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Preface

Data mining

Data mining has been a rapidly growing field of research and practical applications during the
last two decades. From a somewhat niche academic area at the intersection of machine learning
and statistics it has developed into an established scientific discipline and a highly valued
branch of the computing industry. This is reflected by data mining becoming an essential part
of computer science education as well as the increasing overall awareness of the term “data
mining” among the general (not just computing-related) academic and business audience.

Scope

Various definitions of data mining may be found in the literature. Some of them are broad
enough to include all types of data analysis, regardless of the representation and applicability
of their results. This book narrows down the scope of data mining by adopting a heavily
modeling-oriented perspective. According to this perspective the ultimate goal of data mining
is delivering predictive models. The latter can be thought of as computationally represented
chunks of knowledge about some domain of interest, described by the analyzed data, that
are capable of providing answers to queries transcending the data, i.e., such that cannot be
answered by just extracting and aggregating values from the data. Such knowledge is discov-
ered from data by capturing and generalizing useful relationship patterns that occur therein.

Activities needed for creating predictive models based on data and making sure that they
meet the application’s requirements fall in the scope of data mining as understood in this
book. Analytical activities which do not contribute to model creation – although they may
still deliver extremely useful results – remain therefore beyond the scope of our interest. This
still leaves a lot of potential contents to be covered, including not only modeling algorithms,
but also techniques for evaluating the quality of predictive models, transforming data to make
modeling algorithms easier to apply or more likely to succeed, selecting attributes most useful
for model creation, and combining multiple models for better predictions.

Modeling view

The modeling view of data mining is by no means unique for this book. It is actually the most
natural and probably the most wide-spread view of data mining. Nevertheless, it deserves
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some more attention in this introductory discussion, which is supposed to let the reader know
what this book is about. In particular, it is essential to underline – and it will be repeat-
edly underlined on several other occasions throughout the book – that a useful data mining
model is not merely a description of some patterns discovered in the data. In other words, it
does not only and not mainly represent knowledge about the data, but also – and much more
importantly – knowledge about the domain from which the data originates.

The domain can be considered a set of entities from the real world about which knowledge
is supposed to be delivered by data mining. These can be people (such as customers, employ-
ees, patients), machines and devices (such as car engines, computers, or ATMs), events (such
as car failures, purchases, or bank transactions), industrial processes (such as manufactur-
ing electronic components, energy production, or natural resources exploitation), business
units (such as stores or corporate departments), to name only a few typical possibilities.
Such real-world entities – in this book referred to as instances – are, usually incompletely and
imperfectly, described by a set of features – in this book referred to as attributes. A dataset is
a subset of the domain, described by the set of available attributes, usually – assuming a tabu-
lar data representation – with rows corresponding to instances and columns corresponding to
attributes. Data mining can then be viewed as an analytic process that uses one or more avail-
able datasets from the same domain to create one or more models for the domain, i.e., models
that can be used to answer queries not just about instances from the data used for model cre-
ation, but also about any other instances from the same domain. More directly and technically,
speaking, if some attributes are generally available (observable) and some attributes are only
available on a limited dataset (hidden), then models can often be viewed as delivering predic-
tions of hidden attributes wherever their true values are unavailable. The unavailable attribute
values to be predicted usually represent properties or quantities that are hard and costly to
determine, or (more typically) that become known later than are needed. The latter justifies
the term “prediction” used when referring to a model’s output. The attribute to be predicted is
referred to as the target attribute, and the observable attributes that can be used for prediction
are referred to as the input attributes.

Tasks

The most common types of predictive models – or queries they can be used to
answer – correspond to the following three major data mining tasks.

Classification. Predicting a discrete target attribute (representing the assignment of
instances to a fixed set of possible classes). This could be distinguishing between good
and poor customers or products, legitimate and fraudulent credit card transactions or
other events, assigning failure types and recommended repair actions to faulty technical
devices, etc.

Regression. Predicting a numeric target attribute which represents some quantity of interest.
This could be an outcome or a parameter of an industrial process, an amount of money
earned or spent, a cost or gain due to a business decision, etc.

Clustering. Predicting the assignment of instances to a set of similarity-based clusters.
Clusters are not predetermined, but discovered as part of the modeling process,
to achieve possibly high intracluster similarity and possibly low intercluster
similarity.
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Most real-world data mining projects include one or more instantiations of these three
generic tasks. Similarly, most of data mining research contributes, modifies, or evaluates algo-
rithms for these three tasks. These are also the tasks on which this book is focused.

Origin

Data mining techniques have their roots in two fields: machine learning and statistics. With
the former traditionally addressing the issue of acquiring knowledge or skill from supplied
training information and the latter the issue of describing the data as well as identifying and
approximating relationships occurring therein, they both have contributed modeling algo-
rithms. They have also become increasingly closely related, which makes it difficult and
actually unnecessary to put hard separating boundaries between them. With that being said,
their common terminological and notational conventions remain partially different, and so
do background profiles of researchers and practitioners in these fields. Wherever this differ-
ence matters, this book is much closer to machine learning than statistics, to the extent that
the description of “strictly statistical” techniques – appearing rather sparingly – may be found
oversimplified by statisticians. In particular, the formulations of major data mining tasks in
Chapter 1 assume the inductive learning perspective.

The brief discussion of the modeling view of data mining presented in the previous section
makes it possible to encounter this book’s bias toward machine learning for the first time.
The terms “domain,” “instance,” “attribute,” and “dataset,” in particular, have their counter-
parts that are more common in statistics, such as “population,” “observation,” “variable,” and
“sample.”

Motivation

The book is intended to be a practical, technically oriented guide to data mining algorithms,
focused on clearly explaining their internal operation and properties as well as major principles
of their application. According to the general perspective of data mining adopted by the book,
it encompasses all analytic processes performed to produce predictive models from available
data and verify whether and to what extent they meet the application’s requirements. The book
will cover the most important algorithms for building classification, regression, and clustering
models, as well as techniques used for attribute selection and transformation, model quality
evaluation, and creating model ensembles.

The book will hopefully appeal to the reader, either already familiar with data mining to
some extent or just approaching the field, by its practical and technical, utility-driven per-
spective, making it possible to quickly start gaining his or her own hands-on experience. The
reader will be given an opportunity to become familiar with a number of data mining algo-
rithms, presented in a systematic, coherent, and relatively easy to follow way. By studying their
description and examples the reader will learn how they work, what properties they exhibit,
and how they can be used.

The book is not intended to be a “data mining bible” providing a complete coverage of
the area, but rather to selectively focus on a number of algorithms that:

• are known to work well for the most common data mining tasks,

• are good representatives of typical data mining techniques,
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• can be well explained to the general technically educated audience without an excessive
required mathematical and computing background,

• can be used to illustrate good practices as well as caveats of data mining.

It is not supposed to be a business-oriented manager’s guide to data mining or a bird’s
eye-perspective overview of the field, either. Topics covered by the book are discussed in a
technical way, with a level of detail believed to be adequate for most practical needs, albeit
not overwhelming. This includes the presentation of the internal mechanisms, properties,
and usage scenarios of algorithms that are not extremely complex mathematically or imple-
mentationally and offer the potential of excellent results in many applications, but may need
expertise and experience to be used fruitfully. The ambition of the book is to help the reader
develop that expertise and experience.

The book’s technical and practical orientation, with very limited theoretical background,
but a relatively high level of detail on algorithm internal operation and application principles,
makes it appropriate for a mixed audience consisting of

• students of computer science and related fields,

• researchers working on experimental or applied research projects in any area where data
analysis capabilities are used,

• analysts and engineers working with data and creating or using predictive models.

The book should be particularly appealing to computer scientists and programmers due to
its extensive use of R code examples, as explained below.

While the little-background assumption makes the book suitable as an introductory text,
the level of detail and precision puts it actually on an advanced or semi-advanced level, since
on many occasions – whenever it is justified by practical utility – it discusses issues that tend
too be overlooked or taken lightly in typical introductions to data mining.

Organization

The book is divided into the following parts:

Part I. Preliminaries.

Part II. Classification.

Part III. Regression.

Part IV. Clustering.

Part V. Getting better models.

Part I contains two chapters, as summarized below.

Chapter 1: Tasks. This chapter introduces the major data mining tasks algorithms for which
are presented in the book: classification, regression, and clustering.

Chapter 2: Basic statistics. This chapter is be devoted to simple techniques for performing
data exploration tasks, usually referred to as basic statistics, that are often applied before
any modeling algorithms or used internally by some modeling algorithms.
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Part II contains five chapters listed below.

Chapter 3: Decision trees. This chapter presents algorithms for creating decision tree clas-
sification models, shortly referred to as decision tree algorithms.

Chapter 4: Naïve Bayes classifier. This chapter presents arguably the simplest useful clas-
sification algorithm, the naïve Bayes classifier.

Chapter 5: Linear classification. This chapter is devoted to classification algorithms that
adopt a linear model representation. Since they are largely based on linear regression
algorithms, forward references to Chapter 8 are unavoidable.

Chapter 6: Misclassification costs. This chapter systematically discusses the issue of
nonuniform misclassification costs in the classification task and techniques that can be
used to create cost-sensitive classification models.

Chapter 7: Classification model evaluation. This chapter is devoted to techniques used to
evaluate classification models: performance measures serving as model quality indica-
tors on a particular dataset, and evaluation procedures used to reliably estimate their
expected values on new data. Since the presented evaluation procedures are applica-
ble to regression and clustering models as well, the extensive discussion presented in
this chapter makes it possible to keep the chapters on regression and clustering model
evaluation considerably shorter.

The contents of Part III is summarized below.

Chapter 8: Linear regression. This chapter presents regression algorithms that employ a
linear model representation and parameter estimation techniques used to find model
parameters.

Chapter 9: Regression trees. This chapter presents regression tree algorithms, which are
decision trees adapted for the regression task. This makes it possible to refer to Chapter 3
extensively and focus mostly on regression-specific issues.

Chapter 10: Regression model evaluation. This chapter is devoted to techniques used to
assess the quality of regression models. It will focus mostly on regression model per-
formance measures, since evaluation procedures applicable to regression models are the
same as those for classification models presented in Chapter 7.

Part IV contains four chapters listed below.

Chapter 11: Dissimilarity measures. This chapter presents several dissimilarity and simi-
larity measures used for clustering.

Chapter 12: k-Centers clustering. This chapter is devoted to the popular k-centers family
of clustering algorithms.

Chapter 13: Hierarchical clustering. This chapter presents algorithms for creating hierar-
chical clustering models.

Chapter 14: Clustering model evaluation. This chapter discusses several quality measures
used for clustering model evaluation.

Part V is more heterogenic than the preceding parts, as it covers a set of diverse techniques
that can be used to improve the quality of classification, regression, or clustering models. The
corresponding list of chapters is presented below.
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Chapter 15: Model ensembles. This chapter reviews ensemble modeling algorithms that
combine multiple models for the same task classification or regression task for better
predictive power.

Chapter 16: Kernel methods. This chapter discusses the possibility of improving the capa-
bilities of liner classification and regression models by employing kernel functions to
perform implicit nonlinear data transformation into a higher-dimensional space. This is
also an opportunity to discuss the support vector machines and support vector regression
algorithms, with which kernel functions are most often combined.

Chapter 17: Attribute transformation. This chapter presents selected techniques used for
transforming data prior to applying modeling algorithms, to make them easier to apply
and more likely to deliver good models.

Chapter 18: Discretization. This chapter addresses one specific type of data transforma-
tion, the discretization of continuous attributes, that is particularly often applied and for
which several different algorithms have been developed.

Chapter 19: Attribute selection. This chapter is devoted to attribute selection algorithms,
used to select a subset of available attributes with the highest predictive utility.

The last chapter in the book, Chapter 20, is placed outside the division into parts, since it
contains data mining case studies that put the algorithms covered in the previous chapters at
real work. Existing R implementations and publicly available datasets will be used to demon-
strate the process of searching for the possibly best model step by step. This will include data
transformation whenever necessary or useful, attribute selection, modeling algorithm appli-
cation with parameter tuning, and model evaluation.

Notation

Different families of data mining algorithms are often presented in the literature using dif-
ferent notational conventions. Even for different descriptions of the same or closely related
algorithms, it is not uncommon to adopt different notation. This is hardly acceptable in a single
book, though, even if it covers a variety of techniques, sometimes with completely different
origin. To keep the notation consistent throughout the book, it sometimes departs considerably
from notational standards typical for particular algorithms and subareas of data mining. The
adopted unified notation may therefore sometimes appear nonstandard or even awkward to
readers accustomed to other conventions. It should be still much less confusing than changing
notation from chapter to chapter.

This book’s notational conventions are governed by the modeling view of data mining
presented above and similarly biased toward machine learning rather than statistics. They
include, in particular, explicit references to instances as elements of the domain, attributes as
functions assigning values to instances, and datasets as subsets of the domain. For datasets
there are also subscripting conventions used to refer to their subsets satisfying equality
or inequality conditions for a particular attribute. Most of them are introduced early in
the book, in Chapters 1 and 2, giving the reader enough time to get used to them before
passing to modeling algorithms. They are all collected and explained in Appendix A for
easy reference.



Trim size: 170mm x 244mmCichosz fpref.tex V3 - 11/04/2014 10:23 A.M. Page xxvii

PREFACE xxvii

R code examples

One of primary features of this book is the extensive use of examples, which is necessary
to make the desired combination of depth, precision, and readability possible. All of these
examples contain R code snippets, in most cases sufficiently simple to be at least roughly com-
prehensible without prior knowledge of the language. There are two types of these examples.

Algorithm operation illustrations. These are numbered examples included in book sections
devoted to particular algorithms or single major steps of more complex algorithms,
supposed to help explain the details of internal algorithm calculations. Most of them
present R implementations of either complete algorithms (for simple ones) or single
steps thereof (for more complex ones). This supplements the natural language, pseu-
docode, or math formula algorithm description, adding some more clarification, speci-
ficity, and appeal. While serving the illustrative purpose mostly, usually inefficient and
suited to single simple usage scenarios only, some portions of this example code may
actually be useful for practical applications as well. This is at least likely for functions
which have no direct counterparts in existing R packages. The insufficient efficiency and
flexibility of these illustrative implementations will hopefully encourage the readers to
develop more useful modified versions thereof.

Case studies. These bigger examples grouped in the book’s final chapter are more realistic
demonstrations of performing data mining tasks using standard R implementations of
the algorithms described in the book and publicly available datasets. Their purpose is
not to explain how particular algorithms work – which is the responsibility of the other
chapters and their examples – or how particular functions should be called – which is
easy to learn from their R help pages. Instead, their primary focus is on how to solve a
given task using one or more available algorithms. They present the process of searching
for good quality predictive models that may include data transformation, attribute selec-
tion, model building, and model evaluation. They will hopefully encourage the readers
to approach similar tasks by their own.

Of those, the first category occupies much more space and corresponds to about 10 times
more code lines. It can also be considered a distinctive feature of this book. This is because,
while it is a relatively common practice for contemporary books on data mining or statistics
to use R (or another analytic toolbox) to provide algorithm usage demonstrations or case
studies, the idea of R code snippets for algorithm operation illustrations is probably relatively
uncommon.

R is an increasingly popular programming language and environment for data analysis,
sometimes referred to as the “lingua franca” of this domain, with a huge set of contributed
packages available from the CRAN repository,1 providing implementations of various analytic
algorithms and utility functions. The book uses the R language extensively as a pedagogical
tool, but does not teach it nor requires the readers to learn it. This is because the example code
can be run and the results can looked up with barely any knowledge of R. Elementary knowl-
edge of any general-purpose programming language augmented by a small set of R-specific

1 Comprehensive R Archive Network (http://cran.r-project.org/web/packages).

http://cran.r-project.org/web/packages
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features, such as its ubiquitous vectorization and logical indexing, should be sufficient to get
at least some rough understanding of most of the presented example code snippets.

However, investing some effort into learning the basics of R will definitely pay off, making
it possible to fully exploit the illustrative value of this book’s examples. They will hopefully
encourage at least some readers to study readily available tutorials and provide useful starting
points for such self-study. Making the reader familiar with R is not therefore the purpose of
the book, but may become its beneficial side effect.

Needless to say, R code algorithm illustrations and case studies need data. In some
examples tiny and totally unrealistic datasets are used to make it possible to manually verify
the results. In some other examples slightly larger artificial datasets are generated. On several
occasions, however, publicly available real datasets are used, available in CRAN packages
and originating from the UCI Machine Learning Repository.2 These are listed in Appendix C.

It is not uncommon for some R functions defined in examples to be reused by examples in
other chapters. This is due to the natural relationships among data mining algorithms, some
having common operations and some being typically used in combinations. To make it easier
to run the example code with such dependences, all potentially reusable functions defined in
particular chapters are grouped into corresponding R packages. They all share the same dmr
name prefix and are available from the book’s website.

These packages, referred to as DMR packages thereafter, should be thought of as simple
containers for example functions and in many respects they do not meet commonly adopted
R package standards. The documentation is particularly lacking, limited to references to the
books section and example numbers, but this is forgivable given the fact that they are not
distributed as standalone software tools, but as a supplementary material for the book. Some
frequently reused utility functions that have no illustrative value on their own and therefore
are not included in any of this book’s examples, are grouped in the dmr.util package.
In the first example of each chapter all packages used in subsequent examples – both
DMR and CRAN ones – are explicitly loaded. Additionally, whenever a function from

EX. 7.2.1
dmr.claseval

another chapter is mentioned, the corresponding example and package contain-
ing its definition are indicated in a margin note, as demonstrated here for the
err function. Appendix B contains the list of all DMR and CRAN packages
used in this book.

Since the primary role of the code is didactic and illustrative, it is written without any
care for efficiency and error handling, and it may not always demonstrate a good R pro-
gramming style. Testing was mostly limited to the presented example calls. Since the book’s
chapters were created over an extended period of time, there are some noticeable inconsisten-
cies between their R code illustrations. With all those fully justified disclaimers, the R code
snippets are believed to deserve the space they occupy in the book and – while some readers
may choose to skip them while reading – the definitely recommended way to use the book is
to stop at each example not only to run the code and inspect the results, but ideally also to
understand how it matches the preceding text or equations.

2 http://archive.ics.uci.edu/ml

www.allitebooks.com

http://archive.ics.uci.edu/ml
http://www.allitebooks.org
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Website

A companion website is maintained for the book at:

http://www.wiley.com/go/data_mining_algorithms

which contains:

R code snippets.

• code from numbered examples: a single separate file for each example,

• code from case studies: a single separate file for each section of Chapter 20.

DMR packages. A package file for download for each DMR package listed in Appendix B.

Links to CRAN packages. A link to the package home page at the CRAN repository for
each CRAN package, as listed in Appendix B.

Links to datasets. A link to the dataset home page at the UCI repository for each dataset
listed in Appendix C.

Further readings

To prevent this section from outweighing the rest of this short chapter, it will not attempt
to review or evaluate other books on related topics. Putting aside space constraints, it would
be hardly possible for such a review to at least approach completeness – given the rapidly
growing number of published titles – and objectivity – given the fact the book may compete
with some of them. A much more realistic to achieve and also more useful role of this section
is therefore to refer the reader to a subjectively selected and incomplete set of other books that
may best serve the purpose of complementing this book. This will be particularly focused on
areas where it is lacking, either in form or in content, either by deliberate design or due to
imperfect execution.

Several data mining books give a considerably broader picture of data mining than will
be presented in the foregoing chapters (e.g., Han et al. 2011; Hand et al. 2001; Tan et al.
2013). They contain a greater selection of algorithms for the major data mining tasks, some
discussion of more specific tasks or application domains, as a well as a more adequate repre-
sentation of data mining techniques that do not directly originate from machine learning. In
particular, Hand et al. (2001) provide a much better representation of statistical foundations
of data mining and present techniques not necessarily directly related to predictive modeling.
These include, in particular, techniques for data exploration and visualization and associa-
tion discovery algorithms. The latter are also extensively discussed by Tan et al. (2013). They
also give much more attention to the clustering task and present a rich set of clustering algo-
rithms. The book by Han et al. (2011) has a particularly rich table of contents, covering an
impressive range diverse of techniques with both statistical and machine learning roots, as well
as presenting a database perspective on data analysis, although with regression deliberately
omitted. It additionally includes the discussion of several specific data mining tasks and appli-
cation domains. Several popular algorithms for classification and regression are presented in
the classic book by Duda and Hart (1973).

http://www.wiley.com/go/data_mining_algorithms
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The machine learning perspective adopted by this book makes it naturally related to books
on machine learning. Mitchell (1997) gives an excellent, even if now somewhat dated, cover-
age of the essential machine learning algorithms, some of which happen to be also presented
in this book. This is also the case for Cichosz (2007), mostly focusing on the same three
major inductive learning tasks that are presented in this book. These books make it clear,
however, that there are several interesting and useful algorithms that address learning tasks
not related to data mining, such as the reinforcement learning or regular language learning
tasks. Bishop (2007) addresses machine learning from a more statistical viewpoint, particu-
larly focusing on algorithms based on Bayesian inference. A similar statistics-oriented view
of machine learning with a broader selection of algorithms is presented by Hastie et al. (2011).
Rather than reviewing many different machine learning algorithms, Abu-Mostafa et al. (2012)
insightfully discuss some basic issues of inductive learning, including overfitting and model
evaluation. An extensive representation of machine learning algorithms is described by Rus-
sell and Norvig (2011) in a general artificial intelligence perspective, highlighting their links
to other algorithmic tasks related to achieving intelligent behavior.

Books that present several different modeling algorithms may not always be able to allo-
cate sufficient space to the discussion of data preparation and preprocessing techniques. This
is in striking contrast with the practice of data mining projects, where they take a substantial, if
not dominating, part of the overall effort. These are by no means limited to data transformation
and attribute selection, covered in Chapters 17 and 19, respectively, but additionally include
assembling data from different sources and fixing, alleviating, or bypassing data quality issues,
to name only the two most important other activities. These and several others are compre-
hensively reviewed by Pyle (1999). Weiss and Indurkhya (1997) also pay high attention to
data preparation and preprocessing.

It is not uncommon for more practically oriented data mining books to describe specific
software tools apart from algorithms and present their application examples (e.g., James et al.
2013; Janert 2010; Nisbet et al. 2009; North 2012). They differently share space allocated
to discussing general algorithm properties and demonstrating specific implementation usage.
The books by Witten et al. (2011) andWilliams (2011) also belong to the above category, but
they not only recommend or describe, but also contribute software tools: the Weka library of
Java data mining algorithm implementations and the Rattle graphical front-end for selected R
analytic functions. The former provides an extensive set of functionally rich modeling algo-
rithms and related techniques for data transformation and attribute selection and the latter
makes it possible to use the analytic capabilities of R without actually writing any R code.
Witten et al. (2011) do not actually spend much time discussing code and software usage in
their book, presenting instead the operation principles and properties of the implemented algo-
rithms. With respect to data mining task and algorithm selection, it may be the most similar
other book to this one, although the presentation method differs substantially. Torgo (2010)
uses the R language to teach data mining, but in a different way than adopted by this book: by
demonstrating complete, extensive, and realistic case studies for specific application domains.
General data mining methodology and algorithm discussion is presented in the case study con-
text, interleaved with R code examples that demonstrate how existing or newly created R func-
tions can be used to apply the discussed techniques. The book does not leave the reader alone
when learning R, with some introductory description of the language included and illustrated.

There are several other useful books for learning R, mostly combining the presentation of
language constructs with the demonstrations of its application to analytic tasks (e.g., Kabacoff
2011; Teetor 2011). Unlike those, Matloff (2011) is entirely or almost entirely focused on R as
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a programming language, extensively discussing also the advanced and unobvious language
features that deserve much more attention than they usually receive. The official R language
definition (R Development Core Team 2010) is not necessarily a good self-learning material,
but remains invaluable for reference.
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1

Tasks

1.1 Introduction

This chapter discusses the assumptions and requirements of the three major data mining tasks
this book focuses on: classification, regression, and clustering. It adopts a machine learning
perspective, according to which they are all instantiations of inductive learning, which con-
sists in generalizing patterns discovered in the data to create useful knowledge. This perfectly
matches the predictive modeling view of data mining adopted by this book, according to which
the ultimate goal of data mining is delivering models applicable to new data. While the book
also discusses tasks that are not directly related to model creation, their only purpose is to make
the latter easier, more reliable, and more effective. These auxiliary tasks – attribute transfor-
mation, discretization, and attribute selection – are not discussed here. Their definitions are
presented in the corresponding chapters.

Inductive learning is definitely the most commonly studied learning scenario in the
field of machine learning. It assumes that the learner is provided with training information
(usually – but not necessarily – in the form of examples) from which it has to derive
knowledge via inductive inference. The latter is based on discovering patterns in training
information and generalizing them appropriately. The learner is not informed and has no
possibility to verify with certainty which of the possible generalizations are correct and can
only be hoped, but never guaranteed to succeed.

Inductive learning is the source of many data mining algorithms as well as of their
theoretical justifications. This is the area where the domains of machine learning and data
mining intersect. But even data mining algorithms that do not originate from machine
learning can be usually seen as some explicit or implicit forms of inductive learning. The
analyzed data plays the role of training information, and the models derived therefrom
represent the induced knowledge. In particular, the three most widely studied and practically
exercised data mining tasks, classification, regression, and clustering, can be considered
inductive learning tasks. This chapter provides some basic background, terminology, and
notation that is common for all of them.

Data Mining Algorithms: Explained Using R, First Edition. Paweł Cichosz.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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1.1.1 Knowledge

Whenever discussing any form of learning, including inductive learning, the term “knowl-
edge” is frequently used to refer to the expected result of the learning process. It is
unfortunately difficult to provide a satisfactory definition of knowledge, consistent with the
common understanding as well as technically useful, without an extensive discussion of
psychological and philosophical theories of mind and reasoning, which are undoubtedly
beyond the scope of our interest here. It makes sense therefore to adopt a simple indirect
surrogate definition which does not try to explain what knowledge is, but explains what
purpose it can serve. This purpose of knowledge is inference.

1.1.2 Inference

Inference can be considered the process of using some available knowledge to derive some
new knowledge. Given the fact that knowledge is both the input and output of inference,
the above idea of defining knowledge as something used for inference may appear pretty
useless and creating an infinite definition loop. It is not necessarily quite that bad since, in the
context of inductive learning, different types of inference are employed when using training
information to derive knowledge and when using this derived knowledge. These are inductive
inference and deductive inference, and their role in inductive learning is schematically
illustrated below.

training information
inductive inference
−−−−−−−−−−−−−→ knowledge

knowledge + query
deductive inference
−−−−−−−−−−−−−→ answer

1.1.2.1 Inductive inference

It is common to describe inductive inference as a “specific-to-general” reasoning process
that uses a number of individual observations to generate laws that match these known
observations and can be used to predict currently unknown future observations. This simpli-
fied view does not encompass all possible variations of inductive inference, but is perfectly
sufficient for our needs. In the diagram presented above, the role of inductive inference is to
derive (general) knowledge from the available training information (which can be considered
specific knowledge).

Clearly, inductive inference is fallible and there is no guarantee that it would yield true
conclusions when applied to true premises. Appropriately designed inductive inference mech-
anisms can reduce but never eliminate the risk of arriving at wrong conclusions. Actually, in
the case of inductive learning, it makes more sense to speak about different quality levels of the
induced knowledge rather than of its true or false (correct or incorrect) status. The main effort
in inductive learning research is devoted to maximizing the quality of knowledge derived from
not necessarily reliable training information via inductive reasoning.

1.1.2.2 Deductive inference

In contrast, deductive inference is infallible and its conclusions are guaranteed to be satisfied
whenever its premises are. It does not necessarily have to be a “general-to-specific” reasoning
process, although tends to be presented as such when opposed to inductive inference. Actually,
it can be used with both general and specific premises, and general and specific conclusions,
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although performing deductive inference based on knowledge derived via inductive learning
does indeed conform to the popular “general-to-specific” pattern. It is noteworthy, by the way,
that the well-known and useful number-theoretical theorem proving scheme called mathemat-
ical induction, which does follow a hybrid “specific-and-general-to-general” reasoning path,
is in fact a form of deductive inference.

As shown in the above diagram, the induced knowledge is used to deduce an answer to a
specified query. If the training information contained a number of known “historical” cases or
observations, then typically the query presents one or more new cases or observations some
interesting aspects of which remain unknown. The deductive inference process is supposed to
supply these missing interesting aspects as an answer.

The infallibility of deductive inference by no means guarantees receiving correct answers
to all queries. This would be the case only if the knowledge on which the deduction is based
were perfectly correct, which cannot be expected in practice.

1.2 Inductive learning tasks

The three key data mining tasks, classification, regression, and clustering, are all based on
the inductive learning paradigm. The essence of each of them is to inductively derive from
data (representing training information), a model (representing knowledge) that has predictive
utility, i.e., can be deductively applied to new data. Whereas these tasks, also called predictive
modeling tasks, by no means exhaust the scope of inductive learning tasks studied in the field
of machine learning, they represent the most widely applicable and useful variations thereof
from a data mining perspective. They make a number of common assumptions about their
input and output and have some common issues that deserve particular attention.

1.2.1 Domain

The domain, designated by X, is the set of all entities that are considered in a given inductive
learning task. These can be customers, transactions, devices, or whatever is the subject of
our interest.

1.2.2 Instances

Any single element of the domain, x ∈ X, is an instance. Instances constitute both training
information for model creation and queries for model application.

1.2.3 Attributes

Instances, which may be some entities of the real world, are not directly observable. Their
observable representation is provided by attributes. An attribute is a function a ∶ X → A
that assigns an attribute value to each instance from the domain. Unless discussing a spe-
cific example domain, we will assume that there are n attributes defined on the domain X,
a1 ∶ X → A1, a2 ∶ X → A2, … , an ∶ X → An.

Depending on the codomain A, attributes can be divided into different types, which may
be treated differently by data mining algorithms. For most algorithms, it is sufficient to dis-
tinguish the following three major attribute types:

Nominal. Having a finite number of discrete values with no total order relation.
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Ordinal. Having a finite number of discrete values with a total order relation.

Continuous (aka numerical, linear). Having numerical values.

These attribute types are best characterized by the basic relational and arithmetic opera-
tions that can be reasonably performed on their values rather than the “physical” representation
of their values. Nominal attribute values can only be tested for equality. Ordinal attributes can
be tested for both equality and inequality. For continuous attributes, we can perform inequal-
ity tests and all arithmetic operations defined for real numbers. It is not untypical to find
nominal and ordinal attribute values represented by integer numbers assigned according to
some encoding, but this representation does not make them liable for any arithmetics. On the
other hand, continuous attributes can actually take only a small number of discrete numerical
values, but these values can be treated as real numbers and used for whatever calculation or
transformation that can be applied to real numbers.

In many cases, the distinction between attribute types is not quite crisp and the same
attribute could be reasonably considered both nominal and ordinal, or both ordinal and contin-
uous. In such a situation, the data miner has to judge or experimentally verify whether adopting
a meaningful order relation for a nominal attribute could be helpful or harmful, or whether
permitting some arithmetics on numerically represented values of an ordinal attributes might
lead to some improvement.

Since instances can only be observable via their attribute values, it is common to identify
them with the corresponding attribute value vectors. When speaking of an instance x, we will
usually mean the vector of values a1(x), a2(x), … , an(x).

1.2.4 Target attribute

For the classification and regression tasks, a single attribute is distinguished as the target
attribute. It represents the property of instances that the created model should be able to pre-
dict, based on the other attributes. Inductive learning tasks with a designated target attribute
are referred to as supervised learning tasks, whereas those with no target attribute are referred
to as unsupervised learning tasks. The same terms are also used when referring to algorithms
for these two types of tasks. The values of the target attribute are assumed to be generally
unavailable except for a subset of the domain used for model creation and evaluation.

1.2.5 Input attributes

Some or all of nontarget attributes are considered input attributes, the values of which are
assumed to be generally available for the whole domain, so that the model can use them for
generating its predictions. This general availability does not exclude the possibility of missing
values, which is one of the common practical data quality issues.

1.2.6 Training set

Training information is represented by a training set, which is a subset of the domain. For any
inductive learning task, a set of instances from the domain has to be available. Then the training
set T ⊆ D is the set of instances actually used for model creation, where D ⊂ X denotes the
set of all available instances. If there is a distinguished target attribute for a given inductive

www.allitebooks.com

http://www.allitebooks.org


Trim size: 170mm x 244mmCichosz c01.tex V2 - 11/04/2014 10:17 A.M. Page 7

INDUCTIVE LEARNING TASKS 7

learning tasks, its values are assumed to be known on D, and the available instances are called
labeled. Selecting a subset of the whole available set of instances D for model creation can be
motivated by various reasons, such as computational savings and intention to leave out some
data for other purposes, including model evaluation.

There is some ambiguity about the term “training set” that has to be clarified. It is used
here in a broader sense, as the whole subset of the domain is used for inductive learning (model
creation). When discussing particular data mining algorithms, we will also be using this term
in a narrower sense, referring to the subset of instances used for a single algorithm run. Several
runs may be required before the final model is obtained (e.g., for algorithm selection, parame-
ter tuning, attribute selection). These runs cannot use the whole available set of instances, since
some have to be held out for model evaluation. This is necessary to provide basis for making
decisions about the utility of particular algorithms, parameter setups, or attribute subsets, for
which these runs are performed.

Since instances are not observable directly, but through their attribute values, when solving
inductive learning tasks, we deal actually not with sets of instances, but with datasets – which
are sets of attribute value vectors describing particular instances. A dataset can be usually
thought of as a table with rows corresponding to instances, and columns corresponding to
attributes (similarly to a table in a relational database or a spreadsheet). In practice, it is com-
mon to simply identify sets of instances with the corresponding datasets.

1.2.7 Model

Inductive learning tasks consist in finding (or generating), based on the provided training set,
a model h representing knowledge that can be applied to all instances x ∈ X in an automated
way. This is a function that takes an instance as its argument (query) and returns a prediction
as its value (answer). It can be therefore considered a new attribute, inductively derived from
the training data, but defined (i.e., computable) for the whole domain.

What actually has to be predicted depends on the task. It is, in particular, the target attribute
for the classification and regression tasks (the class and the target function value, respec-
tively), for which the new attribute represented by the model is an approximation of an existing
attribute that is only provided for a limited dataset, but remains unknown for the rest of the
domain. For the clustering task, on the other hand, it is an entirely new attribute that represents
the similarity structure discovered from the data, i.e., cluster membership assigning arbitrary
instances from the domain to one of the similarity-based clusters.

1.2.8 Performance

The quality of predictions provided by a model is called the model’s performance. It is not
a big challenge to achieve good training performance, i.e., the quality of predictions gener-
ated on the training set. Of much greater interest is the true performance, i.e., the expected
quality of predictions on the whole domain, including (mostly or entirely) previously unseen
instances. It can be estimated in the process of model evaluation, using appropriate perfor-
mance measures (task-specific) and evaluation procedures (mostly task-independent). Per-
formance measures and evaluation procedures for inductive learning tasks are discussed in
Chapters 7, 10, and 14.
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1.2.9 Generalization

The true performance is also called the generalization performance, since to predict well on
new, previously unseen data, the model has to encompass appropriate generalizations of pat-
terns detected in the training set. Generalization is the essence of inductive learning. The exact
generalization mechanisms are largely task- and algorithm-specific, but the common effect
can be described in a simplistic way as making predictions for new instances based on their
similarity to known training instances. For most algorithms, the simplicity is not determined
based on any explicit similarity measure, though, but rather implied by their internal operating
mechanisms and model representation.

1.2.10 Overfitting

Poor generalization leads to overfitting, which is a nightmare of inductive learning. A model h
is considered overfitted to a training set T if there exists another model h′ for the same task that
performs worse than h on the training set, but performs better on the whole domain (includ-
ing unseen data). The essence of overfitting is therefore a discrepancy between a model’s
good training performance (performance on the training set) and its poor true performance
(expected performance on the whole domain).

1.2.11 Algorithms

Algorithms that solve an inductive learning task, i.e., generate models based on a given
training set, are called inductive learning algorithms or modeling algorithms. Although an
algorithm producing an arbitrarily poor model is formally a learning algorithm, it is natural
to restrict one’s interest to algorithms that attempt to optimize some explicitly specified or
(more typically) implicitly assumed performance measure.

1.2.11.1 Weight-sensitive algorithms

Weight-sensitive modeling algorithms accept a vector of weights 𝑤 containing a numeri-
cal weight 𝑤x ≥ 0 for each training instance x ∈ T . When a weight vector is specified for
a weight-sensitive algorithm, it attempts to optimize the correspondingly weighted version of
the performance measure normally assumed. For integer weights, this is roughly equivalent
to using a modified training set T𝑤 in which each instance x ∈ T is replicated 𝑤x times.

1.2.11.2 Inductive bias

Unlike in deductive inference, where all possible conclusions that can be derived are strictly
determined by the premises, the training information used for inductive learning only narrows
down the space of possible models, but does not strictly determine the model that will be
obtained. There may be many models fitting the same set of training instances, and different
possible generalizations of the patterns discovered therein. The criteria used by an inductive
learning algorithm to select one of them for a given training set, which may be stated explicitly
or implied by its operating mechanisms and model representation, are called the inductive
bias. The inductive bias is not a deficiency of inductive learning algorithms, it is in fact a
necessity: it guides the inductive inference process toward (hopefully) the most promising
generalizations.
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The inductive bias usually takes one or both of the following two forms:

Representation bias. A model representation method is adopted that makes it possible to
represent only a small subset of possible models fitting a given dataset.

Preference bias. A preference measure is adopted that favors some models against the
others based on their properties.

It is particularly common to see the preference for model simplicity as the inductive bias,
which is believed to reduce the risk of overfitting according to Ockham’s razor principle.

1.2.12 Inductive learning as search

It is a very useful and insightful perspective to view the inductive learning process as search
through the space of possible models, directed by the training information and the inductive
bias. The goal of this search is to find a model that fits the training set and can be expected
to generalize well. It might appear that the model space should be as rich as possible, as it
increases the chance that it actually contains a sufficiently good model. Unfortunately, a rich
model space is likely to contain a number of poor models that fit the training set by a mere
chance and would not perform well on the whole domain, and the inductive bias used might
not be able to avoid choosing one of them. Such situation is referred to as oversearching and
is one of the most important factors that increases the risk of overfitting.

The search perspective is by most means a conceptual framework that provides useful
insights making it easier to understand the inductive learning process and some possible
related caveats, but some learning algorithms actually do perform search not only from a con-
ceptual, but also from a technical viewpoint, by applying some general purpose or tailored
search techniques to identify the best model.

1.3 Classification

Classification is one of the fundamental cognitive processes used to organize and apply our
knowledge about the world. It is common both in everyday life and in business, where we
might want to classify customers, employees, transactions, stores, factories, devices, docu-
ments, or any other types of instances into a set of predefined meaningful classes or categories.
It is therefore not surprising that building classification models by analyzing available data is
one of the central data mining tasks that attracted more research interest and found more
applications than any other task studied in the field.

The classification task consists in assigning instances from a given domain, described by a
set of discrete- or continuous-valued attributes, into a set of classes, which can be considered
values of a selected discrete target attribute, also called the target concept. Correct class labels
are generally unknown, but are provided for a subset of the domain. It can be used to create the
classification model, which is a machine-friendly representation of the knowledge needed to
classify any possible instance from the same domain, described by the same set of attributes.
This follows the general assumptions of inductive learning, of which the classification task is
the most common instantiation.

The assumed general unavailability of class labels, but their availability for a given sub-
set of the domain, may seem at first inconsistent, but it is essential for the idea of inductive
inference on which all data mining methods are based. It also perfectly corresponds to the
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requirements of most practical applications of classification, where the class represents some
property of classified instances that is either hard and costly to determine, or (more typically)
that becomes known later than is needed. This is why applying a classification model to assign
class labels to instances is commonly referred to as prediction.

To see more precisely how the classification task instantiates the general inductive learning
task, we only need to discuss those aspects of the latter where some classification-specific
complements or comments can be added.

1.3.1 Concept

The term “concept” comes from the traditional machine learning terminology and is used to
refer to a classification function c ∶ X → C, representing the true assignment of all instances
from the domain to a finite set of classes (or categories) C. It can be considered simply a
selected target nominal attribute. Concept values will be referred to as class labels or classes.

A particularly simple, but interesting kind of concepts is that with just a two-element set
of classes, which can be assumed to be C = {0, 1} for convenience. Such concepts are some-
times called single concepts, opposed to multiconcepts with |C| > 2. Single concepts best
correspond to the original notion of concepts, borrowed by machine learning from cogni-
tive psychology. An instance x is said to “belong to” or “be an example of” concept c when
c(x) = 1. When c(x) = 0, the instance is said “not to belong to” or “to be a negative example
of” concept c. Classification tasks with single concepts will be referred to as two-class clas-
sification tasks.

1.3.2 Training set

The target concept is assumed to be unknown in general, except for some set of instances
D ⊂ X (otherwise no data mining would be possible). Some or all of these available labeled
instances constitute the training set T ⊆ D.

Example 1.3.1 As a simple example of a training set for the classification task, con-
sider the classic weather data with 14 instances, four input attributes, and one target

dmr.dataattribute. The following R code reads this dataset to an R dataframe
and summarizes the distribution of attributes (outlook, temperature,
humidity, windy) and the target concept (play).

weather <- read.table(text="
outlook temperature humidity wind play

1 sunny hot high normal no
2 sunny hot high high no
3 overcast hot high normal yes
4 rainy mild high normal yes
5 rainy cold normal normal yes
6 rainy cold normal high no
7 overcast cold normal high yes
8 sunny mild high normal no
9 sunny cold normal normal yes

10 rainy mild normal normal yes
11 sunny mild normal high yes
12 overcast mild high high yes
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13 overcast hot normal normal yes
14 rainy mild high high no")

summary(weather)

The first four attributes describe weather conditions and the last attribute is the target con-
cept that classifies them as appropriate or inappropriate for playing sports. The extremely
small size of this dataset makes it totally unrealistic and unsuitable for any experiments eval-
uating the performance of classification algorithms, but absolutely perfect for illustrating
the calculations needed for their operation. All such calculations, specified by mathematical
equations and implemented by illustrative R code, can be easily verified “manually.” This is
why the weather dataset is frequently used in examples presented in chapters on classification
in this book.

Example 1.3.2 A modified version of the dataset from the previous example, in which the
temperature and humidity attributes are continuous, will also be used occasionally.

dmr.data
This will be referred to as the weatherc data. The following R code reads this
dataset to an R dataframe and summarizes the attribute distributions.

weatherc <- read.table(text="
outlook temperature humidity wind play

1 sunny 27 80 normal no
2 sunny 28 65 high no
3 overcast 29 90 normal yes
4 rainy 21 75 normal yes
5 rainy 17 40 normal yes
6 rainy 15 25 high no
7 overcast 19 50 high yes
8 sunny 22 95 normal no
9 sunny 18 45 normal yes

10 rainy 23 30 normal yes
11 sunny 24 55 high yes
12 overcast 25 70 high yes
13 overcast 30 35 normal yes
14 rainy 26 85 high no")

summary(weatherc)

1.3.3 Model

A classification model h ∶ X → C produces class predictions for all instances x ∈ X and is
supposed to be a good approximation of the target concept c on the whole domain. Classifi-
cation models are briefly called classifiers, although the latter term sometimes also refers to
classification algorithms, used to create classification models.

1.3.3.1 Scoring classifiers

For two-class classification tasks (single concepts), a particular kind of scoring classification
models deserves special interest. These are the classification models that predict class labels
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in a two-step process: they first map instances into real numbers called scores and then they
assign one class label (1, by convention) to instances with sufficiently high scores and the
other class label (0) to the remaining instances.

More precisely, a scoring model is represented by a scoring function 𝜋 ∶ X →  and a
labeling function 𝜆 ∶  → {0, 1}. The former assigns real-valued scores to all instances from
the domain, and the latter converts these scores to class labels using a cutoff rule, such as

𝜆(r) =

{
1 if r ≥ 𝜃

0 otherwise
(1.1)

where 𝜃 is a cutoff value. The model is then the composition of its scoring and labeling func-
tions, h(x) = 𝜆(𝜋(x)).

It is a common convention to consider scoring classification models sharing the same
scoring function and differing only in the labeling function (i.e., using different cutoff values)
as the same single model, working in different operating points. Classification algorithms
capable of generating scoring classification models typically create a scoring function and a
cutoff value for one default operating point, but a number of other operating points can be
obtained by using different cutoff values.

Classification models that generate class labels directly, without scoring and labeling func-
tions, are sometimes called discrete classifiers.

1.3.3.2 Probabilistic classifiers

A related interesting and useful special kind of classification models are probabilistic classi-
fiers, which estimate class probabilities for instances being classified, and then make predic-
tions based on these probabilities. A probabilistic classifier assigns to each instance x ∈ X and
class d ∈ C a probability estimate P(d|x) of instance x belonging to class d of the target con-
cept c. The estimated class probabilities can be used to generate class labels using the obvious
maximum-probability rule:

h(x) = arg max
d∈C

P(d|x) (1.2)

or – under nonuniform misclassification costs – the less obvious minimum-cost rule, as dis-
cussed in Section 6.3.3.

For two-class tasks, probabilistic classifiers constitute a particularly common subclass of
scoring classifiers, with the estimated probabilities of class 1 for particular instances consid-
ered scores, i.e., 𝜋(x) = P(1|x).
1.3.4 Performance

The exact meaning of “good approximation” of the target concept that is expected from
a classification model is established by classification model performance measures, but –
informally – we want the model to usually provide correct class labels, as far as possible.
Even a model that is wrong in most cases remains a (poor) model, but –needless to say – poor
models are not of particular interest in the classification task. The most commonly adopted
performance measure is the misclassification error which is the fraction of instances from a
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dataset or the whole domain misclassified by the model. This and other performance measures
for classification models are discussed in Section 7.2.

1.3.5 Generalization

As any inductive model, a classification model should be judged “good” or “poor” not just
based on its performance on the training set, but on its (expected) performance on the whole
domain. In other words, we care not only and not mainly for the classification accuracy on the
training set, but also on new previously unseen instances to which the model could be applied.
This requires classification algorithms to not only discover relationships between class labels
and attribute values in the training set, but also to generalize them so that they can be expected
to hold on new data.

1.3.6 Overfitting

A classification model is overfitted if another model predicts class labels for the whole domain
better despite yielding worse training set predictions. This is typically defined with respect to
the misclassification error, but arbitrary performance measures can be used as well. Many
classification algorithms include mechanisms supposed to reduce the risk of overfitting.

1.3.7 Algorithms

Algorithms that solve the classification task, i.e., generate classification models based
on a supplied training set, are called classification algorithms. Two special types of
classification algorithms deserve particular interest: weight-sensitive algorithms and cost-
sensitive algorithms. They are capable of creating models with particular properties that are
sometimes desirable.

1.3.7.1 Weight-sensitive algorithms

A weight-sensitive classification algorithm – like other weight-sensitive modeling
algorithms – accepts a vector of weights 𝑤 containing a numerical weight 𝑤x ≥ 0 for
each training instance x ∈ T . It is not uncommon, though, to have weights assigned solely
based on classes, with 𝜔d for each d ∈ C being the weight of all training instances of class d,
i.e., 𝑤x = 𝜔c(x). When a weight vector is specified for a weight-sensitive algorithm, it attempts
to optimize the correspondingly weighted version of the performance measure normally
assumed, where each instance’s weight is applied to its contribution to the performance
measure. Typically, this is the weighted misclassification error instead of the usual one. For
integer weights, this is roughly equivalent to using a modified training set T𝑤 in which each
instance x ∈ T is replicated 𝑤x times.

1.3.7.2 Cost-sensitive algorithms

Cost-sensitive classification algorithms take into account that the severity of misclassifying
instances may vary across different true and predicted class combinations, with some being
more acceptable than others. Such algorithms accept a misclassification cost specification on



Trim size: 170mm x 244mmCichosz c01.tex V2 - 11/04/2014 10:17 A.M. Page 14

14 TASKS

input and adopt the mean misclassification cost as the performance measure to minimize dur-
ing model creation. Several approaches to achieving cost sensitivity are discussed in Chapter 6.

1.4 Regression

Similar to classification, regression is an inductive learning task that has been extensively
studied and can be widely encountered in practical applications. It can be informally charac-
terized as “classification with continuous classes,” which means that regression models predict
numerical values rather than discrete class labels. This relationship to the classification task
makes it possible to describe the regression task by referring to the latter where appropriate
and highlighting the differences where necessary.

The term “regression” tends to be sometimes used in a narrow technical meaning referring
to statistical algorithms for fitting parametric regression models. We adopt here a broader
view in which regression is presented in a completely algorithm-independent way as one
of the major data mining tasks, and any algorithm that solves this task will be considered
a regression algorithm. This makes regression equivalent to numerical prediction, practical
instantiations of which are nearly as common as those of classification. In particular, we
might want to predict prices, demand, production or sales volumes, resource consumption,
physical parameters, etc.

The regression task consists in assigning numerical values to instances from a given
domain, described by a set of discrete or continuous-valued attributes. This assignment is
supposed to approximate some target function, generally unknown, except for a subset of the
domain. This subset can be used to create the regression model, which is a machine-friendly
representation of the relationships between the target function and the attributes that makes
it possible to predict unknown target function values for any possible instance from the
same domain. The regression task adopts therefore the same general scenario of inductive
learning that has been presented above for the classification task. In practical applications,
the target function represents some interesting property of instances from the domain that is
either difficult and costly to determine, or (more typically) that becomes known later than
is needed. Subsections below add regression-specific highlights to what has been presented
above for inductive learning in general.

1.4.1 Target function

The target function f ∶ X →  represents the true assignment of numerical values to all
instances from the domain. Target function values will briefly be called target values or target
labels.

1.4.2 Training set

The training set T ⊆ D ⊂ X for regression consists of some or all labeled instances for which
target function values are available, despite being unknown in general.

Example 1.4.1 As a simple example of a training set for the regression task, consider a
modified version of the weatherc data, in which the play attribute originally representing
the target concept is replaced by a new continuous playability attribute, which now
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represents the target function. This will be referred to as the weatherr data. The following

dmr.data
R code reads this dataset to an R dataframe and summarizes the attribute
distributions.

weatherr <- read.table(text="
outlook temperature humidity wind playability

1 sunny 27 80 normal 0.48
2 sunny 28 65 high 0.46
3 overcast 29 90 normal 0.68
4 rainy 21 75 normal 0.52
5 rainy 17 40 normal 0.54
6 rainy 15 25 high 0.47
7 overcast 19 50 high 0.74
8 sunny 22 95 normal 0.49
9 sunny 18 45 normal 0.64

10 rainy 23 30 normal 0.55
11 sunny 24 55 high 0.57
12 overcast 25 70 high 0.68
13 overcast 30 35 normal 0.79
14 rainy 26 85 high 0.33")

summary(weatherr)

1.4.3 Model

A regression model h ∶ X →  can be used to generate numerical predictions for all instances
x ∈ X and supposed to provide a good approximation of the target function f on the whole
domain.

1.4.4 Performance

The exact meaning of “good approximation” is established by regression model performance
measures, but – informally – we want the model to usually provide predictions that are not far
away from the true target values. One commonly adopted performance measure is the mean
sum of squared differences between the true and predicted values, referred to as the mean
square error. This and other regression performance measures are discussed in Chapter 10.

1.4.5 Generalization

Generalization is no less crucial for regression than for classification. Regression algorithms
have to not only discover relationships between the target function and attribute values in the
training set, but also to generalize them so that they can be expected to hold on new data.

1.4.6 Overfitting

Poor generalization leads to overfitting, which is the same serious problem for regression as
for the classification and can be defined in the same way. Many regression algorithms include
mechanisms supposed to reduce the risk of overfitting.
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1.4.7 Algorithms

A regression algorithm generates a regression model based on a given training set.

1.5 Clustering

Clustering is an inductive learning task that differs from the classification and regression tasks
from the same family by the lack of a predetermined target attribute to be predicted. It can
be thought of as classification with autonomously discovered rather than predefined classes,
which are based on similarity patterns identified in the data.

The clustering task consists in dividing a set of instances from a given domain, described
by a number of discrete or continuous-valued attributes, into a set of clusters based on their
similarity, and creating a model that can map arbitrary instances from the same domain to
these clusters. This can be considered a superposition of two subtasks:

Cluster formation. The identification of similarity-based groups in the analyzed data.

Cluster modeling. Creating a model for cluster membership prediction.

The latter is clearly a classification task, with clusters identified within the first subtask used
as classes. This could be performed, in principle, using any available classification algorithm.
It is usually more convenient not to separate these two subtasks, though, and most clustering
algorithms handle both cluster formation and cluster modeling. It makes it possible for the
criteria used to identify clusters to be subsequently reused for cluster membership prediction.

1.5.1 Motivation

The utility of the clustering task may not be as self-evident as for the classification and regres-
sion tasks and deserves some more explanation. Some typical reasons to perform clustering
are listed below, along with example applications where they are likely to appear.

• Clustering can provide useful insights about the similarity patterns present in the data,
and a clustering model can be considered as knowledge per se. Some example applica-
tions where this is the case include

— customer segmentation,

— point of sale segmentation,

— document catalog creation.

• Clustering can be performed on a selected subset of observable attributes that are easily
available for all instances, and used to predict hidden attributes that are impossible or
difficult to determine for some instances based on cluster membership. This is similar
to classification or regression with multiple target attributes with sparingly available
values. Such situation occurs in the following example applications:

— customer clustering based on socio-demographic attributes used to predict attributes
describing purchase behavior,

— point-of-sale segmentation based on location, building, and local population fea-
tures, used to predict attributes describing selling performance.
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• Clustering performed on a set of “normal” instances can be used for anomaly detection,
by issuing alerts for new instances that do not fit any existing cluster. This is a possible
approach to various diagnostics applications, such as

— network traffic clustering, used for intrusion detection,

— credit card transaction clustering, used for fraud detection,

— sensor signal clustering, used for device fault detection.

• Clustering can be used as a domain decomposition method for some further data mining
tasks, which may be easier to perform within homogeneous clusters. Example applica-
tions include

— customer clustering based on socio-demographic and purchase history attributes,
and classification with respect to loyalty within clusters,

— customer clustering based on socio-demographic and purchase history attributes,
and predicting reaction to incentives within clusters,

— credit card account clustering based on cardholder socio-demographic attributes
and transaction history attributes, and classification with respect to fraud likelihood
within clusters,

— product clustering based on technical specification and usage attributes, and demand
forecasting within clusters,

— used vehicle clustering and price prediction within clusters.

To more formally define the clustering task, we only need to slightly modify the classifi-
cation task definition wherever these two differ.

1.5.2 Training set

The training set T ⊆ D is a subset of the available dataset D ⊂ X used to create a clustering
model.

Unlike for the classification and regression tasks, training instances are not normally
assumed to be labeled by any target attribute values, since no target attribute is considered
for the clustering task. Particular instantiations of the clustering task may adopt some other
assumptions, though. In particular, one of the typical clustering usage scenarios assumes that
the set of attributes is divided into subsets of observable and hidden attributes. If this is the
case, only the former are assumed to be available for the whole domain, but the dataset D
consists of instances for which the latter are known as well.

Example 1.5.1 As a simple example of a training set for the clustering task, consider a
modified version of the weatherc data, in which the play attribute originally representing

dmr.data
the target function is dropped, as demonstrated by the following R code. This will
be referred to as the weathercl data.

weathercl <- weatherc[,-5]
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1.5.3 Model

The clustering task consists in creating, based on the provided training set, a model h ∶ X →
Ch that is computable for all x ∈ X and maps them into a model-specific set of clusters Ch. This
is formally nearly the same requirement as for classification models, except for an apparently
small but substantial difference consisting in the set of “classes” Ch not being predetermined,
but identified as part of model creation. It is therefore more instructive to think of the clustering
model creation process as of cluster identification (i.e., determining Ch) rather than cluster
modeling (i.e., determining h for given Ch), since once the set of clusters is determined, their
representation usually makes the actual mapping function straightforward to obtain.

Without a predetermined target attribute, the clustering model is not required to approx-
imate any kind of target concept or function. This deprives the model creation process from
any explicit and objective guidance, which is so essential for the classification and regres-
sion tasks, making clustering an unsupervised inductive learning task. The only requirement
adopted for the clustering task is to identify clusters based on similarity patterns observed in
the set of training instances. This can only be stated informally when discussing the general
task formulation and is explicitly or implicitly formalized by specific clustering algorithms.

1.5.4 Crisp vs. soft clustering

As presented above, a clustering model represents the so-called crisp clustering in which all
clusters are disjoint, i.e., every instance is assigned to exactly one cluster. This is the same as
with classes in the classification task. Departures from this view of clustering, however, are
not quite uncommon. Unlike “objectively” existing, predefined classes, which serve the pur-
pose of separating distinct types of entities, clusters formed by a clustering algorithm extract
similarity patterns that may not be strong enough to justify definite distinctions. This is why
sometimes soft or fuzzy clustering models are considered that may assign a single instance to
multiple clusters at some membership level.

1.5.5 Hierarchical clustering

A variation of the clustering task receiving special attention requires that the clustering model
be hierarchical. A hierarchical clustering model can be thought of as a set of ordinary (flat)
clustering models organized in a tree structure. Each internal tree node represents both a flat
clustering model and a cluster of the flat clustering model from its parent node. The root node
represents a special level-0 cluster covering the whole domain. Leaves represent just clusters,
with no further clustering models assigned to them. The model in the root node is applied to
the whole domain and maps it to level-1 clusters. These clusters correspond to descendant
nodes with subsequent models that partition them into subclusters, etc.

1.5.6 Performance

Given the unsupervised nature of the clustering task, clustering model performance can be
hardly evaluated in a truly objective and application-independent way. Still there is a number
of clustering model performance measures that may be helpful in judging the suitability of a
given model for a given application. These are presented in Chapter 14.
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1.5.7 Generalization

As for other inductive learning models, a clustering model is expected, in principle, to gen-
eralize relationships discovered in the training set and make them applicable to the whole
domain. In other words, we care not only and not mainly for fitting all the similarity patterns
in the training set, but also for capturing those that would hold for new previously unseen
instances to which the model could be applied. On the other hand, the importance of this form
of generalization required for the clustering task tends to be underestimated sometimes, with
all or most of the attention paid to achieving the best possible match between the identified
set of clusters and the training set. This is sufficient for applications where similarity patterns
captured by the clustering model are not supposed to be applied for prediction.

1.5.8 Algorithms

Algorithms that generate clustering models based on a given training set are called clustering
algorithms. Since the clustering task in its general formulation does not specify any strict
requirements for the exact way of capturing the similarity patterns in the data by the clustering
algorithm, different algorithms take substantially different approaches. They may be roughly
categorized as follows:

(Dis)similarity-based clustering. Using a predefined or user-specified explicit measure of
instance similarity to drive the cluster formation and modeling processes.

Probabilistic clustering. Using probability distributions and probabilistic inference to drive
the cluster formation and modeling processes.

Conceptual clustering. Using a (usually symbolic) conceptual cluster representation to
drive the cluster formation and modeling processes.

The scope of clustering algorithms presented in this book is limited to (dis)similarity-based
clustering.

1.5.9 Descriptive vs. predictive clustering

The definition of clustering presented in this section and assumed later in this book’s clus-
tering chapters adopts a predictive modeling perspective. It is not uncommon to see practical
applications of clustering that focus on descriptive modeling only, though. The capability of
predicting cluster membership for new instances is neither needed nor used whenever the
purpose of clustering is just to discover and present similarity patterns in the data. Several
practical implementations of clustering algorithms do not provide the prediction functionality,
making it possible to determine cluster membership for training instances only.

1.6 Practical issues

The definitions of inductive learning tasks presented above are somewhat idealized. For prac-
tical tasks some compromises are often necessary. They are mostly related to imperfect data,
which may not provide full or reliable instance descriptions.
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1.6.1 Incomplete data

The above descriptions of attributes as functions mapping instances to attribute values might
suggest that the values of all attributes are available for all instances. This is usually not
the case in practice, where for some instances some attribute values may be missing. Such
an incomplete dataset can either be “repaired” in a preprocessing phase, or handled in some
special way by modeling algorithms.

1.6.2 Noisy data

Similarly, having described attributes (including the target attribute) as functions mapping
instances to attribute values or classes, we might expect the available attribute values to be
always perfectly reliable. It is often not the case in practice, where attribute values (including
instance target labels) can be corrupted by some noise. Sometimes incorrect attribute values
can be corrected or unreliable instances filtered out during a preprocessing phase, but usually
the presence of noise has to be accepted as unavoidable. Moreover, some noise not only cannot
be usually eliminated, but also in many cases it cannot be even detected. To take the simplest
example, do two instances with exactly the same attribute values but different class labels
result from noise or rather from an insufficient set of attributes which cannot fully differenti-
ate instances from different classes? Such questions can be often asked, but rarely answered,
unless we accept a somewhat evasive answer that both hypotheses represent simply two dif-
ferent views on the same phenomenon. The fact is that all useful data mining algorithms have
to assume the risk of data being affected by noise and not blindly trust any apparent patterns.
This limited confidence in data is actual at the heart of good generalization.

1.7 Conclusion

Many data mining algorithms, both those originating from machine learning and those devel-
oped in the field of statistics, are based on the inductive learning paradigm. The three most
common data mining tasks, classification, regression, and clustering, follow this paradigm
particularly directly and can be therefore called inductive learning tasks. This chapter has
provided some background information, assumptions, and terminology that apply to all of
them. The entirety of this book is devoted to algorithms solving these tasks and to closely
related techniques used to improve model quality.

The formulations of the inductive learning tasks presented in this chapter and subsequently
adopted throughout the book are simple and generic. Their more specific or enhanced versions
are sometimes studied in the literature and employed in applications where necessary. These
may adopt special assumptions about the properties of the target concept or the target function
for the classification and regression tasks (such as the number of classes, relationships among
classes, or target function value distribution), fulfill special requirements for cluster formation
and representation methods for clustering (such as soft clusters), or adjust to special domain
and training set properties (such as the number and types of attributes, or the number and
availability of training instances). Leaving such interesting and useful extensions beyond the
scope of this book is a regrettable necessity, dictated by the adopted level of detail, preci-
sion, and R code illustration coverage. Extending the scope of the book would require either
compromising on the former, or making its size unmanageable for a single author.
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This is also one additional reason why other data mining tasks and the corresponding algo-
rithms that definitely deserve attention are not included in the book. This applies, in particular,
to association and temporal pattern discovery, geospatial data analysis, time series analysis, or
survival analysis. While some of these tasks can be viewed as forms of classification or regres-
sion, they are much better handled by dedicated algorithms. In some cases, the latter tend to
be more mathematically refined than those presented in the book and do not fit the “maximum
usefulness at minimum complexity” principle adopted here. Some of these tasks also make
substantially different assumptions about data representation, making the instance-attribute
scheme introduced in this chapter inapplicable or awkward. This is why such tasks and algo-
rithms would require a considerably different form of presentation and including them would
make the book not only overly large or overly superficial, but also inconsistent.

1.8 Further readings

The three major data mining tasks introduced in this chapter are discussed in most data mining
books which cover predictive modeling (e.g., Abu-Mostafa et al., 2012, Cios et al., 2007,
Han et al., 2011, Hand et al., 2001, Tan et al., 2013, Witten et al., 2011). While they may
use partially different terminology and notation, emphasize different aspects of these tasks,
or present different motivation and application examples, they ultimately arrive at the same
basic assumptions and requirements. Kohavi and Provost (1998) collect concise definitions
for some of the most commonly used terms.

While all the three tasks can be presented as instantiations of inductive learning, it is
classification learning that has received most attention in the machine learning literature
(Cichosz, 2007; Mitchell, 1997). This learning task, also referred to as concept learning, is
also one of the major topics of machine learning theoretical work. Most of this work has been
done within the scope of the computational learning theory, which focuses on the learnability
of concept classes and characterizing their hardness, deriving requirements for the number
and quality of training instances, and establishing the properties and performance bounds of
specific learning algorithms (e.g., Kearns and Vazirani, 1994, Valiant, 1984, Vapnik, 1998).

However, a complementary approach that highlights different types of inductive inference
used to derive models from training information, possibly augmented with background knowl-
edge, also received some attention and brought insightful results (Michalski, 1983). Viewing
inductive learning as searching the model space for the most justified generalizations of train-
ing data, as proposed by Mitchell (1982) for classification learning, remains a valid view of
other data mining tasks. This is also the case for the idea of bias as a necessary component of
any inductive learning process (Haussler, 1988; Mitchell, 1980).

The classification and clustering tasks in text domains, where instances are text docu-
ments or messages of any kind, become text mining tasks. While some of general-purpose
classification and clustering algorithms handle text data quite well, after transforming it to
an appropriate representation, there are also several dedicated text mining algorithms as well
as more specific text mining tasks that do not have their general data mining counterparts
(Aggarwal and Zhai, 2012; Weiss, 2010).

The weather data first presented in this chapter and then used several times throughout
the book comes from Quinlan (1986) and is quite popular in the machine learning and data
mining literature (e.g., Witten et al. 2011).
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Basic statistics

2.1 Introduction

This chapter presents a very limited subset of basic statistical techniques used for data mining.
They can be divided into two categories:

Distribution description. Techniques used to describe the observed distribution of a single
attribute in a dataset,

Relationship detection. Techniques used to detect relationships between two attributes in
a dataset.

Techniques of these two categories can be used to explore the data, assess their quality,
and identify the most promising directions for further, more refined analysis, usually involving
model creation. They can also be internally employed by modeling algorithms as auxiliary
operations (most typically, criteria used to make some decisions).

The latter is the primary way by which other chapters, mostly devoted to modeling
algorithms, refer to basic statistics. Making such references possible without redirecting the
reader to external sources is also the primary motivation for this chapter. It makes no attempt
to replace a proper basic statistics tutorial. The scope of presented techniques and – more
importantly – the depth of their discussion are far too limited for this purpose. What it
achieves, however, is presenting a small set of the most commonly used basic statistical
techniques using a perspective, terminology, and notation fully consistent with the remaining
chapters in this book.

Example 2.1.1 For most statistical techniques presented in this chapter, implementations
are available in the standard stats R package. Despite that, simple illustrative imple-
mentations are presented in a series of examples, to make the provided mathematical
formulae easier to understand and verify. For completeness and consistency, this applies
even to the simplest statistics, such as the mean or variance. The illustrative reimplemen-
tations of functions available in R have the bs. prefix prepended to their names to avoid

Data Mining Algorithms: Explained Using R, First Edition. Paweł Cichosz.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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shadowing their standard counterparts. They are usually considerably limited compared
to the latter, but in the most basic case – equivalent to them. This is demonstrated by

dmr.data
example calls, using the weather, weatherc, and weatherr datasets introduced in
Examples 1.3.1, 1.3.2, and 1.4.1. They are loaded by the R code presented below.

data(weather, package="dmr.data")
data(weatherc, package="dmr.data")
data(weatherr, package="dmr.data")

Some basic statistics functions defined in subsequent examples have no direct standard R
counterparts, although the same functionality can be achieved by appropriately calling one or
more other functions. They can be considered simple convenience wrappers around the latter.
Most of them are actually used by example code presented in other chapters.

2.2 Notational conventions

Notational conventions used by this chapter are consistent with those adopted throughout this
book, but not necessarily with those commonly used in basic statistics textbooks and tutorials.
The general inductive learning perspective and the corresponding terminology are assumed.
We speak therefore about domain (rather than population), datasets (rather than samples),
attributes (rather than variables), etc.

This chapter presents definitions of a number of statistics calculated based on a dataset
and concerning a single attribute or an attribute pair. This is written as statS(a) for single
attributes and statS(a1, a2) for attribute pairs. Additional subscripts or superscripts are included
whenever the statistic depends on other parameters.

Dataset-calculated values of some statistics are used as estimators of the corresponding
unknown values on the whole domain. If that is the case, the former are designated by Latin
letters and the latter – by the corresponding Greek letters (and without dataset subscripts). For
example, mS(a) designates the mean of attribute a calculated on dataset S and 𝜇(a) its mean
on the whole domain.

Statistic definitions typically refer to data subsets satisfying certain conditions, based on
attribute values. This book’s standard data subset notation is used for this purpose. When-
ever referring to data-estimated attribute value probabilities, this book’s standard probability
notation is employed. These notational conventions are summarized in Appendix A.

2.3 Basic statistics as modeling

Techniques presented in this chapter can be actually reduced to mathematical formulae that
calculate certain quantities based on a dataset. A statistic (in a narrow sense) is just that: the
value of a formula calculated on a dataset. What such basic statistics produce on output are
essentially single numbers. This is indeed very far from knowledge representations delivered
by modeling algorithms.

Despite that gap in complexity, basic statistics and models have something important
in common. They both are created or calculated based on a limited dataset, but intended to
adequately represent the properties of the whole domain. For a model, this usually means that
it would be capable of delivering good quality predictions for arbitrary, possibly previously



Trim size: 170mm x 244mmCichosz c02.tex V3 - 11/04/2014 10:20 A.M. Page 25

DISTRIBUTION DESCRIPTION 25

unseen, instances from the domain. For basic statistics, this usually means one of the
following:

For distribution description statistics. The calculated statistic value reasonably approx-
imates the unknown value of the same statistic on the whole domain; speaking in
statistical terms, a statistic value calculated on a dataset is used as an estimator of the
corresponding value on the domain,

For relationship detection statistics. The relationship detected on a dataset is likely to hold
on the whole domain.

This makes it possible and justified to treat basic statistics as a particularly simple, degener-
ate form of modeling, which uses a dataset to discover the knowledge expected to be applicable
to the whole domain. It is worthwhile to keep this perspective in mind.

2.4 Distribution description

Statistics used to describe the distribution of attributes, often called descriptive statistics, are
particularly simple. Most of them are also widely and well known. Clearly, continuous and
discrete attribute distributions need different descriptions and will be discussed separately.

2.4.1 Continuous attributes

The two most important properties of continuous attributes are location (indicating the most
typical or representative observed values) and dispersion (indicating how much individual
observed values differ).

2.4.1.1 Location measures

Location measures provide a quick and simple means of identifying where the values of a
continuous attribute lie on the number axis. This can be thought of as characterizing the whole
set of attribute values observed in a dataset with a single value, which is of course extremely
imperfect, but still extremely useful.

Mean The simplest and most commonly used location measure is the mean. The mean of
attribute a on dataset S is calculated as follows:

mS(a) =
1|S| ∑

x∈S

a(x) (2.1)

It is easy to interpret and efficient to calculate, and serves well as a location measure in
many situations, but is susceptible to outliers. Even a single considerably outlying value may
distort the mean to a degree making it totally misleading. This is why care is needed when
using the mean.

The sum of squared differences between attribute values and the mean is less than the sum
of squared differences between attribute values and any other number:

mS(a) = argmin
𝑣∈

∑
x∈S

(a(x) − 𝑣)2 (2.2)
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This can be easily verified by taking the derivative of the above sum with respect to 𝑣 and
equating it to 0.

Example 2.4.1 The following R code implements and demonstrates mean calculation.

bs.mean <- function(v) { sum(v)/length(v) }

# demonstration
bs.mean(weatherc$temperature)
mean(weatherc$temperature)

Weighted mean In some situations, it is desirable to assign nonuniform weights to instances
when calculating statistics. This is necessary when they are used within weight-sensitive mod-
eling algorithms. The mean, as the most often used statistic, is also the one the weighted form
of which is definitely the most often needed. It is defined as follows:

mS,𝑤(a) =
1∑

x∈S 𝑤x

∑
x∈S

𝑤xa(x) (2.3)

where 𝑤x is the weight assigned to instance x.

Example 2.4.2 The following R code implements and demonstrates weighted mean
calculation.

bs.weighted.mean <- function(v, w=rep(1, length(v))) { sum(w*v)/sum(w) }

# demonstration
bs.weighted.mean(weatherc$temperature, ifelse(weatherc$play=="yes", 5, 1))
weighted.mean(weatherc$temperature, ifelse(weatherc$play=="yes", 5, 1))

Median A location measure more computationally demanding to calculate, but robust with
respect to outliers, is the median. For attribute a and dataset S it is a value medS(a) that parti-
tions the dataset into two equally sized subsets. This may not be always exactly possible, so
a more rigorous definition is given by the following two conditions:

|Sa≤medS(a)||S| ≥
1
2

(2.4)

|Sa≥medS(a)||S| ≥
1
2

(2.5)

where here and thereafter the |Scondition| notation is used to designate the subset of S satisfying
the condition. Informally, it is a middle value of a, with about a half of the dataset having
values below and above the median. If dataset size is an odd number, the middle value can be
identified exactly as the kth consecutive value of attribute a after ordering, where k = (|S| +
1)∕2. Otherwise the two middle-most values are averaged. These are the k1th and k2th values
after ordering, for k1 = |S|∕2 and k2 = |S|∕2 + 1.
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The sum of absolute differences between attribute values and the median is less than the
sum of absolute differences between attribute values and any other number:

medS(a) = argmin
𝑣∈

∑
x∈S

|a(x) − 𝑣| (2.6)

This property is somewhat less straightforward to verify than the corresponding total squared
difference minimization property of the mean.

Example 2.4.3 Median calculation is implemented and demonstrated by the following R code.
Notice that k1 and k2 are equal if m (the dataset size) is odd.

bs.median <- function(v)
{
k1 <- (m <- length(v))%/%2+1
k2 <- (m+1)%/%2
((v <- sort(v))[k1]+v[k2])/2

}

# demonstration
bs.median(weatherc$temperature)
bs.median(weatherc$temperature[weatherc$play=="yes"])
median(weatherc$temperature)
median(weatherc$temperature[weatherc$play=="yes"])

Weighted median For weighted data, the subset size conditions appearing in the defini-
tion of the median have to be replaced by the corresponding conditions based on the subset
weight sums: ∑

x∈Sa≤medS,𝑤(a)
𝑤x∑

x∈S 𝑤x
≥

1
2

(2.7)∑
x∈Sa≥medS,𝑤(a)

𝑤x∑
x∈S 𝑤x

≥
1
2

(2.8)

Unlike for the ordinary unweighted median, simple middle index calculationis not suffi-
cient to determine the weighted median and the weight sums need to actually calculated and
examined.

Example 2.4.4 The R code presented below implements and demonstrates weighted median
calculation. Since there is no equivalent standard R function, the results are verified by

dmr.util
applying the median function to appropriately resampled data, simulating the
effect of weighting. The shift.right utility function is used to shift the cumu-
lative weight sum to the right.

weighted.median <- function(v, w=rep(1, length(v)))
{
v <- v[ord <- order(v)]
w <- w[ord]
tw <- (sw <- cumsum(w))[length(sw)]
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mean(v[which(sw>=0.5*tw & tw-shift.right(sw, 0)>=0.5*tw)])
}

# demonstration
weighted.median(weatherc$temperature, ifelse(weatherc$play=="yes", 5, 1))
median(c(weatherc$temperature[weatherc$play=="no"],

rep(weatherc$temperature[weatherc$play=="yes"], 5)))
weighted.median(weatherc$temperature, ifelse(weatherc$play=="yes", 0.2, 1))
median(c(weatherc$temperature[weatherc$play=="yes"],

rep(weatherc$temperature[weatherc$play=="no"], 5)))

2.4.1.2 Rank and order statistics

Rank and order statistics are based on attribute value ordering in a dataset. They are not nec-
essarily very useful per se, but they are used to calculate other distribution description and
relationship detection statistics.

Rank The rank of instance x with respect to attribute a on dataset S, designated by rS,a(x),
is the ordinal number of x after sorting S nondecreasingly by a. There are several ranking
schemes, differing in the way of handling ties, i.e., assigning ranks to instances with equal
attribute values. These include:

Competition ranking (1 2 2 4). Instances with equal attribute values all receive the same
rank and then a gap is left to adjust for the number of those instances.

Dense ranking (1 2 2 3). Instances with equal attribute values all receive the same rank and
then no gap is left.

Ordinal ranking (1 2 3 4). Instances with equal attribute values receive different consecutive
ranks in an arbitrary order.

Fractional ranking (1 2.5 2.5 4). Instances with equal attribute values receive the same
rank, equal to the mean of ranks they would receive under ordinal ranking.

The latter is the most common ranking strategy for basic statistics. Whenever referring
to ranks below, fractional ranking is assumed (unless explicitly otherwise noted – one such
exception is the next subsection devoted to order statistics).

Example 2.4.5 Rank calculation is implemented and demonstrated by the following R code.
The fractional ranking (1 2.5 2.5 4) technique is used, which is the default for the standard
rank function in R. Notice, by the way, that it is the competition ranking (1 2 2 4) that is
calculated and assigned the r.min variable in the first line.

bs.rank <- function(v)
{
r.min <- match(v, sort(v))
r.max <- length(v)+1-match(v, rev(sort(v)))
(r.min+r.max)/2

}
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# demonstration
bs.rank(weatherr$playability)
rank(weatherr$playability)

Order Order statistics can be though of as an inverse of ranks. Informally, the kth order
statistic is the kth least attribute value. More precisely, the kth order statistic of attribute a is
the attribute’s value for the instance that has rank k with respect to a under ordinal ranking:

o(k)S (a) = a(r−1
S,a(k)) (2.9)

where r−1
S,a denotes the inverse rank, satisfying

r−1
S,a(rS,a(x)) = x (2.10)

Example 2.4.6 The R code presented below implements and demonstrates order statistic
calculation. There is no built-in R direct equivalent (the order function serves a different
purpose), but the correctness can be verified using the rank function (with ordinal ranking,
as requested via the ties.method=“first” argument).

ord <- function(v, k=1:length(v))
{
sort(v)[k]

}

# demonstration
ord(weatherr$playability, 11)
weatherr$playability[rank(weatherr$playability, ties.method="first")==11]
ord(weatherr$playability, 10:13)
weatherr$playability[rank(weatherr$playability, ties.method="first") %in% 10:13]

2.4.1.3 Quantiles

If the median splits the set of attribute values into halves, then quantiles can be used to achieve
arbitrary other uniform splitting. Roughly speaking, the order-p quantile of attribute a on
dataset S cuts out the lower p ⋅ 100% values of a occurring in S. It is more strictly defined as a
number such that for at least p|S| instances the values of a are less than or equal to the quantile
and for at least (1 − p)|S| instances the values of a are greater than or equal to the quantile:

|S
a≤q(p)

S
(a)| ≥ p|S| (2.11)

|S
a≥q(p)S (a)| ≥ (1 − p)|S| (2.12)

This definition is not unambiguous and may be satisfied by several values. In the “perfect”
case when p(|S| − 1) is an integer, it is natural to use o(p(|S|−1)+1)

S (a) as the order-p quantile

of a. If p|S| is an integer, then any number from the [o(p|S|)S (a), o(p|S|+1)
S (a)) interval can be

used as q(p)S (a) and a natural convention is to take the average of the interval’s boundaries. In
general, one of several existing quantile estimation techniques has to be used that interpolate
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between two consecutive order statistic values:

q(p)S (a) = (1 − 𝛽)o(k)S (a) + 𝛽o(k+1)
S (a) (2.13)

where k = ⌊p|S| + b⌋ for some−1 < b < 1 and 0 ≤ 𝛽 ≤ 1. Particular quantile estimation tech-
niques differ in b and 𝛽 values used. The quantile function in R provides nine quantile
estimation techniques, specified via the type parameter, and the R type is a common way to
refer to them. Noteworthy approaches include:

R type 3.

b = − 1
2

(2.14)

𝛽 =

{
0 if p|S| + b − k = 0

1 otherwise
(2.15)

R type 7.

b = 1 − p (2.16)

𝛽 = p|S| + b − k (2.17)

R type 8.

b = (p + 1)∕3 (2.18)

𝛽 = p|S| + b − k (2.19)

R type 9.

b =
p

4
+ 3

8
(2.20)

𝛽 = p|S| + b − k (2.21)

Quantiles of orders 1
m
,

2
m
, … ,

m−1
m

are usually used together and referred to as
m-quantiles:

qm,i
S (a) = q(i∕m)

S (a) (2.22)

for i = 1, 2, … ,m − 1. For m = 4 (which is the most popular choice) we receive quartiles:

Q1
S(a) = q4,1

S (a) = q(0.25)
S (a) (2.23)

Q2
S(a) = q4,2

S (a) = q(0.5)S (a) = medS(a) (2.24)

Q3
S(a) = q4,3

S (a) = q(0.75)
S (a) (2.25)

referred to as the first, second, and third quartile, respectively. Quartiles are an extremely
useful and commonly used means of quickly characterizing the distribution of a continuous
attribute in an easily comprehensible way. With a middle half of attribute values falling
between the first and the second quartile, bottom 25% below and top 25% above, quartiles
make it possible to notice the major properties of the distribution. These three numbers (or five
numbers, adding the minimum and maximum) provide a very good concise distribution
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description that is readable at a glance. This matters a lot whenever hundreds of attributes
have to be analyzed.

Example 2.4.7 The R code presented below presents an illustrative simplified reimplemen-
tation of the standard quantile function and demonstrates its usage. The implemented
quantile estimation technique is R type 7, corresponding to the default type=7 argument
of the latter. The function can be easily modified or enhanced for other estimation techniques.

bs.quantile <- function(v, p=c(0, 0.25, 0.5, 0.75, 1))
{
b <- 1-p
k <- floor((ps <- p*length(v))+b)
beta <- ps+b-k
‘names<-‘((1-beta)*(v <- sort(v))[k]+beta*(ifelse(k<length(v), v[k+1], v[k])), p)

}

# demonstration
bs.quantile(weatherc$temperature)
quantile(weatherc$temperature)
bs.quantile(weatherc$temperature[weatherc$play=="yes"])
quantile(weatherc$temperature[weatherc$play=="yes"])

2.4.1.4 Dispersion measures

Dispersion or spread measures assess the level of variability observed in the set of values
of a continuous attribute. Location measures indicate where the values typically lie, whereas
dispersion measures indicate how often and how much they depart from this typical location.

Variance The most commonly used dispersion measure is the variance, defined as the mean
squared difference between attribute values and the mean:

s2
S(a) =

1|S| − 1

∑
x∈S

(a(x) − mS(a))2 (2.26)

Dividing by |S| − 1 rather than by |S| – which matters for small datasets only – is necessary
to make it an unbiased estimator of the variance on the whole domain, 𝜎2(a). The variance
calculated without this correction:

s′2S(a) =
1|S| ∑

x∈S

(a(x) − mS(a))2 = mS(a2) − m2
S(a) (2.27)

underestimates the true domain variance if calculated on a small dataset.

Example 2.4.8 Variance calculation is implemented and demonstrated by the R code pre-
sented below.

bs.var <- function(v) { sum((v-mean(v))̂2)/(length(v)-1) }

# demonstration
bs.var(weatherr$playability)
var(weatherr$playability)
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Example 2.4.9 It is sometimes technically more convenient to receive the variance of 0 rather
than a missing value for one-element datasets. This is accomplished by the wrapper around the
standard var function defined by the following R code. The var1 function returns 0 rather
than NA for one-element value vectors and returns NaN rather than fails for empty vectors.

## variance that returns 0 for 1-element vectors and NaN for empty vectors
var1 <- function(v) { switch(min(length(v), 2)+1, NaN, 0, var(v)) }

# demonstration
var1(1:2)
var1(1)
var1(weatherr$temperature[weatherr$playability<0.75])
var1(weatherr$temperature[weatherr$playability>=0.75])
var1(weatherr$temperature[weatherr$playability>=0.8])

Weighted variance Similarly as for location measures, it may be sometimes necessary to
incorporate instance weights to dispersion measure calculation. This is the case, in particular,
whenever they are used within weight-sensitive modeling algorithms. Not surprisingly, the
most popular weighted dispersion measure is the weighted variance. The following formula

s′2S,𝑤(a) =
1∑

x∈S 𝑤x

∑
x∈S

𝑤x(a(x) − mS(a))2 (2.28)

defines the most straightforward weighted variance estimator, which is unfortunately biased.
The unbiased weighted variance estimator is calculated in a somewhat more complex way as
follows:

s2
S,𝑤(a) =

∑
x∈S 𝑤x(∑

x∈S 𝑤x

)2 −
∑

x∈S 𝑤
2
x

∑
x∈S

𝑤x(a(x) − mS(a))2 (2.29)

Example 2.4.10 The following code defines a function that calculates (the unbiased estimator
of) the weighted variance.

weighted.var <- function(v, w=rep(1, length(v)))
{
sw <- sum(w)
ssw <- sum(ŵ2)
wm <- weighted.mean(v, w)
sw/(sŵ2-ssw)*sum(w*(v-wm)̂2)

}

# demonstration
weighted.var(weatherr$playability)
weighted.var(weatherr$playability, ifelse(weatherr$outlook=="rainy", 2, 1))

Example 2.4.11 For technical convenience, similarly as before for the ordinary variance, the
following R code defines the weighted.var1 function which is a wrapper around the
weighted.var function, returning 0 rather than NA for one-element vectors and returning
NaN rather than failing for empty vectors.
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## weighted variance that returns 0 for 1-element vectors and NaN for empty vectors
weighted.var1 <- function(v, w=rep(1, length(w)))
{ switch(min(length(v), 2)+1, NaN, 0, weighted.var(v, w)) }

# demonstration
weighted.var1(1:2, 1:2)
weighted.var1(1, 2)
weighted.var1(weatherr$temperature[weatherr$playability<0.75],

weatherr$playability[weatherr$playability<0.75])
weighted.var1(weatherr$temperature[weatherr$playability>=0.75],

weatherr$playability[weatherr$playability>=0.75])
weighted.var1(weatherr$temperature[weatherr$playability>=0.8],

weatherr$playability[weatherr$playability>=0.8])

Standard deviation The square root of the variance – bringing back the dispersion to the
attribute’s original scale of values for convenience – is the standard deviation. Assuming the
unbiased estimator, it is calculated as

sS(a) =
√

1|S| − 1

∑
x∈S

(a(x) − mS(a))2 (2.30)

Example 2.4.12 Standard deviation calculation is implemented and demonstrated by the fol-
lowing R code:

bs.sd <- function(v) { sqrt(sum((v-mean(v))̂2)/(length(v)-1)) }

# demonstration
bs.sd(weatherr$playability)
sd(weatherr$playability)

Coefficient of variation A further attempt to measure the dispersion in a directly compre-
hensible way is the coefficient of variation, calculated as the quotient of the standard deviation
and the mean:

𝑣S(a) =
sS(a)
mS(a)

(2.31)

This makes it immediately clear how much attribute values are spread out around the mean
relatively to the mean itself. Notice that the coefficient of variation is a signed dispersion
measure, with the sign inherited from the mean.

Example 2.4.13 The following R code shows how to calculate and use the coefficient of
variation. There is no standard R function for this purpose.

varcoef <- function(v) { sqrt(sum((v-(m <- mean(v)))̂2)/(length(v)-1))/m }

# demonstration
varcoef(weatherr$playability)
varcoef(-weatherr$playability)
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Relative standard deviation An unsigned version of the coefficient of variation is the
relative standard deviation: |𝑣S(a)| = sS(a)|mS(a)| (2.32)

Example 2.4.14 The R code presented below implements relative standard deviation calcula-
tion and demonstrates its usage. There is no standard R function for this purpose.

relsd <- function(v) { abs(varcoef(v)) }

# demonstration
relsd(weatherr$playability)
relsd(-weatherr$playability)

Median absolute deviation With the variance being the mean squared difference between
attribute values and its mean, it is clearly prone to being distorted by outliers. The same applies
to the other related dispersion measures discussed above. This is why they have to be used
with care when making judgments about the distribution of an attribute. Sometimes much
less popular, but more robust dispersion measures may be employed. Of those, the median
absolute deviation – defined as the median of the differences between attribute values and its
median – is the most natural and straightforward choice:

madS(a) = medS(|a − medS(a)|) (2.33)

Interestingly, the median absolute deviation can serve as an estimator of the true domain
standard deviation for a normally distributed continuous attribute, if using a sufficiently large
dataset. For this purpose, it has to be scaled by a factor of

1

Φ−1
(

3
4

) ≈ 1.482602 (2.34)

where Φ−1 is the inverse cumulative distribution function of the standard normal distribution.
It is not uncommon to incorporate this factor when calculating the median absolute devia-
tion by default. This approach to estimating the standard deviation eliminates the impact of
outliers.

Example 2.4.15 The implementation and demonstration of the median absolute deviation is
provided by the following R code:

bs.mad <- function(v, scale=1/qnorm(0.75)) { scale*median(abs(v-median(v))) }

# demonstration
bs.mad(weatherr$playability, scale=1)
mad(weatherr$playability, constant=1)
bs.mad(weatherr$playability)
mad(weatherr$playability)
sd(weatherr$playability)
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Interquartile range The difference between the third and the first quartiles, referred to as
the interquartile range, can also be considered a simple, but very natural and intuitive measure
of dispersion:

iqrS(a) = Q3
S(a) − Q1

S(a) (2.35)

It represents the range of attribute values that covers the middle half of the dataset.

Example 2.4.16 The calculation of the interquartile range is implemented and demonstrated
by the following R code. There is no standard R function available for this purpose.

iqr <- function(v) { unname(diff(quantile(v, c(0.25, 0.75)))) }

# demonstration
iqr(weatherc$temperature)

Quartile dispersion coefficient The quartile dispersion coefficient measures the dispersion
by relating the interquartile range to the sum of the first and third quartiles:

qdS(a) =
Q3

S(a) − Q1
S(a)

Q3
S(a) + Q1

S(a)
(2.36)

Example 2.4.17 The following R code implements and demonstrates the quartile coefficient
of dispersion. There is no standard R function available for this purpose.

qd <- function(v) { unname(diff(q <- quantile(v, c(0.25, 0.75)))/sum(q)) }

# demonstration
qd(weatherc$temperature)

2.4.1.5 Outlier detection

A simple but commonly used quartile-based outlier detection technique filters out the attribute
value that are below the first quartile or above the third quartile by more than a margin pro-
portional to the interquartile range:

a(x) < Q1
S(a) − 𝛽(Q3

S(a) − Q1
S(a)) (2.37)

a(x) > Q3
S(a) + 𝛽(Q3

S(a) − Q1
S(a)) (2.38)

where usually 𝛽 >= 1, with 1.5 being a popular default.

Example 2.4.18 Quartile-based outlier detection is implemented by the R code presented
below. Essentially the same technique is provided in R by the boxplot function. Its primary
purpose is to produce a simple, but very popular and useful visual summary of a continuous
attribute distribution that will be discussed later in Section 2.6.1, but it can be requested
not to actually produce a plot, but only calculate the underlying statistics. However, due
to the latter using a slightly different quartile calculation formula than the default of the
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quantile function, the results may sometimes differ. This is demonstrated by the example
calls. They use a very restrictive value of the interquartile range multiplier to identify at least
one outlying value.

is.outlier <- function(v, b=1.5)
{ v<(q <- quantile(v, c(0.25, 0.75)))[1]-b*(r <- diff(q)) | v>q[2]+b*r }

weatherc$temperature[is.outlier(weatherc$temperature, 0.5)]
boxplot(weatherc$temperature, range=0.5, plot=FALSE)
boxplot(weatherc$temperature, range=0.49, plot=FALSE)

2.4.2 Discrete attributes

The variety of measures describing different properties of continuous attribute distribution
is in striking contrast with discrete attribute distribution description. The latter is basically
limited to identifying the most frequently occurring values and estimating value probabilities.

2.4.2.1 Mode

The mode or modal value is the most frequently occurring attribute value in the dataset:

modS(a) = argmax
𝑣∈A

|Sa=𝑣| (2.39)

While the mode can be identified for both continuous and discrete attributes, it is much more
useful for the latter than for the former and hence listed here. It is commonly used within mod-
eling algorithms whenever a single representative discrete attribute value has to be selected
for a data subset.

Example 2.4.19 The following R code defines the modal function for finding the mode of
a given vector of discrete or continuous values, identified as the (first, in case of ties) most
frequently occurring value in the vector. There is no equivalent standard R function. The name
modal is used to avoid clashing with the mode function, which serves an entirely different

dmr.util
purpose in R. The flevels utility function is used to retrieve factor levels as a
factor rather than as a character vector.

modal <- function(v)
{
m <- which.max(table(v))
if (is.factor(v))
flevels(v)[m]

else
sort(unique(v))[m]

}

# demonstration
modal(weather$outlook)
modal(weatherr$temperature)

www.allitebooks.com

http://www.allitebooks.org
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2.4.2.2 Weighted mode

Since the mode is often needed to make decisions within modeling algorithms, those of them
that are weight sensitive actually have to use the weighted mode:

modS,𝑤(a) = argmax
𝑣∈A

∑
x∈Sa=𝑣

𝑤x (2.40)

This simply replaces subset counts with the corresponding instance weight sums.

Example 2.4.20 The following R code implements and demonstrates weighted mode

dmr.util
calculation. The weighted.table auxiliary function is used for creating the
weighted contingency table.

weighted.modal <- function(v, w=rep(1, length(v)))
{
m <- which.max(weighted.table(v, w=w))
if (is.factor(v))
factor(levels(v)[m], levels=levels(v))

else
sort(unique(v))[m]

}

# demonstration
weighted.modal(weather$outlook)
weighted.modal(weather$outlook, w=ifelse(weather$play=="yes", 2, 1))

2.4.2.3 Probability

The standard approach in estimating discrete attribute value probabilities is to use relative
frequencies. The probability of attribute a taking value 𝑣 estimated on dataset S is then

PS(a = 𝑣) =
|Sa=𝑣||S| (2.41)

Such a frequency estimation (also referred to as the empirical probability) is generally a
perfectly reasonable approach whenever the dataset is sufficiently large. This can be safely
assumed if probabilities are estimated as part of data exploration rather than model creation.

One can similarly estimate conditional attribute value probabilities:

PS(a1 = 𝑣1|a2 = 𝑣2) =
|Sa1=𝑣1,a2=𝑣2

||Sa2=𝑣2
| (2.42)

or joint probabilities for attribute value pairs:

PS(a1 = 𝑣1, a2 = 𝑣2) =
|Sa1=𝑣1,a2=𝑣2

||S| (2.43)

It is rather problematic, though, to similarly proceed with a larger number of attributes, as it
would require very large datasets for the estimates to be reliable.
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Example 2.4.21 The following R code implements and demonstrates single attribute value
probability estimation.

prob <- function(v, v1) { sum(v==v1)/length(v) }

# demonstration
prob(weather$outlook, "rainy")

Example 2.4.22 The following R code implements and demonstrates full discrete probabil-
ity distribution estimation for one or more attributes. This is usually more convenient than
estimating probabilities for a single value or value combination at a time.

pdisc <- function(v, ...) { (count <- table(v, ..., dnn=NULL))/sum(count) }

# demonstration
pdisc(weather$outlook)
pdisc(weather$outlook, weather$temperature)

Example 2.4.23 The R code presented below implements and demonstrates conditional
attribute value probability estimation for a pair of discrete attributes.

## conditional probability distribution P(v1|v2)
pcond <- function(v1, v2)
{
t(apply(count <- table(v1, v2, dnn=NULL), 1, "/", colSums(count)))

}

# demonstration
pcond(weather$outlook, weather$play)

Weighted probability It is sometimes desirable to take into account instance weights when
using data for probability estimation. The probability of attribute a taking value 𝑣 estimated
on dataset S using per-instance weights 𝑤 can be calculated as

PS,𝑤(a = 𝑣) =
∑

x∈Sa=𝑣
𝑤x∑

x∈S 𝑤x
(2.44)

The same approach can be applied when estimating conditional or joint attribute value
probabilities.

Example 2.4.24 The following R code implements and demonstrates single attribute value
weighted probability estimation.

weighted.prob <- function(v, v1, w=rep(1, length(v))) { sum(w[v==v1])/sum(w) }

# demonstration
weighted.prob(weather$outlook, "rainy")
weighted.prob(weather$outlook, "rainy", w=ifelse(weather$play=="yes", 2, 1))
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Example 2.4.25 The following R code implements and demonstrates full discrete weighted

dmr.util
probability distribution estimation for one or more attributes, using the
weighted.table function.

## weighted discrete probability distribution
weighted.pdisc <- function(v, ..., w=rep(1:length(v)))
{
(count <- weighted.table(v, ..., w=w))/sum(count)

}

# demonstration
weighted.pdisc(weather$outlook, w=ifelse(weather$play=="yes", 2, 1))
weighted.pdisc(weather$outlook, weather$temperature,

w=ifelse(weather$play=="yes", 2, 1))

2.4.2.4 Impurity

Impurity for discrete attributes can be thought of as a rough counterpart of dispersion for con-
tinuous attributes. It represents that part to which one or a small number of the most frequent
values dominate over other less frequent values, with low impurity meaning high domination.
The two most widely known and used impurity measures are the entropy adopted from the
information theory, where it is used to measure the expected information contents of a mes-
sage, and the Gini index adopted from economy, where it is used to measure the inequality of
wealth. Both can be used to characterize the impurity of discrete attribute distribution in a set
of instances.

Entropy The entropy of attribute a ∶ X → V on dataset S is defined as follows:

ES(a) =
∑
𝑣∈A

−PS(a = 𝑣) log PS(a = 𝑣) (2.45)

The base 2 logarithm is traditionally most often used, but it is actually irrelevant, as the only
effect of changing the base is scaling the calculated value up or down.

The entropy reaches its maximum value when attribute values are distributed uniformly
(maximum impurity) and minimum values when only one value is represented (maximum
purity). In the latter case, 0 log 0 should be assumed to be 0, which is numerically convenient
and mathematically justified by the fact that p log p is 0 in the limit for p approaching 0.

Example 2.4.26 The R code presented below defines the entropy function for entropy cal-
culation based on a vector of discrete values. The entropy.p function that it internally
uses operates directly on a probability distribution (i.e., a vector of probabilities) and can also

dmr.util
come handy. It uses the plogp utility function for calculating p log (p) for
arbitrary p ≥ 0 that returns 0 for p = 0. Simple usage demonstrations are provided
for the two entropy functions.

## entropy for discrete probability distributions
entropy.p <- function(p) { sum(-plogp(p)) }

entropy <- function(v) { entropy.p(pdisc(v)) }

# demonstration
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entropy.p(c(1/5, 2/5, 3/5))
entropy(weather$outlook)
entropy(weather$play)
entropy(weather$play[weather$outlook=="overcast"])
entropy(weather$play[weather$outlook!="overcast"])

Gini index The Gini index of attribute a ∶ X → V on dataset S is defined as follows:

GIS(a) =
∑
𝑣∈A

PS(a = 𝑣)(1 − PS(a = 𝑣)) = 1 −
∑
𝑣∈A

P2
S(a = 𝑣) (2.46)

Similarly for the entropy, its maximum and minimum values correspond to the maximum and
minimum impurity, respectively.

Example 2.4.27 The following R code defines the gini function that calculates the Gini
index for a vector of discrete values. The internally used gini.p function operates directly
on a probability distribution.

## Gini index for discrete probability distributions
gini.p <- function(p) { 1-sum(p̂2) }

gini <- function(v) { gini.p(pdisc(v)) }

# demonstration
gini.p(c(1/5, 2/5, 3/5))
gini(weather$outlook)
gini(weather$play)
gini(weather$play[weather$outlook=="overcast"])
gini(weather$play[weather$outlook!="overcast"])

Example 2.4.28 To get some more insight into the two impurity measures presented above,
consider the simplest binary attribute case, where taking PS(1) = p and PS(0) = 1 − p, we can
rewrite the entropy as −p log p − (1 − p) log (1 − p) and the Gini index as 1 − p2 − (1 − p)2.
The following R code will plot them as functions of p in the (0, 1) interval.

# plot the entropy
curve(-x*log(x)-(1-x)*log(1-x), from=0, to=1,

xlab="p", ylab="", ylim=c(-0.02, 0.7), lty=1)
# and add the plot of the Gini index

curve(1-x̂2-(1-x)̂2, from=0, to=1, add=TRUE, lty=2)
legend("topright", legend=c("entropy", "gini"), lty=1:2)

The resulting plot is shown in Figure 2.1.

2.4.3 Confidence intervals

As mentioned above, descriptive statistics calculated on a dataset can be considered estimators
of their unknown values on the whole domain. The quality of such estimators can be assessed
using a confidence interval.
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Figure 2.1 The plots of the entropy and the Gini index impurity measures for a binary
attribute.

Let 𝜁 be the unknown value of a descriptive statistic on the whole domain X and zS – its
value calculated on dataset S ⊂ X. Different values zS1

, zS2
, … will be obtained for different

datasets S1, S2, … . They may be all used as estimates of 𝜁 and considered realizations of the
corresponding random variable z. The latter is referred to as estimator of 𝜁 .

A confidence interval for 𝜁 at the confidence level 1 − 𝛿 is any interval to which 𝜁 belongs
with the probability 1 − 𝛿, where 0 < 𝛿 < 1. Confidence intervals may be determined by
appropriate interval estimation techniques using a single estimate zS, based on a single dataset
S, or multiple estimates zS1

, zS2
, … based on several datasets S1, S2, … .

2.4.3.1 Parametric interval estimation

Parametric interval estimation techniques use a single estimate zS to determine a confidence
interval that is centered at zS and has width adjusted according to the specified confidence
level based on some known (or assumed) properties of the distribution of z. More specifically,
the estimator’s probability density function is used to determine a margin Δ(z)

S,𝛿 such that the

probability of z being between zS − Δ(z)
S,𝛿 and zS + Δ(z)

S,𝛿 is 1 − 𝛿.
To see how the confidence interval margin can be derived, consider the following stan-

dardized form of the estimate:
zS − 𝜁

𝜎(z)
(2.47)

assuming the estimator’s standard deviation 𝜎(z) is known (or can be estimated). Assum-
ing additionally that the distribution function of z is known, then the corresponding inverse
cumulative distribution function Ψ−1 can be used to identify u𝛿 = Ψ−1( 𝛿

2
) such that

−u𝛿 <
zS − 𝜁

𝜎(z)
< u𝛿 (2.48)
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with probability 1 − 𝛿. This yields
Δ(z)

S,𝛿 = u𝛿𝜎(z) (2.49)

as the confidence interval’s margin.
One specific example of such estimation that is directly useful in data mining tasks is

applied to the probability parameter of the binomial distribution, representing the probability
of success in a series of independent Bernoulli trials. In our terms, this can be interpreted as
the probability of a binary attribute taking value 1. Using dataset S to estimate this probability
we have

PS(a = 1) =
|Sa=1||S| (2.50)

If the dataset is drawn uniformly at random from the domain (with each instance drawn inde-
pendently), the corresponding true probability on the whole domain belongs to the following
interval: ⎛⎜⎜⎝PS(a = 1) − u𝛿

√
PS(a = 1)(1 − PS(a − 1))|S| , (2.51)

PS(a = 1) + u𝛿

√
PS(a = 1)(1 − PS(a − 1))|S|

⎞⎟⎟⎠ (2.52)

with probability 1 − 𝛿, where

u𝛿 = −Φ−1
(
𝛿

2

)
= Φ−1

(
1 − 𝛿

2

)
(2.53)

and Φ−1 is the inverse cumulative distribution function of the standard normal distribution.
This form of the confidence interval for binary attribute value probability estimation relies on
some approximations that do not hold for very small datasets.

It can be easily verified that Φ(u𝛿) − Φ(−u𝛿) = 1 − 𝛿. This means that the probability of
a random value drawn from the standard normal distribution falling to the (−u𝛿, u𝛿) interval
is equal 1 − 𝛿. For the particularly popular confidence level 1 − 𝛿 = 0.95, we have u𝛿 ≈ 1.96,
which appears to be quite easy to remember (add 1 to the first and last digit of 0.95).

Example 2.4.29 Parametric interval estimation for the probability parameter of the binomial
distribution (i.e., binary attribute value probability estimation) is implemented and illustrated
by the following R code. The weather dataset used for this illustration is actually too small
for the estimated interval to be reliable.

prob.ci.par <- function(v, v1=1, delta=0.05)
{
list(p=(p <- prob(v, v1)),

low=p-(u <- qnorm(1-delta/2))*(sp <- sqrt(p*(1-p)/length(v))),
high=p+u*sp)

}

# demonstration
prob.ci.par(weather$play, "yes")
prob.ci.par(weather$play, "yes", delta=0.01)
prob.ci.par(weather$play, "yes", delta=0.1)



Trim size: 170mm x 244mmCichosz c02.tex V3 - 11/04/2014 10:20 A.M. Page 43

DISTRIBUTION DESCRIPTION 43

2.4.3.2 Bootstrapping interval estimation

Bootstrapping interval estimation does not rely on any knowledge or assumptions about the
distribution of the estimator. Instead, it “simulates” the availability of multiple datasets from
the same domain and uses the observed distribution of the estimated statistic on these “simu-
lated” multiple datasets to derive confidence interval bounds.

“Simulating” multiple datasets is accomplished using bootstrap samples of the origi-
nal single datasets –samples drawn uniformly at random with replacement, typically of the
same size as the original dataset. This yields a number of estimates, zS1

, zS2
, … , zSm

, where
S1, S2, … , Sm are the bootstrap samples of S and m is typically several hundred or more.
We can treat these estimates as values of an attribute z′ defined as z′(x) = zSx

for x ∈ M
= {1, 2, … ,m} and determine the confidence interval based on the distribution of z′ on M.
The most straightforward way to do this is to use the appropriate quantiles as interval bounds,
yielding the following confidence interval:(

q
𝛿

2
M(z′), q

1− 𝛿

2
M (z′)

)
(2.54)

for the confidence level 1 − 𝛿.
Bootstrapping interval estimation is an attractive alternative to parametric interval esti-

mation if the properties of the distribution of the estimated statistic required for the latter are
unknown, hard to determine, or rely on unsatisfied assumptions (such as sufficiently large
data). If this is not the case, though, parametric techniques should be preferred, as yielding
more precise interval bounds. Bootstrapping techniques are approximate by nature. Even a
large number of bootstrap samples drawn from the original dataset do not guarantee adequate
“simulation” of multiple datasets from the same domain, particularly if the dataset is small.

Example 2.4.30 The following R code illustrates the bootstrapping-based approach in esti-
mating binary attribute value probability. The results differ noticeably from those obtained
using the parametric approach demonstrated in the previous example, which is to be expected
for such small data.

prob.ci.boot <- function(v, v1=1, delta=0.05, m=1000)
{
q <- unname(quantile(sapply(1:m, function(i) prob(sample(v, replace=TRUE), v1)),

probs=c(delta/2, 1-delta/2)))
list(p=prob(v, v1), low=q[1], high=q[2])

}

# demonstration
prob.ci.boot(weather$play, "yes")
prob.ci.boot(weather$play, "yes", delta=0.01)
prob.ci.boot(weather$play, "yes", delta=0.1)

2.4.4 m-Estimation

As already mentioned before, statistics describing the attribute distribution are not only used
to examine the data prior to running data mining algorithms, but also within data mining
algorithms. It is not uncommon for the latter to partition the data into small subsets during
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model creation, typically by one or more attribute-value conditions that may be satisfied for
few instances only. Whenever this is the case, distribution description statistics calculated
on such subsets are no longer reliable estimators of the corresponding values on the whole
domain. This issue is particularly severe for probability estimation, but sometimes may also
be important for other commonly used statistics, including the mean and the variance.

The issue of unreliable estimation from small data subsets can be resolved by combining
estimates calculated on such subsets with some prior estimates, which can be based on the
background knowledge, adopted assumptions, or calculated from larger data. The combination
is performed by introducing a number of fictitious instances to the subset, with some prior
value of the estimated parameter.

2.4.4.1 Probability m-estimation

Simple frequency-based probability estimates based on small data subsets may be unreliable.
In particular, estimating near-zero or near-one probabilities requires sufficiently large datasets
and their estimates obtained on small data are likely to be exact 0s or 1s. This is usually
undesirable. It would essentially mean assuming unobserved is equivalent to impossible,
whereas considering unobserved unlikely is a much safer choice for inductive learning. In
many cases, we may actually know for sure that some attribute values, not observed in a
small data subset on which probability estimation is performed, have nonzero occurrence
probabilities. This may be implied by domain knowledge or by having observed these values
in a superset of the dataset.

The technique of probability m-estimation incorporates m fictitious instances with an a pri-
ori assumed probability estimate. The resulting m-estimate, also called the Cestnik estimate,
of the probability of attribute a taking the value 𝑣 is then calculated using dataset S as follows:

PS,m,p0,a=𝑣
(a = 𝑣) =

|Sa=𝑣| + mp0|S| + m
(2.55)

where p0,a=𝑣 denotes the prior probability estimate of attribute a taking value 𝑣. In the
simplest case when all attribute values are considered equally likely a priori, we have

p0,a=𝑣 =
1|A| (2.56)

Example 2.4.31 The following R code defines the mest function that calculates the
m-estimate of probability given instance counts and the mprob function that uses the former
to m-estimate the probability of a single attribute value. It is straightforward to similarly
implement other wrappers around mest for more complex usage scenarios (e.g., conditional
probabilities or joint probability distributions).

## m-estimate of probability of an event occurring n1 out of n times
## incorporating m fictitious instances
mest <- function(n1, n, m=2, p0=1/m) { (n1+m*p0)/(n+m) }

mprob <- function(v, v1, m=nlevels(v), p0=1/nlevels(v))
{ mest(sum(v==v1), length(v), m, p0) }

# demonstration
mest(0, 10, 1, 0.5)
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mest(0, 10, 2, 0.5)
mest(10, 10, 1, 0.5)
mest(10, 10, 2, 0.5)

mprob(weather$outlook, "rainy", m=0)
mprob(weather$outlook, "rainy")
mprob(weather$play[weather$outlook=="overcast"], "no", m=0)
mprob(weather$play[weather$outlook=="overcast"], "no")
mprob(weather$play[weather$outlook=="overcast"], "no", m=3, p0=0.5)

If we assume p0,a=𝑣 =
1|A| and additionally m = |A| for probability m-estimation, we

receive a special case known as the Laplace estimate:

PS,1(a = 𝑣) =
|Sa=𝑣| + 1|S| + |A| (2.57)

also known as add-one or Laplace smoothing. It assumes that there is always one unseen
occurrence of the value the probability of which is being estimated. A parameterized version
of this estimator is sometimes used as

PS,l(a = 𝑣) =
|Sa=𝑣| + l|S| + l|A| (2.58)

where l > 0 controls the intensity of smoothing.

Example 2.4.32 The mprob function from the previous example with default parameter set-
tings actually performs Laplace probability estimation, as demonstrated below.

## Laplace estimate of probability of an event occurring n1 out of n times
## with m possible outcomes
laest <- function(n1, n, m=2) { mest(n1, n, m) }

laprob <- function(v, v1) { mprob(v, v1) }

# demonstration
laest(0, 10, 2)
mest(0, 10, 2)
laest(10, 10, 2)
mest(10, 10, 2)

laprob(weather$outlook, "rainy")
mprob(weather$outlook, "rainy", m=3, p0=1/3)
laprob(weather$play[weather$outlook=="overcast"], "no")
mprob(weather$play[weather$outlook=="overcast"], "no", m=2, p0=0.5)

2.4.4.2 Mean m-estimation

The technique of m-estimation can be similarly applied to estimating the mean. Introducing a
prior mean estimate in this case would prevent one overly trusting a possibly unreliable mean
estimate obtained on a small data subset. As before, this is accomplished by incorporating m
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fictitious instances with an assumed prior mean value m0. The m-estimated mean of attribute
a on data S is then calculated as follows:

mS,m,m0
(a) =

∑
x∈S a(x) + mm0|S| + m

(2.59)

Example 2.4.33 The following R code implements and demonstrates mean m-estimation. The
default prior mean value, equal to the actual mean of the input vector, makes the m-estimated
mean equal to the ordinary mean.

## m-mean that incorporates m fictitious values with a specified mean m0
mmean <- function(v, m=2, m0=mean(v)) { (sum(v)+m*m0)/(length(v)+m) }

# demonstration
mmean(weatherr$playability)
mmean(weatherr$playability, m=0)
mmean(weatherr$playability, m0=0.5)
mmean(weatherr$playability, 5, 0.5)
mmean(weatherr$playability[weatherr$temperature<25], m=0)
mmean(weatherr$playability[weatherr$temperature<25], m0=mean(weatherr$playability))

2.4.4.3 Variance m-estimation

When the variance is used within modeling algorithms to make some model-building deci-
sions based on data subsets, it may be also reasonable to apply m-estimation and combine the
actually observed variance with a prior estimate. This can be accomplished by incorporating
m fictitious instances with an assumed a priori variance value s2

0
. If using a small data subset,

these instances would bias the estimated variance towards the prior value. The m-variance of
attribute a on dataset S can be calculated using the following formula:

s2
S,m,s2

0

(a) =
(|S| − 1)s2

S(a) + (m − 1)s2
0|S| + m − 2

(2.60)

This combines the observed variance of the actual attribute values in S and the assumed vari-
ance of the m fictitious instances in the same way as during pooled variance calculation.

While the above m-variance estimator may be sufficient for simple usage scenarios, it is
actually oversimplified since it assumes that the mean value used for variance calculation is
estimated in the usual way rather than m-estimated. A better variance m-estimate is obtained
by using an m-estimate of the mean

s2
S,m,m0,s

2
0

(a) =
∑

x∈S (a(x) − mS,m,m0
(a))2 + (m − 1)s2

0|S| + m − 2
(2.61)

where m0 and s2
0 are the prior mean and variance estimates, respectively, and mS,m,m0

(a) is the
m-estimated mean.

Example 2.4.34 The following code defines a function that incorporates m fictitious val-
ues with a specified prior mean and variance values. The default priors, equal to the actual
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mean and variance of the input vector, makes the m-estimated variance equal to the ordinary
variance.

## m-variance that incorporates m fictitious values with a specified variance s02
mvar <- function(v, m=2, m0=mean(v), s02=var(v))
{ (sum((v-mmean(v, m, m0)) ̂ 2)+max(m-1, 0)*s02)/max(length(v)+m-2, 1) }

# demonstration
mvar(weatherr$playability)
mvar(weatherr$playability, m=0)
mvar(weatherr$playability, s02=0.05)
mvar(weatherr$playability, m=5, s02=0.05)
mvar(weatherr$playability[weatherr$temperature<25], m=0)
mvar(weatherr$playability[weatherr$temperature<25],

m0=mean(weatherr$playability), s02=var(weatherr$playability))

2.4.4.4 Obtaining priors

There are three major possible sources of priors for m-estimation, already mentioned above:

• background knowledge,

• more or less arbitrary assumptions adopted in the lack of background knowledge (such
as the assumption of all attribute values being equiprobable),

• estimates from a superset of S, S0 ⊃ S.

The last approach yields the following priors for the m-estimated probability, mean, and
variance:

p0 = PS0
(a = 𝑣) (2.62)

m0 = mS0
(a) (2.63)

s2
0 = s2

S0
(a) (2.64)

It makes most sense when, within a modeling algorithm, S = Tcondition is a subset of the training
set satisfying a particular condition, and S0 = T is the full training set.

2.5 Relationship detection

Techniques for detecting relationships between attributes are particularly interesting and use-
ful for data mining. They are used

• during initial data exploration, to get the assessment of the overall data quality and
predictive utility,

• during attribute selection, within attribute selection filters, and

• during model creation, within modeling algorithms.
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Generally speaking, a relationship between two attributes is a property that makes it possible
to better-than-randomly predict one attribute based on the other. This is whenever knowing
the value of one attribute “narrows down” the distribution of the other.

2.5.1 Significance tests

Most statistical relationship detection techniques can be viewed as statistical significance
tests. As usual, statistics calculated on a dataset are used to infer about the properties of the
domain. The purpose of relationship detection techniques is often not just to detect or measure
a relationship between attributes in a particular dataset, but also – and more importantly – to
identify relationships that also hold on the domain. A relationship is said to be significant if
it is likely to hold on the whole domain. Statistical significance tests are used to detect such
significant relationships.

2.5.1.1 Null and alternative hypotheses

A statistical significance test is a decision procedure making it possible to choose between
the following two statistical hypotheses about a possible relationship (or other phenomenon
of interest) based on a dataset:

Null hypothesis. The relationship does not hold on the domain (even if it is observed on
the dataset).

Alternative hypothesis. The relationship holds on the domain (and this is why it is observed
on the dataset).

The null hypothesis is the “dull” one – it states that there is nothing to be discovered, and
if the data suggest otherwise, it is entirely due to chance. A different dataset from the same
domain would not probably confirm any such observations. The alternative hypothesis is the
“interesting” one – it states the observations made using the dataset are not due to chance
and are likely to hold on the domain. The specific formulations of the null and alternative
hypotheses depend on the particular type of relationship being examined.

2.5.1.2 Statistic

One of the two statistical hypotheses is accepted and the other is rejected based on the value of
a test statistic. It is calculated on the dataset using an appropriate formula or algorithm. More
precisely, the statistic is a random variable taking different values for different datasets from
the same domain, and a particular value calculated for one particular dataset is a realization
of that random variable.

Clearly, if the test statistic is supposed to make it possible to judge whether the rela-
tionship being examined does or does not hold on the domain, it has to incorporate some
measure of its observed strength on the dataset. The particular way of achieving this is spe-
cific to particular tests. Another requirement for the test statistic is that it must have a known
probability distribution under the null hypothesis. Some properties of the distribution of the
attributes under consideration may have to be known or assumed to satisfy this requirement.
Once determined, the distribution makes it possible to assess how a particular value calculated
on the analyzed dataset is likely or unlikely assuming the null hypothesis. A significance test
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is actually comprised of a test statistic and a statistical inference procedure used to reject or
accept the null hypothesis.

2.5.1.3 p-Value

The known test statistic distribution under the null hypothesis is used to calculate the probabil-
ity of achieving a value equal to or more extreme than that calculated on the dataset if the null
hypothesis were true. This probability, referred to as p-value, compared against a threshold
called the significance level, yields the tests’s decision criterion. If the p-value is below the sig-
nificance level (i.e., the probability of the statistic value obtained for the dataset is sufficiently
low under the null hypothesis assumption), the null hypothesis is rejected. Otherwise the alter-
native hypothesis is rejected. Popular significance level values are 0.001, 0.01, and 0.05.

2.5.1.4 False positives and false negatives

Using the p-value to reject one of the two hypotheses may result in the following two types
of errors:

False positive (aka type I error). The incorrect rejection of the null hypothesis that is actu-
ally true (an unexisting relationship is detected that does not hold on the domain).

False negative (aka type II error). The incorrect rejection of the alternative hypothesis that
is actually true (there is a relationship on the domain that remains undetected).

With a large significance level the risk of false positives is increased and a small significant
level increases the risk of false negatives.

The probabilities of these two types of errors, also referred to as the false positive rate and
the false negative rate, are the most important quality criteria for statistical tests (related, by
the way, to the analogous quality criteria for classification models discussed in Section 7.2.4).

2.5.1.5 Relationship significance vs. relationship strength

The significance of a discovered relationship between attributes, represented by the p-value
of the applied statistical test, should not be confused with the relationship’s strength. While
the latter is usually captured by the test statistic, it is not the only factor that contributes to
the significance. As it will become clear after some popular tests are presented, a low p-value,
indicating statistical significance, may also be obtained for weak relationships on sufficiently
large datasets. While such relationships are likely to hold on the whole domain, they are not
necessarily interesting, as their predictive utility is low. A reasonable approach to detect useful
attribute relationships may be therefore to consider both their significance, represented by the
p-value, and strength, often represented by the test statistic, and focus on those that are both
significant and sufficiently strong.

In some applications of relationship detection, it is actually only the strength of the rela-
tionship that matters and its significance is immaterial. This is the case, in particular, whenever
one has to identify one or more attributes most closely related to the target attribute of a
classification or regression task, regardless of the significance of these relationships. This is
a typical situation when making model construction decisions within modeling algorithms,
sometimes based on small attribute subsets. Some relationship detection statistics that are
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only or predominately used for this purpose will be presented without the accompanying
statistical inference procedure, leading to p-value calculation. On the other hand, when explor-
ing the properties of a large dataset, all strong relationships are practically guaranteed to be
significant.

2.5.2 Continuous attributes

The most common approach to detecting relationships between continuous attributes is by
measuring their correlation. Attributes are said to be correlated if they exhibit a similar pat-
tern of high and low values over the dataset, i.e., the tendency to simultaneously increase
or decrease. The strength of such a pattern can be measured using the widely known linear
correlation coefficient and the not so widely known rank correlation coefficient. They can
be both considered test statistics, accompanied by inference procedures using them within
significance tests.

2.5.2.1 Pearson’s linear correlation

The linear correlation coefficient, also known as Pearson’s correlation coefficient, measures
the strength of linear relationship between two continuous attributes, i.e., the degree to which
their relationship approaches a linear function. It is calculated using the following formula:

𝜌S(a1, a2) =
∑

x∈S(a1(x) − mS(a1))(a2(x) − mS(a2))√∑
x∈S (a1(x) − mS(a1))2

∑
x∈S (a2(x) − mS(a2))2

(2.65)

If a1(x) = 𝛼a2(x) + 𝛽 for some 𝛼 ≠ 0 and all x ∈ X then 𝜌S(a1, a2) = sgn(𝛼) and the two
attributes exhibit a perfectly linear relationship on the dataset. Otherwise the correlation coef-
ficient is a number between −1 and 1 the absolute value of which indicates the strength of
the relationship and the sign of which indicates its direction (positive if the values of one
attribute tend to increase with increasing values of the other attribute). Of course, Pearson’s
correlation coefficient and the corresponding test may fail to detect nonlinear relationships or
underestimate their strength.

The most typical inference procedure using the linear correlation coefficient checks the
null hypothesis that its value on the domain is actually 0. One simple way to determine the
p-value, applicable if the two attributes can be assumed to have normal distributions, is to
consider an auxiliary statistic defined as follows:

t(𝜌)S (a1, a2) = 𝜌S(a1, a2)
√ |S| − 2

1 − 𝜌2
S(a1, a2)

(2.66)

which has Student’s standard t-distribution with |S| − 2 degrees of freedom under the null
hypothesis. This is a reasonably good approximation even if the assumption is not satisfied,
except for very small datasets, for which other approaches may be used. The p-value is deter-
mined as

p(𝜌)S (a1, a2) = 2
(

1 − Φ(t)|S|−2

(|t(𝜌)S (a1, a2)|)) (2.67)

where Φ(t)
k denotes the standard cumulative t-distribution function with k degrees of freedom.

