Mode 366

Urgent Mode When tcp_stdurg=1 369

Receiving Out-of-Band Data Inline 370

Determining the Urgent Pointer 370

Using Out-of-Band Data Inline 371

Limitations of the Urgent Mode Pointer 375

Processing Out-of-Band Data with select(2) 377

15
Using the inetd Daemon

379

Steps Common to Most Servers 380

Introducing inetd 380

The /etc/inetd.conf Configuration File 381

The Design Parameters of inetd Servers 383

Implementing a Simple stream tcp Server 384

Configuring /etc/inetd.conf to Invoke a New Server 385

Disabling the New Service 389

Datagram Servers with inetd 389

Understanding wait and nowait 390

16
Network Security Programming

393

Defining Security 394

The Challenges of Security 394

Identifying Friend or Foe 396

Securing by Hostname or Domain Name 396

Identifying by IP Number 397

Securing inetd Servers 398

Centralized Network Policy 399

Understanding the TCP Wrapper Concept 399

Determining Access 401

Installing Wrapper and Server Programs 403

Examining Server and Wrapper Logging Code 403

Examining the Datagram Server Code 405

Examining the Simple TCP Wrapper Program 410

Introducing the Client Program 414

Installing and Testing the Wrapper 418

Monitoring the Log Files 419

Starting Your inetd Daemon 419

Page xi

Testing the Wrapper Program 420

Testing the Server Timeout 421

Uninstalling the Demonstration Programs 422

Datagram Vulnerability 423

17
Passing Credentials and File Descriptors

427

Problem Statement 428

Introducing Ancillary Data 428

Introducing I/O Vectors 429

The I/O Vector (struct iovec) 429

The readv(2) and writev(2) Functions 430

The sendmsg(2) and recvmsg(2) Functions 432

The sendmsg(2) Function 432

The recvmsg(2) Function 433

Understanding struct msghdr 433

Ancillary Data Structures and Macros 435

Introducing struct cmsghdr Structure 435

Introducing the cmsg(3) Macros 437

Iterating through Ancillary Data 439

Creating Ancillary Data 440

Presenting an Ancillary Data Example 441

The Common Header File common.h 442

The misc.c Module 443

TE
AM
FL
Y

Team-Fly®

The recvcred.c Module 443

The Simple Web Server web80 447

The reqport() Function 451

The recv_fd() Function 453

The sockserv Server Program 456

The send_fd() Function 465

Testing the Socket Server 468

Testing sockserv 469

18
A Practical Network Project

473

Problem Statement 474

Solving the Quote Service Problem 474

Obtaining Stock Market Quotes 474

Examining the Quote Server Program 477

Fetching Quotations via get_tickinfo() 484

Page xii

Broadcasting Quotes via broadcast() 493

Examining the Client Program 495

Compiling and Running the Demonstration 500

Starting the qserve Quotation Server 501

Starting the mktwatch Client 501

If the finance.yahoo.com Service Changes 503

Appendixes 505

A
Socket Function Quick Reference

507

Socket-Specific Functions 507

Socket Addressing 508

Reading of Sockets 508

Writing to Sockets 510

Other Socket I/O 511

Controlling Sockets 512

Network Support Functions 513

Standard I/O Support 515

Hostname Support 515

B
Socket-Related Structures Reference

519

Socket Address Structures 519

Miscellaneous Structures 521

I/O-Related Structures 522

C 525

Useful Network Tables

Glossary 529

Index 537

Page xiii

ABOUT THE AUTHOR

Warren W. Gay is a supervisor at Mackenzie Financial Corporation in Toronto, Canada. There he
supervises a small team of programmers that manage the Mackenzie Investment Management
System (IMS). Warren is also the author of Sams Teach Yourself Linux Programming in 24 Hours.

Warren has been programming professionally since 1980, using many assembler languages, PL/I, C,
and C++. He has been programming for UNIX since 1986 and started programming for Linux in
1994. Linux has allowed him to contribute software packages, such as the ftpbackup program
and the rewrite of the popular wavplay program. These and his other Linux packages can be found
at sunsite.unc.edu and its mirror ftp sites.

Amateur radio is a hobby of Warren's. He holds an advanced amateur radio license and is
occasionally active on 75 meters with the radio call sign VE3WWG. Using the 2-meter band on
August 3, 1991, he made contact with Musa Manarov, call sign U2MIR, aboard the Soviet MIR
space station using a PC and packet radio gear.

Warren lives with his wife, Jacqueline, and his three children, Erin, Laura, and Scott, in St.
Catharines, Ontario, Canada.

Page xiv

DEDICATION

This book is dedicated to my loving wife, Jackie, my daughters, Erin and Laura,
and my son, Scott. Only through their collective patience and support was this
book made possible.

ACKNOWLEDGEMENTS

First, thanks go to Brian Gill for his enthusiasm and support, which helped to get this project started.
Thanks also to Todd Green who took over for Brian as acquisitions editor and to Laura Bulcher as
development editor. I also want to thank William Ray for his enthusiasm and effort as the technical
editor.

Thanks also belong to those at Macmillan USA who expended countless hours doing all of the
various jobs that take place in the production of a book. As is so often the case in life,
accomplishment is achieved with the effort of many.

I would also like to thank the people at Mackenzie Financial Corporation for their support as I
juggled my job responsibilities with my writing at home. Particularly, I want to thank Carol Penhale
for allowing me to arrange vacation time when I really needed it. I also want to thank Alex Lowitt
for his efforts in leasing laptops for Mackenzie employees. The laptop that I used was a great boost
to this writing effort.

A warm thank-you goes to Darie Urbanky for his assistance in testing a few program examples for
me, under Sun's Solaris. To my various other friends, please accept my general thanks for your
encouragement and continued support.

Page xv

TELL US WHAT YOU THINK!

As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we're doing right, what we could do better, what areas you'd like to
see us publish in, and any other words of wisdom you're willing to pass our way.

As an Associate Publisher for Que, I welcome your comments. You can fax, email, or write to let
me know what you did or didn't like about this book— as well as what we can do to make our books
stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and that
due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book's title and author as well as your name and
phone or fax number. I will carefully review your comments and share them with the

author and editors who worked on the book.

Fax: 317-581-4666

Email: quetechnical@macmillanusa.com

Mail: Associative Publisher, Programming
Que
201 West 103rd Street
Indianapolis, IN 46290 USA

Page 1

INTRODUCTION

There have been many books written on the topic of computer networking. While many of these are
excellent resources for advanced programmers, they tend to be too deep for the beginner who just
wants to know how to use it. Why require a potential driver to understand the theory behind his
automobile?

This book teaches the reader how to use socket programming, as if networking was an appliance that
you can turn on and use. Consequently, a ''by example" approach to socket programming is used
here. Each chapter builds upon the previous, until all of the basic concepts are mastered in Part 1,
"Basic Socket Concepts." Part 2, "Advanced Socket Programming," contains some more advanced
topics that might present a challenge for some readers. The last chapter presents a practical
application tying together many of the concepts you've learned.

The by Example Series

How does the by Example series make you a better programmer? The by Example series teaches
programming using the best method possible— examples. The text acts as a mentor, looking over
your shoulder, providing example programs, and showing you new ways to use the concepts
covered in each chapter. While the material is still fresh, you will see example after example,
demonstrating ways to use what you just learned.

The philosophy of the by Example series is simple: The best way to teach computer programming is
with multiple examples. Command descriptions, format syntax, and language references are not
enough to teach a newcomer a programming language. Only by taking the components, immediately
putting them into use, and running example programs can programming students get more than just
a feel for the language. Newcomers who learn only a few basics using examples at every step of the
way will automatically know how to write programs using those skills.

Who Should Use This Book

This book should be read by anyone wanting to know how to perform network programming on
Linux or UNIX platforms. The example programs have been tailored specifically for Linux, in order
to provide for the best educational experience to the reader.

The best success with the example programs will occur with Red Hat 6.0 or comparable Linux
distribution releases. Older releases of Linux might present some special challenges because the
netstat(1) command has been through a

Page 2

lot of change in recent times. Older Linux distributions should also have the /proc file system
enabled in order to take full advantage of some of the example programs.

Conventions Used in This Book

This book uses several common conventions to help teach Linux socket programming. Here is a
summary of those typographical conventions.

Example

Examples are indicated by the icon shown at the left of this sentence. Code associated with this book
will be available at the Que Web site for download
(http://www.quecorp.com/series/by_example/).

You'll find the icon shown to the left of this sentence to indicate output associated with the code
listings.

Output

Some of the typographical conventions used include the following:

• Commands and computer output appear in a special monospaced computer font.

• Words you type appear in a boldfaced computer font.

• Any lines of code that are too long to fit on a single line will be broken into two lines, and a code
continuation character, , will appear on the second line.

In addition to typographical conventions, the following special elements are included to set off
different types of information to make them easily recognizable:

NOTE
Special notes augment the material you read in each chapter. These notes clarify
concepts and procedures.

TIP
You'll find numerous tips offering shortcuts and solutions to common problems.

CAUTION
The cautions warn you about roadblocks that sometimes appear when programming
for Linux. Reading the caution sections should save you time and trouble, not to
mention a few headaches.

Page 3

Where to Find the Code

Please visit the following by Example Web site for example code or additional material associated
with this book:

http://www.quecorp.com/series/by_example/

What's Next

The socket API is not the only way that networking programs can be written. It is, however, the
most popular interface due to its elegant simplicity. If you know a little about the C language and
Linux programming— and you have an appetite for writing networked programs— then it's time to
get started with the first chapter!

Page 5

PART 1—
BASIC SOCKET CONCEPTS

Introducing Sockets

Domains and Address Families

Address Conversion Functions

Socket Types and Protocols

Binding Addresses to a Socket

Connectionless-Oriented Protocols

Connection-Oriented Protocols for Clients

Connection-Oriented Protocols for Servers

Hostname and Network Name Lookups

TE
AM
FL
Y

Team-Fly®

Page 7

1—
Introducing Sockets

Friday, October 4, 1957, marked the beginning of a startling new era. The Soviet Union had
launched the world's first artificial satellite into the Earth's orbit, known as Sputnik. Approximately
the size of a basketball, this satellite took 98 minutes to orbit the Earth. Anyone with a shortwave
radio was able to hear it during overhead passes, at a frequency of approximately 40.002Mhz. Who
would have imagined at that time, that this would later spawn the beginnings of TCP/IP and the
Internet?

In this chapter you will be introduced to

• A brief history of how sockets were developed

• The essence of sockets

• How sockets are referenced by the Linux kernel and application programs

• An introductory example of a socket C program

Page 8

A Brief Historical Introduction

Eisenhower's response to the Sputnik threat was to approach Congress on January 7, 1958, for the
startup funds necessary for the Advanced Research Projects Agency (ARPA). At that time,
government agencies were required to buy computers from different manufacturers each time they
made a purchase, to maintain fairness. The new ARPA organization soon found that they had a
collection of machines that spoke completely different languages. Sometime after 1962, J. C. R.
Licklider conceived of the idea that computers should be able to communicate with one another,
even if they were "highly individualistic."

During the 1960s, the ARPAnet was being conceived and developed by a number of talented people.
The humble beginning of the ARPAnet was to become the Internet that we know of today.
Eventually ARPA was folded into the Defense Advanced Research Projects Agency (DARPA).

Overlapping with the development of ARPAnet, UNIX development was beginning in 1969. The
University of California, Berkeley (UCB) later developed their own flavor of UNIX, which was
known as BSD. DARPA wanted to divest itself of the business of networking, and so DARPA
provided funding to UCB in 1979, to further develop the ARPAnet. In 1982, 4.1BSD and 4.2BSD
versions of UNIX were released by UCB that included a TCP/IP network implementation. The
network socket concepts and interfaces that you will learn about in this book are based upon the
work done by UCB.

Linux draws upon this rich heritage, and so you'll learn about the Linux specific implementation of
the BSD socket interface in this book. Figure 1.1 is provided as a time line overview of the history
behind the socket interface.

Page 9

Figure 1.1:
According to the time line, BSD sockets

were developed 24 years after the
formation of ARPA.

Understanding Sockets

It is important that you have an understanding of some of the concepts behind the socket interface
before you try to apply them. This section outlines some of the high level concepts surrounding the
sockets themselves.

Defining a Socket

To communicate with someone using a telephone, you must pick up the handset, dial the other
party's telephone number, and wait for them to answer. While you speak to that other party, there are
two endpoints of communication established:

• Your telephone, at your location

• The remote party's telephone, at his location

As long as both of you communicate, there are two endpoints involved, with a line of
communication in between them. Figure 1.2 shows an illustration of two telephones as endpoints,
each connected to the other, through the telephone network.

Page 10

Figure 1.2:
Without the telephone network, each endpoint of a
telephone line is nothing more than a plastic box.

A socket under Linux, is quite similar to a telephone. Sockets represent endpoints in a line of
communication. In between the endpoints exists the data communications network.

Sockets are like telephones in another way. For you to telephone someone, you dial the telephone
number of the party you want to contact. Sockets have network addresses instead of telephone
numbers. By indicating the address of the remote socket, your program can establish a line of
communication between your local socket and that remote endpoint. Socket addresses are discussed
in Chapter 2, "Domains and Address Families."

You can conclude then, that a socket is merely an endpoint in communication. There are a number
of Linux function calls that operate on sockets, and you learn about all of them in this book.

Using Sockets

You might think that Linux sockets are treated specially, because you've already learned that sockets
have a collection of specific functions that operate on them. Although it is true that sockets have
some special qualities, they are very similar to file descriptors that you should already be familiar
with.

NOTE
Any reference to a function name like pipe(2) means that you should have online
documentation (man pages) on your Linux system for that function. For information
about pipe(2) for example, you can enter the command:

$ man 2 pipe

where the 2 represents the manual section number, and the function name can be
used as the name of the manual page. Although the section number is often optional,
there are many cases where you must specify it in order to obtain the correct
information.

For example, when you open a file using the Linux open(2) call, you are returned a file descriptor
if the open(2) function is successful. After you have this file descriptor, your program uses it to
read(2), write(2), lseek(2), and close(2) the specific file that was opened. Similarly, a
socket, when it is created, is just like a file descriptor. You can use the same file I/O

Page 11

functions to read, write, and close that socket. You learn in Chapter 15, "Using the inetd
Daemon," that sockets can be used for standard input (file unit 0), standard output (file unit 1), or
standard error (file unit 2).

NOTE
Sockets are referenced by file unit numbers in the same way that opened files are.
These unit numbers share the same "number space"— for example, you cannot have
both a socket with unit number 4 and an open file on unit number 4 at the same
time.

There are some differences, however, between sockets and opened files. The following list
highlights some of these differences:

• You cannot lseek(2) on a socket (this restriction also applies to pipes).

• Sockets can have addresses associated with them. Files and pipes do not have network addresses.

• Sockets have different option capabilities that can be queried and set using ioctl
(2).

• Sockets must be in the correct state to perform input or output. Conversely, opened disk files can
be read from or written to at any time.

Referencing Sockets

When you open a new file using the open(2) function call, the next available and lowest file
descriptor is returned by the Linux kernel. This file descriptor, or file unit number as it is often
called, is a zero or positive integer value that is used to refer to the file that was opened. This
"handle" is used in all other functions that operate upon opened files. Now you know that file unit
numbers can also refer to specific sockets.

NOTE
When a new file unit (or file descriptor) is needed by the kernel, the lowest available
unit number is returned. For example, if you were to close standard input (file unit
number 0), and then open a file successfully, the file unit number returned by the
open(2) call will be zero.

Assume for a moment that your program already has file units 0, 1, and 2 open (standard input,
output, and error) and the following sequence of program operations is carried out. Notice how the
file descriptors are allocated by the kernel:

1. The open(2) function is called to open a file.

2. File unit 3 is returned to reference the opened file. Because this unit is not currently in use, and is
the lowest file unit presently available, the value 3 is chosen to be the file unit number for the file.

Page 12

3. A new socket is created using an appropriate function call.

4. File unit 4 is returned to reference that new socket.

5. Yet, another file is opened by calling open(2).

6. File unit 5 is returned to reference the newly opened file.

Notice how the Linux kernel makes no distinction between files and sockets when allocating unit
numbers. A file descriptor is used to refer to an opened file or a network socket.

This means that you, as a programmer, will use sockets as if they were open files. Being able to
reference files and sockets interchangeably by file unit number provides you with a great deal of
flexibility. This also means that functions like read(2) and write(2) can operate upon both
open files and sockets.

Comparing Sockets to Pipes

Before you are introduced to any socket functions, review the pipe(2) function call that you
might already be familiar with. Let's see how the file descriptors it returns differ from a socket. The
following is a function synopsis taken from the pipe(2) man page:

#include <unistd.h>

int pipe(int filedes[2]);

The pipe(2) function call returns two file descriptors when the call is successful. Array element
filedes[0] contains the file descriptor number for the read end of the pipe. Element filedes
[1] receives the file unit number of the write end of the pipe.

This arrangement of two file descriptors is suggestive of a communications link with file descriptors
at each end, acting as sockets. How then does this differ from using sockets instead? The difference
lies in that the pipe(2) function creates a line of communications in one direction only.
Information can only be written to the file unit in filedes[1] and only read by unit filedes
[0]. Any attempt to write data in the opposite direction results in the Linux kernel returning an
error to your program.

Sockets, on the other hand, allow processes to communicate in both directions. A process is able to
use a socket open on file unit 3, for example, to send data to a remote process. Unlike when using a
pipe, the same local process can also receive information from file unit 3 that was sent by the
remote process it is communicating with.

Page 13

Creating Sockets

In this section, you see that creating sockets can be almost as easy as creating a pipe. There are a
few more function arguments however, which you will learn about. These arguments must be
supplied with suitable values to be successful.

The function socketpair(2) synopsis is as follows:

#include <sys/types.h>
#include <sys/socket.h>

int socketpair(int domain, int type, int protocol, int sv[2]);

The include file sys/types.h is required to define some C macro constants. The include file
sys/socket.h is necessary to define the socketpair(2) function prototype.

The socketpair(2) function takes four arguments. They are

• The domain of the socket.

• The type of the socket.

• The protocol to be used.

• The pointer to the array that will receive file descriptors that reference the created
sockets.

The domain argument's explanation will be deferred until Chapter 2. For the purpose of the
socketpair(2) function, however, always supply the C macro value AF_LOCAL.

The type argument declares what type of socket you want to create. The choices for the
socketpair(2) function are

• SOCK_STREAM

• SOCK_DGRAM

The implication of the socket choice will be explored in Chapter 4, ''Socket Types and Protocols."
For this chapter, we'll simply use SOCK_STREAM for the type of the socket.

For the socketpair(2) function, the protocol argument must be supplied as
zero.

The argument sv[2] is a receiving array of two integer values that represent two sockets. Each file
descriptor represents one socket (endpoint) and is otherwise indistinguishable from the other.

Page 14

If the function is successful, the value zero is returned. Otherwise, a return value of -1 indicates that
a failure has occurred, and that errno should be consulted for the specific reason.

CAUTION
Always test the function return value for success or failure. The value errno should
only be consulted when it has been determined that the function call has indicated
that it failed. Only errors are posted to errno; it is never cleared to zero upon
success.

Using socketpair(2) in an Example

To demonstrate how the socketpair(2) function is used, the program in Listing 1.1 is presented
for your experimentation.

CAUTION
If you type example programs manually from the listings shown in this book, do not
include the line number shown at the extreme left. The line number is shown for
ease of reference only.

Listing 1.1: 01LST01.c— Example Use of socketpair(2) Function

1: /* Listing 1.1:
2: *
3: * Example of socketpair(2) function:
4: */
5: #include <stdio.h>
6: #include <stdlib.h>
7: #include <unistd.h>
8: #include <errno.h>
9: #include <string.h>
10: #include <sys/types.h>
11: #include <sys/socket.h>
12:
13: int
14: main(int argc,char **argv) {
15: int z; /* Status return code */
16: int s[2]; /* Pair of sockets */
17:
18: /*
19: * Create a pair of local sockets:
20: */
21: z = socketpair(AF_LOCAL,SOCK_STREAM,0,s);
22:
23: if (z == -1) {
24: fprintf(stderr,
25: "%s: socketpair(AF_LOCAL,SOCK_STREAM,0)\n",
26: strerror(errno));

Page 15

27: return 1; /* Failed */
28: }
29:
30: /*
31: * Report the socket file descriptors returned:
32: */
33: printf("s[0] = %d;\n",s[0]);
34: printf("s[1] = %d;\n",s[1]);
35:
36: system("netstat --unix -p");
37:
38: return 0;
39: }

NOTE
If you have an older version of Linux (pre Red Hat 6.0) the netstat command
used in line 36 of Listing 1.1 may not understand the options used.

If this is the case, you may want to try changing line 36 to read:

system("lsof -i tcp");

This requires that lsof is installed on your system. lsof command may be
obtained from a variety of sources. A good place to start is

ftp://vic.cc.purdue.edu/pub/tools/unix/lsof/

Various mirror sites are listed there, in addition to the source code. Note also that
when using lsof, you may need to execute the program in Listing 1.1 as root.

lsof may also be found in binary (including RPM) and source formats under the
various distribution directories under

ftp://sunsite.unc.edu/pub/Linux/distributions

As a last resort, you may substitute the following statement for line 36:
system("netstat|grep tcp");

The demonstration program can be described in the following steps:

1. A receiving array s[2] is declared in line 16 to receive the two new file descriptors that will
reference the two new sockets being created.

2. The socketpair(2) function is invoked in line 21. The domain argument is specified as
AF_LOCAL, the socket type argument is SOCK_STREAM and the protocol is specified as zero.

3. The if statement in line 23 tests to see if the socketpair(2) function was successful. If z
contains a value of -1, the failure is reported to standard error (lines 24 to 26) and the program exits
in line 27.

Page 16

4. If the function call is successful, control passes to lines 33 and 34 where the file unit numbers that
were returned are reported to standard output.

5. Line 36 invokes the netstat(1) command using the system(3) function. The command
option --unix indicates that only UNIX sockets (AF_LOCAL domain) are to be reported, and the
-p option tells it to report process information.

Using the supplied Makefile, you can use the make command to compile the program in Listing
1.1 as follows:

$ make 01lst01
gcc -c -D_GNU_SOURCE -Wall 01LST01.c
gcc 01LST01.o -o 01lst01

Now you are ready to try out the demonstration program.

Running the Demonstration Program

To invoke the demonstration, use the following method:

$./01lst01

NOTE
Be certain to watch the case of the filename when entering the executable filename
at the command prompt. The executable filenames chosen use lowercase letters.

The results of running the program are as follows (with line numbers added for reference purposes):

Output

1: $./01lst01
2: s[0] = 3;
3: s[1] = 4;
4: (Not all processes could be identified, non-owned process info
5: will not be shown, you would have to be root to see it all.)
6: Active UNIX domain sockets (w/o servers)
7: Proto RefCnt Flags Type . . . I-Node PID/Program name Path
8: unix 1 [] STREAM . . . 406 - @00000019
9: unix 1 [] STREAM . . . 490 - @0000001f
10: unix 1 [] STREAM . . . 518 - @00000020
11: unix 0 [] STREAM . . . 117 - @00000011
12: unix 1 [] STREAM . . . 789 - @00000030
13: unix 1 [] STREAM . . . 549 - @00000023
14: unix 1 [] STREAM . . .1032 662/01lst01
15: unix 1 [] STREAM . . .1031 662/01lst01
16: unix 1 [] STREAM . . . 793 - /dev/log
17: unix 1 [] STREAM . . . 582 - /dev/log
18: unix 1 [] STREAM . . . 574 - /dev/log
19: unix 1 [] STREAM . . . 572 - /dev/log
20: unix 1 [] STREAM . . . 408 - /dev/log
21: $

TE
AM
FL
Y

Team-Fly®

Page 17

The executable program 01lst01 is invoked in line 1 in the output shown. Lines 2 and 3 show that
the socket pair was opened on file descriptors 3 and 4. What follows in lines 4 to 20 are the output
lines from the netstat(1) command that was invoked from the system(3) function call,
within the program.

Notice lines 14 and 15 in the netstat(1) output of Listing 1.2. Looking under the column for
"PID/Program name" we can see that our program named 01lst01 had a process ID of 662
and had two "unix" sockets open. Although not shown in the output, you will see under the column
"State" that the sockets are shown as connected.

Although the program didn't do anything with the socket pair that it created, it did demonstrate the
creation of a socket pair. It also demonstrated that the sockets are allocated to file unit numbers in
the same manner that opened files are.

The astute reader also might have noticed that this pair of AF_LOCAL sockets are also referred to as
"unix" sockets (we saw this in the netstat(1) output). In fact, the C macro constant AF_UNIX
could have been used in place of the macro AF_LOCAL for the domain value in the socketpair
(2) function call. These values are equivalent, although standards efforts are now encouraging the
use of AF_LOCAL over AF_UNIX.

Performing I/O on Sockets

You learned earlier that sockets can be written to and read from just like any opened file. In this
section, you are going to demonstrate this firsthand for yourself. For the sake of completeness
however, let's review the function synopsis for the calls read(2), write(2) , and close(2)
before we put them to work:

#include <unistd.h>

ssize_t read(int fd, void *buf, size_t count);
ssize_t write(int fd, const void *buf, size_t count);
int close(int fd);

These are Linux input/output functions you should be already familiar with. By way of review, the
function read(2) returns input that is available from the file descriptor fd , into your supplied
buffer buf of a maximum size of count bytes. The return value represents the number of bytes
read. A return count of zero represents end-of-file.

The write(2) function writes data to your file descriptor fd, from your supplied buffer buf for a
total of count bytes. The returned value represents

Page 18

the actual number of bytes written. Normally, this should match the supplied count argument.
However, there are some valid circumstances where this will be less than count, but you won't
have to worry about it here.

Finally, close(2) returns zero if the unit was closed successfully.

A return value of -1 for any of these functions indicates that an error occurred, and that the reason
for the error is posted to the external variable errno. To make this value accessible, include the file
errno.h within the source module that needs it.

Listing 1.2 shows an example that performs some reads and writes upon sockets in both directions.

Example

Listing 1.2: 01LST02.c— Example Performing I/O on a Socket Pair

1: /* Listing 1.2:
2: *
3: * Example performing I/O on a Socket Pair:
4: */
5: #include <stdio.h>
6: #include <unistd.h>
7: #include <stdlib.h>
8: #include <errno.h>
9: #include <string.h>
10: #include <sys/types.h>
11: #include <sys/socket.h>
12:
13: int
14: main(int argc,char **argv) {
15: int z; /* Status return code */
16: int s[2]; /* Pair of sockets */
17: char *cp; /* A work pointer */
18: char buf[80]; /* Work buffer */
19:
20: /*
21: * create a pair of local sockets:
22: */
23: z = socketpair (AF_LOCAL,SOCK_STREAM,0,s);
24:
25: if (z == -1) {
26: fprintf(stderr,
27: "%s: socketpair(AF_LOCAL,SOCK_STREAM,"
28: "0)\n",
29: strerror(errno));
30: return 1; /*Failed */
31: }
32:
33: /*

Page 19

34: * Write a message to socket s[1]:
35: */
36: z = write(s[1],cp="Hello?",6);
37: if (z < 0) {
38: fprintf(stderr,
39: "%s: write(%d,\"%s\",%d)\n",
40: strerror(errno),s[1],cp,strlen(cp));
41: return 2; /* Failed write */
42: }
43:
44: printf("Wrote message '%s' on s[1]\n",cp);
45:
46: /*
47: * Read from socket s[0]:
48: */
49: z = read(s[0],buf,sizeof buf);
50: if (z < 0) {
51: fprintf(stderr,
52: "%s: read(%d,buf,%d)\n",
53: strerror(errno),s[0],sizeof buf);
54: return 3; /* Failed read */
55: }
56:
57: /*
58: * Report received message:
59: */
60: buf[z] = 0; /* NUL terminate */
61: printf("Received message '%s' from socket s[0]\n",
62: buf);
63:
64: /*
65: * Send a reply back to s[1] from s[0]:
66: */
67: z = write(s[0],cp="Go away!",8);
68: if (z < 0) {
69: fprintf(stderr,
70: "%s: write(%d,\"%s\",%d)\n",
71: strerror(errno),s[0],cp,strlen(cp));
72: return 4; /* Failed write */
73: }
74:
75: printf("Wrote message '%s' on s[0]\n",cp);
76:
77: /*
78: * Read from socket s[1]:
79: */
80: z = read(s[1],buf,sizeof buf);

continues

Page 20

Listing 1.2: continued

81: if (z < 0) {
82: fprintf(stderr,
83: "%s: read(%d,buf,%d)\n",
84: strerror(errno),s[1],sizeof buf);
85: return 3; /* Failed read */
86: }
87:
88: /*
89: * Report message received by s[0]:
90: */
91: buf[z] = 0; /* NUL terminate */
92: printf("Received message '%s' from socket s[1]\n",
93: buf);
94:
95: /*
96: *Close the sockets:
97: */
98: close(s[0]);
99: close(s[1]);
100:
101: puts("Done.");
102: return 0;
103: }

The steps invoked by the program can be summarized as follows:

1. The socketpair(2) function is invoked in line 23, returning, if successful, a pair of sockets
into array elements s[0] and s[1] (line 16).

2. The success of the function is tested in line 25, and the error is reported, if it occurs, in lines 26 to
31.

3. A message consisting of the 6 characters "Hello?" is written to the socket s[1] in line 36. Note
that no null byte is written, because only 6 bytes are specified in the count argument of the write
(2) function.

4. Lines 37 to 42 check and report any error that might occur.

5. Line 44 announces a successful write operation.

6. The read(2) call in line 49 now attempts to read a message from the other socket s[0] . Any
message up to the maximum size of array buf[] can be read in this statement.

7. Lines 50 to 55 check and report any error that might occur in the read statement.

8. Lines 60 to 62 report a successful reception of a message, and report what it was.

Page 21

9. Lines 67 to 73 write a reply message "Go away!" to socket s[0] . This will demonstrate that
information can travel both ways with sockets as endpoints, unlike a pipe.

10. Line 75 announces a successful write in line 67.

11. Lines 80 to 86 should read the "Go away!" message from socket s[1], which is the other
endpoint of the communications line.

12. Lines 91 to 93 report this successful reception and its message.

13. The two socket endpoints are closed in lines 98 and 99.

14. The program exits in line 102.

Output

When the program is invoked, this is what you should
see:

$./01lst02
Wrote message 'Hello?' on s[1]
Received message 'Hello?' from socket s[0]
Wrote message 'Go away!' on s[0]
Received message 'Go away!' from socket s[1]
Done.
$

If you trace the steps that were previously outlined, you will see that information was sent both ways
on that pair of sockets. Furthermore, it was demonstrated that sockets are closed in the same manner
that files are.

Closing Sockets

Previously, you saw how a pair of sockets could be easily created and how some elementary input
and output can be performed using those sockets. You also saw that these sockets could be closed in
the same manner that files are with the use of the close(2) function call. It's now time that you
learn what is implied by the closing of a socket.

When reading from a pipe created by the pipe(2) function, the receiving end recognizes that there
will be no more data when an end-of-file is received. The end-of-file condition is sent by the writing
process, when it closes the write end of the pipe.

This same procedure can be used with a pair of sockets. The receiving end will receive an end-of-
file indication when the other endpoint (socket) has been closed.

The problem develops when the local process wants to signal to the remote endpoint that there is no
more data to be received. If the local process closes its socket, this much will be accomplished.
However, if it needs to receive a confirmation from the remote end, it cannot, because its socket is
now closed. Situations like these require a means to half close a socket.

Page 22

The shutdown(2) Function

The following shows the function synopsis of the shutdown(2) function:

#include <sys/socket.h>

int shutdown(int s, int how);

The function shutdown(2) requires two arguments. They are

• Socket descriptor s specifies the socket to be partially shut down.

• Argument how indicates how this socket should be shut down.

The returned value is zero if the function call succeeded. A failure is indicated by returning a value
of -1, and the reason for the failure is posted to errno.

The permissible values for how are shown in Table 1.1.

Table 1.1: Permissible Values of the shutdown(2) how Argument

Value Macro Description

0 SHUT_RD No further reads will be allowed on the
specified socket.

1 SHUT_WR No further writes will be allowed on the
specified socket.

2 SHUT_RDWR No further reads or writes will be allowed on
the specified socket.

Notice that when the how value is supplied as 2, this function call becomes almost equivalent to a
close(2) call.

Shutting down Writing to a Socket

The following code shows how to indicate that no further writes will be performed upon the local
socket:

Example

int z;
int s; /* Socket */

z = shutdown(s, SHUT_WR);
if (z == -1)
 perror("shutdown()");

Shutting down the writing end of a socket solves a number of thorny problems. They are

• Flushes out the kernel buffers that contain any pending data to be sent. Data is buffered by the

kernel networking software to improve performance.

Page 23

• Sends an end-of-file indication to the remote socket. This tells the remote reading process that no
more data will be sent to it on this socket.

• Leaves the partially shutdown socket open for reading. This makes it possible to receive
confirmation messages after the end-of-file indication has been sent on the socket.

• Disregards the number of open references on the socket. Only the last close(2) on a socket will
cause an end-of-file indication to be sent.

The last point requires a bit of explanation, which is provided in the next section.

Dealing with Duplicated Sockets

If a socket's file descriptor is duplicated with the help of a dup(2) or a dup2(2) function call,
then only the last outstanding close(2) call actually closes down the socket. This happens
because the other duplicated file descriptors are still considered to be in use. This is demonstrated in
the following code:

Example

int s; /* Existing socket */
int d; /* Duplicated socket */

d = dup(s); /* duplicate this socket */
close(s); /* nothing happens yet */
close(d); /* last close, so shutdown socket */

In the example, the first close(2) call would have no effect. It would make no difference which
socket was closed first. Closing either s or d first would still leave one outstanding file descriptor
for the same socket. Only when closing the last surviving file descriptor for that socket would a
close(2) call have any effect. In the example, the close of the d file descriptor closes down the
socket.

The shutdown(2) function avoids this difficulty. Repeating the example code, the problem is
solved using the shutdown(2) function:

Example

int s; /* Existing socket */
int d; /* Duplicated socket */

d = dup(s); /* duplicate this socket */
shutdown(s,SHUT_RDWR); /* immediate shutdown */

Even though the socket s is also open on file unit d, the shutdown(2) function immediately
causes the socket to perform its shutdown duties as requested. This naturally affects both the open

file descriptors s and d because they both refer to the same socket.

Page 24

Another way this problem is manifested is after a fork(2) function has been called upon. Any
sockets that existed prior to a fork operation would be duplicated in the child process.

TIP
Use the shutdown(2) function instead of the close(2) function whenever
immediate or partial shutdown action is required. Duplicated file descriptors from
dup(2), dup2(2), or fork(2) operations can prevent a close(2) function
from initiating any shutdown action until the last outstanding descriptor is closed.

Shutting down Reading from a Socket

Shutting down the read side of the socket causes any pending read data to be silently ignored. If
more data is sent from the remote socket, it too is silently ignored. Any attempt by the process to
read from that socket, however, will have an error returned to it. This is often done to enforce
protocol or to help debug code.

Knowing When Not to Use shutdown(2)

The shutdown(2) function is documented to return the errors shown in Table 1.2.

Table 1.2: Possible errors returned by shutdown(2)

Error Description

EBADF Given socket is not a valid file descriptor.

ENOTSOCK Given file descriptor is not a socket.

ENOTCONN The specified socket is not connected.

From Table 1.2, you can see that you should only call shutdown(2) for connected sockets.
Otherwise, the error code ENOTCONN is returned.

NOTE
The shutdown(2) function does not release the socket's file unit number, even
when SHUT_RDWR is used. The socket's file descriptor remains valid and in use
until the function close(2) is called to release it.

Note also that shutdown(2) can be called more than once for the same file unit,
provided that the socket is still connected.

Writing a Client/Server Example

You have now looked at enough of the socket API set to start having some fun with it. In this
section, you examine, compile, and test a simple client and server process that communicates with a
pair of sockets.

TE
AM
FL
Y

Team-Fly®

Page 25

To keep the programming code to a bare minimum, one program will start and then fork into a client
process and a server process. The child process will assume the role of the client program, whereas
the original parent process will perform the role of the server. Figure 1.3 illustrates the relationship
of the parent and child processes and the sockets that will be used.

Figure 1.3:
A Client / Server example using

fork(2) and
socketpair(2).

The parent process is the original starting process. It will immediately ask for a pair of sockets by
calling socketpair(2) and then fork itself into two processes by calling fork(2).

The server will accept one request, act on that request, and then exit. The client likewise in this
example will issue one request, report the server response, and then exit.

The request will take the form of the third argument to the strftime(3) function. This is a
format string, which will be used to format a date and time string. The server will obtain the current
date and time at the time that the request is received. The server will use the client's request string to
format it into a final string, which is returned to the client. By way of review, the strftime(3)
function's synopsis is as follows:

Example

#include <time.h>

size_t strftime(char *buf,
 size_t max,
 const char *format,
 const struct tm *tm);

The arguments buf and max indicate the output buffer and its maximum length respectively. The
argument format is an input string that allows you to format a date and time string (Listing 1.3
line 75 shows an example of

Page 26

such a string). Finally, argument tm is used to supply all the date and time components necessary to
create the output date and time string. Review the man page for strftime(3) if you need to.

Listing 1.3 shows the source listing for the demonstration client/server program.

Example

Listing 1.3: 01LST03.c— Client/Server Example Using socketpair(2)

1: /* Listing 1.3
2: *
3: * Client/Server Example Using socketpair(2)
4: * and fork(2):
5: */
6: #include <stdio.h>
7: #include <stdlib.h>
8: #include <unistd.h>
9: #include <errno.h>
10: #include <string.h>
11: #include <time.h>
12: #include <sys/types.h>
13: #include <sys/socket.h>
14: #include <sys/wait.h>
15:
16: /*
17: * As of RedHat-6.0, these are still not defined:
18: */
19: #ifndef SHUT_WR
20: #define SHUT_RD 0
21: #define SHUT_WR 1
22: #define SHUT_RDWR 2
23: #endif
24:
25: /*
26: * Main program:
27: */
28: int
29: main(int argc,char **argv) {
30: int z; /* Status return code */
31: int s[2]; /* Pair of sockets */
32: char *msgp; /* A message pointer */
33: int mlen; /* Message length */
34: char buf[80]; /* Work buffer */
35: pid_t chpid; /* Child PID */
36:
37: /*
38: * Create a pair of local sockets:
39: */
40: z = socketpair(AF_LOCAL,SOCK_STREAM,0,s);

Page 27

41:
42: if (z == -1) {
43: fprintf(stderr, "%s: socketpair(2)\n",
44: strerror(errno));
45: exit(1);
46: }
47:
48: /*
49: * Now fork() into two processes:
50: */
51: if ((chpid = fork()) == (pid_t)-1) {
52:
53: /*
54: * Failed to fork into two processes:
55: */
56: fprintf(stderr, "%s: fork(2)\n",
57: strerror(errno));
58: exit(1);
59:
60: } else if (chpid == 0) {
61:
62: /*
63: * This is the child process (client):
64: */
65: char rxbuf[80]; /* Receive buffer */
66:
67: printf ("Parent PID is %ld\n",(long)getppid());
68:
69: close(s[0]); /* Server uses s[1] */
70: s[0] = -1; /* Forget this unit */
71:
72: /*
73: * Form the message and its length:
74: */
75: msgp = "%A %d-%b-%Y %l:%M %p";
76: mlen = strlen(msgp);
77:
78: printf("Child sending request '%s'\n",msgp);
79: fflush(stdout);
80:
81: /*
82: * Write a request to the server:
83: */
84: z = write(s[1],msgp,mlen);
85:
86: if (z < 0) {
87: fprintf(stderr, "%s: write(2)\n",

continues

Page 28

Listing 1.3: continued

88: strerror(errno));
89: exit(1);
90: }
91:
92: /*
93: * Now indicate that we will not be writing
94: * anything further to our socket, by shutting
95: * down the write side of the socket:
96: */
97: if (shutdown(s[1],SHUT_WR) == -1) {
98: fprintf(stderr,"%s: shutdown (2)\n",
99: strerror(errno));
100: exit(1);
101: }
102:
103: /*
104: * Receive the reply from the server:
105: */
106: z = read(s[1],rxbuf,sizeof rxbuf);
107: if (z < 0) {
108: fprintf(stderr,"%s: read(2)\n",
109: strerror(errno));
110: exit(1);
111: }
112:
113: /*
114: * Put a null byte at the end of what we
115: * received from the server:
116: */
117: rxbuf[z] = 0;
118:
119: /*
120: * Report the results:
121: */
122: printf("Server returned '%s'\n",rxbuf);
123: fflush(stdout);
124:
125: close(s[1]); /* Close our end now */
126:
127: } else {
128:
129: /*
130: * This is the parent process (server):
131: */
132: int status; /* Child termination status */
133: char txbuf[80]; /* Reply buffer */

Page 29

134: time_t td; /* Current date & time */
135:
136: printf ("Child PID is %ld\n", (long)chpid);
137: fflush(stdout);
138:
139: close(s[1]); /* Client uses s[1] */
140: s[1] = -1; /* Forget this descriptor */
141:
142: /*
143: * Wait for a request from the client:
144: */
145: z = read(s[0],buf,sizeof buf);
146:
147: if (z < 0) {
148: fprintf(stderr,"%s: read(2)\n",
149: strerror(errno));
150: exit(1);
151: }
152:
153: /*
154: * Put a null byte at the end of the
155: * message we received from the client:
156: */
157: buf[z] = 0;
158:
159: /*
160: * Now perform the server function on the
161: * received message:
162: */
163: time(&td); /* Get current time */
164:
165: strftime(txbuf,sizeof txbuf, /* Buffer */
166: buf, /* Input format */
167: localtime(&td)); /* Input time */
168:
169: /*
170: * Send back the response to client:
171: */
172: z = write(s[0],txbuf,strlen(txbuf));
173:
174: if (z < 0) {
175: fprintf(stderr,"%s: write(2)\n",
176: strerror(errno));
177: exit(1);
178: }
179:
180: /*

continues

Page 30

Listing 1.3: continued

181: * Close our end of the socket:
182: */
183: close(s[0]);
184:
185: /*
186: * Wait for the child process to exit.
187: * See text.
188: */
189: waitpid(chpid,&status,0);
190: }
191:
192: return 0;
193: }

The program shown in Listing 1.3 can be broken into the following basic steps:

1. Lines 19 to 23 were required to define the SHUT_WR,SHUT_RD, and SHUT_RDWR macro
constants (as of Red Hat Linux 6.0 at least). Eventually these constants will be defined for you. The
#ifndef statement in line 19 makes certain that lines 20 to 22 are compiled only if SHUT_WR is
not already defined.

2. The single process starts at the main function entry point in line
29.

3. A pair of sockets is created in line 40 by calling the function socketpair(2).

4. If an error occurs, lines 42 to 46 report the error and halt the program.

5. The single process forks into a parent and child process by calling fork(2) in line 51. If an
error occurs, the error is reported and the program is halted in lines 52 to 58.

6. The new child process executes in lines 61 to 125. The child process will act as the client
program, sending a request to the server, and receiving a response back from the server.

7. The original (parent) process, executes lines 129 to 189. This process acts as a server by waiting
for one input request and returns a response to that request.

Now you'll examine the server steps in more detail:

1. Lines 136 and 137 announce that the parent process is beginning as a server process and reports
the child process ID.

2. Line 139 closes the extra socket that will not be used by the server. Socket s[1] is the file unit
that will be used only by the child process.

Page 31

Refer to Figure 1.3 to visualize the processes and the sockets used (s[1] will contain file descriptor
4).

3. Line 140 is just a precaution that helps debugging. By setting s[1] to -1 it is abundantly clear
that the file unit is no longer available to that process.

4. The server calls upon read(2) at line 145. The server process will block there until a message
arrives on the socket to be read. Lines 147 to 151 check and report any error that might occur from
the read(2) call.

5. Line 157 places a null byte at the end of the received message. This is done to turn the message
into a C string that can be used in line 166.

6. The function strftime(3) is called to format a new time string according to the message that
was received from the client program. The current date and time was determined by the server in
line 163.

7. Line 172 writes a message back to the client process using the write(2) function. Errors are
checked and reported in lines 174 to 178.

8. Because our demonstration program only serves one request, it simply closes the socket in line
183.

9. The waitpid(2) function is called in this demonstration so that the parent process will not exit
back to the shell until the child process has completed.

10. When the child process has terminated, the parent process exits in line 192.

Now let's examine the child process that is acting as the client
program:

1. The child process announces its beginning in line 67 by reporting its parent process ID.

2. The client program does not use the duplicated socket in s[0] (which holds file unit 3 according
to Figure 1.3). Consequently, it is closed in line 69. Line 70 again just represents a good
programming practice.

3. The client program is about to send a format string to the server. This is established in line 75 by
the use of variable msgp. The length of the message is established in line 76 in the variable mlen.

4. The message being sent is announced in lines 78 and 79.

5. The write(2) function is used to send the message from the client's socket to the server's
socket in line 84. Errors are reported in lines 86 to 90.

Page 32

6. The client at this point has no intention to send any more data to the server. The shutdown(2)
function is called in line 97 to indicate this. Errors are reported in lines 98 to 101.

7. The client now calls read(2) to wait for a response message (line 106). The client process will
wait indefinitely here until a response arrives. Errors are reported in lines 107 to 111.

8. A null byte is placed at the end of the received response in line 117.

9. The received response is reported in lines 122 to 123.

10. The client socket is now closed in line 125.

11. The client process exits at line 192.

CAUTION
It has been reported that on Red Hat 5.1 (and perhaps older releases of Linux kernels
in general) that the shutdown(2) function is not correctly implemented. It would
appear that these kernels have SHUT_WR blocking reads, while SHUT_RDWR doesn't
block reads at all.

If the server example fails to work correctly, then your Linux kernel may have this
problem.

You can work around this problem by deleting lines 97 to 101. The program works
without this code because the kernel will eventually deliver what has been placed
into the socket buffers. The shutdown(2) function, however, can make this
happen sooner.

Running the program should yield results similar to what appears in output shown next. Note that
your date and time will differ, of course.

Output

$./01lst03
Child PID is 879
Parent PID is 878
Child sending request '%A %d-%b-%Y %l:%M %p'
Server returned 'Thursday 15-Jul-1999 6:39 PM'
$

In the output, you can see that the child process (client) requested that the date and time be
formatted according to the string shown. The server process obtained the current date and sent the
response back to the client, which it was able to report.

As an experiment, try modifying the program in Listing 1.3 at line 75 to use a different format.
Recompile it and run it again. For example, change line 75 to read:

msgp = "%d-%b-%y";

You should be able to obtain a result looking similar to

15-Jul-99

when the program is run.

Page 33

What's Next

In this chapter, you have briefly seen how sockets can be used to communicate between two
different processes. When the socketpair(2) function was introduced, it was noted that a
socket domain, socket type, and a socket protocol had to be specified. The next chapter teaches you
how to choose the socket domain and how to adorn a socket with an address. You will cover
anonymous and addressed sockets and how to initialize address structures for each domain.

Page 35

2—
Domains and Address Families

In the last chapter, you read about the telephone analogy where the caller gets in touch with the
other person by dialing that person's telephone number. In the telephone network, each person's
telephone number is like a socket address. Sockets have addresses of their own to allow them to be
specifically identified. The socket address will be the primary focus of this chapter.

In this chapter you will

• Understand address families

• Learn how to form socket addresses

• Understand the difference between big-endian and little-endian byte ordering

• Learn what an abstract local address is and how to form one

• Learn when socket addresses are not required

This chapter is very important to you because many programmers struggle with this very aspect of
socket programming. A little extra effort spent here will reward you later.

TE
AM
FL
Y

Team-Fly®

Page 36

Nameless Sockets

Sockets do not always need to have an address. The socketpair(2) function, for example,
creates two sockets that are connected to each other, but without addresses. They are, in essence,
"nameless" sockets. Imagine a red telephone between the U.S. president's office and the Soviet
Union, during the Cold War. There is no need for a telephone number at either end, because they are
directly connected. In the same way, the sockets created by socketpair(2) are directly
connected and have no need for addresses.

Anonymous Calls

Sometimes in practice, one of the two sockets in a connection will have no address. For a remote
socket to be contacted, it must have an address to identify it. However, the local socket that is
''placing the call" can be anonymous. The connection that becomes established has one remote
socket with an address and another socket without an address.

Generating Addresses

Sometimes you don't care what your local address is, but you need one to communicate. This is
particularly true of programs that need to connect to a service, like a RDBMS database server. Their
local address is only required for the duration of the communication. Allocating fixed addresses
could be done, but this increases network administration work. Consequently, address generation is
often used when it is available.

Understanding Domains

When the BSD socket interface was being conceived by the Berkeley team, the TCP/IP protocol was
still undergoing development. At the same time, there were a number of other competing protocols
being used by different organizations like the X.25 protocol. Still other protocols were being
researched.

The socketpair(2) function that you have seen in the last chapter, and the socket(2)
function, which has yet to be introduced, wisely allowed for the possibility that other protocols
might be used instead of TCP/IP. The domain argument of the socketpair(2) function allows
for this contingency. For ease of discussion, let's restate the function synopsis for the following
socketpair(2) function:

#include <sys/types.h>
#include <sys/socket.h>

int socketpair(int domain, int type, int protocol, int sv[2]);

Page 37

NOTE
Here you will simply learn about the domain and the protocol arguments. The
discussion for the type argument will be deferred until later in the chapter.

Normally, the protocol argument is specified as zero. A zero allows the operating system to
choose the correct default protocol to be used for the domain that has been selected. There are
exceptions to this rule, but this is beyond the scope of the present discussion.

This leaves the domain argument to be explained. For the socketpair(2) function, this value
must always be AF_LOCAL or AF_UNIX. In the last chapter, it was pointed out that the macro
AF_UNIX is the equivalent of and the older macro name for AF_LOCAL. What does AF_LOCAL
mean however? What does it select?

The AF_ prefix of the constant indicates the address family. The domain argument selects the
address family to be used.

Chapter 4, "Socket Types and Protocols," will expand upon the domain argument further. In that
chapter you will learn about C macros with a prefix of PF_, like PF_LOCAL. For the purposes of
this chapter, however, you may consider AF_ prefixed macros equivalent to the PF_ prefixed
macros.

Forming Socket Addresses

Each communication protocol specifies its own format for its networking address. Consequently, the
address family is used to indicate which type of addressing is being used. The constant AF_LOCAL
(AF_UNIX) specifies that the address will be formed according to local (UNIX) address rules. The
constant AF_INET indicates that the address will conform to IP address rules, and so on. These are
examples of address families.

Within one address family, there can be variations. You will see an example of this when you learn
how to form AF_LOCAL addresses.

In the sections that follow, you will examine the format and the physical layout of various address
families. This is an important section to master. Much of the difficulty that people experience with
the BSD socket interface is related to address initialization.

Examining the Generic Socket Address

Because the BSD socket interface was developed before the ANSI C standard was adopted, there
was no (void *) data pointer type to accept any structure address. Consequently, the BSD
solution chosen was to define a generic address structure. The generic structure is defined by the C
language statement

#include <sys/socket.h>

Page 38

Listing 2.1 illustrates how the structure is defined in C language terms.

Example

Listing 2.1: The Generic Socket Address

struct sockaddr {
 sa_family_t sa_family; /* Address Family */
 char sa_data
[14]; /* Address data. */
};

Presently the data type sa_family_t is an unsigned short integer, which is two bytes in length
under Linux. The total structure size is 16 bytes. The structure element sa_data[14] represents
14 remaining bytes of address information.

Figure 2.1 provides a physical view of the generic socket address structure.

Figure 2.1:
Here is a representation of the generic

socket address layout.

The generic socket address structure itself is not that useful to the programmer. It does, however,
provide a reference model from which all other address structures must fit. For example, you will
learn that all addresses must define the sa_family member in exactly the same location in the
structure, because this element determines how the remaining bytes of the address are interpreted.

Forming Local Addresses

This address format is used by sockets that are local to your host (your PC running Linux). For
example, when you queue a file to be printed using the lpr(1) command, it uses a local socket to
communicate with the spooling service on your PC. While it is also possible to use TCP/IP for local
communication, it turns out that this is less efficient.

Traditionally, the local address family has been referred to as the AF_UNIX domain (for example, a
UNIX socket address). This is because these

Page 39

addresses use local UNIX filenames to act as the socket name. Linux kernels 2.2.0 and later support
abstract socket names, which you'll learn about shortly.

The structure name for AF_LOCAL or AF_UNIX addresses is sockaddr_un. This structure is
defined by including the following statement in your C program:

#include <sys/un.h>

Example

An example of the sockaddr_un structure is shown in Listing 2.2.

Listing 2.2: The sockaddr_un Address Structure

struct sockaddr_un {
 sa_family_t sun_family;/* Address Family */
 char sun_path[108]; /* Pathname */
};

The structure member sun_family must have the value AF_LOCAL or AF_UNIX assigned to it
(these macros represent the same value, though usage of AF_LOCAL is now being encouraged).
This value indicates the structure is formatted according to the structure sockaddr_un rules.

The structure member sun_path[108] contains a valid UNIX pathname. There is no null byte
required at the end of the character array, as you will find out.

CAUTION
Note that the total size for the sockaddr_un address is much larger than the 16
bytes of the generic address structure. Make sure you allocate sufficient storage to
accommodate the AF_LOCAL/AF_UNIX address if you are working with multiple
address families within your code.

In the next sections, you will learn how to initialize an AF_LOCAL address and define its length.

TIP
Information about local socket addresses can be found in the unix(4) man page.

Forming Traditional Local Addresses

The address name space for traditional local addresses are file system pathnames. A process might
name its local socket by any valid pathname. To be valid, however, the process naming the socket
must have access to all directory components of the pathname and permissions to create the final
socket object in the directory named. Figure 2.2 shows the physical layout of a
socket /dev/printer, which you may have active on your system. The lpd printer daemon
listens on this local socket address.

Page 40

Figure 2.2:
Here is the

AF_LOCAL/AF_UNIX
Socket Address for
/dev/printer.

Notice that the first two bytes indicate the address type of AF_LOCAL. The remaining bytes are the
characters /dev/printer with no null byte present. Now you'll turn your attention to the C
code to initialize such an address.

Some programmers like to initialize the address structure completely to zero before filling it in. This
is often done using the memset(3) function and is probably a good idea:

struct sockaddr_un uaddr;

memset(&uaddr,0,sizeof uaddr);

This function call will zero out all bytes of the address structure for you.

NOTE
Zeroing out the address structure is not required if you properly initialize the
mandatory address elements. However, it does make debugging easier because it
eliminates any leftover data that might otherwise remain.

In this chapter, memset(3) is used to zero the address structures, as a
demonstration of how it would be done

Example

Listing 2.3 illustrates a small C program that initializes the sockaddr_un structure and then
invokes the netstat(1) command to prove that it worked. Keep in mind that the program calls
upon the functions socket(2) and bind(2), which have not been covered yet. The socket
(2) function is covered in detail in Chapter 4. The bind(2) function is covered in Chapter 5,
"Binding Addresses to a Socket."

Page 41

Listing 2.3: af_unix.c— Initializing an AF_LOCAL/AF_UNIX Socket Address
to /dev/printer

1: /* af_unix.c:
2: *
3: * AF_UNIX Socket Example:
4: */
5: #include <stdio.h>
6: #include <unistd.h>
7: #include <stdlib.h>
8: #include <errno.h>
9: #include <string.h>
10: #include <sys/types.h>
11: #include <sys/stat.h>
12: #include <sys/socket.h>
13: #include <sys/un.h>
14:
15: /*
16: * This function reports the error and
17: * exits back to the shell:
18: */
19: static void
20: bail(const char *on_what) {
21: perror(on_what);
22: exit(1);
23: }
24:
25: int
26: main(int argc,char **argv,char **envp) {
27: int z; /* Status return code */
28: int sck_unix; /* Socket */
29: struct sockaddr_un adr_unix;/* AF_UNIX */
30: int len_unix; /* length */
31: const char pth_unix[] /* pathname */
32: = "/tmp/my_sock";
33:
34: /*
35: * Create a AF_UNIX (aka AF_LOCAL) socket:
36: */
37: sck_unix = socket(AF_UNIX,SOCK_STREAM,0);
38:
39: if (sck_unix == -1)
40: bail("socket()");
41:
42: /*
43: * Here we remove the pathname for the
44: * socket, in case it existed from a
45: * prior run. Ignore errors (it might
46: * not exist).

continues

Page 42

Listing 2.3: continued

47: */
48: unlink(pth_unix);
49:
50: /*
51: * Form an AF_UNIX Address:
52: */
53: memset(&adr_unix,0, sizeof adr_unix);
54:
55: adr_unix.sun_family = AF_UNIX;
56:
57: strncpy(adr_unix.sun_path,pth_unix,
58: sizeof adr_unix.sun_path-1)
59: [sizeof adr_unix.sun_path-1] = 0;
60:
61: len_unix = SUN_LEN(&adr_unix);
62:
63: /*
64: * Now bind the address to the socket:
65: */
66: z = bind(sck_unix,
67: (struct sockaddr *)&adr_unix,
68: len_unix);
69:
70: if (Z == -1)
71: bail("bind()");
72:
73: /*
74: * Display all of our bound sockets:
75: */
76: system("netstat -pa --
unix 2>/dev/null| "
77: "sed -n '/^Active UNIX/,/^Proto/p;"
78: "/af_unix/p'");
79:
80: /*
81: * Close and unlink our socket path:
82: */
83: close(sck_unix) ;
84: unlink(pth_unix);
85:
86: return 0;
87: }

The steps used in Listing 2.3 are as follows:

1. Variable sck_unix is defined in line 28 to hold the file descriptor for the created socket.

Page 43

2. The local address structure is defined in line 29 and named adr_unix. The program will
populate this structure with an AF_LOCAL socket address.

3. A socket is created in line 37 by calling upon the function socket(2) . Errors are tested in line
39 and reported if necessary.

4. The unlink(2) function is called in line 48. Because the AF_UNIX address results in a file
system object being created, it must be removed when it is no longer required. This statement
attempts to remove it, in case it was not removed the last time this program was run.

5. The address structure adr_unix is cleared to zero bytes in line

6. The address family is initialized as AF_UNIX in line 55.

7. Lines 57 to 59 copies the pathname "/tmp/my_sock" into the address structure. The code used
here, also places a null byte into the structure, because the Linux-provided macro SUN_LEN() in
line 61 needs it.

8. The length of the address is computed in line 61. The program presented uses the Linux-provided
macro for this. The macro depends upon a null-terminated string being present in the
adr_unix.sun_path[] structure member, however.

9. The function bind(2) is called (lines 66 to 68) to assign the address that was formed to the
socket that was created in line 37.

10. The netstat(1) command is invoked in line 76 to prove that our address was bound to our
socket.

11. The socket is closed in line 83.

12. The UNIX pathname created for the socket when bind(2) was called in line 66 is removed
(unlinked).

The length that is assigned to len_unix in line 61, using the SUN_LEN() macro, does not count
the null byte that was copied into the adr_unix.sun_path[] character array. However, it was
necessary to place the null byte there, because the SUN_LEN() macro calls upon strlen(3) to
compute the string length of the UNIX pathname.

To compile and run the program, you can take advantage of the supplied Makefile. Perform the
following:

$ make af_unix
gcc -c -D_GNU_SOURCE -Wall af_unix.c
gcc af_unix.o -o af_unix
$

Page 44

After the program has been compiled, you can simply invoke it as follows without any arguments:

$./af_unix

Output

Listing 2.4 shows a modified view of the output you would receive from running the command.

Listing 2.4: The Output from the af_unix Demonstration Program

$./af_unix
Active UNIX domain sockets (servers and established)
Proto RefCnt Flags Type State I-Node PID/Program name Path
unix 0 [] STREAM 104129 800/af_unix /tmp/my_sock
$

Listing 2.4 shows that there was a unix socket created, of type STREAM (SOCK_STREAM), and
that af_unix was the name of the program that created it. At the right end of the line, you will see
that indeed the socket name was /tmp/my_sock as it was expected to be.

Forming Abstract Local Addresses

One of the annoyances of the traditional AF_UNIX socket name was that a file system object was
always involved. This was often unnecessary and inconvenient. If the original file system object was
not removed and the same name was used in a call to bind(2), the name assignment would fail.

Linux kernel version 2.2 has made it possible to create an abstract name for a local socket. The trick
to this is to make the first byte of the pathname a null byte. Only the bytes that follow that first null
byte in the pathname then become part of the abstract name.

Example

The example in Listing 2.5 shows a modified version of the last program. This program takes some
different steps to create the abstract name.

Listing 2.5: af_unix2.c— Program Creating an Abstract Named AF_LOCAL/AF_UNIX Socket

1: /* af_unix2.c:
2: *
3: * AF_UNIX Socket Example:
4: */
5: #include <stdio.h>
6: #include <unistd.h>
7: #include <stdlib.h>
8: #include <errno.h>
9: #include <string.h>
10: #include <sys/types.h>
11: #include <sys/stat.h>
12: #include <sys/socket.h>

13: #include <sys/un.h>

TE
AM
FL
Y

Team-Fly®

Page 45

14:
15: /*
16: * This function reports the error and
17: * exits back to the shell:
18: */
19: static void
20: bail(const char *on_what) {
21: perror(on_what);
22: exit(1);
23: }
24:
25: int
26: main(int argc,char **argv,char **envp) {
27: int z; /* Status return code */
28: int sck_unix; /* Socket */
29: struct sockaddr_un adr_unix;/* AF_UNIX */
30: int len_unix; /* length */
31: const char pth_unix[] /* Abs. Name */
32: = "Z*MY-SOCKET*";
33:
34: /*
35: * Create an AF_UNIX (aka AF_LOCAL) socket:
36: */
37: sck_unix = socket(AF_UNIX,SOCK_STREAM,0);
38:
39: if (sck_unix == -1)
40: bail("socket()");
41:
42: /*
43: * Form an AF_UNIX Address:
44: */
45: memset(&adr_unix,0,sizeof adr_unix);
46:
47: adr_unix.sun_family = AF_UNIX;
48:
49: strncpy(adr_unix.sun_path,pth_unix,
50: sizeof adr_unix.sun_path-1)
51: [sizeof adr_unix.sun_path-1] = 0;
52:
53: len_unix = SUN_LEN(&adr_unix);
54:
55: /* Now make first byte null */
56: adr_unix.sun_path[0] = 0;
57:
58: /*
59: * Now bind the address to the socket:
60: */

continues

Page 46

Listing 2.5: continued

61: z = bind(sck_unix,
62: (struct sockaddr *)&adr_unix,
63: len_unix);
64:
65: if (z == -1)
66: bail("bind()");
67:
68: /*
69: * Display all of our bound sockets:
70: */
71: system("netstat -pa --unix 2>/dev/null|"
72: "sed -n '/^Active UNIX/,/^Proto/p;"
73: "/af_unix/p'");
74:
75: /*
76: * Close and unlink our socket path:
77: */
78: close (sck_unix);
79: return 0;
80: }

To make and run the program in Listing 2.5, perform the following commands:

$ make af_unix2
gcc -c -D_GNU_SOURCE -Wall af_unix2.c
gcc af_unix2.o -o af_unix2
$./af_unix2

Output

The output from the running the program is shown in Listing 2.6.

Listing 2.6: Output of the af_unix2 Example Program

$./af_unix2
Active UNIX domain sockets (servers and established)
Proto RefCnt Flags Type State I-Node PID/Program name Path
unix 0 [] STREAM 104143 5186/af_unix2 @*MY- SOCKET*
$

From Listing 2.6, you can see the socket address appears as the name @*MYSOCKET*. The leading
@ sign is used by netstat(1) to indicate abstract UNIX socket names. The remaining characters
are the ones that were copied into the rest of the character array. Notice that the @ character appears
where our placeholder 'Z' character was (see line 32 in Listing 2.5).

The overall program steps were the same as the earlier program in Listing 2.3. However, the address
initialization steps were a bit different in Listing 2.5. Those steps will be described here:

Page 47

1. The abstract name of the socket is defined as a string constant in lines 31 and 32. Notice the first
character of the string is Z. This extra character is just a placeholder in this string, because it will be
eventually replaced by a null byte in step 6.

2. The optional zeroing of the structure was done in line 45 by calling upon memset(3) .

3. The address family was set to AF_UNIX in line 47.

4. The abstract pathname is copied to adr_unix.sun_path in line 49 using the strncpy(3)
function as before. Notice again, that the terminating null byte is placed into the destination
character array for the benefit of the Linux SUN_LEN() macro. Otherwise, the terminating null
byte is not required.

5. The length of the address is computed with the help of the Linux provided SUN_LEN() C macro
in line 53. This macro invokes strlen(3) on sun_path[], so it is necessary that a terminating
null byte is present.

6. This is new: The first byte of the sun_path[] array is set to a null byte. This step must be
performed last, if the SUN_LEN() macro is used (step 5).

CAUTION
If you use the Linux- provided SUN_LEN() macro to compute the length of an
abstract AF_LOCAL or AF_UNIX socket address, be sure to check that the first byte
is not yet null. Make the sun_path[0] byte null after the address length has been
computed;otherwise, the computed length will be incorrect.

In this section, you have learned what you need to know about creating AF_LOCAL and AF_UNIX
socket addresses. To compute the length of the socket address, you use the SUN_LEN() macro that
is provided. Special attention must be paid, however, when computing the length of abstract socket
names.

Forming Internet (IPv4) Socket Addresses

The most commonly used address family under Linux is the AF_INET family. This gives a socket
an IPv4 socket address to allow it to communicate with other hosts over a TCP/IP network. The
include file that defines the structure sockaddr_in is defined by the C language statement:

#include <netinet/in.h>

Page 48

Example

Listing 2.7 shows an example of the structure sockaddr_in which is used for Internet addresses.
An additional structure in_addr is also shown, because the sockaddr_in structure uses it in its
definition.

Listing 2.7: The sockaddr_in Structure

struct sockaddr_in {
 sa_family_t sin_family; /* Address Family */
 uint16_t sin_port; /* Port number */
 struct in_addr sin_addr; /* Internet address */
 unsigned char sin_zero[8]; /* Pad bytes */
};

struct in_addr {
 uint32_ t s_ addr; /* Internet address */
};

Listing 2.7 can be described as follows:

• The sin_family member occupies the same storage area that sa_family does in the generic
socket definition. The value of sin_family is initialized to the value of AF_INET.

• The sin_port member defines the TCP/IP port number for the socket address. This value must
be in network byte order (this will be elaborated upon later).

• The sin_addr member is defined as the structure in_addr , which holds the IP number in
network byte order. If you examine the structure in_addr, you will see that it consists of one 32-
bit unsigned integer.

• Finally, the remainder of the structure is padded to 16 bytes by the member sin_zero[8] for 8
bytes. This member does not require any initialization and is not used.

Now turn your attention to Figure 2.3 to visualize the physical layout of the address.

Figure 2.3:
Here is the structure sockaddr_in physical layout.

Page 49

In Figure 2.3, you see that the sin_port member uses two bytes, whereas the sin_addr
member uses four bytes. Both of these members show a tag on them indicating that these values
must be in network byte order.

TIP
Information about IPv4 Internet addresses can be obtained by examining the ip(4)
man page.

Understanding Network Byte Order

Different CPU architectures have different arrangements for grouping multiple bytes of data
together to form integers of 16, 32, or more bits. The two most basic byte orderings are

• big-endian

• little-endian

Other combinations are possible, but they need not be considered here. Figure 2.4 shows a simple
example of these two different byte orderings.

Figure 2.4:
Here is an example of the basic big-and

little-endian byte ordering.

The value illustrated in Figure 2.4 is decimal value 4660, which, in hexadecimal, is the value
0x1234. The value requires that 2 bytes be used to represent it. It can be seen that you can either
place the most significant byte first (big-endian) or you can place the least significant byte value
first (little-endian.) The choice is rather arbitrary and it boils down to the design of the CPU.

You might already know that the Intel CPU uses the little-endian byte order. Other CPUs like the
Motorola 68000 series use the big-endian byte order. The important thing to realize here is that
CPUs of both persuasions exist in the world and are connected to a common Internet.

What happens if a Motorola CPU were to write a 16-bit number to the network and is received by an
Intel CPU? ''Houston, we have a problem!" The

Page 50

bytes will be interpreted in the reverse order for the Intel CPU, causing it to see the value as 0x3412
in hexadecimal. This is the value 13330 in decimal, instead of 4660!

For agreement to exist over the network, it was decided that big-endian byte order would be the
order used on a network. As long as every message communicated over the network obeys this
sequence, all software will be able to communicate in harmony.

This brings you back to AF_INET addresses. The TCP/IP port number (sin_port) and the IP
number (sin_addr) must be in network byte order. The BSD socket interface requires that you
as the programmer consider this when forming the address.

Performing Endian Conversions

A few functions have been provided to help simplify this business of endian conversions. There are
two directions of conversion to be considered:

• Host ordering to network ordering

• Network ordering to host ordering

By "host order" what is meant is the byte ordering that your CPU uses. For Intel CPUs, this will
mean little-endian byte order. Network order, as you learned earlier, is big-endian byte order.

There are also two categories of conversion functions:

• Short (16-bit) integer conversion

• Long (32-bit) integer conversion

The following provides a synopsis of the conversion functions that you have at your

#include <netinet/in.h>

unsigned long htonl(unsigned long hostlong);

unsigned short htons(unsigned short hostshort);

unsigned long ntohl(unsigned long netlong);

unsigned short ntohs(unsigned short netshort);

TIP
These functions are all described in the byteorder(3) man page.

Page 51

NOTE
In the context of these conversion functions, "short" refers to a 16-bit value and
"long" refers to a 32-bit value.

Do not confuse these terms with what might be different sizes of the C data types.
For example, a long data type on some CPUs running Linux could conceivably be
64-bits in length.

Example

Use of these functions is quite simple. For example, to convert a short integer to network order, the
following code can be used:

short host_ short = 0x1234;
short netw_short;

netw_short = htons(host_short);

The value netw_short will receive the appropriate value from the conversion to network order.
To convert a value from network order back into host order is equally simple:

host_short = ntohs(netw_short);

TIP
The h in the function name refers to "host," whereas n refers to "network." Similarly,
s refers to "short" and 1 refers to "long."

Using these conventions, it is a simple matter to pick the name of the conversion
function you need.

CAUTION
The byteorder(3) functions may be implemented as macros on some systems.
Linux systems that run on CPUs using the big-endian byte ordering might provide a
simple macro instead, because no conversion of the value is required.

Initializing a Wild Internet Address

Now you are ready to create an Internet address. The example shown here will request that the
address be wild. This is often done when you are connecting to a remote service. The reason for
doing this is that your host might have two or more network interface cards, each with a different IP
number. Furthermore, Linux also permits the assignment of more than one IP number to each
interface. When you specify a wild IP number, you allow the system to pick the route to the remote
service. The kernel will then determine what your final local socket address will be at the time the
connection is established.

There are also times when you want the kernel to assign a local port number for you. This is done by
specifying sin_port as the value zero. The

Page 52

example code shown in Listing 2.8 demonstrates how to initialize an AF_INET address with both a
wild port number and a wild IP number.

Example

Listing 2.8: Initializing an IN_ADDRANY AF_INET Address

1: struct sockaddr_in adr_inet;
2: int adr_len;
3:
4: memset(&adr_inet,0,sizeof adr_inet);
5:
6: adr_inet.sin_family = AF_INET;
7: adr_inet.sin_port = ntohs(0);
8: adr_inet.sin_addr.s_addr = ntohl(INADDR_ANY);
9: adr_len = sizeof adr_inet;

The steps used in Listing 2.8 are as follows:

1. The value adr_inet is defined using the structure sockaddr_in (line 1).

2. The address adr_inet is zeroed by calling memset(3) in line 4. (This is
optional.)

3. The address family is established by assigning the value AF_INET to
adr_inet.sin_family (line 6).

4. A wild port number is specified in line 7. Notice the use of the function ntohs(3). The value
zero indicates a wild port number.

5. A wild IP number is assigned in line 8. Again, note the use of the ntohl(3) function to perform
the endian conversion.

6. The size of the address is simply computed as the size of the structure adr_inet (line 9).

Another commonly used IP number is 127.0.0.1. This refers to the loopback device. The
loopback device lets you communicate with another process on the same host as your process.
You'll see more of this IP number later. For now, just note how the address can be assigned below.
Line 8 of Listing 2.8 could be changed to the following statement:

adr_inet.sin_addr.s_addr = ntohl(INADDR_LOOPBACK);

This will address your current host through the loopback device. In the next section, you will learn
how to set up any IP number and port number.

Initializing a Specific Internet Address

The previous section dealt with a simple case for AF_INET addresses. Things get more complicated
when you want to establish a specific IP number in the address. Listing 2.9 shows a complete
program listing that you can compile by simply performing the following command:

$ make af_inet

Page 53

Then, just invoke the compiled program by the name af_inet.

Example

Listing 2.9: af_inet.c— Establishing a Specific AF_INET Address

1: /* af_inet.c:
2: *
3: * Establishing a Specific AF_INET
4: * Socket Address:
5: */
6: #include <stdio.h>
7: #include <unistd.h>
8: #include <stdlib.h>
9: #include <errno.h>
10: #include <string.h>
11: #include <sys/types.h>
12: #include <sys/stat.h>
13: #include <sys/socket.h>
14: #include <netinet/in.h>
15:
16: /*
17: * This function reports the error and
18: * exits back to the shell:
19: */
20: static void
21: bail(const char *on_what) {
22: perror(on_what);
23: exit(1);
24: }
25:
26: int
27: main(int argc,char **argv,char **envp) {
28: int z; /* Status return code */
29: int sck_inet; /* Socket */
30: struct sockaddr_in adr_inet;/* AF_INET */
31: int le n_inet; /* length */
32: const unsigned char IPno[] = {
33: 127, 0, 0, 23 /* Local loopback */
34: };
35:
36: /* Create an IPv4 Internet Socket */
37: sck_inet = socket(AF_INET,SOCK_STREAM,0);
38:
39: if (sck_inet == -1)
40: bail("socket()");
41:
42: /* Create an AF_INET address */
43: memset(&adr_inet,0,sizeof adr_inet);
44:

continues

Page 54

Listing 2.9: continued

45: adr_inet.sin_family = AF_INET;
46: adr_inet.sin_port = htons(9000);
47: memcpy
(&adr_inet.sin_addr.s_addr,IPno,4);
48: len_inet = sizeof adr_inet;
49:
50: /* Now bind the address to the socket */
51: z = bind(sck_inet,
52: (struct sockaddr *)&adr_inet,
53: len_inet);
54:
55: if (z == -1)
56: bail("bind()");
57:
58: /* Display all of our bound sockets */
59: system("netstat -pa --
tcp 2>/dev/null | "
60: "sed -n '1,/^Proto/p;/af_inet/p' ");
61:
62: close(sck_inet);
63: return 0;
64: }

The steps used in this program are almost identical to the others shown in Listings 2.3 and 2.5. Lines
43 to 48, however, require some explanation:

1. Line 30 defines the sockaddr_in structure with the name adr_inet. Additionally, the socket
address length is defined as an integer in line 31 as len_inet.

2. An unsigned character array is defined as IPno[4] in lines 32 and 33. Here the individual bytes
spell out a specific IP address 127.0.0.23.

3. Line 43 zeros out adr_inet as usual. Note that, again, this is optional.

4. Line 45 establishes the address family as AF_INET .

5. This example chose to establish a TCP/IP port number 9000 in line 46. Note the use of the
conversion function htons(3) in line 46.

6. The character array IPno[4] is copied to the location adr_inet.sin_addr.s_addr in
line 47. Because the bytes are defined in network order back in step 2, there is no endian conversion
required here. You will recall that network byte ordering has the most significant byte presented
first.

7. The size of the address structure is computed as before (line 48).

You might have noticed that Internet addresses have a fixed length. If you review Figure 2.3, this is
readily apparent. However, you will remember that the AF_LOCAL address was variable in length
(refer to Figure 2.2). For

TE
AM
FL
Y

Team-Fly®

Page 55

AF_INET addresses, you merely need to supply the size of the socket structure sockaddr_in. In
C language terms, this is

sizeof(struct sockaddr_in)

You should be well equipped now for forming Internet IPv4 addresses. To broaden your knowledge
on socket addressing, the next sections will show you how some other address families can be
specified.

Specifying an X.25 Address

The socket interface allows the programmer to use other protocols that are available under Linux
with very little effort. The only major part of the code that is different has to do with how the
sockets are addressed. You have already seen the initialization required for AF_LOCAL and
AF_INET addresses. The creation of an X.25 address is very similar.

The structure used to define an X.25 protocol address is the sockaddr_x25 structure. The
include statement that defines this structure is as follows:

#include <linux/x25.h>

Listing 2.10 shows the socket address structure for the AF_X25 address family.

Example

Listing 2.10: The X.25 Socket Address Structure

struct sockaddr_x25 {
 sa_family_t sx25_family; /* Must be AF_X25 */
 x25_address sx25_addr; /* X.121 Address */
};

typedef struct {
 char x25_addr[16];
} x25_address;

You will notice that, again, a member sx25_family occupies the first two bytes of the generic
socket structure. For this address, it must have the value AF_X25.

TIP
Information about X.25 socket addresses can be found in the x25(4) man page.

An X.25 network address (the X.121 standard defines this address) consists of a series of decimal
digits. The program af_x25.c has been provided to show you how you can establish an X.25
address and have netstat(1) display it. Listing 2.11 shows the program listing.

Page 56

Example

Listing 2.11: af_x25.c— Establishing an X.25 Protocol Address

1: /* af_x25.c:
2: *
3: * X.25 Socket Address Example:
4: *
5: */
6: #include <stdio.h>
7: #include <unistd.h>
8: #include <stdlib.h>
9: #include <errno.h>
10: #include <string.h>
11: #include <sys/types.h>
12: #include <sys/socket.h>
13: #include <linux/x25.h>
14:
15: /*
16: * This function reports the error and
17: * exits back to the shell:
18: */
19: static void
20: bail(const char *on_what) {
21: perror(on_what);
22: exit(1);
23: }
24:
25: int
26: main(int argc,char **argv,char **envp) {
27: int z; /* Status return code */
28: int sck_x25; /* Socket */
29: struct sockaddr_x25 adr_x25;/* AF_X25 */
30: int len_x25; /* length */
31: const char x25_host[] /* X.121 addr */
32: = "79400900";
33:
34: /* Create an AF_X25 socket */
35: sck_x25 = socket(AF_X25,SOCK_SEQPACKET,0);
36:
37: if (sck_x25 == -1)
38: bail("socket()");
39:
40: /* Form an AF_X25 Address */
41: adr_x25.sx25_family = AF_X25;
42: strcpy(adr_x25.sx25_addr.x25_addr,x25_host);
43: len_x25 = sizeof adr_x25;
44:
45: /* Bind the address to the socket */
46: z = bind(sck_x25,

Page 57

47: (struct sockaddr *)&adr_x25,
48: len_x25);
49:
50: if (z == -1)
51: bail("bind()");
52:
53: puts("X.25 SOCKETS :");
54: system("cat /proc/net/x25");
55: return 0;
56: }

To compile the program in Listing 2.11, perform the following:

$ make af_x25

NOTE
You will not be successful running the program in Listing 2.11 if you do not have
X.25 support compiled into your kernel. Be sure to enable X.25 support if you
want to experiment with that protocol. To enable X.25 support you must configure
and recompile your Linux kernel.

The address establishing code consists of the following basic steps:

1. The sockaddr_x25 structure is used in line 29 to define adr_x25. The length variable
len_x25 is defined as an int on line 30.

2. A character array constant x25_host[] is defined on lines 31 and 32 as the X.25 address is to
be establish.

3. The address family is specified as AF_X25 in line 41.

4. The host address number is copied into the address structure with a terminating null byte in line
42.

5. The length of the sockaddr_x25 structure is the correct length to use with the current Linux
implementation (line 43).

Note that the program does not call upon netstat(1) this time. This is because netstat(1)
does not report AF_X25 sockets at this time. Instead, the example program uses cat(1) to copy
the contents of /proc/net/x25 to standard output. For this to be successful, however, you must
have the proc file system support compiled into your kernel (this is now standard practice).

NOTE
Normally socket addresses with variable elements like the AF_UNIX address family
require a computed length of the address. The Linux implementation of the AF_X25
socket address, however, simply requires the fixed length of sizeof
(sockaddr_x25). The host number must be null terminated within the
sockaddr_x25 structure.

Page 58

Running the program af_x25 provides the results shown in Listing 2.12.

Output

Listing 2.12: The Output of the af_x25 Program

$./af_x25
X.25 SOCKETS :
dest_addr src_addr dev lci st vs vr va t t2 t21 t22 t23 Snd-Q Rcv-Q inode
* 79400900 ??? 000 0 0 0 0 0 3 200 180 180 0 0 104172
$

In the program output in Listing 2.12, you can see the host number listed under the src_addr
column heading as 79400900.

Specifying Other Address Families

The scope of this book does not permit a full coverage of all address families supported by Linux.
The list of supported protocols is growing longer with each new year. If you are looking for a fast
track to TCP/IP programming, you can skip this section and advance to the next section.

In this section, you will read briefly about a few other protocols that might be of interest to you. This
section is intended as a roadmap to other places of interest, should you feel like some adventure.

There are at least three more address families that Linux can support. They
are

• AF_INET6— IPv6, which is under development

• AF_AX25— Amateur Radio X.25 protocol

• AF_APPLETALK— Linux AppleTalk protocol implementation

Each of these protocols requires that you have the corresponding support compiled into your kernel.
Some of these protocols may not be complete implementations— programmer beware! Incomplete
or experimental protocols will be buggy or sometimes even crash your system.

TIP
The AF_APPLETALK address family is documented in the ddp(4) man page.

Listing 2.13 shows some of the C structures that are important to these other socket address families.
These structures will help you visualize the address components that must be initialized when
creating an address for the protocol chosen.

Example

Listing 2.13: Other Address Family Structures

/*
 * IPv6 Address (AF_INET6):
 */

Page 59

struct sockaddr_in6 {
 sa_family_t sin6_family;
 uint16_t sin6_port; /* port # */
 uint32_t sin6_flowinfo; /* flow info */
 struct in6_addr sin6_addr; /* IPv6 address */
};

struct in6_addr {
 union {
 uint8_t u6_addr8[16];
 uint16_t u6_addr16[8];
 uint32_t u6_addr32[4];
 } in6_u;
};

/*
 * Amateur Radio AX.25 Address (AF_AX25):
 */
struct full_sockaddr_ax25 {
 struct sockaddr_ax25 fsa_ax25;
 ax25_address fsa_digipeater[AX25_MAX_DIGIS];
};

struct sockaddr_ax25 {
 sa_family_t sax25_family;
 ax25_address sax25_call;
 int sax25_ndigis;
};

typedef struct {
 /* 6 call + SSID (shifted ascii!) */
 char ax25_call[7];
} ax25_address;

#define sax25_uid sax25_ndigis

/*
 * AppleTalk Address (AF_APPLETALK):
 */
struct sockaddr_atalk {
 sa_family_t sat_family; /* addr family */
 u_char sat_port; /* port */
 struct at_addr sat_addr; /* net/node */
};

struct at_addr {
 u_short s_net;
 u_char s_node;
};

Page 60

Fully addressing the steps to initialize each of these different protocols would require some
knowledge about the underlying protocols themselves. This is outside of the scope of what you want
to accomplish at this point in this book.

However, if you would like to experiment further with the AF_AX25 family, there is one other
program available for the purpose in source file af_ax25.c . Using the Makefile provided at the
Web site associated with this book, you can compile it as follows:

$ make af_ax25
gcc -c -D_GNU_SOURCE -Wall af_ax25.c
gcc af_ax25.o -o af_ax25
$

NOTE
All source code and make files for this book are provided at the following URL:

http://www.quecorp.com/series/by_example

To run this program, the following conditions must be met:

1. You have Amateur Radio AX.25 support compiled into your kernel.

2. You might require an AX.25 compatible interface to establish a socket name. See the note that
follows.

3. If condition two is required, and you have no AX.25 interfaces, you can satisfy this requirement
by using a BPQ device on top of an ethernet device. See instructions that follow the note.

NOTE
The author found that the program af_ax25 could call binds(3) and establish
an AF_AX25 address with no AX.25 interfaces present in the system (using Red
Hat Linux 6.0, kernel 2.2.10). However, this may depend upon the kernel release
that you have and could be subject to change.

If you require an AX.25 device, either to run the af_ax25 program or to perform further network
programming experiments, you can establish a BPQ interface if you already have an ethernet
interface. To check, perform the following:

$ netstat -i
Kernel Interface table
Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flg
eth0 1500 0 81764 0 0 0 51634 0 0 0 BRU
lo 3924 0 16969 0 0 0 16969 0 0 0 LRU
$

Page 61

In the display shown, eth0 represents one ethernet interface. If you have BPQ support compiled
into your kernel, you can create a BPQ device as follows:

$ su -
Password:
ifconfig bpq0 hw ax25 VE3WWG-
5 up

Then, you can check the status of the interface, as shown in Listing 2.14.

Output

Listing 2.14: Checking the Interface Status of bpq0

/sbin/ifconfig
bpq0 Link encap:AMPR AX.25 HWaddr VE3WWG-5
 UP RUNNING MTU:256 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0

eth0 Link encap:Ethernet HWaddr 00:A0:4B:06:F4:8D
 inet addr:192.168.0.1 Bcast:192.168.0.255 Mask:255.255.255.0
 UP BROADCAST RUNNING PROMISC MULTICAST MTU:1500 Metric:1
 RX packets:10945 errors:0 dropped:0 overruns:0 frame:100
 TX packets:4959 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100
 Interrupt:9 Base address:0xe400

The bpq0 interface is a pseudo device, because it interfaces with the real device eth0. However,
this trick allows you to experiment with the AX.25 radio protocol without using any packet radio
hardware. In the output Listing 2.14, you can see that the bpq0 interface is up, with the hardware
AX.25 address of VE3WWG-5.

The AF_UNSPEC Address

The C macro AF_UNSPEC represents the unspecified address family. This might seem like a rather
useless macro, but it does have its uses. If you write a program that must work with many different
protocols and address families, then you need a way to indicate an unspecified address family.
Consider the union of different address families in Listing 2.15.

Example

Listing 2.15: A Union of Address Families

union {
 sockaddr sa;
 sockaddr_un un;

 sockaddr_in in;
 sockaddr_in6 in6;
 sockaddr_x25 x25;
 full_sockaddr_ax25 ax25;
 sockaddr_atalk at;
} u;

Page 62

Before any value is placed into this union, your C program might initialize the union as follows:

u.sa.sa_family = AF_UNSPEC;

Later in the program, when you go to place an AF_INET address into this union, you would use:

u.in.sin_family = AF_INET;

The AF_UNSPEC acts as a safe placeholder for you when you don't know what the address family is
yet.

What's Next

Socket addressing is the messiest part of socket programming, but that is all behind you now. With
the examples that you have worked through, you now know how to apply local addresses, Internet
addresses, and a few others. You learned that each address structure must have its corresponding
address family constant stored in it (AF_INET, for example).

In this chapter, you learned that the AF_INET address was sensitive about network ordered bytes in
the sin_port and sin_addr members. The byteorder(3) conversion functions were
mastered to deal with this problem.

You also saw that each address family has its own quirks for establishing both the address itself and
the length of the address. Consequently, this chapter will continue to serve as a reference for you.

In the next chapter, you'll build upon the concept of network addresses that you've learned and you'll
be introduced to new library functions that manipulate addresses for you.

TE
AM
FL
Y

Team-Fly®

Page 65

3—
Address Conversion Functions

In the last chapter, you learned how various types of socket addresses could be allocated and
initialized. These were all simple cases of initializing from a constant. Setting up an address from a
C string with varying addresses requires more programming effort. In this chapter, you will focus on
the additional issues pertaining to establishing Internet addresses, and learning about the functions
that can assist you in this area.

In this chapter, you will learn about

• Classes of internet addresses

• IP netmasks

• Private and reserved IP numbers

• Functions that convert IP numbers

Before you get started however, it's a good time to review the design of an IP address. Then, you'll
have a greater insight into the job that is ahead of you.

Page 66

Internet IP Numbers

The IP number consists of four decimal values separated by decimal points, often referred to as
''dots." This convention is frequently called dotted-quad notation, or sometimes dotted-decimal
notation. Each decimal value represents the unsigned value of one byte, in network byte sequence.
Remember that network order requires that the most significant bytes appear first.

Each byte is considered as an unsigned 8-bit value. This restricts each byte to a decimal value range
of zero to 255. Because the value is unsigned, the value cannot be negative, and a plus sign is not
permitted. Consider the address 192.168.0.1, for example; you know that the first byte in
network order must have the value of 192 decimal.

When you see a movie showing an IP number on the screen with a value such as
192.168.300.5, you know that the producer knew very little about TCP/IP networking!
Although this IP number is syntactically correct, the decimal value 300 obviously exceeds the
maximum unsigned value of 255.

Later, starting with the section "Manipulating IP Numbers," you will look at functions that can parse
a C string into network address bytes, and range check the decimal values for you.

Internet Address Classes

Internet addresses are made up of two components:

• Network number (most significant bits)

• Host number (least significant bits)

The network number identifies the network where the host can be contacted. The host number
identifies one host (your PC, for example) out of several on that particular network.

As you already know, the IP number is a 32-bit value (or four 8-bit bytes). However, the division
between the network number and host number components is not at a fixed location. The dividing
line depends upon the classification of the address, which is determined by examining the most
significant byte of the address. Table 3.1 summarizes how IP numbers are classified.

Table 3.1: Internet Address Classes

Class Lowest Highest Network Bits Host Bits

A 0.0.0.0 127.255.255.255 7 24

B 128.0.0.0 191.255.255.255 14 16

C 192.0.0.0 223.255.255.255 21 8

D 224.0.0.0 239.255.255.255 28 N/A

E 240.0.0.0 247.255.255.255 27 N/A

Page 67

Class A, B, and C define specific IP addresses of hosts. For class D and E addresses, there are zero
host bits available in the address. Class D addresses are used for multicasting where the 28 bits are
used to describe a multicast group. The 27 bits of the class E address are reserved.

Figure 3.1 helps you visualize the breakdown of the 32-bit IP address. The frequently used classes
A, B, and C are shown.

Figure 3.1:
This figure illustrates the Internet address classes A, B, and C.

Understanding Netmask Values

There are situations in which you must determine the netmask value of an address. This is
particularly true if you are setting up your own network. So, just what is a netmask value anyway?

If you take the Internet IP Address as a 32-bit number, then you know that the network ID is
specified in the most significant bits of the address. Additionally, the host ID is specified by the least
significant bits of the same address (review Figure 3.1 if necessary). The netmask is simply the
value that you would "bit-wise and" with the address to leave only the network ID. Figure 3.2
illustrates how the IP address 192.168.9.1 is masked to extract only the network ID bits.

TIP
You will often hear people use the terms net and subnet interchangeably.
Technically speaking, these terms represent two distinctly different network ID
values. The network ID identifies the network ID number proper.

continues

Page 68

continued

However, within an IPv4 number, it is possible to further subdivide the host ID
leaving a subnetwork ID in the most significant bits of the host ID and the final host
ID in the least significant bits. When subnetting is used, the netmask value will take
into account these additional subnetwork ID bits.

Consequently, when subnetting is in use, the network mask will differ from the ones
presented in this chapter.

Figure 3.2:
Applying a netmask to 192.168.9.1 yields a network

address.

The resulting most significant bits represent the network portion of the IP address without the host
ID. Figure 3.3 illustrates how the network mask is converted from hexadecimal back into dotted-
quad notation.

Figure 3.3:
Here is the netmask expressed in dotted-quad notation.

If you must set up your own IP network, then you will need to determine what the netmask values
should be. Table 3.2 lists the netmask values for class A, B, and C addresses.

Page 69

Table 3.2: Netmask Values by IP Class

Class Lowest Highest Netmask

A 0.0.0.0 127.255.255.255 255.0.0.0

B 128.0.0.0 191.255.255.255 255.255.0.0

C 192.0.0.0 223.255.255.255 255.255.255.0

Sometimes, in networking software, your software must be able to classify a network address.
Sometimes this is simply done in order to determine a default netmask value.

Listing 3.1 provides a short program that illustrates how to classify an IP address, starting from a
socket address. To compile and run the provided source code, perform the following:

$ make netmask
gcc -c -D_GNU_SOURCE -Wall netmask.c
gcc netmask.o -o netmask
$./netmask

The program in Listing 3.1 sets up four different IP addresses in an Internet socket address structure.
Then, the address is examined and classified. This is done to demonstrate how you would classify an
IP address of a remote client that has connected to your server.