This is the probability of a value equal or above |t(𝜌)S (a1, a2)|, or equal or below −|t(𝜌)S (a1, a2)|.
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Example 2.5.1 Pearson’s correlation is implemented and demonstrated by the R code
presented below. The corl function calculates the correlation coefficient value and the
p-value. The cor.test function with method=“pearson” is used for comparison.

corl.test <- function(v1, v2)
{
rho <- sum((v1-(m1 <- mean(v1)))*(v2-(m2 <- mean(v2))))/

sqrt(sum((v1-m1)̂2)*sum((v2-m2)̂2))
ts <- rho*sqrt((df <- length(v1)-2)/(1-rhô2))
list(rho=rho, statistic=ts, p.value=2*(1-pt(abs(ts), df)))

}

# demonstration
corl.test(weatherr$temperature, weatherr$playability)
cor.test(weatherr$temperature, weatherr$playability, method="pearson")
corl.test(weatherr$temperature, -weatherr$playability)
cor.test(weatherr$temperature, -weatherr$playability, method="pearson")

2.5.2.2 Spearman’s rank correlation

To make it possible to discover arbitrary monotonic relationships, regardless of their linearity,
one can consider the linear correlation of instance ranks with respect to the two attributes rather
than the linear correlation of the attributes themselves. Such a linear correlation of ranks is
called the rank correlation or Spearman’s correlation:

𝜚S(a1, a2) = 𝜌S(rS,a1
, rS,a2

) (2.68)

assuming fractional ranking. If ties (duplicate attribute values) are absent and no fractional
ranks appear, this is equivalent to the following formula:

𝜚S(a1, a2) = 1 −
6
∑

x∈S (rS,a1
(x) − rS,a2

(x))2|S|(|S|2 − 1)
(2.69)

The rank correlation coefficient takes the value 1 or −1 if the attributes a1 and a2 exhibit
any strictly increasing or decreasing (respectively) relationship on S. Intermediate values indi-
cate value levels of monotonic relationship.

Inference using Spearman’s correlation coefficient is possible by testing the null hypothe-
sis that its value is 0 on the domain. There are multiple possible approaches to determining the
p-value, including that the presented above for Pearson’s correlation, which is also applicable
here. For smaller data more refined approaches are used.

Example 2.5.2 The following R code implements and demonstrates rank correlation calcu-
lation. The corr.test function simply calls the corl.test function from the previous
examples for attribute ranks.

corr.test <- function(v1, v2) { corl.test(rank(v1), rank(v2)) }

# demonstration
corr.test(weatherr$temperature, weatherr$playability)
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cor.test(weatherr$temperature, weatherr$playability, method="spearman")
corr.test(weatherr$temperature, -weatherr$playability)
cor.test(weatherr$temperature, -weatherr$playability, method="spearman")

2.5.3 Discrete attributes

Discovering relationships between two discrete attributes is typically based on observing how
their joint distribution differs from their marginal distributions. In each case, the distributions
are estimated using the same dataset on which relationship detection is performed. There are
multiple specific ways of measuring the degree to which the distributions differ, using abso-
lute frequencies or probabilities (relative frequencies) of single attribute values and attribute
value pairs.

2.5.3.1 𝝌
2 Test

The most widely known technique used for detecting relationships between discrete attributes
employs the following 𝜒2 statistic:

𝜒2
S (a1, a2) =

∑
𝑣1∈A1

∑
𝑣2∈A2

(|Sa1=𝑣1,a2=𝑣2
| − ea1=𝑣1,a2=𝑣2

)2

ea1=𝑣1,a2=𝑣2

(2.70)

where

ea1=𝑣1,a2=𝑣2
=

|Sa1=𝑣1
| ⋅ |Sa2=𝑣2

||S| (2.71)

is the expected absolute frequency of the values 𝑣1 and 𝑣2 for the attributes a1 and a2, respec-
tively, under the null hypothesis of the two attributes being unrelated. The latter means that
knowing the value of one of them does not alter the distribution of the other. The 𝜒2 statis-
tic compares the actual count of each value combination observed on the dataset with the
expected one. High values, obtained if the actual and observed counts differ considerably,
indicate a strong relationship.

The 𝜒2 statistic takes discrete numerical values, since it depends on discrete attribute value
count frequencies on a finite set of instances. Its distribution under the null hypothesis can be
approximated, however, by the continuous 𝜒2 distribution with (|A1| − 1)(|A2| − 1) degrees
of freedom. The p-value is the probability of a 𝜒2 value equal or greater than that calculated
on the dataset:

p(𝜒
2)

S (a1, a2) = 1 − Φ(𝜒2)
(|A1|−1)(|A2|−1)(𝜒

2
S (a1, a2)) (2.72)

where Φ(𝜒2)
k denotes the cumulative 𝜒2 distribution function with k degrees of freedom. The

approximation holds for sufficiently large data. More specifically, it is considered safe to use
if at least 80% of expected frequencies are greater or equal than 5 and none of them are 0. For
small datasets not satisfying these criteria, discontinuity corrections may be applied or other
tests used.

Example 2.5.3 The 𝜒2 test is implemented and demonstrated by the following R code, with
the standard chisq.test function used for comparison.
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bs.chisq.test <- function(v1, v2)
{
o12 <- table(v1, v2)
e12 <- table(v1)%*%t(table(v2))/sum(o12)
chi2 <- sum((o12-e12)̂2/e12)
list(statistic=chi2, p.value=1-pchisq(chi2, (nrow(o12)-1)*(ncol(o12)-1)))

}

# demonstration
bs.chisq.test(weather$outlook, weather$play)
chisq.test(weather$outlook, weather$play)

2.5.3.2 Loglikelihood ratio test

The loglikelihood ratio test, also known as the G-test, is an increasingly popular alternative to
the 𝜒2 test. It is based on the following statistic:

GS(a1, a2) = 2
∑
𝑣1∈A1

∑
𝑣2∈A2

|Sa1=𝑣1,a2=𝑣2
| ln

|Sa1=𝑣1,a2=𝑣2
|

ea1=𝑣1,a2=𝑣2

(2.73)

which takes a different approach to comparing the actual and expected counts of all attribute
value pairs. As for the𝜒2 statistic, the distribution of the G statistic under the null hypothesis of
the two attributes being unrelated can be approximated by the 𝜒2 distribution and the approx-
imation is actually better in this case (although it may still need discontinuity corrections for
small datasets). This is why the loglikelihood ratio test may be usually preferred (unless per-
forming the calculations “manually,” for which the 𝜒2 test is more convenient). The p-value
is the probability of a G value equal to or greater than that calculated on the dataset:

p(G)
S (a1, a2) = 1 − Φ(𝜒2)

(|A1|−1)(|A2|−1)
(
GS(a1, a2)

)
(2.74)

Example 2.5.4 The following R code defines the g.test function implementing the loglike-
lihood ratio test and demonstrates its application. There is no standard equivalent R function
that could be used for comparison.

g.test <- function(v1, v2)
{
o12 <- table(v1, v2)
e12 <- table(v1)%*%t(table(v2))/sum(o12)
g <- 2*sum(o12*log(o12/e12), na.rm=TRUE)
list(statistic=g, p.value=1-pchisq(g, (nrow(o12)-1)*(ncol(o12)-1)))

}

# demonstration
g.test(weather$outlook, weather$play)

2.5.3.3 Conditional entropy

The entropy, presented above as an impurity measure, can also serve as a relationship measure
for discrete attributes. This is possible by calculating the impurities of one attribute in subsets
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to which the dataset is partitioned by the other attribute and averaging them, weighted by
subset sizes. The resulting quantity is called the conditional entropy and defined as follows:

ES(a1|a2) =
∑
𝑣∈A2

PS(a2 = 𝑣)ES(a1) (2.75)

The conditional entropy of attribute a1 and given attribute a2 is therefore an indicator of the
level to which knowing the values of a2 makes the values of a1 predictable (if low impurity is
interpreted as predictability).

Notice that, strictly speaking, a small conditional entropy value does not necessarily indi-
cate a relationship between attributes if the (unconditional) entropy of a1 is the same or
similarly small. The conditional entropy is also asymmetric, as it measures the utility of a2
for predicting a1 only and not the other way round.

Example 2.5.5 The following R code defines and demonstrates theentropy.cond function
which calculates the conditional entropy of the first argument given the second argument.

entropy.cond <- function(v1, v2)
{
p12 <- pdisc(v1, v2)
p2 <- colSums(p12)
sum(p2*mapply(function(i, p2i) entropy.p(p12[,i]/p2i), 1:ncol(p12), p2))

}

# demonstration
entropy.cond(weather$play, weather$outlook)
entropy.cond(weather$play, weather$outlook=="rainy")

2.5.3.4 Mutual information

Another information-theoretic approach to measuring the strength of the attribute relationship
is mutual information, calculated as follows:

IS(a1, a2) =
∑

𝑣1∈A1

∑
𝑣2∈A2

P(a1 = 𝑣1, a2 = 𝑣2) log
P(a1 = 𝑣1, a2 = 𝑣2)

P(a1 = 𝑣1) ⋅ P(a2 = 𝑣2)
(2.76)

The statistic takes high values if the joint probability distribution of a1 and a2 differs consid-
erably from their marginal distribution.

Unlike the conditional entropy, the mutual information is symmetric and measures the
strength of the actual relationship between attributes. It can be easily verified that it is actually
closely related to the conditional entropy in the following way:

IS(a1, a2) = ES(a1) − ES(a1|a2) = ES(a2) − ES(a2|a1) (2.77)

This makes it possible to view the mutual information as the reduction of impurity of one
attribute due to the other attribute.

The mutual information is also directly related to the loglikelihood ratio statistic:

GS(a1, a2) = 2 ln b|S|IS(a1, a2) (2.78)

where b is the base of the logarithm used for calculating IS(a1, a2). Unlike the G statistic,
the mutual information itself is not used for assessing the significance of the relationship
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between attributes, but just measuring its strength. In this application, it is much more conve-
nient than the 𝜒2 or G statistic, since it does not depend on the data size.

Example 2.5.6 The following R code implements mutual information calculation, using the

dmr.util
pdisc function from Example 2.4.22 for discrete probability distribution estima-
tion and the logp function for calculating the base 2 logarithm of probabilities.
Then its application is demonstrated.

mutinfo <- function(v1, v2)
{
p12 <- pdisc(v1, v2)
p1 <- rowSums(p12)
p2 <- colSums(p12)
sum(p12*logp(p12/(p1%o%p2)), na.rm=TRUE)

}

# demonstration
mutinfo(weather$outlook, weather$play)
# this should be the same

entropy(weather$play)-entropy.cond(weather$play, weather$outlook)
entropy(weather$outlook)-entropy.cond(weather$outlook, weather$play)
g.test(weather$outlook, weather$play)$statistic/(2*log(2)*nrow(weather))

2.5.3.5 Symmetric uncertainty

Another closely related convenient symmetric measure of discrete attribute relationship
strength is the symmetric uncertainty, defined as follows:

US(a1, a2) =
2IS(a1, a2)

ES(a1) + ES(a2)
(2.79)

This applies a kind of normalization to the mutual information. The resulting normalized
quantity is usually a more reliable relationship strength measure in applications where rela-
tionships for multiple attribute pairs have to be evaluated and compared. In particular, it may
give superior results when applied in attribute selection filters.

Example 2.5.7 The following R code defines the symunc function for symmetric uncertainty
calculation, based on the mutinfo function from the previous example and the entropy
function defined in Example 2.4.26.

## symmetric uncertainty for discrete vectors
symunc <- function(v1, v2)
{
2*mutinfo(v1, v2)/(entropy(v1)+entropy(v2))

}

# demonstration
symunc(weather$outlook, weather$temperature)
symunc(weather$outlook, weather$play)
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2.5.4 Mixed attributes

The most straightforward approach to detecting relationships between two attributes, one of
which is discrete and the other is continuous, is based on observing whether and how the
distribution of the continuous attribute differs in data subsets determined by the values of the
discrete attribute. This is relatively easy given the fact that the continuous attribute distribution
may be sufficiently well characterized by a small number of descriptive statistics that are easy
to calculate. In fact, commonly used mixed attribute relationship detection techniques focus
on the location of the continuous attribute only, measuring the degree of location differences
in subsets corresponding to the values of the discrete attributes.

2.5.4.1 t-Test

The simplest and most widely known technique applicable to detecting relationships between
discrete and continuous attributes is the t-test. In its most popular form, it assumes that there
are two data subsets S0 and S1 coming from two subdomains X0 and X1 of the same domain
for which the same continuous attribute a is available. The test objective is to choose between
the null hypothesis that the means of a in X0 and X1 are equal and the alternative hypothesis
that they differ. It uses the following t-statistic:

tS0,S1
(a) =

mS0
(a) − mS1

(a)

sS0,S1
(a)

√
1|S0| + 1|S1|

(2.80)

The standard deviation estimator sS0,S1
(a) used above is based on the so-called pooled vari-

ance, i.e., combining the variance estimators obtained for the two subsets:

s2
S0,S1

(a) =
(|S0| − 1)s2

S0
(a) + (|S1| − 1)s2

S1
(a)|S0| + |S1| − 2

(2.81)

sS0,S1
(a) =

√
s2

S0,S1
(a) (2.82)

This only makes sense under the assumption that the variance of attribute a in the two subdo-
mains is equal.

Assuming additionally that the attribute has normal distribution, the t-statistic has the stan-
dard Student’s t-distribution with |S0| + |S1| − 2 degrees of freedom and the p-value can be
determined as

p(t)S0,S1
(a) = 2

(
1 − Φ(t)|S0|+|S1|−2

(|tS0,S1
(a)|)) (2.83)

where Φ(t)
k is the cumulative distribution function of the standard t-distribution with k degrees

of freedom. The combination of the above statistic and inference procedure is known as Stu-
dent’s unpaired two-sample t-test. A modified version thereof that does not assume variance
equality in subdomains is known as Welch’s test.

The t-test is applicable to discrete and continuous attribute relationship detection only in
the most basic case when the discrete attribute is binary. Its two values determine two subsets
of the available dataset and, correspondingly, two subdomains, making it possible to use the
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t-test. More specifically, we have

S0 = Sa01=0 (2.84)

S1 = Sa01=1 (2.85)

where a01 is the binary attribute and S is the dataset used for relationship detection.

Example 2.5.8 The following R code implements and demonstrates Student’s t-test. The stan-
dard t.test function used for comparison is called with the var.equal=TRUE argument
since it does not assume variance equality by default.

bs.t.test <- function(v, v01)
{
m <- unname(tapply(v, v01, mean))
s2 <- unname(tapply(v, v01, var))
cn <- unname(tapply(v, v01, length))
sp <- sqrt((s2[1]*(cn[1]-1)+s2[2]*(cn[2]-1))/(sum(cn)-2))

ts <- (m[1]-m[2])/(sp*sqrt(sum(1/cn)))
list(statistic=ts, p.value=2*(1-pt(abs(ts), sum(cn)-2)))

}

# demonstration
bs.t.test(weatherc$temperature, weatherc$play)
t.test(temperaturẽplay, weatherc, var.equal=TRUE)

2.5.4.2 One-way ANOVA (F-test)

The counterpart of the t-test that can be used to compare the means of a continuous attribute in
more than two subsets is the F-test. More precisely, there is a family of F-tests serving different
purposes and the one referred to here – for the means of several subsets – is the best-known
member of this family. This particular F-test is also referred to as one-way ANOVA (analy-
sis of variance) with a completely randomized design. This test is applicable to detecting a
relationship between a continuous attribute and an arbitrary discrete attribute.

The test uses the F-statistic defined as follows:

FS(a1, a2) =

∑
𝑣2∈A2

|Sa2=𝑣2
|(mSa2=𝑣2

(a1) − mS(a1))2∕(|A2| − 1)∑
𝑣2∈A2

∑
x∈Sa2=𝑣2

(a1(x) − mSa2=𝑣2
(a1))2∕(|S| − |A2|) (2.86)

This definition adopts the relationship detection perspective, with a continuous attribute a1 and
a discrete attribute a2 observed on dataset S. The values of attribute a2 are used to partition
dataset S into subsets. The numerator contains the sum of the squared differences between
the per-subset means and the overall mean of a1. The denominator contains the sum of the
squared differences between a1 values and the corresponding subset mean. For the special
case of a2 being binary, for which the ordinary t-test is applicable, the F-statistic can be easily
verified to be equal the square of the corresponding t-statistic.
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The F-statistic has the F-distribution with |A2| − 1, |S| − |A2| degrees of freedom under
the null hypothesis of the means of a1 in all the subdomains to which the domain is partitioned
by a2 being equal. This is based on the assumption that the continuous attribute has a nor-
mal distribution with equal variance in the subdomains. The p-value can then be obtained as
follows:

p(F)S (a1, a2) = 1 − Φ(F)|A2|−1,|S|−|A2|
(
FS(a1, a2)

)
(2.87)

where Φ(F)
k1,k2

is the cumulative distribution function of the F-distribution with k1, k2 degrees
of freedom.

Example 2.5.9 The F-test for one-way ANOVA is implemented and demonstrated by the
following R code. The standard anova function applied to a simple single-attribute linear
model created with lm can be used to achieve the same effect. It is also demonstrated that in
the binary case the F-statistic is equal to the square of the t-statistic.

f.test <- function(v1, v2)
{
subsets <- split(v1, v2)
m <- unname(sapply(subsets, mean))
cn <- unname(sapply(subsets, length))
m.a <- mean(v1)
cn.a <- length(v1)

f <- (sum(cn*(m-m.a)̂2)/((k <- length(subsets))-1))/
(sum(sapply(1:length(subsets),

function(i) sum((subsets[[i]]-m[i])̂2)))/((cn.a-k)))
list(statistic=f, p.value=1-pf(f, k-1, cn.a-k))

}

# demonstration
f.test(weatherc$temperature, weatherc$outlook)
f.test(weatherc$temperature, weatherc$play)
anova(lm(temperaturẽoutlook, weatherc))
anova(lm(temperaturẽplay, weatherc))
abs(sqrt(f.test(weatherc$temperature, weatherc$play)$statistic)-
abs(t.test(temperaturẽplay, weatherc, var.equal=TRUE)$statistic))

2.5.4.3 Mann–Whitney–Wilcoxon test

The t-test and its extensions are parametric tests that assume a known distribution of the
continuous attribute of interest (normal in the case of the t-test) and estimate the parameters
of this distribution (mean and variance in the case of the t-test). Whenever the distribution is
unknown or known to be different than assumed by the test, the results may be unreliable. In
such situations nonparametric tests are a noteworthy alternative, relying on no assumptions
about the distribution.

The Mann–Whitney–Wilcoxon test (also known as the Mann–Whitney test or the
Wilcoxon test) can be considered a nonparametric counterpart of the t-test. It is applicable
to detecting the relationship between a discrete binary attribute and a continuous attribute,
which can be seen as comparing the location of the latter in the two subsets determined by the
former. Contrary to the t-test, however, the Mann–Whitney–Wilcoxon test does not compare
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the means, but rather counts the number of values in one subset that are below each value in
the other subset. The test is based on the following statistic:

US0,S1
(a) =

∑
x1∈S1

(|||{x0 ∈ S0 | a(x0) < a(x1)}
|||

+ 1
2
|||{x0 ∈ S0 | a(x0) = a(x1)}

|||) (2.88)

where a is the continuous attribute of interest, and S0 and S1 are two data subsets of the dataset
S corresponding to the two binary attribute values:

S0 = Sa01=0 (2.89)

S1 = Sa01=1 (2.90)

The following complementary definition:

U′
S0,S1

(a) =
∑

x0∈S0

(|||{x1 ∈ S1 | a(x1) < a(x0)}
|||

+ 1
2
|||{x1 ∈ S1 | a(x1) = a(x0)}

|||) (2.91)

in which the roles of S0 and S1 are swapped can also be used, clearly yielding

U′
S0,S1

(a) = |S0| ⋅ |S1| − US0,S1
(a) (2.92)

The above definitions make the statistic easy to understand, but in practical implementation
the following equivalent definitions may be more convenient:

US0,S1
(a) =

∑
x∈S0

rS0∪S1,a
(x) −

|S0|(|S0| + 1)|S0| (2.93)

U′
S0,S1

(a) =
∑
x∈S1

rS0∪S1,a
(x) −

|S1|(|S1| + 1)|S1| (2.94)

where rS0∪S1,a
(x) is the (fractional) rank of instance x with respect to attribute a on the com-

bined dataset. The U statistic takes values between 0 and |S0| ⋅ |S1|, and approaching either
of these extremes indicates a strong relationship.

To perform statistical inference based on the U statistic, one may use a tabularized distri-
bution for very small datasets and a normal approximation for larger datasets. The latter uses
the following standardized version thereof:

z(U)
S0,S1

(a) =
US0,S1

(a) − m(U)
S0,S1

s(U)
S0,S1

(2.95)

where

m(U)
S0,S1

=
|S0| ⋅ |S1|

2
(2.96)

s(U)
S0,S1

=
√|S0| ⋅ |S1|(|S0| + |S1| + 1)

12
(2.97)
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where the latter is valid under the assumption of no ties occurring in rank calculation (a more
complex formula is necessary if it is not satisfied). The standardized statistic has approxi-
mately the standard normal distribution under the null hypothesis of no relationship and hence
the p-value can be determined in the usual way:

p(U)
S0,S1

(a) = 2
(

1 − Φ
(|z(U)

S0,S1
(a)|)) (2.98)

where Φ is the standard normal cumulative distribution function.

Example 2.5.10 The Mann–Whitney–Wilcoxon test is implemented and demonstrated by the
following R code. The standard wilcox.test function is used for comparison, with the
correct=FALSE and exact=FALSE arguments that disable the discontinuity correction
used by default and exact distribution calculation for small data. This makes it produce the
same results as the simple reimplementation bs.wilcox.test. The lines that are com-
mented out provide an equivalent alternative implementation of the U statistic calculation.

bs.wilcox.test <- function(v, v01)
{
subsets <- split(v, v01)
ranks <- unname(split(rank(v), v01))
cn <- unname(sapply(subsets, length))
mu <- cn[1]*cn[2]/2
su <- sqrt(cn[1]*cn[2]*(cn[1]+cn[2]+1)/12)

u <- sum(ranks[[1]])-cn[1]*(cn[1]+1)/2
# u <- sum(sapply(subsets[[2]],
# function(v2) sum(v2<subsets[[1]])+sum(v2==subsets[[1]])/2))
list(statistic=u, p.value=2*(1-pnorm(abs(u-mu)/su)))

}

# demonstration
bs.wilcox.test(weatherc$temperature, weatherc$play)
wilcox.test(temperaturẽplay, weatherc, exact=FALSE, correct=FALSE)

2.5.4.4 Kruskal–Wallis test

The Kruskal–Wallis test is the nonparametric counterpart of one-way ANOVA that generalizes
the Mann–Whitney–Wilcoxon test to multivalued discrete attributes. The underlying statistic
is defined for continuous attribute a1, discrete attribute a2, and dataset S as follows:

KS(a1, a2) = (|S| − 1)

∑
𝑣2∈A2

|Sa2=𝑣2
|(rSa2=𝑣2

(a1) − rS(a1))2∑
𝑣2∈A2

∑
x∈Sa2=𝑣2

(rSa2=𝑣2
,a1
(x) − rS(a1))2

(2.99)

where

rSa2=𝑣2
(a1) =

1|Sa2=𝑣2
| ∑

x∈Sa2=𝑣2

rS,a1
(x) (2.100)

rS(a1) =
1|S| ∑

x∈S

rS,a1
(x) = |S| + 1

2
(2.101)
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are the average ranks with respect to a1 on subset Sa2=𝑣2
and on the complete dataset S, respec-

tively. For sufficiently large datasets, the distribution of the K statistic is approximated by
the 𝜒2 distribution with |A2| − 1 degrees of freedom. This makes it possible to calculate the
p-value:

p(K)
S (a1, a2) = 1 − Φ(𝜒2)|A2|−1

(
KS(a1, a2)

)
(2.102)

where Φ(𝜒2)
k denotes the cumulative 𝜒2 distribution function with k degrees of freedom.

Example 2.5.11 The following R code defines the bs.kruskal.test which is a sim-
ple reimplementation of the standard kruskal.test function. The two implementations
of the Kruskal test are then applied to two attribute pairs of the weatherc data, one with the
binary discrete attribute play and the other with the three-valued discrete attribute out-
look. Notice that for the former the resulting p-value agrees with that obtained using the
Mann–Whitney–Wilcoxon test in the previous example.

bs.kruskal.test <- function(v1, v2)
{
subsets <- split(v1, v2)
ranks <- split((rank.all <- rank(v1)), v2)
cn <- unname(sapply(subsets, length))
mr <- sapply(ranks, mean)
mr.a <- mean(rank.all)

k <- (length(v1)-1)*sum(cn*(mr-mr.a)̂2)/
sum(sapply(ranks, function(r) sum((r-mr.a)̂2)))

list(statistic=k, p.value=1-pchisq(k, length(subsets)-1))
}

# demonstration
bs.kruskal.test(weatherc$temperature, weatherc$play)
kruskal.test(temperaturẽplay, weatherc)
bs.kruskal.test(weatherc$temperature, weatherc$outlook)
kruskal.test(temperaturẽoutlook, weatherc)

2.5.5 Relationship detection caveats

Relationship detection techniques should be used with care to avoid drawing unjustified con-
clusions. Two particularly common and severe caveats are related to unsatisfied assumptions
and multiple tests.

2.5.5.1 Unsatisfied assumptions

Most significance tests used for relationship detection rely on some assumptions. Parametric
tests may assume the attributes of interest being distributed normally, as in the case of the t-test.
Such assumptions may often be unsatisfied. Both parametric and nonparametric tests may use
some approximations valid for sufficiently large datasets only. Even though the sufficient data
size is typically as little as a few dozen, sometimes the tests may be applied to smaller datasets,
requiring exact calculations.

Whenever test assumptions are unsatisfied, the distribution of the test statistic (under the
null hypothesis) may differ from that assumed by the test’s inference procedure and used to
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determine the p-value. This may lead to an incorrect p-value and, possibly, making a wrong
decision.

This is not to say that statistical tests should never be used if their assumptions are
unknown to be satisfied or known to be unsatisfied. What is necessary, though, is being aware
of the possible consequences. Unsatisfied assumptions do not necessarily make statistical
tests useless, but they make them less reliable. One may use them to get insights about the
data (and the domain) rather that make definite statements. The underlying test statistics
remain useful measures of relationship strength.

2.5.5.2 Multiple tests

Even if all necessary assumptions are satisfied and the calculated p-value is correct, the deci-
sion to accept or reject the null hypothesis may be wrong. This is because the p-value is the
probability of the observed statistic value under the null hypothesis and, even if it is small,
the null hypothesis may still be true. The rejection of the null hypothesis is justified, though,
because the observed result would be very unlikely if it were true.

The above justification to reject the null hypothesis is no longer valid if we consider a
series of multiple significance tests performed on the same dataset (e.g., when considering
relationships for several attribute pairs). What is unlikely in a single experiment becomes more
likely in a series of experiments. This means, roughly speaking, a statistic value suggesting a
statistically significant relationship may occur by chance if we try several times. To avoid an
increased false positive rate one should therefore adjust the significance level at which null
hypotheses are rejected accordingly. One very simple and commonly used approach, known as
the Bonferroni correction, is to divide the significance level used by the number of hypotheses
tested. With each individual null hypothesis out of a family of m hypotheses being tested
rejected if the corresponding p-value is below 𝛿

m
, then the “effective significance level” for

the whole family does not exceed 𝛿. This is actually an overly conservative approach that
keeps the false positive rate low at the cost of an increased false negative rate and more refined
correction techniques exist.

2.6 Visualization

This book, in general, and this chapter in particular, definitely do not give justice to data
visualization techniques. The role of these extremely powerful tools in data exploration can
be hardly overestimated, but their use in the book is only marginal, limited to the presentation
of model predictive performance measures. This a direct consequence of its major focus being
not on understanding data but on understanding modeling algorithms. This is by no means to
say the latter is more important than the former (actually, the opposite is more likely to be
true), but just to acknowledge the consciously limited scope of data mining techniques that
are covered in the book. It affects this chapter particularly strongly. However, this section will
at least briefly introduce the absolutely simplest visualization techniques that are actually used
in some of the subsequent chapters.

2.6.1 Boxplot

One of the simplest, yet extremely popular and useful visualization technique, is the box-
plot. It is basically a graphical summary of a continuous attribute’s distribution, including the
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first and third quartiles – represented by the top and bottom edges of a rectangular box, the
median – represented by a horizontal line (or, sometimes, a dot) inside the box, and the min-
imum and maximum values – represented by the so-called whiskers extending above and
below the box. The latter are usually determined with outlying values filtered out using the
quartile-based rules given by Equations 2.37 and 2.38 . Some or all of those may be included
in the plot as additional dots above or below the whiskers.

A boxplot makes it possible to notice some major properties of a continuous attribute at a
glance: where it is located, how dispersed it is, whether or not it is distributed symmetrically,
and possibly how many outlying values it has. While mostly the same information can be seen
from quartile values directly, the graphical form is much easier to interpret quickly. This is
particularly important when comparing the distribution of the same continuous attribute in
different data subsets, as all major differences can be immediately spotted out if boxplots for
all these subsets are presented side by side.

Example 2.6.1 The examples included in this section, unlike those presented above, will not
implement the visualization techniques being discussed, but just use existing R functions
to produce actual graphical illustrations. The following R code produces boxplots for the
playability attribute in the weatherr data: one with outlying values identified (using an
untypically small interquartile range multiplier for the sake of illustration) and the other in sub-
sets determined by the values of the outlook attribute. The plots are presented in Figure 2.2.

par(mfrow=c(1, 2))
boxplot(weatherr$playability, range=0.5, col="grey", main="playability")
boxplot(playabilitỹoutlook, weatherr, col="grey", main="playability")

2.6.2 Histogram

Not so immediately readable as the boxplot, but capable of providing a more detailed picture
of a continuous attribute’s distribution, is the histogram. It represents occurrence counts or
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Figure 2.2 The boxplots for the temperature attribute in the weathercl data.
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relative frequencies for a set of intervals by the heights or areas of vertical bars “standing”
on these intervals. More precisely, it is usually the area that is used to represent the relative
frequency (i.e., estimated probability) and the height that is used to represent the occurrence
count, but conventions vary. For equal-width intervals the difference obviously disappears.
In any case, a histogram is basically a graphical – and therefore more friendly to the human
eye – presentation of an interval frequency table. It makes it easy to identify the overall shape
of a distribution, assess its asymmetry, peakedness, and modality (the number of peaks). Of
those, only asymmetry can be revealed by a boxplot. On the other hand, histograms are not so
easy to quickly compare as boxplots and therefore less useful in detecting attribute distribution
differences across multiple data subsets.

Example 2.6.2 Two histograms for the playability attribute in the weatherr data are
produced by the following R code: one displaying occurrence counts and the other displaying
relative frequencies for the same set of nonequal-weight intervals. The plots are presented in
Figure 2.3. Notice the difference in bar heights.

par(mfrow=c(1, 2))
hist(weatherr$playability, breaks=c(0.3, 0.4, 0.5, 0.7, 0.9), probability=FALSE,

col="grey", main="")
hist(weatherr$playability, breaks=c(0.3, 0.4, 0.5, 0.7, 0.9), probability=TRUE,

col="grey", main="")

2.6.3 Barplot

The barplot is the “least statistical” of the simple visualization techniques presented in this
section. It is just a graphical representation of a set of numbers by the lengths of the set corre-
sponding horizontal or vertical bars. This is not particularly useful to examine the distributions
of continuous attributes, but makes it easy to quickly compare a small set of values, e.g., the
predictive performance of several algorithms, the predictive utility of several attributes, etc.

weatherr$playability

F
re

qu
en

cy

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
1

2
3

4
5

6
7

weatherr$playability

D
en

si
ty

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Figure 2.3 The histograms for the playability attribute in the weatherr data.
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Figure 2.4 The barplot of the mean playability values in subsets determined by the
outlook and wind attributes in the weatherr data.

Example 2.6.3 The R code shown below produces a somewhat artificial barplot illustration
using the weatherr data. The resulting barplot is displayed in Figure 2.4. It calculates the mean
values of the playability attributes within subsets corresponding to all the combinations
of the values of the outlook and wind attributes using the ave function and plots them
using the barplot function. A horizontal line representing the whole-dataset mean is added.

par(mar=c(7, 4, 4, 2))
barplot(‘names<-‘(ave(weatherr$playability, weatherr$outlook, weatherr$wind),

interaction(weatherr$outlook, weatherr$wind)),
las=2, main="Mean playability in outlook-wind subsets")

lines(c(0, 17), rep(mean(weatherr$playability), 2), lty=2)

2.7 Conclusion

The primary purpose of this chapter is to provide a quick source of information on basic sta-
tistical techniques that can be referred to by other chapters in this book. Many of them are
mentioned in the description of data mining algorithms and used in their illustrative imple-
mentations. This chapter makes it possible to get some brief summary of their purpose and
operation principles without having to resort to external sources. The scope of presented
techniques and the presentation depth are subordinated to this goal. Only techniques that
are actually referred to and some directly related techniques serving the same purpose are
included. No extensive statistical background is provided and simplifications are adopted to
make the description both concise and readable. It is noteworthy that the notation (and, to
some extent, terminology) used in this chapter considerably departs from that typically used
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by statisticians. This is a possibly controversial, but a deliberate choice, supposed to keep the
presentation of basic statistics maximally consistent with the presentation of other data mining
techniques in this book’s other chapters. All this makes it impossible to consider this chapter
a replacement for a proper introductory text on statistics.

A considerable part of the content is delivered through R code examples, often contain-
ing simplified reimplementations of existing standard functions that hopefully facilitate the
interpretation of the underlying maths. Some examples provide functions that have no direct
existing R counterparts (at least in the most commonly used packages). Those serve not only
the illustration purpose, but are also actually used by example code from other chapters.

2.8 Further readings

Unlike for more refined data mining algorithms presented in subsequent chapters of this book,
it is not necessarily the best idea to refer to the original books or articles that contributed par-
ticular statistical techniques. Due to their large number and diversity it makes more sense to
restrict one’s attention to sources that cover all or most of them in a consistent form. It is worth-
while to allow some exceptions from this general rule, though. One is for the m-estimation
technique specifically proposed by Cestnik (1990) to fulfill the special needs of classifica-
tion algorithms that often have to estimate class or attribute value probabilities on small data
subsets. Karalič and Cestnik (1991) applied the same idea of combining empirical and prior
estimates to the m-estimation of the mean and the variance. The second is for bootstrap esti-
mation methods introduced by Efron (1979) and more extensively described by Efron and
Tibshirani (1994). Finally, the third of those specific references is the discussion of statistical
tests that can be used to compare the performance of classification algorithms by Dietterich
(1998), including also a high-level summary of different types of questions arising in inductive
learning that can be answered using statistics.

Basic statistics remain a standard part of most data mining courses and are
often – although not always – at least partially and superficially covered by data min-
ing books (e.g., Han et al., 2011, Tan et al., 2013). Some of them go actually much deeper
into statistics (e.g., Hand et al., 2001) than “proper” introductory statistics sources. The
latter may be still worthwhile to consult for a better feel of traditional statistical thinking and
methodology. There is a lot to choose from, since techniques presented in this chapter are
sufficiently elementary on one hand and sufficiently popular on the other hand to be widely
covered by nearly all introductory statistics textbooks. Many of them that not only present
a greater variety of related techniques, but also – and much more importantly – provide
much more in-depth discussions of their underlying assumptions, strengths, and limitations.
Books that adopt an informal and intuitive rather that math-loaded and rigorous presentation
style may be more preferred for gentle introduction to statistics. Freedman et al. (2007),
Urdan (2010), and Witte and Witte (2009) all excel in presenting not always straightforward
and intuitive statistical techniques in an astonishingly straightforward and intuitive way
so that they read nearly like novels. For those that feel more comfortable with going into
mathematical symbols and equations, not necessarily preceded by several paragraphs of plain
language explanations, Wilcox (2009) or Kiemele et al. (1997) may appear more useful.
The latter is more oriented toward industrial applications and may appeal to practitioners,
whereas the former enriches the presentation of classical techniques by a fresh perspective
inspired by contemporary statistical research.
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Decision trees

3.1 Introduction

In many applications, we not only want to just use the created classification model to accu-
rately classify instances, but we may also want to inspect the model. This makes it possible
to explain its predictions, modify it, or combine with some existing background knowledge.
In such applications, where both high classification accuracy and human readability of the
model are required, the obvious method of choice for most data miners will be decision trees.

Decision tree algorithms have been studied for many years and belong to those data mining
algorithms for which particularly numerous refinements and variations have been proposed.
One can therefore speak about a family of algorithms that share the same model represen-
tation and algorithm operation schemes, but may differ in several details. The space for this
diversity is increased by the two-phase process usually performed to create decision tree mod-
els, consisting of decision tree growing and pruning. It is hardly possible to describe all these
algorithm variations with the level of detail adopted by this book without some substantial
omissions and compromises. Only the most common ones will be discussed and not all of
them will be illustrated with R examples.

Example 3.1.1 This chapter contains examples that illustrate the major algorithmic

Ex. 1.3.1
dmr.data

operations related to decision trees using the weather data, the small size of which
makes it easy to manually verify the results. To illustrate continuous attribute han-
dling, the weatherc data will be used. The following code prepares the environment
for subsequent examples by loading the datasets as well as DMR and CRAN Ex. 1.3.2

dmr.datapackages that will be needed.

library(dmr.claseval)
library(dmr.stats)
library(dmr.util)

Data Mining Algorithms: Explained Using R, First Edition. Paweł Cichosz.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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library(rpart)
library(rpart.plot)
library(lattice)

data(weather, package="dmr.data")
data(weatherc, package="dmr.data")

3.2 Decision tree model

A decision tree is a hierarchical structure that represents a classification model. Internal tree
nodes correspond to splits applied to decompose the domain into regions, and terminal nodes
assign class labels to regions believed to be sufficiently small or sufficiently uniform. For
convenience, we will reserve the term node to internal nodes only and refer to terminal nodes
as leaves.

Example 3.2.1 A graphical illustration of domain decomposition represented by a decision
tree is created by the R code presented below. It generates a simple artificial training set for
decision tree growing, which is performed using the rpart function – the R implementation
of decision trees used in this book. Then the structure of the decision tree is plotted using the
prp function provided by the rpart.plot package. The corresponding domain decompo-
sition is visualized by a level plot produced by the levelplot function from the lattice
package, with different shades of gray corresponding to class labels, which can be directly
matched to the corresponding tree leaves. The produced illustration is presented in Figure 3.1.

dtdat <- expand.grid(a1=seq(1, 10, 3), a2=seq(1, 10, 3))
dtdat$c <- as.factor(ifelse(dtdat$a1<=7 & dtdat$a2<=1, 1,

ifelse(dtdat$a1<=7 & dtdat$a2<=7, 2,
ifelse(dtdat$a1<=7, 3,

ifelse(dtdat$a2<=4, 4, 5)))))
# decision tree structure

prp(rpart(c̃., dtdat, minsplit=2, cp=0))
# the corresponding domain decomposition

levelplot(c̃a1*a2, dtdat, at=0.5+0:5, col.regions=gray(seq(0.1, 0.9, 0.1)),
colorkey=list(at=0.5+0:5))

3.2.1 Nodes and branches

Splits are specified by some relational conditions based on selected attributes that may have
two or more outcomes. Formally, a split can be represented by a test function t ∶ X → Rt
that maps instances into split outcomes. A separate outgoing branch is associated with each
possible outcome of a node’s split. The relationship between the parent node and its descen-
dant nodes, conceptually represented by the branches linking the former to the latter, does not
always have to be explicitly represented in the decision tree data structure. In particular, when
binary splits are used, the relationship can be implicitly represented by an appropriate node
numbering scheme, e.g., the descendants of node numbered k can be numbered 2k and 2k + 1.

If a split’s outcome can be unambiguously determined for any possible instance, then it
does partition the domain into disjoint subsets, corresponding to the outgoing branches. It is
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Figure 3.1 Domain decomposition by a decision tree.

therefore easy to see that each node n of a decision tree corresponds to a region (subset) of
the domain

Xn = {x ∈ X | t1(x) = r1 ∧ t2(x) = r2 ∧ · · · ∧ tk(x) = rk} (3.1)

determined by the sequence of splits t1, t2, … , tk and their outcomes r1, r2, … , rk occur-
ring on the path from the root to the node (and the root, which has the empty path of splits,
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corresponds to the whole domain). The same split path can also be applied to any dataset
S ⊂ X, yielding

Sn = {x ∈ S | t1(x) = r1 ∧ t2(x) = r2 ∧ · · · ∧ tk(x) = rk} (3.2)

We will extend the subscript by adding t = r to further narrow down this subset to the instances
for which split t applied at node n yields outcome r:

Sn,t=r = {x ∈ Sn | t(x) = r} (3.3)

3.2.2 Leaves

The above observation about the unambiguous correspondence between nodes and domain
regions or data subsets is also clearly true for leaves. We will therefore write Xl and Sl to
designate the region of X or subset of S, respectively, corresponding to leaf l.

Looking from a different perspective, any instance x ∈ X can be “passed down” from the
root node, along branches corresponding to the outcomes of consecutive splits, to a corre-
sponding leaf lx. This shows that, under the assumption of each split assigning one and only
one outcome to any instance, the decision tree represents a mapping of all instances from the
domain to the set of its leaves. Now if we further assume that each leaf stores exactly one class
label, then a decision tree can be seen as a representation of a classification model h ∶ X → C.
When necessary, we will denote the class label of leaf l by dl. We will see later that both these
assumptions can be relaxed.

It is convenient to adopt two extensions to the assumption about storing class labels in
leaves:

1. class labels can also be assigned to nodes: dn for node n,

2. apart from class labels, full class distribution can be stored in both nodes and leaves:
P(d|n) for node n and P(d|l) for leaf l, in both cases for all d ∈ C.

The former increases the human readability of decision trees and facilitates converting nodes
to leaves during pruning. The latter makes it possible to use a decision tree as a probabilistic
classifier.

3.2.3 Split types

There are several types of splits used for decision trees. Following all decision tree algorithms
of practical importance, we will limit our attention to univariate splits, based on testing a
single attribute value. Multivariate splits based on testing several attributes may sometimes
lead to better trees, but they increase the computational expense of split selection beyond
the acceptable limits for larger datasets and they are not in common practical use. Different
types of splits are characterized by the form of the test function used. Defining a univariate
split on attribute a with the test function t requires specifying how t(x) is determined based
on a(x) for all x ∈ X.

3.2.3.1 Nominal attributes

For nominal attributes, it is common to use one of the following two split types:

Value-based. With a test function defined as t(x) = a(x).
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Equality-based. With a test function defined as

t(x) =

{
1 if a(x) = 𝑣

0 otherwise
(3.4)

where 𝑣 ∈ A.

A value-based split is just an attribute, and each outcome corresponds to one attribute
value. An equality-based split is binary and assigns one outcome to instances with a speci-
fied attribute value and the other to the remaining instances. There is little sense to use both
value-based or equality-based splits in the same tree, so it is a standard practice for decision
tree algorithm implementations to consider either one or the other.

Both split types can be made more flexible (but also considerably more costly to select)
by replacing single values by subsets of an attributes’s codomain. This yields the following
split types:

Subset-based. With a test function defined as

t(x) =
⎧⎪⎨⎪⎩

1 if a(x) ∈ V1

2 if a(x) ∈ V2…
k if a(x) ∈ Vk

(3.5)

where V1,V2, … ,Vk ⊂ A constitute a disjoint partition of the codomain of A.
Membership-based. With a test function defined as

t(x) =

{
1 if a(x) ∈ V

0 otherwise
(3.6)

where V ⊂ A. Again, only one of these two split types is considered by particular imple-
mentations of decision tree algorithms.

3.2.3.2 Continuous attributes

The single most common split type for continuous attributes uses the inequality relation:

Inequality-based. With a test function defined as

t(x) =

{
1 if a(x) ≤ 𝑣

0 otherwise
(3.7)

where 𝑣 ∈ A.

A more flexible, but more costly to select split type assigns different outcomes to several
intervals of an attribute’s co-domain.

Interval-based. With a test function defined as

t(x) =
⎧⎪⎨⎪⎩

1 if a(x) ∈ I1

2 if a(x) ∈ I2…
k if a(x) ∈ Ik

(3.8)
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where I1, I2, … , Ik ⊂ A are intervals constituting a disjoint partition of the codomain
of a. This is clearly the same as a subset-based split applied to a continuous attribute.

3.2.3.3 Ordinal attributes

Ordinal attributes, which share some properties with both nominal and continuous ones, can
be treated as either of these types, depending on whether one wants to exploit the available
order relation or not.

3.2.3.4 Binary splits

Binary splits – equality- or membership-based for nominal attributes and inequality-based for
continuous attributes – are particularly popular due to their implementational convenience. As
already noted above, with each node having the same number of descendants a simple node
numbering scheme is sufficient to represent the tree structure. It is a fairly common, but not
universally adopted convention that for binary splits the left branch corresponds to the true
outcome and the right branch to the false outcome of the underlying condition. It only matters
for decision tree printing or drawing.

3.3 Growing

The most important process needed to create a decision tree model from a given training set
is called growing. As this term borrowed from “real” (biological) trees suggests, it is usually
a sequential process during which new nodes or leaves are added step by step. Adding new
nodes or leaves is performed in a top-down fashion, starting from a single root node. This
paradigm, followed by all decision tree algorithms in wide practical use, is called top-down
decision tree induction (TDIDT).

3.3.1 Algorithm outline

Since a decision tree is a recursive structure, it is no surprise that top-down growing algo-
rithms are usually formulated as recursive procedures which create the first root node based
on the whole training set and then call themselves for the subsets obtained by applying the
split selected for that node. While there are no major problems with this “obvious” recur-
sive algorithm formulation, it may be more instructive and practically useful to consider a
not-so-common alternative iterative formulation presented below.

1: create the root node and mark it as open;
2: assign all training instances from T to the root node;
3: while there are open nodes do
4: select an open node n;
5: calculate class distribution P(d|n) for d ∈ C based on Tn;
6: assign class label dn;
7: if stop criteria are satisfied for n then
8: mark n as a closed leaf;
9: else

10: select a split t ∶ X → Rt for n;
11: for all split outcomes r ∈ Rt do
12: create a descendant node nr corresponding to r and mark it as open;
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13: assign all instances from Tn,t=r to nr ;
14: end for
15: mark n as a closed node;
16: end if
17: end while

This algorithm operates by maintaining a set of open nodes and processing them until they
become closed nodes or leafs. The latter are fixed elements of the decision tree being grown
and require no further processing. The former can be considered node stubs. They only have
the corresponding subset of instances assigned, but neither class distribution estimated nor
class label or split selected. At the beginning the first and only open node is the root node
of the tree. Then whenever an open node is to be converted to a closed node, its descendants
(corresponding to the outcomes of the selected split) are created as new open nodes. Since
no new nodes are created when an open node is converted to a closed leaf, the algorithm is
guaranteed to terminate provided that a stop criterion will be eventually satisfied on all paths
in the tree.

The processing required to turn an open node into a closed node or leaf always includes:

• class distribution calculation based on the corresponding subset of training instances,

• class label assignment, strictly necessary only for leaves, but useful for nodes as well,

• checking the stop criteria, which determine whether the open node will become a closed
node or a closed leaf.

Whenever none of the stop criteria is satisfied, the following additional operations are
performed:

• split selection based on the corresponding subset of training instances,

• split application, i.e., creating descendant (open) nodes, corresponding to every possible
split outcome r of the selected split t and partitioning the current subset of training
instances Tn into subsets Tn,t=r assigned to the newly created descendant nodes.

These operations, required to fully specify a decision tree growing algorithm, will be reviewed
below.

Example 3.3.1 The weather data will be used in a series of R code examples illustrating the
Ex. 1.3.1
dmr.data

basic operations performed during tree growing. To facilitate the adaptation of
these examples to other datasets, the following R code sets variables used to refer
to the dataset, attribute names, and the class attribute name.

data <- weather
attributes <- names(weather)[1:4]
class <- names(weather)[5]

The following R code initializes the tree by creating the root node and assigning to it
all training instances. These operations, for greater reusage convenience, are grouped into
a function which, when called with the data variable set as shown above, initializes tree
growing for the weather data.
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init <- function()
{
clabs <<- factor(levels(data[[class]]),

levels=levels(data[[class]])) # class labels
tree <<- data.frame(node=1, attribute=NA, value=NA, class=NA, count=NA,

‘names<-‘(rep(list(NA), length(clabs)),
paste("p", clabs, sep=".")))

cprobs <<- (ncol(tree)-length(clabs)+1):ncol(tree) # class probability columns
nodemap <<- rep(1, nrow(data))
n <<- 1

}

init()

In this and subsequent examples, a decision tree is represented by a data frame with rows
corresponding to nodes and the following columns:

node: node number (starting from 1 for the root node),

attribute: the attribute used for the split in the node,

value: the value used for the split in the node,

class: the class label assigned to the node,

count: the number of instances in the node,

p.*: the estimated class probabilities for each class in the node.

This is sufficient to represent a binary decision tree with equality-based or inequality-based
splits, to which the examples are limited. The assignment of instances to decision tree nodes is
represented by a vector containing the numbers of nodes to which the corresponding instances
are assigned. Notice that the init function also sets two auxiliary variables: clabs storing
class labels and cprobs storing the indices of class probability columns in the tree data
frame. It also initializes the n variable, indicating the currently processed node.

Subsequent examples will demonstrate the remaining steps of the decision tree growing
process using the tree initialized in this example. They will assume the data, attributes,
andclass variable assignments presented above and follow the same convention of grouping
R expressions performing modifications of the tree structure into functions referring to these
variables for easier reusage. It is worthwhile to inspect thetree data frame and the nodemap
vector whenever they are modified.

3.3.2 Class distribution calculation

This operation determines, for an open node n, the corresponding class probabilities P(d|n)
for all classes d ∈ C based on the set of training instances Tn assigned to the node:

P(d|n) = PTn
(d) =

|Td
n ||Tn| (3.9)

where d in the superscript is used to designate the selection of instances of class d. Class
probabilities can be stored in the node regardless of whether it becomes a closed node or a
closed leaf later. They will be used for class label assignment and split selection.
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Example 3.3.2 The following R code uses the pdisc function for estimating discrete

Ex. 2.4.22
dmr.stats

probability distributions to implement class probability calculation for a decision
tree node. The resulting class.distribution function, which also takes
care of setting the instance count, is then applied to the root node of the previously
initialized decision tree for the weather data.

class.distribution <- function(n)
{
tree$count[tree$node==n] <<- sum(nodemap==n)
tree[tree$node==n,cprobs] <<- pdisc(data[nodemap==n,class])

}

class.distribution(n)

3.3.3 Class label assignment

As mentioned above, the first direct application of class probabilities calculated for an open
node is to select a class label for it. Except for a special situation of nonuniform misclassi-
fication costs, discussed extensively in Chapter 6, assigning the most probable class label is
always the most reasonable choice:

dn = argmax
d∈C

P(d|n) (3.10)

It minimizes the probability of misclassification of any instance if the node became a
closed leaf.

In the case of more than one class having exactly the same maximum probability, it makes
most sense to break ties based on which of them is more probable in the parent node, unless
n is the root node, for which ties can be broken arbitrarily or based on some background
knowledge. One particularly important situation when this parent-based tie breaking policy
will have to be applied is when the set of training instances assigned to the node is empty,
resulting in P(d|n) = 0 for all d ∈ C. It can happen if the corresponding outcome of the split
used in the parent node is not obtained for any of its training instances. This does not have
to be taken into account only if all available splits are binary, since a binary split yielding the
same outcome for all training instances to which it is applied would be useless and should not
be selected in the parent node anyway.

Example 3.3.3 The following R code continues the decision tree growing demonstration for
the weather data by performing class label assignment, based on the class probability estimates
calculated in the previous example. This actually assigns the numerical representation of the
maximum-probability class, but it may be easily converted to the original representation using
class labels stored in the clabs variable upon the completion of decision tree growing.

class.label <- function(n)
{
tree$class[tree$node==n] <<- which.max(tree[tree$node==n,cprobs])

}

class.label(n)
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3.3.4 Stop criteria

The stop criteria are used to decide whether a given open node requires no further split and
should become a closed leaf. It is most instructive to consider first the most definite stop criteria
which, when satisfied, would make applying any further splits impossible or undoubtedly
pointless. They will be referred to as strict stop criteria. Their relaxed forms may be used to
prevent growing overly large trees.

3.3.4.1 Strict criteria

The following three strict stop criteria for decision tree growing can be applied to each node n:

Uniform class. All training instances in the node are of the same class dn, i.e., P(d|n) = 0
for d ≠ dn; this makes any further splits totally useless, since any possible descendants
of n would receive the very same class label dn and any possible subtree starting in n
would classify any instances in exactly the same way as n alone.

No instances left. The set of training instances assigned to the node is empty, i.e., Tn = ∅,
and splitting the empty set clearly cannot lead to any further improvement; similarly as
above, any possible descendants of n would receive the very same class label dn and
any possible subtree starting in n would classify any instances in exactly the same way
as n alone.

No splits left. There is no split that can be applied to further partition the current subset of
training instances Tn, either because all available splits have been already used up on
the path from the root to n, or every split not yet used gives the same outcome for all
instances from Tn, which would put them to the same branch; this means, again, that any
possible descendants of n would receive the very same class label dn and any possible
subtree starting in n would classify all instances in exactly the same way as n alone.

This first of these stop criteria is the “regular” and most desired one. It corresponds to
the situation when the sequence of splits applied on the path from the root to the current
node has successfully identified a subset of training instances of the same class. When this
node becomes a leaf, it will therefore accurately classifies all of these instances (and hopefully
achieves good accuracy for new instances as well). The second stop criterion, which may have
to be employed only if nonbinary splits are used (otherwise we would have already stopped at
the parent node due to the third criterion), does not give a similar comfort of creating a leaf that
accurately classifies some portion of the training set, but it will not contribute to any training
set inaccuracy, either. The leaf created in this situation does not participate in the classification
of the training set at all, but it has to be there in case there are some new instances to which the
tree will be eventually applied arriving at that point. The class label inherited from the parent
node provides the best possible way of classifying them. The last stop criterion can be rather
considered an “emergency” one: we are forced to stop without reaching a uniform class since
there is no possibility of growing further. This is the only situation in which the created leaf
will inaccurately classify some of the training instances. It is important to notice, however,
that it can only happen if there are instances in the training set that cannot be separated by the
available set of splits despite belonging to different classes. Since it is reasonable to assume
that any complete set of splits should allow one to separate any two instances which differ
on least at one attribute value, those must be instances from different classes with the same
attribute value vectors. It is not at all uncommon for realistic datasets and can result from
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either data noise or an insufficient set of attributes. Since these indistinguishable instances
will be assigned the most probable class, the resulting inaccuracy on the training set will be
as small as possible (and completely unavoidable).

3.3.4.2 Relaxed criteria

It is easy to see that the first two of the above strict stop criteria can be easily relaxed. Instead of
requiring a single uniform class, we may choose to stop when the probability of the dominating
class is sufficiently high. Similarly, instead of waiting for the empty set of instances we may
choose to stop when the current subset of training instances is sufficiently small. It is common
to use such relaxed stop criteria. They result in creating smaller trees that do not achieve
the highest possible training set accuracy, but may actually generalize better and turn out
to be more accurate on new data. This corresponds to the belief that simplicity reduces the
risk of overfitting, known as Ockham’s razor. Another (and usually more reliable) way of
creating smaller trees with better generalization properties is pruning, and such stop criteria
can be considered attempts to make computational savings by preventing growing subtrees
that would likely get pruned anyway.

A more technical, but sometimes useful stop criterion for decision tree growing is based
on the maximum tree depth. No further splits are performed after a sufficiently long path has
been created (i.e., for nodes created on the specified maximum tree level). In a sense, this can
be thought of as a relaxed version of the “no splits left” criterion, as it sets the limit on the
number of splits used along each tree path.

Example 3.3.4 The following R code demonstrates simple stop criteria checking for the root
node of the decision tree for the weather data. Two of the three criteria discussed above
are checked, in their relaxed versions: “uniform class” (by comparing the probability of the
dominating class against the maxprob threshold) and “no instances left” (by comparing the
number of instances corresponding to the node against the minsplit threshold). Addition-
ally, the more technical maximum tree depth criterion is checked, by comparing the node’s
number to 2 ̂maxdepth. The three stop criteria parameters:

• maxprob – the maximum dominating class probability allowed for a split,

• minsplit – the minimum number of instances required for a split,

• maxdepth – the maximum tree depth,

are specified via variables for the sake of this demonstration. All these criteria are obviously
found to be unsatisfied for the root node of the decision tree for the weather data.

maxprob <- 0.999
minsplit <- 2
maxdepth <- 8

stop.criteria <- function(n)
{
n>=2 ̂maxdepth || tree$count[tree$node==n]<minsplit ||
max(tree[tree$node==n,cprobs])>maxprob

}

stop.criteria(n)
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3.3.5 Split selection

If the stop criteria presented above are used in the basic strict form, the resulting decision
tree will achieve the maximum training set accuracy possible with the available set of splits,
regardless of the split selection method. As we have seen, only leaves created due to the lack
of splits that could separate training instances of different classes contribute to misclassifica-
tion, and only a richer set of available splits (corresponding to an enhanced set of attributes)
could overcome the problem. If we were only concerned with the training set performance,
splits could be selected completely arbitrarily, e.g., at random or in the lexicographic order
of attributes and values. Of course, we are concerned with generalization, i.e., the expected
performance on new data, and this is why split selection matters.

3.3.5.1 Preference for simplicity

Most, if not all, practically used decision tree algorithms use split selection as an opportunity
(or one of opportunities) to introduce the preference for simplicity, which is one of the most
common types of inductive bias. Following the principle of Ockham’s razor, smaller trees
are believed to be less prone to overfitting. Despite some controversies about the validity of
this principle in general, it lies behind the standard approach to split selection, which can be
phrased as follows: try to select splits that, under given stop criteria, will lead to growing small
trees. Whenever a split for a node is selected, it should preferably make the subtrees connected
to this node as small as possible.

There are several possible formal and informal interpretations of decision tree complexity
or decision tree size. The one that is particularly simple and easy to adopt for split selection
is that based on the average path length (i.e., the average number of splits between the root
node and leaves). To minimize the average path length, each node’s split should minimize the
average length of subpaths starting in the node. Although this minimization cannot be achieved
exactly without actually building all complete subtrees for each candidate split (which would
turn the growing process into an exhaustive search over all possible trees), reasonably good
heuristics can be used for approximate minimization. The idea is to select splits that decrease
the impurity of class distribution in the resulting subsets, i.e., increase the domination of one
or more classes over the others. This is motivated by the hope that a subset containing only
or mostly instances of one class will be reached after a small number of splits, and a leaf will
be created.

3.3.5.2 Impurity measures

Several different measures can be used to characterize the impurity of class distribution in a
set of instances. The two particularly popular ones are the entropy and the Gini index, defined
in Section 2.4.2.

3.3.5.3 Split evaluation

To see how impurity measures such as the entropy or Gini index can be used for split evalua-
tion, consider a node n and a candidate split t ∶ X → Rt. By applying an impurity measure
to the set of estimated class probabilities in this node, i.e., calculating ETn

(c) or GITn
(c),

we would only see how good or bad this node is at identifying one or more dominating
classes, without finding out anything about the candidate split. To achieve the latter, we have
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to consider subsets Tn,t=r for all r ∈ Rt to which the current set of training instances Tn is
partitioned by the candidate split, and measure the class distribution impurity for them. This
requires that the class probability estimates be calculated for each of these subsets:

PTn,t=r
(d) = PTn

(c = d|t = r) (3.11)

Using the entropy as an example, we would then measure the class distribution impurity in
the subset corresponding to outcome r of the candidate split t as ETn,t=r

(c). The split can be
evaluated by the weighted average of such per-outcome entropies:

ETn
(c|t) = ∑

r∈Rt

|Tn,t=r||Tn| ETn,t=r
(c) (3.12)

The weights in this average are based on the proportions in which the current set of training
instances is partitioned into subsets corresponding to the possible outcomes of t, i.e., subset
entropies are weighted proportionally to subset sizes. Notice that, since

|Tn,t=r||Tn| can be inter-
preted as the estimated probability of split t taking outcome r, PTn

(t = r), the latter is in fact
the conditional entropy of the target concept given the split, as it matches directly the defini-
tion of the latter presented in Section 2.5.3. The same averaging should be applied to the Gini
index or any other impurity measure used. Split selection can be then performed by minimizing
any of these weighted average impurity measures over all available splits (assuming they all
assign smaller values to smaller impurity).

It is not uncommon to use slightly modified split evaluation functions, measuring not just
the class distribution impurity obtained after the split, but rather the decrease of the impurity.
It is defined as the difference between the impurity for the subset of instances corresponding
to the node in which the split is to be applied and the weighted average impurity of the subsets
corresponding to split outcomes. For the entropy, the difference can be written as follows:

ΔETn
(c|t) = ETn

(c) − ETn
(c|t) (3.13)

and is called the information gain, although, by comparing to the definition presented in
Section 2.5.3, it can also be easily seen to be the same as the mutual information for the
target concept c and split t, ITn

(c, t). Since the first term does not depend on the evaluated
split, the information gain will lead to selecting exactly the same splits as the entropy (as long
as it is maximized rather than minimized). Its advantage is that it not only indicates which
split is the best, but also how much improvement it gives. This is sometimes used to define an
additional stop criterion that converts a node to a leaf when the improvement due to the best
available split is too small. The corresponding difference for the Gini index can be defined
similarly and used in the same way.

Example 3.3.5 The following R code snippet defines the weighted.impurity function
that calculates the weighted impurity based on the supplied class probability distributions
and instance counts for the true and false split condition outcomes. The impurity measure
passed via the imp parameter is assumed to accept a probability distribution on input. The

Ex. 2.4.26,
2.4.27
dmr.stats

entropy.p or gini.p functions for calculating the entropy and the Gini index
can be used for this purpose. The application of the weighted.impurity
function to evaluating the split based on the outlook==overcast condition
is demonstrated.
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weighted.impurity <- function(pd1, n1, pd0, n0, imp=entropy.p)
{
weighted.mean(c(imp(pd1), imp(pd0)), c(n1, n0))

}

# weighted impurity of play for outlook=overcast and outlook!=overcast
weighted.impurity(pdisc(weather$play[weather$outlook=="overcast"]),

sum(weather$outlook=="overcast"),
pdisc(weather$play[weather$outlook!="overcast"]),
sum(weather$outlook!="overcast"))

Example 3.3.6 The following R code defines functions that can be used to evaluate and select

Ex. 2.4.26,
2.4.27
dmr.stats

splits using the entropy and the Gini index as impurity measures, and then demon-
strates their application to the root node of the tree for the weather data. The
entropy.p and gini.p functions are used for calculating the entropy and the
Gini index based on supplied discrete probability distributions.

Notice that the split.eval function detects useless splits that give the same outcome
for all instances and makes sure that they will not be selected (by returning Inf). Its return
value is checked by the split.select function which actually makes no split selection if
the best available split is useless. This in fact indirectly implements the “no splits left” stop
criterion.

It is also worthwhile to notice that the split.select and split.eval functions
include support for inequality-based splits for continuous attributes. The corresponding parts

dmr.util
of the code are easily located by the references to the is.numeric function. The
midbrk utility function is used to determine inequality thresholds for continuous
attribute splits. This capability is not demonstrated at this point, though, since there
are no continuous attributes in the weather data.

split.eval <- function(av, sv, cl)
{
cond <- !is.na(av) & (if (is.numeric(av)) av<=as.numeric(sv) else av==sv)

pd1 <- pdisc(cl[cond])
n1 <- sum(cond)
pd0 <- pdisc(cl[!cond])
n0 <- sum(!cond)

if (n1>0 && n0>0)
weighted.impurity(pd1, n1, pd0, n0, imp)

else
Inf

}

split.select <- function(n)
{
splits <- data.frame()
for (attribute in attributes)
{
uav <- sort(unique(data[nodemap==n,attribute]))
if (length(uav)>1)
splits <- rbind(splits,

data.frame(attribute=attribute,
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value=if (is.numeric(uav))
midbrk(uav)

else as.character(uav),
stringsAsFactors=FALSE))

}

if (nrow(splits)>0)
splits$eval <- sapply(1:nrow(splits),

function(s)
split.eval(data[nodemap==n,splits$attribute[s]],

splits$value[s],
data[nodemap==n,class]))

if ((best.eval <- min(splits$eval))<Inf)
tree[tree$node==n,2:3] <<- splits[which.min(splits$eval),1:2]

best.eval
}

# entropy-based split selection
imp <- entropy.p
split.select(n)

# Gini index-based split selection
imp <- gini.p
split.select(n)

As we can see, the split outlook=overcast is ranked the best with respect to both the
entropy and the Gini index.

3.3.5.4 Reducing split selection complexity

While the issues of computational complexity and implementation efficiency are generally
not addressed by this book, two possibilities of computational savings for membership-based
splits and inequality-based splits are worthwhile to mention, since they are based on simple
properties of these split types. For these two split types, the complexity of split selection can
be reduced by narrowing down the set of candidate splits.

Consider candidate membership-based splits for attribute a ∶ X → A at node n. Assuming
a two-class classification task, all possible values of a can be ordered monotonically with
respect to the conditional probabilities of class 1 given attribute values in this node:

PTn
(c = 1|a = 𝑣1) ≤ PTn

(c = 1|a = 𝑣2) ≤ · · · ≤ PTn
(c = 1|a = 𝑣|A|) (3.14)

It is easy to verify that class impurity can be only minimized by one of the following splits:

t(x) =

{
1 if a(x) ∈ {𝑣1, … , 𝑣k}
0 otherwise

(3.15)

for k = 1, 2, … , |A| − 1. This observation – valid both for the entropy and the Gini index used
as impurity measures – reduces the number of splits to consider from 2|A| − 2 to |A| − 1.
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Reducing the number of candidate splits for continuous attributes is also based on attribute
value ordering, but it does not require the two-class assumption. In this case, all values of a
continuous attribute a in the subset of training instances corresponding to node n are ordered
monotonically 𝑣1 ≤ 𝑣2 ≤ · · · ≤ 𝑣k. An inequality-based split can separate each pair of adja-
cent values, but it can be verified that splits separating values 𝑣j, 𝑣j+1 such that for all d ∈ C
the corresponding conditional class probabilities are the same:

PTn
(c = d|a = 𝑣j) = PTn

(c = d|a = 𝑣j+1) (3.16)

cannot minimize class impurity and therefore do not have to be considered as candidates.

3.3.6 Split application

When a split t ∶ X → Rt for a node n has been selected, new descendant nodes nr for all
r ∈ Rt can be created, corresponding to each of its possible outcomes. These new nodes are
marked as open, to get processed in subsequent iterations of the algorithm. The set of training
instances Tn corresponding to the parent node has to be partitioned into subsets corresponding
to the newly created descendant nodes, Tn,t=r for r ∈ Rt. This completes the current iteration
of the algorithm and node n can be marked as closed.

Example 3.3.7 The following R code shows how to apply the previously selected split to
partition the training set into subsets. This results in creating two new nodes, numbered 2
and 3, of the decision tree for the weather data. The partitioning is accomplished by alter-
ing the assignment of instances to nodes represented by the nodemap vector. Notice that
both equality-based splits for discrete attributes and inequality-based splits for continuous
attributes are supported by the split.apply function, although it is only the former that
are needed for the weather data.

split.apply <- function(n)
{
tree <<- rbind(tree,

data.frame(node=(2*n):(2*n+1),
attribute=NA, value=NA, class=NA, count=NA,
‘names<-‘(rep(list(NA), length(clabs)),

paste("p", clabs, sep="."))))

av <- data[[tree$attribute[tree$node==n]]]
cond <- !is.na(av) & (if (is.numeric(av))

av<=as.numeric(tree$value[tree$node==n])
else av==tree$value[tree$node==n])

nodemap[nodemap==n & cond] <<- 2*n
nodemap[nodemap==n & !cond] <<- 2*n+1

}

split.apply(n)

3.3.7 Complete process

All operations performed during a single iteration of top-down decision tree growing have
been presented above. After a number of iterations, when there are no more open nodes left,
the growing process terminates, yielding a completely grown tree.
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Example 3.3.8 It is worthwhile to note that the code from the previous examples illustrat-
ing the operations of class distribution calculation, class label assignment, split selection, and
split application can be applied again to process the newly created nodes, by passing con-
secutive node numbers via the n argument of the corresponding functions. Of course, split
selection and split application only makes sense for nodes not satisfying the stop criteria. It
can be verified that after 13 iterations the growing process will complete, yielding the deci-
sion tree represented by the following data frame (with class labels converted to the original
representation):

node attribute value class count p.no p.yes
1 1 outlook overcast yes 14 0.3571429 0.6428571
2 2 <NA> <NA> yes 4 0.0000000 1.0000000
3 3 humidity high no 10 0.5000000 0.5000000
4 6 outlook rainy no 5 0.8000000 0.2000000
5 7 wind high yes 5 0.2000000 0.8000000
6 12 wind high no 2 0.5000000 0.5000000
7 13 <NA> <NA> no 3 1.0000000 0.0000000
8 14 outlook rainy no 2 0.5000000 0.5000000
9 15 <NA> <NA> yes 3 0.0000000 1.0000000
10 24 <NA> <NA> no 1 1.0000000 0.0000000
11 25 <NA> <NA> yes 1 0.0000000 1.0000000
12 28 <NA> <NA> no 1 1.0000000 0.0000000
13 29 <NA> <NA> yes 1 0.0000000 1.0000000

It is also quite straightforward to use the code from the above series of weather
examples to create a very simple and inefficient, but easy to understand and working
implementation of decision tree growing. The only missing piece is the main loop. Such
an implementation is presented below. The grow.dectree function implemented by
the following R code organizes the iterative processing of decision tree nodes, using the
init, class.distribution, class.label, stop.criteria, split.eval,
split.select, and split.apply functions from the previous examples as its internal
functions. Two additional utility functions, x.vars and y.var, are used to extract the

dmr.util
attribute and class names from the input formula, to make the implemen-
tation applicable to other datasets. Apart from the formula and dataset, the
grow.dectree function receives the impurity evaluation function and stop cri-
teria parameters as its optional arguments. The class attribute of the resulting tree object is
set to dectree to enable the appropriate prediction method dispatching and a method for
conversion to a data frame is provided.

## a simple decision tree growing implementation
grow.dectree <- function(formula, data,

imp=entropy.p, maxprob=0.999, minsplit=2, maxdepth=8)
{
init <- function()
{
clabs <<- factor(levels(data[[class]]),

levels=levels(data[[class]])) # class labels
tree <<- data.frame(node=1, attribute=NA, value=NA, class=NA, count=NA,

‘names<-‘(rep(list(NA), length(clabs)),
paste("p", clabs, sep=".")))

cprobs <<- (ncol(tree)-length(clabs)+1):ncol(tree) # class probability columns
nodemap <<- rep(1, nrow(data))
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n <<- 1
}

next.node <- function(n)
{
if (any(opn <- tree$node>n))
min(tree$node[opn])

else Inf
}

class.distribution <- function(n)
{
tree$count[tree$node==n] <<- sum(nodemap==n)
tree[tree$node==n,cprobs] <<- pdisc(data[nodemap==n,class])

}

class.label <- function(n)
{
tree$class[tree$node==n] <<- which.max(tree[tree$node==n,cprobs])

}

stop.criteria <- function(n)
{
n>=2 ̂maxdepth || tree$count[tree$node==n]<minsplit ||
max(tree[tree$node==n,cprobs])>maxprob

}

split.eval <- function(av, sv, cl)
{
cond <- !is.na(av) & (if (is.numeric(av)) av<=as.numeric(sv) else av==sv)
pd1 <- pdisc(cl[cond])
n1 <- sum(cond)
pd0 <- pdisc(cl[!cond])
n0 <- sum(!cond)

if (n1>0 && n0>0)
weighted.impurity(pd1, n1, pd0, n0, imp)

else
Inf

}

split.select <- function(n)
{
splits <- data.frame()
for (attribute in attributes)
{
uav <- sort(unique(data[nodemap==n,attribute]))
if (length(uav)>1)
splits <- rbind(splits,

data.frame(attribute=attribute,
value=if (is.numeric(uav))

midbrk(uav)
else as.character(uav),

stringsAsFactors=FALSE))
}

if (nrow(splits)>0)
splits$eval <- sapply(1:nrow(splits),

function(s)
split.eval(data[nodemap==n,splits$attribute[s]],

splits$value[s],
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data[nodemap==n,class]))
if ((best.eval <- min(splits$eval))<Inf)
tree[tree$node==n,2:3] <<- splits[which.min(splits$eval),1:2]

best.eval
}

split.apply <- function(n)
{
tree <<- rbind(tree,

data.frame(node=(2*n):(2*n+1),
attribute=NA, value=NA, class=NA, count=NA,
‘names<-‘(rep(list(NA), length(clabs)),

paste("p", clabs, sep="."))))

av <- data[[tree$attribute[tree$node==n]]]
cond <- !is.na(av) & (if (is.numeric(av))

av<=as.numeric(tree$value[tree$node==n])
else av==tree$value[tree$node==n])

nodemap[nodemap==n & cond] <<- 2*n
nodemap[nodemap==n & !cond] <<- 2*n+1

}

tree <- nodemap <- n <- NULL
clabs <- cprobs <- NULL
class <- y.var(formula)
attributes <- x.vars(formula, data)

init()
while (is.finite(n))
{
class.distribution(n)
class.label(n)
if (!stop.criteria(n))
if (split.select(n)<Inf)
split.apply(n)

n <- next.node(n)
}
tree$class <- clabs[tree$class]
‘class<-‘(tree, "dectree")

}

## convert a dectree object to a data frame
as.data.frame.dectree <- function(x, row.names=NULL, optional=FALSE, ...)
{ as.data.frame(unclass(x), row.names=row.names, optional=optional) }

# grow a decision tree for the weather data
tree <- grow.dectree(plaỹ., weather)

# grow a decision tree for the weatherc data
treec <- grow.dectree(plaỹ., weatherc)

# data frame conversion
as.data.frame(tree)
as.data.frame(treec)

The grow.dectree function is called above for the weather data, yielding the tree
presented before, and additionally for the weatherc data. The latter gives an opportunity to
illustrate the continuous attribute support capability of the split.eval, split.select,
and split.apply functions, and yields the following tree:
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node attribute value class count p.no p.yes
1 1 outlook overcast yes 14 0.3571429 0.6428571
2 2 <NA> <NA> yes 4 0.0000000 1.0000000
3 3 temperature 25 no 10 0.5000000 0.5000000
4 6 temperature 16 yes 7 0.2857143 0.7142857
5 7 <NA> <NA> no 3 1.0000000 0.0000000
6 12 <NA> <NA> no 1 1.0000000 0.0000000
7 13 humidity 85 yes 6 0.1666667 0.8333333
8 26 <NA> <NA> yes 5 0.0000000 1.0000000
9 27 <NA> <NA> no 1 1.0000000 0.0000000

3.4 Pruning

Decision tree pruning is an insurance policy against overfitting motivated by Ockham’s razor.
It can be considered an inverse of growing that results in cutting off some overgrown subtrees
and replacing them by leaves with the intention to improve the tree’s generalization capability.
It might seem totally unreasonable to waste computational resources on growing a tree and
then pruning it by just throwing away several nodes with so carefully selected splits. One
might be tempted to avoid this waste by using more refined stop criteria that would prevent
creating poor nodes and growing useless subtrees. This approach is known as prepruning.

After some more thought, however, one can easily conclude that it is not possible, in
general, to reliably evaluate the utility of any subtree without actually growing it. While we
might try to use relaxed stop criteria to prevent growing subtrees that would likely get pruned
later, there is some inherent risk associated with such computational savings, which should be
always taken with care and adopted only when the computation time really matters. In most
cases, pruning appears to be the best way of achieving good generalization with decision trees.

To fully describe a pruning algorithm, we need to specify the following major components
thereof:

Pruning operators. Which determine how the operation of cutting off nodes from the tree
is exactly performed.

Pruning criterion. Which determines how to judge whether a pruning operator should be
applied to a given node.

Pruning control strategy. Which determines the order in which candidate nodes for pruning
are considered.

These are discussed more extensively below, with particular emphasis put on pruning criteria
which are the essential components of pruning algorithms, and to which the other components
are usually adjusted appropriately.

Example 3.4.1 In subsequent examples illustrating decision tree pruning, we will continue
to use the weather data, but instead of the tree created by the simple decision tree growing
implementation presented previously, we will use a tree grown by the much more refined
implementation provided by the rpart package, calling the rpart function as follows:

rptree <- rpart(plaỹ., weather, minsplit=2)

The resulting tree can be easily verified to be essentially identical to the one presented in
the previous example, subject to slightly different assignment of split outcomes to left/right
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branches and of course a different representation. Using rpart for pruning examples
provides an opportunity to demonstrate how to extract split information from an rpart
object. The reader may consider using the code presented in the forthcoming examples to
actually implement pruning for trees created either using rpart or grow.dectree as an
exercise.

3.4.1 Pruning operators

The basic and most common pruning operator, employed by all known decision tree pruning
algorithms, is the subtree cutoff operator, which replaces a selected node by a leaf. The
leaf should be assigned the majority class label of the corresponding subset of training
instances. This is one reason why it is convenient to assign class labels to nodes during
tree growing – when it comes to pruning, the labels are already there. This operator can be
thought of as “ungrowing” an overgrown subtree.

A somewhat less obvious and much less commonly used pruning operator is the node
removal operator, which consists in replacing a selected node by one of its descendants. More
precisely, the descendant node with the largest corresponding subset of training instances
takes place of its parent node, and the other descendants are dropped (with any subtrees rooted
at them completely removed). This operator is a relatively gentle way of “withdrawing” from
a split that turned out not to be very useful, without regrowing the whole subtree. It would
usually make sense only if the descendant nodes being dropped correspond to a small subset
of instances.

Example 3.4.2 A graphical illustration of the most common subtree cutoff operator is gener-
ated by the following R code. It plots both the original rpart tree for the weather data created
in the previous example and a modified version thereof, in which cutting off the node with
the outlook=sunny split is simulated by selecting an appropriate data subset. Figure 3.2
shows the resulting trees, before and after subtree cutoff.

# simulate cutoff of the subtree starting from the outlook=sunny split
rptree.stc <- rpart(plaỹ., weather, subset=!(outlook %in% c("rainy", "sunny") &

humidity=="high" & outlook!="sunny"),
minsplit=2, cp=0)

prp(rptree, varlen=0, faclen=0, main="Before subtree cutoff")
prp(rptree.stc, varlen=0, faclen=0, main="After subtree cutoff")

3.4.2 Pruning criterion

The pruning criterion is used to make decisions whether a given pruning operator should
be applied to a given node or not. This is done by comparing the original subtree rooted at
the node and a new subtree (in particular, a single leaf for the most common subtree cutoff
operator) with respect to some quality measures. The number of pruning criteria described in
the literature and used by practical implementations is quite large and still likely to increase.
We will briefly describe just a few representative examples. For simplicity, the discussion
will be limited to the first and most common subtree cutoff pruning operator, but some of the
presented criteria can be adapted to the node removal operator as well.
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Before subtree cutoff

outlook = rainy,sunny

humidity = high

outlook = sunny

wind = high

wind = high

outlook = rainyno

no yes no yes

yes

yes

yes no

After subtree cutoff

outlook = rainy,sunny

humidity = high

wind = high

outlook = rainy

no

no yes

yes

yes

yes no

Figure 3.2 An illustration of the subtree cutoff pruning operator.

3.4.2.1 Reduced error pruning

The idea of reduced error pruning comes directly from the goal of pruning, which is to improve
the generalization capability of a decision tree. Assuming the misclassification error is used as
the performance measure, the criterion is based on comparing the error of the original subtree
and the leaf that would be replacing it. In fact, the original subtree would (nearly) always
win if the error were calculated on the training set, but this clearly would not say anything
about generalization. The reduced error pruning assumes instead, according to standard model
evaluation principles, that a separate labeled dataset R is maintained, called the pruning set,
and used to calculate the errors to be compared.

Let eR(n) and eR(l) denote the errors of the original node n and the replacing leaf l, respec-
tively, measured on the pruning set R. Both these errors are calculated as the fractions of
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instances in Rn – the subset of R corresponding to n – misclassified by the subtree rooted at
node n and by leaf n, respectively. The reduced error pruning criterion would recommend to
replace node n by leaf l if

eR(l) ≤ eR(n) (3.17)

If the leaf performs no worse than the original subtree on a separate dataset, then using it to
replace the subtree may improve the tree’s generalization capability, since it is likely to reduce
the true misclassification error (which justifies the name of this criterion, by the way).

It could be easily considered the perfect pruning criterion unless its application were so
often prevented by “data economy” issues. To provide sufficiently reliable error estimates
even for low-level nodes (where pruning is most likely to be needed), a considerable number
of pruning instances may be required, at least comparable to the number of training instances
used for growing. Unless we have a plethora of labeled data which have to be sampled anyway
due to computational constraints, it may be unreasonable to leave out such a substantial portion
of the available data from the growing process, since this may considerably impact the quality
of the grown tree. Even a perfectly pruned, but poorly grown tree may turn out inferior to a
better grown, but not so perfectly pruned tree. This justifies the existence and common use of
other pruning criteria, which assume that the same set of training instances must be used for
both growing and pruning.

Example 3.4.3 The following R code defines a set of simple functions that calculate the error
of a given leaf of an rpart decision tree on a given dataset and demonstrates how they can be
applied to the decision tree grown for the weather data. The subset of instances corresponding
to the leaf is determined by using a rule extracted from the tree, represented by the conjunction
of split conditions occurring on the path from the root to the leaf. This is accomplished by the
rewrite.splits and extract.rule functions.

## transform rpart split conditions to a convenient form
rewrite.splits <- function(cond)
{
ss <- strsplit(cond, "=")[[1]]
attribute=ss[1]
values <- sapply(strsplit(ss[2], ",")[[1]], deparse)
newcond <- paste(attribute, "==", values, sep="", collapse="|")
return(paste("(", newcond, ")", sep=""))

}

## extract a rule from an rpart tree corresponding to the path from the root
## to a given node
extract.rule <- function(rp, node)
{
path <- path.rpart(rp, node, print.it=FALSE)[[1]][-1]
ifelse(length(path)>0, paste(sapply(path, rewrite.splits), collapse="&"), "TRUE")

}

## calculate the error of a given node, if treated as a leaf
leaf.error <- function(rp, node, data, class)
{
rule <- extract.rule(rp, node)
dsub <- eval(parse(text=rule), data)
lab <- levels(class)[rp$frame$yval[row.names(rp$frame)==node]]
sum(lab!=class[dsub])/nrow(data[dsub,])

}
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# error of node 1, if treated as a leaf
leaf.error(rptree, 1, weather, weather$play)
# error of node 3, which is actually a leaf

leaf.error(rptree, 3, weather, weather$play)
# error of node 4, if treated as a leaf

leaf.error(rptree, 4, weather, weather$play)

The following R code implements node error calculation, as the error of the complete
subtree rooted at a given node, and again demonstrates its application to the decision tree
grown for the weather data.

## check whether a given node is a leaf of an rpart tree
rp.leaf <- function(rp, node)
{
rp$frame$var[row.names(rp$frame)==node]=="<leaf>"

}

## calculate the number of instances corresponding to a node
node.card <- function(rp, node, data)
{
rule <- extract.rule(rp, node)
dsub <- eval(parse(text=rule), data)
nrow(data[dsub,])

}

## calculate the error of the subtree rooted at a given node
node.error <- function(rp, node, data, class)
{
if (rp.leaf(rp, node))
leaf.error(rp, node, data, class)

else
{
el <- node.error(rp, 2*node, data, class)
nl <- node.card(rp, 2*node, data)
er <- node.error(rp, 2*node+1, data, class)
nr <- node.card(rp, 2*node+1, data)
weighted.mean(c(el, er), c(nl, nr))

}
}

# error of node 1
node.error(rptree, 1, weather, weather$play)
# error of node 3, which is actually a leaf

node.error(rptree, 3, weather, weather$play)
# error of node 4

node.error(rptree, 1, weather, weather$play)

Although all illustrative R code presented in this book is written without any care for
efficiency, with the readability only kept in mind, this one stands out as particularly inefficient
(which, luckily, is no problem for the small dataset used). This is because it requires indepen-
dently extracting multiple tree paths and applying them as rules to identify the corresponding
subsets of instances. The error of an internal tree node is calculated as the weighted average
of its descendants’ errors. It is easy to see that this approach is exactly equivalent to directly
using the subtree rooted at the node to classify the given set of instances and calculating the
misclassification rate, as long as the leaf.error function returns the misclassification rate
of a given leaf.



Trim size: 170mm x 244mmCichosz c03.tex V3 - 11/04/2014 10:20 A.M. Page 95

PRUNING 95

In this example, node error calculation is demonstrated using the same dataset on which
the tree was grown, which violates the key assumption of reduced error pruning and serves
the illustration purpose only. Since the tree perfectly fits the training set which is also used to
calculate errors, we are guaranteed to obtain an error value of 0 for any node. It is therefore not
at all surprising that the following R code, which checks the reduced error pruning criterion,
finds no candidates for pruning.

# check which nodes satisfy the REP criterion
sapply(as.integer(row.names(rptree$frame)),

function(node)
{
!rp.leaf(rptree, node) &&
leaf.error(rptree, node, weather, weather$play)<=
node.error(rptree, node, weather, weather$play)

})

3.4.2.2 Pessimistic pruning

The idea of pessimistic pruning is based on the obvious observation that the error of a subtree
estimated on the same set of instances on which the subtree was grown has to be optimistically
biased and therefore needs a pessimistic correction. The criterion can be written as

eT (l) ≤ ẽT(n) (3.18)

which is essentially the same inequality as for reduced error pruning with the exception that
the training set T is used to estimate errors and the error of the original subtree rooted at node
n is pessimistically corrected, which is designated by using a tilde. The correction is achieved
by adding a correction term as follows:

ẽT (n) = eT(n) +

√
êT (n)(1 − êT (n))|Tn| (3.19)

The correction term can be thought of as an estimate of the error’s standard deviation, and
adding it to the original error is equivalent to taking an upper boundary of the correspond-
ing confidence interval, but this should be considered rather an intuitive explanation of this
approach than a strict and formal justification. Since the training set misclassification error
of unpruned subtrees may often be 0, the standard deviation estimate uses a modified error
estimate êT(n). The simplest way of calculating it that works reasonably well in practice is to
always assume that “a half of an instance” is misclassified:

êT (n) =
|{x ∈ Tn | hn(x) ≠ c(x)}| + 0.5|Tn| (3.20)

where hn denotes the classification model represented by the subtree rooted at n. A somewhat
more modern and more refined approach would be to use an m-estimate instead:

êT (n) =
|{x ∈ Tn | hn(x) ≠ c(x)}| + mp|Tn| + m

(3.21)
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or its Laplace version obtained when assuming p = 0.5 and m = 2:

êT (n) =
|{x ∈ Tn | hn(x) ≠ c(x)}| + 1|Tn| + 2

(3.22)

These two probability estimation techniques are presented in Section 2.4.4.

Example 3.4.4 The following R code defines a function for calculating the pessimistic
estimate of node error (in the last presented version, using the Laplace estimator) and
demonstrates how it can be applied to the decision tree grown for the weather data.

## calculate the PEP error of the subtree rooted at a given node
node.pep.error <- function(rp, node, data, class)
{
e <- node.error(rp, node, data, class)
n <- node.card(rp, node, data)
e1 <- (e*n+1)/(n+2)
e + sqrt(e1*(1-e1)/n)

}

# PEP error of node 1
node.pep.error(rptree, 1, weather, weather$play)
# PEP error of node 4

node.pep.error(rptree, 1, weather, weather$play)

It turns out that the pessimistic error pruning criterion finds no candidates for pruning in
the tree, which can be verified using this R code:

# check which nodes would get pruned under the PEP criterion
sapply(as.integer(row.names(rptree$frame)),

function(node)
{
!rp.leaf(rptree, node) &&
leaf.error(rptree, node, weather, weather$play)<=
node.pep.error(rptree, node, weather, weather$play)

})

3.4.2.3 Minimum error pruning

The minimum error pruning (MEP) criterion is a more elegant and better controllable way
of achieving the same objectives as pessimistic error pruning, i.e., comparing training set
errors of the node under consideration and the replacing leaf with some compensation for the
inherent optimistic bias. It estimates the error of any leaf l as 1’s complement of its m-estimated
accuracy. It is calculated using the technique of m-estimation presented in Section 2.4.4 as
follows:

êT(l) = 1 −
|{x ∈ Tl | c(x) = dl}| + mp|Tl| + m

(3.23)

where in the lack of better knowledge the a priori probability of class dl is taken to be p = 1|C|
or estimated on the complete training set, and m remains an adjustable parameter. For any node
n, the error estimate êT (n) is obtained as the average of error estimates for its descendants,
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weighted by the numbers of training instances corresponding to them:

êT (n) =
∑

n′∈N(n)

|Tn′ ||Tn| êT(n′) (3.24)

where N(n) is the set of all the descendants (nodes and leaves) of node n.
In effect, the error estimates for leaves calculated as shown above are propagated upward

to nodes. Such error up-propagation would clearly result in exactly the same node error as
calculated in the usual direct way if leaf errors were plain misclassification rates, but since
they are based on m-estimated leaf accuracies to avoid optimistic bias, the resulting node
error will also be pessimistically corrected, to an extent depending on the value of m.

Now if we consider the particular candidate node for pruning n and the leaf l that could
replace it, the MEP criterion is the obvious inequality for the not-so-obvious error estimates:

êT (l) ≤ êT(n) (3.25)

Since the errors of leaves are calculated based on their m-estimated accuracy, they are the
more affected by the m “fictitious” instances the smaller subset of their “real” instances.
Even perfectly accurate leaves of the original subtree may therefore achieve quite poor error
estimates for sufficiently large m, and these estimates are propagated upward to obtain the
error estimate of the whole original subtree. The leaf considered as a replacement will have
the number of instances equal to the number of all training instances corresponding to the
original subtree, which will be usually substantially larger than the number of instances cor-
responding to each of its individual leaves. Its error estimate will therefore be much less
affected by the m “fictitious” instances and it can win in the comparison. As this interpre-
tation clearly shows, the m parameter can be used to adjust the aggressiveness of pruning
(the larger, the more nodes are likely to get pruned) and it should be tuned for a particular
dataset. Noisy datasets, for which there is a higher risk of overfitting, will usually require
larger values of m.

Example 3.4.5 The following R code defines a function for calculating the minimum error
pruning error estimate for leaves, and demonstrates its application to the decision tree grown
for the weather data.

## calculate the MEP error of a given node, if treated as a leaf
leaf.mep.error <- function(rp, node, data, class, m)
{
e <- leaf.error(rp, node, data, class)
n <- node.card(rp, node, data)
nc <- (1-e)*n
p <- as.double(pdisc(class)[rp$frame$yval[row.names(rp$frame)==node]])
1-(nc+m*p)/(n+m)

}

# MEP error of node 1, if treated as a leaf, for m=0, 2, 5
leaf.mep.error(rptree, 1, weather, weather$play, m=0)
leaf.mep.error(rptree, 1, weather, weather$play, m=2)
leaf.mep.error(rptree, 1, weather, weather$play, m=5)
# MEP error of node 3, which is actually a leaf, for m=0, 2, 5

leaf.mep.error(rptree, 3, weather, weather$play, m=0)
leaf.mep.error(rptree, 3, weather, weather$play, m=2)
leaf.mep.error(rptree, 1, weather, weather$play, m=5)
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# MEP error of node 4, if treated as a leaf, for m=0, 2, 5
leaf.mep.error(rptree, 4, weather, weather$play, m=0)
leaf.mep.error(rptree, 4, weather, weather$play, m=2)
leaf.mep.error(rptree, 4, weather, weather$play, m=5)

For m = 0, we obtain the regular leaf error, and for larger m the amount of pessimistic com-
pensation increases. The following R code shows how the corresponding node error estimate
can be calculated through error up-propagation.

## calculate the MEP error of the subtree rooted at a given node
node.mep.error <- function(rp, node, data, class, m)
{
if (rp.leaf(rp, node))
leaf.mep.error(rp, node, data, class, m)

else
{
el <- node.mep.error(rp, 2*node, data, class, m)
nl <- node.card(rp, 2*node, data)
er <- node.mep.error(rp, 2*node+1, data, class, m)
nr <- node.card(rp, 2*node+1, data)
weighted.mean(c(el, er), c(nl, nr))

}
}

# MEP error of node 1 for m=0, 2, 5
node.mep.error(rptree, 1, weather, weather$play, m=0)
node.mep.error(rptree, 1, weather, weather$play, m=2)
node.mep.error(rptree, 1, weather, weather$play, m=5)
# MEP error of node 3, which is actually a leaf, for m=0, 2, 5

node.mep.error(rptree, 3, weather, weather$play, m=0)
node.mep.error(rptree, 3, weather, weather$play, m=2)
node.mep.error(rptree, 3, weather, weather$play, m=5)
# MEP error of node 4 for m=0, 2, 5

node.mep.error(rptree, 4, weather, weather$play, m=0)
node.mep.error(rptree, 4, weather, weather$play, m=2)
node.mep.error(rptree, 4, weather, weather$play, m=5)

For m = 0, we obtain the regular node error, which is equal to 0 for a tree perfectly fitted to
the training set, and for larger m, the amount of pessimistic compensation increases. Finally,
the following R code verifies whether there are any candidates for MEP for a few different
values of m:

# check which nodes would get pruned under the MEP criterion
# for m=2

sapply(as.integer(row.names(rptree$frame)),
function(node)
{
!rp.leaf(rptree, node) &&
leaf.mep.error(rptree, node, weather, weather$play, m=2)<=
node.mep.error(rptree, node, weather, weather$play, m=2)

})

# for m=5
sapply(as.integer(row.names(rptree$frame)),

function(node)
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{
!rp.leaf(rptree, node) &&
leaf.mep.error(rptree, node, weather, weather$play, m=5)<=
node.mep.error(rptree, node, weather, weather$play, m=5)

})

# for m=10
sapply(as.integer(row.names(rptree$frame)),

function(node)
{
!rp.leaf(rptree, node) &&
leaf.mep.error(rptree, node, weather, weather$play, m=10)<=
node.mep.error(rptree, node, weather, weather$play, m=10)

})

As we can see, no node would get pruned for m = 2, for m = 5 the MEP is satisfied for
exactly one node (node 5), and for m = 10 it is additionally satisfied for the root node.

3.4.2.4 Cost-complexity pruning

Instead of trying to reliably estimate the expected error on new data using the training set,
which is hard to achieve, cost-complexity pruning makes an explicit use of Ockham’s razor.
If smaller trees should be indeed expected to generalize better, then the original subtree has
to be punished for its complexity before its error can be fairly compared with the error of the
replacement leave. This yields the following criterion:

eT (l) ≤ eT (n) + 𝛼C(n) (3.26)

where the C(n) represents the complexity of the subtree rooted at n, measured by the number
of nodes. Adding the error to the number of nodes is of course as arbitrary as it goes, and
there is no universally good way of setting the 𝛼 coefficient, called the complexity parameter,
other than tuning. Although, the method is simple and (in a sense) elegant, and given the fact
that parameter tuning may be required for some other pruning criteria as well, it may not be
a bad choice. The complexity parameter represents the required amount of error reduction
per single node. All nodes that do not yield at least this amount of error reduction should be
pruned off the tree.

Whereas the inequality presented above describes the essential idea of cost-complexity
pruning simply and consistently with the description of other pruning criteria, it does not
accurately represent the standard way of applying this approach to pruning, which is somewhat
more refined. It consists in identifying, for a given value of 𝛼, the smallest pruned tree that
minimizes the sum

eT (n1) + 𝛼C(n1) (3.27)

where n1 is the root node. Such a tree is called the optimally pruned tree with respect to
𝛼. It can be shown that for any two values of the complexity parameter 𝛼1 and 𝛼2, the cor-
responding optimally pruned trees are either identical or can be made identical by prun-
ing off some subtrees of the larger of them (which would be clearly the one correspond-
ing to the smaller value of the complexity parameter). The number of different optimally
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pruned trees corresponding to all possible values of the complexity parameter is at most equal
to the number of nodes in the original, unpruned tree. Each of those trees corresponds to
an interval of 𝛼 values for which it remains optimally pruned. As 𝛼 is increased above the
upper boundary of this interval, one or more bottom-level nodes (i.e., one-level subtrees) will
get pruned off. This observation suggests that cost-complexity pruning can be applied in a
bottom-up order and, for a fixed value of the complexity parameter, only one-level subtrees
(consisting of a node with its descendant leaves) have to be considered (if a node does not get
pruned, then its parent node does not have to be considered for pruning, since it would not get
pruned either).

An important consequence of the last observation is that the maximum value of the com-
plexity parameter for which a node would be retained (not pruned off) can be determined
immediately after its split has been selected, by assuming its descendants would be leaves.
It makes it possible to efficiently identify the sequence of the optimally pruned trees and the
corresponding complexity parameter intervals after completing the growing process. Find-
ing the right value of 𝛼 does not therefore require explicit parameter tuning by separately
pruning the tree with respect to a number of complexity parameter values and comparing the
quality of the obtained pruned trees. Instead, all possible pruned trees can be considered as
soon as the original tree has been grown. Selecting one of them still requires a quality mea-
sure, which is typically based on the cross-validated misclassification error (i.e., the k-fold
cross-validation technique, discussed in Section 7.3.4, is employed internally to estimate the
expected effects of pruning). The most obvious approach would be to prune the tree at the
complexity level corresponding to the minimum cross-validated error. This may be referred to
as minimum-error cost-complexity pruning. There may be, however, several optimally pruned
trees, corresponding to different complexity parameter intervals, achieving very similar error
levels. This would make the choice of the ultimate pruned tree somewhat arbitrary. A reason-
able rule of thumb is to estimate the standard deviation of error during cross-validation and
then select the smallest tree of those with the error within the distance of one standard deviation
from the minimum error. This may be referred to as one-standard-deviation cost-complexity
pruning. Cost-complexity pruning is the pruning method implemented in the rpart pack-
age in R.

The implicit complexity parameter tuning by internal k-fold cross-validation makes
cost-complexity pruning computationally costly and nondeterministic. Different cross-
validated performance estimates can be obtained on multiple independent runs, result-
ing in different pruning complexity level selections. A more modern reinterpretation of
cost-complexity pruning is based on the minimum encoding principle, where both the error
and the complexity are expressed by information-theoretic measures and therefore can
be added quite naturally without any complexity parameter used as an “exchange rate”
between them. This saves the computations needed to tune the complexity parameter by
cross-validation and avoids the associated nondeterminism, but is arbitrary to some extent by
assuming the direct relationship between complexity and predictive performance.

3.4.3 Pruning control strategy

The pruning control strategy is responsible for deciding, whenever the pruning criterion is sat-
isfied for more than one node and pruning operator, which operator and for which node should
be applied first. The order may have considerable impact on the overall effect of pruning,



Trim size: 170mm x 244mmCichosz c03.tex V3 - 11/04/2014 10:20 A.M. Page 101

PRUNING 101

and different control strategies are likely to produce different final trees of different quality.
The control strategy is usually one of the following:

Bottom-up. This considers nodes for pruning starting from the last level and going upward.

Top-down. This considers nodes for pruning starting from the root node and going
downward.

Best-first. This considers nodes and operators for pruning in the order implied by the pos-
sible resulting improvement indicated by the pruning criterion.

The control strategy can also be some mix of them. The first two strategies only resolve the
order of nodes, which is nearly always sufficient (especially given the fact that it is rather
uncommon to use more than one pruning operator), but otherwise they would have to fall
back to the best-first strategy. The latter exploits the nature of pruning criteria specified by
inequalities which, when satisfied, can also be used to measure the expected improvement as
the difference between the compared quantities (e.g., error estimates before and after pruning).

A successful pruning algorithm needs a good combination of the pruning criterion and
the pruning control strategy. Some pruning criteria tend to work well with one control strat-
egy and poorly with another. When a pruning algorithm is designed, it is rather the pruning
criterion that comes first and the control strategy is chosen to best match the criterion. The
bottom-up and best-first strategies (pure or in a combined form) appear to be much more fre-
quent than the top-down strategy, which usually turns out too aggressive. In particular, all of
the most common pruning criteria presented above are typically coupled with the bottom-up
strategy.

3.4.4 Conversion to rule sets

An interesting alternative to decision tree pruning is changing the model representation by
converting the tree to a rule set and then pruning in this new representation. A decision tree
can be converted to a set of rules in a straightforward way, with exactly one rule corresponding
to every path from the root node to a leaf. Such a rule is created by writing down a conjunction
of conditions corresponding to all splits on a given path, followed by the class label of the
leaf the path leads to. For a path represented by a sequence of splits t1, t2, … , tk and their
outcomes r1, r2, … , rk leading to a leaf l with the class label dl the following rule would be
created, presented in a simple logic-like notation:

t1(x) = r1 ∧ t2(x) = r2 ∧ · · · ∧ tk(x) = rk → dl (3.28)

3.4.4.1 Pruning rule sets

Pruning rule sets are similar to pruning decision trees with the following important differences:

Different operators. The main pruning operator is condition removal which removes a
selected single condition from the conjunctive antecedent of a selected rule, and an
additional pruning operator is rule removal which eliminates a selected rule from the
rule set completely.

Different control strategies. The bottom-up and top-down strategies are not applicable to
rule sets for obvious reasons, and either the best-first or last-first strategies (with the
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order of conditions corresponding to the order of splits on the path from which the rule
originated) can be applied.

The pruning criteria remain mostly the same, except for those specifically designed for trees
and dependent of their hierarchical structure, like MEP, and cost-complexity pruning, although
some criteria specifically designed for rule sets can also be employed.

More important than the plain pruning criteria is, however, the proper way of their applica-
tion. Whatever error estimates (or, more generally, quality measures) we would like to employ
to evaluate the effect of the condition removal operator, they can be applied either on a per-rule
basis or to the whole rule set. The former means that we only observe how removing a condi-
tion from a rule affects the estimated quality of this single rule, and in the latter case we are
concerned with the resulting change of the quality of the whole rule set. Taking the reduced
error pruning as an example, we might compare the before and after pruning error of the rule
or of the whole rule set.

It may not be quite self-evident why the above distinction actually matters. When we alter
one rule at a time, without touching any other rules, the resulting change of error for the
whole rule set might appear to be necessarily the same as for this single rule. Some more
thought is needed to see that it indeed may be the same, but not quite necessarily. The origi-
nal rule set obtained from a decision tree has a nice disjoin property, which means that there
is exactly one rule matching any possible instance from the whole domain (as long as all
split outcomes used in rule conditions can be unambiguously determined). This is because
every instance always reaches a single leaf of the original tree (under the same assumption).
When a condition of a rule gets removed, there may be more possible instances satisfying
its conjunctive conditions, possibly including some instances already covered by other rules.
It opens the possibility of some instances being covered by several overlapping rules with
the same or different class labels, which means that the observed change of error for a sin-
gle pruned rule might not be the same as the observed change of error for the whole rule
set. Since the ultimate objective of pruning is to improve the generalization capability of
the rule set as a whole, it should be used to evaluate the effects of condition removals for
single rules.

The possibility of overlapping rules altered by pruning implies the risk of conflicts during
rule set application, if two or more rules matching the same instance do not predict the same
unique class label. This requires some conflict resolution techniques be employed to choose
the most appropriate class label. Discussing them extensively is beyond the scope of this
chapter, but one common choice is a weighted voting scheme, with rule weights based on the
number of covered training instances.

Note that in decision tree pruning when we consider replacing a node with a leaf, they
both have the same sets of corresponding (pruning or training) instances, used for calculating
errors or other quality estimates. It is not the case for rule pruning, when the set of instances
covered by a rule will likely increase after condition removal and only because of this its qual-
ity may change. Luckily, it is easy to see that whenever a single rule appears to be improved
due to pruning, the whole rule set will also be usually improved. This is because the rule,
to appear better, must correctly classify most of the additional instances it started to cover
after pruning, which usually prevents it from degrading the rule set’s quality (under a reason-
able conflict resolution technique). Only the reverse is not always true, i.e., even if a single
rule appears to get worse after pruning, the whole set does not necessarily get worse. This
means that the simple approach of judging the effects of condition removal in a single rule
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based only on the change of the error of this rule is also acceptable and should be safe in
most cases.

3.4.4.2 Flexibility of rule set pruning

Whenever a node with its subtree gets pruned in a decision tree and replaced by a leaf, all
paths going through the node are cut and terminated in the leaf. To achieve an equivalent
effect in a rule-set representation one would have to replace all rules with some common
prefix of their condition conjunctions (corresponding to the path from the root to the pruned
node) and different remainders (corresponding to the paths from the pruned node to leaves)
with a single rule, with the conjunction of conditions cut to this common prefix. It appears
quite a radical operation for a rule set, showing how “gentle” the condition removal operator
is in comparison. This “gentleness” of pruning is the major advantage of conversion to rule
sets, as it allows one to perform much more fine-grained model modifications, possibly
leading to better generalization.

Not only the operation of removing a single condition from a single rule is much more
delicate than cutting off a complete subtree, but it is also capable of detecting the utility of
conditions or the lack thereof depending on the context provided by other conditions. Even the
condition corresponding to the split from the root node of the original decision tree, although
it will be usually perfectly useful in most rules, may turn out to be unnecessary or harmful in
some rules and get removed from them. In a decision tree every node either stays in place or
goes away from all paths it belongs to, although – even assuming perfect split selection – it
may not be necessary for all of them. By replacing a hierarchical tree structure by a flat rule-set
representation, we release every node from its fixed position in the hierarchy and make it pos-
sible to independently either sustain or drop any condition in any rule. Again, this possibility
to evaluate the utility of rule conditions in a particular context provided by other conditions
allows one to perform much more fine-grained model modifications, possibly leading to better
generalization.

It is not uncommon to give yet another argument supporting the conversion of decision
trees to rule sets: the human readability of models. This argument should not be taken without
some skepticism, though. While both decision trees and rule sets are symbolic representa-
tions of classification models and are thus undoubtedly human readable, it is hard to give
unquestionable reasons to find rule sets superior to decision trees in that respect. This may
be a matter of subjective personal preference rather than any objective advantages. Actually,
it may be even easier to argue about some disadvantages of the rule-set representation.
While rule sets might indeed appear more readable on a very superficial “syntactic” level,
their correct interpretation is often more difficult, given the possible overlapping of rules
(i.e., multiple rules covering the same instances). Whereas appropriate conflict-resolution
strategies can successfully deal with this issue during model application, they hardly help a
human comprehend the model and explain its predictions.

3.5 Prediction

Applying a decision tree model to an arbitrary dataset from the same domain which the train-
ing set used during modeling came from makes it possible to generate predicted class labels.
A decision tree which stores class distribution information for its leaves can also be used as a
probabilistic classifier, i.e., to predict class probabilities.
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3.5.1 Class label prediction

The application of a previously grown and possibly pruned decision tree to generate class label
predictions for a dataset boils down to identifying leaves where particular instances from the
dataset land when propagated through the tree. This requires for each instance sequentially
applying splits and descending along branches corresponding to their outcomes, starting from
the root node, until a leaf is reached, which provides the predicted class label for the instance.
Clearly, the split application operation previously discussed for decision tree growing is used
here multiple times, until all instances arrive at the corresponding leaves.

Example 3.5.1 The R code presented below implements the decision tree prediction oper-
ation, assuming the tree representation as created in the growing examples. Notice that the
internal recursive descend function closely follows the pattern of the previously presented
split.apply function, and – as the latter – supports both equality-based splits for discrete
attributes and inequality-based splits for continuous attributes. Predictions are then generated
for the weather data, assuming that the previously grown decision tree is stored in the tree
variable, and for the weatherc data, assuming that the previously grown decision tree is stored
in the treec variable, as shown in Example 3.3.8.

## decision tree prediction
predict.dectree <- function(tree, data)
{
descend <- function(n)
{
if (!is.na(tree$attribute[tree$node==n])) # unless reached a leaf
{
av <- data[[tree$attribute[tree$node==n]]]
cond <- !is.na(av) & (if (is.numeric(av))

av<=tree$value[tree$node==n]
else
av==tree$value[tree$node==n])

nodemap[nodemap==n & cond] <<- 2*n
nodemap[nodemap==n & !cond] <<- 2*n+1
descend(2*n)
descend(2*n+1)

}
}

nodemap <- rep(1, nrow(data))
descend(1)
tree$class[match(nodemap, tree$node)]

}

# decision tree prediction for the weather data
predict(tree, weather)
# decision tree prediction for the weatherc data

predict(treec, weatherc)

3.5.2 Class probability prediction

As described above, class label assignment is usually the straightforward maximization of
the node’s or the leaf’s class probability estimate, with the only exception being the case of
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nonuniform misclassification costs, discussed in Chapter 6. Sometimes it may be more con-
venient, however, not to assign class labels during tree growing (or not use them later, even
if assigned), but to postpone the class label assignment process till the prediction time. The
decision tree as a probabilistic classification model would output the estimated class proba-
bility distribution for each instance it is applied to. When an instance x to be classified reaches
a single leaf l, the tree’s output can be obtained as

P(d|x) = P(d|l) (3.29)

which gives the estimated probability of instance x belonging to class d, for all d ∈ C. A sep-
arate decision-making mechanism may ultimately use the probability distribution to classify
the instance to whatever class appears to be most appropriate. This gives us the flexibility
to change the misclassification costs anytime without altering the decision tree. It also trans-
forms a decision tree model into a scoring classifier, which can be analyzed and optimized via
the receiver operating characteristic curve, as presented in Section 7.2.5.

3.6 Weighted instances

Notice that the use of data instances for decision tree growing and pruning is limited to count-
ing. Indeed, all operations performed in both these phases of creating decision tree models
that directly use the data only need the sizes of subsets of instances satisfying appropriate
conditions. These conditions, in general, can be conjunctions including:

• the selection of instances associated with a particular node,

• the selection of instances with a particular split outcome,

• the selection of instances of a particular class.

Specifically, when growing a tree from a training set T , to apply stop and split selection
criteria at node n, one just needs |Td

n | and |Td
n,t=r| for all classes d, for all splits t and their

outcomes r. Similarly, when pruning a tree based on pruning set R, to apply pruning criteria
to node n, it is sufficient to determine Rd

n for all classes d. It makes it possible for decision tree
induction algorithms to use weighted instances, i.e., to act as weight-sensitive algorithms.

Achieving the weight sensitivity is nearly effortless, boiling down to appropriately redefin-
ing counts as weight sums. For any subset of instances the size of which is normally used, it
should be replaced by the sum of weights for the instances in this set. In particular, for the
counts mentioned above, one should assume

|Td
n,t=r| = ∑

x∈Td
n,t=r

𝑤x (3.30)

|Td
n | = ∑

x∈Td
n

𝑤x (3.31)

|Rd
n| = ∑

x∈Rd
n

𝑤x (3.32)

where 𝑤x denotes the weight assigned to instance x.
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The most important benefit resulting from the capability of using weighted instances is the
possibility of easily incorporating nonuniform misclassification costs. The instance weight-
ing technique is directly applicable to decision trees and can be used to create cost-sensitive
decision tree models whenever misclassification costs are specified on a per-class basis (i.e.,
via a cost vector). This possibility is extensively discussed and demonstrated in Section 6.3.1.

3.7 Missing value handling

The problem of missing attribute values is common for all data mining algorithms. Many of
them can benefit from some general-purpose imputation techniques applied in a data prepro-
cessing phase, as discussed in Section 17.3.4. Some algorithms may just degrade gracefully
when applied to incomplete data and some others may employ special techniques to han-
dle missing values during model building and application. Decision trees fall into this last
category, although such “internal” missing value handling induces considerable extra compu-
tational cost and the preprocessing approach may be sometimes a viable alternative.

There are two major approaches to internal missing value handling in decision tree induc-
tion and prediction:

Fractional instances. Whenever a split on an attribute with missing value is considered or
applied, each incomplete instance is virtually replaced by several instances correspond-
ing to all possible split outcomes, with a fractional “copy count,”

Surrogate splits. A number additional splits are stored for each node, apart from the ordi-
nary main split, and used to dispatch instances for which the outcome of the main split
cannot be determined due to missing attribute values.

Some more details about these two approaches are provided below.

3.7.1 Fractional instances

The idea of fractional instances is to always consider all possible split outcomes for an instance
with a missing value of the split attribute and assign them appropriate weights or probabilities,
based on the observed distribution of known outcomes. This is equivalent to replacing the
original instance with several virtual instances, one per split outcome, each having a fractional
number of “copies,” equal to the corresponding outcome probability.

Consider a node n with a split t ∶ X → Rt which has to be evaluated or applied. If the
outcome of split t cannot be determined due to a missing attribute value, each possible outcome
r ∈ Rt is considered with the probability

P(t = r|n) = |Tn,t=r||Tn| − |Tn,t=?| (3.33)

where Tn,t=? denotes the subset of Tn for which the outcome of test t is unknown due to
missing values of the tested attribute. Subtracting the number of instances in this set in the
denominator above, it is necessary to obtain split outcome probabilities based on instances
for which the outcome is known only. Instead of assigning an instance with a missing value
to a single subset, corresponding to a single split outcome, its fractions are then assigned to
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the subsets corresponding to all possible outcomes. Such virtual fractional instances can be
further processed in exactly the same way as real regular instances with just one exception:
Whenever the size of a subset of instances has to be determined, each regular instance counts
as 1 whereas each fractional instance counts as the corresponding probability weight. This
is the same redefinition of subset size as weight sum that was presented in Section 3.6 when
discussing the use of weighted instances.

3.7.1.1 Growing with fractional instances

During tree growing fractional instances make it possible to evaluate and use splits on
attributes with missing values. Of all the major growing steps discussed above, only split
selection (or, more precisely, split evaluation) and split application need to be substantially
modified.

Split evaluation with fractional instances Recall that split evaluation by a selected impurity
measure is based on the class probability distribution for each possible split outcome, i.e.,
PTn,t=r

(d) for all d ∈ C and r ∈ Rt. If the split outcome is unknown for some attribute values,
these should be estimated as follows:

PTn,t=r
(d) =

|Td
n,t=r| + P(t = r|n)|Td

n,t=?
||Tn,t=r| + P(t = r|n)|Tn,t=?| (3.34)

This is equivalent to assigning fractions of instances with missing values of the tested attribute
to all possible split outcomes, with “copy counts,” equal to the corresponding outcome proba-
bilities. Notice that no explicit assignment of fractional “copy counts” to individual instances
is actually needed for split evaluation. Instead, a fraction of the number of instances of class
d with an unknown split outcome is added to the number of instances of class d and split
outcome r.

Other than this modified way of class probability estimation for split outcomes, no other
changes are needed in the split evaluation process. In particular, the calculation of the entropy,
Gini index, or any other impurity measure goes exactly the usual way, since they are all based
on class probability distributions.

Split application with fractional instances Unlike for split evaluation, during split appli-
cation individual instances have their fractional “copy counts” assigned, also referred to as
weights. This is necessary to dispatch an instance with a missing value of the split attribute
along all branches, corresponding to all split outcomes. For a node n with split t ∶ X → Rt
and instance x for which t(x) is unknown the “copy count” or weight of x at descendant node
nr, corresponding to outcome r of split t, will be calculated as

𝑤x,nr
= P(t = r|n)𝑤x,n (3.35)

where 𝑤x,n is the “copy count” of the instance x at the node n. For the root node the “copy
counts” of all instances are set to 1 or user-specified instance weights. The latter makes it
possible to use fractional instances for missing value handling with weight-sensitive deci-
sion trees.
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It is not unlikely that before reaching a leaf a fractional instance will arrive at another node
where a split on the same or another attribute with a missing value will have to be evaluated or
applied. This will lead to creating “fractions of fractions”: the already fractional instances will
be replaced by new fractional instances, with probability weights obtained by multiplying the
previous weight by split outcome probabilities. In effect, when an instance arrives to a leaf,
it may have gone through several “fractionization” operations and its probability weight may
be the product of the corresponding split outcome probabilities.

As mentioned above, the direct consequence of “copy counts” being assigned to instances
at nodes is that all instance counts need to be calculated as “copy count” sums. In other words,
subset size needs to be reinterpreted as “copy count” sum over subset members, i.e.

|S| = ∑
x∈S

𝑤x,n (3.36)

for any subset S ⊆ Tn.

Example 3.7.1 The previously presented decision tree growing implementation took a very
primitive approach to missing value handling, considering the split condition unsatisfied for
instances with missing values (i.e., always assigning such instances to the branch correspond-
ing to the false split outcome). The following R code contains a modified implementation that
includes missing value support by the technique of fractional instances. Notice the following
major changes:

Ex. 2.4.25
dmr.stats

• the mapping of instances to nodes is no longer represented by a simple vector, but by
a matrix containing the instance, node, and weight columns, to make it possible
to have (fractions of) a single instance assigned to multiple nodes,

• class distribution calculation takes instance weights into account and is per-
formed using the weighted.pdisc function,

• the split.eval and split.apply functions perform instance fractionization.

The grow.dectree.frac function is applied to modified versions of the weather and
weatherc datasets, with some attribute values removed.

## a simple decision tree growing implementation
## with missing value support using fractional instances
grow.dectree.frac <- function(formula, data,

imp=entropy.p, maxprob=0.999, minsplit=2, maxdepth=8)
{
nmn <- function(n) { nodemap[,"node"]==n } # nodemap entries for node n
inn <- function(n)
{ nodemap[nodemap[,"node"]==n,"instance"] } # instances at node n
wgn <- function(n) { nodemap[nodemap[,"node"]==n,"weight"] } # weights at node n

init <- function()
{
clabs <<- factor(levels(data[[class]]),

levels=levels(data[[class]])) # class labels
tree <<- data.frame(node=1, attribute=NA, value=NA, class=NA, count=NA,

‘names<-‘(rep(list(NA), length(clabs)),
paste("p", clabs, sep=".")))
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cprobs <<- (ncol(tree)-length(clabs)+1):ncol(tree) # class probability columns
nodemap <<- cbind(instance=1:nrow(data), node=rep(1, nrow(data)),

weight=rep(1, nrow(data)))
n <<- 1

}

next.node <- function(n)
{
if (any(opn <- tree$node>n))
min(tree$node[opn])

else Inf
}

class.distribution <- function(n)
{
tree[tree$node==n,"count"] <<- sum(wgn(n))
tree[tree$node==n,cprobs] <<- weighted.pdisc(data[inn(n),class], w=wgn(n))

}

class.label <- function(n)
{
tree$class[tree$node==n] <<- which.max(tree[tree$node==n,cprobs])

}

stop.criteria <- function(n)
{
n>=2 ̂ maxdepth || tree[tree$node==n,"count"]<minsplit ||

max(tree[tree$node==n,cprobs])>maxprob
}

split.eval <- function(av, sv, cl, w)
{
cond <- if (is.numeric(av)) av<=as.numeric(sv) else av==sv
cond1 <- !is.na(av) & cond # true split outcome
cond0 <- !is.na(av) & !cond # false split outcome

pd1 <- weighted.pdisc(cl[cond1], w=w[cond1])
n1 <- sum(w[cond1])
pd0 <- weighted.pdisc(cl[cond0], w=w[cond0])
n0 <- sum(w[cond0])
pdm <- weighted.pdisc(cl[is.na(av)], w=w[is.na(av)])
nm <- sum(w[is.na(av)])

if (nm>0)
{
p1 <- if (n1+n0>0) n1/(n1+n0) else 0.5
p0 <- 1-p1
pd1 <- (n1*pd1 + p1*nm*pdm)/(n1+p1*nm)
n1 <- n1 + p1*nm
pd0 <- (n0*pd0 + p0*nm*pdm)/(n0+p0*nm)
n0 <- n0 + nm*p0

}

if (n1>0 && n0>0)
weighted.impurity(pd1, n1, pd0, n0, imp)

else
Inf

}

split.select <- function(n)
{
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splits <- data.frame()
for (attribute in attributes)
{
uav <- sort(unique(data[inn(n),attribute]))
if (length(uav)>1)
splits <- rbind(splits,

data.frame(attribute=attribute,
value=if (is.numeric(uav))

midbrk(uav)
else as.character(uav),

stringsAsFactors=FALSE))
}

if (nrow(splits)>0)
splits$eval <- sapply(1:nrow(splits),

function(s)
split.eval(data[inn(n),splits$attribute[s]],

splits$value[s],
data[inn(n),class], wgn(n)))

if ((best.eval <- min(splits$eval))<Inf)
tree[tree$node==n,2:3] <<- splits[which.min(splits$eval),1:2]

return(best.eval)
}

split.apply <- function(n)
{
tree <<- rbind(tree,

data.frame(node=(2*n):(2*n+1),
attribute=NA, value=NA, class=NA, count=NA,
‘names<-‘(rep(list(NA), length(clabs)),

paste("p", clabs, sep="."))))

av <- data[nodemap[,"instance"],tree$attribute[tree$node==n]]
cond <- if (is.numeric(av)) av<=as.numeric(tree$value[tree$node==n])

else av==tree$value[tree$node==n]
cond1 <- !is.na(av) & cond # true split outcome
cond0 <- !is.na(av) & !cond # false split outcome

n1 <- sum(nodemap[nmn(n) & cond1,"weight"])
n0 <- sum(nodemap[nmn(n) & cond0,"weight"])
nm <- sum(nodemap[nmn(n) & is.na(av),"weight"])

nodemap[nmn(n) & cond1,"node"] <<- 2*n
nodemap[nmn(n) & cond0,"node"] <<- 2*n+1

if (nm>0)
{
p1 <- if (n1+n0>0) n1/(n1+n0) else 0.5
p0 <- 1-p1
newnn <- nodemap[nmn(n) & is.na(av),,drop=FALSE]
nodemap[nmn(n) & is.na(av),"weight"] <<-
p1*nodemap[nmn(n) & is.na(av),"weight"]

nodemap[nmn(n) & is.na(av),"node"] <<- 2*n
newnn[,"weight"] <- p0*newnn[,"weight"]
newnn[,"node"] <- 2*n+1
nodemap <<- rbind(nodemap, newnn)

}
}

tree <- cprobs <- nodemap <- n <- NULL
clabs <- cprobs <- NULL
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class <- y.var(formula)
attributes <- x.vars(formula, data)

init()
while (is.finite(n))
{
class.distribution(n)
class.label(n)
if (!stop.criteria(n))
if (split.select(n)>Inf)
split.apply(n)

n <- next.node(n)
}
tree$class <- clabs[tree$class]
‘class<-‘(tree, "dectree.frac")

}

## convert a dectree.frac object to a data frame
as.data.frame.dectree.frac <- function(x, row.names=NULL, optional=FALSE, ...)
{ as.data.frame(unclass(x), row.names=row.names, optional=optional) }

# grow a decision tree for the weather data with missing attribute values
weatherm <- weather
weatherm$outlook[1] <- NA
weatherm$humidity[1:2] <- NA
treem <- grow.dectree.frac(plaỹ., weatherm)

# grow a decision tree for the weatherc data with missing attribute values
weathercm <- weather
weathercm$temperature[1:2] <- NA
weathercm$humidity[1] <- NA
treecm <- grow.dectree.frac(plaỹ., weathercm)

# data frame conversion
as.data.frame(treem)
as.data.frame(treecm)

3.7.1.2 Prediction with fractional instances

When a decision tree is applied to an instance with missing attribute values, things get only
a little more complicated. Split application is performed as during growing until all instances
reach leaves. It is important to underline that split outcome probabilities required for instance
fractionization are the same as those estimated during decision tree growing, based on the
training set.