Example

Listing 3.1: netmask.c— Classifying and Determining a Netmask

1: /* netmask.c:
2: *
3: * Classify an IP address:
4: */
5: #include <stdio.h>
6: #include <unistd.h>
7: #include <stdlib.h>
8: #include <sys/types.h>
9: #include <sys/socket.h>
10: #include <netinet/in.h>
11:
12: int
13: main(int argc,char **argv) {
14: int x; /* Index variable */
15: struct sockaddr_in adr_inet;/* AF_INET */
16: int len_inet; /* length */
17: unsigned msb; /* Most significant byte */
18: char class;
19: char *netmask;
20: static struct {
21: unsigned char ip[4];
22: } addresses[] = {

continues

Page 70

Listing 3.1: continued

23: { { 44,135,86,12 } },
24: { { 127,0,0,1 } },
25: { { 172,16,23,95 } },
26: { { 192,168,9,1 } }
27: };
28:
29: for (x=0; x<4; ++x) {
30: /*
31: * Set up the socket address, to
32: * demonstrate how to classify it;
33: */
34: memset(&adr_inet,0,sizeof adr_inet);
35: adr_inet.sin_family = AF_INET;
36: adr_inet.sin_port = htons(9000);
37: memcpy(&adr_inet.sin_addr.s_addr,
38: addresses[x].ip,4);
39: len_inet = sizeof adr_inet;
40:
41: /*
42: * Classify this address:
43: *
44: * 1. Get the Most Significant Byte
45: * 2. Classify by that byte
46: */
47: msb = *(unsigned char *)
48: &adr_inet.sin_addr.s_addr;
49:
50: if ((msb & 0x80) == 0x00) {
51: class = 'A' ;
52: netmask = "255.0.0.0";
53: } else if ((msb & 0xC0) == 0x80) {
54: class = 'B';
55: netmask = "255.255.0.0";
56: } else if ((msb & 0xE0) == 0xC0) {
57: class = 'C';
58: netmask = "255.255.255.0";
59: } else if ((msb & 0xF0) == 0xE0) {
60: class = 'D';
61: netmask = "255.255.255.255";
62: } else {
63: class = 'E';
64: netmask = "255.255.255.255";
65: }
66:
67: printf ("Address %u.%u.%u.%u is class %c "
68: "netmask %s\n",
69: addresses[x].ip[0],

Page 71

70: addresses[x].ip[1],
71: addresses[x].ip[2],
72: addresses[x].ip[3],
73: class,
74: netmask);
75: }
76:
77: return 0;
78: }

The operation of this demonstration program can be summarized in the following steps:

1. The socket address structure adr_inet is defined in line 15. This will be the address that will be
examined for classification.

2. The addresses to be tested are defined in a static array of structures, defined in lines 20 to 27. You
might want to experiment by trying other address numbers in lines 23 to 26.

3. Line 29 starts a loop that will iterate through four entries in the addresses[] array. The
subscript value will be the variable x.

4. A socket address is initialized in lines 34 to 39, from addresses[x] . This is done in the same
manner it was presented in the last chapter, and should look familiar to you now.

5. The most significant byte is extracted out of the socket address adr_inet in line 47. You will
remember that the most significant byte is the first byte of the address, in network byte order (big-
endian). With this byte lifted from the socket address, it will be possible to classify the address
based upon the high-order bits in this byte.

6. The if statement in line 50 tests to see whether the high-order bit is zero (review Figure 3.1,
looking at the class A address). If the high-order bit is zero, you know you have a class A address
(lines 51 and 52 execute).

7. The if statement in line 53 tests to see whether the high-order bit is 1, and the 2nd highest bit is a
0 (review the class B address in Figure 3.1). If this is true, then the statements in lines 54 and 55
classify this address as class B.

8. The if statement in line 56 tests to see whether the highest two bits are 11 (binary), followed by
a 0 bit. If this is true, then lines 57 and 58 classify the address as a class C address (review Figure
3.1 for class C addresses).

Page 72

9. The if statement in line 59 tests for the high-order bit pattern of 1110. This causes the address to
be classified as a class D address. Note for class D and class E, the netmask is set to
255.255.255.255 because the entire address is a network address.

10. The else statement in line 62 evaluates everything remaining as a class E address, and sets the
netmask also to 255.255.255.255 (see step 9).

11. The results of the classification are reported in lines 67 to
74.

Listing 3.2 shows the output that results from running this demonstration program.

Output

Listing 3.2: The Output of the netmask.c Demonstration Program

$./netmask
Address 44.135.86.12 is class A netmask 255.0.0.0
Address 127.0.0.1 is class A netmask 255.0.0.0
Address 172.16.23.95 is class B netmask 255.255.0.0
Address 192.168.9.1 is class C netmask 255.255.255.0
$

With the example code demonstrated in Listing 3.1, you will be ready to classify any IP number that
you must process.

While your attention is still focused upon IP numbers, now is a good time to cover private IP
number allocations. These are addresses that you will use if you decide to establish your own private
network.

Allocating IP Addresses

You learned how Internet addresses are classified in the previous section. IP addresses are allocated
to various individuals and groups by an organization known as the InterNIC. However, some ranges
of IP addresses have been set aside for private use, and still others are reserved for special uses.

Private IP Numbers

Normally, IP numbers must be registered by the InterNIC at rs.internic.net. (Prior to April
1, 1993, this was handled by the NIC at nic.ddn.mil.) However, if your system is not directly
connected to the Internet, you do not need to have a globally unique address. You can use "private"
IP numbers instead.

The first question that immediately follows, then, is "What IP numbers should I use?" This section is
provided to help you make that decision, and to act as a future reference guide.

Page 73

RFC 1597 is an Internet standards document that describes how private IP numbers are allocated.
Table 3.3 provides a quick summary for you, complete with netmask values.

Table 3.3: Private IP Number Allocations

Class Lowest Highest Netmask

A 10.0.0.0 10.255.255.255 255.0.0.0

B 172.16.0.0 172.31.255.255 255.255.0.0

C 192.168.0.0 192.168.255.255 255.255.255.0

Your choice of a class A, B, or C IP number series will depend largely upon the number of separate
networks and hosts that you plan to establish. If the total number of networks and hosts is small,
then a class C address might be sufficient. Alternatively, a class A address allows for one network
(without subnetting), but a very large total number of hosts. Class B provides a large number of both
networks and hosts.

Reserved IP Numbers

There are a large number of reserved IP numbers and these blocks are listed in RFC 1166. As one
example of a reserved series of numbers, the Amateur Radio IP number series are shown in Table
3.4 as an example. These are used by amateur radio operators using the Internet protocol on packet
radio equipment. Now that the AX.25 protocol is built into the Linux kernel (as of 2.2.0), it is
certain that more radio amateurs will be exercising these IP numbers!

Table 3.4. Amateur Radio Reserved IP Numbers

Class Lowest Highest Netmask

A 44.0.0.0 44.255.255.255 255.0.0.0

This brings you to the end of the IP number tour. Now, it's time to apply your knowledge of socket
addresses and IP numbers to functions that Linux provides to make IP address conversion easier.

Manipulating IP Numbers

To ease the programming burden of turning IP numbers in string form into usable socket addresses,
a number of conversion functions have been provided. These and other useful functions will be
presented in the following sections.

Using the inet_addr(3) Function

The first function that you will learn about is an older function, which should probably no longer be
used in new code. However, you will find it in

Page 74

a lot of existing network code, and so you should become familiar with it and know its limitations.

The synopsis for inet_addr(3) is as follows:

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

unsigned long inet_addr(const char *string);

This function accepts an input C string argument string and parses the dotted-quad notation
into a 32-bit Internet address value. The 32-bit value returned is in network byte order.

If the input argument string does not represent a valid dotted-quad address, the value
INADDR_NONE is returned. Any other returned value represents the converted value.

NOTE
The 32-bit value returned by inet_addr(3) is in network byte order. Do not use
htonl(3) on the returned value, because it is already in network byte order.

CAUTION
The inet_addr(3) does not establish a reason code in errno when
INADDR_NONE is returned. So, do not test errno or report it when an error
indication is returned by this function.

The program shown in Listing 3.3 is an example of how you would use this function. To compile
and run the program, perform the following:

$ make inetaddr
gcc -c -D_GNU_SOURCE -Wall inetaddr.c
gcc inetaddr.o -o inetaddr
$./inetaddr

The program in Listing 3.3, when it is run, converts a C string constant containing an IP number into
a network sequenced 32-bit IP address. This value is then placed into an AF_INET socket address
and bound to the socket.

Example

Listing 3.3: inetaddr.c— Example Program Using inet_addr(3)

1: /* inetaddr.c:
2: *
3: * Example using inet_addr(3):
4: */
5: #include <stdio.h>
6: #include <unistd.h>
7: #include <stdlib.h>
8: #include <errno.h>

TE
AM
FL
Y

Team-Fly®

Page 75

9: #include <string.h>
10: #include <sys/types.h>
11: #include <sys/socket.h>
12: #include <netinet/in.h>
13: #include <arpa/inet.h>
14:
15: /*
16: * This function reports the error and
17: * exits back to the shell:
18: */
19: static void
20: bail(const char *on_what) {
21: fputs(on_what,stderr);
22: fputc('/n',stderr);
23: exit(1);
24: }
25:
26: int
27: main(int argc,char **argv) {
28: int z;
29: struct sockaddr_in adr_inet;/* AF_INET */
30: int len_inet; /* length */
31: int sck_inet; /* Socket */
32:
33: /* Create a Socket */
34: sck_inet = socket(AF_INET,SOCK_STREAM,0);
35:
36: if (sck_inet == -1)
37: bail("socket()");
38:
39: /* Establish address */
40: memset(&adr_inet,0,sizeof adr_inet);
41:
42: adr_inet.sin_family = AF_INET;
43: adr_inet.sin_port = htons(9000);
44:
45: adr_inet.sin_addr.s_addr =
46: inet_addr("127.0.0.95");
47:
48: if (adr_inet.sin_addr.s_addr == INADDR_NONE)
49: bail("bad address.");
50:
51: len_inet = sizeof adr_inet;
52:
53: /* Bind it to the socket */
54: z = bind(sck_inet,

continues

Page 76

Listing 3.3: continued

55: (struct sockaddr *)&adr_inet,
56: len_inet);
57:
58: if (z == -1)
59: bail("bind()");
60:
61: /* Display our socket address */
62: system("netstat -pa --tcp 2>/dev/null"
63: "| grep inetaddr");
64:
65: return 0;
66: }

NOTE
If netstat(1) command on your system does not support the options used in
lines 62 and 63 of Listing 3.3, substitute the following call if you have lsof
installed:
system("lsof -i tcp | grep inetaddr");

The general program structure is very similar to the ones used in the previous chapter. However, the
steps used to set up the socket address are a bit different. They are

1. The socket address structure is zeroed out in line 40. This is an optional step, but many find that
this helps debugging should it become necessary.

2. The address family is established as AF_INET in line 42.

3. The port number has been established as port 9000 in this example (line 43).

4. The function inet_addr(3) is called in line 46 to convert the string constant "127.0.0.95"
into a network 32-bit address. This value is stored into the socket address member
adr_inet.sin_addr.s_addr.

5. The value returned from the conversion in step 4 is tested to see whether it matches the value
INADDR_NONE in line 48. If it does, this indicates that the value provided in the C string was not a
good Internet IP number (the program bails out in line 49 if this happens).

6. Finally, the length of the socket address is established in line 51 as before.

The above procedure has established the socket address in the variable adr_inet. This is later
passed to bind(2) in line 54, which has not been covered yet. The bind(3) call just applies the
address to the socket (the full discussion will otherwise be deferred for now).

Page 77

The important thing that you accomplish with the use of the inet_addr(3) function is that you
are spared from performing all parsing and testing of the input IP number.

TIP
Avoid using inet_addr(3) in new programs. Use the function inet_aton(3)
instead.

The inet_addr(3) function has the limitation that it returns the value
INADDR_NONE if the input argument is an invalid IP number. The limitation is that
it also returns the value INADDR_NONE if you pass it the valid IP address of
255.255.255.255.

This creates a problem for programs like the ping(8) command where this is a
valid broadcast address to use.

Output

Running the program yields the following output:

$./inetaddr
tcp 0 0 127.0.0.95:9000 *:* CLOSE 992/inetaddr
$

The program invokes netstat(1) using grep to look for the program name inetaddr.
Consequently, you see one output line showing the address established for the socket as
127.0.0.95:9000. You'll remember that the program arbitrarily chose the port number 9000 for
this experiment.

The inet_aton(3) Function

The inet_aton(3) is an improved way to convert a string IP number into a 32-bit networked
sequenced IP number. The synopsis of the function is given as follows:

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

int inet_aton(const char *string, struct in_addr *addr);

The inet_aton(3) function accepts two arguments. They are

1. The input argument string, which contains the ASCII representation of the dotted-quad IP
number.

2. The output argument addr is the structure that will be updated with the new IP address.

The return value of the function is nonzero (true) if the conversion succeeds. The value zero (false)
is returned if the input address is incorrect. There is no error code established in errno, so its value
should be ignored.

Page 78

What is a little bit confusing about this function is the pointer required for argument two of this
function call. If you define an AF_INET socket address as

struct sockaddr_in adr_inet; /* AF_INET */

the pointer that should be supplied as argument two of the inet_aton(3) function is the
following:

&adr_inet.sin_addr

• Review Listing 2.7 in Chapter 2, ''Domains and Address Families," page 48,
if this does not seem clear to you. It will make more sense when you review the
definition of the sockaddr_in structure.

Listing 3.4 shows a program that calls upon inet_aton(3) instead of the older inet_addr(3)
function that you learned about in the previous section. This program operates the same way, except
that it is compiled and executed as follows:

$ make inetaton
gcc -c -D_GNU_SOURCE -Wall inetaton.c
gcc inetaton.o -o inetaton
$./inetaton

Now, spend a few moments examining Listing 3.4. You'll find that the new function is invoked in
lines 45 to 47.

Example

Listing 3.4: inetaton.c— Using inet_aton(3)

1: /* inetaton.c:
2: *
3: * Example using inet_aton(3) :
4: */
5: #include <stdio.h>
6: #include <unistd.h>
7: #include <stdlib.h>
8: #include <errno.h>
9: #include <string.h>
10: #include <sys/types.h>
11: #include <sys/socket.h>
12: #include <netinet/in.h>
13: #include <arpa/inet.h>
14:
15: /*
16: * This function reports the error and
17: * exits back to the shell:
18: */
19: static void
20: bail(const char *on_what) {
21: fputs(on_what,stderr);

Page 79

22: fputc('\n',stderr);
23: exit(1);
24: }
25:
26: int
27: main(int argc,char **argv) {
28: int z;
29: struct sockaddr_in adr_inet;/* AF_INET */
30: int len_inet; /* length */
31: int sck_inet; /* Socket */
32:
33: /* Create a Socket */
34: sck_inet = socket(AF_INET,SOCK_STREAM,0);
35:
36: if (sck_inet == -1)
37: bail("socket()");
38:
39: /* Establish address */
40: memset(&adr_inet,0,sizeof adr_inet);
41:
42: adr_inet.sin_family = AF_INET;
43: adr_inet.sin_port = htons(9000);
44:
45: if (!inet_aton("127.0.0.23",
46: &adr_inet.sin_addr))
47: bail("bad address.");
48:
49: len_inet = sizeof adr_inet;
50:
51: /* Bind it to the socket */
52: z = bind(sck_inet,
53: (struct sockaddr *)&adr_inet,
54: len_inet);
55:
56: if (z == -1)
57: bail("bind()");
58:
59: /* Display our socket address */
60: system("netstat -pa --tcp 2>/dev/null"
61: "| grep inetaton");
62:
63: return 0;
64: }

Output

Running this program yields the following results:

S$./inetaton
tcp 0 0 127.0.0.23:9000 *:* CLOSE 1007/inetaton
$

Page 80

NOTE
If netstat(1) command on your system does not support the options used in
lines 60 and 61 of Listing 3.4, substitute the following call if you have lsof
installed:
system("lsof -i tcp | grep inetaton");

While the bulk of the program was the same as the previous one in Listing 3.3, the following steps
are of particular importance:

1. The new function inet_aton(3) is invoked from within the if statement in line 45.

2. Note the second argument in line 46, given as the value &adr_inet.sin_addr. This is the
required pointer for argument two.

3. If the return value of the function in line 45 is zero, this indicates the conversion failed, and line
47 is executed.

The program in Listing 3.4 shows you how easily the newer function inet_aton(3) can be put
to work in place of the older function inet_addr(3). There are perhaps three things that you
need to remember about this function:

• The pointer in argument two always refers to the sockaddr_in member sin_addr
(&adr_inet.sin_addr in the example program).

• The return value indicates a Boolean success value. A return value of true (nonzero) means that the
call succeeded, whereas false (zero) means that it failed.

• Do not consult the value in errno. No meaningful code is established by inet_aton(3) for
errno.

In the next section, you'll see how you can take a socket IP address and convert it back to a string for
reporting purposes.

Using the inet_ntoa(3) Function

There are times when a socket address represents the address of a user that has connected to your
server, or represents the sender of a UDP packet. The job of converting a network sequenced 32-bit
value into dottedquad notation is inconvenient. Hence, the inet_ntoa(3) function has been
provided. The synopsis of the function is as follows:

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

char *inet_ntoa(struct in_addr addr);

Page 81

The function requires only one input argument addr. Note that the struct in_addr is an
internal part of the Internet socket address. The address is converted into a static buffer, which is
internal to the function. This character array pointer is returned as the return value. The results will
be valid only until the next call to this function.

• Review the sockaddr_in structure in Figure 2.3 of Chapter 2, "Domains and
Address Families," page 48. This will help you visualize the physical address
structure that you are working with.

If a socket address addr exists in your program as a sockaddr_in structure, then the following
code shows how to use inet_ntoa(3) to perform the conversion. The IP number is converted to
a string and reported, using the printf(3) function:

struct sockaddr_in addr; /* Socket Address */

printf("IP ADDR: %s\n",
 inet_ntoa(addr.sin_addr));

A complete example program is provided in Listing 3.5. To compile and run this program, the
following steps are required:

$ make inetntoa
gcc -c -D_GNU_SOURCE -Wall inetntoa.c
gcc inetntoa.o -o inetntoa
$./inetntoa

The program in Listing 3.5 uses the same steps to set up the address as did the previous example
program. The function inet_ntoa(3) is called upon to allow the IP number to be displayed.

Example

Listing 3.5: inetntoa.c— Demonstration of inet_ntoa(3) Function

1: /* inetntoa.c:
2: *
3: * Example using inet_ntoa(3):
4: */
5: #include <stdio.h>
6: #include <unistd.h>
7: #include <stdlib.h>
8: #include <sys/types.h>
9: #include <sys/socket.h>
10: #include <netinet/in.h>
11: #include <arpa/inet.h>
12:
13: int
14: main(int argc,char **argv) {
15: struct sockaddr_in adr_inet;/* AF_INET */

continues

Page 82

Listing 3.5: continued

16: int len_inet; /* length */
17:
18: /*
19: * Establish address (pretend we got
20: * this address from a connecting
21: * client):
22: */
23: memset(&adr_inet,0,sizeof adr_inet);
24:
25: adr_inet.sin_family = AF_INET;
26: adr_inet.sin_port = htons(9000);
27:
28: if (!inet_aton("127.0.0.23",
29: &adr_inet.sin_addr))
30: puts("bad address.");
31:
32: len_inet = sizeof adr_inet;
33:
34: /*
35: * Demonstrate use of inet_ntoa(3):
36: */
37: printf("The IP Address is %s\n",
38: inet_ntoa(adr_inet.sin_addr));
39:
40: return 0;
41: }

Now, review the steps that were taken in the program:

1. The structure adr_inet is declared as a sockaddr_in type in line 15. This is the form of the
address that you'll work with most of the time.

2. Lines 23 to 32 set up the address, just as before. In this example, the socket(2) and bind(2)
calls were omitted because they don't help in this illustration.

3. Line 37 shows a call to printf(3). Here, the statement calls upon inet_ntoa(3) in line 38
to convert the IP address in adr_inet to string form so that it can be printed.

NOTE
The results returned from inet_ntoa(3) are valid only until the next call to this
function.

CAUTION
Due to the limitation given in the previous note, if you use this function in threaded
code, you must make certain that only one thread at a time calls this function.
Failure to heed this advice will result in returned results being overwritten by other
threads.

Page 83

Output

The program's output is shown as follows:

$./inetntoa
The IP Address is 127.0.0.23
$

You know, because of the initialization in line 28, that this is the correct result. Line 38 converts this
value back into a string.

Using inet_network(3)

There might be occasions in which it is more convenient to have the dottedquad IP number
converted into a 32-bit host-ordered value. This is more convenient when you are applying mask
values to extract host or network bits from the addresses.

The function synopsis for inet_network(3) is as follows:

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

unsigned long inet_network(const char *addr);

This function takes one input string containing a dotted quad address in argument addr. The return
value is the 32-bit value of the IP address, but in host-order format. However, if the input value is
malformed, the returned result will be 0xFFFFFFFF (all 1 bits).

Having the returned value in host-endian order means that you can safely assume constants for mask
values and bit positions. If the returned value were in network-endian order, the constants and code
would then be different for different CPU platforms.

An example of how inet_network(3) might be used is shown next. The following shows how
to extract the network address from a class C address:

unsigned long net_addr;

net_addr =
 inet_network("192.168.9.1") & 0xFFFFFF00;

The value assigned to net_addr would be the value 0xC0A80900 (or 192.168.9.0 in dotted-
quad notation). The logical and operation masked out the low-order eight bits to arrive at the
network ID without the host ID.

Example

The example shown in Listing 3.6 illustrates how the inet_network(3) function can be used.
The program also calls upon the htonl(3) function to display how the value looks in network-
endian order.

TE
AM
FL
Y

Team-Fly®

Page 84

Listing 3.6: network c— Demonstration of the inet_network(3) Function

1: /* network.c:
2: *
3: * Example using inet_network(3):
4: */
5: #include <stdio.h>
6: #include <unistd.h>
7: #include <stdlib.h>
8: #include <sys/types.h>
9: #include <sys/socket.h>
10: #include <netinet/in.h>
11: #include <arpa/inet.h>
12:
13: int
14: main(int argc,char **argv) {
15: int x;
16: const char *addr[] = {
17: "44.135.86.12",
18: "127.0.0.1",
19: "172.16.23.95",
20: "192.168.9.1"
21: };
22: unsigned long net_addr;
23:
24: for (x=0; x<4; ++x) {
25: net_addr = inet_network(addr[x]);
26: printf("%14s = 0x%081X net 0x%
081X\n",
27: addr[x],net_addr,
28: (unsigned long)htonl(net_addr));
29: }
30:
31: return 0;
32: }

This program is compiled and run as follows:

$ make network
gcc -c -D_GNU_SOURCE -Wall network.c
gcc network.o -o network
$

The steps used in the program shown in Listing 3.6 are as follows:

1. Four arbitrarily picked IP numbers are declared in lines 17 to 20 to initialize the array addr[].

2. Lines 24 to 29 loop through each of the four strings in the addr[] array, starting with the first.

Page 85

3. The inet_network(3) function is called in line 25 to convert the string into a host-endian
ordered 32-bit value representing the IP number given.

4. The printf(3) function is called in line 26 to illustrate the output values. The first is the
original string that was given to inet_network(3) in line 25. The second value printed is the
value returned by inet_network(3), which is in host-endian form. The last value displayed on
the line is the network-endian ordered value. For Intel CPU platforms, the last two columns will
display differently.

Output

The program is run as follows:

$./network
 44.135.86.12 = 0x2C87560C net 0x0C56872C
 127.0.0.1 = 0x7F000001 net 0x0100007F
 172.16.23.95 = 0xAC10175F net 0x5F1710AC
 192.168.9.1 = 0xC0A80901 net 0x0109A8C0
$

This program was run on an Intel CPU running Linux. Consequently, because an Intel CPU is little-
endian by design, its host-ordered value (second column) and the networked-ordered value (last
column) appear different. If you run this same program on a big-endian machine, the last two
columns will be identical.

Using the inet_lnaof(3) Function

The inet_lnaof(3) function converts the IP number contained in a socket address, which is in
network byte order, to a host ID number with the network ID removed. The return value is in host-
endian order.

This function saves you from having to determine the class of the IP number and then extracting the
host ID portion. The function synopsis for inet_lnaof(3) is given as follows:

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

unsigned long inet_lnaof(struct in_addr addr);

The input argument addr must be the struct in_addr member of the socket address that you
will normally be working with. This value will be in network byte sequence, which is what the
function expects. An example of how to invoke the function using a sockaddr_in address is
given as follows:

struct sockaddr_in addr; /* Socket Address */
unsigned long host_id; /* Host ID number */

host_id = inet_lnaof(addr.sin_addr);

Page 86

Table 3.5 shows some example values that can be supplied to the input of inet_lnaof(3) and
the values that result. To make the reasons for the results clearer, the class of each example address
is included in the table.

Table 3.5: Example Values Returned from inet_lnaof(3) (the Hexadecimal values Are
Host-Endian Ordered)

IP Number Class Hexadecimal Dotted-Quad

44.135.86.12 A 0087560C 0.135.86.12

127.0.0.1 A 00000001 0.0.0.1

172.16.23.95 B 0000175F 0.0.23.95

192.168.9.1 C 00000001 0.0.0.1

You should notice in the table's class A examples only the first byte is zeroed in the returned result
(review Figure 3.1 to visualize the class boundaries again if you need to). In the class B example, the
upper 16 bits are zeroed in the returned result. Finally, the class C example in Table 3.5 zeroes out
the upper 3 bytes of the address, leaving the host ID behind in the last byte.

NOTE
The input is in network-endian sequence. The returned value is in host-endian
sequence.

Using the inet_netof(3) Function

The inet_netof(3) function is the companion to the inet_lnaof(3) function. The
inet_netof(3) function returns the network ID instead of the host ID value. In all other
respects, these functions are the same. The following lists the function synopsis:

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

unsigned long inet_netof(struct in_addr addr);

Again, the input is the struct in_addr member of the socket address sockaddr_in structure
that you'll normally be working with. An example of its use is given as follows:

struct sockaddr_in addr; /* Socket Address */
unsigned long net_id; /* Network ID number */

net_id = inet_netof(addr.sin_addr);

Table 3.6 shows the same example IP numbers used in Table 3.5. Table 3.6 shows the values
returned for the function inet_netof(3) function, however.

Page 87

Table 3.6: Example Values Returned from inet_netof(3) (the Hexadecimal Values Are Host-
Endian Ordered)

IP Number Class Hexadecimal Dotted-Quad

44.135.86.12 A 0000002C 0.0.0.44

127.0.0.1 A 0000007F 0.0.0.127

172.16.23.95 B 0000AC10 0.0.172.16

192.168.9.1 C 00C0A809 0.192.168.9

You might find the values in Table 3.6 to be a bit of a surprise. These return values are the network
bits shifted right, in order to eliminate the host ID bits. What you are left with is the right-justified
network ID number.

NOTE
The return values from inet_netof(3) are right-justified. The host ID bits are
shifted out.

Using the inet_makeaddr(3) Function

With the functions inet_lnaof(3) and inet_netof(3), you have the ability to extract host
and network ID values. To re-create a consolidated IP address with the network and host ID values
combined, you need to use the inet_makeaddr(3) function. Its function synopsis is as follows:

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

struct in_addr inet_makeaddr(int net,int host);

The arguments to the inet_makeaddr(3) function are described as follows:

1. The net argument is the network ID, right-justified and in host-endian order. This same value is
returned from the function inet_netof(3).

2. The host argument is the host ID, which is in host-endian order. This same value is returned
from the function inet_lnaof(3).

The value returned in the struct in_addr member of the sockaddr_in socket address. This
value is in network-endian sequence, which is correct for the socket address.

A program has been provided in Listing 3.7 that uses the three functions inet_lnaof(3),
inet_netof(3), and inet_makeaddr(3). The IP address is split apart from a
sockaddr_in structure into its network and host ID parts. Then, the socket address is zeroed out
and reconstructed from just the network and host ID parts.

Page 88

Example

Listing 3.7: makeaddr.c— Demonstration of inet_netof(3),inet_lnaof(3), and
inet_makeaddr(3)

1: /* makeaddr.c:
2: *
3: * Demonstrate inet_lnaof, inet_netof
4: * and inet_makeaddr(3) functions;
5: */
6: #include <stdio.h>
7: #include <unistd.h>
8: #include <stdlib.h>
9: #include <sys/types.h>
10: #include <sys/socket.h>
11: #include <netinet/in.h>
12: #include <arpa/inet.h>
13:
14: int
15: main(int argc,char **argv) {
16: int x;
17: struct sockaddr_in adr_inet;/* AF_INET */
18: const char *addr[] = {
19: "44.135.86.12",
20: "127.0.0.1",
21: "172.16.23.95",
22: "192.168.9.1"
23: };
24: unsigned long net, hst;
25:
26: for (x=0; x<4; ++x) {
27: /*
28: * Create a socket address:
29: */
30: memset(&adr_inet,0,sizeof adr_inet);
31: adr_inet.sin_family = AF_INET;
32: adr_inet.sin_port = htons(9000);
33: if (!inet_aton(addr[x],
34: &adr_inet.sin_addr))
35: puts("bad address.");
36:
37: /*
38: *Split address into Host & Net ID
39: */
40: hst = inet_lnaof(adr_inet.sin_addr);
41: net = inet_netof(adr_inet.sin_addr);
42:
43: printf("%14s : net=0x%08lX host=0x%08lX\n",
44: inet_ntoa(adr_inet.sin_addr),net,hst);
45:
46: /*

Page 89

47: * Zero the address to prove later that
48: * we can reconstruct this value:
49: */
50: memset(&adr_inet,0,sizeof adr_inet);
51: adr_inet.sin_family = AF_INET;
52: adr_inet.sin_port = htons(9000);
53:
54: adr_inet.sin_addr =
55: inet_makeaddr(net,hst);
56:
57: /*
58: * Now display the reconstructed
59: * address:
60: */
61: printf("%14s : %s\n\n",
62: "inet_makeaddr",
63: inet_ntoa(adr_inet.sin_addr));
64: }
65:
66: return 0;
67: }

To compile the program in Listing 3.7, perform the following:

$ make makeaddr
gcc -c -D_GNU_SOURCE -Wall makeaddr.c
gcc makeaddr.o -o makeaddr
$

The procedure used in Listing 3.7 is as follows:

1. The socket address is declared in line 17 as a sockaddr_in structure. This is the form of the
socket address that you'll normally work with.

2. Four example addresses are declared in lines 18 to 23.

3. The loop starts in line 26, and iterates through each of the four example IP numbers declared in
step 2.

4. Lines 30 to 35 set up a sockaddr_in socket address. Port 9000 was just an arbitrary port
number used as an example.

5. The host ID is extracted from the socket address adr_inet in line 40.

6. The network ID is extracted from the socket address adr_inet in line 41.

7. The example IP number, network ID, and host ID numbers are reported in lines 43 and 44.

8. The entire socket address adr_inet is zeroed out in line 50. This was done to eliminate any
doubt that the socket address is re-created later.

9. The address family and example port number are re-established in lines 51 and 52.

Page 90

10. The IP number is reconstructed by calling inet_makeaddr(3) in lines 54 and 55. The input
values are the extracted values net and hst from steps 5 and 6.

11. The reconstructed address is reported in lines 61 to 63.

Output

Running the program yields the following results:

$./makeaddr
 44.135.86.12 : net=0x0000002C host=0x0087560C
 inet_makeaddr : 44.135.86.12

 127.0.0.1 : net=0x0000007F host=0x00000001
 inet_makeaddr : 127.0.0.1

 172.16.23.95 : net=0x0000AC10 host=0x0000175F
 inet_makeaddr : 172.16.23.95

 192.168.9.1 : net=0x00C0A809 host=0x00000001
 inet_makeaddr : 192.168.9.1

$

In each case, you can see for yourself that the program did indeed re-create the final IP numbers
from the extracted host and network ID numbers.

What's Next

The beginning of this chapter might have been review to some, but perhaps new to you. However,
you can see now that this topic was important to cover, because the makeup of IP numbers and their
classification plays quite a large role when working with IP addresses. You also learned about
private IP number ranges, which might help you set up your own network.

One example program was described early in this chapter, which classified IP numbers. From this
example, you learned how this can be done. However, toward the end of this chapter, you also
learned that you do not always have to do this yourself. The functions inet_lnaof(3) and
inet_netof(3) were able to do this for you and extract the parts that you were interested in.

The remainder of this chapter dealt with conversion from strings to addresses, and addresses back to
strings. These are important functions for the network application designer to know. These functions
ease your workload and provide reliability and consistency. This is accomplished by having these
operations done in the same manner in each program that they are used in.

The next chapter will introduce you to socket types and protocols. With this knowledge, you will
learn how to create sockets to match your networking needs using the socket(2) function call.

Page 93

4—
Socket Types and Protocols

In Chapter 1, ''Introducing Sockets," you saw how the socketpair(2) function was used to
create a pair of local sockets. In this chapter, you will also learn about the socket(2) function to
create a socket. These two functions have the domain, the socket type, and the protocol ingredients
in common.

This chapter will build on the previous chapters by primarily focusing on the socket(2) function
call. This includes expanding upon the following:

• The domain argument

• The socket type argument

• The protocol argument

Page 94

Specifying the Domain of a Socket

In Chapter 1, you read that for the socketpair(2) function, the domain argument must be the
value AF_LOCAL or AF_UNIX (remember, these were equivalent). Then in Chapter 2, you might
have noticed that there was a socket(2) function called in Listing 2.9 that gave an AF_INET
value in the domain argument there (although we haven't properly covered socket(2) just yet). In
these and other cases, you've probably concluded that the domain argument in some way specifies
the protocol to be used.

Technically, the domain argument actually specifies the protocol family to be used rather than a
specific protocol. A bit of history is required, by way of explanation.

The BSD socket interface went through a series of evolutionary changes. In early socket
implementations, it was imagined that there might be the following breakdowns possible when
specifying a socket:

• One or more protocols of a protocol family

• One or more address formats for one or more protocols

Given this perceived possibility, the original socket interface provided ways to define the following
before a socket was created:

1. The protocol family to use. For example, the C macro constant PF_INET would indicate that the
Internet IP family of protocols should be used.

2. The specific protocol within the family to use. For example, the macro IPPROTO_UDP would
specify that the UDP protocol should be used.

3. The address family to use. For example, the macro constant AF_INET would indicate that an
Internet IP address is to be used with the specified protocol.

Experience later showed that there is never more than one address format defined for a given family
of protocols. The result of this is the inherited modern socket interface Linux uses today. What does
this mean to you? It means simply that the socket interface accepts either the PF_INET macro or
the AF_INET macro to specify the domain to be used.

Choosing PF_INET or AF_INET

Standards are encouraging that the PF_INET macro be used in preference over the AF_INET
macro to specify the domain (that is, the protocol family to use). However, such a large amount of
existing C program code has conformed to the older convention, and many programmers have
resisted making the change.

Page 95

In the previous chapters, the AF_UNIX, AF_LOCAL, and AF_INET macros were used in the
domain argument of the socketpair(2) and the socket(2) function calls. This works
because of AF_UNIX=PF_UNIX and AF_INET=PF_INET and so on. However, this might not
always be the case in the future.

To foster new standards and practices, the examples and illustrations in the remainder of this book
will follow the new standard. What this means is that socketpair(2) when called will be given
PF_LOCAL instead of AF_LOCAL for the domain argument value. Likewise, calls to socket(2)
will make a similar shift in practice.

NOTE
Note that the AF_UNIX constant is defined to be the same value as the PF_UNIX
constant under Linux. The same applies to all other constants of this series
(AF_INET is the same as PF_INET, for example). You will see valid program code
that uses the AF_INET value for the domain argument of the socketpair(2)
and socket(2) functions. Still other programs will use the PF_INET value
instead. This is confusing, but presently, both are valid.

The best advice seems to be that the PF_LOCAL series of macros should be used in
the socketpair(2) and socket(2) domain argument. The AF_LOCAL series
of macros should be used when initializing the socket address structures.

Using the PF_LOCAL and AF_LOCAL Macros

You should note that socket addresses themselves should still be initialized with the correct address
family constants such as AF_INET. The PF_INET chooses the protocol family in the socket
creation function, whereas the AF_INET macro chooses an address family in the socket address
structure. The following code shows how the C macro constants PF_LOCAL and AF_LOCAL are
applied:

Example

int z; /* Status Code */
int sp[2]; /* Socket Pair */
struct sockaddr_un adr_unix; /* AF_LOCAL */

z = socketpair (PF_LOCAL,SOCK_STREAM,0,sp);
. . .
adr_unix.sun_family = AF_LOCAL;

The PF_LOCAL macro is used in the socketpair(2) function to specify the protocol family to
use in the domain argument. Note that when the socket address is established in structure
adr_unix, the AF_LOCAL address family macro is used instead.

TE
AM
FL
Y

Team-Fly®

Page 96

Using the socket(2) Function

Before you learn more about the socket type argument and the protocol argument, the socket(2)
function itself will be presented. Unlike the socketpair(2) function, which can have its domain
specified only as PF_LOCAL (or its older equivalent PF_UNIX), the socket(2) function can be
used to create one socket of any supported protocol family. The function synopsis for socket(2)
is provided as follows:

#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

This function accepts three input arguments:

1. The domain of the socket (the protocol family to use)

2. The type of the socket required

3. The specific protocol to use within the protocol family

The socket is returned as the function return value if the call is successful. Like file descriptors, a
socket is returned if the value is zero or positive in value. A value of -1 is returned if there was an
error. The external variable errno will have the reason code posted to it when an error has been
returned.

One difficult aspect of the socket(2) function for new programmers is the bewildering array of
choices that must be made for the three input arguments. The purpose of this entire chapter is to
teach you what those choices are and how to choose between them.

Choosing a Socket Type

You already know that choosing a domain value for the socket(2) or socketpair(2)
function chooses a protocol family to be used. For example, you know that

• PF_LOCAL (which is the same as PF_UNIX) indicates that a local UNIX socket protocol family is
being specified.

• PF_INET indicates that the Internet family of protocols is used.

Consequently, you now have to learn about only two more input
arguments.

The socket type argument in the socket(2) and socketpair(2) function calls indicates how
a socket will interface with your program. But this is not the whole story, as this parameter also has
implications for the protocol that is selected. (You'll understand this better as you progress through
this chapter.)

Page 97

The programmer typically chooses one of the following values for the socket type argument:

• SOCK_STREAM *

• SOCK_DGRAM *

• SOCK_SEQPACKET

• SOCK_RAW

The entries marked with an asterisk (*) are the two you'll normally use. The SOCK_SEQPACKET
type is commonly used on non-Internet protocols such as X.25, or the amateur radio protocol
AX.25. There are a few additional types that could be listed here. However, they are outside of the
scope of this text.

NOTE
The SOCK_RAW macro specifies that the programmer wants a "raw" interface to the
socket. This allows the programmer more direct control over the communications
and its packets. However, it also requires an intimate knowledge of the protocol and
its underlying packet structure. For this reason, the SOCK_RAW socket will not be
studied in this book.

Understanding the SOCK_STREAM Socket Type

The SOCK_STREAM socket type is used when you want to perform stream I/O with a remote socket.
A stream in the socket sense is the same concept that applies to a UNIX pipe. Bytes written to one
end of the pipe (or socket) are received at the other end as one continuous stream of bytes. There are
no dividing lines or boundaries. There is no record length, block size, or concept of a packet at the
receiving end. Whatever data is currently available at the receiving end is returned in the caller's
buffer.

Example

An example to review might help illustrate the stream I/O concept. In this example, there is a local
process on your host that has connected to a remote process on a remote host. The local host is
going to send data to the remote host in two separate write(2) calls as follows:

1. The local process writes 25 bytes of data to be sent to the remote process, by socket. The Linux
kernel might or might not choose to buffer this data. Buffering helps improve the performance of the
kernel and the network facilities.

2. Another 30 bytes are written by the local process to be sent to the remote process.

3. The remote process executes a function designed to receive data from the socket. The receiving
buffer in this example allows up to 256 bytes to be read. The remote process receives the 55 bytes
that were written in steps 1 and 2.

Page 98

Note what has happened. The local process has performed two separate writes to the socket. These
could be two different messages or two different data structures. Yet, the remote process received all
of the written data as one combined unit of 55 bytes.

Another way to look at this example is that the local process might have had to create one message
in two partial writes. The receiving end received the message as one combined unit.

At other times, depending on timing and buffer availability, the remote process might first get the
original piece of 25 bytes (or perhaps even less). Then, on a successive receive function call, obtain
the remaining 30 bytes. In short, a stream socket does not preserve any message boundary. It simply
returns the data it has to the receiving application.

The receiving end cannot tell what the original message boundaries were. In our example, it cannot
tell that the first write(2) was for 25 bytes and the second was for 30. All it can know is the data
bytes that it received and that the total bytes sent was 55.

A stream socket has one other important property. Like a UNIX pipe, the bytes written to a stream
socket are guaranteed to arrive at the other end in the exact same order in which they were written.
With protocols such as IP, in which packets can take different routes to their destination, it
frequently happens that later packets arrive ahead of their earlier cousins. The SOCK_STREAM
socket ensures that your receiving application accepts data bytes in precisely the same sequence in
which they were originally written.

Let's recap the properties of a SOCK_STREAM socket:

• No message boundaries are preserved. The receiving end cannot determine how many write(2)
calls were used to send the received data. Nor can it determine where the write(2) calls began or
ended in the stream of bytes received.

• The data bytes received are guaranteed to be in precisely the same order in which they were
written.

• All data written is guaranteed to be received by the remote end without error. If a failure occurs, an
error is reported after all reasonable attempts at recovery have been made. Any recovery attempts
are automatic and are not directed by your application program.

The last point presented is a new one to this discussion. A stream socket implies that every
reasonable effort will be made to deliver data written to one socket, to the socket at the other end. If
this cannot be done, the error will be made known to the receiving end as well as the writing end. In
this respect, SOCK_STREAM socket is a reliable data transport. This feature makes it a very popular
socket type.

Page 99

There is one more property of the SOCK_STREAM type of socket. It is

• The data is transported over a pair of connected sockets.

In order to guarantee delivery of data, and to enforce byte ordering, the underlying protocols use a
connected pair of sockets. For the moment, simply know that the SOCK_STREAM type implies that
a connection must be established before communications can proceed.

Understanding the SOCK_DGRAM Socket Type

There are some situations in which it is not absolutely required that data must arrive at the remote
end in sequence. Additionally, it might not even be required that the data delivery be reliable. The
following lists the characteristics of a SOCK_DGRAM socket type:

• Packets are delivered, possibly out of order at the receiving end.

• Packets might be lost. No attempt is made at recovering from this type of error. Nor is it
necessarily known at the receiving end that a packet was lost.

• Datagram packets have practical size limits. Exceeding these limits will make them undeliverable
through certain routers and nodes.

• Packets are sent to remote processes in an unconnected manner. This permits a program to address
its message to a different remote process, with each message written to the same socket.

NOTE
Reliability is not a concern when noncritical logging information is transmitted. This
information is transmitted on a "best efforts" basis. When a noncritical log packet is
lost, it is considered an acceptable loss.

Unlike a streamed connected socket, a datagram socket simply passes data by individual packets.
Remember that for protocols such as IP, individual packets can be routed different ways. This
frequently causes packets to arrive at the destination in a different sequence from which they were
sent. The socket type SOCK_DGRAM implies that receiving these messages out of order is acceptable
to the application.

Sending a datagram packet is unreliable. If a packet is transmitted and not received correctly by an
intervening router or the receiving host, then the packet is simply lost. No record of its existence is
kept, and no attempt to recover from the transmission error is made.

Packets can also be lost if they are unsuitably large. Routers in the path between the sending host
and the receiving host will drop a packet if it is

Page 100

too large or lacks the buffer space to pass it. Again, there is no error recovery implied in a
SOCK_DGRAM socket when this happens.

The last characteristic that is of interest to you is the fact that the SOCK_DGRAM type does not imply
a connection. Each time you send a message with your socket, it can be destined for another
recipient. This property of the SOCK_DGRAM type makes it attractive and efficient.

A connection-oriented protocol, on one hand, requires that a connection establishment procedure be
carried out. This requires a certain number of packets to be sent and received in order to establish
the connection. The SOCK_DGRAM type, on the other hand, is efficient because no connection is
established.

Before choosing to use SOCK_DGRAM, however, you must carefully weigh the following:

• Need for reliability

• Need for sequenced data

• Data size requirements

Understanding the SOCK_SEQPACKET Socket Type

Although the SOCK_SEQPACKET type will not be used in this book, you should at least become
familiar with it. This socket type is important for protocols such as X.25 and AX.25 that use it. It is
very similar to SOCK_STREAM but has one subtle distinction. The difference is that although the
SOCK_STREAM socket does not preserve message boundaries, the SOCK_SEQPACKET does. When
X.25 is used, for example, and SOCK_SEQPACKET is chosen, each packet is received in the same
unit size in which it was originally written.

For example, imagine the sending end performing the following two writes:

1. Write a message one of 25 bytes.

2. Write a message two of 30 bytes.

Although the receiving process might indicate that it can accept up to 256 bytes in one read(2)
call, the following receive events will occur:

1. A message will be received with a length of 25 bytes. This corresponds to the length of the first
message that was written by the sending process.

2. A second message will be received with a length of 30 bytes. This corresponds to the length of the
second write of the sending process.

Although the receiving buffer was able to receive the total combined message length of 55 bytes,
only the first message for 25 bytes is received by the first read(2) call on the socket. This tells the
application that this

Page 101

message was precisely 25 bytes in length. The next call to read(2) will fetch the next message of
30 bytes, regardless of whether there is more data that could be returned.

With this behavior, you can see that SOCK_SEQPACKET preserves the original message
boundaries. The following provides a summary of characteristics for this socket type:

• Message boundaries are preserved. This feature distinguishes the SOCK_SEQPACKET type from
the SOCK_STREAM type.

• The data bytes received are guaranteed to be in precisely in the same order in which they were
written.

• All data written is guaranteed delivered to the remote end without error. If it cannot be delivered
after reasonable attempts at automatic recovery, an error is reported to the sending and receiving
processes.

• The data is transported over a pair of connected sockets.

NOTE
Not all socket types can be used with all protocols. For example, SOCK_STREAM is
supported for the PF_INET protocol family, but SOCK_SEQPACKET is not.
Conversely for PF_X25, the socket type SOCK_SEQPACKET is supported, but
SOCK_STREAM is not.

Choosing a Protocol

You might think that with the protocol family specified, and the socket type specified for a new
socket, there would be little need for anything else. Although normally there is only one protocol
used for a given protocol family and socket type, there are some situations where this isn't true. The
protocol parameter of the socket(2) or socketpair(2) function allows you to be more
specific when this need arises.

The good news is that it is rare that you need to choose a value for this parameter. Normally, you
simply specify zero for the protocol. This allows the Linux kernel to choose the correct protocol for
the other parameters that you have specified.

NOTE
The protocol argument of the socket(2) or socketpair(2) function is
normally supplied as the value zero. This tells the kernel to choose the correct
protocol according to the domain and socket type parameter values chosen.

See protocols(5) or the include file <netinet/in.h> for macro entries such
as IPPROTO_TCP.

Page 102

Some programmers prefer, however, to explicitly describe the protocol argument value. This might
be important for certain applications in which a specific protocol is required, and no substitution is
permitted. This allows you to choose the final protocol used rather than rely on today's "kernel of the
month." The downside of this is that when networks and protocols evolve, someone might have to
go back and revisit your source code to make it work.

In this book, you'll learn about the only four combinations you'll need to use.

Using PF_LOCAL and SOCK_STREAM

You will use a zero for the protocol argument in the socket(2) or socketpair(2) functions
for PF_LOCAL sockets. This is the only supported value for that argument. A valid socket(2)
call using PF_LOCAL and SOCK_STREAM is shown as follows:

Example

int s;

s = socket
(PF_LOCAL,SOCK_STREAM,0);

if (s == -1)
 perror("socket()");

This creates a stream socket to allow one process to communicate with another process within the
same host. The steps are

1. Integer s is declared to receive the socket number (it is treated the same as a file descriptor).

2. The socket(2) function is called. The domain argument is set to PF_LOCAL, and the socket
type argument is set to SOCK_STREAM to request a stream socket. The protocol argument is set to
zero, which is the only valid value for PF_LOCAL sockets.

3. The value s is tested to see whether it is the value -1. If it is, then an error has occurred, and
errno has the reason for it. Function perror(3) is used in this example to report what the
errno code indicates.

4. If s is not -1, then it represents a valid socket. It can be used in most places in which a file
descriptor is valid (in read(2) and write(2) function calls, for example).

NOTE
At the present time, zero is the only valid value for the protocol argument of the
socket(2) or socketpair(2) function calls, when the domain argument is
PF_LOCAL (or PF_UNIX).

Page 103

Using PF_LOCAL and SOCK_DGRAM

You will use SOCK_DGRAM on a local socket when you want to preserve message boundaries.
Again, no specific protocol type is permitted for PF_LOCAL domain sockets at this time. Take a
look at the following example:

Example

int s;

s = socket(PF_LOCAL,SOCK_DGRAM,0);

if (s == -1)
 perror("socket()");

The steps used to create this local datagram socket are

1. Integer s is declared to receive the socket number (it is treated the same as a file descriptor).

2. The socket(2) function is called. The domain argument is set to PF_LOCAL, and the socket
type argument is set to SOCK_DGRAM to request a datagram socket. The protocol argument is set to
zero, which is the only valid value for PF_LOCAL sockets.

3. The value s is tested to see whether it is the value -1. If it is, then an error has occurred, and
errno has the reason for it. Function perror(3) is used in this example to report what the
errno code indicates.

4. If s is not -1, then it represents a valid
socket.

Datagram sockets are attractive to use for PF_LOCAL sockets because they are mostly reliable and
they preserve message boundaries. They don't get lost in network transmission errors as PF_INET
datagrams can, because they remain internal to the local host. However, you should assume that
kernel buffer shortages might cause PF_LOCAL packets to be lost, even if this rarely occurs.

NOTE
When a socket is created, it is nameless (without an address). A valid socket address
must be set up and the function bind(2) called to give the socket an address.

Using PF_INET and SOCK_STREAM

At the present time, a zero in the protocol argument of the socket(2) function for the domain
PF_INET will cause the kernel to choose IPPROTO_TCP. This causes the socket to use the
TCP/IP protocol. The TCP part of the TCP/IP designation is the transport level protocol that is
built on top of the IP layer. This provides the data packet sequencing, error control, and recovery.
In short, TCP makes it possible to provide a stream socket using the Internet protocol.

Page 104

As you see in the following example, most application programmers will choose to simply specify
the protocol argument as zero, allowing the kernel to correctly choose the protocol:

Example

int s;

s = socket(PF_INET,SOCK_STREAM,0);

if (s == -1)
 perror("socket()");

The steps used to create Internet stream sockets are

1. Integer s is declared to receive the socket number.

2. The socket(2) function is called. The domain argument is set to PF_INET to choose the
Internet family of protocols. The socket type argument is set to SOCK_STREAM to request a stream
socket. The protocol argument is set to zero, which allows the kernel to choose the correct protocol
for the combination of PF_INET and SOCK_STREAM.

3. The value s is tested to see whether it is the value -1. If it is, then an error has occurred, and
errno has the reason for it. Function perror(3) is used in this example to report what the
errno code indicates.

4. If s is not -1, then it represents a valid socket. It can be used in most places where a file
descriptor is valid (in read(2) and write(2) function calls, for example).

Example

Specifying zero for the protocol argument of socket(2) will imply the use of TCP/IP. However,
if you like having full control, or worry that future kernel defaults might be unsuitable, you can
explicitly choose the protocol as follows:

int s;

s = socket(PF_INET,SOCK_STREAM,IPPROTO_TCP);

if (s == -1)
 perror("socket()");

Looking only at the socket(2) function call, the arguments can be explained as follows:

1. The domain argument is specified as PF_INET as before, to indicate that the Internet family of

protocols is required.

2. The socket type argument is specified as SOCK_STREAM to request a stream I/O socket, as
before.

TE
AM
FL
Y

Team-Fly®

Page 105

3. The protocol argument, however, has been explicitly specified as IPPROTO_TCP in this case.
This chooses the use of the TCP/IP protocol for this socket.

The IPPROTO_TCP macro is defined by the include file:

#include <netinet/in.h>

Using PF_INET and SOCK_DGRAM

This section describes the last socket combination that you will use in the applications within this
book. The combination of PF_INET and SOCK_DGRAM causes the kernel to choose the UDP
protocol. UDP is short for User Datagram Protocol. A datagram is a standalone packet of
information.

This protocol allows the application to send datagrams from your socket to the remote socket, to
which you have addressed it. Note again that this service is not reliable, but it is suitable for many
types of services in which efficiency is highly desirable. For example, the Network Time Protocol
(NTP) uses UDP because it is efficient and message-oriented, and lost messages can be tolerated.
The impact of a lost message is that the time synchronization might take longer to achieve or that
some accuracy is lost when expecting replies from multiple NTP servers.

To create a UDP socket, you can use zero for the protocol argument. The following shows an
example:

Example

int s;

s = socket(PF_INET,SOCK_DGRAM,0);
if (s == -1)
 perror("socket()");

The procedure used is the same general procedure that has been used in the preceding sections.
However, the arguments used in the socket(2) function require explanation:

1. The domain argument is specified as PF_INET, as before, to indicate that the Internet family of
protocols is required.

2. The socket type argument is specified as SOCK_DGRAM to request a datagram socket.

3. The protocol argument is specified as zero to allow the kernel to choose the correct protocol for
the PF_INET and SOCK_DGRAM combination.

Example

However, if you prefer to specify UDP explicitly, you might do it like this instead:

int s;

Page 106

s = socket(PF_INET,SOCK_DGRAM,IPPROTO_UDP);

if (s == -1)
 perror("socket()");

The arguments for this socket(2) call are described as follows:

1. The domain argument is specified as PF_INET, as before, to indicate that the Internet family of
protocols is required.

2. The socket type argument is specified as SOCK_DGRAM to request a datagram socket.

3. The protocol argument is specified as IPPROTO_UDP to explicitly indicate that only the UDP
protocol is permitted for this socket.

There is a number of other socket combinations that can be created, but these are too advanced to be
considered here. You will be happy to know that most of the time you will use only the four
socket(2) parameter combinations that have just been described and are summarized in Table
4.1.

Table 4.1: Table of Commonly Used Socket Argument Values

Domain Socket Type Protocol Description

PF_LOCAL SOCK_STREAM 0 Local stream socket

PF_LOCAL SOCK_DGRAM 0 Local datagram socket

PF_INET SOCK_STREAM IPPROTO_TCP TCP/IP stream socket

PF_INET SOCK_DGRAM IPPROTO_UDP UDP datagram socket

Note that the last two entries (domain PF_INET) shown in Table 4.1 may have zero specified
instead for the protocol argument. This decision is left to the discretion of the programmer.

Socket Domain and Type Summary

This section has been provided to allow you to review in summary form what you have learned in
this chapter. Figure 4.1 illustrates the relationship that exists between the three socket(2)
function arguments.

You'll notice that the domain argument appears on the left of Figure 4.1. The domain argument is
the first argument of the socket(2) and socketpair(2) functions. It is also the least specific
of the three values. The domain argument chooses a family of protocols that you want to work with.

The second argument defines the socket type. Choosing the socket type eliminates a number of
variations within the specified protocol family. Looking at Figure 4.1, you can see that choosing
SOCK_DGRAM excludes protocols that stem from SOCK_STREAM above it.

Page 107

Figure 4.1:
This diagram summarizes socket(2) parameter relationships.

Finally, on the very right, Figure 4.1 provides a sampling of the protocol choices that are available
in the socket(2) function call. This parameter finalizes the protocol to be used.

NOTE
The remainder of this book will focus on the use of the PF_LOCAL and PF_INET
protocol families from the socket interface. This is done in part to keep you focused
on the important socket concepts that you need to master. Additionally, these will be
the protocol families that you will use most of the time.

Other Linux-Supported Protocols

Linux is collecting new protocols within the kernel, almost with each new release. Each protocol has
its use. For example, the PF_APPLETALK protocol family might be just what you need to make
that dusty old Mac more useful to you. With the knowledge of sockets that you will gain in this
book, you'll be able to write programs using these and other exotic protocols.

Page 108

Table 4.2 summarizes some of this chapter's information about the local and Internet protocols.

Table 4.2: Table of Local and Internet socket(2) Parameters

Domain Socket Type Description/Notes

PF_LOCAL SOCK_STREAM Provides a stream-oriented socket within the local
host. This is a connection-oriented service—
reliable and sequenced. Note that PF_UNIX is
equivalent to PF_LOCAL.

PF_LOCAL SOCK_DGRAM Provides datagram services within the local host.
Note that this service is connectionless, but
reliable, with the possible exception that packets
might be lost if kernel buffers should become
exhausted.

PF_INET SOCK_STREAM Stream I/O services for Internet connected
sockets. Implies the TCP/IP protocol — reliable
and sequenced.

PF_INET SOCK_DGRAM Datagram I/O services for Internet connectionless
sockets. This combination implies UDP (User
Datagram Protocol). This service is unreliable.

PF_INET6 SOCK_STREAM Stream I/O services for Internet IPv6 connected
sockets. Implies the TCP/IP protocol, reliable, and
sequenced.

PF_INET6 SOCK_SEQPACKET Stream I/O services for Internet IPv6 connected
sockets. Implies the use of the TCP/IP protocol.
This service is reliable, message boundaries are
preserved, and sequence of data is preserved.

PF_INET6 SOCK_DGRAM Datagram I/O services for Internet IPv6
connectionless sockets. This combination implies
UDP (User Datagram Protocol). This service is
unreliable.

Table 4.3 includes references to a few exotic protocol families that will not be explored in this book.
However, look at this summary as a reference for you to use someday when you go to create that
exotic socket.

Table 4.3: Table of Exotic socket(2) Parameters

Domain Socket Type Description/Notes

PF_X25 SOCK_SEQPACKET Stream I/O services for the X.25 protocol. This
service is connection-oriented and reliable,
message boundaries are preserved, and data
sequence is preserved.

PF_AX25 SOCK_SEQPACKET Stream I/O services for the amateur radio
protocol AX.25. This service is connection-
oriented and reliable, message boundaries are
preserved, and data sequence is preserved.

(table continued on next page)

Page 109

(table continued from previous page)

Domain Socket Type Description/Notes

PF_AX25 SOCK_DGRAM Datagram service for the amateur radio protocol
AX.25. This provides for unreliable
connectionless communications.

PF_APPLETALK SOCK_STREAM Stream I/O services for the AppleTalk-
connected sockets. This connection-oriented
service is reliable and data sequence is
preserved.

PF_APPLETALK SOCK_DGRAM This has been provided in Linux as an
extension. See kernel documentation or sources
for more details.

PF_ECONET SOCK_DGRAM An implementation of the Acorn Econet and
AUN protocols.

PF_IPX SOCK_STREAM IPX protocol, stream socket.

PF_IPX SOCK_DGRAM IPX protocol, datagram socket.

PF_IPX SOCK_SEQPACKET IPX protocol, sequential packet socket.

PF_IRDA SOCK_STREAM IrDA subsystem support, using a stream socket
(infrared communications).

PF_IRDA SOCK_SEQPACKET IrDA Subsystem support, using a stream socket
that preserves message boundaries (infrared
communications).

PF_NETROM SOCK_SEQPACKET Amateur radio NetROM protocol.

PF_ROSE SOCK_SEQPACKET Amateur radio X.25 PLP 1protocol.

Researching Other Protocols

Many of the protocols listed in Table 4.3 are still undergoing development. Consequently,
documentation is sparse in some areas. Nevertheless, here are some ideas regarding where you can
scare up more information:

• Linux HOWTO and MINI-HOWTO documents.

• Linux FAQ documents.

• The /usr/src/linux/Documentation/networking Linux source directory. If you use a
different source directory, then substitute that for the directory /usr/src/linux.

• The Linux source directory /usr/src/linux/net. There, you will find other subdirectories of
source code, many of which have to do with specific protocols.

There are many HOWTO and MINI-HOWTO documents on the Internet that you can search out.
FAQ is short for Frequently Asked Questions. Sometimes these files can be very helpful.

Page 110

Discovering Protocol Families

Most of the time, the undocumented features will require that you look at some kernel source code
and include files. Do not be daunted by this prospect. Many useful bits of information can be
determined by looking at this code, without getting too intimate with the details.

The protocol family macros are defined by including the file:

#include <sys/socket.h>

However, this include file actually includes another file, which then defines the protocol macro
constants. The file of interest is the pathname:

/usr/include/bits/socket.h

A simple way to list all of the protocols that might have support in the kernel is to perform a simple
grep command. Listing 4.1 shows how to perform this, and what the results might look like.

Output

Listing 4.1: Grepping for Protocol Family Support

$ grep PF_/usr/include/bits/socket.h
#define PF_UNSPEC 0 /* Unspecified. */
#define PF_LOCAL 1 /* Local to host (pipes and file-domain). */
#define PF_UNIX PF_LOCAL /* Old BSD name for PF_LOCAL. */
#define PF_FILE PF_LOCAL /* Another non-standard name for PF_LOCAL. */
#define PF_INET 2 /* IP protocol family. */
#define PF_AX25 3 /* Amateur radio AX.25. */
#define PF_IPX 4 /* Novell Internet Protocol. */
#define PF_APPLETALK 5 /* AppleTalk DDP. */
#define PF_NETROM 6 /* Amateur radio NetROM. */
#define PF_BRIDGE 7 /* Multiprotocol bridge. */
#define PF_ATMPVC 8 /* ATM PVCs. */
#define PF_X25 9 /* Reserved for X.25 project. */
#define PF_INET6 10 /* IP version 6. */
#define PF_ROSE 11 /* Amateur radio X.25 PLP. */
#define PF_DECnet 12 /* Reserved for DECnet project. */
#define PF_NETBEUI 13 /* Reserved for 802.2LLC project. */
#define PF_SECURITY 14 /* Security callback pseudo AF. */
#define PF_KEY 15 /* PF_KEY key management API. */
#define PF_NETLINK 16
#define PF_ROUTE PF_NETLINK /* Alias to emulate 4.4BSD. */
#define PF_PACKET 17 /* Packet family. */
#define PF_ASH 18 /* Ash. */
#define PF_ECONET 19 /* Acorn Econet. */
#define PF_ATMSVC 20 /* ATM SVCs. */
#define PF_SNA 22 /* Linux SNA project. */
#define PF_IRDA 23 /* IRDA sockets. */
#define PF_MAX 32 /* For now.. */
#define AF_UNSPEC PF_UNSPEC
#define AF_LOCAL PF_LOCAL

Page 111

#define AF_UNIX PF_UNIX
#define AF_FILE PF_FILE
#define AF_INET PF_INET
#define AF_AX25 PF_AX25
#define AF_IPX PF_IPX
#define AF_APPLETALK PF_APPLETALK
#define AF_NETROM PF_NETROM
#define AF_BRIDGE PF_BRIDGE
#define AF_ATMPVC PF_ATMPVC
#define AF_X25 PF_X25
#define AF_INET6 PF_INET6
#define AF_ROSE PF_ROSE
#define AF_DECnet PF_DECnet
#define AF_NETBEUI PF_NETBEUI
#define AF_SECURITY PF_SECURITY
#define pseudo_AF_KEY PF_KEY
#define AF_NETLINK PF_NETLINK
#define AF_ROUTE PF_ROUTE
#define AF_PACKET PF_PACKET
#define AF_ASH PF_ASH
#define AF_ECONET PF_ECONET
#define AF_ATMSVC PF_ATMSVC
#define AF_SNA PF_SNA
#define AF_IRDA PF_IRDA
#define AF_MAX PF_MAX
$

Listing 4.1 illustrates one other interesting fact. Note how the PF_ series of macros are defined in
terms of AF_ series macro constants in most cases.

Earlier, it was mentioned that the AF_ constants are equivalent to the PF_ constants, although this
might not always be the case in the future.

In any case, Listing 4.1 shows a plethora of protocol families. All of these are not necessarily
supported, however. Some will be defined here for future use. Others are in development. In almost
all cases, you'll need to be sure that you have compiled in kernel support for the protocol families
that you want to use.

NOTE
You must have the appropriate support compiled into the kernel before you can use
certain protocol families. Exotic protocols are often not compiled into standard
distribution releases.

CAUTION
Some protocol implementations in Linux are in the development stage, and might
cause the kernel to crash with their use. Consequently, you should use backup
precautions, or exercise new protocol options on a development host where you can
afford to crash it.

Page 112

Discovering Socket Types

Knowing about the protocol families is part of the battle when attempting to create an exotic socket.
You now need to know about the socket types that are supported by the protocol family that you
have selected. This can usually be done using the following simple procedure:

1. Change to the Linux kernel source directory (you might need to install it first). For example, this
might require you to do cd /usr/linux/src.

2. Change to the Linux network source code subdirectory. For example, you would do cd ./net
in order to change to that subdirectory.

3. List the directory with the command ls -F. This will cause the subdirectories to be shown with
a trailing / (slash) after them.

4. Usually, the subdirectory name is indicative of the protocol in which you might be interested.
Change to that subdirectory (for example, cd ipx).

5. Perform a grep command for anything starting with SOCK_.

Output

Usually, this is sufficient to list the socket types that you want to know about. Listing 4.2 shows an
example session, following these steps.

Listing 4.2: Listing the Supported Socket Types for a Protocol Family

$ cd /usr/src/linux
$ cd ./net
$ ls -F
802/ decnet/ netsyms.c socket.o
Changes econet/ netsyms.o sunrpc/
Config.in ethernet/ network.a sysctl_net.c
Makefile ipv4/ packet/ sysctl_net.o
README ipv6/ protocols.c unix/
TUNABLE ipx/ protocols.o wanrouter/
appletalk/ irda/ rose/ x25/
ax25/ lapb/ sched/
bridge/ netlink/ sock_n_syms.o
core/ netrom/ socket.c
$ cd ipx
$ ls -F
Config.in af_ipx.c sysctl_net_ipx.c
Makefile af_spx.c
$ grep SOCK_ *.c
af_ipx.c: s->state, SOCK_INODE (s->socket) ->i_uid);
af_ipx.c: case SOCK_DGRAM:
af_ipx.c: case SOCK_SEQPACKET:
af_ipx.c: case SOCK_STREAM: /* Allow higher levels to piggyback */
af_ipx.c: if(sock->type == SOCK_DGRAM)
af_ipx.c: SOCK_DEBUG(sk,

Page 113

af_ipx.c: SOCK_DEBUG(sk,
af_ipx.c: SOCK_DEBUG(sk, "IPX: bind failed because port %X in use.\n*,
af_ipx.c: SOCK_DEBUG(sk, "IPX: bound socket 0x%04x.\n",
af_ipx.c: if(sock->type !== SOCK_DGRAM)
af_spx.c: case SOCK_SEQPACKET:
af_spx.c: if(sock->type != SOCK_SEQPACKET)
af_spx.c: if(sock->type != SOCK_SEQPACKET)
af_spx.c: /* route socket(PF_IPX,SOCK_SEQPACKET) calls through spx_create() */
$

From the grep output shown in Listing 4.2, you can immediately see that socket types
SOCK_DGRAM and SOCK_STREAM are probably supported (to be certain, you need to examine the
logic of the code, however). Toward the end, there also appears to be a reference to
SOCK_SEQPACKET, suggesting that it, too, might be supported.

The other item of interest is that you know that you probably want to peruse the file af_ipx.c for
notes and comments. Sometimes, the comments can be useful to find out what is supported and what
is not.

What's Next

In this chapter, you have taken a careful look at the socket(2) function call. The extra level of
theory and detail in this chapter was necessary for you to cover because much hinges upon the
choices you make in the socket(2) call. With this working knowledge of the socket(2)
function, you are well on your way to putting sockets to work.

The next chapter will turn your attention primarily to the bind(2) function call. This function is
important because it enables you to assign addresses to the sockets that you have learned how to
create in this chapter.

TE
AM
FL
Y

Team-Fly®

Page 115

5—
Binding Addresses to a Socket

The preceding chapters prepared you with the means to create sockets and to form addresses for
them. This chapter will expand upon this, enabling you to understand how bind(2) works and
how to apply it correctly.

In this chapter, you will learn

• How the bind(2) function call assigns an address to a socket

• How to obtain the local socket address from a socket that already has an existing address

• How to obtain the peer socket address

• How bind(2) can choose the network interface that is used for communication

Chapter 2, ''Domains and Address Families," covered addresses in detail. This background will
make this chapter easy for you to follow. Having mastered the bind function, you will be able to
put sockets to work in the next chapter.

Page 116

The Purpose of the bind(2) Function

When your socket is created by the socket(2) function, it is nameless. You saw in Chapter 1,
"Introducing Sockets," that sockets could be used without addresses when the socketpair(2)
function was illustrated. However, this worked only because those sockets were created this way,
within one Linux kernel. This cannot be done for sockets that must be joined between two different
hosts.

A nameless socket is otherwise difficult to use. No one can send information to your nameless
socket, because it is like a telephone without a telephone number. Consequently, programmers must
bind a name to the socket to make it reachable by someone else. This is like assigning a telephone
number to a new telephone so that it can be called. The bind(2) function call permits you to
assign an address to a socket in the same manner.

A "name" in the context of this chapter has nothing to do with hostnames such as sunsite.unc.edu.
The word "name" is often used when discussing the bind(2) function, and it refers to the address
of the socket. The address, after all, is a name of sorts. To avoid confusion, however, the term
address will be favored in this chapter.

Using the bind(2) Function

The purpose of the bind(2) function is to assign a socket address to a nameless socket. The
function synopsis is given as follows:

#include <sys/types.h>
include <sys/socket.h>

int bind(int sockfd, struct sockaddr *my_addr, int addrlen);

The function accepts the following three input arguments:

1. The socket sockfd file descriptor that was returned by a prior socket(2) call.

2. The address my_addr to assign to the socket.

3. The length of the address my_addr in bytes (argument addrlen).

The function, if it is successful, returns the value zero. Otherwise, the value -1 is returned and the
variable errno has the reason for the failure posted to it.

NOTE
The socket provided to bind(2) must be presently nameless (without an address).
You cannot rebind a socket to a new address.

Page 117

The address argument must be a pointer to the address structure. You will note that the generic
address type used is the sockaddr structure type. This means that you will need to apply a C
language cast operator to satisfy the compiler that you have passed the correct pointer type. Listing
5.1 shows a program that calls upon bind(2) to establish an Internet address. Note the use of the
inet_aton(3) and bind(2) function calls.

Example

Listing 5.1: bind c— The bind(2) Function

1: /* af_inet.c:
2: *
3: * Demonstrating the bind(2) function
4: * by establishing a Specific AF_INET
5: * Socket Address:
6: */
7: #include <stdio.h>
8: #include <unistd.h>
9: #include <stdlib.h>
10: #include <errno.h>
11: #include <string.h>
12: #include <sys/types.h>
13: #include <sys/stat.h>
14: #include <sys/socket.h>
15: #include <netinet/in.h>
16: #include <arpa/inet.h>
17:
18: /*
19: * This function reports the error and
20: * exits back to the shell:
21: */
22: static void
23: bail(const char *on_what) {
24: perror(on_what);
25: exit(1);
26: }
27:
28: int
29: main(int argc,char **argv,char **envp) {
30: int z; /* Status return code */
31: int sck_inet; /* Socket */
32: struct sockaddr_in adr_inet;/* AF_INET */
33: int len_inet; /* length */
34:
35: /* Create an IPv4 Internet Socket */
36: sck_inet = socket(AF_INET,SOCK_STREAM,0);
37:
38: if (sck_inet == -1)

continues

Page 118

Listing 5.1: continued

39: bail("socket()");
40:
41: /* Create an AF_INET address */
42: memset(&adr_inet,0,sizeof adr_inet);
43:
44: adr_inet.sin_family = AF_INET;
45: adr_inet.sin_port = htons(9000);
46:
47: inet_aton
("127.0.0.24",&adr_inet.sin_addr);
48:
49: len_inet = sizeof adr_inet;
50:
51: /* Now bind the address to the socket */
52: z = bind(sck_inet,
53: (struct sockaddr *)&adr_inet,
54: len_inet);
55:
56: if (z == -1)
57: bail("bind()");
58:
59: /* Display all of our bound sockets */
60: system("netstat -pa --tcp 2>/dev/null | "
61: "sed -n '1,/^Proto/p;/bind/p'");
62:
63: close(sck_inet);
64: return 0;
65: }

NOTE
If the netstat(1) command on your system does not support the options used in
lines 60 and 61 of Listing 5.1, substitute the following call if you have the
lsofcommand installed:
system("lsof -i tcp | sed -n '1p;/bind/p'");

The program in Listing 5.1 is much like the ones you saw in Chapter 2. The steps used in the
program are

1. Variable sck_inet will receive the socket when it is created (line 31).

2. Variable adr_inet will hold the sockets address that will be bound to it (line 32).

3. Variable len_inet will hold the length of the socket address in bytes (line 33).

4. The socket is created by socket(2) in line 36.

Page 119

5. Step 4 is checked for errors in lines 38 and 39. If an error is detected, the function bail() is
called. bail() reports the error and exits the program.

6. Lines 42 to 47 initialize the new socket address that is to be bound to the socket.

7. Variable len_inet is set to the size of the socket address (line 49).

8. The bind(2) function is called in lines 52 to 54. The value sck_inet represents the socket
that is to be bound to the socket address adr_inet. This address is of length len_inet bytes.
Note the use of the cast operator (struct sockaddr *) which is used to satisfy the compiler.
This prevents a warning from being reported at compile time.

9. Step 8 is checked for errors in line 56. If an error occurs, bind(2) returns the value -1 instead
of zero.

10. The system(3) call invokes the netstat(1) command to prove that our socket has an
address bound to it (lines 60 and 61).

The following output shows how to compile and run this program:

Output

$ make bind
gcc -c -D_GNU_SOURCE -Wall bind.c
gcc bind.o -o bind
$./bind
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 127.0.0.24:9000 *:* CLOSE 934/bind
$

The output shows that when it was run, the address 127.0.0.24:9000 was bound to the socket.
The 9000 part represents the arbitrary port number that was chosen for this example program.

If you ran the program using the lsof command instead (see prior note), the output will appear
slightly different:

$./bind
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
bind 16616 root 4u inet 142319 TCP 127.0.0.24:9000 (CLOSE)
$

From this output, you can verify that the program named bind (under the heading "COMMAND")
had a socket open on file unit 4 (column "FD"), and was bound to the TCP address 127.0.0.24, port
9000.

Page 120

Obtaining the Socket Address

If a C library function that you wrote receives a socket as an input argument, then you will not know
what the socket address of that socket is. This is because your function did not create the socket;
and, unless the socket address is also passed to your function as input, you will not know what the
address is. The function getsockname(2) permits your function to obtain it.

The function synopsis for getsockname(2) is as follows:

#include <sys/socket.h>

int getsockname(int s, struct sockaddr *name, socklen_t *namelen)

This function takes the following three input arguments:

1. The socket s to query for the socket address.

2. The pointer to the receiving buffer (argument name).

3. Pointer to the maximum length variable. This variable provides the maximum length in bytes that
can be received in the buffer (argument namelen). This value is updated with the actual number of
bytes written to the receiving buffer.

Note that like the bind(2) function, getsockname(2) uses the generic address structure
sockaddr because it can be used for any type of socket address. This will mean that you will
likely need to apply the C language casting operator on the pointer supplied in this argument.

The length argument namelen specifies the maximum number of bytes that can be received into
argument two (name). Prior to returning to the caller, however, the value of namelen is
overwritten to indicate how many bytes were actually returned in the receiving buffer. This will be
less than or equal to the original value supplied.

CAUTION
Never supply the address of a constant for the socket address length in a call to
getsockname(2). This should not be done because the length variable is updated
with the actual number of bytes placed into the receiving address structure.

If you do supply the address of a constant, the value of the constant will be
overwritten. This will cause havoc in your program. On some CPU platforms, you
might experience a program fault instead.

The function returns zero if it is successful. If an error occurs, the return value -1 is returned, and
the reason for the error is posted to the variable errno.

Page 121

Writing a sock_addr() Function

To illustrate the use of getsockaddr(2), a small function has been presented in Listing 5.2,
which accepts as input a socket descriptor. The function obtains the socket's address by calling
getsockaddr(2), and then formats a string to be returned to the caller which can be used in a
printf(3) call.

Example

Listing 5.2: sckname.c— The getsockaddr(2) Function Call

1: /* sckname.c:
2: *
3: * Demonstrate getsockname(2):
4: */
5: #include <stdio.h>
6: #include <unistd.h>
7: #include <stdlib.h>
8: #include <errno.h>
9: #include <string.h>
10: #include <sys/types.h>
11: #include <sys/stat.h>
12: #include <sys/socket.h>
13: #include <netinet/in.h>
14: #include <arpa/inet.h>
15:
16: /*
17: * This saves lines of code later:
18: */
19: static void
20: bail(const char *on_what) {
21: perror(on_what); /* Report error */
22: exit(1); /* Exit Program */
23: }
24:
25: /*
26: * This function accepts as input a socket
27: * for which a socket address must be
28: * determined for it. Then the address
29: * is converted into a string and returned.
30: *
31: * If an error occurs, NULL is returned.
32: */
33: char *
34: sock_addr(int s,char *buf,size_t bufsiz) {
35: int z; /* Status return code */
36: struct sockaddr_in adr_inet;/* AF_INET */
37: int len_inet; /* length */
38:

continues

Page 122

Listing 5.2: continued

39: /*
40: * Obtain the address of the socket:
41: */
42: len_inet = sizeof adr_inet;
43:
44: z = getsockname(s,
45: (struct sockaddr *)&adr_inet,
46: &len_inet);
47:
48: if (z == -1)
49: return NULL; /* Failed */
50:
51: /*
52: * Convert address into a string
53: * form that can be displayed:
54: */
55: snprintf(buf,bufsiz,
56: "%s:%u",
57: inet_ntoa(adr_inet.sin_addr),
58: (unsigned)ntohs(adr_inet.sin_port));
59:
60: return buf;
61: }
62:
63: /*
64: * Main Program:
65: */
66: int
67: main(int argc,char **argv,char **envp) {
68: int z; /* Status return code */
69: int sck_inet; /* Socket */
70: struct sockaddr_in adr_inet;/* AF_INET */
71: int len_inet; /* length */
72: char buf[64]; /* Work buffer */
73:
74: /*
75: * Create an IPv4 Internet Socket:
76: */
77: sck_inet = socket(AF_INET,SOCK_STREAM,0);
78:
79: if (sck_inet == -1)
80: bail("socket()");
81:
82: /*
83: * Create an AF_INET address:
84: */

Page 123

85: memset(&adr_inet,0,sizeof adr_inet);
86: adr_inet.sin_family = AF_INET;
87: adr_inet.sin_port = htons(9000);
88: inet_aton
("127.0.0.24",&adr_inet.sin_addr);
89: len_inet = sizeof adr_inet;
90:
91: /*
92: * Now bind the address to the socket:
93: */
94: z = bind(sck_inet,
95: (struct sockaddr *)&adr_inet,
96: len_inet);
97: if (z == -1)
98: bail("bind()");
99:
100: /*
101: * Now test our sock_addr() function:
102: */
103: if (!sock_addr(sck_inet,buf,sizeof buf))
104: bail("sock_addr()");
105:
106: printf("Address is'%s'\n" ,buf);
107:
108: close(sck_inet);
109: return 0;
110: }

Listing 5.2 shows how getsockname(2) could be used by a library C function. Much of the
main() program is review for you, because it is very similar to the main() program in Listing
5.1. The general steps used in the main() program are

1. Declarations for the socket sck_inet, the address adr_inet, and the address length
len_inet are given in lines 69 to 71.

2. A character array buffer buf[64] is declared in line 72 for use later in the program.

3. The socket is created by socket(2) in line 77.

4. A socket address is established in lines 85 to 95 with the use of the bind(2) function call.

5. The sock_addr() function is called inside the if statement in line 103. If the function returns
a null pointer, the statement in line 104 is executed and the program will terminate.

6. If Step 5 succeeds, however, the buffer buf[] will contain a string that represents the socket
address for socket sck_inet. The printf(3) call in line 106 reports this result.

Page 124

In short, the main program does two things:

• Creates a socket and establishes an address for it.

• Calls the function sock_addr() to see whether it can find out what the socket's address is.

Now, examine the steps used by the sock_addr() function that was shown in Listing 5.2:

1. The function declaration for sock_addr() starts in line 33. It accepts as input the socket s for
which the function must determine the address. The printable socket address is returned in the
supplied buffer buf, which is a maximum size of bufsiz bytes.

2. Declarations for temporary values adr_inet and len_inet are declared in lines 36 and 37.

3. The maximum length is established in variable len_inet before calling getsockname(2).
This establishes the maximum number of bytes of address information that can be returned.

4. The getsockname(2) function is called in line 44. If successful, z will be set to zero, and the
address will be loaded into the structure adr_inet. The length variable len_inet will be
overwritten with the actual size used.

5. Check for errors in line 48. When the return value is -1, an error has occurred. The function
returns a null value to indicate that an error has occurred. The caller can test errno for the cause of
the error.

6. Lines 55 to 58 format a string into the caller's buffer buf of maximum length bufsiz. The
value of bufsiz must include the terminating null byte.

7. The pointer to the caller's buffer is returned in line 60 to indicate that the call was successful.

The function sock_addr() not only determines the socket address for the caller, but formats it
nicely into a string that can be used in a printf(3) call.

TIP
Did you notice the use of the snprintf(3) call instead of the more traditional
sprintf(3) function? The newer snprintf(3) call is able to limit its
formatting to the maximum size of the buffer it is formatting to. This is extremely
important for software integrity, and you should use the snprintf(3) instead,
whenever possible.

TE
AM
FL
Y

Team-Fly®

Page 125

Output

The following shows how to compile the program in Listing 5.2:

$ make sckname
gcc -c -D_GNU_SOURCE -Wall sckname.c
gcc sckname.o -o sckname

After the program is compiled, you can invoke it to produce its output as follows:

$./sckname
Address is '127.0.0.24:9000'
$

Looking at the line of output where the address is reported as '127.0.0.24:9000 ', you can see
that the function sock_addr() was successful at performing its mission. This was the address
that was established in the main() program in lines 87 and 88.

Obtaining a Peer Socket Address

In the last section, you saw that the function getsockname(2) is quite useful at obtaining a
socket's address. However, there will be times when your code will want to determine the remote
address that your socket is connected to. Determining the remote address of a socket is like finding
out the caller's telephone number when they have called you— similar to North America's CallerID.

The function to do this is called getpeername(2). This function will be useful to you when you
start examining and writing server code. It is introduced here because it is so similar to
getsockname(2). The function synopsis for getpeername(2) is as follows:

#include <sys/socket.h>

int getpeername(int s, struct sockaddr *name, socklen_t *namelen);

You can see that the function arguments are identical to the getsockname(2) function. For
completeness, the arguments are described again as follows:

1. The socket s to query for the socket address.

2. The pointer to the receiving buffer (argument name).

3. Pointer to the maximum length variable. This variable provides the maximum length in bytes that
can be received in the buffer (argument namelen). This value is updated with the actual number of
bytes written to the receiving buffer.

The function returns zero if the operation succeeds. If an error occurs, the value -1 is returned and
the value errno will contain the reason for the error.

Page 126

Listing 5.3 shows some code that defines a function named peer_addr(). This code is very
similar in design to the sock_addr() function of Listing 5.2. This is not a complete example,
however, because it shows the source code only for the function itself (it lacks a main program).
This code can be revisited later in this book, when connection-oriented communications are
discussed. For now, simply appreciate it as an example of how the function getpeername(2)
can be used.

Example

Listing 5.3: getpeer.c— The getpeername(2) Function

1: /* getpeer.c:
2: *
3: * Demonstrate getpeername(2):
4: */
5: #include <stdio.h>
6: #include <unistd.h>
7: #include <stdlib.h>
8: #include <errno.h>
9: #include <string.h>
10: #include <sys/types.h>
11: #include <sys/stat.h>
12: #include <sys/socket.h>
13: #include <netinet/in.h>
14: #include <arpa/inet.h>
15:
16: /*
17: * This function accepts as input a socket
18: * for which a peer socket address must be
19: * determined for it. Then the address
20: * is converted into a string and returned.
21: *
22: * If an error occurs, NULL is returned.
23: */
24: char *
25: peer_addr(int s,char *buf,size_t bufsiz) {
26: int z; /* Status return code */
27: struct sockaddr_in adr_inet;/* AF_INET */
28: int len_inet; /* length */
29:
30: /*
31: * Obtain the address of the socket:
32: */
33: len_inet = sizeof adr_inet;
34:
35: z = getpeername(s,
36: (struct sockaddr *)&adr_inet,
37: &len_inet);
38:

Page 127

39: if (z == -1)
40: return NULL; /* Failed */
41:
42: /*
43: * Convert address into a string
44: * form that can be displayed:
45: */
46: z = snprintf(buf,bufsiz,
47: "%s:%u",
48: inet_ntoa(adr_inet.sin_addr),
49: (unsigned)ntohs(adr_inet.sin_port));
50:
51: if (z == -1)
52: return NULL; /* Buffer too small */
53:
54: return buf;
55: }

The steps used in peer_name() are the same basic steps as sock_addr(). However, one small
improvement was made to the program. Let's take a look at the steps:

1. The function declaration for sock_addr() starts in line 24. It accepts as input the socket s for
which the function must determine the peer address. The printable socket address is returned in the
supplied buffer buf, which is a maximum size of bufsiz bytes.

2. Declarations for temporary values adr_inet and len_inet are declared in lines 27 and 28.

3. The maximum length is established in variable len_inet before calling getsockname(2)
(line 33). This establishes the maximum number of bytes of address information that can be
returned.

4. The getpeername(2) function is called in line 35. If successful, z will be set to zero, and the
address will be loaded into the structure adr_inet. The length variable len_inet will be
overwritten with the actual size used.

5. Check for errors in line 39. When the return value is -1, an error has occurred. The function
returns a null value to indicate that an error has occurred. The caller can test errno for the cause of
the error.

6. Lines 46 to 49 format a string into the caller's buffer buf of maximum length bufsiz. The
value of bufsiz must include the terminating null byte.

7. A small improvement to the program was added at lines 51 and 52. The snprintf(3) function
returns -1 if the formatted result is too large to fit into the user's buffer buf of maximum length
bufsiz. If this

Page 128

should happen, the program returns a null pointer in line 52 to indicate that the peer_addr()
function was not fully successful.

8. The pointer to the caller's buffer is returned in line 54 to indicate that the call was successful.

If you skimmed over the steps described, the improvement that was made to the program is
described in step 7.

Interfaces and Addressing

Before you move onto other aspects of socket programming in the chapters that follow, there is one
other concept related to socket addresses that must be understood. This is the concept of interface
addresses.

Using the familiar telephone example again, imagine the President's office where there are two (or
more) telephones on his desk. Using one of the telephones, he can contact his wife to see how her
day is going. On the other hand, using the red telephone gets him in touch with the Russian
president. Each of these two telephones is, in a sense, an interface between two different networks.
These are

• The normal domestic telephone network.

• A private network to the Russian president's high-ranking office(s) on secure lines.

The important point in this example is that you must use the correct interface (telephone) to reach
the correct network. For example, the President would be unable to call his wife on the red
telephone. Conversely, the domestic telephone would not be able to reach the Russian president's
highranking office telephones, which are on secure lines.

In a similar manner, there are times when you want your socket program to specify which interface
to use when attempting to contact a remote socket. This is done when you know that one interface is
the only way to reach the destination network.

When you are expecting to receive a telephone call, there are times when you want to receive calls
only on a particular telephone. For example, the teenage daughter might want to receive calls only
on the telephone installed in her bedroom. For others in the household, they expect to receive
telephone calls only in a downstairs room where the other telephone is installed. Your socket
program will likewise sometimes want to accept connections from only one specific interface and
ignore all others.

Specifying an Interface Address Example

A concrete example is shown in Figure 5.1, which specifies an interface address.

Page 129

Figure 5.1:
Here is a firewall example using a specific interface.

In the middle of Figure 5.1, you see a server that is acting as a firewall between an internal
organization and an external one that is not trusted. Assume that you have written a socket program
that runs on the firewall server, which accepts firewall control commands from your workstation at
the extreme right of the figure (from within the internal organization). The server program accepts
connections from the internal network by permitting connections to arrive only on the network
interface ''B."

For security reasons, your control program on the firewall host will not accept connection attempts
from the external organization. This is done by ignoring all connection attempts on the firewall
network interface "A." This protects your control program from attempted break-ins that might be
initiated by the workstation at the extreme left in Figure 5.1.

Binding a Specific Interface Address

In order to specify a particular interface for communications, you must perform the following steps:

1. Create your socket using the socket(2) function as usual.

2. Bind the IP address of the interface that you are willing to accept connections onto the local
socket using the function bind(2) .

In Figure 5.1, you would use the IP address of interface "B" in your call to bind(2), in order to
accept connections from the internal network only.

Listing 5.4 shows how to bind to a specific network interface address, using some lines of code that
you have seen before. This must be done before any socket communication begins.

Page 130

Example

Listing 5.4: Binding a Specific IP Interface

int z;
int sck_inet; /* Socket */
struct sockaddr_in adr_inet; /* AF_INET */
int len_inet; /* length */

sck_inet = socket(AF_INET,SOCK_STREAM,0);

if (sck_inet == -1)
 abort(); /* Failed */

/* Establish address */
memset(&adr_inet,0,sizeof adr_inet);
adr_inet.sin_family = AF_INET;
adr_inet.sin_port = htons(9000);

adr_inet.sin_addr.s_addr("192.168.0.1");

adr_inet.sin_addr.s_addr == INADDR_NONE)
 abort(); /* Failed */

len_inet = sizeof adr_inet;

z = bind(sck_inet, (struct sockaddr *)&adr_inet, len_inet);

The steps shown in Listing 5.4 are as follows:

1. A socket is created by calling socket(2) and assigning the descriptor to variable sck_inet.
Errors are also tested for and, in this example, abort(3) is called for simplicity if an error occurs.

2. An IP address of 192.168.0.1 is established prior to calling upon bind(2). TCP port
9000 was arbitrarily used in this example.

3. The function bind(2) is called, which then binds the established address.

Note that the bind(2) function call will fail if there is no interface with that IP number for that
host.

Binding for Any Interface

How do you accept connections from any interface? You perform the following
steps:

1. Create your socket using the socket(2) function as usual.

2. Bind the IP address INADDR_ANY to the socket using the function bind(2) .

Page 131

Listing 5.5 shows some code that will explicitly indicate that any interface will do.

Example

Listing 5.5: Specifying Any Interface Using bind(2)

int z;
int sck_inet; /* Socket */
struct sockaddr_in adr_inet; /* AF_INET */
int len_inet; /* length */

sck_inet = socket(AF_INET,SOCK_STREAM,0);

if (sck_inet == -1)
 abort(); /* Failed */

/* Establish address */
memset(&adr_inet,0,sizeof adr_inet);
adr_inet.sin_family = AF_INET;
adr_inet.sin_port = htons(9000);

adr_inet.sin_addr.s_addr = htonl(INADDR_ANY);

if (adr_inet.sin_addr.s_addr == INADDR_NONE)
 abort(); /* Failed */

len_inet = sizeof adr_inet;

z = bind(sck_inet, (struct sockaddr *)&adr_inet, len_inet);

Listing 5.5 is functionally identical to Listing 5.4, with the exception that the address value assigned
was htonl(INADDR_ANY) instead of a specific IP address. A socket bound in this way can
accept connections from any interface. It can also connect to a remote socket going out from any
interface (this is automatically determined by routing tables).

NOTE
The value INADDR_ANY is also known as a wildcard address.

What's Next

Although you had seen the bind(2) function used earlier in this book, this chapter focused on why
and how it is used. You then learned the details about its function arguments, and reviewed its use in
actual code.

Now that you have completely mastered the socket-addressing techniques involved, you will be
fully prepared to use sockets in the chapters that follow. The next chapter will introduce you to two
modes of socket operation. Then, it will show you how to use sockets in the connectionless mode of

operation.

Page 133

6—
Connectionless-Oriented Protocols

Up to this point in this book, the nature of socket communications has largely been avoided. Instead,
you have been focused on creating sockets, binding addresses to them, shutting them down, or
closing them. Now it is time for some real fun in actually using sockets.

There are two basic modes of communication for sockets. They are connectionless- and connection-
oriented communications.

In this chapter, you will learn

• The differences between connectionless- and connection-oriented
communication

• How to perform connectionless input and output operations

• How to write a datagram server

• How to write a datagram client

Now turn your attention to a comparison between connectionless- and connection-oriented
communication.