Each of fractional instances replacing an original instance with missing values will clearly
end up in a different leaf, with a possibly different class label. To make the final classification
decision, a weighted voting mechanism may be used, with weights assigned based on instance
fractions. More exactly, we can interpret the fraction of x arriving to l (i.e., the probability
weight of the corresponding fractional instance) as the probability of leaf l for instance x,
taking P(l|x) = 𝑤x,l, and classify x to the class with the largest sum of leaf probabilities:

h(x) = argmax
d∈C

∑
l

P(l|x)Idl=d
(3.37)

where the summation runs over all decision tree leaves and the Icondition notation is used to
denote an indicator function that yields 1 when the condition is satisfied and 0 otherwise.
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A more refined approach that should be usually preferred uses class distribution infor-
mation for decision tree leaves, as during probabilistic classification. Class label voting is
replaced by probability voting (or, actually, averaging), which is basically the application of
the law of total probability:

P(d|x) = ∑
l

P(l|x)P(d|l) (3.38)

Again, the summation runs over all leaves. This approach combines class probabilities
stored in decision tree leaves to obtain predicted class probabilities for the instance being
classified.

Example 3.7.2 The R code presented below implements decision tree prediction with
fractional instances. The internal descend function is a minor modification of the
split.apply function used for growing. The probability voting approach is used to
calculate class probabilities and output the highest probability classes.

## decision tree prediction
## with missing value support using fractional instances
predict.dectree.frac <- function(tree, data)
{
nmn <- function(n) { nodemap[,"node"]==n } # nodemap entries for node n

descend <- function(n)
{
if (!is.na(tree$attribute[tree$node==n])) # unless reached a leaf
{
av <- data[nodemap[,"instance"],tree$attribute[tree$node==n]]
cond <- if (is.numeric(av)) av<=as.numeric(tree$value[tree$node==n])

else av==tree$value[tree$node==n]
cond1 <- !is.na(av) & cond # true split outcome
cond0 <- !is.na(av) & !cond # false split outcome

nodemap[nmn(n) & cond1, "node"] <<- 2*n
nodemap[nmn(n) & cond0, "node"] <<- 2*n+1

if (sum(nodemap[nmn(n) & is.na(av), "weight"])>0)
{
n1 <- tree$count[tree$node==2*n]
n0 <- tree$count[tree$node==2*n+1]
p1 <- if (n1+n0>0) n1/(n1+n0) else 0.5
p0 <- 1-p1

newnn <- nodemap[nmn(n) & is.na(av),,drop=FALSE]
nodemap[nmn(n) & is.na(av),"weight"] <<-
p1*nodemap[nmn(n) & is.na(av),"weight"]

nodemap[nmn(n) & is.na(av), "node"] <<- 2*n
newnn[,"weight"] <- p0*newnn[,"weight"]
newnn[,"node"] <- 2*n+1
nodemap <<- rbind(nodemap, newnn)

}

descend(2*n)
descend(2*n+1)

}
}
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nodemap <- cbind(instance=1:nrow(data), node=rep(1, nrow(data)),
weight=rep(1, nrow(data)))

descend(1)

clabs <- factor(levels(tree$class), levels=levels(tree$class))
votes <- merge(nodemap, as.data.frame(tree)[,c("node", "class",

paste("p", clabs, sep="."))])
cprobs <- (ncol(votes)-length(clabs)+1):ncol(votes)
clabs[by(votes, votes$instance,

function(v) which.max(colSums(v$weight*v[,cprobs])))]
}

# decision tree prediction for the weather data with missing attribute values
predict(treem, weatherm)

# decision tree prediction for the weatherc data with missing attribute values
predict(treecm, weathercm)

3.7.2 Surrogate splits

This approach to handling missing values is based on multiplicating splits rather than frac-
tionizing instances. If the outcome of a split cannot be determined for an instance, the latter
is leaved unchanged in its original form, but a surrogate split (based on another attribute) is
used instead of the former. Surrogate splits have to be selected during decision tree growing
and stored at nodes, just as primary splits. It is only the split selection criterion that dif-
fers. A good surrogate split should give a partitioning of the training instances corresponding
to the node as similar as possible to that produced by the primary split, but using another
attribute. This means that as many instances as possible should go to the same branches as
by the primary split. Whenever the outcome of the primary split cannot be determined, a
good surrogate split will most likely be dispatched to the same branch as it would be by the
primary split.

A necessary condition for a split to be considered as a surrogate split for a primary split
selected before is to have the same number of possible outcomes. The technique of surrogate
splits is usually used with binary splits, where this is not a problem. A natural evaluation func-
tion of a binary split t′ ∶ X → {0, 1} as a candidate surrogate for a binary split t ∶ X → {0, 1}
at node n can be defined as

𝛿t,t′ =
|Tn,t=0 ∩ Tn,t′=0| + |Tn,t=1 ∩ Tn,t′=1||Tn| (3.39)

One should also make sure that for each binary split t1 a “complementary” split t2 is available
such that t2(x) = 1 − t1(x) for all x ∈ X. In other words, for any possible split condition we
should have two splits, one where the “true” logical value corresponds to the first outcome
and the other where the “false” logical value corresponds to the first outcome. This is to make
sure that the best possible surrogate split is available (otherwise we may not be able to find
good surrogate splits even with very strongly related attributes).

Typically, an ordered list of several surrogate splits are selected for a single primary split,
to minimize the chance that the values of the attributes tested by the surrogate splits will
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also be missing. If no surrogate split can dispatch an instance with an excessive number of
missing values, it may be either stopped at the current node or dispatched to the most fre-
quent branch.

Surrogate splits solve the problem of determining the most outgoing branch if the pri-
mary split cannot be applied. They do not help at all in split selection (actually, they add
quite a bit of extra split selection work), which is performed in the usual way based on the
instances with known attribute values only. Since surrogate splits are only inherently imper-
fect approximations of the primary splits, it is reasonable to avoid splits on attributes with
many missing values, which is easily accomplished by introducing a penalty coefficient to the
split evaluation function.

3.8 Conclusion

Decision trees have been intensively investigated and applied for nearly 30 years and they
still remain both an interesting research topic and an extremely useful practical tool. Although
most of the key ideas, covered by this chapter, come from quite early algorithms (CART, ID3,
and C4.5) and are quite simple, they are apparently brilliant enough to be easily applicable to
many diverse domains and often produce about the most accurate classifiers one can create
from data, which are also human readable. They can still be compared favorably with some
not-so-readable classifiers created by some more recent not-so-easy-to-use approaches. Their
human readability can be even exploited to permit human participation in the model creation
process, when necessary or desirable, by making all or selected growing and pruning steps
subject to human verification and possibly modification (e.g., an apparently slightly worse
split could be selected if it has a better interpretation based on the available domain knowledge
or the analyst is more confident about its true predictive utility). When the human readability
can be sacrificed, decision trees can be used as components of model ensembles to reach even
higher accuracy levels, as we will see in Chapter 15. This unquestionable success of decision
trees is one good reason they deserve special attention.

Another reason is the high instructive value of decision trees which allow one to encounter,
understand, and appreciate some major issues common for the whole data mining domain,
such as noise, overfitting, Ockham’s razor, or missing value handling. Studying decision tree
algorithms and practicing their application is a good way to learn what is the essence of data
mining, and then move forward to other algorithms in a much more comforted way.

3.9 Further readings

Decision tree growing and pruning algorithms are discussed to some extent by most data
mining and machine learning books (e.g., Cios et al. 2007; Han et al. 2011; Mitchell 1997; Tan
et al. 2013; Witten et al. 2011). Similar to this chapter, these presentations are most often based
on the two best known specific decision tree induction algorithms, CART (Breiman et al. 1984)
and C4.5 (Quinlan 1993). The former served as prototype of the algorithm implemented by the
rpart package in R (Therneau and Atkinson 1997), extensively used throughout this book.
The latter was preceded by the ID3 algorithm (Quinlan 1986), which marked the beginning of
the rapidly growing interest in decision trees and their applications. The idea of decision tree
model representation is actually much older and dates back to the early work of Hunt (1962)
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in the field of machine learning. There were also some pioneering decision tree studies in
statistics (Friedman 1977; Henrichon and Fu 1969; Meisel and Michalopoulos 1973).

Other noteworthy specific decision tree algorithms include CHAID (Kass 1980) and
QUEST (Loh and Shih 1997). Murthy (1997) provides a comprehensive survey of the
decision tree literature and Rokach and Maimon (2007) give an extensive and relatively
contemporary account of decision tree algorithms and their applications. The number of
research articles presenting various enhancements to the basic tree growing and pruning
schemes is enormous and only a tiny subset of them can be mentioned here.

The CART, C4.5, and most other decision tree algorithms share a number of common
design principles. These include using univariate splits (based on single attributes) and assum-
ing the simultaneous availability of the complete training set. Brodley and Utgoff (1995)
depart from the former, by presenting a tree growing algorithm with multivariate splits, and
Utgoff (1989) departs from the latter, by presenting an incremental tree growing algorithm
that can modify the tree structure based on sequentially arriving data portions. Incremental
decision tree induction was later revisited by Domingos and Hulten (2000), who presented
an algorithm that asymptotically approaches the result of standard batch algorithms using
constant memory and time per instance.

Univariate and nonincremental decision tree growing algorithms may still differ in sev-
eral details. One of them is split selection and several different choices in this regard were
reviewed and experimentally investigated by Mingers (1989b) and Buntine and Niblett (1992).
It is decision tree pruning, though, that creates the most space for diversity, has attracted the
most research attention, and is likely to have the biggest model quality impact. Reduced error
pruning and a basic version of pessimistic pruning were introduced by Quinlan (1987). The
MEP algorithm was proposed by Niblett and Bratko (1986) and enhanced by Cestnik and
Bratko (1991). Cost-complexity pruning was presented as a part of the CART algorithm by
Breiman et al. (1984). These and other tree pruning techniques are surveyed by Breslow and
Aha (1997) and experimentally compared by Mingers (1989a) and Esposito et al. (1997).
Extending the idea of cost-complexity pruning, Bohanec and Bratko (1994) proposed a more
refined dynamic programming-based pruning algorithm that identifies the smallest sufficiently
accurate tree by generating the sequence of most accurate trees within given size constraints.
Decision tree pruning is also a natural application area for minimum description length infer-
ence, not covered in this book (Kononenko 1998; Mehta et al. 1995; Quinlan 1989).

Preference for simplicity during split selection and pruning are two ways of introduc-
ing the idea of Occam’s razor (Blumer et al. 1987) to decision tree induction. As argued by
Webb (1996), simpler trees do not have to be universally superior to more complex ones. The
technique of decision tree grafting may sometimes improve true performance by increasing
complexity, i.e., adding nodes (Webb 1997).

The two major techniques for missing value handling in decision trees, surrogate splits,
and fractional instances, come from the CART (Breiman et al. 1984) and C4.5 (Quinlan 1993)
algorithms, respectively. Algorithm-independent missing value imputation techniques (Little
and Rubin 2002; Liu et al. 1997; Pyle 1999) may be employed instead if these are unavailable
in a particular implementation used or turn out too computationally demanding.

With few minor exceptions, computational efficiency issues for data mining algorithms
are not addressed by this book. They may be crucial, however, for successful applications
to very large datasets, not necessarily fitting into main memory. This motivates tree growing
algorithm variations specifically designed to handle large data (e.g., Gehrke et al. 2000; Mehta
et al. 1996; Shafer et al. 1996).
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Naïve Bayes classifier

4.1 Introduction

The naïve Bayes classifier is one of the simplest approaches to the classification task that
is still capable of providing reasonable accuracy. Whereas in many cases it cannot compete
with much more refined algorithms, such as decision trees, it sometimes does not stay far
behind, and it may be even superior for certain specific application domains, with text clas-
sification being the most prominent example. Its simplicity – conceptual, implementational,
and computational – makes it easy and inexpensive to try besides or before more sophisticated
classifiers.

Example 4.1.1 Examples illustrating the naïve Bayes classifier will use the ultra small

dmr.dataweather and weatherc datasets from Examples 1.3.1 and 1.3.2, respectively. These
datasets, as well as DMR packages required to run some of example code snippets,
are loaded by the following R code.

library(dmr.stats)
library(dmr.util)

data(weather, package="dmr.data")
data(weatherc, package="dmr.data")

4.2 Bayes rule

Bayesian inference, of which the naïve Bayes classifier is a particularly simple example, is
based on the Bayes rule that relates conditional and marginal probabilities. More exactly, it
shows how the conditional (posterior) probability of an event can be calculated based on its

Data Mining Algorithms: Explained Using R, First Edition. Paweł Cichosz.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.



Trim size: 170mm x 244mmCichosz c04.tex V3 - 11/04/2014 10:20 A.M. Page 119

BAYES RULE 119

marginal (prior) probability and the inverse conditional probability. For two events A and B,
the rule can be written as

P(A|B) = P(A)P(B|A)
P(B)

(4.1)

where

• P(A) is the prior probability of A,

• P(A|B) is the conditional probability of A given B, also called the posterior probability
of A,

• P(B|A) is the conditional probability of B given A, and

• P(B) is the probability of B.

In the most common setting, the rule is applied to inference about a set of mutually exclu-
sive events A1,A2, … ,Ak that exhaust the probability space, i.e.,

P(Ai ∩ Aj) = 0 for i ≠ j (4.2)

k∑
i=1

P(Ai) = 1 (4.3)

Then from the law of total probability

P(B) =
k∑

j=1

P(Aj)P(B|Aj) (4.4)

which allows one to rewrite the Bayes rule as

P(Ai|B) = P(Ai)P(B|Ai)∑k
j=1P(Aj)P(B|Aj)

(4.5)

This form shows that P(B) acts as a normalizing constant, ensuring that

k∑
i=1

P(Ai|B) = 1 (4.6)

Note that, unlike the posterior probabilities P(Ai|B), the inverse conditional probabilities
P(B|Ai) do not have to and usually do not sum up to 1.

Typically, A1,A2, … ,Ak represent a set of alternative hypotheses, and B represents some
available evidence that may affect their probability. Without taking the evidence into account,
the hypotheses have their prior probabilities assigned. The Bayes rule shows how to incorpo-
rate the evidence and obtain posterior hypothesis probabilities. Each of the inverse conditional
probabilities P(B|Ai) can be considered a measure of the extent to which the evidence supports
(or refutes) the corresponding hypothesis Ai.

Example 4.2.1 The following R code implements the Bayes rule (combined with the total
probability law) for an exhaustive set of mutually exclusive events and demonstrates its
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application. The bayes.rule function takes vectors of prior and inverse conditional
probabilities as well as an event number as arguments and returns the posterior probability
for the selected event. If the event number argument is a vector, the corresponding vector of
posterior probabilities is returned.

## calculate the posterior probability given prior and inverse probabilities
bayes.rule <- function(prior, inv)
{
prior*inv/sum(prior*inv)

}

# posterior probabilities
bayes.rule(c(0.2, 0.3, 0.5), c(0.9, 0.9, 0.5))

# let P(burglery)=0.001,
# P(alarm|burglery)=0.95,
# P(alarm|not burglery)=0.005
# calculate P(burglery|alarm)

bayes.rule(c(0.001, 0.999), c(0.95, 0.005))[1]

4.3 Classification by Bayesian inference

There are two major approaches in applying Bayesian inference to the classification task:

Model-probability inference. Based on calculating posterior model probabilities given a
dataset.

Class-probability inference. Based on calculating posterior class probabilities given
attribute values.

The first approach appears attractive as it could allow one to identify the most probable
model. It is practical only for a limited set of candidate models, however, which have to be
preselected either using background knowledge or some other algorithms. Moreover, assign-
ing prior probabilities to such candidate models is nontrivial. This can be indirectly achieved
using information theoretic approaches, such as the minimum description length principle,
but discussing them is beyond the scope of this book.

The naïve Bayes classifier follows the second approach, which does not promise that much,
but also does not imply so many difficulties. Without explicitly considering any candidate
models and their probabilities, it actually does create a probabilistic model that estimates
class probabilities for an instance based on its attribute values.

4.3.1 Conditional class probability

The class-probability approach to Bayesian inference applies the Bayes rule to calculate prob-
abilities of the following form:

P(c = d | a1 = 𝑣1, a2 = 𝑣2, … , an = 𝑣n) (4.7)

which should be read as the probability of an instance belonging to class d if its attribute values
are 𝑣1, 𝑣2, … , 𝑣n, respectively. The capability of calculating such probabilities for arbitrary
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d ∈ C and 𝑣1 ∈ A1, 𝑣2 ∈ A2, … , 𝑣n ∈ An immediately permits the probabilistic classification
of any instance x by substituting its attribute values a1(x), a2(x), … , an(x) for 𝑣1, 𝑣2, … , 𝑣n:

P(d|x) = P(c = d |a1 = a1(x), a2 = a2(x), … , an = an(x)) (4.8)

This is the probability of an instance belonging to class d if its all attribute values are the same
as for x.

By applying the Bayes rule to the conditional class probability we get

P(c = d | a1 = 𝑣1, … , an = 𝑣n)

=
P(c = d)P(a1 = 𝑣1, … , an = 𝑣n | c = d)

P(a1 = 𝑣1, … , an = 𝑣n)
(4.9)

The probability from the denominator is actually a normalizing constant that does not depend
on the class label. It can be simply ignored if instances are ultimately classified to the most
probable classes, as the class maximizing the Bayes numerator will also maximize the proba-
bility. Otherwise, if the actual probabilities are required (e.g., if nonuniform misclassification
costs have to be handled as discussed in Section 6.3.3 or ROC analysis performed as discussed
in Section 7.2.5), it can be calculated using the total probability law as the sum of the Bayes
numerators for all classes:

P(a1 = 𝑣1, … , an = 𝑣n) =
∑
d∈C

P(c = d)P(a1 = 𝑣1, … , an = 𝑣n | c = d) (4.10)

since the classes in C are obviously assumed to be mutually exclusive and exhaust all possi-
bilities. The probabilities occurring in the Bayes numerator – the class prior probability and
the conditional joint probability of attribute values given the class – need more attention and
will be discussed separately below.

4.3.2 Prior class probability

The prior class probability, P(c = d), can be directly estimated from the training set T , assum-
ing its representativeness, as the relative frequency of instances of class d:

P(c = d) = PT (c = d) = |Td||T| (4.11)

where Td denotes the subset of T containing instances of class d. If the training set is not
representative, the correct class priors must be provided by the available domain knowledge.

Ex. 2.4.22
dmr.stats

Example 4.3.1 The following R code applies the pdisc function for estimating
discrete probability distributions to estimate prior class probabilities for the
weather data.

# prior class probabilities for the weather data
pdisc(weather$play)
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4.3.3 Independence assumption

The conditional joint probability of attribute values given the class cannot be directly esti-
mated from even a perfectly representative training set of any realistic size. For most practical
datasets, there are numerous attribute value combinations not appearing at all, and most of
those that do appear, appear exactly once. This would lead as to estimating probabilities for
most attribute value combinations as 0 or 1∕|T|. Such estimates would be clearly useless
for classification, because they do not allow one to differentiate probabilities for instances
with different attribute values. Therefore, the conditional joint probability of attribute
values given the class is calculated as the product of per-attribute marginal conditional
probabilities:

P(a1 = 𝑣1, … , an = 𝑣n | c = d) =
n∏

i=1

P(ai = 𝑣i|c = d) (4.12)

Equation 4.12 holds only if attributes are conditionally independent given the class, which is
unfortunately usually not true. The naïve Bayes classifier adopts this independence assump-
tion, ignoring the fact that it is rarely satisfied. This is what it owes the term “naïve” in
its name to, although there is actually more pragmatism than naïvety in pretending some-
thing obviously false is true just to achieve some benefit. This is exactly what happens here.
Due to the independence assumption, the naïve Bayes classifier avoids directly estimating
the joint conditional probability of attribute values, reducing it to a much simpler problem
of estimating marginal conditional attribute value probabilities. The price for this simplifi-
cation is that the probabilities calculated based on the unsatisfied assumption may be incor-
rect (or, speaking more openly, are guaranteed to be incorrect). The reason why this makes
sense is that incorrect class probabilities still may and quite frequently do permit correct
classification.

4.3.4 Conditional attribute value probabilities

The probabilities of attribute values given the class can be directly estimated from the training
data as follows:

P(ai = 𝑣i|c = d) = PTd (ai = 𝑣i) =
|Td

ai=𝑣i
||Td| (4.13)

where Td
ai=𝑣i

denotes the subset of Td consisting of instances for which the value of attribute ai
is 𝑣i. Such frequency-based estimation is perfectly sufficient, assuming the representativeness
of the training set.

Ex. 2.4.23
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Example 4.3.2 The following R code demonstrates estimating the conditional
attribute value probabilities given the class for the weather data using the
pcond function.

# conditional attribute value probabilities given the class
pcond(weather$outlook, weather$play)
pcond(weather$temperature, weather$play)
pcond(weather$humidity, weather$play)
pcond(weather$wind, weather$play)



Trim size: 170mm x 244mmCichosz c04.tex V3 - 11/04/2014 10:20 A.M. Page 123

CLASSIFICATION BY BAYESIAN INFERENCE 123

4.3.5 Model construction

As demonstrated above, to achieve the desired capability of calculating the conditional class
probability given attribute values it is sufficient to estimate the following probabilities from
the training set:

• P(c = d) for each class d ∈ C,

• P(ai = 𝑣i|c = d) for each class d ∈ C, each attribute ai, and each value 𝑣i ∈ Ai.

This set of probabilities constitutes model representation for the naïve Bayes classifier. To
create such a model, one needs to estimate all these probabilities from the training set,
which reduces to simple counting required to obtain |Td| and |Td

ai=𝑣i
|. It does not take

much effort to see that these counts can be calculated by a single iteration through the
training set.

Example 4.3.3 Contrary to the previous examples, the R code presented below does not use
any built-in counting facilities available in R, but shows how a naïve Bayes classification
model can be obtained with a single iteration over the training set. This “naïve” implemen-
tation makes it more explicit what data operations are actually necessary to create a naïve
Bayes model and how they would be implemented in conventional programming languages.
Unfortunately, it is much less efficient than a more R-style implementation could be, and
the reader may find it worthwhile to exercise rewriting it as such. The x.vars and y.var

dmr.utilfunctions are used for extracting input and target attribute names from the supplied
formula. The class attribute of the created model representation is set to nbc to
enable appropriate prediction method dispatching. As before, the implementation
is illustrated using the weather data.

## create a naive Bayes classifier
nbc <- function(formula, data)
{
class <- y.var(formula)
attributes <- x.vars(formula, data)

cc <- integer(nlevels(data[[class]])) # initialize class counts
names(cc) <- levels(data[[class]])
avc <-sapply(attributes, # initialize attribute-value-class counts

function(a)
matrix(0, nrow=nlevels(data[[a]]), ncol=nlevels(data[[class]]),

dimnames=list(levels(data[[a]]),levels(data[[class]]))))

for (i in (1:nrow(data))) # iterate through training instances
{
cc[data[[class]][i]] <- cc[data[[class]][i]]+1 # increment class count
for (a in attributes) # increment attribute-value-class counts
avc[[a]][data[[a]][i],data[[class]][i]] <-
avc[[a]][data[[a]][i],data[[class]][i]]+1

}

# calculate probability estimates based on counts
‘class<-‘(list(prior=cc/sum(cc),

cond=sapply(avc, function(avc1)
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t(apply(avc1, 1, "/", colSums(avc1))))),
"nbc")

}

# naive Bayes classifier for the weather data
nbw <- nbc(plaỹ., weather)

4.3.6 Prediction

Applying the naïve Bayes classifier to predict class probabilities for a given instance x is even
more straightforward. We just need to multiply the prior class probability and the conditional
probabilities of the instance’s attribute values given the class, i.e., use P(ai = 𝑣i|c = d) with
𝑣i = ai(x):

P(d|x) = 1
b

P(c = d)
n∏

i=1

P(ai = ai(x)|c = d) (4.14)

where the normalizing constant b is obtained as

b =
∑
d′∈C

P(c = d′)
n∏

i=1

P(ai = ai(x)|c = d′) (4.15)

This is a simple rewrite of Equation 4.8 which incorporates the application of the Bayes rule
according to Equation 4.9 and the independence assumption according to Equation 4.12,
and additionally applies the total probability law according to Equation 4.10. Note that all
probabilities needed to classify an arbitrary instance are estimated during model construc-
tion, and prediction requires just selecting and multiplying an appropriate subset of them,
corresponding to the attribute values of the classified instance x.

Example 4.3.4 The following R code implements prediction using the naïve Bayes classi-
fication model, as created in the previous example, and demonstrates its application to the
weather data.

## naive Bayes prediction for a single instance
predict1.nbc <- function(model, x)
{
aind <- names(x) %in% names(model$cond)
bnum <- model$prior*apply(mapply(function(a, v)

model$cond[[a]][v,], names(model$cond), x[aind]),
1, prod)

bnum/sum(bnum)
}

## naive Bayes prediction for a dataset
predict.nbc <- function(model, data)
{
t(sapply(1:nrow(data), function(i) predict1.nbc(model, data[i,])))

}

# make predictions for the weather data
predict(nbw, weather)
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4.4 Practical issues

The naïve Bayes algorithm may need some minor enhancements before it is ready to work
using real-world data. This section reviews the most important practical issues that need to be
taken care of.

4.4.1 Zero and small probabilities

The plain frequency approach to estimating conditional attribute value probabilities presented
above leads to a problem when a particular attribute value does not occur in training instances
of a particular class. Such a situation is very common for realistic datasets and cannot be
avoided. If this happened for value 𝑣j of attribute aj in class d, we would estimate P(aj =
𝑣j|c = d) = 0. If such a zero probability appears during the classification of an instance x:

P(aj = aj(x)|c = d) = 0 (4.16)

the calculated product of probabilities will also be 0:

P(c = d)
n∏

i=1

P(ai = ai(x)|c = d) = 0 (4.17)

As long as this does not happen for all classes, it would just imply P(d|x) = 0, which, although
“radical,” still permits the classification of x. Things get much worse if we have one or more
zero probabilities for all classes, e.g.,

P(aj1
= aj1

(x)|c = d1) = 0 (4.18)

P(aj2
= aj2

(x)|c = d2) = 0 (4.19)

…

Such a situation, which is not at all unlikely for practical datasets, makes prediction for
instance x impossible, because we obtain P(d|x) = 0 for all d ∈ C.

One way to avoid the problem of zero probabilities is to simply replace any conditional
attribute value probabilities estimated as 0 by a small positive number:

P(ai = 𝑣i|c = d) =
⎧⎪⎨⎪⎩
|Td

ai=𝑣i
||Td| if Td

ai=𝑣i
≠ ∅

𝜖 otherwise
(4.20)

For this approach to make sense, 𝜖 should be considerably less than 1∕|Td|, which is the
probability estimate that would be obtained if there were one instance of class d with the
value of ai equal to 𝑣i.

Whereas the above should work well in most cases, a more elegant and safer solution is
to use the technique of m-estimation described in Section 2.4.4:

P(ai = 𝑣i|c = d) =
|Td

ai=𝑣i
| + mp|Td| + m

(4.21)
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where – in the lack of domain knowledge suggesting otherwise – p is set to 1∕|Ai|. This corre-
sponds to incorporating m fictitious instances to the estimation, for which all attribute values
are equally probable. When additionally m = |Ai|, we obtain the Laplace estimator of the
following form:

P(ai = 𝑣i|c = d) =
|Td

ai=𝑣i
| + 1|Td| + |Ai| (4.22)

A less severe, but sometimes also important issue is associated with probabilities that are
just close to 0. The multiplication of several small numbers may lead to numeric underflow.
This will also result in inability to classify an instance, whenever the underflow appears for
all classes. One common trick that helps to reduce the risk of this problem is to calculate
probability logarithms instead of plain probabilities:

log

(
P(c = d)

n∏
i=1

P(ai = ai(x)|c = d)

)

= log P(c = d) +
n∑

i=1

log P(ai = ai(x)|c = d) (4.23)

This transforms multiplication into addition, which is less prone to numerical underflow.

Example 4.4.1 The following R code defines a modified version of the function for estimating

Ex. 2.4.31
dmr.stats

conditional probabilities, using m-estimation to avoid zero probabilities. The latter
is performed by the mest function. The probability estimates produced by the
original function defined previously and the modified version are compared using
the weather data.

## m-estimated conditional probability distribution P(v1|v2)
mpcond <- function(v1, v2, p=1/nlevels(v1), m=nlevels(v1))
{
count <- table(v1, v2, dnn=NULL)
t(apply(count,1,function(cnt,sumcnt) mest(cnt,sumcnt,p,m),colSums(count)))

}

# conditional attribute value probabilities given the class
pcond(weather$outlook, weather$play)
mpcond(weather$outlook, weather$play)
mpcond(weather$outlook, weather$play, m=0)
mpcond(weather$outlook, weather$play, m=1)

4.4.2 Linear classification

There is one noteworthy consequence of working with probability logarithms rather than prob-
abilities, as suggested above to bypass numerical problems with probability multiplication.
This is not actually a practical issue, but this is probably the best opportunity to mention it.
Consider the ratio of class probabilities in the two-class case:

P(1|x)
1 − P(1|x) = P(1|x)

P(0|x) = P(c = 1)
∏n

i=1P(ai = ai(x)|c = 1)
P(c = 0)

∏n
i=1P(ai = ai(x)|c = 0)

(4.24)
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After taking the logarithm and rearranging terms, we receive

log
P(1|x)

1 − P(1|x) = log P(c = 1) − log P(c = 0)

+
n∑

i=1

(log P(ai = ai(x)|c = 1) − log P(ai = ai(x)|c = 0)) (4.25)

It can be rewritten as

log
P(1|x)

1 − P(1|x) =
n∑

i=1

∑
𝑣∈Ai

ai,𝑣(x)𝑤i,𝑣 +𝑤n+1 = g(x) (4.26)

where

𝑤n+1 = log P(c = 1) − log P(c = 0) (4.27)

𝑤i,𝑣 = log P(ai = 𝑣|c = 1) − P(ai = 𝑣|c = 0) (4.28)

ai,𝑣(x) =IIai(x)=𝑣 (4.29)

and the indicator function IIcondition takes value 1 if condition is satisfied and 0 otherwise. This
reveals that the naïve Bayes classifier can be viewed as a linear classifier in the modified space
of binary attributes ai,𝑣 (for each i = 1, 2, … , n and 𝑣 ∈ Ai), i.e., it belongs to the family of
classification algorithms discussed extensively in Chapter 5. More precisely, if the natural log-
arithm is used in the equations above, they directly correspond the linear logit representation,
described in Section 5.2.4, since it can be easily verified that

P(1|x) = eg(x)

eg(x) + 1
(4.30)

The naïve Bayes classifier can be therefore considered a particularly simple and imperfect
method of estimating linear logit classifier parameters.

4.4.3 Continuous attributes

All the above references to conditional attribute value probabilities of the form P(ai = 𝑣i|c =
d) are obviously valid for discrete attributes only. If some or all attributes are continuous,
a simple, but perfectly reasonable workaround would be to discretize them. This is usually
the best way to proceed unless this extra data preprocessing step constitutes a problem. This
section shows how continuous attributes can be handled by the naïve Bayes classifier by itself
in such a situation.

The idea is to replace probabilities by the appropriate probability density function values
for continuous attributes. If ai is a continuous attribute, we would therefore use gd

i (𝑣i) instead
of P(ai = 𝑣i|c = d), where gd

i denotes the probability density function of attribute ai within
class d. If this function is available, we just need to take its value for 𝑣i, i.e., when making
prediction for instance x, for ai(x).

The remaining issue of identifying the required probability density functions for con-
tinuous attributes within particular classes is typically solved by assuming that they are all
distributed normally and estimating the mean and variance parameters from the training set.
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For attribute ai and class d, we would estimate these parameters as

md
i = 1|Td| ∑

x∈Td

ai(x) (4.31)

and
(sd

i )
2 = 1|Td| − 1

∑
x∈Td

(ai(x) − md
i )

2 (4.32)

respectively.

Example 4.4.2 The following R code defines functions for estimating conditional means and

Ex. 1.3.2
dmr.data

variances of continuous attributes and demonstrates their application to the
weatherc data, containing two continuous attributes.

## conditional mean
mcond <- function(v1, v2)
{
tapply(v1, v2, mean)

}

## conditional variance
vcond <- function(v1, v2)
{
tapply(v1, v2, var)

}

# conditional mean and variance of attribute values given the class
mcond(weatherc$temperature, weatherc$play)
vcond(weatherc$temperature, weatherc$play)
mcond(weatherc$humidity, weatherc$play)
vcond(weatherc$humidity, weatherc$play)

4.4.4 Missing attribute values

Missing attribute values are likely to decrease model quality for any modeling algorithm,
when occurring for training instances, or classification accuracy, when occurring for classi-
fied instances. The naïve Bayes classifier is no exception here, but it is noteworthy that at least
missing values constitute no algorithmic problem and do not increase computational com-
plexity in any way. They can be handled easily and naturally, and the resulting deterioration
of classification accuracy will be as graceful as possible.

In the model construction phase, the naïve Bayes classifier uses attribute values to esti-
mate their conditional probabilities within particular classes. Whenever an attribute’s value
is missing for an instance, it is simply not used in this estimation. More precisely, the counts
needed to estimate P(ai = 𝑣i|c = d) should only include instances with known values of ai.
We could rewrite the simple formula for frequency-based estimation as

P(ai = 𝑣i|c = d) =
|Td

ai=𝑣i
||Td| − |Td
ai=?| (4.33)
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where Td
ai=? denotes the subset of instances of class d for which the values of attribute ai are

missing (and obviously Td
ai=𝑣i

only includes instances for which the values of attribute ai are
available and equal to 𝑣i). Corrections to avoid zero probabilities can be applied in the same
way as presented before.

When a naïve Bayes model is applied to make prediction for an instance with missing
values of some attributes, the corresponding factors from the conditional probability product
are unavailable. More precisely, if ai(x) is missing for the instance x being classified, the P(ai =
ai(x)|c = d) factor is unavailable, since one cannot choose the appropriate conditional attribute
value probability P(ai = 𝑣i|c = d) without knowing what to substitute for 𝑣i. To accept the
unavoidable fact that attributes with missing values provide no information that could impact
the prediction, it is then sufficient just to skip the unavailable factors or (equivalently) take
them as equal to 1.

The above solution perfectly fits most common practical needs in situations where missing
attribute values indeed carry no information that could affect prediction. In some domains,
however, missing attribute values can be actually meaningful, i.e., the unavailability of an
attribute’s value for an instance may be somehow related to the properties of this instances
relevant for its classification. In such cases, when P(ai = ?|c = d) differs substantially across
classes, it may be more reasonable to treat “missing” as an additional possible attribute value.

Example 4.4.3 The pcond function for estimating conditional attribute value probabilities
given the class used in Example 4.3.2 remains correct for attributes with missing values, which
is illustrated by the following R code.

# weather data with missing values
weatherm <- weather
weatherm$outlook[1] <- NA
weatherm$humidity[1:2] <- NA

# conditional attribute value probabilities given the class
# with and without missing values

pcond(weather$outlook, weather$play)
pcond(weatherm$outlook, weatherm$play)
pcond(weather$humidity, weather$play)
pcond(weatherm$humidity, weatherm$play)

4.4.5 Reducing naïvety

Since the conditional attribute value independence assumption is the source of the naïvety of
the naïve Bayes classifier, it can be made not-so-naïve by relaxing the assumption. In general,
this would lead to calculating the probability of class given attribute values as follows:

P(c = d | a1 = 𝑣1, … , an = 𝑣n) = P(c = d)
n∏

i=1

P(ai = 𝑣i|c = d, aUi
= 𝑣Ui

) (4.34)

where Ui is the set of the numbers of attributes on which ai is assumed to directly depend
given the class and aUi

= 𝑣Ui
is a notational shortcut for the sequence of conditions aj = 𝑣j
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for all j ∈ Ui. The attributes with numbers in Ui are called the immediate predecessors of ai.
This term relates to Bayesian networks of which the naïve Bayes classifier is a particularly
simple representative. They represent links between attributes by directed edges in an acyclic
graph, with the plain naïve Bayes model containing only edges from the target concept to
all attributes. Permitting attributes to have some other attributes as their immediate predeces-
sors corresponds to inserting additional edges to the naïve Bayes network structure. They are
referred to as augmenting edges, and the resulting classification model – as the augmented
naïve Bayes model.

As written above, the relaxed independence assumption states that each attribute is con-
ditionally independent of all other attributes given the class and the values of its immediate
predecessors. This makes it possible to calculate the conditional probability of attribute values
given the class as the product of per-attribute probabilities, each conditional on the class and
the values of its immediate predecessors. Since the latter have to be estimated from the data,
the numbers of the immediate predecessors of each attribute should be small – otherwise the
estimates would be unreliable (except for very large data). To keep things simple, it is common
to restrict augmented naïve Bayes models to a single immediate predecessor attribute:

P(a1 = 𝑣1, … , an = 𝑣n | c = d) =
n∏

i=1

P(ai = 𝑣i|c = d, aui
= 𝑣ui

) (4.35)

where ui is the number of the single immediate predecessor of ai. This simplification makes it
possible to determine augmenting edges to add using dedicated algorithms, more efficient than
general-purpose algorithms for deriving Bayesian network structures from data. One note-
worthy example is the tree-augmented naïve Bayes classifier (TAN) which identifies edges
by finding the maximum weighted spanning tree with respect to the conditional mutual infor-
mation for attribute pairs given the class:

IT (a1, a2|c) = ∑
d∈C

PT(c = d)ITd (a1, a2) (4.36)

where ITd (a1, a2) is the mutual information for attribute pair a1, a2 calculated according to
Equation 2.76 on the subset of the training set limited to class d. This yields the smallest
subset of edges that connect all attributes and indicate maximally strong relationships. All
edges are assumed to be directed outward from an arbitrarily chosen “root” attribute, which
guarantees no cycles.

An interesting simpler alternative approach that avoids pairwise mutual information cal-
culation considers each attribute as a single common predecessor for all others. More specif-
ically, if we assume aj to be the single immediate predecessor of all other attributes, then

Pj(a1 = 𝑣1, … , an = 𝑣n | c = d) =

P(aj = 𝑣j|c = d)
n∏

i=1

P(ai = 𝑣i|c = d, aj = 𝑣j) (4.37)

where P(ai = 𝑣i|c = d, aj = 𝑣j) = 1 for i = j. Probabilities obtained with each attribute
used as the single common immediate predecessor (i.e., for j = 1, 2, … , n) are then
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averaged, yielding

P(a1 = 𝑣1, … , an = 𝑣n | c = d) =

1
n

n∑
j=1

P(aj = 𝑣j|c = d)
n∏

i=1

P(ai = 𝑣i|c = d, aj = 𝑣j) (4.38)

Some computation may be saved by skipping attribute aj from consideration as an immediate
predecessor if P(aj = 𝑣j) is sufficiently small. The resulting prediction scheme is known as
the averaged one-dependence estimators algorithm (AODE).

The not-so-naïve versions of the naïve Bayes classifier substantially increase the compu-
tational complexity of model creation and prediction. When this is acceptable, though, they
may improve the predictive performance considerably.

4.5 Conclusion

Despite – but also due to – its simplicity, the naïve Bayes classifier holds an unrivaled position
in most contemporary data mining toolboxes. Whereas often beaten accuracy-wise by more
refined classification algorithms, it has unquestionable advantages with respect to computa-
tional efficiency of both model creation and prediction. The former is also easily parallelizable.
This becomes particularly important for very large datasets, for which other algorithms may
require subsampling. It is also extremely easy to apply, with no parameters to adjust (in the
basic version).

But leaving apart the computational cost and convenience, the naïve Bayes classifier still
has some attractive properties. Two of them are particularly worthwhile to mention. First, its
inherent inability to accurately fit the training data make it extraordinarily resistant to over-
fitting. Whereas underfitting is not necessarily better, it is definitely much more apparent and
easy to notice. Eliminating the risk of model deficiency that is not so straightforward to detect
is hard to overestimate. Second, the naïve Bayes classifier can handle numerous attributes
without needing to internally make any selections. This is useful when there are no outstand-
ingly strong relationships between attributes and the target concept, but rather a large number
of attributes have some small impact on class membership, and the contributions of all of them
need to be incorporated during classification. One important domain where it tends to be true is
text classification, for which the naïve Bayes classifier belongs to most successful algorithms.

4.6 Further readings

The naïve Bayes classifier is covered by most data mining and machine learning books (e.g.,
Cios et al., 2007; Han et al., 2011; Mitchell, 1997; Tan et al., 2013; Witten et al., 2011).
Some of them also discuss other, more advanced forms of Bayesian inference, used for model
creation, prediction, and model selection (e.g., Bishop 2007; Hand et al., 2001; Theodoridis
and Koutroumbas 2008).

The Bayes rule was derived by Bayes (1763) more than 250 years ago and still remains
the foundation of many probabilistic inference techniques in statistics, machine learning, and
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artificial intelligence. Probably the first to present the basic naïve Bayes algorithm were Duda
and Hart (1973). Despite its simplicity, it keeps attracting not only practical, but also research
interest. Several experimental studies have demonstrated its sometimes surprisingly good clas-
sification performance, despite the oversimplified conditional independence assumption (e.g.,
Cestnik 1990; Clark and Niblett 1989; Langley et al., 1992). Subsequent investigations have
confirmed that correct class label predictions can be obtained even if the latter is unsatisfied,
leading to incorrect probability calculations (Domingos and Pazzani 1996, 1997; Hand and
Yu 2001; Rish 2001). This definitely brought more appreciation to the algorithm.

A basic approach to applying the naïve Bayes classifier to text classification is described
by Mitchell (1997) and several text-oriented variations of the algorithm are reviewed
by Lewis (1998). McCallum and Nigam (1998) highlighted relationships between text
representation – with binary word presence/absence or numerical word occurrence count
attributes – and probability calculations, using the Bernoulli and multinomial distributions.
Some other issues related to naïve Bayes text classifications and possible workarounds are
discussed by Rennie et al. (2003). The popularity of the Bayesian approach to unsolicited
mail detection is largely due to Graham (2002, 2003), who presented successful spam filters
using a modified form of the naïve Bayes classifier.

Bayesian networks, of which the naïve Bayes classifier can be considered a particularly
simple representative, were introduced by Pearl (1988) as knowledge representation and infer-
ence methods. Algorithms for creating Bayesian network models from data are reviewed by
Russell and Norvig (2011). Augmented naïve Bayes models – with edges between selected
attribute nodes added – reduce the degree of naïvety while avoiding the complexity of full
Bayesian network learning (Friedman et al., 1997; Keogh and Pazzani 1999). The similarly
effective but computationally simpler averaged one-dependence estimators (AODE) approach
was presented by Webb et al. (2005).
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5

Linear classification

5.1 Introduction

The linear model representation is a special case of the parametric representation which
assumes that the model’s predictions are calculated by applying a representation function to
attribute values and a set of real-valued parameters. This is particularly natural and extremely
common for regression models which make real-valued predictions. The same approach can
also be adopted to represent classification models, though. Moreover, such models can be
created by the same or nearly the same algorithms as those that normally deliver regression
models. This can be achieved in several ways, some of which are discussed in this chapter.
The chapter will focus on issues related to adopting parametric regression methods to the
classification task. This is essentially based on using a composite model representation
function, consisting of a real-valued inner representation function and a discrete outer
representation function that assigns class labels based on the former.

According to this book’s task-oriented organization, chapters devoted to classification
algorithms precede those covering regression algorithms. A book must have a linear structure
and of different possible presentation orders; this one is believed to provide the best didactic
value. For consistency, this linear classification chapter appears before Chapter 8 devoted to
linear regression. However, the linear model representation and the corresponding modeling
algorithms for the classification task can be most clearly viewed as modifications of those
developed for the regression task. This imposes a considerable number of forward references
which are likely to make it rather uncomfortable to read this chapter without at least briefly
skimming Chapter 8.

Example 5.1.1 Selected approaches to parametric classification model representation dis-
cussed in this chapter will be illustrated by simple R code examples. Some examples
visually explain particular representations using plots, and some demonstrate the

Data Mining Algorithms: Explained Using R, First Edition. Paweł Cichosz.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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parameter estimation process. The plots will be produced by functions from the lattice
package. Example code snippets will use auxiliary functions from several DMR packages.
Parameter estimation for linear classifications models will be demonstrated using the Pima
Indians Diabetes data, available in the mlbench package. Additionally, the weatherc data

Ex. 1.3.2
dmr.data

will be used to illustrate discrete attribute processing. The following R code loads
the required packages and the datasets. The larger of those is partitioned into train-
ing and test subsets.

library(dmr.claseval)
library(dmr.linreg)
library(dmr.regeval)
library(dmr.trans)
library(dmr.util)

library(lattice)

data(weatherc, package="dmr.data")
data(PimaIndiansDiabetes, package="mlbench")

set.seed(12)
rpid <- runif(nrow(PimaIndiansDiabetes))
pid.train <- PimaIndiansDiabetes[rpid>=0.33,]
pid.test <- PimaIndiansDiabetes[rpid<0.33,]

The code snippet presented below defines a linear function of two attributes, named
lcg.plot, and uses it to generate the lcdat.plot dataset that will be used to pro-
duce plots illustrating the linear classification model representation. Additional artificial
training and test datasets for parameter estimation examples are also generated, using the

dmr.utilustep function for unit step calculation. Notice that the lcg function of four
attributes used for class label generation is actually quadratic rather than linear,
so it may be impossible to ideally fit linear classification models. The lcg.plot
function (which is linear) is plotted as a plane in a three-dimensional space in
Figure 5.1.

set.seed(12)

# dataset for surface plots
lcg.plot <- function(a1, a2) { 2*a1-3*a2+4 }
lcdat.plot <- ‘names<-‘(expand.grid(seq(1, 5, 0.05), seq(1, 5, 0.05)), c("a1", "a2"))
lcdat.plot$g <- lcg.plot(lcdat.plot$a1, lcdat.plot$a2)
lcdat.plot$c <- as.factor(ustep(lcdat.plot$g))

# datasets for parameter estimation examples
lcg <- function(a1, a2, a3, a4) { a1 ̂ 2+2*a2 ̂ 2-a3 ̂ 2-2*a4 ̂ 2+2*a1-3*a2+2*a3-3*a4+1 }
lcdat <- data.frame(a1=runif(400, min=1, max=5), a2=runif(400, min=1, max=5),

a3=runif(400, min=1, max=5), a4=runif(400, min=1, max=5))
lcdat$c <- as.factor(ustep(lcg(lcdat$a1, lcdat$a2, lcdat$a3, lcdat$a4)))
lcdat.train <- lcdat[1:200,]
lcdat.test <- lcdat[201:400,]

print(wf.g <- wireframe(g̃a1+a2, lcdat.plot, col="grey50", zoom=0.8))
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a1a2

g

Figure 5.1 A linear representation function.

5.2 Linear representation

Linear representation is the most common instantiation of the parametric representation family
that will be more thoroughly discussed in Section 8.2 in the regression context, but can be
summarized as follows:

• A fixed model representation function is adopted that determines the model’s predicted
value for an instance based on the instance’s attribute values and a vector of model
parameters.

• Creating a model based on a training set consists in estimating its parameters.

This is in contrast to nonparametric representation, where both the representation func-
tion and parameters have to be derived from the data as part of the model creation process. We
have actually already encountered these two types of model representation. Decision trees dis-
cussed in Chapter 3 can be viewed as instantiations of nonparametric representation, with the
tree structure playing the role of the representation function, and per-leaf class distributions
serving as model parameters. The naïve Bayes classifier from Chapter 4 adopts a parametric
representation, on the other hand, using prior class probabilities and conditional attribute value
probabilities as parameters to the fixed representation function that calculates conditional class
probabilities given attribute values based on the Bayes rule and the independence assumption.

In principle, parametric model representation is applicable to both classification and
regression models, since the employed representation function can be real valued or discrete
valued. However, a model representation function is useful only if reasonably efficient
and effective parameter estimation algorithms are available. This unquestionably favors
real-valued representation functions. Several approaches to parametric classification are
therefore based on wrapping the latter so that they can be used for class label prediction. This
is most natural and easiest to achieve with two-class classification tasks. Since multiclass
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tasks can be transformed to two-class tasks, the discussion in this chapter is limited to the
latter.

Example 5.2.1 Because of linear classification being an adaptation of linear regression to
the classification task, R code presented in this chapter’s examples will use several functions
defined in linear regression examples presented in Chapter 8 that implement the linear rep-
resentation and model parameter estimation. To make the forthcoming examples easier to
follow, the code snippet presented below demonstrates the application of the most essential of
those: repf.linear from Example 8.2.2 that implements the linear representation func-
tion, grad.linear from Example 8.3.3 that implements its gradient used for parameter

dmr.linregestimation, and predict.par from Example 8.2.1 which is the prediction
method for parametric models. The three functions are applied to the first 10
instances from the lcdat.plot dataset, using a simple linear regression model
with the parameter vector exactly matching the lcg.plot function. The model is assumed to
be represented by a list containing two components, namedrepf (the representation function)
and w (the parameter vector).

# parameter vector for the lcg.plot function
w.plot <- c(2, -3, 4)
repf.linear(lcdat.plot[1:10,1:2], w.plot)
grad.linear(lcdat.plot[1:10,1:2], w.plot)
# parametric model for the lcg.plot function

m.plot <- ‘class<-‘(list(repf=repf.linear, w=w.plot), "par")
predict(m.plot, lcdat.plot[1:10,1:2])

5.2.1 Inner representation function

The representation function for parametric classification is the composite of a real-valued
inner representation function and another (outer) function that assigns binary class labels
(as always in this book, assumed to be from the {0, 1} set) based on its values. The inner
representation function is calculated based on attribute values and model parameters:

g(x) = F(a(x),w) (5.1)

More specifically, for the linear representation we have

g(x) =
n∑

i=1

𝑤iai(x) +𝑤n+1 (5.2)

or, assuming an+1(x) = 1 for all x to include the intercept term 𝑤n+1 in the summation

g(x) =
n+1∑
i=1

𝑤iai(x) = w ⚬ a(x) (5.3)

where ⚬ denotes the dot product operator, w is the parameter vector, and a(x) is the vector
of attribute values a1(x), a2(x), … , an+1(x). Whenever referring to w or a(x) in this chapter,
they will be assumed to contain n + 1 elements, i.e., include the intercept term 𝑤n+1 and the
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corresponding fictitious attribute value an+1(x). When the last elements of these vectors have
to be omitted, this will be explicitly indicated by adding the 1 ∶ n subscripts.

Example 5.2.2 The following R code identifies the parameter vector that yields the best
linear approximation of the quadratic lcg function used to generate class labels for the
example training dataset created in Example 5.1.1. To achieve this, the standard lm function
for linear regression is applied to a modified copy of the dataset, containing real-valued
lcg function labels instead of the original class labels. The resulting parameter vector
(rearranged to match the different position of the intercept term assumed in our example
code), referred to as the “perfect” parameter vector, may be then used to assess the potential
of predictive performance that would be possible to obtain in the totally unrealistic case in
which the representation function underlying class labels in the data were directly available.

Ex. 10.2.3
dmr.regeval

This assumption is only adopted to illustrate the linear representation of
classification models and the parameter estimation process. The mse function
is used to calculate the mean square error for the linear approximation of lcg
using the “perfect” parameter vector. The predict.par function is applied Ex. 8.2.1

dmr.linregto obtain parametric model predictions.

lcdat.train.lr <- lcdat.train[,1:4]
lcdat.train.lr$g <- lcg(lcdat.train$a1, lcdat.train$a2,

lcdat.train$a3, lcdat.train$a4)

# "perfect" parameter vector
w.perf <- lm(g̃., lcdat.train.lr)$coef[c(2:5, 1)]

# "perfect" predictions
mse(predict.par(list(repf=repf.linear, w=w.perf), lcdat[,1:4]),

lcg(lcdat$a1, lcdat$a2, lcdat$a3, lcdat$a4))

5.2.2 Outer representation function

There are two major approaches to assigning binary class labels based on linearly represented
real-valued inner predictions:

Boundary modeling. Assuming that the inner representation function represents a boundary
between regions of different classes,

Probability modeling. Assuming that the inner representation function represents, possibly
indirectly, class probabilities.

In boundary modeling, hypersurfaces (in the attribute value space) separating positive and
negative instances, called decision boundaries, are represented parametrically. They partition
the domain into regions, with each region assigned a class label.

Probability modeling is a family of approaches that use a parametric representation of class
probabilities. For two-class tasks this reduces to representing the probability of class 1. The
latter may be then used to predict class labels as with any probabilistic classifiers, i.e., by using
the maximum probability rule, the minimum cost rule presented in Section 6.3.3, or adjusting
operating points by the ROC analysis or similar methods, as discussed in Section 7.2.5.

These two approaches lead to the following two most commonly used types of outer rep-
resentation functions for linear classification:
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• threshold representation, which is a standard way to perform boundary modeling,

• logit representation, which is is the most popular instantiation of probability modeling.

We will see that, while they differ in important details, they have actually a lot in common.

5.2.3 Threshold representation

For two-class classification tasks partitioning the domain into the positive and negative regions
can be easily achieved by comparing a parametric representation function against a threshold.
Without loss of generality, the latter may be assumed to be 0, which yields the following model
representation:

h(x) = H(g(x)) =

{
1 if g(x) ≥ 0

0 otherwise
(5.4)

For a threshold parametric classification model defined as above predictions are obtained
by applying the unit step function H to the inner representation function g. The latter
determines a hypersurface in the (n + 1)-dimensional space (with dimensions corresponding
to a1, a2, … , an, and g). By comparing against 0 the projection of this hypersurface to n
dimensions (corresponding to a1, a2, … , an) is determined. In general, it may yield one or
more n-dimensional hypersurfaces where g crosses the a1, a2, … , an hyperplane. The model
function h, which is a binary-valued function in an n-dimensional space, assigns 0 or 1 to
regions separated by a number of n-dimensional surfaces, obtained by the projection of an
(n + 1)-dimensional surface.

It is common to use the sign rather than the unit step function for threshold parametric
classification models, assuming class labels are from the {−1, 1} set rather than the {0, 1} set.
This chapter sticks with the latter, to preserve consistency with conventions used for presenting
other classification algorithms in this book. However, on several occasions the binary true
or predicted class labels will be used as numbers in equations (and, correspondingly, code
examples), whereas the discussion of classification in other chapters usually does not rely on
the numeric interpretation of class labels.

The threshold representation instantiated for linear classification takes the following form:

h(x) = H(w ⚬ a(x)) =

{
1 if w ⚬ a(x) ≥ 0

0 otherwise
(5.5)

In this case, the decision boundary separating the domain regions assigned the 0 and 1 class
labels, represented by the parameter vector, is a hyperplane in n dimensions. The target con-
cept is said to be linearly separable on a dataset if there exists a hyperplane that separates
all instances of different classes in the dataset (i.e., there exists a parameter vector that yields
correct predictions for all instances in the dataset). The dataset is then also said to be linearly
separable with respect to the target concept.

Example 5.2.3 The linear threshold representation is illustrated by the R code presented
below, using the lcg.plot function from the previous example as the linear inner
representation function. The comparison of its value against 0 determines two-dimensional
regions that are assigned the 1 and 0 class labels using the ustep function for unit step
calculation.
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Figure 5.2 The linear threshold classification model representation.

Plots illustrating this representation are presented in Figure 5.2. The top left plot presents
the plane determined by the linear inner representation function. The top right plot presents
the same plane using different shades, darker when the inner representation function is below
0 and lighter elsewhere. The bottom left plot presents the effect of applying the unit step
function to the values of the linear inner representation function. The bottom right plot shows
the corresponding projection to two dimensions, using a darker shade for regions assigned
class 0 and a lighter shade for regions assigned class 1.

h.t <- function(a1, a2) { ustep(lcg.plot(a1, a2)) }

lcdat.plot$h.t <- h.t(lcdat.plot$a1, lcdat.plot$a2)

wf.g.t <- wireframe(g̃a1+a2, lcdat.plot, drape=TRUE, at=c(-100, 0, 100),
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col="transparent", col.regions=c("grey30", "grey70"),
colorkey=FALSE, zoom=0.8)

wf.h.t <- wireframe(h.t̃a1+a2, lcdat.plot, col="grey50", zoom=0.8)
l.h.t <- levelplot(h.t̃a1+a2, lcdat.plot, at=c(0, 0.5, 1),

col.regions=c("grey30", "grey70"), colorkey=FALSE)

print(wf.g, split=c(1, 1, 2, 2), more=TRUE)
print(wf.g.t, split=c(2, 1, 2, 2), more=TRUE)
print(wf.h.t, split=c(1, 2, 2, 2), more=TRUE)
print(l.h.t, split=c(2, 2, 2, 2))

Example 5.2.4 The following code defines the repf.threshold function which
Ex. 8.2.2
dmr.linreg

takes an inner representation function on input and returns a composite represen-
tation function, with a threshold outer representation function applied. Used with
the repf.linear function, it implements the linear threshold representation.

Ex. 8.2.1
dmr.linreg

To demonstrate the representation function, it is used in combination with
the “perfect” parameter vector determined in Example 5.2.2 to create the
perfect threshold model for the example dataset. The quality of its pre-
dictions, generated using the predict.par function, is evaluated using

Ex. 7.2.1
dmr.claseval

the misclassification error. The latter is calculated using the err function.

## threshold representation function
repf.threshold <- function(repf) { function(data, w) ustep(repf(data, w)) }

# "perfect" threshold model
perf.threshold <- ‘class<-‘(list(repf=repf.threshold(repf.linear), w=w.perf), "par")
# test set error

err(predict(perf.threshold, lcdat.test[,1:4]), lcdat.test$c)

Example 5.2.5 The R code presented below defines the linsep.sub function that identifies
the linearly separable subset of a given dataset, following a similar approach as demonstrated
in Example 5.2.2. It applies the lm function to perform linear regression, with class labels
converted to numeric target function values from the {−1, 1} set, and then verifies for which
instances the resulting model yields correct threshold predictions. The function is applied to
determine the linearly separable subsets of the example training and test sets.

## identify a linearly separable subset of data
linsep.sub <- function(formula, data)
{
class <- y.var(formula)
attributes <- x.vars(formula, data)
aind <- names(data) %in% attributes

wlm <- lm(make.formula(paste("(2*as.num0(", class, ")-1)", sep=""), attributes),
data)$coef

wpar <- c(wlm[-1], wlm[1]) # rearrange for predict.par
predict.par(list(repf=repf.threshold(repf.linear), w=wpar), data[,aind])==
data[[class]]

}
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# linearly separable training and test subsets
lcdat.ls <- linsep.sub(c̃., lcdat)
lcdat.train.ls <- lcdat[1:200,][lcdat.ls[1:200],]
lcdat.test.ls <- lcdat[201:400,][lcdat.ls[201:400],]

5.2.4 Logit representation

The most popular approach to parametric class probability modeling uses the logit represen-
tation

P(1|x) = eg(x)

eg(x) + 1
(5.6)

The inner representation function g does not therefore represent directly P(1|x), but rather the
logit or log-odds thereof:

g(x) = logit(P(1|x)) (5.7)

where for p ∈ [0, 1]:
logit(p) = ln

p

1 − p
(5.8)

and therefore:

g(x) = ln
P(1|x)

1 − P(1|x) = ln
P(1|x)
P(0|x) (5.9)

P(1|x) = logit−1(g(x)) (5.10)

The effective representation function for P(1|x) is then the composite of the inverse logit
function logit−1 (also called the logistic function) and the inner representation function g.

The logit representation combined with a linear inner representation function

P(1|x) = logit−1(w ⚬ a(x)) = ew⚬ a(x)

ew⚬ a(x) + 1
(5.11)

is used to represent linear logit classification models, more commonly referred to as logistic
regression models.

Notice that under the maximum-probability prediction rule, the condition for instance x
to be assigned class 1

P(1|x) ≥ P(0|x) (5.12)

entails (as long as P(1|x) < 1):
P(1|x)
P(0|x) > 0 (5.13)

and therefore
g(x) = ln

P(1|x)
P(0|x) > 0 (5.14)

This shows that the maximum-probability class predictions for the logit representation
are identical to those produced by the threshold representation if the underlying inner
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Figure 5.3 The inverse logit function.

representation function and model parameters are the same. The advantage of the logit
representation, though, is the capability of predicting class probabilities.

Example 5.2.6 The following R code defines the logit.inv function and plots the inverse
logit (logistic) curve. It is a sigmoid curve that can be seen as a smoothed and differentiable
counterpart of the unit step function. The plot is presented in Figure 5.3.

The inverse logit function is then applied to the lcg.plot inner representation function
to obtain class probabilities and class label assignments based on the logit representation.
The representation is visualized by a series of subsequently generated plots, presented in
Figure 5.4. The top left plot illustrates the inner representation function. The top right plot
presents the corresponding probabilities of class 1, plotted in a darker shade where below
0.5 and in a lighter shade elsewhere. The bottom left plot presents the effect of applying the
maximum-probability rule to assign 0 or 1 class labels. The bottom right plot shows the cor-
responding projection to two dimensions, a darker shade for regions assigned class 0 and a
lighter shade for regions assigned class 1. As expected, the two bottom plots that show class
label assignments are identical to those produced in Example 5.2.3.

logit.inv <- function(q) { (e <- exp(q))/(e+1) }

curve(logit.inv(x), from=-5, to=5, xlab="q", ylab="logit.inv(q)")

p1.lt <- function(a1, a2) { logit.inv(lcg.plot(a1, a2)) }
h.lt <- function(a1, a2) { ustep(p1.lt(a1, a2), 0.5) }
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lcdat.plot$p1.lt <- p1.lt(lcdat.plot$a1, lcdat.plot$a2)
lcdat.plot$h.lt <- h.lt(lcdat.plot$a1, lcdat.plot$a2)

wf.p1.lt <- wireframe(p1.lt̃a1+a2, lcdat.plot, drape=TRUE, at=c(0, 0.5, 1),
col="transparent", col.regions=c("grey30", "grey70"),
colorkey=FALSE, zoom=0.8)

wf.h.lt <- wireframe(h.lt̃a1+a2, lcdat.plot, col="grey50", zoom=0.8)
l.h.lt <- levelplot(h.lt̃a1+a2, lcdat.plot, at=c(-100, 0, 100),

col.regions=c("grey30", "grey70"), colorkey=FALSE)

print(wf.g, split=c(1, 1, 2, 2), more=TRUE)
print(wf.p1.lt, split=c(2, 1, 2, 2), more=TRUE)
print(wf.h.lt, split=c(1, 2, 2, 2), more=TRUE)
print(l.h.lt, split=c(2, 2, 2, 2))

a1a2
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a1a2

p1.lt

a1a2
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Figure 5.4 The linear logit classification model representation.
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Example 5.2.7 The code presented below implements wrapper generation around an
inner representation function, combining it with the logit outer representation to produce
a composite logit representation function. When applied to the repf.linear function,

Ex. 8.2.2
dmr.linreg

this yields the linear logit representation. To provide a demonstration, the pre-
diction quality of a linear logit model using the “perfect” parameter vector
from Example 5.2.2 is evaluated. Model quality is measured by the misclas-
sification error for class label prediction and by the loglikelihood for class Ex. 7.2.17

dmr.clasevalprobability predictions. The latter is calculated using the loglik01 function.

## logit representation function
repf.logit <- function(repf) { function(data, w) logit.inv(repf(data, w)) }

# "perfect" logit model
perf.logit <- ‘class<-‘(list(repf=repf.logit(repf.linear), w=w.perf), "par")
# test set error

err(ustep(predict(perf.logit, lcdat.test[,1:4]), 0.5), lcdat.test$c)
# test set loglikelihood

loglik01(predict(perf.logit, lcdat.test[,1:4]), lcdat.test$c)

5.3 Parameter estimation

Parameter estimation is the process of identifying model parameters based on a given training
set that are likely to yield good performance. This can be viewed as an optimization process in
which the space of possible parameter vectors is searched for the one that optimizes an adopted
performance measure. In general, several different performance measures and optimization
methods could be used for this purpose.

One strategy that is applicable to the composite parametric classification model represen-
tations presented above is to adopt the delta rule and the gradient descent algorithm for linear
regression, presented in Section 8.3, to the estimation of linear classification model parame-
ters. This is a particularly simple approach to the underlying optimization problem that may
suffer from slow convergence, and the resulting algorithms can be explained and understood
using elementary maths, as well as illustrated by plain-vanilla implementations.

5.3.1 Delta rule

Unfortunately, applying the delta rule directly to parametric classification may take more
than just replacing the real-valued target function f with a discrete (binary) target concept c.
Even though the 0 and 1 class labels can be used as numbers, the resulting update rule may
not be valid with respect to a reasonable classification performance measure. It is not even
directly applicable to the parametric classification representations presented above. This is
because h is nondifferentiable due to using the step function for the threshold representation
and probability-based class label assignment for the logit representation.

Rather than trying to directly apply the delta rule to a classification model h just by
replacing f with c, we will consider therefore its application to the underlying inner repre-
sentation function g. The correct way of doing this clearly depends on the particular type
of classification representation and will be discussed separately for the three representations
presented before.
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5.3.1.1 Threshold representation

For the threshold representation, applying the delta rule is vastly simplified by the fact that
it is only the sign of the inner representation function that really matters and its values can
be arbitrary as long as they are on the right side of 0. This makes it easier to overcome the
obstacles encountered when trying to directly rewrite the delta rule for this representation as
follows:

w ∶= w + 𝛽(c(x) − H(g(x)))∇wH(g(x)) (5.15)

temporarily ignoring the nondifferentiability of the unit step function H. If the latter were
approximated by a differentiable sigmoid counterpart, its derivative would take a maximum
value at 0 (corresponding to the slope of the corresponding sigmoid curve when crossing 0)
and gradually decay when moving away from 0 either side. This has the effect of performing
the largest parameter updates near the decision boundary, and smaller or negligible updates
farther away. Notice, however, that the latter is not necessary if the actual values of g are irrel-
evant and only its sign matters, and therefore ∇wH(g(x)) can be safely replaced with ∇wg(x).
For the same reason, the step-size 𝛽 can be omitted (assumed to be 1). This makes it possible
to write down the delta rule for the threshold representation in the following simplified form:

w ∶= w + (c(x) − h(x))∇wg(x)

=
⎧⎪⎨⎪⎩

w + ∇wg(x) if c(x) = 1 and h(x) = 0

w − ∇wg(x) if c(x) = 0 and h(x) = 1

w otherwise

(5.16)

which can be further simplified to

w ∶=

{
w + c−(x)∇wg(x) if h(x) ≠ c(x)
w otherwise

(5.17)

where c−(x) = 2c(x) − 1 is the counterpart of c with class labels converted from {0, 1} to
{−1, 1} for arithmetic convenience.

This leaves model parameters unchanged if instance x is classified correctly and modifies
them by adding or subtracting ∇wg(x) otherwise. If a parameter vector that yields no mis-
classifications on the training set is eventually arrived at, no further parameter updates will
occur, i.e., the parameter estimation process will converge. If such a parameter vector does
not exist (i.e., separating classes perfectly on the training set is impossible using the adopted
inner representation function), parameter updates will continue to take place indefinitely long
(unless a gradually decaying step size value is used), although a reasonably good parameter
vector may be sometimes obtainable by stopping the parameter estimation process at some
point when no further improvement seems to be possible.

The above rule is easily instantiated for linear threshold classification by substituting the
inner representation function gradient. Since ∇wg(x) = a(x), the error-minimization delta rule
for the linear threshold representation takes the following form:

w ∶=

{
w + c−(x)a(x) if h(x) ≠ c(x)
w otherwise

(5.18)
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Iteratively applied, this yields a parameter-estimation algorithm for the linear threshold clas-
sifier, often referred to as the perceptron algorithm.

The above discussion is by no means a proper derivation of the parameter update rule for
linear threshold classification and serves only as an intuitive explanation of its relationships
to the linear regression delta rule. Section 5.3.3 will explain why it works by more rigorous
arguments.

Example 5.3.1 The following R code defines the grad.threshold function that
implements gradient calculation for the threshold representation function, using the

Ex. 8.3.3
dmr.linreg

specified inner representation function and its gradient. This is necessary to use
the gradient.descent function, as will be demonstrated later. As discussed
above, the derivative of the nondifferentiable unit step function is taken to be 1, and
therefore simply the supplied inner representation function gradient is returned.

Ex. 8.3.1
dmr.linreg

Applied to the grad.linear function, implementing the linear representation
gradient, it yields the linear threshold gradient.

## threshold representation gradient
grad.threshold <- function(grad) { grad }

# linear threshold gradient for the "perfect" parameter vector
grad.threshold(grad.linear)(lcdat.train[1:10,1:4], w.perf)

5.3.1.2 Logit representation

Since in the logit representation it is the class 1 probability that is represented parametrically,
an appropriate probabilistic performance measure is needed to guide the parameter estimation
process. This is necessary to ensure that the resulting model parameter vector will indeed yield
probability estimates that fit the training set. Two such directly related measures, the likelihood
and the loglikelihood, are presented in Section 7.2.6. It may be unclear how to modify the delta
rule to suite the adopted performance measure, but it can be derived following the pattern of
its derivation for regression from Section 8.3.1.

Consider the likelihood of training set T with respect to the target concept c given model
probability estimates 𝜋:

P(T , c|𝜋) = ∏
x∈T

P(x|𝜋) = ∏
x∈T

P(c(x)|x) (5.19)

where

P(1|x) = 𝜋(x) (5.20)

P(0|x) = 1 − 𝜋(x) (5.21)

Notice that
P(c(x)|x) = 𝜋(x)c(x)(1 − 𝜋(x))1−c(x) (5.22)

and therefore
P(T , c|𝜋) = ∏

x∈T

(
𝜋(x)c(x)(1 − 𝜋(x))1−c(x)) (5.23)
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Let us now take the natural logarithm of the above expression as the loglikelihood of the
training set T with respect to the target concept c given model probability estimates 𝜋:

LT ,c(𝜋) =
∑
x∈T

(
c(x) ln 𝜋(x) + (1 − c(x)) ln (1 − 𝜋(x))

)
(5.24)

Of course, unlike the misclassification error, both the likelihood and the loglikelihood need
to maximized by parameter estimation, which would therefore lead to gradient ascent rather
than gradient descent parameter estimation. Equivalently, one may consider minimizing the
logarithmic loss (log-loss) defined as the negated loglikelihood.

Using the loglikelihood as the underlying performance measure for the delta rule

w ∶= w + 𝛽∇wLT ,c(𝜋) (5.25)

requires determining its gradient with respect to the parameter vector. We can proceed with
this as follows:

∇wLT ,c(𝜋) =
∑
x∈T

(
c(x) 1

𝜋(x)
+ (1 − c(x)) −1

1 − 𝜋(x)

)
∇w𝜋(x)

=
∑
x∈T

c(x) − 𝜋(x)
𝜋(x)(1 − 𝜋(x))

∇w𝜋(x) (5.26)

Since for the logit representation

𝜋(x) = eg(x)

eg(x) + 1
= 1

1 + e−g(x) (5.27)

we have
∇w𝜋(x) = 𝜋(x)(1 − 𝜋(x))∇wg(x) (5.28)

Notice, by the way, that the possibility of calculating the derivative value based on the function
value for the same argument is a nice property of the logistic function that is often exploited by
parameter estimation algorithms that use the function in their model representation. Finally,
we arrive at the following form of the loglikelihood gradient:

∇wLT ,c =
∑
x∈T

(c(x) − 𝜋(x))∇wg(x) (5.29)

which surprisingly yields the same delta rule form as given by Equation 8.15 for parametric
regression, with just c(x) and 𝜋(x) appearing in place of f (x) and h(x):

w ∶= w + 𝛽
∑
x∈T

(c(x) − 𝜋(x))∇wg(x) (5.30)

The corresponding incremental delta rule, describing the per-instance parameter update, is
obtained by dropping the summation

w ∶= w + 𝛽(c(x) − 𝜋(x))∇wg(x) (5.31)

Given ∇wg(x) = a(x), this further becomes

w ∶= w + 𝛽(c(x) − 𝜋(x))a(x) (5.32)

for linear logit classification.
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It turns out that modifying parameters as if one were attempting to minimize the mean
square error of class 1 probabilities compared to true class labels on the training set results
in maximizing the loglikelihood of the latter when using the logit representation. This is def-
initely a nice property of this representation.

Example 5.3.2 The following R code defines the grad.logit function that generates
the logit representation function gradient wrapper around the specified inner repre-
sentation function and its gradient. Applied to the linear representation function and
gradient, it yields the linear logit gradient. It can be seen to implement Equation 5.28,

dmr.util
using the rmm utility function to multiply all rows of the gradient matrix obtained
for the inner representation function by the corresponding 𝜋(x)(1 − 𝜋(x)) values.

## logit representation gradient
grad.logit <- function(repf, grad)
{ function(data, w) rmm(grad(data, w), (p <- repf.logit(repf)(data, w))*(1-p)) }

# linear logit gradient for the "perfect" parameter vector
grad.logit(repf.linear, grad.linear)(lcdat.train[1:10,1:4], w.perf)

5.3.2 Gradient descent

Either the batch or incremental (stochastic) gradient descent algorithm can be used in combi-
nation with the delta rules derived above for the threshold and logit parametric classification.
For the latter, it would be actually gradient ascent, given the fact the delta rule is derived to
maximize the loglikelihood rather than minimize the error. No changes in the gradient-based
algorithms for parametric regression presented in Section 8.3 are required other than substi-
tuting the appropriate delta rules.

The simple form of the inner linear representation function makes the optimization process
relatively fast, computationally efficient, and resistant to local optima, which is a considerable
advantage over nonlinear representations.

Example 5.3.3 The R code presented below implements the delta rule for the threshold and
logit representations, providing the last missing piece necessary to apply the gradient descent
parameter estimation algorithm.. For the threshold representation the delta rule, assuming the
objective of misclassification error minimization, is implemented by the delta.err func-
tion, which is actually the same as delta.mse from Example 8.3.2 for regression. This
is justified by Equation 5.16. For the logit representation the delta rule is implemented by
the delta.loglik function, based on Equation 5.26 which assumes loglikelihood maxi-
mization. The two delta rule implementations are then used in example calls that apply the
gradient.descent function to estimate parameters of linear threshold and logit models

Ex. 8.3.3
dmr.linreg

for the example artificial data (both the original dataset and its linearly separa-
ble subset). Similar example calls are presented for the Pima Indians Diabetes
dataset, which is not linearly separable. For the latter, the binary 0/1 predictions
have to be converted to the original class labels. Notice that the negated loglike-
lihood is used as the performance measure specified via the perf argument for the logit
representation, so that the stop criterion of the gradient descent algorithm works correctly.
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The performance of the obtained models is evaluated by calculating their training and test set
error and loglikelihood values.

## calculate parameter update based on given true and predicted values,
## gradient, and step-size using the delta rule for loglikelihood minimization
delta.loglik <- function(true.y, pred.y, gr, beta)
{
d <- ifelse(is.finite(d <- rmm(gr, 1/(pred.y*(1-pred.y)))), d, 1)
colSums(beta*rmm(d, true.y-pred.y))

}

## calculate parameter update based on given true and predicted values,
## gradient, and step-size using the delta rule for error minimization
delta.err <- delta.mse

# linear threshold for the artificial data
gdl.th <- gradient.descent(c̃., lcdat.train, w=rep(0, 5),

repf=repf.threshold(repf.linear),
grad=grad.threshold(grad.linear),
delta=delta.err, perf=err,
beta=1, batch=TRUE, eps=0.03)

gdl.th.ls <- gradient.descent(c̃., lcdat.train.ls, w=rep(0, 5),
repf=repf.threshold(repf.linear),
grad=grad.threshold(grad.linear),
delta=delta.err, perf=err,
beta=1, batch=TRUE, eps=0.001)

# linear logit for the artificial data
gdl.lt <- gradient.descent(c̃., lcdat.train, w=rep(0, 5),

repf=repf.logit(repf.linear),
grad=grad.logit(repf.linear, grad.linear),
delta=delta.loglik, perf=function(p, y) -loglik01(p, y),
beta=0.01, batch=TRUE, eps=15.4)

gdl.lt.ls <- gradient.descent(c̃., lcdat.train.ls, w=rep(0, 5),
repf=repf.logit(repf.linear),
grad=grad.logit(repf.linear, grad.linear),
delta=delta.loglik,
perf=function(p, y) -loglik01(p, y),
beta=0.1, batch=TRUE, eps=3)

# linear threshold for the Pima Indians Diabetes data
pid.gdl.th <- gradient.descent(diabetes̃., pid.train, w=rep(0, ncol(pid.train)),

repf=repf.threshold(repf.linear),
grad=grad.threshold(grad.linear),
delta=delta.err, perf=err,
beta=1, batch=TRUE, eps=0.28, niter=10000)

# linear logit for the Pima Indians Diabetes data
pid.gdl.lt <- gradient.descent(diabetes̃., pid.train, w=rep(0, ncol(pid.train)),

repf=repf.logit(repf.linear),
grad=grad.logit(repf.linear, grad.linear),
delta=delta.loglik,
perf=function(p, y) -loglik01(p, y),
beta=1e-7, batch=TRUE, eps=250, niter=1e6)

# training set error
err(predict(gdl.th$model, lcdat.train[,1:4]), lcdat.train$c)
err(ustep(predict(gdl.lt$model, lcdat.train[,1:4]), 0.5), lcdat.train$c)
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err(predict(gdl.th.ls$model, lcdat.train.ls[,1:4]), lcdat.train.ls$c)
err(ustep(predict(gdl.lt.ls$model, lcdat.train.ls[,1:4]), 0.5), lcdat.train.ls$c)

err(factor(predict(pid.gdl.th$model, pid.train[,-9]),
levels=0:1, labels=levels(pid.train$diabetes)),
pid.train$diabetes)

err(factor(ustep(predict(pid.gdl.lt$model, pid.train[,-9]), 0.5),
levels=0:1, labels=levels(pid.train$diabetes)),

pid.train$diabetes)

# training set loglikelihood
loglik01(predict(gdl.th$model, lcdat.train[,1:4]), lcdat.train$c)
loglik01(predict(gdl.lt$model, lcdat.train[,1:4]), lcdat.train$c)

loglik01(predict(gdl.th.ls$model, lcdat.train.ls[,1:4]), lcdat.train.ls$c)
loglik01(predict(gdl.lt.ls$model, lcdat.train.ls[,1:4]), lcdat.train.ls$c)

loglik01(predict(pid.gdl.th$model, pid.train[,-9]), pid.train$diabetes)
loglik01(predict(pid.gdl.lt$model, pid.train[,-9]), pid.train$diabetes)

# test set error
err(predict(gdl.th$model, lcdat.test[,1:4]), lcdat.test$c)
err(ustep(predict(gdl.lt$model, lcdat.test[,1:4]), 0.5), lcdat.test$c)

err(predict(gdl.th.ls$model, lcdat.test.ls[,1:4]), lcdat.test.ls$c)
err(ustep(predict(gdl.lt.ls$model, lcdat.test.ls[,1:4]), 0.5), lcdat.test.ls$c)

err(factor(predict(pid.gdl.th$model, pid.test[,-9]),
levels=0:1, labels=levels(pid.train$diabetes)),

pid.test$diabetes)
err(factor(ustep(predict(pid.gdl.lt$model, pid.test[,-9]), 0.5),

levels=0:1, labels=levels(pid.train$diabetes)),
pid.test$diabetes)

# test set loglikelihood
loglik01(predict(gdl.th$model, lcdat.test[,1:4]), lcdat.test$c)
loglik01(predict(gdl.lt$model, lcdat.test[,1:4]), lcdat.test$c)

loglik01(predict(gdl.th.ls$model, lcdat.test.ls[,1:4]), lcdat.test.ls$c)
loglik01(predict(gdl.lt.ls$model, lcdat.test.ls[,1:4]), lcdat.test.ls$c)

loglik01(predict(pid.gdl.th$model, pid.test[,-9]), pid.test$diabetes)
loglik01(predict(pid.gdl.lt$model, pid.test[,-9]), pid.test$diabetes)

When applied to the artificial dataset, the gradient descent algorithm (used in batch
mode due to the computational efficiency advantage of all-data prediction and gradient
calculations compared to per-instance incremental calculations in R) successfully identifies
model parameters that yield reasonably good classification performance for each of the three
representations used, despite the nonlinearity of the “true” representation function used to
generate the data. On the linearly separable data subset they all yield perfectly accurate
classification. Not surprisingly, the threshold model is inferior to the other two with respect
to the loglikelihood, as it does not predict probabilities (it is evaluated using the loglikelihood
for the sake of illustration only).

For the real linearly inseparable Pima Indians Diabetes data, the gradient descent
algorithms fails to converge with a linear threshold representation. While it apparently
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achieves the training set misclassification error level specified as a stop criterion, the
returned parameter vector – which incorporates one additional update (due to the particular
implementation of the gradient.descent function) – exhibits an extremely poor and
totally useless classification performance. Much more successful results are obtained for the
linear logit representation, for which the gradient descent algorithm converges – albeit very
slowly – to a quite reasonable performance level.

5.3.3 Distance to decision boundary

For a linear threshold model using the parameter vector w the signed distance between instance
x and the decision boundary (i.e., the hyperplane separating instances with positive and neg-
ative representation function values) can be calculated as follows:

𝛿w(x) =
∑n

i=1 𝑤iai(x) +𝑤n+1√∑n
i=1 𝑤

2
i

= w ⚬ a(x)||w1∶n|| (5.33)

where w1∶n denotes the parameter vector with the 𝑤n+1 (intercept) parameter omit-
ted and ||w1∶n|| denotes its L2 (Euclidean) norm. This is basically a signed version
of the Euclidean distance between the ⟨a1(x), a2(x), … , an(x)⟩ point, representing
the instance in the n-dimensional space of attribute values, and its projection on the
𝑤1a1(x) +𝑤2a2(x) + · · · +𝑤nan(x) +𝑤n+1 = 0 hyperplane. The sign indicates whether the
point lies on the positive or negative side of the hyperplane. This may be referred to as
the signed distance between instance x and the decision boundary for the parameter vector 𝑤.

If instance x is misclassified and c(x) = 1, we have 𝛿w(x) < 0. If instance x is misclassified
and c(x) = 0, we have 𝛿w(x) > 0. Therefore, the absolute distance between the misclassified
instance x and the decision boundary is (1 − 2c(x))𝛿w(x) = −c−(x)𝛿w(x). Minimizing the sum
of such distances over all misclassified instances in the training set may be considered a rea-
sonable approach to parameter estimation for linear threshold models. Simplifying this further
to the minimization of ∑

x∈Th≠c

−c−(x)w ⚬ a(x) (5.34)

leads to the following per-instance parameter update rule:

w ∶=

{
w + 𝛽∇wc−(x)w ⚬ a(x) if h(x) ≠ c(x)
w otherwise

(5.35)

This can be immediately seen to reduce to the very same linear threshold delta rule pre-
sented above. This better explains its effects by showing that it actually minimizes the distance
between misclassified instances and the separating hyperplane. This implies, in particular, that
the gradient descent algorithm using the delta rule for linear threshold models is guaranteed to
find the hyperplane perfectly separating the 0 and 1 classes on the training set, if it only exists
(i.e., the target concept is linearly separable on the training set), for which the quantity to
be minimized is equal to 0. Otherwise, the gradient descent algorithm will not converge (i.e.,
parameter updates will not cease to occur, unless a gradually decaying step size value is used),
although it may arrive at a reasonably good parameter vector after a number of iterations.
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5.3.4 Least squares

Unlike for linear regression, with the ordinary least-squares (OLS) algorithm presented
in Section 8.3.3 available as an usually preferred alternative to the iterative parameter
estimation based on the delta rule, there is no closed-form solution for the minimum-error
or maximum-likelihood parameter vector of linear classification models. A workaround is
available, however, for linear threshold models, for which it is only the sign of the inner
representation function that matters. This makes it possible to estimate model parameters
as if solving a regression task with a two-valued target function, taking a negative value
(e.g., −1) for instances of class 0 and a positive value, e.g., 1, for instances of class 0.

Consider the mean square error of a regression model h− with respect to the target function
c− ∶ X → {−1, 1} defined as c−(x) = 2c(x) − 1, assuming the class labels from the {0, 1} set
are used as numbers:

msec−,T
(h−) =

1|T| ∑
x∈T

(c−(x) − h−(x))2 (5.36)

While minimizing the above error does not guarantee minimizing the misclassification error
of the classification model using the same parameter vector (which can be defined as h(x) =
H(h−(x)), it is likely to yield good classification performance, with h− usually positive for
instances of class 1 and negative for instances of class 0. Therefore using the least-squares
method to estimate the parameters of regression model h− may be considered a reasonable
approximate approach to parameter estimation for the corresponding classification model h.
It is not guaranteed to identify the separating hyperplane even if it exists, contrary to the delta
rule with the gradient descent algorithm, but is usually much faster and easier to use due to
no convergence problems.

Example 5.3.4 The following R code defines a modified version of the ols function

Ex. 8.3.4
dmr.linreg

adjusted for linear threshold classification. The function relabels training instances
with values from the {−1, 1} set, using the as.num0 function, to obtain the
numerical representation of the original class labels, performs the usual ordinary
least-squares calculation, and returns the obtained parameter vector with the linear dmr.util
threshold representation function. The x.vars and y.var functions are used
for extracting input and target attribute names from the supplied formula. The

dmr.utilols.threshold function is then applied to create a linear threshold model for
the example artificial dataset and the linearly separable subset thereof, as well as
the Pima Indians Diabetes.

## estimate linear threshold model parameters using the OLS method
ols.threshold <- function(formula, data)
{
class <- y.var(formula)
attributes <- x.vars(formula, data)
aind <- names(data) %in% attributes

amat <- cbind(as.matrix(data[,aind]), intercept=rep(1, nrow(data)))
cvec <- 2*as.num0(data[[class]])-1
‘class<-‘(list(repf=repf.threshold(repf.linear),

w=solve(t(amat)%*%amat, t(amat)%*%cvec)),
"par")

}
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# least-squares linear threshold for the artificial data
ols.th <- ols.threshold(c̃., lcdat.train)
ols.th.ls <- ols.threshold(c̃., lcdat.train.ls)

# least-squares linear threshold for the Pima Indians Diabetes data
pid.ols.th <- ols.threshold(diabetes̃., pid.train)

# training set error
err(predict(ols.th, lcdat.train[,1:4]), lcdat.train$c)
err(predict(ols.th.ls, lcdat.train.ls[,1:4]), lcdat.train.ls$c)
err(factor(predict(pid.ols.th, pid.train[,-9]),

levels=0:1, labels=levels(pid.train$diabetes)),
pid.train$diabetes)

# test set error
err(predict(ols.th, lcdat.test[,1:4]), lcdat.test$c)
err(predict(ols.th.ls, lcdat.test.ls[,1:4]), lcdat.test.ls$c)
err(factor(predict(pid.ols.th, pid.test[,-9]),

levels=0:1, labels=levels(pid.train$diabetes)),
pid.test$diabetes)

Notice that the OLS method does not yield a perfectly accurate model for the linearly
separable subset of the artificial data. It works reasonably well for the more realistic and
linearly inseparable Pima Indians Diabetes, though, for which the gradient descent algorithm
failed to converge.

5.4 Discrete attributes

It is common for classification tasks to involve discrete attributes, either alone or along with
continuous attributes. For parametric classification to be applicable to such tasks the inner rep-
resentation function and its gradient must be capable of handling discrete attributes. This can
be achieved using the binary encoding attribute transformation described in Section 17.3.5
that is also used for linear regression. It is based on replacing (explicitly, in the dataset,
or implicitly, in internal algorithm calculations only) a discrete k-valued attribute a ∶ X →
{𝑣1, 𝑣2, … , 𝑣k} with k or – in the preferred nonredundant form – k − 1 binary attributes that
can then be treated as continuous (i.e., numerical) for all calculations. These binary attributes
are usually assumed to take values from the {0, 1} or {−1, 1} sets.

Example 5.4.1 The R code presented below creates discrete attribute-enabled wrappers
around the linear logit representation function and its gradient using the repf.disc and

Ex. 8.4.1
dmr.linreg

grad.disc functions. This is sufficient to apply the gradient.descent
function with discrete attributes Actually, all functions for linear classification
parameter estimation could be applied to datasets with discrete attributes after

Ex. 17.3.5
dmr.trans

transforming them using the discode function. For the purpose of illustration,
however, a modified discrete attribute-enabled version of the ols.threshold
function is defined below that applies this data transformation internally. It also
takes care of setting the representation function of the returned model appropri-
ately using repf.disc, so that no explicit data transformation is needed for prediction.
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Linear classification parameter estimation with discrete attributes is then demonstrated for
the weatherc data, containing two discrete and two continuous attributes. The original no and
yes class labels are assigned to the obtained 0 and 1 predictions.

## estimate linear threshold model parameters using the OLS method
## for data with discrete attributes
ols.threshold.disc <- function(formula, data)
{
class <- y.var(formula)
attributes <- x.vars(formula, data)
aind <- names(data) %in% attributes

amat <- cbind(as.matrix(discode(̃., data[,aind])), intercept=rep(1, nrow(data)))
cvec <- 2*as.num0(data[[class]])-1
‘class<-‘(list(repf=repf.disc(repf.threshold(repf.linear)),

w=solve(t(amat)%*%amat, t(amat)%*%cvec)),
"par")

}

# gradient descent for the weatherc data
w.gdl <- gradient.descent(plaỹ., weatherc, w=rep(0, 6),

repf=repf.disc(repf.threshold(repf.linear)),
grad=grad.disc(grad.threshold(grad.linear)),
delta=delta.mse, perf=err,
beta=1, batch=TRUE, eps=0.2)

# OLS for the weatherc data
w.ols <- ols.threshold.disc(plaỹ., weatherc)

# training set error
err(factor(ustep(predict(w.gdl$model, weatherc[,1:4]), 0.5),

levels=0:1, labels=c("no", "yes")),
weatherc$play)

err(factor(ustep(predict(w.ols, weatherc[,1:4]), 0.5),
levels=0:1, labels=c("no", "yes")),

weatherc$play)

As we can see, the gradient descent algorithm does not converge due to the linear insepa-
rability of the weatherc data and the obtained error level is rather unimpressive.

5.5 Conclusion

Linear classifiers belong to the first inductive learning algorithms studied, dating back at least
to the 1950s. This early work focused on linear threshold classification and was limited by
the linear separability requirement. The interest in linear classification models then decayed
for several decades due to this limitation, particularly given the increasing popularity of more
refined algorithms, such as decision trees, that can not only cope with linearly inseparable
data, but also produce human-readable models.

Recent years have seen the renewal of interest in linear classification. While still suffering
from the linearity limitation and lack of human readability, they have strengths that make them
an attractive choice for some applications. This is particularly the case for linear logit models,
capable of class probability prediction, and explicit loglikelihood maximization. This makes
them ideal probabilistic classifiers as long as the inner representation function is sufficient,
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and as such, well suited to applications where probabilistic prediction is needed (e.g., involv-
ing nonuniform misclassification costs, as discussed in Chapter 6). Another reason of linear
classification regaining attention is the possibility of overcoming the linearity limitation by
effectively transforming the task being solved from its original representation to an enhanced
representation using kernel methods. In combination with an alternative approach to parame-
ter estimation that increases the resistance to overfitting, they deliver high quality predictions
in many applications. This is discussed in Chapter 16.

Unlike for regression, the parametric approach to classification is not necessarily the most
common and not always the most successful. Its disadvantages include:

• very limited (if any) human readability of models (only with the simplest inner repre-
sentation functions the impact of particular attributes on the predicted classes can be
assessed,

• prediction quality directly dependent on the choice of the inner representation function,
with the most popular linear classification insufficient in many cases,

• parameter estimation by numerical optimization that may be time-consuming and prone
to failures for nonlinear inner representation functions.

These are counterbalanced, however, by the simplicity of model representation, the capa-
bility to predict class probabilities (with loglikelihood maximization) by logit classifiers.

5.6 Further readings

Linear classification models are heavily grounded in both machine learning and statistics tra-
ditions. More precisely, it is the former that mostly influenced the development of linear
threshold classifiers and the latter that contributed generalized linear models on which the
logit classifiers are based. This mixed origin of linear classification models is to some extent
reflected by their coverage in the literature, with some books representing both the traditions
(Bishop 2007; Duda and Hart 1973; Hand et al. 2001; Hastie et al. 2011; Theodoridis and
Koutroumbas 2008; Witten et al. 2011) and some more focused on approaches with machine
learning roots (e.g., Abu-Mostafa et al. 2012; Tan et al. 2013). Of the former, Bishop (2007)
and Theodoridis and Koutroumbas (2008) are particularly noteworthy for the completeness,
consistency, and depth of presentation.

Linear threshold classifiers, often referred to as perceptrons, appeared in the early romantic
period of artificial intelligence and machine learning research as computational models of neu-
rons (Rosenblatt 1958), extending even earlier related work (McCulloch and Pitts 1943). This
is, by the way, how artificial neural networks originated, which form a somewhat separate spe-
cific subdomain of machine learning, contributing neurophysiologically inspired algorithms
for classification, regression, and clustering (Hertz et al. 1991), including in particular non-
linear classification and regression algorithms. Some of them are also covered by general
data mining and machine learning books (Bishop 2007; Hand et al. 2001; Mitchell 1997;
Tan et al. 2013). Minsky and Papert (1969) in their seminal book examined the properties
of perceptrons and identified their linear separability limitation. Nonlinear perceptrons with
parameters estimated using the backpropagation algorithm (Rumelhart et al. 1986) remain the
most popular type of neural networks.
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The logit classification algorithm, often referred to as logit (or logistic) regression, is a spe-
cific instantiation of generalized linear models (GLM) introduced by Nelder and Wedderburn
(1972) and later extensively discussed by McCullagh and Nelder (1989). This discussion cov-
ers, in particular, a general approach to parameter estimation and a variety of different link
functions and target distributions that yield specific GLM instantiations. An in-depth presen-
tation of several variations of logit models is given by Hilbe (2009). Ng and Jordan (2001)
compared logit models and naïve Bayes classifiers. Perlich et al. (2003) evaluated the predic-
tive performance of logit models and decision trees for datasets of varying size. Bishop (2007)
and Agresti (2013) can also be referred to for more details about logit classification.

There are more approaches to linear classification than presented in this chapter, origi-
nating both from machine learning and statistics. The most noteworthy of the latter is linear
discriminant analysis, first presented by Fisher (1936) and then extensively studied in differ-
ent versions, overviewed by McLachlan (2004). The former include modified versions of the
original perceptron algorithm, capable of handling linearly inseparable data (Gallant 1990)
and the Winnow algorithm that applies multiplicative rather than additive parameter updates
(Littlestone 1988), to faster identify a separating hyperplane, particularly if there are many
irrelevant attributes. Freund and Schapire (1999) extended the perceptron algorithm to ensure
a possibly large classification margin (the distance between the separating hyperplane and
the nearest correctly separated positive and negative instances), achieving properties partially
similar to the SVM algorithm presented in Chapter 16 in a much simpler way.
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6

Misclassification costs

6.1 Introduction

In several practical classification tasks, it is not devoid of significance how the performance
of a classification model differs for particular classes of the target concept. Models exhibiting
seemingly the same performance in terms of overall misclassification rate may vastly differ
in actual utility depending on which classes they predict successfully and for which they fail.
This is especially true for all kinds of diagnostic or anomaly detection tasks where some model
mistakes may be more severe or more tolerable than the others.

To adequately describe the requirements for classification models in such situations,
real-valued misclassification costs are used, assigned to particular pairs of predicted and true
classes. They can not only provide additional performance criteria for model evaluation,
but also – and more importantly – get incorporated into model construction, to make it
cost-sensitive.

When discussing misclassification cost incorporation techniques, we will have to refer to
classification model quality measures, defined in Chapter 7: the misclassification error, the
weighted misclassification error, the mean misclassification cost, and the confusion matrix.
This forward reference is unavoidable, because – while it is natural and logical to present
model evaluation techniques after cost-sensitive model creation techniques – the former can
be only fully justified and understood by referring to the latter.

Example 6.1.1 The discussion of techniques for incorporating misclassification costs will
be illustrated by a series of examples in R, using the implementations of the decision tree
and naïve Bayes classification algorithms provided by the rpart and e1071 packages,
applied to the Vehicle Silhouettes dataset, available in the mlbench package. The ipred
package, providing a bagging ensemble modeling implementation, will be employed by some

Data Mining Algorithms: Explained Using R, First Edition. Paweł Cichosz.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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demonstrations. Functions from the dmr.claseval and dmr.util packages will also be
used. The following code sets up the environment for these examples by loading the required
packages and the dataset, as well as creating baseline (cost-insensitive) models. Apart from
the original dataset, a modified two-class version is used with the opel and saab classes
aggregated to a new car class, and the bus and van classes aggregated to a new other
class. The original and modified datasets are randomly split into training and test subsets, for
simple hold-out evaluation. A fixed initial seed of the random number generator is used for
this partitioning to make the results exactly reproducible.

library(dmr.claseval)
library(dmr.util)

library(rpart)
library(e1071)
library(ipred)

data(Vehicle, package="mlbench")

set.seed(12)
rv <- runif(nrow(Vehicle))
v.train <- Vehicle[rv>=0.33,]
v.test <- Vehicle[rv<0.33,]

# two-class version
Vehicle01 <- Vehicle
Vehicle01$Class <- factor(ifelse(Vehicle$Class %in% c("opel", "saab"),

"car", "other"))
v01.train <- Vehicle01[rv>=0.33,]
v01.test <- Vehicle01[rv<0.33,]

# cost-insensitive decision trees
v.tree <- rpart(Class̃., v.train)
v01.tree <- rpart(Class̃., v01.train)

# cost-insensitive naive Bayes classifiers
v.nb <- naiveBayes(Class̃., v.train)
v01.nb <- naiveBayes(Class̃., v01.train)

# misclassification error for cost-insensitive models
v.err.b <- list(tree=err(predict(v.tree, v.test, type="c"), v.test$Class),

nb=err(predict(v.nb, v.test), v.test$Class))

v01.err.b <- list(tree=err(predict(v01.tree, v01.test, type="c"), v01.test$Class),
nb=err(predict(v01.nb, v01.test), v01.test$Class))

To evaluate the baseline models created in this example as well as cost-sensitive models
created in subsequent examples the simple err, mean.cost, and confmat functions
will be used, defined in Examples 7.2.1, 7.2.3, and 7.2.4 in Chapter 7, which calculate the

dmr.claseval

misclassification error, mean misclassification cost, and confusion matrix,
respectively. The above code uses only the first of those to calculate the test
set misclassification error of the created baseline, cost-insensitive models.
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6.2 Cost representation

Misclassification costs can be based on the actual objective cost of decisions made using a
model’s predictions. In some applications, the corresponding domain knowledge is available
that makes it possible to precisely determine or roughly estimate the actual cost of wrong
predictions, expressed in money, power consumption, human effort, or any other meaningful
units. The usage of misclassification costs is not limited to such cases, though. Even if no
domain knowledge-based costs can be specified, subjective costs can be used during model
construction to make the model more sensitive to some classes that are considered more inter-
esting or harder to predict.

6.2.1 Cost matrix

Misclassification costs can be specified as a |C| × |C| matrix 𝜌 where 𝜌[d1, d2] is the misclas-
sification cost of predicting class d1 for an instance of a true class d2. The matrix is usually
assumed to contain 0s on the main diagonal (i.e., 𝜌[d, d] = 0 for all d ∈ C). Typically, positive
integer numbers are used for the remaining entries, with 1 corresponding to the least expen-
sive misclassification. This is usually the most intuitive way of specifying costs, although
in general arbitrary nonnegative real numbers are permitted. Such noninteger costs may be
necessary if objective misclassification costs based on domain knowledge are used.

Example 6.2.1 Cost matrices for the original and two-class versions of the Vehicle Silhou-
ettes dataset, to be used in subsequent examples, are created by the following R code. The
cost matrices are used to calculate the mean misclassification cost achieved by the baseline
cost-insensitive models on the test sets.

v.rm <- matrix(0, nrow=nlevels(Vehicle$Class), ncol=nlevels(Vehicle$Class),
dimnames=list(predicted=levels(Vehicle$Class),

true=levels(Vehicle$Class)))

v.rm["bus","opel"] <- 7
v.rm["bus","van"] <- 0.2
v.rm["bus","saab"] <- 7
v.rm["opel","bus"] <- 1.4
v.rm["opel","saab"] <- 1
v.rm["opel","van"] <- 1.4
v.rm["saab","bus"] <- 1.4
v.rm["saab","opel"] <- 1
v.rm["saab","van"] <- 1.4
v.rm["van","bus"] <- 0.2
v.rm["van","opel"] <- 7
v.rm["van","saab"] <- 7

# two-class version
v01.rm <- matrix(0, nrow=nlevels(Vehicle01$Class), ncol=nlevels(Vehicle01$Class),

dimnames=list(predicted=levels(Vehicle01$Class),
true=levels(Vehicle01$Class)))

v01.rm["other","car"] <- 5
v01.rm["car","other"] <- 1
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# mean misclassification cost for cost-insensitive models
v.mc.b <- list(tree=mean.cost(predict(v.tree, v.test, type="c"), v.test$Class, v.rm),

nb=mean.cost(predict(v.nb, v.test), v.test$Class, v.rm))

v01.mc.b <- list(tree=mean.cost(predict(v01.tree, v01.test, type="c"),
v01.test$Class, v01.rm),

nb=mean.cost(predict(v01.nb, v01.test), v01.test$Class, v01.rm))

The cost matrices assumed for the original and two-class data versions are presented in
Table 6.1. For the former, the most expensive misclassification is to predict bus or van for
instances of classopel andsaab and the least expensive is to predictbus forvan orvan for
bus. The cost matrix includes fractional costs and costs below 1, which is rarely encountered
in practice. For the two-class version of the Vehicle Silhouettes data, the cost of misclassifying
car as other is equal to 5 and the cost of misclassifying other as car is equal to 1.

6.2.2 Per-class cost vector

Sometimes a simplified misclassification cost representation is considered, with the cost
matrix replaced by a per-class cost vector 𝜌 of length |C|, where 𝜌[d] is the misclassification
cost of predicting an incorrect class for an instance of class d. Misclassification costs in this
cost representation may be easier to incorporate to the modeling process, as we will see later.
This is why it is not uncommon to reduce the original cost matrix representation to a simpler
cost vector form by averaging or summing on a per-class basis.

Note that for two-class classification tasks, for which it is particularly common to ana-
lyze nonuniform misclassification costs, the matrix and vector cost representations are exactly
equivalent. This is because the cost matrix with zeros on the main diagonal (no cost of correct
predictions) contains only two nonzero entries, 𝜌[0, 1] = 𝜌[1] and 𝜌[1, 0] = 𝜌[0].

Incorporating per-class misclassification costs is closely related to the issue of unbalanced
classes, which is another problem commonly encountered in classification tasks. When the
proportion of particular classes in the training set substantially differs, error-minimizing clas-
sification algorithms may deliver models that fail to correctly detect instances of the less
frequent class or classes. Resampling the training set to alter the class distribution, com-
monly performed to overcome the issue, may be then seen to implicitly incorporate per-class
misclassification costs – with mistakes for less frequent classes considered more costly. This

Table 6.1 Misclassification cost matrices for the original and two-class
versions of the Vehicle Silhouettes data.

c c

h bus opel saab van h car other

bus 0 7 7 0.2 car 0 1
opel 1.4 0 1 1.4 other 5 0
saab 1.4 1 0 1.4
van 0.2 7 7 0
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makes the model more sensitive to less frequent classes as they are more costly if not recog-
nized properly. Handling unbalanced classes is therefore one particular use-case of techniques
for incorporating per-class misclassification costs.

Example 6.2.2 The following R code creates per-class cost vectors for the original and
two-class versions of the Vehicle Silhouettes dataset by simply averaging the columns of the
cost matrices presented before. The average misclassification cost for a given true class is
therefore used to define per-class costs. This is performed using the rhom2c function. The
rhoc2m function is also defined that handles the inverse transformation, i.e., creating the
matrix representation of a given per-class cost vector, which will be useful to calculate the
mean misclassification cost using the mean.cost function, which is also demonstrated
below. Of course for the two-class data version the per-class cost vector is exactly equivalent
to the original cost matrix. This is why it is not used for model evaluation here and thereafter.

rhom2c <- function(rhom)
{
apply(rhom, 2, sum)/(nrow(rhom)-1)

}

rhoc2m <- function(rhoc)
{
rhom <- matrix(rhoc, nrow=length(rhoc), ncol=length(rhoc), byrow=TRUE,

dimnames=list(predicted=names(rhoc), true=names(rhoc)))
‘diag<-‘(rhom, 0)

}

# per-class cost vectors
v.rc <- rhom2c(v.rm)
v01.rc <- rhom2c(v01.rm)

# per-class cost vectors in a matrix representation
v.rcm <- rhoc2m(v.rc)
v01.rcm <- rhoc2m(v01.rc)

# misclassification cost for cost-insensitive models
# with respect to the per-class cost vector

v.mcc.b <- list(tree=mean.cost(predict(v.tree, v.test, type="c"),
v.test$Class, v.rcm),

nb=mean.cost(predict(v.nb, v.test), v.test$Class, v.rcm))

6.2.3 Instance-specific costs

Neither the simplified per-class cost vector nor the full cost matrix can adequately repre-
sent misclassification costs that depend not only on the classes of instances, but also on the
instances themselves. Such instance-specific misclassification costs cannot be handled by typ-
ical cost-sensitive classification algorithms, although the need for such cost representation
may naturally arise in some applications. This may be the case, in particular, for some anomaly
or fraud detection tasks, where the cost of undetected anomalies or frauds may depend on their
specific features (e.g., credit card transaction amount).

Both the misclassification cost representations discussed above, the pairwise cost
matrix and the per-class cost vector, have their natural instance-specific extensions. They
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consist in assuming a cost function 𝜌 that assigns to each instance x ∈ X the corresponding
instance-specific cost matrix or cost vector. For the instance-specific cost matrix represen-
tation, 𝜌(x)[d1, d2] is the cost of predicting h(x) = d1 if c(x) = d2. For the instance-specific
cost vector representation 𝜌(x)[d] is the cost of predicting h(x) ≠ d if c(x) = d. In both cases
𝜌 needs to be specified based on domain-specific knowledge.

This chapter focuses on the basic instance-independent cost matrix and cost vector repre-
sentations, but possible extensions of the presented techniques to instance-specific costs will
be suggested where appropriate.

6.3 Incorporating misclassification costs

Whereas some classification algorithms may be designed as naturally cost-sensitive, many
commonly used algorithms are not. Still most (if not all) of them can be used to create
classification models that try to minimize misclassification costs. There are several general
techniques that can be used to make classification algorithms cost-sensitive, reviewed below.
They could be considered misclassification cost wrappers that turn a cost-insensitive algorithm
into a cost-sensitive algorithm without altering its internal operation.

6.3.1 Instance weighting

One approach to incorporating misclassification costs that is not algorithm specific, but
applicable to a wider class of classification algorithms, is based on instance weighting. It
consists in assigning appropriately selected weights to training instances, which will turn a
weight-sensitive classification algorithm into a cost-sensitive algorithm.

A cost-insensitive classification algorithm, to be considered successful, should attempt to
minimize the expected misclassification error of the generated model on new data. Whereas
it cannot be usually achieved by strictly minimizing the training set error, due to the risk
of overfitting, many classification algorithms do in fact perform a constrained form of such
minimization – i.e., they minimize the training set error subject to some constraints supposed
to prevent overfitting. These constraints are algorithm specific and directly related to the
adopted inductive bias.

The same can be said about weight-sensitive algorithms, already mentioned in
Section 1.3.7, with just one complement: they accept numerical weights assigned to training
instances and minimize (subject to overfitting-prevention constraints) the corresponding
weighted misclassification error, as defined in Section 7.2.2.

Now assume that weights are assigned to training instances based on their classes, i.e.,
𝑤x = 𝜔c(x), where 𝜔d for d ∈ C is a weight value corresponding to class d. Then the weighted
training set error of model h can be written as

ec,T ,𝜔(h) =

∑
x∈Th≠c

𝜔c(x)∑
x∈T 𝜔c(x)

= 𝛽

∑
x∈T𝜌[h(x), c(x)]|T| (6.1)

where
𝛽 = |T|∑

x∈T 𝜔c(x)
(6.2)
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serves as a scaling factor and

𝜌[d1, d2] =

{
0 if d1 = d2

𝜔d2
otherwise

(6.3)

The cost matrix 𝜌 defined as above actually assigns misclassification costs to particular classes
rather than class pairs and is therefore equivalent to the simple per-class cost vector represen-
tation. The cost matrix notation is used only for consistency with the mean misclassification
cost definition presented in Section 7.2.3.

Indeed, the expression we have arrived at can be easily verified to represent the mean
misclassification cost of model h with respect to concept c and cost matrix 𝜌 on the training
set, scaled by a model-independent factor. This demonstrates that, whenever all misclassifica-
tions for the same true class are associated with the same cost, using this cost as an instance
weight for training instances of this class effectively turns a weight-sensitive algorithm into
a cost-sensitive algorithm, since minimizing the weighted training set error is equivalent to
minimizing the mean training set misclassification cost.

For the instance-specific cost vector representation, similarly setting the weight of each
training instance to the corresponding misclassification cost, 𝑤x = 𝜌(x)[c(x)], we can see the
weighted misclassification error to represent the mean misclassification cost with respect to
the instance-specific cost function 𝜌:

ec,T ,𝑤(h) =

∑
x∈Th≠c

𝑤x∑
x∈T𝑤x

=𝛽

∑
x∈Th≠c

𝜌(x)[c(x)]|T| (6.4)

It is worthwhile to underline, though, that minimizing the training set mean misclassifica-
tion cost with instance-specific costs may be only hoped to lead to the minimization of the
corresponding expected mean misclassification cost on new data if there is a relationship
between the cost function and attributes. This relationship needs to be (implicitly) discovered
and generalized by the classification algorithm, similarly as the relationship between the tar-
get concept and attributes is (explicitly) discovered. This naturally happens as a part of the
inductive learning process used for classification model creation. Assigning greater weights
to instances that are costly to misclassify makes the model not only more sensitive to these
particular instances, but also to other similar instances from the domain, implicitly assumed to
be costly to misclassify, too. This implicit learning of the relationship between the cost func-
tion and attributes is therefore a side effect of the explicit learning of the relationship between
the target concept and attributes.

Although the presented approach works fully only with the simplified per-class cost vector
representation (or with its extended instance-specific version), it suits sufficiently well with
many practical applications, which do not require the power of a full cost matrix. In partic-
ular, it is perfectly sufficient for two-class classification tasks, which occur in many kinds of
diagnostic and anomaly detection applications. These are actually the most typical examples
of applications that require cost-sensitivity.
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Example 6.3.1 Both decision trees and the naïve Bayes classifier could easily use weighted
training instances, but of the R implementations of these algorithms used for the examples
in this chapter only rpart supports this functionality, which will be demonstrated here.
The following R code defines the mc.weight function that is a cost-sensitive wrapper
generator using the weighting approach. For an algorithm specified as alg – assumed to
take the weights argument – it returns a list of two functions, for model creation and
for prediction. The former uses the per-class misclassification cost vector specified via the
rho argument to assign weights to training instances and then calls the original algorithm
with these weights. The latter is actually the unchanged prediction function specified via
the predf argument, defaulting to predict, since the weighting approach modifies

dmr.util
model creation only. The y.var utility function is used to extract the class
attribute name from the supplied R formula. The mc.weight function is applied
to generate a weighting cost-sensitive wrapper around the rpart decision tree
algorithm. The mean misclassification costs, errors, and confusion matrices for the trees
created by this wrapper for the original and two-class versions of the Vehicle Silhouettes data
are calculated. For mean misclassification cost calculation on the original dataset both the
simplified per-class cost representation (cost vector) and the full cost matrix representation
is used. It makes no sense for the two-class version of the dataset, for which these two cost
representations are equivalent.

## generate an instance-weighting cost-sensitive wrapper
mc.weight <- function(alg, predf=predict)
{
wrapped.alg <- function(formula, data, rho, ...)
{
class <- y.var(formula)
w <- rho[data[[class]]]
do.call(alg, list(formula, data, weights=w, ...))

}

list(alg=wrapped.alg, predict=predf)
}

# weighting wrapper around rpart
rpart.w <- mc.weight(rpart, predf=function(...) predict(..., type="c"))

# decision trees with instance weighting
v.tree.w <- rpart.w$alg(Class̃., v.train, v.rc)
v01.tree.w <- rpart.w$alg(Class̃., v01.train, v01.rc)

# mean misclassification cost with respect to the cost matrix
v.mc.w <- list(tree=mean.cost(rpart.w$predict(v.tree.w, v.test), v.test$Class, v.rm))
v01.mc.w <- list(tree=mean.cost(rpart.w$predict(v01.tree.w, v01.test),

v01.test$Class, v01.rm))

# mean misclassification cost with respect to the per-class cost vector
v.mcc.w <- list(tree=mean.cost(rpart.w$predict(v.tree.w, v.test),

v.test$Class, v.rcm))

# misclassification error
v.err.w <- list(tree=err(rpart.w$predict(v.tree.w, v.test), v.test$Class))
v01.err.w <- list(tree=err(rpart.w$predict(v01.tree.w, v01.test), v01.test$Class))
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# confusion matrix
confmat(rpart.w$predict(v.tree.w, v.test), v.test$Class)
confmat(rpart.w$predict(v01.tree.w, v01.test), v01.test$Class)

Not surprisingly, the cost-sensitive decision trees achieve a less mean misclassification
cost and a greater error than their cost-insensitive counterparts. For the original four-class data,
the cost reduction occurs not only with respect to the simplified per-class costs, but also – and
even more substantially – with respect to the full cost matrix. This is because weighting the
opel and saab classes fives times more than the bus and van classes reduced the number
of misclassifications that are the most costly under both these cost representations, increas-
ing the number of other misclassifications instead. Some of these new misclassifications are
less expensive according to the full cost matrix than according to the per-class cost vector (in
particular, misclassifying opel as saab or saab as opel). This can be easily observed
by comparing the confusion matrices. For the two-class data version, the improvement is
achieved simply by reducing the number of the more costly car as other misclassifica-
tions and increasing the number of the less costly other as car misclassifications, which
makes the decision tree biased toward the car class.

6.3.2 Instance resampling

The approach presented above, applicable to weight-sensitive algorithms only, can be easily
adapted to arbitrary algorithms in an approximate way. Consider the effect of giving a positive
integer weight 𝑤x to a training instance x used by a weight-sensitive algorithm. The effect is,
for most algorithms, equivalent to replicating the instance 𝑤x times in the training set. This
is what one can do for any algorithm. The resulting replication approach is therefore another
algorithm-independent technique of misclassification cost incorporation.

Instance replication can exactly “simulate” weighting as long as all weights are positive
integers. This is in fact quite common in practice, since misclassification costs are often spec-
ified as integers for convenience (and the least “expensive” mistake usually costs 1), but in
principle it does not have to be always the case. For noninteger weights (corresponding to
noninteger misclassification costs) that cannot be transformed to integers by scaling up appro-
priately one should therefore use a more general instance resampling technique in which a
resampled training set is drawn from the original set at random with replacement, using the
following probability distribution based on instance weights:

px =
𝑤x∑

x′∈T 𝑤x′
(6.5)

Such direct resampling, due to its nondeterminism, will yield different resampled training set
on each application, leading to different cost-sensitive models for the same original training
set, which may be undesirable. This variance can be partially reduced by a different, indirect
version of resampling, using a mix of replication (for integer weight parts) and undersampling
(for fractional weight parts). The latter consists in selecting another copy of an instance to be
included in the sample with the probability equal to the fractional part of the corresponding
weight. For example, x with weight 𝑤x, we will therefore have ⌊𝑤x⌋ copies and another copy
with the probability 𝑤x − ⌊𝑤x⌋. This makes the expected number of copies of instance x equal
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𝑤x, as in direct resampling, but additionally all instances are guaranteed to have at least as
many copies as the integer parts of their weights.

If using indirect resampling to handle noninteger weights, it makes sense to scale them
up so that they are all above 1, i.e., at least one copy of each instance will be included in the
resulting data sample, with no instances entirely omitted due to undersampling. This prevents
data loss, but may require enlarging the training set considerably, particularly if misclassi-
fication costs differ vastly, which may be undesirable for efficiency reasons. In such cases,
weights may have to be left unchanged or even scaled down, so that their sum (which is the
expected data sample size) stays within reasonable limits.

Example 6.3.2 The following R code defines the mc.resample function, which is an indi-
rect resampling cost-sensitive wrapper generator for arbitrary classification algorithms. Fol-
lowing the pattern of the previous example, it returns a two-element list of functions, for model
creation and prediction. The former replicates training instances according to the integer part
of the supplied per-class cost vectorrho and undersamples them according to the its fractional
part. The latter is again the unmodified prediction function specified by the predf argument.
Resampling wrappers around decision trees and the naïve Bayes classifier are then created and
evaluated using the original and two-class versions of the Vehicle Silhouettes data, as in the
previous example. For the original four-class dataset, the mean cost calculation is performed
using both the simplified per-class costs and the full cost matrix.

## generate an instance-resampling cost-sensitive wrapper
mc.resample <- function(alg, predf=predict)
{
wrapped.alg <- function(formula, data, rho, ...)
{
class <- y.var(formula)
w <- rho[data[[class]]]
rs <- na.omit(c(rep(1:nrow(data), floor(w)),

ifelse(runif(nrow(data))<=w-floor(w), 1:nrow(data), NA)))
do.call(alg, list(formula, data[rs,], ...))

}

list(alg=wrapped.alg, predict=predf)
}

# resampling wrapper around rpart
rpart.s <- mc.resample(rpart, predf=function(...) predict(..., type="c"))

# resampling wrapper around naiveBayes
naiveBayes.s <- mc.resample(naiveBayes)

# decision trees with instance resampling
v.tree.s <- rpart.s$alg(Class̃., v.train, v.rc)
v01.tree.s <- rpart.s$alg(Class̃., v01.train, v01.rc)

# naive Bayes with instance resampling
v.nb.s <- naiveBayes.s$alg(Class̃., v.train, v.rc)
v01.nb.s <- naiveBayes.s$alg(Class̃., v01.train, v01.rc)

# mean misclassification cost with respect to the cost matrix
v.mc.s <- list(tree=mean.cost(rpart.s$predict(v.tree.s, v.test), v.test$Class, v.rm),
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nb=mean.cost(naiveBayes.s$predict(v.nb.s, v.test),
v.test$Class, v.rm))

v01.mc.s <- list(tree=mean.cost(rpart.s$predict(v01.tree.s, v01.test),
v01.test$Class, v01.rm),

nb=mean.cost(naiveBayes.s$predict(v01.nb.s, v01.test),
v01.test$Class, v01.rm))

# mean misclassification cost with respect to the per-class cost vector
v.mcc.s <- list(tree=mean.cost(rpart.s$predict(v.tree.s, v.test),

v.test$Class, v.rcm),
nb=mean.cost(naiveBayes.s$predict(v.nb.s, v.test),

v.test$Class, v.rcm))

# misclassification error
v.err.s <- list(tree=err(rpart.s$predict(v.tree.s, v.test), v.test$Class),

nb=err(naiveBayes.s$predict(v.nb.s, v.test), v.test$Class))
v01.err.s <- list(tree=err(rpart.s$predict(v01.tree.s, v01.test), v01.test$Class),

nb=err(naiveBayes.s$predict(v01.nb.s, v01.test), v01.test$Class))

# confusion matrix
confmat(rpart.s$predict(v.tree.s, v.test), v.test$Class)
confmat(naiveBayes.s$predict(v.nb.s, v.test), v.test$Class)

confmat(rpart.s$predict(v01.tree.s, v01.test), v01.test$Class)
confmat(naiveBayes.s$predict(v01.nb.s, v01.test), v01.test$Class)

Instance resampling can be seen to increase the error, but reduce the mean misclassification
cost. The confusion matrices show how this is obtained by reducing the number of the most
costly misclassifications and increasing the number of the less expensive ones. This can be
observed both for the decision tree and naïve Bayes models. For the former, one might have
expected exactly the same effect as seen previously with instance weighting, but it turns out not
to be the case. It is easy to verify, by inspecting the v.tree1 and v.tree2 (or v01.tree1
and v01.tree2) objects, that their splits are the same, but the trees using the replicated
training sets are grown to a greater depth, as if different stop criteria were applied. The stop
criteria are actually the same, specified by the default parameter setup of rpart, but with
more training instances they tend to be satisfied later (on lower tree levels). The trees built
with instance weighting could be made identical to those built with the equivalent instance
resampling by pruning at an appropriately selected complexity level, but this is not within the
scope of this example.

6.3.3 Minimum-cost rule

Instance weighting or instance resampling can deal with simplified cost matrices only
(per-class cost vectors). A more powerful technique is possible, incorporating arbitrary
cost matrices, for probabilistic classifiers, which are capable of predicting estimated class
probabilities P(d|x) for each instance x ∈ X and class d ∈ C. Whereas, without consid-
ering misclassification costs, such probabilities are used to predict class labels using the
maximum-probability rule, a different minimum-cost rule can be applied to incorporate
misclassification costs.
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Consider the expected misclassification cost associated with predicting class d for
instance x which can be expressed as follows:∑

d′∈C

𝜌[d, d′]P(d′|x) (6.6)

This calculates the expected cost by considering all possible mistakes that can be made when
predicting class d for instance x and summing up their cost, multiplied by their probabili-
ties. The minimum-cost rule states that one should predict the class label that minimizes the
expected misclassification cost, i.e.,

h(x) = argmin
d∈C

∑
d′∈C

𝜌[d, d′]P(d′|x) (6.7)

It can be easily verified that for uniform misclassification costs the rule is equivalent to the
maximum-probability rule.

The minimum-cost rule can be easily extended to the instance-specific cost matrix repre-
sentation of misclassification costs just by using the specific cost matrix for the instance being
classified:

h(x) = argmin
d∈C

∑
d′∈C

𝜌(x)[d, d′]P(d′|x) (6.8)

This makes it applicable to the most powerful misclassification cost representation.
Notice that the calculation of the expected misclassification cost of predicting each pos-

sible class for instance x can also be formulated as a matrix multiplication operation 𝜌𝜋x,
where 𝜋x is the column vector of class probabilities for instance x (i.e., P(d′|x) for all d′ ∈ C).
The result produced by this multiplication is the vector of expected misclassification cost
of predicting each possible class for x. This observation makes it possible to rewrite the
minimum-cost rule as

h(x) = argmin
d∈C

(𝜌𝜋x)[d] (6.9)

In the general form presented above, the minimum-cost rule can be applied to arbitrary
classification tasks and arbitrary cost matrices, as long as a probabilistic classification model is
used. The particular case of two-class classification tasks with C = {0, 1} still deserves some
more attention due to its wide popularity in practical applications. Notice that for such tasks,
the expected misclassification cost of predicting class 1 for instance x can be expressed as

P(0|x)𝜌[1, 0] + P(1|x)𝜌[1, 1] (6.10)

and, assuming a zero cost of correct predictions and writing 𝜌[0] instead of 𝜌[1, 0], further
simplified to P(0|x)𝜌[0]. Similarly, the expected cost of predicting class 0 for instance x is
P(1|x)𝜌[1]. Now the condition for class 1 to be the minimum-cost class for instance x is that
its expected cost is no greater than that associated with class 0, which can be written as

P(0|x)𝜌[0] ≤ P(1|x)𝜌[1] (6.11)

After substituting 1 − P(1|x) for P(0|x), the inequality can be easily solved yielding

P(1|x) ≥ 𝜌[0]
𝜌[0] + 𝜌[1]

(6.12)
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This makes it possible to write the special form of the minimum-cost rule for two-class
tasks:

h(x) =

{
1 if P(1|x) ≥ 𝜌[0]

𝜌[0]+𝜌[1]

0 otherwise
(6.13)

with 𝜌[0] and 𝜌[1] denoting the cost of misclassifying an instance of true class 0 and 1,
respectively.

The rule determines a probability cutoff value that leads to the minimization of misclassifi-
cation costs. Clearly the cutoff is equal to 0.5, which corresponds to the maximum-probability
rule, if both types of mistakes have the same cost.

The minimum-cost rule is definitely an elegant and versatile technique for misclassi-
fication cost incorporation. Its two distinctive properties deserve particular appreciation:
the capability to handle a full cost matrix, with possibly different misclassification cost for
each possible pair of classes, and the possibility of using a cost-insensitive model for cost-
sensitive classification. The latter is particularly useful when misclassification costs are
likely to change during model exploitation or cannot be incorporated during model creation
for whatever other reasons. The price for this adaptability is that no explicit representa-
tion of a cost-sensitive model is available, and a cost-insensitive model is just used in a
cost-sensitive way.

Another downside is that the actual classification performance of the minimum-cost rule
heavily depends on the quality of class probability predictions generated by the model to
which it is applied. Even classification algorithms that are known to usually produce highly
accurate models with respect to class label prediction, are not necessarily guaranteed and
even likely to deliver models capable of reliable class probability prediction. This may be
the case, in particular, with algorithms for which the minimization of the misclassification
error is the primary objective rather than accurate class probability estimation. Many prac-
tically used classification algorithms, including in particular decision trees, can be argued
to fall in this category. For such algorithms, predicted class probabilities often take only
a small number of distinct values, which may come close to the 0 and 1 extremes. Even
the inherently probabilistic naïve Bayes classifier may deliver poor class probability predic-
tions due to its unsatisfied independence assumption. This is why the minimum-cost rule
does not always perform in practice up to expectations, yielding only some minor mean
misclassification cost reduction. It can be expected to work best with algorithms that are
purposely designed to maximize the quality of class probability predictions, such as logit
classification.

One possible way to improve the effectiveness of misclassification cost minimization with
the minimum-cost rule is to alter the classification algorithm known to be good at predicting
class labels to make it deliver better probability predictions. In particular, for decision trees
possible modifications include different stop, split selection, and pruning criteria, as well as
probability smoothing at leaves. A simpler approach that may be expected to work is to adopt
the technique of bootstrapping, following the pattern of ensemble modeling, discussed in
Chapter 15. In particular, a probabilistic version of the bagging technique from Section 15.5.1
may be employed, in which the probability predictions of multiple base models, created using
the same probabilistic classification algorithm and different training set bootstrap samples, are
averaged. An additional advantage is that a deterministic classification algorithm can be used
for base model creation as well, and the distribution of class label predictions of the multiple
obtained models yields estimated class probabilities.
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Example 6.3.3 The following R code implements the minimum-cost rule in the general
multiclass form, using the matrix multiplication formulation from Equation 6.9. The
mincostclas1 function classifies a single instance based on its class probability vector
and the supplied cost matrix. The mincostclas function wraps an apply call to the
former, making it applicable to multiple instances. It takes predicted class probabilities (with
rows representing instances and named columns representing classes, exactly as returned by
predict for most probabilistic classification models in R) and a cost matrix on input, and
generates predicted class labels on output. The mc.mincost function is a minimum-cost
wrapper generator that leaves the original model creation algorithm unchanged, but appends
the (optionally) supplied misclassification cost matrix to the created model object. This
keeps the interface of the wrapped modeling algorithm consistent with that used by the
wrappers presented in the previous examples, although the cost matrix is actually used at
the prediction time only, when class probabilities are generated and the mincostclas
function is applied to them. The cost matrix supplied for model creation may be overridden
by specifying a different cost matrix for prediction. Minimum-cost wrappers for decision
trees and the naïve Bayes classifier are then created and demonstrated, similarly as in the
previous examples: their class label predictions are evaluated using the misclassification
error, mean misclassification cost, and confusion matrix. For decision trees, the complexity
parameter cp is raised to 0.025 from the default value of 0.01 to prevent excessive tree
depth that would push class probabilities toward 0 and 1. Although the minimum-cost rule
is applied with the full cost matrix, for consistency with the previous examples the mean
misclassification cost is calculated both with respect to the full cost matrix and with respect
to the simplified cost matrix (per-class cost vector), which was the only cost representation
handled by the techniques demonstrated previously. This clearly matters only for the original
four-class dataset, as for the two-class version the cost matrix and cost vector representations
are equivalent.

## minimum-cost rule for a single instance
mincostclas1 <- function(p, rho)
{ factor(which.min(rho%*%p), levels=1:length(p), labels=names(p)) }

## minimum-cost rule for multiple instances
mincostclas <- function(p, rho) { apply(p, 1, mincostclas1, rho) }

## generate a minimum-cost wrapper
mc.mincost <- function(alg, ppredf=predict)
{
wrapped.alg <- function(formula, data, rho=NULL, ...)
{
list(model=alg(formula, data, ...), rho=rho)

}

wrapped.predict <- function(model, data, rho=NULL, ...)
{
mincostclas(ppredf(model$model, data, ...),

if (is.null(rho)) model$rho else rho)
}

list(alg=wrapped.alg, predict=wrapped.predict)
}
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# minimum-cost wrapper around rpart
rpart.m <- mc.mincost(rpart)

# minimum-cost wrapper around naiveBayes
naiveBayes.m <- mc.mincost(naiveBayes, ppredf=function(...) predict(..., type="r"))

# decision trees with minimum-cost prediction
v.tree.m <- rpart.m$alg(Class̃., v.train, v.rm, cp=0.025)
v01.tree.m <- rpart.m$alg(Class̃., v01.train, v01.rm, cp=0.025)

# naive Bayes with minimum-cost prediction
v.nb.m <- naiveBayes.m$alg(Class̃., v.train, v.rm)
v01.nb.m <- naiveBayes.m$alg(Class̃., v01.train, v01.rm)

# mean misclassification cost with respect to the cost matrix
v.mc.m <- list(tree=mean.cost(rpart.m$predict(v.tree.m, v.test), v.test$Class, v.rm),

nb=mean.cost(naiveBayes.m$predict(v.nb.m, v.test),
v.test$Class, v.rm))

v01.mc.m <- list(tree=mean.cost(rpart.m$predict(v01.tree.m, v01.test),
v01.test$Class, v01.rm),

nb=mean.cost(naiveBayes.m$predict(v01.nb.m, v01.test),
v01.test$Class, v01.rm))

# mean misclassification cost with respect to the per-class cost vector
v.mcc.m <- list(tree=mean.cost(rpart.m$predict(v.tree.m, v.test),

v.test$Class, v.rcm),
nb=mean.cost(naiveBayes.m$predict(v.nb.m, v.test),

v.test$Class, v.rcm))

# misclassification error
v.err.m <- list(tree=err(rpart.m$predict(v.tree.m, v.test), v.test$Class),

nb=err(naiveBayes.m$predict(v.nb.m, v.test), v.test$Class))

v01.err.m <- list(tree=err(rpart.m$predict(v01.tree.m, v01.test), v01.test$Class),
nb=err(naiveBayes.m$predict(v01.nb.m, v01.test), v01.test$Class))

# confusion matrix
confmat(rpart.m$predict(v.tree.m, v.test), v.test$Class)
confmat(naiveBayes.m$predict(v.nb.m, v.test), v.test$Class)

confmat(rpart.m$predict(v01.tree.m, v01.test), v01.test$Class)
confmat(naiveBayes.m$predict(v01.nb.m, v01.test), v01.test$Class)

Rather surprisingly, the mean cost improvement due to the minimum-cost rule observed
for the decision tree models on the original four-class data is noticeably less than previously
obtained with instance weighting or replication, despite those technique’s inability to handle
the full cost matrix. At the same time, the misclassification error increase is greater. This
may be because the minimum-cost rule does not alter the model structure in any way; it only
affects class label assignment based on class probabilities. One could fully benefit from its
cost minimization capability only for a perfect probabilistic model, providing reliable class
probability predictions. Decision trees are built with the purpose of discriminating between
classes rather than estimating probabilities, and techniques that adjust the tree structure to
the misclassification costs may indeed perform better. Using relaxed stop criteria to avoid
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extreme probabilities at leaves may have actually prevented reaching a sufficient class
discriminative power.

For the naïve Bayes models, the improvement observed for the two-class version of the
data is exactly the same as for the instance resampling technique. This is because for two-class
tasks, the minimum-cost rule accounts to using a probability cutoff value other than the default
0.5, which is equivalent to the corresponding modification of class prior probabilities than can
be obtained by instance replication (or weighting). For the original four-class data, there is
some more improvement than previously obtained using instance resampling.

6.3.4 Instance relabeling

A more refined misclassification cost handling technique based on the minimum-cost rule
consists in training instance relabeling, and then creating an ordinary, cost-insensitive model
based on the relabeled training set. The relabeling operation assigns each training instance
the minimum-cost class label, determined using the minimum-cost rule. Unlike the previ-
ously described application of the minimum-cost rule, this does not change the way of model
application, but – by altering the training set – the model itself. This may be an advantage
particularly if a comprehensible model representation is used, such as a decision tree, because
then the cost-sensitive model is explicitly represented and available for human inspection.

Since the minimum-cost rule, as shown above, is applicable both to the standard
instance-independent cost matrix representation and to its instance-specific extension, so is
the instance relabeling technique. Training instances may be therefore relabeled based on
their specific cost matrices. Of course, the cost function that assigns cost matrices to instances
must depend on instance attributes for this approach to actually reduce the expected mean
misclassification cost on new data, and the relationship has to be implicitly captured by the
classification algorithm applied.

Class probabilities needed to determine minimum-cost class labels for training instances
do not have to be obtained using the same algorithm as the one subsequently used to create the
final model based on the relabeled training set. This is a potential advantage of this technique
over the minimum-cost rule alone: an algorithm optimized toward probability prediction may
be applied in the relabeling phase and another algorithm (or the same algorithm with a different
parameter setup) in the modeling phase. This makes it possible, in particular, to use ensemble
modeling-based class probability prediction with multiple models created based on bootstrap
training set samples, as already suggested above for the minimum-cost rule, and then create
a single cost-sensitive model based on the relabeled training set.

Example 6.3.4 As for the techniques described before, the instance relabeling technique is
implemented by the following R code as a wrapper generator. It can be applied to an arbitrary
classification algorithm, specified via the alg argument, with a possibly different algorithm,
capable of delivering probabilistic predictions, used to generate class probability estimates
for training instances. The latter is specified via the palg argument and defaults to the same
algorithm as the one specified for model creation. The modified modeling function first creates
a probabilistic model used for class probability prediction for training instances and assigns
them their minimum-cost class labels using the mincostclas function from the previous
example. Then it creates the final cost-sensitive model on the relabeled data. The prediction
function is left unchanged. The relabeling wrappers for decision trees and the naïve Bayes
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classifier are then generated and evaluated on the original and two-class versions of the Vehicle
Silhouettes data, just like in the previous examples. For decision trees, the cp parameter is
again set to 0.025 to reduce tree complexity and avoid near-0 or near-1 class probabilities. Two
different relabeling decision tree wrappers are created: one with the same algorithm used both
in the relabeling and modeling phases and the other which uses bootstrapping class probabil-
ity estimation for relabeling. The latter is performed with the implementation of the bagging
algorithm provided by the ipred package. Notice the aggregation=“a” argument spec-
ified for bagging prediction, which requests that class probability averaging be used instead
of class label voting.

## generate an instance-relabeling cost-sensitive wrapper
mc.relabel <- function(alg, palg=alg, pargs=NULL, predf=predict, ppredf=predict)
{
wrapped.alg <- function(formula, data, rho, ...)
{
class <- y.var(formula)
model <- do.call(palg, c(list(formula, data), pargs))
prob <- ppredf(model, data)
data[[class]] <- mincostclas(prob, rho)
alg(formula, data, ...)

}

list(alg=wrapped.alg, predict=predf)
}

# relabeling wrapper around rpart
rpart.l <- mc.relabel(rpart, pargs=list(cp=0.025),

predf=function(...) predict(..., type="c"))

# relabeling wrapper around rpart using bagging for probability estimation
rpart.bagg.l <- mc.relabel(rpart, bagging,

pargs=list(control=rpart.control(cp=0.025)),
predf=function(...) predict(..., type="c"),
ppredf=function(...) predict(..., type="p",

aggregation="a"))

# relabeling wrapper around naiveBayes
naiveBayes.l <- mc.relabel(naiveBayes, ppredf=function(...) predict(..., type="r"))

# decision trees with instance relabeling
v.tree.l <- rpart.l$alg(Class̃., v.train, v.rm)
v.tree.bagg.l <- rpart.bagg.l$alg(Class̃., v.train, v.rm)
v01.tree.l <- rpart.l$alg(Class̃., v01.train, v01.rm)
v01.tree.bagg.l <- rpart.bagg.l$alg(Class̃., v01.train, v01.rm)

# naive Bayes with instance relabeling
v.nb.l <- naiveBayes.l$alg(Class̃., v.train, v.rm)
v01.nb.l <- naiveBayes.l$alg(Class̃., v01.train, v01.rm)

# mean misclassification cost with respect to the cost matrix
v.mc.l <- list(tree=mean.cost(rpart.l$predict(v.tree.l, v.test), v.test$Class, v.rm),

tree.bagg=mean.cost(rpart.bagg.l$predict(v.tree.bagg.l, v.test),
v.test$Class, v.rm),

nb=mean.cost(naiveBayes.l$predict(v.nb.l, v.test),
v.test$Class, v.rm))

v01.mc.l <- list(tree=mean.cost(rpart.l$predict(v01.tree.l, v01.test),
v01.test$Class, v01.rm),
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tree.bagg=mean.cost(rpart.bagg.l$predict(v01.tree.bagg.l, v01.test),
v01.test$Class, v01.rm),

nb=mean.cost(naiveBayes.l$predict(v01.nb.l, v01.test),
v01.test$Class, v01.rm))

# mean misclassification cost with respect to the per-class cost vector
v.mcc.l <- list(tree=mean.cost(rpart.l$predict(v.tree.l, v.test),

v.test$Class, v.rcm),
tree.bagg=mean.cost(rpart.bagg.l$predict(v.tree.bagg.l, v.test),

v.test$Class, v.rcm),
nb=mean.cost(naiveBayes.l$predict(v.nb.l, v.test),

v.test$Class, v.rcm))

# misclassification error
v.err.l <- list(tree=err(rpart.l$predict(v.tree.l, v.test), v.test$Class),

tree.bagg=err(rpart.bagg.l$predict(v.tree.bagg.l, v.test),
v.test$Class),

nb=err(naiveBayes.l$predict(v.nb.l, v.test), v.test$Class))
v01.err.l <- list(tree=err(rpart.l$predict(v01.tree.l, v01.test), v01.test$Class),

tree.bagg=err(rpart.bagg.l$predict(v01.tree.bagg.l, v01.test),
v01.test$Class),

nb=err(naiveBayes.l$predict(v01.nb.l, v01.test), v01.test$Class))

# confusion matrix
confmat(rpart.l$predict(v.tree.l, v.test), v.test$Class)
confmat(rpart.bagg.l$predict(v.tree.bagg.l, v.test), v.test$Class)
confmat(naiveBayes.l$predict(v.nb.l, v.test), v.test$Class)

confmat(rpart.l$predict(v01.tree.l, v01.test), v01.test$Class)
confmat(naiveBayes.l$predict(v01.nb.l, v01.test), v01.test$Class)

The instance relabeling technique turns out to work better than the minimum-cost rule for
decision trees on the original four-class dataset only if class probabilities are estimated with
bagging. This cost-sensitive wrapper yields a substantial misclassification cost reduction (still
less than with simple instance weighting or resampling, but considerably greater than observed
in the previous example). Interestingly, the effect is obtained without significantly increasing
the misclassification error. Unfortunately, instance relabeling fails to bring any improvement
for the naïve Bayes classifier. This may result from the algorithm’s inability to sufficiently
well fit to the relabeled training set.

6.4 Effects of cost incorporation

There are several reasons why cost-sensitive algorithms obtained by using the wrapper tech-
niques reviewed in this chapter may fail to deliver satisfactory results.

1. Techniques that only work with the per-class cost vector representation (instance
weighting and instance resampling) may be insufficient to bring any improvement
for more complex cost matrices. This is particularly likely if per-class costs obtained
after flattening the latter into a vector form are not very diverse, making the effect of
weighting or resampling negligible.
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2. Techniques based on predicted class probabilities (minimum-cost, instance relabeling)
may not reveal their potential if the underlying probabilistic classifier estimates class
probabilities poorly. This is particularly likely for models created by algorithms focus-
ing on error minimization that fit to the training set well and tend to deliver near-0 or
near-1 class probabilities.

3. A classification algorithm, tweaked to minimize the mean misclassification cost instead
of the misclassification error, cannot be guaranteed to succeed at the former, just as – in
its original cost-insensitive form – it could not be guaranteed to succeed at the latter.

The risk of failure is inevitable in inductive learning, but sufficiently good models
are obtained for many practical tasks. Similarly, techniques for misclassification cost
incorporation may not minimize the mean misclassification cost, but are likely to usually
reduce it compared to models produced by the original cost-insensitive algorithms.

Example 6.4.1 This example collects and graphically presents the misclassification cost and
error levels achieved by all the cost incorporation techniques, with baseline models included
for comparison. The following code can be used to produce barplots displaying these results.
Horizontal lines show the performance levels for baseline cost-insensitive models. Of course,
they depend on the particular random partitioning of the datasets into training and test subsets
and, given the variance of the hold-out procedure, different partitionings are likely to yield
somewhat different results.

# mean misclassification cost with respect to the cost matrix
v.mc <- c(tree=v.mc.b$tree,

tree.w=v.mc.w$tree,
tree.s=v.mc.s$tree,
tree.m=v.mc.m$tree,
tree.l=v.mc.l$tree,
tree.bagg.l=v.mc.l$tree.bagg,
nb=v.mc.b$nb,
nb.s=v.mc.s$nb,
nb.m=v.mc.m$nb,
nb.l=v.mc.l$nb)

v01.mc <- c(tree=v01.mc.b$tree,
tree.w=v01.mc.w$tree,
tree.s=v01.mc.s$tree,
tree.m=v01.mc.m$tree,
tree.l=v01.mc.l$tree,
tree.bagg.l=v01.mc.l$tree.bagg,
nb=v01.mc.b$nb,
nb.s=v01.mc.s$nb,
nb.m=v01.mc.m$nb,
nb.l=v01.mc.l$nb)

# mean misclassification cost with respect to the per-class cost vector
v.mcc <- c(tree=v.mcc.b$tree,

tree.w=v.mcc.w$tree,
tree.s=v.mcc.s$tree,
tree.m=v.mcc.m$tree,
tree.l=v.mcc.l$tree,
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tree.bagg.l=v.mcc.l$tree.bagg,
nb=v.mcc.b$nb,
nb.s=v.mcc.s$nb,
nb.m=v.mcc.m$nb,
nb.l=v.mcc.l$nb)

# misclassification error
v.err <- c(tree=v.err.b$tree,

tree.w=v.err.w$tree,
tree.s=v.err.s$tree,
tree.m=v.err.m$tree,
tree.l=v.err.l$tree,
tree.bagg.l=v.err.l$tree.bagg,
nb=v.err.b$nb,
nb.s=v.err.s$nb,
nb.m=v.err.m$nb,
nb.l=v.err.l$nb)

v01.err <- c(tree=v01.err.b$tree,
tree.w=v01.err.w$tree,
tree.s=v01.err.s$tree,
tree.m=v01.err.m$tree,
tree.l=v01.err.l$tree,
tree.bagg.l=v01.err.l$tree.bagg,
nb=v01.err.b$nb,
nb.s=v01.err.s$nb,
nb.m=v01.err.m$nb,
nb.l=v01.err.l$nb)

barplot(v.mc, ylab="Mean cost (matrix)", las=2)
lines(c(0, 12), rep(v.mc[1], 2), lty=2)
lines(c(0, 12), rep(v.mc[7], 2), lty=3)

barplot(v.mcc, ylab="Mean cost (per-class)", las=2)
lines(c(0, 12), rep(v.mcc[1], 2), lty=2)
lines(c(0, 12), rep(v.mcc[7], 2), lty=3)

barplot(v.err, ylab="Error", las=2)
lines(c(0, 12), rep(v.err[1], 2), lty=2)
lines(c(0, 12), rep(v.err[7], 2), lty=3)

barplot(v01.mc, ylab="Mean cost (two-class)", las=2)
lines(c(0, 12), rep(v01.mc[1], 2), lty=2)
lines(c(0, 12), rep(v01.mc[7], 2), lty=3)

barplot(v01.err, ylab="Error (two-class)", las=2)
lines(c(0, 12), rep(v01.err[1], 2), lty=2)
lines(c(0, 12), rep(v01.err[7], 2), lty=3)

The obtained barplots are presented in Figures 6.1 and 6.2. It can be immediately seen
that all misclassification cost incorporation techniques increase the misclassification error,
which is to be expected. The simplest weighting and resampling wrappers turn out to be the
most successful in misclassification cost reduction for decision trees, followed by the rela-
beling wrapper with bagging-estimated class probabilities. The minimum-cost rule and plain
relabeling are much less effective, but they still improve over the baseline cost-insensitive
tree. The cost reduction observed for naïve Bayes models is less significant and the relabeling
techniques appear not to work at all.
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Figure 6.1 Misclassification cost incorporation for the original Vehicle Silhouettes data.
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Figure 6.2 Misclassification cost incorporation for the two-class Vehicle Silhouettes data.
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6.5 Experimental procedure

The results presented in the previous example serve the illustration purpose only, and even
if they permit some meaningful observations, they can by no means be generalized to other
datasets and algorithms. To actually draw some reliable conclusions about the capabilities
of the techniques of misclassification cost incorporation discussed in this chapter, one should
generate much more extensive results, following a carefully designed experimental procedure.
Ideally, the procedure should satisfy the conditions listed below.

Multiple algorithms. Use a number of classification algorithms, possibly including differ-
ent parameter setups for the same algorithm.

Multiple datasets. Use several datasets.

Random costs. Use a series of randomly generated misclassification cost matrices for each
dataset.

Reliable evaluation. Evaluate model performance using a low variance evaluation proce-
dure, such as the repeated hold-out or k-fold cross-validation procedures discussed in
Section 7.3.

For each algorithm and dataset combination, the experimental procedure should
therefore repeatedly generate a random cost matrix and then evaluate the performance of
cost-insensitive and cost-sensitive models. The observed difference of the mean misclas-
sification cost between those would then serve as an indicator of the effectiveness of the
investigated cost incorporation techniques.

Example 6.5.1 An automated experimental procedure for evaluating the effects of the mis-
classification cost wrapper techniques demonstrated in the previous examples is implemented
by the R code presented below. It applies the mc.weight, mc.resample, mc.mincost,
and mc.relabel functions to wrap each of the classification algorithms specified by the
algs argument. The optional palgs argument may pass additional different probabilistic
classification algorithms to be used for probability estimation by the relabeling technique
for the corresponding algorithm from algs. Both the algs and palgs arguments are
expected to be vectors of strings containing algorithm function names. Optional arguments
for algorithms from algs can be specified via args.c (when creating models for class label
prediction) or args.p (when creating models for class probability prediction). Similarly,
optional arguments for algorithms from palgs can be specified via pargs. The predfs
argument makes it possible to specify the function to be used by each algorithm in algs for
class label prediction. The ppredfs.algs and ppredfs.palgs arguments similarly
specify functions to be used for probability prediction by algorithms from algs and palgs,
respectively. Cost-insensitive and cost-sensitive models for each dataset passed through
the datasets argument (a vector of dataset names), using the class attribute specified
by the classes argument, and m randomly generated misclassification cost matrices
containing 0 costs on the main diagonal and positive costs between 1 and rmax elsewhere,

Ex. 7.3.2
dmr.claseval

are then created and evaluated by cross-validation. This is performed using the
crossval function, with the number of folds and repetitions set by the k
and n arguments, respectively. Notice that the random number generator seed
is saved before cross-validation is performed for the original cost-insensitive
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algorithm and restored when cross-validating the cost-sensitive wrappers. This ensures that
the same data splitting is used for the evaluation of each of the compared algorithms.

## run misclassification costs experiments
mc.experiment <- function(algs, datasets, classes, rmax=10, m=25, k=10, n=1,

palgs=NULL, args.c=NULL, args.p=NULL, pargs=NULL,
predfs=predict, ppredfs.algs=predict,
ppredfs.palgs=predict)

{
crossval.rs <- function(rs, ...) { .Random.seed <<- rs; crossval(...) }

results <- NULL
for (dn in 1:length(datasets))
{
res <- NULL

data <- get(datasets[dn])
class <- classes[dn]
formula <- make.formula(class, ".")

for (i in 1:m)
{
rho <- matrix(round(runif(nlevels(data[[class]]) ̂ 2, min=1, max=rmax)-0.5),

nrow=nlevels(data[[class]]),
ncol=nlevels(data[[class]]),
dimnames=list(predicted=levels(data[[class]]),

true=levels(data[[class]])))
diag(rho) <- 0
rhoc <- rhom2c(rho)

for (an in 1:length(algs))
{
alg <- get(algs[[an]])
palg <- if (!is.null(palgs[[an]])) get(palgs[[an]])
arg.c <- args.c[[an]]
arg.p <- args.p[[an]]
parg <- pargs[[an]]
predf <- if (is.vector(predfs)) predfs[[an]] else predfs
ppredf.alg <- if (is.vector(ppredfs.algs)) ppredfs.algs[[an]]

else ppredfs.algs
ppredf.palg <- if (is.vector(ppredfs.palgs)) ppredfs.palgs[[an]]

else ppredfs.palgs
aname <- paste(algs[an], palgs[an], sep=".")

if (is.null(palg))
{
alg.w <- mc.weight(alg, predf)
alg.s <- mc.resample(alg, predf)
alg.m <- mc.mincost(alg, ppredf.alg)
alg.l <- mc.relabel(alg, pargs=arg.p, predf=predf, ppredf=ppredf.alg)

}
else
alg.lp <- mc.relabel(alg, palg, pargs=parg,

predf=predf, ppredf=ppredf.palg)

rs <- .Random.seed
cv.b <- crossval(alg, formula, data, args=arg.c, predf=predf, k=k, n=n)
if (is.null(palg))
{
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cv.w <- crossval.rs(rs, alg.w$alg, formula, data,
args=c(list(rhoc), arg.c),
predf=alg.w$predict, k=k, n=n)

cv.s <- crossval.rs(rs, alg.s$alg, formula, data,
args=c(list(rhoc), arg.c),
predf=alg.s$predict, k=k, n=n)

cv.m <- crossval.rs(rs, alg.m$alg, formula, data,
args=c(list(rho), arg.p),
predf=alg.m$predict, k=k, n=n)

cv.l <- crossval.rs(rs, alg.l$alg, formula, data,
args=c(list(rho), arg.c),
predf=alg.l$predict, k=k, n=n)

mc <- data.frame(b=mean.cost(cv.b$pred, cv.b$true, rho),
w=mean.cost(cv.w$pred, cv.w$true, rho),
s=mean.cost(cv.s$pred, cv.s$true, rho),
m=mean.cost(cv.m$pred, cv.m$true, rho),
l=mean.cost(cv.l$pred, cv.l$true, rho))

mc$d.w <- (mc$b-mc$w)/mc$b
mc$d.s <- (mc$b-mc$s)/mc$b
mc$d.m <- (mc$b-mc$m)/mc$b
mc$d.l <- (mc$b-mc$l)/mc$b
e <- data.frame(b=err(cv.b$pred, cv.b$true),

w=err(cv.w$pred, cv.w$true),
s=err(cv.s$pred, cv.s$true),
m=err(cv.m$pred, cv.m$true),
l=err(cv.l$pred, cv.l$true))

}
else
{
cv.lp <- crossval.rs(rs, alg.lp$alg, formula, data,

args=c(list(rho), arg.c),
predf=alg.lp$predict, k=k, n=n)

mc <- data.frame(b=mean.cost(cv.b$pred, cv.b$true, rho),
lp=mean.cost(cv.lp$pred, cv.lp$true, rho))

e <- data.frame(b=err(cv.b$pred, cv.b$true),
lp=err(cv.lp$pred, cv.lp$true))

mc$d.lp <- (mc$b-mc$lp)/mc$b
}

res[[aname]]$mc <- rbind(res[[aname]]$mc, mc)
res[[aname]]$e <- rbind(res[[aname]]$e, e)

}
}
results <- c(results, list(res))

}
‘names<-‘(results, datasets)

}

# experiments with decision trees and naive Bayes
# for the Vehicle and Vehicle01 datasets

mc.res <- mc.experiment(c("rpart", "rpart", "naiveBayes"),
c("Vehicle", "Vehicle01"), c("Class", "Class"),
palgs=list(NULL, "bagging", NULL),
args.p=list(list(cp=0.025), list(cp=0.025), NULL),
pargs=list(NULL, list(control=rpart.control(cp=0.025)),

NULL),
predfs=c(function(...) predict(..., type="c"),

function(...) predict(..., type="c"), predict),



Trim size: 170mm x 244mmCichosz c06.tex V3 - 11/04/2014 10:21 A.M. Page 183

EXPERIMENTAL PROCEDURE 183

ppredfs.algs=c(predict, predict,
function(...) predict(..., type="r")),

ppredfs.palgs=list(NULL,
function(...) predict(..., type="p",

aggregation="a"),
NULL))

barplot(colMeans(cbind(mc.res$Vehicle$rpart.NULL$mc[,6:9],
mc.res$Vehicle$rpart.bagging$mc[,3])),

main="Four-class, rpart", ylab="Cost reduction",
las=2, ylim=c(-0.01, 0.11),
names.arg=c("weight", "resample", "mincost", "relabel", "relabel.b"))

barplot(colMeans(mc.res$Vehicle$naiveBayes.NULL$mc[,7:9]),
main="Four-class, naiveBayes", ylab="Cost reduction",
las=2, ylim=c(-0.01, 0.11),
names.arg=c("resample", "mincost", "relabel"))

barplot(colMeans(cbind(mc.res$Vehicle01$rpart.NULL$mc[,6:9],
mc.res$Vehicle01$rpart.bagging$mc[,3])),

main="Two-class, rpart", ylab="Cost reduction",
las=2, ylim=c(-0.26, 0.15),
names.arg=c("weight", "resample", "mincost", "relabel", "relabel.b"))

barplot(colMeans(mc.res$Vehicle01$naiveBayes.NULL$mc[,7:9]),
main="Two-class, naiveBayes", ylab="Cost reduction",
las=2, ylim=c(-0.26, 0.15),
names.arg=c("resample", "mincost", "relabel"))

The experimental procedure implemented by the mc.experiment function may be
used to conduct systematic extensive experiments with all the techniques for misclassifica-
tion cost incorporation discussed in this chapter. The example call included above is just a
simple demonstration using the same decision tree and naïve Bayes algorithms as in the pre-
vious examples and the same two datasets, Vehicle Silhouettes and its two-class version. For
the relabeling decision tree wrapper bagging is additionally used for class probability predic-
tion. The generated results are stored in a list containing named components for each dataset.
These are themselves lists with named components for each algorithm, and then there are
dataframes containing the mean misclassification cost and misclassification error, as well as
the relative reduction of the former, for each of randomly generated cost matrices. As shown in
the calls tobarplot, they can be averaged to produce compact, readable summarized results.
Barplots displaying the averaged relative mean misclassification cost decrease obtained by
each algorithm for the two datasets are presented in Figure 6.3.

On the original four-class data instance, relabeling definitely yields the greatest mis-
classification cost reduction for decision trees, as long as sufficiently reliable bagging class
probability predictions are used to determine the new class labels of training instances. The
minimum-cost rule turns out clearly the best technique for the naïve Bayes classifier. This
suggests that, with sufficiently good class probability predictions, their direct application to
cost-sensitive class label prediction may outperform a separate cost-sensitive model trained
using relabeled data. Not surprisingly, none of the more refined cost incorporation techniques
beats simple instance weighting or resampling on the two-class data version. For the naïve
Bayes classifier, the minimum-cost rule with two classes is equivalent to instance resampling,
but instance relabeling also fails entirely.
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Figure 6.3 Experimental results with misclassification cost incorporation techniques using
the original and two-class versions of the Vehicle Silhouettes data.

6.6 Conclusion

This chapter has shown that misclassification costs not only provide classifier evaluation
criteria, but can also be incorporated into the model creation or prediction process. This
capability is extremely valuable in applications where the usual error minimization objective
does not lead to useful models due to substantially different costs of different mistakes. The
instance weighting and instance replication techniques affect the created model and can be
used whenever the costs to be incorporated can be specified (or at least approximated) by a
vector of per-class misclassification costs. Of those, the latter can be used to make arbitrary
classification algorithms cost-sensitive, but the former is the preferred (more elegant, more
memory and time-efficient) approach for weight-sensitive algorithms. It is noteworthy that
these techniques are fully sufficient for two-class concepts, for which misclassification costs
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are particularly often specified and need to be incorporated. For such concepts, the matrix and
vector cost representations are equivalent.

The minimum-cost rule, which can be used to incorporate an arbitrary misclassifica-
tion cost matrix at the time of prediction when using probabilistic classification models,
might appear theoretically superior. It is not necessarily always so in practice, because the
minimum-cost rule does fulfill its promise of misclassification cost minimization only if class
probabilities predicted by the model are sufficiently reliable. This can be hardly assumed,
particularly for models that are not “inherently” and “deeply” probabilistic (i.e., derived by
probabilistic data analysis). It appears therefore a reasonable recommendation to use the
minimum-cost rule only if the model is believed to provide reliable class probability estimates
or the other techniques cannot be applied. The latter is the case when the misclassification
costs to be incorporated cannot be reasonably well represented by a per-class cost vector and
require a full cost matrix representation, or when a previously created model has to be used,
without the possibility of re-building it in a cost-sensitive way.

The instance relabeling technique – the most refined of all the simple algorithm-
independent approaches to handling misclassification costs discussed here – creates a
separate model for class probability prediction and a separate final cost-sensitive model
based on the relabeled training set. This makes it possible to have the former focused on
reliable probability prediction (e.g., logit classification on probabilistic bagging) and the
latter on accurate class label prediction, and possibly overcome the limitation of the plain
minimum-cost rule approach.

An additional advantage is that the resulting cost-sensitive model is explicitly available and
can be directly used for either prediction or inspection. This is arguably the most important
reason to prefer instance relabeling over the minimum-cost rule. While the latter wraps pre-
diction, the former wraps model creation. Whenever an explicitly represented cost-sensitive
model is not required and just cost-sensitive predictions are needed, the minimum-cost rule
may be a simpler and less expensive alternative. It becomes particularly attractive if adapta-
tion to different or dynamically changing misclassification costs is required, which may be
the case for some specific applications.

6.7 Further readings

The issue of misclassification costs is not extensively discussed in an algorithm-independent
perspective by most data mining books. Those that do pay more attention to misclassifica-
tion costs are rather concerned with incorporating them to model evaluation than to model
creation (Han et al., 2011; Witten et al., 2011), or – when discussing the latter – address the
related problem of imbalanced classes (Tan et al., 2013). This unfortunately also causes the
importance of nonuniform misclassification costs to be underappreciated in practical data min-
ing projects. They have received significant research interest, though, and the awareness of
the resulting techniques will likely increase. Unlike the corresponding sections in most other
chapters, this refers mainly to original research articles.

Some work on misclassification costs incorporation has been done in the context of par-
ticular classification algorithms. Instance weighting as an internal mechanism of achieving
cost-sensitivity for decision trees is used by the CART algorithm (Breiman et al., 1984)
and its R re-implementation (Therneau and Atkinson, 1997). Knoll et al. (1994) presented a
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cost-sensitive pruning technique for decision trees. Draper et al. (1994) addressed misclassifi-
cation cost minimization by both pruning and split selection for multivariate decision trees (for
which it actually makes more sense to speak of “split creation” than “split selection”). Similar
approaches have been considered for rule-based classification models (Pazzani et al., 1994;
Provost 1994). As later investigated by Drummond et al. (2000), decision tree split conditions
provide rather little space for achieving cost-sensitivity, which makes stop criteria, class label
assignment to leaves, and pruning much more important. Masnadi-Shirazi and Vasconcelos
(2010) demonstrated how misclassification costs can be minimized by appropriately modified
versions of the boosting family of ensemble modeling algorithms.

A general approach to misclassification cost incorporation proposed by Webb (1996)
consists in modifying internal algorithm mechanisms rather than cost-sensitive wrapping.
This is achieved by preferring more general class membership conditions for classes that
are safe to predict (inexpensive when incorrectly assigned to instances of other true classes)
and more specific class membership conditions for classes that are risky to predict (costly
when incorrectly assigned to instances of other true classes). The instance relabeling tech-
nique was introduced by Domingos (1999) as the MetaCost algorithm. He also suggested
that reliable class probability predictions can be obtained using bagging (Breiman 1996).
The latter was partially questioned by further work (Zadrozny and Elkan 2001a, b), suggest-
ing that single decision tree or naïve Bayes models can deliver better class probabilities if
appropriately adjusted or calibrated. In particular, Laplace or m-estimation applied at deci-
sion tree leaves instead of plain frequency probability estimation appeared to provide a sub-
stantial improvement. As demonstrated by Provost and Domingos (2003), this may be still
improved by combination with bagging. Zadrozny and Elkan (2002) proposed combining
calibrated binary probability predictions from multiple binary models for multiclass tasks.
According to Margineantu (2002), accurate probability predictions are not actually necessary
to for the minimum-cost rule to successfully minimize misclassification costs. It can be mod-
ified to use confidence levels for probability predictions, empirically determined by bagging.
Niculescu-Mizil and Caruana (2005) examined universal techniques for transforming scoring
classifier predictions to reliable probability predictions, extending the previous work of Platt
(2000) for the SVM algorithm. Loss functions for probabilistic predictions, which can be con-
sidered counterparts of misclassification costs for discrete predictions, are discussed by Reid
and Williamson (2010).

The theoretical properties of instance weighting and resampling techniques were
examined by Elkan (2001), who also formulated “reasonableness” conditions for cost
matrices. Japkowicz and Stephen (2002) discussed different resampling schemes in the
context of imbalanced classes. The relative merits of oversampling and undersampling were
investigated by Drummond and Holte (2003). The two resampling approaches were com-
bined by Chawla et al. (2002), with oversampling performed indirectly by synthetic instance
generation. More refined forms of resampling and weighting have also been considered (Abe
et al. 2004; Chan and Stolfo 1999; Zadrozny et al. 2003; Zhou and Liu 2006). Several issues
related to creating and evaluating cost-sensitive classification models were investigated by
Margineantu (2001). Jan et al. (2012) presented the idea of soft cost-sensitivity, achieved by
multicriteria model performance optimization with respect to both misclassification costs
and the misclassification error.

On few occasions, cost-sensitive classification is referred to in a different meaning,
concerning attribute costs rather than misclassification costs (e.g., Tan 1993; Turney 1995).
This assumes that determining the values of different attributes may be associated with
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different costs and a classification model should achieve a good balance between its prediction
performance and the cost of attributes used.
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7

Classification model evaluation

7.1 Introduction

The purpose of the evaluation of a classification model is to get a reliable assessment of the
quality of the target concept’s approximation represented by the model, which will be called
the model’s predictive performance. Different performance measures can be used, depending
on the intended application of the model. Given the fact that the model is created based on a
training set, which is a usually small subset of the domain, it is its generalization properties
that are essential for the approximation quality. For any performance measure, it is important
to distinguish between its value for a particular dataset (dataset performance), especially the
training set (training performance), and its expected performance on the whole domain (true
performance).

7.1.1 Dataset performance

The dataset performance of a model is assessed by calculating the value of one or more
selected performance measures on a particular dataset with true class labels available. It
describes the degree of match between the model and the target concept on this dataset.

7.1.2 Training performance

Evaluating a model on the training set that was used to create the model determines the model’s
training performance. Whereas it is sometimes useful to better understand the model and diag-
nose the operation of the employed classification algorithm, it is usually not of significant
interest, since the purpose of classification models is not to classify the training data.

7.1.3 True performance

The true performance of a model is its expected performance (with respect to one or more
selected performance measures) on the whole domain. This reflects the model’s predictive

Data Mining Algorithms: Explained Using R, First Edition. Paweł Cichosz.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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utility, i.e., its capability to correctly classify arbitrary new instances from the given domain.
Since the true class labels are generally unavailable for the domain, the true performance
always remains unknown and can only be estimated by dataset performance.

Appropriate evaluation procedures are needed to reliably estimate the unknown values
of the adopted performance measures on the whole domain, containing mostly previously
unseen instances, i.e., to assess the true performance. Performance measures and evaluation
procedures are the two major topics related to classification model evaluation, covered in the
corresponding sections below.

Example 7.1.1 The classifier performance measures presented below will be illustrated in R
by applying them to the evaluation of decision tree models created using the rpart package
for the Soybean dataset, available in the mlbench package. The same dataset and classifi-
cation algorithm will also be used to illustrate evaluation procedures. Some utility functions
from thedmr.util package will be called. The following R code prepares the demonstration
by loading the packages and the dataset, splitting the dataset randomly into training and test
subsets, and creating a decision tree classifier based on the training set. The random generator
seed is explicitly initialized to make the results easily reproducible.

library(dmr.util)
library(rpart)

data(Soybean, package="mlbench")

set.seed(12)
rs <- runif(nrow(Soybean))
s.train <- Soybean[rs>=0.33,]
s.test <- Soybean[rs<0.33,]

s.tree <- rpart(Class̃., s.train)

7.2 Performance measures

Classification performance measures are calculated by comparing the predictions generated
by the classifier on a dataset S with the true class labels of the instances from this dataset. The
latter may be an arbitrary subset of the available labeled dataset, including the training set. As
it will be more extensively discussed later, though, it is usually separate from the training set
and referred to as the validation set or test set. The distinction between these terms is mostly
based on the purpose of the model evaluation process. When the evaluation is performed to
make some decisions that may affect the final model (e.g., select a classification algorithm,
adjust its parameters, select attributes, etc.), which may be called intermediate evaluation, it is
a common convention to speak of a validation set. Whenever the performance of the ultimately
created model is to be evaluated (final evaluation), one would rather speak of a test set. This
terminological distinction is purely conventional and has no impact on performance measures.
They can be applied to any dataset, including the training set used to create the model (which
determines the model’s training performance), although they would not reliably estimate the
model’s generalization properties in that case. We will follow the convention to designate an
arbitrary dataset by S and a validation/test set separate from the training set by Q.
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Intermediate evaluation is closely related to model selection, which is based on evaluation
results. Regardless of the exact decision to be made (algorithm selection, parameter adjust-
ment, attribute selection, etc.), what is needed is the selection of one model from a set of
candidate models. This apparently trivial task (given model evaluations, just select the best
one) may become quite difficult when multiple performance measures have to be used.

Some performance measures are not only used to evaluate classification models, but also
serve as – explicit or implicit – optimization criteria for the search for models performed by
classification algorithms. In this role, they are sometimes referred to as loss functions to be
minimized on the training set.

7.2.1 Misclassification error

The most common way of characterizing the performance of a classification model is by its
error or accuracy. One of these directly related basic performance measures is probably always
calculated when evaluating a model, although it is not always sufficient.

The misclassification error of model h ∶ X → C with respect to the concept c ∶ X → C
on dataset S ⊂ X is calculated as the relative frequency of the model’s mistakes for instances
from S:

ec,S(h) =
|Sh≠c||S| (7.1)

Alternatively, one can refer to the accuracy of model h with respect to the target concept c on
dataset S defined as 1 − ec,S(h). The misclassification error and accuracy are extremely easy
to interpret: they tell us how often the model is wrong or right when applied to a dataset.
Under an appropriate evaluation procedure (i.e., using one or more appropriately selected
validation/test sets), they would also tell us how often the model is likely to be wrong or right
when applied to new, previously unseen data, estimating the true misclassification error (the
probability of an arbitrary instance from the domain being misclassified) or the true accuracy
(the probability of an arbitrary instance from the domain being classified correctly).

The misclassification error is the most common loss function for classification algorithms,
also referred to as the 0–1 loss.

Example 7.2.1 The following R code defines a function for calculating the misclassification
error for given vectors of predicted and true class labels and demonstrates its application to
the decision tree model for the Soybean dataset. The evaluation is performed on the test sub-
set, for which model predictions are generated by calling the predict function, with the
type="c" argument used to request class label prediction.

err <- function(pred.y, true.y) { mean(pred.y!=true.y) }

err(predict(s.tree, s.test, type="c"), s.test$Class)

7.2.2 Weighted misclassification error

Similarly as weight-sensitive algorithms use weighted training instances, one can use a set of
weighted instances for model evaluation. Assuming a weight 𝑤x is assigned to each x ∈ S,
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the weighted misclassification error of model h with respect to the concept c on dataset S can
be calculated as follows:

ec,S,𝑤(h) =

∑
x∈Sh≠c

𝑤x∑
x∈S𝑤x

(7.2)

Example 7.2.2 The following R code defines a modified version of the function from the previ-
ous example that optionally accepts a weight vector as an additional argument and calculates
the weighted misclassification error. The function is then called with a weight vector that
doubles the importance of instances of the least frequent class herbicide-injury and
then another weight vector that contains random integer weights between 1 and 5 assigned
to particular classes. Of course, the random weights are totally meaningless and serve the
demonstration purpose only.

werr <- function(pred.y, true.y, w=rep(1, length(true.y)))
{ weighted.mean(pred.y!=true.y, w) }

# double weight for the least frequent class
s.w2test <- ifelse(s.test$Class=="herbicide-injury", 2, 1)
werr(predict(s.tree, s.test, type="c"), s.test$Class, s.w2test)

# random per-class weights 1..5
s.wctest <- round(runif(nlevels(s.test$Class), min=1, max=5))
s.w3test <- s.wctest[s.test$Class]
werr(predict(s.tree, s.test, type="c"), s.test$Class, s.w3test)

7.2.3 Mean misclassification cost

The error (or accuracy) implicitly assumes that each wrong (or correct) prediction counts the
same. This is not necessarily the case for several applications, where some model mistakes
may be more severe than the others, i.e., different misclassification costs can be assigned to
different possible mistakes. They can be represented by a pairwise cost matrix or a per-class
cost vector, as extensively discussed in Section 6.2.

To take into account misclassification costs during model evaluation, one can replace the
error and accuracy with a cost-sensitive performance measure. One obvious candidate is the
mean misclassification cost, which can be calculated on the dataset S using the misclassifica-
tion cost matrix 𝜌 by summing up the misclassification costs for all instances from S:

rc,S,𝜌(h) =
∑

x∈S𝜌[h(x), c(x)]|S| (7.3)

where 𝜌[d1, d2] is the cost of the predicting class d1 for an instance of true class d2. This is
clearly the same as the misclassification error if 𝜌[d1, d2] = 1 for all d1, d2 ∈ C, d1 ≠ d2 and
𝜌[d, d] = 0 for all d ∈ C.

Assuming a simplified cost matrix assigning the same misclassification cost to each pos-
sible mistake for the same true class – i.e., a cost vector 𝜌, where 𝜌[d] is the cost of failing to
correctly predict class d – we can rewrite the definition of the mean misclassification cost as

rc,S,𝜌(h) =

∑
x∈Sh≠c

𝜌[c(x)]|S| (7.4)
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By comparing the latter with the definition of the weighted misclassification error it can be
immediately noticed that

rc,S,𝜌(h) =
∑

x∈S𝑤x|S| ec,S,𝑤(h) (7.5)

as long as 𝑤x = 𝜌[c(x)] for all x ∈ S. This shows that the mean misclassification cost in the
simplified cost vector case is equivalent (subject to a model-independent coefficient) to the
weighted error, when instance weights are set to the misclassification cost associated with
the corresponding classes. The same observation is used in Section 6.3.1 to justify instance
weighting as a technique for misclassification cost incorporation during model creation.

Example 7.2.3 The following R code defines a function for the calculation of the mean mis-
classification cost for a given cost matrix. The function is then applied to evaluate the model
for the Soybean data using four different cost matrices: one that assigns the same cost of 1
to all mistakes, one that doubles the cost of misclassifying an instance of the least frequent
class herbicide-injury, a simplified cost matrix (i.e., a cost vector) containing the ran-
dom class weights from the previous example, and a full cost matrix generated randomly. The
random misclassification costs are clearly used for the demonstration purpose only and are
totally meaningless.

mean.cost <- function(pred.y, true.y, rho) { mean(diag(rho[pred.y,true.y])) }

# uniform cost matrix
s.r1test <- matrix(1, nrow=nlevels(s.test$Class), ncol=nlevels(s.test$Class))
diag(s.r1test) <- 0
mean.cost(predict(s.tree, s.test, type="c"), s.test$Class, s.r1test)

# double cost for misclassifying the least frequent class
s.r2test <- matrix(1, nrow=nlevels(s.test$Class), ncol=nlevels(s.test$Class))
s.r2test[,levels(s.test$Class)=="herbicide-injury"] <- 2
diag(s.r2test) <- 0
mean.cost(predict(s.tree, s.test, type="c"), s.test$Class, s.r2test)
# this should give the same result

sum(s.w2test)/nrow(s.test)*werr(predict(s.tree, s.test, type="c"),
s.test$Class, s.w2test)

# random per-class costs 1..5
s.r3test <- matrix(s.wctest, nrow=nlevels(s.test$Class), ncol=nlevels(s.test$Class),

byrow=TRUE)
diag(s.r3test) <- 0
mean.cost(predict(s.tree, s.test, type="c"), s.test$Class, s.r3test)
# this should give the same result

sum(s.w3test)/nrow(s.test)*werr(predict(s.tree, s.test, type="c"),
s.test$Class, s.w3test)

# random costs 1..5
s.r4test <- matrix(round(runif(nlevels(s.test$Class)*nlevels(s.test$Class),

min=1, max=5)),
nrow=nlevels(s.test$Class), ncol=nlevels(s.test$Class))

diag(s.r4test) <- 0
mean.cost(predict(s.tree, s.test, type="c"), s.test$Class, s.r4test)

Notice that for the uniform cost matrix, the mean misclassification cost is exactly equal
to the misclassification error calculated in Example 7.2.1. For the next two cost matrices, we
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can easily verify that the mean misclassification cost is equal to the corresponding weighted
error from Example 7.2.2, scaled by an appropriate coefficient.

7.2.4 Confusion matrix

In many applications, it may not be sufficient to know how often the evaluated model is wrong
or even how costly its mistakes are on average. It may be similarly or even more important to
know how often it fails to predict correctly particular classes. This is especially true whenever
classes of the target concept have different predictability (i.e., some are harder to predict than
the others) or have different occurrence rates (i.e., some occur more frequently than the others),
which is very common in practical classification tasks. This may also (but does not have to)
coincide with nonuniform misclassification costs, discussed above (i.e., failing to correctly
predict some of them is more costly than for the others). In such cases, model performance
can be more deeply evaluated based on the confusion matrix.

The confusion matrix for the model h ∶ X → C with respect to the concept c ∶ X → C on
a dataset S ⊂ X is a |C| × |C| matrix Ξc,S(h) such that

Ξc,S(h)[d1, d2] = |Sh=d1,c=d2
| (7.6)

According to this definition, rows of the confusion matrix correspond to class labels predicted
by the model h and columns correspond to true class labels assigned by the concept c (which
is a purely arbitrary convention, and an alternative convention of rows corresponding to true
classes and columns corresponding to the predicted ones may be adopted as well). The entry
of the confusion matrix corresponding to the predicted class label d1 and true class label d2
contains the number of instances from S for which the model predicts d1 whereas their true
class label is d2. Sometimes the relative confusion matrix is used, with all entries divided by
the size of the dataset used for the evaluation, but we will continue to refer to the absolute
version as defined above.

Using the confusion matrix, we can rewrite the definition of the misclassification error as

ec,S(h) =
∑

d1∈C
∑

d2∈C−{d1}Ξc,S(h)[d1, d2]∑
d1∈C

∑
d2∈CΞc,S(h)[d1, d2]

(7.7)

and the definition of the mean misclassification cost as

rc,S,𝜌(h) =
∑

d1∈C
∑

d2∈CΞc,S(h)[d1, d2]𝜌[d1, d2]∑
d1∈C

∑
d2∈CΞc,S(h)[d1, d2]

(7.8)

Example 7.2.4 The following R code defines a function for creating the confusion matrix
based on given vectors of the predicted and true class labels. The function is then applied to
the decision tree model for the Soybean data. Unfortunately, due to a large number of classes
and long class names for this dataset the printed confusion matrix is hardly readable. It is
subsequently demonstrated how the confusion matrix can be used to calculate the misclassi-
fication error and the mean misclassification cost (with respect to the last cost matrix created
in the previous example). The resulting values can be verified to agree with those produced
by the err and mean.cost functions.
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confmat <- function(pred.y, true.y)
{ table(pred.y, true.y, dnn=c("predicted", "true")) }

s.cm <- confmat(predict(s.tree, s.test, type="c"), s.test$Class)
# error

(sum(s.cm)-sum(diag(s.cm)))/(sum(s.cm))
# mean misclassification cost

sum(s.cm*s.r4test)/sum(s.cm)

7.2.4.1 Confusion matrix-derived performance measures

The confusion matrix gives an extremely useful insight into the model’s capability to predict
particular classes, and – under a proper evaluation procedure – into its generalization prop-
erties. It does not directly provide, however, the often desirable capability of comparing and
ranking different models with respect to their performance, so that the best of several candidate
models can be selected. A number of different performance measures can be derived from the
confusion matrix that make it possible, but they can be reasonably applied only when dealing
with two-class (single) concepts, when we can assume C = {0, 1}. Then we can refer to 1 as
the positive class and to 0 as the negative class. Similarly, one can refer to an instance x as a
positive instance when c(x) = 1 and as a negative instance when c(x) = 0. Since the confusion
matrix analysis is needed only when there is some asymmetry between classes (e.g., one is
more interesting, more important, and more difficult to predict or more costly to incorrectly
predict than the other), some of the confusion matrix-based performance favor the positive
class, which is conventionally assumed to be the more interesting one. It takes some addi-
tional effort to apply similar performance measures to multiclass models (with more than two
classes), which will be briefly discussed separately later.

Example 7.2.5 The following R code creates modified two-class copies of the Soybean
dataset, as well as of its training and test subsets. The modification is performed by selecting
one class (brown-spot) and aggregating all remaining classes into a single other class.
A decision tree classifier is then created based on the modified training set. It will be used in
subsequent examples to illustrate performance measures specifically designed for two-class
classification tasks.

s01.labels <- c("other", "brown-spot")
Soybean01 <- Soybean
Soybean01$Class <- factor(ifelse(Soybean$Class=="brown-spot", "brown-spot", "other"),

levels=s01.labels)

s01.train <- Soybean01[rs>=0.33,]
s01.test <- Soybean01[rs<0.33,]

s01.tree <- rpart(Class̃., s01.train)

Notice that by explicitly providing the levels argument to factor when creat-
ing the modified class column, a specific ordering of classes was ensured (other first,
brown-spot second). The brown-spot class will be considered positive, and the other
class will be considered negative in subsequent examples.
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Table 7.1 Confusion matrix
notation for two-class tasks.

c
h 0 1
0 TN FN
1 FP TP

In the two-class setting with C = {0, 1}, the confusion matrix Ξc,S(h) is a 2 × 2 matrix that
can be presented as in Table 7.1, with the following shortcuts used to denote its entries:

TP is the number of true positives Ξc,S(h)[1, 1],
TN is the number of true negatives Ξc,S(h)[0, 0],
FP is the number of false positives Ξc,S(h)[1, 0] (also known as type I errors),
FN is the number of false negatives Ξc,S(h)[0, 1] (also known as type II errors).

The convention behind these terms is that “positive” or “negative” refers to the class labels
predicted by the model, and “true” or “false” refers to the correctness of this prediction. Some
of the most popular performance measures calculated for 2 × 2 confusion matrices are defined
below, using the shortcuts to refer to confusion matrix entries.

Misclassification error. The ratio of incorrectly classified instances to all instances:

FP + FN
TP + TN + FP + FN

(7.9)

Accuracy. The ratio of correctly classified instances to all instances:

TP + TN
TP + TN + FP + FN

(7.10)

True positive rate. The ratio of instances correctly classified as positive to all positive
instances:

TP
TP + FN

(7.11)

False positive rate. The ratio of instances incorrectly classified as positive to all negative
instances:

FP
TN + FP

(7.12)

Precision. The ratio of instances correctly classified as positive to all instances classified
as positive:

TP
TP + FP

(7.13)

Recall. The same as the true positive rate.
Sensitivity. The same as the true positive rate.
Specificity. The ratio of instances correctly classified as negative to all negative instances

(the same as 1 − false positive rate):

TN
TN + FP

(7.14)
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The misclassification error and accuracy are the same class-insensitive performance
measures that were defined above, and their confusion matrix-based definitions are given
here for the sake of completeness only. The remaining performance measures are much more
interesting class-sensitive indicators that describe the level at which the evaluated classifier
succeeds or fails to correctly detect the positive class. It does not make much sense to use
them all simultaneously, which would result in considerable informational redundancy.
On the other hand, no single indicator from this set can be considered sufficient, as it would
be usually trivial to optimize. This is why these performance measures are usually considered
in the following complementary pairs:

• true positive rate and false positive rate,

• precision and recall,

• sensitivity and specificity.

The true positive rate (aka recall, aka sensitivity) is a member of all these pairs, under
different names. It represents the share of positive instances the classifier correctly detects.
It obviously should be maximized, but it could be made equal to 1 by a trivial and totally
useless classifier that always predicts the positive class. This is why it has to be accompanied
by a complementary indicator. It could be the false positive rate, representing the share of
negative instances that are incorrectly reported as positive (i.e., false alarms). This should be
obviously minimized, and a trivial classifier achieving the perfect 0 false positive rate would
be the one issuing no alarms at all (i.e., always predicting the negative class). Alternatively,
we could look at the precision – the share of all instances predicted as positive that are truly
positive – which should be maximized (and can be maximized by the same totally useless
classifier that never predicts the positive class to avoid false alarms). Yet another possibility
is to consider the specificity, which is the same as 1’s complement of the false positive rate.

The indicators in the above pairs are complementary, since one of them represents the
capability to detect positive instances, and the other the capability to avoid mis-detecting neg-
ative instances. As we have seen, each indicator in a pair can be separately optimized by a
trivial and useless classifier. Moreover, there is a clear tradeoff between the indicators from
the same pair – improving one is likely to worsen the other, and may at best leave it unchanged.

Example 7.2.6 The following R code defines functions for calculating the confusion
matrix-based performance indicators presented above and applies them to the confusion
matrix obtained for the two-class version of the Soybean dataset. The functions assume that
class labels (i.e., the levels of the factor representing the class column) are ordered such that
the negative class comes first and the positive class comes second. The previous example that
prepared the modified datasets took care of forcing this ordering. Not-a-number results from
the 0∕0 division are replaced by 1.

tpr <- function(cm) { if (is.nan(p <- cm[2,2]/(cm[2,2]+cm[1,2]))) 1 else p }
fpr <- function(cm) { if (is.nan(p <- cm[2,1]/(cm[2,1]+cm[1,1]))) 1 else p }
precision <- function(cm) { if (is.nan(p <- cm[2,2]/(cm[2,2]+cm[2,1]))) 1 else p }
recall <- tpr
sensitivity <- tpr
specificity <- function(cm) { if (is.nan(p <- cm[1,1]/(cm[2,1]+cm[1,1]))) 1 else p }

s01.cm <- confmat(predict(s01.tree, s01.test, type="c"), s01.test$Class)
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list(tpr=tpr(s01.cm),
fpr=fpr(s01.cm),
precision=precision(s01.cm),
recall=recall(s01.cm),
sensitivity=sensitivity(s01.cm),
specificity=specificity(s01.cm))

It takes a complete pair of complementary indicators to adequately measure the perfor-
mance of a classifier based on its confusion matrix in a class-sensitive way. This makes model
selection much harder, though, since there is no single criterion to rank candidate models one
could be required to choose from. Some measures have been proposed that try to fold two
complementary indicators into a single one, to facilitate this task. One well-known example
is the F-measure defined as the harmonic mean of the precision and recall

F-measure = 1
1

precision
+ 1

recall

2

=
2 ⋅ precision ⋅ recall
precision + recall

(7.15)

The rationale behind this definition is to seek for a value that is between these two, closer to
the less of them (particularly if it is low). This implies a compromise between maximizing
precision and maximizing recall that may be quite reasonable in some cases, but is no less
arbitrary than any other we could think about. Luckily, such folding of indicator pairs into
single indicators, that clearly cannot be lossless, is more often needed for academic research
and publications (where ranking classification models and algorithms may be necessary) than
in practical applications, where the domain knowledge and task requirements usually imply
some additional preference criteria and guide model selection (e.g., maximize recall with sub-
ject to a constraint specifying the minimum acceptable precision, minimize false positive rate
subject to a constraint specifying the minimum acceptable true positive rate). Ideally, misclas-
sification costs are explicitly available and can be used for model evaluation and selection.

Example 7.2.7 The following R code defines a function for calculating the F-measure and
applies it to evaluate the decision tree classifier for the two-class version of the Soybean
dataset.

f.measure <- function(cm) { 1/mean(c(1/precision(cm), 1/recall(cm))) }

f.measure(s01.cm)

7.2.4.2 Handling more than two classes

The performance measures based on the confusion matrix can be used for the evaluation of
multiclass classifiers in one of the following two ways:

1-vs-1. By measuring the capability to discriminate between instances of one class,
considered positive, from instances of another classes, considered negative,

1-vs-rest. By measuring the capability to discriminate between instances of one class,
considered positive, from instances of all remaining classes, considered negative.
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The 1-vs-1 approach yields a separate 2 × 2 confusion matrix for each pair of classes, with
a corresponding set of performance measure values. The 1-vs-rest approach yields a separate
2 × 2 confusion matrix for each class, again with a corresponding set of performance measure
values. The choice between these two approaches mostly depends on application-specific
requirements, in particular (implicitly assumed or explicitly expressed) misclassification
costs. Whereas, in principle, a different misclassification cost can be assigned to each
possible pair of (predicted and true) class labels, which would favor the 1-vs-1 approach to
classifier evaluation, it is in fact quite common that the same single cost value is assigned
to all possible misclassifications for a given true class. This is where the 1-vs-rest approach
would be more appropriate.

In any case, we end up with several confusion matrices, each described by its own set
(usually a pair, as discussed above) of indicators. This makes model selection considerably
harder, making it in fact a truly multiobjective optimization problem. Unlike with a pair of
indicators for a single confusion matrix, where there is a clear tradeoff and a good balance is
needed, there is not necessarily any tradeoff among indicators corresponding to different con-
fusion matrices. Simple averaging may be heplful, but not necessarily sufficient, and whereas
the domain knowledge or application requirements may provide constraints to guide model
selection, in general it may involve multicriteria optimization.

Example 7.2.8 The confmat01 function defined by the R code presented below applies the
1-vs-rest approach to multiclass confusion matrix analysis. Based on the supplied predicted
and true class label vectors, it returns a list of two-class confusion matrices, with each class
considered positive and the remaining classes considered negative. Performance indicators can
then be calculated for each of these matrices. This is demonstrated for the Soybean dataset, for
which the average per-class true positive rate, false positive rate, and F-measure are calculated.

## per-class 1 vs. rest confusion matrices
confmat01 <- function(pred.y, true.y)
{
‘names<-‘(lapply(levels(true.y),

function(d)
{
cm <- confmat(factor(as.integer(pred.y==d), levels=0:1),

factor(as.integer(true.y==d), levels=0:1))
}), levels(true.y))

}

s.cm01 <- confmat01(predict(s.tree, s.test, type="c"), s.test$Class)
# average TP rate, FP rate, and f-measure

rowMeans(sapply(s.cm01, function(cm) c(tpr=tpr(cm), fpr=fpr(cm), fm=f.measure(cm))))

7.2.4.3 Weighted confusion matrix

Similarly as for the misclassification error, a weighted version of the confusion matrix may
sometimes be needed to incorporate instance weights when evaluating classifier performance.
Assuming again that each instance x is assigned a weight 𝑤x, the definition of the confusion
matrix entry for the predicted class d1 and true class d2 can be rewritten as follows:

Ξc,S,𝑤(h)[d1, d2] =
∑

x∈Sh=d1 ,c=d2

𝑤x (7.16)

This is clearly equivalent to the ordinary confusion matrix when all weights are equal to 1.
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Example 7.2.9 The following R code defines a function for calculating the weighted confusion

dmr.util
matrix, using the weighted.table utility function, which is a weight-sensitive
equivalent of the standard table function. Weights are assumed to be equal to
1 if unspecified, which makes it equivalent to the function presented before in
Example 7.2.4. The function is applied to evaluate the decision tree for the two-class version of
the Soybean data, with two different weighting schemes. One gives a weight of 2 to instances
of the brown-spot class and a weight of 1 to instances of the other class, and the other
gives a weight of 0.1 to instances with the plant.stand attribute taking value 1, with the
weights of the remaining instances kept at 1. There is no hidden meaning of the latter, which
serves just the illustration purpose.

wconfmat <- function(pred.y, true.y, w=rep(1, length(true.y)))
{ weighted.table(pred.y, true.y, w=w, dnn=c("predicted", "true")) }

# double weight for the brown-spot class
s01.w1test <- ifelse(s01.test$Class=="brown-spot", 2, 1)
s01.w1cm <- wconfmat(predict(s01.tree, s01.test, type="c"),

s01.test$Class, s01.w1test)
tpr(s01.w1cm)
fpr(s01.w1cm)

# 10 times less weight for instances with plant.stand=1
s01.w2test <- ifelse(!is.na(s01.test$plant.stand) & s01.test$plant.stand=="1",

0.1, 1)
s01.w2cm <- wconfmat(predict(s01.tree, s01.test, type="c"),

s01.test$Class, s01.w2test)
tpr(s01.w2cm)
fpr(s01.w2cm)

Clearly, with instance weights assigned on a per-class basis, the true positive rate and the
false positive rate remain the same as for the unweighted confusion matrix. They may differ
only if instances of the same class receive varying weights, as in the second demonstrated
weighting scheme.

7.2.5 ROC analysis

The performance measures presented above are all based on comparing a model’s predicted
class labels with true class labels. For scoring classifiers introduced in Section 1.3.3, which
can predict different class labels in different operating points, depending on the cutoff value,
this yields a separate set of performance indicators for each possible operating point. One
convenient tool that facilitates classifier performance evaluation in multiple operating points,
operating point comparison, and operating point selection, is the ROC analysis. The term
ROC stands for receiver operating characteristic and refers to the methodology developed
during the World War II for radar signal detection that turned out to be similarly suitable for
classifier evaluation.

7.2.5.1 ROC plane

The ROC analysis considers a Cartesian coordinate system where the y-axis represents the
true positive rate and the x-axis represents the false positive rate. This is called the ROC plane.
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The performance of a discrete classifier is represented by a single point on the ROC plane,
which visualizes the underlying tradeoff between true positives and false positives. The same
is the case for a single operating point of a scoring classifier, which is also represented as a
point on the ROC plane.

The (0, 1) point, with a true positive rate of 1 and a false positive rate of 0, is the perfect
operating point, with all instances classified correctly. The (1, 0) point, with a true positive
rate of 0 and a false positive rate of 1, is the worst operating point, with all instances
classified incorrectly. The (0, 0) point corresponds to a classifier that always predicts class 0,
yielding no (true or false) positives, and the (1, 1) point corresponds to a classifier that always
predicts class 1.

7.2.5.2 ROC curve

By joining all possible operating points of a scoring classifier on the ROC plane with line
segments, we receive a visual representation of its performance independent of the cutoff
value. This is called the ROC curve. It shows the whole range of different operating points,
with the corresponding different levels of the true positives vs. false positives tradeoff, in a
single plot. It can be considered a graphical performance indicator for a scoring classifier that
depends only on its scoring function component. It is the scoring function that captures the
knowledge about the relationship between classes and attribute values.

To produce the ROC curve for a scoring classifier based on its scores generated for a
dataset, it is necessary to identify its all possible operating points. Since a different operating
point arises whenever the predicted class label changes for at least one instance, one can iden-
tify all possible operating points by considering all such and only such cutoff values that yield
different class predictions for at least one instance. In particular, after sorting instances with
respect to their scores (nondecreasingly or nonincreasingly), exactly one cutoff value separat-
ing two consecutive scores for instances of different classes yields a distinct operating point.

Example 7.2.10 The basic idea of the ROC curve is illustrated by the R code presented below,
which identifies all operating points based on a table of predicted scores and true class labels.
Its small size makes it easy to verify the calculations manually. For all possible cutoff values,
the confusion matrix is determined and used to calculate the true positive rate and the false
positive. The obtained eight operating points make it possible to generate the ROC curve plot
presented in Figure 7.1.

# predicted scores and true class labels
sctab <- data.frame(score=c(1, 1, 3, 4, 5, 5, 6, 7, 9, 9),

class=factor(c(0, 0, 1, 0, 0, 1, 1 ,0, 1, 1)))

# operating point identification
scroc <- t(sapply(c(sort(unique(sctab$score)), Inf),

function(sc)
{
pred <- factor(as.numeric(sctab$score<sc),

levels=levels(sctab$class))
list(tpr=tpr(cm <- confmat(pred, sctab$class)),

fpr=fpr(cm))
}))
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# ROC curve
plot(scroc, type="l", xlab="FP rate", ylab="TP rate")

Consider a classification model with a random scoring function that has no predictive
utility at all. Whenever the cutoff value is increased (or decreased) for such a classifier, the
expected resulting decrease (or increase) of the true positive rate and the false positive rate is
the same, i.e., the additional instances classified positively will come both from the positive
and the negative class in the same proportion. The ROC curve for such a classifier would there-
fore be a diagonal straight line through the ROC plane from the (0, 0) point to the (1, 1) point.
More precisely, this would be the expected ROC curve. Of course, for a particular dataset and
a random model, a perfectly straight diagonal will not be obtained, since the actual increase of
the true positive rate and false positive rate may not always be equal, as expected. Unlike the
“ideal” random ROC curve, a “real” one is in particular likely to be composed mostly of hori-
zontal or vertical line segments, corresponding to exactly one instance changing its predicted
class label when increasing or decreasing the cutoff value.

The diagonal line divides the ROC plane into the upper and lower halves. All reasonable
classifiers should operate in the upper half. All reasonable scoring classifiers should have
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Figure 7.1 The ROC curve for a simple scoring model with eight operating points.
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their ROC curve entirely above the diagonal, which means that the true positive rate should
be always above the false positive rate. Only classifiers with this property indeed capture some
predictively useful relationship between the target concept and attribute values. Notice also
that the ROC curve for any scoring classifier is always nondecreasing, which means that the
true positive rate and the false positive rate always change in the same direction when shifting
the cutoff value (i.e., decrease when the cutoff value is increased and increase when the cutoff
value is decreased).

Example 7.2.11 The following R code defines a function for performing all calculations nec-
essary to plot the ROC curve for a scoring classifier. The function takes vectors of predicted
scores and true class labels on input and produces a data frame with all identified operating
points, each described by the corresponding true positive rate, false positive rate, and cutoff
value. It is a more refined implementation than presented in the previous example that avoids
calculating the true positive rate and the false positive rate for all cutoff values from scratch,
but rather modifies them incrementally while scanning the data in the order of scores. The
function is applied to produce the ROC curves for the decision tree model created before and
a random model for the two-class version of the Soybean data. Calling the rpart prediction
method function without the type=“c” argument makes it return a matrix of class probabil-
ities for each classified instance, with the order of columns corresponding to the ordering of
class labels, so that the second column has to be selected to get the “positive” class probability.

roc <- function(pred.s, true.y)
{
cutoff <- Inf # start with all instances classified as negative
tp <- fp <- 0
tn <- sum(2-as.integer(true.y)) # all negative instances
fn <- sum(as.integer(true.y)-1) # all positive instances
rt <- data.frame()

sord <- order(pred.s, decreasing=TRUE) # score ordering
for (i in 1:length(sord))
{
if (pred.s[sord[i]] < cutoff)
{
rt <- rbind(rt, data.frame(tpr=tp/(tp+fn), fpr=fp/(fp+tn), cutoff=cutoff))
cutoff <- pred.s[sord[i]]

}

p <- as.integer(true.y[sord[i]])-1 # next positive classified as positive
n <- 2-as.integer(true.y[sord[i]]) # next negative classified as positive
tp <- tp+p
fp <- fp+n
tn <- tn-n
fn <- fn-p

}
rt <- rbind(rt, data.frame(tpr=tp/(tp+fn), fpr=fp/(fp+tn), cutoff=cutoff))

}

# ROC curve for the decision tree model
s01.roc <- roc(predict(s01.tree, s01.test)[,2], s01.test$Class)
plot(s01.roc$fpr, s01.roc$tpr, type="l", xlab="FP rate", ylab="TP rate")
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# ROC curve for a random model
s01rand <- runif(nrow(s01.test))
s01rand.roc <- roc(s01rand, s01.test$Class)
lines(s01rand.roc$fpr, s01rand.roc$tpr, lty=2)

Figure 7.2 presents the obtained plots. The ROC curve for the random model is not a
perfectly straight diagonal line, which is to be expected, particularly for a relatively small
dataset.

7.2.5.3 Shifting operating points

If a scoring classifier is equipped with a default labeling function, i.e., a default cutoff value,
the corresponding operating point is called its default operating point. For probabilistic clas-
sifiers, this can be the 0.5 cutoff value corresponding to the maximum-probability rule or
a value determined using the minimum-cost rule described in Section 6.3.3, if misclassifi-
cation costs are specified. While this default operating point can be reasonably expected to
optimize the performance measure assumed by the classification algorithm that created the
model (e.g., the misclassification error or the mean misclassification cost), it is not neces-
sarily always the case. And even if the operating point appears to be optimal with respect

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FP rate

T
P

 r
at

e

Figure 7.2 The ROC curves for the decision tree and random models for the two-class
Soybean dataset.
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to the algorithm’s assumed performance measure, it does not necessarily correspond to the
actual application-specific requirements, which may include, e.g., specific minimum or maxi-
mum acceptable levels of selected performance indicators. In such cases, a different operating
point might happen to be more preferable. It can be easily identified on the ROC curve, and the
corresponding cutoff value can be used to replace the model’s default operating function. In
particular, it is straightforward to identify the operating point corresponding to the maximum
possible true positive rate with the false positive rate not exceeding a specified maximum level,
or to the minimum possible false positive rate with the true positive rate not falling below a
specified minimum level. These are the simplest, but highly useful scenarios for operating
point shifting.

Example 7.2.12 The following R code defines a class labeling function and an ROC point

dmr.util
shifting function. The former generates class labels based on a score vector and a
cutoff value, using the ustep and label utility functions. The latter identifies
the best cutoff value subject to the specified constraint: either yielding the maxi-
mum true positive rate with the false positive rate no greater than the maximum
specified via the max.fpr argument, or yielding the minimum false positives rate with the
true positive rate no less than the minimum specified via the min.tpr argument. The two
functions are applied to shift the operating point of the decision tree for the Soybean data so as
to achieve the minimum possible false positive rate with the true positive rate above or equal
to 0.85, and then to achieve the maximum possible true positive rate with the false positive rate
below or equal to 0.5. The ROC curve for the decision tree is plotted again, with the default
operating point marked by an asterisk and the shifted operating points marked by a circle and
a triangle. The obtained plot is presented in Figure 7.3.

## assign class labels according to the given cutoff value
cutclass <- function(s, cutoff, labels) { factor(ustep(s, cutoff), labels=labels) }

## identify the best cutoff value
## satisfying the minimum tpr or maximum fpr constraint
roc.shift <- function(r, min.tpr=NULL, max.fpr=NULL)
{
if (!is.null(min.tpr))
max(r$cutoff[r$tpr>=min.tpr])

else if (!is.null(max.fpr))
min(r$cutoff[r$fpr<=max.fpr])

else
0.5

}

# shift to achieve tpr>0.85 at minimum fpr
s01.t085 <- roc.shift(s01.roc, min.tpr=0.85)
s01.cm.t085 <- confmat(cutclass(predict(s01.tree, s01.test)[,2],

s01.t085, s01.labels),
s01.test$Class)

# shift to achieve maximum tpr at fpr<0.5
s01.f05 <- roc.shift(s01.roc, max.fpr=0.5)
s01.cm.f05 <- confmat(cutclass(predict(s01.tree, s01.test)[,2], s01.f05, s01.labels),

s01.test$Class)
# the ROC curve

plot(s01.roc$fpr, s01.roc$tpr, type="l", xlab="FP rate", ylab="TP rate")
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# the default operating point
points(fpr(s01.cm), tpr(s01.cm), pch=8)
# the shifted operating points

points(fpr(s01.cm.t085), tpr(s01.cm.t085), pch=1)
points(fpr(s01.cm.f05), tpr(s01.cm.f05), pch=2)

7.2.5.4 Interpolating between operating points

When shifting operating points, we can select from all different operating points on the same
ROC curve. Sometimes the preferred operating point might lie between two neighboring
points on the curve, or – even – two points from two different ROC curves, corresponding
to two different models (with different scoring functions). To achieve the desired, but not
directly available operating point, one can interpolate between the two selected points using
the technique of model mixing.

The idea is to wrap the models corresponding to the selected operating points with a ran-
dom selection rule that draws a model with an appropriate probability distribution. Consider
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Figure 7.3 Shifting the operating point for the decision tree model for the two-class Soybean
dataset.
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models h1and h2 with their corresponding operating points (FP1,TP1) and (FP2,TP2) and let
(FP∗,TP∗) denote the desired operating point, on the straight line between these two. The
latter can be obviously presented as

FP∗ =𝛼FP1 + (1 − 𝛼)FP2 (7.17)

TP∗ =𝛼TP1 + (1 − 𝛼)TP2 (7.18)

for some 𝛼 ∈ (0, 1). Then the desired operating point can be achieved by the following rule,
that probabilistically mixes the predictions of the two models:

h∗(x) =

{
h1(x) with probability 𝛼

h2(x) with probability 1 − 𝛼
(7.19)

It is straightforward, although rarely needed in practice, to extend the idea of operating point
interpolation and model mixing to more than two operating points.

Example 7.2.13 The following R code defines a function for mixing the class label predictions
of two models, with a given probability of the first model. This function is subsequently used
to mix the predictions of the decision tree model for the Soybean dataset corresponding to the
two shifted operating points from the previous example. The interpolated operating point is
obtained by mixing the two operating points in the 3 ∶ 1 proportion, which corresponds to the
first operating point (the true positive rate above 0.85, the minimum false positive rate) being
selected with probability 0.75. The ROC curve is plotted again, with the default operating
point marked by an asterisk, the shifted operating points marked by a circle and a triangle,
and the interpolated operating point marked by a diamond. This is presented in Figure 7.4.
Because of the randomness of the model mixing process the interpolated point may not lie
exactly where expected if the dataset is not sufficiently large.

mixclass <- function(c1, c2, p)
{ factor(ifelse(p<runif(length(c1)), c1, c2), labels=levels(c1)) }

# interpolate between the two shifted operating points
s01.mix <- mixclass(cutclass(predict(s01.tree, s01.test)[,2], s01.t085, s01.labels),

cutclass(predict(s01.tree, s01.test) [,2], s01.f05, s01.labels),
0.75)

s01.cmi <- confmat(s01.mix, s01.test$Class)

# the ROC curve
plot(s01.roc$fpr, s01.roc$tpr, type="l", xlab="FP rate", ylab="TP rate")
# the default operating point

points(fpr(s01.cm), tpr(s01.cm), pch=8)
# the 1st shifted operating point

points(fpr(s01.cm.t085), tpr(s01.cm.t085), pch=1)
# the 2nd shifted operating point

points(fpr(s01.cm.f05), tpr(s01.cm.f05), pch=2)
# the interpolated operating point

points(fpr(s01.cmi), tpr(s01.cmi), pch=5)
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Figure 7.4 Interpolating between operating points for the decision tree model for the
two-class Soybean dataset.

7.2.5.5 Area under the curve

The ROC analysis can not only be used to compare different operating points and to identify
the best operating point but also can be used to compare scoring classifiers irrespective of their
labeling functions, i.e., the scoring functions alone. This requires comparing different ROC
curves. It is quite trivial when one curve is entirely above another, which clearly means that the
former is better. This does not have to always imply, as it might appear, that for each operating
point of the worse curve there is a superior operating point on the second curve (e.g., one with a
greater true positive rate and with a less or equal false positive rate), because such an operating
point does not have to be achievable on the better curve. In such cases, however, a superior
operating point can be obtained by interpolation, as discussed above. With this disclaimer, the
situation of one curve entirely above another allows one to unambiguously judge the model
corresponding to the former as superior to the model corresponding to the latter.

With intersecting ROC curves the situation is no longer so clear. The intersection means
that some parts of one curve are above the other and some parts are below the other, i.e., in
some ranges of the false positive rate, one model achieves a higher true positive rate, and in
some other ranges the other model has more true positives. One might be preferable to the
other depending on which range we are most concerned with, i.e., where the ultimate desired
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operating point is most likely to lie. Sometimes a simple comparison criterion is needed even
in such more complex cases, though. Whenever we have a variety of models, produced using
different algorithms or parameter settings, we may need a quick and easy way of ranking them
with respect to their predictive utility without considering any particular operating points. One
such commonly used criterion is the area under the ROC curve, sometimes referred to as AUC
(area under curve). During model comparison, the model with a greater AUC value can be
roughly considered superior with respect to its overall predictive performance potential, even
if another model with a less AUC value could actually achieve a more preferable operating
point than any point achievable by the former. This performance measure is typically used
to easily assess the effect of different parameter settings for classification algorithms and
select a subset of most promising models before proceeding with operating point selection
or optimization. This is also handy whenever the best scoring model needs to be selected to
be subsequently used at several different operating points (e.g., minimizing misclassification
costs with respect to several different or dynamically changing cost matrices).

Example 7.2.14 The following R code defines a function for calculating the area under the
ROC curve, represented as a data frame with columns tpr and fpr – like that created by
the roc function from Example 7.2.11. The function is applied to calculate the area under the
two ROC curves plotted before – for the decision tree model and for a random model. For the
latter, the area under the ROC curve may substantially differ from the expected value of 0.5
due to the small size of the test subset.

auc <- function(roc)
{ n <- nrow(roc); sum((roc$tpr[1:n-1]+roc$tpr[2:n])*diff(roc$fpr)/2) }

# area under the ROC curve for the decision tree model
auc(s01.roc)
# area under the ROC curve for a random model

auc(s01rand.roc)

7.2.5.6 Weighted ROC

Nothing prevents us from adopting the idea of weight-sensitive evaluation for ROC analy-
sis. Similarly as for calculating the error or the confusion matrix, instance weights can be
incorporated for generating points and curves on the ROC plane. Again, the only required
change is to replace instance counting by summing up instance weights. Since the true posi-
tive rate and the false positive rate – the two indicators spanning the ROC place – are defined
in terms of confusion matrix entries, using a weighted confusion matrix to calculate them
yields appropriately weighted ROC operating points and curves.

Example 7.2.15 The following R code defines a function for calculating the indicators
needed for the ROC curve with instance weights taken into account. It differs from the
unweighted version presented before only marginally, just by summing up instance weights
instead of instance counts. The function is applied to produce the ROC curves for the decision
tree for the two-class version of the Soybean data, with two different weighting schemes,
the same as previously used in Example 7.2.9. One gives twice more weight to instances of
the brown-spot class than to the instances of the other class, and the other gives 10
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times less weight to instances with the plant.stand attribute taking value 1. The plots
are presented in Figure 7.5.

wroc <- function(pred.s, true.y, w=rep(1, length(true.y)))
{
cutoff <- Inf # start with all instances classified as negative
tp <- fp <- 0
tn <- sum((2-as.integer(true.y))*w) # all negative instances
fn <- sum((as.integer(true.y)-1)*w) # all positive instances
rt <- data.frame()

sord <- order(pred.s, decreasing=TRUE) # score ordering
for (i in 1:length(sord))
{
if (pred.s[sord[i]] < cutoff)
{
rt <- rbind(rt, data.frame(tpr=tp/(tp+fn), fpr=fp/(fp+tn), cutoff=cutoff))
cutoff <- pred.s[sord[i]]

}

p <- (as.integer(true.y[sord[i]])-1)*w[sord[i]] # next positive
n <- (2-as.integer(true.y[sord[i]]))*w[sord[i]] # next negative
tp <- tp+p
fp <- fp+n
tn <- tn-n
fn <- fn-p

}
rt <- rbind(rt, data.frame(tpr=tp/(tp+fn), fpr=fp/(fp+tn), cutoff=cutoff))

}

# ROC curve with double weight for the brown-spot class
s01.w1roc <- wroc(predict(s01.tree, s01.test)[,2], s01.test$Class, s01.w1test)
plot(s01.w1roc$fpr, s01.w1roc$tpr, type="l", xlab="FP rate", ylab="TP rate")
auc(s01.w1roc)

# ROC curve with 10 times less weight for instances with plant.stand=1
s01.w2roc <- wroc(predict(s01.tree, s01.test)[,2], s01.test$Class, s01.w2test)
lines(s01.w2roc$fpr, s01.w2roc$tpr, lty=2)
legend("bottomright", c("brown-spot x2", "plant.stand=1 x10"), lty=1:2)
auc(s01.w2roc)

Since per-class instance weights have no impact on the true positive rate and the false
positive rate, the ROC curve for the first weighting scheme is the same as presented before
for the unweighted case. Under the second weighting scheme, where the weights of instances
of the same class may vary, the ROC curve is different.

7.2.6 Probabilistic performance measures

For probabilistic classification models, it may be desirable to measure the quality of their
class probability estimates rather than or in addition to the resulting class label assignments.
For two-class models, this may be indirectly accomplished to some extent by ROC analysis
(in particular, using the area under the ROC curve), but this approach focuses on the discrim-
inative power of class probabilities only and not on their general reliability. Evaluating the
latter requires appropriate probabilistic performance measures, assessing the degree of match
between class labels in the dataset used for evaluation and class probabilities generated by
the model.
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Figure 7.5 The weighted ROC curves for the decision tree model for the two-class Soybean
dataset.

7.2.6.1 Likelihood

Regardless of a particular dataset, clearly there are no “true class probabilities” available to
which the predicted class probabilities be simply compared. As usual, the dataset can only be
assumed to come with true class labels attached. What one can do, however, is determining the
probability of the latter using the model to estimate class probabilities for all instances. This
leads to the likelihood of dataset S with respect to the target concept c given model probability
estimates 𝜋 defined as follows:

P(S, c|𝜋) = ∏
x∈S

P(x, c|𝜋) = ∏
x∈S

𝜋(x, c(x)) (7.20)

where
𝜋(x, d) = P(d|x) (7.21)

is the probability of class d for instance x predicted by the model. The higher the likelihood
of the data, the better the probability predictions are considered, which makes the likelihood
a performance measure to be maximized. For two-class classification tasks, we can simplify
the notation using 𝜋(x) = P(1|x) and rewrite the above definition as follows:

P(S, c|𝜋) = ∏
x∈S

𝜋(x)c(x)(1 − 𝜋(x))1−c(x) (7.22)

assuming class labels from the {0, 1} set can be used as numbers.
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Example 7.2.16 The R code presented below implements likelihood calculation. The
lik function accepts a vector of true class labels as the second argument, but the first
argument is expected to be a matrix of class probabilities, with rows corresponding to
instances and columns corresponding to classes – just like returned by the predict
function for probabilistic classifiers in R. The lik01 function is a modified version for
the two-class case, using the vector of positive class probabilities as the first argument.
It uses the as.num0 function to convert the true class factor to the 0–1 numeric

dmr.utilrepresentation. Both the functions also accept theeps argument specifying a small
positive number used to replace 0 probabilities, which would otherwise cause
numerical problems. They are demonstrated for the original and two-class versions
of the Soybean data.

## likelihood for probabilistic classifier evaluation
## assuming eps for 0 probabilities
lik <- function(prob.y, true.y, eps=.Machine$double.eps)
{
prod(pmax(sapply(1:length(tn <- as.numeric(true.y)),

function(i) prob.y[i,tn[i]]), eps))
}

## likelihood for probabilistic binary classifier evaluation
## assuming eps for 0 probabilities
lik01 <- function(prob.y, true.y, eps=.Machine$double.eps)
{
prod((py <- pmin(pmax(prob.y, eps), 1-eps))̂(t01 <- as.num0(true.y))*(1-py)̂(1-t01))

}

# likelihood for the Soybean data
lik(predict(s.tree, s.test), s.test$Class)
lik(predict(s01.tree, s01.test), s01.test$Class)
lik01(predict(s01.tree, s01.test)[,2], s01.test$Class)

7.2.6.2 Loglikelihood

On several occasions, it may be convenient to use the logarithm of the likelihood due to its ana-
lytic or computational properties. The resulting quantity is called the loglikelihood of dataset
S with respect to the target concept c given model probability estimates 𝜋 and defined as

L(S, c|𝜋) = log
∏
x∈S

P(x, c|𝜋) = ∑
x∈S

log𝜋(x, c(x)) (7.23)

The base of the logarithm is irrelevant, with the natural logarithm being a particularly popular
choice. An equivalent alternative definition for two-class tasks can be written as

L(S, c|𝜋) = ∑
x∈S

(c(x) log𝜋(x) + (1 − c(x)) log(1 − 𝜋(x))) (7.24)

Loglikelihood values are negative, with greater values (closer to 0) preferred. The negated
loglikelihood can serve as a loss function for probabilistic classification algorithms, referred
to as the logarithmic loss or log-loss. It takes positive values, with less values preferred, which
is consistent with the misclassification error or the mean misclassification cost.
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Example 7.2.17 The loglikelihood classifier performance measure is implemented and
demonstrated by the following R code, following the pattern of the previous example.

## loglikelihood for probabilistic classifier evaluation
## assuming eps for 0 probabilities
loglik <- function(prob.y, true.y, eps=.Machine$double.eps)
{
sum(log(pmax(sapply(1:length(tn <- as.numeric(true.y)),

function(i) prob.y[i,tn[i]]), eps)))
}

## loglikelihood for probabilistic binary classifier evaluation
## assuming eps for 0 probabilities
loglik01 <- function(prob.y, true.y, eps=.Machine$double.eps)
{
sum((t01 <- as.num0(true.y))*log(py <- pmin(pmax(prob.y, eps), 1-eps))+

(1-t01)*log(1-py))
}

# loglikelihood for the Soybean data
loglik(predict(s.tree, s.test), s.test$Class)
loglik(predict(s01.tree, s01.test), s01.test$Class)
loglik01(predict(s01.tree, s01.test)[,2], s01.test$Class)

7.3 Evaluation procedures

The objective of model evaluation procedures is to determine how to apply selected
performance measures in order to obtain the reliable assessment of the model’s expected
performance on new data, i.e., to determine its generalization properties. This is not possible
as long as entirely or partially the same data is used for both model creation and model
evaluation. For many modeling algorithms that would lead to overoptimistic performance
estimates, which is sometimes referred to as evaluation overfitting. The main effort in
designing evaluation procedures is therefore to ensure the separation of the validation or the
test set Q from the training set T without degrading the model quality due to insufficient
training data.

7.3.1 Model evaluation vs. modeling procedure evaluation

Contrary to a common misconception, there is nothing wrong in using the whole available
labeled dataset as the training set for building a model. What is deeply wrong is using some
part of this dataset to evaluate the same model. So one can train and use all-data models as
long as one does not evaluate them. This is, of course, totally unacceptable for research, which
is all about evaluating, comparing, and benchmarking, but for practical applications it is also
completely unimaginable to accept any model without reliable performance estimates. The
solution to this dilemma may be to evaluate one or more models built on a smaller training
subset using a separate validation or test set, and use the obtained indicators as performance
estimates for another model, built on the whole dataset, using exactly the same modeling pro-
cedure (i.e., the classification algorithm, its parameter settings, and all other details that impact
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the produced model being unchanged). The right way to look at the evaluation procedures is
therefore often as methods of evaluating a modeling procedure rather than the actual model
delivered for the application, where the term “modeling procedure” encompasses the classi-
fication algorithm and everything else other than the dataset that affects the generated model.

When evaluating a modeling procedure, an appropriate evaluation procedure is needed to
keep training and validation or test sets separate. This evaluation procedure can be applied to
calculate one or more performance indicators that will serve as performance estimators for
the model built on the complete dataset using exactly the same modeling procedure. The final
model not only can, but also should be built using as much data as is available (and can be
handled within the existing computational constraints, if any), to maximize performance on
new data.

7.3.2 Evaluation caveats

While the basic idea to separate the test or validation set from the training set is more than
straightforward, there are some issues related to its application that deserve most careful
attention:

Bias vs. variance. A too small validation or test set does not provide reliable performance
estimates due to high variance, but sparing a considerable part of data for the purpose of
evaluation is likely to deteriorate the performance of the model being evaluated, since
it would have to be created based on a smaller than possible training set, thereby intro-
ducing a pessimistic bias that also makes the performance estimates unreliable,

Intermediate vs. final evaluation. Whenever any decisions affecting the final model are
made based on the intermediate evaluation of several candidate models, the validation
set used for this intermediate evaluation does not provide reliable estimates of the final
model’s performance, since it has been implicitly and indirectly included in the model
creation process.

Both issues are more thoroughly discussed below.

7.3.2.1 Bias vs. variance

Bias and variance are the two possible reasons of the unreliability of performance estimates
produced by model evaluation procedures. To understand them correctly, consider perfor-
mance indicators as random variables, with realizations depending on the particular dataset
from the domain that was available and used by the evaluation procedure. These random vari-
ables are supposed to be estimators of the unknown values of the corresponding performance
indicators on the whole domain (i.e., on mostly unseen data). The bias of such an estimator is
the difference between its expected value and the unknown indicator being estimated, i.e., the
expected difference between the estimator’s realization and the true value of the estimated
indicator. An estimator’s variance is the variance of its realizations for different possible
datasets from the domain. The bias and variance of an evaluation procedure are the corre-
sponding properties of estimators calculated using the procedure.

A reliable performance estimator should have low bias and variance. A highly biased
estimator considerably systematically differs from the true performance indicator. A
high-variance estimator is likely to yield substantially different results depending on the
particular dataset. It may be a challenge for evaluation procedures to produce performance
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estimators with both low bias and low variance, since there is a natural tradeoff between these
two. To reduce the variance, one should use a sufficiently large validation or test set, since this
can be expected to smooth out the random effects of the particular dataset. Unfortunately, this
prevents a considerable number of labeled instances from being used for creating the model.
A model created based on a smaller subset of data is likely to have less predictive power than
another model created in the same way using more data. As a result, one will obtain quite
reliable performance estimators for a model that is probably worse than possible to obtain
using a larger subset of the available data. As performance estimators for a model that could
be built on the whole dataset they are therefore pessimistically biased and unreliable.

Such a pessimistic bias is something one should be definitely aware of, although not always
and not necessarily worry about. The biased performance measures for the model built on
the training subset calculated on the validation or test subset can serve as nonoverestimating
performance estimates for another model built with the same modeling procedure on the whole
available dataset, and it is the latter that would be actually deployed for the application. As long
as the performance estimates are satisfactory with respect to the application’s requirements,
this is perfectly acceptable, since the deployed all-data model is likely to outperform the one
that was actually evaluated. If the performance estimates do not meet the expectations, though,
we are left in uncertainty: this may not be the effect of the pessimistic evaluation bias, but also
indicate the classification algorithm’s inability to produce a sufficiently good model.

High evaluation variance may be more problematic, particularly in intermediate evaluation
which is used for model selection or making other decisions that affect the final model. Using
high-variance performance estimators for such decisions is likely to yield suboptimal results.

7.3.2.2 Intermediate vs. final evaluation

The difference between intermediate and final evaluation is somewhat subtle and, although
more widely acknowledged recently, it still tends to be overlooked or underappreciated both
in research and in practical data mining projects. Whereas the latter is only supposed to provide
information about the evaluated model’s expected performance on unseen data, which allows
one to judge about its suitability for a given application or estimate the expected gain or loss
resulting from using the model to make real decisions, the former is also supposed to direct
the search for a better model.

Typically several candidate models, obtained by different modeling procedures (e.g., by
running possibly different algorithms, with possibly different parameter settings, using pos-
sibly different attribute subsets, etc.), go through intermediate evaluation, which ranks them
with respect to their expected generalization performance and makes it possible to choose
the most promising ones. These may be subject to some other refinement yielding again a
set of new candidate models which should be evaluated again, until a satisfactory final model
is found or no further improvement seems possible. In such cases, the validation set used to
evaluate the performance of candidate models is effectively used in the overall modeling pro-
cess, since it affects the ultimate choice of several details of the modeling procedure (like the
choice of algorithm, parameter settings, attribute selection, etc.) that usually have consider-
able impact on the final model. This is a very reasonable way to proceed when seeking for
the best possible model quality, but unfortunately the same validation set cannot be used to
achieve reliable performance estimate for the final model, since it has already been used for
training in a wider sense, which includes all possible decision-making processes (automated
or human) based on the data.
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Table 7.2 Training and
test set illustration.

D

T Q

T ′ Q′

T ′′ Q′′

This is not to say that the final model should be expected to be poor or there is something
wrong with the model selection process. This is only to say that we should not expect the final
model to perform as well on new data as it performs on the validation set, on which it was
found to perform best out of several examined candidates. It is likely to perform worse on
previously unseen data, and one needs a separate test set to find out how. Otherwise a severe
risk of evaluation overfitting arises.

The phenomenon of validation sets becoming effectively parts of generalized training sets
and the need for separate test sets can be illustrated as presented in Table 7.2. If we build a
model on the training set T and evaluate it on the validation set Q, but then use the evalua-
tion results to make some decisions that impact a subsequently created model (e.g., to select a
classification algorithm, set parameters, select attributes, etc.), then we need a separate test set
Q′ to reliably evaluate the new model, since T ∪ Q effectively becomes a generalized train-
ing set T ′. But if the search for a satisfactory model continues and another decision-making
process takes place to improve the model based on the evaluation performed on Q′ used as
the validation set, then again another separate test set Q′′ should be used for the evaluation
of the next resulting model, obtained based on T ′ ∪ Q′ comprising a next stage generalized
training set T ′′. In principle, several such iterations of training, evaluation, and improvement
decision making are possible, although it is very uncommon to see more than two or three in
practice.

Note how the necessity to separate intermediate evaluation(s) and the final evaluation
apparently reinforces the bias vs. variance issue. If model creation is a multistage process
that needs two or more separate data subsets for model evaluation, then the risk of too lit-
tle being left for training becomes more severe. It is not necessarily that bad, luckily, since
on each stage the model can and should be built using all data that cannot reliably serve
for the purpose of evaluation. In the illustration above, after the first-stage models are built
on T and evaluated on Q to make some decisions that affect the second-stage models, the
latter can be actually built on T ′ = T ∪ Q rather than on T , since it depends on Q anyway
and cannot be reliably evaluated on Q. Similarly, the final model can and should be built
using all data except the final test set. In the above illustration, the final model could actually
be built using T′′ rather than T as the training set and then evaluated on Q′′. And as noted
above, in any case the ultimately deployed model (if the modeling process is performed for
a real-world application rather than research or algorithm benchmarking) can be built using
all available labeled data, as long as we are fine with pessimistically biased performance
estimates obtained by evaluating its counterpart built on a smaller training set. As we will
see, some sufficiently refined evaluation procedure can actually reduce the bias to a negligi-
ble level.
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Table 7.3 Predicted class vector generation for the
repeated hold-out procedure.

Predicted True

For all x ∈ Q1 h1(x) c(x)
For all x ∈ Q2 h2(x) c(x)

… … …
For all x ∈ Qn hn(x) c(x)

7.3.3 Hold-out

The hold-out evaluation procedure is the most straightforward way of separating training and
validation or test data: a subset of the available labeled dataset is selected randomly as the
training set and the remaining instances are held out for the purpose of model evaluation. This
approach is clearly prone to the bias vs. variance tradeoff as mentioned above: with sufficiently
many instances left for low-variance evaluation there may be too little training instances to
ensure adequate model quality and one may end up with a considerable pessimistic bias result-
ing from quite reliable performance estimates of a quite poor model. It is common to partition
the data in a 2 ∶ 1 proportion (i.e., 2∕3 for training and 1∕3 for evaluation), which may be
hoped to keep both the bias and variance within reasonable bounds, but usually the risk of
high bias and high variance remains substantial. The risk is limited when a plentiful of data
is available. In particular, for very large datasets one may be forced to use a small sample
as the training set anyway because of computational constraints. This is where the hold-out
procedure can be safely applied.

Regardless of the dataset size, it is always a good idea to repeat the hold-out proce-
dure a number of times, with different training sets T1,T2, … ,Tn and validation or test sets
Q1,Q2, … ,Qn drawn at random. This is likely to reduce the variance substantially and per-
mit using smaller validation or test subsets to reduce the bias as well. Instead of averaging the
results of multiple hold-out runs, which is typically recommended, it may be more convenient
to create extended vectors of predicted and true class labels for performance measure calcu-
lation, containing the predictions for all randomly drawn test or validation subsets generated
by models created on the corresponding training subsets, along with their true class labels, as
illustrated in Table 7.3. Such a pair of vectors with predicted and true class labels can be used
to calculate whatever performance measures are of interest in a given application.

As noted above, it makes sense to think about evaluation procedures as providing perfor-
mance estimates not for individual models, but rather for modeling procedures. This applies
in particular to the hold-out procedure, for which the performance estimates obtained for the
model built on the subset of training instances can be considered as assessing the quality of
the modeling procedure that created the model. The same procedure can be reapplied to the
whole available dataset to hopefully create a better model.

Example 7.3.1 Note that all the examples of performance measures presented above used the
hold-out procedure, by randomly dividing the Soybean dataset into training and test subsets.
By repeating the random partitioning used for these examples several times and recalculating
the performance measures we would likely observe considerably different results, due to the
high variance of this evaluation procedure. The following R code implements an automated
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hold-out procedure that repeats the random dataset partitioning, model building, and predic-
tion several times, and collects the observed predicted and true class labels. When provided
with a probabilistic prediction function, it can return predicted class probabilities instead of
labels (this requires setting prob=TRUE to prevent converting predictions to a factor). Note,
by the way, that it would also handle numeric predictions correctly, if applied to evaluating
a regression model. This is also true for other evaluation procedure implementations pre-
sented in subsequent examples, which makes them reusable for regression model evaluation
examples in Chapter 10.

The holdout function is applied to perform 10-times repeated hold-out evaluation of
decision tree models for the two-class version of the Soybean dataset (2∕3 of which is used
for training with the remaining 1∕3 used for testing), using both discrete and probabilistic
predictions. In the former case the error and confusion-matrix are calculated, and in the latter
case the ROC curve is plotted and the area under the curve calculated. The plot is presented
in Figure 7.6.

holdout <- function(alg, formula, data, args=NULL, predf=predict, prob=FALSE,
p=0.33, n=1)

{
yn <- as.character(formula)[2] # class column name
ylabs <- levels(data[[yn]]) # class labels
pred.y <- NULL # predictions
true.y <- NULL # true class labels

for (t in 1:n)
{
r <- runif(nrow(data))
train <- data[r>=p,]
test <- data[r<p,]
model <- do.call(alg, c(list(formula, train), args))
pred.y <- c(pred.y, predf(model, test))
true.y <- c(true.y, test[[yn]])

}

if (!is.null(ylabs))
{
if (!prob)
pred.y <- factor(pred.y, levels=1:length(ylabs), labels=ylabs)

true.y <- factor(true.y, levels=1:length(ylabs), labels=ylabs)
}

return(data.frame(pred=pred.y, true=true.y))
}

# hold-out evaluation of discrete predictions
s01ho <- holdout(rpart, Class̃., Soybean01,

predf=function(...) predict(..., type="c"), n=10)
err(s01ho$pred, s01ho$true)
confmat(s01ho$pred, s01ho$true)

# hold-out evaluation of probabilistic predictions
s01hop <- holdout(rpart, Class̃., Soybean01,

predf=function(...) predict(..., type="p")[,2], prob=TRUE, n=10)
s01hop.roc <- roc(s01hop$pred, s01hop$true)
plot(s01hop.roc$fpr, s01hop.roc$tpr, type="l", xlab="FP rate", ylab="TP rate")
auc(s01hop.roc)
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Figure 7.6 The ROC curve for the two-class Soybean decision tree model obtained using
hold-out evaluation.

The ROC curve, which now contains several times more points, is considerably smoother
than the one presented in Example 7.2.11, based on a single (manual) execution of the hold-out
procedure.

7.3.4 Cross-validation

A more refined evaluation procedure that handles the bias vs. variance tradeoff better is k-fold
cross-validation. It splits the available dataset at random into k disjoint subsets of (roughly)
the same size D1,D2, … ,Dk and then iterates over these subsets. On the ith iteration a
model is built using Ti =

⋃
j≠iDj as the training set, and applied to generate predictions on

Qi = Di. Once all k iterations are completed, a predicted class label (or score, for a scoring
model) has been generated for each instances in the dataset, using the model built without
this instance in the training set. This is schematically illustrated in Table 7.4. The resulting
vector of predictions can be compared to the true class labels using one or more selected
performance measures.

A single iteration of k-fold cross-validation is equivalent to the hold-out procedure, with
k−1

k
of data selected for training and 1

k
of data selected for evaluation. For sufficiently large

k, this does not reduce the training set size to an extent that would be likely to severely
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Table 7.4 Predicted class vector generation for
k-fold cross-validation.

Predicted True

For all x ∈ D1 h1(x) c(x)
For all x ∈ D2 h2(x) c(x)

… … …
For all x ∈ Dk hk(x) c(x)

impact model quality, since the validation set is small. This does not substantially increase the
variance of performance estimates because in k iterations all available instances are used for
model evaluation. In a sense, the k-fold cross-validation procedure effectively virtualizes the
training and validation or test sets. All available instances can be used for both model creation
and evaluation, albeit not simultaneously. This resembles the hold-out procedure repeated k
times, but with one important difference: all the validation sets from consecutive iterations are
disjoint and together cover the whole available dataset.

The proper choice of k involves a couple of tradeoffs. One is the bias vs. variance tradeoff
discussed above. A sufficiently large k is needed to make sure that the evaluation process is not
pessimistically biased due to using insufficient training sets. A large value of k is often likely
to yield higher evaluation variance, though. It is also associated with considerably increased
computational cost. Values between 3 and 20 are usually selected in practice, with 5 and 10
being particularly popular.

Similar to the hold-out procedure, k-fold cross-validation can be repeated a number of
times for reduced variance, as long as the available computational power permits. With n
repetitions, the resulting procedure is called the n × k-fold cross-validation. Assuming a fixed
number of model training cycles available for the evaluation procedure, it may be often a better
idea to allocate them into n > 1 repetitions of the k-fold cross-validation with a smaller k than
using a single run with a correspondingly larger k. In particular, 4 × 5-fold cross-validation
may be preferred to 20-fold cross-validation, and 5 × 10-fold cross-validation will likely yield
more reliable performance estimates than 50-fold cross-validation because they may have
substantially less variance without a substantially higher bias.

Example 7.3.2 The following R code defines a function for performing k-fold cross-validation.
The function is applied to evaluate discrete predictions of decision tree models for the
two-class version of the Soybean dataset with a few different k values. Then, with k = 10, it
is applied again in the probabilistic prediction case to produce the ROC curve and calculate
the area under the curve. The plot is presented in Figure 7.7.

crossval <- function(alg, formula, data, args=NULL, predf=predict, prob=FALSE,
k=10, n=1)

{
yn <- as.character(formula)[2] # class column name
ylabs <- levels(data[[yn]]) # class labels
pred.y <- NULL # predictions
true.y <- NULL # true class labels

for (t in 1:n)
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{
ind <- sample(k, size=nrow(data), replace=TRUE) # index of k random subsets
for (i in 1:k)
{
train <- data[ind!=i,]
test <- data[ind==i,]
model <- do.call(alg, c(list(formula, train), args))
pred.y <- c(pred.y, predf(model, test))
true.y <- c(true.y, test[[yn]])

}
}

if (!is.null(ylabs))
{
if (!prob)
pred.y <- factor(pred.y, levels=1:length(ylabs), labels=ylabs)

true.y <- factor(true.y, levels=1:length(ylabs), labels=ylabs)
}

return(data.frame(pred=pred.y, true=true.y))
}

# 3-fold cross-validation for discrete predictions
s01cv3 <- crossval(rpart, Class̃., Soybean01,

predf=function(...) predict(..., type="c"), k=3)
err(s01cv3$pred, s01cv3$true)
confmat(s01cv3$pred, s01cv3$true)

# 10-fold cross-validation for discrete predictions
s01cv10 <- crossval(rpart, Class̃., Soybean01,

predf=function(...) predict(..., type="c"), k=10)
err(s01cv10$pred, s01cv10$true)
confmat(s01cv10$pred, s01cv10$true)

# 20-fold cross-validation for discrete predictions
s01cv20 <- crossval(rpart, Class̃., Soybean01,

predf=function(...) predict(..., type="c"), k=20)
err(s01cv20$pred, s01cv20$true)
confmat(s01cv20$pred, s01cv20$true)

# 4x5-fold cross-validation for discrete predictions
s01cv4x5 <- crossval(rpart, Class̃., Soybean01,

predf=function(...) predict(..., type="c"), k=5, n=4)
err(s01cv20$pred, s01cv4x5$true)
confmat(s01cv4x5$pred, s01cv4x5$true)

# 10-fold cross-validation for probabilistic predictions
s01cv10p <- crossval(rpart, Class̃., Soybean01,

predf=function(...) predict(..., type="p")[,2], prob=TRUE, k=10)
s01cv10p.roc <- roc(s01cv10p$pred, s01cv10p$true)
plot(s01cv10p.roc$fpr, s01cv10p.roc$tpr, type="l", xlab="FP rate", ylab="TP rate")
auc(s01cv10p.roc)

7.3.5 Leave-one-out

The leave-one-out validation procedure takes the idea of k-fold cross-validation to the extreme,
by using the number of instances in the dataset as the value of k. The procedure iterates over all
instances, using the model built on the dataset with one instance removed to make prediction
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Figure 7.7 The ROC curve for the two-class Soybean decision tree model obtained using
k-fold cross-validation.

for this instance. This might appear an ultimate noncompromise form of cross-validation,
given the major advantage of large k discussed above; no pessimistic bias. This is not neces-
sarily the case in reality, however, since, besides the variance increase due to large k (which
cannot be reduced by multiple runs), the leave-one-out evaluation procedure has been found
to sometimes yield overoptimistic estimates. This is because, particularly for larger datasets,
all the individual models created on subsequent iterations are quite unlikely to differ consid-
erably from one another, as well as from the model that would be built using the complete
dataset – since their training sets differ just in a single instance. Nevertheless, it is a reason-
able evaluation procedure when building classification models based on small datasets, where
a single instance still matters a lot. It is hardly applicable to large datasets anyway due to the
computational expense of building as many models as instances available.

Unlike hold-out and cross-validation (for k less than the dataset size), leave-one-out leaves
no space for randomness in the evaluation process and is perfectly deterministic and repro-
ducible.

Example 7.3.3 The following R code defines a function for performing the leave-one-out
evaluation procedure that follows the same design pattern that was used to implement the
hold-out and cross-validation procedures in the preceding examples. There is no argument
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for specifying the number of repetitions this time, as it would make no sense given the full
determinism of leave-one-out model evaluation. As before, the function is applied to the
two-class version of the Soybean data, both with discrete and probabilistic predictions. The
ROC curve is plotted for the latter and presented in Figure 7.8.

leave1out <- function(alg, formula, data, args=NULL, predf=predict, prob=FALSE)
{
yn <- as.character(formula)[2] # class column name
ylabs <- levels(data[[yn]]) # class labels
pred.y <- NULL # predictions
true.y <- NULL # true class labels

for (i in 1:nrow(data))
{
train <- data[-i,]
test <- data[i,]
model <- do.call(alg, c(list(formula, train), args))
pred.y <- c(pred.y, predf(model, test))
true.y <- c(true.y, test[[yn]])

}

if (!is.null(ylabs))
{
if (!prob)
pred.y <- factor(pred.y, levels=1:length(ylabs), labels=ylabs)

true.y <- factor(true.y, levels=1:length(ylabs), labels=ylabs)
}

return(data.frame(pred=pred.y, true=true.y))
}

# leave-one-out for discrete predictions
s01l1o <- leave1out(rpart, Class̃., Soybean01,

predf=function(...) predict(..., type="c"))
err(s01l1o$pred, s01l1o$true)
confmat(s01l1o$pred, s01l1o$true)

# leave-one-out for probabilistic predictions
s01l1op <- leave1out(rpart, Class̃., Soybean01,

predf=function(...) predict(..., type="p")[,2], prob=TRUE)
s01l1op.roc <- roc(s01l1op$pred, s01l1op$true)
plot(s01l1op.roc$fpr, s01l1op.roc$tpr, type="l", xlab="FP rate", ylab="TP rate")
auc(s01l1op.roc)

Notice that, unlike those produced in the examples for the hold-out and cross-validation
procedures, the ROC curve obtained with the leave-one-out procedure is perfectly stepwise. It
can be easily verified that using the crossval function with the k=nrow(Soybean01)
argument produces nearly identical results (although not necessarily exactly the same due to
its nondeterminism).

7.3.6 Bootstrapping

Bootstrapping is a family of general purpose estimation techniques that are based on drawing
multiple bootstrap samples at random with replacement, typically of the same size as the
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Figure 7.8 The ROC curve for the two-class Soybean decision tree model obtained using
leave-one-out evaluation.

original dataset. Each bootstrap sample therefore represents its perturbed version with some
instances replicated and some instances removed. For a dataset of size N, the probability of a
single instance not being selected to a bootstrap sample of the same size is(

1 − 1
N

)N
≈ 0.368 (7.25)

and accordingly the probability of a single instance being selected at least once is

1 −
(

1 − 1
N

)N
≈ 0.632 (7.26)

The approximation holds for sufficiently large N. A bootstrap sample can therefore be
expected to contain about 63.2% of instances from the original dataset, some replicated.
The missing instances, standing for about 36.8% of the dataset, are referred to as out-of-bag
(OOB) instances. The idea of bootstrapping as en evaluation procedure is to use a bootstrap
sample as the training set and to evaluate the resulting model on the out-of-bag instances.

The bootstrapping procedure, similar to the other procedures discussed above, faces the
challenge of reducing the bias and variance, but – unlike for the other procedures – there is
no real tradeoff between these two goals, since the bias and variance of bootstrapping are
controlled independently. To reduce the variance, a sufficient number of independent bootstrap
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samples and corresponding OOB sets are needed. Numbers ranging from several dozens to
several hundreds are most typical. A model is trained for each bootstrap sample and evaluated
on the corresponding OOB set. This may provide low-variance performance estimators, but
one can expect a high negative bias resulting from the fact that only about 63.2% of available
instances are used for training. One way to compensate for this bias is to produce the final
estimator as the weighted average of the (overly pessimistic) estimator obtained on OOB
instances and the corresponding (overly optimistic) estimator that can be obtained by training
and evaluating the model on the full dataset.

The most common instantiation of the above idea is known as the .632 bootstrap proce-
dure. Assuming the estimated performance indicator is the misclassification error, it can be
presented as

e.632
D = 0.632

1
M

M∑
i=1

ec,D′
i
(hi) + 0.368ec,D(h) (7.27)

where D is the available dataset from which M bootstrap samples D1,D2, … ,DM are drawn,
hi is the model built using Di as the training set, D′

i is the corresponding set of out-of-bag
instances on which the model is evaluated, and h is the model built on the full dataset D.
The resulting .632 bootstrap error estimator is the weighted average of the mean out-of-bag
error and of the training error on the whole dataset, with the weights equal 0.632 and 0.368,
respectively. This is hoped to remove the pessimistic bias resulting from bootstrap samples
containing about 63.2% of all available training instances, with 36.8% missing. This is also
likely to yield less variance that the plain bootstrap procedure with the same number of boot-
strap samples, by incorporating the predictions of the all-data model.

The .632 bootstrap estimator has been found to work quite well when evaluating clas-
sification models created by algorithms that do not heavily overfit. For models that fit the
training set to a great extent the estimator tends to be optimistically biased. It should there-
fore be avoided with models that effectively “memorize” much of the training set, such as the
nearest-neighbor model or unpruned full-depth decision trees.

Whereas typical presentations of bootstrapping model evaluation in general and of the .632
bootstrap in particular assume that they are used for error estimation, there are no substantial
obstacles preventing using the same techniques to estimate other performance measures, such
as confusion matrix-based indicators and the ROC curve. Similarly as for other evaluation
procedures, we can use bootstrapping to generate vectors of predicted class labels (or scores
for scoring classifier evaluation) and true class labels which can be used to calculate arbitrary
performance measure. This is straightforward with just one caveat: to apply the .632 bootstrap
or another similar weighting scheme, the vectors of predictions and true class labels must be
accompanied by a vector of weights, and the calculation of selected performance indicators
must incorporate these weights.

Specifically, for the .632 bootstrap we would expect the evaluation procedure to produce
a vector of predictions for all out-of-bag instances corresponding to all generated bootstrap
samples as well as for the complete dataset, a vector of corresponding true class labels, and a
vector of weights, containing a weight of 0.632∕M for each out-of-bag instance, and a weight
of 0.368 for each instance from the complete dataset. This is schematically presented, using the
same notation as in the definition of the .632 bootstrap error estimator, in Table 7.5. Such out-
put produced by the .632 bootstrap evaluation procedure can be used to calculate the weighted
error, the weighted confusion matrix, and related indicators, as well as to perform weighted
ROC analysis.
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Table 7.5 The weighting scheme for the .632 bootstrap
estimator.

Predicted True Weight

For all x ∈ D′
1 h1(x) c(x) 0.632∕M

For all x ∈ D′
2 h2(x) c(x) 0.632∕M

… … … …
For all x ∈ D′

M hM(x) c(x) 0.632∕M
For all x ∈ D h(x) c(x) 0.368

Example 7.3.4 To illustrate the bootstrapping approach to model evaluation, the following R
code defines a function that implements the bootstrap evaluation procedure. It draws a spec-
ified number of bootstrap samples from the provided dataset and uses them to build models
which it subsequently applies to generate predictions for out-of-bag instances. If the w param-
eter is set to a value less than 1, it also creates a full-data model and applies it to generate
predictions on the full dataset. These receive a weight of 1 −𝑤, whereas the former receives
a weight of 𝑤, divided by the number of bootstrap samples. For𝑤 = 0.632 this is equivalent to
the .632 bootstrap procedure. The procedure returns a data frame with predictions, true class
labels, and the corresponding weights. The function is applied to evaluate the decision tree
model for the two-class version of the Soybean data, both with discrete and probabilistic pre-
dictions, with w set to 1 (plain bootstrap, likely to be pessimistically biased) and to 0.632. A
relatively small number of 20 bootstrap samples is used. For discrete predictions, the produced
output is used to calculate the error and confusion matrix (weighted, in the .632 case), and for
probabilistic predictions – to plot the ROC curves. The plots are presented in Figure 7.9.

bootstrap <- function(alg, formula, data, args=NULL, predf=predict, prob=FALSE,
w=0.632, m=100)

{
yn <- as.character(formula)[2] # class column name
ylabs <- levels(data[[yn]]) # class labels
pred.y.w <- NULL # predictions
true.y.w <- NULL # true class labels

for (t in 1:m)
{
bag <- sample(nrow(data), size=nrow(data), replace=TRUE)
train <- data[bag,]
test <- data[-bag,]
model <- do.call(alg, c(list(formula, train), args))
pred.y.w <- c(pred.y.w, predf(model, test))
true.y.w <- c(true.y.w, test[[yn]])

}

if (w<1)
{
model <- do.call(alg, c(list(formula, data), args))
pred.y.1w <- predf(model, data)
true.y.1w <- data[[yn]]
w <- c(rep(w/m, length(pred.y.w)), rep(1-w, nrow(data)))

}
else
{
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pred.y.1w <- true.y.1w <- NULL
w <- rep(w/m, length(pred.y.w))

}

pred.y <- c(pred.y.w, pred.y.1w)
true.y <- c(true.y.w, true.y.1w)

if (!is.null(ylabs))
{
if (!prob)
pred.y <- factor(pred.y, levels=1:length(ylabs), labels=ylabs)

true.y <- factor(true.y, levels=1:length(ylabs), labels=ylabs)
}

return(data.frame(pred=pred.y, true=true.y, w=w))
}

# 20x bootstrap for discrete predictions
s01bs20 <- bootstrap(rpart, Class̃., Soybean01,

predf=function(...) predict(..., type="c"), w=1, m=20)
err(s01bs20$pred, s01bs20$true)
confmat(s01bs20$pred, s01bs20$true)

# 20x .632 bootstrap for discrete predictions
s01.632bs20 <- bootstrap(rpart, Class̃., Soybean01,

predf=function(...) predict(..., type="c"), m=20)
# weighted error

werr(s01.632bs20$pred, s01.632bs20$true, s01.632bs20$w)
# weighted confusion matrix

wconfmat(s01.632bs20$pred, s01.632bs20$true, s01.632bs20$w)

# 20x bootstrap for probabilistic predictions
s01bs20p <- bootstrap(rpart, Class̃., Soybean01,

predf=function(...) predict(..., type="p")[,2], prob=TRUE,
w=1, m=20)

s01bs20p.roc <- roc(s01bs20p$pred, s01bs20p$true)
plot(s01bs20p.roc$fpr, s01bs20p.roc$tpr, type="l", xlab="FP rate", ylab="TP rate")
auc(s01bs20p.roc)

# 20x .632 bootstrap for probabilistic predictions
s01.632bs20p <- bootstrap(rpart, Class̃., Soybean01,

predf=function(...) predict(..., type="p")[,2], prob=TRUE,
m=20)

# weighted ROC
s01.632bs20p.roc <- wroc(s01.632bs20p$pred, s01.632bs20p$true, s01.632bs20p$w)
lines(s01.632bs20p.roc$fpr, s01.632bs20p.roc$tpr, lty=2)
legend("bottomright", c("plain", ".632"), lty=1:2)
auc(s01.632bs20p.roc)

The .632 bootstrap performance estimators suggest a slightly better performance level than
the plain bootstrap ones (with 𝑤 = 1), which agrees with the expectation of the pessimistic
bias of the latter.