TE
AM
FL
Y

Team-Fly®

Page 134

The Methods of Communication

Connectionless-oriented communication, as you might have surmised, requires no connection to be
established before communication begins. This is like a person with a megaphone shouting to a
specific person of his choice in a crowd. With each new shout, the person sending the message can
address his statement to another person without any prior agreement.

In a similar manner, after you create a connectionless socket, you will be able to send messages to
any socket that is willing to receive your messages. There will be no connection establishment, and
each message can be directed to a different receiving socket.

Understanding the Advantages

Connectionless-oriented communications offer some advantages over connection-oriented protocols.
Some of these include the following:

• Simpler— No connection to establish.

• Flexible— Can send messages to a different recipient with each message-sending operation.

• Efficient— Requires no connection establishment or tear down, which can add a significant
number of overhead message packets to the network.

• Fast— Since there is no connection establishment or tear-down, only the message itself is sent.

• Broadcast capability— The capability to direct one message to many recipients.

Many of the advantages of a connectionless-oriented protocol have to do with efficiency and speed.
To establish a connection requires a number of packets to be exchanged between the two endpoints
before any data can be exchanged. The tear-down of an established communication channel requires
that additional packets be exchanged. Again, this results in additional overhead and elapsed time.

One other advantage of a connectionless protocol is its broadcast capability. It is possible to address
one message to several recipients. This makes very efficient use of the network bandwidth.

In this chapter, you will study the UDP protocol (User Datagram Protocol), which is a
connectionless-oriented protocol. This protocol enjoys all of the advantages that were just presented.

Page 135

Understanding the Disadvantages of Connectionless Communications

With all of the advantages that connectionless-oriented protocols offer, you might wonder why they
aren't always used. As with most things, even connectionless communication has its disadvantages.

The UDP protocol is a very simple transport-layer protocol, and it is connectionless as noted
previously. In the context of the UDP protocol, there exist the following disadvantages:

• The protocol is not reliable.

• There is no sequencing of multiple datagrams.

• There are message size limitations.

The problem of reliability is the most serious limitation for most applications. The UDP datagram
can be written out to the network by your application, but there is no assurance that the intended
recipient will ever receive it. The message could be garbled and not received by the receiver on the
same network. Alternatively, the message could be lost because one of many routers in the network
path failed to receive the message without checksum errors. When a packet is received with an error,
the UDP packet is quietly discarded and lost forever.

NOTE
A datagram is simply a unit of data that is sent and received over the network. It can
be compared to a telegram in the sense that it represents one complete message.

Other problems can cause UDP packets to be lost. If the receiving host or router is unable to allocate
enough buffer space to hold the UDP packet, it will be quietly discarded. It follows, then, that if
your UDP packet must travel longer distances, there is a greater chance of it being dropped along
the way.

Another problem must be considered before you decide to use UDP for your applications. If you
send two or more datagrams to your destination in quick succession, there is a possibility that some
datagrams will arrive out of sequence. The UDP protocol uses the Internet Protocol (IP) to deliver
the final datagram. IP packets can be routed differently with each transmission, and routes vary
according to current network conditions. This often results in some packets arriving at the
destination before earlier packets. The bottom line is that UDP packets can arrive out of sequence.

Finally, there is the issue of datagram size. The theoretical maximum size of a UDP datagram is
slightly less than 64KB. However, many UNIX hosts will only support a maximum near 32KB.
Other UNIX kernel built-in

Page 136

restrictions limit the size even further. This is often as low as 8KB. Finally, the receiving socket
program will restrict this to the maximum size of its receiving buffer. For this reason, some
programs restrict themselves to UDP messages of 512 bytes or less.

If a large UDP packet is sent, it will have to be broken up into several smaller IP fragments and later
re-assembled at the receiving end. The reassembly process requires buffers to be allocated in order
to hold the received fragments. This is only done for a given timeout period, until the entire packet
can be re-assembled. Competition for buffers may cause the re-assembly to be abandoned, with the
effect that your UDP packet will be quietly dropped. The UDP datagram must endure a number of
perils before it successfully arrives at its destination.

For some applications, these caveats will steer you toward the more reliable connection-oriented
protocols such as TCP/IP. These might not be serious limitations for other applications. Only you
can decide whether UDP is appropriate for use in your application.

Performing Input/Output of Datagrams

In the example program shown in Listing 1.3 of Chapter 1, "Introducing Sockets," you saw the
functions read(2) and write(2) being used when reading from and writing to sockets. While it
was not pointed out at the time, the socketpair(2) function call shown created a pair of sockets
using a connection-oriented protocol. Consequently, it was possible to use the familiar read(2)
and write(2) functions to perform I/O on those sockets.

When sending and receiving datagrams, however, a different pair of functions is required. This is
because each message being sent is potentially sent to a different destination address. The function
used for sending a datagram must allow you to specify the address of the intended recipient.
Likewise, when you receive a datagram, you need to find out whom it came from. This new function
must provide you with a convenient way to determine the address of the sender.

Introducing the sendto(2) Function

The sendto(2) function allows you to write a datagram and specify the destination address of the
recipient at the same time. The function synopsis is as follows:

#include <sys/types.h>
#include <sys/socket.h>

int sendto(int s,
 const void *msg,

Page 137

 int len,
 unsigned flags,
 const struct sockaddr *to,
 int tolen);

Don't let the number of arguments intimidate you about this function. They are quite easy to
understand, after they are described:

1. The first argument s is the socket number. You received this value from the socket(2)
function.

2. Argument msg is a pointer to the buffer holding the datagram message that you wish to send.

3. Argument len is the length, in bytes, of the datagram that starts at the pointer given by msg.

4. The flags argument allows you to specify some option bits. In many cases, you will simply
supply a value of zero.

5. The argument to is a pointer to a generic socket address that you have established. This is the
address of the recipient of the datagram.

6. Argument tolen is the length of the address argument to .

The value returned by the function sendto(2), when successful, is the number of bytes sent (note
that this is no guarantee that they were received at the remote end.) When an error occurs, the
function returns a value of -1 and the value errno can be consulted to find out why.

The second-to-last function argument allows you to identify where the datagram must be sent. The
argument to must point to a valid socket address, and the argument tolen should contain the
correct length of the address. You have become an expert at forming addresses in the preceding
chapters, so you should feel right at home here.

Table 6.1 lists the values that the flags argument can have, though most of the time you will
simply supply the value zero instead.

Table 6.1: The flags Values for the sendto(2) Function

Flag Hexadecimal Meaning

0 0x0000 Normal— no special options

MSG_OOB 0x0001 Processes out-of-band data

MSG_DONTROUTE 0x0004 Bypasses routing; uses direct
interface

MSG_DONTWAIT 0x0040 Does not block; waiting to write

MSG_NOSIGNAL 0x4000 Does not raise SIGPIPE when the
other end has disconnected

Page 138

CAUTION
Always use the macro names, such as MSG_DONTWAIT for example, when
specifying constants and flag bits. While Table 6.1 shows the hexadecimal values for
each C macro constant, only use the macro name. In this manner, if a change to the
constant should be made in a later release of Linux, your program can simply be
recompiled and still function correctly without any source code modification.

TIP
The man page for sendto(2) for Red Hat Linux 6.0 lists the value of C macro
constant MSG_NOSIGNAL as 0x2000. However, the
include/linux/socket.h file within the kernel sources for 2.2.10 lists the
value as 0x4000. A comment in this include file also indicates that not all of the
flags listed there are supported yet.

Many of the flag values listed in Table 6.1 are for advanced use and won't be covered at this time.
They have been listed here for your convenience as a reference. Normally, you will simply supply
the value zero.

Later in this chapter, you will put the sendto(2) function to work. Before you do this, however,
you should learn about the recvfrom(2) function.

Introducing the recvfrom(2) Function

The companion to the sendto(2) function is the recvfrom(2) function. This function differs
from the read(2) function in that it allows you to receive the sender's address at the same time
you receive your datagram. The function synopsis is as follows:

#include <sys/types.h>
#include <sys/socket.h>

int recvfrom(int s,
 void *buf,
 int len,
 unsigned flags,
 struct sockaddr *from,
 int *fromlen);

The list of arguments is very similar to those used in the sendto(2) function. The recvfrom
(2) arguments are

1. The socket s to receive the datagram from.

2. The buffer pointer buf to start receiving the datagram into.

3. The maximum length (len) in bytes of the receiving buffer buf.

4. Option flag bits flags.

5. The pointer to the receiving socket address buffer, which will receive the sender's address (pointer
argument from).

Page 139

6. The pointer to the maximum length (fromlen) in bytes of the receiving socket address buffer
from. Note that the integer that this pointer points to must be initialized to the maximum size of the
receiving address structure from, prior to calling the function.

Like any normal read(2) operation, the receiving buffer buf must be large enough to receive the
incoming datagram. The maximum length is indicated to the function by the argument len.

The function returns the value -1 if there was an error, and you should consult the value of errno
for the cause of the error. Otherwise, the function returns the number of bytes that were received
into your receiving buffer buf. This will be the size of your datagram received.

Note especially, however, that the last argument is a pointer to the length of the receiving address
structure. Prior to calling the function recvfrom(2), the int value that this pointer points to
must contain the maximum byte size of the receiving address structure from. Upon return from the
function, the actual size of the address returned is placed into this int variable. In effect, the value
pointed to by fromlen acts as both an input value and a returned value.

TIP
If you are using the function recvfrom(2) to receive datagrams for varying
protocols, make certain that you allow sufficient socket address space to receive all
address families that you might encounter. For example, the socket address size
differs for address families AF_INET and AF_LOCAL (AF_UNIX). Often a C
union data type can allow for the maximum size needed.

There are different flag values available for the recvfrom(2) function, which are listed in Table
6.2.

Table 6.2: The flag Values for the recvfrom(2) Function

Flag Hexadecimal Meaning

0 0x0000 Normal

MSG_OOB 0x0001 Processes out-of-band data

MSG_PEEK 0x0002 Reads a datagram without actually
removing it from the kernel's receive
queue.

MSG_WAITALL 0x0100 Requests that the operation block
until the full request has been
satisfied (with some exceptions)

MSG_ERRQUEUE 0x2000 Receives a packet from the error
queue

MSG_NOSIGNAL 0x4000 Turns off the raising of SIGPIPE
for stream sockets when the other
end has become disconnected

Page 140

Again, the flags shown in Table 6.2 are for your reference only at this point, because many of these
options are for more advanced processing. Normally, you will simply provide a value of zero for the
flags argument.

Writing a UDP Datagram Server

Now you are equipped well enough to write a datagram client and server program. In this section,
you'll begin with a datagram server example (remember from Chapter 1, where you saw an example
program in Listing 1.4). This program took a strftime(3) format string as input and returned
the formatted date and time string as a response. You are going to write a datagram server in this
section, which will stand by itself, accept format strings as input datagrams. After the server formats
a date string using the strftime(3) function, it will send the result back to the client program in
another datagram as shown in Listing 6.1.

Example

Listing 6.1: dgramsrvr.c— The Example Datagram Server

1: /* dgramsrvr.c:
2: *
3: * Example datagram server:
4: */
5: #include <stdio.h>
6: #include <unistd.h>
7: #include <stdlib.h>
8: #include <errno.h>
9: #include <string.h>
10: #include <time.h>
11: #include <sys/types.h>
12: #include <sys/socket.h>
13: #include <netinet/in.h>
14: #include <arpa/inet.h>
15:
16: /*
17: * This function reports the error and
18: * exits back to the shell:
19: */
20: static void
21: bail(const char *on_what) {
22: fputs(strerror(errno),stderr);
23: fputs(": ",stderr);
24: fputs(on_what,stderr);
25: fputc('\n',stderr);
26: exit(1);
27: }
28:
29: int

Page 141

30: main(int argc,char **argv) {
31: int z;
32: char *srvr_addr = NULL;
33: struct sockaddr_in adr_inet;/* AF_INET */
34: struct sockaddr_in adr_clnt;/* AF_INET */
35: int len_inet; /* length */
36: int s; /* Socket */
37: char dgram[512]; /* Recv buffer */
38: char dtfmt[512]; /* Date/Time Result */
39: time_t td; /* Current Time and Date */
40: struct tm tm; /* Date time values */
41:
42: /*
43: * Use a server address from the command
44: * line, if one has been provided.
45: * Otherwise, this program will default
46: * to using the arbitrary address
47: * 127.0.0.23:
48: */
49: if (argc >= 2) {
50: /* Addr on cmdline: */
51: srvr_addr = argv[1];
52: } else {
53: /* Use default address: */
54: srvr_addr = "127.0.0.23";
55: }
56:
57: /*
58: * Create a UDP socket to use:
59: */
60: s = socket(AF_INET,SOCK_DGRAM,0);
61: if (s == -1)
62: bail("socket()");
63:
64: /*
65: * Create a socket address, for use
66: * with bind(2):
67: */
68: memset(&adr_inet,0,sizeof adr_inet);
69: adr_inet.sin_family = AF_INET;
70: adr_inet.sin_port = htons(9090);
71: adr_inet.sin_addr.s_addr =
72: inet_addr(srvr_addr);
73:
74: if (adr_inet.sin_addr.s_addr == INADDR_NONE)
75: bail("bad address.");

continues

Page 142

Listing 6.1: continued

76:
77: len_inet = sizeof adr_inet;
78:
79: /*
80: * Bind a address to our socket, so that
81: * client programs can contact this
82: * server:
83: */
84: z = bind(s,
85: (struct sockaddr *)&adr_inet,
86: len_inet);
87: if (z == -1)
88: bail("bind()");
89:
90: /*
91: * Now wait for requests:
92: */
93: for (;;) {
94: /*
95: * Block until the program receives a
96: * datagram at our address and port:
97: */
98: len_inet = sizeof adr_clnt;
99: z = recvfrom(s, /* Socket */
100: dgram, /* Receiving buffer */
101: sizeof dgram, /* Max recv buf size */
102: 0, /* Flags: no options */
103: (struct sockaddr *)&adr_clnt,/* Addr */
104: &len_inet); /* Addr len, in & out */
105: if (z < 0)
106: bail("recvfrom(2)");
107:
108: /*
109: * Process the request:
110: */
111: dgram[z] = 0; /* null terminate */
112: if (!strcasecmp(dgram,"QUIT"))
113: break; /* Quit server */
114:
115: /*
116: * Get the current date and time:
117: */
118: time(&td); /* Get current time & date */
119: tm = *localtime(&td); /* Get components */
120:
121: /*

Page 143

122: * Format a new date and time string,
123: * based upon the input format string:
124: */
125: strftime(dtfmt, /* Formatted result */
126: sizeof dtfmt, /* Max result size */
127: dgram, /* Input date/time format */
128: &tm); /* Input date/time values */
129:
130: /*
131: * Send the formatted result back to the
132: * client program:
133: */
134: z = sendto(s, /* Socket to send result */
135: dtfmt, /* The datagram result to snd */
136: strlen(dtfmt), /* The datagram lngth */
137: 0, /* Flags: no options */
138: (struct sockaddr *)&adr_clnt,/* addr */
139: len_inet); /* Client address length */
140: if (z < 0)
141: bail("sendto(2)");
142: }
143:
144: /*
145: * Close the socket and exit:
146: */
147: close(s);
148: return 0;
149: }

The program might look a little intimidating, but the basic steps are easily understood. They can be
described simply as follows:

1. Create a socket, using socket(2) .

2. Establish a server address and bind(2) it.

3. Wait for a datagram by calling recvfrom(2).

4. Process the request (format a date string).

5. Send the result back to the client using sendto(2).

6. Repeat step 3, until it is time to exit.

Step 2 is necessary so that the client program is able to contact the server. This is like giving a
telephone a number. Step 2 gives a nameless socket an address, so that datagrams can be directed to
it by the client program.

TE
AM
FL
Y

Team-Fly®

Page 144

The program shown in Listing 6.1 can now be described in detail that is more complete, as follows:

1. Lines 20 to 27 form our simple error-handling function. Its purpose is to report an error, should it
occur, and exit out of the program. Real applications would provide better error handling than this.

2. Lines 49 to 55 choose a server address for this server program. If no command-line argument is
provided, then the arbitrary address 127.0.0.23 is used. Note that this default address will work
for you, even if you do not have any network cards installed.

3. Lines 60 to 62 create a datagram socket. This causes a UDP protocol socket number to be
assigned to variable s, when the socket(2) call is successful.

4. Lines 68 to 77 form the address structure adr_inet and establish the address structure length in
variable len_inet.

5. Lines 84 to 88 bind the address established in step 4, to the socket s that was created in step 3.

6. A loop begins in line 93.

7. The maximum size of the receiving address buffer is computed in line 98 and assigned to variable
len_inet. The receiving address buffer will be the structure adr_clnt.

8. The function recvfrom(2) is called in line 99. This function call will block until the server
receives a datagram. Upon return from this function, buffer dgram will contain the datagram, and
variable z will contain the size of this datagram (or -1 if there was an error returned). The sender's
socket address is returned in structure adr_clnt, and variable len_inet is set to the length of
the address in adr_clnt.

9. If step 8 is successful, the variable z is the length of the datagram message that was received.
Line 111 places a null byte at the end of the buffer, so that buffer dgram[] may be treated as a null
terminated C string.

10. Line 112 tests to see if the datagram contains the string "QUIT". If so, this is a signal for the
server to quit, and control breaks out of the loop in line 113.

11. The current date and time are fetched in lines 118 and 119.

Page 145

12. The datagram received in character array dgram[] is used as a format string for the
strftime(3) call in lines 125 to 128. This function call simply formats the date and time
according to the datagram message that was received.

13. Lines 134 to 141 send the result back to the client that requested the date and time. Note that
lines 138 and 139 simply use the client address and address length that was received in step 8.

14. Repeat the top of the loop, at step 6.

Output

The program can be compiled as follows:

$ make dgramsrvr
gcc -c -D_GNU_SOURCE -Wall dgramsrvr.c
gcc dgramsrvr.o -o dgramsrvr
$

The program dgramsrvr can accept one optional command-line argument. The default server
address used is the IP address 127.0.0.23. However, a different one can be specified on the
command line. Normally, you will want to run the server in the background, as follows:

$./dgramsrvr &
[1] 4339
$

If you want to run the server with a different IP address, you can specify it on the command line as
in the following example:

$./dgramsrvr 192.168.0.1 &
[1] 4341
$

In this case, the server will listen for connections on 192.168.0.1. Note that if you don't have an
interface with this number, you will get an error, as shown below:

$./dgramsrvr 192.168.0.2 &
[1] 4342
Cannot assign requested address: bind()
[1]+ Exit 1 ./dgramsrvr 192.168.0.2
$

However, when using the 127.0.0.1 network (your local loopback device), you can specify any
class A address, if it starts with 127. The server program example uses 127.0.0.23, but this
could have been another number within that same network.

Page 146

Writing a UDP Datagram Client

In order to make use of the server program just presented, you will need a datagram client program.
The client program presented in Listing 6.2 will prompt you for an input line that should contain
formatting text for strftime(3). Some input examples will be provided for you, if you don't feel
like coming up with your own examples.

Example

Listing 6.2: dgramclnt.c— The Datagram Client Program

1: /* dgramclnt.c:
2: *
3: * Example datagram client:
4: */
5: #include <stdio.h>
6: #include <unistd.h>
7: #include <stdlib.h>
8: #include <errno.h>
9: #include <string.h>
10: #include <time.h>
11: #include <sys/types.h>
12: #include <sys/socket.h>
13: #include <netinet/in.h>
14: #include <arpa/inet.h>
15:
16: /*
17: * This function reports the error and
18: * exits back to the shell:
19: */
20: static void
21: bail(const char *on_what) {
22: fputs(strerror(errno),stderr);
23: fputs(": ",stderr);
24: fputs(on_what,stderr);
25: fputc('\n' ,stderr);
26: exit(1);
27: }
28:
29: int
30: main(int argc,char **argv) {
31: int z;
32: int x;
33: char *srvr_addr = NULL;
34: struct sockaddr_in adr_srvr;/* AF_INET */
35: struct sockaddr_in adr; /* AF_INET */
36: int len_inet; /* length */
37: int s; /* Socket */
38: char dgram
[512]; /* Recv buffer */

Page 147

39:
40: /*
41: * Use a server address from the command
42: * line, if one has been provided.
43: * Otherwise, this program will default
44: * to using the arbitrary address
45: * 127.0.0.23:
46: */
47: if (argc >= 2) {
48: /* Addr on cmdline: */
49: srvr_addr = argv[1];
50: } else {
51: /* Use default address: */
52: srvr_addr = "127.0.0.23";
53: }
54:
55: /*
56: * Create a socket address, to use
57: * to contact the server with:
58: */
59: memset(&adr_srvr,0,sizeof adr_srvr);
60: adr_srvr.sin_family = AF_INET;
61: adr_srvr.sin_port = htons(9090);
62: adr_srvr.sin_addr.s_addr) =
63: inet_addr(srvr_addr);
64:
65: if (adr_srvr.sin_addr.s_addr == INADDR_NONE)
66: bail("bad address.");
67:
68: len_inet = sizeof adr_srvr;
69:
70: /*
71: * Create a UDP socket to use:
72: */
73: s = socket(AF_INET,SOCK_DGRAM,0);
74: if (s == -1)
75: bail("socket()");
76:
77: for (;;) {
78: /*
79: * Prompt user for a date format string:
80: */
81: fputs("\nEnter format string: ",stdout);
82: if (!fgets(dgram,sizeof dgram,stdin))
83: break; /* EOF */
84:

continues

Page 148

Listing 6.2: continued

85: z = strlen(dgram);
86: if (z > 0 && dgram[-z] == '\n')
87: dgram[z] = 0; /* Stomp out newline */
88:
89: /*
90: * Send format string to server:
91: */
92: z = sendto(s, /* Socket to send result */
93: dgram, /* The datagram result to snd */
94: strlen(dgram), /* The datagram lngth */
95: 0, /* Flags: no options */
96: (struct sockaddr *)&adr_srvr,/* addr */
97: len_inet); /* Server address length */
98: if (z < 0)
99: bail("sendto(2)");
100:
101: /*
102: * Test if we asked for a server shutdown:
103: */
104: if (!strcasecmp(dgram,"QUIT"))
105: break; /* Yes, we quit too */
106:
107: /*
108: * Wait for a response:
109: */
110: x = sizeof adr;
111: z = recvfrom(s, /* Socket */
112: dgram, /* Receiving buffer */
113: sizeof dgram, /* Max recv buf size */
114: 0, /* Flags: no options */
115: (struct sockaddr *)&adr, /* Addr */
116: &x); /* Addr len, in & out */
117: if (z < 0)
118: bail("recvfrom(2)");
120: dgram[z] = 0; /* null terminate *
121:
122: /*
123: * Report Result:
124: */
125: printf("Result from %s port %u :\n\t'%s'\n",
126: inet_ntoa(adr.sin_addr),
127: (unsigned)ntohs(adr.sin_port),
128: dgram);
129: }
130:

Page 149

131: /*
132: * Close the socket and exit:
133: */
134: close(s);
135: putchar('\n');
136:
137: return 0;
138: }

The client program in Listing 6.2 has many similarities to the server program in Listing 6.1. At the
most basic level, the steps used in Listing 6.2 are as follows:

1. A server socket address is determined and formed (this is how we identify the socket we want to
contact).

2. A socket is created using socket(2).

3. Input is received from the user terminal.

4. The input is sent as a datagram to the server.

5. A response from the server is received.

6. The response is displayed on the terminal and step 3 is repeated until end of file is encountered.

Step 1 does not strictly need to occur first, but it must be done prior to step 4. Otherwise, the
program flow is very simple: create a socket, send a datagram, get result, report result, and repeat.

Examining Listing 6.2 in more detail, the steps are as follows:

1. Lines 47 to 53 determine the address of the server to use. The user can supply the server address
on the command line or let the default from line 52 prevail.

2. Lines 59 to 68 actually create the socket address that will be used to send datagrams to the server.

3. Lines 73 to 75 create the socket s that is used in the program.

4. The main loop starts in line 77.

5. Input is gathered from the terminal session in lines 81 to 83. If end-of-file is received, the loop is
exited in line 83 at the break statement.

6. Lines 85 to 87 remove the annoying newline character that the fgets(3) function leaves in the
buffer.

7. Lines 92 to 99 show how the input in array dgram[] is sent to the server. The datagram length is
simply the string length of the buffer

Page 150

dgram[]. Notice also that arguments &adr_srvr and len_inet specify the destination server
address and address length, respectively.

8. Lines 104 to 105 test to see if we sent the command "QUIT" to the server. If so, the program
exits the for loop at line 105 with the break statement, because the program will not get a
response from the server (the server will shut down).

9. Line 110 initializes variable x with the maximum size of the receiving address structure adr.

10. Lines 111 to 118 call upon recvfrom(2) to receive the response from the server.

11. A null byte is placed into array dgram[] in line 120, to allow the program to use the result
datagram as a C string.

12. Lines 125 to 128 report the server address that returned the result, as well as the formatted string
that it returned in the datagram.

13. The loop repeats with Step 4.

This program doesn't check the returned address in adr, but a production mode program should.
While waiting to receive the server's response, another unrelated program could send our client
program a message, which should be ignored (the program wants a response from the server— not
another process). UDP is quite flexible, but a number of situations like this one, can make your
program more complicated. This is something to consider when making a choice between UDP and
TCP, for example.

Output

To compile the program in Listing 6.2, you can perform the following:

$ make dgramclnt
gcc -c -D_GNU_SOURCE -Wall dgramclnt.c
gcc dgramclnt.o -o dgramclnt
$

With both a server and a client program at your disposal, you are now ready to test them.

Testing the Datagram Client and Server

The first test that you'll try here is one that should work for everyone, whether you have a network
established or just one standalone PC. The only important ingredient will be that you will need to
have TCP/IP support compiled into your kernel. If you are running any one of the standard
distributions, such as Red Hat Linux 6.0, then you should be all ready to go.

Page 151

To test these programs out, perform the following:

1. Start the server program (with or without an optional IP number).

2. Start the client program (with or without the optional IP number of the server program).

3. Enter client program input.

4. Enter CTRL+D to close the client program (by signaling end-of-file). Alternatively, you may enter
the word QUIT , which will cause both the client and server programs to exit.

In step 4, you might have a different end-of-file character for your terminal session, but CTRL+D is
very common.

TIP
If you don't know what your terminal end-of -file character is, you can type the
following command:

$ stty -a

In the output generated, you look for something like eof = ^D; to indicate that
your end-of -file character is CTRL+D (the ^ symbol indicates a "control" character).

NOTE
To change your terminal end-of -file character to CTRL+D, for example, you can
perform the following command:
$ stty eof \^d

Output

To start your datagram server, perform the following:

$./dgramsrvr &
[1] 4405
$

The character & places the server program in the background so that you can continue to use your
current terminal session to run the client program. In the example, the shell tells us that our server is
running now as process ID 4405.

NOTE
The server program permits you to choose the IP number that it will listen for
requests from. The port number in this program, however, is hard coded as port
number 9090. To change the port number, you will need to change and recompile
the server and the client programs.

With the server program up and running, it is now time for you to start up the client program and try
it. The following shows how to start the client program and try it out.

Page 152

Output

$./dgramclnt

Enter format string: %D
Result from 127.0.0.23 port 9090 :
 '08/13/99'

Enter format string: %A %D %H:%M:%S
Result from 127.0.0.23 port 9090 :
 'Friday 08/13/99 22:14:02'

Enter format string: quit

[1]+ Done ./dgramsrvr
$

From the session shown, you can see that the client program prompts you for input. The first input
was just the simple pair of characters %D and a RETURN. The result came back from the server as
'08/13/99'. Note that the socket address of the datagram sender was reported, and it agreed with
the server address that was expected (the program default). Another input of %A %D %H:%M:%S
was tried with the server returning the result of 'Friday 08/13/99 22:14:02'. Finally, the
input quit was provided, and both the client program and the server program exited.

Testing with No Server

The following shows what happens when the client program is run, and no server is running:

Output

$./dgramclnt

Enter format string: %D
Connection refused: recvfrom(2)
$

Note that the client program is able to start up, create the socket, and ask for input. Even the
sendto(2) function was reported as successful (the error message came from the recvfrom(2)
statement which follows the call to sendto(2)). This confirms the fact that sending a datagram
only confirms that it was sent out— not that it was successfully received.

In this particular situation, the program was lucky enough to get an error response to indicate that no
server was listening on that address and port. The error indication was picked up by the recvfrom
(2) function call. When the client and server are separated by a large network and many routers,

this error indication may not always be received.

TE
AM
FL
Y

Team-Fly®

Page 153

In practice, you cannot rely on getting the error if the other end is not listening. For this reason, UDP
programs often include the use of timers, and assume that no contact was made if no response is
received within a certain amount of time.

Testing with Other IP Numbers

In the preceding sections, it was mentioned that an IP number could be given on the command line.
If you have your own network set up, you can try running the client and server programs on
different hosts. In the next example, the server will be started on host 192.168.0.1, and the
client program will be run from 192.168.0.2. The following shows the server startup:

Output

$./dgramsrvr 192.168.0.1 &
[1] 4416
$

With the server successfully started up, the client program is invoked on the other host. The
following session shows the output seen from the client end:

Output

$./dgramclnt 192.168.0.1

Enter format string: %D
Result from 192.168.0.1 port 9090 :
 '08/13/99'

Enter format string: %A (%D)
Result from 192.168.0.1 port 9090 :
 'Friday (08/13/99)'

Enter format string: QUIT

$

As shown, the client program was told that the server was located at address 192.168.0.1 by
providing the address on the command line. A couple of examples were tried, and then the QUIT
command was given. The pair of programs demonstrated themselves as working correctly.

While this example shows flawless execution, keep in mind that UDP is unreliable. If the client
program fails to get a response from the server, it will hang (at line 111 in Listing 6.2). If you were
writing a production mode application, you'd need to provide code for a timeout. This would allow
the program to recover from the lack of a response when the original or response datagrams are lost.

Page 154

Leaving Out bind(2) in Client Programs

Some observant readers might have noticed that no call to bind(2) was made in the client
program for the socket that was created in Listing 6.2. If the bind(2) function call can be
eliminated, then why bother with it at all?

You'll remember that in Chapter 5, ''Binding Addresses to a Socket," there was a section titled
"Interfaces and Addressing" which explained that the bind(2) function could be used to restrict
the interfaces that would be used to perform communications. The example used in Figure 5.1 was a
firewall application program that only wished to communicate with a trusted internal network. If this
seems vague to you right now, you might want to turn back there and review how bind(2)
accomplished this.

In Listing 6.2, the call to bind(2) was omitted. So what does this omission imply for the sending
socket? As you know from Chapter 5, this actually indicates that the program will accept any
outgoing interface, as required by the routing of the datagram to its destination. In effect, the socket
is said to have a wild socket address. Later, when the program waits for a response, it will accept an
input datagram from any incoming interface as well. Note also that this socket's port number is also
wild. In this particular application, any client port number is acceptable.

You can explicitly request a wild address and port with a call to bind(2). Listing 5.6 showed you
how this was done by using the wild address INADDR_NONE. To request a wild port number, the
port number is given as zero. By combining INADDR_NONE for the IP number and a port number
of zero, you have requested that bind(2) give you the same wild address explicitly that you would
have used without a call to bind(2).

Replying to a Wild Address

If the client program's address and port number are wild, you might wonder how the server was able
to reply to that particular socket. After all, how do you write a response back to the client without a
specific IP address and UDP port number?

The answer to this question lies in the fact that an IP number and port number are assigned at the
time the datagram is sent. The previous session shown occurred on the host with an IP number of
192.168.0.2. When the client program called the sendto(2) function, the datagram was
known to be destined for host IP number 192.168.0.1. The routing tables indicated that the
Ethernet interface with IP number 192.168.0.2 would be used to send the datagram to that host.
Consequently, the sending datagram had a "from" address of 192.168.0.2. This was the address
seen at the server end. The port number, however, was wild and would have been chosen as any one
of the free port numbers for the IP number chosen.

Page 155

If another datagram is destined to a different network, then its "from" IP number will be different
again. The "from" address will reflect the IP number of the network interface used to send the
datagram.

This is an important concept to grasp and is perhaps one of the most difficult things for the beginner
to grapple with. If your understanding is not yet complete on this, you should review Chapter 5 until
you have a thorough understanding. As an exercise, you can add the following printf(3)
statement to the server in Listing 6.1, immediately after the recvfrom(2) function call (after line
107):

Example

printf("Client from %s port %u;\n",
 inet_ntoa(adr_clnt.sin_addr),
 (unsigned)ntohs(adr_clnt.sin_port));

With this line added, perform the following steps:

1. Kill or take down the existing server(s) if it (they) are still running.

2. Recompile the server dgramsrvr.

3. Restart the server (on 192.168.0.1, for example).

4. Run the client program again (from 192.168.0.2, for example).

Output

The following line was displayed when the client on 192.168.0.2 sent the server on
192.168.0.1 a datagram:

Client from 192.168.0.2 port 1026;

This confirms the fact that an IP number was assigned at the client end, and the port number
assigned was 1026 in this example. This information enabled the server to direct its response back
to the original requesting client.

Output

If you lack a network, you can still perform this experiment on your standalone PC. First, start the
server, using its default address:

$./dgramsrvr &

Now run your client program:

$./dgramclnt

The output of your server program and client program will mix if run from the same terminal
window (you can, however, run them from separate windows if you like). The following session
shows the server and client output, when they are run on a single standalone PC, within the same
terminal window.

Output

$./dgramsrvr &
[1] 733
$./dgramclnt

Page 156

Enter format string: %D
Client from 127.0.0.23 port 1027;
Result from 127.0.0.23 port 9090 :
 '08/15/99'

Enter format string: %A %D
Client from 127.0.0.23 port 1027;
Result from 127.0.0.23 port 9090 :
 'Sunday 08/15/99'

Enter format string: QUIT
Client from 127.0.0.23 port 1027;

[1]+ Done ./dgramsrvr
$

Notice that for all datagrams sent to the server, the datagram from address was reported as

Client from 127.0.0.23 port 1027;

Again, this confirms that the correct IP address and a final port number are assigned demand,
whenever bind(2) is not used on the client's sending socket.

What's Next

This chapter introduced you to the concept of connectionless-and connection-oriented
communication. The UDP protocol was used to explore and demonstrate this connectionless mode
of communication.

You have demonstrated your ability to write a client and server program using the UDP network
protocol. Don't stop here, however, because UDP isn't always the best choice for applications.

The next chapter will show you another mode of communication for client and server. There you
will learn about the connection mode of communication using a TCP/IP client program. So, hang
onto your red hat!

Page 159

7—
Connection-Oriented Protocols for Clients

You'll recall from the last chapter that there are two basic modes of communication for sockets.
They are connection and connectionless modes of communication. In the last chapter, you also saw
how the UDP protocol could be used to communicate in a connectionless fashion. In this chapter,
you'll put the TCP/IP protocol to use, using a connection-oriented form of communication.

This chapter will introduce you to

• The advantages of connection-oriented protocols

• The /etc/services file and its support routines

• The /etc/protocols file and its support routines

• The connect(2) function

• How to write a TCP/IP client program

Before you jump in and write your first client program, however, a quick review and an introduction
to connection-oriented communications is in order. Additionally, you'll learn about some of the
support functions that are often used by TCP/IP programs that locate service and protocol
information.

Page 160

Reviewing the Methods of Communication

It was also noted in the last chapter that connectionless-oriented communication is simpler and more
flexible. But you'll see that connection-oriented communication is not really that much more
difficult. It does require additional steps, however, and mostly on the server side. A connection is
also much more rigid, because after the connection has been established, the socket can only
communicate with the connected endpoint.

The selling point in favor of TCP/IP for most application writers is that the communication channel
is transparently reliable and that data is delivered in the proper sequence. After the connection has
been established, your application can read and write to the socket without worrying about any of
the following problems:

• Lost packets

• Timeouts and

• Duplicated packets

• Packets received out of sequence

• Flow control

Like opening a file, your program can

1. Establish a TCP/IP connection with a remote socket

2. Transmit large amounts of data

3. Close the socket

These simple steps are all that is necessary to deliver all of your data safely to the remote end.
Proven error recovery software will take care of retransmitting lost packets until they can be
successfully delivered to the remote host.

TCP/IP Handles Lost Packets

TCP/IP will notice when packets are lost. This does not always happen with UDP. When packet
errors are reported, the TCP/IP protocol can immediately respond with retransmissions. However, if
an acknowledgement is missing, causing a timeout, the TCP/IP protocol takes steps to ensure that
the data is retransmitted to its destination. Carefully crafted algorithms are used to make the
transmission of the data nimble, without taxing the network capacity with retransmitted data.

Page 161

TCP/IP Handles Duplicated Packets

Whenever a retransmission occurs, there is a slight possibility that more than one identical packet
can be received at the remote end. If the retransmission occurs too early, for example, this can easily
happen. The receiving end must be able to recognize this and discard extraneous packets. This is
automatically performed by the TCP/IP protocol.

TCP/IP Handles Sequencing

When the volume of data requires multiple packets to be sent, there is a race to the finish line. The
IP packet can be routed in different ways, according to dynamic routing and buffer congestion. This
results in a race to the receiving end, where some packets can arrive ahead of other packets. For this
reason, the receiving software must recognize this and sequence the data before presenting it to the
application. Again, TCP/IP anticipates and corrects this problem.

TCP/IP Handles Flow Control

The ftp command uses TCP/IP to send and receive files. When you upload a large file to a remote
ftp server, using the ftp send command, many data packets are placed on the network. It can
happen that the receiving host can end up receiving packets faster than it can process them. The IP
way of dealing with this problem is to discard these extra packets.

TCP logically sits on top of the IP protocol like a layer (hence, it is called TCP/IP). It acts as a
supervisor of sorts by ensuring that the receiving end is not overloaded with more data than it can
handle. When the receiving end feels that it has enough data for the moment, it notifies the sending
end not to send more data until further notice. When it catches up, the remote end will signal the
sending end to start sending data again. This automatic throttling of data is known as flow control.

Understanding the Advantages of TCP/IP

The purpose of this introduction was to show you the advantage of using a connection-oriented
protocol. TCP/IP is one such connection-oriented protocol, which you will explore in this chapter.
You have seen the number of services it performs for you behind the scenes. This helps you to focus
on your application programming, rather than network communication problems. Furthermore,
because the same time-tested algorithms are at work for each program that uses TCP/IP, they
perform in the same reliable manner. This allows you to focus on application program bugs instead.

Page 162

Internet Services

Before you have fun working with TCP/IP in this chapter, you need to learn about some additional
facilities as TCP/IP pertains to Internet services.

Examining the /etc/services File

Your Linux system has a text file, usually named /etc/services. This file is described in the
man page services(5). This file maps the user-friendly names of certain Internet services to a
port number and protocol. The precise pathname for this file is given by the C language macro
_PATH_SERVICES. A simple example of its use follows:

Example

#include <netdb.h>

printf("File is path '%s'\n", _PATH_SERVICES);

The preceding code shows the necessary include file netdb.h and a printf(3) statement,
which prints out the pathname for the services file.

Each text line in the /etc/services file describes one Internet service. It has the following
general format:

service-name port/protocol [alias . . .]

The square brackets shown indicate that the one or more alias entries are optional.
The /etc/services text line is described in detail in Table 7.1.

Table 7.1: The /etc/services Fields

Field Description

service-name The case-sensitive use-friendly name of the service is described by this
table entry.

port The port number precedes the slash, and is the decimal port number for
the service.

/ This separates the port number from the protocol field.

protocol This specifies the type of the protocol to be used. This should be a
protocol that can be found in the protocols(5) file. Common
examples are udp or tcp.

alias Other names for the "service-name." Additional aliases can be
separated by tabs or spaces. There is a maximum of 35 aliases
permitted, due to restrictions in getservent(3).

Following is a pair of well-known service entries:

ftp 21/tcp
telnet 23/tcp

The first entry shown lists the ftp service as being available on TCP/IP port 21. The second entry
shows the telnet service being available on TCP/IP port 23.

TE
AM
FL
Y

Team-Fly®

Page 163

Working with the /etc/services file directly is neither convenient nor wise for your program.
Consequently, Linux provides you with some routines to make things easier.

Using Function getservent(3)

If you have used some of the password database functions like getpwent(3) before, the functions
about to be described here will seem similar. The synopsis of the getservent(3) function is as
follows:

#include <netdb.h>

struct servent *getservent(void);

For each call to getservent(3), you are returned a pointer to a structure that represents one
entry from the /etc/services file. When the end-of-file is reached, a NULL pointer is returned
(but see the caution that follows). If an error occurs, a NULL pointer is also returned, with the reason
for the error posted to variable errno.

CAUTION
Even when the value of errno is zeroed prior to calling getservent(3), when
end-of-file is reached and indicated by a NULL return pointer, the errno value for
Red Hat Linux 6.0 is code ENOENT.

Under other UNIX operating systems, such as HP-UX 10.2 and Sun Solaris 5.5.1,
the errno value is left at zero when end-of-file is returned. This leads the author to
speculate that this behavior is a bug, which might be corrected in a later release of
Linux.

When the pointer returned is not NULL, it points to the structure servent, as illustrated in Listing
7.1.

Example

Listing 7.1: The struct servent Structure

struct servent {
 char *s_name; /* official service name */
 char **s_aliases; /* alias list */
 int s_port; /* port number */
 char *s_proto; /* protocol to use */
}

CAUTION
Be careful to note that the value in s_port is already in network byte order. To
print this value in printf(3), for example, make sure you convert this value back
to host order by using ntohs(sp->s_port), for example.

When setting the port number in a socket address, you merely assign this value as-is,
since the port number is expected to be in network byte order. Listing 7.7 later in
this chapter shows an example of this use.

Page 164

The structure member s_aliases is actually an array of character pointers. If sp points to the
structure, and x is an int subscript, then you can iterate through each alias sp->s_alias[x],
until you reach a NULL pointer. A NULL pointer marks the end of this alias list. Listing 7.2 shows a
simple program that lists all /etc/services entries and their aliases, if any.

Example

Listing 7.2: servent.c— A Program to List All Services

1: /* servent.c:
2: *
3: * Example getservent(3) program:
4: */
5: #include <stdio.h>
6: #include <unistd.h>
7: #include <stdlib.h>
8: #include <errno.h>
9: #include <string.h>
10: #include <netdb.h>
11: #include <netinet/in.h>
12:
13: int
14: main(int argc,char **argv) {
15: int x;
16: struct servent *sp;
17:
18: for (;;) {
19: errno = 0;
20: if (!(sp = getservent()))
21: break;
22:
23: printf("%s:\n"
24: "\tPort: %d\n"
25: "\tProtocol: %s\n"
26: "\tAliases: ",
27: sp->s_name,
28: ntohs(sp->s_port),
29: sp->s_proto);
30: for (x=0; sp->s_aliases[x] != NULL; ++x)
31: printf("%s ",sp->s_aliases[x]);
32: putchar('\n');
33: }
34:
35: if (errno != 0
36: && errno != ENOENT) /* For RH-6.0 */
37: fprintf(stderr,
38: "%s: getservent(3) %d\n",
39: strerror(errno),errno);
40:

Page 165

41: return 0;
42: }

The program in Listing 7.2 uses the following basic steps:

1. Calls getservent(3) to obtain an entry from the /etc/services file.

2. Prints the service name, port, and protocol.

3. In an internal loop, prints all alias names, if any.

4. Repeats step 1, until there are no more entries.

Now looking at the program in more detail:

1. Line 10 shows that netdb.h was included. This defines the function prototype for
getservent(3). Line 11 includes netinet/in.h to define ntohs(), which is used in line
28.

2. Line 16 declares a pointer to struct servent, which is named as sp.

3. Line 19 zeros the value of errno. The author suspects that getservent(3) should leave
errno as zero when end-of-file is reached. However, Red Hat Linux 6.0 returns with ENOENT in
errno at present, when end-of-file is reached. Just be aware that this might be fixed in the future.

4. The pointer is returned from getservent(3) and assigned to variable sp (line 20). If the
pointer is NULL, line 21 breaks out of the loop.

5. Lines 23 to 29 display the service name, port, and protocol.

6. Lines 30 and 31 report all aliases, if any.

7. The program repeats step 3 until no more entries remain in the /etc/services file.

8. Lines 35 and 36 try to distinguish between end-of-file and an error. Red Hat Linux 6.0 indicates
ENOENT, but zero may be indicated in the future (if this behavior is indeed a bug).

9. Lines 37 to 39 report the error, if step 8 identifies that an error has occurred.

CAUTION
The pointer returned by getservent(3) is only valid until the next call to the
same function.

Listing 7.3 shows how to compile and run the program in Listing 7.2. In this example, the output
was piped to the head command to show only the first few lines of output.

Page 166

Example

Listing 7.3: Compiling and Running servent.c from Listing
7.2

$ make servent
gcc -c -D_GNU_SOURCE -Wall servent.c
gcc servent.o -o servent
$./servent | head
tcpmux:
 Port: 1
 Protocol: tcp
 Aliases:
echo:
 Port: 7
 Protocol: tcp
 Aliases:
echo:
 Port: 7
Broken pipe
$

The error message ''Broken pipe" in Listing 7.3 is simply due to the head command being used (it
closed the pipe early). There are some companions to the getservent(3) function, and these
will be covered next.

Using the setservent(3) Function

The setservent(3) function allows you to rewind the file that is opened behind the scenes in
the function getservent(3). For example, if you were to try to process entries a second time in
Listing 7.2, you would need setservent(3) to rewind to the start of the /etc/services file.
Otherwise, you will just continue to receive end-of-file indications. The function synopsis is as
follows:

#include <netdb.h>

void setservent(int stayopen);

This function takes one argument, which is a Boolean value:

• When non-zero (TRUE), the stayopen argument indicates that the file should be rewound
instead of re-opened when rereading the /etc/services file is performed. This is preferred for
performance reasons.

• When zero (FALSE) , the file is closed if it has been previously opened (by getservent(3),
for example). Then the function re-opens the file to make ready for the next getservent(3) call.

There is no return value for this function.

Page 167

Using the endservent(3) Function

The function getservent(3) opens the /etc/services file behind the scenes, before
returning a pointer to an entry. If your application has determined that it no longer needs to read
more entries, then the endservent(3) function can be used to cause the file to be closed. This is
especially important in server programs where the number of open file descriptors may be at a
premium. The function synopsis is as follows:

#include <netdb.h>

void endservent(void);

There is no argument, no return value, and no errors to test.

Looking up a Service by Name and Protocol

The previously introduced functions enable you to scan the /etc/services file one entry at a
time. Often, however, this still proves to be inconvenient because of the amount of code involved.
Instead, it would be more convenient to supply the service name and protocol, and have a function
return the required entry. The getservbyname(3) function does just that. The function synopsis
is as follows:

#include <netdb.h>

struct servent *getservbyname(const char *name, const char *proto);

The arguments to the function are as follows:

1. The service name to look up. For example, "telnet" could be used.

2. The protocol to be used (proto). Often a service will be available using UDP or TCP/IP.
Consequently, you must specify the protocol that you are willing to use in order to contact that
service. An example would be "tcp."

The value returned is NULL if the service cannot be found. Otherwise, a pointer to a structure
servent is returned. An example of its use is shown as follows:

Example

struct servent *sp;

sp = getservbyname
("telnet","tcp");
if (!sp)
 abort
(); /* No such service! */

If the function call is successful, the structure pointer sp will point to all of the pertinent details,
including the port number.

Page 168

CAUTION
The pointer returned by getservbyname(3) is only valid until the next call to
the same function.

Looking up a Service by Port and Protocol

You saw in the last section that it was possible to look up a service by name and protocol. The
function getservbyport(3) allows you to also perform a lookup by port and protocol. The
function synopsis is as follows:

#include <netdb.h>

struct servent *getservbyport(int port, const char *proto);

The function arguments are as follows:

1. The port number for this Internet protocol.

2. The protocol proto to be looked up for port.

The function returns a NULL pointer if no service entry can be found to match your input
parameters. Otherwise, a pointer is returned to the structure containing information, such as the
service name, for example.

CAUTION
The pointer returned by getservbyport(3) is only valid until the next call to
the same function.

Consulting the /etc/protocols File

Earlier, in Table 7.1, there was mention made that the protocol used there must appear in the
protocols(5) table. The text file /etc/protocols acts as a mini-database of various
defined Internet protocol values. There is a set of functions, which perform in a very similar manner
to the service entry functions that were just covered. These act as convenience functions, should you
need them. These functions are so similar, in fact, that they do not need to be covered in detail. The
function synopsis of getprotoent(3) is as follows:

#include <netdb.h>

struct protoent *getprotoent
(void);

The getprotoent(3) function returns one /etc/protocols entry with each call. A NULL
pointer is returned when end-of-file or an error has been encountered. Listing 7.4 shows the
protoent structure that is returned by the function call.

Page 169

CAUTION
The pointer returned by getprotoent(3) is only valid until the next call to the
same function.

Example

Listing 7.4: The struct protoent Structure

struct protoent {
 char *p_name; /* official protocol name */
 char **p_aliases; /* alias list */
 int p_proto; /* protocol number */
}

The structure members are more fully described as follows:

• The structure member p_name contains a pointer to a C string that names the protocol (for
example "tcp").

• The member p_aliases is a pointer to an array of C string pointers, of which the last entry is a
NULL pointer. If pp points to this structure, then pp->p_aliases[0] contains the first C string
(or is NULL when there are no aliases). An example of an alias might be "TCP" (the uppercase
name of the protocol is often specified as an alias).

• The member p_proto contains the protocol number. For example, the protocol number found
in /etc/protocols for entry "tcp" should agree with the C macro constant IPPROTO_TCP.
If you check with /usr/include/netinet/in.h and with the value in /etc/protocols,
you will indeed see that they both have the value 6.

CAUTION
The getprotoent(3) function suffers from the same flaw as the getservent
(3) function under Linux. Even when the value of errno is zeroed prior to calling
getprotoent(3), when end-of-file is reached and indicated by a NULL return
pointer, the errno value for Red Hat Linux 6.0 is ENOENT.

Under other UNIX operating systems, such as HP-UX 10.2 and Sun Solaris 5.5.1,
the errno value is left at zero when end-of-file is returned. This leads the author to
speculate that this behavior is a bug, which might be corrected in a later release of
Linux.

The getprotoent(3) function returns a NULL pointer when end-of-file is reached or when an
error has been encountered.

Listing 7.5 shows a demonstration program that iterates through all of the /etc/protocols
database entries.

Page 170

Example

Listing 7.5: protoent.c— The getprotoent(3) Demo Program

1: /* protoent.c:
2: *
3: * Example getprotoent(3) program:
4: */
5: #include <stdio.h>
6: #include <unistd.h>
7: #include <stdlib.h>
8: #include <errno.h>
9: #include <string.ring.h>
10: #include <netdb.h>
11:
12: int
13: main(int argc,char **argv) {
14: int x;
15: struct protoent *pp;
16:
17: for (;;) {
18: errno = 0;
19: if (!(pp = getprotoent()))
20: break;
21:
22: printf("%s:\n"
23: "\tProtocol: %d\n"
24: "\tAliases: ",
25: pp->p_name,
26: pp->p_proto);
27: for (x=0; pp->p_aliases[x] != NULL; ++x)
28: printf("%s ",pp->p_aliases[x]);
29: putchar('\n');
30: }
31:
32: if (errno != 0
33: && errno != ENOENT) /* For RH-6.0 */
34: fprintf(stderr,
35: "%s: getprotoent(3) %d\n",
36: strerror(errno),errno);
37:
38: return 0;
39: }

The program code in Listing 7.5 is so similar to the program in Listing 7.2 that only the basic steps
need to be repeated here. They are

1. Call getprotoent (3) to obtain an entry from the /etc/protocols file.

2. Print the protocol name and the protocol number.

Page 171

3. In an internal loop, print all protocol alias names, if any.

4. Repeat step 1 until there are no more protocol entries.

Listing 7.6 shows how to compile and run the demonstration
program.

Output

Listing 7.6: Compiling and Running the protoent.c

$ make protoent
gcc -c -D_GNU_SOURCE -Wall protoent.c
gcc protoent.o -o protoent
$./protoent | head
ip:
 Protocol: 0
 Aliases: IP
icmp:
 Protocol: 1
 Aliases: ICMP
igmp:
 Protocol: 2
 Aliases: IGMP
ggp:
$

The example command session in Listing 7.6 had its output piped to the head command to keep the
listing short. Notice the protocol name of the first entry shown was "ip" and its one and only alias
was the uppercase name "IP".

Using the setprotoent(3) Function

The file that is opened implicitly for getprotoent(3) can be rewound by calling the
setprotoent(3) function. The function synopsis for it is as follows:

#include <netdb.h>

void setprotoent(int stayopen);

This function accepts one argument, stayopen, which is interpreted as a Boolean value:

• When stayopen is non-zero (TRUE), this indicates that the implicitly opened file is left opened
and merely rewound to the start of the file.

• When stayopen is zero (FALSE), this indicates that the implicitly opened file is closed and
then re-opened, effectively rewinding the file.

Best performance is obtained by setting stayopen as TRUE.

Page 172

Using the endprotoent(3) Function

When your program is finished consulting with the /etc/protocols file, it can request that the
implicitly opened file be closed. This is especially important for server programs to do, because file
descriptors are often scarce. The function prototype for endprotoent(3) is given as follows:

#include <netdb.h>

void endprotoent(void);

There are no arguments to this function, and there are no return value or errors to check.

Looking up a Protocol by Name

Sometimes it is necessary for an application program or utility program, which can work with
multiple protocols, to look up a protocol by name. While this can be done by using the previous
functions, getprotobyname(3) saves the programmer some effort. The function prototype is as
follows:

#include <netdb.h>

struct protoent *getprotobyname(const char *name);

The one input argument is a C string containing the protocol name ("udp", for example). The value
returned is a pointer to the protoent structure, or is a NULL pointer, indicating that it could not be
found.

CAUTION
The pointer returned by getprotobyname(3) is only valid until the next call to
the same function.

Looking up a Protocol by Number

When your application has the protocol number, and it needs to display it in human readable terms,
the getprotobynumber(3) routine is used. The function prototype is as follows:

#include <netdb.h>

struct protoent *getprotobynumber(int proto);

This function accepts the protocol number as the input argument, and returns the pointer to a
protoent structure if a match is found. Otherwise, the NULL pointer is returned to indicate that
the protocol is not known by the mini-database. For example, if the input argument is 6 (or the C
macro constant IPPROTO_TCP), then you should get a structure pointer returned that has the value
"tcp" in the member p_name.

TE
AM
FL
Y

Team-Fly®

Page 173

CAUTION
The pointer returned by getprotobynumber(3) is only valid until the next call
to the same function.

This brings you to the end of the getservent(3) and the getprotoent(3) function families.
Now that you know how to look up Internet-related services and protocols, it is time to write a
connection-oriented client program using TCP/IP.

Writing a TCP/IP Client Program

Using TCP/IP for a connected pair of sockets requires that a slightly different procedure be used
from the one you used when using the UDP protocol in the previous chapter. From the client
program's point of view, you must perform the following general steps:

1. Create a socket.

2. Optionally bind the socket (to restrict which interface will be used, or to explicitly indicate a wild
socket address).

3. Connect to the remote socket (client connects to the server).

4. Communicate with reads and writes.

5. Shut down or close the socket.

When you used the UDP protocol, you performed all of the above steps except for step 3. You never
had to connect to anything, because you were using a connectionless protocol. The next section will
describe a new socket function for you.

Introducing the connect(2) Function

In order to establish a connection with sockets, you call upon the connect(2) function. Its
function synopsis is as follows:

#include <sys/types.h>
#include <sys/socket.h>

int connect (int sockfd, struct sockaddr *serv_addr, int addrlen);

This function takes three arguments. They are

1. The socket file descriptor sockfd that was returned by a former call to socket(2) .

2. The server address serv_addr that the program is connecting to.

3. The length addrlen of the server address in
bytes.

Page 174

The server address and the server address length are the same socket address values that you would
have supplied in a call to the sendto(2) function, if you were using UDP. The difference with
connection-oriented protocols, however, is that you only establish the destination address once.
After this function succeeds, all future communications will be with the socket addressed here.

When the function call is successful, the return value is zero. Otherwise, -1 is returned to indicate
that an error has occurred, and the nature of the error is recorded in the variable errno.

Preparing to Write the Client Program

To keep the client program short and allow you to focus upon the basic principles, the demonstration
program is going to connect to an existing service you have running on your system. The client
program will connect to your daytime service to retrieve the current date and time string.

Before the program is presented, however, you should make sure that this service is enabled and
operational on your system. As a first step, perform the following:

Output

$ grep daytime /etc/services
daytime 13/tcp
daytime 13/udp
$

You should see that your system recognizes the daytime Internet service and that it is available on
port 13 using tcp. The first line of grep output confirms this for you.

TIP
The telnet program can often be used to perform simple tests with TCP/IP
servers. It is very important, however, to remember to specify the port number after
the IP number (or hostname) on the command line. Otherwise, the port number will
default to 23, which is the telnet service!

To test the daytime service, for example, you must specify the port number 13
after the IP number on the command line.

The next step is to make sure it is operational. The telnet program is a program that is often
usable for simple tests when TCP/IP is used. To test that the daytime service is running, you
should be able to perform the following:

Output

$ telnet 127.0.0.1 13
Trying 127.0.0.1 . . .
Connected to 127.0.0.1.
Escape character is '^]'.
Tue Aug 17 17:59:30 1999

Page 175

Connection closed by foreign host.
$

Make sure you specify the protocol number 13 after the IP number 127.0.0.1 (you can use a
remote IP number, but for this testing procedure stick to 127.0.0.1). If your daytime service is
running, you should get a date and time string displayed, which is followed by the message
"Connection closed by foreign host."

If the service is not available, you will see output similar to this:

Output

$ telnet 127.0.0.1 13
Trying 127.0.0.1 . . .
telnet: Unable to connect to remote host: Connection refused
$

If you do, then this indicates that your daytime service is not running. To troubleshoot this
problem, examine your /etc/inetd.conf file:

Output

$ grep daytime /etc/inetd.conf
Echo, discard, daytime, and chargen are used
#daytime stream tcp nowait root internal
#daytime dgram udp wait root internal
$

As shown in this case, the daytime service entry in the file has a # character in the first column.
This effectively "comments out" the service, which makes it unavailable. This may have been done
as a precaution against attacks from the Internet or other hostile users in your network (it's a general
principle to disable any Internet service that you do not deem as necessary). To try out the client
example program, you will need to enable the tcp daytime service entry (the udp service entry
can be left commented out if it is already).

To fix the service, edit the file /etc/inetd.conf by removing the leading # character for the
daytime entry that includes the protocol tcp in it. Check it with grep again, and you should see
something like the following:

Output

$ grep daytime /etc/inetd.conf
Echo, discard, daytime, and chargen are used
daytime stream tcp nowait root internal
#daytime dgram udp wait root internal

$

After making changes to the /etc/inetd.conf file, you must tell the inetd daemon to re-read
and reprocess the changed file. This is done as follows:

Output

$ su -
Password:
ps ax | grep inetd
 313 ? S 0:00 inetd
 828 pts/1 S 0:00 grep inetd
kill -1 313
#

Page 176

CAUTION
Symbolic signal names in commands such as the kill command are being
promoted these days. One reason to use these symbolic symbol names is for safety
against typing errors. For example, the command "kill -1 313" can be typed
as:

kill -HUP 313

Some users (author included) prefer to live dangerously and have resisted making
this change.

The above session accomplishes the following:

1. The su command is used to change to the root account.

2. Then you find out what the process ID of the inetd daemon is. The ps command indicates in
the example that the process ID is 313 for the inetd daemon process (your process ID may be
different).

3. The kill -1 313 command is used to send the signal SIGHUP to process ID 313 (your
process ID may be different). Be sure to not forget the -1 (or -HUP) argument on the command
line. Otherwise, you'll kill off your inetd daemon!

Having done all of this, you should now be able to repeat the telnet test and verify that it works.

The daytime Client Program

The program shown in Listing 7.7 performs the following simple steps:

1. Looks up the daytime service for the tcp protocol.

2. Connects to your PC's daytime server, using tcp.

3. Reads the server date and time string that it sends back to your socket.

4. Reports the data and time string to your terminal session.

5. Closes the socket and exits back to the shell.

The client program in Listing 7.7 is presented next.

Example

Listing 7.7: daytime.c— The Client daytime Demo Program

1: /* daytime.c:
2: *
3: * Example daytime client:
4: */
5: #include <stdio.h>
6: #include <unistd.h>
7: #include <stdlib.h>

Page 177

8: #include <errno.h>
9: #include <string.h>
10: #include <sys/types.h>
11: #include <sys/socket.h>
12: #include <netinet/in.h>
13: #include <arpa/inet.h>
14: #include <netdb.h>
15:
16: /*
17: * This function reports the error and
18: * exits back to the shell:
19: */
20: static void
21: bail (const char *on_what) {
22: fputs (strerror(errno),stderr);
23: fputs (": ",stderr);
24: fputs (on_what,stderr);
25: fputc ('\n',stderr);
26: exit (1);
27: }
28:
29: int
30: main (int argc,char **argv) {
31: int z;
32: char *srvr_addr = NULL;
33: struct sockaddr_in adr_srvr;/* AF_INET */
34: int len_inet; /* length */
35: int s; /* Socket */
36: struct servent *sp; /* Service entry */
37: char dtbuf[128]; /* Date/Time info */
38:
39: /*
40: * Use a server address from the command
41: * line, if one has been provided.
42: * Otherwise, this program will default
43: * to using the arbitrary address
44: * 127.0.0.1:
45: */
46: if (argc >= 2) {
47: /* Addr on cmdline: */
48: srvr_addr = argv[1];
49: } else {
50: /* Use default address: */
51: srvr_addr = "127.0.0.1";
52: }
53:

continues

Page 178

Listing 7.7: continued

54: /*
55: * Lookup the daytime tcp service:
56: */
57: sp = getservbyname("daytime","tcp");
58: if (!sp) {
59: fputs("Unknown service: daytime tcp\n",
60: stderr);
61: exit(1);
62: }
63:
64: /*
65: * Create a server socket address:
66: */
67: memset(&adr_srvr,0,sizeof adr_srvr);
68: adr_srvr.sin_family = AF_INET;
69: adr_srvr.sin_port = sp->s_port;
70: adr_srvr.sin_addr.s_addr =
71: inet_addr(srvr_addr);
72:
73: if (adr_srvr.sin_addr.s_addr == INADDR_NONE)
74: bail ("bad address.");
75:
76: len_inet = sizeof adr_srvr;
77:
78: /*
79: * Create a TCP/IP socket to use:
80: */
81: s = socket(PF_INET,SOCK_STREAM,0);
82: if (s == -1)
83: bail("socket()");
84:
85: /*
86: * Connect to the server:
87: */
88: z = connect(s,&adr_srvr,len_inet);
89: if (z == -1)
90: bail("connect(2)");
91:
92: /*
93: * Read the date/time info:
94: */
95: z = read(s,&dtbuf,sizeof dtbuf-1);
96: if (z == -1)
97: bail("read(2)");
98:
99: /*

Page 179

100: * Report the Date & Time:
101: */
102: dtbuf[z] = 0; /* null terminate string */
103:
104: printf("Date & Time is: %s\n",dtbuf);
105:
106: /*
107: * Close the socket and exit:
108: */
109: close(s);
110: putchar('\n');
111:
112: return 0;
113: }

The program can be described in more detail, as follows:

1. The program will use an IP number on the command line if provided (line 48), but otherwise
defaults to your local host (also known as localhost) by using the local loopback address
127.0.0.1 (line 51). The IP number on the command line allows the user to test the daytime
service on another remote host. This is particularly useful if it is turned off on the local host and the
service is available somewhere else.

2. Line 57 looks up the daytime Internet service for use over TCP/IP. If this service is not found,
the problem is reported in lines 59 to 61.

3. The server's address and the length of the address are established in lines 67 to 76. Note especially
line 69 where the service port number is established for the daytime service.

4. The socket is created in line 81. Note especially the argument SOCK_STREAM that specifies that
we want a TCP/IP socket (when used with PF_INET).

5. The program connects to the server in line 88. If this fails, the error is handled in line 90.

6. Line 95 shows a read (2) call that retrieves the output from the server. The return value
indicates the number of bytes read. Otherwise, the error is dealt with in line 97.

7. Line 102 makes certain that we have a terminating null byte, so that the buffer dtbuf[] can be
treated like a C string.

8. Line 104 reports the value returned by the server.

9. The socket is closed in line 109.

Page 180

Listing 7.8 shows an example compile and run session for this demo program.

Example

Listing 7.8: Compiling and Running the daytime Client Program

$ make daytime
gcc -c -D_GNU_SOURCE -Wall daytime.c
gcc daytime.o -o daytime
$./daytime
Date & Time is: Tue Aug 17 18:41:42 1999

$

There is an extra newline emitted by the program, because the server places a '\n' at the end of the
date and time information that is sent to the client program.

Using connect(2) on SOCK_DGRAM Sockets

The connect(2) function was introduced to you in this chapter for use with connection-oriented
protocols. Before moving onto the next chapter, however, it should be noted that there is an
exception to this rule.

The connect(2) function can be used with UDP sockets (SOCK_DGRAM for protocol family
PF_INET). This does not actually imply a connection, however, but instead imposes some
restrictions upon how the UDP socket will be used. This function call should be made

1. After the bind(2) function is called, if used.

2. Before any datagrams are read or written on the socket.

When connect(2) is used on a UDP socket, this indicates that all packets written will be
addressed to the destination indicated in the server address specified (argument 2). This also implies
that this socket is only interested in receiving datagrams from the same server. This prevents stray
datagrams from being received from other sockets, which is otherwise possible with UDP. The
kernel will eliminate unwanted UDP datagrams from being received by your UDP socket.

One other advantage to this technique is that it permits the caller to use the read(2) and write
(2) system calls instead of the sendto(2) and recvfrom(2) functions. This saves the
programmer from having to provide socket address structures and lengths for each I/O operation.

Page 181

What's Next

This chapter introduced you to the concept of a connection-oriented form of communication. The
client program demonstrated that it must connect to its server before performing any I/O.

The next chapter will introduce you to the server's point of view and the different steps that it must
perform. You'll also learn about two new important socket functions that you have yet to see in this
book.

TE
AM
FL
Y

Team-Fly®

Page 183

8—
Connection-Oriented Protocols for Servers

The last chapter showed you how to write a connection-oriented client program. The server program
that the client connects to must use a different procedure, however. This chapter will teach you
about the role of the server, including the following topics:

• The basic steps used by connection-oriented servers

• Why the bind(2) function is necessary for servers

• The listen(2) function and its role

• The accept(2) function and its role

• How to write a connection-oriented server program

With these topics mastered, you will be equipped to program your own custom server programs.

Page 184

Understanding the Role of the Server

In the last chapter you saw how a client program connected to a server process. Compared to
connectionless communication, from the client's point of view, the only new step was the ''connect"
step. The connection was established by use of the connect(2) function.

You will recall that the client program required five basic steps. In their simplest form, these are
shown in Figure 8.1 on the left side of the figure, as steps C1 through C5. Steps S1 through S6
depict the six basic steps that a server program will use. The steps shown flow from top to bottom.
Two dotted horizontal lines with arrows in the center of the figure show how these events form a
relationship between the client and server programs. Figure 8.1 represents the simplest form that a
server can take. This model will be further enhanced as you progress through this chapter.

Figure 8.1:
Study and compare these connection steps for client and

server connections.

Page 185

The basic steps of the server can now be summarized as follows:

1. Create a socket.

2. Bind a socket address (mandatory).

3. Listen for a connection.

4. Accept a connection.

5. Communicate with the client program.

6. Close the socket.

Notice that, for the server, the bind(2) step 2 (S2 in Figure 8.1) is not optional. The server cannot
be contacted by clients unless the client has an address for connecting. On the other hand, the client
bind(2) step C2 is optional. In order for a server to be contacted, then, a server address cannot be
completely wild.

Notice also that step 3 (S3 in Figure 8.1) is something new. The server must express its interest in
accepting connections to the kernel for its socket. This will be discussed further when the listen
(2) function is covered.

The process of accepting a connection in step 4 (S4 in Figure 8.1) is another new socket concept.
Once a client has connected to the server, the server must then accept the connection. This will be
covered in detail when the accept(2) function is covered later in this chapter.

Briefly, the server differs from the client in the following ways:

• The server must bind a server address to the socket.

• The server listens for a connection.

• The server accepts connections.

The listen(2) Function

The listen(2) function is how the server is able to express its interest in listening for
connections. The function is very simple to call, and its function prototype is given as follows:

#include <sys/socket.h>

int listen(int s,int backlog);

The two input arguments are the following:

• The socket s to use as the listening socket.

• The backlog , which specifies the connect queue length in
entries.

Page 186

The function returns zero when it is successful. Otherwise -1 is returned, and the reason for the
error is posted to errno.

Understanding the Connect Queue

It might seem odd that the application programmer would have to supply something apparently so
cryptic as backlog parameter value in the call to the listen(2)function. However, there is a
sound reason for it. Figure 8.2 shows the general activity of the very popular www.woohoo.com
Web server.

Figure 8.2:
The Linux kernel manages the backlog queue when

accepting new connections.

Notice the block in Figure 8.2 that is labeled listen(2). This block represents the call to
listen(2), which establishes a listening queue. A small arrow points up to the queue it
established, which resides within the Linux kernel. The length of this queue is determined by the
backlog argument of the listen(2) call.

Page 187

Now look at the block at the bottom right of Figure 8.2. This block is labeled "Process Client
Request." The arrow labeled as number one represents the very first connection into your server. In
Figure 8.2, this connection has just been accepted by the accept(2) function call and is currently
being processed by your server code.

However, while server processing is taking place on the first client connection, more connection
requests are coming into your server from all over the world. Within the queue that listen(2)
established, you have connect requests two through five pending and waiting to be accepted.

Figure 8.2 shows another connect request being inserted into the tail end of the queue as request
number six by the Linux kernel. Even as that is happening, connect requests seven, eight, and nine
are being received. A busy server indeed!

The thrust of Figure 8.2 has been to demonstrate the purpose of the backlog argument, within the
listen(2) function call. As you have seen, this parameter sets the length of the incoming queue.
Now that you understand its purpose, let's discuss what practical values should be used in this
parameter.

Specifying a Value for backlog

Historically, the value of backlog in the listen(2) call has been less than precise. In the early
days of UNIX, the value 5 was commonly used. However, with the faster and busier systems of
today, this value might not be suitable for your server application. So how does one determine a
reasonable value?

UNIX literature advises not to use a value of 0 in the backlog argument. This is good advice to
programmers writing applications that must be ported to various flavors of UNIX, including Linux.
The reason is that for some platforms this means no connections are accepted. For others, it means
that at least one connection can be pending in accept(2). A negative value does not make sense,
and so it should not be used.

The man page for listen(2) indicates that the behavior of the backlog argument changed at
Linux kernel release 2.2. Previously, this count included connections that were still establishing
communications with the listening socket. As of 2.2 and later, this backlog count only pertains to
those connections that have been established with the listening socket, but are waiting to be accepted
by the server.

It would seem that for small servers, the queue length should be specified as 5 or more. For Web
servers, however, you might need to experiment with larger numbers. Some tests published by
Richard Stevens suggest that for a Web server that is receiving approximately 45,000 connects per
hour, you might want to use a backlog length of 16 or more.

Page 188

The final value chosen for the backlog parameter depends largely upon the amount of elapsed
time between each accept(2) function call. If your server accepts one connection and then
completely processes this request before accepting the next connection, you'll want to use a larger
backlog value. The longer each request takes to process in this scenario, the more critical the
backlog queue length becomes.

If, on the other hand, your server can concurrently process several client connections, the backlog
parameter value will be lower. This is true because the server will loop back and accept the next
pending connect, within the limits of a very efficient processing loop. Processing multiple clients
concurrently within a server will be covered in Chapter 11, "Concurrent Client Servers."

The accept(2) Function Call

You have seen the accept(2) function call mentioned several times in this chapter. It is now
appropriate to fully discuss this function, so that you will have a clear idea of its role. The function
synopsis is shown as follows:

#include <sys/types.h>
#include <sys/socket.h>

int accept(int s, struct sockaddr *addr, int *addrlen);

The accept(2) function takes three arguments. They are

• The input socket s, which is listening for connections.

• The pointer (addr) to a socket address structure, which will receive the client socket address.

• The pointer to the maximum length (addrlen) of the receiving socket address buffer addr.
The int value that this pointer is pointing to is both an input value and an output value. Upon input,
it specifies the maximum length of addr. After the function returns, this value contains the actual
length of the address that was returned.

CAUTION
Note that argument three of accept(2) is a pointer to an integer data type. The
integer that it points to is both an input and output value. Always initialize this value
with the maximum length of the address prior to calling accept(2).

The return value from the accept(2) function is a new socket when successful. Otherwise the
value -1 is returned, and the value of errno contains the reason for the failure.

Page 189

Understanding the Role of accept(2)

It might seem strange for accept(2) to return yet another socket. After all, wouldn't it be better to
use the original socket? The answer lies in the nature of most server designs. A server, upon
accepting one client connection, must be willing to accept additional connections from clients. Any
individual socket, however, can only be connected to one client. Where would the
www.woohoo.com server be if it could only service one client at one time?

Figure 8.1, which was presented earlier, was an oversimplification of server responsibilities. Figure
8.3 is an improvement, showing the steps that a simple server would use.

Figure 8.3:
Here is an improved diagram explaining the connection steps for client

and server (note the repetition of steps S4 to S6).

Page 190

Figure 8.3 shows how the server will repeat steps S4 through S6 for each client that connects. The
server finishes processing each client's request with a close(2) function call in step S6. However,
to continue to receive new connections, the server needs its original socket that is able to listen for
additional requests.

To summarize, there are two types of sockets used by the server program. They are

• Sockets that are being used for listening (passed to the listen(2) function call at one point). No
reading or writing of data to these sockets is permitted.

• Sockets that have been returned by accept(2) . These are connected to a client process, and can
be used to read and write data.

The socket is made into a "listening socket" by passing it to the listen(2) function. A socket
returned from accept(2) is a connected socket, which can be read from or written to.

NOTE
The input socket to the accept(2) call must be a listening socket. Any attempt to
use a non-listening socket will cause the function to return an error.

You must be sure to understand these concepts in order to write a TCP/IP server program. If this is
still unclear to you, the example program presented later in Listing 8.1 will help to clarify all of this.

Writing a TCP/IP Server

This section presents a simple TCP/IP server program. This server will replace the daytime
service that was used in the previous chapter. Listing 8.1 shows the source code for the program.

Example

Listing 8.1:server.c— The Replacement Daytime Server

1: /* server.c:
2: *
3: * Example daytime server:
4: */
5: #include <stdio.h>
6: #include <unistd.h>
7: #include <stdlib.h>
8: #include <errno.h>
9: #include <string.h>
10: #include <time.h>
11: #include <sys/types.h>
12: #include <sys/socket.h>

Page 191

13: #include <netinet/in.h>
14: #include <arpa/inet.h>
15: #include <netdb.h>
16:
17: /*
18: * This function reports the error and
19: * exits back to the shell:
20: */
21: static void
22: bail(const char *on_what) {
23: if (errno != 0) {
24: fputs(strerror(errno), stderr);
25: fputs(": ", stderr);
26: }
27: fputs(on_what,stderr);
28: fputc('\n',stderr);
29: exit(1);
30: }
31:
32: int
33: main(int argc,char **argv) {
34: int z;
35: char *srvr_addr = NULL;
36: char *srvr_port = "9099";
37: struct sockaddr_in adr_srvr;/* AF_INET */
38: struct sockaddr_in adr_clnt;/* AF_INET */
39: int len_inet; /* length */
40: int s; /* Socket */
41: int c; /* Client socket */
42: int n; /* bytes */
43: time_t td; /* Current date&time */
44: char dtbuf[128]; /* Date/Time info */
45:
46: /*
47: * Use a server address from the command
48: * line, if one has been provided.
49: * Otherwise, this program will default
50: * to using the arbitrary address
51: * 127.0.0.1:
52: */
53: if (argc >= 2) {
54: /* Addr on cmdline: */
55: srvr_addr = argv[1];
56: } else {
57: /* Use default address: */
58: srvr_addr = "127.0.0.1";
59: }

continues

Page 192

Listing 8.1: continued

60:
61: /*
62: * If there is a second argument on the
63: * command line, use it as the port #:
64: */
65: if (argc >= 3)
66: srvr_port = argv[2];
67:
68: /*
69: * Create a TCP/IP socket to use:
70: */
71: s = socket(PF_INET,SOCK_STREAM,0);
72: if (s == -1)
73: bail("socket()");
74:
75: /*
76: * Create a server socket address:
77: */
78: memset(&adr_srvr,0,sizeof adr_srvr);
79: adr_srvr.sin_family = AF_INET;
80: adr_srvr.sin_port = htons(atoi(srvr_port));
81: if (strcmp(srvr_addr,"*") != 0) {
82: /* Normal Address */
83: adr_srvr.sin_addr.s_addr =
84: inet_addr(srvr_addr);
85: if (adr_srvr.sin_addr.s_addr
86: == INADDR_NONE)
87: bail("bad address.");
88: } else {
89: /* Wild Address */
90: adr_srvr.sin_addr.s_addr =
91: INADDR_ANY;
92: }
93:
94: /*
95: * Bind the server address:
96: */
97: len_inet = sizeof adr_srvr;
98: z = bind(s,(struct sockaddr *)&adr_srvr,
99: len_inet);
100: if (z == -1)
101: bail("bind(2)");
102:
103: /*
104: * Make it a listening socket:
105: */
106: z = listen(s,10);

TE
AM
FL
Y

Team-Fly®

Page 193

107: if (z == -1)
108: bail("listen(2)");
109:
110: /*
111: * Start the server loop:
112: */
113: for (;;) {
114: /*
115: * Wait for a connect:
116: */
117: len_inet = sizeof adr_clnt;
118: c = accept(s,
119: (struct sockaddr *)&adr_clnt,
120: &len_inet);
121:
122: if (c == -1)
123: bail("accept(2)");
124:
125: /*
126: * Generate a time stamp;
127: */
128: time(&td);
129: n = (int) strftime
(dtbuf,sizeof dtbuf,
130: "%A %b %d %H:%M:%S %Y\n",
131: localtime(&td));
132:
133: /*
134: * Write result back to the client:
135: */
136: z = write(c,dtbuf ,n);
137: if (z == -1)
138: bail("write(2)");
139:
140: /*
141: * Close this client's connection;
142: */
143: close(c);
144: }
145:
146: /* Control never gets here */
147: return 0;
148: }

The basic steps for the program in Listing 8.1 can be listed as

1. Decide on the server network address for the server (lines 53 to 59). The default is the local
loopback address of 127.0.0.1 (line 58).

2. Decide on a server port number (lines 65 to 66). Note that the default is port 9099 (line 36).

Page 194

3. Create a socket (lines 71 to 73).

4. Create the server socket address (lines 78 to 92).

5. Bind the socket address (lines 97 to 101).

6. Mark the socket as a listening socket (lines 106 to 108).

7. Start the client service loop (line 113).

8. Accept a client connection (lines 117 to 123).

9. Generate a date and time string (lines 128 to 131).

10. Write the date and time string back to the client (lines 136 to 138).

11. Close the client connection (line 143).

Some steps require a bit of further explanation. In step 2, the program accepts a port number as an
optional command-line argument two. This is necessary, because you don't want to run your version
of the server on the standard port 13 (remember from the last chapter, your daytime server listens on
that port). Instead, you'll use port 9099 by default, which does not require root privileges to run,
and it won't disrupt your standard services. The command-line parameter permits you to use
different port numbers if you prefer.

NOTE
TCP/IP ports 1 to 1023 are reserved for privileged programs (running as root). Non-
privileged programs use ports 1024 or greater.

Note also that a port value of zero is a wild port number. An unassigned port number
will be assigned when bind (2) is called, if the port number is specified as zero.

Step 4 is different from previous programs. Line 81 has a call to strcmp(3) to see if the value "*"
was given for the server address. If so, then a wild address is provided in lines 90 and 91. Now this
might raise your eyebrow, because it was mentioned earlier that server addresses couldn't be
completely wild. The important word to notice is "completely." The port and IP number cannot both
be wild. The port number is not wild in this example, but it is permitted for the IP number to be wild
in the server address. This allows the server to accept connections on any IP interface. This becomes
important for systems that have several network cards.

TIP
A server address cannot completely wild. However, with a specified port number,
the IP number portion of a TCP/IP address can be wild (INADDR_ANY). This allows
your server to accept connections from any valid IP interface on that host.

Page 195

Step 8 is the point where the server program calls the function accept(2). This is where the
server control "blocks." The server will not execute any further instructions unless a client connects.
After a connection has taken place, the accept(2) call will return in line 122. Note that variable c
holds the client socket that has been returned by the accept(2) function call.

Client request processing continues in steps 9 to 11. Then the server repeats step 8 to await the next
client connection.

The following shows how to make and invoke the server program:

Output

$ make server
gcc -c -D_GNU_SOURCE -Wall -Wreturn-type server.c
gcc server.o -o server
$./server &
[1] 1049
$ telnet 127.0.0.1 9099
Trying 127.0.0.1 . . .
Connected to 127.0.0.1.
Escape character is '^]'.
Sunday Aug 22 21:18:24 1999
Connection closed by foreign host.
$

The output shows the server being run in the background, without any command-line parameters.
The telnet command connects to it to test it out. Notice that port 9099 is specified on the telnet
command line.

The returned output from the server is purposely different from the standard daytime server. The
standard daytime server abbreviates the weekday name. Because the session output shows the full
weekday name, you can be confident that you contacted your server instead of the standard server.

Output

Before proceeding to the next section, bring down your server. The server is designed to loop
forever until you kill it. So you can simply list your jobs and kill it off as follows:

$ jobs
[1]+ Running ./server &
$ kill %1
[1]+ Terminated ./server
$

The jobs command is the bash shell built-in that enables you to see which processes you started and
left to run in the background. The %1 in the kill command causes the shell to substitute the real
process ID (PID) before invoking the kill command. If you leave the server running on port
9099, and you attempt to start another on the same port, you will see something like this:

Page 196

Output

$./server &
Address already in use: bind(2)
[2] 1057
[2] Exit 1 ./server
$

TIP
Sometimes you will get the ''Address already in use" error, even though the server is
not running. The Linux kernel will make the server address unavailable for a short
period after the server has terminated. This behavior is controlled by the socket
option SO_LINGER, which has not been covered yet. This is covered in Chapter 12,
"Socket Options."

Running a Wild Server

The server, as started by using the command ./server &, is using a socket bound to the IP
address 127.0.0.1 (the program's default). This means that only processes on that local host will
be able to contact that server. An alternative is to run the server with an external IP number as
follows:

Example

$./server 192.168.0.1 &

The problem with this is that your server will only accept connections from the one network
interface, which has the matching IP number. What you really need is a wild IP number for this
server. This can be accomplished as follows:

$./server '*' &

CAUTION
Be sure to enclose the asterisk character within a pair of single quotes. Otherwise,
the shell will expand it into a list of filenames before starting the server.

While a port number was not specified on the command line, the port number used in this program
is port number 9099 , by default. Having started the server just shown, you may now connect to it
locally or from a remote location. The following shows two connects from the host pepper where
the server was started:

Example

@pepper
$./server '*' &

[1] 1078
@pepper
$ telnet 127.0.0.1 9099
Trying 127.0.0.1 . . .
Connected to 127.0.0.1.
Escape character is '^]'.
Sunday Aug 22 21:40:19 1999
Connection closed by foreign host.

Page 197

@pepper
$ telnet 192.168.0.1 9099
Trying 192.168.0.1 . . .
Connected to 192.168.0.1.
Escape character is '^]'.
Sunday Aug 22 21:40:27 1999
Connection closed by foreign host.
@pepper
$

The session shown demonstrates the
following:

1. The first command in the session output shows the server being started on pepper with a wild
server address (but also using the default port number of 9099).

2. The telnet to address 127.0.0.1 port 9099 provoked a response successfully from our
server. This contact was made with the server using the local loopback interface.

3. The telnet to address 192.168.0.1 port 9099 also provoked a successful response from
our server. This proved that the server could be reached from yet a different IP address.

As further proof of the wild nature of the server address, you can try contacting the server from
another host. The following shows a connect attempt from host slug :

Output

@slug
$ telnet 192.168.0.1 9099
Trying 192.168.0.1 . . .
Connected to 192.168.0.1.
Escape character is '^]'.
Sunday Aug 22 21:47:52 1999
Connection closed by foreign host.
@slug
$

The telnet command used on host slug still contacts the server on interface address
192.168.0.1 in this example. This proves that the connection attempt went through the network
card via the Ethernet link and was able to contact the server. Had the server address been bound only
to 127.0.0.1 , host slug would not be able to reach the server on pepper.

Modifying the Client Program

To provide a more convincing demonstration, you will dispense with the telnet command.
Instead, the client program from the previous chapter will be used with a few modifications applied.
Listing 8.2 shows the modified client program.

Page 198

Example

Listing 8.2: daytime, c— Modified Client Program for Daytime Service

1: /* daytime.c:
2: *
3: * Example daytime client, modified
4: * to accept different port numbers:
5: */
6: #include<stdio.h>
7: #include<unistd.h>
8: #include<stdlib.h>
9: #include<errno.h>
10: #include<string.h>
11: #include <sys/types.h>
12: #include <sys/socket.h>
13: #include <netinet/in.h>
14: #include <arpa/inet.h>
15: #include <netdb.h>
16:
17: /*
18: * This function reports the error and
19: * exits back to the shell:
20: */
21: static void
22: bail(const char *on_what) {
23: if (errno != 0) {
24: fputs(strerror(errno),stderr);
25: fputs(": ",stderr);
26: }
27: fputs(on_what,stderr);
28: fputc('\n',stderr);
29: exit(1);
30: }
31:
32: int
33: main(int argc,char **argv) {
34: int z;
35: char *srvr_addr = NULL;
36: char *srvr_port = "9099";
37: struct sockaddr_in adr_srvr;/* AF_INET */
38: int len_inet; /* length */
39: int s; /* Socket */
40: char dtbuf[128]; /* Date/Time info */
41:
42: /*
43: *Use a server address from the command
44: * line, if one has been provided.
45: * Otherwise, this program will default
46: * to using the arbitrary address
47: * 127.0.0.1:

Page 199

48: */
49: if (argc >= 2) {
50: /* Addr on cmdline: */
51: srvr_addr = argv[1];
52: } else {
53: /* Use default address: */
54: /* srvr_addr = "127.0.0.1";
55: }
56:
57: /*
58: * If the port number is given, use it:
59: */
60: if (argc >= 3)
61: srvr_port = argv[2];
62:
63: /*
64: * Create a TCP/IP socket to use:
65: */
66: s = socket(PF_INET,SOCK_STREAM,0);
67: if (s == -1)
68: bail("socket()");
69:
70: /*
71: * Create a server socket address:
72: */
73: memset(&adr_srvr,0,sizeof adr_srvr);
74: adr_srvr.sin_family = AF_INET;
75: adr_srvr.sin_port = htons(atoi(srvr_port));
76: adr_srvr.sin_addr.s_addr =
77: inet_addr(srvr_addr);
78: if (adr_srvr.sin_addr.s_addr == INADDR_NONE)
79: bail("bad address.");
80:
81: /*
82: * Connect to the server:
83: */
84: len_inet = sizeof adr_srvr;
85:
86: z = connect(s,&adr_srvr,len_inet);
87: if (z == -1)
88: bail("connect(2)");
89:
90: /*
91: * Read the date/time info:
92: */
93: z = read(s,&dtbuf,sizeof dtbuf-1);
94: if (z == -1)

continues

Page 200

Listing 8.2: continued

95: bail("read(2)");
96:
97: /*
98: * Report the Date & Time:
99: */
100: dtbuf
[z] = 0; /* NULL terminate string */
101:
102: printf("Date & Time is: %s\n",dtbuf);
103:
104: /*
105: * Close the socket and exit:
106: */
107: close(s);
108: putchar('\n');
109:
110: return 0;
111: }

The minor changes made to the program are

1. The program now accepts an optional port number on the command line as argument two (lines
60 and 61).

2. The call to getservbyname(3) was removed, because the port number now defaults to 9099
or is given explicitly on the command line.

The following session shows how to compile and test the client program, against a wild addressed
server:

Output

@pepper
$ make daytime
gcc -c -D_GNU_SOURCE -Wall -Wreturn-type daytime.c
gcc daytime.o -o daytime
@pepper
$./daytime 127.0.0.1 9099
Date & Time is: Sunday Aug 22 22:02:19 1999

@pepper
$./daytime 192.168.0.1 9099
Date & Time is: Sunday Aug 22 22:02:30 1999

@pepper
$

The session demonstrates how the client program successfully invoked the same server from both IP
addresses that were possible on host pepper. If you have a remote host in your network, be sure to
try the program out remotely.

Page 201

What's Next

In this chapter, you looked at the role played by the server. You saw how it differed from the client
because it was required to call upon the functions listen(2) and accept(2).

The next chapter is going to discuss hostname lookups. Up to this point in this book, you have
confined your Internet addresses to specific IP numbers. The next chapter will show you how to use
hostnames in addition to IP numbers.

TE
AM
FL
Y

Team-Fly®

Page 203

9—
Hostname and Network Name Lookups

It is the noon hour and the battle of your morning meetings and issues has been subdued for the
moment. The silence of the cubicles is maligned by the rattle of your brown-bag lunch. Your
Netscape browser springs to life, after an entire morning of standing by in a minimized state. You
tap out a few keystrokes http://206.43.198.67 and press ENTER. Huh?

What's wrong with this picture? It was the IP number 206.43.198.67, wasn't it? After all, what
site is that? You likely know this as the site www.lwn.net instead, where you get your Linux Weekly
News (at least at the time of this writing).

Your associate at work won't ask you to ftp some source code from ftp site 152.2.254.81 , will
he? Instead, he'll ask you to ftp from sunsite.unc.edu. As you know, IP numbers are simply
not easy to remember. In this chapter, you will learn

• How to determine your local hostname

• How to resolve a hostname into an IP number

• How to resolve an IP number into a hostname

Once you have completed this chapter, you will be able to use hostnames or IP numbers in your
client and server programs.

Page 204

Understanding the Need for Names

Humans prefer to use and remember names instead of IP numbers. Names actually solve a number
of problems for us in the networked world:

• They provide a human-friendly reference for a site.

• They allow the IP number to change, while the name remains constant.

• They allow multiple IP numbers to be given as possibilities for the same host or service.

You already understand that names provide an easier reference to IP numbers. The second point,
however, is that the name can remain fixed but allow the IP number of the host to be changed. IP
numbers often change because of network changes, ISP changes, equipment changes, and so on. As
long as you remember the name of the Internet site, you are unconcerned about what the actual IP
number is that takes you there.

The last point is one that is easily overlooked. Looking up ftp.redhat.com (at the time of writing)
produced two IP numbers:

• 208.178.165.228

• 206.132.41.212

It doesn't matter whether these two IP numbers refer to the same ftp host or two different mirror
sites for load-balancing purposes. The fact is that, by using either of these IP numbers, you can
obtain the same files that you were after.

This introduction leads you into the topic of resolving names in this chapter. First, you will learn
how to query the local system for information about itself. Then you will learn how to use remote
host names, look them up, and turn them into IP numbers.

Using the uname(2) Function

One useful function to know about is the uname(2) function. This function tells your program a
little bit about the system in which it is executing. The function prototype for this function is as
follows:

#include <sys/utsname.h>

int uname(struct utsname *buf);

The function returns information into the structure buf. The value returned is zero when successful,
or -1 when an error is reported. External variable errno will contain the reason for the error.

Page 205

Example

The struct utsname is defined as follows:

#include <sys/utsname.h> /* defines the following structure */

struct utsname {
 char sysname[SYS_NMLN];
 char nodename[SYS_NMLN];
 char release[SYS_NMLN];
 char version[SYS_NMLN];
 char machine[SYS_NMLN];
 char domainname[SYS_NMLN];
};

The structure members are described in detail in Table 9.1.

Table 9.1: The utsname Structure Members

Member Description

sysname This represents the operating system being used. For Linux, this
value is the C string "Linux".

nodename This represents the machine's network node hostname.

release The operating system release. For example, the C string "2.2.10"
is returned for kernel release 2.2.10

version The operating system version. For Linux, this represents the version
number, date, and time stamp of the kernel build.

machine This represents the hardware type of the host. For example, "i686"
represents a Pentium CPU.

domainname This returns the NIS/YP domain name for the host.

NOTE
NIS/YP (Network Information Service) is beyond the scope of this book. NIS
provides centralized information management for a group of hosts in a network. It
permits a centralized management of users, groups, and passwords, for example.

A simple program to permit you to test the values returned by uname(2) is shown in Listing 9.1.
This program invokes uname(2) and then displays the contents of the information it has returned
in the structure utsname.

Example

Listing 9.1: uname.c— A Simple Test Program for uname(2)

1: /* uname.c:

2: *
3: * Example of uname(2):
4: */
5: #include <stdio.h>
6: #include <unistd.h>
7: #include <stdlib.h>
8: #include <errno.h>
9: #include <string.h>

continues

Page 206

Listing 9.1: continued

10: #include <sys/utsname.h>
11:
12: int
13: main(int argc,char **argv) {
14: int z;
15: struct utsname u_name;
16:
17: z = uname(&u_name);
18:
19: if (z == -1) {
20: fprintf(stderr, "%s: uname(2)\n",
21: strerror(errno));
22: exit(1);
23: }
24:
25: printf(" sysname[] = '%s';\n",
26: u_name.sysname);
27: printf(" nodename[] = '%s';\n",
28: u_name.nodename);
29: printf(" release[] = '%s';\n",
30: u_name.release);
31: printf(" version[] = '%s';\n",
32: u_name.version);
33: printf(" machine[] = '%s';\n",
34: u_name.machine);
35: printf("domainname[] = '%s';\n",
36: u_name.domainname);
37:
38: return 0;
39: }

The steps used in Listing 9.1 are as follows:

1. Allocate a structure u_name to receive the data from uname(2) (line 15).

2. Call upon uname(2) in line 17.

3. Check for and report errors (lines 19 to 23).

4. Report the values returned (lines 25 to 36).

The following session output shows how to compile and run the program. The output from the
program on the example system tux is also included as an example (note that this system is not
configured to use NIS):

Output

@tux
$ make uname
gcc -c -D_GNU_SOURCE -Wall -Wreturn-type uname.c
gcc uname.o -o uname

Page 207

@tux
$./uname
 sysname[] = 'Linux';
 nodename[] = 'tux';
 release[] = '2.2.10';
 version[] = #1 Sun Jul 4 00:28:57 EDT 1999';
 machine[] = 'i686';
domainname[] = '';
@tux
$

NOTE
Your values might differ substantially from the example shown, depending upon
how your system is configured. For example, the domain name might show an NIS
domain name instead of an empty string. Many hobby Linux systems that are not
configured to use NIS might show an empty domain name string instead.

If you check back with Table 9.1, you can see that the values reported make sense. The value of
sysname is reported as "Linux" and the kernel release is reported as "2.2.10" at the time this
snapshot was taken. Also, note that the version and time of the kernel build is provided in the
member version .

Obtaining Hostnames and Domain Names

The functions gethostname(2) and getdomainname(2) are two other functions which can
be used to inquire about the current system.

Using Function gethostname(2)

The gethostname(2) function can be used to determine your current hostname. Its function
synopsis is given as follows:

#include <unistd.h>

int gethostname(char *name, size_t len);

This function takes two arguments:

• The receiving buffer name , which must be len bytes in length or longer.

• The maximum length (len) of the receiving buffer name in bytes.

The return value is the value zero if it is successful. A value of -1 is returned if an error occurs. The
error is described by the external variable errno.

TIP
The len argument of gethostname(2) must include the total length of the
hostname to be returned and the terminating null byte.

Page 208

Using the getdomainname(2) Function

The getdomainname(2) function is another convenience function to allow the programmer to
inquire about the host's NIS domain name, where the program is executing. The following is the
function synopsis:

#include <unistd.h>

int getdomainname(char *name,size_t len);

This function is identical in use to the gethostname(2) function. The two arguments are

• The buffer name, which is to receive the domain name and is at least len bytes in length.

• The buffer length (len), in bytes, of the buffer name .

Again, the function returns zero when successful. The value -1 is returned when there is an error.
External variable errno contains the error code for the failure.

The Linux man page indicates that the getdomainname(2) function internally uses the uname
(2) function to obtain and return the NIS domain name.

Testing gethostname(2) and getdomainname(2)

These two functions are demonstrated in a program provided in Listing 9.2. This program simply
calls upon the functions and reports their results.

Example

Listing 9.2: gethostn.c— The gethostname(2) and getdomainname(2) Demo Program

1: /* gethostn.c:
2: *
3: * Example of gethostname(2):
4: */
5: #include <stdio.h>
6: #include <unistd.h>
7: #include <stdlib.h>
8: #include <errno.h>
9: #include <string.h>
10:
11: int
12: main(int argc,char **argv) {
13: int z;
14: char buf[32];
15:
16: z = gethostname(buf,sizeof buf);
17:
18: if (z == -1) {
19: fprintf(stderr, "%s: gethostname(2)\n",

Page 209

20: strerror(errno));
21: exit(1);
22: }
23:
24: printf("host name = '%s'\n",buf);
25:
26: z = getdomainname(buf,sizeof buf);
27:
28: if (z == -1) {
29: fprintf(stderr,"%s: getdomainname(2)\n",
30: strerror(errno));
31: exit(1);
32: }
33:
34: printf("domain name = '%s'\n",buf);
35:
36: return 0;
37: }

The steps used are

1. Define an adequately sized buffer (line 14).

2. Call gethostname(2) to obtain the hostname into the character array buf[] (line 16).

3. Check for and report errors (lines 18 to 22).

4. Report the hostname (line 24).

5. Call getdomainname(2) to obtain the NIS/YP domain name into the same character array
buf[] (line 26).

6. Check for and report errors (lines 28 to 32).

7. Report the domain name (line 34).

The following output session shows a compile and run session for the program on the hypothetical
system tux:

Output

@tux
$ make gethostn
gcc -c -D_GNU_SOURCE -Wall -Wreturn-
type gethostn.c
gcc gethostn.o -o gethostn
@tux
$./gethostn
host name = 'tux'
domain name = ''
@tux
$

Page 210

In the example run, you see that the host and domain values were reported successfully (although
the domain name was reported as an empty string due to the fact that no NIS domain was
configured). Your values will vary from the example shown, especially if you have an NIS domain
configured.

Having learned how to inquire the local system, it is now time to turn your attention to resolving
remote hostnames. This will be the focus of the remainder of this chapter.

Resolving Remote Addresses

The process of turning a name like www.lwn.net into an IP number is quite complex. It involves a
number of files in your local system's /etc directory, including files such
as /etc/resolv.conf, /etc/hosts, and /etc/nsswitch.conf, to name a few of
them. Depending upon how your local system is configured, other files and daemon processes might
come into play as well. For example, after these files have been consulted, a name server can be
queried, which itself can forward queries to other name servers. All of this complexity represents
detail that you really don't want to think about when writing your application program.

Fortunately, the application writer is able to play the part of an ostrich and stick his head in the sand.
If the system is properly configured, a few system function calls will be all that is required on the
part of the programmer. Covered next is a related set of functions, which hide this complexity of
remote name lookups for you.

NOTE
It will be assumed in this book that you have a Linux system that is properly
configured. Entire books have been written on system and network administration.
Consequently, the focus of this book is to teach you how to program with sockets,
and not how to set up domains and name servers.

Error Reporting

The functions that are about to be described use a different variable for error reporting. In normal C
library functions, the error code is reported to the variable errno (declared by including
errno.h). The functions in this section however, report their errors to variable h_errno. Its
synopsis is given as follows:

#include <netdb.h>

extern int h_errno;

Page 211

The h_errno variable is an external integer variable. Errors are posted to h_errno by the
following functions:

• gethostbyname(3)

• gethostbyaddr(3)

The following functions use the value of h_error as input:

• herror(3)

• hstrerror(3)

CAUTION
Note that the h_errno value suffers from the flaw that it cannot be shared between
different threads in the same process. While the newer glibc library has made
errno thread safe, the h_errno value is not thread safe.

Reporting an h_errno Error

As you probably know, the strerror(3) function conveniently converts an errno value into a
human-readable error message. Likewise, there exist two methods for reporting the h_errno
value:

#include <netdb.h>
extern int h_errno;

void herror(const char *msg);

const char *hstrerror(int err);

The function herror(3) is much like the perror(3) function. The herror(3) function is
now considered obsolete, but you might find it in existing source code. It prints the message msg
and follows that by the text of the error. This is written to the standard error (stderr) output
stream.

The hstrerror(3) function mirrors the functionality that the familiar strerror(3) function
performs. Accepting as input the h_errno input value, it returns a pointer to a text message
describing the error. The pointer returned is only valid until the next call to this function.

Understanding the Error Codes

The C macros used for the h_errno variable differ substantially from the errno values. Table 9.2
lists the error codes that you are likely to encounter when calling gethostbyname(3) and
gethostbyaddr(3).

TE
AM
FL
Y

Team-Fly®

Page 212

Table 9.2: The h_errno Codes

Error Macro Description

HOST_NOT_FOUND The specified hostname is unknown.

NO_ADDRESS The specified hostname is valid, but does not have an IP address.

NO_DATA Same as NO_ADDRESS.

NO_RECOVERY A non-recoverable name server error occurred.

TRY_AGAIN Try this operation again later.

Notice that the TRY_AGAIN error code listed in Table 9.2 represents a condition that might be
overcome with retry attempts. The NO_RECOVERY error, on the other hand, represents a name
server error that should not be retried, since no recovery is possible for that condition. The
NO_ADDRESS (or NO_DATA) error indicates that the name that was queried is known but that there
is no IP address defined for it. Finally, the error code HOST_NOT_FOUND indicates that the name
queried is unknown.

Using the gethostbyname(3) Function

This is the most important function to learn about in this chapter. This function accepts the name of
the host that you want to resolve, and it returns a structure identifying it in various ways. The
function synopsis is as follows:

#include <netdb.h>
extern int h_errno;

struct hostent *gethostbyname(const char *name);

The function gethostbyname(3) accepts one input argument that is a C string representing the
hostname that you want to resolve into an address. The value returned is a pointer to the hostent
structure if the call is successful (see Listing 9.3). If the function fails, then a NULL pointer is
returned, and the value of h_errno contains the reason for the failure.

Example

Listing 9.3: The struct hostent Structure

struct hostent {
 char *h_name; /* official name of host */
 char **h_aliases; /* alias list */
 int h_addrtype; /* host address type */
 int h_length; /* length of address */
 char **h_addr_list; /* list of addresses */
};

/* for backward compatibility */
#define h_addr h_addr_list[0]

Page 213

Become familiar with the hostent structure as you will use it often when doing socket
programming.

The hostent h_name Member

The h_name entry within the hostent structure is the official name of the host that your are
looking up. It is also known as the canonical name of the host. If you provided an alias, or a
hostname without the domain name, then this entry will describe the proper name for what you have
queried. This entry is useful for displaying or logging your result to a log file.

The hostent h_aliases Member

The hostent h_aliases member of the returned structure is an array of alias names for the
hostname that you have queried. The end of the list is marked by a NULL pointer. As an example,
the entire list of aliases for www.lwn.net could be reported as follows:

Example

struct hostent *ptr;
int x;

ptr = gethostbyname("www.lwn.net");

for (x=0; ptr->h_aliases[x] != NULL; ++x)
 printf ("alias = '%s'\n", ptr->h_aliases[x]);

No error checking was shown in the preceding example. If ptr is NULL, this indicates that no
information was available.

The hostent h_addrtype Member

The value presently returned in the member h_addrtype is AF_INET. However, as IPv6
becomes fully implemented, the name server will also be capable of returning IPv6 addresses. When
this happens, h_addrtype will also return the value AF_INET6 when it is appropriate.

The purpose of the h_addrtype value is to indicate the format of the addresses in the list
h_addr_list, which will be described next.

The hostent h_length Member

This value is related to the h_addrtype member. For the current version of the TCP/IP protocol
(IPv4), this member always contains the value of 4, indicating 4-byte IP numbers. However, this
value will be 16 when IPv6 is implemented, and IPv6 addresses are returned instead.

The hostent h_addr_list Member

When performing a name-to-IP-number translation, this member becomes your most important
piece of information. When member h_addrtype

Page 214

contains the value of AF_INET, each pointer in this array of pointers points to a 4-byte IP address.
The end of the list is marked by a NULL pointer.

Applying the gethostbyname(3) Function

A short demonstration program for the function gethostbyname(3) has been provided in
Listing 9.4. This program accepts multiple hostnames on the command line and then queries the
name server for each. All available information is reported to standard output, or an error is reported
if the name cannot be resolved.

Example

Listing 9.4: lookup.c— Demonstration Program for gethostbyname
(3)

1: /* lookup.c:
2: *
3: * Example of gethostbyname(3):
4: */
5: #include <stdio.h>
6: #include <unistd.h>
7: #include <stdlib.h>
8: #include <string.h>
9: #include <errno.h>
10: #include <sys/socket.h>
11: #include <netinet/in.h>
12: #include <arpa/inet.h>
13: #include <netdb.h>
14:
15: extern int h_errno;
16:
17: int
18: main(int argc,char **argv) {
19: int x, x2;
20: struct hostent *hp;
21:
22: for (x=1; x<argc; ++x) {
23: /*
24: * Look up the hostname:
25: */
26: hp = gethostbyname(argv[x]);
27: if (!hp) {
28: /* Report lookup failure */
29: fprintf(stderr,
30: "%s: host '%s'\n",
31: hstrerror(h_errno),
32: argv[x]);
33: continue;
34: }
35:

Page 215

36: /*
37: * Report the findings:
38: */
39: printf("Host %s : \n" ,argv[x]);
40: printf(" Officially:\t%s\n",
41: hp->h_name);
42: fputs(" Aliases:\t",stdout);
43: for (x2=0; hp->h_aliases[x2]; ++x2) {
44: if (x2)
45: fputs(", ",stdout);
46: fputs(hp->h_aliases[x2],stdout);
47: }
48: fputc('\n',stdout);
49: printf(" Type:\t\t%s\n",
50: hp->h_addrtype == AF_INET
51: ? "AF_INET"
52: : "AF_INET6");
53: if (hp->h_addrtype == AF_INET) {
54: for (x2=0; hp->h_addr_list[x2]; ++x2)
55: printf(" Address:\t%s\n",
56: inet_ntoa(*(struct in_addr *)
57: hp->h_addr_list[x2]));
58: }
59: putchar('\n');
60: }
61:
62: return 0;
63: }

The basic program steps employed are as follows:

1. A loop that iterates through all command-line arguments is started in line 22.

2. The hostname command-line argument is queried by calling upon gethostbyname(3) in line
26.

3. If the returned pointer is NULL, the error is reported in lines 29 to 33. The continue statement
in line 33 causes the loop to continue with line 22.

4. Report the name that we queried (line 39).

5. Report the official name of the host (lines 40 and 41).

6. All of the alias names for the host are reported in lines 42 to 48.

7. The address type is reported as AF_INET or AF_INET6 in lines 49 to 52.

8. If the address type in step 7 is AF_INET, the IPv4 addresses are reported in lines 54 to 57.

Page 216

9. An extra line is written to standard output (line 59).

10. The for loop repeats with step 1.

Note lines 56 and 57 in the program listing. The pointer value in hp->h_addr_list[x2] is a
(char *) pointer. This pointer type is used because it may point to different address types,
depending upon the value in hp->h_addrtype. To report this pointer value as an IPv4
(AF_INET) address, the following steps were used:

1. The character pointer hp->h_addr_list[x2] is referenced (line 57).

2. The pointer is cast to pointer type struct in_addr (line 56).

3. The struct in_addr value is fetched by using the * indirection operator (in front of the cast
in line 56).

4. The fetched struct in_addr value is converted by the function inet_ntoa(3) to a string
value, which can be printed with printf(3).

The following output shows a terminal session that compiles and runs this sample program:

Output

$ make lookup
gcc -c -D_GNU_SOURCE -Wall -Wreturn-type lookup.c
gcc lookup.o -o lookup
$./lookup www.lwn.net sunsite.unc.edu ftp.redhat.com
Host www.lwn.net :
 Officially: lwn.net
 Aliases: www.lwn.net
 Type: AF_INET
 Address: 206.168.112.90

Host sunsite.unc.edu :
 Officially: sunsite.unc.edu
 Aliases:
 Type: AF_INET
 Address: 152.2.254.81

Host ftp.redhat.com :
 Officially: ftp.redhat.com
 Aliases:
 Type: AF_INET
 Address: 206.132.41.212
 Address: 208.178.165.228

$

When the program was run, notice that the hostname www.lwn.net was reported officially as
lwn.net. This name had one alias, which was www.lwn.net, and it had one IP address of
206.168.112.90.

Page 217

The name sunsite.unc.edu reported no alias entries and had one IP address.

The hostname ftp.redhat.com reported its official name to be the same as what was provided. There
were no alias names reported, but notice that two possible IP addresses were provided. Either of the
IP numbers 206.132.41.212 or 208.178.165.228 can be used to reach this host.

The gethostbyaddr(3) Function

There are times where you have an Internet address, but you need to report the hostname instead of
the IP number. A server might want to log the hostname of the client that has contacted it, instead of
the IP number alone. The function synopsis for gethostbyaddr(3) is as follows:

#include <sys/socket.h> /* for AF_INET */

struct hostent *gethostbyaddr(
 const char *addr, /* Input address */
 int len, /* Address length */
 int type); /* Address type */

The gethostbyaddr(3) function accepts three input arguments. They
are

1. The input address (addr) to be converted into a hostname. For address type AF_INET, this is the
pointer to the sin_addr member of the address structure.

2. The length of the input address (len). For type AF_INET, this will be the value 4 (4 bytes). For
type AF_INET6, this value will be 16.

3. The type of the input address (type), which is the value AF_INET or AF_INET6.

Notice that the first argument is a character pointer, allowing it to potentially accept many forms of
addresses. You will need to cast your address pointer to (char *) to satisfy the compiler. The
second argument indicates the length of the supplied address.

The third argument is the type of the address being passed. It is AF_INET for an IPv4 Internet
address, or in the future, it will be the value AF_INET6 for an IPv6 format address.

Listing 9.5 shows a modified version of the server that was demonstrated in the previous chapter.
This server opens a log file named srvr2.log in the current directory and logs each connect
request it receives. The server logs both the IP number and the name if possible, of the connecting
client.

Page 218

Example

Listing 9.5: srvr2.c— The Modified Server Using gethostbyaddr(3)

1: /* srvr2.c:
2: *
3: * Example daytime server,
4: * with gethostbyaddr(3):
5: */
6: #include <stdio.h>
7: #include <unistd.h>
8: #include <stdlib.h>
9: #include <errno.h>
10: #include <string.h>
11: #include <time.h>
12: #include <sys/types.h>
13: #include <sys/socket.h>
14: #include <netinet/in.h>
15: #include <arpa/inet.h>
16: #include <netdb.h>
17:
18: /*
19: * This function reports the error and
20: * exits back to the shell:
21: */
22: static void
23: bail(const char *on_what) {
24: if (errno != 0) {
25: fputs(strerror(errno),stderr);
26: fputs(": ",stderr);
27: }
28: fputs(on_what,stderr);
29: fputc('\n',stderr);
30: exit(1);
31: }
32:
33: int
34: main(int argc,char **argv) {
35: int z;
36: char *srvr_addr = NULL;
37: char *srvr_port = "9099";
38: struct sockaddr_in adr_srvr;/* AF_INET */
39: struct sockaddr_in adr_clnt;/* AF_INET */
40: int len_inet; /* length */
41: int s; /* Socket */
42: int c; /* Client socket */
43: int n; /* bytes */
44: time_t td; /* Current date&time */
45: char dtbuf[128]; /* Date/Time info */
46: FILE *logf; /* Log file for the server */

Page 219

47: struct hostent *hp; /* Host entry ptr */
48:
49: /*
50: * Open the log file:
51: */
52: if (!(logf = fopen("srvr2.log","w")))
53: bail("fopen(3)");
54:
55: /*
56: * Use a server address from the command
57: * line, if one has been provided.
58: * Otherwise, this program will default
59: * to using the arbitrary address
60: * 127.0.0.1:
61: */
62: if (argc >= 2) {
63: /* Addr on cmdline: */
64: srvr_addr = argv[1];
65: } else {
66: /* Use default address: */
67: srvr_addr = "127.0.0.1";
68: }
69:
70: /*
71: * If there is a second argument on the
72: * command line, use it as the port #:
73: */
74: if (argc >= 3)
75: srvr_port = argv[2];
76:
77: /*
78: * Create a TCP/IP socket to use:
79: */
80: s = socket(PF_INET,SOCK_STREAM,0);
81: if (s == -1)
82: bail("socket()");
83:
84: /*
85: * Create a server socket address:
86: */
87: memset(&adr_srvr,0,sizeof adr_srvr);
88: adr_srvr.sin_family = AF_INET;
89: adr_srvr.sin_port = htons(atoi(srvr_port));
90: if (strcmp(srvr_addr,"*") != 0) {
91: /* Normal Address */
92: adr_srvr.sin_addr.s_addr =
93: inet_addr(srvr_addr);
94: if (adr_srvr.sin_addr.s_addr

continues

Page 220

Listing 9.5: continued

95: == INADDR_NONE)
96: bail("bad address.");
97: } else {
98: /* Wild Address */
99: adr_srvr.sin_addr.s_addr =
100: INADDR_ANY;
101: }
102:
103: /*
104: * Bind the server address:
105: */
106: len_inet = sizeof adr_srvr;
107: z = bind(s,(struct sockaddr *)&adr_srvr,
108: len_inet);
109: if (z == -1)
110: bail("bind(2)");
111:
112: /*
113: * Make it a listening socket:
114: */
115: z = listen(s,10);
116: if (z == -1)
117: bail("listen(2)");
118:
119: /*
120: * Start the server loop:
121: */
122: for (;;) {
123: /*
124: * Wait for a connect:
125: */
126: len_inet = sizeof adr_clnt;
127: c = accept(s,
128: (struct sockaddr *)&adr_clnt,
129: &len_inet);
130:
131: if (c == -1)
132: bail("accept(2)");
133:
134: /*
135: * Log the address of the client
136: * who connected to us:
137: */
138: fprintf(logf,
139: "Client %s:",
140: inet_ntoa(adr_clnt.sin_addr));
141:
142: hp = gethostbyaddr(

Page 221

143: (char *)&adr_clnt.sin_addr,
144: sizeof adr_clnt.sin_addr,
145: adr_clnt.sin_family);
146:
147: if (!hp)
148: fprintf(logf," Error: %s\n",
149: hstrerror(h_errno));
150: else
151: fprintf(logf," %s\n",
152: hp->h_name);
153: fflush(logf);
154:
155: /*
156: * Generate a time stamp:
157: */
158: time(&td);
159: n = (int) strftime(dtbuf,sizeof dtbuf,
160: "%A %b %d %H:%M:%S %Y\n",
161: localtime(&td));
162:
163: /*
164: * Write result back to the client:
165: */
166: z = write(c,dtbuf,n);
167: if (z == -1)
168: bail("write(2)");
169:
170: /*
171: * Close this client's connection:
172: */
173: close(c);
174: }
175:
176: /* Control never gets here */
177: return 0;
178: }

The changes made to the program consist of the
following:

1. The FILE variable logf is declared in line 46.

2. The log file is opened in lines 52 and 53.

3. Immediately after each connect (line 127), the connecting client's IP number is logged (lines 138
to 140).

4. A reverse lookup of the IP number is performed in lines 142 to 145. If successful, the pointer hp
that is returned will indicate the official name of the client that has connected.

TE
AM
FL
Y

Team-Fly®

Page 222

5. Check for a failed lookup in the if statement in line 147. If the pointer is null, the program
simply logs the lookup failure.

6. When the lookup is successful, the hp pointer will not be null. This value is used to report the
official client hostname (lines 151 and 152).

7. Flush the log file out to disk (line 153).

In all other respects, this server program remains the same. Note a few things about the
gethostbyaddr(3) call in lines 142 to 145, however:

1. Note that the address given in argument one is the address of the adr_clnt.sin_addr
member, not the address of the structure adr_clnt.

2. The length argument is the size of adr_clnt.sin_addr, which is 4 bytes. Do not supply the
size of the structure adr_clnt.

3. The value in argument three was taken from adr_clnt.sin_family . This allows the
program to be flexible for the possibility of AF_INET6 support in the near future, instead of hard
coding AF_INET (line 145).

Compiling and running this program is shown as follows:

Output

$ make srvr2
gcc -c -D_GNU_SOURCE -Wall -Wreturn-type srvr2.c
gcc srvr2.o -o srvr2
@tux
$./srvr2 '*' &
[1] 1175
@tux
$ telnet localhost 9099
Trying 127.0.0.1 . . .
Connected to localhost.
Escape character is '^]'.
Thursday Sep 02 23:29:51 1999
Connection closed by foreign host.
@tux
$ telnet tux 9099
Trying 192.168.0.1 . . .
Connected to tux.penguins.org.
Escape character is '^]'.
Thursday Sep 02 23:30:01 1999
Connection closed by foreign host.
@tux
$ cat srvr2.log
Client 127.0.0.1: localhost
Client 192.168.0.1: tux.penguins.org
@tux
$

Page 223

The server here is started and put into the background, using a wild server address '*'. This allows
the server to be tested, in this example, from two different IP addresses:

• 127.0.0.1, which is named as localhost (as it is on most Linux systems)

• 192.168.0.1, which is named tux in the example penguins.org network

After starting the server with its wild address, a telnet to the address localhost on default port
9099 is performed. Later, another telnet is performed using the name tux. In the example, this
causes telnet to use 192.168.0.1 to contact the server.

After both of those tests are performed, the log file is inspected using the cat command on the file
srvr2.log. Notice that the log entries show 127.0.0.1 as localhost and 192.168.0.1
as tux.penguins.org. The server demonstrated that it was able to convert the client's IP
numbers back into names for logging purposes.

Using the sethostent(3) Function

The sethostent(3) function permits you, as the application designer, to control how name
server queries are performed. This function can improve the overall network performance of your
application. The function synopsis is as follows:

#include <netdb.h>

void sethostent(int stayopen);

There is one input argument to sethostent(3). The argument stayopen is treated as a
Boolean input parameter:

• When TRUE (non-zero), the name server queries are to be performed with a TCP/IP socket, which
will remain open with the name server.

• When FALSE (zero), the name server queries will be performed using UDP datagrams as required.

The first case (TRUE) is useful when your application will make frequent name server requests.
This is the higher-performance option for many queries. However, if your application only performs
one query at startup, then the FALSE setting is more appropriate, because UDP has less network
overhead.

Previously, Listing 9.4 showed how the function gethostbyname(3) could be used to perform
name server lookups. To cause this program to use a connected TCP socket instead of UDP
datagrams, you can add one call to

Page 224

sethostent(3) in the program. Rather than list the entire program again, Listing 9.6 shows a
context diff of the differences between lookup.c and lookup2.c. This listing highlights the
simple changes that were made.

Listing 9.6: Changes Required to lookup.c to Use a TCP Socket for Name Server Lookups

$ diff -c lookup.c lookup2.c
*** lookup.c Sat Sep 4 14:58:35 1999
--- lookup2.c Sat Sep 4 14:59:50 1999

*** 14,23 ****
--- 15,29 ----

 extern int h_errno;

+ #define TRUE 1
+ #define FALSE 0
+
 int
 main(int argc,char **argv) {
 int x, x2;
 struct hostent *hp;
+
+ sethostent(TRUE);

 for (x=1; x<argc; ++x) {
 /*
$

In Listing 9.6, the context diff output shows lines added by preceding the line with a + character.
From this, you can see that the only instrumental change that was made was that sethostent
(TRUE) was called prior to entering the program's for loop. For clarity, macro definitions for
TRUE and FALSE were also added, but these were not required.

Using the endhostent(3) Function

After calling upon sethostent(3) with a value of TRUE, your application might enter a phase
of processing where it is known that no further name queries will be required. To use resources in a
frugal manner, you need a method to end the connection to the name server, thus freeing the TCP/IP
socket that is currently in use. This is the purpose of the endhostent(3) function. Its function
synopsis is as follows:

#include <netdb.h>

void endhostent(void);

As you can see, this function takes no arguments and returns no values.

Page 225

The endhostent(3) function can be of significant value to servers, particularly Web servers,
where file descriptors are at a premium. You will recall that a socket uses a file descriptor and that
one socket is required for each connected client. Server capacity is often restricted by the number of
file descriptors that the server can have open. This makes it vitally important for servers to close file
descriptors (and sockets) when they are no longer required.

What's Next

Having come this far with sockets, you might wonder what could possibly be next. The next chapter
will show you how to apply those familiar standard I/O routines on sockets. These techniques will
make writing client and server code much easier for certain applications. So keep those Linux
terminal sessions open as you venture into the next chapter.

Page 227

PART 2—
ADVANCED SOCKET PROGRAMMING

Using Standard I/O on Sockets

Concurrent Client Servers

Socket Options

Broadcasting with UDP

Out-of-Band Data

Using the inetd Daemon

Network Security Programming

Passing Credentials and File Descriptors

A Practical Network Project

Page 229

10—
Using Standard I/O on Sockets

The example code in the previous chapters have all used the read(2) or write(2) system calls
to perform read and write operations on sockets. The only exception to this rule was recvfrom
(2) and sendto(2) function calls, which were used to read and write datagrams. There are
application disadvantages to using the simple read(2) and write(2) calls, however.

This chapter will explore

• How to associate a socket with a FILE stream using fdopen(3)

• How to create and apply read and write FILE streams

• Issues concerning closing streams associated sockets

• Choosing and establishing the correct buffering technique for your FILE streams

• The interrupted system call issue

Mastery of these topics will give you additional ways to solve your network programming
assignments, and avoid surprises.

Page 230

Understanding the Need for Standard I/O

The stdio(3) facility in Linux conforms to the ANSI C3.159-1989 standard. This standardization
of the interface helps programs to be portable to many platforms. This might be useful to you, when
porting source code from other UNIX systems to your own Linux platform, for example.

The stdio(3) package will itself issue read(2) and write(2) calls, "under the hood," so to
speak. You, however, use the standard I/O calls instead, because they will offer you the convenience
of getting a line or character at a time, according to your application needs. The read(2) call, for
example, cannot return to your application one text line. Instead, it will return as much data as it can,
even multiple text lines.

When writing to the socket, the standard I/O routines allow your application to write characters out
one at a time, for example, without incurring large overhead. On the other hand, calling write(2)
to write one character at a time is much more costly. The standard I/O functions permit your
application to work with convenient units of data.

The stdio(3) package also provides the capability to buffer your data, both for input and for
output. When buffering can be used, it can significantly improve the I/O performance of your
application. Unfortunately, buffering creates difficulties for some forms of communication, and so it
cannot always be used.

It will be assumed in this text that you are already familiar with the basics of stdio(3). This is
usually taught in C programming texts, along with the C language itself. Consequently, this text will
focus on things you need to watch out for, and other subtleties that might not be obvious, as it
applies to socket programming.

NOTE
Linux introduces the standard I/O routines in its stdio(3) man page. Perform the
following command to display this introductory text:

$ man 3 stdio

This will provide a list of standard I/O functions. If these all seem new to you, then
you might want to review some of them. You should be acquainted with at least
fopen(3), fread(3), fgets(3), fwrite(3), fflush(3), and fclose
(3).

Associating a Socket with a Stream

The stdio(3) stream is managed through the FILE control block. For example, you've probably
already written code that looks something like this many times:

Page 231

Example

FILE *in;

in = fopen(pathname,"r");
if (in == NULL) {
 fprintf(stderr,"%s: opening %s for read.\n",strerror(errno),pathname);
 exit(1);
}

In the example presented, the file known as variable pathname is opened for reading. If the open
call succeeds, the variable in receives a pointer to the FILE structure, which manages the stream
I/O for you. Otherwise, variable in receives a null pointer, and your application must handle or
report the error.

For socket programming, however, there is no stdio(3) call available to open a socket. How then
does a programmer accomplish associating a stream with a socket? Read the next section to find out.

Using fdopen(3) to Associate a Socket with a Stream

The function call fopen(3) should be quite familiar to you. However, for many, the fdopen(3)
call is new or unfamiliar. Because this function is likely to be new to some of you, let's introduce its
function synopsis and describe it:

#include <stdio.h>

FILE *fdopen(int fildes,const char *mode);

This function takes two arguments:

1. An integer file descriptor (fildes) to use for performing I/O.

2. The standard I/O mode to use. This will be an open mode, which is the same as the familiar
fopen(3) mode argument. For example, "r" indicates that the stream is to be opened for reading,
whereas "w" indicates the stream is to be opened for writing.

Like the fopen(3) call, if the function is successful, a pointer to the controlling FILE structure is
returned. Otherwise, a null pointer indicates that a problem developed, and external variable errno
will contain the nature of the error.

Note that the first argument was a file descriptor. You will recall that the socket returned from the
socket(2) function is also a file descriptor. This then makes it possible to associate any existing
socket to a stream. Listing 10.1 shows a short example of associating a socket to a stream that can be
read or written.

Page 232

Example

Listing 10.1: Associating a Socket with a Stream

int s; /* socket */
FILE *io; /* stream */

s = socket(PF_INET,SOCK_STREAM,0);
. . .
io = fdopen(s,"r+");
if (io == NULL) {
 fprintf(stderr,"%s: fdopen(s)\n",strerror(errno));
 exit(1);
}

Listing 10.1 demonstrates how the socket number, which was held in variable s, was associated
with a FILE stream named io. The mode argument of the fdopen(3) call in this example
established a stream for input and output. After this open call has been successfully accomplished,
the other standard I/O functions such as fgetc(3), for example, can be employed.

Closing a Socket Stream

Listing 10.1 showed how to associate the socket with a standard I/O stream. The application writer
might well ask, ''How should this socket or stream be closed?"

Reading the man page for fdopen(3) reveals that the file descriptor passed to the function is "not
dup'ed." What this means is that the argument fildes is the descriptor actually used for the
physical reads and writes. No duplicate is made of the file descriptor with the dup(2) function call.
Consequently, in Listing 10.1, you do not want to call close(s) after successfully performing a
fdopen(3) call. This would close the very file descriptor that the stream variable io is using.

If, however, you call fclose(io) in Listing 10.1, you will in effect end up closing the socket s.
This is understood by examining the internal steps that are used by the fclose(3) function:

1. Flush any buffered data out to the file descriptor (whether file or socket). This results in a call to
write(2) to the file descriptor, if there is any outstanding buffered data.

2. Close the underlying file descriptor used by the stream, using close(2).

3. Release the storage occupied by the buffers (if any), and the FILE structure itself. These are
performed by calling the free(3) function.

You can visualize in step 2 that the socket s of Listing 10.1 would be closed by the normal
procedure used by fclose(3) .

Page 233

Using Separate Read and Write Streams

Listing 10.1 showed how you could associate a socket with a stream that allows both input and
output. Although this might be conceptually appealing, it is actually a safer practice to open separate
streams for input and output. The reason for this is the fact that the buffering of the stream plays a
more complex role on one stream than it does for two separate streams. The Linux fdopen(3)
man page indicates that for I/O streams it is often necessary for a fgetpos(3) call to be
performed between switching from write to read modes and vice versa.

Rather than try to explain why and when these special circumstances apply to an I/O stream, I'll just
advise you to use two separate streams for reading and writing instead. This technique has very little
overhead and provides better overall buffering performance in many cases.

Listing 10.2 shows how to create a separate read and write stream from one file descriptor.

Example

Listing 10.2: Creating a Read and Write Stream

int s; /* socket */
FILE *rx; /* read stream */
FILE *tx /* write stream */

s = socket(PF_INET,SOCK_STREAM,0);
. . .
rx = fdopen(s,"r");
if (rx == NULL) {
 fprintf(stderr, "%s: fdopen(s,'r')\n",strerror(errno));
 exit(1);
}

tx = fdopen(dup(s),"w");
if (tx == NULL) {
 fprintf(stderr,"%s: fdopen(s,'w')\n",strerror(errno));
 exit(1);
}

Examine Listing 10.2 carefully. Although the listing looks simple, there is one subtle function call
included, which must not be overlooked. Can you find it?

Look at the statement where the variable tx is assigned. Then, examine the first argument to the
fdopen(3) call in that statement. Did you notice the dup(2) call when you first looked at
Listing 10.2? This is very important, because different streams should use different file descriptors.
One simple reason for this is so that when fclose(tx) is called, it will not close the same file
descriptor being used by the rx stream.

TE
AM
FL
Y

Team-Fly®

Page 234

Duplicating a Socket

To understand why Listing 10.2 works, the dup(2) function will be reviewed here in case some
readers are unfamiliar with its use:

#include <unistd.h>

int dup(int oldfd);

UNIX systems, like Linux, allow multiple file descriptors to refer to the same open file (or, in this
case, a socket). By calling dup(2) with the socket s as an input argument, you are returned a new
file descriptor. This new descriptor also refers to the original socket s. After this duplication has
been performed, however, the socket itself will be shut down by the kernel only when the last of
these two file descriptors are closed (assuming shutdown(2) is not used).

Numbers always help to clarify an example. Assume that, in Listing 10.2, socket s is created on file
descriptor 3. Assume also that the socket s is duplicated as follows:

int s2; /* dup'ed socket */

s2 = dup(s); /* duplicate */

If file descriptor 4 is not currently in use, the Linux kernel will return 4 in the example shown. This
allows the file descriptor 3 (variable s) and the file descriptor 4 (variable s2) to both refer to the
same socket.

Closing the Dual Streams

After you have two streams established, as shown in Listing 10.2, you can safely use functions such
as fgetc(3) or fgets(3) on your rx stream. Write calls using fputs(3) or fputc(3), for
example, can use the output stream tx instead. Use of the separate streams eliminates buffer
interaction and removes the need to call fgetpos(3) at various points in your program flow.

However, when you are finished with these streams, you must perform the following:

• fclose(rx) to close the input stream.

• fclose(tx) to close the output stream.

The preceding procedure accomplishes the following:

• Flushes any buffered writes for the writing stream.

• Closes the underlying file descriptor.

• Releases the buffers, if any.

• Releases the stream managed by the FILE object.

Page 235

CAUTION
A failure to fclose(3) all streams created will lead to a very bad memory leak.
This will also create a failure to properly close the underlying sockets. In a server,
this failure will become readily apparent as the server continues to accept new
clients and exhausts file descriptors and memory.

Winding up Communications

The astute reader might have been wondering about the shutdown(2) call that was introduced
earlier. How should this function call be exercised when it is needed?

With the dual stream approach, you might be tempted to misuse the shutdown(2) function, based
on a bad assumption. For example, because there are actually two underlying file descriptors being
used in Listing 10.2, it might be tempting to call shutdown(2) on each of the file descriptors. On
one, you might shut down the read side, whereas on the other file descriptor, you might shut down
the write side. Do not do this!

Recall from Chapter 1, "Introducing Sockets," that the shutdown(2) function was described.
There, it was stated that one of the advantages of its use was that "it disregards the number of open
references on the socket." Consequently, calling shutdown(2) on duplicated sockets will affect
all references to the same socket. Consequently, it also affects all existing streams you have
connected with that socket!

• A discussion of the shutdown(2) function can be found in Chapter 1,
"Introducing Sockets," page 6.

When winding up communications between your process and the remote process over a socket,
there are three basic scenarios to be considered:

• The process is not going to write any further data, but is expecting to receive more data (shutdown
of the write side only).

• The process is not going to receive any further data, but is expecting to write more data (shutdown
of the read side only).

• The process is not going to read or write any further data (shutdown of reading and writing).

Using the two streams shown in Listing 10.2, the scenarios will be described in the following
sections.

Shutting down the Write Side Only

The shutdown(2) function is called upon to indicate to the Linux kernel that the calling process
intends no further writes of data, in this particular case.

Page 236

Because the shutdown(2) call affects the socket and not the file descriptor, either file descriptor
could actually be used. However, for program clarity, I would encourage you to use the writing
stream to accomplish this task.

The procedure for this task consists of the following steps:

1. Flush any data that might exist in the stream buffers using fflush(3).

2. Shut down the write side of the socket using shutdown(2).

3. Close the stream, using fclose(3) .

Before shutting down the write side, you must always flush the output stream. This is important
because there might be some unwritten data that is sitting in a buffer. This can be accomplished as
follows:

Example

fflush
(tx); /* Flush buffer out */

To accomplish the shutdown(2) step, you need to obtain the underlying file descriptor of the
stream tx. To access it, you can use the following C language macro:

#include <stdio.h>

int fileno(FILE *stream);

You simply pass the stream pointer to the macro as input, and it returns the underlying integer file
descriptor that it is using. This is a portable and the only acceptable way of doing this. Applying this
macro, you can perform the shutdown step as follows:

Example

shutdown(fileno(tx),SHUT_WR);

The last step of this procedure is to simply fclose(3) the tx stream that you no longer need:

fclose(tx);

Putting the procedure all together, the shutdown procedure looks like this in C code:

Example

fflush(tx);
shutdown(fileno(tx),SHUT_WR);
fclose(tx);

This sequence will leave the rx stream intact for reading, but forces all buffered data in the tx
stream to be written out to the socket. The shutdown(2) call tells the kernel to expedite the
sending of the socket data because there will be no more data to send. Finally, the fclose(3) call
on the tx stream closes the file descriptor and releases the memory resources associated with the
stream.

Page 237

Shutting down the Read Side Only

This procedure is similar to shutting down the write side only. The procedure does vary slightly:

1. Call shutdown(2) to indicate that there is no more receive data expected.

2. Close the stream using fclose(3) .

You'll notice that there is no fflush(3) step required in this case. The procedure can be
summarized in code as follows:

Example

shutdown(fileno(rx),SHUT_RD);
fclose(rx);

Note again the portable use of the fileno(3) macro to fetch the underlying file descriptor for the
stream rx. Although Listing 10.2 shows the original socket number is available in variable s, for
program clarity it is probably preferred to use the fileno(3) macro after the rx stream has been
created.

This procedure accomplishes the indication of no further reads to the Linux kernel, as well as the
closing and releasing of all stream resources for rx. However, the application will still be able to
write to stream tx unhindered.

Shutting down Both Read and Write Sides

This procedure might be perceived as being more complex, but it actually turns out to be quite
simple:

1. Close the write stream by calling fclose(3) .

2. Close the read stream by calling fclose(3).

No fflush(3) is required in step 1 because the fclose(3) function for the write stream will
implicitly ensure that this flush takes place. Closing the read stream in step 2 closes the last open file
descriptor for the socket, so the socket is implicitly shut down for both reading and writing.

One exception to the rule, which might prove to be a sticking point, depends upon your application
design. If your process has forked, then there might be other open file descriptors to your socket.
You'll recall that only when the last close(2) takes place will the socket actually be shut down. If
there is some doubt about this, you might want to follow a more elaborate procedure as follows:

1. Close the write stream using fclose(3) . This will force unwritten data out to the socket, and
release the write stream's resources.

2. Call shutdown(2) to terminate both reading and writing to this socket.

Page 238

3. Close the read stream using fclose(3) to close the read file descriptor, and to release the
stream's buffer and FILE structure.

The only real change to the procedure is that the shutdown(2) function is called as follows:

Example

shutdown(fileno(rx),SHUT_RDWR);

The entire procedure boils down to this:

fclose(tx);
shutdown(fileno(rx),SHUT_RDWR);
fclose(rx);

I will submit to you that this procedure is the best one to use, even if you do not expect to have
problems with the two-step procedure. This procedure will always accomplish your task, regardless
of any future program modifications that might otherwise impact the other procedure.

Handling Interrupts

Reading the Linux man page for fread(3) or fwrite(3) doesn't reveal much about the
possible errors that can be returned. Only the return value is described, which indicates that if the
returned count is short, or the count is zero, an error has occurred.

The fread(3) and fwrite(3) functions are described in more detail within the AT&T System
V Interface Definition documentation. What is interesting about this UNIX documentation is the
fact that the error code EINTR can be returned.

NOTE
The AT&T System V Interface Definition (SVID) was one attempt to specify a
UNIX operating system environment that allowed applications to be created, which
was independent of the computer hardware used. The SVID standard was stated as
compliant with the POSIX 1003.1 Full Use Standard and the ANSI C X3J11
industry standard.

The EINTR error indicates that an interrupted system call has occurred. This error is returned when
your process has been signaled, and a signal handler has been called to process it, and that handler
has returned from its call. This error code is not returned by all function calls, but it is returned in
instances in which the function call might block for a long period of time. Certainly, a read(2)
call waiting for incoming data on a socket fits in this category.

You'll recall that the fread(3) function call is simply a functional layer over the underlying read
(2) function call that is invoked as required by buffering. Consequently, it follows that the fread
(3) might be susceptible to the EINTR error code, if signals have been received by your process.

Page 239

The same is also true of the fwrite(3) function call. If a large volume of data is written to a
socket, the underlying write(2) call might also block for a long time. If, while it is blocked, a
signal is received and handled, the write(2) function will return an EINTR error, which might
cause the fwrite3) function to return this error.

The word "might" was used because this depends upon the design of the stdio(3) library that
you are using. I have seen some UNIX implementations hide this error from the caller, whereas
others return EINTR. Given that Linux has generally been moving from the libc5 library to the
newer glibc2 version of the C libraries, your mileage might vary.

Some simple testing for this under Red Hat Linux 6.0 suggests that EINTR will not be returned.
However, as the GNU C library code moves with standards, which themselves are undergoing
revision and further clarification, this might change. If your application must run on other UNIX
platforms in addition to Linux, then you should test for EINTR in your code.

If you must allow for EINTR in your code, then the following code fragment represents a template
that you might use:

Example

int ch;

do {
 clearerr(rx);
 ch = fgetc(rx);
} while (ferror(rx) && errno == EINTR);

The basic procedure used here is

1. Call clearerr(3) to clear any pending error that might have occurred on this stream.

2. Perform your input/output operation.

3. If the operation failed and the errno value was set to EINTR, then repeat step
1.

After the code has exited the loop, this indicates that the operation either succeeded, or it failed with
a different error code other than EINTR. The general principle at work here is that you retry the
operation when the error EINTR is returned.

NOTE
Simple tests that were performed by the author suggested that the Red Hat Linux 6.0
distribution included a C library that hides the EINTR error from the application
code. This can be both a blessing and a curse to the programmer. It is a blessing in
the sense that you do not have to code to handle the error condition. It is a curse if
you need to test to see whether a signal was processed by the signal handler while
execution was blocked in the function call.

Page 240

Include code to handle EINTR if any of the following applies to your situation:

• The source code might be ported to other UNIX platforms in addition to

• You are experiencing sporadic EINTR errors in your application (this is always a strong
indication).

• The GNU C library has changed direction on its policy of hiding the EINTR error from the
application.

If your application does not process signals, or it has established signals that are to be ignored, you
might never need to be concerned about the EINTR error code.

Handling EINTR for Other Functions

It should be noted at this point that EINTR is potentially a problem for a host of other functions that
you might use for socket programming. The functions affected by signals include

• connect(2)

• accept(2)

• read(2)

• write(2)

• readv(2)

• writev(2)

• recvfrom(2)

• sendto(2)

• select(2)

• poll(2)

The list presented is not meant to be an exhaustive list, and some of these functions have not been
covered yet. It is a list of commonly used functions, however, which are affected by signal handling.

The examples that are shown in this text will largely ignore this issue of EINTR, in favor of keeping
the example programs small and easier to understand. However, you must allow for the occurrence
of EINTR for any production-level code.

CAUTION
Always test for the EINTR error when calling functions affected by signal handling
in production-level code.

Defining Buffer Operation

When you make use of the stdio(3) facilities, you generally make use of some buffering behind
the scenes. Buffered writes, for example, reduce the frequency that the system function write(2)
is called. This increases the overall system output efficiency. Likewise, read requests are also

buffered.

Page 241

For example, fgetc(3) will fetch one character from a buffer. Only when the input buffer is
empty will it request more data to be read in using the read(2) system call. This, again, is done to
improve the I/O efficiency.

When the underlying file descriptor of a stream is a terminal device, the I/O under Linux will be line
buffered. Files, on the other hand, are usually fully buffered (buffered in large blocks).

There are three basic modes of buffering to choose from using FILE streams under Linux. These
are

• Fully buffered (or "block" buffered)

• Line buffered

• Unbuffered

Choosing "unbuffered" mode might be appropriate for some socket programs, although no
efficiency from buffering can be gained this way. This does save you, however, from worrying
about when to call fflush(3).

TIP
If your network application is experiencing hangs, the cause might be output
buffering. Change the buffering on your output streams to "unbuffered mode" for
testing. If the problem vanishes, then you need some calls to fflush(3) added to
the appropriate places. Alternatively, you could reconsider the buffering mode being
used by the application.

Line buffered mode is often useful when your socket interaction is text line based. Using line
buffered mode means that you are never forced to call upon fflush(3) to force the last text line
to be written to the socket.

If you choose to use the "fully" buffered mode, then you must apply fflush(3) at the point where
you want a physical write to take place to the socket. Otherwise, your data might sit in an output
buffer, while your application waits in vain for a response, because the output data was never sent.

The function synopses of the buffer control functions are shown in Listing 10.3.

Example

Listing 10.3: Stream I/O Buffer Functions

#include <stdio.h>

int setbuf(FILE *stream,char *buf);

int setbuffer(FILE *stream, char *buf, size_t size);

int setlinebuf(FILE *stream);

TE
AM
FL
Y

Team-Fly®

int setvbuf(FILE *stream, char *buf, int mode, size_t size);

Page 242

The functions in Listing 10.3 permit the caller to change the buffering mode of the specified stream.
The Linux documentation indicates that these functions might be called at any time to change the
buffering characteristics of the stream. The non-setvbuf(3) calls are aliases to the function
setvbuf(3), which performs the operation.

CAUTION
If your code must be portable to other UNIX platforms, then you must only call the
buffer adjustment functions before I/O calls have been made on the streams affected.

The arguments, by argument name, are described as follows:

• Argument stream is the FILE pointer of the stream that is to be affected.

• Argument buf is the pointer to the buffer being supplied. This pointer can be NULL. If a buffer is
required, and NULL is supplied, then an internal buffer is allocated instead.

• Argument size is the size in bytes of the buffer provided (by argument buf), or the size of the
internal buffer to be allocated.

• Argument mode is the buffering mode to be used.

A suggested buffer size is defined by the include file stdio.h as the macro BUFSIZ. Table 10.1
shows the list of mode values that can be supplied to setvbuf(3).

Table 10.1: The Mode Values for setvbuf(3)

C Macro Description

_IOFBF Input and/or output on the stream will be fully buffered.

_IOLBF Input and/or output will be line buffered.

_IONBF Input and/or output will not be buffered at all.

As an example of how to use the function to change the socket stream tx to use line buffered mode,
you could code the following function call after the fdopen(3) call:

Example

setlinebuf(tx); /* Line Buffered Mode */

Alternatively, you could accomplish the same thing by using the setvbuf(3) function directly:

setvbuf(tx,NULL,_IOLBF,BUFSIZ);

In this example, you allow the software to allocate its own internal buffer of BUFSIZ bytes. The
buffering mode for the stream, however, is set to line buffered mode, due to the use of the macro
_IOLBF in the function call.

Page 243

Applying FILE Streams to Sockets

Now it is time to introduce some source code that makes use of the concepts that have been
discussed so far. The server program that will be presented next implements a Reverse Polish
Notation (abbreviated RPN) calculator. It accepts arbitrarily long integer values, stacks them, and
then permits operations to be performed upon the stacked numbers. The result of the operation is
placed on the top of the stack.

The integer arithmetic will be performed by the GNU Multi-Precision (GMP) library. This library
permits virtually unlimited sized integer numbers to be evaluated. Space does not permit the GMP
library to be described here. The purpose of this code is simply to illustrate some server concepts
using FILE streams. This same server will help illustrate some advanced topics that will be covered
in the nextchapter.

Presenting the mkaddr() Function

The mkaddr.c subroutine function will be presented here, to make this project easier to read. The
mkaddr() function being presented, accepts an input string that consists of an IP number and an
optional port number, or a hostname and optional port number. The port number can also be a
symbolic Internet service name such as "telnet" or "ftp." The function synopsis of the function is as
follows:

Example

int mkaddr
(void *addr, int *addr_len, char *str_addr, char *protocol);

The function arguments can be described as follows:

1. The argument addr points to the receiving socket address structure. This is the socket address,
which is being returned. This value must not be null.

2. The argument addr_len is a pointer to an integer value, which will be filled with the length of
the address created in addr when the function returns. The input value that is pointed to must
contain the maximum size in bytes of the area pointed to by addr.

3. Argument str_addr is the symbolic hostname and optional port number (or service). This will
be more fully described later. A null pointer implies a string value of "*".

4. The protocol argument specifies the protocol that this service will be using. A null pointer
implies the protocol string "tcp".

The str_addr input string is designed to be as flexible as possible. It contains two components,
separated by a colon character:

host_name:service

Page 244

The host_name portion of the string can be one of the following:

• An IP number such as 127.0.0.1, for example.

• A hostname such as sunsite.unc.edu, for example.

• An asterisk, which indicates that the IP address should be the value INADDR_ANY.

The colon character and the service portion of the string are optional within str_addr. When
not omitted, this component can be one of the following:

• A port number such as 8080, for example.

• A service name, such as telnet, for example.

• An asterisk, implying port zero. The bind(2) function call will assign a port number when this
value is used.

The following examples show valid string values for the argument str_addr in the mkaddr()
function call:

• www.lwn.net:80

• 127.0.0.1:telnet

• sunsite.unc.edu:ftp

The mkaddr() function returns the following possible values:

• Zero indicates that the conversion was successful.

• -1 indicates that the host part of the string was invalid, or that the hostname was
unknown.

• -2 indicates that the port number was invalid, or that the service name was unknown.

The code for the mkaddr() subroutine is presented in Listing 10.4. This subroutine may be useful
to use in projects that you might write. The instructions for compiling the code for mkaddr.c will
be provided later, when the whole server is compiled.

Example

Listing 10.4: mkaddr.c— The mkaddr() Subroutine

1: /* mkaddr.c
2: *
3: * Make a socket address:
4: */
5: #include <stdio.h>
6: #include <unistd.h>
7: #include <stdlib.h>

Page 245

8: #include <errno.h>
9: #include <ctype.h>
10: #include <string.h>
11: #include <sys/types.h>
12: #include <sys/socket.h>
13: #include <netinet/in.h>
14: #include <arpa/inet.h>
15: #include <netdb.h>
16:
17: /*
18: * Create an AF_INET Address:
19: *
20: * ARGUMENTS:
21: * 1. addr Ptr to area
22: * where address is
23: * to be placed.
24: * 2. addrlen Ptr to int that
25: * will hold the final
26: * address length.
27: * 3. str_addr The input string
28: * format hostname, and
29: * port.
30: * 4. protocol The input string
31: * indicating the
32: * protocol being used.
33: * NULL implies "tcp".
34: * RETURNS:
35: * 0 Success.
36: * -1 Bad host part.
37: * -2 Bad port part.
38: *
39: * NOTES:
40: * "*" for the host portion of the
41: * address implies INADDR_ANY.
42: *
43: * "*" for the port portion will
44: * imply zero for the port (assign
45: * a port number).
46: *
47: * EXAMPLES:
48: * "www.lwn.net:80"
49: * "localhost:telnet"
50: * "*:21"
51: * "*:*"
52: * "ftp.redhat.com:ftp"
53: * "sunsite.unc.edu"

continues

Page 246

Listing 10.4: continued

54: * "sunsite.unc.edu:*"
55: */
56: int
57: mkaddr(void *addr,
58: int *addrlen,
59: char *str_addr,
60: char *protocol) {
61:
62: char *inp_addr = strdup(str_addr);
63: char *host_part = strtok(inp_addr,":");
64: char *port_part = strtok(NULL,"\n");
65: struct sockaddr_in *ap =
66: (struct sockaddr_in *) addr;
67: struct hostent *hp = NULL;
68: struct servent *sp = NULL;
69: char *cp;
70: long lv;
71:
72: /*
73: * Set input defaults:
74: */
75: if (!host_part)
76: host_part = "*";
77: if (!port_part)
78: port_part = "*";
79: if (!protocol)
80: protocol = "tcp";
81:
82: /*
83: * Initialize the address structure:
84: */
85: memset(ap,0,*addrlen);
86: ap->sin_family = AF_INET;
87: ap->sin_port = 0;
88: ap->sin_addr.s_addr = INADDR_ANY;
89:
90: /*
91: * Fill in the host address:
92: */
93: if (strcmp(host_part,"*") == 0)
94: ; /* Leave as INADDR_ANY */
95: else if (isdigit(*host_part)) {
96: /*
97: * Numeric IP address:
98: */
99: ap->sin_addr.s_addr =

Page 247

100: inet_addr(host_part);
101: if (ap->sin_addr.s_addr
102: == INADDR_NONE)
103: return -1;
104: } else {
105: /*
106: * Assume a hostname:
107: */
108: hp = gethostbyname(
109: host_part);
110: if (!hp)
111: return -1;
112: if (hp->h_addrtype != AF_INET)
113: return -1;
114: ap->sin_addr =
115: * (struct in_addr *)
116: hp->h_addr_list[0];
117: }
118:
119: /*
120: * Process an optional port #:
121: */
122: if (!strcmp(port_part,"*"))
123: ; /* Leave as wild (zero) */
124: else if (isdigit(*port_part)) {
125: /*
126: * Process numeric port #:
127: */
128: lv = strtol(port_part,&cp,10);
129: if (cp != NULL && *cp)
130: return -2;
131: if (lv < 0L || lv >= 32768)
132: return -2;
133: ap->sin_port = htons(
134: (short)lv);
135: } else {
136: /*
137: * Lookup the service:
138: */
139: sp = getservbyname(
140: port_part,
141: protocol);
142: if (!sp)
143: return -2;
144: ap->sin_port =
145: (short) sp->s_port;

continues

Page 248

Listing 10.4: continued

146: }
147:
148: /* Return address length */
149: *addrlen = sizeof *ap;
150:
151: free(inp_addr);
152: return 0;
153: }

The basic steps employed by the mkaddr() function in Listing 10.4 are as follows:

1. Duplicate the input string using strdup(3) in line 62 (this is necessary to enable the use of
strtok(3) later).

2. Parse the host string out using strtok(3) in line 63.

3. Parse the port string out using strtok(3) in line 64.

4. Substitute default string values when NULL arguments are provided (lines 75 to 80).

5. Initialize the caller's address structure (lines 85 to 88).

6. Leave the value as INADDR_ANY if the host string matches the string "*" (line 94).

7. Otherwise, if the hostname starts with a digit, convert the numeric IP address in lines 99 to 103.

8. Otherwise, assume the hostname is a name. Look it up and place the first IP number returned into
the address (lines 108 to 116).

9. Leave the port number as zero if the string matches ''*" (line 123).

10. Otherwise, if the port number starts with a digit, extract the numeric value and use it as the port
number (lines 128 to 134).

11. Otherwise, assume the port number is a service name. Look it up and assign it to the address
(lines 139 to 145).

12. Return the constructed address length (line 149).

13. Free the string created by strdup(3) in step 1 (line 151).

14. Return zero to indicate a successful address conversion.

This routine reviews the concepts that were covered in earlier chapters. This subroutine is flexible
enough that you might choose to use it in your own programs.

Page 249

The RPN Calculator Engine Code

The RPN calculator engine code will be presented next. It is not expected that you will understand
all of the GMP function calls because they have not been presented. However, if you have Red Hat
Linux 6.0 installed, you can find out more about the GMP calls by performing the following
command:

$ info GMP

This will bring up the info viewer with documentation about the GMP function library. Listing
10.5 lists the RPN calculator code. Note especially the standard I/O calls in the functions
rpn_dump() and rpn_process().

Example

Listing 10.5: rpneng.c— The RPN Calculator Code

1: /* rpneng.c:
2: *
3: * RPN Engine:
4: */
5: #include <stdio.h>
6: #include <stdlib.h>
7: #include <errno.h>
8: #include <string.h>
9: #include <limits.h>
10: #include <gmp.h>
11:
12: typedef void (*mpz_func)(mpz_t,
13: const mpz_t,const mpz_t);
14: typedef void (*mpz_unary)(mpz_t,const mpz_t);
15: typedef int (*rpn_spec)(void);
16:
17: /*
18: * RPN Stack:
19: */
20: #define MAX_STACK 32
21: static mpz_t *stack[MAX_STACK];
22: static int sp = 0;
23:
24: /*
25: * Allocate a new mpz_t value:
26: */
27: static mpz_t *
28: rpn_alloc(void) {
29: mpz_t *v = malloc(sizeof(mpz_t));
30: mpz_init(*v);
31: return v;
32: }

continues

Page 250

Listing 10.5: continued

33:
34: /*
35: * Duplicate a mpz_t value:
36: */
37: static mpz_t *
38: rpn_duplicate(mpz_t *value) {
39: mpz_t *v = rpn_alloc();
40:
41: mpz_set(*v,*value);
42: return v;
43: }
44:
45: /*
46: * Free an allocated mpz_t value:
47: */
48: static void
49: rpn_free(mpz_t **v) {
50: mpz_clear(**v);
51: free(*v);
52: *v = NULL;
53: }
54:
55: /*
56: * Push an mpz_t value onto the stack:
57: */
58: static int
59: rpn_push(mpz_t *value) {
60: if (sp >= MAX_STACK)
61: return -1;
62: stack[sp] = value;
63: return sp++;
64: }
65:
66: /*
67: * Pop a mpz_t value from the stack:
68: */
69: static int
70: rpn_pop(mpz_t **value) {
71: if (sp <= 0)
72: return -1;
73: *value = stack[--sp];
74: return sp;
75: }
76:
77: /*
78: * Duplicate the top value on the stack:

TE
AM
FL
Y

Team-Fly®

Page 251

79: */
80: static int
81: rpn_dup(void) {
82: mpz_t *opr2;
83:
84: if (sp <= 0)
85: return -1;
86:
87: opr2 = rpn_alloc();
88: mpz_set(*opr2,*stack[sp-1]);
89: return rpn_push(opr2);
90: }
91:
92: /*
93: * Swap the top two values on the stack:
94: */
95: static int
96: rpn_swap(void) {
97: mpz_t *opr1, *opr2;
98:
99: if (sp < 2)
100: return -1;
101:
102: rpn_pop(&opr1);
103: rpn_pop(&opr2) ;
104: rpn_push(opr1);
105: return rpn_push(opr2);
106: }
107:
108: /*
109: * Dump the stack:
110: */
111: static void
112: rpn_dump(FILE *tx) {
113: int sx;
114:
115: for (sx=sp-1; sx >= 0; --sx) {
116: fprintf(tx,"%d:",sx);
117: mpz_out_str(tx,10,*stack[sx]);
118: fputc('\n',tx);
119: }
120: fputs("E:end of stack dump\n",tx);
121: }
122:
123: /*
124: * Operation "seed":

continues

Page 252

Listing 10.5: continued

125: *
126: * OPERANDS:
127: * 1: the least significant 32 bits
128: * will seed the random number
129: * generator via srand(3):
130: * RESULTS:
131: * none.
132: */
133: static int
134: rpn_seed(void) {
135: int z;
136: mpz_t *opr;
137: long lv;
138:
139: if ((z = rpn_pop(&opr)) < 0)
140: /* No operand available */
141: return -1;
142:
143: /*
144: * Get long value, ignoring errors.
145: * Then seed the random number
146: * generator:
147: */
148: lv = mpz_get_si(*opr);
149: srand((int)lv);
150:
151: rpn_free(&opr);
152: return z;
153: }
154:
155: /*
156: * Operation "random":
157: *
158: * OPERANDS:
159: * 1. A modulo value to apply after
160: * the random number is generated.
161: * RESULTS:
162: * 1. A random value: 0 < modulo value.
163: */
164: static int
165: rpn_random(void) {
166: mpz_t *opr, *res;
167: mpz_t r;
168: size_t limbs;
169:
170: if (rpn_pop(&opr) < 0)

Page 253

171: /* No operand available */
172: return -1;
173:
174: mpz_init(r);
175: res = rpn_alloc();
176:
177: /*
178: * Pop the top to use as the modulo
179: * operand. Generate a random number
180: * r. Then compute r % opr as the
181: * final result:
182: */
183: limbs = mpz_size(*opr);
184: mpz_random(r,limbs);
185: mpz_tdiv_r(*res,r,*opr);
186:
187: mpz_clear(r);
188: rpn_free(&opr);
189:
190: return rpn_push(res);
191: }
192:
193: /*
194: * Operation "tprime":
195: *
196: * Test for probability of being
197: * a prime number:
198: *
199: * OPERANDS:
200: * 1. Number to test
201: * 2. Number of tests to try
202: * (typically 25)
203: * RESULTS:
204: * 1. Number tested is probably
205: * prime when value = 1.
206: * Number tested is not prime
207: * when result is zero.
208: */
209: static int
210: rpn_test_prime(void) {
211: mpz_t *opr1, *opr2;
212: long reps;
213: int z;
214:
215: if (sp < 2)
216: /* Insufficient operands */

continues

Page 254

Listing 10.5: continued

217: return -1;
218:
219: rpn_pop(&opr1);
220: rpn_pop(&opr2);
221:
222: if (mpz_size(*opr2) > 1)
223: /* Too many limbs in size */
224: return -1;
225:
226: reps = mpz_get_si(*opr2);
227: if (reps < 1L || reps > 32768L)
228: /* Too large for opr2 */
229: return -1;
230:
231: z = mpz_probab_prime_p(*opr1,reps);
232: mpz_set_si(*opr1,(long)z);
233: rpn_free(&opr2);
234:
235: return rpn_push(opr1);
236: }
237:
238: /*
239: * Operation "genprime":
240: *
241: * Generate a random prime number.
242: *
243: * OPERANDS:
244: * 1. The modulo value to apply
245: * to the randomizing value
246: * (see "random").
247: * 2. The number of primality
248: * tests to perform (typically
249: * this value is 25).
250: * RESULTS:
251: * 1. The randomly generated prime
252: * number (actually, only a high
253: * probability of being prime).
254: */
255: static int
256: rpn_genprime(void) {
257: mpz_t *opr1;
258: mpz_t *opr2;
259: mpz_t *res;
260:
261: if (sp < 2)
262: return -1;

Page 255

263:
264: rpn_pop(&opr1);
265: rpn_pop(&opr2);
266:
267: for (;;) {
268: rpn_push(rpn_duplicate(opr1));
269: rpn_random();
270: rpn_dup();
271: rpn_push(rpn_duplicate(opr2));
272: rpn_swap();
273: rpn_test_prime();
274: rpn_pop(&res);
275: if (mpz_cmp_si(*res,0L) != 0)
276: break;
277: rpn_free(&res);
278: rpn_pop(&res);
279: rpn_free(&res);
280: }
281:
282: rpn_free(&res);
283: rpn_free(&opr2);
284: rpn_free(&opr1);
285:
286: return sp - 1;
287: }
288:
289: /*
290: * Standard binary arithmetic operations:
291: *
292: * OPERANDS:
293: * 1. Operand 2
294: * 2. Operand 1
295: *
296: * RESULTS:
297: * 1. Operand 1 op Operand 2
298: */
299: static int
300: rpn_binoper(mpz_func f) {
301: mpz_t *res, *opr1, *opr2;
302:
303: if (sp < 2)
304: /* Insufficient operands */
305: return -1;
306:
307: res = rpn_alloc();
308: rpn_pop(&opr2);

continues

Page 256

Listing 10.5: continued

309: rpn_pop(&opr1);
310:
311: f(*res,*opr1,*opr2);
312:
313: rpn_free(&opr1);
314: rpn_free(&opr2);
315: return rpn_push(res);
316: }
317:
318: /*
319: * Standard Unary Operations:
320: *
321: * OPERANDS:
322: * 1. Operand 1
323: *
324: * RESULTS:
325: * 1. Result of unary operation.
326: */
327: static int
328: rpn_unaryop(mpz_unary f) {
329: mpz_t *res, *opr1;
330:
331: if (sp < 1)
332: /* Insufficient operands */
333: return -1;
334:
335: res = rpn_alloc();
336: rpn_pop(&opr1);
337:
338: f(*res,*opr1);
339:
340: rpn_free(&opr1);
341: return rpn_push(res);
342: }
343:
344: /*
345: * Execute RPN operation:
346: *
347: * RETURNS:
348: * 0 Successful.
349: * -1 Failed.
350: */
351: static int
352: rpn_opr(char *oper) {
353: int x;
354: static struct {

Page 257

355: char *oper;
356: rpn_spec func;
357: } spec[] = {
358: { "dup", rpn_dup },
359: { "swap", rpn_swap },
360: { "seed", rpn_seed },
361: { "random", rpn_random },
362: { "tprime", rpn_test_prime },
363: { "genprime", rpn_genprime },
364: { 0 }
365: };
366: static struct {
367: char *oper;
368: mpz_func func;
369: } binops[] = {
370: { "+", mpz_add },
371: { "-", mpz_sub },
372: { "*", mpz_mul },
373: { "/", mpz_tdiv_q },
374: { "%", mpz_tdiv_r },
375: { "gcd", mpz_gcd },
376: { 0 }
377: };
378: static struct {
379: char *oper;
380: mpz_unary func;
381: } unary[] = {
382: { "abs", mpz_abs },
383: { "neg", mpz_neg },
384: { "sqrt", mpz_sqrt },
385: { 0 }
386: };
387:
388: /*
389: * Special Cases:
390: */
391: for (x=0; spec[x].oper; ++x)
392: if (!strcmp(spec[x].oper,oper))
393: return spec[x].func();
394:
395: /*
396: * Test for a match on binary operators:
397: */
398: for (x=0; binops[x].oper; ++x)
399: if (!strcmp(binops[x].oper,oper))
400: return rpn_binoper(binops[x].func);

continues

Page 258

Listing 10.5: continued

401:
402: /*
403: * Test for a match on unary operators:
404: */
405: for (x=0; unary[x].oper; ++x)
406: if (!strcmp(unary[x].oper,oper))
407: return rpn_unaryop(unary
[x].func);
408:
409: return -
1; /* Failed: unknown operator */
410: }
411:
412: void
413: rpn_process(FILE *tx,char *buf) {
414: int z;
415: mpz_t *t;
416: char *operation;
417: char *operand;
418:
419: operation=strtok(buf,":\n\r");
420: operand=strtok(NULL,"\n\r");
421:
422: if (!strcmp(operation,"dump")) {
423: rpn_dump(tx);
424:
425: } else if (!strcmp(operation,"=")) {
426: /*
427: * Pop off the result:
428: */
429: if ((z = rpn_pop(&t)) == -1)
430: fputs("E:Nothing to pop\n",tx);
431: else {
432: fprintf(tx,"%d:",z);
433: mpz_out_str(tx,10,*t);
434: fputc('\n',tx);
435: rpn_free(&t);
436: }
437:
438: } else if (!strcmp(operation,"#")) {
439: /*
440: * Push an operand onto the stack:
441: */
442: t = rpn_alloc();
443: if (!mpz_set_str(*t,operand,10))
444: fprintf(tx,"%d:\n",rpn_push(t));
445: else {
446: fputs("E:Invalid number\n",tx);

Page 259

447: rpn_free(&t);
448: }
449:
450: } else {
451: /*
452: * Perform an operation:
453: */
454: z = rpn_opr(operation);
455: if (z == -1)
456: fprintf(tx,
457: "E:Operation failed.\n");
458: else
459: fprintf(tx,"%d:\n",z);
460: }
461:
462: fflush(tx);
463: }

While Listing 10.5 is quite long, only the server concepts within it are important to you here.
Consequently, only the rpn_process() function will be described:

1. The rpn_process() function is called with the output stream to write to (argument tx), and
the input text line in buf to process (line 413).

2. The variables operation and operand are the parsed operation and operand strings,
respectively (lines 419 to 420).

3. If the operation is special operation ''dump", the function rpn_dump() is called to list the
contents of the stack (lines 422 to 423).

4. If step 3 does not apply, and if the operation is "=", the value is popped off the stack and returned
to the client program (lines 425 to 436). Proceed to step 7.

5. If steps 3 and 4 do not apply, and if the operation is "#", the operand value is pushed onto the
stack (lines 438 to 448). Proceed to step 7.

6. If steps 3, 4, and 5 do not apply, all other RPN operations are handled by the function rpn_opr
(). The result reported back to the client is the stack index value or an error indication (lines 454 to
460).

7. The output is forced to be written to the socket by calling fflush(tx) in line 462.

How the server works from the client side, will be examined after the remainder of the server code is
presented. Listing 10.6 shows the remainder of the server source code. This represents the main
program segment of the server.

Page 260

Example

Listing 10.6: rpnsrv.c—The RPN Main Server Code

1: /* rpnsrv.c:
2: *
3: * Example RPN Server:
4: */
5: #include <stdio.h>
6: #include <unistd.h>
7: #include <stdlib.h>
8: #include <errno.h>
9: #include <string.h>
10: #include <time.h>
11: #include <sys/types.h>
12: #include <sys/socket.h>
13: #include <netinet/in.h>
14: #include <arpa/inet.h>
15: #include <netdb.h>
16:
17: #ifndef SHUT_RDWR
18: #define SHUT_RDWR 3
19: #endif
20:
21: extern int mkaddr(void *addr,
22: int *addr_len,
23: char *input_address,
24: char *protocol);
25:
26: extern void rpn_process(FILE *tx,
27: char *buf);
28:
29:
30: /*
31: * This function reports the error and
32: * exits back to the shell:
33: */
34: static void
35: bail(const char *on_what) {
36: if (errno != 0) {
37: fputs(strerror(errno),stderr);
38: fputs(": ",stderr);
39: }
40: fputs(on_what,stderr);
41: fputc('\n',stderr);
42: exit(1);
43: }
44:
45: int
46: main(int argc,char **argv) {

TE
AM
FL
Y

Team-Fly®

Page 261

47: int z;
48: char *srvr_addr = "127.0.0.1:9090";
49: struct sockaddr_in adr_srvr;/* AF_INET */
50: struct sockaddr_in adr_clnt;/* AF_INET */
51: int len_inet; /* length */
52: int s = -1; /* Socket */
53: int c = -1; /* Client socket */
54: FILE *rx = NULL; /* Read stream */
55: FILE *tx = NULL; /* Write stream */
56: char buf[4096]; /* I/O Buffer */
57:
58: /*
59: * Use a server address from the command
60: * line, otherwise default to 127.0.0.1:
61: */
62: if (argc >= 2)
63: srvr_addr = argv[1];
64:
65: len_inet = sizeof adr_srvr;
66: z = mkaddr(&adr_srvr,&len_inet,
67: srvr_addr,"tcp");
68:
69: if (z < 0 || !adr_srvr.sin_port) {
70: fprintf(stderr,"Invalid server "
71: "address, or no port number "
72: "was specified.\n");
73: exit(1);
74: }
75:
76: /*
77: * Create a TCP/IP socket to use:
78: */
79: s = socket(PF_INET,SOCK_STREAM,0);
80: if (s == -1)
81: bail("socket(2)");
82:
83: /*
84: * Bind the server address:
85: */
86: z = bind(s,(struct sockaddr *)&adr_srvr,
87: len_inet);
88: if (z == -1)
89: bail("bind(2)");
90:
91: /*
92: * Make it a listening socket:

continues

Page 262

Listing 10.6: continued

93: */
94: z = listen(s,10);
95: if (z == -1)
96: bail("listen(2)");
97:
98: /*
99: * Start the server loop:
100: */
101: for (;;) {
102: /*
103: * Wait for a connect:
104: */
105: len_inet = sizeof adr_clnt;
106: c = accept(s,
107: (struct sockaddr *)&adr_clnt,
108: &len_inet);
109: if (c == -1)
110: bail("accept(2)");
111:
112: /*
113: * Create streams:
114: */
115: rx = fdopen(c,"r");
116: if (!rx) {
117: /* Failed */
118: close(c);
119: continue;
120: }
121:
122: tx = fdopen(dup(c),"w");
123: if (!tx) {
124: fclose(rx);
125: continue;
126: }
127:
128: /*
129: * Set both streams to line
130: * buffered mode:
131: */
132: setlinebuf(rx);
133: setlinebuf(tx);
134:
135: /*
136: * Process client's requests:
137: */
138: while (fgets(buf,sizeof buf,rx))

Page 263

139: rpn_process(tx,buf);
140:
141: /*
142: * Close this client's connection:
143: */
144: fclose(tx);
145: shutdown(fileno(rx),SHUT_RDWR);
146: fclose(rx);
147: }
148:
149: /* Control never gets here */
150: return 0;
151: }

The main features of the server code in Listing 10.6 should be relatively familiar to you now. The
basic steps used in this module were as follows:

1. The C macro SHUT_RDWR is defined in line 18, if the macro is not already defined. This makes
the source code clearer when shutdown(2) is being called later in the program.

2. The server's address is taken from the command line, if it is present (lines 62 and 63).

3. The mkaddr() subroutine is called to construct a server address for us in lines 65 to 74.

4. A server socket is created (lines 79 to 81).

5. The server address is bound to the socket (lines 86 to 89).

6. The socket is made into a listening socket (lines 94 to 96).

7. The program waits for a client to connect (lines 105 to 110).

8. Input and output file streams are created in lines 115 to 126. Notice that error recovery must
ensure that the currently open streams and client socket are closed. The error itself is not reported by
this server, if it should occur.

9. The I/O streams are set to line buffered mode (lines 132 to 133).

10. Until EOF is reached, each text line is read from the client and processed by the function
rpn_process() (lines 138 to 139).

11. A full shutdown is performed for this client (lines 144 to 146).

12. Repeat step 7 to accommodate the next client connection.

Page 264

Although limited, you can see that Listing 10.6 is a simple server loop that keeps accepting client
connections in single-file fashion. Later, you'll learn how to write a higher-performance server that
can concurrently process several clients at one time.

Trying out the RPN Server

To compile all the related source modules for the RPN server, you can perform the following make
command:

Output

$ make rpnsrv
gcc -c -D_GNU_SOURCE -Wall -Wreturn-type rpnsrv.c
gcc -c -D_GNU_SOURCE -Wall -Wreturn-type rpneng.c
gcc -c -D_GNU_SOURCE -Wall -Wreturn-type mkaddr.c
gcc rpnsrv.o rpneng.o mkaddr.o -o rpnsrv -lgmp
$

After the executable rpnsrv for the server has been created, you can start the server as follows:

Output

$./rpnsrv &
[1] 13321
$

In the output shown, the server was started with a process ID of 13321, and run in the background.

To keep things simple at this point, you'll just use the telnet command to try out the server. The
next chapter will fully outline this server's functions. For now, just try some simple tests.

CAUTION
The server presented is not a production-grade server. Some forms of incorrect input
can provoke the server to abort.

The RPN calculator computes based upon numbers that are pushed onto the stack. To perform the
add operation, for example, requires at least two numbers to exist on the stack. To push a number
onto the stack, you will enter a line as follows:

#:970976453

After you press Enter, the server will respond with something like this:

0:

This tells you that the number has been stacked at the bottom of the stack (entry number zero). To
stack another number, simply do the same, as follows:

#:2636364

Page 265

The server will respond with

1:

This indicates that the number 2636364 was stacked at position 1, although the original number
970976453 still sits at the bottom of the stack at position 0. You can list the current contents of
the stack by entering the following:

dump

The following example shows what the session and its output might look like this:

Output

$ telnet localhost 9090
Trying 127.0.0.1 . . .
Connected to localhost.
Escape character is '^]'.
#:970976453
0:
#:2636364
1:
dump
1:2636364
0:970976453
E:end of stack dump

To perform a binary operation, you simply enter the name of the operation or its symbol. For
example, to add these numbers, you would just enter the + character and press return. The session
repeated without entering the dump command would appear as follows if the + operation was
performed, and then followed by the = operation:

Output

$ telnet localhost 9090
Trying 127.0.0.1 . . .
Connected to localhost.
Escape character is '^]'.
#:970976453
0:
#:2636364
1:
+
0:
=
0:973612817
^]
telnet> c
Connection closed.
$

Page 266

The + operation caused the two stacked numbers to be added together, and the result replaced the
two original values. The = operator here pops the result off the stack and displays it for you.

To exit the server, type CTRL+] and you will be prompted with the prompt:

telnet>

From there, enter a c to indicate that you want the session closed, and press Enter. To terminate the
server, just use the kill command.

Take a few minutes now to have some fun with the new RPN calculating server program. Restart the
server, and see whether you can figure out how to compute the equation (3 + 2) * (2 + 4) using the
calculating server just presented.

After your experiment, you deserve a break. The server will be more fully explored in the next
chapter as you look at more advanced server issues. For now, just take stock of the concepts you
have mastered in this chapter.

What's Next

This chapter has introduced you to the idea of using FILE streams with your sockets. You can
readily appreciate how streams will make certain tasks much simpler for your code, such as the
input and output of text lines.

You also learned to be aware of the EINTR problem if the glibc library should change or if your
code is ported to another UNIX platform.

The next chapter will teach you how servers can service multiple client connections at the same
time. This is not as trivial as you might imagine.

Page 269

11—
Concurrent Client Servers

All of the servers presented in this text so far have processed one client's request in total before
accepting a connection to the next client. This design is effective and simple for servers that reply
swiftly. However, if the processing takes a long time, or there are periods of inactivity, then this will
prevent other clients from being serviced without lengthy delays. Because servers are usually
required to service as many clients as possible, with a minimum of delay, a fundamental design
change is needed at the server end of the connection.

In this chapter you will learn how to use the following:

• The fork(2) function in order to handle multiple client connections

• The wait(2) and waitpid(2) functions

• The select(2) function for handling multiple client connections

Mastering these concepts will permit you to write professional-grade servers, which can service
large numbers of clients at once.

Page 270

Understanding the Multiple-Client Problem

Figure 11.1 shows several clients, which have contacted one server. The client connections
conceptually form spokes around the central server.

Figure 11.1:
Several clients attached to one server can be

graphically represented as spokes attached to a hub.

The server, acting as the central hub in Figure 11.1, must balance its resources among several
connected clients. The server is normally designed to behave such that each client thinks that it has
dedicated server access. In reality, however, the server services all clients in a concurrent manner.

There are a few of ways of achieving this. They are

• Forked server processes (multi-process method)

• Threaded server processes (multi-thread method)

• One process and a select(2) call

• One process and a poll(2) call

The first method of using the fork(2) system call is perhaps the simplest way to service multiple-
client processes. However, it suffers from the disadvantage that sharing information becomes more
complex. This usually requires the use of message queues, shared memory, and semaphores. It also
suffers from the disadvantage that it requires more CPU to start and manage a new process for each
request.

The threaded server method is relatively new to UNIX, and is now a viable option for Linux. Kernel
versions 2.0.0 and later support threads, provided

Page 271

that the appropriate thread-safe libraries are used. Threads offer the lightweight advantages of the
multi-process method, without hampering centralized communication. Threaded processes can be
very difficult to debug, however, especially for beginning programmers. For this reason, threads will
not be explored in this text.

TIP
Frequently Asked Question (FAQ) documents that describe threads in more detail
under Linux are available on the Internet for your viewing. Some references to these
are

http://metalab.unc.edu/pub/Linux/docs/faqs/Threads-FAQ/html

http://linas.org/linux/threads-faq.html

http://pauillac.inria.fr/~xleroy/linuxthreads

http://www.globenet.it/~ermmau/Threads

The last two methods listed involve the use of the select(2) or poll(2) function calls. Each of
these functions offer a different way to block execution of the server until an event occurs. The
select(2) function will be examined in detail within this chapter. The interested reader is
encouraged to read the man pages for poll(2) after completing this chapter.

Overview of Server Functions

Chapter 10, ''Using Standard I/O on Sockets," introduced the Reverse Polish Notation (RPN)
calculating server. Only its most primitive functions were described, however. Before you dive into
the server's design aspects in this chapter, you should get to know some of the server's capabilities
first. In this manner, you'll be able to give the server a better workout.

The most basic functions are listed in Table 11.1. These describe the most rudimentary arithmetic
and operating functions available.

Table 11.1: The Rudimentary RPN Server Functions

Function Argument Description

Integer An integer value to push onto the stack.

+ N/A Add the two numbers on the top of the stack. The numeric
resulting number replaces these two values on the top of
the stack.

- N/A Subtract the top number from the next to last number on
the stack. The result replaces the two values on the top of
the stack.

* N/A Multiply the two numbers on the top of the stack. The
resulting value replaces the two numbers on the top of the
stack.

continues

Page 272

Table 11.1: continued

Function Argument Description

/ N/A Divide the top number into the next to last number on the
top of the stack. The integer result replaces these two
numbers on the top of the stack.

% N/A Replace the top two numbers on the stack with the modulo
result (remainder) of the top number divided into the next
to last number.

= N/A The top result is popped off of the stack and returned to the
client.

dump N/A The entire stack is dumped back to the client. The stack is
left unmodified.

Listing 11.1 shows a simple calculation being performed. Then the functions dump and = are tested
prior to exiting the server.

Output

Listing 11.1: Testing the Basic RPN Server Functions

$ telnet localhost 9090
Trying 127.0.0.1 . . .
Connected to localhost.
Escape character is '^]'.
#:3
0:
#:4
1:
#:7
2:
dump
2:7
1:4
0:3
E:end of stack dump
+
1:
dump
1:11
0:3
E:end of stack dump
*
0:
dump
0:33
E:end of stack dump
=
0:33
dump
E:end of stack dump

TE
AM
FL
Y

Team-Fly®

Page 273

^]
telnet> c
Connection closed.
$

The session showed how to compute the following:

3 * (4 + 7)

The steps performed in Listing 11.1 are as follows:

1. The three values 3, 4, and 7 are first pushed onto the stack.

2. The stack is dumped with the dump operation.

3. The + operation is performed, which causes 4 + 7 to be evaluated and its result 11 to be placed
on the stack in place of the inputs.

4. The stack is dumped again using dump . From this, you can see that the values 3 and 11 remain
on the stack.

5. The multiplication of 3 * 11 is evaluated when * is entered. The result of 33 replaces the input
values on the stack.

6. The dump operation is performed again to show the stack contents. It shows the single result of
33 on the stack.

7. The = operation pops this last value off the stack.

8. The dump operation now shows an empty stack.

9. The telnet session is closed using CTRL+1 and then the c character followed by a RETURN.

Unary functions supported by the server are shown in Table 11.2.

Table 11.2: Unary RPN Server Functions

Function Argument Description

abs N/A The top stack value is replaced with the absolute value of
that number.

neg N/A The top stack value is replaced with the negated value of
that number.

sqrt N/A The top stack value is replaced with the integer square root
of that number.

Note that the unary functions only require one number to exist on the stack. Table 11.3 lists some
more advanced functions that the RPN server supports.

Page 274

Table 11.3: Advanced RPN Server Functions

Function Argument Description

gcd N/A Compute the greatest common divisor between the top two
numbers on the stack. The result replaces the top two
numbers on the stack.

seed N/A Use the value on the top of the stack as a random number
seed value. There is no result pushed onto the stack.

random N/A Use the value on the top of the stack to act as the largest
value +1 for the random number to be generated. The
random result replaces the input value on the stack.

tprime N/A Test the top stack value to see if it is a prime number. The
second-to-last number on the top of the stack indicates how
many tests to apply. A typical value is 25. The result
replaces the two input values on the stack. A result of 1
indicates that the number is probably prime, while 0
indicates that the number is not prime.

genprime N/A Generate a prime number, using the top of the stack as a
"maximum random number +1" value (see random). The
second-to-last number on the stack indicates the number of
tests to perform (typically 25). The generated result
replaces the top two values.

swap N/A Swap the top two values on the stack. Useful for
exchanging two numbers.

dup N/A Duplicate the top value on the stack.

The use of the seed and random functions require a bit of explanation. The seed function allows
you to predictably seed a random number generator. This is important if you want to reproduce a set
of random numbers for subsequent tests. For example:

Output

#:1000
0:
seed
0:
#:3000
0:
random
0:
dump
0:560

This sequence seeds the random number generator with the value 1000 . Later, 3000 is input to the
function random which produces the random result 560. The value 3000 acts as a maximum
value + 1 for the random function. With this as an input value, the random number generated could
be between the values of 0 and 2999.

Page 275

The genprime function works similarly. Take for example:

Output

#:25
0:
#:9999999999999999999999999999999
1:
genprime
0:
dump
0:7316946669968331260251308920347
E:end of stack dump

This example shows how a large prime number is generated. The value 25 pushed, causing the
generated number to be tested 25 times to see if it is a prime number. If you need better assurance
that the number is prime, you must use a larger test value. The function tprime works the same
way, except that it produces a test result of zero or one instead. One indicates the number was tested
as probably prime.

NOTE
The prime number tests are implemented in the GMP library function
mpz_probab_prime_p(). This function implements a "probabilistic primality
test" based upon the work by Donald E. Knuth, The Art of Computer Programming,
vol 2, Seminumerical Algorithms, 2nd edition, Addison-Wesley, 1981.

The result of the function indicates a high probability that the number is prime. The
probability of returning a false positive indication is (1/4)r, where r represents the
number of tests to be performed. The documentation states that the value of 25 is a
reasonable number for r.

Using fork(2) to Service Multiple Clients

The server that was developed in Chapter 10 has been modified in this section to handle multiple
clients by means of a fork(2) system call. Listing 11.2 shows the listing of the modified
rpnsrv.c module. All other source modules remain the same as they appeared in the previous
chapter.

Example

Listing 11.2: rpnsrv.c— The fork(2) Modified RPN Server

1: /* rpnsrv.c:
2: *
3: * Example RPN Server:
4: */
5: #include <stdio.h>
6: #include <unistd.h>
7: #include <stdlib.h>

8: #include <errno.h>
9: #include <string.h>

continues

Page 276

Listing 11.2 continued

10: #include <time.h>
11: #include <sys/types.h>
12: #include <sys/socket.h>
13: #include <netinet/in.h>
14: #include <arpa/inet.h>
15: #include <netdb.h>
16: #include <sys/wait.h>
17: #include <signal.h>
18:
19: #ifndef SHUT_RDWR
20: #define SHUT_RDWR 3
21: #endif
22:
23: extern int mkaddr(void *addr,
24: int *addr_len,
25: char *input_address,
26: char *protocol);
27:
28: extern void rpn_process(FILE *tx,
29: char *buf);
30:
31: /*
32: * Process Terminated Child processes:
33: */
34: static void
35: sigchld_handler(int signo) {
36: pid_t PID;
37: int status;
38:
39: do {
40: PID = waitpid(-1,&status,WNOHANG);
41: } while (PID != -1);
42:
43: /* Re-instate handler */
44: signal(SIGCHLD,sigchld_handler);
45: }
46:
47: /*
48: * This function reports the error and
49: * exits back to the shell:
50: */
51: static void
52: bail(const char *on_what) {
53: if (errno != 0) {
54: fputs(strerror(errno),stderr);
55: fputs(": ",stderr);

Page 277

56: }
57: fputs(on_what,stderr);
58: fputc('\n' ,stderr);
59: exit(1);
60: }
61:
62: int
63: main(int argc,char **argv) {
64: int z;
65: char *srvr_addr = "127.0.0.1:9090";
66: struct sockaddr_in adr_srvr;/* AF_INET */
67: struct sockaddr_in adr_clnt;/* AF_INET */
68: int len_inet; /* length */
69: int s = -
1; /* Socket */
70: int c = -1; /* Client socket */
71: FILE *rx = NULL; /* Read stream */
72: FILE *tx = NULL; /* Write stream */
73: char buf[4096]; /* I/O Buffer */
74: pid_t PID; /* Process ID */
75:
76: /*
77: * Set signal handler for SIGCHLD:
78: */
79: signal(SIGCHLD,sigchld_handler);
80:
81: /*
82: * Use a server address from the command
83: * line, otherwise default to 127.0.0.1:
84: */
85: if (argc >= 2)
86: srvr_addr = argv[1];
87:
88: len_inet = sizeof adr_srvr;
89: z = mkaddr(&adr_srvr,&len_inet,
90: srvr_addr,"tcp");
91:
92: if (z < 0 || !adr_srvr.sin_port) {
93: fprintf(stderr, "Invalid server "
94: "address, or no port number "
95: "was specified.\n");
96: exit(1);
97: }
98:
99: /*
100: * Create a TCP/IP socket to use:
101: */

continues

Page 278

Listing 11.2: continued

102: s = socket(PF_INET,SOCK_STREAM,0);
103: if (s == -1)
104: bail("socket(2)");
105:
106: /*
107: * Bind the server address:
108: */
109: z = bind(s,(struct sockaddr *)&adr_srvr,
110: len_inet);
111: if (z == -1)
112: bail("bind(2)");
113:
114: /*
115: * Make it a listening socket:
116: */
117: z = listen(s,10);
118: if (z == -1)
119: bail("listen(2)");
120:
121: /*
122: * Start the server loop:
123: */
124: for (;;) {
125: /*
126: * Wait for a connect:
127: * /
128: len_inet = sizeof adr_clnt;
129: c = accept(s,
130: (struct sockaddr *)&adr_clnt,
131: &len_inet);
132: if (c == -1)
133: bail("accept(2)");
134:
135: /*
136: * Fork a new server process
137: * to service this client:
138: */
139: if ((PID = fork()) == -1) {
140: /* Failed to fork: Give up */
141: close(c);
142: continue;
143: } else if (PID > 0) {
144: /* Parent process: */
145: close(c);
146: continue;
147: }

Page 279

148:
149: /*
150: * CHILD PROCESS:
151: * Create streams:
152: */
153: rx = fdopen(c,"r");
154: if (!rx) {
155: /* Failed */
156: close(c);
157: continue;
158: }
159:
160: tx = fdopen(dup(c),"w");
161: if (!tx) {
162: fclose(rx);
163: continue;
164: }
165:
166: /*
167: * Set both streams to line
168: * buffered mode:
169: */
170: setlinebuf(rx);
171: setlinebuf(tx);
172:
173: /*
174: * Process client's requests:
175: */
176: while (fgets(buf,sizeof buf,rx))
177: rpn_process(tx,buf);
178:
179: /*
180: * Close this client's connection:
181: */
182: fclose(tx);
183: shutdown(fileno(rx),SHUT_RDWR);
184: fclose(rx);
185:
186: /*
187: * Child process must exit:
188: */
189: exit(0);
190: }
191:
192: /* Control never gets here */
193: return 0;
194: }

Page 280

The following session shows how to compile and to start the server in the background:

Output

$ make rpnsrv
gcc -c -D_GNU_SOURCE -Wall -Wreturn-type rpnsrv.c
gcc -c -D_GNU_SOURCE -Wall -Wreturn-type rpneng.c
gcc -c -D_GNU_SOURCE -Wall -Wreturn-type mkaddr.c
gcc rpnsrv.o rpneng.o mkaddr.o -o rpnsrv -Igmp
$./rpnsrv '*:9090' &
 [2] 915
$

After the server has been started, you can use telnet from multiple xterm windows to try out the
server simultaneously. If you are not running the X Window system, you can use various virtual
console sessions to accomplish the same effect.