7.3.7 Choosing the right procedure

The choice of the right evaluation procedure for a given application usually depends on
the accepted level of the bias vs. variance tradeoff, the size of the dataset, the classification
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Figure 7.9 The ROC curve for the two-class Soybean decision tree model obtained using
bootstrap evaluation.

algorithm, and the available computational resources. Most evidence suggests that the bias
vs. variance tradeoff is best handled by the k-fold cross-validation procedure with k set to
10 or 20, particularly repeated several times. The .632 bootstrap procedure can also yield
nearly unbiased and low-variance performance estimators for classification algorithms that
are not prone to overfitting, with the possibility of making the variance arbitrarily low by
using a sufficiently large number of bootstrap samples. This ultimate variance reduction
makes it an attractive evaluation procedure for model selection. The leave-one-out procedure
should be avoided for intermediate evaluation due to its high variance possibly leading to
suboptimal decisions, except for small dataset where all other evaluation procedures would
be considerably biased. The hold-out procedure is best suited to very large datasets, for which
other evaluation procedures would be too expensive and for which considerably smaller data
samples would have to be used for model training anyway due to computational constraints.

Example 7.3.5 To illustrate the properties of the different evaluation procedures discussed
above, the following R code defines a function that implements a simple experiment to observe
their bias and variance. To simulate different possible datasets from the same domain, a ran-
dom 2∕3 subset is drawn from the provided dataset and considered a simulated “available”
dataset, with the remaining 1∕3 subset considered a simulated “new” dataset. The “new”
dataset is used to calculate an estimate of the true error of the model built on the “available”
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dataset. A number of evaluation procedures (hold-out, cross-validation, leave-one-out, and
bootstrap with different parameter settings) are then run on the “available” dataset to produce
their error estimates. This experiment is repeated number of times with all the obtained results
collected, to finally calculate the estimated bias and variance of each evaluation procedure. The
former is obtained as the mean difference between the error estimated by particular evaluation
procedures and the true error estimate obtained on the “new” dataset. The latter is obtained as
the variance of the error estimated by particular evaluation procedures on different runs.

The function is applied to observe the bias and variance of different evaluation proce-
dures when applied to evaluate decision tree models for the two-class version of the Soybean
dataset. The results are used to produce a boxplot of the error estimates produced by particular
evaluation procedures, with a red horizontal line designating the mean true error estimated on
the “new” dataset. Barplots of the bias and variance of all the evaluation procedures are also
produced. The plots presented in Figure 7.10 are based on 200 evaluation repetitions, which
takes some considerable time. The line that runs this full experiment is commented out and
another one that runs a 10-times repeated evaluation experiment is recommended instead for
a quick illustration.

eval.bias.var <- function(alg, formula, data, args=NULL, predf=predict,
perf=err, wperf=werr, p=0.66, n=100)

{
yn <- as.character(formula)[2] # class column name
performance <- data.frame()
for (i in 1:n)
{
r <- runif(nrow(data))
data.avail <- data[r<p,] # pretend this is the available dataset
data.new <- data[r>=0.7,] # pretend this a new dataset
model <- do.call(alg, c(list(formula, data.avail), args))

cv3 <- crossval(alg, formula, data.avail, args=args, predf=predf, k=3)
cv5 <- crossval(alg, formula, data.avail, args=args, predf=predf, k=5)
cv10 <- crossval(alg, formula, data.avail, args=args, predf=predf, k=10)
cv20 <- crossval(alg, formula, data.avail, args=args, predf=predf, k=20)
cv5x4 <- crossval(alg, formula, data.avail, args=args, predf=predf, k=5, n=4)
ho <- holdout(alg, formula, data.avail, args=args, predf=predf)
hox10 <- holdout(alg, formula, data.avail, args=args, predf=predf, n=10)
l1o <- leave1out(alg, formula, data.avail, args=args, predf=predf)
bs10 <- bootstrap(alg, formula, data.avail, args=args, predf=predf, w=1, m=10)
bs50 <- bootstrap(alg, formula, data.avail, args=args, predf=predf, w=1, m=50)
bs10.632 <- bootstrap(alg, formula, data.avail, args=args, predf=predf, m=10)
bs50.632 <- bootstrap(alg, formula, data.avail, args=args, predf=predf, m=50)

performance <- rbind(performance,
data.frame(perf(predf(model, data.new), data.new[[yn]]),

perf(cv3$pred, cv3$true),
perf(cv5$pred, cv5$true),
perf(cv10$pred, cv10$true),
perf(cv20$pred, cv20$true),
perf(cv5x4$pred, cv5x4$true),
perf(ho$pred, ho$true),
perf(hox10$pred, hox10$true),
perf(l1o$pred, l1o$true),
perf(bs10$pred, bs10$true),
perf(bs50$pred, bs50$true),
wperf(bs10.632$pred, bs10.632$true, bs10.632$w),
wperf(bs50.632$pred, bs50.632$true, bs50.632$w)))

}
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names(performance) <- c("true", "3-CV", "5-CV", "10-CV", "20-CV", "4x5-CV",
"HO", "10xHO", "L1O", "10-BS", "50-BS",
"10-BS.632", "50-BS.632")

bias <- apply(performance[,-1]-performance[,1], 2, mean)
variance <- apply(performance[,-1], 2, var)

list(performance=performance, bias=bias, variance=variance)
}

# the commented lines run a 200-repetition experiment, which takes a long time
#s01.ebv <- eval.bias.var(rpart, Class̃., Soybean01,
# predf=function(...) predict(..., type="c"), n=200)
# this can be used for a quick illustration

s01.ebv <- eval.bias.var(rpart, Class̃., Soybean01,
predf=function(...) predict(..., type="c"), n=10)

boxplot(s01.ebv$performance[,-1], main="Error", las=2)
lines(c(0, 13), rep(mean(s01.ebv$performance[,1]), 2))
barplot(s01.ebv$bias, main="Bias", las=2)
barplot(s01.ebv$variance, main="Variance", las=2)

Of course, an experiment with a single dataset and classification algorithm is by no means
conclusive, but at least some of these observations confirm the findings from more widespread
and thorough studies as well as theoretical investigations described in the literature. Notice
the high bias of hold-out (both single and repeated) and 3-fold cross-validation, and nearly
nonexistent bias of 20-fold cross-validation and leave-one-out. The plain bootstrap procedure
has a high pessimistic bias, as expected, but the .632 bootstrap appears to be slightly optimisti-
cally biased. With respect to variance, 4 × 5-fold cross-validation is the clear winner within
the cross-validation procedures, but easily outperformed by the .632 bootstrap, even with just
10 bootstrap samples, and single hold-out is by far the worst. The 3-fold cross-validation and
leave-one-out procedures also demonstrate high variance. The repetition reduces the vari-
ance of hold-out considerably, as expected. The 10-fold cross-validation procedure appears
to achieve a reasonable compromise between bias and variance. It is particularly noteworthy
that both a greater and less number of folds yields higher variance. The former is not surpris-
ing, but the latter may be somewhat unexpected and could be attributed to the instability of
decision tree classifiers.

7.3.8 Evaluation procedures for temporal data

While all the evaluation procedures discussed in this section, with their specific advantages
and disadvantages, remain general-purpose techniques applicable to many different instantia-
tions of the classification task, it is worthwhile to mention one specific situation where they are
more than likely to yield misleading, overoptimistic results. This is the case of temporal data,
where different instances come from different points in time, and there may be some hidden
impact of time on the target concept. Then with all procedures based on random data subset
selection some instances on which a model is evaluated will be older than some of its training
instances, possibly leading to a better observed performance. This is as if a model supposed
to predict the future has been trained on some observations from the future rather than only on
those from the past. This is totally unrealistic and does not match the actual model exploitation
conditions, where it will only be applied to instances newer than those used for training.
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Figure 7.10 The misclassification error distribution, bias, and variance for different
evaluation procedures.

For the hold-out procedure, a straightforward modification is sufficient to make it applica-
ble to temporal data. Basically, the partitioning into the training and test subsets must preserve
the temporal order of instances, with all selected for model evaluation being more recent than
those used for model creation. Technically, the data would be partitioned by cutting time rather
than at random. This is not possible for the remaining evaluation procedures.

7.4 Conclusion

The importance of model evaluation in the practice of data mining cannot be overestimated,
and the classification task is no exception. Although both the performance measures and
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evaluation procedures used to assess the quality of classification models that are conceptually
and algorithmically simple (even if sometimes computationally costly), the evaluation process
cannot be taken lightly. This is because there are several opportunities to do things a wrong
way which have to be carefully avoided. Be it intermediate evaluation for model selection or
final model evaluation, a wrong methodology is likely to bring severe practical consequences.

When choosing performance measures to look at, one has to properly understand the
requirements of the application and the intended way of using the model. When choosing
evaluation procedures, one has to consider the possible impact of evaluation bias and vari-
ance on model selection and on qualifying the final model as acceptable for the application.
Computational resources that can be allocated to model evaluation, which may be computa-
tionally demanding for large datasets, are also important. But sometimes the biggest risk is
not associated with choosing inadequate performance measures or evaluation procedures, but
with failing to rigorously keep the data used to create the model – not just in the narrow sense
of running a classification algorithm, but also in the broader sense of making whatever deci-
sions that may impact the final model (data preparation, parameter tuning, attribute selection,
etc.) – separate from the data on which the evaluation is performed. The overview of classifier
performance measures and evaluation procedures as well as the general discussion of model
evaluation caveats provided by this chapter can hopefully help avoid pitfalls and make the
right choices for the classification task at hand. Several techniques presented above are used
in the classification examples presented in Chapter 20.

7.5 Further readings

Performance measures for classification models and model evaluation procedures have been
receiving increasing attention in the data mining and machine learning literature and are usu-
ally comprehensively covered by contemporary books in these areas (e.g., Abu-Mostafa et al.
2012; Cios et al. 2007; Han et al. 2011; Hand et al. 2001; Hastie et al. 2011; Tan et al.
2013; Witten et al. 2011). Some of them go beyond technique presentation into discussing the
caveats and good practices of model creation and evaluation (e.g., Abu-Mostafa et al. 2012).
Several of them have a broader scope than this chapter, describing in particular model com-
parison and selection (e.g., Mitchell 1997; Tan et al. 2013), as well as information-theoretic
quality criteria that combine training performance and complexity (e.g., Cios et al. 2007;
Hand et al. 2001; Hastie et al. 2011). The latter include the minimum description length prin-
ciple (MDL, Grünwald 2007; Rissanen 1978), the Akaike information criterion (AIC, Akaike
1974), and the Bayesian information criterion (BIC, Schwarz 1978). A thorough overview of
these and other information-theoretic model quality and selection criteria is given by Burnham
and Anderson (2002) or Claeskens and Hjort (2008).

A comprehensive survey of several variations of the cross-validation procedure (including
hold-out as a simple special case) with discussion of their properties is given by Arlot and
Celisse (2010). The procedures actually started to be investigated and applied several decades
before (Devroye and Wagner 1979; Geisser 1975; Stone 1974), and the roots of the hold-out
procedure can be traced back to Larson (1931).

The more modern .632 bootstrap procedure was proposed by Efron (1983), based on
his earlier work on bootstrap estimation methods (Efron 1979). Its utility was investigated
and compared to that of cross-validation by several experimental studies (e.g., Bailey and
Elkan 1993; Chernick et al. 1985; Kohavi 1995). Efron and Tibshirani (1997) subsequently
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presented the more refined .632+ bootstrap procedure, which avoids the optimistic bias
exhibited by the original .632 bootstrap procedure when used with overfitting modeling
algorithms. Margineantu and Dietterich (2000) developed bootstrap evaluation procedures
that can be used to evaluate and compare classification models with respect to the mean
misclassification cost.

The false positive rate and the false negative rate are also known as the type I and type II
errors in statistics, where they were introduced by Neyman and Pearson (1933) to characterize
the properties of statistical tests. Other confusion matrix-based classifier performance measure
originated from the field of information retrieval (Van Rijsbergen 1979). Dietterich (1998)
presented an insightful overview of statistical questions related to learning and modeling tasks
and recommended statistical tests appropriate for comparing the predictive performance of
classification algorithms.

The ROC analysis originates from radar signal analysis during World War II and was then
adopted by signal detection theory (Egan 1975). It was first brought to the context of classifier
evaluation by Spackman (1989). A comprehensive overview of the ROC methodology and its
applications is given by Fawcett (2006). Its extensions to multiclass classification tasks were
discussed by Everson and Fieldsend (2005).
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8

Linear regression

8.1 Introduction

Parametric regression is the most direct instantiation of the idea of a parametric model rep-
resentation, in which the model is represented by a finite number of parameters with a fixed
functional form assumed. This is also the most frequently used approach to the regression
task, to which such a representation is particularly well suited. Parametric regression algo-
rithms can deliver successful regression models by themselves or in combination with other
techniques, including those borrowed from algorithms used for the classification task.

Linear regression is the simplest approach to the regression task based on a parametric
model representation. Despite its obvious and unquestionable linearity limitation (being capa-
ble of directly approximating linear target functions only), it deserves particular attention due
to its algorithmic and computational advantages. Interestingly, it is possible, at least to some
extent, to overcome the limitation while retaining the advantages. This chapter covers both
plain linear regression and augmented versions thereof, breaking the linearity limitation. The
presented discussion of model representation and creation techniques maintains a higher level
of generality whenever possible, presenting the particular linear representation as an instan-
tiation of the more general parametric regression approach. Linear model representation and
gradient-based parameter estimation have already appeared in Chapter 5 in the context of the
classification task, but it is here where they are thoroughly discussed.

Example 8.1.1 Demonstrating linear regression algorithms with R code examples will require
the use of DMR packages providing functions for model evaluation, attribute transformation,
and simple utilities. Parameter estimation for linear regression models will be illustrated using
the Boston Housing data, available in the mlbench package. The weatherr data will be used

dmr.datato illustrate discrete attribute processing. The packages and the datasets are
loaded by the R code presented below. The larger of those is partioned into
training and tests subsets, with the fourth column – containing a single discrete
attribute – skipped.

Data Mining Algorithms: Explained Using R, First Edition. Paweł Cichosz.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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library(dmr.regeval)
library(dmr.trans)
library(dmr.util)

data(weatherr, package="dmr.data")
data(BostonHousing, package="mlbench")

set.seed(12)
rbh <- runif(nrow(BostonHousing))
bh.train <- BostonHousing[rbh>=0.33,-4]
bh.test <- BostonHousing[rbh<0.33,-4]

Additionally a small artificial dataset will be used in several examples. It is generated by
the following R code:

set.seed(12)

# generate artificial data
lrdat <- data.frame(a1=floor(runif(400, min=1, max=5)),

a2=floor(runif(400, min=1, max=5)),
a3=floor(runif(400, min=1, max=5)),
a4=floor(runif(400, min=1, max=5)))

lrdat$f1 <- 3*lrdat$a1+4*lrdat$a2-2*lrdat$a3+2*lrdat$a4-3
lrdat$f2 <- tanh(lrdat$f1/10)
lrdat$f3 <- lrdat$a1̂2+2*lrdat$a2̂2-lrdat$a3̂2-2*lrdat$a4̂2+

2*lrdat$a1-3*lrdat$a2+2*lrdat$a3-3*lrdat$a4+1
lrdat$f4 <- 2*tanh(lrdat$a1-2*lrdat$a2+3*lrdat$a3-lrdat$a4+1)-

3*tanh(-2*lrdat$a1+3*lrdat$a2-2*lrdat$a3+lrdat$a4-1)+2

# training and test subsets
lrdat.train <- lrdat[1:200,]
lrdat.test <- lrdat[201:400,]

It generates a dataset of 300 instances described by four continuous attributes, with integer
values drawn uniformly at random from the [1, 5] interval, and four different target func-
tions all of which have known functional relationships to these attributes (with only one being
linear). This is, of course, completely unrealistic and serves the illustration purpose only. The
dataset is then partitioned into training and test subsets, to evaluate the performance of sub-
sequently created models using the simple hold-out procedure. The partitioning is based on
instance numbers, which would be normally unacceptable, but is perfectly fine with a ran-
domly generated dataset. A fixed seed of the random number generator is used to ensure the

Ex. 10.2.3
dmr.regeval

reproducibility of presented results. The mean square error (MSE), defined in
Section 10.2.3, will be used as the performance measure for these demonstra-
tions, calculated using the mse function.

8.2 Linear representation

Linear model representation is a particularly simple and popular instantiation of the more
general parametric representation family. While focusing on the former, this will also discuss
the more general case, which helps one better understand the advantages and limitations of
the linear special case.
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8.2.1 Parametric representation

A parametric regression model h ∶ X →  is described by the following formula, which spec-
ifies how to calculate its prediction for instance x ∈ X:

h(x) = F(a1(x), a2(x), … , an(x), 𝑤1, 𝑤2, … , 𝑤N) (8.1)

where a1, a2, … , an are attributes defined on the domain X, 𝑤1, 𝑤2, … , 𝑤N are model
parameters (also called weights), and F is a predetermined representation function that maps
attribute value and parameter vectors to real-valued model predictions. This can also be
written in a vector form as

h(x) = F(a(x),w) (8.2)

where a(x) denotes the vector of attribute values for instance x and w denote the param-
eter vector. A parametric model is therefore represented by a hypersurface in an (n + 1)-
dimensional space.

The essential feature of parametric representation is using a predetermined representation
function, which reduces model creation to estimating model parameters from data. Model
representations for which this property does not hold are considered nonparametric. This is
not supposed to say that they do not have parameters – since they do – but that their repre-
sentation function needs to be derived from data as well. This is the case, in particular, for
regression trees that will be presented in the next chapter.

Example 8.2.1 To illustrate the parametric representation of regression models, the R code
presented below defines a function that applies a parametric regression model to generate
predictions for a given dataset. The model is assumed to be represented by a list containing
two components, named repf and w. The former is the model’s representation function and
the latter is its parameter vector. Setting the class attribute of such an object to par enables
appropriate prediction method dispatching.

The representation function takes an attribute value vector and a parameter vector on
input and returns the resulting prediction on output. The particular representation function
repf.perf4 defined in this example can be immediately seen to match the f4 target func-
tion in the artificial dataset generated in the previous example:

F4(a(x),w) = 𝑤2n+3 tanh

(
n∑

i=1

𝑤iai(x) +𝑤n+1

)

+𝑤2n+4 tanh

(
n∑

i=1

𝑤i+n+1ai(x) +𝑤2n+2

)
+𝑤2n+5 (8.3)

where n = 4 is the number of attributes. It can therefore be referred to as the perfect
representation function for f4, which – with appropriate parameters – matches the target
function exactly. Indeed, when combined with the same parameters as actually used for target
function generation it yields the perfect model, achieving a 0 test set error. Note that the
repf.perf4 function is implemented so that it can be applied not only to single instances,
but also to complete datasets as well. This is why it uses the rowSums function instead of



Trim size: 170mm x 244mmCichosz c08.tex V3 - 11/04/2014 10:21 A.M. Page 240

240 LINEAR REGRESSION

dmr.utilthe sum function. The cmm utility function is used to multiply all columns of
the dataset by the corresponding elements of the parameter vector. Subsequent
examples will similarly define functions capable of handling both single and multiple
instances whenever possible.

## parametric regression prediction for a given model and dataset
predict.par <- function(model, data) { model$repf(data, model$w) }

# perfect representation function for f4
repf.perf4 <- function(data, w)
{
w[2*(n <- ncol(data))+3]*tanh(rowSums(cmm(data, w[1:n]))+w[n+1]) +
w[2*n+4]*tanh(rowSums(cmm(data, w[(n+2):(2*n+1)]))+w[2*n+2]) + w[2*n+5]

}

# perfect parameters for f4
w.perf4 <- c(1, -2, 3, -1, 1, -2, 3, -2, 1, -1, 2, -3, 2)
# perfect model for f4

mod.perf4 <- ‘class<-‘(list(w=w.perf4, repf=repf.perf4), "par")
# test set error

mse(predict(mod.perf4, lrdat.test[,1:4]), lrdat.test$f4)

Of course, it is completely unrealistic to assume that either the true representation func-
tion or its true parameters are known, as in this example. This assumption is only adopted to
illustrate the parametric representation of regression models.

8.2.2 Linear representation function

Linear regression is based on the following special form of a parametric model representation:

h(x) =
n∑

i=1

𝑤iai(x) +𝑤n+1 (8.4)

The formula specifies how the prediction of a linear model h is calculated for instance
x ∈ X. This implicitly assumes that attributes are continuous (so that they can be used for
arithmetics). With such a representation, h is linear with respect to both attribute values
and parameters and corresponds to a hyperplane in an (n + 1)-dimensional space. Unless
combined with some additional enhancements, linear regression models can accurately
represent only target functions that are linear with respect to attribute values.

The representation function used for linear regression is defined as a linear combination of
attribute values and model parameters, with an additional intercept parameter. It is a common
and convenient practice to avoid explicitly referring to the latter in equations related to linear
regression by assuming that there is an additional an+1 attribute defined, always taking a value
of 1, which makes it possible to rewrite the model representation formula as

h(x) =
n+1∑
i=1

𝑤iai(x) (8.5)

On several occasions, it is also convenient to adopt a vector notation. With a(x) denoting
the vector of attribute values for instance x and w denoting the parameter vector, we can present
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the linear model representation in each of the following two equivalent vector forms:

h(x) = w ⚬ a(x) (8.6)

h(x) = wT a(x) (8.7)

where ⚬ is the dot product operator and T is the matrix transpose operator. The latter assumes
that vectors are treated as one-column matrices.

Example 8.2.2 The following R code defines a linear representation function that takes an
attribute value vector and a parameter vector on input and returns a linear combination thereof
on output. To make it applicable not only to single instances, but also complete datasets,
the rowSums function is used instead of sum and the cmm function is used to multiply all

dmr.utilcolumns of the dataset by the corresponding elements of the parameter vector. This
representation function is then combined with an appropriate parameter vector
to create the perfect model for the f1 target function from the artificial dataset created in
Example 8.1.1, which was indeed generated as a linear combination of attribute values. The
perfect model can be verified to achieve a 0 mean square error.

## linear representation function
repf.linear <- function(data, w)
{ rowSums(cmm(data, w[1:(n <- ncol(data))])) + w[n+1] }

# perfect parameter vector for f1
w.perf1 <- c(3, 4, -2, 2, -3)
# perfect model for f1

mod.perf1 <- ‘class<-‘(list(w=w.perf1, repf=repf.linear), "par")
# test set error

mse(predict(mod.perf1, lrdat.test[,1:4]), lrdat.test$f1)

Representation functions that are nonlinear with respect to attribute values, but linear with
respect to model parameters, yield regression models that are still linear in a modified attribute
space. They can be presented as

h(x) =
N∑

i=1

𝑤ia
′
i(x) +𝑤N+1 (8.8)

where a′1, a
′
2, … , a′N are new modified attributes that are obtained via some nonlinear transfor-

mations of the original attributes. This approach is referred to as an enhanced representation
and will be further discussed in Section 8.6.2 as one of the possible ways of using linear
regression to approximate nonlinear target functions.

A generalized linear representation assumes that the output of a linear model is trans-
formed nonlinearly to generate predictions. A model of this form, although not intrinsically
nonlinear, is therefore capable of approximating some nonlinear target functions, as will be
further discussed in Section 8.6.1.

8.2.3 Nonlinear representation functions

Only when the representation function is nonlinear with respect to model parameters and can-
not be linearized in a straightforward way, we are faced with intrinsically nonlinear regression.
Typical nonlinear representation functions include:
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• polynomial functions,

• exponential functions,

• logarithmic functions,

• trigonometric functions,

as well as various combinations or superpositions thereof. These are beyond our interest in
this chapter.

8.3 Parameter estimation

Parameter estimation is the process of identifying model parameters based on a given training
set that are likely to yield good prediction performance. This can be viewed as an opti-
mization process in which the space of possible parameter vectors is searched for one that
optimizes an adopted performance measure. In general, several different performance mea-
sures and optimization methods could be used for this purpose. The mean square error, defined
in Section 10.2.3 as the mean squared difference between true target function values and model
predictions, is a particularly convenient performance measure to adopt. In this role, it is also
referred to as the quadratic loss. Gradient descent methods belong to the simplest approaches
to optimization that can be employed for both linear and (some) nonlinear representations.
Most of this section is focused on the combination of these two, which is simple enough to
be explained and understood with just elementary maths and illustrate with a plain-vanilla
implementation. An alternative least-squares method – similarly simple, easier to use, and
usually much more efficient (except for excessively large data), but inapplicable to nonlinear
representations – will also be discussed.

8.3.1 Mean square error minimization

The definition of the mean square error of the regression model h with respect to the target
function f on the training set T can be rewritten in a slightly modified form as follows:

ET , f (h) =
1
2

∑
x∈T

(f (x) − h(x))2 (8.9)

The modification of the original definition from Section 10.2.3 consists in replacing the 1|T|
coefficient by 1

2
, which will turn out to serve the purpose of aesthetics only. Clearly, any

model that minimizes ET , f (h) does also minimize the training set mean square error, so this
modification has no impact on the model that could be identified.

The MSE-like function defined above will serve as the objective function for minimization.
It may appear at first unreasonable to optimize the training performance, which could easily
lead to overfitting, but we actually have no choice here, since the true performance can only
be estimated when a model is already built and not during the training process. An appro-
priately selected model representation function (e.g., without too many parameters) and an
optimization technique will have to take the responsibility for overfitting prevention rather
than the objective function. An alternative approach to linear model parameter estimation that
relaxes the objective of training set error minimization to increase the resistance to overfitting
is presented in Section 16.3.
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The idea of gradient descent function minimization is to gradually modify the parameter
vector by shifting it in the direction indicated by the negated gradient of the function being
minimized with respect to the parameters. In our case, it can be written as follows:

w ∶= w + 𝛽
(
−∇wET , f (h)

)
(8.10)

where 𝛽 > 0 is a step-size parameter that controls the amount of the update performed. The
gradient ∇wET , f (h) is the vector of partial derivatives of ET , f (h) with respect to model param-
eters. The above parameter update rule can therefore be rewritten for a single parameter 𝑤i in
the following form:

𝑤i ∶= 𝑤i + 𝛽

(
−
𝜕ET , f (h)
𝜕𝑤i

)
(8.11)

Both the sign and the size of the update performed for each parameter depend on the corre-
sponding partial derivative. A positive derivative value indicates that increasing the parameter
would increase the error, and therefore the parameter should be decreased. A negative deriva-
tive value similarly leads to increasing parameter. The smaller the absolute derivative value,
which may indicate approaching a local minimum, the smaller the update.

8.3.2 Delta rule

The partial derivative of ET , f (h) with respect to 𝑤i can be calculated as follows:

𝜕ET , f (h)
𝜕𝑤i

= 1
2

∑
x∈T

2(f (x) − h(x))
(
−𝜕h(x)

𝜕𝑤i

)

=
∑
x∈T

(f (x) − h(x))
(
−𝜕h(x)

𝜕𝑤i

)
(8.12)

since the dependence of ET , f (h) on parameters is through the model representation. This
makes it clear why the 1

2
coefficient rather than 1|T| is used in the definition of ET , f (h) for

the sake of aesthetics, since it simplified with the 2 from the derivative. After substituting to
the update rule this yields

𝑤i ∶= 𝑤i + 𝛽
∑
x∈T

(f (x) − h(x))𝜕h(x)
𝜕𝑤i

(8.13)

or, in the equivalent vector form

w ∶= w + 𝛽
∑
x∈T

(f (x) − h(x))∇wh(x) (8.14)

The obtained update rule shows how to modify the parameters of a parametric regression
model based on the training set in order to decrease the mean square error. It is often convenient
to decompose these updates into contributions of single training instances, which is achieved
by simply removing the summation with respect to x ∈ T:

w ∶= w + 𝛽(f (x) − h(x))∇wh(x) (8.15)
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This final update rule shows how to modify the parameters of a parametric regression model
based on a single training instance. It is referred to as the incremental delta rule, whereas the
previous rule given by Equation 8.14, aggregating the contributions of all training instances,
will be called the batch delta rule. They can be instantiated for particular representation
functions by calculating ∇wh(x). Whenever the distinction between the batch and incremental
formulation is immaterial, we will simply speak of the delta rule.

The ∇wh(x) gradient, which is the vector of per-parameter partial derivatives 𝜕h(x)
𝜕𝑤i

, is more
than straightforward to calculate for the linear case. Clearly we have

𝜕h(x)
𝜕𝑤i

= ai(x) (8.16)

and
∇wh(x) = a(x) (8.17)

accordingly. This makes it possible to write down a specialized linear version of the delta rule
(assuming the incremental version) as follows:

w ∶= w + 𝛽(f (x) − h(x))a(x) (8.18)

The linear delta rule is also referred to as the LMS rule or the Widrow–Hoff rule. Similarly
to its general counterpart, it can be applied in either an incremental or batch mode. The former
performs the updates based on single training instances immediately after they are calculated,
whereas the latter accumulates the updates resulting from all training instances and applies
them after the complete training set has been processed. In any case, multiple iterations are
needed with an appropriately selected step-size parameter 𝛽 to approach a minimum of the
mean square error. Such iterative incremental or batch updates are performed by the gradient
descent algorithm.

Example 8.3.1 Determining the gradient of the linear representation function is implemented
and demonstrated by the R code presented below. The w argument is not actually used, since
the linear representation gradient does not depend on model parameters. It appears on the
argument list only to make the call interface of the gradient function ready for nonlinear rep-
resentations as well.

## gradient of the linear representation function
grad.linear <- function(data, w) { cbind(data, 1) }

# gradient for the first 10 instances
grad.linear(lrdat.train[1:10,1:4], rep(0, 5))

Example 8.3.2 The following R code implements the delta rule for mean square error min-
imization according to Equation 8.18. It takes vectors of true and predicted target function
values, the gradient, and the step size value as arguments, and returns the resulting model
parameter update vector. Its application to the f1 target function of the example dataset is
demonstrated, using the linear representation gradient implemented in the previous example.
The first demonstration call uses the target value predictions produced by the perfect model
from Example 8.2.2 and the corresponding parameter vector, which yields parameter updates
of 0, as expected. In the second call, the true target function values are modified to force the
delta rule to determine nonzero updates.
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## calculate parameter update based on given true and predicted values,
## gradient, and step-size using the delta rule for MSE minimization
delta.mse <- function(true.y, pred.y, gr, beta)
{ colSums(beta*rmm(gr, (true.y-pred.y))) }

# parameter updates for the perfect model for f1
delta.mse(lrdat.train$f1, predict(mod.perf1, lrdat.train[,1:4]),

grad.linear(lrdat.train[,1:4], w.perf1), 0.1)
# parameter updates for the perfect model for f1
# with modified target function values

delta.mse(lrdat.train$f1+0.1, predict(mod.perf1, lrdat.train[,1:4]),
grad.linear(lrdat.train[,1:4], w.perf1), 0.1)

8.3.3 Gradient descent

The gradient descent algorithm for training a parametric regression model performs a number
of delta rule iterations to reach a parameter vector that yields a sufficiently small training set
error. Similarly as for the delta rule, one can consider a batch or incremental version of the
algorithm.

The batch gradient descent algorithm can be formulated as presented below.

1: repeat
2: for i = 1, 2, ...,N do
3: Δ𝑤i ∶= 0;
4: end for
5: for all training instances x ∈ T do
6: for i = 1, 2, ...,N do
7: Δ𝑤i ∶= Δ𝑤i + 𝛽(f (x) − h(x)) 𝜕h(x)

𝜕𝑤i
;

8: end for
9: end for
10: for i = 1, 2, ...,N do
11: 𝑤i ∶= 𝑤i + Δ𝑤i;
12: end for
13: until stop criteria are satisfied;

In each iteration of the algorithm the entire training set is used to calculate the updates for
each parameter, which is then applied. The incremental version does not have to accumulate
the updates resulting from each instance before applying them to actually modify parameters,
so it is even simpler. The incremental gradient descent algorithm is also referred to as online
or stochastic gradient descent.

1: repeat
2: select an instance x ∈ T;
3: for i = 1, 2, ...,N do
4: 𝑤i ∶= 𝑤i + 𝛽(f (x) − h(x)) 𝜕h(x)

𝜕𝑤i
;

5: end for
6: until stop criteria are satisfied;

Both versions of the algorithm are capable of reaching a (local) minimum of the mean
square error if using a sufficiently small (or appropriately adapted) step-size value. The batch
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version, processing multiple instances at a time, may be more efficient if implemented using
optimized vector and matrix operations. The incremental version may often be more conve-
nient, however, particularly if the training set is not fixed and completely available, but consists
of continuously arriving instances, which requires continuous parameter updates. It may also
perform better computationally for very large data. It usually behaves similarly well or bet-
ter than the batch version even when working with fixed and completely available training
sets, as long as all training instances keep being selected with equal average frequency, but
in varying order. An easy way to achieve this when using a fixed training set is to perform an
internal iteration in which all training instances are processed in a randomized order, as in the
following alternative formulation of the algorithm.

1: repeat
2: for all training instances x ∈ T in randomized order do
3: for i = 1, 2, ...,N do
4: 𝑤i ∶= 𝑤i + 𝛽(f (x) − h(x)) 𝜕h(x)

𝜕𝑤i
;

5: end for
6: end for
7: until stop criteria are satisfied;

Unless some background knowledge is available that could recommend a good initial
guess of model parameters, the safest approach is to initialize them to small random numbers.
The more “obvious” initialization to 0 may be inappropriate for some nonlinear representation
functions which may then have a 0 gradient, which would clearly prevent the algorithm from
making any parameter update, but is perfectly fine for linear models.

Typical stop criteria used to terminate the gradient descent process include:

Error. Reaching a sufficiently low error level.

Duration. Completing a specified number of iterations.

No improvement. No error improvement observed during a specified number of iterations.

Example 8.3.3 The following R code contains a simple implementation of the gradient descent
algorithm for parametric regression models. The gradient.descent function receives
a formula specifying the attributes and the target function, the training dataset, the initial
parameter vector to start with, as well as the representation function and its gradient. Both of
these take an attribute value vector or a dataset and a parameter vector on input. One can also
specify the step-size value, the training mode, and the stop criterion (via an acceptable mean
square error level or a maximum number of iterations). The training mode defaults to incre-
mental (batch=FALSE), which processes training instances in randomized order. The latter,
almost always desirable behavior, can be turned off by specifying the randomize=FALSE
argument. The delta and perf arguments, defaulting to delta.mse and mse, respec-
tively, specify the functions for model parameter update and performance measure calcula-
tion. Two auxiliary functions are used to extract attribute and target function names from the
input formula, x.vars and y.var. The as.num0 function is used to convert the target

dmr.util
attribute values to a numerical representation, which makes it possible to apply
the gradient.descent function to datasets with discrete target attributes as
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long as the conversion is successful. The gradient descent algorithm is applied to estimating
the parameters of a linear model for the f1 target function of the example artificial dataset,
as well as for the real Boston Housing data. The implementations of the linear representation
function and its gradient from Examples 8.2.2 and 8.3.1, respectively, are used for this
purpose.

## perform gradient descent iterative parameter estimation
## for parametric regression models
gradient.descent <- function(formula, data, w, repf, grad, delta=delta.mse, perf=mse,

beta=0.001, batch=FALSE, randomize=!batch,
eps=0.001, niter=1000)

{
f <- y.var(formula)
attributes <- x.vars(formula, data)
aind <- names(data) %in% attributes
true.y <- as.num0(data[[f]])
model <- ‘class<-‘(list(repf=repf, w=w), "par")
iter <- 0

repeat
{
if (batch)
{
pred.y <- predict.par(model, data[,aind])
model$w <- model$w + delta(true.y, pred.y, grad(data[,aind], model$w), beta)

}
else
{
pred.y <- numeric(nrow(data))
xind <- if (randomize) sample.int(nrow(data)) else 1:nrow(data)
for (i in 1:length(xind))
{
av <- data[xind[i], aind]
pred.y[xind[i]] <- predict.par(model, av)
model$w <- model$w +

delta(true.y[xind[i]], pred.y[xind[i]], grad(av, model$w), beta)
}

}
iter <- iter+1

cat("iteration ", iter, ":\t", p <- perf(pred.y, true.y), "\n")
if (p < eps || iter >= niter)
return(list(model=model, perf=p))

}
}

# linear model for f1
gd1 <- gradient.descent(f1̃a1+a2+a3+a4, lrdat.train, w=rep(0, 5),

repf=repf.linear, grad=grad.linear, beta=0.01, eps=0.0001)

# linear model for the Boston Housing data
bh.gd <- gradient.descent(medṽ., bh.train, w=rep(0, ncol(bh.train)),

repf=repf.linear, grad=grad.linear, beta=1e-6, eps=25,
niter=5000)

# test set error
mse(predict(gd1$model, lrdat.test[,1:4]), lrdat.test$f1)
mse(predict(bh.gd$model, bh.test[,-13]), bh.test$medv)
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When applied to the small artificial data, the algorithm converges quite fast to a low error
level. In particular, the 0.0001 mean square error boundary is crossed within less than 50
iterations in most runs. The test set error is marginally above the training error, which is to be
expected, and the estimated parameters can be seen to differ from the true ones (used for data
generation) only slightly. Even better results would probably be possible with a longer training
process or more carefully fine-tuned step-size value. Setting it too large, by the way, results in
numerical explosion with model parameters falling out of bounds permitted by the arithmetic
precision. The real Boston Housing data requires a very small step-size value, which results
in slow convergence, but a reasonably good mean square error level is ultimately reached.

8.3.4 Least squares

An alternative approach to training linear regression models is also possible, using the
well-known linear algebra least-squares method. It treats the parameter estimation task as a
linear system solving task rather than an optimization task. Indeed, consider the following
equation:

a1(x)𝑤1 + a2(x)𝑤2 + · · · + an(x)𝑤n + an+1(x)𝑤n+1 = f (x) (8.19)

which simply demands that the model’s prediction agrees with the true target function value
for instance x. By writing such equations for all instances from the training set we receive a
linear system, with model parameters playing the role of unknown variables. If n + 1 < |T|,
which is natural to assume (it is in fact common to request n ≪ |T|), the system is overde-
termined and it may not have an exact solution, but a least-squares solution (i.e., such that
it minimizes the mean square error of the predictions made using the obtained parameter
vector with respect to the true target function values) can be found using a simple algebraic
procedure.

Switching to a matrix notation for compactness and convenience, the linear system under
consideration can be presented as

a(T)w = f(T) (8.20)

where a(T) is the |T| × (n + 1) attribute value matrix for the training set (with one row per
instance and one column per attribute, including the artificial an+1 attribute) and f(T) is the
target function value vector for the training set, with one value per instance. As before, w is
the model parameter vector and all vectors are treated as single-column matrices. The above
matrix equation cannot be directly solved for w because a(T) is (usually) not square. It can be
made square, however, by multiplying both sides of the equation by its transpose aT(T):

aT (T)a(T)w = aT (T)f(T) (8.21)

Now, unless the aT (T)a(T) matrix turns out to be singular, it can be inverted to achieve the
desired solution:

w =
(
aT (T)a(T)

)−1
aT (T)f(T) (8.22)

Otherwise a pseudo-inversion operation can be applied to achieve an approximate solution.
Thus, the “multiply-by-transpose” trick turns an undetermined linear system into an ordinary
linear system with the same number of unknowns and equations which can be solved in the
usual way.
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This is rather a conceptual description of the least-squares method than a directly appli-
cable algorithm, since it relies on the matrix inverse operation, which is not necessarily trivial
and involves some advanced numerical techniques to be performed accurately and efficiently.
Discussing these is beyond the scope of this chapter, though. Assuming a numerically correct
and efficient implementation, this approach would be usually preferred to the gradient descent
algorithm as more efficient (at least as long as the number of attributes, which determines
the dimensions of the matrix that has to be inverted, is not exceedingly large), more reliable
(since the optimal parameter vector is obtained directly rather than gradually approached),
and easier to use (since there is no need to adjust the step-size parameter). This is actually
the most basic form of the least-squares method, often referred to as ordinary least squares
(OLS), with other versions having been developed for some extensions of the basic linear
regression model representation.

Where the gradient descent algorithm wins is the incremental learning capability, which
may be important for some applications, where there is a stream of training instances arriving
one at a time (or a portion at a time) and the model needs to be continuously updated to
incorporate new data.

Example 8.3.4 The R code presented below implements the ordinary least-squares method
for linear model parameter estimation. It uses the x.vars and y.var functions to
extract the attribute and target function names from the supplied formula. Then it uses the

dmr.utilbuilt-in solve function to solve the linear system obtained after applying the
“multiply-by-transpose” trick, which takes care of the required matrix inversion.
The least squares method is subsequently used to estimate linear model parameters
for the f1 target function.

## estimate linear model parameters using the OLS method
ols <- function(formula, data)
{
f <- y.var(formula)
attributes <- x.vars(formula, data)
aind <- names(data) %in% attributes

amat <- cbind(as.matrix(data[,aind]), intercept=rep(1, nrow(data)))
fvec <- data[[f]]
‘class<-’(list(repf=repf.linear, w=solve(t(amat)%*%amat, t(amat)%*%fvec)), "par")

}

# linear model for f1
ols1 <- ols(f1̃a1+a2+a3+a4, lrdat.train)

# linear model for the Boston Housing data
bh.ols <- ols(medṽ., bh.train)

# test set error
mse(predict(ols1, lrdat.test[,1:4]), lrdat.test$f1)
mse(predict(bh.ols, bh.test[,-13]), bh.test$medv)

The least-squares method is lightning fast compared to the gradient descent algorithm
demonstrated in the previous example. This is, in part, due to implementational reasons (the
gradient.descent function was entirely implemented in R, whereas the most computa-
tionally expensive matrix inverse operation of the OLS method is actually performed by an



Trim size: 170mm x 244mmCichosz c08.tex V3 - 11/04/2014 10:21 A.M. Page 250

250 LINEAR REGRESSION

efficiently implemented R’s built-in function), but the latter is inherently more efficient any-
way as long as the dimension of the matrix to inverse – i.e., the number of attributes – remains
within reasonable limits. For the artificial data the estimated parameters match the true ones
exactly, which makes the test set mean square error practically 0. For the real Boston Hous-
ing data the mean square error level is somewhat less than the one previously achieved with
gradient descent.

8.4 Discrete attributes

Unlike for the classification task and many classification algorithms, where it is often con-
venient to assume that attributes are mostly discrete and it is nearly always necessary to
assume that some attributes may be discrete, it is not untypical for regression algorithms to
implicitly assume that attributes are continuous. In particular, parametric regression is usu-
ally presented with this assumption. Whereas the representation function mapping attribute
value and parameter vectors into model predictions can, in general, handle arbitrary attributes,
the linear representation function can be directly applied to continuous attributes only. This
is also the case for nearly all nonlinear parametric representations that are in common use,
which employ representation functions defined via arithmetic operations on attribute values.

To make the linear representation function and other arithmetic representation functions
applicable to discrete attributes, the latter can be transformed by the simple binary encod-
ing transformation described in Section 17.3.5. For the linear representation, after a k-valued
discrete attribute ai ∶ X → {𝑣i,1, 𝑣i,2, … , 𝑣i,k} has been replaced by k − 1 binary attributes,
its contribution to the representation function is

ai,1(x)𝑤i,1 + ai,2(x)𝑤i,2 + · · · + ai,k−1(x)𝑤i,k−1 =
k−1∑
j=1

ai, j(x)𝑤i, j (8.23)

where

ai, j(x) =

{
1 if ai(x) = 𝑣i, j

0 otherwise
(8.24)

for j = 1, 2, … , k − 1. In practice, any set of two substantially different values can be used
for this encoding instead of {0, 1}, with {−1, 1} being the second typical choice.

The gradient descent algorithm can be directly used with discrete attributes as long as
this binary encoding is applied when calculating the representation function and its gradient.
The least-squares method requires that the encoding be applied when creating the attribute
value matrix for the training set. Other than that, both the algorithms can operate without
modifications.

Example 8.4.1 The R code presented below defines a wrapper that takes a representation
function on input and returns its version equipped with the discrete attribute handling capa-
bility. This is achieved by applying the discode encoding function that leaves continuous

Ex. 17.3.5
dmr.trans

attribute values unchanged, but replaces discrete attribute values with appropriate
binary sequences, as discussed above. An analogous wrapper is also defined for
the representation function gradient. This makes it possible to directly apply



Trim size: 170mm x 244mmCichosz c08.tex V3 - 11/04/2014 10:21 A.M. Page 251

ADVANTAGES OF LINEAR MODELS 251

the gradient descent algorithm to estimate linear model parameters for data with discrete
attributes. Discrete attribute-enabled implementation of the least-squares regression algorithm
is also presented that apply the same encoding to the training set when creating the attribute
value matrix. Then the two algorithms are applied to estimate linear model parameters for the
weatherr data. For the gradient descent algorithm, the last (intercept) parameter is initialized
to 1 rather than to 0, which appears to be reasonable given the fact that all target function
values are positive numbers below 1. Note that there are six linear model parameters: two for
the originally continuous attributes temperature and humidity, two for the transformed
outlook attribute (which has originally three discrete values), and one for the transformed
windy attribute (which has originally two discrete values).

## representation function wrapper to handle discrete attributes
repf.disc <- function(repf)
{ function(data, w) { repf(discode(̃., data, b=c(-1,1)), w) } }

## representation function gradient wrapper to handle discrete attributes
grad.disc <- function(grad)
{ function(data, w) { grad(discode(̃., data, b=c(-1,1)), w) } }

## estimate linear model parameters using the OLS method
## with discrete attributes
ols.disc <- function(formula, data)
{
f <- y.var(formula)
attributes <- x.vars(formula, data)
aind <- names(data) %in% attributes

amat <- cbind(as.matrix(discode(̃., data[,aind], b=c(-1,1))),
intercept=rep(1, nrow(data)))

fvec <- data[[f]]
‘class<-‘(list(repf=repf.disc(repf.linear),

w=solve(t(amat)%*%amat, t(amat)%*%fvec)), "par")
}

# gradient descent for the weatherr data
w.gdl <- gradient.descent(playabilitỹ., weatherr, w=c(rep(0, 5), 1),

repf=repf.disc(repf.linear), grad=grad.disc(grad.linear),
beta=0.0001, eps=0.005)

mse(weatherr$playability, predict(w.gdl$model, weatherr[,1:4]))

# OLS for the weatherr data
w.ols <- ols.disc(playabilitỹ., weatherr)
mse(predict(w.ols, weatherr[,1:4]), weatherr$playability)

Both the algorithms work with a discrete attribute as expected. Not surprisingly, the
least-squares algorithm beats gradient descent both with respect to speed and model accuracy.

8.5 Advantages of linear models

There is only one disadvantage of linear models, which is both very obvious and very severe:
they cannot directly represent nonlinear relationships and hence approximate nonlinear target
functions. Before discussing whether and how this major limitation could be overcome, it is
worthwhile to consider the advantages of linear models that justify that effort.
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One advantage that may sometimes be important is the computational efficiency of
creating and using linear models. The linear representation function is inexpensive to
calculate, and even more so is its derivative, which makes the cost of both prediction and
gradient descent training relatively small. Moreover, the least-squares method makes it
possible to calculate the optimal parameter vector directly, which may often take less time
than required by the gradient descent algorithm to converge. However, with the increasing
computational power available, this advantage tends to become less important.

What remains more unquestionable is the benefits resulting from the shape of the mean
square error function, which – under a linear representation – is quadratic with respect
to model parameters. This makes the optimization process easy and free of misleading
local optima at which the gradient descent algorithm could get stuck with a nonlinear
representation. Linear models are therefore not only more efficient to create and use, but also
much more easy to fit accurately to the data, as long as the relationship between the target
function and attributes is indeed linear.

Last but not least, the representation simplicity makes linear models much easier to under-
stand, explain, and verify than most nonlinear parametric models. The parameter correspond-
ing to each attribute directly reflects its contribution to the model’s predictions.

All this justifies the interest that linear regression receives and the efforts made toward
enhancing its capabilities toward modeling nonlinear relationships.

8.6 Beyond linearity

To retain the advantages of linear models while overcoming the linearity limitation one should
seek for regression models that use the same representation and parameter estimation algo-
rithms as linear models internally, but are wrapped with some add-on techniques that make it
possible to represent nonlinear relationships. One natural way to achieve this is to transform
the output of a plain linear model nonlinearly, i.e., adopting a generalized linear representa-
tion. This form of introducing nonlinearity may often be insufficient, though. In such cases two
other strategies can be employed, enhanced representation and piecewise-linear regression.

8.6.1 Generalized linear representation

A generalized linear representation assumes that there is a nonlinear link function that trans-
forms the linear combination of attribute values and model parameters into the final model
prediction. This is written as

h(x) = L−1

(
n∑

i=1

𝑤iai(x) +𝑤n+1

)
= L−1(g(x)) (8.25)

The resulting representation function is a composite of the linear representation function (as
the inner function):

g(x) =
n∑

i=1

𝑤iai(x) +𝑤n+1 = w ⚬ a(x) (8.26)

and the nonlinear inverse link function L−1 (as the outer function). The link function applied
to model predictions makes them linear:

L(h(x)) = w ⚬ a(x) (8.27)
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It is noteworthy that the linear threshold and logit representations for linear classification
presented in Sections 5.2.3 and 5.2.4 are instantiations of the generalized linear representation.

Using a generalized linear representation is one of the features of generalized linear
models, which also include other important enhancements over plain linear models. In particu-
lar, they can incorporate a specified target function probability distribution and a performance
measure to be optimized. For some specific instantiations, dedicated parameter estimation
algorithms have been developed. All these issues are beyond the scope of this chapter.

8.6.1.1 Delta rule for generalized linear representation

The delta rule for the generalized linear representation with a differentiable link function can
be directly derived from Equation 8.15 by calculating the gradient

∇wh(x) = (L−1)′(w ⚬ a(x))a(x) (8.28)

where (L−1)′ is the derivative of the inverse link function. This yields the following model
parameter update:

w ∶= w + 𝛽(f (x) − h(x))(L−1)′(w ⚬ a(x))a(x) (8.29)

which makes it possible to apply the gradient descent descent algorithm.

Example 8.6.1 The following R code defines the repf.gen and grad.gen functions that
create the generalized linear representation function and its gradient for a given link function.
These are wrappers around repf.linear and grad.linear (although another inner
representation function and gradient can be specified). The inverse link function has to be
supplied as an argument to repf.gen and its derivative as an argument to grad.gen.
Such a pair of functions are then defined to exactly match the f2 target function, which
cannot be expected in practice for unknown target functions, but serves well the illustration
purpose. This makes it possible to estimate generalized linear model parameters for f2 using
the gradient descent algorithm.

## generalized representation function
repf.gen <- function(link.inv, repf=repf.linear)
{ function(data, w) { link.inv(repf(data, w)) } }

## generalized representation function gradient
grad.gen <- function(link.inv.deriv, repf=repf.linear, grad=grad.linear)
{ function(data, w) { rmm(grad(data, w), link.inv.deriv(repf(data, w))) } }

# perfect inverse link function for f2
link2.inv <- function(v) { tanh(v/10) }
# and its derivative

link2.inv.deriv <- function(v) { (1-tanh(v/10)̂2)/10 }

# perfect generalized linear representation function for f2
repf.gen2 <- repf.gen(link2.inv)
# and its gradient

grad.gen2 <- grad.gen(link2.inv.deriv)

# gradient descent estimation of generalized linear model parameters for f2
gd2g <- gradient.descent(f2̃a1+a2+a3+a4, lrdat.train, w=rep(0, 5),

repf=repf.gen2, grad=grad.gen2,
beta=0.5, eps=0.0001)

# test set error
mse(predict(gd2g$model, lrdat.test[,1:4]), lrdat.test$f2)
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The gradient descent algorithms works as expected, arriving at a low error. Interestingly,
unlike in the plain linear case, a large step-size value can be used without running at numerical
explosion problems. This is a consequence of the particular link function, with values bound
to the (−1, 1) interval.

8.6.1.2 Least squares for generalized linear representation

Unfortunately there is no simple modification of the OLS algorithm that would be it applicable
to estimating generalized linear representation parameters, because there is no closed-form
solution of the mean square error minimization problem for arbitrary nonlinear link func-
tions. A naïve approach that may give reasonable results could be applying the link function
to the target values in the dataset and minimizing the mean square error of the linear inner
representation function with respect to such transformed target values:

1|T| ∑
x∈T

(L(f (x)) − g(x))2 (8.30)

Clearly the resulting parameter vector is not guaranteed to minimize the mean square error
of h with respect to f in general. It may still be quite good, however, particularly if the link
function is monotonic.

Example 8.6.2 The naïve application of the ordinary least-squares method to parameter esti-
mation for a generalized linear representation is implemented and demonstrated by the fol-
lowing R code. The specified link function – matching the f2 target function – is internally
used to transform true target function values. The corresponding inverse link function from
the previous example is used for prediction.

## a naive application of OLS to a generalized linear representation
ols.gen <- function(formula, data, link=function(v) v, link.inv=function(v) v)
{
f <- y.var(formula)
attributes <- x.vars(formula, data)
aind <- names(data) %in% attributes

amat <- cbind(as.matrix(data[,aind]), intercept=rep(1, nrow(data)))
fvec <- link(data[[f]])
‘class<-‘(list(repf=repf.gen(link.inv), w=solve(t(amat)%*%amat, t(amat)%*%fvec)),

"par")
}

# perfect link function for f2
link2 <- function(v) { 10*atanh(v) }

# estimate of generalized linear model parameters for f2
ols2g <- ols.gen(f2̃a1+a2+a3+a4, lrdat.train, link=link2, link.inv=link2.inv)

# test set error
mse(predict(ols2g, lrdat.test[,1:4]), lrdat.test$f2)

Since the link function applied in this illustration matches the target function perfectly
(which is completely unrealistic), a parameter vector is found that achieves a near-zero mean
square error of the inner linear representation function with respect to the transformed target
function. It should therefore be not surprising that the mean square error of the inversely
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transformed model predictions with respect to the target function is near-zero as well. Unfor-
tunately such successful performance cannot be expected in practice.

8.6.2 Enhanced representation

The idea of enhanced representation is to replace the original attributes a1, a2, … , an defined
on the domain by new attributes a′1, a

′
2, … , a′N related to them nonlinearly. More exactly,

these new enhanced attributes are defined by nonlinear functions of single or multiple origi-
nal attributes, and typically (but not necessarily) N ≫ n. The nonlinear relationship between
the target function and the original attributes is expected to become linear in the enhanced
representation.

Once the transformation that generates new attribute values has been determined, no
changes to parameter estimation algorithms are required. They can operate in the usual way,
just using the enhanced set of attributes. The definitions of enhanced attributes have to be
retained with the model, since new data has to be transformed to the same representation
before the model is applied for prediction.

There are many possible approaches to defining an enhanced representation, some
of which yield sophisticated and powerful regression algorithms. Sometimes sufficient
background knowledge may be available about the domain and the target function to directly
suggest appropriate enhanced attribute definitions. Otherwise one of the general-purpose
enhanced representations can be employed, such as

• randomized representation, in which enhanced attributes are defined using nonlinear
random transformations,

• tile coding, which is based on a series of grids partitioning the domain into overlapping
boxes,

• kernel methods, using an implicit nonlinear transformation based on attribute vector dot
products.

Of those, the last approach is the most interesting and widely used, and will be presented in
Chapter 16.

Example 8.6.3 To illustrate the basic idea of enhanced representation, the following R code
defines a general enhanced representation function and its gradient, which can be used to
apply an enhancement transformation performed by a function specified as the enhance
argument to an arbitrary base representation function specified by the repf argument and
its gradient specified by the grad argument. An enhanced representation function and its
gradient are sufficient to use the gradient descent algorithm, which requires no changes by
itself. The least squares method needs a slightly modified implementation, provided by the
ols.enh function, that applies the enhancement internally when creating the attribute value
matrix. Then a representation enhancement function is defined that implicitly creates a new
set of attributes, consisting of both the original four attributes and their squares. This quite
trivial enhanced representation can be immediately seen to match the f3 target function and
can therefore be considered the perfect enhanced representation for this target function. This
is what could be hardly possible in practice with an unknown target function. Linear model
parameters for the f3 target function with this enhanced representation are then estimated
using both the gradient descent algorithm and the least-squares method.
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## enhanced representation function
repf.enh <- function(enhance, repf=repf.linear)
{ function(data, w) { repf(enhance(data), w) } }

## enhanced representation function gradient
grad.enh <- function(enhance, grad=grad.linear)
{ function(data, w) { grad(enhance(data), w) } }

## estimate linear model parameters using the OLS method
## with enhanced representation
ols.enh <- function(formula, data, enhance=function(data) data)
{
f <- y.var(formula)
attributes <- x.vars(formula, data)
aind <- names(data) %in% attributes

amat <- cbind(as.matrix(enhance(data[,aind])), intercept=rep(1, nrow(data)))
fvec <- data[[f]]
‘class<-‘(list(repf=repf.enh(enhance), w=solve(t(amat)%*%amat, t(amat)%*%fvec)),

"par")
}

# perfect representation enhancement for f3
enhance3 <- function(data) { cbind(data, sq=datâ2) }

# gradient descent estimation for f3
gd3e <- gradient.descent(f3̃a1+a2+a3+a4, lrdat.train, w=rep(0, 9),

repf=repf.enh(enhance3), grad=grad.enh(enhance3),
beta=0.001, eps=0.005)

# test set error
mse(predict(gd3e$model, lrdat.test[,1:4]), lrdat.test$f3)

# ols estimation for f3
ols3e <- ols.enh(f3̃a1+a2+a3+a4, lrdat.train, enhance3)

# test set error
mse(predict(ols3e, lrdat.test[,1:4]), lrdat.test$f3)

The gradient descent algorithm turns out to perform noticeably worse in the enhanced
representation than observed before in the original four-attribute representation for the f1
target function, which was indeed linear. Additional attributes not only increase the computa-
tional time, but also appear to make the optimization task more complex, a smaller step-size
value has to be used, and several hundred iterations are required to reach a rather unimpres-
sive error level of 0.01. Still, the algorithm does work and a longer training process would
likely lead to a better estimated parameter vector. The OLS method remains lightning fast
and accurate.

8.6.3 Polynomial regression

A popular simple special case of enhanced representation is obtained if new attributes are
polynomial functions of the original attributes. The resulting representation function can be
presented as

h(x) = F(a(x), 𝑤) =
p∑

j=1

n∑
i=1

𝑤i+(j−1)naj
i(x) +𝑤pn+1 (8.31)



Trim size: 170mm x 244mmCichosz c08.tex V3 - 11/04/2014 10:21 A.M. Page 257

BEYOND LINEARITY 257

where p is the maximum degree of polynomials used. Models using such a representation are
called polynomial regression models.

Example 8.6.4 The repf.enh and grad.enh functions from the previous example can
be used to generate polynomial regression representation functions and gradients. This is
demonstrated by the following R code, which defines the enhance.poly function for poly-
nomial representation enhancement, as well as the repf.poly and grad.poly functions
calculating the polynomial representation function and its gradient. They are illustrated by
reproducing the gradient descent and OLS parameter estimation process from the previous
example.

## polynomial representation enhancement
enhance.poly <- function(data, p=2)
{ do.call(cbind, lapply(1:p, function(j) datâj)) }

## polynomial regression representation function
repf.poly <- function(p=2)
{ repf.enh(function(data) enhance.poly(data, p), repf.linear) }

## polynomial regression representation function gradient
grad.poly <- function(p=2)
{ grad.enh(function(data) enhance.poly(data, p), grad.linear) }

# gradient descent polynomial regression estimation for f3
gd3p <- gradient.descent(f3̃a1+a2+a3+a4, lrdat.train, w=rep(0, 9),

repf=repf.poly(p=2), grad=grad.poly(p=2),
beta=0.001, eps=0.005)

# test set error
mse(predict(gd3p$model, lrdat.test[,1:4]), lrdat.test$f3)

# OLS polynomial regression estimation for f3
ols3p <- ols.enh(f3̃a1+a2+a3+a4, lrdat.train, enhance.poly)

# test set error
mse(predict(ols3p, lrdat.test[,1:4]), lrdat.test$f3)

8.6.4 Piecewise-linear regression

Piecewise-linear regression is based on partitioning the domain into disjoint regions such that
the target function can be sufficiently well approximated by a linear model in each of them.
The overall regression model therefore consists of multiple linear models, each applicable in
an appropriate region, and the description of the underlying partitioning that can be applied to
appropriately select a linear model for any instance for which prediction would be requested.
These individual linear models can be created in the usual way, using subsets of the training
set consisting of instances from the corresponding regions.

There are several possible ways of decomposing the domain into regions and describing
the obtained partitioning. Not surprisingly, some of them borrow their essential ideas from
classification and clustering algorithms, which explicitly or implicitly partition the domain
into regions corresponding to different classes or clusters. Arguably the simplest approach
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is to use a clustering algorithm, such as k-means or another member of the k-centers family
presented in Chapter 12, to create a clustering model and then create separate linear regression
models for each cluster. This would be based on the hope that the relationship between the
target function and attributes, nonlinear in general, would be linear within similarity-based
clusters. More refined approaches include:

• model trees, which apply the hierarchical partitioning idea borrowed from decision trees
to the regression task,

• local regression, which can be considered an extension of nearest-neighbor regression.

The former is described separately in Section 9.8 and the latter is beyond the scope of
this book.

8.7 Conclusion

Parametric regression is the most commonly applied approach to the regression task and,
at the same time, the most common instantiation of the parametric model representation. It
is not surprising given the fact that regression models predict continuous values based on
usually also continuous attributes. It is much more likely to encounter discrete attributes in
classification tasks, and whenever all or most attributes are discrete, the parametric model
representation becomes considerably less natural and convenient.

A variety of diverse regression algorithms belong to the parametric regression family. The
purpose of this chapter was to provide a common background for them and to present more
details on those that employ a linear model representation. This helps us to understand vari-
ous practical parametric regression algorithms and makes it possible to train domain-specific
models based on custom representation functions, suggested by the available background
knowledge.

Linear regression, either in its plain form or equipped with enhancements that help it to
overcome the linearity limitation (generalized linear representation, enhanced representation,
piecewise-linear representation), is the most commonly used instantiation of parametric
regression for data mining applications. Whereas nonlinear parametric models have also
gained considerable popularity and proved successful whenever model accuracy is of extreme
importance (with neural networks being the most typical example), linear models and their
enhancements remain unbeatable whenever the computation time needed to create the model
matters or large volumes of data have to be used. This is because of the efficiency of their
parameter estimation algorithms and their robustness against local error minima. They are also
relatively easy to interpret, which may be important in some application areas where regres-
sion models have to be compared to or combined with existing background expert knowledge.

8.8 Further readings

Similar to linear classification, linear regression has its roots in both machine learning and
statistics, with the former traditionally being associated with the gradient descent approach to
parameter estimation and the latter with least squares and other more advanced methods not
covered in this chapter. This tradition distinction tends to disappear, by the way, with linear
regression algorithms usually presented in a similar way by contemporary textbooks in both
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these areas. From the large set of available machine learning and data mining books, Hand
et al. (2001) and Bishop (2007) may be particularly worthwhile to consult for a much broader
review of linear regression parameter estimation techniques and their theoretical foundations.
For an even greater scope and depth, dedicated books on regression and statistical modeling
can be referred to (e.g., Draper and Smith 1998; Freedman 2009; Glantz and Slinker 2000).
Faraway (2004, 2005) complements an extensive discussion of linear regression by R language
demonstrations.

The gradient-based delta or LMS parameter update rule for linear regression models was
presented by Widrow and Hoff (1960). Related nonlinear regression algorithms studied in the
field of neural networks (e.g., Hertz et al. 1991), such as error backpropagation for multilayer
nonlinear perceptrons, are also covered by some data mining and machine learning books
(Bishop 2007; Hand et al. 2001; Mitchell 1997; Tan et al. 2013). More refined optimization
methods that can be applied to parameter estimation, particularly in the nonlinear case,
include the Newton–Raphson, Gauss–Newton, and conjugate gradient algorithms (e.g.,
Björck 1996; Snyman 2005). Different variations of the online (stochastic) gradient descent
algorithm can be seen as instantiations of stochastic approximation, initialized by Robbins
and Monro (1951). Bottou (1998) discussed links between these related families of algorithms
and showed how the theory of stochastic approximation can be used to prove the convergence
of online gradient descent.

The ordinary least-squares method belongs to the oldest modeling algorithms still
in widespread use, with its first description published nearly 200 years ago (Legendre
1805). There are of course several contemporary reviews, covering different variations of
least-squares parameter estimation (e.g. Hansen et al. 2012; Lawson and Hanson 1987).

Generalized linear models (GLM) introduced by Nelder and Wedderburn (1972) are exten-
sively described by McCullagh and Nelder (1989). This discussion covers, in particular, a
general approach to parameter estimation and a variety of different link functions and target
distributions that yield specific GLM instantiations. Two specific types of enhanced linear
representations mentioned in this chapter, but not discussed in the book, are tile coding and
random representation. The former was proposed by Albus (1975a,b) as the CMAC func-
tion approximator (cerebellar model articulation controller) and the latter by Sutton and
Whitehead (1993), inspired by the earlier work of Kanerva (1988).
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Regression trees

9.1 Introduction

Similarly as regression is sometimes referred to as “classification with continuous classes,”
regression trees can be considered decision trees with continuous classes. Actually, the latter
is much more justified than the former, since the differences between regression trees and
decision trees are pretty minor compared to the differences between regression algorithms and
classification algorithms in general. They can be thought of as slightly different instantiations
of the same family of modeling algorithms based on hierarchical domain decomposition. They
are discussed separately in this chapter rather than in Chapter 3 to preserve the task-oriented
organization of this book and to better expose their specificity. To highlight the differences
between regression trees and decision trees, the latter will be referred to for whatever they
have in common, and this chapter will mostly focus on model representation and algorithm
modifications that are necessary for the regression task.

Example 9.1.1 A number of examples will be presented throughout this chapter illustrating
the major operations performed during regression tree with simple R code snippets. They
closely follow the pattern of decision tree examples from Chapter 3. The weatherr data will

Ex. 1.4.1
dmr.data

be used for these examples. Besides auxiliary functions from DMR packages, the
rpart package providing the standard R regression tree implementation will be
used. The following code loads the packages and the data.

library(dmr.regeval)
library(dmr.stats)
library(dmr.util)

library(rpart)

data(weatherr, package="dmr.data")

Data Mining Algorithms: Explained Using R, First Edition. Paweł Cichosz.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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9.2 Regression tree model

Similarly as decision trees, regression tree models are hierarchical structures consisting of
nodes, branches, and leaves that represent the decomposition of the domain into a number of
regions in which target function values can be trivially approximated with sufficient accuracy.
Such a tree can be used to identify the corresponding leaf for an arbitrary instance from the
domain and generate a target function prediction. It therefore represents a regression model.

9.2.1 Nodes and branches

The purpose and representation of regression tree nodes and branches is exactly the same
as for decision tree nodes and branches. Nodes correspond to domain regions that need to
be decomposed into smaller regions by splits. Branches link to descendant nodes or leaves
corresponding to particular split outcomes. The notation used to refer to splits, their outcomes,
domain regions, and data subsets corresponding to particular nodes will be exactly the same
as introduced in Section 3.2 for decision trees. Just like for the latter, the branches linking
the parent node and its descendant nodes do not always have to be explicitly represented in
the regression tree data structure. In particular, when binary splits are used, the branches can
be implicitly represented by an appropriate node numbering scheme, e.g., the descendants of
node numbered k can be numbered 2k and 2k + 1.

9.2.2 Leaves

Leaves represent domain regions where no further splits are applied, like for decision tree
leaves. Instead of discrete class labels or probability distributions, though, they contain some
information useful to generate numerical predictions. In the simplest but most common case
there are fixed target function values assigned to leaves. For a leaf l, the associated target
function value will be denoted by 𝑣l. In practice, it may also be convenient to assign target
function values to internal nodes. For a node n the associated target function value will be
denoted by 𝑣n.

9.2.3 Split types

The types of splits that can be used for regression splits are exactly the same as possible
decision tree splits, presented in Section 3.2.3. Since for many practical regression tasks
there continuous attributes only, inequality-based (or interval-based) splits are particularly
common.

9.2.4 Piecewise-constant regression

As described above, regression trees are piecewise-constant regression models – they decom-
pose the domain into a number of regions and the model’s prediction is constant in each region.
If the partitioning into regions is sufficiently dense and their boundaries are properly selected,
this representation may yield accurate predictions. A more refined piecewise-linear form of
regression trees will be discussed later.

Example 9.2.1 To illustrate the piecewise-constant regression tree model representation,
the following R code generates a simple two-attribute artificial dataset with a known
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Figure 9.1 An illustration of the piecewise-constant regression tree model representation.

pre-established target function and then creates a regression tree model based on this dataset
using the rpart package available in R. The latter is used here for the sake of illustration
only. Both the true target function and its approximation represented by the regression tree
are plotted side by side for easy comparison, as presented in Figure 9.1.

# example target function
rtf <- function(a1, a2) { sin(a1+a2)/(a1+a2) }

# artificial dataset
rtdat <- data.frame(a1=floor(runif(300, min=1, max=6)),

a2=floor(runif(300, min=1, max=6)))
rtdat$f <- rtf(rtdat$a1, rtdat$a2)

# regression tree
rtf.rp <- rpart(f̃., rtdat)
# target function predictions

rtf.p <- function(a1, a2) { predict(rtf.rp, data.frame(a1, a2)) }

# 3D plots
par(mfrow=1:2, mar=rep(0.1, 4))
a1 <- a2 <- seq(1, 5, 0.1)
# true f

persp(a1, a2, outer(a1, a2, rtf), zlab="true f", theta=30, phi=30, col="grey")
# predicted f

persp(a1, a2, outer(a1, a2, rtf.p), zlab="predicted f", theta=30, phi=30, col="grey")

9.3 Growing

The first and mandatory phase of creating regression trees is growing. The same top-down
approach known from decision tree growing is adopted, which starts from a single root node
and iteratively adds nodes as long as further splits are required.
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9.3.1 Algorithm outline

As its decision tree counterpart, the regression tree growing algorithm processes a set of open
nodes until they become closed nodes or leafs. The first and only open node is the root node
of the tree. New open nodes are added whenever an open node is converted to a closed node,
as its descendants (corresponding to all the outcomes of the selected split). No new nodes are
created when an open node is converted to a closed leaf.

1: create the root node and mark it as open;
2: assign all training instances from T to the root node;
3: while there are open nodes do
4: select an open node n;
5: calculate target function summary statistics Stats(f |n) based on Tn;
6: assign target function value vn;
7: if stop criteria are satisfied for n then
8: mark n as a closed leaf;
9: else
10: select a split t : X → Rt for n;
11: for all split outcomes r ∈ Rt do
12: create a descendant node nr corresponding to r and mark it as open;
13: assign all instances from Tn,t = r to nr;
14: end for
15: mark n as a closed node;
16: end if
17: end while

The algorithm only marginally differs from the decision tree growing algorithm, as the
most important differences are actually hidden within particular steps. These will be reviewed
below.

Example 9.3.1 This example starts a sequence of examples illustrating the major steps of
regression tree growing, which directly corresponds to Examples 3.3.1–3.3.7 for decision
trees. The following R code initializes variables used to refer to the dataset, attribute names,
and the target function name that facilitate the adaptation of subsequent examples to other
datasets.

data <- weatherr
attributes <- names(weatherr)[1:4]
target <- names(weatherr)[5]

The following R code defines theinit function for regression tree initialization. It creates
a single root node and assigns to it all training instances. When called with the data variable
set as shown above, it initializes tree growing for the weatherr data.

init <- function()
{
tree <<- data.frame(node=1, attribute=NA, value=NA, target=NA,

count=NA, mean=NA, variance=NA)
nodemap <<- rep(1, nrow(data))
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n <<- 1
}

init()

This and subsequent examples assume that a regression tree is represented by a data frame
with rows corresponding to nodes and the following columns:

node: node number (starting from 1 for the root node),

attribute: the attribute used for the split,

value: the value used for the split,

target: the assigned target function value,

count: the instance count for the node,

mean, variance: the mean and variance of target function values for the subset of
training instances associated with the node (target function summary statistics).

The assignment of instances to regression tree nodes is represented by a vector containing
the numbers of nodes to which the corresponding instances are assigned. Subsequent examples
will illustrate the major operations of the algorithm for the node indicated by the n variable,
assuming the data, attributes, and class variable assignments presented above.

9.3.2 Target function summary statistics

The purpose of this operation is to gather distribution statistics of the target function in the
subset of training instances Tn corresponding to the currently processed node n. These statis-
tics will be subsequently used for target value assignment, stop criteria verification, and split
selection. The exact set of target function statistics that need to be calculated strictly depends
on the particular stop- and split-selection criteria for which they are supposed to be used.

The most basic statistics used to describe the distribution of continuous attributes include
location and dispersion measures. These are sufficient for most practical regression tree grow-
ing algorithms. Several different location and dispersion measures could be adopted and prove
useful. It is reasonable to assume that a single location measure and a single dispersion mea-
sure of target function values for training instances associated with a particular node would
be sufficient. Unless discussing particular specific examples of such measures, these will be
referred to, for node n, as locTn

(f ) and dispTn
(f ) or shortly locn(f ) and dispn(f ), respectively.

It is most common to assume that the distribution of the target function in the current
node’s subset of training instances is described in the arguably simplest possible way, by its
mean (as a location measure) and variance (as a dispersion measure):

mn(f ) = mTn
(f ) (9.1)

s2
n(f ) = s2

Tn
(f ) (9.2)

The standard deviation can also be used instead of the variance.
It maybe sometimes reasonable, particularly if the training set is likely to contain some out-

lying values of the target function, to consider more robust location and dispersion measures
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presented in Section 2.4.1, such as the median and the median absolute deviation or the quartile
dispersion coefficient.

Example 9.3.2 The following R code defines a function that calculates the target function
mean and variance for a regression tree node. The function, which also takes care of setting
the instance count, is then applied to the root node of the previously initialized regression

Ex. 2.4.9
dmr.stats

tree for the weatherr data. A modified version of the standard var function is used
for variance calculation, called var1, that returns 0 for single-element vectors and
NaN for empty vectors.

target.summary <- function(n)
{
tree$count[tree$node==n] <<- sum(nodemap==n)
tree$mean[tree$node==n] <<- mean(data[nodemap==n,target])
tree$variance[tree$node==n] <<- var1(data[nodemap==n,target])

}

target.summary(n)

9.3.3 Target value assignment

As mentioned above and assumed in the presented algorithm outline, it makes sense to perform
the operation of target value assignment, although strictly necessary only for leaves, for all
nodes processed during the growing process. This is what a location measure of the target
function distribution in the subset of training instances associated with each node is needed
for. The value of the adopted target function location measure for node n is used as the target
value assigned to the node:

𝑣n = locn(f ) (9.3)

Clearly, this is the best possible choice for the basic piecewise-constant version of regres-
sion trees currently presented, as long as the location measure is appropriately selected to
match the performance measure that the tree is supposed to optimize in each leaf. When the
resulting tree is used for prediction, all instances that end up in the same leaf will be assigned
the same predicted target value, equal to the location measure value obtained for the training
instances associated with the leaf. It is easy to see that in the most common case, when it is
the mean square error that should be minimized for each leaf, the mean has to be used as the
location measure.

There is one obvious exceptional situation of the empty instance set that needs to be
considered. When there are no training instances that satisfy the conjunction of conditions
represented by the sequence from the root node to the current node n, we will have Tn = ∅.
This by no means guarantees that there will be no such instances when the tree is applied for
prediction. To make the regression tree a proper regression model, we have to make sure that it
will be capable of generating some reasonable predictions for such possible future instances.
A simple solution is to inherit the target value assigned to the parent node. This does not have
to be taken into account only if all available splits are binary, since a binary split yielding the
same outcome for all training instances to which it is applied would be useless and should not
be selected in the parent node anyway.
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Example 9.3.3 The following R code continues the demonstration of regression tree growing
for the weatherr data by assigning the mean target function value calculated in the previous
example to the current node as its target function value. This makes the target column
of the regression tree data frame a duplicate of the mean column. This obvious redundancy
serves the purpose of conceptual clarity only: separating target function summary statistics
from target function values assigned to particular nodes.

target.value <- function(n)
{
tree$target[tree$node==n] <<- tree$mean[tree$node==n]

}

target.value(n)

9.3.4 Stop criteria

Stop criteria are used to decide whether a given open node requires no further split and should
become a closed leaf. Some of the stop criteria presented in Section 3.3.4 for decision trees
directly apply to regression tree growing as well. This is the case for the following:

No instances left. The set of training instances assigned to the node is empty, i.e., Tn = ∅.
No splits left. There is no split that can be applied to further partition the current subset of

training instances Tn, either because all available splits have been already used up on
the path from the root to n, or every split not yet used gives a single outcome for all
instances from Tn, which would put them to the same branch.

Clearly, these are the strict (most definite) stop criteria which, when satisfied, make further
splitting totally pointless. When either of these two is satisfied, any possible descendants of
n would receive the very same target value 𝑣n and any possible subtree starting in n would
predict for any instances in exactly the same way as n alone. None of them, however, cor-
responds to a desirable situation. Particularly unwelcome is satisfying the “no splits left”
criterion, which results in creating a leaf that will reduce the training performance of the
tree, and probably its true performance as well.

The “no instances left” criterion creates a leaf that does not contribute to reducing the
training performance, as it will not be used for making predictions for any training instances,
and also it cannot be expected to be particularly useful in delivering good true performance.
This criterion may be needed only if nonbinary splits are employed, though (otherwise we
would have already stopped at the parent node due to the “no splits left” criterion). However, it
is commonly used in a relaxed form, satisfied when the number of remaining training instances
is sufficiently small.

The primary stop criterion that under normal conditions should be responsible for creating
the majority of leaves corresponds to the desirable situation of isolating a subset of training
instances Tn for which the target function can be reasonably well approximated by a single
constant number 𝑣n – the target value assigned to n. Such a criterion can be formulated as:

Sufficiently low dispersion. The target function value dispersion in the set of instances
assigned to the node is sufficiently low, i.e., dispn(f ) < dispmin, where dispmin is the
specified threshold below which no further splits are applied.
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This can be thought of as the counterpart of the uniform class decision tree stop criterion,
albeit not so definite, since requesting a uniform target function value (i.e., setting dispmin = 0)
would usually lead to heavily overgrown and probably overfitted trees.

A more technical, but sometimes useful stop criterion for regression tree growing is based
on the maximum tree depth. No further splits are performed after a sufficiently long path has
been created. In a sense, this can be thought of as a relaxed version of the “no splits left”
criterion, as it sets the limit on the number of splits used along each tree path.

Example 9.3.4 The following R code demonstrates how to check the “sufficiently low
dispersion” criterion (by comparing the target function variance against the minvar
threshold) and the (relaxed) “no instances left” criterion (by comparing the number of
instances corresponding to the node against the minsplit threshold). Additionally, the
more technical maximum tree depth criterion is checked, by comparing the node’s number to
2̂maxdepth. The three stop criteria parameters:

• minvar – the minimum target function variance required for a split,

• minsplit – the minimum number of instances required for a split,

• maxdepth – the maximum tree depth,

are specified via variables for the sake of this demonstration. All these criteria are obviously
found to be unsatisfied for the root node of the regression tree for the weatherr data.

minvar <- 0.005
minsplit <- 2
maxdepth <- 8

stop.criteria <- function(n)
{
n>=2̂maxdepth || tree$count[tree$node==n]<minsplit ||
tree$variance[tree$node==n]<minvar

}

stop.criteria(n)

9.3.5 Split selection

The stop criteria presented above are sufficient alone to assure good training performance of
regression tree models. The role of split selection is to increase the chance that their gener-
alization capabilities will be sufficient to deliver satisfactory true performance. Similarly as
with decision tree split selection, this is achieved by following Ockham’s razor principle, i.e.,
selecting splits that are likely to yield small trees.

9.3.5.1 Preference for simplicity

Tree simplicity is directly related to the average path length, i.e., the average number of splits
needed before a leaf is reached from the root node. Under the stop criteria presented above,
leafs are preferably created when a sufficiently low target function dispersion is reached.
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This makes the dispersion a natural candidate for a split evaluation measure as well – splits
that yield low dispersion descendant nodes should be preferred, since they are more likely to
permit leaf creation soon.

9.3.5.2 Split evaluation

To evaluate a candidate split t ∶ X → Rt for node n one has, similarly as for decision tree split
evaluation, consider the subsets Tn,t=r for all r ∈ Rt to which the candidate split partitions
the current set of training instances Tn, and calculate the target function dispersion for each
of them: dispTn,t=r

(f ) for r ∈ Rt. Note that, although target function summary statistics are
normally calculated for each node at the beginning of its processing, the dispersion values
used here need to be calculated separately, since the corresponding descendant nodes do not
actually exist (and will not be created unless the evaluated split is ultimately selected).

The split can be evaluated by the weighted average of the target function dispersion values
corresponding to the outcomes of split t:

dispn(f |t) = ∑
r∈Rt

|Tn,t=r||Tn| dispTn,t=r
(f ) (9.4)

The weights in this average are based on the proportions of the partitioning of the current set
of training instances into the subsets corresponding to the possible outcomes of t, i.e., subset
dispersions are weighted proportionally to subset sizes. Split selection can then be performed
by minimizing such weighted dispersion impurity measure over all available splits.

It may be convenient to use a slightly modified split evaluation function, measuring not
just the average target function dispersion obtained after the split, but rather the improvement
(decrease) of the dispersion. It is defined as the difference between the target function disper-
sion for the subset of instances corresponding to the node in which the split is to be applied
and the weighted average dispersion of the subsets corresponding to split outcomes. This can
be written as follows:

Δdispn(f |t) = dispn(f ) −
∑
r∈Rt

|Tn,t=r||Tn| dispTn,t=r
(f ) (9.5)

Maximizing the difference will clearly select exactly the same splits as minimizing the average
dispersion. Its advantage is that it not only indicates which split is the best, but also how much
improvement it gives. This may be used to define an additional stop criterion that converts a
node to a leaf when the improvement due to the best available split is too small.

Example 9.3.5 The R code presented below defines the weighted.dispersion function
that calculates the weighted dispersion of two numeric vectors, representing target values
for the true and false split outcomes, using the supplied dispersion measure. The latter

Ex. 2.4.9
dmr.stats

defaults to var1, a modified version of variance already used above. It also
optionally receives the corresponding weight vectors that can be used to weight
individual instances, if permitted by the dispersion measure (these are not used
here, but will come handy later). The application of the weighted.dispersion function
to evaluating the split based on the outlook==overcast condition is demonstrated.
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weighted.dispersion <- function(v1, v0, w1, w0, disp=var1)

{
if (missing(w1) || missing(w0))
weighted.mean(c(disp(v1), disp(v0)), c(length(v1), length(v0)))

else
weighted.mean(c(disp(v1, w1), disp(v0, w0)), c(length(v1), length(v0)))

}

# weighted dispersion of playability for outlook=overcast and outlook!=overcast
weighted.dispersion(weatherr$playability[weatherr$outlook=="overcast"],

weatherr$playability[weatherr$outlook!="overcast"])

Example 9.3.6 The following R code defines functions that perform split evaluation and split
selection for regression trees, using the weighted.dispersion function from the previ-
ous example. Equality-based splits for discrete attributes and inequality-based splits for con-
tinuous attributes are attempted as candidates. The midbrk auxiliary function for calculating

dmr.utilmiddle breaks between consecutive values is used to get thresholds for
inequality-based splits. This implementation of split selection is then demon-
strated for the root node of the regression tree for the weatherr data. It is worthwhile to
notice that the split.eval function detects useless splits that give the same outcome for
all instances and returns Inf for them to make sure they will not be selected. Its return value
is checked by the split.select function which actually makes no split selection if the
best available split is useless. This can be considered an implicit implementation of the “no
splits left” stop criterion.

split.eval <- function(av, sv, tv)
{
cond <- !is.na(av) & (if (is.numeric(av)) av<=as.numeric(sv) else av==sv)
v1 <- tv[cond]
n1 <- sum(cond)
v0 <- tv[!cond]
n0 <- sum(!cond)
if (n1>0 && n0>0)
weighted.dispersion(v1, v0)

else
Inf

}

split.select <- function(n)
{
splits <- data.frame()
for (attribute in attributes)
{
uav <- sort(unique(data[nodemap==n,attribute]))
if (length(uav)>1)
splits <- rbind(splits,

data.frame(attribute=attribute,
value=if (is.numeric(uav))

midbrk(uav)
else as.character(uav),
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stringsAsFactors=FALSE))
}

if (nrow(splits)>0)
splits$eval <- sapply(1:nrow(splits),

function(s)
split.eval(data[nodemap==n,splits$attribute[s]],

splits$value[s],
data[nodemap==n,target]))

if ((best.eval <- min(splits$eval))<Inf)
tree[tree$node==n,2:3] <<- splits[which.min(splits$eval),1:2]

best.eval
}

# variance-based split selection
split.select(n)

The only significant difference between the split.select function presented above
and the corresponding function for decision trees defined in Example 3.3.6 is the different split
evaluation function. The outlook=overcast split is found to yield the lowest weighted
target function variance and is selected for the root node.

9.3.6 Split application

The operation of split application for regression trees does not differ from its decision tree
counterpart in any way. When a split t ∶ X → Rt for a node n has been selected, new descen-
dant nodes nr are created for all r ∈ Rt, corresponding to each of its possible outcomes. These
new nodes are marked as open, to get processed in subsequent iterations of the algorithm.

The set of training instances Tn corresponding to the parent node has to be partitioned
into subsets corresponding to the newly created descendant nodes by applying the split: Tnr

=
Tn,t=r for r ∈ Rt. This completes the current iteration of the algorithm and node n can be
marked as closed.

Example 9.3.7 The following R code demonstrates how a selected split can be applied to
partition the set instances assigned to the currently processed node into subsets assigned to
two newly created descendant nodes. For the regression tree being grown for the weatherr
data this results in creating two descendants of the root node, numbered 2 and 3.

split.apply <- function(n)
{
tree <<- rbind(tree,

data.frame(node=(2*n):(2*n+1), attribute=NA, value=NA, target=NA,
count=NA, mean=NA, variance=NA))

av <- data[[tree$attribute[tree$node==n]]]
cond <- !is.na(av) & (if (is.numeric(av))

av<=as.numeric(tree$value[tree$node==n])
else av==tree$value[tree$node==n])

nodemap[nodemap==n & cond] <<- 2*n
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nodemap[nodemap==n & !cond] <<- 2*n+1
}

split.apply(n)

Except for using a slightly different tree representation, this function is the same as the
corresponding function presented in the example of decision tree split application.

9.3.7 Complete process

All operations performed during a single iteration of top-down decision tree growing have
been presented above. After a number of iterations, when there are no more open nodes left,
the growing process terminates, yielding a completely grown tree.

Example 9.3.8 The code from the previous examples which provides simple illustrative imple-
mentations of target function summary statistics calculation, target function value assignment,
split selection, and split application can be applied again to process the newly created nodes, by
passing the appropriate node number via the n argument of the corresponding functions. After
seven iterations the growing process will complete, yielding the regression tree represented
by the following data frame:

node attribute value target count mean variance
1 1 outlook overcast 0.5671429 14 0.5671429 0.015714286
2 2 <NA> <NA> 0.7225000 4 0.7225000 0.002825000
3 3 temperature 25 0.5050000 10 0.5050000 0.006738889
4 6 <NA> <NA> 0.5400000 7 0.5400000 0.003133333
5 7 outlook rainy 0.4233333 3 0.4233333 0.006633333
6 14 <NA> <NA> 0.3300000 1 0.3300000 0.000000000
7 15 <NA> <NA> 0.4700000 2 0.4700000 0.000200000

The implementations of the major regression tree growing steps presented so far can
be easily supplemented with the main loop to create a very simple and inefficient, but
easy to understand and working implementation of regression tree growing. Such an
implementation is presented below. The grow.regtree function defined by the R code
presented below organizes the iterative processing of regression tree nodes, using the init,
target.summary, target.value, stop.criteria, split.eval, split.
select, and split.apply functions from the previous examples as its internal func-
tions. Two additional utility functions, x.vars and y.var, are used to extract the attribute

dmr.utiland target function names from the input formula, to make the implemen-
tation applicable to other datasets. Apart from the formula and dataset, the
grow.regtree function receives the stop criteria parameters as its optional arguments. The
class attribute of the created regression tree object is set to regtree to enable appropriate
prediction method dispatching and a method for conversion to a data frame is provided.

## a simple regression tree growing implementation
grow.regtree <- function(formula, data, minvar=0.005, minsplit=2, maxdepth=8)
{
init <- function()



Trim size: 170mm x 244mmCichosz c09.tex V3 - 11/04/2014 10:21 A.M. Page 273

GROWING 273

{
tree <<- data.frame(node=1, attribute=NA, value=NA, target=NA,

count=NA, mean=NA, variance=NA)
nodemap <<- rep(1, nrow(data))
n <<- 1

}

next.node <- function(n)
{
if (any(opn <- tree$node>n))
min(tree$node[opn])

else Inf
}

target.summary <- function(n)
{
tree$count[tree$node==n] <<- sum(nodemap==n)
tree$mean[tree$node==n] <<- mean(data[nodemap==n,target])
tree$variance[tree$node==n] <<- var1(data[nodemap==n,target])

}

target.value <- function(n)
{
tree$target[tree$node==n] <<- tree$mean[tree$node==n]

}

stop.criteria <- function(n)
{
n>=2 ̂ maxdepth || tree$count[tree$node==n]<minsplit ||

tree$variance[tree$node==n]<minvar
}

split.eval <- function(av, sv, tv)
{
cond <- !is.na(av) & (if (is.numeric(av)) av<=as.numeric(sv) else av==sv)
v1 <- tv[cond]
n1 <- sum(cond)
v0 <- tv[!cond]
n0 <- sum(!cond)
if (n1>0 && n0>0)
weighted.dispersion(v1, v0)

else
Inf

}

split.select <- function(n)
{
splits <- data.frame()
for (attribute in attributes)
{
uav <- sort(unique(data[nodemap==n,attribute]))
if (length(uav)>1)
splits <- rbind(splits,

data.frame(attribute=attribute,
value=if (is.numeric(uav))

midbrk(uav)
else as.character(uav),

stringsAsFactors=FALSE))
}

if (nrow(splits)>0)
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splits$eval <- sapply(1:nrow(splits),
function(s)
split.eval(data[nodemap==n,splits$attribute[s]],

splits$value[s],
data[nodemap==n,target]))

if ((best.eval <- min(splits$eval))<Inf)
tree[tree$node==n,2:3] <<- splits[which.min(splits$eval),1:2]

best.eval
}

split.apply <- function(n)
{
tree <<- rbind(tree,

data.frame(node=(2*n):(2*n+1), attribute=NA, value=NA, target=NA,
count=NA, mean=NA, variance=NA))

av <- data[[tree$attribute[tree$node==n]]]
cond <- !is.na(av) & (if (is.numeric(av))

av<=as.numeric(tree$value[tree$node==n])
else av==tree$value[tree$node==n])

nodemap[nodemap==n & cond] <<- 2*n
nodemap[nodemap==n & !cond] <<- 2*n+1

}

tree <- nodemap <- n <- NULL
target <- y.var(formula)
attributes <- x.vars(formula, data)

init()
while (is.finite(n))
{
target.summary(n)
target.value(n)
if (!stop.criteria(n))
if (split.select(n)<Inf)
split.apply(n)

n <- next.node(n)
}
‘class<-‘(tree, "regtree")

}

## convert a regtree object to a data frame
as.data.frame.regtree <- function(x, row.names=NULL, optional=FALSE, ...)
{ as.data.frame(unclass(x), row.names=row.names, optional=optional) }

# grow a regression tree for the weatherr data
tree <- grow.regtree(playabilitỹ., weatherr)

# data frame conversion
as.data.frame(tree)

9.4 Pruning

Just like with decision tree pruning discussed in Section 3.4, regression tree pruning may
help prevent overfitting. It essentially retracts some growing steps by cutting off selected sub-
trees believed to be overgrown and replacing them by leaves. Whereas it might appear more
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reasonable, at least from the computational economics perspective, to rather prevent grow-
ing such subtrees – which is often referred to as pre-pruning – their predictive utility cannot
be reliably estimated before they are actually grown. This makes the two-phase growing and
pruning process the preferred approach to assuring good generalization capabilities of deci-
sion trees, unless computational time constraints make it impractical.

Of the following major components of regression tree pruning algorithms, it is only the
middle one that has to be regression-specific, with the possible choices for theremaining ones
the same as for decision trees.:

Pruning operators. Which determine how the operation of cutting off nodes from the tree
is exactly performed.

Pruning criterion. Which determines how to judge whether a pruning operator should be
applied to a given node.

Pruning control strategy. Which determines the order in which candidate nodes for pruning
are considered.

9.4.1 Pruning operators

There is no reason why operators used for regression tree pruning should differ from deci-
sion tree pruning operators in any way. The same subtree cutoff and node removal operators
can therefore be applied, with the former being much more common and the latter rather
“theoretically possible” than really practically used.

9.4.2 Pruning criterion

The pruning criterion is used to judge whether a given pruning operator should be applied to
a given node or not. This is based on the comparison of the original subtree rooted at the node
with the new subtree (in particular, the single new leaf for the most common subtree cutoff
operator) with respect to some quality measures. Regression tree pruning has not been investi-
gated as extensively as decision tree pruning, and the number of regression tree pruning criteria
described in the literature is not that large as for decision tree pruning criteria. This section
presents some criteria that are in fact rather straightforward adaptations of their decision tree
counterparts.

9.4.2.1 Reduced error pruning

The reduced error pruning criterion for regression trees is based on the same idea as its decision
tree prototype, which is in fact the simplest possible computational interpretation of the very
goal of pruning – to improve the generalization capability of the regression tree. To achieve
this, the true performance of the original subtree and the leaf that would be replacing it is
estimated and compared using a separate pruning set R. Assuming the most common mean
square error performance measure, the reduced error pruning criterion would recommend to
replace node n by leaf n if

mseR(l) ≤ mseR(n) (9.6)

where mseR(n) and mseR(l) denote the pruning set mean square errors of the original node
n and the replacing leaf l, respectively. The calculation of error values has to be based only



Trim size: 170mm x 244mmCichosz c09.tex V3 - 11/04/2014 10:21 A.M. Page 276

276 REGRESSION TREES

on Rn – the subset of R corresponding to n – to ensure that both the original subtree and the
replacing leaf are evaluated in the proper context, where they actually appear in the tree.

As discussed for decision trees, reduced error pruning could be easily considered the per-
fect pruning criterion unless its application were so often prevented by “data economy” issues.
To provide sufficiently reliable error estimates even for low-level nodes (where pruning is most
likely to be needed), a considerable number of pruning instances may be required, definitely
comparable to the number of training instances used for growing. Unless we have a plethora
of labeled data which have to be sampled anyway, it may be unreasonable to leave out such a
substantial portion of the available data from the growing process, since this may considerably
impact the quality of the grown tree.

9.4.2.2 Minimum error pruning

The essential idea of decision tree minimum error pruning is to calculate the training set
misclassification error at leaves based on the m-estimated dominating class probability. By
incorporating fictitious instances, representing a prior probability estimate – as discussed
in Section 2.4.4 – class probability m-estimation helps avoid the optimistic bias associated
with training set evaluation. Such corrected error estimates of leaves are propagated upward
to nodes.

A similar approach can be applied to regression tree pruning by using m-estimation
for mean square error calculation. This is easily possible using the technique of variance
m-estimation from Section 2.4.4, which was actually developed for this very purpose. The
training set mean square error at regression tree leaves is indeed the (biased estimator
of) target function variance. While the definition of the m-estimated variance given by
Equation 2.61 corresponds to the unbiased variance estimator, the basic biased estimator is
used for mean square error calculation:

m̂seT (l) =
∑

x∈S(f (x) − ml,m,m0
(f ))2 + ms2

0|Tl| + m
(9.7)

where

ml,m,m0
(f ) =

∑
x∈Tl

f (x) + mm0|Tl| + m
(9.8)

is the m-estimated mean target function value at leaf l and m is the m-estimation parameter.
The prior mean value m0 and the prior variance value s2

0 are normally calculated based on the
complete training set, i.e., m0 = mT (f ) and s2

0 = s2
T(f ).

The leaf error estimates are propagated upward to receive node error estimates exactly as
in decision tree minimum error pruning:

m̂seT(n) =
∑

n′∈N(n)

|Tn′ ||Tn| m̂seT (n′) (9.9)

where N(n) is the set of all the descendants (nodes and leaves) of node n. This makes it possible
to use the following inequality as the pruning criterion:

m̂seT (l) ≤ m̂seT (n) (9.10)
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9.4.2.3 Cost-complexity pruning

Instead of trying to reliably estimate the expected error on new data using the training set,
which is hard to achieve, cost-complexity pruning applies Ockham’s razor more directly by
punishing the original subtree for its complexity when comparing its training set performance
with that of the replacement leave. The relative square error, defined in Section 10.2.6, may
be more convenient to use than the mean square error when trading off performance and
complexity, as it relates the differences between predicted and true target function values
to the dispersion of the latter and is therefore easier to interpret directly. This yields the
following criterion:

rseT (l) ≤ rseT (n) + 𝛼C(n) (9.11)

The complexity parameter 𝛼 represents the amount of performance improvement per single
node required to justify retaining the original subtree.

As with decision tree cost-complexity pruning, this pruning criterion becomes truly useful
when coupled with an appropriate technique for adjusting the complexity parameter value. It
consists in identifying, for a given value of 𝛼, the smallest pruned tree that minimizes the sum

rseT (n1) + 𝛼C(n1) (9.12)

where n1 is the root node. Such a tree is called the optimally pruned tree with respect to 𝛼. As
explained in Section 3.4.2, the sequence of all optimally pruned trees and the corresponding
complexity parameter intervals can be identified after completing the growing process. Select-
ing one of them is possible based on true performance estimates obtained by the internally
employed k-fold cross-validation technique, discussed in Section 7.3.4.

Of course, the cross-validation performed during regression tree growing increases the
amount of computation considerably, but whenever the computational cost is not an issue,
cost-complexity pruning belongs to the most effective pruning methods using the training set.

9.4.3 Pruning control strategy

Just like with decision tree pruning control, the control strategy for regression tree pruning
in principle has to be selected accordingly for particular pruning criteria, since different con-
trol strategies can work best with different criteria. The choice is limited to the same basic
bottom-up, top-down, and best-first strategies (or some hybrid approaches combining two or
all of these three), with the first strategy being the most wide-spread. In particular, it suits well
the most common pruning criteria described above.

9.5 Prediction

To apply a regression tree to generate target function predictions for a dataset, one just needs
to identify leaves where particular instances from the dataset land when propagated through
the tree. This requires the same instance down-propagation process as presented in Section 3.5
for decision trees, consisting in sequentially applying splits and descending along branches
corresponding to their outcomes, starting from the root node, until a leaf is reached. The split
application operation previously discussed for regression tree growing has to be performed
multiple times, until all instances arrive at the corresponding leaves.
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Example 9.5.1 The R code implements the regression tree prediction operation, assuming that
the tree representation as created in the growing examples. It is then applied to the regression
tree grown for the weatherr data, assuming it is stored in the tree variable.

## regression tree prediction
predict.regtree <- function(tree, data)
{
descend <- function(n)
{
if (!is.na(tree$attribute[tree$node==n])) # unless reached a leaf
{
av <- data[[tree$attribute[tree$node==n]]]
cond <- !is.na(av) & (if (is.numeric(av))

av<=as.numeric(tree$value[tree$node==n])
else av==tree$value[tree$node==n])

nodemap[nodemap==n & cond] <<- 2*n
nodemap[nodemap==n & !cond] <<- 2*n+1
descend(2*n)
descend(2*n+1)

}
}

nodemap <- rep(1, nrow(data))
descend(1)
tree$target[match(nodemap, tree$node)]

}

# regression tree prediction for the weatherr data
predict(tree, weatherr)

9.6 Weighted instances

Regression tree models can be created using weighted training instances in essentially the
same way as discussed for decision trees in Section 3.6. It is possible because instance weights
can be easily incorporated to all the calculations performed during regression tree growing.
These are limited to location and dispersion measure calculation and instance counting.

Specifically, when growing a regression tree from a training set T , to apply stop and split
selection criteria at node n, one just needs locn(f ), dispn(f ), dispTn,t=r

(f ), and |Tn,t=r| for all
splits t and their outcomes r. Similarly, when pruning a tree based on the pruning set R, to apply
pruning criteria to node n it is sufficient to determine the value of the selected performance
measure for the subtree rooted at n on the corresponding subset of R.

Achieving weight sensitivity for all these calculations is straightforward, boiling down to
appropriately redefining counts as weight sums:

|Tn,t=r| = ∑
x∈Tn,t=r

𝑤x (9.13)

and using weighted location and dispersion measures, as well as a weighted performance
measure for pruning. In particular, if the mean is used as the location measure, the variance as
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the dispersion measure, and the mean square error as the performance measure for pruning,
they should be replaced by the weighted mean, the weighted variance, and the weighted mean
square error, respectively. It makes it possible for regression tree induction algorithms to use
weighted instances, i.e., to act as weight-sensitive algorithms.

9.7 Missing value handling

Similarly as decision trees, regression trees belong to those modeling algorithms that can use
special techniques to handle missing values during model building and application, to achieve
the least possible degradation of model and prediction quality. The same two major approaches
to missing value handling, presented in Section 3.7, are also applicable here:

Fractional instances. Whenever a split on an attribute with a missing value is considered or
applied, each incomplete instance is virtually replaced by several instances correspond-
ing to all possible split outcomes, with a fractional “copy count,”

Surrogate splits. A number additional splits are stored for each node, apart from the ordi-
nary main split, and used to dispatch instances for which the outcome of the main split
cannot be determined due to missing attribute values.

Of those, only the former needs some minor regression-specific modifications.

9.7.1 Fractional instances

The technique of fractional instances considers all possible split outcomes for an instance with
a missing value of the split attribute and assigns them appropriate weights or probabilities,
based on the observed distribution of outcomes for the training set. For split t at node n, the
probability of outcome r ∈ Rt is estimated as

P(t = r|n) = |Tn,t=r||Tn| − |Tn,t=?| (9.14)

9.7.1.1 Growing with fractional instances

Regression tree growing with fractional instances requires the split evaluation and split appli-
cation operations to appropriately use and modify instance “copy counts,” with 𝑤x,n denoting
the “copy count” of instance x at node n. For the root node the “copy counts” of all instances
are set to 1 or user-specified instance weights. The location and dispersion measures used for
target value assignment and split evaluation also have to handle instance “copy counts” appro-
priately. Subset size needs to be redefined as the sum of “copy” counts” for subset members.

Split evaluation with fractional instances Recall that split evaluation is based on the disper-
sion of target function values for each possible split outcome. Two modifications are necessary
when using fractional instances. First, the dispersion measure has to be weight-sensitive to
incorporate instance “copy counts.” This could be, in particular, the weighted variance instead
of the ordinary variance. Each instance with a known split outcome would be used with weight
equal to its copy count. Second, if the split outcome is unknown for some attribute values,
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the instances with missing values of the tested attribute have to be assigned to each possible
split outcome, with weights equal to their “copy counts” multiplied with the corresponding
outcome probability. The dispersion corresponding to outcome r of split t for node n is there-
fore calculated using instances x ∈ Tn,t=r with weights 𝑤x,n and instances x ∈ Tn,t=? with
weights P(t = r|n)𝑤x,n.

Split application with fractional instances Since the split application operation for
regression trees does not differ from the corresponding operation for decision trees, there is
no regression-specific processing required when performing this operation with fractional
instances. An instance with a missing value of the split attribute is dispatched along all
branches, corresponding to all split outcomes, with “copy counts” modified by calculating
the corresponding split outcome probabilities.

Example 9.7.1 The previously presented regression tree growing implementation took a very
primitive approach to missing value handling, considering the split condition unsatisfied for
instances with missing values (i.e., always assigning such instances to the branch correspond-
ing to the false split outcome). The following R code contains a modified implementation that
includes missing value support by the technique of fractional instances. Note the following
major changes:

Ex. 2.4.11
dmr.stats

• the mapping of instances to nodes is no longer represented by a simple vector, but by
a matrix containing the instance, node, and weight columns, to make it possible
to have (fractions of) a single instance assigned to multiple nodes,

• dispersion calculation takes instance weights into account and is performed
using the weighted.var1 function,

• the split.eval and split.apply functions perform instance fractionization.

The grow.regtree.frac is applied to modified versions of the weatherr dataset, with
some attribute values removed.

## a simple regression tree growing implementation
grow.regtree.frac <- function(formula, data, minvar=0.005, minsplit=2, maxdepth=8)
{
nmn <- function(n) { nodemap[,"node"]==n } # nodemap entries for node n
inn <- function(n)
{ nodemap[nodemap[,"node"]==n,"instance"] } # instances at node n
wgn <- function(n) { nodemap[nodemap[,"node"]==n,"weight"] } # weights at node n

init <- function()
{
tree <<- data.frame(node=1, attribute=NA, value=NA, target=NA,

count=NA, mean=NA, variance=NA)
nodemap <<- cbind(instance=1:nrow(data), node=rep(1, nrow(data)),

weight=rep(1, nrow(data)))
n <<- 1

}

next.node <- function(n)
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{
if (any(opn <- tree$node>n))
min(tree$node[opn])

else Inf
}

target.summary <- function(n)
{
tree$count[tree$node==n] <<- sum(wgn(n))
tree$mean[tree$node==n] <<- weighted.mean(data[inn(n),target], wgn(n))
tree$variance[tree$node==n] <<- weighted.var1(data[inn(n),target], wgn(n))

}

target.value <- function(n)
{
tree$target[tree$node==n] <<- tree$mean[tree$node==n]

}

stop.criteria <- function(n)
{
n>=2 ̂ maxdepth || tree$count[tree$node==n]<minsplit ||

tree$variance[tree$node==n]<minvar
}

split.eval <- function(av, sv, tv, w)
{
cond <- if (is.numeric(av)) av<=as.numeric(sv) else av==sv
cond1 <- !is.na(av) & cond # true split outcome
cond0 <- !is.na(av) & !cond # false split outcome

v1 <- tv[cond1]
n1 <- sum(w[cond1])
w1 <- w[cond1]
v0 <- tv[cond0]
n0 <- sum(w[cond0])
w0 <- w[cond0]
vm <- tv[is.na(av)]
nm <- sum(w[is.na(av)])
wm <- w[is.na(av)]

if (nm>0)
{
p1 <- if (n1+n0>0) n1/(n1+n0) else 0.5
p0 <- 1-p1
v1 <- c(v1, vm)
w1 <- c(w1, p1*wm)
v0 <- c(v0, vm)
w0 <- c(w0, p0*wm)

}

if (n1>0 && n0>0)
weighted.dispersion(v1, v0, w1, w0, disp=weighted.var1)

else
Inf

}

split.select <- function(n)
{
splits <- data.frame()
for (attribute in attributes)
{
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uav <- sort(unique(data[inn(n),attribute]))
if (length(uav)>1)
splits <- rbind(splits,

data.frame(attribute=attribute,
value=if (is.numeric(uav))

midbrk(uav)
else as.character(uav),

stringsAsFactors=FALSE))
}

if (nrow(splits)>0)
splits$eval <- sapply(1:nrow(splits),

function(s)
split.eval(data[inn(n),splits$attribute[s]],

splits$value[s],
data[inn(n),target], wgn(n)))

if ((best.eval <- min(splits$eval))<Inf)
tree[tree$node==n,2:3] <<- splits[which.min(splits$eval),1:2]

best.eval
}

split.apply <- function(n)
{
tree <<- rbind(tree,

data.frame(node=(2*n):(2*n+1), attribute=NA, value=NA, target=NA,
count=NA, mean=NA, variance=NA))

av <- data[nodemap[,"instance"],tree$attribute[tree$node==n]]
cond <- if (is.numeric(av)) av<=as.numeric(tree$value[tree$node==n])

else av==tree$value[tree$node==n]
cond1 <- !is.na(av) & cond # true split outcome
cond0 <- !is.na(av) & !cond # false split outcome

n1 <- sum(nodemap[nmn(n) & cond1,"weight"])
n0 <- sum(nodemap[nmn(n) & cond0,"weight"])
nm <- sum(nodemap[nmn(n) & is.na(av),"weight"])

nodemap[nmn(n) & cond1,"node"] <<- 2*n
nodemap[nmn(n) & cond0,"node"] <<- 2*n+1

if (nm>0)
{
p1 <- if (n1+n0>0) n1/(n1+n0) else 0.5
p0 <- 1-p1
newnn <- nodemap[nmn(n) & is.na(av),,drop=FALSE]
nodemap[nmn(n) & is.na(av),"weight"] <<-
p1*nodemap[nmn(n) & is.na(av),"weight"]

nodemap[nmn(n) & is.na(av),"node"] <<- 2*n
newnn[,"weight"] <- p0*newnn[,"weight"]
newnn[,"node"] <- 2*n+1
nodemap <<- rbind(nodemap, newnn)

}
}

tree <- nodemap <- n <- NULL
target <- y.var(formula)
attributes <- x.vars(formula, data)

init()
while (is.finite(n))
{
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target.summary(n)
target.value(n)
if (!stop.criteria(n))
if (split.select(n)<Inf)
split.apply(n)

n <- next.node(n)
}
‘class<-‘(tree, "regtree.frac")

}

## convert a regtree.frac object to a data frame
as.data.frame.regtree.frac <- function(x, row.names=NULL, optional=FALSE, ...)
{ as.data.frame(unclass(x), row.names=row.names, optional=optional) }

# grow a regression tree for the weatherr data with missing attribute values
weatherrm <- weatherr
weatherrm$outlook[1] <- NA
weatherrm$humidity[1:2] <- NA
treem <- grow.regtree.frac(playabilitỹ., weatherrm)

# data frame conversion
as.data.frame(treem)

9.7.1.2 Prediction with fractional instances

When a regression tree is applied to an instance with missing attribute values, split application
is performed as during growing until all instances reach leaves. It is important to underline
that split outcome probabilities required for instance fractionization are the same as those
estimated during decision tree growing, based on the training set.

Each of fractional instances replacing an original instance with missing values will clearly
end up in a different leaf. To make the final prediction, a weighted averaging mechanism has
to be used, with weights assigned based on instance fractions. More exactly, we can use the
fraction of x arriving to l, denoted by 𝑤x,l to weight the leaf’s predicted target function value
and average over all leaves.

h(x) =
∑

l𝑣l𝑤x,l∑
l𝑤x,l

(9.15)

where the summation runs over all regression tree leaves.

Example 9.7.2 The R code presented below implements regression tree prediction with
fractional instances. The internal descend function is a minor modification of the
split.apply function used for growing.

## regression tree prediction
## with missing value support using fractional instances
predict.regtree.frac <- function(tree, data)
{
nmn <- function(n) { nodemap[,"node"]==n } # nodemap entries for node n

descend <- function(n)
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{
if (!is.na(tree$attribute[tree$node==n])) # unless reached a leaf
{
av <- data[nodemap[,"instance"],tree$attribute[tree$node==n]]
cond <- if (is.numeric(av)) av<=as.numeric(tree$value[tree$node==n])

else av==tree$value[tree$node==n]
cond1 <- !is.na(av) & cond # true split outcome
cond0 <- !is.na(av) & !cond # false split outcome

nodemap[nmn(n) & cond1, "node"] <<- 2*n
nodemap[nmn(n) & cond0, "node"] <<- 2*n+1

if (sum(nodemap[nmn(n) & is.na(av), "weight"])>0)
{
n1 <- tree$count[tree$node==2*n]
n0 <- tree$count[tree$node==2*n+1]
p1 <- if (n1+n0>0) n1/(n1+n0) else 0.5
p0 <- 1-p1

newnn <- nodemap[nmn(n) & is.na(av),,drop=FALSE]
nodemap[nmn(n) & is.na(av),"weight"] <<-
p1*nodemap[nmn(n) & is.na(av),"weight"]

nodemap[nmn(n) & is.na(av), "node"] <<- 2*n
newnn[,"weight"] <- p0*newnn[,"weight"]
newnn[,"node"] <- 2*n+1
nodemap <<- rbind(nodemap, newnn)

}

descend(2*n)
descend(2*n+1)

}
}

nodemap <- cbind(instance=1:nrow(data), node=rep(1, nrow(data)),
weight=rep(1, nrow(data)))

descend(1)

votes <- merge(nodemap, as.data.frame(tree)[,c("node", "target")])
as.numeric(by(votes, votes$instance,

function(v) weighted.mean(v$target, v$weight)))
}

# regression tree prediction for the weatherr data with missing attribute values
predict(treem, weatherrm)

9.7.2 Surrogate splits

The technique of surrogate splits assumes that a split on a missing attribute value can be
replaced by a surrogate using another attribute. It can be applied to regression trees in exactly
the same way as presented in Section 3.7.2 for decision trees, since it does not depend on the
type of the target attribute in any way.

9.8 Piecewise linear regression

As presented so far, regression trees represent piecewise-constant regression models that
decompose the domain into a number of regions and assign a fixed target function value to
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each region. Whereas such models can be made arbitrarily accurate on the training set by
adding as many nodes as required, the resulting true performance will usually not improve
above a certain level and is actually likely to severely deteriorate due to extreme overfitting.
This will happen if the regions to which domain is decomposed to ensure sufficiently good
training set performance become too small to yield good predictions on new data.

The inherent limitations of piecewise-constant regression trees can be overcome by an
enhanced form of regression trees that replace fixed target function values with simple linear
regression models. This makes the resulting piecewise-linear models capable of delivering
much better accuracy, as well as providing a more smooth approximation of the target func-
tion. This form of regression trees, to avoid confusion with plain piecewise-constant regression
trees, is sometimes called model trees. In the remainder of this section the term “regression
trees” will therefore be reserved for the basic piecewise-constant version of regression tree
models, unless explicitly indicated otherwise, and the enhanced piecewise-linear version will
be referred to as “model trees.” The following subsections review the key changes in the model
creation and prediction processes that differentiate model trees from regression trees. Refer
to Sections 8.2 and 8.3 for details on linear model representation and parameter estimation.

9.8.1 Growing

The general top-down growing algorithm presented for regression trees can be applied to
model trees with just a single change: instead of fixed target function values linear models are
used. This accounts for the primary difference between regression trees and model trees.

9.8.1.1 Linear models at nodes

Just like with target function values for regression trees, for model trees it makes sense to
assign linear models not only to leaves (where they are strictly necessary), but to internal
nodes as well. This makes the model tree ready for pruning – any node can be immediately
replaced by a leaf without any additional calculations. An additional and actually more impor-
tant reason to create linear models for internal nodes is to enable a smoothing process that may
partially reduce the discontinuity of predictions, which – whereas usually not as severe as for
regression trees – is anyway unavoidable for a model representation that combines multiple
models corresponding to domain regions.

The linear model assigned to a leaf or node n, designated as hn, is created based on the
corresponding subset of training instances Tn using standard linear regression parameter esti-
mation methods. The least-squares algorithm presented in Section 8.3.3 is definitely preferred
for its efficiency, unless incremental model building is required.

9.8.1.2 Attribute preselection

Since linear models are created using subsets of the training set, which become smaller and
smaller as descending farther from the root node, it may also be necessary to restrict the set
of attributes used for these models to minimize the risk of overfitting. Natural candidates for
attributes to skip are those already used for splitting on the path from the root node to the
current node, since their impact on model tree predictions has been already captured. This
attribute preselection scheme appears to work well in many cases. A more restrictive form
thereof that may be adopted – to skip any attributes not used in the subtree rooted at the current
node – may be as good or better with just the following two caveats:
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• linear models for nodes cannot be created until the tree is fully grown, which is necessary
to determine the sets of attributes to use at particular nodes,

• the adopted stop criteria should not be too liberal (i.e., causing premature leaf creation),
since linear models for leaves actually degenerate to simple mean target function values,
just like for plain regression trees (when no attributes can be used, a linear model is
represented by a single intercept parameter).

The last remark clearly applies to the leaves of an unpruned model tree only, since leaves
obtained after pruning inherit linear models from internal nodes that have been pruned off.

9.8.1.3 Stop criteria

The “no instances left” and “no splits left” criteria presented above for regression trees are
obviously no less applicable to model trees, but they can be thought of as secondary split
criteria, applied when no further splitting is possible. A primary stop criterion is still needed
to indicate of when no further splits are required or desirable (although possible). The “suf-
ficiently low dispersion” criterion that satisfies this requirement for plain regression trees is
usually employed for model trees as well, particularly in combination with the more restric-
tive attribute preselection scheme discussed above (which permits linear models to include
only attributes that are used for splitting in the subtree below the current node).

When adopting no or a less restrictive attribute preselection scheme (like the other pro-
posed above that only skips attributes already used above the current node) and building a
linear model for each newly created node immediately, an alternative stop criterion can be
considered based on its observed performance:

Sufficiently good performance. The linear model created for the current node reaches a
sufficiently good training performance.

This results in no further splitting attempted for a node in which the target function can be
sufficiently well approximated linearly.

Different instantiations of this criterion are obtained depending on the adopted perfor-
mance measure, with the mean square error or the relative square error (or, equivalently, the
coefficient of determination) being the most typical choices. Clearly, to check this stop cri-
terion for node n the training performance of the corresponding linear model hn should be
measured on the set of training instances associated with this node.

9.8.1.4 Split selection

Using the weighted target function dispersion as a split evaluation measure is an obvious
choice for piecewise-constant regression trees, where a low dispersion is required to reason-
ably approximate the target function with constant values assigned to particular leaves. It is
not so natural for model trees, though, where we are concerned with the quality of a linear
rather than constant approximation. Actually, it is quite easy to see that perfectly linearly
predictable values do not necessarily have to exhibit low dispersion. It would not therefore
be unreasonable to replace the dispersion-based split quality measure with another measure
based on the performance of linear models that could be created for the subsets of instances
obtained after applying the evaluated split.
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This idea, whereas well justified and consistent with the principle of model trees, is hardly
applicable in practice due to the computational expense of creating linear models for each
outcome of each candidate split in each node. Practical model tree growing algorithms fall
back to simple and imperfect, but computationally efficient heuristics. Of those, the weighted
target function dispersion, as used for plain regression trees, remains the most popular choice.

Example 9.8.1 The following R code provides a simplified implementation of the model
tree growing process by defining the grow.modtree function, which is a modified version
of the grow.regtree function presented before for regression trees. The target function
value is dropped from the tree structure and a separate model list is maintained, containing
linear models created for all tree nodes. Accordingly, the model internal function comes
in place of the target.value function used previously, responsible for creating a lin-
ear model for the currently processed node using the R standard lm function. It uses the

dmr.utilmake.formula function to create a formula based on a given target func-
tion name and attribute names. A simplified attribute preselection scheme is
used that drops all attributes with just a single unique value in the current sub-
set of training instances. This is accomplished using the drop1val function. dmr.util
Other than that, the function matches its regression tree prototype precisely,
including the very same stop and split selection criteria. The function returns a list with two
named components, structure – the tree structure data frame – and models – the linear
models list, with the class attribute set to modtree.

## a simple model tree growing implementation
grow.modtree <- function(formula, data, minvar=0.005, minsplit=2, maxdepth=8)
{
init <- function()
{
tree <<- data.frame(node=1, attribute=NA, value=NA,

count=NA, mean=NA, variance=NA)
models <<- list()
nodemap <<- rep(1, nrow(data))
n <<- 1

}

next.node <- function(n)
{
if (any(opn <- tree$node>n))
min(tree$node[opn])

else Inf
}

target.summary <- function(n)
{
tree$count[tree$node==n] <<- sum(nodemap==n)
tree$mean[tree$node==n] <<- mean(data[[target]][nodemap==n])
tree$variance[tree$node==n] <<- var1(data[[target]][nodemap==n])

}

model <- function(n)
{
attrs <- drop1val(attributes, data[nodemap==n,])
models <<- c(models,

list(lm(make.formula(target, if (length(attrs)==0) 1 else attrs),
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data[nodemap==n,])))
}

stop.criteria <- function(n)
{
n>=2 ̂ maxdepth || tree$count[tree$node==n]<minsplit ||

tree$variance[tree$node==n]<minvar
}

split.eval <- function(av, sv, tv)
{
cond <- !is.na(av) & (if (is.numeric(av)) av<=as.numeric(sv) else av==sv)
v1 <- tv[cond]
n1 <- sum(cond)
v0 <- tv[!cond]
n0 <- sum(!cond)
if (n1>0 && n0>0)
weighted.dispersion(v1, v0)

else
Inf

}

split.select <- function(n)
{
splits <- data.frame()
for (attribute in attributes)
{
uav <- sort(unique(data[nodemap==n,attribute]))
if (length(uav)>1)
splits <- rbind(splits,

data.frame(attribute=attribute,
value=if (is.numeric(uav))

midbrk(uav)
else as.character(uav),

stringsAsFactors=FALSE))
}

if (nrow(splits)>0)
splits$eval <- sapply(1:nrow(splits),

function(s)
split.eval(data[nodemap==n,splits$attribute[s]],

splits$value[s],
data[nodemap==n,target]))

if ((best.eval <- min(splits$eval))<Inf)
tree[tree$node==n,2:3] <<- splits[which.min(splits$eval),1:2]

best.eval
}

split.apply <- function(n)
{
tree <<- rbind(tree,

data.frame(node=(2*n):(2*n+1), attribute=NA, value=NA,
count=NA, mean=NA, variance=NA))

av <- data[[tree$attribute[tree$node==n]]]
cond <- !is.na(av) & (if (is.numeric(av))

av<=as.numeric(tree$value[tree$node==n])
else av==tree$value[tree$node==n])

nodemap[nodemap==n & cond] <<- 2*n
nodemap[nodemap==n & !cond] <<- 2*n+1

}
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tree <- models <- nodemap <- n <- NULL
target <- y.var(formula)
attributes <- x.vars(formula, data)

init()
while (is.finite(n))
{
target.summary(n)
model(n)
if (! stop.criteria(n))
if (split.select(n)<Inf)
split.apply(n)

n <- next.node(n)
}
‘class<-‘(list(structure=tree, models=models), "modtree")

}

# grow a model tree for the weatherr data
mtree <- grow.modtree(playabilitỹ., weatherr)

# tree structure
mtree$structure

9.8.2 Pruning

As for piecewise-constant regression trees, pruning is the process of cutting off overgrown
subtrees that are likely to overfit the training set to hopefully improve the model’s true per-
formance. The previously discussed regression tree pruning techniques are therefore fully
applicable to model trees as well. A node that is found useless is then replaced by a leaf
with the same linear model. This is the model tree interpretation of the subtree cutoff pruning
operator, the only pruning operator practically used. It is worthwhile to mention, though, one
model tree-specific approach to pruning that can not only replace apparently useless nodes
with leaves, but also simplify linear models in those nodes and leaves that remain.

The technique combines the ideas of pessimistic and cost-complexity pruning by using
a pruning criterion that compares the performance of a node and its replacement leaf on
the training set. It compensates for the inherent optimistic bias of such performance esti-
mates by using a pessimistic correction coefficient that also penalizes the complexity of the
corresponding linear models. It also resembles the minimum error pruning for decision trees
by defining the modified performance measure directly only for leaves and using a bottom-up
propagation process to obtain performance estimates for internal nodes.

For each leaf l the following coefficient is calculated:

|Tl| + |hl||Tl| − |hl| (9.16)

where |hl| denotes the number of attributes used by the linear model hl assigned to leaf l
and can be considered a measure of its complexity. The coefficient represents a multiplicative
complexity penalty that increases with the increased number of attributes used by the linear
model and decreases with the increased number of associated training instances. Its effect is
particularly severe if the leaf corresponds to a small subset of training instances, yet uses a
complex linear model.
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The above penalty coefficient is applied as a multiplier to the leaf’s training performance,
calculated with whatever performance measure is chosen (with the mean absolute error being
the most typical choice for this pruning technique):

êT (l) =
|Tl| + |hl||Tl| − |hl|eT (l) (9.17)

where the leaf’s training performance eT (l) is obviously the performance of its linear model
hl on the associated subset of training instances Tl.

For each node n the performance estimate êT (n) is obtained as the average of the perfor-
mance estimates calculated for its descendants, weighted by the numbers of training instances
corresponding to them. In effect, the error estimates for leaves calculated as shown above are
propagated upward to nodes. The pruning criterion is based on comparing such node perfor-
mance estimates with those for the corresponding replacement leaves

êT (l) ≤ êT(n) (9.18)

To see why this may be satisfied, notice that a node’s performance estimate obtained by propa-
gating upward the performance estimates of the leaves from its subtree will be affected by the
pessimistic correction applied in these leaves to a much greater extent than the performance
estimate of its replacement leaf. This is because the number of training instances associated
with the replacement leaf, equal to the number of all training instances corresponding to the
original subtree, will be usually substantially larger than the number of instances correspond-
ing to each of its individual leaves. The effect of the penalty coefficient for the replacement
leaf is therefore likely to be much less than for the original leaves (and the original node,
accordingly).

9.8.3 Prediction

In the most basic case, model tree prediction can be performed by down-propagating each
instance until it arrives at a leaf, and applying the leaf’s linear model. While there is nothing
wrong with this approach, which works as expected, there is a more refined and possibly better
(although more costly) alternative.

Linear models created for internal model tree nodes are useful not only for pruning. They
can be useful even for unpruned tree nodes to reduce the discontinuity of predictions gen-
erated by model trees, which occurs whenever a minor change of an attribute’s value makes
an instance land in another leaf, yielding a substantial change of the model’s prediction. This
often undesirable phenomenon can be alleviated by a smoothing process that combines the
predictions of all linear models encountered on the path on which an instance descends from
the root node to a leaf.

Consider using a model tree to generate a prediction for instance x that arrives to leaf l
by traversing the sequence of nodes n1,n2, … ,nk, where n1 is the root node and nk = l. The
linear models assigned to all these nodes, hn1

, hn2
, … , hnk

, contribute to the final prediction
as defined by the following recursive formula:

hk(x) = hnk
(x) (9.19)

hi(x) =
|Tni+1

|hi+1(x) + mhni
(x)|Tni+1

| + m
(9.20)
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for i = k − 1, k − 2, … , 1, where m is a parameter that adjusts the degree of smoothing. This
propagates the prediction from the leaf up to the root node, for each consecutive node aver-
aging the value calculated below this node (weighted by the number of training instances
associated with the corresponding descendant node) with this node’s prediction (weighted
by m). The model tree’s final smoothed prediction h(x) = h1(x) is the value obtained from this
propagation process in the root node. Of course, the smoothing process requires that train-
ing instance counts be stored for each node, which can be easily taken care of at the time of
growing the tree.

Example 9.8.2 The R code presented below implements the prediction operation for
model trees, including the smoothing process described above. It is based on the same
repeated split application scheme as regression tree prediction, therefore sharing some code
portions, but with additionally updating predictions when visiting each node. The resulting
predict.modtree function is then applied to generate training set predictions using the
previously grown model tree for the weatherr data.

## model tree prediction
predict.modtree <- function(tree, data, m=10)
{
descend <- function(n)
{
predn <- predict(models[[which(tree$node==n)]], data[nodemap==n,])
if (is.na(tree$attribute[tree$node==n])) # reached a leaf
pred[nodemap==n] <<- predn

else
{
av <- data[[tree$attribute[tree$node==n]]]
cond <- !is.na(av) & (if (is.numeric(av))

av<=as.numeric(tree$value[tree$node==n])
else av==tree$value[tree$node==n])

nodemap[left <- nodemap==n & cond] <<- 2*n
nodemap[right <- nodemap==n & !cond] <<- 2*n+1
descend(2*n)
descend(2*n+1)

leftn <- match(which(left), which(left|right))
rightn <- match(which(right), which(left|right))
pred[left] <<- (tree$count[tree$node==2*n]*pred[left] + m*predn[leftn])/

(tree$count[tree$node==2*n]+m)
pred[right] <<- (tree$count[tree$node==2*n+1]*pred[right] + m*predn[rightn])/

(tree$count[tree$node==2*n+1]+m)
}

}

models <- tree$models
tree <- tree$structure
nodemap <- rep(1, nrow(data))
pred <- rep(NA, nrow(data))
descend(1)
pred

}

# model tree prediction for the weatherr data
predict(mtree, weatherr, m=2)
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9.9 Conclusion

The biggest power of regression trees lies in the interpretability of this model represen-
tation, which – just like decision trees – can be inspected to see what attributes are used
to make predictions and what conditions they are tested for. This may be important in
some applications where a model – to be considered reliable – has not only to be proved
successful in evaluation, but also understood. It makes it also possible to create models in
a semi-automatic, human-assisted mode, where all or selected growing and pruning steps
are subject to human verification and possibly modification (e.g., an apparently slightly
worse split could be selected if it has a better interpretation based on the available domain
knowledge or the analyst is more confident about its true predictive utility).

Accuracy-wise, regression trees do not always belong to the best regression models
that can be created. Particularly, the basic piecewise-constant trees provide a simplified
representation of complex target functions and are prone to overfitting when attempting to
reach good training performance levels, which limits their true performance potential. Their
piecewise-linear version – model trees – tend to be better in this respect and can reduce the
often undesirable prediction discontinuity (stepped representation effect), but to achieve this,
they sacrifice human readability to some extent, since their predictions are no longer so easy
to explain.

Regression trees are not nearly as commonly used as decision trees. Whereas the latter
belong to the most successful and widespread approaches to the classification task, the former
often give ground to parametric regression. This is because the advantages of human-readable
model representation are not always as important for regression applications as they tend to be
for classification applications and can be outweighed by their disadvantages, but also largely
due to historical reasons. Regression trees definitely deserve more interest and wider popu-
larity than they have gained so far, particularly in the more refined piecewise linear version,
which retains at least some human readability with a much better accuracy potential.

9.10 Further readings

Regression trees are by far less frequently used and, correspondingly, much less frequently
described in the literature than decision trees. However, they have so much in common to
make many decision tree references presented in Chapter 3 useful regression tree readings
as well. Regression trees or model trees as such are covered by some of them as well (e.g.,
Witten et al. 2011).

The capability to create regression models is a standard feature of the CART (Breiman et al.
1984). It represents the basic piecewise-constant form of regression trees. The idea of model
trees – with linear models rather than constant values in leaves – was introduced by Quinlan
(1992) in his M5 algorithm, adding the numerical prediction capability to the ID3, C4, and
C4.5 series of algorithms (Quinlan 1986, 1993). It was further refined by Wang and Witten
(1996). Their M5’ algorithm includes, in particular, missing value handling by surrogate splits.

Several other algorithms for regression tree and model tree induction have been consid-
ered. One dimension across which they differ is the representation of leaf predictions (Torgo
1997). A more common differentiating factor is the split selection method. Karalič (1992)
argued the dispersion-based split selection criterion not to be well suited to leaves with lin-
ear models and proposed an alternative criterion based on the mean square error of linear
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models that can be created after the split. It is unfortunately more expensive to calculate.
Dobra and Gehrke (2002) demonstrated how split selection can be made more efficient by
local clustering at the node and then selecting a split that best separates the clusters. Split
evaluation with respect to the relationship between the split and the sign of constant or linear
model residuals at the node, measured using the 𝜒2 statistic, was proposed by Loh (2002).
The algorithm presented by Lubinsky (1994) evaluates the predictive utility of splits using
internal cross-validation and, in a sense, combines the ideas of model and regression trees.
This is achieved by adding a new type of nodes to the regular regression tree structure that
have single-attribute linear regression models associated with them. A tree path can then be
interpreted as representing stepwise linear models, with terms corresponding to regression
nodes occurring on the path. A more refined version of this approach was later developed by
Malerba et al. (2004). Landwehr et al. (2005) backported the idea of model trees to the context
of classification, by proposing a model tree with logistic regression models in leaves.

Regression and model tree pruning has not received as much attention as the corresponding
operation for decision trees, with most approaches used for the former being adapted from the
latter. In particular, Karalič and Cestnik (1991) proposed the technique of mean square error
m-estimation for regression tree pruning. Torgo (1998) discussed and experimentally evalu-
ated regression tree pruning criteria based on this and other error estimators. Robnik-Šikonja
and Kononenko (1998) presented a minimum description length-based regression tree prun-
ing algorithm. Pruning and grafting for model trees has been addressed by Ceci et al. (2003)
in the context of the stepwise model tree algorithm of Malerba et al. (2004).

Regression and model trees can be considered instantiations of a more general idea of
using a classification model to decompose the domain into “pieces” for piecewise-constant or
piecewise-linear regression (Cichosz 2007). Weiss and Indurkhya (1995) used this approach
in combination with decision rules. Torgo and Gama (1997) proposed a general framework
for solving the regression task using classification algorithms.
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Regression model evaluation

10.1 Introduction

Just like for classification model evaluation addressed in Chapter 7, the evaluation of a regres-
sion model is intended to provide a reliable assessment of its predictive performance, i.e., the
quality of the target function’s approximation it represents. There are several regression per-
formance measures calculated by comparing the model’s predictions and true target function
values on a particular dataset. These are not only the direct indicators of dataset performance,
but – under some conditions – can also serve as estimators of true performance, i.e., their
expected values on the whole domain.

10.1.1 Dataset performance

Dataset performance, obtained by calculating one or more selected performance measures
on a particular dataset, represents the degree of match between model predictions and target
function values on this dataset.

10.1.2 Training performance

Performance measures calculated for a model on the training set used to create the model
represent its training performance. It may be useful for diagnostic purposes, but does not
provide information on the actual predictive utility of the model.

10.1.3 True performance

The actual predictive power of a model is reflected by its expected performance (with respect
to one or more selected performance measures) on the whole domain, which is the model’s true
performance. Since target function values are generally unavailable, true performance always
remains unknown and has to be estimated by dataset performance. The challenge of reliably
estimating the unknown values of the adopted performance measures on the whole domain

Data Mining Algorithms: Explained Using R, First Edition. Paweł Cichosz.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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is addressed by the same evaluation procedures as presented in Section 7.3 for classification
models and will therefore be discussed only very briefly. Regression model performance mea-
sures, however, have to take into account the specificity of numeric predictions and will be
presented more extensively.

Example 10.1.1 The regression model performance measures and evaluation procedures
presented in this chapter will be illustrated in R by applying them to the evaluation of a
regression tree model created using the rpart package for the Boston Housing dataset,
available in the mlbench package. The following R code prepares the demonstration
by loading the packages and the dataset, splitting the dataset randomly into training and
test subsets, and creating a model based on the training set. The random generator seed is
explicitly initialized to make the results which are presented for some of the forthcoming
examples easily reproducible.

library(dmr.claseval)
library(rpart)

data(BostonHousing, package="mlbench")

set.seed(12)
rbh <- runif(nrow(BostonHousing))
bh.train <- BostonHousing[rbh>=0.33,]
bh.test <- BostonHousing[rbh<0.33,]

bh.tree <- rpart(medṽ., bh.train)

10.2 Performance measures

Regression performance measures share the same basic principle with classifcation perfor-
mance measures: they compare the predictions generated by the model on a dataset S with the
true target function values for the instances from this dataset. What has to be different, due to
the specificity of the regression task, is the exact way of making the comparison.

Similarly as for classification, some of regression performance measures serve as implicit
or explicit optimization criteria for regression algorithms and, in this role, they are sometimes
referred to as loss functions.

10.2.1 Residuals

The most common regression performance measures are based on the differences between true
and predicted function values. Such differences are called model residuals. For any instance
x, the difference f (x) − h(x) is the model’s residual for instance x.

Apart from being used for calculating performance measures, model residuals are often
analyzed statistically using distribution description and visualization techniques such as pre-
sented in Section 2.4. In particular, one simple and commonly used visual tool for residual
analysis is a residual plot, i.e., a plot of model residuals vs. true target function values.

Example 10.2.1 The following R code produces the distribution summary of the test set resid-
uals (as well as their absolute values) of the regression tree created for the Boston Housing
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data, as well as produces a boxplot, a histogram, and a residual plot thereof, using a simple
function that calculates model residuals by subtracting model predictions from the true target
function values.

res <- function(pred.y, true.y) { true.y-pred.y }

bh.res <- res(predict(bh.tree, bh.test), bh.test$medv)
summary(bh.res)
summary(abs(bh.res))

boxplot(bh.res, main="Residual boxplot")
hist(bh.res, main="Residual histogram")
plot(bh.test$medv, bh.res, main="Residual plot")

The plots are presented in Figure 10.1. Although more than a half of residuals are in
the (−3, 3) interval, and the absolute values of more than 75% of them do not exceed 4.5,
there are some much larger residuals as well. The piecewise-constant regression tree model
representation makes the residual plot contain multiple linear segments.

10.2.2 Mean absolute error

Of several types of residual-based performance measures, the mean absolute error (MAE) is
the most straightforward. It is calculated for model h ∶ X →  with respect to target function
f ∶ X →  on dataset S ⊂ X as the mean absolute residual for instances from S:

maef ,S(h) =
1|S| ∑

x∈S

|f (x) − h(x)| (10.1)

This makes the contribution of each residual proportional to its absolute value.
The mean absolute error is also referred to as the absolute loss.

Example 10.2.2 The following R code defines a function for calculating the mean absolute
error for given vectors of predicted and true target function values and demonstrates its appli-
cation for the Boston Housing dataset.

mae <- function(pred.y, true.y) { mean(abs(true.y-pred.y)) }

mae(predict(bh.tree, bh.test), bh.test$medv)

10.2.3 Mean square error

The most widely employed performance measure for regression models is the mean square
error (MSE). For model h ∶ X →  and target function f ∶ X →  it is calculated on dataset
S ⊂ X as the model’s mean squared residual on this dataset:

msef ,S(h) =
1|S| ∑

x∈S

(f (x) − h(x))2 (10.2)

Compared to the mean absolute error, the mean square error more severely “punishes”
large residuals. A model with a small number of large residuals and a large number of small
residuals might appear good according to the mean absolute error, but poor according to the
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Figure 10.1 Visualization of model residuals for the Boston Housing data.

mean square error. Since large residuals are generally undesired, this can be considered one
reason of the popularity of the mean square error. Another benefit is related to the analytical
advantage of the square function over the absolute function, with the former being differ-
entiable. This is important, in particular, for parametric regression, where gradient-based
parameter estimation methods are available to minimize the mean square error on the training
set, as discussed in Section 8.3.

The mean square error is the most commonly used type of loss function for regression,
referred to as the quadratic loss.

Example 10.2.3 The following R code implements mean square error calculation and demon-
strates it on the Boston Housing dataset.
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mse <- function(pred.y, true.y) { mean((true.y-pred.y)̂2) }

mse(predict(bh.tree, bh.test), bh.test$medv)

10.2.4 Root mean square error

A minor practical disadvantage of the mean square error is the effect of changed scale due
to squaring, which makes the interpretation of error values harder, particularly if the target
function represents quantities in some meaningful units of measurement (such as currency or
physical units). This easily solved without loosing the benefits of this performance measure
by applying the square root, which yields the root mean square error (RMSE):

rmsef ,S(h) =
√

msef ,S(h) (10.3)

Due to the strict monotonicity of the root square function the preference for models
implied by the root mean square error is exactly the same as that of the mean square error
(i.e., any model minimizing one of these measures also minimizes the other). They only
differ in interpretation convenience, which makes the root mean square error popular for
presenting the quality of obtained regression models in reports, particularly addressed to
business-oriented recipients.

Example 10.2.4 The function defined by the following R code calculates the root mean square
error. Like in the previous examples, it is demonstrated in application to the Boston Housing
dataset.

rmse <- function(pred.y, true.y) { sqrt(mse(pred.y, true.y)) }

rmse(predict(bh.tree, bh.test), bh.test$medv)

Notice that the root mean square error, although expressed in the same scale and units as
the mean absolute error calculated in Example 10.2.2, is considerably larger than the latter,
which results from a small number of large residuals being more severely punished.

10.2.5 Relative absolute error

The performance measures presented above, based on absolute or squared residuals, can be
directly used for comparing different models, but in order to assess a model’s practical utility
for a given application they have to be accompanied by some description of the target function
distribution (observed on the dataset used for the evaluation), making it possible to judge
whether model residuals are sufficiently small. On some occasions it may be interesting and
useful to relate model residuals to the values or variability of the target function itself directly
within a performance measure. This is accomplished, in particular, by the relative absolute
error (RAE), defined as follows:

raef ,S(h) =
∑

x∈S |f (x) − h(x)|∑
x∈S |f (x) − mS(f )| =

maef ,S(h)
1|S| ∑x∈S |f (x) − mS(f )| (10.4)

where mS(f ) is the mean target function value on S.
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The relative absolute error indicates how the mean residual relates to the mean deviation
of the target function from its mean. The latter can be thought of as the mean absolute error of
a trivial mean value prediction model. The relative absolute error should be clearly less than
1 for any reasonable models, and preferably close to 0.

Example 10.2.5 The following R code defines a function for calculating the relative absolute
error and demonstrates its application to the Boston Housing dataset.

rae <- function(pred.y, true.y)
{ mae(pred.y, true.y)/mean(abs(true.y-mean(true.y))) }

rae(predict(bh.tree, bh.test), bh.test$medv)

The obtained value of about 0.5 suggests that the quality of the evaluated model leaves
somewhat to be desired, but is substantially better than simple mean value prediction.

10.2.6 Coefficient of determination

A more commonly used performance measure that is similarly motivated as the relative abso-
lute error is the coefficient of determination, also referred to as R2 or R-squared. Consider a
quantity that relates to the mean square error in the same way as the relative absolute error
relates to the mean absolute error. This could be called the relative square error (RSE) and
defined as

rsef ,S(h) =
∑

x∈S (f (x) − h(x))2∑
x∈S (f (x) − mS(f ))2

=
|S|msef ,S(h)

(|S| − 1)s2
S(f )

(10.5)

where s2
S(f ) is the variance of the target function on S. The coefficient of determination is then

obtained as 1’s complement of the relative square error:

R2
f ,S(h) = 1 −

∑
x∈S (f (x) − h(x))2∑

x∈S (f (x) − mf (S))2
(10.6)

This performance measure is typically interpreted as the fraction of the target function’s vari-
ance explained by the evaluated model. If approaching 1, it indicates a nearly perfect model.
Negative values indicate a totally useless model.

Example 10.2.6 The R code presented below defines a function that implements the calcula-
tion of the coefficient of determination and demonstrates its application to the Boston Housing
dataset.

r2 <- function(pred.y, true.y)
{ 1 - length(true.y)*mse(pred.y, true.y)/((length(true.y)-1)*var(true.y)) }

r2(predict(bh.tree, bh.test), bh.test$medv)

The obtained value shows that the model managed to explain about 70% of the target
function’s variance, which may be not enough to consider a model fully satisfactory, but it is
definitely useful.
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10.2.7 Correlation

Residual-based performance measures are not necessarily well suited to some applications of
regression models, where even large differences between predicted and true target function
values may be acceptable as long as they exhibit roughly the same monotonic behavior with
respect to attribute values. In such applications one requires the model’s predictions to react to
changes in attribute values in a way that most closely mimics the reaction of the target function:
whenever the latter changes slightly the former should also change slightly and whenever the
latter changes vastly the former should also change vastly, with the direction of the change
preserved. This is required, in particular, whenever a regression model is used to support a
decision making or optimization process, where the effects of several alternative decisions or
solutions need to be predicted so that the most promising choice can be made. The error of
predictions may be then of less importance than their utility for distinguishing between good
and poor decisions or ordering candidate decisions in the order of preference. In such cases
the linear or rank correlation of predicted and true target function values becomes a natural
performance measure.

Example 10.2.7 The following R code demonstrates how the model created for the Boston
Housing dataset can be evaluated using the linear and rank correlation.

cor(predict(bh.tree, bh.test), bh.test$medv, method="pearson")
cor(predict(bh.tree, bh.test), bh.test$medv, method="spearman")

The model’s predictions turn out to correlate with the true target function values on the
test set quite well, with both correlation coefficients approaching 0.85.

10.2.8 Weighted performance measures

Similarly as weight-sensitive algorithms use weighted training instances, one can use a set of
weighted instances for model evaluation. Assuming a weight 𝑤x is assigned to each x ∈ S,
the definitions of the residual-based performance measures presented above can be rewritten
as follows:

maef ,S,𝑤(h) =
∑

x∈S 𝑤x|f (x) − h(x)|∑
x∈S 𝑤x

(10.7)

msef ,S,𝑤(h) =
∑

x∈S 𝑤x(f (x) − h(x))2∑
x∈S 𝑤x

(10.8)

rmsef ,S,𝑤(h) =
√

msef ,S,𝑤(h) (10.9)

raef ,S,𝑤(h) =
∑

x∈S 𝑤x|f (x) − h(x)|∑
x∈S 𝑤x|f (x) − mS(f )| (10.10)

R2
f ,S,𝑤(h) = 1 −

∑
x∈S 𝑤x(f (x) − h(x))2∑

x∈S 𝑤x(f (x) − mS(f ))2
(10.11)

These are weight-sensitive versions of the mean absolute error, the mean square error,
the root mean square error, the relative absolute error, and the coefficient of determination,
respectively.
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Example 10.2.8 The following R code defines modified versions of the functions from the
previous examples that optionally accept a weight vector as an additional argument and cal-
culate weighted performance measures. When called without specifying weights, they behave
as their weight-insensitive counterparts. The functions are applied to evaluate the performance
of the model created for the Boston Housing dataset on the test subset, using a weight vector
that doubles the importance of instances with the values of the target function above 25.

wmae <- function(pred.y, true.y, w=rep(1, length(true.y)))
{ weighted.mean(abs(true.y-pred.y), w) }

wmse <- function(pred.y, true.y, w=rep(1, length(true.y)))
{ weighted.mean((true.y-pred.y)̂2, w) }

wrmse <- function(pred.y, true.y, w=rep(1, length(true.y)))
{ sqrt(wmse(pred.y, true.y, w)) }

wrae <- function(pred.y, true.y, w=rep(1, length(true.y)))
{ wmae(pred.y, true.y, w)/weighted.mean(abs(true.y-weighted.mean(true.y, w)), w) }

wr2 <- function(pred.y, true.y, w=rep(1, length(true.y)))
{
1-weighted.mean((true.y-pred.y)̂2, w)/

weighted.mean((true.y-weighted.mean(true.y, w))̂2, w)
}

# double weight for medv>25
bh.wtest <- ifelse(bh.test$medv>25, 2, 1)

wmae(predict(bh.tree, bh.test), bh.test$medv, bh.wtest)
wmse(predict(bh.tree, bh.test), bh.test$medv, bh.wtest)
wrmse(predict(bh.tree, bh.test), bh.test$medv, bh.wtest)
wrae(predict(bh.tree, bh.test), bh.test$medv, bh.wtest)
wr2(predict(bh.tree, bh.test), bh.test$medv, bh.wtest)

10.2.9 Loss functions

The mean absolute error and the mean square error differ only in the function applied to model
residuals before averaging them, which is the absolute value function for the former and the
quadratic function of the latter. These two are the most common examples of loss functions
used to measure the performance of regression models.

In general, a loss function is any function  ∶ 2 →  that maps a pair consisting of a
predicted and true target function value into a real number, representing the associated cost or
regret, that should be considered for performance evaluation. The absolute and quadratic loss
functions are simply defined as follows:

||(f (x), h(x)) = |f (x) − h(x)| (10.12)

2(f (x), f (x)) = (f (x) − h(x))2 (10.13)

For the model h, target function f , and loss function  the mean loss on dataset S is then
calculated as

mlsf ,S,(h) =
1|S| ∑

x∈S

(f (x), h(x)) (10.14)
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In general, arbitrarily selected loss functions can be employed for model evaluation,
incorporating task-specific requirements or preferences. In particular, some loss functions can
be asymmetric, i.e., assigning different costs to residuals with the same absolute value, but
different signs, or 𝜖-insensitive, i.e., assigning zero costs to residuals below some tolerance
threshold.

Example 10.2.9 The following R code defines a function to calculate the mean loss as well as
three loss functions: the absolute loss, the quadratic loss, and a simple loss function wrapper
that can make an arbitrary loss function asymmetric by permitting specifying different multi-
pliers applied for the positive and negative residuals. They are all demonstrated in application
to the regression tree models for the Boston Housing dataset.

mls <- function(pred.y, true.y, loss) { mean(loss(pred.y, true.y)) }

loss.abs <- function(pred.y, true.y) { abs(true.y-pred.y) }

loss.square <- function(pred.y, true.y) { (true.y-pred.y)̂2 }

loss.asymmetric <- function(loss, p=1, n=1)
{
function(pred.y, true.y)
{
ifelse(res(pred.y, true.y)>0, p*loss(pred.y, true.y), n*loss(pred.y, true.y))

}
}

mls(predict(bh.tree, bh.test), bh.test$medv, loss.abs)
mls(predict(bh.tree, bh.test), bh.test$medv, loss.square)
mls(predict(bh.tree, bh.test), bh.test$medv, loss.asymmetric(loss.abs, 2, 1))

10.3 Evaluation procedures

Evaluation procedures for regression models address the same challenge of reliably assess-
ing a model’s expected performance on new data as discussed in Section 7.3 for classification
models, which requires the separation of the validation or test set from the training set without
degrading the model quality due to insufficient training data. It also involves the same diffi-
culties and essentially the same techniques for overcoming them. The extensive discussion
of those presented in Section 7.3 will not be repeated here, but it fully applies to regression
model evaluation as well. In particular, it is important to keep in mind the following:

• The purpose of evaluation procedures is to evaluate modeling procedures (consisting of
a regression algorithm, its parameters, applied data transformations and anything else
other than the data itself that affects the created model) rather than individual models.

• One or more models have to be created using a given modeling procedure and their
performance measured to evaluate the modeling procedure.

• The evaluation should reliably estimate the true performance of the model created using
the same modeling procedure on the whole available dataset.

• The evaluation reliability may suffer from bias (resulting from evaluating models
created on subsets of the available data, which may reduce their quality compared
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to all-data models) and variance (resulting from using limited randomly selected
test/validation subsets).

The remaining contents of this section are limited to a very concise review of the same
set of evaluation procedures, with examples of their application to regression models. These
procedures can all be used to generate vectors of predicted and true target function values,
making it possible to calculate arbitrary performance measures based on these vectors.

10.3.1 Hold-out

The hold-out evaluation procedure separates training and validation or test data in the simplest
possible way: a subset of the available labeled dataset is selected randomly as the training set
and the remaining instances are held out for the purpose of model evaluation. It does not handle
the bias vs. variance tradeoff very well: with sufficiently many instances left for low-variance
evaluation there may be too little training instances to ensure adequate model quality and one
may end up with a considerable pessimistic bias resulting from measuring the performance
of a poor model.

Example 10.3.1 Notice that all the examples of performance measures presented above used
the hold-out procedure, randomly dividing the Boston Housing dataset into training and test
subsets. By repeating the random partitioning used for these examples several times and recal-
culating the performance measures, we would likely observe considerably different results,
due to the high variance of this evaluation procedure. The following R code uses theholdout
function to perform an automated hold-out procedure that repeats the random dataset parti-
tioning, model building, and prediction several times, and collects the observed predicted and

Ex. 7.3.1
dmr.claseval

true target function values. This procedure is applied to perform 10-times
repeated hold-out evaluation of regression tree models for the Boston Hous-
ing dataset (2∕3 of which is used for training with the remaining 1∕3 used
for testing). All previously discusses performance measures are applied to the
generated predictions.

# hold-out regression tree evaluation for the Boston Housing data
bh.ho <- holdout(rpart, medṽ., BostonHousing, n=10)
mae(bh.ho$pred, bh.ho$true)
mse(bh.ho$pred, bh.ho$true)
rmse(bh.ho$pred, bh.ho$true)
rae(bh.ho$pred, bh.ho$true)
r2(bh.ho$pred, bh.ho$true)
cor(bh.ho$pred, bh.ho$true, method="pearson")
cor(bh.ho$pred, bh.ho$true, method="spearman")

The holdout function, originally developed for classification, handles regression model
evaluation as well. The same applies to other implementations of model evaluation procedures
demonstrated in subsequent examples.

10.3.2 Cross-validation

A more refined evaluation procedure that better handles the bias vs. variance tradeoff
is k-fold cross-validation that consists in splitting the available dataset at random into k
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disjoint equal-size subsets D1,D2, … ,Dk and then iterating over these subsets. On the ith
iteration, a model is built using Ti =

⋃
j≠iDj as the training set, and applied to generate

predictions on Qi = Di. For typical values of k (between 5 and 20) this requires substantially
more computation than the simple hold-out procedure, but helps to reduce the bias while
keeping the variance under control. It can be repeated several times for even further variance
reduction. By choosing k one can tradeoff the bias, variance, and computational expense of
the cross-validation procedure, as discussed in Section 7.3.4.

Example 10.3.2 The following R code applies the crossval function to evaluate predic-
tions of regression tree models for the Boston Housing dataset using k-fold cross-validation

Ex. 7.3.2
dmr.claseval

with a few different k values. Unlike in the previous example, only a single
performance measure – the mean square error – is calculated, but any other per-
formance indicator can be used instead.

# regression tree cross-validation for the BostonHousing data
bh.cv3 <- crossval(rpart, medṽ., BostonHousing, k=3)
mse(bh.cv3$pred, bh.cv3$true)
bh.cv5 <- crossval(rpart, medṽ., BostonHousing, k=5)
mse(bh.cv5$pred, bh.cv5$true)
bh.cv10 <- crossval(rpart, medṽ., BostonHousing, k=10)
mse(bh.cv10$pred, bh.cv10$true)
bh.cv20 <- crossval(rpart, medṽ., BostonHousing, k=20)
mse(bh.cv20$pred, bh.cv20$true)

10.3.3 Leave-one-out

The leave-one-out validation procedure is an extreme form of k-fold cross-validation in which
k is set to the number of instances in the dataset. The procedure iterates over all instances, using
the model built on the dataset with one instance removed to make prediction for this instance.
This is hardly applicable to large datasets due to the computational expense of building as
many models as instances available, but it may be a reasonable evaluation procedure for very
small datasets. It has no pessimistic bias, but its variance is high due to using single instances
for evaluation.

Example 10.3.3 The following R code uses the leave1out function to Ex. 7.3.3
dmr.clasevalperform the leave-one-out evaluation procedure for the Boston Housing data.

# leave-one-out regression tree evaluation for the BostonHousing data
bh.l1o <- leave1out(rpart, medṽ., BostonHousing)
mse(bh.l1o$pred, bh.l1o$true)

10.3.4 Bootstrapping

Bootstrapping estimation techniques are based on drawing multiple bootstrap samples from
the data. Each bootstrap sample, typically of the same size as the original dataset, is drawn
uniformly at random with replacement. A single bootstrap sample can be expected to contain
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about 63.2% of instances from the original dataset, some replicated. The missing instances,
also called out-of-bag (OOB) instances, stand for about 36.8% of the dataset. The idea of
bootstrapping is to use a bootstrap sample as the training set and to evaluate the resulting
model on the OOB instances.

Plain bootstrap performance estimators, obtained on OOB instances only, have low vari-
ance, but are usually pessimistically biased, since only about 63.2% of available instances
are used for training. This is compensated by the .632 bootstrap procedure which produces
the final performance estimator as a weighted average of the (overly pessimistic) estimator
obtained on OOB instances and the (overly optimistic) estimator that can be obtained by train-
ing and evaluating a model on the full dataset. Using the mean square error as the performance
measure, this can be presented as follows:

mse.632
D = 0.632

1
M

M∑
i=1

msef ,D′
i
(hi) + 0.368msef ,D(h) (10.15)

where D is the available dataset from which M bootstrap samples D1,D2, … ,DM are drawn,
hi is the model built using Di as the training set, D′

i is the corresponding set of OOB instances
on which the model is evaluated, and h is the model built on the full dataset D.

The .632 bootstrap estimator has been most often employed for classification models, but
it can be prove similarly useful for regression models. It can be expected to work best with
regression algorithms that do not heavily overfit. For models that fit the training set to a great
extent the estimator tends to be optimistically biased.

Similarly as for other evaluation procedures, we can use bootstrapping to generate vectors
of predicted and true target function values and then calculate arbitrary performance measures
based on these vectors. This is straightforward with just one caveat: to apply the .632 bootstrap
or another similar weighting scheme, the vectors of predictions and true target function values
must be accompanied by a vector of weights, and the calculation of selected performance indi-
cators must incorporate these weights. This was more extensively discussed in Section 7.3.6.

Example 10.3.4 To illustrate the bootstrapping approach to model evaluation, the following R
code uses the bootstrap function. It draws a specified number of bootstrap samples from

Ex. 7.3.4
dmr.claseval

the provided dataset and uses them to build models which it subsequently
applies to generate predictions for OOB instances. If the w parameter is set
to a value less than 1, it also creates a full-data model and applies it to generate
predictions on the full dataset. These receive a weight of 1 −𝑤, whereas the former receive
a weight of 𝑤, divided by the number of bootstrap samples. For 𝑤 = 0.632 this is equiva-
lent to the .632 bootstrap procedure. The procedure returns a data frame with predictions,
target function values, and the corresponding weights. The function is applied to evaluate the
regression tree model for the Boston Housing data, with w set to 1 (plain bootstrap, likely to
be pessimistically biased) and to 0.632. A relatively small number of 20 bootstrap samples is
used. The produced output is used to calculate the mean square error.

# 20x bootstrap regression tree evaluation for the BostonHousing data
bh.bs20 <- bootstrap(rpart, medṽ., BostonHousing, w=1, m=20)
mse(bh.bs20$pred, bh.bs20$true)

# 20x .632 bootstrap regression tree evaluation for the BostonHousing data
bh.632bs20 <- bootstrap(rpart, medṽ., BostonHousing, m=20)
wmse(bh.632bs20$pred, bh.632bs20$true, bh.632bs20$w)
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The .632 bootstrap performance estimators suggest a better performance level than the
plain bootstrap ones (with𝑤 = 1), which agrees with the expectation of the pessimistic bias of
the latter. The former may appear overoptimistic, though, given the error estimates previously
obtained with the cross-validation and leave-one-out procedures.

10.3.5 Choosing the right procedure

As discussed in Section 7.3.7, the choice of the right evaluation procedure for a given appli-
cation depends on the accepted level of the bias vs. variance tradeoff, the size of the dataset,
the regression algorithm, and the available computational resources. Most evidence suggests
that the bias vs. variance tradeoff is best handled by the k-fold cross-validation procedure with
k set to 10 or 20, particularly repeated several times. Whereas the .632 bootstrap procedure
should also yield nearly unbiased and low-variance performance estimators for algorithms that
are not prone to overfitting, in practice it is often hardly possible to completely eliminate the
risk of overfitting a priori, which result in .632 bootstrap performance estimates being overly
optimistic. The leave-one-out procedure should be rather avoided, except for small datasets
where all other evaluation procedures would be considerably biased. The hold-out procedure
is, conversely, best suited to very large datasets, for which other evaluation procedures would
be too expensive and for which considerably smaller training samples would have to be used
anyway due to computational constraints.

Example 10.3.5 To illustrate the properties of the different evaluation procedures discussed
above, the following R code applies the eval.bias.var function to perform a simple
experiment to observe their bias and variance. This basically reproduces Example 7.3.5 in

Ex. 7.3.5
dmr.claseval

the regression context. A random 2∕3 subset is drawn from the provided dataset
and considered a simulated “available” dataset, with the remaining 1∕3 subset
considered a simulated “new” dataset. The “new” dataset is used to calculate an
estimate of the true performance of the model built on the “available” dataset (the mean square
error in this case). The hold-out, cross-validation, leave-one-out, and bootstrap evaluation
procedures are then run on the “available” dataset to produce their performance estimates.
This experiment is repeated a number of times with all the obtained results collected, to finally
calculate the estimated bias and variance of each evaluation procedure.

The function is applied to observe the bias and variance of different evaluation procedures
when applied to evaluate regression tree models for the Boston Housing dataset. The results are
used to produce a boxplot of the error estimates produced by particular evaluation procedures,
with a horizontal line designating the mean true error estimated on the “new” dataset. Barplots
of the bias and variance of all the evaluation procedures are also produced. The plots presented
in Figure 10.2 are based on 200 evaluation repetitions, which takes some considerable time.
The line that runs this full experiment is commented out and another one, that runs a 10-times
repeated evaluation experiment, is recommended instead for a quick illustration.

# the commented line runs a 200-repetition experiment, which takes a long time
#bh.ebv <- eval.bias.var(rpart, medṽ., BostonHousing, perf=mse, wperf=wmse, n=200)

# this can be used for a quick illustration
bh.ebv <- eval.bias.var(rpart, medṽ., BostonHousing, perf=mse, wperf=wmse, n=10)

boxplot(bh.ebv$performance[,-1], main="Error", las=2)
lines(c(0, 13), rep(mean(bh.ebv$performance[,1]), 2), lty=2)
barplot(bh.ebv$bias, main="Bias", las=2)
barplot(bh.ebv$variance, main="Variance", las=2)
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Figure 10.2 The mean square distribution, bias, and variance for different evaluation
procedures.

The results agree with expectations and are consistent with those observed in
Example 7.3.5, confirming the high bias of hold-out (both single and repeated) and
3-fold cross-validation, the very small bias of 20-fold cross-validation and leave-one-out,
the pessimistic bias of the plain bootstrap procedure, and the optimistic bias of the .632
bootstrap procedure. With respect to variance, 4 × 5-fold cross-validation is the best of the
cross-validation procedures, the .632 bootstrap is clearly better, even with just 10 bootstrap
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samples, and the single hold-out is by far the worst. The repetition reduces the variance
of hold-out considerably, as expected. Overall, the 4 × 5-fold cross-validation procedure
appears to achieve a good compromise between bias and variance.

10.4 Conclusion

Performance measures used to assess the quality of regression models differ from those used
for classification models for obvious reasons. With a numeric target function the quality of
model predictions is no longer assessed by counting the number of mistakes, but rather cal-
culating the differences or correlations between them. The former leads to the most common
residual-based performance measures: the mean absolute error and the mean square error, as
well as their more easily interpretable counterparts (the relative absolute error, the root mean
square error, and the coefficient of determination). The latter may be preferred in some special
model application scenarios where capturing the monotonic behavior of the target function
with respect to attribute values is more important than achieving small differences.

Despite different performance measures, the purpose and overall methodology of regres-
sion model evaluation remains the same as for classification models. The same evaluation
procedures are used, facing the same challenge of controlling evaluation bias and variance.
And as for classification, the biggest risk of failing to reliably evaluate regression models is
not associated with choosing inadequate performance measures or evaluation procedures, but
with insufficiently careful separation of the data used to create the model and the data on
which the evaluation is performed. The former should be understood broadly, including all
data subsets on which any decisions that may impact the final model are based. These are, in
particular, data transformation, parameter tuning, and attribute selection decisions.

10.5 Further readings

With evaluation procedures for regression models being the same as for classification mod-
els, the same references as provided in Chapter 7 also apply here, including both books (e.g.,
Abu-Mostafa et al. 2012; Cios et al. 2007; Han et al. 2011; Hand et al. 2001; Tan et al. 2013;
Witten et al. 2011) and research articles (e.g., Arlot and Celisse 2010; Efron 1983; Efron and
Tibshirani 1997). Some of the former also present basic regression-specific predictive perfor-
mance measures (e.g., Hand et al. 2001; Witten et al. 2011), but the statistical literature on
regression modeling gives a much wider and more in-depth coverage of those (e.g., Draper
and Smith 1998; Freedman 2009; Glantz and Slinker 2000). They discuss the issue of assess-
ing the performance of regression models – referred to as goodness of fit in standard statistical
terminology – much more extensively than this chapter. Even if they are often presented – as
this term suggests – in application to evaluating the training performance only, they can be
clearly applied to nontraining data and used, in combination with evaluation procedures, to
assess the true performance. For historical reasons, this may be not such a well-established
practice as for classification model evaluation, though (Picard and Cook 1984; Snee 1977).

It is worthwhile to mention the close relationship between the evaluation of regression
models and that of measurements in experimental physics or engineering. The latter was
extensively discussed by Taylor (1996). In particular, popular types of residual-based perfor-
mance measures are common for these two domains. Evaluating the predictive performance
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(or the goodness of fit) of regression models is, however, only one of the several aspects of
statistical regression model diagnostics, which also include statistics and tests for verifying the
model’s underlying assumptions or quantifying the impact of particular attributes and train-
ing instances on model parameters and predictions (Cook and Weisberg 1982; Davison and
Tsai 1992).
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11

(Dis)similarity measures

11.1 Introduction

While exploring and exploiting similarity patterns in data is at the heart of the clustering task
and therefore inherent for all clustering algorithms, not all of them adopt an explicit similarity
measure to drive their operation. Such similarity, or actually more often dissimilarity measures
(since they typically take minimum values for maximum similarity), are functions that assign
real values to instance pairs from the domain and can be used by clustering algorithms both
in the cluster formation and cluster modeling processes. Such algorithms can be referred to as
similarity-based or – perhaps more appropriately – dissimilarity-based clustering algorithms.

This chapter presents a selection of the most commonly used general-purpose similar-
ity and dissimilarity measures for clustering, providing a necessary common background
for presenting the most widely used dissimilarity-based clustering algorithms. The latter are
described in detail in Chapters 12 and 13.

Example 11.1.1 Each dissimilarity measure presented in this chapter will be illustrated

EX. 1.5.1
dmr.data

with a simple R implementation, applied to the weathercl data. Utility functions
from the dmr.util package as well as the standardization implementation avail-
able in the dmr.trans package will be also used. The R code presented below
loads the packages and the dataset.

library(dmr.util)
library(dmr.trans)

data(weathercl, package="dmr.data")

11.2 Measuring dissimilarity and similarity

A number of dissimilarity and similarity measures have been proposed in the literature and
are applied in practice. Their common objective is to measure and express numerically the

Data Mining Algorithms: Explained Using R, First Edition. Paweł Cichosz.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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degree to which two instances from the same domain, described by the same set of attributes,
are dissimilar from or similar to each other.

The most popular general purpose dissimilarity and similarity measures presented in this
chapter fall into two categories:

Difference based. Which transform and aggregate in some way attribute value differences
for the two compared instances.

Correlation based. Which detect the common pattern of low and high attribute values for
the two compared instances.

The distinction between them as well as types of applications to which they are best suited is
presented in the subsequent sections below.

Example 11.2.1 The following R code defines a function that automates dissimilarity matrix
generation with respect to a given dissimilarity measure that will be used for these subsequent
examples. For the sake of simple illustration, it is applied below to generate the dissimilarity
matrix for the weathercl data using a totally meaningless dissimilarity measure, defined as the
absolute difference of instance numbers.

dissmat <- function(data, diss)
{
as.dist(outer(1:nrow(data), 1:nrow(data),

Vectorize(function(i, j)
if (j<=i) diss(data[i,], data[j,]) else NA)),

diag=TRUE, upper=TRUE)
}

# dummy dissimilarity matrix for the weathercl data
dummy.diss <- function(x1, x2)
{ abs(as.integer(row.names(x1))-as.integer(row.names(x2))) }

dissmat(weathercl, dummy.diss)

The function returns a dist object, used in R to represent dissimilarity (or distance)
matrices. Only the lower triangle of the matrix is actually calculated and stored to save time
and space.

11.3 Difference-based dissimilarity

Difference-based dissimilarity measures are particularly common and often adopted as default
for dissimilarity-based clustering algorithms unless existing domain knowledge suggests that
they may be inappropriate.

11.3.1 Euclidean distance

The Euclidean distance – by far the most widely and frequently applied dissimilarity
measure – is well known from geometry. For two instances x1, x2 it is calculated as

𝛿
euc(x1, x2) =

√√√√ n∑
i=1

(ai(x1) − ai(x2))2 (11.1)
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which is actually the L2 norm of the difference of their attribute value vectors, ||a(x1) − a(x2)||.
This formula is directly applicable to domains with continuous attributes only, but it is not
uncommon to use it when some attributes are discrete as well, by appropriately redefining the
difference ai(x1) − ai(x2) as 𝛿01(ai(x1), ai(x2)), where

𝛿01(𝑣1, 𝑣2) =

{
0 if 𝑣1 = 𝑣2

1 otherwise
(11.2)

Such a binary discrete value difference makes it possible to use the Euclidean dissimilarity (as
well as several other related dissimilarity measures that will be presented later) when there are
both discrete and continuous attributes, but may not always be appropriate when all attributes
are discrete. This is when it reduces to measuring dissimilarity by the number of different
attribute values, yielding as many (or rather as little) distinct dissimilarity levels as attributes.
For realistically sized datasets this may yield large numbers of equally dissimilar instances.
It is not a major problem since dissimilarity-based clustering algorithms are typically applied
to datasets with all or most attributes being continuous anyway, but if necessary – it could
be alleviated by defining custom nonbinary per-attribute discrete value difference measures
based on domain knowledge, which would not consider all different values equally different.

Example 11.3.1 The following R code defines a function to calculate the Euclidean distance.
It handles both continuous and discrete attributes using an auxiliary avdiff function that
returns attribute value differences appropriately depending on attribute types. The Euclidean
distance-based dissimilarity matrix for the weathercl data is then generated.

avdiff <- function(x1, x2)
{
mapply(function(v1, v2) ifelse(is.numeric(v1), v1-v2, v1!=v2), x1, x2)

}

euc.dist <- function(x1, x2) { sqrt(sum(avdiff(x1,x2)̂2, na.rm=TRUE)) }

# Euclidean distance dissimilarity matrix for the weathercl data
dissmat(weathercl, euc.dist)

11.3.2 Minkowski distance

The Euclidean distance can be considered the best known and most practically important spe-
cial case of a more general parameterized distance family, known as the Minkowski distance.
When applied to measure the dissimilarity of the two instances x1 and x2, it is defined as
follows:

𝛿mink(x1, x2) =

(
n∑

i=1

|ai(x1) − ai(x2)|p
) 1

p

(11.3)

where p ≥ 1 is a parameter. The Euclidean distance is obtained for p = 2. It can be easily
seen that with increasing p large attribute value differences receive relatively more and more
weight than smaller ones. Whereas for p = 1 the contribution of each attribute value difference
to the calculated distance is proportional to the difference, for larger p the impact of small
differences diminishes and the distance mostly depends on large differences. This may be an
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important change when there are many attributes that differentiate the two compared instances,
but only a few of them have large value differences. For small p, these instances could still be
considered quite similar (as similar as two other instances with all attribute value differences
roughly equal and just slightly larger than the small differences mentioned before), but for
larger p they would be considered substantially dissimilar.

Example 11.3.2 The following R code demonstrates Minkowski distance calculation, in the
very same manner as presented before for the Euclidean distance. Dissimilarity matrices for
the weathercl data are generated using p = 1 and p = 3.

mink.dist <- function(x1, x2, p) { (sum(abs(avdiff(x1,x2))̂p, na.rm=TRUE))̂(1/p) }

# Minkowski distance dissimilarity matrices for the weathercl data
dissmat(weathercl, function (x1, x2) mink.dist(x1, x2, 1))
dissmat(weathercl, function (x1, x2) mink.dist(x1, x2, 3))

11.3.3 Manhattan distance

The special case of the Minkowski distance obtained for p = 1 is also known as the Manhattan
distance. This corresponds to a metaphor of going from one street crossing to another in a
grid-arranged city by moving along streets (rather than following the straight line joining the
two points, as for the Euclidean distance). As discussed above, it makes the contribution of
each attribute value difference proportional to the difference. The formula for the Manhattan
distance can be simplified to

𝛿man(x1, x2) =
n∑

i=1

|ai(x1) − ai(x2)| (11.4)

Example 11.3.3 The R code presented below defines a function for Manhattan distance cal-
culation by simply wrapping a call to the mink.dist function from the previous example.
As before, it is applied to obtain the dissimilarity matrix for the weathercl data.

man.dist <- function(x1, x2) { mink.dist(x1, x2, 1) }

# Manhattan distance dissimilarity matrix for the weathercl data
dissmat(weathercl, function (x1, x2) man.dist(x1, x2))

11.3.4 Canberra distance

A modified form of the Manhattan distance that relates the attribute value differences to the
values themselves is known as the Canberra distance and calculated as

𝛿
can(x1, x2) =

n∑
i=1

|ai(x1) − ai(x2)||ai(x1)| + |ai(x2)| (11.5)

This adjusts the contribution of each attribute value difference so that the same absolute dif-
ference receives more or less weight depending on whether it is observed for small or large
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values. It also makes the dissimilarity measure less sensitive to differences in attribute ranges
than for other difference-based dissimilarity measures. Each term in the summation obviously
falls to the [0, 1] interval, regardless of the ranges of particular attributes.

A deficiency of the Canberra distance is its somewhat degenerate behavior when an
attribute’s value for one or both compared instances approaches 0. If one of ai(x1), ai(x2) is
close to 0, the contribution of ai to the calculated distance is roughly equal to 1 regardless
of the difference ai(x1) − ai(x2). If both ai(x1), ai(x2) are close to 0 (and, accordingly, also
close to each other), the contribution of ai may also approach 1 even if the attribute value
difference is actually very small.

Since the formula refers to attribute values themselves apart from their differences, it might
appear that, unlike the difference-based dissimilarity measures presented above, the Canberra
distance cannot be directly applied to domains with discrete attributes simply by redefining the
attribute value difference appropriately. This is easily solved though by replacing the whole
ratio |ai(x1)−ai(x2)||ai(x1)+ai(x2)| for discrete attributes with 1 if the attribute values differ and 0 if they are
the same.

Example 11.3.4 The following R code implements Canberra distance calculation and applies
it to the weathercl data. It uses an auxiliary function ravdiff to handle both continuous and
discrete attributes.

ravdiff <- function(x1, x2)
{
mapply(function(v1, v2) ifelse(is.numeric(v1), (v1-v2)/(abs(v1)+abs(v2)), v1!=v2),

x1, x2)
}

can.dist <- function(x1, x2) { sum(abs(ravdiff(x1,x2)), na.rm=TRUE) }

# Canberra distance dissimilarity matrix for the weathercl data
dissmat(weathercl, function (x1, x2) can.dist(x1, x2))

11.3.5 Chebyshev distance

The Manhattan distance corresponds to one extreme special case of the Minkowski distance,
with small and large attribute value differences having proportionally the same impact. The
other extreme special case, obtained for p = ∞, makes the distance equal to the single largest
attribute value difference. The resulting dissimilarity measure is called the Chebyshev dis-
tance, also known as the chessboard distance (as it provides the minimum number of moves
necessary for a chess king to go from one square to another) or the maximum metric. The
definition is simply written as follows:

𝛿
cheb(x1, x2) = max

i
|ai(x1) − ai(x2)| (11.6)

While the Minkowski distance is not directly computable in machine arithmetic for too large
p, it approaches the Chebyshev distance even for moderate p values.

It is not particularly common to see the Chebyshev distance being used as a clustering
dissimilarity measure since in many practical clustering tasks it might be inappropriate to
entirely focus on a single most differentiating attribute for each pair of compared instances. It
may be reasonable, though, in some specific domains.
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Example 11.3.5 The R code presented below defines a function for calculating the Cheby-
shev distance and demonstrates its application to the weathercl data. For comparison, the
Minkowski distance dissimilarity matrix for p = 10 is also calculated. It can be verified to
approximate the Chebyshev dissimilarity matrix quite closely.

cheb.dist <- function(x1, x2) { max(abs(avdiff(x1,x2)), na.rm=TRUE) }

# Chebyshev distance dissimilarity matrix for the weathercl
dissmat(weathercl, cheb.dist)
# roughly the same as

dissmat(weathercl, function (x1, x2) mink.dist(x1, x2, 10))

11.3.6 Hamming distance

Whereas all the difference-based dissimilarity measures presented above are primarily
intended for continuous attributes and can be “hacked” to be applicable to discrete attributes
when necessary, the Hamming distance is targeted at discrete attributes only and – whilst
can be calculated – makes usually little sense for continuous attributes. It is defined as the
number of attributes that take different values for the two compared instances:

𝛿ham(x1, x2) =
n∑

i=1

Iai(x1)≠ ai(x2) (11.7)

where the Icondition notation is used to denote an indicator function that yields 1 when the
condition is satisfied and 0 otherwise.

The biggest problem with the Hamming distance is that it takes the very limited set of
values {0, 1, … , n}, where n is the number of attributes. This may not provide sufficient dis-
similarity diversification to reasonably drive the cluster formation process, unless the number
of attributes is much greater than the number of clusters to be created. This is why it is usually
pointless to apply the Hamming distance unless there are no continuous attributes defined on
the domain. If all attributes are discrete, the previously presented dissimilarity measures suf-
fer from the very same problem, but with at least some continuous attributes they yield much
more diversified dissimilarity matrices.

Example 11.3.6 The following R code implements the Hamming distance and applies it to
the weathercl data. For the sake of illustration, the fact that the presence of two continuous
attributes makes it a questionable choice is ignored.

ham.dist <- function(x1, x2) { sum(x1!=x2, na.rm=TRUE) }

# Hamming distance dissimilarity matrix for the weathercl
dissmat(weathercl, ham.dist)

11.3.7 Gower’s coefficient

The most commonly used difference-based dissimilarity measures presented so far favor
either continuous (as for the whole Minkowski distance-based family) or discrete (as for
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the Hamming distance) attributes. Gower’s coefficient is a dissimilarity measure specifically
designed with the intention of handling mixed attribute types. The coefficient is calculated as
the weighted average of individual attribute contributions, with weights usually used only to
indicate which attribute values could actually be compared meaningfully:

𝛿gow(x1, x2) =
𝛾i𝛿

gow,i(ai(x1), ai(x2))∑n
i=1 𝛾i

(11.8)

where 𝛾i is the weight assigned to attribute ai and 𝛿gow,i is the attribute value similarity measure
for attribute i, defined as

𝛿gow,i(𝑣1, 𝑣2) =
⎧⎪⎨⎪⎩

|𝑣1−𝑣2|
maxx∈X ai(x)−minx∈X ai(x)

if ai is continuous

0 if ai is discrete and 𝑣1 = 𝑣2

1 if ai is discrete and 𝑣1 ≠ 𝑣2

(11.9)

Attribute weights are normally equal to 1 unless an attribute’s value for one or both instances
is missing, when the corresponding weight is set to 0. It is also possible to incorporate some
domain-specific attribute weights. It is probably more common to encounter a slightly differ-
ent version of Gower’s coefficient for measuring similarity rather than dissimilarity, in which
the contributions of all attributes are 1s complements of those defined above.

Although often recommended as the best approach to handling mixed attribute types in
dissimilarity measuring, Gower’s coefficient is not actually very different from the Manhattan
or Canberra distances, modified to accommodate discrete attributes by redefining attribute
value differences. It is particularly closely related to the latter, differing only in the divisor
applied to continuous attribute value differences. In Gower’s coefficient, they are divided by
the attribute’s range, formally defined above as the difference between the maximum and
minimum value of the attribute in the domain, but in practice determined based on the training
set used for clustering. This is another and arguably the better approach to ensuring that the
contribution of each continuous attribute is between 0 and 1, since there is no risk of anomalies
for near-zero values the Canberra distance suffers from. It does not necessarily make Gower’s
coefficient superior to the members of the Minkowski distance family, though, since – as will
be discussed below – it is a common practice to have continuous attributes standardized or
normalized prior to their application.

Example 11.3.7 The following R code implements a simplified version of Gower’s dissim-
ilarity coefficient in which – instead of explicit attribute weighting – terms corresponding to
missing attribute values are removed when averaging. The implementation is then applied

dmr.utilto the weathercl data, with the ranges function used to determine continuous
attribute ranges.

gower.coef <- function(x1, x2, rngs)
{
mean(mapply(function(v1, v2, r) ifelse(is.numeric(v1), abs(v1-v2)/r, v1!=v2),

x1, x2, rngs), na.rm=TRUE)
}

# Gower’s coefficient dissimilarity matrix for the weathercl data
dissmat(weathercl, function (x1, x2) gower.coef(x1, x2, ranges(weathercl)))
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11.3.8 Attribute weighting

Difference-based dissimilarity measures make it possible and straightforward to incorpo-
rate any available domain knowledge about the relative importance of particular attributes
for instance dissimilarity assessment. It can be achieved by assigning numerical weights to
attributes and weighting the corresponding attribute values accordingly. Assuming that 𝛾i
denotes the weight assigned to attribute ai, the dissimilarity measure definitions presented
above can be rewritten in the following weighted form:

Weighted Euclidean distance.

𝛿euc(x1, x2) =

√√√√ n∑
i=1

𝛾2
i (ai(x1) − ai(x2))2 (11.10)

Weighted Minkowski distance.

𝛿mink(x1, x2) =

(
n∑

i=1

𝛾
p
i |ai(x1) − ai(x2)|p

) 1
p

(11.11)

Weighted Manhattan distance.

𝛿man(x1, x2) =
n∑

i=1

𝛾i|ai(x1) − ai(x2)| (11.12)

Weighted Canberra distance.

𝛿can(x1, x2) =
n∑

i=1

𝛾i
|ai(x1) − ai(x2)||ai(x1) + ai(x2)| (11.13)

Weighted Chebyshev distance.

𝛿cheb(x1, x2) = max
i

𝛾i|ai(x1) − ai(x2)| (11.14)

Weighted Hamming distance.

𝛿ham(x1, x2) =
n∑

i=1

𝛾iIai(x1)≠ ai(x2) (11.15)

Gower’s dissimilarity is missing in this list only because it already incorporates weights
in its original form. Although typically only used to eliminate the impact of attributes with
missing values, they can also be used to express domain-specific knowledge on attribute
importance.

11.3.9 Attribute transformation

One common problem with the most difference-based dissimilarity or similarity measures is
their obvious sensitivity to differences in attribute ranges and distributions. With the exception
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of the Canberra distance and Gower’s coefficient, which compensate for such differences in
some ways, the other measures presented above may be easily fooled when applied to domains
with continuous attributes that represent quantities expressed in substantially different scales.
The same absolute value difference always yields the same contribution to the calculated
measure, whereas it may actually indicate similarity for attributes with large or relatively
diversified values and dissimilarity for attributes with small or relatively uniform values.

A typical solution to this problem for dissimilarity or similarity measures that do not
address it somehow internally (as in the case of the Canberra distance or Grower’s coeffi-
cient) is to preprocess the data before performing any dissimilarity calculations by applying
appropriate attribute transformations. Two transformations that may be useful in this context
are standardization and normalization, presented in Sections 17.3.1 and 17.3.2, with the for-
mer being particularly popular. It is not uncommon for implementations of dissimilarity-based
clustering algorithms to include such a transformation within their functional scope and per-
form it either by default or at the user’s request. If this is not the case, it can be easily
applied before running a clustering algorithm. It is usually a good idea to do so, unless some
domain-specific background knowledge suggests otherwise. In any case, the decision needs
to be taken consciously and the default behavior of the particular clustering algorithm imple-
mentation should be carefully checked and understood.

As will be discussed in Section 17.2.5, whenever an attribute transformation is performed
based on some parameters derived from a dataset, which is subsequently used for creating a
predictive model, the very same transformation parameters should be used to transform new
data prior to applying the model for prediction. This is the case, in particular, for a clustering
model that can be used to predict cluster membership for new instances. If the training set used
for model creation is standardized or normalized, the underlying transformation parameters
(the mean and standard deviation for the former, the range for the latter) should be retained
and re-applied when transforming new data before generating predictions.

Example 11.3.8 The R code presented below performs the standardization of continuous

EX. 17.3.1
dmr.trans

attributes in the weathercl data using the std.all and predict.std func-
tions and then generates the Euclidean distance dissimilarity matrix based on the
standardized dataset.

weathercl.std <- predict.std(std.all(.∼., weathercl), weathercl)
dissmat(weathercl.std, euc.dist)

11.4 Correlation-based similarity

Measuring instance similarity based on attribute value differences appears perfectly reason-
able and is indeed the right way to follow in most situations, but for some domains it may
yield misleading results. This is the case whenever instances that differ substantially with
respect to attribute values should still be considered similar based on domain knowledge as
sharing roughly the same relative value pattern. Consider attributes that represent frequencies
of some events, word occurrence counts in text documents, performance or quality evalua-
tions, ratings or preferences expressed by some individuals, etc. It is not necessarily value
differences that really matter for them when comparing two instances but rather patterns of
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“highs” and “lows”: Are mostly the same events particularly frequent; do mostly the same
words dominate; do mostly the same people, organizations, devices, or whatever other entities
achieve top performance or quality; are mostly the same items highly rated or preferred?
This considerably different kind of similarity can be captured by correlation-based measures,
which – unlike difference-based measures – typically indeed measure similarity rather than
dissimilarity, assigning high values to similar instances and low values to dissimilar ones.

11.4.1 Discrete attributes

Correlation-based similarity measures are even more oriented toward continuous attributes
than most difference-based measures. Actually, the whole justification behind them is
strongly based on the assumption that attributes are continuous (or at least ordered, which can
be treated as continuous when calculating these measures simply by assigning consecutive
integer numbers to their ordered values). This does not limit their utility in any serious way
since – whenever it makes sense to consider their application – the assumption is almost
always satisfied. The only situation that may need some workaround is that of a small number
of discrete attributes accompanying a larger number of continuous attributes that – based on
the available domain knowledge – ask for correlation-based similarity measures.

The workaround is fortunately easily available and the same as used for modeling algo-
rithms based on a parametric representation, such as linear classification and linear regres-
sion. This is the binary encoding technique described in Section 17.3.5 that replaces a dis-
crete k-valued attribute a ∶ X → {𝑣1, 𝑣2, … , 𝑣k}with k (or – actually – k − 1, to avoid redun-
dancy) binary attributes. These new attributes are then treated as continuous for similarity
calculation.

Example 11.4.1 The following R code demonstrates how the discode function for
binary discrete attribute encoding can be applied to transform selected instances from

EX. 17.3.5
dmr.trans

the weathercl data to an all-continuous representation. This transformation will
be used when calculating correlation-based similarity measures in subsequent
examples.

discode(∼., weathercl[1,])
discode(∼., weathercl[5,])

11.4.2 Pearson’s correlation similarity

The most straightforward way to measure similarity based on attribute value correlation is
to use Pearson’s linear correlation, defined in Section 2.5.2. Maximally similar instances
are assigned values approaching 1 and maximally dissimilar instances are assigned values
approaching −1.

Example 11.4.2 The following R code demonstrates the application of Pearson’s correlation,
calculated using a simple wrapper around the standard R corr function, with the discrete
attribute handling capability added, to the weathercl data. Despite using the dissmat func-
tion, the obtained output is actually a similarity rather than dissimilarity matrix.
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pearson.sim <- function(x1, x2)
{
cor(unlist(discode(∼., x1)), unlist(discode(∼., x2)), method="pearson",

use="pairwise.complete.obs")
}

# Pearson similarity matrix for the weathercl data
dissmat(weathercl, pearson.sim )

11.4.3 Spearman’s correlation similarity

According to Pearson’s correlation, two instances, to be considered highly similar, not only
need to share the same low-high pattern of attribute values, but also to be linearly related. The
latter requirement is relaxed with Spearman’s rank correlation, also defined in Section 2.5.2. It
may therefore be a better choice unless one deliberately seeks for linear relationships between
instances as indications of similarity.

Example 11.4.3 Following the pattern of the previous example, the following R code imple-
ments and demonstrates the similarity measure based on Spearman’s correlation.

spearman.sim <- function(x1, x2)
{
cor(unlist(discode(∼., x1)), unlist(discode(∼., x2)), method="spearman",

use="pairwise.complete.obs")
}

# Spearman similarity matrix for the weathercl data
dissmat(weathercl, spearman.sim )

11.4.4 Cosine similarity

Another related similarity measure that has gained high popularity, particularly in text cluster-
ing applications, is the cosine similarity, which considers two compared instances as attribute
value vectors and calculates the cosine of the angle between them:

cos(x1, x2) =
∑n

i=1 ai(x1)ai(x2)√∑n
i=1 a2

i (x1)
√∑n

i=1 a2
i (x2)

(11.16)

or more readably,

cos(x1, x2) =
a(x1) ⚬ a(x2)||a(x1)|| ⋅ ||a(x2)|| (11.17)

where a(x1) ⚬ a(x2) denotes the dot (inner) product of attribute value vectors representing
instances x1 and x2, and ||a(x1)|| and ||a(x2)|| are their Euclidean norms. High cosine
values correspond to attribute value vectors pointing roughly in the same direction in the
n-dimensional attribute space, indicating high similarity.
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Example 11.4.4 The R code presented below implements cosine similarity calculation
and demonstrates its application to the weathercl data. The cosine function performs

dmr.utilthe actual cosine calculation for two continuous vectors, with the discrete attribute
encoding applied.

cos.sim <- function(x1, x2) { cosine(discode(∼., x1), discode(∼., x2)) }

# cosine similarity matrix for the weathercl data
dissmat(weathercl, cos.sim)

11.5 Missing attribute values

Missing attribute values, a common problem for real-world datasets, have an obvious impact
on instance similarity assessment. Both difference-based and correlation-based measures pre-
sented above cannot meaningfully deal with attributes that have missing values for one or
both instances being compared and thus are unable to estimate their contribution to the overall
instance similarity or dissimilarity. Possible workarounds for this problem include:

Omit. Skip attributes with missing values for one or both instances in dissimilarity
calculation (and possibly scale up the obtained dissimilarity accordingly, if using a
difference-based measure),

Impute. Fill-in missing attribute values in a data preprocessing phase using some imputa-
tion techniques,

Process internally. Use some internal techniques to estimate the contribution of attributes
with missing values to the calculated dissimilarity measure.

The omitting approach is probably the most commonly applied in practice for its sim-
plicity, at least unless the number of missing attribute values in the data is prevailing. The
functions implementing dissimilarity measure calculation presented in the above examples
adopt a simplified version of this approach by including the na.rm=TRUE argument in calls
to aggregating functions such as sum or max, but without subsequent scaling. However, to
keep the obtained dissimilarity consistent with those calculated without missing values, the
aggregated contributions of attributes with nonmissing values should be scaled up propor-
tionally to the number of attributes actually used, i.e., multiplied by the ratio of the number of
all attributes to the number of attributes with nonmissing values for both instances. Gower’s
dissimilarity coefficient assumes that attribute weighting is used to implement this scheme.

The last approach may be sometimes worthwhile to consider when there are many miss-
ing attribute values. Clearly it only makes sense for attributes that have missing values for
just one of the two instances being compared. The available value for the other instances can
then contribute to the calculated dissimilarity based on how typical or untypical it is for the
attribute in question. More precisely, whenever the exact contribution of an attribute cannot be
determined due to one missing value, its expected contribution can be used instead. For con-
tinuous attributes, this reduces to substituting the mean attribute value for the missing one,
which is equivalent to the most common type of imputation. For discrete attributes, which
represent a somewhat more interesting case, the expected contribution can be calculated by
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considering all possible values in place of the missing one and averaging the corresponding
contributions with weights set to their probabilities estimated from the data. With the con-
tribution of a discrete attribute to a difference-based dissimilarity measure being 0 for equal
values and 1 otherwise, this reduces to the probability of the attribute’s value being different
than its actual value for the instance for which it is not missing.

11.6 Conclusion

Using explicit dissimilarity measures to guide the cluster formation and modeling processes
is a very popular approach, adopted by many widely used clustering algorithms. This includes
the following major families of clustering algorithms:

• k-centers clustering,

• agglomerative hierarchical clustering,

• divisive clustering (since it is usually based on the repeated application of k-centers
algorithms).

These are discussed in the next two chapters.
The different dissimilarity and similarity measures presented in this chapter can be con-

sidered for use with all (dis)similarity-based algorithms that are flexible enough not to be
tied to a particular single measure. It makes a thoughtful choice possible, based on the avail-
able domain knowledge and task requirements, as well as experimental verification of the
effects of several candidate measures. It is also possible to incorporate domain knowledge by
appropriate attribute transformation, attribute selection, or attribute weighting.

While it is hard to choose the most appropriate (dis)similarity measure for a given
clustering task without at least some preliminary experiments, the general choice between
difference-based and correlation-based measures is usually much easier if at least some
domain knowledge (including, in particular, attribute interpretation) is available. It should be
sufficient to judge what actually makes instances similar: small attribute value differences
or high attribute value correlations. With the former considered the obvious default, the
latter may be more appropriate for attributes that represent frequencies of some events,
performance or quality of some evaluated entities, ratings, or preferences expressed by some
individuals, etc.

11.7 Further readings

Clustering falls within the scope of most data mining and many machine learning books and
algorithms based on instance (dis)similarity belong to the most popular ones. This makes brief
descriptions of basic dissimilarity and similarity measures, accompanying the presentation
of dissimilarity-based clustering algorithms, readily available (e.g., Cios et al. 2007; Witten
et al. 2011). Theodoridis and Koutroumbas (2008), devoting their book almost entirely to the
classification and clustering tasks, thoroughly discuss the issue of measuring dissimilarity or
similarity for both single instances and sets of instances. A similar discussion is provided
by Han et al. (2011) and Tan et al. (2013), as well as in an appendix of the book by Webb
(2002). Survey articles and books dedicated to clustering cover a greater variety of measures
(Everitt et al. 2011; Jain and Dubes 1988; Jain et al. 1999; Kaufman and Rousseeuw 1990),
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including both general-purpose ones for instances represented by attribute value vectors and
those designed for special nonvector data representations.

With the Euclidean dissimilarity measure, as well as other measures from the Minkowski
family, being distances for real vector spaces, they are presented and their properties are exten-
sively discussed in mathematical topology literature (e.g., Engelking 1989). The Hamming
distance, on the other hand, originates from the study of error-detecting and error-correcting
codes (Hamming 1950). These and many other types of distances with different roots and
scopes of applications – reaching far beyond clustering and data mining – are systematically
presented by Deza and Deza (2013).

Gower’s similarity, explicitly permitting mixed discrete-continuous attribute sets, was
introduced by Gower (1971). The issue of measuring instance similarity of dissimilarity in
the presence of discrete attributes has been addressed by several studies since then, in the
context of both clustering (Diday and Simon 1976; Ichino and Yaguchi 1994; Ng et al. 2007;
San et al. 2004) and memory-based learning (Cheng et al. 2004; Stanfill and Waltz 1986; Wil-
son and Martinez 1997). They represent various approaches to overcoming the limitation of
simple value equality tests as in Gower’s coefficient or the Hamming distance by incorporating
attribute value distribution.

Simple difference-based dissimilarity measures for continuous attributes have also some
limitations. Apart from the sensitivity to differences in ranges and distributions, these include
ignoring possible relationships among attributes. The Mahalanobis distance is a generaliza-
tion of the Euclidean distance that addresses these issues (Mahalanobis 1936). Other possible
improvements include incorporating the context of surrounding instances into dissimilarity
calculation (Gowda and Krishna 1978; Jarvis and Patrick 1973).

This chapter – as the whole book – assumes the attribute-value representation of instances,
with a fixed number of discrete or continuous attributes. Dissimilarity measures for several
other data representations that may be more appropriate for some domains have been pro-
posed, including text strings (Baeza-Yates 1992), text documents (Wajeed and Adilakshmi
2011), tree structures (Zhang 1995), composite symbolic objects (Gowda and Diday 1991),
and images (Dubuisson and Jain 1994; Huttenlocher et al. 1993).
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k-Centers clustering

12.1 Introduction

The clustering task was presented in Section 1.5 as the combination of cluster formation,
which identifies similarity-based groups in the training set, and cluster modeling, which cre-
ates a model for cluster membership prediction. Dissimilarity-based clustering algorithms
address both of these subtasks using measures of instance dissimilarity or similarity. The fam-
ily of k-centers clustering algorithms represents not only the conceptually simplest but also
the most popular approach to dissimilarity-based clustering. Of all algorithms using explicit
similarity or dissimilarity measures, k-centers algorithms employ these measures in the most
direct and straightforward way to determine cluster membership.

12.1.1 Basic principle

Algorithms from the k-centers family share the same basic operation principle that can be
outlined as follows:

1. the number of clusters is predetermined and referred to as k (hence the “k-” in algorithm
names),

2. clusters are represented by single attribute value vectors, generically called cluster cen-
ters, but also referred to with more specific terms in the context of particular algorithms,

3. the combined cluster formation and modeling process is performed by iteratively assign-
ing training instances to clusters with the closest (i.e., least dissimilar) centers and then
shifting the centers to reflect the actual content’s of particular clusters.

The most widely known, studied, and applied algorithm of the k-centers family is the
k-means algorithm, using vectors of attribute value means as cluster centers. Other k-centers
algorithms adopt not only more robust but also more computationally demanding cluster cen-
ter representations.

Data Mining Algorithms: Explained Using R, First Edition. Paweł Cichosz.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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12.1.2 (Dis)similarity measures

Several different instance dissimilarity or similarity measures can be used for k-centers cluster-
ing, including all of those presented in Chapter 11. The k-means algorithm originally assumed
and has best interpretation with the Euclidean distance and difference-based dissimilarity mea-
sures from the Minkowski family remain the most popular choice for k-centers clustering
applied to datasets with continuous attributes only. As discussed in Section 11.3.9, they may
require performing attribute standardization or normalization to prevent different attribute dis-
tributions or ranges from distorting dissimilarities.

While it is not uncommon for practical implementations of k-centers algorithms to apply
such transformations internally at the user’s request, they do not necessarily support the pre-
dictive modeling view of clustering. If a clustering model is supposed not only to describe
similarity patterns discovered in the training set, but also to predict cluster membership for
new instances, those new instances have to be transformed using the very same transforma-
tion parameters that were determined on the training set. This is the essence of modeling
attribute transformations, more extensively discussed in Section 17.2.5. Standardization and
normalization as modeling transformations – applicable when preprocessing data for predic-
tive modeling – are presented in Sections 17.3.1 and 17.3.2.

Example 12.1.1 A series of examples will be presented in this chapter illustrating different

EX. 1.5.1
dmr.data

instantiations of k-centers clustering with simplified R implementations. They will
be applied to the tiny weathercl data, as well as two larger datasets: Iris from
the standard datasets package and Glass from the mlbench package. The
R code presented below loads these datasets and partitions the two larger ones randomly
into training and test subsets (using a fixed random generator seed for result reproducibil-
ity), to make it possible to demonstrate the application of clustering models to predicting

EX. 17.3.1
dmr.trans

cluster membership for new instances. The standardization transformation is
applied to the data using the std.all and predict.std functions to ensure
more meaningful dissimilarity calculations. Notice that standardization parame-
ters determined on the training sets are then applied to both the training and test sets. The
dmr.dissim package with dissimilarity measure implementations from Chapter 11 and
other DMR packages providing auxiliary functions are also loaded. So are the rpart and
rpart.plot packages for decision tree model creation and visualization, as they will be
employed in an example illustrating explicit cluster membership modeling.

library(dmr.claseval)
library(dmr.dissim)
library(dmr.stats)
library(dmr.trans)

library(rpart)
library(rpart.plot)

data(weathercl, package="dmr.data")
data(iris)
data(Glass, package="mlbench")

set.seed(12)
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ri <- runif(nrow(iris))
i.train <- iris[ri>=0.33,]
i.test <- iris[ri<0.33,]

rg <- runif(nrow(Glass))
g.train <- Glass[rg>=0.33,]
g.test <- Glass[rg<0.33,]

wcl.std <- predict.std(std.all(.∼., weathercl), weathercl)

i.stdm <- std.all(Species∼., i.train)
i.std.train <- predict.std(i.stdm, i.train)
i.std.test <- predict.std(i.stdm, i.test)

g.stdm <- std.all(Type∼., g.train)
g.std.train <- predict.std(g.stdm, g.train)
g.std.test <- predict.std(g.stdm, g.test)

12.2 Algorithm scheme

The basic operation principle of k-centers clustering informally introduced above is more
precisely described by the following scheme, which is instantiated by particular k-centers
algorithms.

1: select initial cluster centers 𝜁1, 𝜁2, ..., 𝜁k;
2. repeat
3. for all training instances x ∈ T do
4. assign instance x to cluster dx = arg mind𝛿(x, 𝜁d);
5: end for
6: for d = 1, 2, ..., k do
7: modify cluster center 𝜁d based on cluster member set Td ;
8: end for
9: until stop criteria are satisfied;

The clustering process starts from k initially selected cluster centers 𝜁1, 𝜁2, … , 𝜁k, each of
which can be assumed to be represented by a vector of attribute values, just like instances from
the domain from which the dataset comes. It makes it possible to compare them to instances
from the training set T using the adopted dissimilarity measure 𝛿 (it can be a similarity measure
as well, provided the minimization operation is changed to maximization). This is used to iden-
tify the closest cluster for each instance, defined to be the cluster with the least dissimilar/most
similar center. Although originally defined for instances, it is assumed to be applicable to arbi-
trary attribute value vectors, since cluster centers, in general, do not necessarily correspond
to any existing instances.

For instance x, the cluster to which it is assigned will be designated by dx and Td denotes
the subset of the training set assigned to cluster d:

Td = {x ∈ T | dx = d} (12.1)

After all instances have been assigned to their respective closest clusters, clusters centers are
modified to make sure that they are “true centers” for cluster members assigned to them. This
is repeated until stop criteria are satisfied.
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It is noteworthy that the instance assignment operation, which may be computationally
demanding for large datasets, can be easily parallelized by partitioning the training set into
subsets and processing each subset on a separate processor. This is definitely a desirable
property of the k-centers algorithms, in the era of increasingly large data on one hand and
increasingly available parallel or distributed processing environments on the other hand.

12.2.1 Initialization

A universal approach to cluster center initialization that is commonly used with different
k-centers algorithms is to randomly select k instances x1, x2, … , xk from the training set and
use their attribute value vectors as initial cluster centers by setting 𝜁d = a(xd).

What may be considered a deficiency of this simple approach is that it makes the clustering
process nondeterministic: different final cluster centers and hence different clustering models
may be obtained on repeated algorithm invocations, of possibly different quality. This is not
necessarily as serious disadvantage as it might appear, since the simplicity and efficiency of
most k-centers clustering algorithms make it usually computationally affordable to run them
several times with different random generator seeds and choose the best of multiple models
obtained. Quality measures that can be used for this selection are described in Chapter 14.

Still, some more refined deterministic initialization techniques may be worth using, par-
ticularly when working with large datasets or applying more computationally demanding
algorithms. Sufficiently good initial cluster centers may substantially reduce the necessary
number of k-centers iterations, so the effort invested to initialization may return in savings on
instance assignment and center adjustment. Techniques used for this purpose typically con-
sist either in identifying a set of the most mutually dissimilar instances in a sample drawn
from the training set or selecting points from a multidimensional grid spanning the attribute
value space. One simple approach that has been found to yield good results is to select ini-
tial centers sequentially, with the first one selected uniformly at random, and each subsequent
selected according to a probability distribution that assigns higher selection probabilities to
instances more dissimilar to the centers selected so far.

12.2.2 Stop criteria

A natural and ultimate stop criterion for any k-centers clustering algorithm is reaching conver-
gence, defined as the situation of no instances changing cluster membership (or, equivalently,
cluster centers remaining unchanged) from one iteration to another. This can be guaranteed
after a finite number of iterations, as long as both instance assignment and cluster adjustment
reduce the total dissimilarity between training instances and their respective cluster centers,
but is not necessarily always required. In practice, it is often sufficient to have cluster centers
nearly converged, i.e., with a small number of instances changing cluster membership. This
is usually achieved within a relatively small number of iterations (between a few and a dozen
or not much more), and it is not uncommon to see just the number of iterations adopted not
only as a supplementary, but also as the only stop criterion for k-centers algorithms.

12.2.3 Cluster formation

According to the scheme presented above, k-centers algorithms identify a partitioning of the
training set into a fixed number of disjoint clusters, with each instance being assigned to the
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closest cluster. This approach to cluster formation can be easily seen to minimize the total
dissimilarity of training instances to their respective cluster centers:

ΔT (h) =
∑
x∈ T

𝛿(x, 𝜁h(x)) (12.2)

where h(x) denotes the cluster to which instance x is assigned. The minimization is only local
and therefore dependent on cluster center initialization (the best set of cluster centers that can
be reached from the initial set of cluster centers is identified).

12.2.4 Implicit cluster modeling

The algorithm outline presented above explicitly performs cluster formation only, but it is
implicitly combined with cluster modeling as well. Basically, the center vector approach to
cluster representation makes it possible to assign any new instances to the identified clus-
ters based on their dissimilarity to cluster centers, just the same as with training instances
during the cluster formation process (except that no adjustment of cluster centers would be
performed). Since cluster centers can be used for prediction, they constitute a valid clustering
model representation that can be applied to any instance x ∈ X as follows:

h(x) = argmin
d

𝛿(x, 𝜁d) (12.3)

with minimization replaced by maximization if 𝛿 is a similarity rather than dissimilarity
measure.

12.2.5 Instantiations

The presented algorithm scheme contains the following major operations:

Initialization. Selecting initial cluster centers.
Instance assignment. Assigning training instances to the closest clusters (with respect to

dissimilarity to cluster centers).
Center adjustment. Shifting cluster centers based on assigned cluster members.
Stop criteria. Verifying whether more iterations are required.

Of those, the second is fully specified by the adopted dissimilarity (or similarity) measure
and, other than that, needs no further concretization. The first and the last ones are mostly
independent of particular algorithms and have already been discussed above. Instantiating the
scheme therefore requires that only the other two operations be appropriately specified. This
makes it possible to focus the discussion of particular k-centers clustering algorithms around
center adjustment, which heavily depends on particular cluster representation, i.e., on what
cluster centers actually are.

Example 12.2.1 The following R code defines the k.centers function which imple-
ments the generic k-centers clustering algorithm as described in this section. It accepts
the training dataset, the number of clusters as required input arguments. The dissimilarity
measure defaults to the Euclidean dissimilarity, calculated by the euc.dist function.

EX. 11.3.1
dmr.dissim

The clustering model is represented by a list containing cluster centers and
the assignment of training instances to them, with the class attribute set to
k.centers to enable appropriate prediction method dispatching.
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k.centers <- function(data, k, diss=euc.dist, max.iter=10,
init=k.centers.init.rand,
assign=k.centers.assign,
adjust=k.centers.adjust.dummy)

{
dm <- dissmat(data, diss)
centers <- init(data, k)
clustering <- NULL
iter <- 0
repeat
{
iter <- iter+1
clustering.old <- clustering
clustering <- assign(centers, data, diss, dm)
centers <- adjust(clustering, data, k, diss, dm)
if (iter >= max.iter || all(clustering==clustering.old))
break

}

‘class<-‘(list(centers=centers, clustering=clustering), "k.centers")
}

k.centers.init.rand <- function(data, k) { data[sample(1:nrow(data), k),] }

k.centers.assign <- function(centers, data, diss, dm)
{
center.diss <- function(i)
{ sapply(1:nrow(centers), function(d) diss(data[i,], centers[d,])) }
assign1 <- function(i) { which.min(center.diss(i)) }
sapply(1:nrow(data), assign1)

}

predict.k.centers <- function(model, data, diss=euc.dist)
{
k.centers.assign(model$centers, data, diss)

}

k.centers.adjust.dummy <- function(clustering, data, k, diss, dm)
{
do.call(rbind, lapply(1:k, function(d) data[which.max(clustering==d),]))

}

# dummy k-centers clustering for the weathercl data
k.centers(wcl.std, 3)

The k.centers function can be instantiated to perform a specific algorithm from the
k-centers family by specifying the init, assign, and adjust arguments as functions that
perform the initialization, instance assignment, and center adjustment operations, respectively.
The stop criteria are hard coded and satisfied on convergence or reaching a maximum number
of iterations, specified via the max.iter argument. In practice, only the adjust argument
needs to be specified for most algorithms, as it strongly and directly depends on the particular
representation of cluster centers. As we will see below, the other operations have basic but
usually satisfactory defaults.

The algorithm starts by calculating the dissimilarity matrix for the provided data, using
the specified dissimilarity measure, which is then passed, along with that measure, to the
assign and adjust functions. Passing both the dissimilarity matrix and the underlying
dissimilarity measure is an obvious redundancy, justified only by the generic nature of the
k.centers function. For some instantiations of the k-centers algorithm, it may be more
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convenient or efficient to perform the instance assignment or center adjustment operations
using one or the other. Needless to say, precalculating the dissimilarity matrix and not using
it afterward would be a striking computational efficiency loss, but it is forgivable in a simple
illustration-only implementation.

The default and usually sufficient initialization operation, based on random training
instance selection, is defined by the R code presented below:

k.centers.init.rand <- function(data, k) { data[sample(1:nrow(data), k),] }

The default instance assignment operation, that should not require any changes for com-
monly used k-centers algorithms, simply chooses the closest cluster for each instance and is
defined by the following R code:

k.centers.assign <- function(centers, data, diss, dm)
{
center.diss <- function(i)
{ sapply(1:nrow(centers), function(d) diss(data[i,], centers[d,])) }
assign1 <- function(i) { which.min(center.diss(i)) }
sapply(1:nrow(data), assign1)

}

A simple wrapper around the k.centers.assign function defined by the following
R code can be used as the prediction function for k-centers models:

predict.k.centers <- function(model, data, diss=euc.dist)
{
k.centers.assign(model$centers, data, diss)

}

Finally, the following R code implements a dummy center adjustment function that sim-
ply selects the first instance from each cluster as its center. This clearly makes little sense
and serves only the purpose of illustration, since it makes it possible to fully instantiate the
generic k-centers algorithm implemented in this example and demonstrate its application to
the weathercl data.

k.centers.adjust.dummy <- function(clustering, data, k, diss, dm)
{
do.call(rbind, lapply(1:k, function(d) data[which.max(clustering==d),]))

}

# dummy k-centers clustering for the weathercl data
k.centers(wcl.std, 3)

12.3 k-Means

The name of the most basic and common member of the k-centers algorithm family says
(nearly) all about its operation principle. It uses vectors of mean attribute values (often referred
to as centroids) as cluster centers, around which clustering formation proceeds.
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12.3.1 Center adjustment

As stated above, the vector of mean attribute values of cluster members serves as each clus-
ter’s center vector. The center adjustment operation boils down therefore to recalculating the
means, which can be written as

𝜁d,i = mTd (ai) =
1|Td| ∑

x∈Td

ai(x) (12.4)

Needless to say, this is only applicable to continuous attributes. Discrete attributes may be
numerically encoded (which also makes dissimilarity or similarity measures for continuous
attributes directly applicable) using the technique presented in Section 17.3.5. A simple
alternative that may be reasonable when there are just a few discrete attributes and when the
employed dissimilarity measure can handle them directly is to use modes instead of means
for them.

The simplicity of the k-means algorithm makes it easy to implement and efficient as well
as straightforward to apply. This justifies its role of a typical default first attempt clustering
algorithm for datasets with continuous attributes. It is not as common in application to
datasets with mixed attribute sets, and definitely not a good choice for datasets with discrete
attributes only. It usually requires a small number of iterations to reach or closely approach
convergence and can be definitely considered a fast clustering algorithm, although in some
rare worst cases the number of iterations required to fully converge may grow exponentially
with the training set size.

The k-means algorithm is usually presented and implemented as coupled with the
Euclidean dissimilarity. Although it is indeed particularly natural to combine mean attribute
values for center representation with sums of squared attribute differences for measuring
dissimilarity, technically nothing prevents us from using the algorithm with any other dissimi-
larity measures appropriate for a given domain. This requires care, however, since convergence
guarantees are lost if the center adjustment operation does not reduce the total dissimilarity
between training instances and their cluster centers under the adopted dissimilarity measure.

Example 12.3.1 The following R code implements the k-means version of the center
adjustment operation and demonstrates the application of the correspondingly instantiated
k-centers algorithm to the weathercl, Iris, and Glass data (with target concepts skipped
for the latter two, but k set to the corresponding numbers of classes). Discrete attributes
are handled by using modes, determined by the modal function, instead of means. The

EX. 2.4.19
dmr.stats

auxiliary attr.mm function not only generates a one-row dataframe containing
the means of continuous attributes and the modes of discrete attributes for the
supplied dataset, but can also be used to calculate other statistics, specified using
the mc argument for the former and md argument for the latter.

The previously defined cluster membership prediction method is also demonstrated. For
the two larger datasets, training set cluster assignments and test set cluster membership pre-
dictions are compared to class labels to see to what extent the discovered instance similarity
patters match the target concepts.

## attribute value means, medians, or modes
attr.mm <- function(data, mc=mean, md=modal)
{
data.frame(‘names<-‘(lapply(data, function(v)
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if (is.numeric(v)) mc(v) else md(v)),
names(data)))

}

## k-means center adjustment
k.centers.adjust.mean <- function(clustering, data, k, diss, dm)
{
do.call(rbind, lapply(1:k, function(d) attr.mm(data[clustering==d,])))

}

# k-means clustering
w.kmeans <- k.centers(wcl.std, 3, adjust=k.centers.adjust.mean)
w.kmeans$centers

i.kmeans <- k.centers(i.std.train[,-5], 3, adjust=k.centers.adjust.mean)
g.kmeans <- k.centers(g.std.train[,-10], 7, adjust=k.centers.adjust.mean)

# k-means prediction
w.kmeans$clustering
predict(w.kmeans, wcl.std)

i.pred.kmeans <- predict(i.kmeans, i.std.test[,-5])
g.pred.kmeans <- predict(g.kmeans, g.std.test[,-10])

# clusters vs. classes on the training set
table(i.kmeans$clustering, i.std.train$Species)
table(g.kmeans$clustering, g.std.train$Type)

# clusters vs. classes on the test set
table(predict(i.kmeans, i.std.test[,-5]), i.std.test$Species)
table(predict(g.kmeans, g.std.test[,-10]), g.std.test$Type)

# attribute distribution within clusters for the Iris data
par(mfrow=c(2, 2))
for (attr in names(i.std.train)[1:4])
boxplot(i.std.train[[attr]]∼i.kmeans$clustering, main=attr)

While a clear relationship between dissimilarity-based clusters and target concept classes
can be observed for the Iris and Glass dataset, it is not nearly as strong as one could expect
from a classification model, with instances of different classes occurring in the same clusters
with comparable frequency. It is interesting to notice, by the way, that for both the datasets
one of the identified clusters is particularly small compared to the others, which might
indicate that the values of k used in the example calls exceed the numbers of clusters that can
be actually discovered.

For the Iris dataset, which has four continuous attributes, boxplots illustrating their dis-
tribution within clusters are generated and presented in Figure 12.1. High attribute value
dispersion can be observed in cluster 3, which also differs from the other two clusters with
respect to the attribute value location. The latter appear more homogeneous and similar, but
can be easily distinguished by the Sepal.Width attribute.

12.3.2 Minimizing dissimilarity to centers

One reason to particularly prefer the Euclidean dissimilarity to other dissimilarity measures
for k-means is that it makes the operation and results of the algorithm particularly clearly
interpretable. It is easy to verify that adjusting cluster centers to become cluster member
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Figure 12.1 Attribute distribution within k-means clusters for the Iris data.

mean attribute value vectors guarantees minimizing the total squared Euclidean dissimilarity
of all training instances to the corresponding cluster centers over all possible cluster center
adjustment schemes. Consider the following criterion to be minimized:

Δ(2)
T (h) =

∑
x∈T

𝛿2
euc(x, 𝜁h(x)) =

∑
x∈T

n∑
i=1

(ai(x) − 𝜁d,i)2 (12.5)

where h denotes the clustering model represented by a set of cluster centers 𝜁1, 𝜁2, … , 𝜁k. The
criterion can be reorganized as follows:

Δ(2)
T (h) =

k∑
d=1

∑
x∈Td

n∑
i=1

(ai(x) − 𝜁d,i)2 (12.6)

It is then easy to see that its derivative with respect to the ith element of the center vector of
cluster d can be calculated as

𝜕Δ(2)
T (h)
𝜕𝜁d,i

= 2
∑
x∈Td

(𝜁d,i − ai(x)) (12.7)
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By equating the derivative to 0 we get

|Td|𝜁d,i −
∑
x∈Td

ai(x) = 0 (12.8)

which immediately yields

𝜁d,i =
1|Td| ∑

x∈Td

ai(x) = mTd (ai) (12.9)

This shows that with a given fixed assignment of instances to clusters, the k-means algo-
rithm finds cluster centers that minimize the total squared Euclidean dissimilarity of all train-
ing instances to the their cluster centers. It can be similarly verified that during a series of iter-
ations, in which instances change their cluster membership, the algorithm actually follows the
gradient of the total squared Euclidean dissimilarity, therefore seeking for its local minimum.
The latter may, but is in general, not guaranteed to be a global minimum. Refined initialization
schemes may increase the chances of arriving at a globally optimal set of clusters, but so may
selecting the best model from multiple runs of the basic randomly initialized algorithm.

12.4 Beyond means

Using mean attribute value vectors as cluster centers yields a simple and efficient algorithm
with clearly interpretable results, but has also inherent limitations. Basically, the mean as a
location measure does not perform very well when the data is asymmetrically distributed or
contain outliers for some attributes. In such cases, cluster centers may not adequately represent
their member instances, despite being the least dissimilar to them on the average. In particular,
they may actually lie far away (in the dissimilarity terms) from instances assigned to their
clusters. This is why it is sometimes worthwhile to sacrifice the simplicity and efficiency of
means for better representation properties.

12.4.1 k-Medians

The immediately self-suggesting idea is to replace attribute value means with attribute value
medians. The median, while more costly to obtain, is often the preferred location measure.
The k-centers algorithm instantiated to use attribute value median vectors as cluster centers
yields the k-medians algorithm.

Like k-means, the k-medians algorithm can be used with arbitrary dissimilarity mea-
sures that are believed to be meaningful for a particular domain, but with the risk of losing
convergence guarantees if the center adjustment operation does not reduce the total dissim-
ilarity between training instances and cluster centers. It can be verified to be best suited to
the Manhattan dissimilarity, for which it minimizes the total the total dissimilarity between
training instances and cluster centers. With other dissimilarity measures this interpretation of
k-medians clustering loses validity.

Example 12.4.1 The following R code defines the k-medians center adjustment operation,
as a marginally modified version of the corresponding k-means adjustment function from the
previous example (reusing the auxiliary attr.mm function defined there) and demonstrates
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the k-medians algorithm obtained by passing it to the k.centers function strictly following
the pattern of the previous k-means demonstrations. The center vectors of the created cluster-
ing models differ from those observed for the latter noticeably, but the relationships between
clusters and classes appear mostly similar. The smallest clusters contain more instances than
before, particularly for the Iris dataset, making the k-medians clustering more balanced.

## k-medians center adjustment
k.centers.adjust.median <- function(clustering, data, k, diss, dm)
{
do.call(rbind, lapply(1:k, function(d) attr.mm(data[clustering==d,], mc=median)))

}

# k-medians clustering
w.kmedians <- k.centers(wcl.std, 3, adjust=k.centers.adjust.median)
w.kmedians$centers

i.kmedians <- k.centers(i.std.train[,-5], 3, adjust=k.centers.adjust.median)
g.kmedians <- k.centers(g.std.train[,-10], 7, adjust=k.centers.adjust.median)

# k-medians prediction
w.kmedians$clustering
predict(w.kmedians, wcl.std)

i.pred.kmedians <- predict(i.kmedians, i.std.test[,-5])
g.pred.kmedians <- predict(g.kmedians, g.std.test[,-10])

# clusters vs. classes on the training set
table(i.kmedians$clustering, i.std.train$Species)
table(g.kmedians$clustering, g.std.train$Type)

# clusters vs. classes on the test set
table(predict(i.kmedians, i.std.test[,-5]), i.std.test$Species)
table(predict(g.kmedians, g.std.test[,-10]), g.std.test$Type)

# attribute distribution within clusters for the Iris data
par(mfrow=c(2, 2))
for (attr in names(i.std.train)[1:4])
boxplot(i.std.train[[attr]]∼i.kmedoids$clustering, main=attr)

The boxplots illustrating attribute distribution within clusters for the Iris data, presented
in Figure 12.2, substantially differ from those obtained in the previous example for k-means.
While one cluster exhibits higher diversity than the two other clusters, similarly as before, this
time the difference is smaller and it is the Sepal.Length attribute that best discriminates
between them all.

12.4.2 k-Medoids

While the k-medians algorithm is usually more robust to asymmetric distributions and
outliers than the k-means algorithm, it still does not guarantee that cluster centers – although
minimizing the total dissimilarity to their cluster members – are actually similar to any
instances. This is because, unless attributes are independent, median attribute value vectors
may not resemble any existing instances from the training set or the whole domain at all.

This is where another, more refined approach to cluster center representation steps in.
It consists in using medoids – selected cluster members that are the least dissimilar to other
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Figure 12.2 Attribute distribution within k-medians clusters for the Iris data.

cluster members, on the average – as cluster centers. The corresponding instantiation of the
k-centers algorithm is referred to as the k-medoids algorithm. The identification of cluster
medoids is a computationally intensive operation, as it requires that all pairwise dissimilari-
ties within each cluster are calculated and aggregated, to obtain per-instance averages, which
are then searched for minima. It usually makes sense to have the full dissimilarity matrix
for the training set precalculated and use appropriately selected submatrices thereof for cen-
ter adjustment. The algorithm is still considerably more expensive computationally than the
simpler k-means and k-medians algorithms, but in some applications or for some domains
the advantage of having existing instances used as cluster center vectors is worth the extra
expense. It makes the algorithm particularly robust with respect to noise and outliers. It is also
completely safe to use in combination with arbitrary dissimilarity measures, without losing
convergence guarantees and the meaningfulness of the results, since it explicitly minimizes
the total dissimilarity between training instances and their respective cluster centers regard-
less of the adopted dissimilarity measure, with the constraint that cluster centers are instances
from the training set themselves.
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Example 12.4.2 The R code presented below implements the k-medoids cluster center adjust-
ment operation and demonstrates the application of the resulting algorithm in the very same
way as before for k-means and k-medians. The observed distribution of instances of different
classes across clusters resembles that observed for the latter rather than for the former. As we
can see from the boxplots of attribute values within clusters displayed in Figure 12.3, there
is one cluster with particularly low attribute value dispersion. No single attribute appears to
clearly separate all the clusters.

## medoid for data with respect to dissimilarity matrix dm
medoid <- function(data, dm)
{
data[which.min(colMeans(dm)),]

}

## k-medoids center adjustment
k.centers.adjust.medoid <- function(clustering, data, k, diss, dm)
{
do.call(rbind, lapply(1:k, function(d)

medoid(data[clustering==d,],
as.matrix(dm)[clustering==d, clustering==d])))

}

# k-medoids clustering
w.kmedoids <- k.centers(wcl.std, 3, adjust=k.centers.adjust.medoid)
w.kmedoids$centers

i.kmedoids <- k.centers(i.std.train[,-5], 3, adjust=k.centers.adjust.medoid)
g.kmedoids <- k.centers(g.std.train[,-10], 7, adjust=k.centers.adjust.medoid)

# k-medoids prediction
w.kmedoids$clustering
predict(w.kmedoids, wcl.std)

i.pred.kmedoids <- predict(i.kmedoids, i.std.test[,-5])
g.pred.kmedoids <- predict(g.kmedoids, g.std.test[,-10])

# clusters vs. classes on the training set
table(i.kmedoids$clustering, i.std.train$Species)
table(g.kmedoids$clustering, g.std.train$Type)

# clusters vs. classes on the test set
table(predict(i.kmedoids, i.std.test[,-5]), i.std.test$Species)
table(predict(g.kmedoids, g.std.test[,-10]), g.std.test$Type)

# attribute distribution within clusters for the Iris data
par(mfrow=c(2, 2))
for (attr in names(i.std.train)[1:4])
boxplot(i.std.train[[attr]]∼i.kmedoids$clustering, main=attr)

12.4.2.1 Partitioning around medoids

One particularly popular variation of the k-medoids algorithm is known as the PAM algorithm
(Partitioning Around Medoids). It departs from the common k-centers clustering pattern by
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Figure 12.3 Attribute distribution within k-medoids clusters for the Iris data.

replacing the instance assignment and center adjustment operations with a medoid swap oper-
ation which, when iterated over all clusters and all nonmedoid training instances, turns out to
achieve roughly the same effect more efficiently. For a given cluster d and instance x, the swap
operation consists in making x a new center 𝜁d of cluster d if it reduces the total dissimilarity
between training instances and their respective closest cluster centers.

12.5 Beyond (fixed) k

Assuming a fixed predetermined number of clusters helps the k-centers algorithm to maintain
its simplicity and efficiency, but can also be considered a substantial deficiency. For many
applications the right number of clusters does not follow from the domain knowledge and
cannot be reliably guessed. While this situation is indeed uncomfortable, it is not as serious
disadvantage as it first appears. This is because in the vast majority of clustering applications
the potential range of k values to consider is quite small and one can try them all. A more
refined – but not necessarily more useful – approach is to have the value of k adapted during
the cluster formation process.
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12.5.1 Multiple runs

For a clustering model to be a meaningful and useful description of similarity patterns present
in the data, the number of clusters should usually not exceed a dozen or two. In practice, it
is often possible to limit the range of k to just a few candidate values, and have multiple runs
of the selected k-centers algorithm that produce different models, the best of which can be
ultimately selected based on evaluation results. Chapter 14 presents a variety of clustering
quality measures that can be used for this purpose.

12.5.2 Adaptive k-centers

Rather than trying out several candidate k values, one can start from a predetermined “best
guess” k, but permit changing it on the go whenever it appears too large or too small for a given
dataset. These situations are relatively straightforward to identify, although there is room for
several specific approaches that differ in some details:

Too many clusters. The two closest cluster centers are too close and can be joined
(decrease k).

Too little clusters. The most diverse cluster is too diverse and can be split (increase k).

The exact criteria used are usually based on the dissimilarity between the cluster centers or the
average pairwise intercluster instance dissimilarity for the former, and on the average dissim-
ilarity from the cluster center or on the average pairwise intracluster similarity for the latter.

12.6 Explicit cluster modeling

The cluster modeling process performed by k-centers clustering algorithms was described
above as implicit, since it can be viewed as a side effect of cluster formation. The same center
vectors that are used to identify clusters subsequently serve the purpose of cluster membership
prediction. Arbitrary instances from the domain can be assigned their closest clusters based
on the same dissimilarity or similarity measure that is employed in the instance assignment
phase of the algorithm. While this perfectly matches the requirements of most applications,
it may be sometimes desirable to have an explicit model for cluster membership prediction
that does not depend either on the center vectors of the original k-centers model or on the
underlying dissimilarity measure.

The main motivation for creating an explicit cluster model is the incomprehensibility of
k-centers implicit cluster membership prediction. Thus makes it impossible to explain why
a particular instance is assigned to a given cluster other than by referring to the dissimilarity
between the former and the center vector of the latter. Providing alternative, human-readable
criteria for cluster membership makes it possible to much better understand what particular
clusters have in common, how they differ, and what makes an instance assigned to one cluster
or another. This may be important especially if the primary purpose of the clustering model
is to describe the similarity patterns detected in the training set and, hopefully, occurring in
the whole domain.

An explicit cluster membership model can be created as a classification model, by applying
a classification algorithm with cluster membership assignment used as the target concept. An
arbitrary classification algorithm can be applied to the original training set with an additional
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attribute, representing such a target concept, added. Clearly, to meet the comprehensibility
expectations presented above as the primary motivation for explicit cluster modeling, a clas-
sification algorithm employing a human-readable model representation should be employed.
As in most other situations where this is required, decision trees extensively discussed in
Chapter 3 tend to be the most common approach.

It is noteworthy that an explicit cluster membership model can only be expected to
approximate, but not perfectly mimic the original cluster membership assignments based
on the dissimilarity to the center vectors of the underlying k-centers model. The simplicity
and interpretability of the explicit model representation may be often more important
than the degree of match between its predictions and the original k-centers assignments,
since – unlike in a “normal” classification task – the latter do not represent any objective
property of instances anyway.

Example 12.6.1 The idea of explicit cluster modeling is illustrated by the R code presented
below, which uses the rpart package to create decision tree cluster membership predic-
tion models approximating cluster assignments of the k-means clustering model for the Iris
and Glass datasets from Example 12.3.1. Notice that the minsplit argument, specifying
the minimum number of instances required for a split to be considered, is set to the small-
est cluster size. The cost-complexity parameter cp is adjusted to achieve relatively simple
trees.

# explicit decision tree representations of k-means models
i.kmeans.tree <- rpart(cluster∼.,

cbind(i.train, cluster=as.factor(i.kmeans$clustering)),
minsplit=min(table(i.kmeans$clustering)), cp=0.05)

g.kmeans.tree <- rpart(cluster∼.,
cbind(g.train, cluster=as.factor(g.kmeans$clustering)),
minsplit=min(table(g.kmeans$clustering)), cp=0.05)

# cluster membership prediction tree plots
prp(i.kmeans.tree, varlen=0, faclen=0, main="Iris")
prp(g.kmeans.tree, varlen=0, faclen=0, main="Glass")

# predicted vs. true clusters
confmat(predict(i.kmeans.tree, i.train, type="c"), i.kmeans$clustering)
confmat(predict(i.kmeans.tree, i.test, type="c"),

predict(i.kmeans, i.std.test[,-5], euc.dist))

confmat(predict(g.kmeans.tree, g.train, type="c"), g.kmeans$clustering)
confmat(predict(g.kmeans.tree, g.test, type="c"),

predict(g.kmeans, g.std.test[,-10], euc.dist))

The resulting models, visualized as presented in Figure 12.4 using the prp func-
tion from the rpart.plot package, confirm that cluster membership can indeed be
represented in a human-readable way. The confusion matrices generated using the confmat

EX. 7.2.4
dmr.claseval

function show a nearly perfect match between the original and predicted cluster
assignments for the Iris data. For the Glass data the accuracy of cluster mem-
bership predictions may leave somewhat to be desired, but is not bad given the
much higher number of clusters.
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Figure 12.4 Decision tree cluster membership models.

12.7 Conclusion

The family of k-centers clustering algorithms provides a good balance of simplicity, effi-
ciency, and customizability that makes them quick and easy to apply to many real-world
clustering tasks. With the quality of results being often on par with that achieved by more
refined algorithms, such as probabilistic clustering, they have become extremely popular and
widely used. The quality comes at a usually unprohibitive computational cost, which can be
further reduced by parallel or distributed implementations. This makes it possible to cluster
large datasets, the capability that is becoming increasingly essential for applications in sev-
eral areas, such as clustering customers in the retail or service industries, text documents, or
biological data.

Despite their simplicity, algorithms discussed in this chapter belong to the most univer-
sal clustering algorithms that can be applied in a variety of domains, incorporating custom
domain-specific dissimilarity measures where necessary or using the most appropriate of stan-
dard dissimilarity measures otherwise. While standard k-centers algorithms are crisp and flat
clustering algorithms, they can be modified or wrapped appropriately to achieve fuzzy or hier-
archical clustering. Their two apparent disadvantages – fixed k and the dependence of results
on cluster initialization – are largely ameliorated by their efficiency, which makes it possible
to run them multiple times and select the most satisfactory result. The latter is possible given
appropriate clustering quality measures.

12.8 Further readings

k-Centers clustering algorithms belong not only to the most often used clustering algorithms,
but also to the most often described ones. They are covered by most data mining and machine
learning books that have clustering within their scope (e.g., Cios et al. 2007; Han et al. 2011;
Hastie et al. 2011; Tan et al. 2013; Theodoridis and Koutroumbas 2008; Webb 2002; Witten
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et al. 2011), represented at least by the simplest and most common k-means algorithm, but
often also by k-medoids, the most refined and robust member of the family. As to be expected,
a greater variety of algorithm variations are described in clustering books and survey articles
(Everitt et al. 2011; Jain and Dubes, 1988; Jain et al. 1999).

The history of k-centers clustering goes back at least to the 1950s, when the k-means algo-
rithm first appeared in the literature (Lloyd 1957). The actual term “k-means” was introduced
by MacQueen (1967). Slightly different algorithm variations were presented by Forgy (1965)
and Hartigan (1975). The latter, subsequently also described by Hartigan and Wong (1979),
performs cluster center adjustment immediately after the reassignment of each instance
and – as confirmed by a recent in-depth investigation (Telgarsky and Vattani 2010) – is
more resistant to local optima. Several variations of the k-means algorithm – including
those using more refined initialization – were described by Anderberg (1973). The issue
of initialization has been revisited by several authors since then (e.g., Inaba and Imai,
1994; Ostrovsky et al. 2006). In particular, Arthur and Vassilvitskii (2007) proposed the
sequential dissimilarity-based center selection scheme with probabilities increasing with the
dissimilarity to the nearest center selected so far, and Su and Dy (2007) investigated possible
deterministic initialization methods, including PCA- and variance-based partitioning. The
ISODATA algorithm proposed by Ball and Hall (1965) adjusts the number of clusters by
merging and splitting. Some guidelines for the choice of k follow from the study performed
by Dubes (1987).

k-Centers algorithms have been originally designed and remain to be the most frequently
used for numerical-only data. Extending them to discrete attributes, using modes instead
of means or medians, is conceptually straightforward, but several enhancements may be
needed for the resulting k-modes algorithm to be sufficiently efficient and deliver good
results (Chaturvedi et al. 2001; Huang, 1998). In particular, the quality of clusters created
by k-modes can be improved by a more refined dissimilarity measure (Ng et al. 2007). An
alternative approach to k-centers clustering with discrete attributes, incorporating attribute
value distribution to cluster representation and dissimilarity calculation, was proposed by
San et al. (2004).

The PAM algorithm was introduced by Kaufman and Rousseeuw (1987) and subsequently
described in their book (Kaufman and Rousseeuw 1990), along with several other clustering
algorithms that have acronyms coinciding with female names. An alternative efficient but sim-
pler form of k-medoids clustering that actually better matches the common operation scheme
of k-centers algorithms was presented by Park and Jun (2009). The idea of fuzzy cluster-
ing was first proposed by Ruspini (1969) and then extensively discussed by Bezdek (1981).
Several studies addressed the issue of achieving comprehensible symbolic representations of
clustering models (e.g., Diday and Simon, 1976; Michalski et al. 1981).

As this books covers only clustering algorithms based on explicit dissimilarity or similarity
measures, it makes sense to mention here at least some of the most noteworthy approaches
to clustering that do not fit in this category. These include, in particular, distribution-based
clustering, in which clusters are identified as groups of instances most likely to come from
the same probability distribution. A clustering model can then be represented by a mixture
of probability distributions, the parameters of which have to be identified from the data. This
can be achieved using the expectation-maximization (EM) algorithm (Dempster et al. 1977;
McLachlan and Peel, 2000). Another well-known clustering algorithm is DBSCAN (Ester
et al. 1996), a prominent representative of density-based approaches which identify clusters
as data regions of increased density.
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13

Hierarchical clustering

13.1 Introduction

Hierarchical clustering extends the basic clustering task by requesting that the created clus-
tering model is hierarchical. With nodes of a cluster hierarchy representing clusters, and their
descendants representing their subclusters, such a model can be viewed as a combination of
multiple clustering models, applicable to different domain regions. It is therefore not surpris-
ing that hierarchical clustering is much more computationally demanding than flat clustering.
However, this increased computational complexity does not coincide with increased con-
ceptual or algorithmic complexity, since the process of cluster hierarchy formation can be
organized as a sequence of basic cluster merging or partitioning operations.

13.1.1 Basic approaches

This chapter reviews two approaches to creating hierarchical clustering models, both of which
have very simple formulations:

Agglomerative clustering. A bottom-up approach which starts with many small clusters
and iteratively merges selected clusters until a single root cluster is reached.

Divisive clustering. A top-down approach which starts with a single root cluster and itera-
tively partitions existing clusters into subclusters.

For both these approaches, we will assume that cluster merging or partitioning decisions are
made based on an instance dissimilarity (or similarity) measure. While they explicitly perform
cluster hierarchy formation only, we will see that clustering trees can also be viewed as model
representations and applied to predict cluster membership for new data.

13.1.2 (Dis)similarity measures

Most hierarchical clustering algorithms can be combined with arbitrary dissimilarity or simi-
larity measures, such as those presented in Chapter 11. Similarly as for k-centers clustering,

Data Mining Algorithms: Explained Using R, First Edition. Paweł Cichosz.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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it is the Euclidean distance for continuous attributes, the Hamming distance for discrete
attributes, and Gower’s coefficient for mixed attribute types, which are the most common.
While the latter compensates for different ranges of continuous attributes internally, the
former usually require data preprocessing by standardization or normalization.

The precautions discussed in Sections 11.3.9 and 12.1.2 also apply here. Whenever a
hierarchical clustering model is supposed to be used to predict cluster membership for new
instances (i.e., clustering is performed as a form of predictive modeling), the transforma-
tion parameters determined on the training set have to be retained and re-applied to any new
instances prior to prediction. The general idea of modeling transformations is more extensively
discussed in Section 17.2.5. Standardization and normalization are presented as modeling
transformations in Sections 17.3.1 and 17.3.2.

Example 13.1.1 R code examples illustrating hierarchical clustering algorithms presented in

Ex. 1.5.1
dmr.data

this chapter use the toy weathercl dataset, the very small size of which makes
it possible to manually verify the algorithms’ operation, and two more real-
istic datasets: Iris from the standard datasets package and Glass from the
mlbench package. Dissimilarity measures will be calculated using functions
from Chapter 11 available in the dmr.dissim package, standardization will be performed
using functions from the dmr.trans package, and the cluster package will provide a flat
clustering algorithm for divisive hierarchical clustering. The environment for the examples is
prepared below by loading required R packages and the datasets and partitioning the two

Ex. 17.3.1
dmr.trans

larger ones into training and test subsets. The datasets are standardized using the
std.all and predict.std functions. Notice that standardization parameters
determined on the training sets are applied to both the training and test sets.

library(dmr.dissim)
library(dmr.trans)

library(cluster)

data(weathercl, package="dmr.data")
data(iris)
data(Glass, package="mlbench")

set.seed(12)

ri <- runif(nrow(iris))
i.train <- iris[ri>=0.33,]
i.test <- iris[ri<0.33,]

rg <- runif(nrow(Glass))
g.train <- Glass[rg>=0.33,]
g.test <- Glass[rg<0.33,]

wcl.std <- predict.std(std.all(.̃., weathercl), weathercl)

i.stdm <- std.all(Species̃., i.train)
i.std.train <- predict.std(i.stdm, i.train)
i.std.test <- predict.std(i.stdm, i.test)
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g.stdm <- std.all(Typẽ., g.train)
g.std.train <- predict.std(g.stdm, g.train)
g.std.test <- predict.std(g.stdm, g.test)

13.2 Cluster hierarchies

A hierarchical clustering model is a multilevel hierarchy of clusters. Each internal node of
the hierarchy represents a cluster that is partitioned into subclusters represented by its descen-
dants. Leaves correspond to clusters that are not further divided, and the root node – to the
whole domain. Before proceeding with the presentation of hierarchical clustering algorithms,
it makes sense to spend a while on discussing why such models could be useful and how they
could be represented.

13.2.1 Motivation

Since creating cluster hierarchies takes some considerable additional effort compared to flat
clustering, it is more than reasonable to consider the additional motivation behind it that
would make this effort justified. While the motivation for clustering in general, discussed in
Section 1.5, remains valid, for each of previously discussed application domains, there may
be indeed situations where flat clustering is insufficient.

In applications where the primary purpose of clustering is to discover and describe similar-
ity patterns in the data the need for hierarchical clustering models may arise if those patterns
are believed to be too complex to be adequately captured by a flat clustering model. This is the
case when the diversity in the data is so high that a small number of clusters (typical for flat
clustering) does not provide sufficient intracluster similarity and a large number of indepen-
dent, unorganized clusters does not enable meaningful interpretation. Hierarchical clustering
makes it possible to organize these many clusters into a hierarchy, and use a varying level of
resolution to analyze them. Instead of trying to find a compromise number of clusters, not too
little to hide any useful patterns and not too large to make one lost in overwhelming details, a
cluster tree is produced with the possibility of adjusting the resolution on an ad hoc basis. One
domain for which this is particularly desirable is that of text documents (e.g., press articles,
web pages, discussion group messages, blog posts, etc.), where the variety of topics or styles
may be huge and a hierarchical clustering model may be extremely helpful in understanding
this variety and putting some order into it. Similar needs arise for several biological or med-
ical domains, where similarity structures for organisms or molecular sequences needs to be
identified. This application domain is where hierarchical clustering is originated from.

The variable resolution capability provided by hierarchical clustering that makes it possi-
ble to adjust the number of clusters to the current needs may also be useful in other domains
where the proper level of tradeoff between the number of clusters, their size, and cohesivity
cannot be determined a priori or may dynamically change. A set of flat clustering mod-
els with different numbers of clusters may not fit the bill due to the possible inconsistency
between them.

If the purpose of clustering is not only to provide a useful insights into the domain, but also
to predict hidden attribute values based on cluster membership, then choosing the right number
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of clusters may be critical. With too little clusters, the high intracluster diversity will enable
only rough predictions. With too many clusters, they may not be sufficiently representative
to enable reliable predictions. Different clustering resolution levels may be appropriate for
predicting different hidden attributes. With a hierarchical clustering model it becomes possible
not to decide about the number of clusters once forever, but to retain the capability of using
different numbers of clusters depending on what and how precisely and reliably has to be
predicted. Again, the variable clustering resolution is the key benefit.

For anomaly detection clustering applications, where instances not matching any cluster
are considered suspicious, a hierarchical clustering model makes it possible to much bet-
ter control the trade-off between missed anomalies and false alarms, and use different alarm
thresholds in different domain regions. The resulting anomaly detection system may be then
better adjusted to the actual needs of the particular application.

When clustering is used as a form of preparation for other data mining tasks, to decompose
the domain, the capability of dynamically adjusting the resolution of this decomposition may
also be a benefit. It makes it possible to examine the effects of decomposing into regions of
varying levels of homogeneity. The typical scenario for such clustering applications is to create
separate classification or regression models for all clusters. Adjusting the level of clustering
resolution may have strong impact on the quality of these models.

All these possible benefits by no means imply that hierarchical clustering should always
be preferred to flat clustering. The latter is not only more computationally efficient (for the
most popular algorithms, at least), which makes it applicable to large datasets, but may also
produce better models than a flat clustering model extracted from a hierarchical model.

13.2.2 Model representation

As discussed in Section 1.5.5, a hierarchical clustering model can be thought of as a set of
ordinary (flat) clustering models organized in a tree structure. Each nonleaf node of such a tree
is associated with a flat clustering, with its descendant nodes corresponding to subclusters, and
at the same time represents a cluster of its parent’s model. Formally, a hierarchical clustering
model h ∶ X × → Ch assigns to each instance x ∈ X and the hierarchy level l ∈  (where
 is the set of nonnegative integer numbers) the l-level cluster of x, h(x, l) determined as
follows:

h(x, l) =

{
d0 if l = 0

hh(x,l−1)(x) otherwise
(13.1)

where d0 denotes the root node cluster, corresponding to the whole domain, and hd denotes
the flat clustering model associated with cluster d for any d ∈ Ch. Simply speaking, instances
descend the tree, on each level using the current node’s clustering model to identify the next
level node.

As we will see in subsequent sections, common approaches to creating hierarchical clus-
tering models assume a strictly binary tree representation, with every nonleaf node having
exactly two descendants, corresponding to two subclusters into which the cluster represented
by the node is partitioned. With this assumption, it is easy to see than a hierarchical clustering
tree with K leaf clusters contains K − 1 nonleaf clusters.

Example 13.2.1 To illustrate the idea of hierarchical clustering, the following R code gener-
ates a simple dendrogram plot, which is a visual representation of a complete binary clustering
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tree with four levels and eight leaves. An R dendrogram object is created as a nested list: a
tree is represented by a list containing lists representing its subtrees, with R object attributes
used to store properties required for dendrogram plotting. The obtained plot is presented in
Figure 13.1.

dg.l4 <- lapply(1:8, function(i)
{
d <- list(i)
attr(d, "members") <- 1
attr(d, "height") <- 0
attr(d, "leaf") <- TRUE
attr(d, "label") <- i
‘class<-‘(d, "dendrogram")

})

dgmerge <- function(dg, i1, i2)
{
d <- list(dg[[i1]], dg[[i2]])
attr(d, "members") <- attr(d[[1]], "members")+attr(d[[2]], "members")
attr(d, "height") <- 1+max(attr(d[[1]], "height"), attr(d[[2]], "height"))
attr(d, "leaf") <- FALSE
lab <- if (is.null(attr(d[[1]], "edgetext"))) "label" else "edgetext"
attr(d, "edgetext") <- paste(attr(d[[1]], lab), attr(d[[2]], lab), sep="+")
‘class<-‘(d, "dendrogram")

}

dg.l3 <- lapply(seq(1, length(dg.l4)-1, 2), function(i) dgmerge(dg.l4, i, i+1))
dg.l2 <- lapply(seq(1, length(dg.l3)-1, 2), function(i) dgmerge(dg.l3, i, i+1))
dg.l1 <- lapply(seq(1, length(dg.l2)-1, 2), function(i) dgmerge(dg.l2, i, i+1))

plot(dg.l1[[1]], center=TRUE)

13.3 Agglomerative clustering

The family of agglomerative hierarchical clustering (AHC) algorithms adopts the most natu-
ral and direct method of discovering multilevel instance similarity patterns. Starting from an
initial bottom-level clustering with many tiny (usually singleton) clusters, it builds a cluster-
ing tree by performing multiple merge operations. Each of them creates a new parent cluster
for the two most similar existing clusters. It does not make much sense to consider merging
more than two clusters in one step, since any other highly similar cluster can be merged-in
on a subsequent iteration anyway. This is why clustering trees created by all practically used
agglomerative hierarchical clustering algorithms are binary.