The principle changes to the module are as follows:

• The <sys/wait.h> and <signal.h> include files were added in lines 16 and 17.

• A signal handler for SIGCHLD was added to lines 34 to 45.

• A process ID variable PID was declared in line 74.

• The SIGCHLD signal handler was installed at line 79.

• A call to fork(2) was added in lines 139 to 147.

• A call to exit(2) was added at line 189.

Understanding the Overall Server Process

The basic main program of the server now functions as follows:

1. A signal handler for SIGCHLD is installed at line 79. This will play a role for terminated
processes, which will be discussed later.

2. A server address and socket are created (lines 85 to 112).

3. The socket is converted to a listening socket (lines 117 to 119).

4. The main loop begins (line 124).

5. The server blocks its execution until a client connects (lines 128 to 133).

6. The fork(2) function is called in line 139.

7. If step 6 fails, the value -1 is returned by fork(2) and the server closes the connected socket c
(line 141). Then the loop repeats with step 5.

Page 281

8. If step 6 succeeds, then PID will contain the process ID of the child process in the parent process
(lines 144 to 147). The parent process simply closes the accepted connection c and repeats step 5.

The parent process loops between steps 5 to 8 until the server is killed off. Effectively, the parent
process only accepts connections. It does no other work.

Understanding the Child Server Process Flow

The child process in Listing 11.2, created by the fork(2) process in step 6, follows these steps:

1. Because the fork(2) function returns zero for the child process, its code continues execution at
line 153.

2. The child process keeps socket c open and associates this socket with FILE streams tx and rx
(lines 153 to 164).

3. Processing continues in the child process as normal in lines 170 to 184.

4. At this stage, the child process has finished processing for the client. The exit(3) function is
called to terminate the child process (line 189). This step will cause the signal SIGCHLD to be
raised in the parent server process.

Note that the parent process closes the socket c in line 145. This is important because, after the
fork(2) call, both parent and client processes have this connected socket open. The parent process
is not servicing the client request, so it simply closes the socket. The child process, however, will
process the client's requests and uses the open socket in variable c.

With this design, the connected client can take its merry time in submitting requests without making
other clients of the same server wait. This is because the parent server process simply accepts new
connections. The parent server process performs the following steps:

1. Accept a connection from a client.

2. Fork a new process to service the client.

3. Close its copy of the connected client's socket.

4. Repeat step 1.

The servicing of the connected client is simple, because the server child process only has to worry
about one connected socket.

TE
AM
FL
Y

Team-Fly®

Page 282

Understanding Process Termination Processing

The one complication that the fork(2) function call inflicts upon the design of the server is that it
must process information about terminated processes. This is very important, because when a child
process terminates, most of its resources are released. The rest of its resources are released only
when the parent process obtains the child process termination status information.

The parent process is notified of a child process termination by means of the signal SIGCHLD. Now
examine the steps that the parent server process uses when a child process terminates:

1. The signal SIGCHLD is raised by the kernel to indicate that the child process has terminated.

2. The function sigchld_handler() is called (line 35), because the function was registered for
the SIGCHLD signal in line 79.

3. The sigchld_handler() executes a loop calling waitpid(2) until no more exit status
information is available.

4. The SIGCHLD handler is re-instated in line 44. This was necessary because the reliable signals
interface was not used in order to keep the example program simple.

NOTE
In a production mode server, only the reliable signal functions such as sigaction
(2) should be used. This was avoided in the example program to keep the source
code simple.

CAUTION
Failure to call wait(2) or waitpid(2) by the parent process after a fork(2)
and the child process's subsequent termination will result in zombie processes being
left around until the parent process terminates. This can tie up valuable system
resources.

The reader is encouraged to review the functions fork(2) , waitpid(2), and signal(2), if
necessary. These are important aspects of this server design.

Designing Servers That Use select(2)

While the server just presented was able to employ the fork(2) function to gainfully serve
multiple clients, there are other server designs that might be preferable. A server that must share
information between connected clients might find it desirable to keep the server contained within a
single process. Another requirement that might dictate a single process server model is the fact that
one process does not consume the same amount of system resources as many processes would. For
these reasons, it is necessary to consider a new server design philosophy.

Page 283

Introducing the select(2) Function

The select(2) function permits you to block the execution of your server until there is
something for the server to do. More specifically, it permits the caller to know when

• There is something to read from a file descriptor.

• Writing to the file descriptor will not block the execution of the server program.

• An exception has occurred on a file descriptor.

You will recall that the handle to a socket is a file descriptor. The select(2) function will notify
the server when something has happened on any one of a specified set of connected client sockets.
In effect, this allows the server to process multiple clients in a very efficient manner.

As pointed out previously, the server is interested when any new request data is coming in from a
client's socket. To know this, the server needs to know when there is data to be read from a
particular client's socket.

When sending data back to the client, it is important for the server to know that it can write the data
to the socket without being blocked. If the connected client, for example, requests a large amount of
information to be returned, the server will have to write that information to the socket. If the client
software is faulty or is slow reading the data at its end, the server will block for a long time, while
attempting to write the rest of the result data. This has the consequence that all other clients that are
connected to the server must now also wait. This is clearly undesirable, since each client must be
serviced as expeditiously as possible.

If your server must also process out-of-band data (to be covered in Chapter 14, ''Out -of-Band
Data"), then you will be interested in exceptions that might take place on the socket.

Now turn your attention to the synopsis for the select(2) function:

#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>

int select(int n,
 fd_set *readfds,
 fd_set *writefds,
 fd_set *exceptfds,
 struct timeval *timeout);

Page 284

This function requires five input arguments:

1. The maximum number (n) of file descriptors to test. This value is at least the highest file
descriptor number plus one, since descriptors start at zero.

2. The set of file descriptors (readfds) that are to be tested for read data.

3. The set of file descriptors (writefds) that are to be tested for writability.

4. The set of file descriptors (exceptfds) that are to be tested for exceptions.

5. The pointer (timeout) to the timeout requirement, which is to be applied to this function call.
This pointer may be NULL , indicating that there is no timeout (the function call may block forever).

The return results from the select(2) function can be summarized as follows:

• A return value of -1 indicates that an error in the function call has occurred. The value of errno
should be consulted for the nature of the error.

• A return value of zero indicates that a timeout has occurred without anything interesting
happening.

• A return value greater than zero indicates the number of file descriptors where something of
interest has occurred.

The timeval Structure

The last argument, timeout, points to a structure that must be initialized unless a NULL pointer is
provided instead. Listing 11.3 shows the definition of the timeval structure.

Example

Listing 11.3: The Definition of the timeval Structure

struct timeval {
 long tv_sec; /* seconds */
 long tv_usec; /* microseconds */

};

To establish a timeout value of 1.75 seconds, you would code something like this:

Example

struct timeval tv;

tv.tv_sec = 1;
tv.tv_usec = 750000;

Page 285

The example shows the establishing of a timeout of 1.75 seconds. This is done by setting up a
timeout of one second plus 750,000 microseconds.

CAUTION
Note that the timeval structure values are modified by the select(2) call. The
timeval structure should be re -initialized prior to each call to select(2),
unless the program requires that the time remaining be used as the timeout.

Manipulating File Descriptor Sets

The second, third, and fourth arguments of the select(2) function call require values of type
fd_set, which might be new to you. This is an opaque data type, requiring that it be operated upon
with macros provided for the purpose. The following is a synopsis of the macros for your use:

Example

FD_ZERO(fd_set *set);

FD_SET(int fd, fd_set *set);
FD_CLR(int fd, fd_set *set);

FD_ISSET(int fd, fd_set *set);

These C macros allow you to manipulate sets of file descriptors. The following subsections will
describe these macros in detail.

Using The FD_ZERO Macro

This C macro is used to initialize a file descriptor set. Before you can register file descriptors (which
includes sockets), you must initialize your set to all zero bits. To initialize a file descriptor set named
read_socks and write_socks, you would write the following C language statements:

Example

fd_set read_socks;
fd_set write_socks;

FD_ZERO(&read_socks);
FD_ZERO(&write_socks);

The first two statements declare the storage associated with the file descriptor sets. The last two
statements, which use the FD_ZERO macro, initialize these sets to the empty set. In other words,
after FD_ZERO has been applied on a set, there are no file descriptors left registered within the set.

Using the FD_SET Macro

After you have a file descriptor set initialized with the FD_ZERO macro, the next thing you want to
accomplish is to register some file descriptors in it. This can be done with the FD_SET macro. The
following example shows how a socket number c can be registered in a set named read_socks:

Page 286

Example

int c; /* Client socket */
fd_set read_socks; /* Read set */

. . .
FD_SET(c,&read_socks);

After calling FD_SET, a bit has registered interest in the corresponding file descriptor within the
referenced set.

Using the FD_CLR Macro

This C macro undoes the effect of the FD_SET macro. Assuming a socket c once again, if the
calling program wants to remove this descriptor from the set, it can perform the following:

Example

int c; /* Client socket */
fd_set read_socks; /* Read set */

. . .
FD_CLR(c,&read_socks);

The FD_CLR macro has the effect that it zeros the corresponding bit representing the file descriptor.
Note that this macro differs from FD_ZERO in that it only clears one specific file descriptor within
the set. The FD_ZERO macro, on the other hand, resets all bits to zero in the set.

Testing File Descriptors with FD_ISSET Macro

It is necessary, at times, to test to see if a particular file descriptor is present within a set (that is, to
see if its corresponding bit has been set to one). To test whether socket c is set, you could write the
following code:

Example

int c; /* Client socket */
fd_set read_socks; /* Read set */

. . .
if (FD_ISSET(c,&read_socks)) {

 /* Socket c is in the set */
 . . .
} else {
 /* Socket c is not in the set */
 . . .
}

The if statement shown invokes the macro FD_ISSET to test if the socket c is present in the file
descriptor set read_socks. If the test returns true, then the socket c does have its corresponding
bit enabled within the set, and the first block of C code is executed. Otherwise, the socket c is not
considered part of the set, and the else block of statements is executed instead.

Page 287

Applying select(2) to a Server

The preceding text has described the select(2) function in some detail. Now it's time to put the
function to work in an example. The next modified example of the RPN calculating server will make
use of the select(2) function call for read events only. This limitation was imposed to keep the
programming example relatively short and simple to understand. The limitations of this
demonstration will be discussed in more detail later.

The RPN server required a few modifications to the engine module rpneng.c, which are reflected
in the new source module rpneng2.c . Rather than re-list the entire module, only the minor
changes are shown in the context diff of Listing 11.4.

Example

Listing 11.4: rpneng2.c—diff -c rpneng c rpneng2.c

$ diff -c rpneng.c rpneng2.c
*** rpneng.c Mon Sep 13 22:13:56 1999
--- rpneng2.c Wed Sep 15 21:55:20 1999

*** 18,25 ****
 * RPN Stack;
 */
 #define MAX_STACK 32
! static mpz_t *stack[MAX_STACK];
! static int sp = 0;

 /*
 * Allocate a new mpz_t value:
--- 18,25 ----
 * RPN Stack:
 */
 #define MAX_STACK 32
! mpz_t **stack;
! int sp = 0;

 /*
 * Allocate a new mpz_t value:

*** 45,51 ****
 /*
 * Free an allocated mpz_t value:
 */
! static void
 rpn_free(mpz_t **v) {
 mpz_clear(**v);
 free(*v);

continues

Page 288

Listing 11.4: continued

--- 45,51 ----
 /*
 * Free an allocated mpz_t value:
 */
! void
 rpn_free(mpz_t **v) {
 mpz_clear(**v);
 free(*v);
$

The major change that is present in the rpneng2.c module is that the RPN stack array(variable
stack) and its stack pointer(variable sp) are declared to be external in scope. Static function
rpn_free() is made external also. This allows the variables and the function to be accessed from
the main source module, which you'll examine in the example in Listing 11.5.

Example

Listing 11.5: rpnsrv2 c— The RPN Server Using select(2)

1: /* rpnsrv2.c:
2: *
3: * Example RPN Server
4: * using select(2):
5: */
6: #include <stdio.h>
7: #include <unistd.h>
8: #include <stdlib.h>
9: #include <errno.h>
10: #include <string.h>
11: #include <time.h>
12: #include <sys/time.h>
13: #include <sys/types.h>
14: #include <sys/socket.h>
15: #include <netinet/in.h>
16: #include <arpa/inet.h>
17: #include <netdb.h>
18: #include <sys/wait.h>
19: #include <gmp.h>
20:
21: #ifndef SHUT_RDWR
22: #define SHUT_RDWR 3
23: #endif
24:
25: extern int mkaddr
(void *addr,
26: int *addr_len,
27: char *input_address,
28: char *protocol);
29:

TE
AM
FL
Y

Team-Fly®

Page 289

30: extern void rpn_process(FILE *tx,
31: char *buf);
32:
33: extern void rpn_free(mpz_t **v);
34:
35: #define MAX_STACK 32
36: #define MAX_CLIENTS 64
37:
38: /*
39: * Declared in rpneng2.c:
40: */
41: extern mpz_t **stack;
42: extern int sp;
43:
44: /*
45: * Client context Info:
46: */
47: typedef struct {
48: mpz_t **stack; /* Stack Array */
49: int sp; /* Stack ptr */
50: FILE *rx; /* Recv FILE */
51: FILE *tx; /* Xmit FILE */
52: } Clientlnfo;
53:
54: Clientlnfo client[MAX_CLIENTS];
55:
56: /*
57: * This function reports the error and
58: * exits back to the shell:
59: */
60: static void
61: bail(const char *on_what) {
62: if (errno != 0) {
63: fputs(strerror(errno),stderr);
64: fputs(": ",stderr);
65: }
66: fputs(on_what,stderr);
67: fputc('\n',stderr);
68: exit(1);
69: }
70:
71: /*
72: *Process client c:
73: */
74: static int
75: process_client(int c) {

continues

Page 290

Listing 11.5: continued

76: Char buf[4096]; /* I/O Buffer */
77: FILE *rx = client[c].rx;
78: FILE *tx = client[c].tx;
79:
80: /*
81: * Install correct RPN stack:
82: */
83: stack = client[c].stack;
84: sp = client[c].sp;
85:
86: /*
87: * If not EOF, process one line:
88: */
89: if(!feof(rx)
90: && fgets(buf,sizeof buf,rx))
91: rpn_process(tx,buf);
92:
93: if (!feof(rx)) {
94: /* Save SP and exit */
95: client[c].sp = sp;
96: return 0;
97: }
98:
99: /*
100: * Close this client's connection:
101: */
102: fclose(tx) ;
103: shutdown(fileno(rx),SHUT_RDWR);
104: fclose(rx);
105:
106: client[c].rx = client[c].tx = NULL;
107:
108: while (sp > 0)
109: rpn_free(&stack[--sp]);
110: free(stack);
111:
112: client[c].stack = NULL;
113: client[c].sp = 0;
114:
115: return EOF;
116: }
117:
118: /*
119: * Main program;
120: */
121: int

Page 291

122: main(int argc,char **argv) {
123: int z;
124: char *srvr_addr = "127.0.0.1:9090";
125: struct sockaddr_in adr_srvr;/* AF_INET */
126: struct sockaddr_in adr_clnt;/* AF_INET */
127: int len_inet; /* length */
128: int s = -1; /* Socket */
129: int c = -1; /* Client socket */
130: int n; /* return val from select(2) */
131: int mx; /* Max fd + 1 */
132: fd_set rx_set; /* Read set */
133: fd_set wk_set; /* Working set */
134: struct timeval tv; /* Timeout value */
135:
136: /*
137: * Initialize client structure:
138: */
139: for (z=0; z<MAX_CLIENTS; ++z) {
140: client[z].stack = NULL;
141: client[z].sp = 0;
142: client[z].rx = NULL;
143: client[z].tx = NULL;
144: }
145:
146: /*
147: * Use a server address from the command
148: * line, otherwise default to 127.0.0.1:
149: */
150: if (argc >= 2)
151: srvr_addr = argv[1];
152:
153: len_inet = sizeof adr_srvr;
154: z = mkaddr(&adr_srvr,&len_inet,
155: srvr_addr,"top");
156:
157: if (z < 0 l l !adr_srvr.sin_port) {
158: fprintf(stderr, "Invalid server "
159: "address, or no port number "
160: "was specified.\n");
161: exit(1);
162: }
163:
164: /*
165: * Create a TCP/IP socket to use;
166: */
167: s = socket(PF_INET,SOCK_STREAM,0);

continues

Page 292

Listing 11.5: continued

168: if (s == -1)
169: bail("socket(2)");
170:
171: /*
172: * Bind the server address:
173: */
174: z = bind(s,(struct sockaddr *)&adr_srvr,
175: len_inet);
176: if (z == -1)
177: bail("bind(2)");
178:
179: /*
180: * Make it a listening socket;
181: */
182: z = listen(s,10);
183: if (z == -1)
184: bail("listen(2)");
185:
186: /*
187: * Express interest in socket
188: * s for read events:
189: */
190: FD_ZERO(&rx_set); /* Init. */
191: FD_SET(s,&rx_set); /* + s */
192: mx = s + 1; /* max fd + 1 */
193:
194: /*
195: * Start the server loop:
196: */
197: for (;;) {
198: /*
199: * Copy the rx_set to wk_set:
200: */
201: FD_ZERO(&wk_set);
202: for (z=0; z<mx; ++z) {
203: if (FD_ISSET(z,&rx_set))
204: FD_SET(z,&wk_set);
205: }
206:
207: /*
208: * Sample timeout of 2.03 secs:
209: */
210: tv.tv_sec = 2;
211: tv.tv_usec = 30000;
212:
213: n = select(mx,&wk_set, NULL, NULL, &tv);

Page 293

214: if (n == -1) {
215: fprintf(stderr, "%s: select(2)\n",
216: strerror(errno));
217: exit(1);
218: } else if (!n) {
219: /* puts("Timeout."); */
220: continue;
221: }
222:
223: /*
224: * Check if a connect has occured:
225: */
226: if (FD_ISSET(s,&wk_set)){
227: /*
228: * Wait for a connect:
229: */
230: len_inet = sizeof adr_clnt,
231: c = accept(s,
232: (struct sockaddr *)&adr_clnt,
233: &len_inet);
234: if (c == -1)
235: bail("accept(2)");
236:
237: /*
238: * See if we've exceeded server
239: * capacity. If so, close the
240: * socket and wait for the
241: * next event:
242: */
243: if (c >= MAX_CLIENTS) {
244: close(c); /* At capacity */
245: continue;
246: }
247:
248: /*
249: * Create streams:
250: */
251: client[c].rx = fdopen(c,"r")
252: if (!client[c].rx) {
253: close(c); /* Failed */
254: continue;
255: }
256:
257: client[c].tx = fdopen(dup(c),"w");
258: if (!client[c].tx) {
259: fclose(client[c].rx);

continues

Page 294

Listing 11.5: continued

260: continue;
261: }
262:
263: if (c + 1 > mx)
264: mx = c + 1;
265:
266: /*
267: * Set both streams to line
268: * buffered mode:
269: */
270: setlinebuf(client[c].rx);
271: setlinebuf(client[c].tx) ;
272:
273: /*
274: * Allocate a stack:
275: */
276: client [c] .sp = 0;
277: client[c].stack =
278: (mpz_t **) malloc(
279: sizeof (mpz_t *)
280: * MAX_STACK);
281:
282: FD_SET(c,&rx_set);
283: }
284:
285: /*
286: * Check for client activity:
287: */
288: for (c=0; c<mx; ++c) {
289: if (c == s)
290: continue; /* Not s */
291: if (FD_ISSET(c,&wk_set)) {
292: if (process_client(c) == EOF) {
293: FD_CLR(c,&rx_set);
294: }
295: }
296: }
297:
298: /*
299: * Reduce mx if we are able to:
300: */
301: for (c = mx - 1);
302: c >= 0 && !FD_ISSET(c,&rx_set);
303: c = mx - 1)
304: mx = c;

Page 295

305: }
306:
307: /* Control never gets here */
308: return 0;
309: }

The source module rpnsrv2.c contains quite a number of changes First, examine the structural
overview of the program:

• Include file <sys/time.h> is added to define the data structure timeval (line 12)

• The function prototype is declared for rpn_free() in line 33.

• The MAX_STACK macro is copied from rpnsrv2.c in line 35. The macro MAX_CLIENTS
defines the maximum number of client processes supported by this server (line 36)

• The external declarations for stack and sp are defined in lines 41 and
42.

• The information about each client is maintained in this program by the data type Clientlnfo,
which is declared in lines 47 to 52.

• The ClientInfo array client[] is declared in line 54.

• A new client processing function, process_client(), is defined in lines 74 to 116.

• A number of new declarations are present in the main() program. The first of these is the value
n, which is declared in line 130. This variable receives the return value from the select(2) call
in line 207.

• Variable mx in line 131 will hold the maximum file descriptor that select(2) is interested in,
plus one.

• Two file descriptor sets, rx_set and wk_set, are declared in lines 132 and 133.

• A timeout value structure, tv, is declared in line 134.

There are several significant changes made to the main flow of the main() program, which will be
examined now. The following outlines the general steps that are executed by the server program:

1. The ClientInfo array client[] is initialized first, in the for loop of lines 139 to 144.

2. The usual socket creation, the bind(2) call and listen(2) call, are performed in lines 150 to
184.

3. rx_set is zeroed out in line 190. rx_set will function as the master set of sockets for which
the server is interested in read events.

Page 296

4. The FD_SET macro is called to enter socket s into the file descriptor set rx_set (line 191). This
is done because a connect to this socket is considered a read event that select(2) will respond to.

5. The variable mx is initialized to s + 1. This variable will hold the maximum file descriptor plus
one. At this moment, there is only the one file descriptor s in the set. Hence, the program knows that
the value of mx is currently and simply the value s + 1 (line 192).

6. The server for loop begins in line 197.

7. The FD_ZERO macro is called for the wk_set file descriptor set in line 201. This clears all bits
in it to the zero (off) state. wk_set will function as the working set for this program, since select
(2) will modify the sets that are passed to it.

8. The for loop in lines 202 to 205 copy all file descriptors logged in rx_set to the work set
wk_set.

9. The timeout values are established in lines 210 to 211. It is necessary to establish the values each
time select(2) is called, because these values are changed upon return from the function.

10. The select(2) function is invoked in line 213. The return value is assigned to the variable n.
Note that the wk_set is passed as the read file descriptor set in argument 2. Upon return from the
select(2) function, the only bits that will remain in this set will be for the sockets that have data
to be read in the case of socket s, a client has connected).

11. The value of n is tested for -1 in line 214. Lines 215 to 217 report the error and exit if an error
should occur. An error here probably indicates a programming error. The error EINTR should be
handled, however, if the program is handling signals at all.

12. Lines 218 to 220 show how you can intercept a timeout event. The program shown simply does
nothing and restarts the loop at step 6.

13. The FD_ISSET macro is used to test whether socket s is present in set wk_set (line 226). If it
is, this indicates that a client has just connected to the server socket s.

14. The client connect is accepted in lines 230 to 235 if the test in step 12 is true. Note that the
accept(2) call will not block the execution of the server here, because the select(2) function
result guarantees that we have a connected client waiting to be accepted.

15. Client connect processing continues with line 243. If the socket number (file descriptor) is
greater than or equal to MAX_CLIENTS, the server

Page 297

rejects the connection in line 244 by closing the socket and looping back to step 6. In this program,
the socket number is used as a subscript into the client[] array, and, as such, it must be less than
the value of MAX_CLIENTS in this program.

16. The usual FILE streams rx and tx are created and the buffering modes set in lines 251 to 271.
Note, however, that in lines 263 and 264 the variable mx is increased to the new connected socket
plus one, if the mx value needs increasing. Recall that mx must contain the maximum file descriptor
value plus one, for the select(2) call.

17. The client[] entry for this client is further initialized by allocating a stack for the client and
resetting its stack pointer sp to zero (lines 276 to 280).

18. Finally, FD_SET is used on set rx_set in line 282 to register the new client in the list of
interesting file descriptors.

The steps just shown cover the server initialization and the accepting of new client connections. The
following steps are used when clients send data to the server to be processed:

1. Line 226 invokes the FD_ISSET macro to test whether the socket s has any input data. If it has,
the client accept process just described is executed in lines 227 to 283.

2. A for loop in line 288 iterates through all file descriptors less than the maximum value mx.

3. Line 289 causes processing to be skipped for socket s, since only accept(2) is used on that
socket.

4. The FD_ISSET macro is called in line 291 to see if socket c has data waiting to be read (by
testing descriptor set wk_set).

5. If step 4 evaluates as true, then the function process_client() is called (line 292) with the
socket number c as its input argument.

6. If the function call in step 5 returns the value EOF in line 292, then socket c is removed from the
rx_set in line 293, using the FD_CLR macro. This is necessary because the socket has been
closed by the process_client() function and obviously will no longer return any data to be
read.

7. The for loop in lines 301 to 304 perform the job of lowering the value of mx if it is possible.
This is not essential, but it can help the performance of the select(2) call and the server when
this value is maintained as small as possible.

Page 298

Now it's time to examine the steps employed by the function process_client(). These steps
are as follows:

1. The local variables rx and tx are established in lines 77 and 78 for programming convenience,
from the client[c] array member. Note that the socket number c is used as a subscript into the
client[] array.

2. The RPN stack is established for the client by assigning values from client[c] into the
external variables stack and sp (lines 83 and 84).

3. Line 89 makes certain that end of file has not already been detected. If it has been, this will be
handled in code that follows.

4. Line 90 fetches one text line to be processed by the server. If this fgets(3) call should return
an end-of-file indication, the code that follows will close things up for this client.

5. The rpn_process() function call is executed to carry out the client request(line
91).

6. End of file is tested in line 93. If this tests false, then the current sp value is saved back into the
client [c] array member for future use. Then the function returns zero to indicate that EOF has
not yet been seen(line 96).

7. When the execution reaches line 102, it is known that the client has shut down its writing end of
the socket. The function fclose(3) is called to force write out any unbuffered data to the client.

8. The shutdown(2) function is called in line 103 to force a socket shutdown(this is not essential
in this case, but is used for demonstration purposes).

9. The rx stream is closed in line 104 for this client.

10. Lines 106 to 113 free the client's leftover stack, if any, and clear the client[] array entry.

11. Finally, EOF is returned in line 115.

Notice that step 11 causes source line 293 to remove the socket number c from the list of sockets
that select(2) should report on.

TIP
It should be noted that even if no data is sent by the client process to be read, the act
of the client closing the socket will cause select(2) to register a read event. Your
code should always anticipate an end-of-file event.

TE
AM
FL
Y

Team-Fly®

Page 299

Testing the select(2) -Based Server

The source code for the select(2) version of the RPN calculating server can be compiled as
follows:

Example

$ make rpnsrv2
gcc -c -D_GNU_SOURCE -Wall -Wreturn-type rpnsrv2.c
gcc -c -D_GNU_SOURCE -Wall -Wreturn-type rpneng2.c
gcc -c -D_GNU_SOURCE -Wall -Wreturn-type mkaddr.c
gcc rpnsrv2.o rpneng2.o mkaddr.o -o rpnsrv2 -Igmp
$

The server executable rpnsrv2 will execute as one single process, even when many clients
connect to the server. To allow this to be tested, you will first want to start the server itself. The
following launch of the server permits it to be contacted on any allowable interface on your system:

$./rpnsrv2 '*:9099' &
[1] 730
$

The server is launched and placed into the background. The command-line argument of '*:9099'
tells the server to specify a wild IP number, but to listen on TCP/IP port number 9099 for connects.

In order to properly test that this select(2) logic is operational, it is necessary to connect to the
server with at least two simultaneous sessions. Without X Window sessions, this can be done from
multiple console sessions. Using the X Window interface, you can easily start multiple terminal
sessions for testing purposes.

Listing 11.6 shows one example xterm session using telnet to connect to the server. While this
session is going on, another session, shown in Listing 11.7, is also created at the same time. It is
only important that both sessions be connected to the server at the same time. Switching back and
forth between sessions, the server should respond to each session as commands are provided to it.

Example

Listing 11.6: First telnet Session with rpnsrv2

$ telnet localhost 9099
Trying 127.0.0.1 . . .
Connected to localhost.
Escape character is '^]'.
#:44
0:
#:7777777777777777
1:
genprime

continues

Page 300

Listing 11.6: continued

0:
=
0:3478699960711639
^]
telnet> c
Connection closed.
$

The second example telnet session is shown in Listing 11.7. Keep in mind that these are example
sessions. You are free to exercise any of the functions of the RPN server in your own testing.

Example

Listing 11.7: Second Session with rpnsrv2

$ telnet localhost 9099
Trying 127.0.0.1 . . .
Connected to localhost.
Escape character is '^]'.
#:99
0:
#:9999999999999999
1:
genprime
0:
=
0:3039223729873609
^]
telnet> c
Connection closed.
$

While the sessions of Listings 11.6 and 11.7 were in progress, a list of processes were produced in a
third session, which is shown in Listing 11.8.

Example

Listing 11.8: List of Processes During rpnsrv2 Access

$ ps -af
UID PID PPID C STIME TTY TIME CMD
wwg 730 629 0 21:51 pts/1 00:00:00 ./rpnsrv2 *:9099
wwg 731 629 0 21:58 pts/1 00:00:00 telnet localhost 9099
wwg 754 752 0 21:59 pts/5 00:00:00 telnet localhost 9099
wwg 757 665 0 21:59 pts/3 00:00:00 ps -af
$

The process listing in Listing 11.8 clearly shows that, while the two telnet sessions(PID 731 and

754) were connected to the rpnsrv2 process, there was only one process representing the server
(PID 730). As each input line was entered in the telnet sessions, a response was received after
pressing

Page 301

Enter in either of the two open sessions. This demonstrates the capability of the one process to serve
multiple connected clients.

Limitations of the Example

It was noted earlier that only read events were used for this server example. Even accepting this
limitation of the demo server, there is still some exposure to difficulty, should a wayward client
program decide to play havoc.

Consider what would happen if a client process were to do the following:

1. Send three bytes: '#', ':', and '9'.

2. Wait for a long time or an indefinite period.

The server end would experience the following events:

1. Three bytes would be received at the receiving end of the server socket for the client.

2. The select(2) call would return with an indication that the client socket has data to be read.

3. The fgets(3) function would eventually be called in line 90 of Listing 11.5.

4. The fgets(3) function waits indefinitely because, after reading all available data, there is no
linefeed character to indicate that the end of the line has been received.

The server becomes blocked in the fgets(3) call at this point, and now no other client will be
serviced either(they will all appear to have a hung connection).

The preceding discussion demonstrates that, while select(2) makes it possible to handle many
sockets in one process, the design of the server tends to be complex in order to avoid hangs.

The write side of the operation is equally complex. While the select(2) call can indicate when a
write(2) call will not block, it does not indicate how much data can be written without blocking.
For servers that might return large amounts of data in a response, this is a serious problem. Again,
special buffering techniques must be applied to successfully utilize select(2) in a robust server
process.

Page 302

What's Next

This chapter has covered a number of server design concepts. In the early part of the chapter, you
saw how fork(2) and separate processes could handle multiple client connections concurrently.
The select(2) function demonstrated how it could service multiple clients within one server
process.

The next chapter will take you on a tour of socket options. There you will learn how to enable a
socket to broadcast, reuse socket addresses, turn on the TCP/IP ''keep alive" feature, and much more.

Page 305

12—
Socket Options

In the heyday of the Model T Ford, it was said that you could have any color you wanted, as long as
it was black. This obviously poked fun at the idea that there were no other options. Fortunately,
sockets are not so restrictive!

The earlier chapters covered the basics of using sockets. It is now appropriate to examine some of
the optional features that are available. After you have mastered this chapter's concepts, you'll be
ready for the more advanced socket topics that are covered in the remainder of this book. This
chapter will focus on the following topics:

• How to retrieve socket option values with getsockopt(2)

• How to change socket option values with setsockopt(2)

• How to apply the most commonly needed socket options

Page 306

Getting Socket Options

Oftentimes, an application needs to determine what the current option settings are for a socket. This
is especially true of a subroutine library function, which will have no prior knowledge of what was
done with the socket, which was passed to it as an argument. The application might also need to
know things such as the optimal buffer size to use, which is determined by the system defaults.

The function that permits you to inspect socket option values is the getsockopt(2) function. Its
function synopsis is given as follows:

#include <sys/types.h>
#include <sys/socket.h>

int getsockopt(int s,
 int level,
 int optname,
 void *optval,
 socklen_t *optlen);

The five arguments are described as follows:

1. The socket s from which to inspect the option.

2. The protocol level at which the option is to be inspected.

3. The option optname to inspect.

4. The pointer optval pointing to the receiving buffer for the option value.

5. The pointer optlen pointing to both the input buffer length, and the returned option length
values.

The return value from this function returns zero when successful. When an error occurs, -1 is
returned and the external variable errno contains the nature of the error.

The protocol level argument indicates where in the protocol stack you want to access an option.
Usually, you will use one of these:

• SOL_SOCKET to access socket level options

• SOL_TCP to access TCP level options

The discussion in this chapter will center strictly on the use of SOL_SOCKET level options.

The optname argument is an integer value. The value used here will be determined first by the
choice of the level argument value used. Within a

Page 307

specified protocol level, the optname argument will determine which option you want to access.
Table 12.1 shows some of the level and option combinations that are possible.

Table 12.1: Protocol Level and Option Names

Protocol Level Option Name

SOL_SOCKET SO_REUSEADDR

SOL_SOCKET SO_KEEPALIVE

SOL_SOCKET SO_LINGER

SOL_SOCKET SO_BROADCAST

SOL_SOCKET SO_OOBINLINE

SOL_SOCKET SO_SNDBUF

SOL_SOCKET SO_RCVBUF

SOL_SOCKET SO_TYPE

SOL_SOCKET SO_ERROR

SOL_TCP SO_NODELAY

Most of the options listed in the table are socket level options, where the level was given as
SOL_SOCKET. One TCP level socket option was included for comparison purposes, where its level
is specified as SOL_TCP.

Many socket options are retrieved into an int data type. When looking at the manual pages, data
type int can usually be assumed unless otherwise indicated. When a Boolean value is used, the
int value indicates TRUE when the value is nonzero and indicates FALSE when it is zero.

Applying getsockopt(2)

In this section, you'll compile and run a program getsndrcv.c, which will fetch and report the
sending and receiving buffer sizes for a socket. The example in Listing 12.1 illustrates the code.

Example

Listing 12.1: getsndrcv.c— Get and Report SO_SNDBUF and SO_RCVBUF Options

1: /* getsndrcv.c:
2: *
3: * Get SO_SNDBUF & SO_RCVBUF Options:
4: */
5: #include <stdio.h>
6: #include <unistd.h>
7: #include <stdlib.h>
8: #include <errno.h>
9: #include <string.h>
10: #include <sys/types.h>
11: #include <sys/socket.h>
12: #include <assert.h>

continues

Page 308

Listing 12.1: continued

13:
14: /*
15: * This function reports the error and
16: * exits back to the shell:
17: */
18: static void
19: bail(const char *on_what) {
20: if (errno != 0) {
21: fputs(strerror(errno),stderr);
22: fputs(": ",stderr);
23: }
24: fputs(on_what,stderr);
25: fputc('\n',stderr);
26: exit(1);
27: }
28:
29: int
30: main(int argc,char **argv) {
31: int z;
32: int s = -1; /* Socket */
33: int sndbuf=0; /* Send buffer size */
34: int rcvbuf=0;/* Receive buffer size */
35: socklen_t optlen; /* Option length */
36:
37: /*
38: * Create a TDP/IP socket to use:
39: */
40: s = socket(PF_INET,SOCK_STREAM,0);
41: if (s == -1)
42: bail("socket(2)");
43:
44: /*
45: * Get socket option SO_SNDBUF:
46: */
47: optlen = sizeof sndbuf;
48: z = getsockopt(s,SOL_SOCKET,SO_SNDBUF,
49: &sndbuf,&optlen);
50: if (z)
51: bail("getsockopt(s,SOL_SOCKET,"
52: "SO_SNDBUF)");
53:
54: assert(optlen == sizeof sndbuf);
55:
56: /*
57: * Get socket option SO_SNDBUF:
58: */

TE
AM
FL
Y

Team-Fly®

Page 309

59: optlen = sizeof rcvbuf;
60: z = getsockopt(s,SOL_SOCKET,SO_RCVBUF,
61: &rcvbuf,&optlen);
62: if (z)
63: bail("getsockopt(s,SOL_SOCKET,"
64: "SO_RCVBUF)");
65:
66: assert(optlen == sizeof rcvbuf);
67:
68: /*
69: * Report the buffer sizes:
70: */
71: printf(*Socket s : %d\n",s);
72: printf(" Send buf: %d bytes\n",
73: sndbuf);
74: printf(" Recv buf: %d bytes\n",
75: rcvbuf);
76:
77: close(s);
78: return 0;
79: }

The getsockopt(2) steps used were as follows:

1. The options SO_SNDBUF and SO_RCVBUF are received into an int data type. Consequently,
storage for these values was declared in lines 33 and 34.

2. The getsockopt(2) function requires an option length argument that acts as both an input
value and a return value. Storage for this was allocated in line 35 and named optlen. Note that the
data type for this variable is socklen_t .

3. A socket for testing purposes is created in line 40.

4. The length of the receiving option buffer sndbuf is established in variable optlen (line 47).

5. The option is fetched by calling getsockopt(2) in line 48. The socket level was
SOL_SOCKET and the option name was specified as SO_SNDBUF . Note the pointer to sndbuf
was given as the receiving buffer.

6. The length of the result returned in sndbuf is placed into variable optlen by the function
getsockopt(2). Line 54 uses the assert(3) macro to ensure that it matches the return length
that was expected.

7. Lines 59 to 66 repeat the process for the option SO_RCVBUF into variable rcvbuf.

8. Lines 71 to 75 report the socket file descriptor, and the corresponding buffer sizes that were
retrieved.

Page 310

The following output shows a compile and execute session for this program on a Red Hat Linux 6.0
distribution, using a 2.2.10 kernel:

Output

$ make getsndrcv
gcc -c -D_GNU_SOURCE -Wall -Wreturn-type getsndrcv.c
gcc getsndrcv.o -o getsndrcv
$./getsndrcv
socket s : 3
 Send buf: 65535 bytes
 Recv buf: 65535 bytes
$

The session shows that the socket was created on file descriptor 3, and that the sending and
receiving buffer sizes were 65535 bytes in size.

Setting Socket Options

Knowing that the size of the sending and receiving buffers for the default socket are quite large, you
as an application designer might decide that a smaller set of buffers might be more appropriate. This
might be especially significant if you are expecting several instances of the program to run on your
system.

Options are set on sockets using the setsockopt(2) function. Its function prototype is given as
follows:

#include <sys/types.h>
#include <sys/socket.h>

int setsockopt(int s,
 int level,
 int optname,
 const void *optval,
 socklen_t optlen);

This function closely resembles the getsockopt(2) function discussed earlier. The arguments
for setsockopt(2) are listed as follows:

1. The socket s to effect an option change upon.

2. The socket level of the option.

3. The option optname to set.

4. The pointer optval to the value to be used for the new option value.

5. The option value length optlen, in bytes.

The only real difference between this function's arguments and the getsockopt(2) argument list
is that the last argument is passed by value only. It is an input value only in this case.

Page 311

Applying the setsockopt(2) Function

Listing 12.2 shows a short program that changes the send and receive buffer sizes for a socket. After
setting these options, the program obtains the actual sizes of these buffers and reports them.

Example

Listing 12.2: setsndrcv.c— Setting SOL_SOCKET Options SO_SNDBUF and
SO_RCVBUF

1: /* setsndrcv.c:
2: *
3: * Set SO_SNDBUF & SO_RCVBUF Options:
4: */
5: #include <stdio.h>
6: #include <unistd.h>
7: #include <stdlib.h>
8: #include <errno.h>
9: #include <string.h>
10: #include <sys/types.h>
11: #include <sys/socket.h>
12: #include <assert.h>
13:
14: /*
15: * This function reports the error and
16: * exits back to the shell:
17: */
18: static void
19: bail(const char *on_what) {
20: if (errno != 0) {
21: fputs(strerror(errno),stderr);
22: fputs(": ",stderr);
23: }
24: fputs(on_what,stderr);
25: fputc('\n',stderr);
26: exit(1);
27: }
28:
29: int
30: main(int argc,char **argv) {
31: int z;
32: int s = -1; /* Socket */
33: int sndbuf=0; /* Send buffer size */
34: int rcvbuf=0;/* Receive buffer size */
35: socklen_t optlen; /* Option length */
36:
37: /*
38: * Create a TCP/IP socket to use:
39: */

continues

Page 312

Listing 12.2: continued

40: s = socket(PF_INET,SOCK_STREAM,0);
41: if (s == -1)
42: bail("socket(2)");
43:
44: /*
45: * Set the SO_SNDBUF Size:
46: */
47: sndbuf = 5000; /* Send buffer size */
48: z = setsockopt(s,SOL_SOCKET,SO_SNDBUF,
49: &sndbuf,sizeof sndbuf);
50: if (z)
51: bail("setsockopt(s,SOL_SOCKET,"
52: "SO_SNDBUF)");
53:
54: /*
55: * Set the SO_RCVBUF Size:
56: */
57: rcvbuf = 8192; /* Send buffer size */
58: z = setsockopt(s,SOL_SOCKET,SO_RCVBUF,
59: &rcvbuf,sizeof rcvbuf);
60: if (z)
61: bail("setsockopt(s,SOL_SOCKET,"
62: "SO_RCVBUF)");
63:
64: /*
65: * As a check on the above . . .
66: * Get socket option SO_SNDBUF:
67: */
68: optlen = sizeof sndbuf;
69: z = getsockopt(s,SOL_SOCKET,SO_SNDBUF,
70: &sndbuf,&optlen);
71: if (z)
72: bail("getsockopt(s,SOL_SOCKET,"
73: "SO_SNDBUF)");
74:
75: assert(optlen == sizeof sndbuf);
76:
77: /*
78: * Get socket option SO_SNDBUF:
79: */
80: optlen = sizeof rcvbuf;
81: z = getsockopt(s,SOL_SOCKET,SO_RCVBUF,
82: &rcvbuf,&optlen);
83: if (z)
84: bail("getsockopt(s,SOL_SOCKET,"
85: "SO_RCVBUF)");

Page 313

86:
87: assert(optlen == sizeof rcvbuf);
88:
89: /*
90: * Report the buffer sizes:
91: */
92: printf("Socket s : %d\n",s);
93: printf(" Send buf: %d bytes\n",
94: sndbuf);
95: printf(" Recv buf: %d bytes\n",
96: rcvbuf);
97:
98: close(s);
99: return 0;
100: }

The program is similar to the previous one. However, after the initial socket is created, the following
steps are used to set the buffer sizes:

1. The value of variable sndbuf is set to the value of the buffer size desired. In this case, line 47
shows the value of 5000 being assigned.

2. The setsockopt(2) function is called, setting the option named SO_SNDBUF at level
SOL_SOCKET according to the value of sndbuf. Errors are checked in lines 50 to 52.

3. The SO_RCVBUF option is set in the same manner as step 2, except that the buffer size is chosen
as 8192 instead of 5000 bytes.

4. Source code that follows at line 68 to the end of the program will fetch these option values from
the kernel and report what has been established.

The following output shows a compile and execute session of this program:

Output

$ make setsndrcv
gcc -c -D_GNU_SOURCE -Wall -Wreturn-type setsndrcv.c
gcc setsndrcv.o -o setsndrcv
$./setsndrcv
Socket s : 3
 Send buf: 10000 bytes
 Recv buf: 16384 bytes
$

Notice the results that were reported by the program! They appear as twice the original sizes that
were specified. The reason for this can be found in the Linux kernel source code
module /usr/src/linux-2.2.10/net/core/sock.c. Look for the case statements for
SO_SNDBUF and SO_RCVBUF. Here is a code excerpt for the SO_SNDBUFhandling within the
kernel module sock.c

Page 314

(this particular code segment appears to have been contributed by Alan Cox based on the source
code comments at the top of the module):

Example

case SO_SNDBUF:
 /* Don't error on this BSD doesn't and if you think
 about it this is right. Otherwise apps have to
 play 'guess the biggest size' games. RCVBUF/SNDBUF
 are treated in BSD as hints */

 if (val > sysctl_wmem_max)
 val = sysctl_wmem_max;

 sk->sndbuf = max(val*2,2048);

 /*
 * Wake up sending tasks if we
 * upped the value.
 */
 sk->write_space(sk);
 break;

Based upon the code shown, what actually happens for SO_SNDBUF is this (Linux kernel 2.2.10):

1. The SO_SNDBUF option value is checked to see whether it exceeds the maximum buffer size.

2. If the SO_SNDBUF option does exceed the maximum in step 1, the maximum value is used
without returning an error to the caller.

3. The value of 2048 bytes or double the value from steps 1 and 2 is used, whichever value is
greater.

The message here is that the option value SO_SNDBUF is only a hint value to be used. The kernel
will ultimately decide the best buffer size to apply for SO_SNDBUF.

Examination of more kernel source code reveals something similar for the SO_RCVBUF option. See
the following code excerpt (this code segment written by Alan Cox):

Example

case SO_RCVBUF:
 /* Don't error on this BSD doesn't and if you think
 about it this is right. Otherwise apps have to
 play 'guess the biggest size' games. RCVBUF/SNDBUF
 are treated in BSD as hints */

 if (val > sysctl_rmem_max)
 val = sysctl_rmem_max;

Page 315

 /* FIXME: is this lower bound the right one? */
 sk->rcvbuf = max(val*2,256);
 break;

For kernel release 2.2.10, the value actually used will be a minimum value of 256 bytes or the given
value doubled (unless the given value exceeds the kernel maximum). Again, this emphasizes the fact
that these option settings are hints to the kernel, and are not absolute.

CAUTION
Note that setting the SOL_SOCKET options SO_SNDBUF or SO_RCVBUF only
provides hints to the kernel from the application. The kernel will ultimately decide
the final values that will be established.

If it is critical for the application and kernel to precisely agree on these sizes, the
application should retrieve the final values established by the kernel. This is done
with a subsequent call to the function getsockopt(2).

Retrieving the Socket Type (SO_TYPE)

Some socket options can only be retrieved. The SO_TYPE is one such example. This option allows
a subroutine, which is passed a socket (as a file descriptor), to determine what kind of socket it is
dealing with.

Listing 12.3 shows an example program that determines the type of the socket s.

Example

Listing 12.3: gettype.c— Getting SO_TYPE Value of SOL_SOCKET Level Option

1: /* gettype.c:
2: *
3: * Get SO_TYPE Option:
4: */
5: #include <stdio.h>
6: #include <unistd.h>
7: #include <stdlib.h>
8: #include <errno.h>
9: #include <string.h>
10: #include <sys/types.h>
11: #include <sys/socket.h>
12: #include <assert.h>
13:
14: /*
15: * This function reports the error and
16: * exits back to the shell:
17: */

continues

Page 316

Listing 12.3: continued

18: static void
19: bail(const char *on_what) {
20: if (errno != 0) {
21: fputs(strerror(errno),stderr);
22: fputs(": ",stderr);
23: }
24: fputs(on_what,stderr);
25: fputc('\n',stderr);
26: exit(1);
27: }
28:
29: int
30: main(int argc,char **argv) {
31: int z;
32: int s = -1; /* Socket */
33: int so_type = -1; /* Socket type */
34: socklen_t optlen; /* Option length */
35:
36: /*
37: * Create a TCP/IP socket to use:
38: */
39: s = socket(PF_INET,SOCK_STREAM,0);
40: if (s == -1)
41: bail("socket(2)");
42:
43: /*
44: * Get socket option SO_SNDBUF:
45: */
46: optlen = sizeof so_type;
47: z = getsockopt(s,SOL_SOCKET,SO_TYPE,
48: &so_type,&optlen);
49: if (z)
50: bail("getsockopt(s,SOL_SOCKET,"
51: "SO_TYPE)");
52:
53: assert(optlen == sizeof so_type);
54:
55: /*
56: * Report the buffer sizes:
57: */
58: printf("Socket s : %d\n",s);
59: printf(" SO_TYPE : %d\n",so_type);
60: printf(" SOCK_STREAM = %d\n",
61: SOCK_STREAM);

Page 317

62:
63: close(s);
64: return 0;
65: }

The salient points of the program are as follows:

1. Variable so_type is declared as an integer to receive the socket type in line 33.

2. The socket of type SOCK_STREAM is created in line 39.

3. The option SO_TYPE is fetched into variable so_type in lines 46 to 53.

4. The socket s is reported in line 58, whereas its socket type in variable so_type is reported in
line 59.

5. The value of C macro SOCK_STREAM is reported in lines 60 and 61 for comparison purposes.

The following output shows an example compile and execution session for the program:

Output

$ make gettype
gcc -c -D_GNU_SOURCE -Wall -Wreturn-type gettype.c
gcc gettype.o -o gettype
$./gettype
Socket s : 3
 SO_TYPE : 1
 SOCK_STREAM = 1
$

From this output, you can see that socket number 3 was reported to be of type 1 in the following
output line. Note that the C macro SOCK_STREAM is the value of 1, also, confirming that the option
value is correct. Just for fun, you might want to modify the program to try the value of
SOCK_DGRAM in the socket(2) function call and see whether the reported value changes.

Setting the SO_REUSEADDR Option

In the first part of Chapter 11, ''Concurrent Client Servers," a server design using the fork(2)
system call was presented and tested. Figure 12.1 shows three processes that exist after a telnet
command has established contact with the server.

TE
AM
FL
Y

Team-Fly®

Page 318

Figure 12.1:
This graphic illustrates the connection of the
telnet command to a forked server process.

The steps that take place in Figure 12.1 are as follows:

1. The server process (PID 926) is started. It listens for connections from clients.

2. The client process (a telnet command) is started, and connects to the server process (PID 926).

3. The server process (PID 926) forks by calling fork(2). This leaves the original parent process
(PID 926) and a new server child process (PID 927).

4. The connected client socket is closed by the parent server process (PID 926), leaving the
connected client socket open only in the child process (PID 927).

5. The telnet command and the child server process (PID 927) converse at will, independently of
the parent process (PID 926).

At step 5, there are two socket activities happening:

• The server (PID 926) is listening on 192.168.0.1 port 9099.

• The client is being served by the socket 192.168.0.1 port 9099 (by PID 927), which is
connected to the client's address of 192.168.0.2 port 1035.

The client is being serviced by process ID 927. This means that you can kill process ID 926 and the
client will continue to be serviced. However, no new connections to the server can be made, because
there will be no server listening for new connections (listening server PID 926 was killed).

Page 319

Now, if you were to restart the server to listen for new connections, a problem would develop. When
the new server process attempts to bind the IP address 192.168.0.1 port 9099, the bind(2)
function will return the error EADDRINUSE. This error code indicates that the IP address is already
in use with port 9099. This occurs because process ID 927 is still engaged in servicing a client.
Address 192.168.0.1 port 9099 is still being used by that process (review Figure 12.1).

The solution to this problem is to kill off process 927, which will close that socket and release the IP
address and port. However, if the client being serviced is the CEO of the company you work for, this
will not be an option (this might be a career-limiting move). In the meantime, you'll be bugged by
other departments, wondering why you haven't restarted the server.

A better solution to the problem just presented is to use the SO_REUSEADDR socket option. All
servers should make use of this option, unless there is a good reason not to. To make effective use of
this option, perform the following in the server, which listens for connections:

1. Create your listening socket as usual with socket(2).

2. Call setsockopt(2) setting SO_REUSEADDR option to TRUE.

3. Now call bind(2) as usual.

The socket will now be marked as reusable. If the listening server process (PID 926 in Figure 12.1)
terminates for any reason, you will be able to be restart it. This will be true even when a client has
another server process engaged using the same IP address and port number.

In order for SO_REUSEADDR option to be effective, the following conditions must be met:

• No other socket with the same IP address and port can be in a listen mode.

• All sockets with the same IP address and port number must have the SO_REUSEADDR option set
to TRUE .

What this means is that there can be only one listener at a specific IP address and port number pair.
If one such socket already exists, then setting the option will not accomplish your goal.

Setting SO_REUSEADDR to TRUE can be effective only if all existing sockets with the same address
and port number have this option set. If any existing socket does not have this option set, then bind
(2) will continue to return an error.

Page 320

The following code shows how to set the option to TRUE:

Example

#define TRUE 1
#define FALSE 0

int z; /* Status code */
int s; /* Socket number */
int so_reuseaddr = TRUE;

z = setsockopt(s,SOL_SOCKET,SO_REUSEADDR,
 &so_reuseaddr,
 sizeof so_reuseaddr);

The SO_REUSEADDR option can be queried with the getsockopt(2) function if required.

Setting the SO_LINGER Option

Another commonly applied socket option is the SO_LINGER option. This option differs from the
SO_REUSEADDR option in that the data structure used is not a simple int data type.

The purpose of the SO_LINGER option is to control how the socket is shut down when the function
close(2) is called. This option applies only to connection-oriented protocols such as TCP.

The default behavior of the kernel is to allow the close(2) function to return immediately to the
caller. Any unsent TCP/IP data will be transmitted and delivered if possible, but no guarantee is
made. Because the close(2) call returns control immediately to the caller, the application has no
way of knowing whether the last bit of data was actually delivered.

The SO_LINGER option can be enabled on the socket, to cause the application to block in the
close(2) call until all final data is delivered to the remote end. Furthermore, this assures the
caller that both ends have acknowledged a normal socket shutdown. Failing this, the indicated
option timeout occurs and an error is returned to the calling application.

One final scenario can be applied, by use of different SO_LINGER option values. If the calling
application wants to abort communications immediately, appropriate values can be set in the
linger structure. Then, a call to close(2) will initiate an abort of the communication link,
discarding all pending data and immediately close the socket.

The modes of operation for SO_LINGER are controlled by the structure linger:

struct linger {
 int l_onoff;

Page 321

 int l_linger;
};

The member l_onoff acts as a Boolean value, where a nonzero value indicates TRUE and zero
indicates FALSE. The three variations of this option are specified as follows:

1. Setting l_onoff to FALSE causes member l_linger to be ignored and the default close
(2) behavior implied. That is, the close(2) call will return immediately to the caller, and any
pending data will be delivered if possible.

2. Setting l_onoff to TRUE causes the value of member l_linger to be significant. When
l_linger is nonzero, this represents the time in seconds for the timeout period to be applied at
close(2) time (the close(2) call will "linger"). If the pending data and successful close occur
before the timeout occurs, a successful return takes place. Otherwise, an error return occur and
errno is set to the value of EWOULDBLOCK.

3. Setting l_onoff to TRUE and setting l_linger to zero causes the connection to be aborted
and any pending data is immediately discarded upon close(2).

You are probably well advised to write your applications so that the option SO_LINGER is enabled
and a reasonable timeout is provided. Then, the return value from close(2) can be tested to see
whether the connection was mutually shut down successfully. If an error is returned instead, this
tells your application that it is probable that the remote application was unable to receive all the data
that you sent. Alternatively, it might just mean that problems occurred when the connection was
closed (after the data was successfully received by the peer).

You must be aware, however, that lingering in some server designs will create new problems. When
the SO_LINGER option is configured to linger upon close(2), this will prevent other clients
from being serviced while your server execution lingers within the close(2) function call. This
problem exists if you are serving many clients within one process (usually a server that uses
select(2) or poll(2)). Using the default behavior might be more appropriate because it will
allow close(2) to return immediately. Any pending written data will still be delivered by the
kernel, if it is able to.

Finally, using the abort behavior (mode number 3 listed previously) is appropriate if the application
or server knows that the connection should be aborted. This might be applied when the server has
determined that someone without access privilege is attempting to gain access. The client in this
situation deserves no special care and so minimum overhead is expended in dispensing of the
culprit.

Page 322

The following shows an example of enabling the linger option, using a timeout (linger value) of 30
seconds:

Example

#define TRUE 1
#define FALSE 0

int z; /* Status code
/ int s; / Socket s */
struct linger so_linger;

. . .
so_linger.l_onoff = TRUE;
so_linger.l_linger = 30;
z = setsockopt(s,
 SOL_SOCKET,
 SO_LINGER,
 &so_linger,
 sizeof so_linger);

if (z)
 perror("setsockopt(2)");

The next example shows how to establish SO_LINGER values to effect an abort of the current
connection on socket s:

Example

#define TRUE 1
#define FALSE 0

int z; /* Status code */
int s; /* Socket s */
struct linger so_linger;

. . .
so_linger.l_onoff = TRUE;
so_linger.l_linger = 0;
z = setsockopt(s,
 SOL_SOCKET,
 SO_LINGER,
 &so_linger,
 sizeof so_linger);

if (z)
 perror("setsockopt(2)");
close(s); /* Abort connection */

In the prior example, the socket connection s is aborted when the function close(2) is called.
The abort semantic is implied by setting the timeout value to zero seconds.

Page 323

Setting the SO_KEEPALIVE Option

When connections are used, they can sometimes be idle for long periods. For example, a telnet
session can be established to access a stock quotation service by a portfolio manager of a mutual
fund company. He might perform a few initial inquiries and then leave the connection to the service
open in case he wants to go back for more. In the meantime, however, the connection remains idle,
possibly for hours at a time.

Any server that thinks it has a connected client must dedicate some resources to it. If the server is of
the forking type, then an entire Linux process with its associated memory is dedicated to that client.
When things are going well, this scenario does not present any problem. The difficulty arises when a
network disruption occurs, and all 578 of your clients become disconnected from your stock
quotation service.

After the network service is restored, an additional 578 clients will be attempting to connect to your
server, as they re-establish connections. This is a real problem for you because your server has not
yet realized that it lost the idle clients earlier— option SO_KEEPALIVE to the rescue!

The following example shows how to enable SO_KEEPALIVE on a socket s so that a disconnected
idle connection can eventually be detected:

Example

#define TRUE 1
#define FALSE 0

int z; /* Status code */ int s; /* Socket s */
int so_keepalive;

. . .
so_keepalive = TRUE;

z = setsockopt(s,
 SOL_SOCKET,
 SO_KEEPALIVE,
 &so_keepalive,
 sizeof so_keepalive);

if (z)
 perror("setsockopt(2)");

The preceding example enables the SO_KEEPALIVE option so that when the socket connection is
idle for long periods, a probe message is sent to the remote end. This is usually done after two hours
of inactivity. There are three possible responses to a keep-alive probe message. They are

Page 324

1. The peer responds appropriately to indicate that all is well. No indication is returned to the
application, because this is the application's assumption to begin with.

2. The peer can respond indicating that it knows nothing about the connection. This indicates that
the peer has been rebooted since the last communication with that host. The error ECONNRESET
will then be returned to the application with the next socket operation.

3. No response is received from the peer. In this case, the kernel might make several more attempts
to make contact. TCP will usually give up in approximately 11 minutes if no response is solicited.
The error ETIMEDOUT is returned with the next socket operation when this happens. Other errors
such as EHOSTUNREACH can be returned if the network is unable to reach the host any longer, for
example (this can happen because of bad routing tables or router failures).

The time frames involved for SO_KEEPALIVE limit its general usefulness. The probe message is
sent only after approximately two hours of inactivity. Then, when no response is elicited, it might
take another 11 minutes before the connection returns an error. Nevertheless, this facility does
eventually allow idle disconnected sockets to be detected, and then closed by the server.
Consequently, servers that support potentially long idle connections should enable this feature.

Setting the SO_BROADCAST Option

The topic of broadcasting with UDP has not been covered yet. However, it should be easily
appreciated that the use of a broadcasting capability could be misused and cause grief on the
affected networks. To avoid broadcasting when broadcasting wasn't intended, the socket is creating
with the broadcasting feature disabled. If broadcasting is truly intended, then the C programmer is
expected to take the trouble to enable this feature for the socket first.

The topic of broadcasting will be covered in Chapter 13, "Broadcasting with UDP." Consequently,
only the option itself will be described here. The SO_BROADCAST option is a Boolean flag option,
which is defined, fetched, and set with the int data type. The following example shows how to
enable the SO_BROADCAST Option:

Example

#define TRUE 1
#define FALSE 0

int z; /* Status code */
int s; /* Socket s */
int so_broadcast;

Page 325

. . .
so_broadcast = TRUE;

z = setsockopt(s,
 SOL_SOCKET,
 SO_BROADCAST,
 &so_broadcast,
 sizeof so_broadcast);
if (z)
 perror("setsockopt(2)");

If the setsockopt(2) function returns zero, the socket s has been enabled to perform
broadcasting. Note, however, that the socket type chosen must be one that is capable of
broadcasting, such as a UDP socket.

Setting the SO_OOBINLINE Option

The topic of out-of-band data will be covered in Chapter 14, "Out -of-Band Data." Here, you can just
note that in some circumstances limited amounts of data can be expedited ahead of data that might
already be sent. Normally, this out-of-band data is received using a different method from the usual
data receiving functions. There are times, however, when it is preferred to receive this out-of-band
data in the normal manner. When this method is chosen, the out-of-band data arrives ahead of the
normal data as part of the normal data stream.

To enable this feature, you could use the following code:

Example

#define TRUE 1
#define FALSE 0

int z; /* Status code */
int s; /* Socket s */
int so_oobinline;

. . .
so_oobinline = TRUE;

z = setsockopt(s,
 SOL_SOCKET,
 SO_OOBINLINE,
 &so_oobinline,
 sizeof so_oobinline);

if (z)
 perror("setsockopt(2)");

Page 326

After the option SO_OOBINLINE has been enabled, the out -of-band data will be received with the
normal data. In this manner, the out-of-band data received is indistinguishable from the normal data.

Options SO_ PASSCRED and SO_PEERCRED

These options are applicable to PF_UNIX (PF_LOCAL) sockets only. These are used to control
and pass credentials on sockets that are local to the current host machine. The discussion of
credentials will be deferred until Chapter 17, "Passing Credentials and File Descriptors." This is
perhaps the most difficult topic for you to master in this book. For now, simply note that these two
options are likely to be of interest to you if you plan to write server programs that serve clients on
the same local host.

What's Next

In this chapter, you learned that socket options can be fetched and set using the functions
getsockopt(2) and setsockopt(2), respectively. It was shown that socket options have
levels and various SOL_SOCKET level options were discussed.

Many options required Boolean values, which are defined in the int data type. It was shown that
some other options such as SO_LINGER , for example, required a special structure to be used
instead.

A number of socket options relate to advanced uses of sockets, which have not been covered yet.
You will see these options again, as the more advanced topics are encountered in the chapters that
follow. The next chapter discusses broadcasting with UDP, and consequently you are now prepared
to enable the SO_BROADCAST option and use it!

TE
AM
FL
Y

Team-Fly®

Page 329

13—
Broadcasting with UDP

Communication would be inefficient if it always had to be accomplished between two individuals.
Broadcasting, on the other hand, allows information to be disseminated to many recipients at once.

In this chapter, you will learn how to

• Establish a broadcast UDP socket

• Send broadcast messages with a socket

• Receive broadcast messages with a socket

Upon completion of this chapter, you will know how to write programs using IPv4 socket broadcast
facilities.

Page 330

Understanding Broadcast Addresses

To use broadcasting, you must know about certain IP broadcast address conventions for IPv4.
(Review Figure 3.1 in Chapter 3, ''Address Conversion Functions.") Recall that the IP address is
split between the Network ID portion on the left (the most significant bits) and the Host ID portion
on the right (the least significant bits). The convention used for a broadcast address is that the Host
ID bits are all set to 1 bits.

When your network card is properly configured, you can display the broadcast address for the
interface of your choice by performing the following command (interface eth0 is shown in this
example):

Output

ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:A0:4B:06:F4:8D
 inet addr:192.168.0.1 Bcast:192.168.0.255 Mask:255.255.255.0
 UP BROADCAST RUNNING PROMISC MULTICAST MTU:1500 Metric:1
 RX packets:1955 errors:0 dropped:0 overruns:0 frame:31
 TX packets:1064 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100
 Interrupt:9 Baseaddress:0xe400

#

The second line of output shows the broadcast address for the eth0 interface to be
192.168.0.255. The Network ID in this address is the first three octets (bytes) 192.168.0,
whereas the Host ID part of this address is the 255 (recall that this address is a class C address). The
value 255 is a decimal value representing all 1 bits for the Host ID.

Broadcasting on 255.255.255.255

The special broadcast address 255.255.255.255 can also be used for broadcasting. Although
this form of the address might suggest a broadcast to the world, it is much more limited than that.
This type of broadcast is never forwarded by a router, whereas a more specific broadcast address
(such as 192.168.0.255) might be forwarded, depending upon the router's configuration.

The notion of a general broadcast address like 255.255.255.255 is not very well defined. For
example, some flavors of UNIX interpret this to mean that a broadcast should take place on all
network interfaces for that host. Other UNIX kernels will choose only one of several interfaces—
usually the first one defined. This becomes a serious issue when a host has more than one network
interface card (or NIC for short). For this reason, the use of the general broadcast address is
generally discouraged.

Page 331

If it becomes necessary to broadcast out of every network interface, then your software should
perform the following steps prior to a broadcast:

1. Determine the next (or first) interface name.

2. Determine the interface's broadcast address.

3. Broadcast using that interface's broadcast address.

4. Repeat steps 1 through 3 for all additional network interfaces that are active (that is, "up") in the
system.

After these steps have been performed, you can be assured that a broadcast has been made on every
interface of your software.

The remainder of this chapter will focus on how to broadcast out of one network interface. After you
have mastered this concept, you can then apply the preceding procedure if it becomes necessary to
broadcast out of every interface.

Enhancing the mkaddr.c Subroutine

One of the limitations of the mkaddr.c subprogram that was presented in Chapter 10, "Using
Standard I/O on Sockets," was that it was not able to properly handle the 255.255.255.255
broadcast address case. In this section, you'll see the reason for correcting this problem.

The diff output that follows illustrates what to change in the mkaddr.c source code to fix this
problem. Applying this change will allow you to experiment with the 255.255.255.255
broadcast address, if you choose to do so.

Example

$ diff ../ch.11/mkaddr.c mkaddr.c
99,102c99,100
< ap->sin_addr.s_addr =
< inet_addr(host_part);
< if (ap->sin_addr.s_addr
< == INADDR_NONE)

> if (!inet_aton(host_part,
> &ap->sin_addr))
$

The preceding example shows that the routine inet_aton(3) function replaces the more limited
inet_addr(3) function. The problem with inet_addr(3) is that it returns the value
INADDR_NONE when an address is invalid. When the IP address 255.255.255.255 is
converted to a 32-bit value, its return value is identical to the constant INADDR_NONE.

Consequently, it becomes impossible to distinguish between a bad input IP address, and the general
broadcast address. Use of the inet_aton(3) function avoids this ambiguity.

Page 332

Broadcasting from a Server

This chapter will demonstrate a simple broadcasting server program and a corresponding client
program. The server will be presented and explained first.

To provide a flavor of what could be accomplished with a broadcasting facility, the server being
presented will provide a stock market index simulation. The server program will represent a
program that obtains a data feed from external quotation suppliers and then rebroadcasts the stock
market index quotations to all interested clients. The example in Listing 13.1 shows the stksrv.c
server program.

NOTE
The mkaddr.c listing is not repeated in this chapter. If you want to experiment
with the 255.255.255.255 general broadcast address, then be sure to make the
minor adjustment described in the previous section. The mkaddr.c listing is
otherwise identical to that which was used in Chapter 11, "Concurrent Client
Servers."

Example

Listing 13.1: stksrv.c— The Stock Market Index Broadcasting Server

1: /* stksrv.c:
2: *
3: * Example Stock Index Broadcast:
4: */
5: #include <stdio.h>
6: #include <unistd.h>
7: #include <stdlib.h>
8: #include <errno.h>
9: #include <string.h>
10: #include <time.h>
11: #include <sys/types.h>
12: #include <sys/socket.h>
13: #include <netinet/in.h>
14: #include <arpa/inet.h>
15:
16: #ifndef TRUE
17: #define TRUE 1
18: #define FALSE 0
19: #endif
20:
21: extern int mkaddr(
22: void *addr,
23: int *addrlen,
24: char *str_addr,
25: char *protocol);
26:
27: #define MAXQ 4

Page 333

28:
29: static struct {
30: char *index;
31: int start;
32: int volit;
33: int current;
34: } quotes[] = {
35: { "DJIA", 1030330, 375 },
36: { "NASDAQ", 276175, 125 },
37: { "S&P 500", 128331, 50 },
38: { "TSE 300", 689572, 75 },
39: };
40:
41: /*
42: * Initialize:
43: */
44: static void
45: initialize(void) {
46: short x;
47: time_t td;
48:
49: /*
50: * Seed the random number generator:
51: */
52: time(&td);
53: srand((int)td);
54:
55: for (x=0; x < MAXQ; ++x)
56: quotes[x].current =
57: quotes[x].start;
58: }
59:
60: /*
61: * Randomly change one index quotation:
62: */
63: static void
64: gen_quote(void) {
65: short x; /* Index */
66: short v; /* Volatility of index */
67: short h; /* Half of v */
68: short r; /* Random change */
69:
70: x = rand() % MAXQ;
71: v = quotes[x].volit;
72: h = (v / 2) - 2;
73: r = rand() % v;

continues

Page 334

Listing 13.1: continued

74: if (r < h)
75: r = -r;
76: quotes[x].current += r;
77: }
78:
79: /*
80: * This function reports the error and
81: * exits back to the shell:
82: */
83: static void
84: bail(const char *on_what) {
85: fputs(strerror(errno),stderr);
86: fputs(": ",stderr);
87: fputs(on_what,stderr);
88: fputc('\n',stderr);
89: exit(1);
90: }
91:
92: int
93: main(int argc,char **argv) {
94: short x; /* index of Stock Indexes */
95: double I0; /* Initial index value */
96: double I; /* Index value */
97: char bcbuf[512], *bp;/* Buffer and ptr */
98: int z; /* Status return code */
99: int s; /* Socket */
100: struct sockaddr_in adr_srvr;/* AF_INET */
101: int len_srvr; /* length */
102: struct sockaddr_in adr_bc; /* AF_INET */
103: int len_bc; /* length */
104: static int so_broadcast = TRUE;
105: static char
106: *sv_addr = "127.0.0.1:*",
107: *bc_addr = "127.255.255.255:9097";
108:
109: /*
110: * Form a server address:
111: */
112: if (argc > 2)
113: /* Server address: */
114: sv_addr = argv[2];
115:
116: if (argc > 1)
117: /* Broadcast address: */
118: bc_addr = argv[1];
119:

Page 335

120: /*
121: * Form the server address:
122: */
123: len_srvr = sizeof adr_srvr;
124:
125: z = mkaddr(
126: &adr_srvr, /* Returned address */
127: &len_srvr, /* Returned length */
128: sv_addr, /* Input string addr */
129: "udp"); /* UDP protocol */
130:
131: if (z == -1)
132: bail("Bad server address");
133:
134: /*
135: * Form the broadcast address:
136: */
137: len_bc = sizeof adr_bc;
138:
139: z = mkaddr(
140: &adr_bc, /* Returned address */
141: &len_bc, /* Returned length */
142: bc_addr, /* Input string addr */
143: "udp"); /* UDP protocol */
144:
145: if (z == -1)
146: bail("Bad broadcast address");
147:
148: /*
149: * Create a UDP socket to use:
150: */
151: s = socket(AF_INET,SOCK_DGRAM,0);
152: if (s == -1)
153: bail("socket()");
154:
155: /*
156: * Allow broadcasts:
157: */
158: z = setsockopt(s,
159: SOL_SOCKET,
160: SO_BROADCAST,
161: &so_broadcast,
162: sizeof so_broadcast);
163:
164: if (z == -1)
165: bail("setsockopt(SO_BROADCAST)");

continues

Page 336

Listing 13.1: continued

166:
167: /*
168: * Bind an address to our socket, so that
169: * client programs can listen to this
170: * server:
171: */
172: z = bind(s,
173: (struct sockaddr *)&adr_srvr,
174: len_srvr);
175:
176: if (z == -1)
177: bail("bind()");
178:
179: /*
180: * Now start serving quotes:
181: */
182: initialize();
183:
184: for (;;) {
185: /*
186: * Update one quote in the list:
187: */
188: gen_quote();
189:
190: /*
191: * Form a packet to send out:
192: */
193: bp = bcbuf;
194: for (x=0; x<MAXQ; ++x) {
195: I0 = quotes[x].start / 100.0;
196: I = quotes[x].current / 100.0;
197: sprintf(bp,
198: "%-7.7s %8.2f %+.2f\n",
199: quotes[x].index,
200: I,
201: I - I0);
202: bp += strlen(bp);
203: }
204:
205: /*
206: * Broadcast the updated info:
207: */
208: z = sendto(s,
209: bcbuf,
210: strlen(bcbuf),
211: 0,

Page 337

212: (struct sockaddr *)&adr_bc,
213: len_bc);
214:
215: if (z == -1)
216: bail("sendto()");
217:
218: sleep(4);
219: }
220:
221: return 0;
222: }

The server shown in Listing 13.1 is functionally divided into the following sections:

1. The table of stock market indexes is declared in lines 27 to 39. Four indexes are defined with
starting values and a crude form of volatility value, which is used for the simulation.

2. The function initialize() in lines 44 to 58 is called once to initialize for the simulation.

3. The function gen_quote() is called to randomly change the simulated value of a randomly
selected stock market index (lines 63 to 77).

4. The main() program, which forms the basis of the server, is contained within lines 92 to 222.

The basic operation of this stock market server is as follows:

1. Default addresses are declared in lines 106 and 107. These are used when no command-line
arguments are supplied.

2. If two command-line arguments are supplied, then the server address takes the address from the
second argument (line 114).

3. If one or more command-line arguments are supplied, then the broadcast argument is taken from
argument one (line 118).

4. The server address is formed (lines 123 to 132).

5. The broadcast address is formed (lines 137 to 146).

6. A socket is created (lines 151 to 153).

7. The SO_BROADCAST option is enabled on the socket (lines 158 to 165).

8. The server address is bound (lines 172 to 177).

9. The stock market indices are initialized (line 182).

10. The server loop begins in line 184.

Page 338

The server loops indefinitely. You will need to kill it to end its execution. The server loop uses the
following steps:

1. A randomly selected index is updated (line 188) by calling gen_quote().

2. The quotes from all indices are extracted and formatted into a buffer (lines 193 to 203). This
creates a string with four text lines in it, corresponding to each stock market index.

3. The formatted string is sent out using the sendto(2) function (lines 208 to 216). This call
broadcasts because the address adr_bc contains a broadcast address.

4. A sleep(3) call of four seconds takes place to simulate some reasonable time delay between
quote updates.

5. The loop repeats with step 1.

A couple of points are worth reviewing here:

• The socket must have the SO_BROADCAST option enabled. Otherwise, broadcasting would not be
permitted from this socket.

• The sendto(2) call effected a broadcast because the destination address was a broadcast
address.

Both of these conditions are prerequisites for a broadcast. The socket must be enabled for
broadcasting and the destination address must be a broadcast IP address.

To compile this program, use the following command:

Output

$ make stksrv
gcc -c -D_GNU_SOURCE -Wall -Wreturn-type -g stksrv.c
gcc -c -D_GNU_SOURCE -Wall -Wreturn-type -g mkaddr.c
gcc -g stksrv.o mkaddr.o -o stksrv
$

Before the server can be tested, we must compile and understand the client program.

Receiving Broadcasts

The client program that will be presented must listen for the broadcasts that our stock market index
program is going to issue. Listing 13.2 illustrates the client program source code that will be used.

TE
AM
FL
Y

Team-Fly®

Page 339

Example

Listing 13.2: gquotes.c— The Stock Market Index Client Program

1: /* gquotes.c:
2: *
3: * Get datagram stock market
4: * quotes from UDP broadcast:
5: */
6: #include <stdio.h>
7: #include <unistd.h>
8: #include <stdlib.h>
9: #include <errno.h>
10: #include <string.h>
11: #include <time.h>
12: #include <signal.h>
13: #include <sys/types.h>
14: #include <sys/socket.h>
15: #include <netinet/in.h>
16: #include <arpa/inet.h>
17:
18: #ifndef TRUE
19: #define TRUE 1
20: #define FALSE 0
21: #endif
22:
23: extern int mkaddr(
24: void *addr,
25: int *addrlen,
26: char *str_addr,
27: char *protocol);
28:
29: /*
30: * This function reports the error and
31: * exits back to the shell:
32: */
33: static void
34: bail(const char *on_what) {
35: fputs(strerror(errno),stderr);
36: fputs(": ",stderr);
37: fputs(on_what,stderr);
38: fputc('\n',stderr);
39: exit(1);
40: }
41:
42: int
43: main(int argc,char **argv) {
44: int z;
45: int x;

continues

Page 340

Listing 13.2: continued

46: struct sockaddr_in adr; /* AF_INET */
47: int len_inet; /* length */
48: int s; /* Socket */
49: char dgram[512]; /* Recv buffer */
50: static int so_reuseaddr = TRUE;
51: static char
52: *bc_addr = "127.255.255.255:9097";
53:
54: /*
55: * Use a server address from the command
56: * line, if one has been provided.
57: * Otherwise, this program will default
58: * to using the arbitrary address
59: * 127.0.0.23:
60: */
61: if (argc > 1)
62: /* Broadcast address: */
63: bc_addr = argv[1];
64:
65: /*
66: * Create a UDP socket to use:
67: */
68: s = socket(AF_INET,SOCK_DGRAM,0);
69: if (s == -1)
70: bail("socket()");
71:
72: /*
73: * Form the broadcast address:
74: */
75: len_inet = sizeof adr;
76:
77: z = mkaddr(&adr,
78: &len_inet,
79: bc_addr,
80: "udp");
81:
82: if (z == -1)
83: bail("Bad broadcast address");
84:
85: /*
86: * Allow multiple listeners on the
87: * broadcast address:
88: */
89: z = setsockopt(s,
90: SOL_SOCKET,
91: SO_REUSEADDR,

Page 341

92: &so_reuseaddr,
93: sizeof so_reuseaddr);
94:
95: if (z == -1)
96: bail("setsockopt(SO_REUSEADDR)");
97:
98: /*
99: * Bind our socket to the broadcast address:
100: */
101: z = bind(s,
102: (struct sockaddr *)&adr,
103: len_inet);
104:
105: if (z == -1)
106: bail("bind(2)");
107:
108: for (;;) {
109: /*
110: * Wait for a broadcast message:
111: */
112: z = recvfrom(s, /* Socket */
113: dgram, /* Receiving buffer */
114: sizeof dgram,/* Max rcv buf size */
115: 0, /* Flags: no options */
116: (struct sockaddr *)&adr, /* Addr */
117: &x); /* Addr len, in & out */
118:
119: if (z < 0)
120: bail("recvfrom(2)"); /* else err */
121:
122: fwrite(dgram,z,1,stdout);
123: putchar('\n');
124:
125: fflush(stdout);
126: }
127:
128: return 0;
129: }

The client program presented takes one optional command-line argument. If none is supplied, the
broadcast address that will be assumed will be 127.255.255.255 on port 9097 . The default is
established by line 52 in Listing 13.2. When a command-line argument is provided, this will indicate
the IP broadcast address and UDP port number.

Page 342

The general steps used by the client program are these:

1. The socket is created (lines 68 to 70).

2. The broadcast address is formed (lines 75 to 83).

3. The SO_REUSEADDR option is enabled (lines 89 to 96).

4. Bind the broadcast address to the current socket (lines 101 to 106).

5. Begin a broadcast receiving loop (line 108).

6. Receive a broadcast (lines 112 to 120).

7. Write the broadcast information to the standard output (lines 122 to 125).

8. Repeat step 5.

Pay special attention to step 4. To receive the broadcast, there has to be a client program that has this
address bound to the socket. This identifies the client program as the intended recipient of the
messages.

There is a problem with this approach, however. If one client program binds this address, then no
others on the same host will be able to bind that address. This would defeat the purpose of
broadcasting. Enabling SO_REUSEADDR allows multiple client programs to receive from the same
broadcast address, on the same host.

To compile the demonstration client program, you can use the following command:

Output

$ make gquotes
gcc -c -D_GNU_SOURCE -Wall -Wreturn-type -g gquotes.c
gcc -g gquotes.o mkaddr.o -o gquotes
$

Demonstrating the Broadcasts

With the server and client programs compiled, you are ready to begin. The first example sessions
should work for everyone, with or without a network established. The demonstration will make use
of the local loopback interface that every Linux system should have available unless it has been
disabled.

The first step is to start the broadcast server:

Output

@pepper

$./stksrv 127.255.255.255:9097 &
[1] 756
@pepper
$

Page 343

The session shows the starting of the stksrv server program on the host system pepper. The client
session on the same host looked like this:

Output

$./gquotes 127.255.255.255:9097
DJIA 10302.06 -1.24
NASDAQ 2766.86 +5.11
S&P 500 1285.48 +2.17
TSE 300 6897.99 +2.27

DJIA 10302.06 -1.24
NASDAQ 2766.86 +5.11
S&P 500 1285.73 +2.42
TSE 300 6897.99 +2.27

DJIA 10302.06 -1.24
NASDAQ 2766.86 +5.11
S&P 500 1286.00 +2.69
TSE 300 6897.99 +2.27

[CTRL+C]
@pepper
$

In the client session shown, the program was allowed to provide three quote updates before CTRL+C
was typed to end its execution (your interrupt character might be different). Note that the broadcast
address and port number must agree for both the client and server.

To prove to yourself that a broadcast is being performed, and not simply a point-to-point
communication, you can start multiple instances of the client program. When this is done, they will
all update at approximately the same time.

Broadcasting to a Network

If you have a network card installed in your PC and you have a correctly configured network, you
should be able to test the broadcast server and client programs successfully. This section will
demonstrate the broadcast server broadcasting from a host named pepper, on the interface card
eth0 (IP address 192.168.0.1).

Starting Broadcasts

The broadcast server is told to broadcast on interface card 192.168.0.1 by performing the
following:

Page 344

Output

@pepper
$./stksrv 192.168.0.255:9097 '192.168.0.1:*' &
[2] 815
@pepper
$

Notice that there are two command-line arguments given on the command line. These are

1. The broadcast address and port number to which the messages are directed.

2. The source address and port number, from which the broadcasts will
originate.

The second address specifies the local IP address of the socket to be used for the broadcast. This, in
effect, chooses the network interface card that the broadcasting will take place on (thus choosing the
network for the broadcast). The asterisk that follows the colon character specifies that any local port
number is to be used. This is done because the actual port number used in this case does not need to
be agreed upon in advance (any port will do).

If you fail to bind the local end of the socket correctly, you will experience something like this:

Output

@pepper
$./stksrv 192.168.0.255:9097 &
[3] 816
Invalid argument: sendto()
[3]+ Exit 1 ./stksrv 192.168.0.255:9096
@pepper
$

The sendto(2) function fails because the server program binds a default local address of
127.0.0.1 to the socket. This cannot work because no 192.168.0.* address can be reached
from the 127.*.*.* network. This is not detected until the sendto(2) function attempts to
perform the broadcast.

Three possible solutions to this problem exist:

• Be certain that the local end of the socket is explicitly bound to the correct interface card, which is
to be used for the broadcast (192.168.0.1 in the demonstration).

• Use a wild local socket address (INADDR_ANY). In the example program, this can be specified
on the command line as '*:*'.

• Don't bind(2) the local address for the socket at all (leave out the call to bind(2) completely).

Page 345

Omitting the bind(2) function call is effectively the same as binding to INADDR_ANY and
specifying a port number of zero (allowing any choice of port number). The choice used depends
upon the amount of control that you want to exert over the choice of the network interface card.

Receiving Broadcasts

The most obvious place to begin testing the operation of the broadcast server, is on the same host as
the server. This is shown in the following session output:

Output

@pepper
$./gquotes 192.168.0.255:9097
DJIA 10304.73 +1.43
NASDAQ 2761.19 -0.56
S&P 500 1283.31 +0.00
TSE 300 6895.82 +0.10

DJIA 10304.73 +1.43
NASDAQ 2761.19 -0.56
S&P 500 1283.31 +0.00
TSE 300 6896.35 +0.63

The session demonstrates that indeed, the broadcasts are being received from the server. Now it's
time to try the client program on another host and see broadcasts being received over a physical
network.

Receiving Broadcasts from a Remote Host

Another host named slug is used in this demonstration, with an IP address of 192.168.0.2.
Starting a copy of the client program on that host looks like this:

Output

@slug
$./gquotes 192.168.0.255:9097
DJIA 10309.80 +6.50
NASDAQ 2767.29 +5.54
S&P 500 1286.06 +2.75
TSE 300 6897.75 +2.03

DJIA 10309.80 +6.50
NASDAQ 2767.29 +5.54
S&P 500 1286.06 +2.75
TSE 300 6897.67 +1.95

DJIA 10313.18 +9.88

NASDAQ 2767.29 +5.54
S&P 500 1286.06 +2.75
TSE 300 6897.67 +1.95

Page 346

Here, it is demonstrated on host slug that broadcasts were indeed being received over the Ethernet
link between these two hosts. The values are different in this output because it was captured much
later than the earlier session shown. However, if you were to establish clients that ran on the local
and remote hosts at the same time, you would be able to verify that their content was in full
agreement.

Troubleshooting Hints

If you fail to achieve similar results on your own personal network, then a large number of things
could be involved in the problem. It is not the intention of this book to describe aspects of network
administration or design. Nor will this book be a treatise on network troubleshooting. The following
simple tips are offered in the hope that it might prove to be useful as a starting point in diagnosis.

If the problem exists over a simple network of your own construction and there is little or no
network traffic on it, you might be able to just look at the hub. Many mini-hubs, for example, offer
LED indicators that provide indication of packet traffic for the corresponding ports involved. The
server program presented should cause a flicker to occur approximately every four seconds when a
broadcast occurs. Failure to see this suggests that the broadcast is not occurring.

Another approach is to use the tcpdump command, which is now part of most Linux distributions
today. An example of tcpdump(8) output is shown as follows while the server was broadcasting:

Output

@slug
tcpdump udp port 9097
tcpdump: listening on eth0
21:04:43.967482 pepper.ve3wwg.org.1032 > 192.168.0.255.9097: udp 96
21:04:47.977482 pepper.ve3wwg.org.1032 > 192.168.0.255.9097: udp 96
21:04:51.987482 pepper.ve3wwg.org.1032 > 192.168.0.255.9097: udp 96

The command-line arguments used cause only the UDP packets on port 9097 to be displayed. The
sample output includes three packet summaries that were displayed. More information about
tcpdump(8) can be accessed by reading its manual page.

These are but two very simple methods of checking for broadcast packets. Frequently, however,
these simple techniques will be sufficient for the programmer.

TE
AM
FL
Y

Team-Fly®

Page 347

What's Next

This chapter has introduced you to the concept of special addresses known as IPv4 broadcast
addresses. Additionally, you saw how the socket options SO_REUSEADDR and SO_BROADCAST
were applied in a practical manner.

In the next chapter, you will be introduced to the advanced topic of out-of-band data. You will learn
why it is needed and about its advantages and limitations. Discover how Linux is schizophrenic and
how to determine which personality your system thinks it possesses presently.

Page 349

14—
Out-of-Band Data

This chapter will bring you into the fray of using out-of-band data with TCP. You will learn why it
is provided and about some of its pitfalls. Most important of all however, you will become equipped
to properly apply out-of-band modes of communication, with any protocol that supports it.

Here is a summary of what will be covered in this chapter:

• Define what out-of-band data is.

• Why is it needed?

• What are the socket related issues of using it?

• What are the variations in the TCP/IP implementation?

• How do you use it with TCP stream sockets?

Page 350

Defining Out-of-Band

Imagine a lineup of people at the bank waiting to cash their paychecks. The line forms a queue, in
which people eventually move forward to be served by a teller. Now imagine that a person walks
into the bank, bypasses the entire lineup, and then engages a teller with a gun. This person would be
viewed as being ''out-of-band" (or quite possibly out of his head). This "bandit" jumps the queue
because the gun gives him priority over the people in the queue. The teller also provides her
undivided attention to the bandit because she knows the situation is urgent.

Conceptually, out-of-band data over a connected stream socket works the same way. Normally, data
flows from one end of the connection to the other, with precise ordering of all bytes of data
guaranteed. No later byte is permitted to arrive ahead of bytes that were written earlier. The socket
API, however, provides a facility where, conceptually, a bunch of data bytes can be expedited ahead
of the normal data to the receiver. This is known as sending out-of-band data.

Technically speaking, a TCP stream cannot send out-of-band data. What it does support is a concept
of "urgent" data, which is mapped to the socket API as out-of-band data. This brings about a number
of limitations, which will be discussed later in this chapter.

Understanding the Need for Out-of-Band Data

Although you can immediately appreciate the benefits of bypassing the lineup in a bank, you would
also recognize that using a gun for this purpose is considered rather antisocial. A TCP stream is
normally expected to send data bytes in perfect sequence and so to send them out of sequence seems
counter to what streams are all about. Why then provide out-of-band socket facilities?

As you have probably realized, there are times when data simply becomes "urgent" in some way. A
stream socket can have a large amount of data queued waiting to be transmitted to the network. At
the remote end, there can be a large amount of data received, which has yet to be read by the
application. If the sending client program now has a reason to cancel the request that has already
been written to the server, it might want to urgently indicate a cancel request to the server. Failing to
issue a cancel request to the remote server unnecessarily wastes the server's resources.

You might answer this design problem by saying that the socket can be prematurely closed, or
information can be transmitted on an additional socket connection. Both of these solutions are less
than ideal for different reasons:

Page 351

• Shutting down a socket does not permit recovery if more communication is to be continued.

• The addition of an extra connection can be quite expensive when hundreds or thousands of users
are pounding on your server.

• Company firewall restrictions make it even more desirable to perform all your networking needs
within the one socket connection.

Practical examples of programs that use of out-of-band data are the telnet, rlogin, and ftp
commands. The first two programs send the interrupt character as urgent data to the remote end.
This allows the remote end to flush all unprocessed input and to discard with any unsent terminal
output. This facilitates a quick interrupt of a running process, which might have been spewing
oodles of output to your screen. The ftp command uses out -of-band data to abort a file transfer.

Sockets and Out-of-Band Data

It was stated earlier that TCP streams have some pitfalls when using the socket out-of-band concept.
It is important to re-emphasize that the socket interface itself is not the limiting factor. The out-of-
band concept is actually mapped to the urgent data mode of TCP/IP communications. TCP streams
are important to networking today and this chapter will focus only on the socket use of out-of-band
data as it applies to TCP urgent data. Consequently, while the two terms are technically different,
they will often be used interchangeably.

It is also necessary to point out that the limitations pertaining to TCP urgent data do not necessarily
apply to other protocols that might be used with the socket interface. For example, if you look at
out-of-band data for infrared communications, you'll need to research the underlying protocol for it
before reaching any conclusions about its capabilities.