Operating by bottom-up cluster merging gives cluster hierarchies produced by agglom-
erative hierarchical clustering a straightforward interpretation. Each tree node represents a
union of the most similar lower level clusters. If starting from singleton bottom-level clusters,
it therefore fully describes the similarity structure identified in the training set.

13.3.1 Algorithm scheme

The operation of agglomerative hierarchical clustering is more precisely described by the
algorithm scheme presented below. It starts from identifying a set of bottom-level clusters and
assigning training instances to them. This is usually a trivial operation, since either singleton
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Figure 13.1 An illustrative dendrogram plot.

bottom-level clustering is assumed – with a separate cluster for each training instance – or an
initial clustering is provided on input. The set of bottom-level clusters is also used to initial-
ize the set of top-level clusters, i.e., the remaining candidates for merging. The algorithm then
proceeds by iteratively selecting and merging top-level cluster pairs. The merge operation con-
sists of assigning all the training instances from the selected two clusters to their newly created
parent and modifying the set of top-level clusters accordingly. This is continued until only one
top-level cluster remains, which is then the root of the created hierarchical clustering tree.

1: identify the set of bottom-level clusters Cbottom;
2: for all d ∈ Cbottom do
3: identify the corresponding subset of training instances Td ;
4: end for
5: Ctop ∶= Cbottom;
6: while |Ctop| > 1 do
7: d1∗, d2∗ ∶= arg mind1 ,d2∈Ctop

Λ
𝛿,T (d1, d2);

8: create new cluster d∗ as parent of d1∗ and d2∗;
9: Td∗ ∶= Td1∗ ∪ Td2∗ ;

10: Ctop ∶= Ctop − {d1∗, d2∗} ∪ {d∗};
11: end while

The criterion used to select two clusters for merging in agglomerative hierarchical clus-
tering is called the linkage. It is assumed above to be represented by a real-valued evaluation
function Λ𝛿,T the minimum value of which indicates the best candidates for merging. It is
calculated using an instance dissimilarity measure 𝛿 and can be thought of as an extension of
the former, applicable not only to single instances, but also to multi-instance clusters.
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No clustering tree representation is explicitly created in the above pseudocode to keep it
simple. It should be implicitly understood, however, that creating a new cluster as a parent
of two existing clusters does actually perform an update of some structure which – upon the
algorithm’s completion – represents the created clustering tree.

Example 13.3.1 The R code presented below defines the ahc function, which is a simple
implementation of agglomerative hierarchical clustering. Its operation is parameterized by a

Ex. 11.3.1
dmr.dissim

linkage function and a dissimilarity measure. The latter defaults to the Euclidean
distance calculated using the euc.dist function, which also handles discrete
attributes reasonably. There is no default for the former and the example call for
the weathercl data uses a purely illustrative and totally useless cluster-size-based linkage that
always merges the clusters with the least total size. More reasonable linkage functions will
be defined by subsequent examples. Notice that the linkage matrix created at the beginning is
then updated rather than recalculated on each iteration.

The representation of a hierarchical clustering tree created by the ahc function and passed
on output via the merge component of the returned model object is the same as used by
the popular R implementation of agglomerative hierarchical clustering: the hclust function
from the standard stats package. It is a matrix with rows corresponding to all merged (par-
ent) clusters and two columns, specifying the identifiers of their descendants. Merged clusters
are identified by consecutive positive integers starting at 1 (which serve as indices of the cor-
responding rows of the merge matrix), and the initial bottom-level clusters (which have no
corresponding rows in themergematrix) – by consecutive negative integers starting from−1.
The bottom-level clustering is supplied via the bottom argument and returned as the clus-
tering component. The linkage function is also stored as the link component of the model
object. Its remaining components – height and order – are of less interest, since they only
serve the purpose of producing dendrograms, i.e., graphical representations of clustering trees.
The former is a vector which assigns to each merged cluster a height value at which it should be
drawn. It should reflect the order in which clusters are merged (with those merged later receiv-
ing higher height) and is typically set based on the linkage function value for the two merged
clusters. The latter is a vector of bottom-level cluster numbers that specifies their ordering for
dendrogram drawing. The ahc function sets it arbitrarily to the order of merging.

The class attribute of the returned hierarchical clustering model object is set to hcl, to
permit dispatching some methods that will be defined later (including the prediction method).
Due to the compatibility of its representation with that used by the hclust function a con-
version method is also defined which simply alters the class attribute.

## agglomerative hierarchical clustering
ahc <- function(data, linkf=ahc.size, diss=euc.dist, bottom=1:nrow(data))
{

# hclust-compatible cluster id scheme
clid <- function(d)
{ if (d>length(bottom.clusters)) d-length(bottom.clusters) else -d }

dm <- as.matrix(dissmat(data, diss)) # instance dissimilarity matrix for linkage

bottom.clusters <- unique(bottom) # bottom-level clusters
clustering <- bottom # current cluster assignment
clusters <- bottom.clusters # current set of clusters

merge <- NULL # merge matrix
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height <- NULL # height vector
order <- NULL # order vector

links <- outer(1:length(clusters), 1:length(clusters),
Vectorize(function(i1, i2)

if (i1<i2)
linkf(clustering, clusters[i1], clusters[i2], data,

diss, dm)
else NA))

while(length(clusters)>1)
{
mli <- arrayInd(which.min(links), dim(links)) # minimum link index
d1 <- clusters[i1 <- mli[1]]
d2 <- clusters[i2 <- mli[2]]
d12 <- max(clusters)+1

# merge d1 and d2 into d12
merge <- rbind(merge, c(clid(d1), clid(d2)))
height <- c(height, if (is.null(height) || links[i1,i2]>height[length(height)])

links[i1,i2]
else height[length(height)]+height[1]) # height correction

clustering[clustering==d1 | clustering==d2] <- d12
clusters <- clusters[-c(i1, i2)]
links <- links[-c(i1, i2),,drop=FALSE] # remove links for d1
links <- links[,-c(i1, i2),drop=FALSE] # remove links for d2
if (length(clusters)>0)
{
links <- cbind(links, sapply(clusters,

function(d) linkf(clustering, d, d12, data,
diss, dm)))

links <- rbind(links, NA) # keep the matrix square
}
clusters <- c(clusters, d12)

}

‘class<-‘(list(clustering=bottom, link=linkf, data=data,
merge=merge, height=height, order=-t(merge)[t(merge)<0]),

"hcl")
}

## convert to hclust
as.hclust.hcl <- function(model) { ‘class<-‘(unclass(model), c("hclust")) }

## size linkage (dummy)
ahc.size <- function(clustering, d1, d2, data, diss, dm)
{ sum(clustering==d1) + sum(clustering==d2) }

# agglomerative clustering for the weathercl data
wcl.ahc.d <- ahc(wcl.std, linkf=ahc.size)
as.hclust(wcl.ahc.d)

Notice that the ahc function preserves the bottom-level cluster identifiers of the supplied
initial clustering. They are simply instance numbers with the default singleton initialization.

13.3.2 Cluster linkage

Several types of linkage are used for agglomerative hierarchical clustering. Their common
purpose is to extend an instance dissimilarity measure to multi-instance clusters. The specific
way of achieving this extension has of course a substantial impact on the properties of the
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resulting model, just like the underlying dissimilarity measure. Some of the most popular
linkage types are presented below.

13.3.2.1 Single linkage

Single linkage uses the minimum dissimilarity value between instances from two clusters as
the dissimilarity between the clusters:

Λsingle
𝛿,T (d1, d2) = arg min

x1∈Td1

x2∈Td2

𝛿(x1, x2) (13.2)

where Td designates the set of training instances assigned to cluster d. This makes the two
closest instances determine how close the clusters will be considered. Even clusters with many
largely dissimilar instances may be selected for merging with single linkage. This tends to
yield internally diverse clusters.

Example 13.3.2 Single linkage for agglomerative hierarchical clustering is implemented and
demonstrated by the following R code. Notice that the ahc.single function, although
receives both the dissimilarity function and the dissimilarity matrix for the training set, uses
only the latter. It makes sense for linkage functions which are based on dissimilarities between
training instances only. As we will see later, this is not the case for all linkage types, which jus-
tifies passing the dissimilarity function as well. Single-linkage clustering models are created
for the weathercl, Iris, and Glass data.

## single linkage
ahc.single <- function(clustering, d1, d2, data, diss, dm)
{ min(dm[clustering==d1, clustering==d2]) }

# agglomerative hierarchical single-linkage clustering for the weathercl data
wcl.ahc.sl <- ahc(wcl.std, linkf=ahc.single)

# agglomerative hierarchical single-linkage clustering for the iris data
i.ahc.sl <- ahc(i.std.train[,-5], linkf=ahc.single)

# agglomerative hierarchical single-linkage clustering for the Glass data
g.ahc.sl <- ahc(g.std.train[,-10], linkf=ahc.single)

13.3.2.2 Complete linkage

Despite its name suggesting otherwise, complete linkage is based on the dissimilarity between
single instances, just like single linkage. It is, however, the two most distant rather than the
two closest ones that determine the dissimilarity between clusters:

Λcomplete
𝛿,T (d1, d2) = arg max

x1∈Td1

x2∈Td2

𝛿(x1, x2) (13.3)

For two clusters to be merged under complete linkage even the two most dissimilar instances
from these clusters must be sufficiently similar. If this is the case for the two most dissim-
ilar instances, this is also the case for all the remaining ones, which is the true justification
of the term “complete.” This may be expected to yield much more compact clusters than
single linkage.
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Example 13.3.3 The following code implements complete linkage and demonstrates its
application to agglomerative hierarchical clustering using the same datasets as in the previous
example.

## complete linkage
ahc.complete <- function(clustering, d1, d2, data, diss, dm)
{ max(dm[clustering==d1, clustering==d2]) }

# agglomerative hierarchical complete-linkage clustering for the weathercl data
wcl.ahc.cl <- ahc(wcl.std, linkf=ahc.complete)

# agglomerative hierarchical complete-linkage clustering for the iris data
i.ahc.cl <- ahc(i.std.train[,-5], linkf=ahc.complete)

# agglomerative hierarchical complete-linkage clustering for the Glass data
g.ahc.cl <- ahc(g.std.train[,-10], linkf=ahc.complete)

13.3.2.3 Average linkage

With both single and complete linkage being entirely dependent on the dissimilarity between
just two particular instances – the most similar or the most dissimilar ones – both of them
can be misled by outlying or otherwise unreliable attribute values, leading the former to
unjustified merge or the latter to unjustified not-merge decisions. This makes their use with
potentially noisy data problematic. One self-suggesting more robust linkage type is average
linkage, in which the average dissimilarity between instances from two clusters serves as the
dissimilarity between the clusters:

Λaverage
𝛿,T (d1, d2) =

1|Td1 | ⋅ |Td2 | ∑
x1∈Td1

x2∈Td2

𝛿(x1, x2) (13.4)

What makes this linkage popular, besides its increased noise resistance, is that it achieves
a compromise between single and complete linkage, without being ready to merge clusters
based on just two highly similar instances and without refusing to merge clusters based on
just two highly dissimilar instances.

Example 13.3.4 Following the pattern of the previous two examples, the R code presented
below implements and demonstrates average linkage.

## average linkage
ahc.average <- function(clustering, d1, d2, data, diss, dm)
{ mean(dm[clustering==d1, clustering==d2]) }

# agglomerative hierarchical average-linkage clustering for the weathercl data
wcl.ahc.al <- ahc(wcl.std, linkf=ahc.average)

# agglomerative hierarchical average-linkage clustering for the iris data
i.ahc.al <- ahc(i.std.train[,-5], linkf=ahc.average)

# agglomerative hierarchical average-linkage clustering for the Glass data
g.ahc.al <- ahc(g.std.train[,-10], linkf=ahc.average)
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13.3.2.4 Center linkage

Another and somewhat less popular approach to finding compromise between the extremes of
single and complete linkage is center linkage. It borrows the idea of center vectors for cluster
representation from k-centers clustering algorithms discussed in Chapter 12 and measures the
dissimilarity between clusters by the dissimilarity between their centers:

Λcenter
𝛿,T (d1, d2) = 𝛿(𝜁d1

, 𝜁d2
) (13.5)

where 𝜁d denotes the center of cluster d. The most common instantiation of center linkage
uses vectors of attribute value means as centers:

𝜁d,i = mTd (ai) =
1|Td| ∑

x∈Td

ai(x) (13.6)

In this version, it is also known as centroid linkage. For discrete attributes, means can be
replaced by modes. Other types of centers presented in Section 12.4 (vectors of attribute value
medians or cluster medoids) are much less frequently adopted for center linkage.

Unlike the previously presented linkage types, center linkage does not have the monotonic
property. The dissimilarity between clusters may sometimes drop when ascending the tree,
i.e., a merged cluster may turn out closer to other clusters than its descendants. This is usually
undesirable.

Example 13.3.5 The ahc.center function defined by the R code presented below

Ex. 12.3.1
dmr.kcenters

implements average linkage, with vectors of attribute value means (for contin-
uous attributes) or modes (for discrete attributes) used as cluster centers. These
are calculated using the attr.mm function, first appearing the implementation
of k-means clustering. Unlike the previous linkage implementations, it does not
use the supplied instance dissimilarity matrix, but rather the instance dissimilarity function.
This is because cluster centers are not (in general) training instances. Of course, it is a severe
performance loss to precalculate the instance dissimilarity matrix which is not used later, but
we can accept this striking inefficiency in illustrative code.

## center (mean/mode) linkage
ahc.center <- function(clustering, d1, d2, data, diss, dm)
{ diss(attr.mm(data[clustering==d1,]), attr.mm(data[clustering==d2,])) }

# agglomerative hierarchical center-linkage clustering for the weathercl data
wcl.ahc.ml <- ahc(wcl.std, linkf=ahc.center)

# agglomerative hierarchical center-linkage clustering for the iris data
i.ahc.ml <- ahc(i.std.train[,-5], linkf=ahc.center)

# agglomerative hierarchical center-linkage clustering for the Glass data
g.ahc.ml <- ahc(g.std.train[,-10], linkf=ahc.center)

13.3.2.5 Ward linkage

Ward linkage, also referred to as Ward’s method, is an example of more refined linkage
types that are not directly based on dissimilarities between instances from the two clusters
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considered for merging, but rather on an explicit clustering quality criterion or objective
function. Clusters to be merged are selected as those that yield the best top-level cluster-
ing after merging with respect to this criterion. The specific objective function adopted by
Ward linkage is the total sum of squared dissimilarities between cluster members and cluster
centers for all clusters. If used with the Euclidean dissimilarity and mean vectors as cluster
centers, as originally intended, it represents the total intracluster variance and is also called
minimum-variance linkage.

Ward’s criterion depends on all current top-level clusters, not just on the two candidates
for merging being evaluated, but – since a single merge operation does not affect any clusters
other that the two being merged – it is actually equivalent to the following link function:

Λward
𝛿,T (d1, d2) =

∑
x∈Td1∪Td2

𝛿2(x, 𝜁d12
)

−

( ∑
x∈Td1

𝛿2(x, 𝜁d1
) +

∑
x∈Td2

𝛿2(x, 𝜁d2
)

)
(13.7)

where d12 denotes the cluster that would be obtained after merging d1 and d2. This compares
the squared sum of member-center dissimilarities before and after merging clusters d1 and d2.

Example 13.3.6 An implementation of Ward linkage for agglomerative hierarchical clustering
is presented and demonstrated below. Like the center linkage implementation from the pre-
vious example, it uses the instance dissimilarity function rather than the dissimilarity matrix,
which only provides dissimilarities between training instances.

## Ward linkage
ahc.ward <- function(clustering, d1, d2, data, diss, dm)
{
c1 <- attr.mm(data[clustering==d1,])
c2 <- attr.mm(data[clustering==d2,])
c12 <- attr.mm(data[clustering==d1 | clustering==d2,])

sum(sapply(which(clustering==d1 | clustering==d2),
function(i) diss(data[i,], c12)̂2)) -

sum(sapply(which(clustering==d1), function(i) diss(data[i,], c1)̂2)) -
sum(sapply(which(clustering==d2), function(i) diss(data[i,], c2)̂2))

}

# agglomerative hierarchical Ward-linkage clustering for the weathercl data
wcl.ahc.wl <- ahc(wcl.std, linkf=ahc.ward)

# agglomerative hierarchical Ward-linkage clustering for the iris data
i.ahc.wl <- ahc(i.std.train[,-5], linkf=ahc.ward)

# agglomerative hierarchical Ward-linkage clustering for the Glass data
g.ahc.wl <- ahc(g.std.train[,-10], linkf=ahc.ward)

13.3.2.6 Choosing linkage type

Of the two basic “extreme” linkage types, complete linkage is definitely preferred to single
linkage in most applications, as it promotes the compactness and homogeneity of clusters.
Single linkage implicitly assumes that similarity should always be considered transitive, which
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may be justified only for some domains. When searching for a simple compromise between
the single and complete linkage, one would usually prefer average linkage to center linkage,
as the latter loses the desirable linkage monotonicity.

While more complex than complete linkage and less intuitive than average or center
linkage, Ward linkage is believed to usually yield superior cluster hierarchies. This supe-
riority, confirmed by published experimental studies, may be due to its explicit objective
function approach.

13.4 Divisive clustering

While the agglomerative approach to hierarchical clustering may be considered the most
natural and therefore preferred, it is computationally expensive and therefore hardly applica-
ble to large datasets. The divisive approach may not have equally clean and straightforward
interpretation, but can be usually performed more efficiently, particularly given the fact
there is usually no reason to go down to singleton bottom-level clusters. Rather than
repeatedly merging the most similar clusters, it repeatedly partitions selected clusters into
similarity-based subclusters.

13.4.1 Algorithm scheme

A more detailed description of divisive hierarchical clustering is given by the algorithm
scheme presented below. It starts from a single root cluster, to which all training instances are
assigned, and on each iteration considers dividing one existing cluster into subclusters. Clus-
ters that remain to be considered are marked as open and those that already have been divided
or decided to remain leaves are marked as closed. The latter is determined by some stop crite-
ria. Dividing a cluster is performed by partitioning the corresponding set of training instances
into similarity-based subsets and creating descendant clusters corresponding to these subsets.

1: create the root cluster and mark it as open;
2: assign all training instances to the root cluster;
3: while there are open clusters do
4: select an open cluster d;
5: if stop criteria for d are not satisfied then
6: partition Td into similarity-based subsets Td

1 ,T
d
2 , ...;

7: for all i = 1, 2, ... do
8: create new cluster di as an descendant of d;
9: Tdi ∶= Td

i ;
10: end for
11: mark d as a closed node;
12: else
13: mark d as a closed leaf;
14: end if
15: end while

13.4.2 Wrapping a flat clustering algorithm

Partitioning clusters into similarity-based subclusters is most naturally achieved by employ-
ing a flat clustering algorithm. Divisive hierarchical clustering can therefore be considered
a wrapper approach to creating cluster hierarchies which turns a flat clustering algorithm
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into a hierarchical clustering algorithm by its repeated application. While this is possible,
in principle, with arbitrary flat clustering algorithms, most instantiations of this idea use
k-centers clustering algorithms, such as presented in Chapter 12. What sometimes appears
a disadvantage of theirs – the requirement to predetermine the number of clusters – is a very
convenient feature in this application. It makes it possible to enforce bi-partitioning, i.e.,
always creating two subclusters, resulting in a binary clustering tree, such as those created by
the agglomerative approach. While the algorithm scheme presented above does not explicitly
assume either using a flat clustering algorithm for cluster division or bi-partitioning, most of
its practical instantiations do.

13.4.3 Stop criteria

The most ultimate stop criterion for divisive clustering could be reaching singleton bottom-
level clusters, such as those that agglomerative clustering starts from. It is often unnecessary,
and, for larger datasets, hardly possible to go down so deeply. This is why additional stop
criteria are usually employed, such as

• the maximum clustering tree depth,

• the minimum number of instances in a cluster (sufficiently small clusters are not further
divided),

• the minimum intracluster dissimilarity (sufficiently homogeneous clusters are not fur-
ther divided).

Of those, the first is by far the most popular and usually sufficient, since the main purpose of
stop criteria is to avoid the computational expense of building overly deep clustering trees.

Example 13.4.1 The dhc function defined by the R code presented below is a simple
implementation of divisive hierarchical clustering. It uses a flat clustering algorithm specified
via the alg argument to divide clusters. The algorithm is assumed to belong to the k-centers
clustering family and create a flat clustering model that has at least two named components:
cluster membership assignment for training instances and cluster centers. The names of
these components are specified via the cls and cnt arguments, with defaults matching
the output of the pam function from the cluster package, which is the default for alg.
Clusters are bi-partitioned until singleton bottom-level clusters are obtained or the maximum
depth specified via the maxdepth argument is reached. The demonstration calls for the
weathercl, Iris, and Glass data are presented, using both default and – for the two larger
datasets – alternative parameter settings (using the kmeans function from the standard
stats package for flat clustering, limiting tree depth to 3).

## divisive clustering using alg, which is assumed to be called:
## alg(data, 2, ...)
dhc <- function(data, alg=pam, cls="clustering", cnt="medoids", centf=as.numeric,

maxdepth=16, ...)
{
clustering <- rep(1, nrow(data)) # cluster membership assignment
centers <- NULL # cluster centers
merge <- NULL
height <- NULL
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while (any(clustering>0))
{
d <- min(clustering[clustering>0]) # cluster to process
if ((m <- sum(clustering==d))>1 && d<2 ̂maxdepth)
{

cls.d <- if (m>2) (mod.d <- alg(data[clustering==d,], 2, ...))[[cls]] else 1:2
centers <- c(list(if (m>2) mod.d[[cnt]]

else sapply(data[clustering==d,], centf)), centers)
clustering[clustering==d] <- 2*d + (cls.d-1)
merge <- rbind(c(2*d, 2*d+1), merge)
height <- c(height, length(height)+1)

}
else
{
clustering[clustering==d] <- -d # mark as leaf
merge[merge==d] <- -d

}
}

bottom <- unique(clustering)
clustering <- (1:length(bottom))[match(clustering, bottom)] # re-assign ids
merge[merge<0] <- -(1:length(bottom))[match(merge[merge<0], bottom)]
merge[merge>0][order(merge[merge>0])] <- sum(merge>0):1
‘class<-‘(list(clustering=clustering, centers=centers, merge=merge, height=height,

order=-t(merge)[t(merge)<0]),
"hcl")

}

# divisive clustering for the weathercl data
wcl.dhc <- dhc(wcl.std)

# divisive hierarchical clustering for the iris data
i.dhc <- dhc(i.std.train[,-5])
i.dhc.km <- dhc(i.std.train[,-5], alg=kmeans, cls="cluster", cnt="centers")
i.dhc.d3 <- dhc(i.std.train[,-5], maxdepth=3)
i.dhc.km.d3 <- dhc(i.std.train[,-5], alg=kmeans, cls="cluster", cnt="centers",

maxdepth=3)

# divisive hierarchical clustering for the Glass data
g.dhc <- dhc(g.std.train[,-10] )
g.dhc.km <- dhc(g.std.train[,-10], alg=kmeans, cls="cluster", cnt="centers")
g.dhc.d3 <- dhc(g.std.train[,-10], maxdepth=3)
g.dhc.km.d3 <- dhc(g.std.train[,-10], alg=kmeans, cls="cluster", cnt="centers",

maxdepth=3)

As with the previously presented implementation of agglomerative hierarchical cluster-
ing, the model representation created by the dhc function is compatible with that adopted by
the standard R implementation of hierarchical clustering. The merge matrix represents the
cluster–subcluster relationship and the height vector assigns height values in the reverse
order of cluster dividing (using consecutive integers rather than cluster dissimilarities). The
mysterious-looking cluster number reassignments performed after the completion of the main
loop make sure that the cluster numbers occurring in the merge matrix are consecutive inte-
gers, negative for bottom-level clusters and positive for higher level clusters. Bottom level
clusters are numbered in the order of their first appearances in the cluster membership assign-
ments for the training set. In the case of reaching singleton leaves this makes their numbering
consistent with training instance numbers. Unlike for the ahc function, the returned model
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object does not store the linkage function (since there is none), but it contains the centers
component instead, which is a list of cluster centers for all nonleaf clusters.

13.5 Hierarchical clustering visualization

Hierarchical clustering models – much more often and to a much greater extent than flat clus-
tering models – represent knowledge per se, describing the similarity patterns discovered in
the data. To make them truly useful in this role it is therefore essential to have a comprehensible
visualization technique cluster hierarchies. This is achieved using dendrograms – graphical
representations of hierarchical clustering trees.

A dendrogram is a schematically drawn tree, with the vertical position of nodes cor-
responding to the order of cluster merge or divide operations and their horizontal position
adjusted to avoid edge intersections. For agglomerative clustering – for which dendrograms
were originally developed – node heights are proportional to the dissimilarities between their
descendants. For most linkage types, this is guaranteed to put clusters created later on higher
heights, since they are monotone (linkage function values do not decrease during clustering).
For divisive clustering, which normally does not require calculating intercluster dissimilar-
ities, heights may simply correspond to the reverse order of cluster dividing operations. To
remain readable, dendrograms may not have too many leaves and therefore it hardly makes
sense to draw them for cluster hierarchies with more than a few levels.

Example 13.5.1 The following R code defines the plot method for hierarchical clustering
objects. The standard dendrogram plot method is used after converting the clustering model
to a dendrogram object. This is possible due to the compatibility of the model representation
adopted by the agglomerative and divisive clustering implementations presented before with
that of the hclust class (conversion to dendrogram is achieved via the as.dendrogram
method for hclust objects). The dendrograms of the hierarchical clustering models for the
weathercl data created in the previous examples are then plotted. Since both the ahc and
dhc functions use training instance numbers as singleton bottom-level cluster identifiers, the
dendrograms are easily interpretable.

## convert to dendrogram
as.dendrogram.hcl <- function(model) { as.dendrogram(as.hclust(model)) }

## plot a hierarchical clustering dendrogram
plot.hcl <- function(model, ...)
{
plot(as.dendrogram(model), center=TRUE, ...)

}

# dendrogram plots for the weathercl data
par(mfrow=c(3, 2))
plot(wcl.ahc.sl, main="Single linkage")
plot(wcl.ahc.cl, main="Complete linkage")
plot(wcl.ahc.al, main="Average linkage")
plot(wcl.ahc.ml, main="Center linkage")
plot(wcl.ahc.wl, main="Ward linkage")
plot(wcl.dhc, main="Divisive clustering")

The produced dendrogram plots are presented in Figure 13.2. Despite minor differences,
all the hierarchical clustering models roughly represent the same similarity patterns. The
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single-linkage dendrogram is less balanced than the others, with a single instance often being
merged to a larger cluster. Average and center linkage produced exactly the same clustering
tree structures. The results of Ward linkage and divisive clustering are only slightly different
from those. For the former, node heights set based on linkage function values show which
merge operations increased the cluster variance the most. The resulting dendrogram suggests
that there may be three natural clusters in the weathercl data: {1, 3, 4, 8}, {5, 6, 7, 9, 10}, and
{2, 11, 12, 13, 14}.
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Figure 13.2 Dendrograms for the weathercl data.
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13.6 Hierarchical clustering prediction

Hierarchical clustering is most commonly presented as serving the purpose of discovering
and presenting the similarity structure of the training set and the domain from which it comes.
This book’s central theme of predictive modeling makes us always more interested in apply-
ing models to new data than using them to understand the training data. Just like for k-centers
clustering models presented in Chapter 12, essentially the same similarity-based mechanism
that determines cluster membership for training instances may be used to predict cluster mem-
bership for arbitrary new instances.

With hierarchical clustering models, one may consider assigning cluster membership
on all levels of the hierarchy. With many bottom-level clusters, particularly singleton ones,
assigning new instances on the bottom level would make little sense, essentially reducing
to identifying the most similar training instance for each new instance, much like in nearest
neighbor prediction. While in principle performing the prediction on the bottom level only
is sufficient, since higher level clusters can be determined by ascending in the hierarchy, it
would be practically more convenient to have the capability of selecting the clustering tree
level or the number of clusters for prediction.

13.6.1 Cutting cluster hierarchies

One way of adjusting the resolution of hierarchical clustering prediction is cutting hierar-
chical clustering trees to a desired depth or the number of clusters. The latter is particularly
natural and easy, as it can be achieved by trimming the corresponding number of the least
recent merging operations for agglomerative clustering or of the most recent bi-partitioning
operations for divisive clustering.

More specifically, to cut a cluster hierarchy with K leaf clusters to have 1 < k < K leaf
clusters, one needs to trim K − k merging or bi-partitioning steps performed during model
creation. This is clearly more straightforward for divisive clustering models, as it basically
reduces to “undoing” their K − k last iterations. Some clusters that were originally divided into
subclusters are turned back into leaves. For agglomerative clustering models it is apparently
more tricky, since the iterations to “undo” are not the final ones, but the initial ones. If the very
same cluster hierarchy representation is adopted for both agglomerative and hierarchical clus-
tering, though, there is no real difference between them with respect to cutting. Both of them
may involve some technical hassle of updating the data structures used for the hierarchy rep-
resentation (such as re-assigning cluster identifiers), but conceptually they are equally simple.

Example 13.6.1 Cluster hierarchy cutting is implemented and demonstrated by the follow-
ing R code. Most of the complexity of the cut.hcl function is only necessary to adjust
cluster numbering after removing rows from the merge matrix, so that they remain consec-
utive integers (positive for internal nodes and negative for leaves). Demonstration calls cut
the hierarchical clustering models for the weathercl data to four clusters and for the larger
datasets – to as many clusters as previously obtained by divisive clustering with a maximum
depth of 3. The divisive clustering models obtained by cutting are verified to be exactly the
same as built with a depth limit.

## cut a hierarchical clustering model to k clusters
cut.hcl <- function(model, k)
{
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nc <- maxc <- nrow(model$merge)+1 # number of clusters
k <- clip.val(k, 2, nc) # make sure k is in the valid range

clustering <- model$clustering
merge <- model$merge
height <- model$height
while (nc>k)
{
mr <- merge[1,] # merge to remove
merge <- merge[-1,]
clustering[clustering %in% -mr] <- (maxc <- maxc + 1) # id for new leaf
merge[merge>0] <- merge[merge>0]-1 # shift node numbers
merge[merge==0] <- -maxc
height <- height[-1]-(height[2]-height[1])
nc <- nc-1

}

bottom <- unique(clustering)
clustering <- (1:length(bottom))[match(clustering, bottom)] # re-assign ids
merge[merge<0] <- -(1:length(bottom))[match(merge[merge<0], -bottom)]

model$clustering <- clustering
model$centers <- model$centers[-(1:(length(model$centers)-k+1))]
model$merge <- merge
model$height <- height
model$order <- -t(merge)[t(merge)<0]
model

}

# cutting hierarchical clustering trees for the weathercl data
wcl.ahc.sl.c4 <- cut(wcl.ahc.sl, 4)
wcl.ahc.cl.c4 <- cut(wcl.ahc.cl, 4)
wcl.dhc.c4 <- cut(wcl.dhc, 4)

# cutting hierarchical clustering trees for the iris data
i.ahc.sl.cd3 <- cut(i.ahc.sl, max(i.dhc.d3$clustering))
i.ahc.cl.cd3 <- cut(i.ahc.cl, max(i.dhc.d3$clustering))
i.ahc.al.cd3 <- cut(i.ahc.al, max(i.dhc.d3$clustering))
i.ahc.ml.cd3 <- cut(i.ahc.ml, max(i.dhc.d3$clustering))
i.ahc.wl.cd3 <- cut(i.ahc.wl, max(i.dhc.d3$clustering))
i.dhc.cd3 <- cut(i.dhc, max(i.dhc.d3$clustering))
# verify i.dhc.cd3 and i.dhc.d3 are the same

all(i.dhc.cd3$clustering==i.dhc.d3$clustering)
all(i.dhc.cd3$merge==i.dhc.d3$merge)
all(sapply(1:length(i.dhc.cd3$centers),

function(d) all(i.dhc.cd3$centers[[d]]==i.dhc.d3$centers[[d]])))

# cutting hierarchical clustering trees for the Glass data
g.ahc.sl.cd3 <- cut(g.ahc.sl, max(g.dhc.d3$clustering))
g.ahc.cl.cd3 <- cut(g.ahc.cl, max(g.dhc.d3$clustering))
g.ahc.al.cd3 <- cut(g.ahc.al, max(g.dhc.d3$clustering))
g.ahc.ml.cd3 <- cut(g.ahc.ml, max(g.dhc.d3$clustering))
g.ahc.wl.cd3 <- cut(g.ahc.wl, max(g.dhc.d3$clustering))
g.dhc.cd3 <- cut(g.dhc, max(g.dhc.d3$clustering))
# verify g.dhc.cd3 and g.dhc.d3 are the same

all(g.dhc.cd3$clustering==g.dhc.d3$clustering)
all(g.dhc.cd3$merge==g.dhc.d3$merge)
all(sapply(1:length(g.dhc.cd3$centers),

function(d) all(g.dhc.cd3$centers[[d]]==g.dhc.d3$centers[[d]])))
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13.6.2 Cluster membership assignment

With the capability of cutting cluster hierarchies available, we only need to address
bottom-level cluster membership assignment to provide a complete hierarchical clustering
prediction capability. This can be directly achieved by determining the level of dissimilarity
between each instance and the bottom-level clusters of the hierarchical clustering model and
choosing the least dissimilar instance for each cluster.

It makes sense to measure the instance/cluster dissimilarity differently for agglomerative
and divisive hierarchical models, to match the different ways in which they are created. For
the former, this is clearly a special case of the general intercluster dissimilarity measurement
problem that is solved using linkage functions. Assuming the linkage function used for model
creation is retained in model representation, it can be applied to measure instance-cluster
dissimilarity by temporarily treating new instances as singleton clusters. For divisive
clustering models, created with a k-centers clustering algorithm used for dividing clusters,
it is definitely more reasonable to apply the cluster membership assignment scheme of the
latter. In this case, bottom-level cluster centers determined during model creation have to be
retained and used during prediction.

Example 13.6.2 Hierarchical clustering prediction is implemented and demonstrated by the
below R code. The prediction method for hcl objects determines whether the model was
created by the ahc or dhc function and calls either the predict.ahc or predict.dhc
function to do the real job of assigning instances from the dataset to bottom-level clusters.
Demonstration calls generate the predictions of selected hierarchical clustering models cre-
ated before. For the Iris and Glass data, the models cut down in the previous example are
applied to the test subsets.

## hierarchical clustering prediction
predict.hcl <- function(model, data, ...)
{
if (!is.null(model$data) && !is.null(model$link))
predict.ahc(model, data, ...)

else if (!is.null(model$centers))
predict.dhc(model, data, ...)

}

## agglomerative hierarchical clustering prediction
predict.ahc <- function(model, data, diss=euc.dist)
{
ext.data <- rbind(model$data, data)
dm <- as.matrix(dissmat(ext.data, diss)) # dissimilarity matrix for linkage

clusters <- sort(unique(model$clustering))
x.clusters <- length(clusters) + 1:nrow(data)
ext.clustering <- c(model$clustering, x.clusters)

links <- outer(clusters, x.clusters,
Vectorize(function(d1, d2)

model$link(ext.clustering, d1, d2, ext.data, diss, dm)))
apply(links, 2, which.min)

}

## divisive hierarchical clustering prediction
predict.dhc <- function(model, data, diss=euc.dist)
{
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centers <- do.call(rbind,
lapply(1:nrow(model$merge),

function(i)
model$centers[[i]][model$merge[i,]<0,]))

clusters <- -t(model$merge)[t(model$merge)<0]
centers <- centers[match(1:length(clusters), clusters),] # reorder centers
k.centers.assign(centers, data, diss)

}

# hierarchical clustering prediction for the weathercl data
predict(wcl.ahc.cl, wcl.std)
predict(wcl.dhc, wcl.std)

# hierarchical clustering prediction for the iris data
i.ahc.cl.cd3.pred <- predict(i.ahc.cl.cd3, i.std.test[,-5])
i.ahc.sl.cd3.pred <- predict(i.ahc.sl.cd3, i.std.test[,-5])
i.ahc.al.cd3.pred <- predict(i.ahc.al.cd3, i.std.test[,-5])
i.ahc.ml.cd3.pred <- predict(i.ahc.ml.cd3, i.std.test[,-5])
i.ahc.wl.cd3.pred <- predict(i.ahc.wl.cd3, i.std.test[,-5])
i.dhc.cd3.pred <- predict(i.dhc.cd3, i.std.test[,-5])

# hierarchical clustering prediction for the Glass data
g.ahc.cl.cd3.pred <- predict(g.ahc.cl.cd3, g.std.test[,-10])
g.ahc.sl.cd3.pred <- predict(g.ahc.sl.cd3, g.std.test[,-10])
g.ahc.al.cd3.pred <- predict(g.ahc.al.cd3, g.std.test[,-10])
g.ahc.ml.cd3.pred <- predict(g.ahc.ml.cd3, g.std.test[,-10])
g.ahc.wl.cd3.pred <- predict(g.ahc.wl.cd3, g.std.test[,-10])
g.dhc.cd3.pred <- predict(g.dhc.cd3, g.std.test[,-10])

13.7 Conclusion

The need for hierarchical clustering naturally emerges in domains where it is not only required
to discover similarity-based groups, but also organize them. This is a valuable capability wher-
ever the complexity of similarity patterns exceeds the limited representation power of flat
clustering models. Cluster hierarchies, organized in the natural and intuitive general to specific
order, help understand the domain. They also make it possible to postpone the decision about
the proper granularity of clustering till the time of its actual application and effortlessly revise
this decision as often as desirable. These capabilities come at an increased computational
expense, particularly when using the dominating agglomerative approach, but this has been at
least partially ameliorated by improved computing hardware performance. The computational
expense for larger datasets can be reduced by starting from a moderate number of nonsingleton
bottom-level clusters or using the divisive approach with a limited maximum depth.

Hierarchical clustering, more than other types of clustering, tends to be presented as a
form of descriptive rather than predictive modeling. Even if this view is indeed fully ade-
quate for the majority of its applications, cluster hierarchies can serve as predictive models as
well. As explained and demonstrated above, one can assign new data instances to clustering
tree leaves or nodes. This makes hierarchical clustering useful for applications where it is not
sufficient to determine the cluster membership of training instances, but the prediction capa-
bility is essential. This is the case when clustering is used for inferring about hidden attribute
values, detecting isolated anomalous instances, or decomposing the domain for other types
of predictive modeling. While it is by far more common to employ flat clustering models
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in such applications, the enhanced variable-resolution model representation power may be a
worthwhile to consider advantage.

13.8 Further readings

Hierarchical clustering algorithms may not be similarly widespread as k-centers algorithms
in practical applications, but they belong to the set of core data mining techniques that
are discussed in most data mining books, sometimes rather briefly (e.g., Cios et al. 2007;
Hastie et al. 2011; Witten et al. 2011), but sometimes also quite extensively (e.g., Han
et al. 2011; Tan et al. 2013; Theodoridis and Koutroumbas 2008; Webb 2002). Clustering
survey books and articles usually cover the major hierarchical approaches as well (Everitt
et al. 2011; Gordon 1999; Jain and Dubes 1988; Jain et al. 1999). Kaufman and Rousseeuw
(1990) included representatives of the agglomerative and divisive hierarchical clustering
approaches in their collection of female-named clustering algorithms. These are the AGNES
(agglomerative nesting) and DIANA (divisive analysis) algorithms, the R implementations
of which are available in the cluster package. A brief survey of hierarchical clustering
visualization techniques was presented by Freeman (1994). Since hierarchical clustering
algorithms are often applied to text documents, they are also covered by the text clustering
literature (e.g., Aggarwal and Zhai 2012).

The original primary motivation behind hierarchical clustering that drove its initial
development was automated biological taxonomy creation (Sneath and Sokal 1973). This led
Sneath (1957) to propose the first single-linkage clustering algorithm, although the underlying
idea can be traced back to the earlier work of Florek et al. (1951). Other linkage types, still
popular today, were proposed within a decade since then: average and center linkage, (Sokal
and Michener 1958), complete linkage (McQuitty 1960), and Ward linkage (Ward 1963).
Another early linkage type, not described in this chapter, is known as McQuitty linkage
(McQuitty 1966). It determines the dissimilarity between a newly merged cluster, obtained
by merging clusters d1 and d1, and any other cluster d, as the average of the dissimilarities
between d1 and d, and d2 and d. Experimental comparisons suggest that out of those classic
linkage types it is Ward linkage that usually performs best (Blashfield 1976; Ferreira and
Hitchcock 2009; Kuiper and Fisher 1975). It was more recently generalized by Székely and
Rizzo (2005) by permitting the adjustment of the power of the Euclidean distance used in
the objective function. Gowda and Krishna (1978) presented an algorithm that uses multiple
nearest neighbors for agglomerative clustering, which can be viewed as an extension of
single linkage. Recently, Zhang et al. (2013) proposed a graph-structural linkage type.

Agglomerative hierarchical clustering with specific linkage types can often be performed
more efficiently than suggested by the generic algorithm scheme and illustrative implemen-
tation presented in this chapter. Such an efficient algorithm was first proposed for single
linkage by Sibson (1973) and then, following a similar pattern, for complete linkage by Defays
(1977). Even if sticking with the generic agglomerative algorithm, there are some noteworthy
improvement possibilities. Lance and Williams (1967) derived recursive dissimilarity update
formulae that make it possible to avoid re-calculating linkage function values after cluster
merging. Wishart (1969) combined this approach with Ward linkage.

There are at least two noteworthy hierarchical clustering algorithms that do not follow
either the agglomerative or divisive approaches presented in this chapter. One is the Cobweb
algorithm (Fisher 1987) which incrementally constructs a clustering tree by processing one
training instance at a time and using a probabilistic objective function to choose one of a few
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available tree modification operators. The other is the BIRCH algorithm (Zhang et al. 1996),
designed to efficiently handle large datasets and resist noise. It creates an initial clustering tree
in a single data scan, adjusting its resolution to memory limits, then further reduces its size if
possible and needed, and finally performs clustering of its leaves.
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14

Clustering model evaluation

14.1 Introduction

The challenge of reliable model evaluation, discussed for classification and regression models
in Chapters 7 and 10, respectively, is similarly important for clustering models. Unlike for the
former, though, where there are certain natural quality criteria, for the latter it is not so clear
how to assess their quality in an objective way. This results in a much greater number of dif-
ferent performance measures being proposed and used on one hand, and in some considerable
reserve with which their outcomes tend to be taken on the other hand.

Even if it is not so widely realized as for more common classification and regression model
evaluation, when evaluating clustering models one may also be concerned with their gener-
alization properties. For any performance measure its value on a particular dataset (dataset
performance) is therefore a possibly imperfect estimator of the corresponding value on the
whole domain (true performance).

Clustering quality measures may, but do not have to, explicitly use instance dissimilarity
or similarity measures presented in Chapter 11. Those that do are often applied to evaluate
models created by dissimilarity-based clustering algorithms and then it usually makes most
sense to adopt the same dissimilarity measure for model creation and evaluation.

14.1.1 Dataset performance

The dataset performance of a clustering model is assessed directly by calculating one or more
selected performance measures on a particular dataset. Since there is no predefined target
attribute to be approximated, they are primarily supposed to measure how well the model
captures similarity patterns exhibited by the data. This is quite different from measuring the
predictive performance of classification and regression models by comparing predicted and
true target attribute values. To underline this difference, clustering performance measures will
be referred to as quality measures in this chapter.

Data Mining Algorithms: Explained Using R, First Edition. Paweł Cichosz.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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14.1.2 Training performance

Evaluating a clustering model on the training set that was used to create the model determines
the model’s training performance. This is where clustering model evaluation usually begins.
Unlike for classification and regression models, it may also end here sometimes, particularly
when there is no intention to ever apply the evaluated model to new data, but its sole purpose
is to provide insights about the training set.

14.1.3 True performance

The true performance of a clustering model is represented by the expected values of one or
more selected clustering quality measures on the whole domain. This reflects the quality of
cluster membership predictions for arbitrary new instances from the given domain and can be
estimated by dataset performance for appropriately selected datasets. This is the responsibility
of model evaluation procedures, which handle data splitting into training and evaluation or test
subsets and use the latter to produce reliable true performance estimates. The same procedures
as presented in Section 7.3 for classification models are applicable for clustering models as
well and therefore do not need to be discussed here.

However, it is not uncommon for clustering models to be evaluated on the training set only.
This is because, unlike performance measures for classification or regression models, cluster-
ing quality measures can be hardly interpreted or used other than by comparing their values for
a number of models. Whereas the misclassification error or the mean square error, for example,
have straightforward algorithm-independent interpretation that makes it possible to use them
as final model acceptance criteria for applications, most if not all measures presented in this
chapter yield numbers that are only meaningful when compared across a set of candidate mod-
els and do not serve any other purpose than model selection. The latter (including the choice
of clustering algorithms and their parameters) is indeed quite often possible based on training
performance only. It may be optimistically biased and unreliable due to overfitting, but – if not
used mechanically, but combined with some reasonable overfitting-prevention constraints (in
particular, for the maximum number of clusters) – may successfully identify the best models.

Sparing some nontraining data for model evaluation always remains a good idea and
should be preferred to measuring training performance only whenever possible. The simplest
hold-out evaluation procedure should be sufficient in most cases, since its major problem – the
pessimistic evaluation bias due to limited training set size – is not a severe disadvantage for
clustering model evaluation. As discussed in Section 7.3.1, what is actually evaluated by any
evaluation procedure is a modeling procedure rather than a particular model, and when the best
modeling procedure has been identified, it can be re-applied to the whole available dataset to
create the final model.

Example 14.1.1 Clustering quality measures described in this chapter will be illustrated in a
series of R language examples by applying them to a set of models created using the PAM
algorithm, which is a variation of k-medoids clustering mentioned in Section 12.4.2. The
environment for these demonstrations is set up by the R code presented below. It loads several
DMR packages that will be used, the cluster package which provides an implementation
of the PAM algorithm, and the Iris dataset available in the standard datasets package. Then

Ex. 17.3.1
dmr.trans

it splits the dataset into training and test subsets, applies the standardization trans-
formation using the std.all and predict.std functions, and creates several
PAM models (with different numbers of clusters and dissimilarity measures) on
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the training subset. To ensure the exact reproducibility of results, the random generator seed
is explicitly set.

library(dmr.claseval)
library(dmr.stats)
library(dmr.trans)
library(dmr.util)

library(cluster)

data(iris)

set.seed(12)
ri <- runif(nrow(iris))
i.train <- iris[ri>=0.33,]
i.test <- iris[ri<0.33,]

i.stdm <- std.all(Species̃., i.train)
i.std.train <- predict.std(i.stdm, i.train)
i.std.test <- predict.std(i.stdm, i.test)

i.pam2.euc <- pam(i.std.train[,-5], 2, metric="euclidean")
i.pam3.euc <- pam(i.std.train[,-5], 3, metric="euclidean")
i.pam5.euc <- pam(i.std.train[,-5], 5, metric="euclidean")
i.pam7.euc <- pam(i.std.train[,-5], 7, metric="euclidean")

i.pam2.man <- pam(i.std.train[,-5], 2, metric="manhattan")
i.pam3.man <- pam(i.std.train[,-5], 3, metric="manhattan")
i.pam5.man <- pam(i.std.train[,-5], 5, metric="manhattan")
i.pam7.man <- pam(i.std.train[,-5], 7, metric="manhattan")

Example 14.1.2 There is no prediction method for pam objects available in the cluster
package and therefore cluster membership can be directly determined for training instances
only. To make clustering quality measures implemented by subsequent examples applicable
to arbitrary datasets, the R code presented below defines the prediction method for pam
clustering models. The prediction process boils down to dissimilarity calculation for new
instances and cluster centers, and choosing the closest cluster for each instance, exactly

Ex. 12.2.1
dmr.kcenters

as in the instance assignment phase of k-centers algorithms. This is performed
using the k.centers.assign function. The daisy function from the
cluster package is used for dissimilarity calculation by default, for maxi-
mum compatibility with pam. The same prediction method is also applicable
to clara objects – models created by the clara function from the same package, which an
approximate k-medoids clustering algorithm using internal subsampling for large data. It is
demonstrated by generating test set predictions for the models created in the previous example.

## prediction for pam clustering models (only if created with stand=FALSE)
## using daisy or dist (selected via the dmf argument) for dissimilarity calculation
predict.pam <- function(model, data, dmf=daisy, ...)
{
k.centers.assign(model$medoids, data,

function(x1, x2) dmf(rbind(x1, x2), ...))
}
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## the same is applicable to clara clustering models
predict.clara <- predict.pam

# test set predictions
i.pam2.euc.pred <- predict(i.pam2.euc, i.std.test[,-5])
i.pam3.euc.pred <- predict(i.pam3.euc, i.std.test[,-5])
i.pam5.euc.pred <- predict(i.pam5.euc, i.std.test[,-5])
i.pam7.euc.pred <- predict(i.pam7.euc, i.std.test[,-5])

i.pam2.man.pred <- predict(i.pam2.man, i.std.test[,-5])
i.pam3.man.pred <- predict(i.pam3.man, i.std.test[,-5])
i.pam5.man.pred <- predict(i.pam5.man, i.std.test[,-5])
i.pam7.man.pred <- predict(i.pam7.man, i.std.test[,-5])

14.2 Per-cluster quality measures

There are a number of quality measures designed to describe the level of a particular cluster’s
cohesion and/or its separation from other clusters. They make it possible to get insight into
the properties of individual clusters and differences between them, which may be interesting
even if it does not directly translate into the evaluation of the whole clustering model. Some
of these per-cluster measures can be appropriately aggregated into overall clustering quality
measures, though.

14.2.1 Diameter

The diameter of a cluster is the maximum dissimilarity between its members. For cluster d on
dataset S, with respect to dissimilarity measure 𝛿, it can be written as

diam𝛿,S(d) = max
x1, x2∈Sd

𝛿(x1, x2) (14.1)

where Sd denotes the subset of S assigned to cluster d.
Compact clusters, which are clearly preferred, achieve small diameter values. It is usually

also desirable for clusters of the same clustering model not to have considerably different
diameters. When this is not the case, i.e., the diameters of some clusters are substantially below
average, one could suspect that the number of clusters is too high. On the other hand, a single
high-diameter cluster or a small number of clusters with considerably above-average diameter
values may indicate too little clusters. For k-centers clustering algorithms these can be used
as rough heuristics for the selection of k. In particular, one possible approach to choosing k
could be to identify a range in which the maximum diameter remains stable, and then select
k from that range that yields the most uniform diameter values.

Unfortunately, conclusions drawn from analyzing cluster diameters may not be quite reli-
able if the dataset suffers from noise, and in particular contains outliers, since in such cir-
cumstances the maximum intracluster dissimilarity is likely to be disrupted. It is therefore
recommended to carefully examine and possibly fix data quality issues before using the diam-
eter to make clustering model selection decisions.

Example 14.2.1 The following R code implements diameter calculation, using the daisy
function from the cluster package to create the dissimilarity matrix, used to find the
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maximum dissimilarity in each cluster. It is then applied to determine the diameters of all
clusters in all the PAM clustering models created in the previous example, both on the training
and test sets. The optional stand parameter may be used to instruct the daisy function
to perform internal standardization prior to dissimilarity calculation, but this capability will
not be used in this and subsequent examples, since the parameters of internal standardization
are not retained and therefore cannot be re-applied to new data. This has been discussed in
Sections 11.3.9 and 12.1.2.

diameter <- function(clustering, data, metric="euclidean", stand=FALSE)
{
clusters <- sort(unique(clustering))
dm <- as.matrix(daisy(data, metric, stand))
‘names<-‘(sapply(clusters, function(d) max(dm[clustering==d,clustering==d])),

clusters)
}

# training set diameter
diameter(i.pam2.euc$clustering, i.std.train[,-5])
diameter(i.pam3.euc$clustering, i.std.train[,-5])
diameter(i.pam5.euc$clustering, i.std.train[,-5])
diameter(i.pam7.euc$clustering, i.std.train[,-5])

diameter(i.pam2.man$clustering, i.std.train[,-5], metric="manhattan")
diameter(i.pam3.man$clustering, i.std.train[,-5], metric="manhattan")
diameter(i.pam5.man$clustering, i.std.train[,-5], metric="manhattan")
diameter(i.pam7.man$clustering, i.std.train[,-5], metric="manhattan")

# test set diameter
diameter(i.pam2.euc.pred, i.std.test[,-5])
diameter(i.pam3.euc.pred, i.std.test[,-5])
diameter(i.pam5.euc.pred, i.std.test[,-5])
diameter(i.pam7.euc.pred, i.std.test[,-5])

diameter(i.pam2.man.pred, i.std.test[,-5], metric="manhattan")
diameter(i.pam3.man.pred, i.std.test[,-5], metric="manhattan")
diameter(i.pam5.man.pred, i.std.test[,-5], metric="manhattan")
diameter(i.pam7.man.pred, i.std.test[,-5], metric="manhattan")

Notice how the maximum cluster diameter is reduced at first when adding more clusters
and then it tends to remain stable, but further increasing the number of clusters introduces
more variability into cluster diameters (some low-diameter clusters are introduced). This is
observed when evaluating on both the training set and the test set.

14.2.2 Separation

The separation of a cluster measures the degree to which it is distinct from other clusters. It
is typically defined as the minimum dissimilarity between an instance from this cluster and
an instance from another cluster:

sep𝛿,S(d) = min
x1∈Sd

x2∈S−Sd

𝛿(x1, x2) (14.2)

Ideally, one would prefer relatively uniform and high cluster separation values, but this is
not always possible for realistic datasets. Substantial differences in cluster separation do not
necessarily indicate a poor clustering model (e.g., an incorrectly chosen number of clusters
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for k-centers algorithms), since they may result from the nature of the data. Like the diameter,
the separation is prone to disruptions due to outlying attribute values, being based on a single
minimum dissimilarity.

Example 14.2.2 Separation calculation is illustrated by the R code presented below, which
defines an appropriate function and applies it to evaluate each cluster of all the PAM mod-
els created before. As in the previous example, the daisy function is used to create the
dissimilarity matrix, this time for the complete dataset.

separation <- function(clustering, data, metric="euclidean", stand=FALSE)
{
clusters <- sort(unique(clustering))
dm <- as.matrix(daisy(data, metric, stand))
‘names<-‘(sapply(clusters, function(d) min(dm[clustering==d,clustering!=d])),

clusters)
}

# training set separation
separation(i.pam2.euc$clustering, i.std.train[,-5])
separation(i.pam3.euc$clustering, i.std.train[,-5])
separation(i.pam5.euc$clustering, i.std.train[,-5])
separation(i.pam7.euc$clustering, i.std.train[,-5])

separation(i.pam2.man$clustering, i.std.train[,-5], metric="manhattan")
separation(i.pam3.man$clustering, i.std.train[,-5], metric="manhattan")
separation(i.pam5.man$clustering, i.std.train[,-5], metric="manhattan")
separation(i.pam7.man$clustering, i.std.train[,-5], metric="manhattan")

# test set separation
separation(i.pam2.euc.pred, i.std.test[,-5])
separation(i.pam3.euc.pred, i.std.test[,-5])
separation(i.pam5.euc.pred, i.std.test[,-5])
separation(i.pam7.euc.pred, i.std.test[,-5])

separation(i.pam2.man.pred, i.std.test[,-5], metric="manhattan")
separation(i.pam3.man.pred, i.std.test[,-5], metric="manhattan")
separation(i.pam5.man.pred, i.std.test[,-5], metric="manhattan")
separation(i.pam7.man.pred, i.std.test[,-5], metric="manhattan")

As we can see, the separation tends to decrease with increasing number of clusters, which
is to be expected, although in most cases some highly separated clusters remain. The test set
separation is usually below the training set one.

14.2.3 Isolation

Isolation is not a quality measure strictly speaking, but rather a property that can be expected
for particularly compact and distinctive clusters. It is usually defined based on the diameter
and separation. Basically, it is desirable (but not necessarily very common) that the diameter
of a good cluster is less than its separation. Clusters with this property are considered isolated.
A stronger form of isolation occurs if for any cluster member its maximum dissimilarity to
any other member of the same cluster is less than its minimum dissimilarity to any instance
from other clusters.

Example 14.2.3 The R code presented below implements and demonstrates the application
of a function that determines cluster isolation, returning L for isolated clusters (with the
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diameter below the separation), L* for more strongly isolated clusters, and no for clusters
that are not isolated.

isolation <- function(clustering, data, metric="euclidean", stand=FALSE)
{
clusters <- sort(unique(clustering))
dm <- as.matrix(daisy(data, metric, stand))
diam <- diameter(clustering, data, metric, stand)
sep <- separation(clustering, data, metric, stand)

is <- sapply(clusters,
function(d)
if (all(apply(dm[clustering==d,clustering==d,drop=FALSE], 1, max)<

apply(dm[clustering==d,clustering!=d,drop=FALSE], 1, min)))
"L*"

else if (diam[d]<sep[d])
"L"

else
"no")

‘names<-‘(factor(is, levels=c("no", "L", "L*")), clusters)
}

# training set isolation
isolation(i.pam2.euc$clustering, i.std.train[,-5])
isolation(i.pam3.euc$clustering, i.std.train[,-5])
isolation(i.pam5.euc$clustering, i.std.train[,-5])
isolation(i.pam7.euc$clustering, i.std.train[,-5])

isolation(i.pam2.man$clustering, i.std.train[,-5], metric="manhattan")
isolation(i.pam3.man$clustering, i.std.train[,-5], metric="manhattan")
isolation(i.pam5.man$clustering, i.std.train[,-5], metric="manhattan")
isolation(i.pam7.man$clustering, i.std.train[,-5], metric="manhattan")

# test set isolation
isolation(i.pam2.euc.pred, i.std.test[,-5])
isolation(i.pam3.euc.pred, i.std.test[,-5])
isolation(i.pam5.euc.pred, i.std.test[,-5])
isolation(i.pam7.euc.pred, i.std.test[,-5])

isolation(i.pam2.man.pred, i.std.test[,-5], metric="manhattan")
isolation(i.pam3.man.pred, i.std.test[,-5], metric="manhattan")
isolation(i.pam5.man.pred, i.std.test[,-5], metric="manhattan")
isolation(i.pam7.man.pred, i.std.test[,-5], metric="manhattan")

No isolated clusters are found based on the training set, but some of the evaluated models
contain isolated clusters on the test set.

14.2.4 Silhouette width

The silhouette width is related to the isolation and can be thought of as a more subtle, numer-
ically expressed measure thereof. It is actually calculated on a per-instance basis, and then
aggregated over all cluster members. The silhouette width of instance x from cluster d with
respect to dissimilarity measure 𝛿 on dataset S is defined as follows:

sw𝛿,S(x, d) =
mind′ Δ𝛿,S(x, d′) − Δ𝛿,S(x)

max{mind′ Δ𝛿,S(x, d′),Δ𝛿,S(x)}
(14.3)
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where Δ𝛿,S(x, d′) is the average dissimilarity between x and all instances from another
cluster d′:

Δ𝛿,S(x, d′) = 1|Sd′ | ∑
x′∈Sd′

𝛿(x, x′) (14.4)

and Δ𝛿,S(x) is the average dissimilarity between x and other instances from its cluster d:

Δ𝛿,S(x) =
1|Sd| − 1

∑
x′∈Sd−{x}

𝛿(x, x′) (14.5)

The silhouette width of an instance is a number from the [−1, 1] interval that represents the
difference between its average dissimilarity to instances from the closest (according to average
dissimilarity) other cluster and other instances from the same cluster, normalized by dividing
by the greater of these two.

Significantly positive values, particularly approaching 1, indicate that an instance is very
well placed in its cluster, being much closer to its “fellow” members than to any “strangers”
from other clusters. Values close to 0 and negative values indicate a possibly misplaced
instance that is not much (or not at all) closer to its “fellows” than to some “strangers.”
A cluster in which all instances have positive silhouette width values is likely but not
guaranteed to be isolated. This is because – unlike the diameter and separation used to judge
isolation – the silhouette width is based on average dissimilarities. The silhouette width
averaged over all members of a cluster can be used as a measure of its quality, taking into
account both its cohesion and separation:

sw𝛿,S(d) =
1|Sd| ∑

x∈Sd

sw𝛿,S(x, d) (14.6)

Contrary to the diameter and separation, it does not depend on single maximally dissimilar
or similar instances, but averages the dissimilarity between all instances within a cluster and
between two clusters. High values indicate good clusters. When using k-centers clustering
algorithms, there is probably no good reason to increase k if this yields additional clusters
with significantly reduced silhouette width values.

Nonincreasingly ordered per-instance silhouette width values for each cluster, presented
graphically as horizontal lines or bars, yield so-called silhouette plots. They make it immedi-
ately visible how many high and low silhouette width values occur in each cluster and whether
clusters differ substantially with respect to the silhouette width distribution. This is a very
convenient and popular visual approach to assessing the quality of clusters.

Example 14.2.4 The following R code implements and demonstrates silhouette width calcula-
tion. The silwidth function applied to a cluster returns the vector of its members’ silhouette
width values. Then the silwidth.cluster function gets per-cluster averages thereof.
These two are applied to determine the per-cluster average silhouette width for the clustering
models created in Example 14.1.1, as well as to generate silhouette plots for selected models
(k = 2 and k = 3, Euclidean dissimilarity). The plots are presented in Figures 14.1 and 14.2.
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silwidth <- function(clustering, d, data, metric="euclidean", stand=FALSE)
{
if (sum(clustering==d)==1)
1 # singleton cluster

else
{
clusters <- unique(clustering)
other <- clusters[! clusters %in% d]
dm <- as.matrix(daisy(data, metric, stand))
avg.intra <- apply(dm[clustering==d,clustering==d,drop=FALSE], 1, sum)/

(sum(clustering==d)-1)
avg.inter <- apply(sapply(other,

function(d1)
apply(dm[clustering==d,clustering==d1,drop=FALSE],

1, mean)),
1, min)

(avg.inter-avg.intra)/pmax(avg.inter, avg.intra)
}

}

silwidth.cluster <- function(clustering, data, metric="euclidean", stand=FALSE)
{
clusters <- sort(unique(clustering))
‘names<-‘(sapply(clusters, function(d)

mean(silwidth(clustering, d, data, metric, stand))),
clusters)

}

# training set per-cluster silhouette width
silwidth.cluster(i.pam2.euc$clustering, i.std.train[,-5])
silwidth.cluster(i.pam3.euc$clustering, i.std.train[,-5])
silwidth.cluster(i.pam5.euc$clustering, i.std.train[,-5])
silwidth.cluster(i.pam7.euc$clustering, i.std.train[,-5])

silwidth.cluster(i.pam2.man$clustering, i.std.train[,-5], metric="manhattan")
silwidth.cluster(i.pam3.man$clustering, i.std.train[,-5], metric="manhattan")
silwidth.cluster(i.pam5.man$clustering, i.std.train[,-5], metric="manhattan")
silwidth.cluster(i.pam7.man$clustering, i.std.train[,-5], metric="manhattan")

# test set per-cluster silhouette width
silwidth.cluster(i.pam2.euc.pred, i.std.test[,-5])
silwidth.cluster(i.pam3.euc.pred, i.std.test[,-5])
silwidth.cluster(i.pam5.euc.pred, i.std.test[,-5])
silwidth.cluster(i.pam7.euc.pred, i.std.test[,-5])

silwidth.cluster(i.pam2.man.pred, i.std.test[,-5], metric="manhattan")
silwidth.cluster(i.pam3.man.pred, i.std.test[,-5], metric="manhattan")
silwidth.cluster(i.pam5.man.pred, i.std.test[,-5], metric="manhattan")
silwidth.cluster(i.pam7.man.pred, i.std.test[,-5], metric="manhattan")

# training set silhouette plots
par(mfrow=c(2, 1), mar=c(2, 6, 0, 1), oma=c(0, 0, 2, 0))
barplot(sort(silwidth(i.pam2.euc$clustering, 1, i.std.train[,-5])),

xlim=c(-0.2, 1), yaxt="n", horiz=TRUE)
barplot(sort(silwidth(i.pam2.euc$clustering, 2, i.std.train[,-5])),

xlim=c(-0.2, 1), yaxt="n", horiz=TRUE)
title("Training set, k=2", outer=TRUE)
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par(mfrow=c(3, 1), mar=c(2, 6, 0, 1), oma=c(0, 0, 2, 0))
barplot(sort(silwidth(i.pam3.euc$clustering, 1, i.std.train[,-5])),

xlim=c(-0.2, 1), yaxt="n", horiz=TRUE)
barplot(sort(silwidth(i.pam3.euc$clustering, 2, i.std.train[,-5])),

xlim=c(-0.2, 1), yaxt="n", horiz=TRUE)
barplot(sort(silwidth(i.pam3.euc$clustering, 3, i.std.train[,-5])),

xlim=c(-0.2, 1), yaxt="n", horiz=TRUE)
title("Training set, k=3", outer=TRUE)

# test set silhouette plot
par(mfrow=c(2, 1), mar=c(2, 6, 0, 1), oma=c(0, 0, 2, 0))
barplot(sort(silwidth(i.pam2.euc.pred, 1, i.std.test[,-5])),

xlim=c(-0.2, 1), yaxt="n", horiz=TRUE)
barplot(sort(silwidth(i.pam2.euc.pred, 2, i.std.test[,-5])),

xlim=c(-0.2, 1), yaxt="n", horiz=TRUE)
title("Test set, k=2", outer=TRUE)

par(mfrow=c(3, 1), mar=c(2, 6, 0, 1), oma=c(0, 0, 2, 0))
barplot(sort(silwidth(i.pam3.euc.pred, 1, i.std.test[,-5])),

xlim=c(-0.2, 1), yaxt="n", horiz=TRUE)
barplot(sort(silwidth(i.pam3.euc.pred, 2, i.std.test[,-5])),

xlim=c(-0.2, 1), yaxt="n", horiz=TRUE)
barplot(sort(silwidth(i.pam3.euc.pred, 3, i.std.test[,-5])),

xlim=c(-0.2, 1), yaxt="n", horiz=TRUE)
title("Test set, k=3", outer=TRUE)

Notice that the average per-cluster silhouette width values tend to decrease with increas-
ing number of clusters, or more precisely, increasing the number of clusters appears to
introduce more low silhouette width clusters. This might indicate that going above k = 2 is
not well justified. The same can be concluded from the comparison of the silhouette plots
obtained for k = 2 and k = 3, with the latter showing more not-so-well placed instances. Of
course, well-justified k selection requires more thorough investigation and comparison of a
wider range of values.

14.2.5 Davies–Bouldin index

One deficiency of the silhouette width is the computational cost associated with its calcula-
tion for large datasets. The Davies–Bouldin index adopts a simpler and less computationally
demanding approach of averaging the dissimilarity to cluster centers instead of averaging the
dissimilarity for all pairs of instances. This does not necessarily limit its applicability to eval-
uating models created using k-centers clustering algorithms, since cluster centers can also
be identified for models created with other algorithms, even if they are not used by these
algorithms themselves.

The Davies–Bouldin index for two clusters d1 and d2 can be considered a measure of their
mutual separation. Its definition with respect to dissimilarity measure 𝛿 and dataset S can be
written as

db𝛿,S(d1, d2) =
Δ𝛿,S(d1) + Δ𝛿,S(d2)

𝛿(𝜁d1
, 𝜁d2

)
(14.7)

where
Δ𝛿,S(d) =

1|Sd| ∑
x∈Sd

𝛿(x, 𝜁d) (14.8)
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Figure 14.1 Silhouette plots for the 2-cluster Euclidean-dissimilarity pam model.

is the mean dissimilarity between the members of cluster d and its center. This yields small
values for well separated clusters, for which the dissimilarity between their centers is large
compared to the average dissimilarity between their members and the corresponding centers.
To evaluate a single cluster d, its Davies–Bouldin index is calculated as the maximum index
value obtained for all cluster pairs containing d:

db𝛿,S(d) =max
d′≠d

db𝛿,S(d, d′) (14.9)

This yields small values for clusters that are well separated from all other clusters. Simi-
larly as the silhouette width, it can be considered a more subtle cluster isolation indicator.
Unlike the diameter and separation, it does not depend on single maximally dissimilar or sim-
ilar instances, but uses the dissimilarity between cluster centers and the average dissimilarity
between cluster members and cluster centers instead. It makes it more robust with respect to
noisy data, in particular, containing outliers.

Example 14.2.5 The following R code defines a function for calculating the Davies–Bouldin
index and demonstrates its application. The dbindex function returns the matrix of Davies–
Bouldin index values for all cluster pairs. The row (or column) maxima of this matrix represent
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Figure 14.2 Silhouette plots for the 3-cluster Euclidean-dissimilarity pam model.

per-cluster Davies–Bouldin index values, which are returned by the dbindex.cluster
function.

dbindex <- function(clustering, centers, data, metric="euclidean", stand=FALSE)
{
clusters <- sort(unique(clustering))
ds <- as.matrix(daisy(rbind(data, centers), metric, stand))

to.center <- sapply(clusters, function(d) mean(ds[clustering==d,nrow(data)+d]))
between.centers <- ds[(nrow(data)+1):(nrow(data)+length(clusters)),

(nrow(data)+1):(nrow(data)+length(clusters))]
diag(between.centers) <- NA

‘dimnames<-‘(outer(clusters, clusters, Vectorize(function(d1, d2)
(to.center[d1]+to.center[d2])/
between.centers[d1,d2])),

list(clusters, clusters))
}
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dbindex.cluster <- function(clustering, centers, data,
metric="euclidean", stand=FALSE)

{ apply(dbindex(clustering, centers, data, metric, stand), 1, max, na.rm=TRUE) }

# training set Davies-Bouldin index for cluster pairs
dbindex(i.pam3.euc$clustering, i.pam3.euc$medoids, i.std.train[,-5])

# training set Davies-Bouldin index
dbindex.cluster(i.pam2.euc$clustering, i.pam2.euc$medoids, i.std.train[,-5])
dbindex.cluster(i.pam3.euc$clustering, i.pam3.euc$medoids, i.std.train[,-5])
dbindex.cluster(i.pam5.euc$clustering, i.pam5.euc$medoids, i.std.train[,-5])
dbindex.cluster(i.pam7.euc$clustering, i.pam7.euc$medoids, i.std.train[,-5])

dbindex.cluster(i.pam2.man$clustering, i.pam2.euc$medoids, i.std.train[,-5],
metric="manhattan")

dbindex.cluster(i.pam3.man$clustering, i.pam3.euc$medoids, i.std.train[,-5],
metric="manhattan")

dbindex.cluster(i.pam5.man$clustering, i.pam5.euc$medoids, i.std.train[,-5],
metric="manhattan")

dbindex.cluster(i.pam7.man$clustering, i.pam7.euc$medoids, i.std.train[,-5],
metric="manhattan")

# test set Davies-Bouldin index
dbindex.cluster(i.pam2.euc.pred, i.pam2.euc$medoids, i.std.test[,-5])
dbindex.cluster(i.pam3.euc.pred, i.pam3.euc$medoids, i.std.test[,-5])
dbindex.cluster(i.pam5.euc.pred, i.pam5.euc$medoids, i.std.test[,-5])
dbindex.cluster(i.pam7.euc.pred, i.pam7.euc$medoids, i.std.test[,-5])

dbindex.cluster(i.pam2.man.pred, i.pam2.euc$medoids, i.std.test[,-5],
metric="manhattan")

dbindex.cluster(i.pam3.man.pred, i.pam3.euc$medoids, i.std.test[,-5],
metric="manhattan")

dbindex.cluster(i.pam5.man.pred, i.pam5.euc$medoids, i.std.test[,-5],
metric="manhattan")

dbindex.cluster(i.pam7.man.pred, i.pam7.euc$medoids, i.std.test[,-5],
metric="manhattan")

Considerably larger Davies–Bouldin index values are obtained for models with more
clusters. Whereas the minimum value (for the best cluster) does not always change much,
additional clusters that are introduced exhibit much greater values of the index. This again
suggests that k = 2 may be the right choice for the Iris dataset.

14.3 Overall quality measures

Although per-cluster quality measures provide useful insights into the quality of the evalu-
ated clustering model, what is usually desired is a single quality indicator, that can be used
to directly compare a number of alternative models (obtained using different algorithms or
the same algorithm with different parameter settings). This is the purpose of overall quality
measures that take into account all clusters, and combine some indicators of their cohesion
and separation in a meaningful way. For some of them, it is as simple as averaging per-cluster
measures (particularly those that take into account other clusters when evaluating a cluster).
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14.3.1 Dunn index

The Dunn index measures the quality of a clustering model by relating the minimum separation
to the maximum diameter exhibited by its clusters:

dunn𝛿,S(h) =
mind∈Ch

sep𝛿,S(d)

maxd∈Ch
diam𝛿,S(d)

(14.10)

Clearly, high values are preferred, as they correspond to intercluster dissimilarities that are
large in comparison to intracluster dissimilarities. Being based on the diameter and separa-
tion, the Dunn index inherits its sometimes problematic feature of being overly sensitive to
single outlying instances. It is not uncommon to see some modifications of the Dunn index
being proposed and used, based on different – more robust – definitions of the diameter and
separation.

Example 14.3.1 The following R code implements the Dunn index calculation, using the
separation and diameter procedures defined in the preceding examples, and applies it
to evaluate all clusters of the same PAM clustering models.

dunn <- function(clustering, data, metric="euclidean", stand=FALSE)
{
min(separation(clustering, data, metric, stand))/
max(diameter(clustering, data, metric, stand))

}

# training set Dunn index
dunn(i.pam2.euc$clustering, i.std.train[,-5])
dunn(i.pam3.euc$clustering, i.std.train[,-5])
dunn(i.pam5.euc$clustering, i.std.train[,-5])
dunn(i.pam7.euc$clustering, i.std.train[,-5])

dunn(i.pam2.man$clustering, i.std.train[,-5], metric="manhattan")
dunn(i.pam3.man$clustering, i.std.train[,-5], metric="manhattan")
dunn(i.pam5.man$clustering, i.std.train[,-5], metric="manhattan")
dunn(i.pam7.man$clustering, i.std.train[,-5], metric="manhattan")

# test set Dunn index
dunn(i.pam2.euc.pred, i.std.test[,-5])
dunn(i.pam3.euc.pred, i.std.test[,-5])
dunn(i.pam5.euc.pred, i.std.test[,-5])
dunn(i.pam7.euc.pred, i.std.test[,-5])

dunn(i.pam2.man.pred, i.std.test[,-5], metric="manhattan")
dunn(i.pam3.man.pred, i.std.test[,-5], metric="manhattan")
dunn(i.pam5.man.pred, i.std.test[,-5], metric="manhattan")
dunn(i.pam7.man.pred, i.std.test[,-5], metric="manhattan")

The Dunn index turns out to clearly favor k = 2 for the evaluated PAM models, with the
values obtained for more clusters being considerably lower. One exception to this pattern can
be observed for k = 7 with the Manhattan dissimilarity, which appears to be better than k = 2
on the training set.
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14.3.2 Average Davies–Bouldin index

The Davies–Bouldin clustering quality index is calculated by averaging the values of
per-cluster Davies–Bouldin indices as follows:

db𝛿,S(h) =
1|Ch|

∑
d∈Ch

db𝛿,S(d) (14.11)

As discussed in Section 14.2.5, small values are preferred, as they indicate clustering models
with compact and separated clusters. The average index value can be used to compare different
clustering models, including those obtained using the same k-centers clustering algorithms
for different k values. The measure is not easily misled by outliers. It may be inappropriate
or inconvenient, though, when there are not sufficiently representative cluster centers or they
are expensive to identify.

Example 14.3.2 The R code presented below defines a simple wrapper around the
dbindex.cluster, presented in the example of the per-cluster Davies–Bouldin index
that performs the averaging needed to obtain the overall clustering index and demonstrates
its application to the same PAM clustering models.

dbindex.avg <- function(clustering, centers, data, metric="euclidean", stand=FALSE)
{ mean(dbindex.cluster(clustering, centers, data, metric, stand)) }

# training set average Davies-Bouldin index
dbindex.avg(i.pam2.euc$clustering, i.pam2.euc$medoids, i.std.train[,-5])
dbindex.avg(i.pam3.euc$clustering, i.pam3.euc$medoids, i.std.train[,-5])
dbindex.avg(i.pam5.euc$clustering, i.pam5.euc$medoids, i.std.train[,-5])
dbindex.avg(i.pam7.euc$clustering, i.pam7.euc$medoids, i.std.train[,-5])

dbindex.avg(i.pam2.man$clustering, i.pam2.euc$medoids, i.std.train[,-5],
metric="manhattan")

dbindex.avg(i.pam3.man$clustering, i.pam3.euc$medoids, i.std.train[,-5],
metric="manhattan")

dbindex.avg(i.pam5.man$clustering, i.pam5.euc$medoids, i.std.train[,-5],
metric="manhattan")

dbindex.avg(i.pam7.man$clustering, i.pam7.euc$medoids, i.std.train[,-5],
metric="manhattan")

# test set average Davies-Bouldin index
dbindex.avg(i.pam2.euc.pred, i.pam2.euc$medoids, i.std.test[,-5])
dbindex.avg(i.pam3.euc.pred, i.pam3.euc$medoids, i.std.test[,-5])
dbindex.avg(i.pam5.euc.pred, i.pam5.euc$medoids, i.std.test[,-5])
dbindex.avg(i.pam7.euc.pred, i.pam7.euc$medoids, i.std.test[,-5])

dbindex.avg(i.pam2.man.pred, i.pam2.euc$medoids, i.std.test[,-5], metric="manhattan")
dbindex.avg(i.pam3.man.pred, i.pam3.euc$medoids, i.std.test[,-5], metric="manhattan")
dbindex.avg(i.pam5.man.pred, i.pam5.euc$medoids, i.std.test[,-5], metric="manhattan")
dbindex.avg(i.pam7.man.pred, i.pam7.euc$medoids, i.std.test[,-5], metric="manhattan")

The average Davies–Bouldin index is clearly minimized for the k = 2 models, both on the
training and test set.



Trim size: 170mm x 244mmCichosz c14.tex V3 - 11/04/2014 10:22 A.M. Page 388

388 CLUSTERING MODEL EVALUATION

14.3.3 C index

The C index evaluates clustering models by comparing intracluster pairwise dissimilarities
with those directly observed in the dataset without taking cluster membership into account.
For clustering model h and with respect to dissimilarity measure 𝛿 it is calculated on dataset
S as follows:

cind𝛿,S(h) =

∑
d∈Ch

∑
x1,x2∈Sd

x1≠x2

𝛿(x1, x2) −
∑

x1,x2∈Γmin
𝛿,S

(h) 𝛿(x1, x2)∑⟨x1,x2⟩∈Γmax
𝛿,S

(h) 𝛿(x1, x2) −
∑⟨x1,x2⟩∈Γmin

𝛿,S
(h) 𝛿(x1, x2)

(14.12)

where Γmin
𝛿,S (h) and Γmax

𝛿,S are the sets of NS(h) minimally dissimilar and maximally dissimi-
lar pairs of different instances from S, respectively, and NS(h) is the number of all different
instance pairs from the same cluster:

NS(h) =
∑

d∈Ch

|Sd|(|Sd| − 1) (14.13)

The complex-looking formula basically calculates the sum of all pairwise intracluster dissim-
ilarities and compares it to the sum of exactly the same number of the smallest dissimilarities
in the dataset, irrespective of cluster membership. The difference is given an appropriate scale
by dividing it by the analogous difference of the summed largest and smallest dissimilari-
ties in the dataset, irrespective of cluster membership, again taking into account exactly the
same number of instance pairs. The resulting index is guaranteed to fall in the [0, 1] interval
and its smaller values are preferred, as they indicate clustering models with more internally
cohesive clusters.

While it makes sense to compare the C index of different clustering models (e.g., created
using different clustering algorithms and their parameter settings), it is not necessarily a good
tool for selecting the number of clusters for k-centers clustering algorithms. This is because it
is likely to decrease with the increase of k simply because intracluster dissimilarities tend to
become lower with more clusters.

Example 14.3.3 C index calculation is implemented and demonstrated by the R code pre-
sented below.

cindex <- function(clustering, data, metric="euclidean", stand=FALSE)
{
clusters <- unique(clustering)
dm <- as.matrix(daisy(data, metric, stand))
dm[lower.tri(dm)] <- diag(dm) <- NA
sdm <- sort(dm)
cc <- table(clustering)
m <- sum(cc*(cc-1)/2)

s <- sum(sapply(clusters,
function(d) sum(dm[clustering==d,clustering==d], na.rm=TRUE)))

smin <- sum(sdm[1:m])
smax <- sum(sdm[(length(sdm)-m+1):length(sdm)])
(s-smin)/(smax-smin)

}
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# training set C index
cindex(i.pam2.euc$clustering, i.std.train[,-5])
cindex(i.pam3.euc$clustering, i.std.train[,-5])
cindex(i.pam5.euc$clustering, i.std.train[,-5])
cindex(i.pam7.euc$clustering, i.std.train[,-5])

cindex(i.pam2.man$clustering, i.std.train[,-5], metric="manhattan")
cindex(i.pam3.man$clustering, i.std.train[,-5], metric="manhattan")
cindex(i.pam5.man$clustering, i.std.train[,-5], metric="manhattan")
cindex(i.pam7.man$clustering, i.std.train[,-5], metric="manhattan")

# test set C index
cindex(i.pam2.euc.pred, i.std.test[,-5])
cindex(i.pam3.euc.pred, i.std.test[,-5])
cindex(i.pam5.euc.pred, i.std.test[,-5])
cindex(i.pam7.euc.pred, i.std.test[,-5])

cindex(i.pam2.man.pred, i.std.test[,-5], metric="manhattan")
cindex(i.pam3.man.pred, i.std.test[,-5], metric="manhattan")
cindex(i.pam5.man.pred, i.std.test[,-5], metric="manhattan")
cindex(i.pam7.man.pred, i.std.test[,-5], metric="manhattan")

Unlike the Dunn index illustrated in the previous example, or per-cluster quality measures
presented before, the C index does not follow a strict monotonic pattern when applied to
evaluate the PAM models created for the Iris dataset. It does not suggest k = 2 as the best
number of clusters, either. The maximum C index value is obtained for k = 7 or, when using
the Manhattan distance and evaluating the training set, for k = 5.

14.3.4 Average silhouette width

The silhouette width has been presented in Section 14.2.4 as a measure of goodness of par-
ticular instances’ cluster membership that, averaged on a per-cluster basis, provides a cluster
quality measure. It can also serve as an overall clustering model quality measure if averaged
over all instances in the dataset:

sw𝛿,S(h) =
1|S| ∑

x∈S

sw𝛿,S(x, h(x)) (14.14)

High values are obtained if many instances appear to be well placed in their clusters, which
should be the case for good clustering models.

Example 14.3.4 The following R code implements and demonstrates average silhouette width
calculation.

silwidth.avg <- function(clustering, data, metric="euclidean", stand=FALSE)
{
clusters <- unique(clustering)
mean(unlist(sapply(clusters,

function(d) silwidth(clustering, d, data, metric, stand))))
}
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# training set average silhouette width
silwidth.avg(i.pam2.euc$clustering, i.std.train[,-5])
silwidth.avg(i.pam3.euc$clustering, i.std.train[,-5])
silwidth.avg(i.pam5.euc$clustering, i.std.train[,-5])
silwidth.avg(i.pam7.euc$clustering, i.std.train[,-5])

silwidth.avg(i.pam2.man$clustering, i.std.train[,-5], metric="manhattan")
silwidth.avg(i.pam3.man$clustering, i.std.train[,-5], metric="manhattan")
silwidth.avg(i.pam5.man$clustering, i.std.train[,-5], metric="manhattan")
silwidth.avg(i.pam7.man$clustering, i.std.train[,-5], metric="manhattan")

# test set average silhouette width
silwidth.avg(i.pam2.euc.pred, i.std.test[,-5])
silwidth.avg(i.pam3.euc.pred, i.std.test[,-5])
silwidth.avg(i.pam5.euc.pred, i.std.test[,-5])
silwidth.avg(i.pam7.euc.pred, i.std.test[,-5])

silwidth.avg(i.pam2.man.pred, i.std.test[,-5], metric="manhattan")
silwidth.avg(i.pam3.man.pred, i.std.test[,-5], metric="manhattan")
silwidth.avg(i.pam5.man.pred, i.std.test[,-5], metric="manhattan")
silwidth.avg(i.pam7.man.pred, i.std.test[,-5], metric="manhattan")

Observe that the average silhouette width falls with increasing k, indicating the smallest
k = 2 as the best choice.

14.3.5 Loglikelihood

The loglikelihood measure of clustering model quality is quite different from the other
quality measures presented before. Unlike all of them, it does not – either explicitly or
implicitly – incorporate any dissimilarity measure defined on the domain. Instead, it proba-
bilistically assesses the degree of match between the evaluated model and the dataset used for
the evaluation, treating the former as a representation of a probability distribution mixture.
While this approach is particularly natural for probability distribution-based clustering,
it can actually be used for arbitrary clustering models, including those obtained using
dissimilarity-based algorithms.

The loglikelihood is based on the assumption that a clustering model h can be used to
determine the probability of any instance x, P(x|h) in the following way:

P(x|h) = ∑
d∈Ch

P(d)P(x|d) (14.15)

where P(d) is the probability of cluster d, i.e., the probability that an arbitrarily selected
instance from the domain is assigned to this cluster:

P(d) = P(h = d) (14.16)

and P(x|d) is the probability that cluster d contains an instance exactly like x (i.e., with the
same attribute values), which can be calculated as

P(x|d) = n∏
i=1

P(ai = ai(x) | h = d) (14.17)
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assuming the conditional independence of attribute values given clusters membership, which
is the same independence assumption, discussed in Section 4.3.3, that is adopted by the naïve
Bayes classifier. The probabilities P(h = d) and P(ai = 𝑣i | h = d) referred to above can be
estimated based on the training set as follows:

P(h = d) = |Td||T| (14.18)

P(ai = 𝑣i | h(x) = d) =
|Td

ai=𝑣i
||Td| (14.19)

where Td is the subset of the training set assigned to cluster d and Td
ai=𝑣i

is the subset with
additionally the value of attribute ai equal to 𝑣i. Following the practice common for the naïve
Bayes classifier, the technique of m-estimation presented in Section 2.4.4 can be employed to
make attribute value probability estimates more reliable and safer to use:

P(ai = 𝑣i | h(x) = d) =
|Td

ai=𝑣i
| + mp|Td| + m

(14.20)

Unless some specific domain knowledge of attribute value probabilities is available, p = 1|Ai|
is assumed and often combined with m = |Ai|.

The latter obviously makes sense for discrete attributes only. For continuous attributes,
much more common for practical clustering tasks, the corresponding density function value
gd

i (𝑣i) should be used, where gd
i denotes the probability density function of attribute ai within

cluster d. Unless explicitly available, it is usually assumed to be normal, and its parameters
are estimated from the training set:

md
i = mTd (ai) (14.21)

and
sd

i = sTd (ai) (14.22)

Similarly as for attribute value probabilities, it may be a good idea to use the m-estimated
mean and variance, as presented in Section 2.4.4, to better handle small clusters.

Having explained how cluster and attribute value within cluster probabilities are calcu-
lated, the definition of the loglikelihood for clustering model h on dataset S can be written as
follows:

L𝛿,S(h) = log P(S|h)
=
∑
x∈S

log

(∑
d∈Ch

P(h = d)
n∏

i=1

P(ai = ai(x) | h = d)

)
(14.23)

The loglikelihood represents the degree to which the clustering model explains the dataset.
High values are obtained if the model, treated as a “data generator,” would be likely to generate
the dataset. This indicates that the model suits the data well.

Despite the close relationship between the loglikelihood as a clustering quality measure
and the loglikelihood as a classification model performance measure which was discussed
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in Section 7.2.6, these two should not be confused. While the former refers to the probabil-
ities of attribute value vectors representing instances, the latter refers to class probabilities.
When evaluating a classification model, we measure the degree to which class labels in a
dataset are likely given the classifier. When evaluating a clustering model, we measure the
degree to which attribute value vectors representing instances in a dataset are likely given the
clustering.

Example 14.3.5 The following R code implements and demonstrates loglikelihood
calculation for arbitrary clustering models. The mest, mmean, and mvar functions

Ex. 2.4.31, 2.4.34
dmr.stats

from Examples 2.4.31, 2.4.33, and 2.4.34 are used for probability, mean, and
variance m-estimation, respectively. The clusloglik function needs the
cluster assignments on the training set and the training set itself for probability
estimation, even if the evaluation is performed on another dataset.

clusloglik <- function(train.clustering, train.data,
eval.clustering=train.clustering, eval.data=train.data)

{
clusters <- unique(train.clustering)
prob.d <- function(d) { sum(train.clustering==d)/nrow(train.data) }
prob.avd <- function(a, v, d)
{
ifelse(is.numeric(v),

dnorm(v, mmean(train.data[train.clustering==d,a],
m0=mean(train.data[,a])),

sqrt(mvar(train.data[train.clustering==d,a],
m0=mean(train.data[,a]), s02=var(train.data[,a])))),

mest(sum(train.data[,a]==v & train.clustering==d),
sum(train.clustering==d),
nlevels(train.data[,a]), 1/nlevels(train.data[,a])))

}

sum(sapply(1:nrow(eval.data),
function(i)
log(sum(sapply(clusters,

function(d)
prob.d(d)*prod(mapply(function(a, v) prob.avd(a, v, d),

1:ncol(eval.data),
eval.data[i,])))))))

}

# training set loglikelihood
clusloglik(i.pam2.euc$clustering, i.std.train[,-5])
clusloglik(i.pam3.euc$clustering, i.std.train[,-5])
clusloglik(i.pam5.euc$clustering, i.std.train[,-5])
clusloglik(i.pam7.euc$clustering, i.std.train[,-5])

clusloglik(i.pam2.man$clustering, i.std.train[,-5])
clusloglik(i.pam3.man$clustering, i.std.train[,-5])
clusloglik(i.pam5.man$clustering, i.std.train[,-5])
clusloglik(i.pam7.man$clustering, i.std.train[,-5])

# test set loglikelihood
clusloglik(i.pam2.euc$clustering, i.std.train[,-5], i.pam2.euc.pred,

i.std.test[,-5])
clusloglik(i.pam3.euc$clustering, i.std.train[,-5], i.pam3.euc.pred,
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i.std.test[,-5])
clusloglik(i.pam5.euc$clustering, i.std.train[,-5], i.pam5.euc.pred,

i.std.test[,-5])
clusloglik(i.pam7.euc$clustering, i.std.train[,-5], i.pam7.euc.pred,

i.std.test[,-5])

clusloglik(i.pam2.man$clustering, i.std.train[,-5], i.pam2.man.pred,
i.std.test[,-5])

clusloglik(i.pam3.man$clustering, i.std.train[,-5], i.pam3.man.pred,
i.std.test[,-5])

clusloglik(i.pam5.man$clustering, i.std.train[,-5], i.pam5.man.pred,
i.std.test[,-5])

clusloglik(i.pam7.man$clustering, i.std.train[,-5], i.pam7.man.pred,
i.std.test[,-5])

As expected, loglikelihood values increase with increasing number of clusters. The models
using the Manhattan dissimilarity appear inferior to those using the Euclidean dissimilarity.
The test set loglikelihood values are greater than the training set ones simply due to the smaller
size of the former.

14.4 External quality measures

Clustering quality measures presented above assume no available external information about
a “correct” or “desired” way of clustering the data. Instead, they adopt various approaches
to assess the cohesion and separation of clusters or their degree of match to the data. In con-
trast, external measures assume the existence of externally provided class labels, like in the
classification task, which – while not used for model creation – can be used for model eval-
uation. These class labels represent some partitioning of the data into subsets against which
the cluster assignments generated by the evaluated model are compared.

The primary application of external quality measures is for clustering algorithm bench-
marking, which is a common research task. Any datasets suitable for the classification task
can be used for this purpose, although it makes particular sense for those where class labels are
indeed related to instance similarity. It is much less common for such measures to be useful
for practical applications, since clustering tends to be needed for domains where no appropri-
ately labeled datasets are available. Sometimes they may become handy, though, if at least a
small data subsets can be provided with human-assigned labels, to complement other hardly
interpretable relative performance measures with some directly meaningful indicators.

14.4.1 Misclassification error

The most straightforward approach to clustering model evaluation with external quality mea-
sures is to adopt classifier performance measures presented in Section 7.2, such as the mis-
classification error, for this purpose. This can be done by treating the evaluated clustering
model as a classification model that associates the majority class with each cluster based on
the training set and then for each instance predicts the class associated with its cluster.

Example 14.4.1 The R code presented below demonstrates how classification performance
measures can be applied to assess the quality of clustering models. The clustclas function
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generates class label predictions on a dataset with given cluster membership assignments on
any datasets, based on the training set cluster membership and class labels. The obtained

Ex. 7.2.1
dmr.claseval

predicted class labels are then compared to the corresponding true class labels
using the err function for misclassification error calculation.

clustclas <- function(train.clustering, train.classes,
eval.clustering=train.clustering)

{
clusters <- unique(train.clustering)
labels <-
sapply(clusters,

function(d)
levels(train.classes)[which.max(pdisc(train.classes[train.clustering==d]))])

factor(labels[eval.clustering], levels=levels(train.classes))
}

# training set error
err(clustclas(i.pam2.euc$clustering, i.std.train[,5]), i.std.train[,5])
err(clustclas(i.pam3.euc$clustering, i.std.train[,5]), i.std.train[,5])
err(clustclas(i.pam5.euc$clustering, i.std.train[,5]), i.std.train[,5])
err(clustclas(i.pam7.euc$clustering, i.std.train[,5]), i.std.train[,5])

err(clustclas(i.pam2.man$clustering, i.std.train[,5]), i.std.train[,5])
err(clustclas(i.pam3.man$clustering, i.std.train[,5]), i.std.train[,5])
err(clustclas(i.pam5.man$clustering, i.std.train[,5]), i.std.train[,5])
err(clustclas(i.pam7.man$clustering, i.std.train[,5]), i.std.train[,5])

# test set error
err(clustclas(i.pam2.euc$clustering, i.std.train[,5], i.pam2.euc.pred),

i.std.test[,5])
err(clustclas(i.pam3.euc$clustering, i.std.train[,5], i.pam3.euc.pred),

i.std.test[,5])
err(clustclas(i.pam5.euc$clustering, i.std.train[,5], i.pam5.euc.pred),

i.std.test[,5])
err(clustclas(i.pam7.euc$clustering, i.std.train[,5], i.pam7.euc.pred),

i.std.test[,5])

err(clustclas(i.pam2.man$clustering, i.std.train[,5], i.pam2.man.pred),
i.std.test[,5])

err(clustclas(i.pam3.man$clustering, i.std.train[,5], i.pam3.man.pred),
i.std.test[,5])

err(clustclas(i.pam5.man$clustering, i.std.train[,5], i.pam5.man.pred),
i.std.test[,5])

err(clustclas(i.pam7.man$clustering, i.std.train[,5], i.pam7.man.pred),
i.std.test[,5])

The misclassification error is reduced or unchanged with increasing number of clusters.

14.4.2 Rand index

Rather than forcing a clustering model to work as a classifier, one could examine the degree of
concordance between the provided class labels and model-assigned clusters. The Rand index
is a quality measure that accomplishes this by considering all pairs of instances from the
dataset used for the evaluation. Each such pair ⟨x1, x2⟩ is assigned to one of the following four
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categories, closely related to confusion matrix entries used for classification model evaluation
presented in Section 7.2.4:

True positives. c(x1) = c(x2) and h(x1) = h(x2),
True negatives. c(x1) ≠ c(x2) and h(x1) ≠ h(x2),
False positives. c(x1) ≠ c(x2) and h(x1) = h(x2),
False negatives. c(x1) = c(x2) and h(x1) ≠ h(x2).

The Rand index is then calculated based on dataset S as the ratio of the total number of
true positives and true negatives to the total number of instance pairs from S. This can be
written as

randc,S(h) =
TPc,S(h) + TNc,S(h)

TPc,S(h) + TNc,S(h) + FPc,S(h) + FNc,S(h)
(14.24)

where

TPc,S(h) =
|||{⟨x1, x2⟩ ∈ S2|x1 ≠ x2 ∧ c(x1) = c(x2) ∧ h(x1) = h(x2)}

||| (14.25)

TNc,S(h) =
|||{⟨x1, x2⟩ ∈ S2|x1 ≠ x2 ∧ c(x1) ≠ c(x2) ∧ h(x1) ≠ h(x2)}

||| (14.26)

FPc,S(h) =
|||{⟨x1, x2⟩ ∈ S2|x1 ≠ x2 ∧ c(x1) ≠ c(x2) ∧ h(x1) = h(x2)}

||| (14.27)

FNc,S(h) =
|||{⟨x1, x2⟩ ∈ S2|x1 ≠ x2 ∧ c(x1) = c(x2) ∧ h(x1) ≠ h(x2)}

||| (14.28)

High values indicate that cluster membership assignments match external class labels well.

Example 14.4.2 The following R code implements and demonstrates Rand index calculation.

randindex <- function(clustering, classes)
{
mean(outer(1:length(clustering), 1:length(classes),

function(i, j)
ifelse(i!=j,

clustering[i]==clustering[j] & classes[i]==classes[j] |
clustering[i]!=clustering[j] & classes[i]!=classes[j], NA)),

na.rm=TRUE)
}

# training set Rand index
randindex(i.pam2.euc$clustering, i.std.train[,5])
randindex(i.pam3.euc$clustering, i.std.train[,5])
randindex(i.pam5.euc$clustering, i.std.train[,5])
randindex(i.pam7.euc$clustering, i.std.train[,5])

randindex(i.pam2.man$clustering, i.std.train[,5])
randindex(i.pam3.man$clustering, i.std.train[,5])
randindex(i.pam5.man$clustering, i.std.train[,5])
randindex(i.pam7.man$clustering, i.std.train[,5])

# test set Rand index
randindex(i.pam2.man$clustering, i.std.test[,5])
randindex(i.pam3.man$clustering, i.std.test[,5])
randindex(i.pam5.man$clustering, i.std.test[,5])
randindex(i.pam7.man$clustering, i.std.test[,5])
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randindex(i.pam2.man.pred, i.std.test[,5])
randindex(i.pam3.man.pred, i.std.test[,5])
randindex(i.pam5.man.pred, i.std.test[,5])
randindex(i.pam7.man.pred, i.std.test[,5])

According to the degree of match between cluster assignments and class labels measured
by the Rand index on both the training and test subsets of the Iris data, the 3-cluster PAM
models outperform those with less and greater k values.

14.4.3 General relationship detection measures

The Rand index can be considered a special case of a more general approach to clustering
model evaluation, based on examining the relationship between the provided class labels and
model-assigned clusters. While the Rand index is a particularly popular way of doing this in
the context of clustering, using any general-purpose relationship measures or tests, such as
the mutual information or the 𝜒2 test, is also perfectly reasonable. A strong and significant
relationship would then be interpreted as indicating a good quality model.

Example 14.4.3 The R code presented below applies the 𝜒2 test, using the standard
chisq.test function, to test the relationship between cluster assignments and class labels
for the previously created PAM models, both on the training and test set.

# training set chi-square
chisq.test(i.pam2.euc$clustering, i.std.train[,5])
chisq.test(i.pam3.euc$clustering, i.std.train[,5])
chisq.test(i.pam5.euc$clustering, i.std.train[,5])
chisq.test(i.pam7.euc$clustering, i.std.train[,5])

chisq.test(i.pam2.man$clustering, i.std.train[,5])
chisq.test(i.pam3.man$clustering, i.std.train[,5])
chisq.test(i.pam5.man$clustering, i.std.train[,5])
chisq.test(i.pam7.man$clustering, i.std.train[,5])

# test set chi-square
chisq.test(i.pam2.man.pred, i.std.test[,5])
chisq.test(i.pam3.man.pred, i.std.test[,5])
chisq.test(i.pam5.man.pred, i.std.test[,5])
chisq.test(i.pam7.man.pred, i.std.test[,5])

chisq.test(i.pam2.man.pred, i.std.test[,5])
chisq.test(i.pam3.man.pred, i.std.test[,5])
chisq.test(i.pam5.man.pred, i.std.test[,5])
chisq.test(i.pam7.man.pred, i.std.test[,5])

The relationships turn out to be definitely significant for all the evaluated models. This
makes it possible to to consider all of them reasonable, but does not help in choosing the best
one. Looking at the 𝜒2 statistic values one can observe a mostly monotonic increase when
adding more clusters.
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The mutual information can also be used for the same purpose, as demonstrated Ex. 2.5.6
dmr.statsby the following code, which uses the mutinfo function:

# training set mutual information
mutinfo(i.pam2.euc$clustering, i.std.train[,5])
mutinfo(i.pam3.euc$clustering, i.std.train[,5])
mutinfo(i.pam5.euc$clustering, i.std.train[,5])
mutinfo(i.pam7.euc$clustering, i.std.train[,5])

mutinfo(i.pam2.man$clustering, i.std.train[,5])
mutinfo(i.pam3.man$clustering, i.std.train[,5])
mutinfo(i.pam5.man$clustering, i.std.train[,5])
mutinfo(i.pam7.man$clustering, i.std.train[,5])

# test set mutual information
mutinfo(i.pam2.man.pred, i.std.test[,5])
mutinfo(i.pam3.man.pred, i.std.test[,5])
mutinfo(i.pam5.man.pred, i.std.test[,5])
mutinfo(i.pam7.man.pred, i.std.test[,5])

mutinfo(i.pam2.man.pred, i.std.test[,5])
mutinfo(i.pam3.man.pred, i.std.test[,5])
mutinfo(i.pam5.man.pred, i.std.test[,5])
mutinfo(i.pam7.man.pred, i.std.test[,5])

Again, in most cases the mutual information increases with the increased number of clus-
ters. This might suggest choosing the smallest k value above which no significant further
improvement can be observed. This appears to be k = 3 or k = 5.

14.5 Using quality measures

For most classification and regression performance measures models with appropriately
extreme values (minimum or maximum, depending on the particular measure) are always
preferred, as long as they are calculated with sufficient care needed to reliably estimate true
performance based on dataset performance. It is not necessarily the case for clustering quality
measures, for the following reasons:

1. clustering models tend to be evaluated on the training set only, particularly if they are not
supposed to be ever applied to new data, but just represent similarity patterns identified
by the available data,

2. several clustering quality measures exhibit monotonic or nearly monotonic behavior
when increasing the number of clusters, which makes the straightforward optimization
of their values pointless.

When performing clustering model selection (e.g., selecting the value of k for k-centers
clustering algorithms) it is therefore not always the best idea to strictly maximize (or mini-
mize, as appropriate) the adopted quality measure. It often makes more sense to use one or
several quality measures as guidance rather than definite citeria, combined with some addi-
tional general or task-specific preferences. To compensate for the monotonicity with respect
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to the number of clusters, one may prefer, in particular, the smallest number of clusters with a
sufficiently good quality or the smallest number of clusters above which the quality does not
improve substantially.

14.6 Conclusion

The major difference between the clustering task and the classification and regression tasks
consists in the lack of a predefined target attribute. This has a direct and decisive impact on
clustering model evaluation, which differs from classification and regression model evalua-
tion in important ways. In particular, the lack of a target attribute to be approximated by the
model removes the tension from assessing the expected quality of such approximation on
new data. While this does not necessarily make model evaluation procedures, which handle
data splitting into training and validation or test subsets, useless for clustering model evalua-
tion, they are not similarly essential for classification or regression model evaluation. This is
because the primary purpose of evaluation is no longer to answer the burning question of how
well the model will predict the target attribute when applied to previously unseen instances,
but rather to find which of several candidate models appear most successful at identifying
the similarity patterns in the training set. While clustering is not free of the risk of overfit-
ting, which makes training performance possibly optimistically biased, it may still serve for
model selection when used with care and not followed blindly. Using separate data for model
evaluation always remains a good idea, but the resulting pessimistic evaluation bias is usu-
ally not harmful. Refined evaluation procedures designed for bias reduction, such as k-fold
cross-validation or bootstrapping, are often unnecessary, with the simple hold-out procedure,
possibly repeated, sufficient in most cases. This is why this chapter has not addressed the issue
of evaluation procedures at all.

Limiting our attention to quality measures, there are two main closely related problems
with those adopted for clustering model evaluation:

• the lack of unquestionable objective quality criteria that can be used to for candidate
model ranking or as final model acceptance criteria,

• the existence of a variety of quality indicators that are not necessarily consistent with
one another may be difficult to match the requirements of particular.

It is rather an inherent feature of the clustering task than a fault of existing clustering model
performance measures, and therefore one should rather find a practically acceptable solution
than complain. What should usually make the most sense is to apply multiple performance
measures, but not to trust their values blindly. Clustering model performance measures should
be considered as providing hints or recommendations rather than definitive answers to model
selection or acceptance dilemmas. Combining several such recommendations, based on dif-
ferent quality indicators, with some domain knowledge and common sense, may lead to much
better results than mechanically applying even the most refined performance measures. This
is the way to go in most cases.

14.7 Further readings

Data mining books that present clustering algorithms – particularly from the k-centers family
where a quality measure is necessary for the choice of k – usually allocate some space to
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reviewing selected approaches to clustering model evaluation (e.g., Cios et al. 2007; Han et al.
2011; Webb 2002). The books by Theodoridis and Koutroumbas (2008) and Tan et al. (2013)
stand out with respect to the scope and depth of their discussion of clustering quality measures.
These measures – more commonly referred to as clustering validity indices – are even more
extensively discussed by Jain and Dubes (1988) in their book on clustering algorithms. There
are also dedicated reviews and comparative experimental studies that include a much wider
selection of quality measures than this chapter (e.g., Arbelaitz et al. 2013; Dubes 1987; Guerra
et al. 2012; Halkidi et al. 2001; Milligan and Cooper 1985), with particular emphasis on their
application to determining the right number of clusters.

The importance of clustering model evaluation has been realized early and most qual-
ity measures presented in this chapter can be already considered classics, dating back to the
1970s. In particular, the Dunn index was introduced by Dunn (1974a,b), the C index by Hubert
and Levin (1976), and the Davies–Bouldin index by Davies and Bouldin (1979). The slightly
newer silhouette width measure was proposed by Rousseeuw (1987). The idea of measur-
ing clustering quality by loglikelihood comes from mixture models, representing clusters by
probability distributions, usually identified using some version of the expectation minimiza-
tion algorithm, introduced by Dempster et al. (1977) and then extensively described by several
authors (e.g., McLachlan and Peel 2000). Bezdek and Pal (1998) came up with modifications
to the Dunn index, reducing its sensitivity to outliers. The Rand index for external clustering
evaluation was proposed by Rand (1971).
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15

Model ensembles

15.1 Introduction

The idea of ensemble modeling is to create and combine multiple inductive models for the
same domain, possibly obtaining better prediction quality than most or all of them. For this
improvement to be possible, the strengths of individual models should be retained or rein-
forced and their weaknesses should be canceled out or reduced. It turns out that dozens or hun-
dreds of models, even of rather mediocre quality, may produce top-notch predictions as a team.

Ensemble modeling is applicable to the two major predictive modeling tasks, classifica-
tion and regression. In each case, it may yield substantial improvement over single models
at the cost of investing considerably more computation time for multiple model creation and
loosing overall human readability, even if each individual model is perfectly human readable.
To exploit this potential for better predictive power, appropriate techniques for base model
generation and aggregation are required, the most common of which will be discussed in this
chapter. The former are mostly task independent and the task-specific aspects of the latter are
sufficiently simple and isolated to make most of this discussion applicable both to the classi-
fication and regression tasks. It is the former, though, where model ensembles are most often
and most successfully used, and some ensemble modeling techniques developed specifically
for classification will also be discussed.

Example 15.1.1 Ensemble modeling techniques presented in this chapter will be illustrated
with simple R code examples. They will use the HouseVotes84 and Boston Housing datasets
from the mlbench package, for the classification task and regression task, respectively. The
decision tree and naïve Bayes algorithms will be used for classification base model creation,
with their R implementations provided by the rpart and e1071 packages. The regression
tree and linear regression algorithms will be used for regression base model creation, with
their R implementations provided again by the rpart package and the lm function from
the standard stats package. Several DMR packages, containing functions defined in other
chapters and simple utilities, will also be used. The following R code sets up the environ-
ment for these demonstrations by loading the packages and the datasets. The latter are then

Data Mining Algorithms: Explained Using R, First Edition. Paweł Cichosz.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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randomly partitioned into training and test subsets, to apply a manually performed hold-out
evaluation procedure. A fixed initial seed of the random number generator is used to make the
results strictly reproducible. Single models are created based on the training subsets, using
the decision tree, naïve Bayes, regression tree, and linear regression algorithms, the same
that will be subsequently used to create base models for ensembles. These will serve for the

dmr.clasevalcomparison of misclassification error and mean square error levels possible to

dmr.regeval

achieve. The two quality indicators are calculated using the err function,
defined in Example 7.2.1, and the mse function, defined in Example 10.2.3.

library(dmr.claseval)
library(dmr.dectree)
library(dmr.regeval)
library(dmr.regtree)
library(dmr.stats)
library(dmr.util)

library(rpart)
library(e1071)

data(HouseVotes84, package="mlbench")
data(BostonHousing, package="mlbench")

set.seed(12)

rhv <- runif(nrow(HouseVotes84))
hv.train <- HouseVotes84[rhv>=0.33,]
hv.test <- HouseVotes84[rhv<0.33,]

rbh <- runif(nrow(BostonHousing))
bh.train <- BostonHousing[rbh>=0.33,]
bh.test <- BostonHousing[rbh<0.33,]

hv.tree <- rpart(Class̃., hv.train)
hv.nb <- naiveBayes(Class̃., hv.train)

hv.err.tree <- err(predict(hv.tree, hv.test, type="c"), hv.test$Class)
hv.err.nb <- err(predict(hv.nb, hv.test), hv.test$Class)

bh.tree <- rpart(medṽ., bh.train)
bh.lm <- lm(medṽ., bh.train)

bh.mse.tree <- mse(predict(bh.tree, bh.test), bh.test$medv)
bh.mse.lm <- mse(predict(bh.lm, bh.test), bh.test$medv)

15.2 Model committees

The expectation of model ensembles to improve over individual models is sometimes
explained by the common-sense idea of a committee consisting of multiple “experts,”
making better decisions collectively than individually. For this justification to remain valid,
all of these “experts” must possess at least some reasonable level of competences and – at
the same time – exhibit sufficiently diverse opinions to make their collective behavior
different from that each of them would exhibit alone. Applying this metaphor to predictive
modeling, we would expect combined models to predict better as a “model committee”
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than individually if they are all sufficiently good and sufficiently different from one another.
These conditions create space for improvement by reinforcing strengths and compensating
weaknesses (rather than compensating both, reinforcing both, or reinforcing weaknesses and
compensating strengths).

As an elementary illustration, consider three classification models h1, h2, h3, with the cor-
responding true misclassification error values ec(h1), ec(h2), ec(h3) with respect to a target
concept c. As explained in Section 7.2.1, these are the probabilities that the corresponding
models would produce incorrect predictions for a randomly chosen instance from the domain.
Now consider a simple combined model h∗ that aggregates the predictions of base models
h1, h2, h3 by voting. Assuming a two-class classification task, the true error of this model is
then the probability that majority of base models (i.e., two or three in our case) make mis-
takes, i.e.,

ec(h∗) = ec(h1)ec(h2)ec(h3)

+ (1 − ec(h1))ec(h2)ec(h3) + ec(h1)(1 − ec(h2))ec(h3) (15.1)

+ ec(h1)ec(h2)(1 − eec(h3))

Let us assume that all base models are sufficiently good and different from one another. The
former may be represented by setting an upper bound 𝜖 for their error values and the latter –in
the unrealistically idealized case – by considering their mistakes independent. Under these
assumptions the above error may be bound as follows:

ec(h∗) ≤ 𝜖3 + 3𝜖2(1 − 𝜖) (15.2)

What one might be interested to see is how this compares to the base model error bound 𝜖.
The corresponding inequality

𝜖3 + 3𝜖2(1 − 𝜖) < 𝜖 (15.3)

may be easily solved, yielding 0 < 𝜖 < 0.5. This is a pretty weak requirement, which means
(with the two-class assumption) that, for the ensemble to give an improvement, base models
have to perform better than random (although not perfectly, as the latter clearly would leave
no space for improvement). Thus, with just three base models, if they are just minimally
reasonable, but fully independent, a simple voting-based combined model will perform better.

While the discussion above is an illustrative special case rather than a general argument,
it at least demonstrates that the expectation of improved prediction performance by ensemble
modeling is justified and which are the conditions necessary to actually make it happen. Its
main limitation is not the small number of base models, since adding more models – which
makes the error more complex to calculate – may only improve the prediction quality. It is
the idealized assumption of model mistake independence that makes the derivation of error
bounds practically inapplicable. It is still useful as a source of insights, though. In practice,
creating multiple totally independent models for the same domain may be next to impossible,
but it remains possible and worthwhile to approximate this ideal situation with models that
are as diverse as possible, without sacrificing too much of their quality. The more such reason-
able quality base models are available to combine and more diverse they are, more prediction
quality improvement may be expected from the resulting model ensemble. While the actual
results may also differ significantly depending on the particular model aggregation method,
at least the available improvement potential depends on the base model portfolio.
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15.3 Base models

As discussed above, the main challenge for successful ensemble modeling is creating suffi-
ciently many sufficiently diverse and sufficiently good base models. Since any deterministic
algorithm will yield the same model when applied to the same training set with the same
parameter setup, the following approaches to ensuring diversity may be considered:

Different training sets. Use a different training set from the same domain to create each
base model.

Different algorithms. Use a different algorithm to create each base model.

Different parameter setups. Use a different algorithm parameter setup to create each base
model.

Algorithm randomization. Use independent runs of a nondeterministic algorithm to create
each base model.

For reinforced effect, two or more of these approaches can also be applied in combination.
Each of them must be used with care, though, as pressing too much on the diversity of base
models may ruin their quality, which must remain at some reasonable level.

15.3.1 Different training sets

The most popular approach to creating multiple base models relies on the assumption that
applying the same algorithm to different training sets for the same task from the same domain
will yield models that are sufficiently diverse and sufficiently good at the same time. Ideally,
we should be able to draw these training sets from the domain independently at random. In
practice, no direct domain sampling is possible, though, and a number of different training
sets may only be obtained by sampling or transforming the original training set supplied for
the task at hand. This may include:

• sampling instances,

• replicating instances,

• varying instance weights (for weight-sensitive algorithms),

• sampling attributes,

• applying attribute transformations.

15.3.1.1 Instance sampling

Instance sampling is typically performed by drawing multiple bootstrap samples T1,T2,

… ,Tm of the original training set T , i.e., uniform random samples with replacement,
usually of the same size as the former. As demonstrated in Section 7.3.6, when discussing
bootstrapping as a model evaluation procedure, such a bootstrap sample may be expected to
contain about 63.2% of instances from T . Each sample Ti is used to create a base model hi
using the same modeling algorithm.

For instance sampling to be successful in delivering diverse models, the latter should be
created by an unstable algorithm, i.e., highly sensitive even to minor data variations. Decision
and regression trees are the most obvious and natural candidates, since their split selection,
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stop, and pruning criteria may yield different outcomes for slightly different datasets, result-
ing in different models being obtained. On the other hand, modeling algorithms that use the
training data to estimate numerical parameters representing their models rather than to make
discrete decisions, such as linear and other parametric models or the naïve Bayes classifier,
do not react excessively to data perturbations and are considered stable.

Example 15.3.1 The following R code demonstrates the instance sampling approach to base
model generation. The base.ensemble.sample.x function applies the specified algo-
rithm to samples drawn from the provided dataset, using the standard sample function. Its
default settings produce bootstrap samples of the same size as the original dataset. The func-
tion is applied to create 50 base decision tree and naïve Bayes models for the HouseVotes84
data, as well as 50 base regression tree and linear regression models for the Boston Housing
data. As an indirect and rough means of assessing the diversity of the base models obtained by
instance sampling, their training and test set misclassification error or mean square error val-
ues are determined. Test set errors are of particular interest, since – while even substantially
different models can be similarly good on the training set, they are more likely to differ with
respect to their performance on previously unseen data.

## generate base models by instance sampling
base.ensemble.sample.x <- function(formula, data, m, alg, args=NULL,

size=nrow(data), replace=TRUE)
{
lapply(1:m, function(i)

{
bag <- sample(nrow(data), size=nrow(data), replace=replace)
do.call(alg, c(list(formula, data[bag,]), args))

})
}

# base models for the HouseVotes84 data
hv.bm.tree.sx <- base.ensemble.sample.x(Class̃., hv.train, 50, rpart)
hv.bm.nb.sx <- base.ensemble.sample.x(Class̃., hv.train, 50, naiveBayes)

# base models for the BostonHousing data
bh.bm.tree.sx <- base.ensemble.sample.x(medṽ., bh.train, 50, rpart)
bh.bm.lm.sx <- base.ensemble.sample.x(medṽ., bh.train, 50, lm)

# base model training set errors for the HouseVotes84 data
hv.train.err.tree.sx <- sapply(hv.bm.tree.sx,

function(h) err(predict(h, hv.train, type="c"),
hv.train$Class))

hv.train.err.nb.sx <- sapply(hv.bm.nb.sx,
function(h) err(predict(h, hv.train), hv.train$Class))

# base model training set MSE values for the BostonHousing data
bh.train.mse.tree.sx <- sapply(bh.bm.tree.sx,

function(h) mse(predict(h, bh.train), bh.train$medv))
bh.train.mse.lm.sx <- sapply(bh.bm.lm.sx,

function(h) mse(predict(h, bh.train), bh.train$medv))

# base model test set errors for the HouseVotes84 data
hv.test.err.tree.sx <- sapply(hv.bm.tree.sx,

function(h) err(predict(h, hv.test, type="c"),
hv.test$Class))

hv.test.err.nb.sx <- sapply(hv.bm.nb.sx,
function(h) err(predict(h, hv.test), hv.test$Class))
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# base model test set MSE values for the BostonHousing data
bh.test.mse.tree.sx <- sapply(bh.bm.tree.sx,

function(h) mse(predict(h, bh.test), bh.test$medv))
bh.test.mse.lm.sx <- sapply(bh.bm.lm.sx,

function(h) mse(predict(h, bh.test), bh.test$medv))

As it could be expected, decision trees and regression trees obtained for different bootstrap
samples appear to exhibit more variability, at least with respect to their performance, than
naïve Bayes and linear models.

15.3.1.2 Instance replication

Closely related to instance sampling, this approach modifies the training set by replicating
some instances (usually selected uniformly at random). With an unstable algorithm, this may
lead to different models being obtained. It is listed here as a possibility for the sake of com-
pleteness, but it does not appear to offer any important advantages over sampling and is not
commonly used.

15.3.1.3 Instance weighting

If the modeling algorithm used for base model creation is not only unstable, but also
weight-sensitive, as discussed in Section 1.3.7, varying nonuniform instance weights applied
to the fixed training set may be an attractive alternative to sampling or replication. Rather
than generating modified copies of the data, just the vector of weights is modified. It may
be therefore an elegant and efficient technique for base model creation. Base models h1, h2,

… , hm would then be generated using the same training set, but different vectors of
per-instance weights 𝑤(1), 𝑤(2), … , 𝑤(m), with each vector 𝑤(i) containing weight 𝑤(i)

x for
each instance x ∈ T .

In the simplest case, weights could be generated at random, but it is more common to see
this technique combined with some more refined weight adjustment schemes. Some of them
will be presented below when discussing boosting, one of the most popular and successful
instantiations of ensemble modeling.

Example 15.3.2 The following R code implements and demonstrates the instance weighting
approach to base model generation. The base.ensemble.weight.x function assumes
that the specified modeling algorithm accepts theweights argument. The weight vector is by
default initialized uniformly at random in the [0.3, 3] interval and then randomly re-generated
for each base model, which only serves the illustration purpose. Other initial vectors and more
refined reweighting schemes may be specified. In particular, the reweighting function specified
via the reweight argument obtains the last model’s predictions as its second argument, to
make it possible to alter instance weights based on how the model predicted for each of them.
The reweighting function may return NULL to instruct the base.ensemble.weight.x
function not to include the last created model in the ensemble and to stop creating base
models (before reaching the maximum number thereof specified via the m argument). This

dmr.util
capability is not actually used in the subsequent demonstrations, but will come
handy later. The skip.cond utility function is used to skip NULL models from
the obtained list.
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Base model generation by instance weighting is demonstrated similarly as in the previous
example, but with the naïve Bayes classifier skipped, since the R implementation used does
not support instance weights.

## generate base models by instance weighting
base.ensemble.weight.x <- function(formula, data, m, alg, args=NULL,

weights=runif(nrow(data), min=0.3, max=3),
reweight=function(w, p=NULL)

runif(nrow(data), min=0.3, max=3),
predf=predict)

{
skip.cond(lapply(1:m,

function(i)
{
if (!is.null(weights))
{
h <- do.call(alg, c(list(formula, data, weights=weights),

args))
pred <- predf(h, data)
if (!is.null(weights <<- reweight(weights, pred)))
h

}
}),

is.null)
}

# base models for the HouseVotes84 data
hv.bm.tree.wx <- base.ensemble.weight.x(Class̃., hv.train, 50, rpart)

# base models for the BostonHousing data
bh.bm.tree.wx <- base.ensemble.weight.x(medṽ., bh.train, 50, rpart)
bh.bm.lm.wx <- base.ensemble.weight.x(medṽ., bh.train, 50, lm)

# base model training set errors for the HouseVotes84 data
hv.train.err.tree.wx <- sapply(hv.bm.tree.wx,

function(h) err(predict(h, hv.train, type="c"),
hv.train$Class))

# base model training set MSE values for the BostonHousing data
bh.train.mse.tree.wx <- sapply(bh.bm.tree.wx,

function(h) mse(predict(h, bh.train), bh.train$medv))
bh.train.mse.lm.wx <- sapply(bh.bm.lm.wx,

function(h) mse(predict(h, bh.train), bh.train$medv))

# base model test set errors for the HouseVotes84 data
hv.test.err.tree.wx <- sapply(hv.bm.tree.wx,

function(h) err(predict(h, hv.test, type="c"),
hv.test$Class))

# base model test set MSE values for the BostonHousing data
bh.test.mse.tree.wx <- sapply(bh.bm.tree.wx,

function(h) mse(predict(h, bh.test), bh.test$medv))
bh.test.mse.lm.wx <- sapply(bh.bm.lm.wx,

function(h) mse(predict(h, bh.test), bh.test$medv))

The distribution of the training and test performance of the generated base models provide
some insights into their diversity. While the simple and arbitrary instance reweighting mech-
anism used for this example does produce some base model variability, but it is less effective
than the instance sampling approach demonstrated in the previous example.
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15.3.1.4 Attribute sampling

Unlike the previous approaches, attribute sampling does not require that the modeling
algorithm be unstable. It requires instead that the set of attributes is sufficiently large to
permit drawing sufficiently many smaller samples. Any reasonable algorithm is likely to
yield considerably different models when supplied with different attribute subsets. This
is why the attribute sampling approach might appear attractive, but it may require careful
sample size tuning to properly tradeoff between base model diversity and quality.