Variations in Implementation

The implementation of TCP, unfortunately, has two different interpretations of how urgent data
should be handled. These differences will be described fully, later in the chapter (the impatient can
refer to Table 14.2 later in the chapter). The different interpretations are

• The RFC793 interpretation of the TCP urgent-pointer

• The BSD interpretation of the TCP urgent-pointer

This dichotomy has come about because the original TCP specification permitted both
interpretations. Subsequently, a "Host Requirements" RFC

Page 352

identified the correct interpretation. However, most implementations were based upon the BSD
(Berkeley) source code and the BSD approach remains in common use today. Linux is
schizophrenic in this regard, supporting both interpretations. The Linux default however, is to use
the BSD interpretation.

NOTE
The tcp(4) man page indicates that the BSD interpretation is used by default
under Linux. This can be changed, but it might not be advisable to do so. The reason
for this is that a change in this setting can cause other existing network processes to
fail.

Take a moment now and check the current setting of your Linux system. This is critical in order to
obtain the same results that the examples in this chapter will produce.

output

$ cat /proc/sys/net/ipv4/tcp_stdurg
0
$

The output presented here shows the value zero. This indicates that the BSD interpretation is in
effect at present. If you have some other value shown (such as 1), then you should change this value
to zero if you want to achieve the results shown in this chapter.

CAUTION
If you are running a multiuser system, be sure to consider your users before making
a change to the interpretation of TCP urgent data.

Table 14.1 summarizes the values for the tcp_stdurg settings. The tcp_stdurg value can be
queried and set in shell scripts, including startup and shutdown scripts.

Table 14.1: The proc/sys/net/ipv4_stdurg Settings

Value Interpretation

0 BSD Interpretation (Linux default)

1 RFC793 interpretation

If you need to change this setting to zero, you'll need to gain root access, and type the following:

Example

echo 0 >/proc/sys/net/ipv4/tcp_stdurg
#

It is always wise to double-check things, so list the value after establishing a change to see whether
the change was accepted by the kernel. You should be able to display the zero value with the cat
command as was shown in a previous example.

Page 353

Using Out-of-Band Data

Although you probably still have many questions about out-of-band data, fret not. Some simple
example programs will help illustrate the concepts more clearly than a lot of text. An explanation
will be provided as you progress through the demonstrations.

A few more basics about out-of-band I/O must be covered in the next short sections. After that is out
of the way, the fun begins.

Writing Out-of-Band Data

A call to write(2) will simply write the normal "in-band" data that you are already accustomed to
doing. Consequently, a new function must be used to write out-of-band data. The send(2)
function's prototype is shown here for this purpose:

#include <sys/types.h>
#include <sys/socket.h>

int send(int s, const void *msg, int len, unsigned int flags);

This function requires four arguments, which are

1. The socket s to write to.

2. The message buffer msg to write from.

3. The length (len) of the message.

4. Sending option flags.

The send(2) function is like the write(2) call except that it has the additional flags
argument provided. This is the essential ingredient. The send(2) function returns the number of
characters written or -1 if an error occurred (check errno for the cause of the error).

To send out-of-band data, you use the first three arguments as you would in a call to write(2). If
you supply the C language macro MSG_OOB for the flags argument, the data is sent as out-of-
band data instead of the normal "in-band" data, as follows:

Example

char buf[64]; /* Data */
int len; /* Bytes */
int s; /* Socket */
. . .
send(s,buf,len,MSG_OOB);

If the flags argument is supplied without the MSG_OOB flag bit, then the data is written as normal
in-band data. This allows you to write both inband and out-of-band data with the same function call.
You simply change the flags argument value under program control to accomplish this.

Page 354

Reading Out-of-Band Data

Out-of-band data can be read in two different ways:

• Read separately as out-of-band data

• Read intermixed with the in-band data

In order to read out-of-band data separately from the normal stream of data, you need to use the
function recv(2) . If you guessed that recv(2) is like read(2) with an additional flags
argument, then you guessed correctly. The function prototype is shown as follows:

#include <sys/types.h>
#include <sys/socket.h>

int recv(int s, void *buf, int len, unsigned int flags);

The recv(2) function accepts four arguments, which are

1. The socket s to receive data from (in-band or out-of-band data).

2. The buffer buf to place the received data into.

3. The maximum byte length (len) of the receiving buffer.

4. The option flags to use for this call.

As you can see, recv(2) is a counterpart to the send(2) function call. To receive out-of-band
data, supply the C macro MSG_OOB in the flags argument. Without flag bit MSG_OOB, normal in-
band data is received by the recv(2) function as if the normal read (2) call were made instead.

The recv(2) function returns the number of bytes received or -1 if an error occurred (check
errno for the cause of the error).

The following shows an example of reading out-of-band data:

Example

char buf[128]; /* Buffer */
int n; /* No. of bytes */
int s; /* Socket */
int len; /* Max bytes */

. . .
n = recv(s,buf,len,MSG_OOB);

Although it was indicated earlier that out-of-band data could optionally be intermixed with normal
data, we will defer this discussion until later.

Page 355

Understanding the Signal SIGURG

The receiving process needs to be notified when out-of-band data has arrived. This is particularly
true if it must be read separately from the normal data stream. One such method for doing this is to
have the Linux kernel send your process the SIGURG signal when out-of-band data has arrived.

There are two requirements for using SIGURG signal notification:

• You must establish ownership of the socket.

• You must establish a signal handler for SIGURG.

To receive the SIGURG signal, you must establish your process (or process group) as the owner of
the socket. To establish this ownership, you use the fcntl(2) function. Its function prototype as it
applies to us here is as follows:

#include <unistd.h>
#include <fcntl.h>

int fcntl(int fd, int cmd, long arg);

The arguments for this function are as follows:

1. The file descriptor fd (or socket) to apply a control function to.

2. The control function cmd to apply.

3. The value arg to set (if any).

The return value depends upon the control function being exercised by fcntl(2). The Linux man
page for fcntl(2) describes the cmd operation F_SETOWN in some detail, for those who are
interested in additional reading.

To establish your process (or process group) as the owner of a socket, the receiving program could
use the following code:

Example

int z; /* Status */
int s; /* Socket */

z = fcntl(s,F_SETOWN,getpid());

if (z == -1) {
 perror("fcntl(2)");
 exit(1);
}

The F_SETOWN operation causes the fcntl(2) function to return zero if successful, or -1 if it

fails (errno indicates the cause of the failure).

Page 356

One additional requirement is that the program must be prepared to receive the signal SIGURG,
which is done by establishing a signal handler for the signal. You'll see an example of this shortly.

Supporting Subprograms

In order to reduce the amount of duplicated code in the example programs to be presented, several
of the mundane functions will be grouped into one source module and presented once here. This will
help you later to focus on the important concepts of out-of-band data processing.

The source module bindacpt.c is presented in Listing 14.1, which contains much of the common
code for establishing and accepting socket connections.

Example

Listing 14.1: The bindacpt.c Source Module for Connecting and Accepting

1: /* bindacpt.c:
2: *
3: * socket, bind, listen & accept:
4: */
5: #include <stdio.h>
6: #include <unistd.h>
7: #include <stdlib.h>
8: #include <errno.h>
9: #include <string.h>
10: #include <time.h>
11: #include <sys/types.h>
12: #include <sys/socket.h>
13: #include <netinet/in.h>
14: #include <arpa/inet.h>
15: #include <netdb.h>
16:
17: extern int
18: mkaddr(void *addr,
19: int *addrlen,
20: char *str_addr,
21: char *protocol);
22:
23: /*
24: * This function reports the error and
25: * exits back to the shell:
26: */
27: void
28: bail(const char *on_what) {
29: if (errno != 0) {
30: fputs(strerror(errno),stderr);
31: fputs(": ",stderr);
32: }
33: fputs(on_what,stderr);

TE
AM
FL
Y

Team-Fly®

Page 357

34: fputc('\n', stderr);
35: exit(1);
36: }
37:
38: /*
39: * Call socket(2), bind(2),
40: * listen(2) and accept(2):
41: *
42: * Returns socket.
43: */
44: int
45: BindAccept(char *addr) {
46: int z;
47: int s;
48: struct sockaddr_in adr_srvr;
49: struct sockaddr_in adr_clnt;
50: int len_inet;
51:
52: /*
53: * Create a TCP/IP socket to use:
54: */
55: s = socket(PF_INET,SOCK_STREAM,0);
56: if (S == -1)
57: bail("socket()");
58:
59: /*
60: * Bind the server address:
61: */
62: len_inet = sizeof adr_srvr;
63: z = mkaddr(&adr_srvr,&len_inet,
64: addr,"tcp");
65:
66: if (z != 0) {
67: puts("Bad address/port");
68: exit(1);
69: }
70:
71: /*
72: * Bind server address:
73: */
74: z = bind(s,(struct sockaddr *)&adr_srvr,
75: len_inet);
76: if (z == -1)
77: bail("bind(2)");
78:
79: /*

continues

Page 358

Listing 14.1: continued

80: * Set listen mode:
81: */
82: if (listen(s, 10) == -1)
83: bail("listen(2)");
84:
85: /*
86: * Wait for a connect:
87: */
88: len_inet = sizeof adr_clnt;
89:
90: z = accept(s,
91: (struct sockaddr *)&adr_clnt,
92: &len_inet);
93:
94: if (z == -1)
95: bail("accept(2)");
96:
97: close(s); /* No longer needed */
98: return z; /* Connected socket */
99: }
100:
101: int
102: Connect(char *addr) {
103: int z;
104: int s;
105: struct sockaddr_in adr_srvr;
106: int len_inet;
107:
108: /*
109: * Create a TDP/IP socket to use:
110: */
111: s = socket(PF_INET,SOCK_STREAM,0);
112: if (s == -1)
113: bail("socket()");
114:
115: /*
116: * Bind the server address:
117: */
118: len_inet = sizeof adr_srvr;
119: z = mkaddr(&adr_srvr,&len_inet,
120: addr,"tcp");
121:
122: if (z != 0) {
123: puts("Bad address/port");
124: exit(1);
125: }

Page 359

126:
127: /*
128: * Connect to server:
129: */
130: len_inet = sizeof adr_srvr;
131:
132: z = connect(s,
133: (struct sockaddr *)&adr_srvr,
134: len_inet);
135:
136: if (z == -1)
137: bail("connect(2)");
138:
139: return s; /* Connected socket */
140: }

The major components within this module are

• The bail() function for reporting an error and bailing out of the program (lines 27 to 36).

• The BindAccept() function which creates a socket, binds an address to it. Additionally, the
listen(2) and accept(2) calls are made to wait for a client connection. The return value is
the connected client socket (lines 44 to 99).

• The Connect() function which creates a socket and connects to the remote server (lines 101 to
140).

This source module will not be discussed in detail, because you should now have a good grasp of the
operations contained within it.

The mkaddr.c source module is used again without changes from the last chapter, so it is not
repeated here.

Receiving with the SIGURG Signal

With the grunt work out of the way, it's time now to have some fun exploring this out-of-band data
concept. The program in Listing 14.2 is the program that you will use to receive data and to process
out-of-band data when it arrives. It is designed for the BSD interpretation of the out -of-band
processing, which is the default for Linux.

Example

Listing 14.2: The oobrecv.c Receiving Main Program

1: /* oobrecv.c:
2: *
3: * Example OOB receiver:

continues

Page 360

Listing 14.2: continued

4: */
5: #include <stdio.h>
6: #include <unistd.h>
7: #include <stdlib.h>
8: #include <errno.h>
9: #include <string.h>
10: #include <signal.h>
11: #include <fcntl.h>
12: #include <sys/types.h>
13: #include <sys/socket.h>
14:
15: extern void bail(char *on_what);
16: extern int BindAccept(char *addr);
17:
18: static int s = -1; /* Socket */
19:
20: /*
21: * SIGURG signal handler:
22: */
23: static void
24: sigurg(int signo) {
25: int n;
26: char buf[256];
27:
28: n = recv(s,buf,sizeof buf,MSG_OOB);
29: if (n < 0)
30: bail("recv(2)");
31:
32: buf[n] = 0;
33: printf("URG '%s' (%d) \n",
34: buf,n);
35:
36: signal(SIGURG,sigurg);
37: }
38:
39: int
40: main(int argc,char **argv) {
41: int z; /* Status */
42: char buf[256];
43:
44:
45: /*
46: * Use a server address from the command
47: * line, if one has been provided.
48: * Otherwise, this program will default
49: * to using the arbitrary address

Page 361

50: * 127.0.0.1:
51: */
52: s = BindAccept(argc >= 2
53: ? argv[1]
54: : "127.0.0.1:9011");
55:
56: /*
57: * Establish ownership:
58: */
59: z = fcntl(s,F_SETOWN,getpid());
60: if (z == -1)
61: bail("fcntl(2)");
62:
63: /*
64: * Catch SIGURG:
65: */
66: signal(SIGURG,sigurg);
67:
68: for (;;) {
69: z = recv(s,buf,sizeof buf,0);
70: if (z == -1)
71: bail("recv(2)");
72: if (z == 0)
73: break;
74: buf[z] = 0;
75:
76: printf("rcv '%s' (%d)\n",
77: buf, z);
78: }
79:
80: close(s);
81: return 0;
82: }

The oobrecv.c main program consists of the following main
components:

• A SIGURG signal handler (lines 23 to 37)

• The main test program (lines 40 to 82)

Examine the main program's functionality first. The basic steps used by the main program are

1. Create, bind, listen, and accept a connection from the client program (lines 52 to 54). The
BindAccept() function handles all the dirty work for us here.

2. Ownership of the socket s is established by the call to fcntl(2) (lines 59 to 61). You can think
of this as expressing interest in receiving the SIGURG signal.

Page 362

3. The default action for signal SIGURG is to ignore it. Consequently, a signal handler must be
established in line 66.

4. A receiving for loop is started in line 68.

5. The recv(2) function is called to receive normal data (lines 69 to 71). Note that the flags
argument is zero here.

6. Test for end-of-file on the socket (lines 72 and 73). If zero bytes are returned, the break
statement breaks out of the for loop.

7. The data content and length is reported (lines 74 to 77).

8. Repeat step 4.

Briefly, the main program initializes and waits for a connection. When a client connects, it simply
loops to receive and report each block of data that it is able to receive.

Now, turn your attention to the signal handler. The following steps are used for it:

1. Upon entry into the handler, the code attempts to read some urgent (out-of-band) data (lines 28 to
30).

2. The out-of-band data is reported (lines 32 to 34).

3. The signal handler for SIGURG is re-established. This is necessary because this signal reverts to
being ignored when the signal is caught.

CAUTION
Normally, it is unwise to use functions such as printf(3) inside a signal handler.
Under contrived conditions, it is safe enough for demonstration purposes as is done
here.

Furthermore, it is unwise to modify errno as might be done by the recv(2) call.
Production quality code should save and restore the errno value in a signal handler
to preserve its re-entrancy status.

NOTE
It should be noted that the use of the signal(2) function is to be discouraged in
modern programs. Reliable signal functions such as sigaction(2) should be
used instead. The signal(2) function is used here to keep the example programs
simple.

Before you can put your receiving program to use, however, you'll need a sending program.

Sending Out-of-Band Data

The program in Listing 14.3 illustrates a short program that will transmit a few small strings, and a
short burst of out-of-band data. The program

Page 363

uses a number of calls to sleep(3) in order to manage the timing of the transmission blocks at the
receiving end.

Example

Listing 14.3: The oobsend.c Sending Program

1: /* oobsend.c:
2: *
3: * Example OOB sender:
4: */
5: #include <stdio.h>
6: #include <unistd.h>
7: #include <stdlib.h>
8: #include <errno.h>
9: #include <string.h>
10: #include <sys/types.h>
11: #include <sys/socket.h>
12:
13: extern void bail(char *on_what);
14: extern int Connect(char *addr);
15:
16: /*
17: * Send in-band data:
18: */
19: static void
20: iband(int s,char *str) {
21: int z;
22:
23: z = send(s,str,strlen(str),0);
24: if (z == -1)
25: bail("send(2)");
26:
27: printf("ib: '%s' (%d)\n",str,z);
28: }
29:
30: /*
31: * Send out-of-band data:
32: */
33: static void
34: oband(int s,char *str) {
35: int z;
36:
37: z = send(s,str,strlen(str),MSG_OOB);
38: if (z == -1)
39: bail("send(2)");
40:
41: printf("OOB '%s' (%d)\n",str,z);
42: }

continues

Page 364

Listing 14.3: continued

43:
44: int
45: main(int argc,char **argv) {
46: int s = -1; /* Socket */
47:
48: s = Connect(argc >= 2
49: ? argv[1]
50: : "127.0.0.1:9011");
51:
52: iband(s,"In the beginning");
53: sleep(1);
54:
55: iband(s,"Linus begat Linux,");
56: sleep(1);
57:
58: iband(s,"and the Penguins");
59: sleep(1);
60:
61: oband(s,"rejoiced");
62: sleep(1);
63:
64: iband(s,"exceedingly.");
65: close(s);
66:
67: return 0;
68: }

The sending program is, in fact, much simpler than the receiving program you just looked at. The
general components in this source module are

• The iband() function that simply writes and reports the data that was written in-band (lines 19
to 28).

• The oband() function that writes its data string as out-of-band data (lines 33 to 42).

• The main() program, which occupies lines 44 to 68.

The sending functions iband() and oband() are straightforward. They simply write data using
the send(2) function call with and without the flag MSG_OOB, respectively.

Now let's examine the steps used by the main program:

1. The main program creates a socket and connects to the receiving program with the use of the
Connect() function (lines 48 to 50).

2. Three in-band write and sleep operations are performed as pairs (lines 52 to 59).

Page 365

3. The string ''rejoiced" is sent as out-of-band data in lines 61 and 62.

4. One more in-band write occurs in line 64.

After compiling the sending and receiving programs, you will be ready to apply out-of-band data
transmission. To compile these programs, perform the following:

Output

$ make oobrecv oobsend
gcc -c -D_GNU_SOURCE -Wall -Wreturn-type -g oobrecv.c
gcc -c -D_GNU_SOURCE -Wall -Wreturn-type -g mkaddr.c
gcc -c -D_GNU_SOURCE -Wall -Wreturn-type -g bindacpt.c
gcc oobrecv.o mkaddr.o bindacpt.o -o oobrecv
gcc -c -D_GNU_SOURCE -Wall -Wreturn-type -g oobsend.c
gcc oobsend.o mkaddr.o bindacpt.o -o oobsend
$

After the compile is complete, you have two executable
programs:

• oobrecv is the receiving program (a server).

• oobsend is the sending program (a client).

Now you are ready to invoke these programs.

Testing the oobrecv and oobsend Programs

It is best to run these programs in two completely different terminal sessions. Use either two
different xterm windows, or two different console sessions. Start the receiving program first in the
first terminal session:

Example

$./oobrecv

Both programs accept an optional address and port number pair if you want to specify your Ethernet
address instead of the local loopback address ("127.0.0.1:9011" is assumed by default). For
example, the following would work on a system with an NIC card addressed as 192.168.0.1:

Example

$./oobrecv 192.168.0.1:9023

This would start the server listening on 192.168.0.1 port number 9023. For the purposes of this
demonstration, however, you can just run the program without arguments.

Now start the sending program on the second terminal session, as follows:

Output

$./oobsend
ib: 'In the beginning' (16)
ib: 'Linus begat Linux,' (18)
ib: 'and the Penguins' (16)
OOB 'rejoiced' (8)
ib: 'exceedingly.' (12)
$

TE
AM
FL
Y

Team-Fly®

Page 366

The lines starting with ib: indicate in-band data that was written. The line beginning with OOB
indicates that 'rejoiced' was written as out-of-band data to the socket.

If you were able to watch both sessions at the same time, you will notice that the receiving program
reports the data shortly after it is sent by the sending program. Its session output should look like
this:

Output

$./oobrecv
rcv 'In the beginning' (16)
rcv 'Linus begat Linux,' (18)
rcv 'and the Penguins' (16)
URG 'd' (1)
rcv 'rejoice' (7)
rcv 'exceedingly.' (12)
$

The output lines shown in this terminal session that begin with rcv indicate normal in-band data
that was received. The line starting with URG indicates that SIGURG was raised and the signal
handler was called. Within the signal handler, the urgent data is read and reported. You should
notice something peculiar— only the d byte was received as out-of-band data! What gives? Read on
to find out.

Understanding the Urgent Pointer

Early in this chapter, it was stated that the socket interface provides a general network interface.
This includes how it deals with out-of-band data. The TCP implementation of urgent data, however,
falls somewhat short of what a general concept might include for out-of-band data.

Although the entire string 'rejoiced' was sent as out-of-band data using send(2) , the following
observations can be made at the receiving end:

• Only the d character was received as out-of-band data.

• The d character was received ahead of the remaining characters in 'rejoice'.

The fact that the d byte was received ahead of the bytes 'rejoice' does indeed demonstrate that
the d byte was more urgent. It shows that the byte ordering has been disturbed by an urgency factor.

Understanding TCP Urgent Mode

The fact that only one byte was received as out-of-band data has to do with the mapping of a TCP
protocol concept to a socket concept. The TCP urgent mode is mapped to the more general socket
concept of out-of-band data.

Page 367

The TCP protocol itself does not actually provide out-of-band data facilities. The closest concept to
this socket idea is TCP's urgent mode of communications. A little bit of discussion of the TCP
protocol is necessary in this section in order to provide you with an understanding of how urgent
mode works.

When the send(2) socket interface function is used with the flag bit MSG_OOB set, the data is
written to the TCP outgoing queue and an urgent pointer is established. The precise location of this
pointer is determined by the tcp_stdurg setting that was covered earlier. Table 14.2 reviews the
two interpretations and indicates where the urgent pointer is placed.

Table 14.2: The TCP Urgent Pointer Based Upon tcp_stdurg Settings

Value Interpretation Urgent Pointer

0 BSD interpretation (Linux) After urgent byte

1 RFC793 interpretation Before urgent byte

Figure 14.1 shows how the TCP sending buffer can be visualized after the send(2) call has
returned from queuing the string 'rejoiced' as out-of-band data. Although we are most interested
in the BSD interpretation (because of Linux), both interpretations are illustrated in the figure.

Figure 14.1:
Here is a graphical representation of the TCP

urgent pointers.

The sequence of events that occur from calling send(2) using the MSG_OOB flag are as follows
for the BSD interpretation (tcp_stdurg=0):

1. The data is placed into the TCP outgoing queue (in this case, the beginning of the empty TCP
buffer).

2. The TCP urgent mode is started (a TCP URG bit is set to true).

3. The urgent pointer is computed to point after the last byte that was entered into the outgoing TCP
queue.

Page 368

In the example program oobsend.c , the send(2) call was followed by a call to sleep(3).
This action causes the Linux kernel to perform the following:

1. Send what it has queued so far in the TCP buffer, rather than wait indefinitely for more data.

2. The packet header that is now created by the TCP protocol software now has the URG bit set.
This indicates that TCP urgent mode has been used (this is because the send(2) call used the
MSG_OOB flag bit).

3. A TCP urgent pointer is computed and placed into the packet header. In this case
(tcp_stdurg=0), this pointer points after the last byte of out-of-band data that was queued.

4. The TCP packet header containing the URG bit, urgent pointer, and all packet data that was
waiting to be sent is now transmitted to the network interface device as one physical packet.

After these steps take place, the packet speeds on its way to the receiving host over the network.
This packet is received at the remote end, conceptually as shown in Figure 14.2 (with protocol
details omitted):

Figure 14.2:
The TCP header bit URG=1 indicates that urgent

data immediately precedes the byte at offset 8.

When a packet is received with the URG bit set to true, as shown in Figure 14.2, the Linux kernel
will notify the process (or process group) that owns the socket, with the signal SIGURG. This is
done because the packet contains an urgent pointer (that is why the URG bit is set in the TCP
header).

The application oobrecv.c, upon handling the SIGURG signal, reads the out-of-band data by
calling upon recv(2) with the flag bit MSG_OOB set. This causes the Linux kernel to return only
the out-of-band data. Because TCP does not record where the out-of-band data starts, the socket API
can return only the one byte prior to the urgent pointer within the packet

Page 369

(assuming that tcp_stdurg=0). Consequently, in our example, only the d byte is returned as out-
of-band data. Any subsequent read of in-band data will read the remaining bytes 'rejoice', and
any data that follows the urgent byte, if any exists.

Even if the out-of-band data was not read in the signal handling function, only the bytes 'rejoice'
and subsequent nonurgent data would be read, if any. The d byte would be prevented from being
returned in the normal inband data because it has been identified as out-of-band data.

Urgent Mode When tcp_stdurg=1

Space does not permit us to dwell on this case, but a few comments are worthwhile. When
tcp_stdurg=l, a strange thing often happens— urgent mode is often entered and its
corresponding urgent pointer is received without any corresponding urgent data to be read. If the
urgent pointer happens to be at the end of the last data byte included within the packet, then there
might not be any following byte received. The urgent data byte might follow in a subsequent packet.
For this reason, when this mode of operation is used, the recv(2) call with the MSG_OOB flag set
does not necessarily return an out-of-band byte for TCP when the signal SIGURG is raised.

TIP
When tcp_stdurg=1 under Linux, a recv(2) call will return the errno value
EAGAIN when no urgent data is available to read. Some other UNIX
implementations (BSD UNIX, for example) return the errno value
EWOULDBLOCK instead.

To handle the situation where the urgent data byte was unavailable, you must perform the following
(remember this applies only when tcp_stdurg=1):

1. Record the SIGURG event in a flag (say, a variable named urg_mode=1).

2. Return from your signal handler.

3. Continue to read in-band data within your application.

4. When the urg_mode value is true, try to read some out-of-band data, by using recv(2) and
the MSG_OOB flag bit.

5. If step 4 yields data, then set urg_mode=0 and return to normal processing. Repeat step 3.

6. If step 4 does not yield any out-of-band data, continue processing while leaving urg_mode set
true. Repeat step 3.

Again, it must be emphasized that you probably won't use these steps for Linux code, unless a
change in direction is made for Linux. Linux uses the BSD (tcp_stdurg=0) mode of urgent data
by default, which is easier to cope with.

Page 370

Receiving Out-of-Band Data Inline

Earlier, it was indicated that it is possible to receive out-of-band data intermixed with the regular in-
band data. This is done when it is more convenient for the application to process it this way. To
enable this mode of operation for a particular socket, you must set the SO_OOBINLINE socket
option:

Example

int z; /* Status */
int s; /* Socket */
int oobinline =1; /* TRUE */

z = setsockopt(s,
 SOL_SOCKET, /* Level */
 SO_OOBINLINE, /* Option */
 &oobinline, /* ptr to value */
 sizeof oobinline); /* Size of value */

CAUTION
After you have enabled the option SO_OOBINLINE for a socket, you must not call
recv(2) with the MSG_OOB flag. If you do, the function will return an error, with
variable errno set to the code EINVAL.

NOTE
It is still possible to use the SIGURG signal if you find it useful. This is established
by a call to fcntl(2) using the command F_SETOWN.

Determining the Urgent Pointer

Whether you are receiving your data inline or not, you have at your disposal a function that can tell
you when you have reached the urgent pointer within your current data stream. This can be
determined by calling ioctl(2) with the correct arguments:

Example

#include <sys/ioctl.h>
. . .
int z; /* Status */
int s; /* Socket */
int flag; /* True when at mark */

z = ioctl(s, SIOCATMARK,&flag);
if (z == -1)
 abort(); /* Error */
if (flag != 0)
 puts("At Mark");
else

 puts("Not at mark.");

Page 371

TIP
Draft 6.6 of IEEE Std 1003.1g standard might be accepted by the time you read this
(use the search engine at www.ieee.org to find out). At the time of writing, the IEEE
Web site listed "P1003.1g, D6.6 March 1998 Protocol Independent Interfaces (Pll)"
as an "unapproved draft," which could be purchased.

The 1003.1g standard defines a more convenient function sockatmark(3) that
will likely be adopted by Linux/GNU in the near future. Its function prototype is as
follows:

#include <sys/socket.h>

int sockatmark(int s);

Where s is the socket to test. The return value is 1 if the socket is at mark, 0 if it is
not, and -1 if there has been an error (check errno for the reason).

With the preceding functionality in mind, a modified oobrecv program will be demonstrated that
receives its data inline, and tests for the urgent data mark as the data is being received.

Using Out-of-Band Data Inline

Listing 14.4 shows a new receiving program oobinline.c, which will receive in-band and out-
of-band data inline. A modified SIGURG signal handler is included so that it will report when urgent
data arrives. This will allow you to observe a number of events.

Example

Listing 14.4: The oobinline.c Receiver Using SO_OOBINLINE

1: /* oobinline.c:
2: *
3: * OOB inline receiver:
4: */
5: #include <stdio.h>
6: #include <unistd.h>
7: #include <stdlib.h>
8: #include <errno.h>
9: #include <string.h>
10: #include <signal.h>
11: #include <fcntl.h>
12: #include <sys/ioctl.h>
13: #include <sys/types.h>
14: #include <sys/socket.h>
15:
16: extern void bail(char *on_what);
17: extern int BindAccept(char *addr);
18:
19: /*
20: * SIGURG signal handler:

continues

Page 372

Listing 14.4: continued

21: */
22: static void
23: sigurg(int signo) {
24:
25: write(1,"[SIGURG]\n",9);
26: signal(SIGURG,sigurg);
27: }
28:
29: /*
30: * Emulate the IEEE Std 1003.1g
31: * standard function sockatmark(3):
32: */
33: static int
34: Sockatmark(int s) {
35: int z;
36: int flag;
37:
38: z = ioctl(s,SIOCATMARK,&flag);
39: if (z == -1)
40: return -1;
41: return flag ? 1 : 0;
42: }
43:
44: int
45: main(int argc.char **argv) {
46: int z; /* Status */
47: int s; /* Socket */
48: int oobinline=1; /* OOB inline */
49: char buf[256];
50:
51:
52: /*
53: * Use a server address from the command
54: * line, if one has been provided.
55: * Otherwise, this program will default
56: * to using the arbitrary address
57: * 127.0.0.1;
58: */
59: s = BindAccept(argc >= 2
60: ? argv[1]
61: : "127.0.0.1:9011");
62:
63: /*
64: * Establish ownership:
65: */
66: z = fcntl(s,F_SETOWN,getpid());
67: if (z == -1)

Page 373

68: bail("fcntl(2)");
69:
70: /*
71: * Catch SIGURG:
72: */
73: signal(SIGURG,sigurg);
74:
75: /*
76: * Receive the OOB data inline:
77: */
78: z = setsockopt(s,
79: SOL_SOCKET,
80: SO_OOBINLINE,
81: &oobinline,
82: sizeof oobinline);
83: if (z == -1)
84: bail("setsockopt(2)");
85:
86: for (;;) {
87: printf("\n[%s]\n",
88: Sockatmark(s)
89: ? "AT MARK"
90: : "No Mark");
91:
92: z = recv(s,buf,sizeof buf,0);
93: if (z == -1)
94: bail("recv(2)");
95: if (z == 0)
96: break;
97: buf[z] = 0;
98:
99: printf("rcv '%s' (%d)\n",
100: buf, z);
101: }
102:
103: close(s);
104: return 0;
105: }

This program is very similar to the oobrecv.c module, so only the differences will be highlighted
here. They are

1. The include file for sys/ioctl.h is added in line 12 for the benefit of ioctl(2) call later in
the program.

2. The signal handler for SIGURG is modified to report only that the signal was raised (lines 22 to
27).

3. A new function Sockatmark() is defined in lines 33 to 42 to emulate the new sockatmark
(3) function.

Page 374

4. The ownership of the socket is set and the signal handler is established as before (lines 66 to 73).
Note that this is not a requirement for using SO_OOBINLINE.

5. The socket option SO_OOBINLINEis set true in lines 78 to 84 using the setsockopt(2)
function.

6. At the start of the forloop, the function Sockatmark() is called and a report is provided to
the terminal session. Either "[AT MARK]" is reported if the socket is at the urgent data mark, or "[No
Mark]" is reported to standard output.

7. The data is received as in-band data (lines 92 to 100).

8. The loop repeats with step 6, until end-file is received on the socket (see the break statement in
line 96).

Now compile the program:

Output

$ make oobinline
gcc -c -D_GNU_SOURCE -Wall -Wreturn-type -g oobinline.c
gcc oobinline.o mkaddr.o bindacpt.o -o oobinline
$

Use the following procedure for this test:

1. In the first terminal session, start the oobinline program.

2. In the second terminal session, start the oobsend program that you previously used.

The terminal session for the sending program should look like this:

Output

$./oobsend
ib: 'In the beginning' (16)
ib: 'Linus begat Linux,' (18)
ib: 'and the Penguins' (16)
OOB 'rejoiced' (8)
ib: 'exceedingly.' (12)
$

Effectively, this terminal session should appear the same as before. The receiving terminal session,
however, should look like this:

TE
AM
FL
Y

Team-Fly®

Output

$./oobinline

[No Mark]
rev In the beginning (16)

[No Mark]
rev 'Linus begat Linux, (18)

Page 375

[No Mark]
rev 'and the Penguins' (16)

[No Mark]
[SIGURG]
rev 'rejoice' (7)

[AT MARK]
rev 'd' (1)

[No Mark]
rev 'exceedingly.' (12)

[No Mark]
$

Notice that, when the string 'rejoiced' was received, the SIGURG signal is raised as it was
before. Note, however, that the mark is not reached until the bytes 'rejoice' are read first. Then
the mark is reached and one more inline byte is received (the d byte again). A few points are worth
noting about this:

• The signal SIGURG arrives as early as possible, as it did when not using inline reads of urgent
data.

• The in-band data must be read in sequence before the out-of-band data can be read.

• Although the transmitted packet includes the entire string 'rejoiced' as one unit, the recv(2)
call stops at the point where the urgent data byte is located (receiving stops short of the d byte).

• A subsequent call to recv(2) is required to read the urgent data. For TCP, this is a single byte d
in the example.

Normally, data is read from a stream socket without implied message boundaries. However, you saw
that a boundary does form when urgent data is read inline. Reading will stop short of the urgent data
byte. If this were not done, you would easily read past the mark.

Limitations of the Urgent Mode Pointer

So far, it has been demonstrated that TCP really can provide only one byte of out-of-band data. This
is because it is implemented using TCP's urgent mode feature of the protocol.

It is tempting to think that the TCP urgent mode and its urgent pointer should make it possible to
mark boundaries of urgent data. However, this cannot be accomplished in practice, because
subsequent sends of out-of-band data overwrite the receiver's original urgent data mark that might
not have been processed yet.

Page 376

This can be demonstrated if you modify the oobsend.c program. Remove all the sleep(3)
function calls and insert one more call to oband(s,"very") after the oband
(s,"rejoiced") function call. The main program should now look like this:

Example

int
main(int argc,char **argv) {
 int s = -1; /* Socket */

 s = Connect(argc >= 2
 ? argv[1]
 : "127.0.0.1:9011");
 iband(s,"In the beginning");
 iband(s,"Linus begat Linux,");
 iband(s,"and the Penguins");
 oband(s,"rejoiced");
 oband(s,"very");
 iband(s,"exceedingly.");
 close(s);

 return 0;
}

When the test is run again, on a fast system, you will receive results like this:

Output

$./oobinline

[No Mark]
rcv 'In the beginning' (16)

[No Mark]
rcv 'Linus begat Linux,' (18)

[No Mark]
[SIGURG]
rcv 'and the Penguinsrejoicedver' (27)

[AT MARK]
rcv 'yexceedingly.' (13)

[No Mark]

$

Notice a few things here:

• Only one SIGURG signal was received.

• There was only one urgent data mark, although two out-of-band writes were made on the sending
end.

Page 377

• The first byte y in the string 'yexceedingly'. was the single out-of-band data byte. The
following bytes were simply the subsequent inband data bytes.

Prior testing depended upon the delays provided by sleep(3) to concoct a controlled set of
physical packets.

NOTE
Some tests, such as the foregoing, might yield different results on different systems
and different networks. The performance level of the CPU and the network will
determine how and when packets are divided up for the stream of data being sent
and received.

As the prior note indicates, your results can vary slightly from the example output shown. Further
variance can be demonstrated when sending from a slow 486 system to a fast Pentium III at the
receiving end. Another receiving pattern can be observed when sending from the faster CPU to the
slower one. When all the sleep(3) calls are removed, other factors decide how the packets are
divided up.

Processing Out-of-Band Data with select(2)

There is insufficient space available in this chapter to explore this particular topic, but some simple
advice on the subject seems appropriate.

Out-of-band data notifications arrive as exceptions for the select(2) function call. You will
recall in Chapter 11, "Concurrent Client Servers," that the select(2) call will block until one or
more of the following events occur:

• A read event (data to be read has arrived)

• A write event (data can now be written)

• An exception (out-of-band data has arrived)

Your program can express interest in exceptions on the sockets involved in the select(2) call.
Then, it can subsequently process out-of-band data by the appropriate call to recv(2) using the
MSG_OOB flag when necessary.

What's Next

This chapter has shown you that the socket API provides a general interface to the use of out-of-
band data. The limitations of TCP urgent mode were apparent in some of the demonstrations that
you ran. However, you know that these limitations do not necessarily extend to other protocols that
might support out-of-band data using sockets.

The next chapter will show you how the inetd daemon is frugal with system resources. You'll also
learn what the requirements are for writing servers, which are launched by inetd.

Page 379

15—
Using the inetd Daemon

Each server running under UNIX offering a service normally executes as a separate process. When
the number of services being offered becomes large, however, this becomes a burden to the system.
This is because resources must be allocated to each server process running, even when there are no
current requests for the services being offered.

Additionally, it can be observed that most server programs use the same general procedure to create,
bind, listen, and accept new client connections. A similar observation can be made for
connectionless server operation.

In this chapter, you will learn about

• What the inetd daemon is

• How inetd solves the server resource utilization issue

• How inetd simplifies the writing of servers

Page 380

Steps Common to Most Servers

If you think back to Chapter 8, ''Connection-Oriented Protocols for Servers," you will recall that the
basic steps a connection-oriented server used to establish contact with a client were the following:

1. Create a socket.

2. Bind a socket to a well-known address.

3. Listen for a client connect.

4. Accept the client connect.

Figure 8.1 outlined these very steps. Now, imagine two different servers, say telnetd for
telnet clients and ftpd for ftp clients. Are steps 1 through 4 going to be any different for either
server? The answer is that these steps are exactly the same for both. You will see that the inetd
daemon can perform these initial steps for any connection-oriented server, saving the server writer
from having to write and debug code for these steps. The inetd daemon idea can be extended to
handle connectionless servers as well.

Introducing inetd

When your Linux system is booted for the first time, the inetd daemon is started from one of the
startup scripts. On Red Hat Linux 6.0 systems, this daemon is started from the script file:

Example

/etc/rc.d/init.d/inet

This script is symbolically linked from various other places including the following noteworthy
links:

/etc/rc.d/rc3.d/S50inet
/etc/rc.d/rc5.d/S50inet

These links initiate inetd when the system is started in the usual run-level 3 or run-level 5
modes.

NOTE
A run-level is simply a systemwide mode of operation. Linux supports several of
these levels. See the init(8) man page for a full discussion of this.

Run-level 3 is normally the run-level used when X Window is not used on a Linux
system. Run-level 5 is usually used to automatically invoke the X Window server on
the console. Note that this is simply a convention and your system conventions
might differ.

Other Linux distributions will have various other clever scripts and filenames to accomplish the
same thing.

Page 381

When the inetd daemon is started for the first time, it must know what Internet services it must
listen for and what servers to pass the request off to when a request arrives. This is defined within
the startup file /etc/inetd.conf.

NOTE
If you are using a company, university, or other shared Linux host, you might find
that the /etc/inetd.conf file has been stripped down for security purposes.
Many sites eliminate nonessential services to avoid vulnerabilities in network
attacks. Some sites might even eliminate running inetd completely.

If this is the case, you will need to coordinate your efforts with the people looking
after the security for the host involved.

The /etc/inetd.conf Configuration File

The general file layout of the /etc/inetd.conf file is organized as a text file, with each text
line representing one record, which describes one Internet service. Lines starting with # are simply
comment lines and are ignored.

The blank (or tab) separated fields are described in Table 15.1 with some examples (fields are listed
in order from left to right).

Table 15.1: The /etc/inetd.conf Configuration Record

Field # Description Example

1. Internet service name telnet (this might also be a port number)

2. Socket type stream or dgram

3. Protocol tcp or udp

4. Flags nowait or wait

5. Userid to use root or nobody

6. Pathname of executable /usr/sbin/in.telnetd

7. Server arguments in.telnetd

Internet Service Name Field

The Internet service name field within the /etc/inetd.conf record is simply an Internet service
name from the /etc/services file, which was covered in Chapter 7, "Connection-Oriented
Protocols for Clients." Refer to Table 7.1 for details. You can perform a quick lookup now in
the /etc/ services file as follows:

Output

grep telnet /etc/services
telnet 23/tcp
rtelnet 107/tcp # Remote Telnet
rtelnet 107/udp
#

Page 382

There, you will see that the service labeled telnet is configured as a tcp service on port number
23. This is how the inetd daemon determines the port number it must listen for connects on.

Alternatively, you can simply supply a port number. You will see an example of this later in this
chapter.

The Socket Type Field

Although the Linux inetd daemon can accept a number of socket types here, only the types
stream or dgram will be discussed for simplicity's sake. For the more curious reader, the inetd
(8) man page also lists socket types raw, rdm, and seqpacket types as additional possibilities.

The stream type corresponds to the SOCK_STREAM socket type for the socket(2) function
call. The value dgram requests a SOCK_DGRAM socket type.

The Protocol Field

As you might guess, this selects the protocol to be used for the socket. This value must be a valid
entry that appears in the /etc/protocols file (see the section in Chapter 7 titled,
"Consulting /etc/protocols File"). Two often-used selections are

• tcp for the TCP protocol

• udp for the UDP protocol

Other possibilities also exist, but these are the most commonly used.

The Flags Field

This field is intended for datagram sockets only. Nondatagram sockets (such as stream tcp, for
example) should specify the value nowait.

Datagram-oriented servers come in two types. They are

• Servers that keep reading UDP packets until they timeout and exit (specify wait for these).

• Servers that read one packet and exit (specify nowait for these).

This information is needed by inetd because the handling of dgram traffic is more complex than
it is for stream-oriented protocols. This helps the daemon determine how it should handle future
dgram connects while the server for that service is running. This will be explained in detail later in
this chapter.

Page 383

The UserID Field

The inetd daemon runs under the root account. This gives it the capability to change its identity to
another user account, if it chooses to do so (see setuid(2) for details). It is recommended to run
servers with the least amount of privilege necessary to carry out their job, for security purposes.
Consequently, servers often run under a more limited userID such as nobody, for example.

Some servers, however, must be run as root, so you'll sometimes see the userID specified this way.

The Pathname Field

This field simply informs inetd what the full pathname of the executable file is. This is the
executable file that is executed by exec(2) after the daemon calls fork(2) .

The Server Arguments Field

All remaining fields on the /etc/inetd.conf configuration line are provided as command-line
arguments to the server being invoked with exec(2) . One common source of confusion is that
these arguments start with the argument argv[0]. This allows the command name to differ from
the pathname. This is useful when one executable exhibits different personalities depending upon its
name.

The Design Parameters of inetd Servers

One of the advantages of using inetd as the front end for servers is that the server writer's job is
made easier. There is no longer the burden of writing the same socket(2), bind(2) , listen
(2), and accept(2) calls for stream tcp servers, for example. Similar code savings can be
had for dgram udp servers, also. How then, does the inetd server hand off the connected socket
to the server process when the process is started?

Using the simple elegance of UNIX, the started server is handed the client socket on the following
file units (file descriptors):

• File unit 0 has client socket for standard input

• File unit 1 has client socket for standard output

• File unit 2 has client socket for standard error

With this design in place, it is possible that some servers will not require a single socket function
call. All of the server I/O can be performed on the normal standard inputs, output, and error file
units. Later, a simple demonstration program will show how standard output is used in this manner.

TE
AM
FL
Y

Team-Fly®

Page 384

Implementing a Simple stream tcp Server

You will recall that in Chapter 8 a small program was introduced in Listing 8.1. Take a moment now
to review that program. Listing 15.1 shows new code for the very same server, except that it is
designed for use by the inetd daemon.

Example

Listing 15.1: inetdserv.c— The inetd Version of the Listing 8.1 Server

1: /* inetdserv.c:
2: *
3: * Example inetd daytime server:
4: */
5: #include <stdio.h>
6: #include <unistd.h>
7: #include <stdlib.h>
8: #include <errno.h>
9: #include <string.h>
10: #include <time.h>
11: #include <sys/types.h>
12:
13: /*
14: * This function reports the error and
15: * exits back to the shell:
16: */
17: static void
18: bail(const char *on_what) {
19: if (errno != 0) {
20: fputs(strerror(errno),stderr);
21: fputs(": ",stderr);
22: }
23: fputs(on_what,stderr);
24: fputc('\n',stderr);
25: exit(1);
26: }
27:
28: int
29: main(int argc,char **argv) {
30: int z;
31: int n;
32: time_t td; /* Current date&time */
33: char dtbuf[128]; /* Date/Time info */
34:
35: /*
36: * Generate a time stamp:
37: */
38: time(&td);
39: n = (int) strftime(dtbuf,sizeof dtbuf,

Page 385

40: "%A %b %d %H:%M:%S %Y\n",
41: localtime(&td));
42:
43: /*
44: * Write result back to the client:
45: */
46: z = write(1,dtbuf,n);
47: if (z == -1)
48: bail("write(2)");
49:
50: return 0;
51: }

Notice how simple this program is compared to the one in Listing 8.1. Note the following
differences (line number references refer to Listing 15.1):

• No socket include files were necessary (lines 5 through 11).

• No socket address structures were needed (lines 30 to 33).

• No socket calls whatsoever. Note that the program immediately starts the task at hand (lines 38 to
48 generate a date and time string).

Because this program no longer uses socket functions, it can be easily tested from the shell as
follows:

Output

$ make inetdserv
gcc -c -D_GNU_SOURCE -Wall -Wreturn-type inetdserv.c
gcc inetdserv.o -o inetdserv
$./inetdserv
Tuesday Nov 02 16:29:45 1999
$

Recall that this is similar to the daytime service on port 13:

Output

$ telnet 192.168.0.1 13
Trying 192.168.0.1 . . .
Connected to 192.168.0.1.
Escape character is '^]'.
Tue Nov 2 16:31:09 1999
Connection closed by foreign host.
$

The only real difference in format is that our program shows the full weekday name. It is time now
to demonstrate how this program functions with the help of the inetd daemon.

Configuring /etc/inetd.conf to Invoke a New Server

To make our simple new server useful (or at least as useful as the daytime server), we must alter
the configuration file that is used by the inetd daemon. Now might be a good time to review Table
15.1 if you need to.

Page 386

Establishing the Executable

It has been assumed here that you compiled the inetdserv program earlier. To keep the steps
simple here, enter the following commands:

Example

$ cp inetdserv /tmp/inetdserv
$ chmod a+rx /tmp/inetdserv

The previous two steps copy the server executable to a known location, and ensure that it is
executable.

Establishing the Service

For this test, add one line to the /etc/inetd.conf file (make this the last line of the file). After
this is accomplished with vi or your favorite editor, you should be able to list it as follows:

Output

$ tail -1 /etc/inetd.conf
9099 stream tcp nowait root /tmp/inetdserv inetdserv

NOTE
You will need to su to root to modify your /etc/inetd.conf file.

CAUTION
You should exercise extreme caution when editing a system file such
as /etc/inetd.conf . As a precaution, make a backup copy of this file as
follows:

cp /etc/inetd.conf /tmp/inetd.bak

If you need to restore the contents of your configuration file, you can restore it as
follows:

cp /tmp/inetd.bak /etc/inetd.conf

Also be extra careful to remove any test entries you have added later, when you no
longer need them. This should be done to avoid leaving ports available, which might
be exploited by hackers from the Internet.

Now, let's review what this last line means to inetd:

• Because your new service does not have a name in the /etc/services file, the first field
simply contains the port number you want to use. Port 9099 was chosen here.

• The second field contains stream so that TCP stream sockets will be used.

• The third field contains tcp to indicate that we want a TCP stream, as opposed to some other
protocol stream.

• The fourth field is specified as nowait, which is what is required for TCP stream
entries.

Page 387

• The fifth field is given as root in this example. Your normal userID could be used here (but be
sure that appropriate permission to execute /tmp/inetdserv exists, however).

• The pathname /tmp/inetdserv is given as the sixth field. This is the pathname of the
executable that will be executed when a connect arrives on the socket.

• The seventh field is specified as inetdserv in this example. In this particular case, our server
program pays no attention to the value of argv[0], and just about any value would do here.

Now, before we actually connect to this service, perform one more test to be certain things are
ready:

Output

$ /tmp/inetdserv
Tuesday Nov 02 16:52:33 1999
$

If you fail to receive the output shown, then check to be certain that you have copied the file with
the correct filename. Additionally, make certain that the file has appropriate execute permissions.
After this functionality has been demonstrated as shown, you are ready to let inetd know that a
change has been made to its configuration.

Alerting inetd to Configuration Changes

To indicate to inetd that changes have occurred, you must change to root and perform the
following:

Example

ps -ax | grep inetd
 314 ? S 0:00 inetd
kill -HUP 314
#

Your process ID might not be 314 as shown— in fact, it's likely to be different. The steps that were
used were as follows:

1. List the process ID of the inetd daemon with the ps command filtered by the grep command.

2. Send a SIGHUP signal to inetd to tell it to reread its /etc/inetd.conf configuration file.
This does not terminate the process.

After the inetd has been signaled, you might want to check whether your configuration change
has been accepted. One way of checking this is to perform the following:

Page 388

Output

lsof -i
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
portmap 238 root 3u inet 369 UDP *:sunrpc
portmap 238 root 4u inet 370 TCP *:sunrpc (LISTEN)
inetd 314 root 4u inet 474 TCP *:ftp (LISTEN)
inetd 314 root 5u inet 475 TCP *:telnet (LISTEN)
inetd 314 root 6u inet 476 TCP *:login (LISTEN)
inetd 314 root 8u inet 477 TCP *:exec (LISTEN)
inetd 314 root 10u inet 478 TCP *:auth (LISTEN)
inetd 314 root 11u inet 1124 TCP *:9099 (LISTEN)
inetd 314 root 12u inet 1163 TCP *:daytime (LISTEN)
named 342 root 4u inet 531 UDP *:1024
. . .

The line in the output showing the node name TCP *:9099 indicates the new service that was
added for the new server. Note that the left side shows that inetd is the process listening for
connects on this port 9099. The TCP *:9099 tells you that TCP port 9099 will accept connects
from any port (the asterisk indicates a wild server address).

Testing the New Service

Test out the new inetd service by trying the localhost address:

Output

$ telnet localhost 9099
Trying 127.0.0.1 . . .
Connected to localhost.
Escape character is '^]'.
Tuesday Nov 02 17:10:37 1999
Connection closed by foreign host.
$

You will recall that localhost is usually configured to be your local loop-back address of
127.0.0.1 (try that, too). If you have an Ethernet card installed, try its interface address. Your
output should look similar to this:

Output

$ telnet 192.168.0.1 9099
Trying 192.168.0.1 . . .
Connected to 192.168.0.1.
Escape character is '^]'.
Tuesday Nov 02 17:13:28 1999

Connection closed by foreign host.
$

This output confirms the fact that connects are permitted from any interface. Now compare to your
existing daytime service (if you have it enabled). Don't forget to add the port 13 argument on the
command line:

Page 389

Output

$ telnet 192.168.0.1 13
Trying 192.168.0.1 . . .
Connected to 192.168.0.1.
Escape character is '^]'.
Tue Nov 2 17:16:57 1999
Connection closed by foreign host.
$

Note that the weekday name is abbreviated, unlike your server's output.

Disabling the New Service

Now su to root again, and remove your custom server entry from the /etc/inetd.conf file
(assuming that you are now finished with it). Then, resignal the daemon as follows:

Example

ps -ax | grep inetd
 314 ? S 0:00 inetd
kill -HUP 314
#

Your process ID might not be 314 as shown— in fact, it's likely to be different. Substitute the one
that you see instead.

CAUTION
Be sure to remove your inetd entry now, if you are finished with it. Be sure to signal
inetd with SIGHUP (kill -HUP) after you have removed the entry. This is
recommended to avoid having someone attempt to exploit your little demonstration
server from the Internet.

Datagram Servers with inetd

This chapter has focused so far on the use of TCP stream sockets for inetd. When datagram server
ports are established by inetd, a special consideration is added. This was hinted at by the
description of the wait and nowait flag values earlier in this chapter.

Let's review the inetd steps used as they apply to UDP servers:

1. The inetd server listens on the UDP port that your UDP server will service requests on.

2. The select(2) call used by inetd indicates that a datagram has arrived on the socket (note
that inetd does not read this datagram).

3. The inetd server calls fork(2) and exec(2) to start your UDP
server.

4. Your UDP server uses file unit zero (stdin) to read one UDP
packet.

TE
AM
FL
Y

Team-Fly®

Page 390

Steps 1 to 4 are identical to our TCP stream scenario. However, after processing the first (single)
UDP packet received in step 4, the UDP server has two basic choices:

• Exit (terminate)

• Wait for more UDP packets (and exit only after a timeout occurs).

A little careful thought suggests that starting a new process for each UDP packet might be somewhat
taxing on the system if the UDP packets arrive frequently. For this reason, rather than immediately
exit, some UDP servers loop back and attempt to read subsequent UDP packets after servicing the
first one. A timeout is used so that the process will give up and exit if nothing farther arrives. When
that happens, the inetd daemon takes over the watch again, for new UDP packets.

Understanding wait and nowait

A datagram server that simply processes one datagram and then exits should use the nowait flag
word. This tells inetd that it may launch additional server processes when additional datagrams
arrive. This is necessary because each process started is going to process only one datagram.

For other datagram servers that attempt to read more datagrams, you should use the wait flag
word. This is necessary because the server process that inetd starts is going to process subsequent
datagrams until it terminates. The wait flag word tells inetd not to launch any more servers for
that port until the wait(2) system call informs inetd (with the help of signal SIGCHLD) that
your datagram server has terminated. Otherwise, inetd would start additional server processes that
are unnecessary. Let's restate this in a systematic fashion:

1. The inetd server starts your looping UDP server process because of an incoming

2. The inetd server waits for other unrelated events based upon its configuration: It will currently
ignore the present UDP port because your datagram server has been started to process those. Note
that this behavior is being used because the service was configured with the wait flag word
(inetd cannot determine what kind of server the executable represents).

3. Your datagram server finishes processing the first UDP datagram.

4. Your datagram server attempts to read another UDP datagram from the standard input (the
datagram socket).

5. A timeout eventually occurs in your datagram server because no more datagrams are arriving—
your datagram server process terminates by calling exit(3).

Page 391

6. The signal SIGCHLD is raised in inetd (remember that inetd is the parent process of your
server).

7. The inetd server calls wait(2) to determine the process ID and termination status of your
server process.

8. The inetd daemon notes that the process ID returned by wait(2) belonged to your datagram
server. It notes the fact that it must now watch for any new datagrams because there is currently no
process waiting to service them.

Remember the following important points about inetd when defining datagram
services:

• The inetd daemon cannot determine whether the configured datagram server requires the wait
or nowait parameter. You must know and provide the correct flag word for the server.

• The wait flag word means that another server process will not be started unless the previously
started process (if any) has terminated.

• Specifying nowait for a wait datagram server will unnecessarily duplicate server processes.

• Specifying wait for a nowait datagram server will hurt the server performance for that service.
This happens because additional processes will not be started until the present process completes.

Also, remember that stream services should always use the nowait flag word. This allows
multiple clients to be serviced at the same time (one server process for each connecting client). If the
wait flag word is used instead for stream services, only one client connection will be serviced at
one time (this is seldom desirable).

What's Next

This chapter has been a brief introduction to the inetd daemon. You have learned how to install a
test stream service. You saw how the simple server program simply used file unit 1 (stdout)
to write its reply back to the client. Additionally, it was shown in that example that there was no
socket code required at all. Although this is not always the case, you saw how the inetd daemon
takes care of a lot of networking detail for you.

You also learned that datagram servers have special needs. This is due to the connectionless mode of
operation that datagram servers use.

The next chapter continues to discuss inetd as it applies to network security. There, you will learn
about the TCP wrapper concept that was pioneered by Wietse Venema. Additionally, you will learn
that the wait type of datagram server poses even more challenges.

Page 393

16—
Network Security Programming

Up to this point in the book, you have focused on learning how to write socket-enabled programs,
whether they be client or server programs. No consideration has been given to securing your
programs against external threats, which can come from the Internet or from hostile users within
your own local area network (at a university, for example). This chapter will introduce you to

• How the inetd daemon can be used with the TCP wrapper concept to provide screening of
clients

• How the TCP wrapper concept works

• How the TCP wrapper concept falls short in some areas

When you complete this chapter, you will fully understand how the TCP wrapper concept works and
know how to apply it to servers that you might administer or write yourself.

Page 394

Defining Security

The Merriam Webster's Collegiate Dictionary defines security in a number of ways. There are two
definitions which are of particular interest to you here:

• The quality or state of being secure as freedom from danger.

• Measures taken to guard against espionage or sabotage, crime, attack, or escape.

When network security is discussed, certainly the first point applies: You want to be free from any
perceived threat. Secondly, you must guard your system resources from being examined without
permission, sabotaged in some manner, stolen, or otherwise attacked. Your written works that are
not public must not ''escape" from your system without permission.

The complexity of this task and the broadness of its application make it impossible to fully treat this
subject in one chapter. However, some aspects of network security apply directly to socket
programming, and you should not ignore the dangers that exist. A few simple measures presented in
this chapter will help prevent your servers from being exploited or attacked. You will learn where
vulnerabilities exist and what you can do about them.

The Challenges of Security

If you review all the everyday situations in which security is at work, you boil down the common
elements to locks. Locks take different forms:

• Hired armed guards

• Key- and card-based locks

• Combination locks, passwords, and PIN
numbers

• Retina, fingerprint, and voice print scans

Armed guards are given conditions to enforce and the means to apply force if it becomes necessary.
This form does not apply to our discussion well, because these are human agents applying a
screening process.

Key- and card-based locks require access to physical tokens to grant access. The key might be a car
or house key, for example. Card locks use a magnetic stripe, which provides the identification.

Combination locks, passwords, and PIN numbers identify the person by the knowledge of a secret.
Some security systems combine a physical token with a secret: ATM bank cards, for example,
require both the bank card and the PIN number.

Page 395

The retina, fingerprint, and voice print scan methods all rely on the principle that each person has
unique features. Consequently, people are directly identified by these characteristics.

Every one of these methods can be foiled. Table 16.1 provides a sample of ways in which these
security methods can be defeated.

Table 16.1: Security Methods and Weaknesses

Security Method Weakness

Key lock Keys can be copied and locks can be picked.

Card lock system Magnetic stripes from one card can be copied to a new
plastic card.

Combination lock Combinations can be shared, or left written down
somewhere. Safe-crackers can exploit weaknesses (sound)
in a mechanical combination lock.

Password, PIN number Passwords can be shared, or left written down somewhere.
Simple passwords can be guessed by chance, brute force, or
by knowing information about the owner. Software can try
dictionary attacks, using common words and names.
Passwords can also be obtained by force.

Retina, fingerprints, and so on The person can be forced at gunpoint to identify himself to a
machine. Sometimes these "prints" might be copied and
presented in a manner that will fool the identification
machinery.

You can probably think of more ways these systems can suffer breaches of security. The point of
this exercise is to point out one fundamental truth about security:

Any system that permits one person to gain access is potentially able to permit other persons
access as well.

This leads us to consider the possible corollary that

The only completely secure system is to which no one can gain access.

This situation is unfruitful to take seriously and is difficult to prove. This leads to a conclusion:

One must always be concerned about security as it applies to proper and safe access to
resources.

Granting or denying access to resources on a computer is a simple matter when the identity has been
established. Network security, however, poses some additional challenges because it is even more
difficult to establish a remote identity. This is akin to verifying the author of a letter from some
remote location of our planet.

Page 396

With that as the backdrop, let's now dive into network security as it applies to socket programming.

Identifying Friend or Foe

Chapter 17, "Passing Credentials and File Descriptors," will show you that you can identify a local
user of your server with a high degree of confidence using credentials. When the user of your server
is remote, however, this same level of confidence is not easy to achieve.

In this chapter, we'll be relying on the peer's network address to identify the user of a resource. This
is not a bulletproof technique, however, because the peer's address can be spoofed under the right
conditions. Nevertheless, it does provide a simple first-level defense against attacks.

After you have the IP number, you can also look up the client's registered host and domain name.
This provides an extra level of screening that requires more effort on the attacker's part.

Resolved host and domain names allow your server to apply the following types of access policies:

• Grant access to specific hostnames

• Grant access to specific domains

• Deny access to specific hostnames

• Deny access to specific domains

• Deny access to IP numbers that do not resolve to a name

The following section will discuss aspects of these different policies.

Securing by Hostname or Domain Name

When a client connects to your server, you will recall that the server receives the socket address of
the client from the function call to accept(2). The following code fragment extracted from
Listing 8.1 shows an example of this:

Example

struct sockaddr_in adr_clnt;/* AF_INET */
int len_inet; /* length */
int c; /* Client socket */

. . .
len_inet = sizeof adr_clnt;
c = accept(s,
 (struct sockaddr *)&adr_clnt,
 &len_inet);

Page 397

Datagram servers obtain the client's address from the recvfrom(2) function. The following is a
code excerpt from Listing 6.1:

Example

int z;
struct sockaddr_in adr_clnt;/* AF_INET */
int len_inet; /* length */
int s; /* Socket */
char dgram[512]; /* Recv buffer */

len_inet = sizeof adr_clnt;
z = recvfrom(s, /* Socket */
 dgram, /* Receiving buffer */
 sizeof dgram, /* Max recv buf size */
 0, /* Flags: no options */
 (struct sockaddr *)&adr_clnt,/* Addr */
 &len_inet); /* Addr len, in & out */

After the client's address has been obtained in either type of server, you then apply the techniques
from Chapter 9, "Hostname and Network Name Lookups," using the gethostbyaddr(3)
function. Here is another code excerpt from Listing 9.8 to review how a client's IP number is
resolved to a hostname:

Example

struct sockaddr_in adr_clnt;/* AF_INET */
struct hostent *hp; /* Host entry ptr */

hp = gethostbyaddr(
 (char *)&adr_clnt.sin_addr,
 size of adr_clnt.sin_addr,
 adr_clnt.sin_family);

if (!hp)
 fprintf(logf," Error: %s\n",
 hstrerror(h_errno));
else
 fprintf(logf," %s\n",
 hp->h_name);

After the server has the fully qualified hostname in hp->h_name, it is able to apply any grant or
deny policy that the program designer wants.

Identifying by IP Number

Although it is convenient for humans to work with system hostnames and domain names, there are

security problems associated with this method of identification. When the IP number is received by
the server, it must then use another network process (initiated by gethostbyaddr(3)) to resolve
that number into a hostname. It is quite conceivable that the attacker has set

Page 398

up his private name server to lie about his IP number. For this reason, it is sometimes preferable to
base security decisions upon IP number alone.

Another compromise that can be used is to grant access based upon IP number alone, but log both
the IP number and the resolved name together in the log file for your server. This provides good
security while providing some measure of convenience when viewing the history logs. When
mysterious activity occurs, you can then check both the IP number and the apparent name that was
resolved at that time.

Using IP numbers for security provides additional challenges for the server's administrator. The
administrator must update IP numbers if your client changes his IP number, although his hostname
and domain name remain unchanged.

Another challenge that awaits the administrator when securing by IP number is that he might end up
dealing with users who do not know what their IP number is. You might be able to get the hostname
and domain name information from them, however. With this information, you can use the
nslookup(1) command to determine the client's IP number and then configure that number.
Then, contact the client and have them confirm that it works.

Finally, some clients will use different IP numbers every time they start their workstation— when
they use DHCP, for example. Their IP number is assigned from a pool of available IP numbers that
are determined by their administrator. The best you can do in this situation is to get in touch with
their administrator to find out more about the pool of IP numbers that they will be drawing from. In
these cases, you will often just restrict access at a network ID level (review Figure 3.1 in Chapter 3,
"Address Conversion Functions," if necessary).

Securing inetd Servers

So far, the discussion has been around customized code within each server to carry out your security
policy. This has a number of disadvantages:

• Code to manage security must be built in to each server that is exposed to hostilities.

• Each server must go through rigorous testing to verify its accuracy and resilience against attack.

• Multiple points of access allow additional points of weakness to be exploited.

The first two points speak well for themselves. The last point is illustrated by the problem of
securing many doors when a shopping mall closes. When

Page 399

several doors must be locked, it is far easier to overlook one of them. Additionally, it is far more
likely that one door will be found with weaknesses that can be exploited. For all these reasons, it is
desirable to put security policy into a centralized module.

Centralized Network Policy

In the last chapter, you saw how the inetd daemon made server design simpler. The inetd
daemon provides all the server code necessary to listen for client requests and start the server only
when it is necessary to do so. The inetd daemon provides one additional level of convenience: It
allows a centralized network security model to be installed.

If you are using one of the newer Linux distributions such as Red Hat Linux 6.0, then you already
have Wietse Venema's TCP wrapper program being invoked by inetd. To verify this, grep for
the entry for telnetd, as follows:

Output

grep telnet /etc/inetd.conf
telnet stream tcp nowait root /usr/sbin/tcpd in.telnetd
#

From the example output, you see that inetd invokes the executable /usr/sbin/tcpd when a
telnet request arrives. If you also grep for ftp, you will see that /usr/sbin/tcpd
(hereafter simply referred to as tcpd) is also invoked for that service. So, what does this tcpd
program do?

It should be emphasized that this tcpd program inserts itself between inetd and the server
(telnetd , for example). This is done in a transparent way, because it does not perform any input
or output on the socket. The tcpd program simply applies its network security rules and then
invokes the intended server if access is granted.

From the grep example shown earlier, the tcpd program is provided the string in.telnetd as
its command name (its argv[0] value). This tells tcpd what server to invoke if access is to be
granted. If access is denied for any reason, the attempt is logged and the socket is closed (when
tcpd exits), without invoking the server.

Understanding the TCP Wrapper Concept

Figure 16.1 shows how you can visualize the role of tcpd as it interacts with inetd and the
resulting server.

TE
AM
FL
Y

Team-Fly®

Page 400

Figure 16.1:
This graphical representation of the TCP wrapper concept

illustrates the relationship of the processes involved.

Let's review the process of a remote client connecting to your in.telnetd server:

1. The client uses his telnet client command to issue a connect request to your machine's
telnet daemon.

2. Your Linux host is using inetd, which has been configured to listen on port 23 for telnet
requests. It accepts the connection request from step 1.

3. The /etc/inetd.conf configuration file directs your inetd server to fork(2) a new
process. The parent process goes back to listening for more connects.

4. The child process from step 3 now calls exec(2) to execute the /usr/sbin/tcpd TCP
wrapper program.

5. The tcpd program determines whether the client should be given access or not. This is
determined by the combination of the socket addresses involved and the configuration
files /etc/hosts.deny and /etc/hosts.allow.

6. If access is to be denied, tcpd simply terminates (this causes file units 0, 1, and 2 to be closed,
which are the socket file descriptors).

7. If access is to be granted, the executable that is to be started is determined by tcpd's argv
[0] value. In this example, the name is in.telnetd. This specifies the executable
pathname /usr/sbin/in.telnetd, which is passed to the exec(2) function to load and
execute.

8. The server now runs in place of tcpd with the same process ID that tcpd formerly had. The
server now performs input and output on the sockets (file units 0, 1, and 2).

Page 401

Step 7 is important— it is where the server process is started by the exec(2) function call from
within tcpd. This maintains the important parent/child relationship between inetd and the (child)
server process. When the wait flag word is used, the inetd daemon can start the next server only
when it detects that the current child process has ended. This works correctly only when the server
process is a direct child process of the parent inetd. Numbers might help make this easier to
digest:

1. The inetd daemon has process ID 124 for this example.

2. The inetd daemon calls fork(2) to start a child process. This child process ID is now 1243
for this example.

3. The inetd child process (PID 1243) now calls exec(2) to
start /usr/sbin/tcpd.

4. Note that tcpd is now running as PID 1243 (recall that exec(2) uses the same process
resources to start a new program, while discarding the original program that called exec(2)).

5. The tcpd eventually calls exec(2) again, when access is to be granted. This starts the new
server, which is /usr/sbin/in.telnetd in this example.

6. Note that the server /usr/sbin/in.telnetd still is PID 1243 because exec(2) does not
create a new process (see notes in step 4).

7. Server in.telnetd eventually exits (PID 1243
terminates).

8. Parent process inetd (PID 124) receives a SIGCHLD signal to indicate that its child process ID
1243 has terminated. This will cause inetd to call upon wait (2) to determine which child
process has terminated.

From this list of steps, you can see how cleverly inserted the tcpd wrapper program is. This
program never actually performs I/O on the sockets— this would disturb the protocol being used
(telnet or otherwise).

Determining Access

You might still have two questions at this point:

1. How does the TCP wrapper program determine what service it is securing (telnet, ftp, and
so on)?

2. How does it determine who the client is?

Now, let's briefly state each solution in the following sections.

Page 402

Determining the Service

The tcpd program can determine the service it is protecting by calling upon the getsockname
(2) function. Remember that function? It not only returns the socket address that the client was
connecting to, but it indicates the port number of the service. In the previous examples, the port
number was 23 (the telnet service).

Determining the Client Identity

Because the tcpd program was not the one that executed the accept(2) function call (this was
done by inetd), it must determine who the client is. As you've probably guessed, this is done with
the getpeername(2) function. You will recall that this function retrieves the address and port
number of the remote client, in the same manner as getsockname(2).

Determining the Datagram Client Identity

Determining the identity of a datagram client is a bit trickier. The astute reader might have
wondered about this in the previous section, because datagrams do not use the accept(2)
function call. It is also not possible to use getpeername(2) on datagram sockets because each
datagram can potentially come from different clients. The client's address is returned by the
recvfrom(2) function call. How, then, can tcpd determine the client's identity without actually
reading the server's datagram?

It turns out that tcpd is able to cheat. The client's address and port number can be determined by
calling recvfrom(2) using the flag option MSG_PEEK. Example code is shown as follows:

Example

int z;
struct sockaddr_in adr_clnt;/* AF_INET */
int len_inet; /* length */
int s; /* Socket */
char dgram[512]; /* Recv buffer */

len_inet = sizeof adr_clnt;
z = recvfrom(s, /* Socket */
 dgram, /* Receiving buffer */
 sizeof dgram, /* Max recv buf size */
 MSG_PEEK, /* Flags: Peek at data */
 (struct sockaddr *)&adr_clnt,/* Addr */
 &len_inet); /* Addr len, in & out */

Notice the flag option MSG_PEEK. This option directs the kernel to carry out the recvfrom(2)
call as normal except that the datagram is not to be removed from the queue as "read." This allows
the tcpd program to "peek" at the datagram that the server will subsequently read, if access is
granted.

Page 403

Notice that the data itself is not important here. What this MSG_PEEK operation accomplishes is that
it returns the client's IP address (in the example, this is placed into adr_clnt). The wrapper
program can determine from the variable adr_clnt whether this datagram should be processed by
the server or not.

So far, you have digested the theory behind the TCP wrapper concept. Next, you'll see this idea
illustrated in the concrete form of example programs.

Installing Wrapper and Server Programs

This section will present a simple datagram server and a corresponding TCP wrapper program. The
wrapper program implements a very simple security policy.

Examining Server and Wrapper Logging Code

The server and wrapper program share a few functions for logging purposes. These logging
functions are presented in Listing 16.1.

Example

Listing 16.1: log.c— Logging Functions Used by Server and Wrapper

1: /* log.c
2: *
3: * Logging Functions:
4: */
5: #include <stdio.h>
6: #include <unistd.h>
7: #include <stdlib.h>
8: #include <string.h>
9: #include <stdarg.h>
10: #include <errno.h>
11:
12: static FILE *logf = NULL; /* Log File */
13:
14: /*
15: * Open log file for append:
16: *
17: * RETURNS:
18: * 0 Success
19: * -1 Failed.
20: */
21: int
22: log_open(const char *pathname) {
23:
24: logf = fopen(pathname,"a");
25: return logf ? 0 : -1;

continues

Page 404

Listing 16.1: continued

26: }
27:
28: /*
29: * Log information to a file:
30: */
31: void
32: log(const char *format,. . .) {
33: va_list ap;
34:
35: if (!logf)
36: return; /* No log file open */
37:
38: fprintf(logf,"[PID %ld] ", (long)getpid());
39:
40: va_start(ap,format);
41: vfprintf(logf,format,ap);
42: va_end(ap);
43: fflush(logf);
44: }
45:
46: /*
47: * Close the log file:
48: */
49: void
50: log_close(void) {
51:
52: if (logf)
53: fclose(logf);
54: logf = NULL;
55: }
56:
57: /*
58: * This function reports the error to
59: * the log file and calls exit(1).
60: */
61: void
62: bail(const char *on_what) {
63:
64: if (logf) { /* Is log open? */
65: if (errno) /* Error? */
66: log("%s: ",strerror(errno));
67: log("%s\n",on_what); /* Log msg */
68: log_close();
69: }
70: exit(1);
71: }

Page 405

The major components present in Listing 16.1 are the following:

• A log_open() function to open the log file (lines 21 to 26).

• A printf(3) styled logging function log() (lines 31 to 44). This function provides the
convenience of printf(3) , while ensuring that the process ID is always part of the log message
(see line 38).

• A log_close() function to close the log file (lines 49 to 55).

• A modified version of the bail() function that writes its output to the log file instead of
stderr (lines 61 to 71).

The include file that is used by the referencing programs is shown in Listing 16.2.

Example

Listing 16.2: log.h— The log.h Header File

1: /* log.h
2: *
3: * log.c externs:
4: */
5: extern int log_open(const char *pathname);
6: extern void log(const char *format,. . .);
7: extern void log_close(void);
8: extern void bail(const char *on_what);

Listing 16.2 simply defines the function prototypes for the logging functions shown previously in
Listing 16.1.

Examining the Datagram Server Code

This section illustrates a datagram server that processes the first datagram and then loops back for
more. If no further datagrams arrive within eight seconds, the server times out and exits. The inetd
daemon will not start another server until it is notified of this server's termination
(the /etc/inetd.conf entry must use the wait flag word).

Listing 16.3 shows the code used for the datagram server program.

Example

Listing 16.3: dgramisrvr.c— The inetd Datagram Server

1: /* dgramisrvr.c:
2: *
3: * Example inetd datagram server:
4: */

5: #include <stdio.h>
6: #include <unistd.h>
7: #include <stdlib.h>
8: #include <stdarg.h>

continues

Page 406

Listing 16.3: continued

9: #include <errno.h>
10: #include <string.h>
11: #include <sys/types.h>
12: #include <sys/time.h>
13: #include <sys/socket.h>
14: #include <netinet/in.h>
15: #include <arpa/inet.h>
16:
17: #include "log.h"
18:
19: #define LOGPATH "/tmp/dgramisrvr.log"
20:
21: int
22: main(int argc,char **argv) {
23: int z;
24: int s; /* Socket */
25: int alen; /* Length of address */
26: struct sockaddr_in adr_clnt; /* Client */
27: char dgram[512]; /* Receive buffer */
28: char dtfmt[512]; /* Date/Time Result */
29: time_t td; /* Current Time and Date */
30: struct tm dtv; /* Date time values */
31: fd_set rx_set; /* Incoming req. set */
32: struct timeval tmout; /* Timeout value */
33:
34: /*
35: * Open a log file for append:
36: */
37: if (log_open(LOGPATH) == -1)
38: exit(1); /* No log file! */
39:
40: log("dgramisrvr started. \n");
41:
42: /*
43: * Other initialization:
44: */
45: s = 0; /* Our socket is on std input */
46: FD_ZERO(&rx_set); /* Initialize */
47: FD_SET(s,&rx_set); /* Notice fd=0 */
48:
49: /*
50: * Now wait for incoming datagrams:
51: */
52: for (;;) {
53: /*
54: * Block until a datagram arrives:

Page 407

55: */
56: alen = sizeof adr_clnt;
57:
58: z = recvfrom(s, /* Socket */
59: dgram, /* Receiving buffer */
60: sizeof dgram, /* Max recv size */
61: 0, /* Flags: no options */
62: (struct sockaddr *)&adr_clnt,
63: &alen); /* Addr len, in & out */
64:
65: if (z < 0)
66: bail("recvfrom(2)");
67:
68: dgram[z] = 0; /* NULL terminate dgram */
69:
70: /*
71: * Log the request:
72: */
73: log("Got request '%s' from %s port %d\n",
74: dgram,
75: inet_ntoa(adr_clnt.sin_addr),
76: ntohs(adr_clnt.sin_port));
77:
78: /*
79: * Get the current date and time:
80: */
81: time(&td); /* current time & date */
82: dtv = *localtime(&td);
83:
84: /*
85: * Format a new date and time string,
86: * based upon the input format string:
87: */
88: strftime(dtfmt, /* Formatted result */
89: sizeof dtfmt, /* Max size */
90: dgram, /* date/time format */
91: &dtv); /* Input values */
92:
93: /*
94: * Send the formatted result back to the
95: * client program:
96: */
97: z = sendto(s, /* Socket */
98: dtfmt, /* datagram result */
99: strlen(dtfmt), /* length */
100: 0, /* Flags: no options */

continues

Page 408

Listing 16.3: continued

101: (struct sockaddr *)&adr_clnt,
102: alen);
103:
104: if (z < 0)
105: bail("sendto(2)");
106:
107: /*
108: * Wait for next packet or timeout:
109: *
110: * This is easily accomplished with the
111: * use of select(2).
112: */
113: do {
114: /* Establish Timeout = 8.0 secs */
115: tmout.tv_sec = 8; /* 8 seconds */
116: tmout.tv_usec = 0; /* + 0 usec */
117:
118: /* Wait for read event or timeout */
119: z = select(s+1,&rx_set,NULL,NULL,&tmout);
120:
121: } while (z == -1 && errno == EINTR);
122:
123: /*
124: * Exit if select(2) returns an error
125: * or if it indicates a timeout:
126: */
127: if (z <= 0)
128: break;
129: }
130:
131: /*
132: * Close the socket and exit:
133: */
134: if (z == -1)
135: log("%s: select(2)\n",strerror(errno));
136: else
137: log("Timed out: server exiting.\n");
138:
139: close(s);
140: log_close();
141: return 0;
142: }

The server code is organized simply as one main() program. The basic steps used by this server
can be described as follows:

TE
AM
FL
Y

Team-Fly®

Page 409

1. The log file is opened, and the process ID and the startup message is logged to the log file (lines
37 to 40).

2. The socket given to this server from inetd is on file units 0, 1 , and 2. The server will use file
unit 0 for this purpose (line 45).

3. The variable rx_set is initialized for use with select(2) by the macro calls in lines 46 and
47.

4. The server loop starts in line 52. This server loops, and so the flag word wait must be specified
in the /etc/inetd. conf file.

5. The server reads a datagram from the socket (s=0) in lines 56 to 66.

6. The received datagram has a terminating null byte stuffed into the buffer dgram[] (line 68).

7. The server processes the request by formatting a date/time string according to the received format
string (lines 81 to 91).

8. The server responds back to the client with the formatted result (lines 97 to 105).

9. The server waits for another datagram in the select(2) call (lines 113 to 121). This will be
described in more detail later.

10. If an error has occurred, or a timeout has occurred, the control exits the for loop at line 128 (the
break statement).

11. Finally, the server logs the error message (line 135) or it logs the fact that it timed out (line
137).

Now, examine the segment of code that implements the timeout code:

1. A do while loop is entered starting in line 113. This is necessary because you should always
allow for the possibility of an interrupted system call. This is indicated after a signal handler returns
from handling a signal, by returning an error indication and setting errno to the value EINTR.
Consequently, the while statement repeats this call if –1is returned from select(2) and the
error value is EINTR.

2. The timeout value is established in lines 115 and 116. Here, the timeout is established at eight
seconds.

3. The variable rx_set is initialized in lines 46 and 47 so that the select(2) call will report
when datagrams arrive on file unit 0 (its socket). Normally, this should be established prior to each
entry to select(2) because this function updates the contents of rx_set. However, in this case,
this is unnecessary because the for loop is repeated only if select(2) returns with the rx_set
bit set for unit 0 set (indicating that a datagram has arrived).

Page 410

4. The select(2) call returns with 1 if a datagram has arrived, 0 if a timeout occurred instead, or
-1 if some other error has occurred.

5. If a timeout or error occurs, the for loop is exited (line 128).

6. Otherwise, rx_set still has bit 0 set, and the for loop is repeated (line 52).

This server program shows how a UDP server can loop back, and read more datagrams until a
timeout occurs. There are other ways to accomplish a timeout, but this is perhaps one of the simplest
ways it can be done.

Examining the Simple TCP Wrapper Program

Now, it is time to introduce the source code for the simple TCP wrapper program that will be used.
This program is illustrated in Listing 16.4.

Example

Listing 16.4: wrapper.c— The Simple TCP Wrapper Program

1: /* wrapper.c:
2: *
3: * Simple wrapper example:
4: */
5: #include <stdio.h>
6: #include <unistd.h>
7: #include <stdlib.h>
8: #include <errno.h>
9: #include <string.h>
10: #include <sys/types.h>
11: #include <sys/socket.h>
12: #include <netinet/in.h>
13: #include <arpa/inet.h>
14:
15: #include "log.h"
16:
17: #define LOGPATH "/tmp/wrapper.log"
18:
19: int
20: main(int argc,char **argv,char **envp) {
21: int z;
22: struct sockaddr_in adr_clnt; /* Client */
23: int alen; /* Address length */
24: char dgram[512]; /* Receive buffer */
25: char *str_addr; /* String form of addr */
26:
27: /*
28: * We must log denied attempts:
29: */
30: if (log_open(LOGPATH) == -1)

Page 411

31: exit(1); /* Can't open log file! */
32:
33: log("wrapper started.\n");
34:
35: /*
36: * Peek at datagram using MSG_PEEK:
37: */
38: alen = sizeof adr_clnt; /* length */
39:
40: z = recvfrom(0, /* Socket on std input */
41: dgram, /* Receiving buffer */
42: sizeof dgram, /* Max recv size */
43: MSG_PEEK, /* Flags: Peek!!!!!! */
44: (struct sockaddr *)&adr_clnt,
45: &alen); /* Addr len, in & out */
46:
47: if (z < 0)
48: bail("recvfrom(2), peeking at client"
49: "address.");
50:
51: /*
52: * Convert IP address to string form:
53: */
54: str_addr = inet_ntoa(adr_clnt.sin_addr);
55:
56: if (strcmp(str_addr,"127.7.7.7") != 0) {
57: /*
58: * Not our special 127.7.7.7 address:
59: */
60: log("Address %s port %d rejected.\n",
61: str_addr, ntohs(adr_clnt.sin_port));
62:
63: /*
64: * We must read this packet now without
65: * the MSG_PEEK option to discard dgram:
66: */
67: z = recvfrom(0, /* Socket */
68: dgram, /* Receiving buffer */
69: sizeof dgram, /* Max rcv size */
70: 0, /* No flags!! */
71: (struct sockaddr *)&adr_clnt,
72: &alen);
73:
74: if (z < 0)
75: bail("recvfrom(2), eating dgram");
76: exit(1);

continues

Page 412

Listing 16.4: continued

77: }
78:
79: /*
80: * Accept this dgram request, and
81: * launch the server:
82: */
83: log("Address %s port %d accepted.\n",
84: str_addr, ntohs(adr_clnt.sin_port));
85:
86: /*
87: * inetd has provided argv[0] from the
88: * config file /etc/inetd.conf: we have
89: * used this to indicate the server's
90: * full pathname for this example. We
91: * simply pass any other arguments and
92: * environment as is.
93: */
94: log("Starting '%s'\n",argv[0]);
95: log_close(); /* No longer need this */
96:
97: z = execve(argv[0],argv,envp);
98:
99: /*
100: * If control returns, then execve(2)
101: * failed for some reason:
102: */
103: log_open(LOGPATH); /* Re-
open log */
104: bail("execve(2), starting server");
105: return 1;
106: }

The wrapper program shown in Listing 16.4 implements the following very simple security policy:

• If the client's address is 127.7.7.7 , his request is allowed to go to the datagram server. No
restriction upon client's port number is applied.

• If the client's address is any other IP address, the request is logged and denied.

NOTE
The policy address of 127.7.7.7 was chosen as an example that all readers
should be able to test (even those readers without an actual network established).
The reader is encouraged to modify the program if he does have a network, in order
to try out additional policy rules.

Page 413

The TCP wrapper program presented uses the following basic steps:

1. To log denied and granted attempts, a separate log file

/tmp/wrapper.log is opened in lines 30 to 31. The wrapper program's process ID and start
banner are also logged for demonstration purposes in line 33.

2. A datagram wrapper program cannot use getpeername(2) function to determine the datagram
address. Instead, it must call upon recvfrom(2) using the MSG_PEEK flag bit (lines 40 to 49).
The MSG_PEEK flag allows the client address to be returned into the address structure adr_clnt
(line 44) without actually removing the datagram from the input queue for this socket.

3. For demonstration purposes, this simple program converts the client's address into a string for
easier comparison (line 54). This is probably not recommended for a secure wrapper program.

4. The client's address is tested in line 56. If the client's IP address is not the magic 127.7.7.7 IP
number that the wrapper program insists upon, the code in lines 60 to 77 is executed (the request is
denied).

5. If the request is accepted, the code in lines 83 to 97 is executed.

Now, examine what happens when an incoming request is rejected by this wrapper program:

1. First, the rejection of the request is logged in lines 60 to 61.

2. The datagram must be discarded (or ''eaten") by the wrapper program. This is done by receiving it
in lines 67 to 72 (note that no MSG_PEEK flag is used here). If this is not done, the datagram
remains waiting to be processed for this socket.

3. Finally, errors are reported, if required, and the wrapper program terminates (lines 74 to 76).

When the datagram request is accepted by the wrapper program, the following steps are carried out:

1. The log() function is called to log this request (lines 83 to 84).

2. For demonstration reasons, the executable being started (the server) is logged in line 94. This can
aid debugging if you decide to modify this code.

3. The log file is closed (line 95). This should be done because the log file unit will remain open
after the call to execve(2) if this is not done.

4. The wrapper program is replaced with the server by calling execve(2) (line 97). The current
wrapper program is abandoned as the server

Page 414

program is brought into memory to replace it. For this reason, the wrapper and the server programs
keep the same process ID (this is important to inetd, the parent process).

If all goes well, the server begins to execute. If for some reason the server does not execute, then the
execve(2) function will return control. The following error recovery steps are then carried out:

1. The log file is reopened (line 103) because it was closed prior to calling execve(2) in line 95.

2. The error is reported to the log file (line 104).

Introducing the Client Program

A modified version of an earlier client program is presented here. This client program requires two
command-line arguments: the server address and the client address to use. The specification of the
additional client IP address permits you to perform more experimentation with your TCP wrapper
program. Listing 16.5 shows the modified datagram client program.

Example

Listing 16.5: dgramcln2.c— The Modified Datagram Client Program

1: /* dgramcln2.c:
2: *
3: * Modified datagram client:
4: */
5: #include <stdio.h>
6: #include <unistd.h>
7: #include <stdlib.h>
8: #include <errno.h>
9: #include <string.h>
10: #include <time.h>
11: #include <sys/types.h>
12: #include <sys/socket.h>
13: #include <netinet/in.h>
14: #include <arpa/inet.h>
15:
16: /*
17: * This function reports the error and
18: * exits back to the shell:
19: */
20: static void
21: bail(const char *on_what) {
22:
23: if (errno) {
24: fputs(strerror(errno),stderr);
25: fputs(": ",stderr);

Page 415

26: }
27: fputs(on_what,stderr);
28: fputc('\n',stderr);
29: exit(l);
30: }
31:
32: int
33: main(int argc,char **argv) {
34: int z;
35: char *srvr_addr = NULL; /* Srvr addr */
36: char *clnt_addr = NULL; /* Clnt addr */
37: struct sockaddr_in adr_srvr; /* Server */
38: struct sockaddr_in adr_clnt; /* Client */
39: struct sockaddr_in adr; /* AF_INET */
40: int alen; /* Socket addr length */
41: int s; /* Socket */
42: char dgram[512]; /* Recv buffer */
43:
44: /*
45: * Insist on two command-line arguments
46: * (without port numbers):
47: *
48: * dgramcln2 <server_addr> <client_addr>
49: */
50: if (argc != 3) {
51: fputs("Usage: dgramclnt <server_ipaddr> "
52: "<client_ipaddr>\n",stderr);
53: return 1;
54: }
55:
56: srvr_addr = argv[1]; /* 1st arg is srv */
57: clnt_addr = argv[2]; /* 2nd arg is cln */
58:
59: /*
60: * Create a server socket address:
61: */
62: memset(&adr_srvr,0,sizeof adr_srvr);
63: adr_srvr.sin_family = AF_INET;
64: adr_srvr.sin_port = htons(9090);
65: adr_srvr.sin_addr.s_addr =
66: inet_addr(srvr_addr);
67:
68: if (adr_srvr.sin_addr.s_addr == INADDR_NONE)
69: bail("bad server address.");
70:
71: /*

continues

Page 416

Listing 16.5: continued

72: * Create a UDP socket:
73: */
74: S = socket(AF_INET,SOCK_DGRAM,0);
75: if (S == -1)
76: bail("socket ()");
77:
78: /*
79: * Create the specific client address:
80: */
81: memset(&adr_clnt,0,sizeof adr_clnt);
82: adr_clnt.sin_family = AF_INET;
83: adr_clnt.sin_port =0; /* Any port */
84: adr_clnt.sin_addr.s_addr =
85: inet_addr(clnt_addr);
86:
87: if (adr_clnt.sin_addr.s_addr == INADDR_NONE)
88: bail("bad client address.");
89:
90: /*
91: * Bind the specific client address:
92: */
93: z = bind(s, (struct sockaddr *)&adr_clnt,
94: sizeof adr_clnt);
95:
96: if (z == -1)
97: bail("bind(2) of client address");
98:
99: /*
100: * Enter input client loop:
101: */
102: for (;;) {
103: /*
104: * Prompt user for a date format string:
105: */
106: fputs("\nEnter format string: ",stdout);
107: if (!fgets(dgram,sizeof dgram,stdin))
108: break; /* EOF */
109:
110: z = strlen(dgram);
111: if (z > 0 && dgram[--z] == '\n')
112: dgram[z] = 0; /* Stomp out newline */
113:
114: /*
115: * Send format string to server:
116: */
117: z = sendto(s, /* Socket */
118: dgram, /* datagram to snd */

Page 417

119: strlen(dgram), /* dgram length */
120: 0, /* Flags: no options */
121: (struct sockaddr *)&adr_srvr,
122: sizeof adr_srvr);
123:
124: if (z < 0)
125: bail("sendto(2)");
126:
127: /*
128: * Wait for a response:
129: *
130: * NOTE: Control will hang here if the
131: * wrapper decides we lack access (no
132: * response will arrive).
133: */
134: alen = sizeof adr;
135:
136: z = recvfrom(s, /* Socket */
137: dgram, /* Receiving buffer */
138: sizeof dgram, /* Max recv size */
139: 0, /* Flags: no options */
140: (struct sockaddr *)&adr,
141: &alen); /* Addr len, in & out */
142:
143: if (z < 0)
144: bail("recvfrom(2)");
145:
146: dgram[z] = 0; /* NULL terminate */
147:
148: /*
149: * Report Result:
150: */
151: printf ("Result from %s port %u :"
152: "\n\t'%s'\n",
153: inet_ntoa(adr.sin_addr),
154: (unsigned)ntohs(adr.sin_port),
155: dgram);
156: }
157:
158: /*
159: * Close the socket and exit:
160: */
161: close(s);
162: putchar(' \n');
163:
164: return 0;
165: }

Page 418

The client program will not be covered in much detail, because it is very similar to the program
dgramclnt.c presented in Listing 6.2 in Chapter 6, "Connectionless-Oriented Protocols." Aside
from some cosmetic differences, the primary modifications added were

• Lines 50 to 54 now insist that two command-line arguments be supplied.

• The local socket is bound to the IP address specified in argv [2] with bind(2) (lines 81 to
97). This will be instrumental in your testing later.

Note that the program dgramcln2 will hang if the wrapper program decides that it should not
gain access to the server. This occurs because the recvfrom(2) function never receives a reply
from the server (lines 136 to 144). When this happens, you will need to interrupt out of the program
(usually Ctrl+C is the interrupt character, but yours might be different).

Installing and Testing the Wrapper

You have now examined all the code that will be used. To start your wrapper experiments, first
compile all the code as follows:

Output

$ make
gcc -c -D_GNU_SOURCE -Wall -Wreturn-type dgramisrvr.c
gcc -c -D_GNU_SOURCE -Wall -Wreturn-type log.c
gcc dgramisrvr.o log.o -o dgramisrvr
gcc -c -D_GNU_SOURCE -Wall -Wreturn-type wrapper.c
gcc wrapper.o log.o -o wrapper
gcc -c -D_GNU_SOURCE -Wall -Wreturn-type dgramcln2.c
gcc dgramcln2.o -o dgramcln2
$

Normally, you would require root access to install your server permanently. However, for simple
testing purposes, you can perform this experiment without root access. To establish your files in
the /tmp directory, perform the following:

Output

$ make install
rm -f /tmp/wrapper.log /tmp/dgramisrvr.log
rm -f /tmp/inetd.conf /tmp/wrapper /tmp/dgramisrvr
cp dgramisrvr wrapper /tmp/.
chmod 500 /tmp/wrapper /tmp/dgramisrvr
chmod 600 /tmp/inetd.conf

Now do:

/usr/sbin/inetd /tmp/inetd.conf

TE
AM
FL
Y

Team-Fly®

to start the server.
$

Page 419

The make command places a number of files into the /tmp directory, including a
simple /tmp/inetd.conf file. Take a moment to inspect it now:

Output

$ cat /tmp/inetd.conf
9090 dgram udp wait studnt1 /tmp/wrapper /tmp/dgramisrvr
$

You might want to double check that your other files are installed correctly in /tmp , as follows:

Output

$ Is -Itr /tmp | tail
-rw-r----- 1 stdnt1 class1 29454 Feb 19 22:59 xprnKg3RSc
-rw-r--r-- 1 root root 11 Feb 21 23:18 1pq.0002621c
-r-x------ 1 stdnt1 class1 14202 Feb 22 22:48 wrapper
-rw------- 1 stdnt1 class1 53 Feb 22 22:48 inetd.conf
-r-x------ 1 stdnt1 class1 15237 Feb 22 22:48 dgramisrvr
$

In the output, you can see that the TCP wrapper program wrapper is installed, and that the
dgramisrvr executable program is also installed into the /tmp directory.

Monitoring the Log Files

If you are using X Window sessions, it is recommended that you start in one terminal session, the
following command:

Example

$ >/tmp/wrapper.log
$ tail -f /tmp/wrapper.log

This creates and then monitors the wrapper log file (the log file does not exist yet). You will see this
window update as the wrapper program writes log entries to this file.

In a new window start

Example

$ >/tmp/dgraimsrvr.log
$ tail -f /tmp/dgramisrvr.log

This will establish and monitor the server log file. Again, you will see entries displayed as they are
written to the server log file.

If you are not using X Window sessions, you can accomplish the same thing by using multiple
console sessions. This procedure is recommended only for your convenience. You can always
examine the logs upon demand later, instead, if this is your preference.

Starting Your inetd Daemon

Before starting up the clients, you must ready your copy of the inetd daemon. This daemon will
run under your own userID and not require any special root privileges. However, you must be
careful to give it the correct configuration file on the command line, as follows:

Page 420

Example

$ /usr/sbin/inetd /tmp/inetd.conf
$

If you are using a distribution different from the Red Hat Linux distribution, then the executable
program /usr/sbin/inetd might be located in a different directory.

The single command-line argument tells your inetd daemon to use the configuration that you have
provided in file /tmp/inetd.conf instead of the /etc/inetd.conf file that the system
normally uses. The program will automatically place itself into the background (daemons like to do
that), and you should be able to see it executing as follows:

Output

$ ps -ef | grep inetd
root 313 1 0 Feb15 ? 00:00:00 inetd
studnt1 12763 1 0 23:04 ? 00:00:00 /usr/sbin/inetd /tmp/inetd.conf
studnt1 12765 11739 0 23:08 pts/3 00:00:00 grep inetd
$

The example output shown illustrates that there are now two copies of the inetd daemon running:
the system daemon (PID 313) running as root, and your nonprivileged daemon process (PID 12763).
With the inetd daemon started, you are ready to perform some testing.

Testing the Wrapper Program

With the logs being monitored in separate windows, it is now appropriate to start the client
command and try something. First let's attempt something that the wrapper program should accept:

Output

$./dgramcln2 127.0.0.1 127.7.7.7

Enter format string: %A %B %D
Result from 127.7.7.7 port 9090 :
 'Tuesday November 11/09/99'

Enter format string:

This starts the client program with the client's end of the socket bound to the IP address
127.7.7.7, which the wrapper program is programmed to find acceptable. The wrapper log file
should look like this:

Output

$ tail -f /tmp/wrapper.log
[PID 1279] wrapper started.
[PID 1279] Address 127.7.7.7 port 1027 accepted.
[PID 1279] Starting '/tmp/dgramisrvr'

These log records indicate the process ID was 1279 and that the request came from 127.7.7.7
port number 1027. Because the request was accepted, the server /tmp/dgramisrvr was
executed to carry out the request.

Page 421

Listing the server's log now should reveal something like this:

Output

$ tail -f /tmp/dgramisrvr.log
[PID 1279] dgramisrvr started.
[PID 1279] Got request '%A %B %D from 127.7.7.7 port 1027
[PID 1279] Timed out: server exiting.

Notice that the server's process ID remained the same as the wrapper's (the wrapper process started
the server with execve(2)). The log records tell us that the server started and processed the
request. The last record shows that the server timed out waiting for further datagrams.

Denying a Request

Cancel your client program now with end-file (usually Ctrl+D) or interrupt it (usually Ctrl+C).
Start it again with a new address, such as this:

Output

$./dgramcln2 127.0.0.1 127.13.13.13

Enter format string: %D (%B %A)

You will note that your client program will not get a response this way. It will "hang" because the
wrapper program has denied this request from reaching the server. You can interrupt (Ctrl+C)
to get out.

The wrapper log file should now look like this:

Output

$ tail -f /tmp/wrapper.log
[PID 1279] wrapper started.
[PID 1279] Address 127.7.7.7 port 1027 accepted.
[PID 1279] Starting '/tmp/dgramisrvr'
[PID 1289] wrapper started.
[PID 1289] Address 127.13.13.13 port 1027 rejected.

You see that the next datagram request was handled by a new wrapper process ID 1289 this time.
The last log line shows that the address 127.13.13.13 is rejected. The client program hangs
because this wrapper program eats the datagram to prevent it from being processed by a server.
The wrapper program then exits.

Testing the Server Timeout

To test out the looping capability of the server, you must quickly enter two date format requests
(within eight seconds). An example session is provided as follows:

Output

$./dgramcln2 127.0.0.1 127.7.7.7

Enter format string: %x
Result from 127.7.7.7 port 9090 :
 '11/09/99'

Page 422

Enter format string: %x %X
Result from 127.7.7.7 port 9090 :
 '11/09/99 19:11:32'

Enter format string: CTRL+D
$

If you did this quickly enough, the server should have been able to process both of these requests
within one single server process. To see whether this worked, check the server log:

Output

$ tail -f /tmp/dgramisrvr.log
[PID 1279] dgramisrvr started.
[PID 1279] Got request '%A %B %D' from 127.7.7.7 port 1027
[PID 1279] Timed out: server exiting.
[PID 1294] dgramisrvr started.
[PID 1294] Got request '%x' from 127.7.7.7 port 1027
[PID 1294] Got request '%x %X' from 127.7.7.7 port 1027
[PID 1294] Timed out: server exiting.

The last four log lines confirm that server process ID 1294 was able to process both date requests
before it timed out.

Uninstalling the Demonstration Programs

To uninstall the demonstration programs, perform the following:

Output

$ make clobber
rm -f *.o core a.out
rm -f /tmp/wrapper.log /tmp/dgramisrvr.log
rm -f /tmp/inetd.conf /tmp/wrapper /tmp/dgramisrvr
rm -f dgramisrvr wrapper dgramcln2

studnt1 12763 1 0 23:04 ? 00:00:00 /usr/sbin/inetd /tmp/inetd.conf

If you see your inetd process running above, you may want to kill it now.

$

The clobber target of the Makefile provided will remove all of the files created in the /tmp
directory and attempt to display the process ID of your inetd daemon. In the example output
shown, the daemon is running as PID 12763. This should be terminated with the kill command as
follows:

Example

$ kill 12763
$

Page 423

Datagram Vulnerability

There is vulnerability in this wrapper design for datagram servers. Did you spot the problem? Hint:
It has to do with the server looping.

Datagram servers that loop, as in the one shown, have a vulnerability to attack, using the wrapper
concept. When no server process is running, the wrapper program is always able to screen the
datagram before the server reads it. However, if the server waits for more datagrams and exits only
after it times out, the wrapper program is not used to screen out those extra datagrams. This
exposure can be summarized as follows:

1. A datagram arrives, alerting

2. The inetd daemon starts the wrapper program.

3. The wrapper program allows the datagram, and calls exec(2) to start the datagram server.

4. The datagram server reads and processes the datagram.

5. The server waits for another datagram.

6. If a datagram arrives, then step 4 is repeated.

7. Otherwise, the server times out and exits.

8. Repeat step 1.

While the server continues to run, the process repeats at step 4. This leaves out the security check in
step 3. If you are quick enough, you can demonstrate this for yourself with the example programs
provided earlier.

For better security, you have only a few options:

• Use only nowait-styled datagram servers (these servers process one datagram and exit). This
forces all requests to be scrutinized by the wrapper program.

• Use custom code within your datagram server to test each datagram before it is accepted for
processing.

A compromise method is to run shorter timeout periods, but this still leaves some exposure.

For these reasons, many sites will choose to disable the datagram service if a TCP version of the
same service exists (the TCP request is always checked by the wrapper program). Where the
datagram service must be offered, secure sites will not allow their datagram servers to loop. This
requires source code changes to the server or a custom server program is written instead.
Alternatively, the server program itself checks every access of the requesting client and does not
rely on the TCP wrapper concept for this.

TE
AM
FL
Y

Team-Fly®

Page 424

What's Next

This chapter has given you a working knowledge of the TCP wrapper concept. Applying the
wrapper concept, you can now use it on servers that you write to provide your system with greater
network security. You have also learned that it has a weakness in the datagram case, which requires
special consideration.

In the next chapter, you will be introduced to one more security-related concept. There, you will
learn how to receive credentials from a PF_UNIX/PF_LOCAL socket. Additionally, you will learn
how a server can open a file on your behalf and pass the opened file descriptor to you, by means of a
PF_ UNIX/PF_ LOCAL socket.

Page 427

17—
Passing Credentials and File
Descriptors

If you share your Linux host with other users, you might have had reason to struggle with certain
resource access issues. In this chapter, you will see how credentials can be obtained from a local
socket and how file descriptors can be transmitted by sockets as well. These two important features
open an entirely new avenue of security access solutions for your users, while keeping your machine
secure.

These features are provided for by the use of socket ancillary data. This is an advanced topic, which
might be beyond what many beginning programmers want to tackle. Beginners might want to
simply skim this chapter or skip to the next.

The intermediate to advanced readers, however, will want to study this chapter carefully, as an
introduction to the processing of ancillary data. Emphasis has been placed on a practical example
that can be studied and experimented with.

This chapter covers the following topics:

• How to send user credentials to a local server process

• How to receive and interpret user credentials

• How to send a file descriptor to another process on the local host

• How to receive a file descriptor from another process on the local host

Page 428

Problem Statement

Assume that you have a user on your Linux system who has been entrusted to maintain and care for
your Web server. For security purposes, your Web server does not run with the root account
privilege (to protect your system against intrusion). Yet, you want the Web server to be available on
port 80 where all normal Web servers live. The problem is that Linux (and UNIX in general) treats
all ports under port 1024 as privileged port numbers. This means that the Web server needs root
access in order to start up (after that, root is not required). Finally, we're going to assume that the
inetd daemon will not be used.

Although you like the work that your friend does for the Web server, you prefer not to give him
root access. This lets you sleep better at night. Last of all, you don't want to resort to a setuid
solution if it can be avoided.

The challenge is to offer a solution that provides

• The ability for a specific user to start the Web server up on port 80 (normally, this requires root).

• The program must not use setuid permission bits.

• The inetd daemon cannot be used.

This chapter will provide a solution to this problem by making use of the following:

• A simple socket server.

• The credentials received by the server will identify the requesting user without doubt.

• The server will create and bind a socket on port 80 and pass it back to the authorized requesting
user process.

After some initial theory, the remainder of this chapter will show you how this works by means of a
hands-on demonstration.

Introducing Ancillary Data

Although it is very difficult to prove the identity of a remote user over the Internet, it is a simple
matter for the Linux kernel to identify another user on the same host. This makes it possible for
PF_LOCAL/PF_UNIX sockets to provide credentials to the receiving end about the user at the
other end. The only way for these credentials to be compromised would be for the kernel itself to be
compromised in some way (perhaps by a rogue kernel loadable module).

Page 429

Credentials can be received as part of ancillary data that is received with a communication.
Ancillary data is supplementary or auxiliary to the normal data. This brings up some points that are
worth emphasizing here:

• Credentials are received as part of ancillary data.

• Ancillary data must accompany normal data (it cannot be transmitted on its own).

• Ancillary data can also include other information such as file descriptors.

• Ancillary data can include multiple ancillary items together (such as credentials and file
descriptors at the same time).

The credentials are provided by the Linux kernel. They are never provided by the client application.
If they were, the client would be allowed to lie about its identity. Because the kernel is trusted, the
credentials can be trusted by the process that is interested in the credentials.

As noted in the list, you now know that file descriptors are also transmitted and received as ancillary
data. However, before you can start writing socket code to use these elements of ancillary data, you
need to be introduced to some new programming concepts.

TIP
Ancillary data is referred to by several different terms. Other names for ancillary
data include auxiliary or control data. In the context of PF_LOCAL/PF_UNIX
sockets, these all refer to the same thing.

Introducing I/O Vectors

Before you are introduced to the somewhat complex functions that work with ancillary data, you
should become familiar with I/O vectors as used by the readv(2) and writev(2) system calls.
Not only might you find these functions useful, but the way they work is also carried over into some
of the ancillary data functions. This will make understanding them easier later.

The I/O Vector (struct iovec)

The functions readv(2) and writev(2) both use a concept of an I/O vector. This is defined by
including the file:

Example

#include <sys/uio.h>

Page 430

The sys/uio.h include file defines the struct iovec, which is defined as
follows:

Example

struct iovec {
 ptr_t iov_base; /* Starting address */
 size_t iov_len; /* Length in bytes */
};

The struct iovec defines one vector element. Normally, this structure is used as an array of
multiple elements. For each transfer element, the pointer member iov_base points to a buffer that
is receiving data for readv(2) or is transmitting data for writev(2). The member iov_len in
each case determines the maximum receive length and the actual write length, respectively.

The readv(2) and writev(2) Functions

These functions are known as scatter read and write functions. They are designated that way because
these functions can read into or write from many buffers in one atomic operation. The function
prototypes for these functions are provided as follows:

Example

#include <sys/uio.h>

int readv(int fd, const struct iovec *vector, int count);

int writev(int fd, const struct iovec *vector, int count);

These functions take three arguments, which are

• The file descriptor fd to read or write upon.

• The I/O vector (vector) to use for reading or writing.

• The number of vector elements (count) to use.

The return value for these functions are the number of bytes read for readv(2) or the number of
bytes written for writev(2). If an error occurs, -1 is returned and errno holds the error code
for the failure. Note that like other I/O functions, the error EINTR can be returned to indicate that it
was interrupted by a signal.

Example Using writev(2)

The program in Listing 17.1 shows how writev(2) is used to scatter write three physically

separate C strings as one physical write to standard output.

Example

Listing 17.1: writev.c— The writev(2) Example Program

1: /* writev.c
2: *
3: * Short writev(2) demo:

Page 431

4: */
5: #include <sys/uio.h>
6:
7: int
8: main(int argc,char **argv) {
9: static char part2[] = "THIS IS FROM WRITEV";
10: static char part3[] = "]\n";
11: static char part1[] = "[";
12: struct iovec iov[3];
13:
14: iov[0].iov_base = part1;
15: iov[0].iov_len = strlen(part1);
16:
17: iov[1].iov_base = part2;
18: iov[1].iov_len = strlen(part2);
19:
20: iov[2].iov_base = part3;
21: iov[2].iov_len = strlen(part3);
22:
23: writev(1,iov,3);
24:
25: return 0;
26: }

This program uses the following basic steps:

1. Three physically separate C string arrays are defined in lines 9 to 11.

2. The I/O vector iov[3] is defined in line 12. This particular vector can hold up to three scattered
buffer references.

3. The pointer to the first string to be written is assigned to the first I/O vector in line 14.

4. The length of the first string to be written is determined in line 15.

5. The I/O vectors iov[1] and iov[2] are established in lines 17 to 21.

6. The writev(2) system call is invoked in line 23. Notice that file unit 1 is used (standard
output), and the I/O vector array iov is supplied. The number of elements to be used in iov[] is
defined by the third argument, which has the value 3.

Compile and run the program shown as follows:

Output

$ make writev
gcc -g -c -D_GNU_SOURCE -Wall -Wreturn-
type writev.c
gcc writev.o -o writev
$./writev
[THIS IS FROM WRITEV]
$

Page 432

When the program is run, you will see that despite how scattered the buffer references were, all the
buffers were written out to form the final string, [THIS IS FROM WRITEV], complete with a
trailing linefeed character.

You might want to take some time to modify this program and try other variations. Be sure to
allocate the array iov[] large enough.

The sendmsg(2) and recvmsg(2) Functions

These functions provide the programmer with advanced features not found in other socket I/O
interfaces. The next section will introduce the topic by looking at sendmsg(2) first. And then
recvmsg(2) will be presented for completeness, because their functional interfaces are so similar.
Subsequently, the complex structure msghdr will be described.

The sendmsg(2) Function

Now it's time to move into the big leagues. The sendmsg(2) function is conceptually the
foundation for all the write functions, as it pertains to sockets. Table 17.1 lists the write functions
available, in increasing complexity. At each level, the features that are added are listed also.

Table 17.1: Write Functions in Increasing Complexity

Function Features Added

write(2) The simplest socket write function

send(2) Adds the flags argument

sendto(2) Adds socket address and socket length arguments

writev(2) No flags or socket address, but has scatter write capabilities

sendmsg(2) Adds flags, socket address and length, scatter write, and ancillary
data capabilities

Given the expanded capabilities of the sendmsg(2) function, you can expect it to require more
effort to program. The function prototype for sendmsg(2) is provided as follows:

Example

#include <sys/types.h>
#include <sys/socket.h>

int sendmsg(int s, const struct msghdr *msg, unsigned int flags);

The function's arguments are described as follows:

• The socket s to send a message on.

• The message header structure pointer msg, which will control the operation of this function call.

• The optional flag bits argument flags. These are the same flags that are valid for send(2) or

sendto(2) function calls.

Page 433

The return value from this function is the number of bytes sent. Otherwise, -1 indicates an error
occurred and errno indicates the reason for it.

The recvmsg(2) Function

The recvmsg(2) function is the natural counterpart to the sendmsg(2) function. The function
prototype for it is as follows:

Example

#include <sys/types.h>
#include <sys/socket.h>

int recvmsg(int s, struct msghdr *msg, unsigned int flags);

The function arguments are as follows:

• The socket s to receive a message from.

• The message header structure pointer msg, which will control the operation of this function call.

• The optional flag bits argument flags. These are the same flags that are valid for recv(2) or
recvfrom(2) function calls.

The return value from this function is the number of bytes received. Otherwise, -1 indicates an error
occurred and errno indicates the reason for it.

Understanding struct msghdr

This appears to be a formidable structure to establish when seeing it for the first time. But don't fear
the penguins! Examine the following structure definition:

Example

struct msghdr {
 void *msg_name;
 socklen_t msg_namelen;
 struct iovec *msg_iov;
 size_t msg_iovlen;
 void *msg_control;
 size_t msg_controllen;
 int msg_flags;
};

NOTE
Prior to the Posix.1g standard, the msg_name and msg_control members were
typically defined as C data type (char *). Additionally, members

TE
AM
FL
Y

Team-Fly®

msg_namelen and msg_controllen were previously declared as int types.

Page 434

The structure members can be divided into four groups. These are

• Socket address members msg_name and msg_namelen.

• I/O vector references msg_iov and msg_iovlen.

• Ancillary data buffer members msg_control and msg_controllen .

• Received message flag bits msg_flags .

After you divide this structure into the preceding categories, the structure becomes less intimidating.

Members msg_name and msg_namelen

These members are required only when your socket is a datagram socket. The msg_name member
points to the socket address that you are sending to or receiving from. The member msg_namelen
indicates the length of this socket address.

When calling recvmsg(2), msg_name will point to a receiving area for the address being
received. When calling sendmsg(2), this will point to the destination address that the datagram is
being addressed to.

Note that msg_name is defined as a (void *) data type. You will not have to cast your socket
address to (struct sockaddr *) .

Members msg_iov And msg_iovlen

These members specify where your I/O vector array is and how many entries it contains. The
msg_iov member points to the struct iovec array. You'll remember that the I/O vector points
to your buffers (review the source Listing 17.1 if you need to). The member msg_iovlen
indicates how many elements are in your I/O vector array.

Members msg_control And msg_controllen

These members will point to your ancillary data buffer and indicate the buffer size (recall that
ancillary data is also known as control data). The member msg_control points to the ancillary
data buffer whereas msg_controllen indicates the size of that buffer.

Member msg_flags

This member is used for receiving special flag bits when recvmsg(2) is used (it is not used for
sendmsg(2)). The flag bits that can be received in this location are listed in Table 17.2.

Page 435

Table 17.2: struct msghdr msg_flags Values

Flag Bit Description

MSG_EOR This flag bit is set when the end of a record has been received. This is
generally useful with SOCK_SEQPACKET socket types.

MSG_TRUNC This flag bit indicates that the trailing end of the datagram was
truncated because the receiving buffer was too small to accommodate
it.

MSG_CTRUNC This bit indicates that some control (ancillary) data was truncated
because the buffer was too small.

MSG_OOB This bit indicates that expedited or out-of-band data was received.

MSG_ERRQUEUE This flag bit indicates that no data was received, but an extended error
was returned.

More information can be located in the man pages for recvmsg(2) and sendmsg(2) for those
who are curious.

Ancillary Data Structures and Macros

The recvmsg(2) and sendmsg(2) functions permit the programmer to send and receive
ancillary data. However, this supplementary information is subject to certain format rules. This
section will introduce to you the control message header and the macros that the programmer should
use to manage this information.

Introducing the struct cmsghdr Structure

Ancillary information can include zero, one, or more separate ancillary data objects. Each of these
objects is preceded by a struct cmsghdr. This header is followed possibly by pad bytes and
then the object itself. Finally, the ancillary data object itself might be followed by still more pad
bytes before the next cmsghdr follows. In this chapter, the only ancillary data objects that you'll be
concerned about will be the file descriptor and a credentials structure.

Figure 17.1 illustrates how a buffer containing ancillary data is structured.

Note the following additional points about Figure 17.1:

• The value of cmsg_len is equivalent to the length shown as the macro value for CMSG_LEN()
in Figure 17.1.

• The macro CMSG_SPACE() computes the total necessary space required for one ancillary data
object.

• The value of msg_controllen is the sum of the CMSG_SPACE() lengths, and is computed for
each ancillary data object.

Page 436

Figure 17.1:
Ancillary data structures are composed of various substructures, data zones, and pad•bytes.

The control message header itself is defined as the following C structure:

Example

struct cmsghdr {
 socklen_t cmsg_len;
 int cmsg_level;
 int cmsg_type;
/* u_char cmsg_data[]; */
};

Table 17.3: The struct cmshdr Members

Member Description

cmsg_len This is the byte count of the ancillary data, which includes the size of
this structural header. This value is computed by the CMSG_LEN()
macro.

cmsg_level This value indicates the originating protocol level (for example,
SOL_SOCKET).

cmsg_type This value indicates the control message type (for example,
SCM_RIGHTS).

cmsg_data This member does not actually exist. It is shown in comments to
illustrate where additional ancillary data is located physically.

Page 437

The example programs used in this chapter will use only a cmsg_level value of SOL_SOCKET.
The control message types that are of interest to you in this chapter are shown in Table 17.4.

Table 17.4: cmsg_type Types for cmsg_level=SOL_SOCKET

cmsg_level Description

SCM_RIGHTS The ancillary data object is a file descriptor.

SCM_CREDENTIALS The ancillary data object is a structure containing credential information.

Introducing the cmsg(3) Macros

Due to the complexity of structuring the ancillary data, a number of C macros were provided to
make this easier for you. Additionally, these macros enable much greater portability between
different UNIX platforms and provide some insulation against changes that might occur in the
future. These macros are described by the man page cmsg(3) and the synopsis for them are as
follows:

Example

#include <sys/socket.h>

struct cmsghdr *CMSG_FIRSTHDR(struct msghdr *msgh);
struct cmsghdr *CMSG_NXTHDR(struct msghdr *msgh, struct cmsghdr *cmsg);
size_t CMSG_ALIGN(size_t length);
size_t CMSG_SPACE(size_t length);
size_t CMSG_LEN(size_t length);
void *CMSG_DATA(struct cmsghdr *cmsg);

TIP
Some of the macros presented in this chapter are not available on other UNIX
platforms. For example, FreeBSD UNIX lacks the CMSG_ALIGN() ,
CMSG_SPACE(), and CMSG_LEN() macros. This should be borne in mind if you
are writing code that must compile on other UNIX platforms in addition to Linux.

The CMSG_LEN() Macro

This macro accepts as an input parameter the size of the object that you want to place into the
ancillary data buffer. If you review Figure 17.1, you see that this macro computes the byte length of
the cmsghdr header structure plus any pad characters that might be required, added to the length of
the data object. This value is used to set the cmsg_len member of the cmsghdr object.

The following example shows how you would compute the value for the cmsg_len member, if the
ancillary object is a file descriptor (this example just prints the value):

Page 438

Example

int fd; /* File descriptor */

printf("cmsg_len = %d\n",CMSG_LEN(sizeof fd));

The CMSG_SPACE() Macro

This macro is used to compute the total space required for the ancillary data object and its header.
Although the CMSG_LEN() macro computes a similar length, the CMSG_LEN() value does not
include possible trailing pad bytes (refer to Figure 17.1). The CMSG_SPACE() macro is useful for
determining the buffer size requirements, as shown in the following example:

Example

int fd; /* File Descriptor */
char abuf[CMSG_SPACE(sizeof fd)];

This example declares enough buffer space in abuf[] to hold the header, pad bytes, the ancillary
data object itself, and any final pad bytes. If multiple ancillary data objects are being constructed in
the buffer, be sure to add multiple CMSG_SPACE() macro calls together to arrive at the total space
required.

The CMSG_DATA() Macro

This macro accepts a pointer to the cmsghdr structure. The pointer value returned points to the
first byte of ancillary data that follows the header and pad bytes, if any. If the pointer mptr points to
a valid ancillary data message header that describes a file descriptor, the file descriptor can be
extracted with the following example code:

Example

struct cmsgptr *mptr;
int fd; /* File Descriptor */
. . .
fd = *(int *)CMSG_DATA(mptr);

The CMSG_ALIGN() Macro

This is a Linux extension macro that is not part of the Posix.1g standard. Given a byte length as
input, this macro computes a new length, which includes any additional pad bytes that are required
to maintain alignment.

The CMSG_FIRSTHDR() Macro

This macro is used to return a struct cmsghdr pointer to the first ancillary object within the
ancillary data buffer. The input value is the pointer to the struct msghdr structure (do not
confuse this with the struct cmsghdr). This macro evaluates the msghdr members
msg_control and msg_controllen to determine whether any ancillary objects exist in the
buffer. Then, it computes the pointer to be returned.

Page 439

The pointer value returned is a NULL pointer if there is no ancillary data objects present. Otherwise,
the pointer points to the first struct cmsghdr present. This macro is used at the start of a for
loop, to start iterating through the ancillary data objects present.

The CMSG_NXTHDR() Macro

This macro is used to return the struct cmsghdr pointer of the next ancillary data object. This
macro accepts two input arguments:

• The pointer to the struct msghdr structure

• The pointer to the current struct csmghdr

This macro returns a NULL pointer if there is no next ancillary data object.

Iterating Through Ancillary Data

When ancillary data is received, the CMSG_FIRSTHDR() and CMSG_NEXTHDR() macros are
used to iterate through the ancillary data objects. The following example code shows the general
form that the for loop and macros should take:

Example

struct msghdr msgh; /* Message Hdr */
struct cmsghdr *cmsg;0 /*Ptr to ancillary hdr */
int *fd_ptr; /* Ptr to file descript.*/
int received_fd; /* The file descriptor */

for (cmsg=CMSG_FIRSTHDR(&msgh); cmsg!=NULL; cmsg=CMSG_NXTHDR(&msgh,cmsg)) {
 if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
 fd_ptr = (int *) CMSG_DATA(cmsg);
 received_fd = *fd_ptr;
 break;
 }
}

if (cmsg == NULL) {
 /* Error: No file descriptor recv'd */
}

The general procedure is as follows:

1. The for loop initializes by obtaining the first ancillary data header (struct cmsghdr) using
the macro CMSG_FIRSTHDR().

2. The for loop tests whether the pointer cmsg is NULL . The body of the for loop is executed if
this pointer is not NULL.

3. The if statement applies two tests to the struct cmsghdr header structure: The program is
interested only in messages that are at the

Page 440

cmsg_level equal to SOL_SOCKET and is of the message type SCM_RIGHTS. This identifies an
ancillary data object that represents a file descriptor.

4. If the test in step 3 succeeds, the pointer to the file descriptor is stored in pointer variable
fd_ptr.

5. The pointer fd_ptr is then used to extract the file descriptor out of the ancillary data buffer into
the variable received_fd.

6. The control leaves the for loop with the break statement, because the program has located the
information it was interested in.

7. The if statement test that follows the for loop tests the cmsg pointer variable to see whether
the ancillary data object was found. If the pointer cmsg is NULL , this indicates the for loop ran
until completion without finding the file descriptor. When it is not NULL, this indicates that the
break statement was executed, indicating that the file descriptor was indeed extracted.

This covers the general outline for extracting data from an ancillary data buffer.

Creating Ancillary Data

The process that wants to send a file descriptor must create an ancillary data buffer with the
correctly formatted data within it. The following code outlines the general procedure:

Example

struct msghdr msg; /* Message header */
struct cmsghdr *cmsg; /* Ptr to ancillary hdr */
int fd; /* File descriptor to send */
char buf[CMSG_SPACE(sizeof fd)]; /* Anc. buf */
int *fd_ptr; /* Ptr to file descriptor */

msg.msg_control = buf;
msg.msg_controllen = sizeof buf;

cmsg = CMSG_FIRSTHDR(&msg);
cmsg->cmsg_level = SOL_SOCKET;
cmsg->cmsg_type = SCM_RIGHTS;
cmsg->cmsg_len = CMSG_LEN(sizeof fd);

/* Initialize the payload: */
fd_ptr = (int *)CMSG_DATA(cmsg);
*fd_ptr = fd;

/*
 * Sum of the length of all control
 * messages in the buffer:
 */
msg.msg_controllen = cmsg->cmsg_len;

Page 441

The general procedure used is as follows:

1. The ancillary data buffer was declared to make room to format an ancillary data object (array
variable buf[]). Notice that the CMSG_SPACE() macro is used to compute the size of the buffer
that is required.

2. The message header members msg_control and msg_controllen are initialized to point to
the ancillary buffer and assign its maximum length, respectively.

3. The pointer cmsg is initialized to point at the first ancillary data object within the buffer using the
CMSG_FIRSTHDR() macro. Note that the input argument to the macro is the pointer to the
message header (&msg) and is not the pointer to the ancillary data buffer.

4. The ancillary data object's header is initialized by setting cmsg->cmsg_level and cmsg-
>cmsg_type.

5. The length of the ancillary data object is established by using the CMSG_LEN() macro with the
size of the file descriptor as the input value.

6. The pointer to the file descriptor within the ancillary data buffer is determined by using the
CMSG_DATA() macro.

7. The file descriptor fd is then copied into the ancillary data buffer using the pointer fd_ptr.

8. Finally, the total ancillary message length is computed and assigned to
msg.msg_controllen.

NOTE
If there is more than one ancillary data object included, you must be sure that
msg.msg_controllen is the sum of all of the parts. Additionally, be certain to
sum the total requirements needed for the buffer buf[] in the example shown).

Presenting an Ancillary Data Example

Now, it is time to present the software in order to tie all of the concepts together into a concrete
example pair of programs. Two programs will be presented:

• A socket server

• A very simple Web server

The Web server will serve one, and only one, simple demonstration HTML page. The socket server
will be used to gain access to a port 80 socket without requiring root access or root setuid.

TE
AM
FL
Y

Team-Fly®

Page 442

NOTE
If you have a Web server running already, you will need to terminate it, if it uses
port 80. For Red Hat Linux 6.0 users, you can stop your Web server from the root
account as follows:

/etc/rc.d/init.d/httpd stop
Shutting down http: [OK]
#

The following sections will present the various source code components.

The Common Header File common.h

This file simply lists all function prototypes and other common definitions and include files (see
Listing 17.2).

Example

Listing 17.2: common.h— The common.h Header File

1: /* common.h
2: *
3: * Source common to all modules:
4: */
5: #include <stdio.h>
6: #include <unistd.h>
7: #include <stdlib.h>
8: #include <errno.h>
9: #include <string.h>
10: #include <fcntl.h>
11: #include <time.h>
12: #include <sys/types.h>
13: #include <sys/socket.h>
14: #include <netinet/in.h>
15: #include <sys/un.h>
16: #include <sys/uio.h>
17:
18: #ifndef TRUE
19: #define TRUE 1
20: #define FALSE 0
21: #endif
22:
23: extern void bail(const char *on_what);
24:
25: extern int recv_fd(int s);
26:
27: extern int reqport(int port);
28:
29: extern int send_fd(
30: int s,int fd,
31: void *addr,socklen_t alen);

Page 443

32:
33: extern int recv_cred(
34: int s,struct ucred *credp,
35: void *buf,unsigned bufsiz,
36: void *addr,socklen_t *alen);

The misc.c Module

This module lists a small error-handling function that is in common with both programs. This self-
explanatory module is shown in Listing 17.3.

Example

Listing 17.3: misc.c— The misc.c Module

1: /* misc.c:
2: *
3: * Misc. Functions:
4: */
5: #include "common.h"
6:
7: /*
8: *
9: * This function reports the error to
10: * the log file and calls exit(1).
11: */
12: void
13: bail(const char *on_what) {
14:
15: if (errno != 0)
16: fprintf(stderr,"%s: ",strerror(errno));
17: fprintf(stderr,"%s\n",on_what);
18:
19: exit(1);
20: }

The recvcred.c Module

Listing 17.4 shows the source module recvcred.c, which is used by our example programs. The
recv_cred() function centralizes much of the work of receiving data and user credentials.

Example

Listing 17.4: recvcred.c— The recvcred.c source module

1: /* recvcred.c
2: *
3: * Send a file descriptor:
4: */
5: #include "common.h"

6:
7: /*

continues

Page 444

Listing 17.4: continued

8: * Receive Data & Credentials:
9: *
10: * ARGUMENTS:
11: * s Socket to read from
12: * credp Ptr to receiving area for cred.
13: * buf Ptr to receiving buffer for data
14: * bufsiz Maximum # of bytes for buffer
15: * addr Ptr to buffer to receive peer
16: * address (or NULL)
17: * alen Ptr to Maximum byte length
18: * (updated with actual length
19: * upon return.)
20: *
21: * RETURNS:
22: * >=0 Data bytes read
23: * -1 Failed: check errno
24: *
25: * NOTES:
26: * The value -1 is returned with errno set
27: * to ENOENT, if data is returned without
28: * any credentials.
29: */
30: int
31: recv_cred(
32: int s, /* Socket */
33: struct ucred *credp, /* Credential buffer */
34: void *buf, /* Receiving Data buffer */
35: unsigned bufsiz, /* Recv. Data buf size */
36: void *addr, /* Received Peer address */
37: socklen_t *alen) { /* Ptr to addr length */
38:
39: int z;
40: struct msghdr msgh; /* Message header */
41: struct iovec iov[1]; /* I/O vector */
42: struct cmsghdr *cmsgp = NULL;
43: char mbuf[CMSG_SPACE(sizeof *credp)];
44:
45: /*
46: * Zero out message areas:
47: */
48: memset(&msgh,0,sizeof msgh);
49: memset(mbuf,0,sizeof mbuf);
50:
51: /*
52: * Establish datagram address (if any):
53: */

Page 445

54: msgh.msg_name = addr;
55: msgh.msg_namelen = alen ? *alen : 0;
56:
57: /*
58: * Point to our I/O vector of 1 element:
59: */
60: msgh.msg_iov = iov;
61: msgh.msg_iovlen = 1;
62:
63: /*
64: * Initialize our 1 I/O element vector:
65: */
66: iov[0].iov_base = buf;
67: iov[0].iov_len = bufsiz;
68:
69: /*
70: * Initialize control structure:
71: */
72: msgh.msg_control = mbuf;
73: msgh.msg_controllen = sizeof mbuf;
74:
75: /*
76: * Receive a message:
77: */
78: do {
79: z = recvmsg(s,&msgh,0);
80: } while (z == -1 && errno == EINTR);
81:
82: if (z == -1)
83: return -
1; /* Failed: check errno */
84:
85: /*
86: * If ptr alen is non-NULL, return the
87: * returned address length (datagrams):
88: */
89: if (alen)
90: *alen = msgh.msg_namelen;
91:
92: /*
93: * Walk the list of control messages:
94: */
95: for (cmsgp = CMSG_FIRSTHDR(&msgh);
96: cmsgp != NULL;
97: cmsgp = CMSG_NXTHDR(&msgh,cmsgp)) {
98:
99: if (cmsgp->cmsg_level == SOL_SOCKET

continues

Page 446

Listing 17.4: continued

100: && cmsgp->cmsg_type == SCM_CREDENTIALS) {
101:
102: /*
103: * Pass back credentials struct:
104: */
105: *credp = *
106: (struct ucred *) CMSG_DATA(cmsgp);
107:
108: return z; /* # of data bytes read */
109: }
110: }
111:
112: /*
113: * There were no credentials found. An error
114: * is returned here, since this application
115: * insists on getting credentials.
116: */
117: errno = ENOENT;
118: return -1;
119: }

The highlights of this source module are as follows:

• The arguments used by the function recv_cred() are described in the program comments in
lines 11 to 19.

• Lines 39 to 43 define the various variables and control structures needed.

• The function body is defined in lines 44 to
119.

The general procedure used by the recv_cred() function is as follows:

1. Lines 48 to 73 perform all of the initialization required in preparation for the recvmsg(2)
function call.

2. Lines 78 to 83 accomplish the read function by calling upon recvmsg(2). This function reads
both data and ancillary data at the same time.

3. Lines 92 to 110 extract the user credentials from the ancillary data. If the credentials are found,
the number of data bytes received is returned in line 108.

4. When no credentials are received, this recv_cred() function returns -1 with errno set to
ENOENT (lines 112 to 118). This tells the calling program that no user credentials were returned.

Page 447

TIP
The struct ucred used in line 33 of Listing 17.4 is not portable to all UNIX
platforms. For example, FreeBSD uses the struct cmsgcred instead.

The Simple Web Server web80

This very simple Web server is designed to operate two ways:

• Without the socket server

• With the socket server

This will help illustrate the problem and how the problem was solved. Listing 17.5 shows the
web80.c module.

Example

Listing 17.5: web80.c— The Simple Web Server Module web80.c

1: /* web80.c:
2: *
3: * This is an extremely simple Web server:
4: *
5: * This program runs in two modes:
6: *
7: * 1. Standalone Mode:
8: * $./web80 standalone
9: *
10: * In this mode, this program functions
11: * as a very simple standalone Web server.
12: * However, it must run as root to bind
13: * to the Web port 80.
14: *
15: * 2. Sock Server Mode:
16: * $./web80
17: *
18: * In this mode, this program contacts
19: * the sockserv server to request a
20: * socket bound to port 80. If sockserv
21: * allows the request, it returns
22: * a port 80 socket. This allows this
23: * program to run without root and
24: * with no setuid requirement.
25: */
26: #include "common.h"
27:
28: int
29: main(int argc,char **argv) {
30: int z;

continues

Page 448

Listing 17.5: continued

31: int s; /* Web Server socket */
32: int c; /* Client socket */
33: int alen; /* Address length */
34: struct sockaddr_in a_web; /* Web Server */
35: struct sockaddr_in a_cln; /* Client addr */
36: int b = TRUE; /* For SO_REUSEADDR */
37: FILE *rx; /* Read Stream */
38: FILE *tx; /* Write Stream */
39: char getbuf[2048]; /* GET buffer */
40: time_t td; /* Current date & time */
41:
42: /*
43: * If any arguments are present on the
44: * command line, obtain the socket
45: * without help from the server (run
46: * in simple standalone mode):
47: */
48: if (argc > 1) {
49: /*
50: * Standalone mode:
51: */
52: s = socket(PF_INET,SOCK_STREAM,0);
53: if (s == -1)
54: bail("socket(2)");
55:
56: /*
57: * Web address on port 80:
58: */
59: memset(&a_web,0,sizeof a_web);
60: a_web.sin_family = AF_INET;
61: a_web.sin_port = ntohs(80);
62: a_web.sin_addr.s_addr =
63: ntohl(INADDR_ANY);
64:
65: /*
66: * Bind the Web server address-
67: * we need to be root to succeed
68: * at this:
69: */
70: z = bind(s,
71: (struct sockaddr *)&a_web,
72: sizeof a_web);
73: if (z == -1)
74: bail("binding port 80");
75:
76: /*

Page 449

77: * Turn on SO_REUSEADDR:
78: */
79: z = setsockopt(s,SOL_SOCKET,
80: SO_REUSEADDR,&b,sizeof b);
81: if (z == -1)
82: bail("setsockopt(2)");
83:
84: } else {
85: /*
86: * Run in sockserv mode: Request
87: * a socket bound to port 80:
88: */
89: s = reqport(80);
90: if (s == -1)
91: bail("reqport(80)");
92: }
93:
94: /*
95: * Now make this a listening socket:
96: */
97: z = listen(s,10);
98: if (z == -1)
99: bail("listen(2)");
100:
101: /*
102: * Perform a simple, Web server loop for
103: * demonstration purposes. Here we just
104: * accept one line of input text, and
105: * ignore it. We provide one simple
106: * HTML page back in response:
107: */
108: for (;;) {
109: /*
110: * Wait for a connect from browser:
111: */
112: alen = sizeof a_cln;
113: c = accept(s,
114: (struct sockaddr *)&a_cln,
115: &alen);
116: if (c == -1) {
117: perror("accept(2)");
118: continue;
119: }
120:
121: /*
122: * Create streams for convenience, and

continues

Page 450

Listing 17.5: continued

123: * just eat any Web command provided:
124: */
125: rx = fdopen(c,"r");
126: tx = fdopen(dup(c),"w");
127: fgets(getbuf,sizeof getbuf,rx);
128:
129: /*
130: * Now serve a simple HTML response.
131: * This includes this Web server's
132: * process ID and the current date
133: * and time:
134: */
135: fputs("<HTML>\n"
136: "<HEAD>\n"
137: "<TITLE>Test Page for this little "
138: "web80 server</TITLE>\n"
139: "</HEAD>\n"
140: "<BODY>\n"
141: "<H1>web80 Worked!</H1>\n",tx);
142:
143: time(&td);
144: fprintf(tx,
145: "<H2>From PID %ld @ %s</H2>\n",
146: (long)getpid(),
147: ctime(&td));
148:
149: fputs("</BODY>\n"
150: "</HTML>\n",tx);
151:
152: fclose(tx);
153: fclose(rx);
154: }
155:
156: return 0;
157: }

The very simple Web server in Listing 17.5 uses the following basic procedure:

1. If command-line arguments are provided, a socket is created and bound with bind(2) if it can
(lines 49 to 83). This allows you to prove that you need root access to obtain such a port under
Linux.

2. If no command line arguments are provided, the code between lines 89 and 91 is executed
instead. Line 89 calls upon a function reqport() to obtain a socket on port 80.

TE
AM
FL
Y

Team-Fly®

Page 451

3. The function listen(2) is called to allow connections to this socket (lines 97 to 99).

4. The for loop allows for a continuous number of client connections to take place to this Web
server (line 108).

5. Lines 112 to 154 form the body of the for loop, which simply waits for one text line of input and
then sends some formatted HTML back to the client in return. The client's socket is closed at lines
152 and 153.

Note in lines 144 to 147 that the process ID of the Web server is reported back to the browser so that
you can have confirmation of where this information came from.

The reqport() Function

In the web80.c program of Listing 17.5, you saw that there was a call to the function reqport
(). This function is responsible for contacting the socket server and obtaining a socket on port 80.
Listing 17.6 shows the listing of this function.

Example

Listing 17.6: reqport.c— The reqport() Function

1: /* reqport.c
2: *
3: * Request a port from the sockserv:
4: */
5: #include "common.h"
6:
7: /*
8: * Request a INADDR_ANY socket on the
9: * port number requested:
10: *
11: * ARGUMENTS:
12: * s Socket to send request on
13: * port Port (host order) being requested
14: *
15: * RETURNS:
16: * >= 0 Socket to use
17: * -1 Failed: check errno
18: */
19: int
20: reqport(int port) {
21: int z;
22: int s; /* socket */
23: struct sockaddr_un a_srvr;/* serv. adr */
24:
25: /*

continues

Page 452

Listing 17.6: continued

26: * Create a Unix Socket:
27: */
28: s = socket(PF_LOCAL,SOCK_STREAM,0);
29: if (S == -1)
30: return -1; /* Failed: check errno */
31:
32: /*
33: * Create the abstract address of
34: * the socket server:
35: */
36: memset(&a_srvr,0,sizeof a_srvr);
37: a_srvr.sun_family = AF_LOCAL;
38: strncpy(a_srvr.sun_path,
39: "zSOCKET-SERVER",
40: sizeof a_srvr.sun_path-1);
41: a_srvr.sun_path[0] = 0;
42:
43: /*
44: * Connect to the sock server:
45: */
46: z = connect(s,&a_srvr,sizeof a_srvr);
47: if (z == -1)
48: return -1; /* Failed: check errno */
49:
50: /*
51: * Now issue our request:
52: */
53: do {
54: z = write(s,&port,sizeof port);
55: } while (z == 1 && errno == EINTR);
56:
57: if (z == -1)
58: return -1; /* Failed: see errno */
59:
60: /*
61: * Now wait for a reply:
62: */
63: z = recv_fd(s);
64: close(s);
65:
66: return z; /* z == fd or -1 */
67: }

Page 453

The procedure that function reqport() implements is as follows:

1. The function accepts as input the port number being requested (line 20). The web80.c program
calls this function with the argument 80.

2. A PF_LOCAL (PF_UNIX) socket is created in lines 28 to 30. This socket must be a
PF_LOCAL socket in order that credentials be available to the receiving server.

3. An abstract server address is formed in lines 36 to 41. This will be used to contact the socket
server.

4. A call to connect(2) is made to contact the socket server (lines 46 to 48).

5. A write(2) call is used to send the port number that is being requested.

6. The function recv_fd() is called to obtain the server response (line 63). The return value will
be >= 0 if a socket was received, or -1 if an error was received instead.

7. The socket or the value -1 is returned in line 66.

Now you must investigate the workings of recv_fd () to see how the file descriptor was
received.

The recv_fd() Function

Listing 17.7 shows the code for the function recv_fd().

Example

Listing 17.7: recvfd.c— The recv_fd() Function

1: /* recvfd.c
2: *
3: * Receive a file descriptor:
4: */
5: #include "common.h"
6:
7: /*
8: * Receive a file descriptor from the
9: * socket.
10: *
11: * ARGUMENTS:
12: * s Socket to receive file
13: * descriptor on.
14: *
15: * RETURNS:
16: * >= 0 Received file descriptor

continues

Page 454

Listing 17.7: continued

17: * -1 Failed: See errno
18: */
19: int
20: recv_fd(int s) {
21: int z;
22: struct msghdr msgh; /* Message header */
23: struct iovec iov[1]; /* I/O vector */
24: struct cmsghdr *cmsgp = NULL;
25: char buf[CMSG_SPACE(sizeof(int))];
26: char dbuf[80]; /* Small data buffer */
27:
28: /*
29: * Initialize structures to zero bytes:
30: */
31: memset(&msgh,0,sizeof msgh);
32: memset(buf,0,sizeof buf);
33:
34: /*
35: * No socket addresses are used here:
36: */
37: msgh.msg_name = NULL;
38: msgh.msg_namelen = 0;
39:
40: /*
41: * Install our I/O vector:
42: */
43: msgh.msg_iov = iov;
44: msgh.msg_iovlen = 1;
45:
46: /*
47: * Initialize I/O vector to read data
48: * into our dbuf[] array:
49: */
50: iov[0].iov_base = dbuf;
51: iov[0].iov_len = sizeof dbuf;
52:
53: /*
54: * Load control data into buf[]:
55: */
56: msgh.msg_control = buf;
57: msgh.msg_controllen = sizeof buf;
58:
59: /*
60: * Receive a message:
61: */
62: do {

Page 455

63: z = recvmsg(s,&msgh,0);
64: } while (z == -1 && errno == EINTR);
65:
66: if (z == -1)
67: return -1; /* Failed: see errno */
68:
69: /*
70: * Walk the control structure looking for
71: * a file descriptor:
72: */
73: for (cmsgp = CMSG_FIRSTHDR(&msgh);
74: cmsgp != NULL;
75: cmsgp = CMSG_NXTHDR(&msgh,cmsgp)) {
76:
77: if (cmsgp->cmsg_level == SOL_SOCKET
78: && cmsgp->cmsg_type == SCM_RIGHTS) {
79: /*
80: * File descriptor found:
81: */
82: return *(int *) CMSG_DATA(cmsgp);
83: }
84: }
85:
86: /*
87: * No file descriptor was received:
88: * If we received 4 bytes, assume we
89: * received an errno value. . . then
90: * set errno from our received data.
91: */
92: if (z == sizeof (int))
93: errno = *(int *)dbuf; /* Rcvd errno */
94: else
95: errno = ENOENT; /* Default errno */
96:
97: return -1; /* Return failure indication */
98: }

The function recv_fd() implements the following procedure:

1. The input argument s is the socket that the server response is to come from (line 20).

2. This function expects to receive only one ancillary data object containing a file descriptor. This
allows the buffer size to be simply stated as shown in line 25. Note that if multiple ancillary objects
might be received, you will need to declare a larger buffer than the one shown on line 25.

Page 456

3. Ancillary data can be received only with data. Hence, a small data buffer is declared in line 26 to
receive some data.

4. The message header msgh and buffer buf are cleared to zero bytes (lines 31 and 32). This step
can be omitted for efficiency if you like, but is recommended while you are debugging.

5. The message header members msg_name and msg_namelen are nulled out because no socket
address is required (a stream socket is being used). If you are using a datagram socket, you will want
to receive the socket address so that you know where the datagram came from.

6. The pointer to the I/O vector is established in lines 43 and 44. Additionally, it is established that it
has exactly one entry.

7. The I/O vector itself is established in lines 50 and 51. The first I/O vector entry iov[0] is set to
receive data into buffer dbuf (line 50) for a maximum size indicated in line 51.

8. The recvmsg(2) function is called in lines 62 to 64. If an error occurs, this function exits with
the return statement in line 67.

9. The ancillary data is iterated through using the CMSG_FIRSTHDR() and CMSG_NXTHDR()
macros (lines 73 to 84). If an ancillary data object of level SOL_SOCKET and of type
SCM_RIGHTS is found, the function returns the file descriptor in line 82.

10. If the socket server denied the request or failed, the data buffer contains the (int) value of the
server's errno value. This function stores this errno value into the calling process' errno
variable in line 93. If received data is not sizeof(int), then the function sets the errno value
to ENOENT (line 95). This should never happen unless the wrong server was contacted, or the server
had a bug.

11. The return value is -1 when the error has been stuffed into errno (line 97).

In the following sections, you will look at the code behind the socket server.

The sockserv Server Program

The socket server is the server program that will run as root. This gives it the capability to create
and bind a socket on port 80 . However, this is the only component that runs with this privilege, and
you will have full control over who gets what by having the server examine the credentials of the
request. Listing 17.8 shows the source code for the socket server.

Page 457

Example

Listing 17.8: sockserv.c— The Socket Server

1: /* sockserv.c:
2: *
3: * This simple server will serve up a socket
4: * to a valid recipient:
5: */
6: #include "common.h"
7: #include <pwd.h>
8:
9: /*
10: * Check user's access:
11: *
12: * RETURNS:
13: * ptr To (struct passwd *) if granted.
14: * NULL Access is to be denied.
15: */
16: static struct passwd *
17: check_access(
18: int port, /* Port being requested */
19: struct ucred *pcred, /* User credentials */
20: char **uidlist) { /* List of valid users */
21: int x;
22: struct passwd *pw; /* User passwd entry */
23:
24: /*
25: * Look the user's uid # up in the
26: * /etc/password file:
27: */
28: if ((pw = getpwuid(pcred->uid)) != 0) {
29: /*
30: * Make sure request is coming from
31: * one of the acceptable users:
32: */
33: for (x=0; uidlist[x]; ++x)
34: if (!strcmp(uidlist[x],pw->pw_name))
35: break;
36: if (!uidlist[x])
37: pw = 0; /* Access denied */
38: }
39:
40: /*
41: * Screen the port #. For this demo,
42: * only port 80 is permitted.
43: */
44: if (port != 80)
45: pw = 0; /* Access denied */

continues

Page 458

Listing 17.8: continued

46:
47: return pw; /* NULL or ptr if granted */
48: }
49:
50: /*
51: * Access has been granted: send socket
52: * to client.
53: *
54: * ARGUMENTS:
55: * c Client socket
56: * port Port requested
57: *
58: * RETURNS:
59: * 0 Success
60: * -1 Failed: check errno
61: */
62: static int
63: grant_access(int c,int port) {
64: int z;
65: int fd = -1; /* New socket fd */
66: int b = TRUE; /* Boolean TRUE */
67: struct sockaddr_in addr;/* work address */
68:
69: /*
70: * Create a new TCP/IP socket:
71: */
72: fd = socket(PF_INET,SOCK_STREAM,0);
73: if (fd == -1) {
74: perror("socket(2)");
75: goto errxit;
76: }
77:
78: /*
79: * Turn on SO_REUSEADDR:
80: */
81: z = setsockopt(fd,SOL_SOCKET,
82: SO_REUSEADDR,&b,sizeof b);
83: if (z == -1)
84: bail("setsockopt(2)");
85:
86: /*
87: * Create the address to bind:
88: */
89: memset(&addr,0,sizeof addr);
90: addr.sin_family = AF_INET;
91: addr.sin_port = ntohs(port);

Page 459

92: addr.sin_addr.s_addr = ntohl(INADDR_ANY);
93:
94: /*
95: * Bind the requested address:
96: */
97: z = bind(fd,
98: (struct sockaddr *)&addr,
99: sizeof addr);
100: if (z == -1) {
101: fprintf(stderr,"%s: binding port %d\n",
102: strerror(errno),port);
103: goto errxit;
104: }
105:
106: /*
107: * Send the fd back to the
108: * requesting client:
109: */
110: z = send_fd(c,fd,NULL,0);
111: if (z == -1) {
112: perror("send_fd()");
113: goto errxit;
114: }
115:
116: close(fd); /* finished with fd */
117: return 0; /* Success*/
118:
119: errxit:
120: z = errno; /* Save errno */
121: if (fd)
122: close(fd); /* Release socket */
123: errno = z; /* Restore errno */
124: return -1;
125: }
126:
127: /*
128: * Process a connected client's request:
129: */
130: void
131: process_client(
132: int c, /* Client socket */
133: char **uidlist /* List of valid users */
134:) {
135: int z;
136: int er; /* Captured errno value */
137: int b = TRUE; /* Boolean: True */

continues

Page 460

Listing 17.8: continued

138: struct ucred cred; /* Clnt credentials */
139: short port; /* Port being requested */
140: struct passwd *pw; /* User passwd entry */
141:
142: /*
143: * Now make certain that we can receive
144: * credentials on this socket:
145: */
146: z = setsockopt(c,
147: SOL_SOCKET,
148: SO_PASSCRED,
149: &b,
150: sizeof b);
151: if (z)
152: bail("setsockopt(2)");
153:
154: /*
155: * Receive a request with the
156: * user credentials:
157: */
158: z = recv_cred(c, /* socket */
159: &cred, /* Returned credentials */
160: &port, /* Returned port # */
161: sizeof port, /* Size of data */
162: NULL, 0); /* no socket address */
163:
164: if (z == -1)
165: perror("recv_cred()");
166:
167: /*
168: * Now check access. If pw is returned
169: * as non-NULL, the request is OK.
170: */
171: pw = check_access(port,&cred,uidlist);
172:
173: if (pw) {
174: if (!grant_access(c,port)) {
175: close(c);
176: return; /* request sucessful */
177: }
178: /* Failed */
179: er = errno; /* Capture reason */
180: } else {
181: /*
182: * Userid was not known, or not in
183: * the privileged list:

TE
AM
FL
Y

Team-Fly®

Page 461

184: */
185: er = EACCES; /* Perm denied */
186: }
187:
188: /*
189: * Control reaches here if the
190: * request failed or is denied:
191: *
192: * Here we simply send the error
193: * code back without a file
194: * descriptor. This lack of a fd
195: * will be detected by the client.
196: */
197: do {
198: z = write(c,&er,sizeof er);
199: } while (z == -1 && errno == EINTR);
200:
201: if (z == -1)
202: perror("write(2)");
203: }
204:
205: /*
206: * Main program:
207: */
208: int
209: main(int argc,char **argv) {
210: int z;
211: int s; /* Server UDP socket */
212: int c; /* Client socket */
213: int alen; /* Address length */
214: struct sockaddr_un a_srvr; /* Server @ */
215: struct sockaddr_un a_clnt; /* Client @ */
216:
217: /*
218: * Make sure we have a userid specified:
219: */
220: if (argc < 2) {
221: fputs("Must have at least 1 userid.\n",
222: stderr);
223: exit(1);
224: }
225:
226: /*
227: * Create a Unix Socket:
228: */
229: s = socket(PF_LOCAL,SOCK_STREAM,0);

continues

Page 462

Listing 17.8: continued

230: if (s == -1)
231: bail("socket(2)");
232:
233: /*
234: * Create abstract address:
235: */
236: memset(&a_srvr,0,sizeof a_srvr);
237: a_srvr.sun_family = AF_LOCAL;
238: strncpy(a_srvr.sun_path,
239: "zSOCKET-SERVER",
240: sizeof a_srvr.sun_path-1);
241: a_srvr.sun_path[0] = 0;
242:
243: /*
244: * Bind the server address:
245: */
246: z = bind(s,
247: (struct sockaddr *)&a_srvr,
248: sizeof a_srvr);
249: if (z == -1)
250: bail("bind(2)");
251:
252: /*
253: * Now make this a listening socket:
254: */
255: z = listen(s,10);
256: if (z == -1)
257: bail("listen(2)");
258:
259: /*
260: * Now process requests:
261: */
262: for (;;) {
263: /*
264: * Wait for a connect:
265: */
266: alen = sizeof a_clnt;
267: c = accept(s,&a_clnt,&alen);
268: if (c == -1)
269: bail("accept(2)");
270:
271: /*
272: * Process this request:
273: */
274: process_client(c,argv+1);
275: close(c);

Page 463

276: }
277:
278: return 0;
279: }

The listing for the socket server is quite long, so let's break up the study of it into smaller segments.
The procedure used by the main() program is as follows:

1. The socket server program insists on at least one command-line argument. Each argument is the
name of a userID that is permitted to request a socket on port 80 (lines 220 to 224).

2. A PF_LOCAL (PF_UNIX) streams socket is created, and bound to an abstract socket address
(lines 229 to 250).

3. The listen(2) function is called to allow connects to this socket (lines 255 to 257).

4. The top of the server loop starts with the for statement in line 262.

5. The connection is accepted in lines 266 to 269.

6. The client program's request is serviced by calling process_client() in line 274, and then
the client's socket is closed (line 275).

7. The server continues with step 4 until the server is terminated.

Now, examine the process_client() function's steps:

1. This function accepts as input (lines 131 to 134) the client socket c and the list of userIDs that are
granted permission to make requests (this argument comes from argv[]).

2. The socket must have option SOL_SOCKET SO_PASSCRED enabled before credentials can be
received. Lines 146 to 152 enable this socket feature.

3. The function recv_cred() (Listing 17.4) is called to receive the request and the client's
credentials (lines 158 to 165). The request is returned in variable port which is the port number.
The credentials will be returned in variable cred, which is declared in line 138. The recv_cred
() program is designed to return -1 if no credentials were received.

4. With the value port being requested, and the credentials cred available, the request for access
is tested in function check_access() (line 171). If the pointer value pw is returned without
being NULL, the access is to be granted. Otherwise, access is to be denied.

5. Line 173 tests the pointer pw for NULL. If not NULL , the function grant_access() is called
to comply with the request. When the request

Page 464

is granted successfully, the function returns to the caller in line 176. If, however, it fails (and it can),
the error is captured in variable er in line 179.

6. If the access has been denied, er is set to the error code EACCES (line 185).

7. The write(2) call in lines 197 to 202 is executed if the access was denied or the granting of the
request failed. This response simply sends the error code captured in variable er back to the caller
as normal data.

Now, examine the code for check_access():

1. The input values accepted are the port number, the credentials pointer pcred and the
privileged userID list uidlist (lines 16 to 20).

2. The function getpwuid(3) is called to look up the userID number found in the credentials. If
the value is not found in the /etc/passwd database, it is immediately rejected by not executing
lines 29 to 38. The pointer pw will be NULL when this happens.

3. When step 2 succeeds, the for loop in lines 33 to 37 are executed to see whether the requesting
user is a member of the privileged list. If so, the break statement in line 35 is executed.

4. Lines 44 to 45 perform one further test: This module insists that only port 80 is available. If any
other port is requested, the request is denied by line 45. This area can be customized if you want to
experiment with making other ports available.

5. The return statement in line 47 returns the pointer pw. If the pointer managed not to be set to
NULL by some condition in this function, then the user and the request were considered valid.

Now, you must look at the code for function grant_access(). This function implements the
following steps:

1. The function grant_access() accepts as input the client socket c and the port number
being granted (lines 62 and 63).

2. A PF_INET SOCK_STREAM socket is created in lines 72 to 76.

3. The socket option SO_REUSEADDR is enabled in lines 81 to 84. This is especially useful if you
don't like having to wait to restart your servers that use this socket.

4. The socket address is bound to INADDR_ANY for the port requested (lines 89 to 92). The port is
established in line 91.

Page 465

5. The socket is bound by calling bind(2) in lines 97 to 104. This is where root access is
required, which the server possesses.

6. The bound socket now must be sent back to the client over socket c. This is accomplished by
calling send_fd() in lines 110 to 114.

7. Because the socket fd has been sent to the client on socket c, the server closes it in line 116 (it is
not required by the server).

8. If any errors occur in granting the request in this function, control passes to label errxit (lines
119 to 124). Here, the error is captured and the socket fd is closed if it was created. The return
value is -1 from this function if it fails, with a corresponding error code established in errno (line
123).

That ends the tour of the socket server module. The next section examines the send_fd()
function code.

The send_fd() Function

The socket server calls upon the send_fd() function to send the created and bound socket back to
the requesting process. Listing 17.9 shows the source code listing for this function.

Example

Listing 17.9: sendfd.c— The send_fd() Function

1: /* sendfd.c
2: *
3: * Send a file descriptor:
4: */
5: #include "common.h"
6:
7: /*
8: * Send a file descriptor via socket:
9: *
10: * ARGUMENTS:
11: * s Socket to send on
12: * fd Open file descriptor to send
13: * addr Ptr to UDP address or NULL
14: * alen Size of addr or zero
15: *
16: *
17: * RETURNS:
18: * 0 Successful
19: * -1 Failed: check errno
20: */
21: int
22: send_fd(int s,int fd,void *addr,socklen_t alen) {

continues

Page 466

Listing 17.9: continued

23: int z;
24: struct msghdr msgh; /* Message header */
25: struct iovec iov[1]; /* I/O vector */
26: struct cmsghdr *cmsgp = NULL;
27: char buf[CMSG_SPACE(sizeof fd)];
28: int er=0; /* "No error" code of zero */
29:
30: /*
31: * Clear message areas:
32: */
33: memset(&msgh,0,sizeof msgh);
34: memset(buf,0,sizeof buf);
35:
36: /*
37: * Supply socket address (if any):
38: */
39: msgh.msg_name = addr;
40: msgh.msg_namelen = alen;
41:
42: /*
43: * Install our I/O vector:
44: */
45: msgh.msg_iov = iov;
46: msgh.msg_iovlen = 1;
47:
48: /*
49: * Initialize the I/O vector to send
50: * the value in "er" (which is zero).
51: * This is done because data must be
52: * transmitted to send the fd.
53: */
54: iov[0].iov_base = &er;
55: iov[0].iov_len = sizeof er;
56:
57: /*
58: * Establish control buffer:
59: */
60: msgh.msg_control = buf;
61: msgh.msg_controllen = sizeof buf;
62:
63: /*
64: * Configure the message to send
65: * a file descriptor:
66: */
67: cmsgp = CMSG_FIRSTHDR(&msgh);
68: cmsgp->cmsg_level = SOL_SOCKET;

Page 467

69: cmsgp->cmsg_type = SCM_RIGHTS;
70: cmsgp->cmsg_len = CMSG_LEN(sizeof fd);
71:
72: /*
73: * Install the file descriptor value:
74: */
75: *((int *)CMSG_DATA(cmsgp)) = fd;
76: msgh.msg_controllen = cmsgp->cmsg_len;
77:
78: /*
79: * Send it to the client process:
80: */
81: do {
82: z = sendmsg(s,&msgh,0);
83: } while (z == -1 && errno == EINTR);
84:
85: return z == -1 ? -1 : 0;
86: }

The procedure used by the send_fd() function is broken down into the following steps:

1. The function accepts several input arguments: the socket s to send the file descriptor on; the file
descriptor fd itself to be sent; NULL or the address of the destination; and the address length (lines
10 to 22). Because the server uses a stream socket, NULL is supplied for the address and zero for the
address length.

2. The message header msgh and the ancillary data buffer buf[] are initialized to zero by the
memset(3) calls in lines 33 and 34. This is optional, but useful when debugging.

3. The socket address and length are established in lines 39 and 40. The server in this example does
not use them, but this serves as an example of how to establish them.

4. The I/O vector is determined by lines 45 and 46. The I/O vector length is specified as being one
element long in line 46.

5. The I/O vector itself is established in lines 54 and 55. The iov[0] entry points to the er
variable so that the errno value can be transmitted as data (it is zero when no error is being
transmitted).

6. The pointer to and the size of the ancillary data buffer are established in lines 60 and 61. The
ancillary data will reside in array buf[].

7. The cmsgp pointer is established in line 67.

8. The ancillary message level, type, and length are established in lines 68 to 70. This message
describes a file descriptor ancillary data object.

Page 468

9. The file descriptor being sent is copied into the ancillary data buffer in line 75. Note the careful
use of the CMSG_DATA() macro and the type cast.

10. The final ancillary data length is established in line 76. Note that if you send multiple ancillary
data objects, this value must be the sum total of them all.

11. The message is sent by calling upon sendmsg(2) in lines 81 to 83.

12. The success or failure of the call is returned in line 85 (zero is success and -1 represents
failure).

Now, you fully understand all the source code involved in this example. The next section will put
the code to the test.

Testing the Socket Server

First, compile the modules as follows:

Output

$ make
gcc -g -c -D_GNU_SOURCE -Wall -Wreturn-type web80.c
gcc -g -c -D_GNU_SOURCE -Wall -Wreturn-type misc.c
gcc -g -c -D_GNU_SOURCE -Wall -Wreturn-type reqport.c
gcc -g -c -D_GNU_SOURCE -Wall -Wreturn-type recvfd.c
gcc web80.o misc.o reqport.o recvfd.o -o web80
gcc -g -c -D_GNU_SOURCE -Wall -Wreturn-type sockserv.c
gcc -g -c -D_GNU_SOURCE -Wall -Wreturn-type recvcred.c
gcc -g -c -D_GNU_SOURCE -Wall -Wreturn-type sendfd.c
gcc sockserv.o misc.o recvcred.o sendfd.o -o sockserv
$

This make procedure leaves you with two executables:

• The socket server program sockserv

• The simple Web server web80

Now, test out the simple little Web server without any root privileges (make sure to provide a
command-line argument):

Output

$./web80 stand_alone
Permission denied: binding port 80
$

Any command-line argument like the stand_alone argument shown causes web80 to try to

create its own socket on port 80. As you can see, the Linux kernel does not permit this without root
privileges.

Page 469

Testing sockserv

Now, start up the socket server under your root account in one terminal session or window. Supply
as command-line arguments the one or more userIDs that are going to be permitted to request a port
80 socket. The following example allows userID fred access:

Output

$ su root
Password:
./sockserv fred &
[1] 1077
#

Now that you have the socket server executing, start another terminal session or window to run your
Web server in. Do this with the proper login account (userID fred in this example):

Output

$./web80 &
[1] 1079
$

In this example, the process ID was 1079. Keep this fact in the back of your mind for later
verification. The fact that web80 started up without reporting any errors is a good indication that it
successfully got a socket from the socket server already. To prove this beyond all doubt now, start
your Web browser and contact it with the URL http://127.0.0.1 if you are running netscape on
the same host. If you are connecting from another host on your network, you will need to supply the
correct hostname or IP number. Your browser should report something like this:

Output

web80 Worked!

From PID 1079 @ Sat Nov 20 12:26:00 1999

The preceding output shows the simple HTML response that your Web browser should receive.
Notice how the reported process ID matches that of your web80 process that you started.

TIP
If you cannot start netscape on your host because you lack X Window capabilities,
you can use the following lynx command:

$ lynx http://127.0.0.1

TE
AM
FL
Y

Team-Fly®

You can also use the telnet procedure outlined in this section as another
alternative.

Page 470

Another effective and simple way you can test the web80 server is to try the following (make
special note of the additional argument 80 on the telnet command line):

Output

$ telnet 127.0.0.1 80
Trying 127.0.0.1 . . .
Connected to 127.0.0.1.
Escape character is '^]'.
GET /something
<HTML>
<HEAD>
<TITLE>Test Page for this little web80 server</TITLE>
</HEAD>
<BODY>
<H1>web80 Worked!</H1>
<H2>From PID 1079 @ Sat Nov 20 12:39:26 1999
</H2>
</BODY>
</HTML>
Connection closed by foreign host.
$

Using the telnet procedure, you will need to supply one line of input (see the line
GET /something).

What's Next

This has been a long and perhaps difficult chapter for some of you. However, it has been presented
in the interest of completeness for those of you who need to design local servers where credentials
are essential. For example, a local RDBMS database server uses credentials to establish the ID of
the user connecting to the database.

Now, you have covered all the material to be learned in this book. But don't close it yet! The next
chapter is going to show you how to apply what you know. A working example of a server that uses
TCP/IP to obtain stock quotes from the Internet will be presented. After the stock quotes are
obtained from the Internet, they will be rebroadcast to your local area network. The penguins are
already gathering in the next chapter to see how all those Linux IPOs have been doing lately!

Page 473

18—
A Practical Network Project

Whether your brain is smarting from the last chapter or whether it got smarter, it's time to take a rest.
Rather than cover new material in this chapter, you are going to have some fun applying the
knowledge that you have learned throughout this book. It's important to have a little fun after so
much learning effort has been expended.

In this chapter, you will

• Apply TCP/IP stream sockets to download stock quotations from the Internet

• Apply UDP broadcasting to deliver stock quotes to your LAN

• Use a UDP client program to receive the LAN broadcast stock quotations

Page 474

Problem Statement

It is always a good practice to state the problem before a solution is presented. So, here is the
problem that you are going to solve in this chapter.

You have a small company office of full- or part -time day traders. Your office is small, cheap, or
both, so obtaining quotes without fees is important. Additionally, you are concerned about network
traffic between your host and your Internet provider because you need the available bandwidth for
other purposes. Meanwhile, your office staff insists on obtaining the best free quote service possible.

Solving the Quote Service Problem

It is clear from the problem statement that it is desirable to get one set of quotes from the quote
provider. There is no point in having all your office workers using separate TCP/IP connections to
the same quote server, for the same information. This would use up valuable bandwidth to your
Internet service provider. From the free quotation provider's point of view, this is also less than
desirable.

One local server program could continually fetch updated stock market quotes for everyone. This
information could then be broadcast to the local network for all interested parties. This is the
solution that you will apply in this chapter. This application will also give you the chance to review
the use of both stream sockets and datagram sockets.

Obtaining Stock Market Quotes

The data source that you'll use for market quotations will be the fine service at
finance.yahoo.com. In this section, you'll learn how the program manages to fetch the
quotation information from finance.yahoo.com.

NOTE
The programs being presented in this chapter worked at the time of writing. It is
possible, however, that the Internet service being used might have changed by the
time you read this. Notes are provided later in this chapter to help you adjust these
programs should this become necessary.

To determine how to obtain stock quotes, you can use your Web browser to visit
http://finance.yahoo.com (Netscape will be assumed here). There, you will be presented with a page
that lets you enter a ticker symbol and press the Get Quotes button. Entering RHAT and pressing the
button leads you to another page giving you the details about Red Hat Inc. Underneath the quote
information, you will find a link that reads Download Spreadsheet Format. This is the gold
mine!

Page 475

Figure 18.1:
A screen shot of Netscape after obtaining a stock quote for RHAT at

http://finance.yahoo.com.

From here, you have three choices:

• Move the mouse over the Download Spreadsheet Format link and note the URL that
shows up on the status line (Netscape 4.7 shows the link URL there).

• Select from the menu item View->Page Source. Look through the HTML code for the link
that looks something like <a href="/d/ quotes.csv?s=RHAT
&f=sl1d1t1c1ohgv&e=.csv">Download Spreadsheet Format (find it by
looking for "Download Spreadsheet Format").

• The best way this information can be captured with Netscape is to right-click on the Download
Spreadsheet Format link. From the pop-up menu, select the item Copy Link Location.
This will copy the link reference to your Clipboard. Then, you can later paste this information into a
file.

Page 476

From this information, you will have all that you need. Test the facility with telnet as follows
(remember to supply 80 after the hostname):

Output

$ telnet finance.yahoo.com 80
Trying 204.71.201.75 . . .
Connected to finance.yahoo.com.
Escape character is '^]'.
GET /d/quotes.csv?s=RHAT&f=sl1d1t1c1ohgv&e=.csv
"RHAT",168.9375,"11/24/1999","4:00PM",0,147.5625,175.5,145.6875,3061700
Connection closed by foreign host.
$

The GET command is issued after you are connected, along with the strange-looking pathname and a
press of the Enter key (you might need to press Enter twice). If you are successful, you get one line
of spreadsheet data in return! Substituting another symbol for RHAT will yield different data.

If you are not having any luck, then check your punctuation and spelling. Accuracy is vital here. Use
cut and paste from the screen if possible. If this doesn't help, then you'll need to research how
finance.yahoo.com is doing it presently (you might even need to start at the yahoo.com
home page). Follow the steps outlined previously so that you'll be able to find out the new hostname
and pathname required.

This is a summary of the quote fetch procedure:

1. Connect to finance.yahoo.com on port 80 (this hostname might change at a future date).

2. Issue the GET request with the magic pathname shown (the word GET should be uppercase).

3. A line of spreadsheet format data is returned on the same socket as a response.

4. The socket is closed.

That is all there is to it! Remember these steps when you examine the source code listings later.

The following sections will illustrate and describe the modules that make up the server and client
programs. Unfortunately, space does not permit a full listing of the source code. The full source
code and make files are available, however, at http://www.quecorp.com/series/by_example/.

Table 18.1 lists all the source files that you will need. Some of the more interesting ones will be
listed and described within this chapter.

Page 477

Table 18.1: Source Modules for the Quote Server and Client

Source File Description

Makefile The project make file.

bcast.c Implements the function that performs the quote broadcasting to the
local area network.

connect.c Implements a function that connects to the remote Internet quote server.

csvparse.c Parser for the quote data that is returned.

gettick.c Fetches the quote information from the remote Internet quote server.

load.c Loads the stock market ticker symbols from file tickers.rc.

misc.c Small miscellaneous functions.

mkaddr.c The Internet address convenience function.

mktwatch.c The market watch client program. This program receives the local
broadcast information and displays it.

msgf.c A module that logs server messages to the syslog logging facility.

qserve.c The module that implements the local quote server program.

quotes.h The common header file for all source modules.

tickers.rc The list of ticker symbols to inquire about. Modify this file to change the
tickers to the ones that interest you.

Examining the Quote Server Program

The logical place to start examining code is the qserve.c source module. This module forms the
main program for the quote server itself. It is responsible for obtaining stock market quotes and then
broadcasting them to the local area network. Listing 18.1 shows the source listing for qserve.c.

Example

Listing 18.1: qserve.c— The Quote Server Module

1: /* qserve.c:
2: *
3: * Stock Quote Concentrator Program:
4: */
5: #include "quotes.h"
6:
7: static char *command = NULL;
8:
9: /* Remote Quote Server Address */
10: static char *cmdopt_a = DFLT_SERVER;
11:
12: /* Quote Re-Broadcast Address */
13: static char *cmdopt_b = DFLT_BCAST;
14:

continues

Page 478

Listing 18.1: continued

15: /*
16: * Ticker Table:
17: */
18: static TickReq tickers[MAX_TICKERS];
19: static int ntick = 0;
20:
21: /*
22: * Return server usage information:
23: */
24: static void
25: usage(void) {
26: printf("Usage: %s [-h] [-a address:port]\n"
27: "where:\n"
28: "\t-h\t\tRequests usage info.\n"
29: "\t-a address:port\tSpecify "
30: "the server\n"
31: "\t\t\taddress and port number.\n"
32: "\t-b bcast:port\tSpecify "
33: "the broadcast\n"
34: "\t\t\taddress and port number.\n",
35: command);
36: }
37:
38: /*
39: * Server Main Program:
40: */
41: int
42: main(int argc,char **argv) {
43: int rc = 0; /* Return Code */
44: int optch; /* Option Char. */
45: int z; /* Status Code */
46: int x; /* Index */
47: int s; /* Broadcast socket */
48: time_t tn = 0; /* Time Next */
49: time_t zzz; /* Sleep Time */
50: time_t tm = 20; /* Seconds */
51: time_t td; /* Time & Date */
52: struct sockaddr_in bc_addr; /* bc addr */
53: socklen_t bc_len; /* bc addr len. */
54: const int True = TRUE; /* Const. TRUE */
55: static char cmdopts[] = "ha:b:";
56:
57: /*
58: * Process command line options:
59: */
60: command = Basename(argv[0]);

Page 479

61:
62: while ((optch = getopt(argc,argv,cmdopts)) != -1)
63: switch (optch) {
64:
65: case 'h' : /* -h for help */
66: usage();
67: return rc;
68:
69: case 'a' : /* -a quote_server */
70: cmdopt_a = optarg;
71: break;
72:
73: case 'b' : /* -b broadcast_addr */
74: cmdopt_b = optarg;
75: break;
76:
77: default :
78: /* Option error */
79: rc = 1;
80: }
81:
82: /*
83: * check for option errors:
84: */
85: if (rc) {
86: usage();
87: return rc;
88: }
89:
90: /*
91: * Form the broadcast server
92: * address:
93: */
94: bc_len = sizeof bc_addr; /* Max len */
95: z = mkaddr(
96: &bc_addr, /* Returned addr. */
97: &bc_len, /* Returned len. */
98: cmdopt_b, /* Input address */
99: "udp"); /* UDP protocol */
100:
101: if (z == -1) {
102: msgf('e',"%s: -b %s",
103: strerror(errno),
104: cmdopt_b);
105: return 1;
106: }

continues

Page 480

Listing 18.1: continued

107:
108: /*
109: * Create a UDP socket to use:
110: */
111: s = socket(PF_INET,SOCK_DGRAM,0);
112:
113: if (s == -1) {
114: msgf('e',"%s: socket(PF_INET,"
115: "SOCK_DGRAM,0)",
116: strerror(errno));
117: return 1;
118: }
119:
120: /*
121: * Allow broadcasts on socket s:
122: */
123: z = setsockopt(s,
124: SOL_SOCKET,
125: SO_BROADCAST,
126: &True,
127: sizeof True);
128:
129: if (z == -1) {
130: msgf('e',"%s: setsockopt(SO_BROADCAST)",
131: strerror(errno));
132: return 1;
133: }
134:
135: /*
136: * Load tickers from tickers.rc:
137: */
138: if (load(&tickers[0],&ntick,MAX_TICKERS))
139: goto errxit;
140:
141: /*
142: * Now monitor the remote quote server:
143: */
144: for (;;) {
145: tn = 0; /* Refresh tn */
146: time(&td); /* Current time */
147:
148: /*
149: * Loop for all tickers:
150: */
151: for (x=0; x<ntick; ++x) {
152: /*

TE
AM
FL
Y

Team-Fly®

Page 481

153: * Skip tickers that are either
154: * unknown, or are producing parse
155: * errors in the returned data:
156: */
157: if (tickers[x].flags & FLG_UNKNOWN
158: || tickers[x].flags & FLG_ERROR)
159: continue; /* Ignore this */
160:
161: /*
162: * Pick up the earliest "next" time:
163: */
164: if (!tn
165: || tickers[x].next_samp < tn)
166: tn = tickers[x].next_samp;
167:
168: /*
169: * If the current time is > than
170: * the "next" time, it is time to
171: * fetch an update for this ticker:
172: */
173: if (td >= tickers[x].next_samp) {
174: /*
175: * Get Quote Update:
176: */
177: z = get_tickinfo(
178: &tickers[x],cmdopt_a);
179:
180: /*
181: * Compute time for the next
182: * update for this ticker:
183: */
184: time(&tickers[x].next_samp);
185: tickers[x].next_samp += tm;
186:
187: /*
188: * If the quote fetch was OK,
189: * then broadcast its info:
190: */
191: if (!z)
192: broadcast(s,&tickers[x],
193: (struct sockaddr *)&bc_addr,
194: bc_len);
195: }
196: }
197:
198: /*

continues

Page 482

Listing 18.1: continued

199: * Here the interval between updates is
200: * progressively increased to 5 minutes
201: * max. This provides a lot of initial
202: * action for demonstration purposes,
203: * without taxing the friendly quote
204: * providers if this program is run all
205: * day. Abuse will only force the kind
206: * providers to change things to break
207: * the operation of this program!
208: */
209: if (tm < (time_t) 5 * 60)
210: tm += 5; /* Progressively increase */
211:
212: /*
213: * Compute how long we need to snooze.
214: * The time to the next event is
215: * computed- sleep(3) is called if
216: * necessary:
217: */
218: if (!tn)
219: tn = td + tm;
220: if (tn >= td)
221: if ((zzz = tn - td))
222: sleep(zzz);
223: }
224:
225: return rc;
226:
227: /*
228: * Error Exit:
229: */
230: errxit:
231: return rc = 2;
232: }

Note the following highlights about the program organization:

• This program accepts the -a or -b options, which are stored in variables cmdopt_a and
cmdopt_b, respectively (lines 9 to 13).

• The stock market tickers to be monitored are maintained in the table tickers[] (line 18). The
variable ntick indicates how many active entries are in the table (line 19).

• Function usage() provides usage information upon request when option -h is provided (lines 24
to 36).

• The remainder of the program is the main program for the server (lines 41 to the
end).

Page 483

Now, examine the flow of control in the server main program:

1. Options are parsed in a getopt(3) loop (lines 62 to
88).

2. The broadcast address is formed in bc_addr by calling upon the mkaddr() function (lines 94
to 106).

3. A UDP socket is created by calling socket(2) (lines 111 to 118).

4. Enable the broadcast feature of the socket from step 3 (lines 123 to 133).

5. Call upon the load() function to load the tickers[] table from the initialization file
tickers.rc (lines 138 and 139).

6. The server then executes an infinite server loop until the program is terminated (lines 144 to 233).

Now, examine the server loop steps that are used:

1. The ''next time" value tn is cleared to zero (line 145). The current time is also placed into td
(line 146).

2. A for loop in line 151 iterates through all ticker table entries (lines 151 to 196). This loop will
later be described separately.

3. The value of tm represents the time to pause between ticker updates. It was initialized to a value
of 20 (seconds) in line 50. In line 209, it is tested to see whether the value is greater than five
minutes. If not, tm has five more seconds added to it (line 210). This is done so that the time
interval will increase gradually (to a maximum of five minutes), in case the server is left running all
day. This will prevent abuse of the Yahoo! quotation servers, which are kindly providing a free
service to you.

4. If an event time is found in tn , the amount of time to sleep is computed and placed into variable
zzz and sleep(3) is called. Otherwise, the loop immediately begins another iteration.

Now examine the more interesting for loop beginning in line 151:

1. The ticker table entries contain a flags member. If the flag bit FLG_UNKNOWN is set (line 157),
this indicates that the ticker has been discovered to be unknown. After this bit is set, the ticker is
never looked up again (continue in line 159 causes it to be ignored). Likewise, if flag
FLG_ERROR is set (line 158), the ticker is not looked up again. This flag indicates that a data format
error was encountered while trying to decode the quotation.

2. The current time and date in td are compared with the next event time for the ticker entry
ticker[x] (line 173). The next event time is

Page 484

stored in member next_samp, which indicates when the next sample should be taken. If the
current time is greater than or equal to the next sample event time, then it is time to fetch a new
quote for this ticker.

3. The function get_tickinfo() is called to obtain ticker information for this ticker symbol
(lines 177 to 178).

4. A next event time is computed from taking the current time and adding the time period tm to it
(which increases to a maximum of five minutes). This is done in lines 184 to 185.

5. A test is made to see whether the ticker quote fetch was successful (line 191). If it was, the
function broadcast() is called in lines 192 to 194 to send the information out to all interested
local area network client programs.

6. Repeat step 1, increasing x, until all ticker symbols have been processed in tickers[].

That covers the operation of the main segment of the server code. The next sections will cover the
operation of the quotation fetch and then the broadcast function.

Fetching Quotations via get_tickinfo()

This section will examine the source module gettick.c so that you can see how the quotation
was retrieved by the C code. Before that module can be shown, however, you need to examine some
of the structure references that are being used. Listing 18.2 shows the quotes.h header file used
by the source modules in this project.

Example

Listing 18.2: quotes.h— The quotes.h Header File

1: /* quotes.h:
2: *
3: * Project header file:
4: */
5: #include <stdio.h>
6: #include <unistd.h>
7: #include <stdlib.h>
8: #include <errno.h>
9: #include <ctype.h>
10: #include <string.h>
11: #include <getopt.h>
12: #include <memory.h>
13: #include <stdarg.h>
14: #include <math.h>
15: #include <syslog.h>

Page 485

16: #include <signal.h>
17: #include <sys/types.h>
18: #include <sys/time.h>
19: #include <sys/socket.h>
20: #include <netinet/in.h>
21:
22: /*
23: * Default Quote Server:
24: */
25: #define DFLT_SERVER "finance.yahoo.com:80"
26:
27: /*
28: * Default Broadcast Address:
29: */
30: #define DFLT_BCAST "127.255.255.255:9777"
31:
32: /*
33: * *.CSV Parsing Parameter:
34: */
35: typedef struct {
36: char type; /* 'S' or 'D' */
37: void *parm; /* Ptr to parameter */
38: } Parm;
39:
40: /*
41: * Timeout on Quote Fetch:
42: */
43: #define TIMEOUT_SECS 10
44:
45: /*
46: * Ticker load file:
47: */
48: #define TICKPATH "tickers.rc"
49:
50: /*
51: * Maximum number of tickers:
52: */
53: #define MAX_TICKERS 256
54:
55: /*
56: * Ticker length:
57: */
58: #define TICKLEN 8
59:
60: /*
61: * Date Length:

continues

Page 486

Listing 18.2: continued

62: */
63: #define DTLEN 10
64:
65: /*
66: * Time field length:
67: */
68: #define TMLEN 7
69:
70: /*
71: * Define TRUE & FALSE if not defined:
72: */
73: #ifndef TRUE
74: #define TRUE 1
75: #define FALSE 0
76: #endif
77:
78: /*
79: * Ticker Request Structure:
80: */
81: typedef struct {
82: char ticker[TICKLEN+1]; /* Symbol */
83: double last_trade; /* Last Price */
84: char *date; /* Date */
85: char *time; /* Time of Last Trade */
86: double change; /* +/- Change */
87: double open_price; /* Opening Price */
88: double high; /* High Price */
89: double low; /* Low Price */
90: double volume; /* Volume of Trades */
91: int flags; /* Server flags */
92: time_t next_samp; /* Time of next evt */
93: } TickReq;
94:
95: /*
96: * Ticker Flags:
97: */
98: /* Ticker unknown */
99: #define FLG_UNKNOWN 1
100: /* Data format error */
101: #define FLG_ERROR 2
102:
103: /*
104: * External Function References:
105: */
106: extern int load(
107: TickReq *tick,int *pntick,int nmax);

Page 487

108: extern int extract_parms(
109: Parm *plist,short n,char *src);
110: extern void msgf(
111: char type,const char *format, . . .);
112: extern int Connect(const char *addr);
113: extern int mkaddr(
114: void *addr,
115: int *addrlen,
116: char *str_addr,
117: char *protocol);
118: extern char *Basename(char *cmd);
119: extern char *strtick(char *str);
120: extern int get_tickinfo(TickReq *req,char *addr);
121: extern void broadcast(
122: int s,TickReq *quote,struct sockaddr *bc_addr,
123: socklen_t bc_len);
124:
125: /* End */

The items that are of primary interest to you are

• Macro DFLT_SERVER (line 25) defines the default hostname and port to contact for quotes (note
that non-Yahoo! servers will likely use different spreadsheet data formats).

• Macro DFLT_BCAST (line 30) defines the default broadcast address. The default is to broadcast to
the loopback network so that it will work for those readers that do not have a network card installed.

• Structure Parm (lines 35 to 38) defines a type that controls parsing of information into a C data
type.

• Macro TIMEOUT_SECS is set to 10 seconds, and defines the maximum amount of time to wait for
a stock quotation before giving up on a response (line 48).

• Macro MAX_TICKERS defines the table size of tickers[] in the module qserve.c (line 53).

• Structure TickReq (lines 81 to 93) defines one ticker symbol entry for the server. This structure
is also used in the client program, but structure members flags and next_samp are ignored by
the client program.

• Flags FLG_UNKNOWN and FLG_ERROR are defined in lines 99 and 101.

With the header file out of the way, examine Listing 18.3, which illustrates the gettick.c source
module.

Page 488

Example

Listing 18.3: gettick.c— The get_tickinfo() Function Source Code

1: /* gettick.c
2: *
3: * Get ticker info from inet:
4: */
5: #include "quotes.h"
6:
7: /*
8: * f is set TRUE when a request
9: * for a stock quote has timed
10: * out.
11: */
12: static int f = FALSE;
13:
14: /*
15: * Catch SIGALRM and Timeout:
16: */
17: static void
18: sig_ALRM(int signo) {
19: f = TRUE; /* Mark timeout */
20: }
21:
22: /*
23: * Get ticker info:
24: *
25: * RETURNS:
26: * 0 Success
27: * -1 Failed:
28: *
29: * errno:
30: * ETIME Timed Out
31: * EBADMSG Field data format
32: * other Network/system errors.
33: */
34: int
35: get_tickinfo(TickReq *req,char *addr) {
36: int z, er; /* Status, errno */
37: int s; /* Socket */
38: int n; /* Byte count */
39: char buf[256]; /* Receive buffer */
40: char *tkr = NULL; /* Extracted ticker */
41: struct sigaction
42: sa_new, /* New signal action */
43: sa_old; /* Saved signal action */
44: Parm parms[9]; /* Data parse table */
45:
46: /*

Page 489

47: * Initialize parsing parameters. This
48: * parameter list will need modification
49: * if yahoo or your quote provider uses
50: * a different format:
51: */
52: parms[0].type = 'S'; /* String */
53: parms[0].parm = &tkr; /* Ticker name */
54: parms[1].type = 'D'; /* Double */
55: parms[1].parm = &req->last_trade;
56: parms[2].type = 'S';
57: parms[2].parm = &req->date;
58: parms[3].type = 'S';
59: parms[3].parm = &req->time;
60: parms[4].type = 'D';
61: parms[4].parm = &req->change;
62: parms[5].type = 'D';
63: parms[5].parm = &req->open_price;
64: parms[6].type = 'D';
65: parms[6].parm = &req->high;
66: parms[7].type = 'D';
67: parms[7].parm = &req->low;
68: parms[8].type = 'D';
69: parms[8].parm = &req->volume;
70:
71: /*
72: * Initialize to catch SIGALRM:
73: */
74: sa_new.sa_handler = sig_ALRM;
75: sigemptyset(&sa_new.sa_mask);
76: sa_new.sa_flags = 0;
77: sigaction(SIGALRM,&sa_new,&sa_old);
78:
79: /*
80: * Connect to finance.yahoo.com:
81: */
82: f = FALSE;
83: alarm(TIMEOUT_SECS);
84:
85: s = Connect(addr);
86: if (s == -1)
87: goto errxit;
88:
89: /*
90: * Send GET request:
91: *
92: * NOTE: This is subject to change-

continues

Page 490

Listing 18.3: continued

93: * If finance.yahoo.com changes, you
94: * will need to adjust this formatting.
95: */
96: sprintf(buf,"GET /d/quotes.csv?"
97: "s=%s"
98: "&f=sl1d1t1c1ohgv"
99: "&e=.csv\r\n",
100: req->ticker);
101:
102: write(s,buf,strlen(buf));
103: shutdown(s,1);
104:
105: /*
106: * Read response with a timeout:
107: */
108: do {
109: z = read(s,buf,sizeof buf);
110: } while (!f && z == -1 && errno == EINTR);
111:
112: er = errno; /* Save error */
113: alarm(0); /* Disable timeout */
114: close(s); /* Close socket */
115:
116: /* Restore the signal action */
117: sigaction(SIGALRM,&sa_old,NULL);
118:
119: if (!f && z > 0)
120: n = z; /* Read n bytes OK */
121: else {
122: if (f) /* Timeout? */
123: er = ETIME; /* Yes- timeout */
124: /*
125: * Report error to log:
126: */
127: msgf('e',"%s: Get ticker '%s'",
128: strerror(er),
129: req->ticker);
130:
131: errno = er; /* For caller */
132: return -1; /* Failed */
133: }
134:
135: /* Remove CR, LF, or CRLF */
136: buf[strcspn(buf,"\r\n")] = 0;
137:
138: /*

TE
AM
FL
Y

Team-Fly®

Page 491

139: * Check for the unknown ticker case:
140: */
141: if (strstr(buf,"N/A,N/A,N/A,N/A,N/A")) {
142: msgf('e',"Unknown Ticker: '%s'",
143: req->ticker);
144: req->flags |= FLG_UNKNOWN;
145: errno = EBADMSG; /* For caller */
146: return -1; /* Failed */
147: }
148:
149: /*
150: * Parse quote results:
151: */
152: if ((z = extract_parms(parms,9,buf)) < 0) {
153: /* Report failed parse of data */
154: msgf('e',"Field # %d: '%s'",z,buf);
155: req->flags |= FLG_ERROR;
156: errno = EBADMSG; /* For caller */
157: return -1; /* Failed */
158: }
159:
160: /* Capture the exact case for this ticker */
161: strncpy(req->ticker,tkr,TICKLEN)[TICKLEN] = 0;
162:
163: /*
164: * Update sample time in entry:
165: */
166: return 0;
167:
168: /*
169: * Error Exit:
170: */
171: errxit:
172: alarm(0);
173: sigaction(SIGALRM,&sa_old,NULL);
174: return -1;
175: }

This module defines the following major components:

• The timeout flag f in line 12. When this flag is set TRUE, it will indicate that the request has timed
out.

• The signal catcher function sig_ALRM() that will catch the signal SIGALRM when the timer has
expired. This function sets flag variable f to TRUE in line 19.

• The get_tickinfo() function occupies the remainder of the module, starting in line 34.

Page 492

Now, examine the procedure used by get_tickinfo() :

1. The data that this function hopes to receive is in spreadsheet format. To parse the data out of this
formatted record, a parameter table is established in array parms[] (lines 52 to 69). Type 'S'
indicates a string type of data, whereas the 'D' represents a C-type double value to be extracted.

2. The signal handler for SIGALRM is established (lines 74 to 77).

3. The flag f is initialized to FALSE and the timer is started (lines 82 and 83).

4. A connect request is issued by calling function Connect() with the address of our quotation
server (lines 85 to 87). The source code for Connect() is provided in module connect.c .

5. A GET request is formatted (lines 96 to 100). This is one area of code you might need to change if
the Yahoo! servers change.

6. The GET request is written out to the quotation server (lines 102 and 103). The call to shutdown
(2) sends and end-file notification to the remote server without closing the socket. This is
necessary so that the response can be received from the server.

7. Wait for and read the resulting spreadsheet record (lines 108 to 110).

8. Save the errno value in variable er in case an error has occurred (line 112).

9. Cancel the timer (line 113) and close the socket s (line 114).

10. Restore the signal handler for signal SIGALRM (line 117).

11. If flag f is still FALSE and z is greater than zero, then the program successfully received some
quotation data (lines 119 and 120). The number of bytes received is recorded in variable n.

12. Otherwise, if f is TRUE, then set the saved error value in er to ETIME to indicate that a timeout
occurred (line 123).

13. Lines 127 to 132 handle the timeout or error case when a quotation was not successfully
received. The call to msgf() logs an error message to the syslog logging facility.

14. The carriage return or linefeed is removed from the received spread-sheet record (line 136).

15. A special sequence is tested for, which indicates that the ticker symbol is not known (lines 141
to 147). Yahoo! returns N/A for a number of fields if the ticker symbol is not known.

Page 493

16. If the ticker symbol is known, then the spreadsheet record is parsed in lines 152 to 158. If a
record parse or field data error occurs, the error exit is taken in line 157.

17. If the parse is successful, the ticker symbol itself is copied back into the entry req->ticker
(line 161). This is done for some symbols that use a mixed case.

18. Finally, at long last, the return statement in line 166 indicates that the req member has been
updated with new ticker information successfully.

The next section will examine the broadcast() function that was called upon by the server
program.

Broadcasting Quotes via broadcast()

The server calls upon a function named broadcast() to share the information it has managed to
obtain from Yahoo! with all interested local area network clients. The listing for this program is
shown in Listing 18.4.

Example

Listing 18.4: bcast.c— The broadcast() Function in bcast.c

1: /* bcast.c:
2: *
3: * Broadcast Ticker Updates
4: */
5: #include "quotes.h"
6:
7: void
8: broadcast(
9: int s, /* Socket */
10: TickReq *quote, /* Quote */
11: struct sockaddr *bc_addr, /* addr */
12: socklen_t bc_len) { /* addr len. */
13: int z; /* Status */
14: char buf[2048]; /* Buffer */
15: char *cp = buf; /* Buf. ptr */
16: int msglen; /* Message length */
17:
18: /*
19: * Format a datagram for broadcast:
20: */
21: strcpy(buf,quote->ticker);
22: cp = buf + strlen(buf) + 1;
23: sprintf(cp,"%E",quote->last_trade);

continues

Page 494

Listing 18.4: continued

24: cp += strlen(cp) + 1;
25: strcpy(cp,quote->date);
26: cp += strlen(cp) + 1;
27: strcpy(cp,quote->time);
28: cp += strlen(cp) + 1;
29: sprintf(cp,"%E",quote->change);
30: cp += strlen(cp) + 1;
31: sprintf(cp,"%E",quote->open_price);
32: cp += strlen(cp) + 1;
33: sprintf(cp,"%E",quote->high);
34: cp += strlen(cp) + 1;
35: sprintf(cp,"%E",quote->low);
36: cp += strlen(cp) + 1;
37: sprintf(cp,"%E",quote->volume);
38: cp += strlen(cp) + 1;
39:
40: msglen = cp - buf;
41:
42: /*
43: * Broadcast the datagram:
44: */
45: z = sendto
(s,buf,msglen,0,bc_addr,bc_len);
46: if (z == -1)
47: msgf('e',"%s: sendto(2)",
48: strerror(errno));
49: }

The broadcast() function uses the following basic steps:

1. The buffer buf[2048] is used to format the broadcast datagram (line 14). Pointer variable cp is
used to build this datagram in stages (line 15).

2. Line 21 starts building the datagram by copying the null terminated ticker symbol into buf[]. A
new pointer for cp is computed to point after the null byte that follows the ticker symbol in buf[]
(line 22).

3. The last_trade value is formatted and placed after the null byte in the datagram (line 23).
Again, cp is computed to point past the null byte that follows (line 24).

4. Lines 25 to 38 repeat this procedure for all other data components to be placed into the datagram.
Note that each component is a nullterminated string unto itself, within this datagram.

5. The final length of the datagram is computed (line 40) and stored into msglen.

Page 495

6. The sendto(2) function is called upon to broadcast the datagram out to the socket s, to the
broadcast address provided in bc_addr. If an error occurs, it is logged to the syslog facility
(lines 47 to 48).

That covers the interesting network code for the server program. Now, let's take a look at the client
side of things.

Examining the Client Program

The client program mktwatch must bind itself to the broadcast address being used, so that it can
receive the broadcast market quotations. Examine the mktwatch.c module shown in Listing 18.5.

Example

Listing 18.5: mktwatch.c— The Market Watch Client Program

1: /* mktwatch.c:
2: *
3: * Get datagram stock market
4: * quotes from central quotes
5: * server:
6: */
7: #include "quotes.h"
8:
9: /*
10: * -b option (broadcast) address:
11: */
12: static char *cmdopt_b = DFLT_BCAST;
13:
14: /*
15: * Display command usage:
16: */
17: static void
18: usage(void) {
19: puts("Usage:\tmktwatch [-b bcast]");
20: puts("where:");
21: puts("\t-b bcast\tBroadcast address");
22: }
23:
24: /*
25: * Extract ticker information from
26: * broadcast datagram packet:
27: */
28: static int
29: extract(char *dgram,TickReq *tkr) {
30: char *cp = dgram;
31:

continues

Page 496

Listing 18.5: continued

32: memset(tkr,0,sizeof *tkr);
33: strncpy(tkr->ticker,dgram,TICKLEN)
34: [TICKLEN] = 0;
35: cp += strlen(cp) + 1;
36: if (sscanf(cp,"%lE",&tkr->last_trade) != 1)
37: return -1;
38: cp += strlen(cp) + 1;
39: tkr->date = cp;
40: cp += strlen(cp) + 1;
41: tkr->time = cp;
42: cp += strlen(cp) + 1;
43: if (sscanf(cp,"%lE",&tkr->change) != 1)
44: return -1;
45: cp += strlen(cp) + 1;
46: if (sscanf(cp,"%lE",&tkr->open_price) != 1)
47: return -1;
48: cp += strlen(cp) + 1;
49: if (sscanf(cp,"%lE",&tkr->high) != 1)
50: return -1;
51: cp += strlen(cp) + 1;
52: if (sscanf(cp,"%lE",&tkr->low) != 1)
53: return -1;
54: cp += strlen(cp) + 1;
55: if (sscanf(cp,"%lE",&tkr->volume) != 1)
56: return -1;
57: return 0;
58: }
59:
60: /*
61: * Market Watch Main Program:
62: */
63: int
64: main(int argc,char **argv) {
65: int rc = 0; /* Command return code */
66: int optch; /* Option character */
67: int z; /* Status code */
68: int s; /* Socket */
69: socklen_t bc_len; /* length */
70: struct sockaddr_in bc_addr; /* AF_INET */
71: socklen_t a_len; /* Address length */
72: struct sockaddr_in adr; /* AF_INET */
73: char dgram[2048]; /* Recv buffer */
74: const int True = TRUE; /* True const. */
75: TickReq tkr; /* Ticker Data */
76: const char cmdopts[] = "hb:";
77:

Page 497

78: /*
79: * Parse command line options:
80: */
81: while ((optch = getopt(argc,argv,cmdopts)) != -1)
82: switch (optch) {
83:
84: case 'h' : /* -h (help) */
85: usage();
86: return rc;
87:
88: case 'b' : /* -b bc_addr */
89: cmdopt_b = optarg;
90: break;
91:
92: default :
93: /* Option error */
94: rc = 1;
95: }
96:
97: if (rc) {
98: usage(); /* Option errors */
99: return rc;
100: }
101:
102: /*
103: * Form broadcast address:
104: */
105: bc_len = sizeof bc_addr;
106: z = mkaddr(
107: &bc_addr, /* Returned addr. */
108: &bc_len, /* Returned len. */
109: cmdopt_b, /* Input address */
110: "udp"); /* UDP protocol */
111:
112: if (z == -1) {
113: fprintf(stderr,
114: "%s: -b %s",
115: strerror(errno),
116: cmdopt_b);
117: return 1;
118: }
119:
120: /*
121: * Create a UDP socket to read from:
122: */
123: s = socket(PF_INET,SOCK_DGRAM,0);

continues

Page 498

Listing 18.5: continued

124: if (s == -1) {
125: fprintf(stderr,
126: "%s: socket(2)\n",
127: strerror(errno));
128: return 1;
129: }
130:
131: /*
132: * Allow multiple listeners on this
133: * broadcast address:
134: */
135: z = setsockopt(s,
136: SOL_SOCKET,
137: SO_REUSEADDR,
138: &True,
139: sizeof True);
140:
141: if (z == -1) {
142: fprintf(stderr,
143: "%s: setsockopt(SO_REUSEADDR)\n",
144: strerror(errno));
145: return 1;
146: }
147:
148: /*
149: * Bind to the broadcast address:
150: */
151: z = bind(s,
152: (struct sockaddr *)&bc_addr,bc_len);
153:
154: if (z == -1) {
155: fprintf(stderr,
156: "%s: bind(%s)\n",
157: strerror(errno),
158: cmdopt_b);
159: return 1;
160: }
161:
162: /*
163: * Now listen for and process broadcasted
164: * stock quotes:
165: */
166: for (;;) {
167: /*
168: * Wait for a broadcast message:
169: */

Page 499

170: a_len = sizeof adr; /* Max addr len. */
171: z = recvfrom(s, /* Socket */
172: dgram, /* Receiving buffer */
173: sizeof dgram,/* Max rcv buf size */
174: 0, /* Flags: no options */
175: (struct sockaddr *)&adr, /* Addr */
176: &a_len); /* Addr len, in & out */
177:
178: if (z < 0) {
179: fprintf(stderr,
180: "%s: recvfrom(2)\n",
181: strerror(errno));
182: break;
183: }
184:
185: /*
186: * Extract and report quote:
187: */
188: if (!extract(dgram,&tkr)) {
189: printf("%-*s %7.3f %s %7s %+7.3f %7.3f "
190: "%7.3f %7.3f %9.0f\n",
191: TICKLEN,
192: tkr.ticker,
193: tkr.last_trade,
194: tkr.date,
195: tkr.time,
196: tkr.change,
197: tkr.open_price,
198: tkr.high,
199: tkr.low,
200: tkr.volume);
201: fflush(stdout);
202: }
203: }
204:
205: return 0;
206: }

The interesting features of this program are as follows:

1. Command-line options are parsed (lines 81 to 100).

2. A broadcast address is formed (lines 105 to 118).

3. A datagram (UDP) socket is created (lines 123 to 129).

4. The SO_REUSEADDR option is enabled (lines 135 to 146). This is essential if more than one
client program is to receive the same broadcasts on the same host machine.

Page 500

5. The broadcast address is bound (lines 151 to 160).

6. A client listening for loop begins in line 166. This loop continues forever until the program is
terminated (usually with the interrupt character such as Ctrl+C) .

After the client begins listening for datagram broadcasts, the following steps are carried out in the
for loop:

1. The program waits for a datagram to arrive (lines 170 to 183). The received datagrams will be the
qserve server broadcast messages.

2. A function named extract() extracts all the string data contained within the datagram and
places the converted data into a TickReq structure entry named tkr (line 188). The extract
function is defined in lines 28 to 58.

3. If the datagram extraction is successful, the ticker data is reported to standard output (lines 189 to
201).

4. Step 1 is repeated until the program is terminated.

Now is the time to put all this code into action!

Compiling and Running the Demonstration

To compile the demonstration project, obtain the source code for Chapter 18 and type make shown
as follows:

Example

$ make
gcc -c -g -Wall -Wreturn-type -D_GNU_SOURCE qserve.c
gcc -c -g -Wall -Wreturn-type -D_GNU_SOURCE csvparse.c
gcc -c -g -Wall -Wreturn-type -D_GNU_SOURCE msgf.c
gcc -c -g -Wall -Wreturn-type -D_GNU_SOURCE load.c
gcc -c -g -Wall -Wreturn-type -D_GNU_SOURCE gettick.c
gcc -c -g -Wall -Wreturn-type -D_GNU_SOURCE bcast.c
gcc -c -g -Wall -Wreturn-type -D_GNU_SOURCE connect.c
gcc -c -g -Wall -Wreturn-type -D_GNU_SOURCE misc.c
gcc -c -g -Wall -Wreturn-type -D_GNU_SOURCE mkaddr.c
gcc -o qserve qserve.o csvparse.o msgf.o load.o gettick.o bcast.o connect.o

misc.o mkaddr.o
gcc -c -g -Wall -Wreturn-type -D_GNU_SOURCE mktwatch.c
gcc -o mktwatch mktwatch.o mkaddr.o
$

This produces two executables:

• The qserve executable, which is the quotation server program

• The mktwatch executable, which is the broadcast listener client

TE
AM
FL
Y

Team-Fly®

Page 501

The following sections describe how to run these programs.

Starting the qserve Quotation Server

If you have no network adapter card installed, simply use the default loop-back parameters
(127.255.255.255:9777 is the default broadcast address and port number used). The defaults
are used when the server is started as follows:

output

$./qserve &
[1] 798
$

If you have a network adapter card, you can broadcast on one interface as follows (here, the
interface broadcast address and port number used is 192.168.0.255:9777):

output

$./qserve -b 192.168.0.255:9777 &
[2] 800
$

In both cases, the server is started, which should begin to contact the finance.yahoo.com Web site
and start broadcasting. Before launching the client, you might want to start another window to watch
for server errors in your /var/log/messages log file. You can do this by entering the
following (as root if log file permissions require):

output

tail -f /var/log/messages
Nov 26 16:34:10 pepper qserve: 34 tickers loaded.
Nov 26 16:34:37 pepper qserve: Unknown Ticker: 'NEC'

In the log output, observe that 34 ticker symbols were loaded from the tickers.rc file, and that
symbol NEC was not known by the finance.yahoo.com server. Any other server messages will be
logged to the warning, error, and information logs.

NOTE
If you cannot find the log file as shown, examine your /etc/syslog.conf file
to determine how your logs are configured on your system. If necessary, consult the
syslog.conf(5) man page for details about the file format.

Starting the mktwatch Client

The client program can be started in any user's session. You simply must be certain that the
broadcast address agrees with the way qserve was started. If you provided no command-line
arguments to use the qserve defaults, then do the same for the client:

$./mktwatch

Page 502

If you specified a broadcast address to qserve, then supply the same address to the client program with
the -b option as follows (substituting your broadcast address and port):

$./mktwatch -b 192.168.0.255:9777

Be patient after starting the client program. The server program will pause 20 seconds or more between
updates. After it wakes up, it will go through the list of tickers that it must update.

TIP
If you don't see any output within one or two minutes, then check to see that you have the
server running. If it is, then you have probably not specified addresses correctly.

An easy error to make is to forget the port number that follows the IP number (:9777 in the
examples shown). If this number is omitted, then zero is assumed by the mkaddr.c
module, which allows the operating system to pick any free port number instead!

Whether you used the local loopback interface default or used your local area network, you should be able
to obtain results that look something like this:

Output

$.mktwatch -b 192.168.0.255:9777
CHP.TO 20.000 11/26/1999 3:58PM +0.550 19.750 20.000 19.600 7657
AMZN 93.125 11/26/1999 1:01PM +5.875 91.062 95.125 90.500 11496000
AMD 27.688 11/24/1999 1:02PM +0.438 0.000 28.125 26.750 1880400
CSCO 93.188 11/26/1999 1:01PM +0.750 95.250 95.375 92.812 12171000
DELL 42.938 11/26/1999 1:01PM -0.37 43.562 43.938 42.750 11280900
EMC 90.312 11/26/1999 1:00PM +1.000 89.562 90.375 89.375 1739800
GTW 79.062 11/26/1999 1:01PM -0.188 79.688 79.688 78.938 391700
MOT 119.031 11/26/1999 1:48PM +2.094 118.562 120.688 117.750 1440400
NCR 32.938 11/26/1999 1:01PM -0.062 32.750 32.938 32.500 134800
NN 24.312 11/26/1999 1:00PM +1.875 23.375 24.625 23.062 1602000
NOK 146.750 11/26/1999 1:18PM +7.500 144.938 147.125 144.500 1935000
NT 81.688 11/26/1999 1:00PM +3.383 81.000 82.188 79.562 2226900
ORCL 73.625 11/26/1999 1:01PM +1.812 71.000 73.875 70.812 4617500
XRX 28.188 11/26/1999 1:00PM +0.000 28.312 28.750 28.000 2428600
YHOO 226.875 11/26/1999 1:01PM -4.125 233.000 235.250 225.375 2008900
RHAT 213.500 11/26/1999 1:00PM +44.562 184.000 219.938 181.000 2296600
COB 8.312 11/26/1999 1:00PM +1.188 0.000 8.375 7.312 316300
ATYT 10.375 11/26/1999 12:59PM +0.438 10.250 10.375 10.125 80800

This output should continue to scroll as the tickers become updated. The time between updates will
increase to a maximum of five minutes if the server is allowed to run all day.

Page 503

If the finance.yahoo.com Service Changes

If the finance.yahoo.com service should move or change in some way, you'll need to rediscover the
service by checking out its Web pages. After you determine the new server address (if it changes),
you can specify that on the qserve command line using the -a option, as follows (with or without
the additional -b option):

Output

$./qserve -a new.server.com:80 &
[1] 821
$

Substitute the hostname for new.server.com and the port number (port 80 for the Web). The port
number must be supplied— it is not optional. Check the /var/log/messages file for any errors.

If you see a number of data format errors being reported in the log file, then this suggests that the
spreadsheet data format has changed. This will require some code change if this has happened.
Module gettick.c— lines 52 to 69— is a good place to start making changes. The sprintf(3)
statement starting in line 96 might also need to be adjusted.

CAUTION
The Internet remains a fun place to be if people don't abuse it. Please be considerate
of finance.yahoo.com when running this example program. Please do not short-
circuit the program to poll its server too frequently. This will spoil the fun for
everyone.

What's Next

Now that you have reached the end of this book, it is my sincere hope that you have a certain feeling
of satisfaction. Having covered a number of socket programming concepts in detail, you should now
be well equipped to write any networking application you can think of.

However, there is much more that can be learned about networking in general. If this book has
increased your appetite for networking topics, it is probably a good time to begin a study of the
underlying network protocols. With an understanding of these, you then can advance to using raw
sockets and other advanced techniques.

In conclusion, I want to thank you for reading this book. This book should continue to serve you as a
useful reference for socket programming. Even though you've used Linux to learn socket
programming here, you are actually well equipped to program sockets for any type of UNIX. Now
might be a good time to join a GNU software development effort and contribute to GNU/Linux.
Power to the networked penguins!

Page 505

APPENDIXES

Socket Function Quick Reference

Socket-Related Structures Reference

Useful Network Tables

Glossary

Index

Page 507

Appendix A—
Socket Function Quick Reference

Socket-Specific Functions

socketpair(2)

#include <sys/types.h>
#include <sys/socket.h>

int socketpair(int domain, int type, int protocol, int sv[2]);

socket(2)

#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

bind(2)

#include <sys/types.h>
#include <sys/socket.h>

int bind(int sockfd, struct sockaddr *my_addr, int addrlen);

connect(2)

#include <sys/types.h>
#include <sys/socket.h>

int connect(int sockfd, struct sockaddr *serv_addr, int addrlen);

listen(2)

#include <sys/socket.h>

int listen(int s, int backlog);

Page 508

accept(2)

#include <sys/types.h>
#include <sys/socket.h>

int accept(int s, struct sockaddr *addr, int *addrlen);

Socket Addressing

getsockname(2)

#include <sys/socket.h>

int getsockname(int s, struct sockaddr *name, socklen_t *namelen)

getpeername(2)

#include <sys/socket.h>

int getpeername(int s, struct sockaddr *name, socklen_t *namelen)

Reading of Sockets

read(2)

#include <unistd.h>

ssize_t read(int fd, void *buf, size_t count);

readv(2)

#include <sys/uio.h>

int readv(int fd, const struct iovec *vector, int count);

struct iovec {
 ptr_t iov_base; /* Starting address */
 size_t iov_len; /* Length in bytes */
};

recv(2)

#include <sys/types.h>
#include <sys/socket.h>

int recv(int s, void *buf, int len, unsigned int flags);

recvfrom(2)

#include <sys/types.h>
#include <sys/socket.h>

Page 509

int recvfrom(int s,
 void *buf,
 int len,
 unsigned flags,
 struct sockaddr *from,
 int *fromlen);

flags:
MSG_OOB Process out-of-band data.
MSG_PEEK Peek at a datagram.
MSG_WAITALL Requests that the operation block
 until the full request has been
 satisfied (with some exceptions).
MSG_ERRQUEUE Receive from the error queue.
MSG_NOSIGNAL Turn off the raising of SIGPIPE.

recvmsg(2)

#include <sys/types.h>
#include <sys/socket.h>

int recvmsg(int s, struct msghdr *msg, unsigned int flags);

struct msghdr {
 void *msg_name;
 socklen_t msg_namelen;
 struct iovec *msg_iov;
 size_t msg_iovlen;
 void *msg_control;
 size_t msg_controllen;
 int msg_flags;
};

struct cmsghdr {
 socklen_t cmsg_len;
 int cmsg_level;
 int cmsg_type;
/* u_char cmsg_data[]; */
};

flags:
 MSG_EOR End of a record received.
 MSG_TRUNC Datagram was truncated.
 MSG_CTRUNC Control data was truncated.
 MSG_OOB Out-of-band data was received.
 MSG_ERRQUEUE Extended error info was returned.

Page 510

Writing to Sockets

write(2)

#include <unistd.h>

ssize_t write(int fd, const void *buf, size_t count);

writev(2)

#include <sys/uio.h>

int writev(int fd, const struct iovec *vector, int count);

struct iovec {
 ptr_t iov_base; /* Starting address */
 size_t iov_len; /* Length in bytes */
};

send(2)

#include <sys/types.h>
#include <sys/socket.h>

int send(int s, const void *msg, int len, unsigned int flags);

sendto(2)

#include <sys/types.h>
#include <sys/socket.h>

int sendto(int s,
 const void *msg,
 int len,
 unsigned flags,
 const struct sockaddr *to,
 int tolen);

flags:
 MSG_OOB Process out-of-band data.
 MSG_DONTROUTE Bypass routing.
 MSG_DONTWAIT Do not block waiting to write.
 MSG_NOSIGNAL Do not raise SIGPIPE.

sendmsg(2)

#include <sys/types.h>
#include <sys/socket.h>

int sendmsg(int s, const struct msghdr *msg, unsigned int flags);

Page 511

struct msghdr {
 void *msg_name;
 socklen_t msg_namelen;
 struct iovec *msg_iov;
 size_t msg_iovlen;
 void *msg_control;
 size_t msg_controllen;
 int msg_flags;
};

struct cmsghdr {
 socklen_t cmsg_len;
 int cmsg-level;
 int cmsg_type;
/* u_char cmsg_data[]; */
};

Other Socket I/O

select(2)

#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>

int select(int n,
 fd_set *readfds,
 fd_set *writefds,
 fd_set *exceptfds,
 struct timeval *timeout);

struct timeval {
 long tv_sec; /* seconds */
 long tv_usec; /* microseconds */
};

FD_ZERO(fd_set *set);
FD_SET(int fd, fd_set *set);
FD_CLR(int fd, fd_set *set);
FD_ISSET(int fd, fd_set *set);

cmsg(3)

#include <sys/socket.h>

struct cmsghdr *CMSG_FIRSTHDR(struct msghdr *msgh);
struct cmsghdr *CMSG_NXTHDR(struct msghdr *msgh, struct cmsghdr *cmsg);
size_t CMSG_ALIGN(size_t length);

TE
AM
FL
Y

Team-Fly®

Page 512

size_t CMSG_SPACE(size_t length);
size_t CMSG_LEN(size_t length);
void *CMSG_DATA(struct cmsghdr *cmsg);

Controlling Sockets

shutdown(2)

#include <sys/socket.h>

int shutdown(int s, int how);

SHUT_RD 0
SHUT_WR 1
SHUT_RDWR 2

getsockopt(2)

#include <sys/types.h>
#include <sys/socket.h>

int getsockopt(int s,
 int level,
 int optname,
 void *optval,
 socklen_t *optlen);

setsockopt(2)

#include <sys/types.h>
#include <sys/socket.h>

int setsockopt(int s,
 int level,
 int optname,
 const void *optval,
 socklen_t optlen);

dup(2) and dup2(2)

#include <unistd.h>

int dup(int oldfd);
int dup2(int oldfd, int newfd);

fcntl(2) Using F_SETOWN

#include <unistd.h>
#include <fcntl.h>

int fcntl(int fd, int cmd, long arg);

Page 513

The cmd value F_SETOWN allows ownership of the socket to be established, for the process ID
given in arg.

ioctl(2) to Test for Mark

#include <sys/ioctl.h>

. . .
int z; /* Status */
int s; /* Socket */
int flag; /* True when at mark */

z = ioctl(s,SIOCATMARK,&flag);
if (z == -1)
 abort(); /* Error */
if (flag != 0)
 puts("At Mark");
else
 puts("Not at mark.");

Network Support Functions

byteorder(3)

#include <netinet/in.h>

unsigned long htonl(unsigned long hostlong);
unsigned short htons(unsigned short hostshort);
unsigned long ntohl(unsigned long netlong);
unsigned short ntohs(unsigned short netshort);

inet_addr(3)

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

unsigned long inet_addr(const char *string);

inet_aton(3)

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

int inet_aton(const char *string, struct in_addr *addr);

Page 514

inet_ntoa(3)

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

char *inet_ntoa(struct in_addr addr);

inet_network(3)

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

unsigned long inet_network(const char *addr);

inet_lnaof(3)

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

unsigned long inet_netof(struct in_addr addr);

inet_netof(3)

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

unsigned long inet_netof(struct in_addr addr);

inet_makeaddr(3)

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

struct in_addr inet_makeaddr(int net,int host);

getservent(3)

#include <netdb.h>

struct servent *getservent(void);
void setservent(int stayopen);
void endservent(void);

struct servent *getservbyname(const char *name, const char *proto);

struct servent *getservbyport(int port, const char *proto);

Page 515

getprotoent(3)

#include <netdb.h>

struct protoent *getprotoent(void);
void setprotoent(int stayopen);
void endprotoent(void);

struct protoent *getprotobyname(const char *name);

struct protoent *getprotobyname(const char *name);

struct protoent *getprotobynumber(int proto);

Standard I/O Support

#include <stdio.h>

FILE *fdopen(int fildes,const char *mode);

int fileno(FILE *stream);

int setbuf(FILE *stream,char *buf);

int setbuffer(FILE *stream, char *buf, size_t size);

int setlinebuf(FILE *stream);

int setvbuf(FILE *stream, char *buf, int mode, size_t size);

mode:
 _IOFBF fully buffered.
 _IOLBF line buffered.
 _IONBF no buffering.

Hostname Support

uname(2)

#include <sys/utsname.h>

int uname(struct utsname *buf);

gethostname(2)

#include <unistd.h>

int gethostname(char *name, size_t len);

Page 516

getdomainname(2)

#include <unistd.h>

int getdomainname(char *name, size_t len);

gethostbyname(3)

#include <netdb.h>

extern int h_errno;

void herror(const char *msg);

const char *hstrerror(int err);

struct hostent *gethostbyname(const char *name);
struct hostent *gethostbyaddr(const char *addr, int len, int type);

sethostent(3)

#include <netdb.h>

void sethostent(int stayopen);
void endhostent(void);

Page 519

Appendix B—
Socket-Related Structures Reference

Socket Address Structures

sockaddr

#include <sys/socket.h>

struct sockaddr {
 sa_family_t sa_family; /* Address Family */
 char sa_data[14]; /* Address data. */
};

sockaddr_un

#include <sys/un.h>

struct sockaddr_un {
 sa_family_t sun_family; /* Address Family */
 char sun_path[108]; /* Pathname */
};

sockaddr_in and in_addr

#include <netinet/in.h>

struct sockaddr_in {
 sa_family_t sin_family; /* Address Family */
 uint16_t sin_port; /* Port number */
 struct in_addr sin_addr; /* Internet address */
 unsigned char sin_zero[8];/* Pad bytes */
};

struct in_addr {
 uint32_t s_addr; /* Internet address */
};

Page 520

Special IPv4 Addresses

adr.sin_addr.s_addr = ntohl(INADDR_ANY);

adr.sin_addr.s_addr = ntohl(INADDR_LOOPBACK);

sockaddr_x25 and x25_address

#include <linux/x25.h>

struct sockaddr_x25 {
 sa_family_t sx25_family; /* Must be AF_X25 */
 x25_address sx25_addr; /* X.121 Address */
};

typedef struct {
 char x25_addr[16];
} x25_address;

sockaddr_in6 and in6_addr

struct sockaddr_in6 {
 sa_family_t sin6_family;
 uint16_t sin6_port; /* port # */
 uint32_t sin6_flowinfo; /* flow info */
 struct in6_addr sin6_addr; /* IPv6 address */
};

struct in6_addr {
 union {
 uint8_t u6_addr8[16];
 uint16_t u6_addr16[8];
 uint32_t u6_addr32[4];
 } in6_u;
};

sockaddr_atalk and at_addr

#include <netatalk/at.h>

struct sockaddr_atalk {
 sa_family_t sat_family;
 u_char sat_port; /* port */
 struct at_addr sat_addr; /* net/node */
};

struct at_addr {
 u_short s_net;
 u_char s_node;
};

Page 521

full_sockaddr_ax25, sockaddr_ax25, and ax25_address

struct full_sockaddr_ax25 {
 struct sockaddr_ax25 fsa_ax25;
 ax25_address fsa_digipeater[AX25_MAX_DIGIS];
};

struct sockaddr_ax25 {
 sa_family_t sax25_family;
 ax25_address sax25_call;
 int sax25_ndigis;
};

typedef struct {
 /* 6 call + SSID (shifted ascii!) */
 char ax25_call[7];
} ax25_address;

#define sax25_uid sax25_ndigis

Miscellaneous Structures

servent

struct servent {
 char *s_name; /* official service name */
 char **s_aliases; /* alias list */
 int s_port; /* port number */
 char *s_proto; /* protocol to use */
}

protoent

struct protoent {
 char *p_name; /* official protocol name */
 char **p_aliases; /* alias list */
 int p_proto; /* protocol number */
}

Page 522

utsname

#include <sys/utsname.h>

struct utsname {
 char sysname[SYS_NMLN];
 char nodename[SYS_NMLN];
 char release[SYS_NMLN];
 char version[SYS_NMLN];
 char machine[SYS_NMLN];
 char domainname[SYS_NMLN];
};

hostent

struct hostent {
 char *h_name; /* official name of host */
 char **h_aliases; /* alias list */
 int h_addrtype; /* host address type */
 int h_length; /* length of address */
 char **h_addr_list; /* list of addresses */
};

/* for backward compatibility */
#define h_addr h_addr_list[0]

timeval

struct timeval {
 long tv_sec; /* seconds */
 long tv_usec; /* microseconds */
};

linger

struct linger {
 int l_onoff;
 int l_linger;
};

I/O-Related Structures

iovec

#include <sys/uio.h>

struct iovec {
 ptr_t iov_base; /* Starting address */
 size_t iov_len; /* Length in bytes */
};

TE
AM
FL
Y

Team-Fly®

Page 523

msghdr

struct msghdr {
 void *msg_name;
 socklen_t msg_namelen;
 struct iovec *msg_iov;
 size_t msg_iovlen;
 void *msg_control;
 size_t msg_controllen;
 int msg_flags;
};

cmsghdr

struct cmsghdr {
 socklen_t cmsg_len;
 int cmsg_level;
 int cmsg_type;
/* u_char cmsg_data[]; */
};

Page 525

Appendix C—
Useful Network Tables

Table C.1: Internet Address Classes

Class Lowest Highest
Network
Bits

Host
Bits

A 0.0.0.0 127.255.255.255 7 24

B 128.0.0.0 191.255.255.255 14 16

C 192.0.0.0 223.255.255.255 21 8

D 224.0.0.0 239.255.255.255 28 N/A

E 240.0.0.0 247.255.255.255 27 N/A

Table C.2: Netmask Values by IP Class

Class Lowest Highest Netmask

A 0.0.0.0 127.255.255.255 255.0.0.0

B 128.0.0.0 191.255.255.255 255.255.0.0

C 192.0.0.0 223.255.255.255 255.255.255.0

Table C.3: Private IP Number Allocations

Class Lowest Highest Netmask

A 10.0.0.0 10.255.255.255 255.0.0.0

B 172.16.0.0 172.31.255.255 255.255.0.0

C 192.168.0.0 192.168.255.255 255.255.255.0

Table C.4: Amateur Radio Reserved IP Numbers

Class Lowest Highest Netmask

A 44.0.0.0 44.255.255.255 255.0.0.0

Page 526

Table C.5: The /proc/sys/net/ipv4/tcp_stdurg Settings

Value Interpretation

0 BSD Interpretation (Linux default)

1 RFC793 interpretation

Table C.6: The /etc/inetd.conf Configuration Record

Field # Description Example

1 Internet service name telnet (this may also be a port number)

2 Socket type Stream or dgram

3 Protocol tcp or udp

4 Flags nowait or wait

5 UserID to use root or nobody

6 Pathname of executable /usr/sbin/in.telnetd

7 Server arguments in.telnetd

Page 529

GLOSSARY

A

address family
A set of acceptable address formats for use with a particular network protocol.

ancillary data
Control data that is sent or received with normal data in a packet. Ancillary data normally includes
user credentials or file descriptors transmitted over a PF_LOCAL/PF_UNIX socket.

API
Application Programming Interface.

ARPA
Advanced Research Projects Agency.

auxiliary data
Another name for ancillary data.

AX.25
An amateur radio adaptation of the CCITT X.25 network protocol for digital radio transmission. See
also X.25.

B

big-endian
The endian quality describes the byte ordering of a particular piece of digital hardware. Big-endian
implies that the most significant byte occurs first in physical placement.

BPQ
In this book, BPQ refers to AX.25 support over Ethernet, developed by John Wiseman (radio
callsign G8BPQ).

C

canonical hostname
A host machine on a network can be identified by several different names. However, each host must
have one official hostname. All other hostnames are considered aliases of the canonical hostname.

CCITT
Abbreviation for International Telegraph and Telephone Consultative Committee, which is a
standardization bureau. This has now been combined into the ITU-T (International
Telecommunication Union) standards bureau.

connection-oriented protocol
A protocol that requires that a channel of communication be established. Only after establishing the
connection can communication take place. This form of communication is like a telephone call,
where the other party must be reached before the conversation can begin.

connectionless protocol
A protocol that requires no prior establishment of a connection. This form of protocol is like mailing

letters[md]messages are sent, in the hope that they arrive at their designated destinations.

Page 530

control data
When discussing PF_LOCAL/PF_UNIX sockets, this means ancillary data.

credential
A kernel testimonial that reliably identifies the userID and group of the requesting process.

D

daemon
A server process that runs without a controlling terminal. Usually a process that is started when the
system boots and runs in the background until it is terminated or until the system is shut down.
Other daemons are started by the inetd daemon, upon demand.

DARPA
Defense Advanced Research Projects Agency.

datagram
A finite unit of data that is sent and received as one unit. It is a network message that is delivered on
a best-effort basis.

DHCP
Dynamic Host Configuration Protocol.

dichotomy
A division, or the process of dividing into two mutually exclusive or contradictory groups or
entities.

domain
In the context of sockets, the domain represents one of a set of possible protocol families. For DNS
name servers, a domain represents an area of influence or authority. A domain can also be applied to
a set of machines cooperating with the use of NIS.

dotted-quad
An address notation that includes four decimal values separated by dots (periods). Also known as
dotted-decimal notation; 127.0.0.1 is an example of a dotted-quad address.

E

endian
This quality describes the byte ordering of a particular piece of digital hardware. There are big-and
little-endian CPUs, for example. Mixed-endians can also exist.

EOF
End of file.

Ethernet
A name chosen by inventor Bob Metcalfe of Xerox PARC in 1973 to describe a new local area
network technology, which was based upon the University of Hawaii's ALOHA system. The word
''Ether" was used by nineteenth-century physicists to explain how light passes through the vacuum
of space.

F

FAQ

Frequently Asked Question.

firewall
A firewall is a metaphorical concept that separates harm (fire) on one side from valuable resources
on the other side, by means of a wall. It can be implemented in software alone or as a piece of
equipment with software, designed to screen out malicious access to the internal network.

flow control
A form of control exerted over the transfer of data within a stream. When too much data arrives at
the receiving end, the sender is

Page 531

instructed to stop sending. When the receiver has caught up with the data it has already received, it
then instructs the sender to begin transmitting again.

FTP
File Transfer Protocol.

ftp
A network client program that allows the user to perform file transfers over a network, using the
FTP protocol.

G

GMP library
GNU Multi-precision Math library. This library permits the programmer to compute numbers that
exceed the precision of the standard C data types.

I

in-band
The normal path for data on a stream socket can be considered as "in-band" data. Data within this
stream must be delivered in precisely the same order it was sent. The opposite to in-band data is out-
of-band data.

inetd
The Internet daemon. This process waits for a connect (or UDP request) and then starts the server
that will handle the request. See Chapter 15, "Using the inetd Daemon."

inline
When applied to out-of-band data, the term inline means that the out-of-band data is received
intermixed with the normal in-band data. See also in-band and out-of-band.

interface
In the networking context, an interface provides access to the network medium. It is normally a
combination of a software driver and a piece of network hardware. See also NIC.

IPO
Initial Public Offering.

IPv4
Internet Protocol version 4, which is in use over the Internet today. The IP number used by this
protocol is 32 bits in length.

IPv6
Internet Protocol version 6, which will be the next generation Internet protocol. The IP number used
by this protocol is 128 bits in length.

IrDA
Infrared data communications.

ISP
Internet service provider.

L

little-endian
The endian quality describes the byte ordering of a particular piece of digital hardware. Little-endian
implies that the least significant byte occurs first in physical placement.

localhost
The commonly accepted name of the local loopback interface that is normally assigned the IPv4
address 127.0.0.1.

loopback
This is a software network interface that permits processes on a local host to communicate to other
processes on the same host. It is normally given the IPv4 address of 127.0.0.1 .

Page 532

M

man
A Linux/UNIX command for viewing online manual pages. Often simply called the man command
for accessing man pages.

mirror site
An alternative site, which hosts the same services as the primary site. For example, a mirror FTP site
will serve the same files that the primary FTP site provides. This is done to balance the load and
provide a backup against service disruptions.

N

netmask
Network mask. When applied to a network address, it separates the network ID from the host ID.

NIC
Network Interface Card. This is one type of hardware that provides an interface to the physical
network medium.

NIS
Network Information Service, formerly known as the Sun Yellow Pages (the name Yellow Pages is
a registered trademark of British Telecom PLC in the United Kingdom). This is a service which
provides centralized information services for a group of hosts within a network.

nslookup
Name Server lookup command. Permits the user to query name servers to turn hostnames into
network addresses and vice versa.

NTP
Network Time Protocol. This is a protocol used to synchronize the time of different host computers.
There are now several documents about NTP, but RFC 1129 is a good place to start.

O

out-of-band data
This is data that is sent outside of the normal data path to the receiving end. This permits out-of-
band data to be received ahead of the data that has already been sent, and to be received separately
from the normal data. Note that this is a more general concept than TCP's "urgent mode."

P

packet
A packet is a single unit of data that can be transmitted through a network. The term was originated
by Donald Watts Davies in 1965 while performing research in London.

pad bytes
These are placeholder bytes, which carry no useful information in themselves. They are often zero
bytes, placed into structures in order to fill out the structure to a particular size.

peek
A peek at received data implies that the data is read, without making it unavailable. Conversely, a
normal read operation obtains data without the option of receiving the same data again.

TE
AM
FL
Y

Team-Fly®

peer
A peer is usually another host involved in communication with the local host. However, the local
host can act as a peer when communicating with itself as one process communicates with another on
the same host.

PID
The Process ID is used by the UNIX/Linux kernel to identify each task operating in the system.

Page 533

pipe
A pipe is a metaphorical concept representing a channel of data flow between one process and
another on the same host. Most UNIX pipes are unidirectional.

port
A port number, when combined with an IP address, allows a specific instance of a connection to be
addressed. For example, one host can offer two services for the same IP number, differing only by
the port numbers used.

R

resolve
The process of converting a hostname into a network address. A hostname is converted into an IP
number, for example.

RFC
A "Request For Comments" Internet document. The first such document was written by Steve
Crocker on April 7, 1969. It was labeled "Request For Comments" and subtitled "Host Software."
The general tone of this document was warm and welcoming. It was so well accepted that it was
subsequently followed by a series of further RFCs for Internet protocol and design documents.
Many RFCs become defacto standards even though they continue to be referred to as RFCs.

rlogin
A network client program that provides the current terminal user access to another remote host as a
terminal session. See also telnet.

router
A piece of network equipment that routes packets from one network to the correct destination
network.

RPN
Reverse Polish Notation.

run-level
A systemwide mode that the overall system is in. For example, run-level 5 has the X Window server
running on the console for many Linux distributions. Run-level 3 is usually for not having the X
Window server running on the console.

S

setuid
This is a UNIX feature where the execution of an executable can be performed under a different
userID than the account that the user is logged on as. For example, the lpr command runs as
userID root when a print request is made under Red Hat Linux 6.0.

socket
A socket is an endpoint in network communications. A pair of sockets is required for connection-
oriented communications (using TCP/IP, for example).

stderr
Standard error output: This FILE control block is normally open for writing to file descriptor 2.

stdin
Standard input: This FILE control block is normally open for reading from file descriptor 0.

stdout
Standard output: This FILE control block is normally open for writing to file descriptor 1.

Page 534

stream
In the socket context: A stream socket is a connection-oriented socket. This is different from a
datagram socket, which is connectionless. In the standard I/O context: a stream represents a FILE
control block that is open for reading or writing.

T

TCP
Transport Control Protocol layer, which is used on top of the IP protocol layer. This layer adds flow
control and data integrity to the lower IP level.

telnet
A network client program that provides a terminal session for the user. See also rlogin.

thread
A sequential flow of control within a process. There can be several threads operating in parallel
within one process, each representing an independent flow of control. All memory is shared between
all threads within one process.

Trojan horse
A usually dangerous program designed to masquerade as some other program. By impersonating a
normal program, it gets run by an unwitting user, which can then cause harm or capture information
that should be kept secret.

U

UDP
User Datagram Protocol.

URG bit
A TCP protocol header bit that indicates urgent data is present.

urgent data
The special data that is sent in urgent mode. See also urgent mode.

urgent mode
The TCP protocol provides a facility where the sending end can indicate to the receiving end that
"urgent data" has been placed into the normal stream of data. The receiving end then becomes
notified that urgent data exists in its incoming data stream, but it remains up to the receiving end to
determine how to process this data.

urgent pointer
This is a TCP protocol pointer that points to either the urgent data byte itself (RFC793) or the byte
that follows the urgent data byte (BSD). This pointer is only computed and used at the receiving end
when the TCP URG bit is set in the packet header.

W

wild socket address
This is a socket address that is left unspecified. This is often done when the choice of network
interface is not known in advance, allowing the address to be dynamic.

X

X.25
A packet-switched network protocol recommended by CCITT in 1976, based upon the ISO
networking model.

Y

YP
Sun Microsystem's Yellow Pages is now known as NIS (the name Yellow Pages is a registered
trademark of British Telecom PLC in the

Page 535

United Kingdom). This is a service which provides centralized information services for a group of
hosts within a network.

Z

zombie
This is a UNIX process that has terminated or exited gracefully. Until the parent process inquires of
the kernel about the child process's termination, a minimal process table entry is maintained by the
kernel. This entry will display as a zombie process when all the processes are listed by the ps(1)
command.

Page 537

INDEX

A

abstract local addresses, forming, 44, 46

AC_LOCAL/AF_UNIX socket address, creating abstract, 44, 46

accept function, 508

accept(2) function, 188-189

arguments, 188

writing TCP/IP servers, 195

accepting requests, TCP wrappers, 413

access

by host/domain name, 396-397

by IP numbers, 397-398

network address user identification, 396-398

security issues, 395-396

address families, 35

address structures, 519

full_sockaddr_ax25, 521

sockaddr, 519

sockaddr_atalk, 520

sockaddr_in, 519

sockaddr_in6, 520

sockaddr_un, 519

sockaddr_x25, 520

addresses

abstract local, forming, 44-46

AF_AX25 family, 58-59

AF_INET6 family, 58

AF_LOCAL/AF_UNIX, initializing, 41-44

AF_UNSPEC family, 61

broadcast, 330

examining, 37

mkaddr.c subrouting, 331

families, specifying, 58-60

forming, 37-38, 49-51

local, 38-44

generating, 36

IN_ADDRANY_AF_INET, 52

interface, 128-129

building, 129-130

Internet

classes, 66

creating, 51-55

netmasks, 67

IP

allocating, 72

private, 72

reserved, 73

IPv4, 47-48

Page 538

network, granting/denying access, 396-398

obtaining, 120-127

peer sockets, 125-127

remote, resolving, 210-212

sockets, binding, 115-119

structures, sockaddr_ un, 39

wild, replying to, 154-155

X.25, 55-58

addressing sockets, 508

advanced RPN server functions, 274-275

advantages

of shutting down writing, 22

TCP/IP, 161

AF_APPLETALK address family, 58-59

AF_AX25 address family, 58-59

AF_INET address family, 53-58, 94-95

AF_LOCAL/AF_UNIX socket address, initializing, 41-44

AF_UNSPEC address family, 61

allocating

file descriptors, kernal, 11

IP addresses, 72-73

amateur radio reserved IP numbers listing, 525

ancillary data, 428

creating, 440-441

examples, 441-447

iterating, 439-440

macros, 435-439

misc.c module, 443

recvcred.c module, 443-447

structures, 435-436

anonymous calls, 36

anonymous sockets, 36

applying

FILE streams to sockets, 243-249, 259

gethostbyname(3) function, 214-216

netmasks, 68

select(2) function to servers, 287-288, 295-298

arguments

accept(2) function, 188

backlog, 186

listen, 187

bind(2) function, 116

commonly used socket values list, 106

domain, 13

getdomainname(2) function, 208

gethostbyaddr(3) function, 217

gethostname(2) function, 207

getpeername(2) function, 125

getservbyname(3), 167

getservbyport(3) function, 168

getsockname(2) function, 120

getsockopt(2) function, 306-307

how, 22

listen(2) function, 185

mkaddr() function, 243

network broadcasting, 344

PF_INET and SOCK_DGRAM, 105-106

PF_INET and SOCK_STREAM, 103-104

TE
AM
FL
Y

Team-Fly®

PF_LOCAL and SOCK_DGRAM, 103

PF_LOCAL and SOCK_STREAM, 102

select(2) function, 284

sendto(2) function, 137-139

sethostent(3) function, 223

setprotoent(3) function, 171

setservent(3) function, 166

setsocketopt(2) function, 310

socket(2) function, 96

associating sockets with streams, 230-232

attaching clients to servers, 270

B

backlog argument

listen(2) function, 186-187

values, specifying, 187-188

Page 539

bash shell, jobs command, 195

big-endian byte order, 49

performing conversions, 50-51

bind function, 507

bind(2) function, 116-119

arguments, 116

example, 117-118

leaving out, 154

specifying interfaces, 131

binding

addresses to sockets, 115-119

interfaces, 130-131

bpq0, checking interface status, 61

broadcast addresses, 330

mkaddr.c subrouting, 331

broadcasting

from servers, 332, 337

stock market index, 332-342

SO_BROADCAST socket option

code example, 324

setting, 324-325

UDP, 329

broadcasts

demonstrating, 342

establishing, 342

networks, 343

receiving, 345

starting, 343-344

receiving, 338

remote hosts, 345

stock market index client program, 339-342

troubleshooting, 346

buffer operation, defining, 241

buffering, 241

modes, 241

stream functions, 241-242

building interface addresses, 129

example, 130

byte order, 49-51

big-endian, 49-51

little-endian, 49-51

byteorder function, 513

C

calls, anonymous, 36

canonical names, 213-214

centralizing security, 398-399

changing etc/inetd.conf files, 387-388

child servers

choosing AF_INET, 94-95

buffering modes, 241

PF_INET, 94-95

process flow, 281-282

protocols, 101-106

socket types, 96

sockets, 99-100

classes

addresses, Internet, 66

netmask values, 69

classifying netmasks, 69-72

clearerr(3) function, 239

client/server writing (example), 24-32

clients

datagram

dgramcln2.c datagram client code analysis, 418

dgramcln2.c datagram client code example, 414-417

TCP wrappers, 402-403

establishing server/client connections, 380

inetd servers, 400

linger structure, 522

mktwatch program, 495-499

program, modifying, 197-200

servers

concurrent, 269

multiple, 270-275, 280-282

process, 280

stock market quotes, 477

TCP/IP

daytime program, 176

writing, 173-180

UDP datagram

testing, 150-155

writing, 146-150

Page 540

close function, 18-23

close(2) function, SO_LINGER socket option, 320-322

closing

socket streams, 232

sockets, 21-22

streams, read and write, 234

cmsg function, 511

cmsqhdr structures, 523

cntl(2) function, 355-356

codes

error, 211

h_errno, 212

RPN calculator, 249-258

RPN main server, 260-263

commands

jobs, 195

kill, inetd, 422

tcpdump, 346

telnet, server connections, 317-319

communicating

connection-oriented, 159

servers, 184-185

connectionless-oriented, 135

ending connections, 235

communication methods, 160

comparing sockets to pipes, 12

compiling

protoent.c program, 171

RPN server source modules, 264-266

servent.c program, 166

concurrent client servers, 269

configuration files, etc/inetd.conf, 381

cautions, 386

disabling servers, 389

establishing servers, 385-387

Flags field, 382

Internet Service Name field, 381-382

layout, 381

Pathname field, 383

Protocol field, 382

rereading, 387-388

restores, 386

root, 386

Server Arguments field, 383

Socket Type field, 382

UserID field, 383

connect function, 507

connect(2) function, 173-174

SOCK_DGRAM sockets, 180

connecting

servers, 185

sockets, 173-174

connection-oriented communication, 159

servers, 184-185

connectionless-oriented communications, 135

UDP protocol, 135-136

connections

server

SO_KEEPALIVE socket option, 323-324

SO_REUSEADDR socket option, 319-320

telnet command, 317-319

server/client

establishing, 380

inetd servers, 400

consulting etc/protocols file, 168-169

controlling sockets, 512

converting endians, 50-51

CP

urgent mode, 366-368

urgent pointers, 367-368

CP/IP, implementing, 351

CPUs, byte orders, 49-51

creating

AC_LOCAL/AF_UNIX socket address (abstract), 44-46

Internet addresses, 51-55

Internet stream sockets, 104

read and write streams, 233-234

server program, 195

sockets, 13-17

UDP sockets, 105

Page 541

credentials, 427

SO_PASSCRED socket option, 326

SO_PEERCRED socket option, 326

D

daemons

cautions, 386

disabling servers, 389

establishing servers, 385-387

Flags field, 382

inetd

centralizing server security, 398-399

datagram servers, 389-391

establishing server/client connections, 400

etc / inetd.conf files, 381

inetd server code example, 384-385

inetd server disabling, 389

inetd server testing, 385-389

kill command, 422

nowait flag word, 390-391

security issues, 381

server code example, 385

server design parameters, 383

SIGHUP signals, 389

starting, 380-381

TCP wrappers, 399-403, 419-420

UDP servers, 389-390

wait flag word, 390-391

Internet Service Name field, 381-382

layout, 381

Pathname field, 383

Protocol field, 382

rereading, 387-388

restores, 386

root, 386

Server Arguments field, 383

Socket Type field, 382

UserID field, 383

data, out-of-band (SO_OOBINLINE socket option), 325-326

datagram clients

dgramcln2.c datagram client code analysis, 418

dgramcln2.c datagram client code example, 414-417

TCP wrappers, 402-403

datagram servers

inetd, 389-391

nowait flag word, 390-391

wait flag word, 390-391

inetd datagram server code example, 405-408

inetd datagram server code process analysis, 408-409

inetd datagram server timeout code analysis, 409-410

log.c logging functions code example, 403-405

log.h header files code example, 405

security vulnerabilities, 423

datagrams

input/output, 136

servers, starting, 151

UDP clients, 146-150

UDP servers, 140-145

daytime client program, 176

example, 176-180

running, 180

daytime servers, 190-195

client program example, 198-200

defining

buffer operation, 241

sockets, 9-10

definitions, timeval structure, 284

demonstrating broadcasts, 342

demonstration program, running, 16-17

denying requests (TCP wrappers), 421

descriptor sets, files, 285

designing servers, select(2) function, 282-286

determining netmasks, 69-72

disabling inetd servers, 389

disadvantages, connectionlessoriented communications, 135-136

domain argument, 13

domain names

finding, 207-210

granting/denying access, 396-397

TE
AM
FL
Y

Team-Fly®

Page 542

domains, 35-37

sockets, 96, 106

specifying, 94-95

dotted-quad notation, netmasks, 68

dual streams, closing, 234

dup function, 23, 512

dup(2) function, 234

dup2 function, 23, 512

duplicating, sockets, 23, 234

E

EINTR error, 238-240

handling, 240

eliminating bind(2) function, 154

endhostent(3) function, 224

endians

big, 50-51

little, 50-51

ending

communications, 235

out-of-band data, 363-365

engine code, RPN calculator, 249

errors

codes, 211

h_errno, 212

EINTR, 238, 240

getprotoent(3) function, 169

reporting, 210-211

h_errno, 211

shutdown function, 24

TCP wrappers, error recovery, 414

establishing

inetd servers

datagram servers, 389-391

etc/inetd.conf files, 385-387

nowait flag word, 390-391

UDP servers, 389-390

wait flag word, 390-391

server/client connections, 380

inetd servers, 400

servers, broadcasts, 342

specific addresses, 53-55

X.25 address, 56-58

etc/inetd.conf configuration record,526

etc/inetd.conf files, 381

disabling servers, 389

establishing servers, 385-387

Flags field, 382

Internet Service Name field, 381-382

layout, 381

Pathname field, 383

Protocol field, 382

rereading, 387-388

restores, 386

root, 386

Server Arguments field, 383

Socket Type field, 382

UserID field, 383

etc/protocols file, 168-169

etc/services file

examining, 162

fields, 162

examining addresses, 37

etc/services file, 162

examples

ancillary data, 441-443, 445-447

bind(2) function, 117-118

bindacpt.c source module, 356-364, 372

broadcast() function, 493-494

building specific IP interface, 130

creating ancillary data, 440-441

get_tickinfo() function, 488-492

getdomainname(2) function program, 208

gethostbyname(3) function program, 214-216

gethostname(2) function program, 208

getpeername(2) function, 126-127

getprotoent(3) function, 170

getsockaddr(2) function, 121-123

inet_addr(3) function, 74-76

inet_aton(3), 78-80

inet_lnaof(3) function, 86, 88-89

inet_makeaddr(3) function, 88-89

inet_netof(3) function, 87-89

inet_network(3) function, 84

Page 543

inet_ntoa(3) function, 81-82

interface addresses, 128-129

mkaddr() function subroutine, 244-248

modified client program for daytime service, 198-200

modifying RPN servers, 275-280

modifying servers with gethostbyaddr(3) function, 218-222

mktwatch client program, 495-499

oobinline program, 371-375

oobrecv.c receiving main program, 359-362

oobsend.c program, 363-365

performing I/O on sockets, 18-21

Quote Server module, 477-483

quote service problem, 474-483, 500-503

quotes.h header file, 484, 486-487

read and write streams, 233-234

recv_fd() function, 453-456

replacement daytime server, 190-195

reqport() function, 451-453

RPN calculator code, 249-259

RPN main server code, 260-263

RPN server using select(2) function, 288, 295-298

select(2) function, 283

send_fd() function, 465-468

socketpair function, 14-16

sockserv program, 456-464

specifying interfaces with bind(2) function, 131

stock market index broadcasting, 332-342

stream I/O, 97-98

TCP/IP client daytime program, 176-180

UDP datagram client program, 146-150

UDP datagram server, 140-145

uname(2) function test program, 205-207

web80 Web server, 447-451

wild servers, 197

writev(2) function I/O vectors, 430-432

writing client/server, 24-32

F

families

addresses

AF_UNSPEC, 61

specifying, 58-60

protocols, 110

finding supported socket types, 112

grep command, 110-111

fclose(3) function, 232, 235

fcntl function, 512

FD_CLR macro, 286

FD_ISSET macro, testing file descriptors, 286

FD_SET macro, 285

FD_ZERO macro, 285

fdopen(3) function, 231-233, 242

fflush(3) function, 241

fgetc(3) function, 241

fields

etc/services file, 162

Flags (etc/inetd.conf files), 382

Internet Service Name (etc/inetd.conf files), 381-382

Pathname (etc/inetd.conf files), 383

Protocol (etc/inetd.conf files), 382

Server Arguments (etc/inetd.conf files), 383

Socket Type (etc/inetd.conf files), 382

UserID (etc/inetd.conf files), 383

FILE control block, 230

Page 544

FILE streams

applying to sockets, 243-249, 259

buffering, 241

file units, 11-12

files

configuration, etc/inetd.conf, 381-389

descriptor sets, 285

testing, 286

descriptors, allocating, 11

etc/protocols, 168-169

etc/services, 162

log, TCP wrappers, 419-422

finding

domain names, 207-210

hostnames, 207-210

protocol families, 110

protocol information, 109

protocols

by name, 172

by number, 172-173

socket types, 112

source codes, Web site, 60

flag values, recvfrom(2) function, 139

flag word

nowait, inetd datagram servers, 390-391

wait, inetd datagram servers, 390-391

Flags field (etc/inetd.conf files), 382

flags values, sendto(2) function, 137

flow control, TCP/IP, 161

fork functions, writing client/server, 26-32

fork(2) function, 275, 280-282

termination processing, 282

forming

addresses, 37-38, 49-51

abstract local, 44-46

local, 38-44

Internet socket addresses (IPv4), 47-48

fread(3) function, 238-240

full_sockaddr_ax25 address structure, 521

functions, 507

accept, 508

accept(2), 188-189

bind, 507

bind(2), 116-119

broadcast(), 493-494

buffering, 241-242

byteorder, 513

check_access(), 464

clearerr(3), 239

close, 18-23

close(2), SO_LINGER socket option, 320-322

cmsg, 511

connect, 507

connect(2), 173-174, 180

controlling sockets, 512

dup, 23, 512

dup(2), 234

dup2, 23, 512

endhostent(3), 224

endprotoent(3), 172

endservent(3), 167

fclose(3), 232, 235

fcntl, 512

fdopen(3), 231-233, 242

fflush(3), 241

fgetc(3), 241

fork(2), 275, 280-282

fread(3), 238-240

fwrite(3), 238-240

genprime, 275

getdomainname, 516

getdomainname(2), 208

gethostbyaddr(3), 217

gethostbyname, 516

gethostbyname(3), 212

gethostname, 515

gethostname(2), 207

getpeername, 508

getpeername(2), 125

TCP wrappers, 402

getprotobyname(3), 172

getprotobynumber(3), 172-173

getprotoent, 515

getprotoent(3), 168-169

getservbyname(3), 167

getservbyport(3), 168

getservent, 514

getservent(3), 163-165

getsockname, 508

getsockname(2), 120

TCP wrappers, 402

getsockopt, 512

getsockopt(2)

arguments, 306-307

code example, 307-310

syntax, 306

TE
AM
FL
Y

Team-Fly®

Page 545

get_tickinfo(), 484-492

grant_access(), 464

handling EINTR error, 240

inet_addr, 513

inet_addr(3), 74

example, 74-76

inet_aton, 513

inet_aton(3), 77-80

inet_lnaof, 514

inet_lnaof(3), 85

inet_makeaddr, 514

inet_makeaddr(3), 87

inet_netof, 514

inet_netof(3), 86-87

inet_network, 514

inet_network(3), 83-84

inet_ntoa, 514

inet_ntoa(3), 80-82

ioctl, 513

listen, 507

listen(2), 185

logging

log.c logging functions code example, 403-405

log.h header files example, 405

mkaddr(), 243-248

pipe, 12

poll(2), 271

process_client(), 298

random, 274

read, 17, 508

readv, 508

recv, 508

recvfrom, 508

recvfrom(2), 138

TCP wrappers, 402-403

recvmsg, 509

rpn_dump(), 249

rpn_process(), 249

RPN servers, 271-272

advanced, 274-275

testing, 272-273

unary, 273

seed, 274

select, 511

select(2), 271, 282-288, 295-298

send, 510

sendmsg, 510

sendto, 510

sendto(2), 136

servers, 271

sethostent, 516

sethostent(3), 223-224

setprotoent(3), 171

setservent(3), 166

setsockopt, 512

setsockopt(2)

arguments, 310

cautions, 313-315

code example, 311-315

syntax, 310

setvbuf(3), 242

shutdown, 22, 235, 512

errors, 24

shutdown(2), 236-238

sock_addr, 121

sock_addr(), 124

socket, 507

socket(2), 96, 107

socketpair, 13-15, 507

example, 14-16

strerror(3), 211

uname, 515

wait(2), 282

waitpid(2), 282

write, 18

writev, 510

fwrite(3) function, 238-240

G

generating addresses, 36

genprime function, 275

getdomainname function, 516

getdomainname(2) function, 208

arguments, 208

testing, 208-209

gethostbyaddr(3) function, 217

arguments, 217

modifying servers, 218-222

gethostbyname function, 516

gethostbyname(3) function, 212

applying, 214-216

example program, 214-216

hostent structure, 213-214

gethostname function, 515

gethostname(2) function, 207

arguments, 207

testing, 208-209

getpeername function, 508

getpeername(2) function, 125

arguments, 125

example, 126-127

TCP wrappers, 402

getprotobyname(3) function, 172

Page 546

getprotobynumber(3) function, 172-173

getprotoent function, 515

getprotoent(3) function, 168-169

errors, 169

example protoent.c program, 170

running protoent.c program, 171

getservbyname(3) function, 167

getservbyport(3) function, arguments, 168

getservent function, 514

getservent(3) function, 163, 165

getsockaddr(2) function, examples, 121-123

getsockname function, 508

getsockname(2) function, 120

arguments, 120

TCP wrappers, 402

getsockopt function, 512

getsockopt(2) function

arguments, 306-307

code example, 307-310

syntax, 306

GNU, Multi-Precision (GMP) library,
243

grant_access() function, 464

grep command, protocol families, 110-111

guards, 394

H

h_addr_list (hostent structure), 214

h_addrtype (hostent structure), 213

h_aliases (hostent structure), 213

h_errno error

codes, 212

reporting, 211

h_length (hostent structure), 213

h_name (hostent structure), 213

handling

duplicated packets, TCP/IP, 161

EINTR error, 240

flow control, TCP/IP, 161

interrupts, 238-240

lost packets, TCP/IP, 160

history, sockets, 8

hostent structures, 522

gethostbyname(3) function, 213-214

hostnames, 204

canonical, 213-214

finding, 207-210

granting/denying access, 396-397

support, 515

how argument, 22

I

I/O

buffer functions, 241-242

need standard, 230

sockets, 17

example, 18-21

performing, 21

stdio(3) facility, 230

stream, 97-98

streams, 232

creating, 233-234

read, 233, 237

write, 233, 238

structures, 522

support, 515

identifying users

by host/domain name, 396-397

by IP numbers, 397-398

network addresses, 396-398

IN_ADDRANY_AF_INET address, initializing,
52

indacpt.c source module, example, 356-364, 372

inet_addr function, 513

inet_addr(3) function, 74

example program, 74-76

inet_aton function, 513

inet_aton(3) function, 77-78

example, 78-80

inet_lnaof function, 514

inet_lnaof(3) function, 85

example, 88-89

values, 86

Page 547

inet_makeaddr function, 514

inet_makeaddr(3) function, 87

example, 88-89

inet_netof function, 514

inet_netof(3) function, 86-87

value examples, 87-89

inet_network function, 514

inet_network(3) function, 83

example, 84

inet_ntoa function, 514

inet_ntoa(3) function, 80-81

example, 81-82

inetd

etc/inetd.conf files, 381

cautions, 386

disabling servers, 389

establishing servers, 385-387

Flags field, 382

Internet Service Name field, 381-382

layout, 381

Pathname field, 383

Protocol field, 382

rereading, 387-388

restores, 386

root, 386

Server Arguments field, 383

Socket Type field, 382

UserID field, 383

kill command, 422

security issues, 381

servers

centralizing security, 398-399

code example, 384-385

datagram servers, 389-391

design parameters, 383

disabling, 389

establishing, 385-387

establishing server/client connections, 400

inetd datagram server code example, 405-408

inetd datagram server code process analysis, 408-409

inetd datagram server timeout code analysis, 409-410

log.c logging functions code example, 403-405

log.h header files code example, 405

nowait flag word, 390-391

TCP wrappers, 399-403

testing, 385-389

UDP servers, 389-390

wait flag word, 390-391

SIGHUP signals, 389

starting, 380-381

TCP wrappers, 419-420

initializing

AF_LOCAL/AF_UNIX socket address, 41-44

IN_ADDRANY_AF_INET address, 52

input/output, performing datagrams, 136

installing TCP wrappers, 418-419

interface addresses, 128-129

binding, 130-131

building, 129

example, 130

Internet

addresses

classes, 66

creating, 51-55

netmasks, 67

IP numbers, 66

socket addresses. See IPv4 socket address

stream sockets, creating, 104

TCP/IP, 162

etc/services file, 162

Internet Service Name field (etc/inetd.conf files), 381-382

interrupts, handling, 238-240

ioctl function, 513

iovec structures, 522

IP addresses

allocating, 72

manipulating, 73-87

private, 72-73

reserved, 73

IP numbers

granting/denying access, 397-398

Internet, 66

testing datagram clients/servers, 153

IPv4 socket address, forming, 47-48

isc.c module, ancillary data example, 443

TE
AM
FL
Y

Team-Fly®

Page 548

J

jobs command, 195

K

kernal, allocating file descriptors, 11

kill command, inetd, 422

L

lags, struct msghdr structure, 435

libraries, GNU MultiPrecision (GMP), 243

listen function, 507

listen(2) function, 185

arguments, 185

backlog argument, 186-188

sockets, 190

listing services, 164

getservent(3) function, 165

listings

dgramcln2.c datagram client code example, 414-417

getsockopt(2) code example, 307-309

inetd datagram server code example, 405-408

inetd server code example, 384-385

log.c logging functions code example, 403-405

log.h header files code example, 405

retrieving socket type (SO_TYPE), 315-317

setsocketopt(2) function code example, 311-313

TCP wrapper program code example, 410-412

lists

address structures, 519

commonly used socket argument values, 106

Internet address classes, 66

miscellaneous structures, 521

socket(2) function parameters, 108

specific functions, 507

little-endian byte order, 49

performing conversions, 50-51

local addresses

abstract, 44-46

forming, 38-44

locating protocols

by name, 172

by number, 172-173

locks

types, 394-395

weaknesses, 395

log files, TCP wrappers, 419-422

logging functions

log.c logging functions code example, 403-405

log.h header files code example, 405

looking up

protocols

by name, 172

by number, 172-173

services, 167

M

macros

ancillary, 437

ancillary data, 435-439

CMSG_ALIGN, 438

CMSG_DATA, 438

CMSG_FIRSTHDR, 438

CMSG_LEN, 437

CMSG_NXTHDR, 439

CMSG_SPACE, 438

cmsg(3), 437

FD_CLR, 286

FD_ISSET, 286

FD_SET, 285

FD_ZERO, 285

manipulating file descriptor sets, 285

manipulating IP numbers, 73-87

members

msg_control, 434

msg_controllen, 434

msg_flags, 434

msg_iov, 434

msg_iovlen, 434

msg_name, 434

msg_namelen, 434

struct cmsghdr structure, 436

utsname structure, 205

messages, probe (SO_KEEPALIVE socket option), 323-324

mkaddr() function, 243-244, 248

arguments, 243

example subroutine, 244-248

Page 549

mkaddr.c subroutine, 331

mktwatch client program, 495

example, 495-499

starting, 501-503

modifying

client programs, 197-200

RPN servers, 275-280

servers, with gethostbyaddr(3) function, 218-

MSG_ALIGN() macro, 438

MSG_DATA macro, 438

MSG_FIRSTHDR macro, 438

MSG_LEN() macro, 437

MSG_NXTHDR() macro, 439

MSG_SPACE() macro, 438

msg(3) macros, 437

msqhdr structures, 523

multiple client servers, 275, 280-282

N

nameless sockets, 36

names, 204

domains, finding, 207-210

host, finding, 207-210

Netmask Values by IP class listing, 525

netmasks

applying, 68

classifying, 69-72

determining, 69-72

dotted-quad notation, 68

output of demonstration, 72

values, 67

classes, 69

network addresses

granting/denying access, 396-398

by host/domain name, 396-397

by IP numbers, 397-398

Network Time Protocol (NTP), 105

networks

broadcasts, 343

receiving, 345

starting, 343-344

byte orders, 49-51

nowait flag word, inetd datagram servers, 390-391

NTP (Network Time Protocol), 105

numbers, IP, 66

O

obtaining

domain names, 207-210

hostnames, 207-210

socket addresses, 120-125

peer, 125-127

out-of-band data

inline, 371

oobinline program example, 371-375

processing, 377

reading, 354

recv(2) function, 354

receiving, inline, 370-371

send(2) function, 353

sending, 363-365

SO_OOBINLINE socket option

code example, 325

setting, 325-326

sockets, 351

urgent pointers, 366-369

determining, 370-371

limitations, 375-377

writing, 353

P

packets

sequencing, 161

TCP/IP

duplicated, 161

lost, 160

parameters

inetd servers, 383

passwords, 394

weaknesses, 395

Pathname field (etc/inetd.conf files), 383

peer sockets, addresses, 125-127

performing

endian conversions, 50-51

I/O on sockets, 17, 21

input/output, 136

Page 550

PF_APPLETALK

SOCK_DGRAM socket, 109

SOCK_STREAM socket, 109

PF_AX25

SOCK_DGRAM socket, 109

SOCK_SEQPACKET socket, 108

PF_ECONET, SOCK_DGRAM socket, 109

PF_INET

choosing, 94-95

SOCK_DGRAM socket, 105-108

SOCK_STREAM socket, 103-104, 108

PF_INET6

SOCK_DGRAM socket, 108

SOCK_SEQPACKET socket, 108

SOCK_STREAM socket, 108

PF_IPX

SOCK_DGRAM socket, 109

SOCK_SEQPACKET socket, 109

SOCK_STREAM socket, 109

PF_LOCAL

SOCK_DGRAM, 103, 108

SOCK_STREAM socket, 102, 108

PIN numbers, 394

weaknesses, 395

pipe function, 12

poll(2) function, 271

preparing TCP/IP client program writing, 174-175

private IP addresses, 72

allocating, 73

private IP number allocations list, 525

probe messages, SO_KEEPALIVE socket option, 323-324

process client() function, 298

processes

clients, modifying, 197-200

daytime (TCP/IP client), 176

example, 176-180

getdomainname(2) function, 208

gethostbyaddr(3) function, running, 222

gethostbyname(3) example, 214-216

gethostname(2) function demo, 208

protoent.c, example, 170

servent.c, 164-165

server, 195

stksrv server, 343

stksrv.c, 332

tcpd. See TCP wrappers

UDP datagram client, 146-150

uname(2) functino test, 205-207

Protocol field (etc/inetd.conf files), 382

protocols

choosing, 101-106

families, 110

finding supported socket types, 112

grep command, 110-111

finding by number, 172-173

Linux supported, 107

looking up by name, 172

PF_APPLETALK and SOCK DGRAM, 109

PF_APPLETALK and SOCK_STREAM, 109

PF_AX25 and SOCK_DGRAM, 109

PF_AX25 and SOCK_SEQPACKET, 108

PF_ECONET and SOCK_DGRAM, 109

PF_INET and SOCK_DGRAM, 108

PF_INET and SOCK_STREAM, 108

PF_INET6 and SOCK_DGRAM, 108

PF_INET6 and SOCK_SEQPACKET, 108

PF_INET6 and SOCK_STREAM, 108

PF_IPX and SOCK_DGRAM, 109

PF_IPX and SOCK_STREAM, 109

PF_LOCAL and SOCK_DGRAM, 108

PF_LOCAL and SOCK_STREAM, 108

researching, 109

services, 168

sockets, 96

Page 551

TCP/IP, 36-37

UDP, 135-136

protoent structures, 521

protoent.c program

compiling, 171

running, 171

Q

quote service problem example, 474-483, 500-503

broadcast() function, 493-494

fetch procedure, 476-483, 500-503

get_tickinfo() function, 484-492

mktwatch client program, 495

qserver quotation server, 501

Quote Server program, 477

quotes (stock market), 474-483, 500-503

quotes.h header file, 484-487

server and clients, 477

R

random function, 274

read function, 17, 508

read streams, 233

creating, 233-234

shutting down, 237

reading

out-of-band data, 354

shutting down, 24

sockets, 508

readv function, 508

TE
AM
FL
Y

Team-Fly®

readv(2) function, I/O vectors, 429-430

receiving

broadcasts, 338

receiving, 345

remote hosts, 345

stock market index client program, 339-342

out-of-band data, inline, 370-371

out-of-band data (SIGURG signal), 359-362

recv function, 508

recv(2) function, reading out-of-band data, 354

recv_fd() function, 453-456

recvcred.c module

ancillary data examples, 443-447

recvmsg(2) function, 432-433

recvfrom function, 508

recvfrom(2) function, 138

flag values, 139

TCP wrappers, 402-403

recvmsg function, 509

referencing sockets, 11-12

rejecting requests, TCP wrappers, 413

relationships, socket(2) functions, 107

remote addresses, resolving, 210-212

remote hosts, receiving broadcasts, 345

replying to wild addresses, 154-155

reporting errors, 210-211

h_errno, 211

requests, TCP wrappers, 413

accepting, 413

denying, 421

rejecting, 413

researching protocols, 109

reserved IP addresses, 73

resolving remote addresses, 210-212

restores, etc/inetd conf files, 386

retrieving socket options, 306-310

SO_TYPE, 315-317

reusing sockets, setting SO_REUSE-ADDR socket option, 319-320

root, etc/inetd.conf files, 386

RPN

server functions, 271-272

advanced, 274-275

testing, 272-273

unary, 273

servers

modifying, 275-280

select(2) function, 288, 295-298

Page 552

RPN calculator code, 249-259

RPN calculator engine code, 249

RPN main server code, 260-266

rpn_dump() function, 249

rpn_process() function, 249

run-levels, 380

running

daytime client program, 180

demonstration program, 16-17

protoent.c program, 171

servent.c program, 166

uname(2) function test program, 206-207

wild servers, 196-197

S

security

access, 395-396

by host / domain name, 396-397

by IP numbers, 397-398

network address user identification, 396-398

centralizing, 398-399

complexity, 394

defined, 394

guards, 394

inetd, 381

SIGHUP signals, 389

locks

types, 394-395

weaknesses, 395

methods

types, 394-395

weakness, 395

passwords, 394

weaknesses, 395

PIN numbers, 394

weaknesses, 395

TCP wrappers, 399

accepting requests, 413

datagram client code analysis, 418

datagram client code example, 414-417

datagram clients, 402-403

denying requests, 421

error recovery, 414

getpeername(2) function, 402

getsockname(2) function, 402

inetd datagram server code example, 405-408

inetd datagram server code process analysis, 408-409

inetd datagram server timeout code analysis, 409-410

installing, 418-419

log files, 419-422

log.c logging functions code example, 403-405

log.h header files code example, 405

process, 399-401

rejecting requests, 413

starting inetd, 419-420

TCP wrapper program code analysis, 412-414

TCP wrapper program code example, 410-412

testing, 420-421

testing installation, 419

testing server timeouts, 421-422

uninstalling, 422

verifying, 399

vulnerabilities, 423

seed function, 274

select function, 511

select(2) function, 271, 282-286

arguments, 284

examples, 283

RPN servers, example, 288, 295-298

servers

applying, 287-288, 295-298

testing, 299

send function, 510

sendmsg function, 510

sendto function, 510

sendto(2) function, 136

arguments, 137-139

flags values, 137

sequencing

packets, TCP/IP, 161

serve quotation server, 501

servent structures, 521

servent.c program, 164-165

compiling, 166

running, 166

Server Arguments field (etc/inetd.conf files), 383

Page 553

servers

broadcasting from, 332, 337

child, process flow, 281-282

clients

concurrent, 269

limitations, 301

multiple, 270, 275, 280-282

process, 280

connecting, 185

connection-oriented communication, 184-185

connections

SO_KEEPALIVE socket option, 323-324

SO_REUSEADDR socket option, 319-320

telnet command, 317-319

datagram

inetd datagram server code example, 405-408

inetd datagram server code process analysis, 408-409

inetd datagram server timeout code analysis, 409-410

log.c logging functions code example, 403-405

log.h header files code example, 405

security vulnerabilities, 423

designing, 282-286

select(2) function, 285

establishing server/client connections, 380

functions, 271

inetd

centralizing security, 398-399

code example, 384-385

datagram servers, 389-391

design parameters, 383

disabling, 389

establishing, 385-387

establishing server/client connections, 400

nowait flag word, 390-391

TCP wrappers, 399-403

testing, 385-389

UDP servers, 389-390

wait flag word, 390-391

modifying with gethostbyaddr(3) function, 218-222

name lookups, TCP sockets, 224

program, 195

RPN

functions, 271-275

modifying, 275-280

testing, 264-266

RPN main code, 260-263

select(2) function, 282-286, 299

stock market index broadcasting, 332-342

TCP/IP, writing, 190-197

timeouts, TCP wrappers, 421-422

UDP, testing, 150-155

UDP datagram

starting, 151

writing, 140-145

wild, running, 196-197

services

listing all, 164

getservent(3) function, 165

looking up, 167-168

with port and protocol, 168

naming, 167

protocol, 167

servicing multiple client servers, 275, 280-282

sethostent function, 516

sethostent(3) function, 223-224

arguments, 223

setprotoent(3) function, 171

arguments, 171

setservent(3) function, 166

setsockopt function, 512

setsockopt(2) function

arguments, 310

cautions, 313-315

code example, 311-315

syntax, 310

setting socket options, 310-315

SO_BROADCAST, 324-325

SO_KEEPALIVE, 323-324

SO_LINGER, 320-322

Page 554

SO_OOBINLINE, 325-326

SO_REUSEADDR, 319-320

setvbuf(3) function, 242

sg_control members, 434

sg_controllen members, 434

sg_flags member, 434

sg_iov members, 434

sg_iovlen members, 434

sg_name members, 434

sg_namelen members, 434

shells, bash, 195

shutdown

SO_LINGER socket option, 320-322

cautions, 321

code examples, 322

shutdown function, 22, 512

errors, 24

how argument, 22

shutdown(2) function, 235-238

shutting down

communications, 235

read stream, 237

reading, 24

sockets, writing to, 22

write stream, 236-238

SIGHUP signals, inetd, 389

signals,

SIGHUP, 389

SIGURG, 355

SIGURG signal, 355

receiving out-of-band data, 359

oobrecv.c, 359-362

sock_addr() function, 124

writing, 121

SOCK_DGRAM socket, 99-100

connect(2) function, 180

PF_APPLETALK, 109

PF_AX25, 109

PF_ECONET, 109

PF_INET, 105-108

PF_INET6, 108

PF_IPX, 109

PF_LOCAL, 103, 108

properties, 99

SOCK_SEQPACKET socket, 100-101

PF_AX25, 108

PF_INET6, 108

PF_IPX, 109

SOCK_STREAM socket, 97-98

PF_APPLETALK, 109

PF_INET, 103-104, 108

PF_INET6, 108

PF_IPX, 109

PF_LOCAL, 102, 108

properties, 98

sockaddr address structure, 519

sockaddr_atalk address structure, 520

sockaddr_in address structure, 519

TE
AM
FL
Y

Team-Fly®

sockaddr_in6 address structure, 520

sockaddr_un address structure, 39

sockaddr_x25 address structures, 520

socket function, 507

Socket Type field (etc/inetd.conf files), 382

socket(2) function, 96

arguments, 96

list of parameters, 108

parameter relationships, 107

socketpair function, 13-15, 507

example, 14-16

writing client/server, 26-32

sockets, 7-10

address structures, 519

addresses

binding to, 115-119

examining, 37

forming, 37-44

obtaining, 120-127

addressing, 508

anonymous, 36

applying FILE streams, 243-249, 259

choosing, 96-100

closing, 21-22

comparing to pipes, 12

connecting, 173-174

controlling, 512

creating, 13-17

Page 555

defining, 9-10

domains, 106

specifying, 94-95

duplicating, 23, 234

establishing server/client connections, 380

functions, 507

history, 8

I/O

example, 18-21

performing, 17-21

listen(2) function, 190

nameless, 36

options

retrieving, 306-310

setting, 310-315

SO_BROADCAST, 324-325

SO_KEEPALIVE, 323-324

SO_LINGER, 320-322

SO_OOBINLINE, 325-326

SO_PASSCRED, 326

SO_PEERCRED, 326

SO_REUSEADDR, 319-320

SO_TYPE, 315-317

reading, 508

shutting down, 24

referencing, 11-12

SOCK_DGRAM, 99-100

connect(2) function, 180

SOCK_SEQPACKET, 100-101

SOCK_STREAM, 97-98

stream, creating, 104

streams

associating, 230-232

closing, 232

TCP, name server lookups, 224

types, 93, 106, 112

finding for protocol families, 112

writing, shutting down, 22

writing to, 510

source codes, Web site, 60

SO_BROADCAST socket option

code example, 324

setting, 324-325

SO_KEEPALIVE socket option

code example, 323

probe messages, 323-324

setting, 323-324

SO_LINGER socket option

cautions, 321

code examples, 322

setting, 320-322

SO_OOBINLINE socket option

code example, 325

setting, 325-326

SO_PASSCRED socket option, setting, 326

SO_PEERCRED socket option, setting, 326

SO_REUSEADDR socket option, setting, 319-320

SO_TYPE (socket type), retrieving, 315-317

specific addresses, establishing, 53-55

specifying

addresses, families, 58-60

backlog argument value, 187-188

domains, 94-95

interfaces, with bind(2) function, 131

X.25 addresses, 55

starting

broadcasts, networks, 343-344

datagram server, 151

inetd, 380-381

TCP wrappers, 419-420

stksrv server program, 343

stdio(3) facility, 230

stdio(3) stream, FILE control block, 230

stksrv server program, starting, 343

stksrv.c server program, 332

stock market index broadcasting server, 332-342

stock market quotes

broadcast() function, 493-494

get_tickinfo() function, 484-492

mktwatch program, 495

obtaining, 474-483, 500-503

qserve quotation server, 501

server and clients, 477

Page 556

stream I/O, examples, 97-98

stream sockets, creating, 104

streams

closing, 234, 243-249, 259

I/O buffer functions, 241-242

read, 233

creating, 233-234

shutting down, 237

sockets

associating, 230-232

closing, 232

write, 233

creating, 233-234

shutting down, 236-238

strerror(3) function, 211

struct protoent program structure, 169

struct servent function, structure, 163

struct utsname, 205

structures

ancillary data, 435-436

addresses, 519

cmsqhdr, 523

hostent, 213-214, 522

I/O, 522

linger, 522

msqhdr, 523

protent, 521

servent, 521

sockaddr_un, 39

struct servent, 163

struct cmsghdr, 435-436

struct msghdr, 433-435

timeval, 284, 522

utsname, 522

utsname members, 205

X.25 addresses, 55

support

hostname, 515

I/O, 515

supporting protocol families, 110-111

syntax

getsockopt(2) function, 306

setsockopt(2) function, 310

T

tables

amateur radio reserved IP numbers, 525

Internet address classes, 525

Netmask Values by IP class, 525

private IP number allocations, 525

TCP sockets, name server lookups, 224

TCP wrappers, 399

datagram client code analysis, 418

datagram client code example, 414-417

datagram clients, 402-403

denying requests, 421

getpeername(2) function, 402

getsockname(2) function, 402

inetd, starting, 419-420

inetd datagram server code example, 405-408

inetd datagram server code process analysis, 408-409

inetd datagram server timeout code analysis, 409-410

installing, 418-419

log files, 419-422

log.c logging functions code example, 403-405

log.h header files code example, 405

process, 399-401

TCP wrapper program

accepting requests, 413

code analysis, 412-414

code example, 410-412

error recovery, 414

rejecting requests, 413

testing, 420-421

installation testing, 419

server timeouts, 421-422

uninstalling, 422

verifying, 399

vulnerabilities, 423

TCP/IP, 36-37

advantages, 161

client programs

daytime, 176

writing, 173-180

duplicated packets, 161

flow control, 161

Internet, 162

etc/services file, 162

lost packets, 160

sequencing packets, 161

servers, writing, 190-197

telnet program, 174

tcpd. See TCP wrappers

Page 557

tcpdump command, 346

tdurg=1 (urgent mode), 369

telnet command, server connections, 317-319

telnet program, TCP/IP testing, 174

termination processing, 282

testing

file descriptor sets (FD ISSET macro), 286

for EINTR error, 240

getdomainname(2) function, 208-209

gethostname(2) function, 208-209

inetd servers, 385-389

IP numbers, 153

RPN server functions, 272-273

servers, select(2) function based, 299

TCP wrappers, 420-421

installation testing, 419

server timeouts, 421-422

TCP/IP, telnet program, 174

UDP datagram client, 150-155

UDP datagram server, 150-155

timeouts

inetd datagram server timeout code analysis, 409-410

servers, TCP wrappers, 421-422

timeval structure, 284, 522

definition, 284

troubleshooting broadcasts, 346

type domain, 13

U

UDP, 135-136

broadcasting, 329

datagram client

testing, 150-155

writing, 146-150

datagram server

starting, 151

testing, 150-155

writing, 140-145

UDP servers, inetd, 389-390

UDP sockets, creating, 105

uninstalling TCP wrappers, 422

urgent mode (TCP), 366-368

tcp stdurg=1, 369

urgent pointers, 366-369

determining, 370-371

examples, 367-36

limitations, 375-377

UserID field (etc/inetd.conf files), 383

users

identifying

by host / domain name, 396-397

by IP numbers, 397-398

network addresses, 396-398

V

values

backlog argument, 187-188

flags

recvfrom(2) function, 139

sendto(2) function, 137

TE
AM
FL
Y

Team-Fly®

inet_lnaof(3) function, 86

inet_netof(3) function examples, 87

netmasks, 67-69

verifying TCP wrappers, 399

W

wait flag word, inetd datagram servers, 390-391

wait(2) function, 282

waitpid(2) function, 282

Web sites, source codes, 60

web80 Web server, example, 447-451

wild addresses, replying to, 154-155

wild Internet addresses, creating, 51-52

wild servers

examples, 197

running, 196-197

wrappers, TCP, 399

datagram client code analysis, 418

datagram client code example, 414-417

Page 558

datagram clients, 402-403

denying requests, 421

getpeername(2) function, 402

getsockname(2) function, 402

inetd, starting, 419-420

inetd datagram server code example, 405-408

inetd datagram server code process analysis, 408-409

inetd datagram server timeout code analysis, 409-410

installing, 418-419

log files, 419-422

log.c logging functions code example, 403-405

log.h header files code example, 405

process, 399-401

TCP wrapper program

accepting requests, 413

code analysis, 412-414

code example, 410-412

error recovery, 414

rejecting requests, 413

testing, 420-421

installation testing, 419

server timeouts, 421-422

uninstalling, 422

verifying, 399

vulnerabilities, 423

write function, 18

write streams, 233

creating, 233-234

shutting down, 236-238

writev function, 510

writing

client/server, example, 24-32

shutting down, 22

sock_addr() function, 121

TCP/IP client programs, 173-176, 180

TCP/IP server, 190-197

to sockets, 510

UDP datagram client, 146-150

UDP datagram server, 140-145

X

X Window, run-levels, 380

X.25 address, 55

establishing, 56-58

Page 559

	sample.pdf
	sterling.com
	Welcome to Sterling Software