With this approach, multiple random samples A1,A2, … ,Am are drawn (without replace-
ment, as this would make no sense for attributes) from the original set of attributes A and base
models h1, h2, … , hm are then created using the same set of training instances, each time
casted to the selected attribute subset. If using this approach with decision trees or regression
trees, it makes sense to use strict stop criteria that result in growing large trees, better fit-
ted (or possibly overfitted) to the training set, since with more splits selected there are more
opportunities for trees using different attribute samples to differ.

Example 15.3.3 The following R code implements the attribute sampling approach to base
model generation and presents a demonstration thereof, following the pattern of the previ-
ous examples. The frac parameter may be used to specify the number of attributes to use

dmr.util
as the fraction of the number of all available attributes. The clip.val function
is used to make sure that it is in the [0, 1] interval. The default value of 0 triggers
a heuristic setting the attribute sample size to the square root of the number of
attributes. The x.vars and y.var functions are used to extract the input and target attribute

dmr.utilnames from the supplied R formula, and the make.formula function is used
to construct a modified formula with a sample of attributes only. Notice the
minsplit=2 and cp=0 parameters passed to rpart, that result in growing
maximally fitted decision or regression trees.

## generate base models by attribute sampling
base.ensemble.sample.a <- function(formula, data, m, alg, args=NULL,

frac=0, replace=TRUE)
{
attributes <- x.vars(formula, data)
target <- y.var(formula)
ns <- ifelse(clip.val(frac, 0, 1)>0, ceiling(frac*length(attributes)),

ceiling(sqrt(length(attributes))))
lapply(1:m, function(i)

{
sa <- sample(length(attributes), ns)
do.call(alg, c(list(make.formula(target, attributes[sa]), data),

args))
})

}

# base models for the HouseVotes84 data
hv.bm.tree.sa <- base.ensemble.sample.a(Class̃., hv.train, 50, rpart,

args=list(minsplit=2, cp=0))
hv.bm.nb.sa <- base.ensemble.sample.a(Class̃., hv.train, 50, naiveBayes)
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# base models for the BostonHousing data
bh.bm.tree.sa <- base.ensemble.sample.a(medṽ., bh.train, 50, rpart,

args=list(minsplit=2, cp=0))
bh.bm.lm.sa <- base.ensemble.sample.a(medṽ., bh.train, 50, lm)

# base model training set errors for the HouseVotes84 data
hv.train.err.tree.sa <- sapply(hv.bm.tree.sa,

function(h) err(predict(h, hv.train, type="c"),
hv.train$Class))

hv.train.err.nb.sa <- sapply(hv.bm.nb.sa,
function(h) err(predict(h, hv.train), hv.train$Class))

# base model training set MSE values for the BostonHousing data
bh.train.mse.tree.sa <- sapply(bh.bm.tree.sa,

function(h) mse(predict(h, bh.train), bh.train$medv))
bh.train.mse.lm.sa <- sapply(bh.bm.lm.sa,

function(h) mse(predict(h, bh.train), bh.train$medv))

# base model test set errors for the HouseVotes84 data
hv.test.err.tree.sa <- sapply(hv.bm.tree.sa,

function(h) err(predict(h, hv.test, type="c"),
hv.test$Class))

hv.test.err.nb.sa <- sapply(hv.bm.nb.sa,
function(h) err(predict(h, hv.test), hv.test$Class))

# base model test set MSE values for the BostonHousing data
bh.test.mse.tree.sa <- sapply(bh.bm.tree.sa,

function(h) mse(predict(h, bh.test), bh.test$medv))
bh.test.mse.lm.sa <- sapply(bh.bm.lm.sa,

function(h) mse(predict(h, bh.test), bh.test$medv))

It is worthwhile to note how attribute sampling, in combination with strict stop criteria, not
only promotes the variability of tree models, observed indirectly via their test set performance,
but also reduces their quality. In particular, for the HouseVotes84 data decision trees loose most
of their accuracy advantage over the naïve Bayes classifier.

15.3.1.5 Attribute transformation

Another attribute-oriented approach to base model generation is to transform attributes in
such ways that would affect models created by the adopted modeling algorithm. Not all com-
mon attribute transformations discussed in Chapter 17 may be appropriate for the purpose of
creating multiple base models, though. In particular, standardization and normalization are
of rather limited usefulness here, as they can only transform each attribute in a single way.
Discretization for continuous attributes may be more useful, as different discretization algo-
rithms and parameter setups may yield different discretized attributes. What is actually the
most interesting possibility is to use transformations specifically designed to stimulate model
diversity. They may be custom (possibly randomized) versions of the discretization or discrete
attribute encoding transformations that – unlike their standard counterparts – are not just try-
ing to preserve the predictive utility of the original attribute, but also to introduce diversity.
Such techniques are not employed by the most commonly used ensemble modeling algorithms
and therefore are not discussed here.
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One specific example of attribute transformation that is particularly relevant to ensemble
modeling is multiclass encoding, normally used to handle more than two classes with algo-
rithms capable of delivering two-class classification models only. As extensively discussed
and demonstrated in Section 17.4, multiclass encoding techniques create and combine multi-
ple two-class models, and therefore can also be viewed as ensemble modeling techniques.

15.3.2 Different algorithms

The approach of using different algorithms to create base models assumes that the very same
training set is passed to a number of modeling algorithms that hopefully produce sufficiently
good and sufficiently diverse base models. This rarely makes it possible to create more than
a few or a dozen base models, as this is how many algorithms for the same modeling task
are typically available in analytic toolboxes. This limits the utility of this approach, at least
in its pure form. It may become more attractive, though, in combination with the two related
techniques discussed below.

15.3.3 Different parameter setups

The same algorithm may sometimes deliver substantially different models based on the same
data if used with different parameter setups. The corresponding approach to base model
creation makes sense for modeling algorithms that have parameters altering sufficiently
important aspects of their operation to yield diverse models. These could be, e.g., different
split selection or pruning criteria for decision or regression trees or different kernel functions
for support vector machines and support vector regression modeling algorithms that will be
presented in Chapter 16. This technique alone does not usually make it possible to generate
a large number of different base models and is of limited usefulness.

15.3.4 Algorithm randomization

The same algorithm with the same parameter setup may yield different models for the same
dataset if some of its processing steps are nondeterministic. While some algorithms may be
nondeterministic by nature, it is much more common and useful to deliberately randomize
deterministic (or nearly deterministic) algorithms.

Algorithm randomization consists in incorporating a nondeterministic modification to the
standard algorithm operation that does not degrade model quality too severely, but makes
different algorithm invocations likely to produce noticeably different models. The choice of
algorithm steps to modify and the exact modifications is obviously algorithm specific. For
algorithms that make internal decisions using certain criteria, based on evaluations of multi-
ple possible candidate decisions, it usually makes sense to randomize such decision-making
steps, e.g., by adding random noise to decision evaluations or randomly sampling the space
of candidate decisions. In particular, for decision or regression tree growing the split selection
operation is the natural candidate for randomization. It can be achieved either by randomly
disturbing the split evaluation function, or limiting the set of candidate splits to consider at a
given node to a randomly selected subset of all available splits or attributes. The latter resem-
bles attribute sampling, but here an independent sample of attributes is drawn in each node
instead of having a single fixed attribute sample for all nodes, as with the latter.

Notice that algorithm randomization can be easily applied in combination with any of the
training set modification techniques for base model creation, such as instance sampling or
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instance weighting. Basically, multiple models for modified training sets can be created using
a randomized instead of a deterministic algorithm.

Example 15.3.4 To illustrate algorithm randomization as an approach to base model cre-
ation, the following R code implements a simple randomized decision tree growing algorithm.

dmr.dectree

The grow.randdectree function is actually a slightly modified version of
the grow.dectree function from Example 3.3.8. The modification consists
in restricting the split selection process (performed by the internally defined
split.select function) to splits based on a random subset of available attributes. The
number of attributes to use is passed via the ns argument. If unspecified, the square root of

dmr.util

the number of all attributes is assumed. The clip.val function is applied to
ensure the value of ns is in the proper range. Notice that the class attribute of
the created tree object is set to dectree, to enable prediction method dispatching
(using the predict.dectree function defined in Example 3.5.1).

## randomized decision tree growing
## with split selection using ns randomly chosen attributes at each node
## (if unspecified or 0, it defaults to the square root of the number of attributes)
grow.randdectree <- function(formula, data, ns=0,

imp=entropy.p, maxprob=0.999, minsplit=2, maxdepth=8)
{
init <- function()
{
clabs <<- factor(levels(data[[class]]),

levels=levels(data[[class]])) # class labels
tree <<- data.frame(node=1, attribute=NA, value=NA, class=NA, count=NA,

‘names<-‘(rep(list(NA), length(clabs)),
paste("p", clabs, sep=".")))

cprobs <<- (ncol(tree)-length(clabs)+1):ncol(tree) # class probability columns
nodemap <<- rep(1, nrow(data))
n <<- 1

}

next.node <- function(n)
{
if (any(opn <- tree$node>n))
min(tree$node[opn])

else Inf
}

class.distribution <- function(n)
{
tree[tree$node==n,"count"] <<- sum(nodemap==n)
tree[tree$node==n,cprobs] <<- pdisc(data[nodemap==n,class])

}

class.label <- function(n)
{
tree$class[tree$node==n] <<- which.max(tree[tree$node==n,cprobs])

{

stop.criteria <- function(n)
{
n>=2 ̂maxdepth || tree[tree$node==n,"count"]<minsplit ||
max(tree[tree$node==n,cprobs])>maxprob
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}

split.eval <- function(av, sv, cl)
{
cond <- !is.na(av) & (if (is.numeric(av)) av<=as.numeric(sv) else av==sv)

pd1 <- pdisc(cl[cond])
n1 <- sum(cond)
pd0 <- pdisc(cl[!cond])
n0 <- sum(!cond)

if (n1>0 && n0>0)
weighted.impurity(pd1, n1, pd0, n0, imp)

else
Inf

}

split.select <- function(n)
{
splits <- data.frame()
for (attribute in sample(attributes, ns))
{
uav <- sort(unique(data[nodemap==n,attribute]))
if (length(uav)>1)
splits <- rbind(splits,

data.frame(attribute=attribute,
value=if (is.numeric(uav))

midbrk(uav)
else as.character(uav),

stringsAsFactors=F))
}

if (nrow(splits)>0)
splits$eval <- sapply(1:nrow(splits),

function(s)
split.eval(data[nodemap==n,splits$attribute[s]],

splits$value[s],
data[nodemap==n,class]))

if ((best.eval <- min(splits$eval))<Inf)
tree[tree$node==n,2:3] <<- splits[which.min(splits$eval),1:2]

return(best.eval)
}

split.apply <- function(n)
{
tree <<- rbind(tree,

data.frame(node=(2*n):(2*n+1),
attribute=NA, value=NA, class=NA, count=NA,
‘names<-‘(rep(list(NA), length(clabs)),

paste("p", clabs, sep="."))))

av <- data[[tree$attribute[tree$node==n]]]
cond <- !is.na(av) & (if (is.numeric(av))

av<=as.numeric(tree$value[tree$node==n])
else av==tree$value[tree$node==n])

nodemap[nodemap==n & cond] <<- 2*n
nodemap[nodemap==n & !cond] <<- 2*n+1

}

tree <- nodemap <- n <- NULL
clabs <- cprobs <- NULL
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class <- y.var(formula)
attributes <- x.vars(formula, data)
ns <- ifelse(ns==0, round(sqrt(length(attributes))),

clip.val(ns, 1, length(attributes)))

init()
while (is.finite(n))
{
class.distribution(n)
class.label(n)
if (!stop.criteria(n))
if (split.select(n)<Inf)
split.apply(n)

n <- next.node(n)
}
tree$class <- clabs[tree$class]
‘class<-‘(tree, "dectree")

}

To similarly randomize regression tree growing, the following R code defines a modified
version of the grow.regtree function, defined in Example 9.3.8. The ns argument, if
unspecified, is set to one-third of the number of attributes.

## randomized regression tree growing
## with split selection using ns randomly chosen attributes at each node
## (if unspecified or 0, it defaults to the square root of the number of attributes)
grow.randregtree <- function(formula, data, ns=0,

minvar=0.005, minsplit=2, maxdepth=8)
{
init <- function()
{
tree <<- data.frame(node=1, attribute=NA, value=NA, target=NA,

count=NA, mean=NA, variance=NA)
nodemap <<- rep(1, nrow(data))
n <<- 1

}

next.node <- function(n)
{
if (any(opn <- tree$node>n))
min(tree$node[opn])

else Inf
}

target.summary <- function(n)
{
tree$count[tree$node==n] <<- sum(nodemap==n)
tree$mean[tree$node==n] <<- mean(data[nodemap==n,target])
tree$variance[tree$node==n] <<- var1(data[nodemap==n,target])

}

target.value <- function(n)
{
tree$target[tree$node==n] <<- tree$mean[tree$node==n]

}

stop.criteria <- function(n)
{
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n>=2 ̂maxdepth || tree$count[tree$node==n]<minsplit ||
tree$variance[tree$node==n]<minvar

}

split.eval <- function(av, sv, tv)
{
cond <- !is.na(av) & (if (is.numeric(av)) av<=as.numeric(sv) else av==sv)
v1 <- tv[cond]
n1 <- sum(cond)
v0 <- tv[!cond]
n0 <- sum(!cond)
if (n1>0 && n0>0)
weighted.dispersion(v1, v0)

else
Inf

}

split.select <- function(n)
{
splits <- data.frame()
for (attribute in sample(attributes, ns))
{
uav <- sort(unique(data[nodemap==n,attribute]))
if (length(uav)>1)
splits <- rbind(splits,

data.frame(attribute=attribute,
value=if (is.numeric(uav))

midbrk(uav)
else as.character(uav),

stringsAsFactors=F))
}

if (nrow(splits)>0)
splits$eval <- sapply(1:nrow(splits),

function(s)
split.eval(data[nodemap==n,splits$attribute[s]],

splits$value[s],
data[nodemap==n,target]))

if ((best.eval <- min(splits$eval))<Inf)
tree[tree$node==n,2:3] <<- splits[which.min(splits$eval),1:2]

best.eval
}

split.apply <- function(n)
{
tree <<- rbind(tree,

data.frame(node=(2*n):(2*n+1), attribute=NA, value=NA, target=NA,
count=NA, mean=NA, variance=NA))

av <- data[[tree$attribute[tree$node==n]]]
cond <- !is.na(av) & (if (is.numeric(av))

av<=as.numeric(tree$value[tree$node==n])
else av==tree$value[tree$node==n])

nodemap[nodemap==n & cond] <<- 2*n
nodemap[nodemap==n & !cond] <<- 2*n+1

}

tree <- nodemap <- n <- NULL
target <- y.var(formula)
attributes <- x.vars(formula, data)
ns <- ifelse(ns==0, round(length(attributes)/3),
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clip.val(ns, 1, length(attributes)))

init()
while (is.finite(n))
{
target.summary(n)
target.value(n)
if (!stop.criteria(n))
if (split.select(n)<Inf)
split.apply(n)

n <- next.node(n)
}
‘class<-‘(tree, "regtree")

}

The application of these randomized decision tree and regression tree growing
implementations is demonstrated by the following R code, following the pattern of the
previous examples. Notice that base model creation in this case simply reduces to multiple
invocations of the same randomized algorithm for the same training set. This is performed
by the base.ensemble.simple function. The predict.dectree and pre-
dict.regtree functions, defined in Examples 3.5.1 and 9.5.1, are used to generate
base model predictions. The resulting training and test set misclassification error and mean
square error values are calculated to make it possible to roughly assess the diversity of the
randomized tree models.

## generate base models by simple multiple algorithm application
base.ensemble.simple <- function(formula, data, m, alg, args=NULL)
{
lapply(1:m, function(i) do.call(alg, c(list(formula, data), args)))

}

# base models for the HouseVotes84 data
hv.bm.tree.rnd <- base.ensemble.simple(Class̃., hv.train, 50, grow.randdectree)

# base models for the BostonHousing data
bh.bm.tree.rnd <- base.ensemble.simple(medṽ., bh.train, 50, grow.randregtree,

args=list(minvar=5))

# base model training set errors for the HouseVotes84 data
hv.train.err.tree.rnd <- sapply(hv.bm.tree.rnd,

function(h) err(predict(h, hv.train),
hv.train$Class))

# base model training set MSE values for the BostonHousing data
bh.train.mse.tree.rnd <- sapply(bh.bm.tree.rnd,

function(h) mse(predict(h, bh.train),bh.train$medv))

# base model test set errors for the HouseVotes84 data
hv.test.err.tree.rnd <- sapply(hv.bm.tree.rnd,

function(h) err(predict(h, hv.test), hv.test$Class))

# base model test set MSE values for the BostonHousing data
bh.test.mse.tree.rnd <- sapply(bh.bm.tree.rnd,

function(h) mse(predict(h, bh.test), bh.test$medv))
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Decision tree growing randomization applied to the HouseVotes84 data appears to give
little effect when looking at training set error distribution, but this is to be expected given their
default strict stop criteria leading to fitting the training set exactly. On the test set they exhibit
randomized trees substantially more variability than those obtained using instance sampling,
with somewhat reduced accuracy. Similar observations can be made for randomized regression
trees on the Boston Housing data.

15.3.5 Base model diversity

While all the base model generation techniques presented in this section serve the same pur-
pose of generating multiple diverse, but at the same time reasonably good, models for the
same domain, they are not equally effective in achieving this goal. Instance sampling has
the widest applicability and should be capable of delivering substantial diversity if used with
an unstable modeling algorithm. Instance weighting makes most sense when it is desirable
to somehow adjust subsequent base models to the performance exhibited by those created
previously. Otherwise it offers no advantages over instance sampling. Attribute sampling is
only applicable when there are sufficiently many attributes. Otherwise eliminating some of
them may excessively degrade base model performance. Varying algorithm parameters may
be effective only for some algorithms that are sufficiently sensitive to their parameter values. It
has to be used with care to avoid destroying base model quality. Usually only a small number
of different but sufficiently good base models can be created using this technique alone and
it can be truly useful only in combination with one of the others, usually instance sampling.
Algorithm randomization, whenever applicable, is easier to control and has much greater base
model diversity potential. It can be applied as a standalone base model generation technique
or as a diversity-stimulating companion to instance sampling.

Example 15.3.5 To illustrate the base model diversity potential of the techniques presented
in this section, the following R code produces boxplots visualizing the training and test set
performance of the base models created in the previous examples.

# base model training set errors for the HouseVotes84 data
boxplot(list(tree.sx=hv.train.err.tree.sx,

tree.wx=hv.train.err.tree.wx,
tree.sa=hv.train.err.tree.sa,
tree.rnd=hv.train.err.tree.rnd,
nb.sx=hv.train.err.nb.sx,
nb.sa=hv.train.err.nb.sa),

main="HouseVotes84 (train)", las=2, col="grey", ylim=c(0, 0.26))

# base model test set errors for the HouseVotes84 data
boxplot(list(tree.sx=hv.test.err.tree.sx,

tree.wx=hv.test.err.tree.wx,
tree.sa=hv.test.err.tree.sa,
tree.rnd=hv.test.err.tree.rnd,
nb.sx=hv.test.err.nb.sx,
nb.sa=hv.test.err.nb.sa),

main="HouseVotes84 (test)", las=2, col="grey", ylim=c(0, 0.26))

# base model training set MSE values for the BostonHousing data
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boxplot(list(tree.sx=bh.train.mse.tree.sx,
tree.wx=bh.train.mse.tree.wx,
tree.sa=bh.train.mse.tree.sa,
tree.rnd=bh.train.mse.tree.rnd,
lm.sx=bh.train.mse.lm.sx,
lm.wx=bh.train.mse.lm.wx,

lm.sa=bh.train.mse.lm.sa),
main="BostonHousing (train)", las=2, col="grey", ylim=c(0, 130))

# base model test set MSE values for the BostonHousing data
boxplot(list(tree.sx=bh.test.mse.tree.sx,

tree.wx=bh.test.mse.tree.wx,
tree.sa=bh.test.mse.tree.sa,
tree.rnd=bh.test.mse.tree.rnd,
lm.sx=bh.test.mse.lm.sx,
lm.wx=bh.train.mse.lm.wx,
lm.sa=bh.test.mse.lm.sa),

main="BostonHousing (test)", las=2, col="grey", ylim=c(0, 130))

The obtained boxplots are presented in Figures 15.1 and 15.2. Clearly attribute sampling
yields the most diverse base models (judging based on their test set performance), but this is
at the cost of considerably worse error levels. Of the remaining techniques, instance sampling
and algorithm randomization appear to offer acceptable levels of tradeoff between diversity
and quality.
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Figure 15.1 The boxplots of the training and test set misclassification errors for base models
created for the HouseVotes84 data.
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Figure 15.2 The boxplots of the training and test set mean square errors for base models
created for the Boston Housing data.

15.4 Model aggregation

Model aggregation consists in combining base models h1, h2, … , hm into a (hopefully bet-
ter) model h∗. This is achieved by establishing a prediction combination scheme that makes
it possible to compute h∗(x) based on h1(x), h2(x), … , hm(x) for arbitrary x ∈ X. The com-
bined model h∗ is represented by all of its base models and the scheme used for combining
their predictions. The latter may or may not need an explicit representation, depending on its
complexity.

Techniques used for base model creation do not depend on the modeling task, and the
same are applicable to both classification and regression – at least as long as no specific
instantiations of these techniques are considered. This is not the case for base model aggre-
gation, where discrete and continuous base model predictions may require different ways
of combining them into final ensemble predictions. Neverthless, they can be presented in a
mostly task-independent way, with task-specific details separated from the general principles.

15.4.1 Voting/Averaging

The simplest and at the same time most widely employed aggregation technique is class label
voting for the classification task and target function value averaging for the regression task.
The combined prediction is obtained as

h∗(x) = arg max
d∈C

n∑
i=1

Ihi(x)=d (15.4)
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where the Icondition notation is used to denote an indicator function that yields 1 when the
condition is satisfied and 0 otherwise, or

h∗(x) =
1
m

m∑
i=1

hi(x) (15.5)

respectively.
In any case, while we formally speak of the combined model, what happens in reality is

just combining base model predictions, without creating any other model representation. Base
models are therefore just wrapped by the voting/averaging scheme for prediction combination.
There is no need therefore to access the training set in the model combination phase.

Example 15.4.1 Basic voting or averaging model combination is implemented by the
predict.ensemble.basic function defined by the following R code. It applies each
base model to the obtained dataset and, depending on the type of their predictions, uses one of

Ex. 2.4.19
dmr.stats

the two combination variants. Voting is performed using the modal function. The
predict.ensemble.basic function is demonstrated by applying it to com-
bine all the base models generated in the previous examples. The misclassification
error or mean square error values on the test sets are calculated for the combined
models and visually presented using barplots, with the corresponding indicators for single
models also included for comparison.

## combine base models by voting/averaging
predict.ensemble.basic <- function(models, data, predf=predict)
{
bp <- data.frame(lapply(models, function(h) predf(h, data)))
combf <- if (is.numeric(bp[,1])) mean else modal # combination scheme
cp <- sapply(1:nrow(bp), function(i) combf(as.vector(as.matrix(bp[i,]))))
if (is.factor(bp[,1]))
factor(cp, levels=levels(bp[,1]))

else
cp

}

# combine base models for the HouseVotes84 data
hv.pred.tree.sx.b <- predict.ensemble.basic(hv.bm.tree.sx, hv.test,

predf=function(...)
predict(..., type="c"))

hv.pred.nb.sx.b <- predict.ensemble.basic(hv.bm.nb.sx, hv.test)
hv.pred.tree.wx.b <- predict.ensemble.basic(hv.bm.tree.wx, hv.test,

predf=function(...)
predict(..., type="c"))

hv.pred.tree.sa.b <- predict.ensemble.basic(hv.bm.tree.sa, hv.test,
predf=function(...)

predict(..., type="c"))
hv.pred.nb.sa.b <- predict.ensemble.basic(hv.bm.nb.sa, hv.test)
hv.pred.tree.rnd.b <- predict.ensemble.basic(hv.bm.tree.rnd, hv.test)

# combine base models for the BostonHousing data
bh.pred.tree.sx.b <- predict.ensemble.basic(bh.bm.tree.sx, bh.test)
bh.pred.lm.sx.b <- predict.ensemble.basic(bh.bm.lm.sx, bh.test)
bh.pred.tree.wx.b <- predict.ensemble.basic(bh.bm.tree.wx, bh.test)
bh.pred.lm.wx.b <- predict.ensemble.basic(bh.bm.lm.wx, bh.test)
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bh.pred.tree.sa.b <- predict.ensemble.basic(bh.bm.tree.sa, bh.test)
bh.pred.lm.sa.b <- predict.ensemble.basic(bh.bm.lm.sa, bh.test)
bh.pred.tree.rnd.b <- predict.ensemble.basic(bh.bm.tree.rnd, bh.test)

# ensemble model test set errors for the HouseVotes84 data
hv.err.b <- c(tree = hv.err.tree,

tree.sx = err(hv.pred.tree.sx.b, hv.test$Class),
tree.wx = err(hv.pred.tree.wx.b, hv.test$Class),
tree.sa = err(hv.pred.tree.sa.b, hv.test$Class),
tree.rnd = err(hv.pred.tree.rnd.b, hv.test$Class),
nb = hv.err.nb,
nb.sx = err(hv.pred.nb.sx.b, hv.test$Class),
nb.sa = err(hv.pred.nb.sa.b, hv.test$Class))

# ensemble model test set MSE values for the BostonHousing data
bh.mse.b <- c(tree = bh.mse.tree,

tree.sx = mse(bh.pred.tree.sx.b, bh.test$medv),
tree.wx = mse(bh.pred.tree.wx.b, bh.test$medv),
tree.sa = mse(bh.pred.tree.sa.b, bh.test$medv),
tree.rnd = mse(bh.pred.tree.rnd.b, bh.test$medv),
lm = bh.mse.lm,
lm.sx = mse(bh.pred.lm.sx.b, bh.test$medv),
lm.wx = mse(bh.pred.lm.wx.b, bh.test$medv),
lm.sa = mse(bh.pred.lm.sa.b, bh.test$medv))

barplot(hv.err.b, main="HouseVotes84", ylab="Error", las=2)
lines(c(0, 10), rep(hv.err.b[1], 2), lty=2)
lines(c(0, 10), rep(hv.err.b[6], 2), lty=3)

barplot(bh.mse.b, main="Boston Housing", ylab="MSE", las=2)
lines(c(0, 11), rep(bh.mse.b[1], 2), lty=2)
lines(c(0, 11), rep(bh.mse.b[6], 2), lty=3)

The barplots illustrating the performance of the created model ensembles are presented
in Figure 15.3. Only one of the decision tree ensembles, the one using base models obtained
by instance sampling, outperforms the single decision tree for the HouseVotes84 data. The
ensembles with base models obtained by attribute sampling are particularly poor, suggesting
that this base model generation methods may be not very useful if used alone. No improve-
ment can be observed for the naïve Bayes models. Somewhat better results are obtained
for the Boston Housing dataset, with most regression tree ensembles (except that using
base models obtained by attribute sampling) outperforming the single tree. The ensemble
consisting of randomized regression trees turns out particularly successful. None of linear
model ensembles brings any improvement, though. This is because the averaged predictions
of multiple linear models remain linear, i.e., they could have been generated by a single
linear model.

15.4.2 Probability averaging

For probabilistic classification models, generating class probabilities rather than or apart
from class labels, an alternative probabilistic prediction combination scheme is possible. Let
Phi

(d|x) denote the probability of class d for instance x delivered by base model hi. Then
the combined probability of class d for instance x is calculated by probability averaging as
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Figure 15.3 The barplots of error values for base models combined by voting/averaging.

follows:

Ph∗
(d|x) = m∑

i=1

P(hi)Phi
(d|x) (15.6)

where P(hi) is the probability of model hi in the ensemble, assumed to be 1
m

for all
i = 1, 2, … ,m. This preserves the probability prediction capability of base models in the
ensemble, with all the related advantages, including the possibility of misclassification cost
minimization, as discussed in Section 6.3.3, or operating point tuning by ROC analysis, as
discussed in Section 7.2.5. If these are not needed, class label predictions can be generated
by simple probability maximization.

As a matter of fact, probabilistic predictions are possible even with model ensembles com-
prising nonprobabilistic base models, by taking

Phi
(d|x) = {

1 if hi(x) = d

0 otherwise
(15.7)

The predicted probability of each class becomes then the number of votes for this class divided
by the number of base models. Even though the quality of such probability predictions is likely
to be inferior to that possible with proper probabilistic models, it may still be useful.

Example 15.4.2 The R code presented below defines the predict.ensemble.prob
function that performs base classification model aggregation by probability averaging.
The prediction function for base models passed via the prob argument is expected to
produce class probability predictions. Such probabilities obtained for all base models are
averaged and either returned directly, if the prob argument is set to TRUE, or used to
assign maximum-probability class labels. The latter is the default behavior demonstrated by
example calls which combine all the previously created decision tree and naïve Bayes base
models for the HouseVotes84 data, except those obtained using decision tree randomization,
since its simple implementation lacks the probabilistic prediction functionality.
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## combine base models by probability averaging
predict.ensemble.prob <- function(models, data, predf=predict,

prob=FALSE, labels=NULL)
{
bp <- lapply(models, function(h) predf(h, data))
cp <- 0
for (i in (1:(m <- length(bp))))
cp <- cp + bp[[i]]

if (prob)
cp/m

else
{
if (is.null(labels))
labels <- colnames(cp)

factor(apply(cp, 1, which.max), levels=1:2, labels=labels)
}

}

# combine base models for the HouseVotes84 data
hv.pred.tree.sx.p <- predict.ensemble.prob(hv.bm.tree.sx, hv.test)
hv.pred.nb.sx.p <- predict.ensemble.prob(hv.bm.nb.sx, hv.test,

predf=function(...) predict(..., type="r"))
hv.pred.tree.wx.p <- predict.ensemble.prob(hv.bm.tree.wx, hv.test)
hv.pred.tree.sa.p <- predict.ensemble.prob(hv.bm.tree.sa, hv.test)
hv.pred.nb.sa.p <- predict.ensemble.prob(hv.bm.nb.sa, hv.test,

predf=function(...) predict(..., type="r"))

# ensemble model test set errors for the HouseVotes84 data
hv.err.p <- c(tree = hv.err.tree,

tree.sx = err(hv.pred.tree.sx.p, hv.test$Class),
tree.wx = err(hv.pred.tree.wx.p, hv.test$Class),
tree.sa = err(hv.pred.tree.sa.p, hv.test$Class),
nb = hv.err.nb,
nb.sx = err(hv.pred.nb.sx.p, hv.test$Class),
nb.sa = err(hv.pred.nb.sa.p, hv.test$Class))

barplot(hv.err.p, main="HouseVotes84", ylab="Error", las=2)
lines(c(0, 9), rep(hv.err.p[1], 2), lty=2)
lines(c(0, 9), rep(hv.err.p[5], 2), lty=3)

Figure 15.4 displays the barplots of the obtained misclassification error values. They
exactly match those observed in Example 15.4.1 using basic voting.

15.4.3 Weighted voting/averaging

It may be sometimes a good idea to weight base models depending on their training set per-
formance or estimated true performance, with a weighting scheme that allows better models
to have more prediction impact. Incorporating model weights Wi for each base model hi leads
to the following prediction combination schemes:

h∗(x) = argmax
d∈C

n∑
i=1

WiIhi(x)=d (15.8)

for classification, and

h∗(x) =
∑m

i=1 Wihi(x)∑m
i=1 Wi

(15.9)
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Figure 15.4 The barplot of error values for base models combined by probability averaging.

for regression, where the uppercase Wi is used to avoid confusion of model weights with
instance weights 𝑤x, also referred to in this chapter. Sometimes it may be more convenient
and natural to use the weighted sum rather than the weighted average:

h∗(x) =
m∑

i=1

Wihi(x) (15.10)

which is clearly the same if model weights are normalized to sum up to 1. Finally, the weighted
version of class probability averaging is defined as follows:

Ph∗
(d|x) = ∑m

i=1 WiP(hi)Phi
(d|x)∑m

i=1 WiP(hi)
(15.11)

which can further be simplified, if all base models are assumed to have the same probability
of 1

m
, to the following form:

Ph∗
(d|x) = ∑m

i=1 WiPhi
(d|x)∑m

i=1 Wi

(15.12)

Model weighting schemes are usually specific to particular ensemble modeling techniques.

Example 15.4.3 Weighted voting/averaging model combination is implemented by the pre-
dict.ensemble.weighted function defined by the following R code. Weighted voting

Ex. 2.4.20
dmr.stats

is performed using the weighted.modal function, and weighted averaging
using the standard weighted.mean function. Optionally, summing may be
requested instead of averaging. The predict.ensemble.weighted func-
tion is demonstrated by applying it to combine all the base models generated in
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the previous examples. A straightforward inverse error model weighting scheme is employed.
As before, the misclassification error or mean square error values on the test sets are calculated
and plotted for the combined models.

## combine base models by weighted voting/averaging/summing
predict.ensemble.weighted <- function(models, weights, data, predf=predict,

summing=FALSE)
{
bp <- data.frame(lapply(models, function(h) predf(h, data)))
combf <- if (is.numeric(bp[,1])) weighted.mean

else weighted.modal # combination scheme
cp <- sapply(1:nrow(bp), function(i) combf(as.vector(as.matrix(bp[i,])), weights))
if (is.numeric(bp[,1]) && summing)
cp <- cp*sum(weights) # summing instead of averaging requested

if (is.factor(bp[,1]))
factor(cp, levels=levels(bp[,1]))

else
cp

}

# combine base models for the HouseVotes84 data
hv.pred.tree.sx.w <- predict.ensemble.weighted(hv.bm.tree.sx,

1/(hv.train.err.tree.sx+0.01),
hv.test,
predf=function(...)

predict(..., type="c"))
hv.pred.nb.sx.w <- predict.ensemble.weighted(hv.bm.nb.sx,

1/(hv.train.err.nb.sx+0.01),
hv.test)

hv.pred.tree.wx.w <- predict.ensemble.weighted(hv.bm.tree.wx,
1/(hv.train.err.tree.wx+0.01),
hv.test,
predf=function(...)

predict(..., type="c"))
hv.pred.tree.sa.w <- predict.ensemble.weighted(hv.bm.tree.sa,

1/(hv.train.err.tree.sa+0.01),
hv.test,
predf=function(...)

predict(..., type="c"))
hv.pred.nb.sa.w <- predict.ensemble.weighted(hv.bm.nb.sa,

1/(hv.train.err.nb.sa+0.01), hv.test)
hv.pred.tree.rnd.w <- predict.ensemble.weighted(hv.bm.tree.rnd,

1/(hv.train.err.tree.rnd+0.01),
hv.test)

# combine base models for the BostonHousing data
bh.pred.tree.sx.w <- predict.ensemble.weighted(bh.bm.tree.sx,

1/(bh.train.mse.tree.sx+1), bh.test)
bh.pred.lm.sx.w <- predict.ensemble.weighted(bh.bm.lm.sx,

1/(bh.train.mse.lm.sx+1), bh.test)
bh.pred.tree.wx.w <- predict.ensemble.weighted(bh.bm.tree.wx,

1/(bh.train.mse.tree.wx+1), bh.test)
bh.pred.lm.wx.w <- predict.ensemble.weighted(bh.bm.lm.wx,

1/(bh.train.mse.lm.wx+1), bh.test)
bh.pred.tree.sa.w <- predict.ensemble.weighted(bh.bm.tree.sa,

1/(bh.train.mse.tree.sa+1), bh.test)
bh.pred.lm.sa.w <- predict.ensemble.weighted(bh.bm.lm.sa,

1/(bh.train.mse.lm.sa+1), bh.test)
bh.pred.tree.rnd.w <- predict.ensemble.weighted(bh.bm.tree.rnd,

1/(bh.train.mse.tree.rnd+1), bh.test)
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# ensemble model test set errors for the HouseVotes84 data
hv.err.w <- c(tree = hv.err.tree,

tree.sx = err(hv.pred.tree.sx.w, hv.test$Class),
tree.wx = err(hv.pred.tree.wx.w, hv.test$Class),
tree.sa = err(hv.pred.tree.sa.w, hv.test$Class),
tree.rnd = err(hv.pred.tree.rnd.w, hv.test$Class),
nb = hv.err.nb,
nb.sx = err(hv.pred.nb.sx.w, hv.test$Class),
nb.sa = err(hv.pred.nb.sa.w, hv.test$Class))

# ensemble model test set MSE values for the BostonHousing data
bh.mse.w <- c(tree = bh.mse.tree,

tree.sx = mse(bh.pred.tree.sx.w, bh.test$medv),
tree.wx = mse(bh.pred.tree.wx.w, bh.test$medv),
tree.sa = mse(bh.pred.tree.sa.w, bh.test$medv),
tree.rnd = mse(bh.pred.tree.rnd.w, bh.test$medv),
lm = bh.mse.lm,
lm.sx = mse(bh.pred.lm.sx.w, bh.test$medv),
lm.wx = mse(bh.pred.lm.wx.w, bh.test$medv),
lm.sa = mse(bh.pred.lm.sa.w, bh.test$medv))

barplot(hv.err.w, main="HouseVotes84", ylab="Error", las=2)
lines(c(0, 10), rep(hv.err.w[1], 2), lty=2)
lines(c(0, 10), rep(hv.err.w[6], 2), lty=3)

barplot(bh.mse.w, main="Boston Housing", ylab="MSE", las=2)
lines(c(0, 11), rep(bh.mse.w[1], 2), lty=2)
lines(c(0, 11), rep(bh.mse.w[6], 2), lty=3)

The barplots illustrating the performance of the created model ensembles are presented in
Figure 15.5. There is no significant impact of base model weighting on the prediction quality
of most of the model ensembles, which remains the same as with basic voting/averaging.
Only for the worst attribute sampling ensembles some improvement due to weighting may be
observed. The applied weighting scheme may not sufficiently vary the contributions of better
and worse base models, or the quality of base models may not sufficiently differ.

15.4.4 Using as attributes

A more refined approach than plain or weighted voting or averaging consists in using a model-
ing algorithm to create the aggregated model h∗, with base models h1, h2, … , hm playing the
role of (the only or additional) attributes. Technically, this means that their predictions for the
training set are generated and used instead of or apart form the original attribute values. Such
data is passed to the modeling algorithm used to create the aggregated model, which may, but
does not have to, be the same as (possibly one of those) used for base model creation. It is
more common to use rather simple algorithms for model combination, but more refined ones
for base model generation.

It is also possible to consider multiple levels of such model aggregation, leading to a
hierarchical model ensemble. In this approach, base models created using the original set of
attributes, that may be referred to as level 0 models, are used as attributes to create multiple
level 1 models, which then in turn are used to create level 2 models, etc. The same techniques
for base model creation as discussed above may be used on each level to obtain multiple
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Figure 15.5 The barplots of error values for base models combined by weighted voting/
averaging.

aggregated models – what changes is only the set of attributes used, which constitutes of or is
supplemented by the lower level models.

Despite its refinement and conceptual elegance, the approach of using base models as
attributes for model aggregation is not necessarily superior to simple voting or averaging.
Relationships between particular base models and the target attribute may not be predictively
useful enough to outperform the latter. This is not to say that this aggregation technique is
universally poor and useless, but rather warn that it is not necessarily superior to the much
simpler alternatives discussed previously.

Unlike basic or weighted voting/averaging, using base models as attributes means that an
actual representation of the combined model is created. The training set therefore needs to
remain available in the model combination phase.

Example 15.4.4 Base model combination by using them as attributes is implemented
and demonstrated by the R code. The implementation comprises two functions,
combine.ensemble.attributes and predict.ensemble.attributes.
The former creates the combined model using the training set, with base models used instead
of or apart from the original attributes (depending on the value of the append argument).
The latter applies such a combined model for prediction. The presented implementation
assumes that the target attribute name is available in the terms component of the model
object structure used to represent base models. This is true for some, but not all modeling
algorithms available in R – in particular, for the rpart and lm models, but neither for
the naiveBayes model nor for the randomized decision and regression trees created by
the grow.randdectree and grow.randregtree functions. The demonstrations
presented below are actually limited to combining rpart decision tree and regression tree
models only, using the naïve Bayes and linear regression algorithms on the second level.
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## combine base models by using as attributes
## create a model using the specified algorithm and training data
combine.ensemble.attributes <- function(models, data, alg, args=NULL, predf=predict,

append=FALSE)
{
target <- as.character(models[[1]]$terms[[2]])
tind <- match(target, names(data))
data.base <- ‘names<-‘(cbind(data.frame(lapply(models,

function(h) predf(h, data))),
data[[target]]),

c(paste("h", 1:length(models), sep=""), target))
if (append)
data.base <- cbind(data[,-tind], data.base)

do.call(alg, c(list(make.formula(target, "."), data.base), args))
}

## combine base models by using as attributes
## predict using the specified base models and combined model
predict.ensemble.attributes <- function(combined.model, base.models, data,

combined.predf=predict, base.predf=predict)
{
data.pred <- ‘names<-‘(data.frame(lapply(base.models,

function(h) base.predf(h, data))),
paste("h", 1:length(base.models), sep=""))

data.pred <- cbind(data, data.pred) # make the original attributes available
combined.predf(combined.model, data.pred)

}

# combine base models for the HouseVotes84 data
hv.tree.sx.nb <- combine.ensemble.attributes(hv.bm.tree.sx, hv.train, naiveBayes,

predf=function(...)
predict(..., type="c"))

hv.pred.tree.sx.nb <- predict.ensemble.attributes(hv.tree.sx.nb, hv.bm.tree.sx,
hv.test,
base.predf=function(...)

predict(..., type="c"))
hv.tree.wx.nb <- combine.ensemble.attributes(hv.bm.tree.wx, hv.train, naiveBayes,

predf=function(...)
predict(..., type="c"))

hv.pred.tree.wx.nb <- predict.ensemble.attributes(hv.tree.wx.nb, hv.bm.tree.wx,
hv.test,
base.predf=function(...)

predict(..., type="c"))
hv.tree.sa.nb <- combine.ensemble.attributes(hv.bm.tree.sa, hv.train, naiveBayes,

predf=function(...)
predict(..., type="c"))

hv.pred.tree.sa.nb <- predict.ensemble.attributes(hv.tree.sa.nb, hv.bm.tree.sa,
hv.test,
base.predf=function(...)

predict(..., type="c"))

# combine base models for the BostonHousing data
bh.tree.sx.lm <- combine.ensemble.attributes(bh.bm.tree.sx, bh.train, lm)
bh.pred.tree.sx.lm <- predict.ensemble.attributes(bh.tree.sx.lm, bh.bm.tree.sx,

bh.test)
bh.tree.wx.lm <- combine.ensemble.attributes(bh.bm.tree.wx, bh.train, lm)
bh.pred.tree.wx.lm <- predict.ensemble.attributes(bh.tree.wx.lm, bh.bm.tree.wx,

bh.test)
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bh.tree.sa.lm <- combine.ensemble.attributes(bh.bm.tree.sa, bh.train, lm)
bh.pred.tree.sa.lm <- predict.ensemble.attributes(bh.tree.sa.lm, bh.bm.tree.sa,

bh.test)

# ensemble model test set errors for the HouseVotes84 data
hv.err.a <- c(tree = hv.err.tree,

tree.sx.nb = err(hv.pred.tree.sx.nb, hv.test$Class),
tree.wx.nb = err(hv.pred.tree.wx.nb, hv.test$Class),
tree.sa.nb = err(hv.pred.tree.sa.nb, hv.test$Class))

# ensemble model test set MSE values for the BostonHousing data
bh.mse.a <- c(tree = bh.mse.tree,

tree.sx.lm = mse(bh.pred.tree.sx.lm, bh.test$medv),
tree.wx.lm = mse(bh.pred.tree.wx.lm, bh.test$medv),
tree.sa.lm = mse(bh.pred.tree.sa.lm, bh.test$medv))

barplot(hv.err.a, main="HouseVotes84", ylab="Error", las=2)
lines(c(0, 5), rep(hv.err.a[1], 2), lty=2)

barplot(bh.mse.a, main="Boston Housing", ylab="MSE", las=2)
lines(c(0, 5), rep(bh.mse.a[1], 2), lty=2)

The barplots illustrating the performance of the created model ensembles are presented
in Figure 15.6. Combining base models by using them as attributes does not appear to
provide any advantages over the simple voting/averaging approaches demonstrated in
Example 15.4.1.
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Figure 15.6 The barplots of error values for base models combined by using them as
attributes.
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15.5 Specific ensemble modeling algorithms

Various combinations of all the possible approaches to base model creation and aggregation
discussed above may be used, yielding a variety of ensemble modeling techniques. Some of
them have proved particularly useful and become extremely popular. These most noteworthy
specific instantiations of model ensembles are overviewed in this section.

15.5.1 Bagging

Bagging (standing for bootstrap aggregating) is definitely the simplest ensemble modeling
algorithm that combines the very basic approaches to base model creation and aggregation:

• base models are created using bootstrap samples of the training set,

• combined by plain (unweighted) voting for the classification task or averaging for the
regression task.

If using probabilistic base classification models, class label voting can be replaced by class
probability averaging, leading to a probabilistic version of bagging.

This technique may not promise extreme prediction quality, but is likely to give an
improvement compared to single models created using the same algorithm as base models,
as long as the algorithm is unstable. For stable algorithms, with base models not sufficiently
diverse, there may be no improvement or even minor degradation of prediction quality. There
are no particular requirements for the modeling algorithm other than instability. Actually, it
may be simplified compared to what would be normally used for single model creation, if
this makes it more unstable. This may include, in particular, giving up overfitting precautions
used in some algorithms, such as pruning decision or regression trees. Models overfitted to
their particular bootstrap samples are more likely to differ. The overfitting of base models
will not entail the overfitting of the ensemble, as their aggregation will effectively cancel it
out. Similarly, there is usually no need to bother with attribute selection, as more attributes
provide more opportunities to create many diverse models. This is a striking difference
compared to what is typical when single models are created.

Bagging may be thought of as a means of stabilizing unstable algorithms. Single models
obtained using such algorithms may be subject to considerable variation depending on a par-
ticular training set. There is always a possibility that for a slightly different training set a better
or worse model would be created. Creating multiple models based on different data samples
without combining them into an ensemble, and simply selecting one of them that appears
the best does not provide a valuable solution. This is because model selection would have to
based on model evaluation and the latter, as discussed in Section 7.3.1, only makes sense for a
repeatable modeling procedure. In particular, producing low-variance performance estimates
that could serve for model selection requires repeating training and evaluation cycles multiple
times. This is completely impossible for models that only differ in their training samples.

Bagging, with sufficiently many base models, allows one to be pretty confident that the
final model is at least as good as a single model in the optimistic case, and possibly even
improve over that. This is enough to justify the use of bagging if computational resources
permit creating dozens or more models, as typically used for this technique and if model
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human readability is not required. The bagging ensemble performance tends to improve with
increasing the number of base models up to a certain point, after which it stabilizes. This is
where the limit of model diversity possible using bootstrap samples is achieved. Additional
models are too much similar to the other ones to make any difference.

Example 15.5.1 The bagging ensemble modeling technique is implemented and demonstrated
by the R code presented below. Since bagging is the most straightforward combination of
instance sampling for base model creation and voting/averaging for ensemble prediction, the
corresponding functions are simple wrappers around the functions defined in Examples 15.3.1
and 15.4.1. The demonstrations also follow the same pattern and include the application of
bagging with decision trees and the naïve Bayes classifier to the HouseVotes84 data, and with
regression trees and linear regression to the Boston Housing data.

## bagging ensemble modeling using m base models created with algorithm alg
## with arguments arg
bagging <- function(formula, data, m, alg, args=NULL)
{
‘class<-‘(base.ensemble.sample.x(formula, data, m, alg, args), "bagging")

}

## bagging prediction
predict.bagging <- function(models, data, predf=predict)
{
predict.ensemble.basic(models, data, predf)

}

# bagging for the HouseVotes84 data
hv.bagg.tree <- bagging(Class̃., hv.train, 50, rpart, args=list(minsplit=2, cp=0))
hv.bagg.nb <- bagging(Class̃., hv.train, 50, naiveBayes)

hv.pred.bagg.tree <- predict(hv.bagg.tree, hv.test,
predf=function(...) predict(..., type="c"))

hv.pred.bagg.nb <- predict(hv.bagg.nb, hv.test)

# bagging for the BostonHousing data
bh.bagg.tree <- bagging(medṽ., bh.train, 50, rpart, args=list(minsplit=2, cp=0))
bh.bagg.lm <- bagging(medṽ., bh.train, 50, lm)

bh.pred.bagg.tree <- predict(bh.bagg.tree, bh.test)
bh.pred.bagg.lm <- predict(bh.bagg.lm, bh.test)

# bagging test set errors for the HouseVotes84 data
hv.err.bagg <- list(tree = err(hv.pred.bagg.tree, hv.test$Class),

nb = err(hv.pred.bagg.nb, hv.test$Class))

# bagging test set MSE values for the BostonHousing data
bh.mse.bagg <- list(tree = mse(bh.pred.bagg.tree, bh.test$medv),

lm = mse(bh.pred.bagg.lm, bh.test$medv))

The bagging ensembles for the HouseVotes84 bring no improvement over the correspond-
ing single models. For the Boston Housing data regression tree bagging ensemble outperforms
the single tree considerably, though. The lack of improvement for the ensemble of linear mod-
els is not at all surprising, as bagging cannot overcome their linearity limitation in any way.
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15.5.2 Stacking

The combination of using different algorithms (possibly with instance sampling to enable a
greater number of diverse models) for base model creation and using base models as attributes
for their aggregation yields the technique known as stacking. This term suggests a multilevel
hierarchy of models could be created, as discussed in Section 15.4.4. The number of levels
(no more than a few), the number of models, and the choice of algorithms used on particular
levels are design decisions that may have a significant impact on the final ensemble qual-
ity. This makes stacking much more difficult to properly use than bagging, where just one
algorithm and the number of base models need to be selected. Even in the simplest one-level
setting, stacking is actually more refined than just using base model outputs as attributes for
creating an aggregated model. It employs an internal data splitting technique related to the
k-fold evaluation procedure presented in Section 7.3.4 which makes sure that predictions serv-
ing as attribute values for any instance x are produced by base models created with x excluded
from the training set.

Using a modeling algorithm instead of simple voting or averaging to combine base models
might appear a much more powerful and promising approach, capable of delivering at least as
good, and likely better prediction quality. This is not necessarily the case, though, since base
models may not be sufficiently good attributes for typical modeling algorithms. This is because
the latter are usually designed to search for relationship patterns between the target attribute
and other attributes. Such patterns may not exist, or may be not predictively be strong enough
to outperform simple voting or averaging. In other words, using detailed information how
particular base models predicted may not permit any improvement over simply using the very
basic summary statistics: mode or mean. While there is definitely evidence of the usefulness
of stacking in some cases, this ensemble modeling technique has not become nearly as popular
as the other techniques reviewed in this section.

15.5.3 Boosting

Boosting can be best explained as an enhancement of bagging that attempts to include base
model diversity by shifting the focus during base model creation toward instances that turn out
the most “predictively difficult.” This effectively makes consecutive base models specialized
in different domain regions.

15.5.3.1 Base models

The shift of focus that underlies boosting is most naturally achieved by instance weighting.
A single modeling algorithm is applied to the same original training set T using a sequence
of varying weight vectors 𝑤(1), 𝑤(2), … , 𝑤(n). It does not necessarily rule out the application
of boosting with modeling algorithms that are not weight sensitive, though, since weighting
can be approximated by random sampling with replacement, using weights – normalized to
sum up to 1 – as instance selection probabilities. This sampling-based form of boosting most
directly corresponds to bagging and makes the view of boosting as a bagging enhancement the
most natural, but – as an approximation to the ordinary weighting-based boosting – is usually
not used unless necessary.

Starting from uniform initial weights 𝑤(1), the weight vector is modified after each base
model has been created and applied to the training set T . Instances for which the model yields
poor predictions have their weights increased and/or those for which it yields good predictions
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have their weights decreased. For the classification task, this means simply raising the weights
of misclassified training instances and/or reducing the weights of correctly classified training
instances. For the regression task weight modifications would depend on model residuals.

For the regression task, it is also possible to use the previous models’ residuals as target
function values for subsequent base model creation instead of instance weighting. This will
make the regression algorithm attempt to compensate the previous models’ deficiencies rather
than optimize its own training performance. The first model h1 is created in the usual way. For
i > 1, after models h1, … , hi−1 have been created, their combined residuals are used instead
of the target function values to create model hi. This is another way of achieving the shift of
focus effect that is at the heart of boosting.

15.5.3.2 Model aggregation

Base models are combined using weighted voting, with model weights W1,W2, … ,Wm
based on their training performance (and of course better models assigned higher voting
weights). This is necessary, since (unlike for bagging) – due to the shift of focus during their
creation – base models may exhibit considerably different training performance levels. In
particular, if sufficiently many of them are created, the most recent ones may be entirely
focused on the “most difficult” instances and yield poor predictions. It is important to
underline that weighted model performance measures need to be adopted, with the same
instance weights vector 𝑤(i) previously used to create model hi also used to evaluate it and
assign its voting weight Wi. This can be, in particular, the weighted misclassification error
defined in Section 7.2.2 or any of weighted residual-based regression performance measures
defined in Section 10.2.8.

15.5.3.3 Properties

Notice that the shift of focus during base model creation in boosting not only stimulates
their diversity, but also drives the overall prediction quality, since instances that turned out
to be “predictively difficult” keep receiving increasingly more attention. This is expected to
boost the ensemble performance, as reflected by the term “boosting.” Indeed, boosting model
ensembles often belong to the most accurate models that can be achieved, at least for the clas-
sification task, on which boosting research and applications are mostly focused. Interestingly,
the performance of even very simple and imperfect base models may be boosted substan-
tially. It is particularly common to apply this technique with simple decision or regression
trees limited to just a few levels, or even just a single split. No overfitting prevention, param-
eter tuning, or attribute selection is then necessary or desirable. It is actually sufficient that
base models are just better than random guessing. Algorithms with parameters set up to yield
such just-above-random models are referred to as weak learners. All base models are then
nearly useless individually, yet they still form a powerful ensemble collectively. Each of them
is much more likely to be “underfitted” than overfitted, and it is the boosting process, with its
instance and model weight adjustments, that is responsible for most of the actual “fitting” to
the training set. This is in contrast to bagging, where the overfitting of individual base models
is normal and even desired for greater diversity, but canceled out by aggregation.

One possible disadvantage of boosting in comparison to bagging is that base models are
not independent and have to be created sequentially. For bagging, all base models can be
created in parallel, which enables efficient parallel implementations. This may be important
for such computation-intensive algorithms.
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15.5.3.4 Instantiations

Different schemes for instance weight modifications (or other focus shift techniques) and
model weighting may be used to instantiate boosting, which makes it actually a family of
ensemble modeling algorithms. The most noteworthy of these boosting instantiations for clas-
sification and regression are briefly reviewed below.

AdaBoost The AdaBoost (standing for adaptive boosting) algorithm is the best-known
instantiation of boosting, applicable to two-class classification tasks. As usual in this book,
we will assume that the set of classes is C = {0, 1}, although it is more common to present
the algorithm for the {−1, 1} set of classes, which makes some steps easier to write by
implicitly exploiting the numerical nature of class labels. The essential specific features that
AdaBoost brings to the generic boosting techniques are its instance and model weighting
schemes. The weight of the model hi depends on its training set weighted misclassification
error ec,T ,𝑤(i) (hi), calculated according to the definition presented in Section 7.2.2, in the
following way:

Wi =
1
2

ln
1 − ec,T ,𝑤(i) (hi)

ec,T ,𝑤(i) (hi)
(15.13)

This weighting scheme is a decreasing function of error values, which gives more weight to
more accurate models. The weight of model hi is not only used for voting during prediction,
but also to control the degree of instance weight modifications. The latter is performed as
follows:

𝑤
(i+1)
x = 𝑤

(i)
x eWi(2Ihi(x)≠c(x)−1) (15.14)

where the indicator function Ihi(x)≠c(x) returns 0 is the model predicts correctly for instance
x and 1 otherwise. The 2Ihi(x)≠c(x) − 1 expression is therefore equal to −1 if x is classified
correctly and 1 if x is misclassified. This increases the weights of misclassified instances and
decreases the weights of correctly classified instances to a degree that depends on the weight
of model hi. More accurate (higher weighted) models result in more extensive instance
weight updates.

Example 15.5.2 The following R code produces plots that illustrate the AdaBoost weighting
schemes.

curve(0.5*log((1-x)/x), from=0, to=0.5,
xlab="model error", ylab="model weight")

curve(exp(0.5*log((1-x)/x)), from=0, to=0.5,
xlab="model error", ylab="instance weight multiplier", ylim=c(0, 10), lty=2)

curve(exp(-0.5*log((1-x)/x)), from=0, to=0.5, lty=3, add=TRUE)
legend("topright", legend=c("misclassified", "correctly classified"), lty=2:3)

The obtained plots are presented in Figure 15.7. The first plot represents the dependence
of model weight on model error and the other the dependence of the multiplier applied to
modify instance weights on model error. The latter contains two curves, a gashed one for
misclassified instances, and a dotted one for correctly classified instances. In all the cases,
the range of model error values is limited to the [0, 0.5] interval, assuming base models have
above-random training performance.
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Figure 15.7 Model and instance weighting in AdaBoost.

As we can see, model weights may considerably exceed 1 for good models (with error of
about 0.1 and below) and approach 0 for poor models with near-random training performance.
Model weight changes are more rapid for small error values than for large ones. The instance
weight multiplier applied for incorrectly classified instances grows rapidly with model error
dropping below about 0.1, correspondingly. Then it near-linearly drops from about 3 to about
2 for model error increasing from 0.1 to 0.2, and also near-linearly goes down from about 2 to
about 1 for model error raising from 0.2 to 0.5. The multiplier applied to the weights of cor-
rectly classified instances changes from 0 for perfectly accurate models to 1 for near-random
models in a mostly linear manner, except for small-error models, when it drops toward 0 faster.

The complete AdaBoost algorithm is presented below. It assumes that the modeling
algorithm used, referred to as , is weight sensitive and does not require instance weights
to sum up to 1 (if the latter is not true, the normalization of the weight vector is required).
Similarly the weighted misclassification error is assumed to be calculated correctly without
requiring instance weights to sum up to 1. The algorithm performs at most m iterations, with
m designating the specified maximum number of base models, but may terminate earlier after
obtaining a base model that is not sufficiently better than random. To check this condition, the
model’s weighted misclassification error on the training set is compared against the expected
random guess error 0.5, using a specified margin 𝜖 > 0. Receiving such a poor model before
reaching the maximum number of base models indicates that no further improvement is
probably possible, and putting more weight on misclassified instances would result in further
degradation rather than improvement. The algorithm returns the set of created models and
their weights, to be used for weighted voting prediction.

1: for all x ∈ T do
2: 𝑤

(1)
x ∶= 1;

3: end for
4: for i = 1, 2, ...,m do
5: hi ∶= (T , 𝑤(i));
6: if ec,T ,𝑤(i) (hi) > 0.5 − 𝜖 then
7: return ⟨h1,W1⟩, ..., ⟨hi−1,Wi−1⟩;
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8: end if
9: Wi ∶=

1
2

ln
1−ec,T ,𝑤(i) (hi)

e
c,T ,𝑤(i) (hi)

;

10: for all x ∈ T do
11: 𝑤

(i+1)
x ∶= 𝑤

(i)
x eWi(2Ihi(x)≠c(x)−1);

12: end for
13: end for
14: return ⟨h1,W1⟩, ..., ⟨hm,Wm⟩;

It can be shown that AdaBoost solves the optimization problem consisting in minimizing
the exponential loss of the created ensemble model h∗ on the training set∑

x∈T

e2Ih∗(x)≠c(x)−1 (15.15)

which clearly leads to minimizing the training misclassification error as well. Despite perfectly
fitting to the training set, it is not prone to overfitting – although not completely overfitting
resistant. This resistance is reinforced if base models are indeed severely underfitted, just
above random. Hence the popularity of decision stumps, i.e., one-split decision trees, in this
role. On the other hand, the risk of overfitting is increased for noisy data. These intuitively
“obvious” statements are not necessarily fully supported by empirical evidence, which some-
times provide surprising counter arguments, but in general – boosting does manage to avoid
overfitting in most practical classification tasks much better than most nonensemble classifi-
cation algorithms.

Example 15.5.3 The R code presented below implements the AdaBoost algorithm, using the
base.ensemble.weight.x function from Example 15.3.2 for base model generation
and the predict.ensemble.weighted function from Example 15.4.3 for prediction
combination. The former requires the instance reweighting function to be provided, which
does most of the work. Notice that the function takes care, in particular, of calculating and
retaining base model weights. The model weighting function applied includes an additional
term that depends on the number of classes and is equal to 0 for the two-class setting assumed
by AdaBoost. This actually implements one of its possible multiclass extensions, as discussed
in the next subsection. The algorithm is demonstrated in the same way as before, though, using
the two-class HouseVotes84 dataset. Decision trees of fixed maximum depth equal to 1, 3, and
5 are used as base models.

## AdaBoost ensemble modeling using up to m base models created using algorithm alg
## with arguments arg and maximum allowed base model error 0.5-eps
adaboost <- function(formula, data, m, alg, eps=0.01, args=NULL, predf=predict)
{
class <- y.var(formula)
nc <- nlevels(data[[class]])
model.weights <- NULL

abst.reweight <- function(weights, pred)
{
e <- werr(pred, data[[class]], weights)
if (e<=0.5-eps && is.finite(mw <- 0.5*(log((1-e)/e)+log(nc-1))))
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{
model.weights <<- c(model.weights, mw)
weights*exp(mw*(2*(pred!=data[[class]])-1))

}
else
NULL

}

‘class<-‘(list(models=base.ensemble.weight.x(formula, data, m, alg, args,
weights=rep(1, nrow(data)),
abst.reweight,
predf=predf),

model.weights=model.weights), "adaboost")
}

## AdaBoost prediction
predict.adaboost {- function(boost, data, predf=predict)
{
predict.ensemble.weighted(boost$models, boost$model.weights, data, predf)

}

# AdaBoost for the HouseVotes84 data
hv.abst.tree1 <- adaboost(Class̃., hv.train, 50, rpart,

args=list(minsplit=2, cp=0, maxdepth=1),
predf=function(...) predict(..., type="c"))

hv.abst.tree3 <- adaboost(Class̃., hv.train, 50, rpart,
args=list(minsplit=2, cp=0, maxdepth=3),
predf=function(...) predict(..., type="c"))

hv.abst.tree5 <- adaboost(Class̃., hv.train, 50, rpart,
args=list(minsplit=2, cp=0, maxdepth=5),
predf=function(...) predict(..., type="c"))

hv.pred.abst.tree1 <- predict(hv.abst.tree1, hv.test,
predf=function(...) predict(..., type="c"))

hv.pred.abst.tree3 <- predict(hv.abst.tree3, hv.test,
predf=function(...) predict(..., type="c"))

hv.pred.abst.tree5 <- predict(hv.abst.tree5, hv.test,
predf=function(...) predict(..., type="c"))

# AdaBoost test set errors for the HouseVotes84 data
hv.err.abst <- list(tree1 = err(hv.pred.abst.tree1, hv.test$Class),

tree3 = err(hv.pred.abst.tree3, hv.test$Class),
tree5 = err(hv.pred.abst.tree5, hv.test$Class))

Notice that depth-1 decision trees (i.e., decision stumps) achieve the least misclassification
error, improving over that obtained for bagging in Example 15.5.1. Larger trees give worse
results.

Multiclass AdaBoost The AdaBoost algorithm strongly relies on the assumption that the
error of all base models does not exceed 0.5. This is perfectly reasonable if there are two
classes, for which this is the random guess performance level, but cannot be expected other-
wise. With errors above 0.5 the AdaBoost model weighting scheme is no longer useful, as it
may deliver negative weights.

The restriction to two-class classification tasks limits the practical utility of the AdaBoost
algorithm in an important way. There have been several attempts to overcome this restriction.
They have different levels of complexity, theoretical justifications, and practical advantages.
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One self-suggesting approach is to apply one of the binary multiclass encoding techniques
described in Section 17.4. The simplest of them would be to decompose a multiclass classifica-
tion task into multiple two-class tasks using the “1 vs. rest” approach. Conceptually, it consists
in replacing the original target concept c ∶ X → C with |C| concepts cd for each d ∈ C, where

cd(x) =

{
1 if c(x) = d

0 otherwise
(15.16)

For each of these a separate AdaBoost binary model ensemble can be created in the usual way.
This applies the 1-of-k encoding presented in Section 17.4.2.

A more refined incarnation of this “1 vs. rest” idea is also possible. Basically, instead of
multiple applications of the AdaBoost algorithm, one may apply the algorithm once, but with
each training instance x replaced by its |C| copies ⟨x, d⟩, each with one of the original class
labels d ∈ C appended. The weights vector used for base model creation is correspondingly
extended, to assign a numerical weight 𝑤x,d to instance ⟨x, d⟩. Base models created for
the resulting extended training set and weight vector are assumed, correspondingly, to
make binary predictions for instance-class pairs: hi ∶ X × C → {0, 1}. Weights for extended
instances (i.e., instance-class pairs) are modified using the same formula as in the original
algorithm. The ensemble’s prediction for instance x would be then obtained by weighted
voting:

h∗(x, d) = arg max
b∈{0,1}

m∑
i=1

Wi
Ihi(x,d)=b (15.17)

h∗(x) = argmax
d∈C

h∗(x, d) (15.18)

This technique is known as the AdaBoost.MH algorithm.
Another approach, known as the SAMME algorithm (stagewise additive modeling using

an exponential loss function) proceeds in a completely different way, by directly creating an
ensemble multiclass base models. It uses a modified model weighting scheme, incorporating
an apparently minor, but important change:

Wi =
1
2

ln
1 − ec,T ,𝑤i

(h)
ec,T ,𝑤i

(h)
+ 1

2
ln(|C| − 1) (15.19)

It is equivalent to AdaBoost for |C| = 2 and for |C| > 2 it incorporates an adjustment term
that preserves the exponential loss minimization property.

Gradient boosting Gradient boosting applies the idea of boosting to the regression task. A
sequence of regression models is created, with each model trying to contribute an improve-
ment to the training set performance achieved by its predecessors. Unlike for AdaBoost or
other instantiations of classification boosting, this is achieved not by instance weighting, but
rather by using the residuals of the ensemble of previously created base models instead of
the original target function values when creating a subsequent base model. Base models are
then combined using weighted averaging (or, actually, summation). This technique is pre-
sented below in its most generic form, although a randomized version thereof that additionally
applies instance sampling for greater base model diversity, referred to as stochastic gradient
boosting, may often perform better.
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The first model h1 is created in the usual way. For i = 2, … ,m model hi is created to
predict the so-called pseudoresiduals:

r(i)x = −
𝜕(f (x), h1∶i−1(x))

𝜕h1∶i−1(x)
(15.20)

of the partial ensemble h1∶i−1, consisting of the previously created models h1, … , hi−1, for
each x ∈ T . In this equation,  is the adopted loss function to be minimized, as discussed in
Section 10.2.9. Predicting its negated derivative with respect to the previous iteration’s pre-
dictions is expected to decrease the total loss. For the most popular quadratic loss (i.e., mean
square error minimization), we would take r(i)x = f (x) − h1∶i−1(x) . These pseudoresiduals are
passed to the regression algorithm instead of the original target function values. Base models
are combined by weighted summation to achieve both the partial and final ensemble, i.e.,

h1∶i−1(x) =
i−1∑
j=1

Wjhj(x) (15.21)

h∗(x) = h1∶m(x) =
m∑

j=1

Wjhj(x) (15.22)

The weight Wi of model hi is selected to minimize the total loss, under the adopted loss
function, for the ensemble extended to include the model, which may be written as follows:

Wi = 𝛽 argmin
W

∑
x∈T

(f (x), h1∶i−1(x) + Whi(x)) (15.23)

where 0 < 𝛽 ≤ 1 is a step-size parameter. While the basic version of gradient boosting
assumes 𝛽 = 1, using a smaller 𝛽 value may help to reduce the risk of overfitting and improve
the generalization capabilities of the resulting model ensemble. This form of overfitting
prevention is referred to as shrinkage. The complete gradient boosting algorithm is presented
below.

1: h1 ∶= (T , f ); W1 ∶= 1;
2: for i = 2, 3, ...,m do
3: for all x ∈ T do
4: r(i)x ∶= − 𝜕(f (x),h1∶i−1(x))

𝜕h1∶i−1(x)
;

5: end for
6: hi ∶= (T , r(i));
7: Wi ∶= 𝛽 arg minW

∑
x∈T(f (x), h1∶i−1(x) + Whi(x));

8: end for
9: return ⟨h1,W1⟩, ..., ⟨hm,Wm⟩;

The regression algorithm  used for base model creation is assumed to receive the train-
ing set as well as the corresponding target values, with the original target function values used
for h1 and the current residuals used afterward. It is not uncommon, though, to create a partic-
ularly simple first model that predicts a constant value, chosen to minimize the adopted loss
function. In particular, for the quadratic loss, this constant model would simply predict the
mean target function value for the training set:

h1(x) =
1|T| ∑

x∈T

f (x) (15.24)

as this clearly minimizes the mean square error over all possible constant models.
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For this most common special case of the quadratic loss (mean square error minimization)
we have ∑

x∈T

(f (x), h1∶i−1(x) + Whi(x)) =
∑
x∈T

(
f (x) − (h1∶i−1(x) + Whi(x))

)2
(15.25)

Minimizing this quantity with respect to W yields, by equating the corresponding derivative
to 0: ∑

x∈T

(f (x) − h1∶i−1(x) − Whi(x))hi(x) = 0 (15.26)

from which one can obtain

W =
∑

x∈T (f (x) − h1∶i−1(x))hi(x)∑
x∈T h2

i (x)
=

∑
x∈T r(i)x hi(x)∑

x∈T h2
i (x)

(15.27)

This will clearly yield 1 if model hi does indeed perfectly predict the previous ensemble’s
residuals, but can be verified to be also equal to 1 even for completely imperfect regression
trees with target value means assigned to leaves. To see why, consider a leaf l assigned a
target function value equal to the mean target value for the corresponding subset of training
instances:

𝑣l =
1|Tl|

∑
x∈Tl

f (x) (15.28)

Then the sum of target function value and prediction products for training instances assigned
to leaf l can be written as∑

x∈Tl

f (x)h(x) =
∑

x1∈Tl

(
f (x1)

1|Tl|
∑

x2∈Tl

f (x2)

)
= 1|Tl|

∑
x1∈Tl

∑
x2∈Tl

f (x1)f (x2) (15.29)

On the other hand, the sum of squared predictions for the same subset of training instances
can be transformed in the following way:∑

x∈Tl

h2(x) =
∑
x∈Tl

(
1|Tl|

∑
x1∈Tl

f (x1)

)(
1|Tl|

∑
x2∈Tl

f (x2)

)
(15.30)

= |Tl| 1|Tl|2
∑

x1∈Tl

∑
x2∈Tl

f (x1)f (x2) =
1|Tl|

∑
x1∈Tl

∑
x2∈Tl

f (x1)f (x2)

which yields ∑
x∈Tl

f (x)h(x) =
∑
x∈Tl

h2(x) (15.31)

This immediately implies ∑
x∈T

f (x)h(x) =
∑
x∈T

h2(x) (15.32)

since summation over all training instances can be decomposed into summation over leaves
and then training instances assigned to these leaves. This property holds for an arbitrary target
function, including, in particular, the previous ensemble’s residuals in gradient boosting:∑

x∈T

r(i)x hi(x) =
∑
x∈T

h2
i (x) (15.33)

from which W = 1.
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Example 15.5.4 The following R code implements and demonstrates gradient boosting. The
gradboost function creates the first base model in the usual way and then for each sub-
sequent base model it creates a modified dataset copy, with target function values replaced
by the residuals of the partial ensemble created so far. The predict.gradboost function
is a simple wrapper around predict.ensemble.weighted, with the summing argu-
ment used to request base model combination by weighted summation. The demonstrations
use the Boston Housing dataset, with regression tree and linear regression base models. For
the former, a fixed maximum depth of 1, 3, and 5 is used.

## gradient boosting ensemble modeling using up to m base models
## created with algorithm alg with arguments arg
gradboost <- function(formula, data, m, alg, beta=0.1, args=NULL, predf=predict)
{
attributes <- x.vars(formula, data)
aind <- match(attributes, names(data))
f <- y.var(formula)
find <- match(f, names(data))

models <- list(do.call(alg, c(list(formula, data), args)))
model.weights <- 1

for (i in (2:m))
{
res <- data[,find]-predict.gradboost(list(models=models,

model.weights=model.weights),
data, predf=predf)

data.i <- eval(parse(text=paste("cbind(data[,aind],", f, "=res)")))
models <- c(models, list(h <- do.call(alg, c(list(formula, data.i), args))))
model.weights <- c(model.weights,

beta*sum(res*(pred <- predf(h, data)))/sum(pred ̂2))
}
‘class<-‘(list(models=models, model.weights=model.weights), "gradboost")

}

## gradient boosting prediction
predict.gradboost <- function(boost, data, predf=predict)
{
predict.ensemble.weighted(boost$models, boost$model.weights, data, predf,

summing=TRUE)
}

# gradient boosting for the BostonHousing data
bh.gbst.tree1 <- gradboost(medṽ., bh.train, 50, rpart,

args=list(minsplit=2, cp=0, maxdepth=1))
bh.gbst.tree3 <- gradboost(medṽ., bh.train, 50, rpart,

args=list(minsplit=2, cp=0, maxdepth=3))
bh.gbst.tree5 <- gradboost(medṽ., bh.train, 50, rpart,

args=list(minsplit=2, cp=0, maxdepth=5))
bh.gbst.lm <- gradboost(medṽ., bh.train, 50, lm)

bh.pred.gbst.tree1 <- predict(bh.gbst.tree1, bh.test)
bh.pred.gbst.tree3 <- predict(bh.gbst.tree3, bh.test)
bh.pred.gbst.tree5 <- predict(bh.gbst.tree5, bh.test)
bh.pred.gbst.lm <- predict(bh.gbst.lm, bh.test)

# gradient boosting test set MSE values for the BostonHousing data
bh.mse.gbst <- list(tree1 = mse(bh.pred.gbst.tree1, bh.test$medv),
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tree3 = mse(bh.pred.gbst.tree3, bh.test$medv),
tree5 = mse(bh.pred.gbst.tree5, bh.test$medv),
lm = mse(bh.pred.gbst.lm, bh.test$medv))

Notice that model weights for regression trees are all equal to 1, as expected. Unfortu-
nately, the mean square error levels for gradient boosting with regression trees are worse than
obtained for regression tree bagging in Example 15.5.1, although – with a maximum depth of
3 – better than for the single regression tree model.

15.5.4 Random forest

The random forest technique of ensemble modeling can be viewed as another enhancement of
bagging. This view is even more justified than that of boosting, since random forests actually
use bootstrap data samples as training sets for base model creation, just like bagging. The
enhancement consists in stimulating greater base model diversity by randomizing the model-
ing algorithm applied to these samples, which is – as the name of the technique suggests – a
decision tree or regression tree algorithm. Being tied to a particular modeling algorithm (or
a family of algorithms) is not such a distinctive feature of random forests as it might appear,
though, given the prevailing practice of using (the standard unrandomized versions of) the
very same algorithms with other ensemble modeling techniques.

15.5.4.1 Base models

Random forests combine two approaches to base model creation: instance sampling (using
bootstrap samples) and algorithm nondeterminism. The latter is achieved by randomizing the
split selection operation used for decision tree or regression tree growing. The randomization
consists in drawing a random subset of available attributes in each node and restricting the
subsequent split selection process to splits using attributes from that subset. The usual split
evaluation criteria for decision trees or for regression trees are then applied. Otherwise the
growing process remains unchanged. Stop criteria for decision or regression tree growing
are set up to yield relatively large, accurately fitted (more than likely overfitted) trees and
no pruning is applied. This setup, resulting in many splits being selected (and not pruned
off), permits a very high level of base model diversity, at least unless the number of available
splits (directly implied by the number of attributes) is overly small. A standard heuristic is
to use the square root of the number of all available attributes as the size of the randomly
drawn subset of attributes. Typically at least several hundred base models are created. Their
individual overfitting is canceled out by the aggregation process, which makes the random
forest ensemble highly resistant to overfitting.

15.5.4.2 Model aggregation

Randomized decision trees or regression trees used as base models for random forests are
aggregated via plain (unweighted) voting or averaging/summation.

Example 15.5.5 The R code presented below implements a simple version of random
forest ensemble modeling, using the grow.randdectree, grow.randregtree, and
base.ensemble.simple functions from Example 15.3.4 and thepredict.ensemble
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.basic function from Example 15.4.1. The predict.dectree and predict.
regtree functions, defined in Examples 3.5.1 and 9.5.1, are used to generate base model
predictions. The random forest algorithm is demonstrated for the HouseVotes84 and Boston
Housing datasets, using three different maximum tree depth settings: 3, 5, and 8.

## random forest ensemble modeling using m randomized decision or regression trees
## with ns randomly selected attributes at each node used for splitting
randforest <- function(formula, data, m, ns=0, args=NULL)
{
target <- y.var(formula)
alg <- if (!is.numeric(data[[target]])) grow.randdectree else grow.randregtree

‘class<-‘(base.ensemble.sample.x(formula, data, m, alg, args=c(list(ns=ns), args)),
"randforest")

}

## random forest prediction
predict.randforest <- function(rf, data)
{
predict.ensemble.basic(rf, data)

}

# random forest for the HouseVotes84 data
hv.rf.tree3 <- randforest(Class̃., hv.train, 50, args=list(maxdepth=3))
hv.rf.tree5 <- randforest(Class̃., hv.train, 50, args=list(maxdepth=5))
hv.rf.tree8 <- randforest(Class̃., hv.train, 50, args=list(maxdepth=8))

hv.pred.rf.tree3 <- predict(hv.rf.tree3, hv.test)
hv.pred.rf.tree5 <- predict(hv.rf.tree5, hv.test)
hv.pred.rf.tree8 <- predict(hv.rf.tree8, hv.test)

# random forest for the BostonHousing data
bh.rf.tree3 <- randforest(medṽ., bh.train, 50, args=list(maxdepth=3))
bh.rf.tree5 <- randforest(medṽ., bh.train, 50, args=list(maxdepth=5))
bh.rf.tree8 <- randforest(medṽ., bh.train, 50, args=list(maxdepth=8))

bh.pred.rf.tree3 <- predict(bh.rf.tree3, bh.test)
bh.pred.rf.tree5 <- predict(bh.rf.tree8, bh.test)
bh.pred.rf.tree8 <- predict(bh.rf.tree8, bh.test)

# random forest test set errors for the HouseVotes84 data
hv.err.rf <- list(tree3 = err(hv.pred.rf.tree3, hv.test$Class),

tree5 = err(hv.pred.rf.tree5, hv.test$Class),
tree8 = err(hv.pred.rf.tree8, hv.test$Class))

# random forest test set MSE values for the BostonHousing data
bh.mse.rf <- list(tree3 = mse(bh.pred.rf.tree3, bh.test$medv),

tree5 = mse(bh.pred.rf.tree5, bh.test$medv),
tree8 = mse(bh.pred.rf.tree8, bh.test$medv))

For the HouseVotes84 data, the evaluated random forest ensembles improve over a sin-
gle decision tree, unless using the greatest maximum tree depth. This may appear surprising,
since increased tree depth permits more base model diversity and should therefore offer bet-
ter improvement potential. Attribute sampling may be too aggressive or the small number
of trees may be insufficient to compensate for their accuracy reduction due to randomized
split selection. The inefficiency of the presented illustrative implementation prevents creat-
ing larger random forests in reasonable time. For the Boston Housing data, the observations
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better match the expectations, with the random forest model using the least maximum depth
performing worse and the other two models – better than single regression trees.

15.5.4.3 Side effects

Apart from delivering ensemble models, the random forest technique also has some quite use-
ful “side effects,” obtained by appropriately using individual decision or regression trees from
the grown forest as well as the corresponding training sets or out-of-bag (OOB) instances. The
most useful of those are briefly discussed below.

Performance estimates Since each tree in the forest is grown using a bootstrap sample
drawn from the original training set, there is also the corresponding subset of instances not
used for growing. These are the OOB instances that were not drawn to the training sample.
For the particular tree these instances are therefore perfectly usable for the purpose of model
evaluation, i.e., can be used to calculate true performance estimates as if the standard hold-out
procedure were employed. It is the performance of the complete forest rather than that of indi-
vidual trees that is to be estimated, though. This is possible by combining the OOB predictions
of base models.

Let T′
1,T

′
2, … ,T′

m denote the sets of OOB instances for base models (trees) h1, h2, … , hm,
grown using training sets T1,T2, … ,Tm, respectively. For any instance x ∈ T let

Ix =
{

i ∈ {1, 2, … ,m} | x ∈ T ′
i

}
(15.34)

designate the set of base model numbers for which x is an OOB instance. The OOB prediction
for instance x, denoted by hOOB(x), is then obtained by combining the predictions of all models
hi for i ∈ Ix via plain voting (for classification) or averaging (for regression). These predictions
for all x ∈ T may be then compared against true class labels c(x) or target function values f (x)
to calculate any performance measure of interest. The misclassification error and the mean
square error are of course the typical choices.

Notice that such OOB-based performance estimation technique is by no means the same
as or a variation of the bootstrapping evaluation procedure discussed in Section 7.3.6, to which
it is only superficially similar. This is because the latter estimates the performance of single
models whereas the former estimates the performance of a complete ensemble. The result-
ing estimate is quite reliable and comparable to standard cross-validation with respect to its
bias and variance. Given the computational cost of random forest growing (with hundreds or
more trees), performing a standard cross-validation loop might easily become computationally
prohibitive.

Instance proximity Random forests make it straightforward to measure instance proximity
based on instance co-occurring statistics in individual trees. Basically, for each instance x ∈ T
and each tree hi for i = 1, 2, … , n, the corresponding tree leaf li,x may be determined, by
passing down the training set through the tree. Then the proximity of instances x1, x2 ∈ T is
calculated as the number of trees where they both end up in the same leaf:

𝜀(x1, x2) =
m∑

i=1

Ili,x1
=li,x2

(15.35)
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While definitely related to dissimilarity and similarity measures discussed in Chapter
11, random forest-based instance proximity is calculated in an entirely different way and
may serve different purposes. While the former are based on attribute-value differences or
correlations, the latter represent rather the property of (usually) falling into the same domain
regions, with boundaries determined by the values of selected, predictively useful attributes.
One step toward relating these two quantities would be therefore to consider proximity
as similarity restricted only to predictively important attributes. Moreover, proximity is
not necessarily sensitive to attribute value differences that usually have no high impact on
model predictions, regardless of their scale. It may therefore not be appropriate for typical
instantiations of the clustering task, but may become useful for other purposes, such as
domain decomposition for modeling tasks or data preprocessing. In particular, one natural
application of such a proximity measure is missing value imputation where missing attribute
values for an instance may be imputed based on the known values observed for other
instances with the highest proximity to that instance.

Attribute utility Out-of-bag instances are useful not only for estimating model quality, but
also (for estimating) attribute utility, which may be viewed as particular attributes’ impact
on the former. With a set of spared nontraining instances for each tree one can observe how
crucial particular attributes are for the obtained predictive performance level. One way to do
this is to simulate “corrupting” each attribute (separately) by randomly permuting its values
in each tree’s OOB set and measure the effect of this “corruption.”

Assuming the same notation as introduced earlier in this section, one would compare reg-
ular OOB predictions, yielding hOOB(x) for each x ∈ T , with the corresponding predictions
hOOB,a(x) obtained with the values of attribute a randomly permuted in each of the OOB sets
T ′

1,T
′
2, … ,T ′

m. The permutation, performed independently for each tree, will have a consid-
erable impact on the predictions of those trees which use attribute a for splitting, particularly
on high levels, and little or no impact otherwise. With some base models yielding different
predictions, the combined predictions will change to some extent. For any selected perfor-
mance measure – with the misclassification error typically used for classification and mean
square error typically used for regression – the degradation observed for hOOB,a in comparison
to hOOB may be considered a measure of the predictive utility of attribute a.

Attribute utility estimation is arguably the most useful of random forest side effects that
sometimes becomes the main or only reason of creating a random forest. The estimated
attribute utilities may be then used for attribute selection, as discussed in Section 19.4.5,
and the final model may be created using another modeling algorithm based on the selected
subset. Such a usage scenario basically treats a random forest as an attribute selection filter,
and – setting the computational cost apart – it turns out to belong to the best filtering attribute
selection algorithms.

15.5.5 Random Naïve Bayes

The success of the random forest ensemble has become motivation for exploring a similar
combination of base model creation techniques (i.e., instance sampling and attribute sampling,
which is closely related to decision tree randomization in random forests) with other modeling
algorithms. One particularly interesting candidate is the naïve Bayes classifier. The resulting
ensemble modeling algorithm is referred to as the random naïve Bayes classifier.
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15.5.5.1 Base models

Basically, the random naïve Bayes ensemble consists of multiple naïve Bayes models h1, h2,

… , hm, each created from an independent bootstrap training set sample Ti and permitted
to use only a randomly selected subset Ai of attributes. Being a stable algorithm, the naïve
Bayes classifier does not deliver sufficient base model diversity when created using bootstrap
samples, as discussed above. Incorporating random attribute sampling apart from bootstrap
instance sampling overcomes this deficiency, though.

15.5.5.2 Model combination

Unlike in most versions of bagging or random forests, the base models of the random naïve
Bayes ensemble are not combined via simple voting. The inherent probabilistic prediction
capability of the naïve Bayes classifier makes it much more reasonable to apply class probabil-
ity averaging to aggregate base model predictions. The resulting combined class probabilities
may be used for class label prediction in the usual way.

15.5.5.3 Properties

On one hand, random naïve Bayes is just one out of many possible random forest-like bagging
extensions, combining instance sampling and attribute sampling for base model generation.
There are some reasons, however, to consider it particularly interesting. This is because the
simplicity of the naïve Bayes classifier makes it possible to create multiple base models with a
relatively low computational expense, in particular much below that of decision trees. It may
be therefore more practical to apply to large datasets. This is also because using independent
attribute samples not only stimulates base model diversity, but additionally makes each of
them less prone to harmful effects of the unsatisfied independence assumption on which naïve
Bayesian classification is based. In smaller attribute subsets attribute dependences are less
likely to occur. Therefore, each base model, while possibly inaccurate due to using incomplete
information, is less likely to be fooled by attribute dependences. Random naïve Bayes may be
therefore successful whenever the “naïvety” of the naïve Bayes classifier becomes a problem.

Example 15.5.6 The random naïve Bayes algorithm is implemented and demon-
strated by the following R code, using the naïve Bayes classifier provided by the
e1071 package. The randnaiveBayes function is essentially a combination of
the base.ensemble.samle.x function from Example 15.3.1 (instance sampling) and
the base.ensemble.sample.a function from Example 15.3.3 (attribute sampling). The
predict.randnaiveBayes function is basically a wrapper around the implementation
of probability averaging from Example 15.4.2.

## random naive Bayes ensemble modeling using m base models
## each with ns randomly selected attributes
## (if unspecified, it defaults to the square root of the number of attributes)
randnaiveBayes <- function(formula, data, m, ns=0)
{
attributes <- x.vars(formula, data)
target <- y.var(formula)
ns <- ifelse(ns==0, round(sqrt(length(attributes))),
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clip.val(ns, 1, length(attributes)))

‘class<-‘(lapply(1:m, function(i)
{
bag <- sample(nrow(data), size=nrow(data), replace=TRUE)
sa <- sample(length(attributes), ns)
naiveBayes(make.formula(target, attributes[sa]),

data[bag,])
}), "randnaiveBayes")

}

## random naive Bayes prediction
predict.randnaiveBayes <- function(rnb, data, prob=FALSE)
{
predict.ensemble.prob(rnb, data, predf=function(...) predict(..., type="r"),

prob=prob, labels=rnb[[1]]$levels)
}

# random naive Bayes for the HouseVotes84 data
hv.rnb <- randnaiveBayes(Class̃., hv.train, 500)
hv.pred.rnb <- predict(hv.rnb, hv.test)
# random naive Bayes test set error for the HouseVotes84 data

hv.err.rnb <- list(nb = err(hv.pred.rnb, hv.test$Class))

Unfortunately the random naïve Bayes algorithm performs slightly worse than the original
deterministic algorithm. This may be due to a relatively small number of attributes, for which
sampling deteriorates model quality too much.

15.6 Quality of ensemble predictions

Model ensembles may be often expected to outperform single models, even created using
refined and carefully tuned algorithms. Sometimes, particularly for boosting and random
forests, the improvement may be quite substantial. It is, however the combination of data, base
model creation algorithms, and ensemble modeling techniques that is ultimately responsible
for the final prediction quality.

Example 15.6.1 The misclassification error or mean square error values for the model
ensembles created in the series of previous examples – using bagging and boosting with
decision tree, naïve Bayes, regression tree, and linear base models, as well as the random
forest and random naïve Bayes algorithms – are collected and compared to one another, as
well as to those achieved by single models, by the R code presented below. For each of the
two datasets used a barplot of error values is produced.

hv.err <- c(tree=hv.err.tree,
bagg.tree=hv.err.bagg$tree,
abst.tree1=hv.err.abst$tree1,
abst.tree3=hv.err.abst$tree3,
abst.tree5=hv.err.abst$tree5,
rf.tree3=hv.err.rf$tree3,
rf.tree5=hv.err.rf$tree5,
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rf.tree8=hv.err.rf$tree8,
nb=hv.err.nb,
bagg.nb=hv.err.bagg$nb,
rnb=hv.err.rnb$nb)

bh.mse <- c(tree=bh.mse.tree,
bagg.tree=bh.mse.bagg$tree,
gbst.tree1=bh.mse.gbst$tree1,
gbst.tree3=bh.mse.gbst$tree3,
gbst.tree5=bh.mse.gbst$tree5,
rf.tree3=bh.mse.rf$tree3,
rf.tree5=bh.mse.rf$tree5,
rf.tree8=bh.mse.rf$tree8,
lm=bh.mse.lm,
bagg.lm=bh.mse.bagg$lm,
gbst.lm=bh.mse.gbst$lm)

barplot(hv.err, main="HouseVotes84", ylab="Error", las=2)
lines(c(0, 13), rep(hv.err[1], 2), lty=2)
lines(c(0, 13), rep(hv.err[9], 2), lty=3)

barplot(bh.mse, main="Boston Housing", ylab="MSE", las=2)
lines(c(0, 13), rep(bh.mse[1], 2), lty=2)
lines(c(0, 13), rep(bh.mse[9], 2), lty=3)

The obtained barplots are presented in Figure 15.8. On the HouseVotes84 data the
AdaBoost and random forest ensembles gives an improvement over single decision tree
models, unless using excessive tree depth. Bagging produces worse predictions than single
models in the case of decision trees and gave no effect for the naïve Bayes classifier.
Introducing random attribute sampling to the latter turns out to be harmful rather than
beneficial. On the Boston Housing dataset bagging applied to regression trees is the most
successful, with the random forest ensemble approaching a similar performance level with
sufficiently deep trees. Linear model ensembles all perform on the very same level as a single
model, which is to be expected, since the averaged predictions of a multiple linear models
remain linear.

15.7 Conclusion

There is a lot to be excited about in the idea of ensemble modeling. It is a conceptually
appealing and extremely successful practically approach to improving the predictive power of
inductive models. It not only makes it possible to get better predictive performance, but it also
makes the modeling process easier for the human analyst. Ensemble modeling usually means
no or little risk of overfitting, no or little parameter tuning, and no or little need for attribute
selection (although it may provide useful tools for the latter, as in the case of random forests).
This is because, when aggregating dozens or hundreds of base models, one may be much
less concerned about their individual quality. Actually, base models that would be quite poor
individually – in particular, overfitted due to lack of any overfitting prevention or underfitted
due to using simplified modeling algorithms – are likely to be useful ensemble components.

These unquestionable benefits are not received without a price. What has to be paid is
the vastly increased computational expense of creating many base models and using them
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Figure 15.8 The barplots of error values for bagging, boosting, and random forest model
ensembles.

for prediction (although it could be partially ameliorated for some ensemble modeling tech-
niques by appropriate parallel implementations) and the loss of human readability, even if
individual base models are perfectly human readable. Despite some efforts toward develop-
ing human-readable representations of model ensembles, the latter may remain the primary
limitation of their applicability in some domains.

15.8 Further readings

Ensemble modeling has been one of the hottest topics of machine learning research over the
last two decades, also becoming increasingly popular in practical applications in which the
predictive performance is of top priority. It has also found its way into recent comprehensive
data mining and machine learning books (e.g., Bishop 2007; Han et al. 2011; Hastie et al.
2011; Tan et al. 2013; Witten et al. 2011). There are also several survey articles on model
ensembles (e.g., Dietterich 2000a; Rokach 2010).

The idea of combining multiple models for improved predictive performance can be traced
back to early financial forecasting research (e.g., Bates and Granger 1969; Clemen 1989;
Reid 1968), but it became a hot topic in the area of machine learning in the 1990s. Bagging
was introduced by Breiman (1996a) as an approach to stabilizing unstable algorithms and
improving their model quality using the technique of bootstrapping (Efron 1979; Efron and
Tibshirani 1994). Schapire (1990) developed theoretical foundations of boosting and an early
boosting algorithm, following earlier theoretical work on weak and strong learnability (Kearns
and Valiant 1989). Freund and Schapire (1995) subsequently introduced the more refined
AdaBoost algorithm that remains the most widely used boosting algorithm. In the same article
a regression version of AdaBoost was also presented, which has not reached similar popular-
ity. Quinlan (1996) combined both bagging and boosting with his C4.5 decision tree induction
algorithm. Dietterich (2000b) compared bagging and boosting with an ensemble of decision
trees obtained by split selection randomization. Friedman et al. (2000) presented a statistical
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view of boosting as a form of additive logistic regression, leading to the LogitBoost algorithm.
Friedman (2001, 2002) also developed the gradient boosting regression algorithm. Several
other boosting algorithms have been proposed, including multiclass versions of AdaBoost
(Schapire and Singer 1999; Zhu et al. 2009) and cost-sensitive modifications to boosting algo-
rithms (Masnadi-Shirazi and Vasconcelos 2010). Mukherjee and Schapire (2013) developed
a theory of multiclass boosting. Schapire and Freund (2012) described the theoretical foun-
dations of boosting and state-of-the-art boosting algorithms.

Breiman (2001) presented the random forest algorithm, discussing its theoretical proper-
ties and demonstrating practical capabilities. Liaw and Wiener (2002) developed an R imple-
mentation of the algorithm. The idea of OOB performance estimation for model ensembles
was first proposed by Wolpert and Macready (1999), along with other related evaluation
techniques. Prinzie and Van den Poel (2007), inspired by the success of the random forest
algorithm, proposed re-using the combination of instance and attribute sampling with other
base model creation algorithms. In particular, they presented the random naïve Bayes classi-
fier, as well as random multiclass logistic regression.

Stacking introduced by Wolpert (1992) has never reached the popularity of bagging, boost-
ing, and random forest, since its additional complexity of multilevel models appeared not to
pay off. According to the empirical investigation performed by Džeroski and Ženko (2004),
a stacking ensemble is usually no better than the best base model that could be selected using
cross-validated performance estimates, although they also presented refinements to the stack-
ing algorithm that may deliver better results. Breiman (1996b) applied the idea of stacking to
the regression task, with base regression tree models combined via linear regression. Another
related ensemble modeling technique that has not become very widely used is Bayesian model
averaging, the idea of which was first introduced by Leamer (1978), but became practically
applicable several years later when better theoretical foundations and computational resources
were available (Chatfield 1995; Clyde 1999; Draper 1995; Hoeting et al. 1999). It com-
bines base models by weighted averaging, with their estimated posterior probabilities used
as weights, and was compared to stacking by Clarke (2003).

Opitz and Maclin (1999) reported systematic comparative experiments with bagging
and boosting on many datasets (but with boosting base models created by modifying
selection probabilities for instance sampling rather than by instance weighting). Kuncheva
and Whitaker (2003a,b) investigated possible approaches to measuring base model diversity
and discussed its impact on the predictive performance of model ensembles. There have
been some attempts to create comprehensible representations of model ensembles (Park and
Kargupta 2002; Triviño Rodriguez et al. 2008; Van Assche and Blockeel 2007).
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Kernel methods

16.1 Introduction

Kernel methods make it possible to overcome the linearity limitation of linear classification
and linear regression models, as discussed in Chapters 5 and 8, respectively, so that they
can be successfully applied to linearly inseparable concepts and nonlinear target functions.
This is highly desirable due to the advantages of linear models: efficient parameter estimation
algorithms and no risk of false local optima. They represent a specific, but particularly con-
venient and highly successful approach to enhancing input representation, i.e., transforming
the original set of attributes into an enhanced set of attributes, with the hope that the origi-
nally nonlinear relationship to be modeled will become linear in the enhanced representation.
Unlike other enhanced representation techniques, discussed in Section 8.6.2, kernel methods
make it possible to use the enhanced representation implicitly, without actually transforming
any instances and calculating new attribute values. They can only be combined, however, with
linear modeling algorithms that have one important property: the capability to work without
accessing data other than within dot products, both during model creation and prediction. Two
noteworthy closely related algorithms that belong to this category and have proved practically
successful are known as support vector machines (SVM) and support vector regression (SVR).

Even without the representation enhancement provided by kernel methods, the SVM and
SVR algorithms have some advantages over ordinary linear classification and regression. They
adopt alternative, more refined parameter estimation methods for linear threshold classifica-
tion models and linear regression models than those presented in Sections 5.3 and 8.3. By
departing from the simple error minimization objective assumed by the former they may
achieve better generalization capabilities and overfitting resistance.

While the plain linear versions of support vector machines and support vector regression
do not use kernel methods, they are most naturally presented in this chapter rather than in
Chapters 5 and 8. However, we will refer to the basic principles of linear models and reuse
the notational conventions introduced in these two chapters. For any instance x we will again

Data Mining Algorithms: Explained Using R, First Edition. Paweł Cichosz.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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write a(x) to refer to the vector of its all attribute values, i.e., a1(x), a2(x), … , an(x), an+1(x),
where an+1 is the fictitious constant 1 attribute used to conveniently handle the intercept term.
Unlike in Chapters 5 and 8, it will be usually necessary to refer to the vectors of real attribute
values only, with an+1 skipped, which will be reflected by adding the 1 ∶ n subscript in the
notation, i.e., writing a1∶n(x) to designate the vector of a1(x), a2(x), … , an(x). Similarly, the
symbol w will denote the vector of linear model parameters 𝑤1, 𝑤2, … , 𝑤n, 𝑤n+1, i.e., with
the intercept term 𝑤n+1 included. Whenever the latter has to be excluded, w1∶n will denote
the vector of 𝑤1, 𝑤2, … , 𝑤n. Under these conventions, a linear representation function can
be presented as

g(x) = w ⚬ a(x) = w1∶n ⚬ a1∶n(x) +𝑤n+1 (16.1)

where the ⚬ symbol designates the dot product operator. Like in Chapter 5, it will often be con-
venient to exploit the numerical representation of class labels for two-class tasks. As always in
this book, these are assumed to come from the {0, 1} set. To exploit the possibility of simplify-
ing some mathematical expressions, a transformed target concept defined as c−(x) = 2c(x) − 1
will be used wich maps the original class labels to the {−1, 1} set.

Example 16.1.1 Demonstrating the SVM and SVR algorithms in examples presented in this
chapter will require the use of quadratic programming solvers available in the quadprog
and kernlab packages, as well as an auxiliary function from the Matrix package. The
wireframe function from the lattice package will be employed for producing surface
plots illustrating kernel functions. Functions from other chapters and R utility functions pro-
vided by several DMR packages will also be used. The following R code sets up the environ-
ment for these demonstrations by loading the packages, as well as two datasets used for model

Ex. 17.3.1
dmr.trans

creation and evaluation. These are the Pima Indians Diabetes dataset for classi-
fication and the Boston Housing dataset for regression. They are partitioned into
training and test sets and standardized using the std.all and predict.std
functions.

library(dmr.claseval)
library(dmr.linclas)
library(dmr.regeval)
library(dmr.util)

library(lattice)
library(quadprog)
library(kernlab)
library(Matrix)

data(PimaIndiansDiabetes, package="mlbench")
data(BostonHousing, package="mlbench")

set.seed(12)

rpid <- runif(nrow(PimaIndiansDiabetes))
pid.train <- PimaIndiansDiabetes[rpid>=0.33,]
pid.test <- PimaIndiansDiabetes[rpid<0.33,]
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rbh <- runif(nrow(BostonHousing))
bh.train <- BostonHousing[rbh>=0.33,-4]
bh.test <- BostonHousing[rbh<0.33,-4]

pid.stdm <- std.all(diabetes̃., pid.train)
pid.std.train <- predict.std(pid.stdm, pid.train)
pid.std.test <- predict.std(pid.stdm, pid.test)

bh.stdm <- std.all(medṽ., bh.train)
bh.std.train <- predict.std(bh.stdm, bh.train)
bh.std.test <- predict.std(bh.stdm, bh.test)

Besides the two real datasets loaded above, a simple artificial four-attribute dataset for both
classification and regression will be used, divided into training and test subsets. Some plots

dmr.utilwill be produced using an even simpler two-attribute dataset. The artificial data
are generated by the R code presented below. The ustep function is used for

Ex. 5.2.5.
dmr.linclas

the unit step calculation. Linearly separable data subsets are identified using
the linsep.sub function.

set.seed(12)

# dataset for plots
kmf.plot <- function(a1, a2) { 2*a1-3*a2+4 }
kmdat.plot <- ‘names<-‘(expand.grid(seq(1, 5, 0.05), seq(1, 5, 0.05)), c("a1", "a2"))
kmdat.plot$f <- kmf.plot(kmdat.plot$a1, kmdat.plot$a2)
kmdat.plot$c <- as.factor(ustep(kmdat.plot$f))

# datasets for parameter estimation examples
kmg<-function(a1, a2, a3, a4) { a1̂2+2*a2̂2-a3̂2-2*a4̂2+2*a1-3*a2+2*a3-3*a4+1 }
kmf <- function(a1, a2, a3, a4) { 3*a1+4*a2-2*a3+2*a4-3 }
kmdat <- data.frame(a1=runif(400, min=1, max=5), a2=runif(400, min=1, max=5),

a3=runif(400, min=1, max=5), a4=runif(400, min=1, max=5))
kmdat$g <- kmg(kmdat$a1, kmdat$a2, kmdat$a3, kmdat$a4)
kmdat$c <- as.factor(ustep(kmdat$g))
kmdat$f <- kmf(kmdat$a1, kmdat$a2, kmdat$a3, kmdat$a4)

kmdat.train <- kmdat[1:200,]
kmdat.test <- kmdat[201:400,]

# linearly separable training and test subsets
kmdat.ls <- linsep.sub(c̃a1+a2+a3+a4, kmdat)
kmdat.train.ls <- kmdat[1:200,][kmdat.ls[1:200],]
kmdat.test.ls <- kmdat[201:400,][kmdat.ls[201:400],]

Notice that the artificial dataset is generated essentially the very same way as shown in
Example 5.1.1 for linear classification illustrations, with just the inner representation function
g additionally included as a nonlinear target function. The linear target function f is also
added, which can be verified to be the same as the f1 target function from the linear regression
artificial dataset generated in Example 8.1.1.
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16.2 Support vector machines

Two approaches to parameter estimation for linear threshold classification models were pre-
sented in Section 5.3:

• the gradient descent algorithm with the delta rule for minimizing the distance of mis-
classified instances to the decision boundary,

• the least-squares algorithm for mean square error minimization with respect to {−1, 1}
target function values.

These are not the only possible ways of identifying a separating hyperplane for linear
threshold models, though. One alternative that is particularly worthwhile to consider and that
often yields models with better generalization properties is based on classification margin
maximization.

16.2.1 Classification margin

As discussed in Section 5.3.3, the following quantity represents the signed distance between
instance x and the separating hyperplane for a linear threshold model:

𝛿w(x) =
w ⚬ a(x)||w1∶n|| (16.2)

with the sign indicating whether the point represented by a1∶n(x) lies on the positive or negative
side of the hyperplane. The following slightly modified form of this distance, negated for
instances of class 0 by introducing the c−(x) multiplier:

𝛾w(x) = c−(x)
w ⚬ a(x)||w1∶n|| (16.3)

is called the geometric margin of the parameter vector w with respect to instance x. This
is positive if x lies on the correct side of the decision hyperplane (is classified correctly),
negative if it lies on the wrong side of the decision hyperplane, and 0 if it lies exactly on
the decision hyperplane. With the normalizing denominator skipped, it is referred to as the
functional margin of the parameter vector w with respect to instance x:

𝛾̂w(x) = c−(x)w ⚬ a(x) = ||w1∶n||𝛾w(x) (16.4)

The minimum values of the geometric and functional margins of the parameter vector
w with respect to all training instances are called, respectively, the geometric and functional
margins of w with respect to the training set:

𝛾w(T) =min
x∈T

𝛾w(x) (16.5)

𝛾̂w(T) =min
x∈T

𝛾̂w(x) (16.6)

If the hyperplane represented by w correctly separates all training instances of different
classes, we have 𝛾w(T) > 0 and 𝛾̂w(T) > 0.
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Adding and subtracting a constant value b > 0 to the intercept term of the parameter vector
w representing a separating hyperplane identifies two parallel hyperplanes (on the negative
and positive side of the former) such that all correctly classified instances lying on these
hyperplanes have functional margin of b. Indeed, for any instance lying on the hyperplane
corresponding to the w ⚬ a(x) + b = 0 equation we have

𝛾̂w(x) = c−(x)w ⚬ a(x) = −c−(x)b (16.7)

For b > 0 the w ⚬ a(x) + b = 0 equation therefore represents the hyperplane corresponding to
functional margin b on the negative side of the separating hyperplane and the w ⚬ a(x) − b = 0
equation represents the hyperplane corresponding to functional margin b on the positive side of
the separating hyperplane. These hyperplanes will be referred to as the (negative and positive)
margin-b hyperplanes for w and, if b = 1 – simply as the margin hyperplanes for w. Instances
lying on the margin hyperplanes will be shortly referred to as lying on the margin.

Example 16.2.1 A simple graphical illustration of the linear threshold classification margin is
produced by the following R code. It defines the fmarg and gmarg functions for functional

dmr.util
and geometric margin calculation. The latter uses the l2norm function to
determine the norm of the parameter vector (with the intercept skipped). The
plot.margin function is also defined for plotting the separating line and the
margin line in the two-dimensional case (i.e., for two-attribute datasets). The latter also returns
the minimum functional and geometric margins. The kmdat.m dataset is created as a sub-
set of randomly selected instances from kmdat.plot which are sufficiently distant from
the hyperplane represented by the linear function used for class label assignment during data
generation in Example 16.1.1. A parameter vector w.m is then chosen that actually repre-
sents a hyperplane correctly separating positive and negative instances, with an intercept term
adjusted so that the minimum margin with respect to instances of each class is the same (“sym-
metric margin”). The parameter vector is subsequently scaled so that its functional margin with
respect to the dataset is 1.

## functional margin of w with respect to instances from data
## using the cvec vector of {-1, 1} class labels
fmarg <- function(w, data, cvec)
{ cvec*predict.par(list(repf=repf.linear, w=w), data) }

## geometric margin of w with respect to instances from data
## using the cvec vector of {-1, 1} class labels
gmarg <- function(w, data, cvec) { fmarg(w, data, cvec)/l2norm(w[-length(w)]) }

## plot separating and b-margin lines for linear threshold classification
## with 2 attributes
plot.margin <- function(w, data, cvec, b=1, add=FALSE,

col.sep="black", col.pos="grey70", col.neg="grey30", ...)
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{
# y value corresponding to x on the regression line represented by w
lry <- function(x, w) {sum(-w[c(1,3)]/w[2]*c(x, 1)) }

if (!add)
{
plot(data[,1][cvec==1], data[,2][cvec==1], col=col.pos,

xlab="a1", ylab="a2", xlim=range(data[,1]), ylim=range(data[,2]), ...)
points(data[,1][cvec!=1], data[,2][cvec!=1], col=col.neg, ...)

}

lines(range(data[,1]), c(lry(min(data[,1]), w),
lry(max(data[,1]), w)), col=col.sep, ...)

lines(range(data[,1]), c(lry(min(data[,1]), w-c(0, 0, b)),
lry(max(data[,1]), w-c(0, 0, b))), col=col.pos, ...)

lines(range(data[,1]), c(lry(min(data[,1]), w+c(0, 0, b)),
lry(max(data[,1]), w+c(0, 0, b))), col=col.neg, ...)

list(fmargin=min(fmarg(w, data, cvec)), gmargin=min(gmarg(w, data, cvec)))
}

# dataset for margin illustration (skip near-boundary instances from kmdat.plot)
kmdat.m <- kmdat.plot[abs(kmdat.plot$f)>2,c("a1", "a2", "c")]
kmdat.m <- kmdat.m[sample(nrow(kmdat.m), 100),]

# parameter vector for margin demonstration
w.m <- c(1, -2)
# predictions with intercept 0

p0.m <- predict.par(list(repf=repf.linear, w=c(w.m, 0)), kmdat.m[,1:2])
# symmetric-margin intercept

w.m <- c(w.m, -(max(p0.m[kmdat.m$c==0])+min(p0.m[kmdat.m$c==1]))/2)

# minimum functional margin
min(fmarg(w.m, kmdat.m[,1:2], 2*as.num0(kmdat.m$c)-1))
# minimum geometric

min(gmarg(w.m, kmdat.m[,1:2], 2*as.num0(kmdat.m$c)-1))

# scale parameters to get minimum functional margin of 1
w.m <- w.m/min(fmarg(w.m, kmdat.m[,1:2], 2*as.num0(kmdat.m$c)-1))
# minimum functional margin after parameter scaling (1)

min(fmarg(w.m, kmdat.m[,1:2], 2*as.num0(kmdat.m$c)-1))
# minimum geometric margin after parameter scaling (unchanged)

min(gmarg(w.m, kmdat.m[,1:2], 2*as.num0(kmdat.m$c)-1))

plot.margin(w.m, kmdat.m[,1:2], 2*as.num0(kmdat.m$c)-1)

The separating line (in black) and the positive and negative (in lighter and darker gray,
respectively) margin 1-lines corresponding to w.m are then plotted, with the obtained plot
presented in Figure 16.1. Since the parameter vector was set to ensure that the minimum
functional margin with respect to positive and negative instances is the same and equal to 1,
the distance between the separating line and either of the margin lines is the geometric margin
of the parameter vector.
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Figure 16.1 Linear classification margin.

16.2.2 Maximum-margin hyperplane

Selecting the maximum-margin hyperplane (out of all separating hyperplanes) for a target
concept linearly separable on the training set may be expected to increase the resistance to
overfitting and therefore improve the true classification performance. This is because a deci-
sion boundary that is as far as possible from training instances of different classes is more
likely to correctly separate new instances during prediction. More confident predictions are
possible if instances are distant from the decision boundary. The support vector machines
(SVM) algorithm is based on this very idea of margin maximization for linear threshold clas-
sification.

More precisely, it is the geometric margin of the parameter vector with respect to the
training set the maximization of which would be desirable. This is because the functional
margin can be made arbitrarily large by simple parameter scaling. Indeed it can be easily
verified that

𝛾̂𝜏w(x) = c−(x)𝜏w ⚬ a(x) = 𝜏𝛾̂w(x) (16.8)

for any instance x and 𝜏 > 0, while the separating hyperplanes represented by w and 𝜏w are
the same.

16.2.3 Primal form

Unfortunately, the geometric margin is hard to maximize directly. Assuming the linear sepa-
rability of the target concept on the training set, which guarantees the existence of a parameter
vector with a positive margin value, a much more tractable maximization problem is obtained
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by restricting one’s interest to parameter vectors in the canonical form that satisfy

𝛾̂w(T) = 1 (16.9)

This is possible with no loss of generality since the geometric margin can be scaled up or
down arbitrarily without affecting the maximum-margin hyperplane. With this restriction
we have

𝛾w(T) =
𝛾̂w(T)||w1∶n|| = 1||w1∶n|| (16.10)

and thus the maximization of the geometric margin 𝛾w(T) becomes equivalent to maximizing
1||w1∶n|| . The latter can be replaced by the minimization of ||w1∶n||2 (with the square introduced

to get rid of the square root in the parameter vector norm), subject to the 𝛾̂w(T) = 1 restriction,
which can be written as

minimize
1
2
||w1∶n||2 (16.11)

subject to
(∀x ∈ T) c−(x)w ⚬ a(x) ≥ 1 (16.12)

with the 1
2

multiplier introduced for mathematical convenience only. This is an instantiation
of the standard quadratic programming problem that is referred to as the primal form of mar-
gin maximization. It can be solved by readily available quadratic programming algorithms.
Clearly no solution satisfying the constraints exists unless the target concept is indeed linearly
separable on the training set.

Note that 𝛾̂w(T) = 1 restriction is represented by a set of inequality constraints for each
training instance. Instances for which the functional margin is equal to 1 are called support
vectors and are said to lie on the margin whereas the remaining instances, with functional
margin greater than 1, are said to lie outside the margin. Also note that the intercept term 𝑤n+1
does not occur in the minimization objective and is only included in the constraints. It remains,
nevertheless, an element of the solution vector that is searched for by quadratic programming.

Example 16.2.2 The following R code demonstrates parameter estimation for the linear SVM
model by solving the primal form of the margin maximization problem. Two popular quadratic
programming solvers available in R, solve.QP from the quadprog package and ipop
from the kernlab package, may be used for this purpose. The former requires that its Dmat
argument, used to specify the maximization objective, is positive definite, which is enforced
using the nearPD function from the Matrix package. The latter assumes a box constraints
specification (two-sided inequalities) the boundaries of which have to be finite. The inf
argument to the svm.linear.prim function specifies a finite number sufficiently large
not to constrain the solution and sufficiently small not to cause numerical problems. The
svthres argument is the tolerance threshold used when identifying support vectors, i.e.,

Ex. 7.2.5
dmr.claseval

checking which instances lie on the margin. The function is demonstrated using
the linearly separable subset of the example artificial data. The err function
is used for misclassification error calculation.
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## linear SVM parameter estimation using primal-form quadratic programming
## solvers: "solve.QP" or "ipop"
svm.linear.prim <- function(formula, data, svthres=1e-9, inf=1e3, solver="solve.QP")
{
class <- y.var(formula)
attributes <- x.vars(formula, data)
aind <- names(data) %in% attributes

cvec <- 2*as.num0(data[[class]])-1 # class vector using {-1, 1} labels
amat <- cbind(as.matrix(data[,aind]), intercept=1) # attribute value matrix

if (solver=="solve.QP")
args <- list(Dmat=nearPD(rbind(cbind(diag(sum(aind)), 0), 0))$mat,

dvec=rep(0, sum(aind)+1),
Amat=t(rmm(amat, cvec)),
bvec=rep(1, nrow(data)))

else if (solver=="ipop")
args <- list(c=rep(0, sum(aind)+1),

H=rbind(cbind(diag(sum(aind)), 0), 0),
A=rmm(amat, cvec),
b=rep(1, nrow(data)),
l=rep(-inf, sum(aind)+1),
u=rep(inf, sum(aind)+1),
r=rep(inf, nrow(data)))

else stop("Unknown solver: ", solver)

qp <- do.call(solver, args)
w <- if (solver=="solve.QP") qp$solution else if (solver=="ipop") qp@primal
sv <- unname(which(cvec*predict.par(list(repf=repf.linear, w=w),

data[,aind,drop=FALSE])<=1+svthres))
list(model=‘class<-‘(list(repf=repf.threshold(repf.linear), w=w), "par"), sv=sv)

}

# estimate linear SVM model parameters
svm.p.ls <- svm.linear.prim(c̃a1+a2+a3+a4, kmdat.train.ls)

# misclassification error
err(predict(svm.p.ls$model, kmdat.train.ls[,1:4]), kmdat.train.ls$c)
err(predict(svm.p.ls$model, kmdat.test.ls[,1:4]), kmdat.test.ls$c)

The two solver functions, solve.QP and ipop, assume different somewhat represen-
tations of the quadratic programming problem to be solved and require different parameters,
accordingly. While this can be easily understood by comparing the parameter setup in the
above code with the documentation of these two functions, the following hints may be useful.

For the solve.QP function:

1. Dmat is the matrix specifying the coefficients of the quadratic term of the optimiza-
tion objective – here an (n + 1) × (n + 1) matrix with 1’s on the first n elements of
the main diagonal (corresponding to 𝑤1, 𝑤2, … , 𝑤n) and 0’s elsewhere, since the
quadratic term is the norm of w1∶n only,

2. dvec is the vector specifying the coefficients of the linear term of the optimization
objective – here an (n + 1)-element vector of 0’s, since there is no linear term,

3. Amat is the (transpose of) the matrix specifying the coefficients of the inequal-
ity constraints – here a (n + 1) × |T| matrix, containing columns c−(x)a(x) for each
x ∈ T ,
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4. bvec is the vector specifying the values for the greater than inequality constraints
represented by Amat – here a |T|-element vector of 1’s.

For the ipop function:

1. c is the vector specifying the coefficients of the linear term of the optimization
objective – here an (n + 1)-element vector of 0’s (the same as dvec for solve.QP),

2. H is the matrix specifying the coefficients of the quadratic term of the optimization
objective – here an (n + 1) × (n + 1) matrix with 1’s on the first n elements of the
main diagonal (corresponding to 𝑤1, 𝑤2, … , 𝑤n) and 0’s elsewhere (the same as
Dmat for solve.QP),

3. A is the matrix specifying the coefficients of the box constraints – here a |T| × (n + 1)
matrix, containing rows c−(x)a(x) for each x ∈ T (the same as the transpose of Amat
for solve.QP),

4. b is the vector specifying the values for the greater than inequality constraints repre-
sented by A – here a |T|-element vector of 1’s (the same as bvec for solve.QP),

5. l is the vector specifying the lower bounds for the solution – here not needed and
hence set to an (n + 1)-element vector of -inf,

6. u is the vector specifying the upper bounds for the solution – here not needed and
hence set to an (n + 1)-element vector of inf,

7. r is the vector that, added to b, specifies the values for the less than inequality con-
straints represented by A – here not needed and hence set to a |T|-element vector
of inf.

Note that while the c, H, A, and b parameters of the ipop function have their coun-
terparts for the solve.QP function, the remaining r, l, and u parameters are unique to
the former. This is because it a adopts different constraint representation, including both box
constraints for linear combinations of the solution vector, obtained by multiplying it by the
constraint coefficient matrix A (greater than b, less than b+r), and simple per-parameter box
constraints (greater than l, less than u).

Example 16.2.3 The following R code uses the implementation of SVM from the previous
example to graphically illustrate the maximum geometric margin. Following the pattern of
the margin illustration presented in Example 16.2.1, the separating line as well as the positive
and negative margin lines are plotted for the maximum-margin parameter vector found by
SVM for the kmdat.m margin illustration dataset. The separating line and the margin lines
corresponding to the previously used suboptimal parameter vector w.m are also plotted for
comparison. The result is presented in Figure 16.2. Clearly the SVM algorithm successfully
maximized the geometric margin while keeping the functional margin at 1.

# hard-margin SVM
svm.mh <- svm.linear.prim(c̃., kmdat.m, solver="ipop")

# optimal separating and margin lines
plot.margin(svm.mh$model$w, kmdat.m[,1:2], 2*as.num0(kmdat.m$c)-1)
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# suboptimal separating and margin lines for comparison
plot.margin(w.m, kmdat.m[,1:2], 2*as.num0(kmdat.m$c)-1, add=TRUE, lty=3)

16.2.4 Dual form

One technique that can be used to handle constraints in optimization tasks is that of Lagrange
multipliers. Using this technique makes it possible to transform the problem presented above
to the following equivalent alternative formulation, called the dual form of the margin maxi-
mization problem:

maximize

−1
2

∑
x1∈T

∑
x2∈T

c−(x1)c−(x2)𝛼x1
𝛼x2

a1∶n(x1) ⚬ a1∶n(x2) +
∑
x∈T

𝛼x (16.13)

subject to ∑
x∈T

c−(x)𝛼x = 0 (16.14)

(∀x ∈ T) 𝛼x ≥ 0 (16.15)

This is again a quadratic programming problem, the solution thereof delivers Lagrange
multipliers 𝛼x for all x ∈ T . The solution can be obtained using general-purpose quadratic
programming solvers, but some more efficient dedicated algorithms, exploiting the specific
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Figure 16.2 The classification margin maximized by the SVM algorithm.
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properties of the problem, also exist that make it possible to use larger datasets. These are
not discussed here.

The following relationship between model parameters and Lagrange multipliers:

w1∶n =
∑
x∈T

c−(x)𝛼xa1∶n(x) (16.16)

makes it possible to obtain the solution of the primal form, i.e., the model parameter vector
being searched for. This reveals that model parameters can be viewed as weighted averages
of training instance attribute values, and only instances with nonzero 𝛼 values actually matter.
From the Lagrangian used to derive the dual form problem, not presented here, it follows
that nonzero 𝛼 values correspond to those constraints of the primal form for which equality
occurred, i.e.,

𝛼x > 0 ≡ c−(x)w ⚬ a(x) = 1 (16.17)

Support vectors – as instances with a functional margin of 1 – are therefore also identified
by nonzero 𝛼 values and can be seen to be the only training instances with impact on model
parameters. Of course, strictly comparing Lagrange multipliers with 0 is inappropriate in an
actual implementation for numerical reasons.

Notice that the relationship between model parameters and Lagrange multipliers does not
hold for the intercept term. It can be obtained, however, by plugging w1∶n to the constraints
of the primal form. For any instance xs with functional margin equal to 1, i.e., with a nonzero
𝛼 value (a support vector), we have

c−(xs)w ⚬ a(xs) = c−(xs)w1∶n ⚬ a1∶n(xs) + c−(xs)𝑤n+1 = 1 (16.18)

This yields

𝑤n+1 = 1
c−(xs)

− w1∶n ⚬ a1∶n(xs) = c−(xs) − w1∶n ⚬ a1∶n(xs) (16.19)

= c−(xs) −
∑
x∈T

c−(x)𝛼xa1∶n(x) ⚬ a1∶n(xs) (16.20)

In practice, it may be reasonable to use the instance with the maximum Lagrange multiplier or
average the result over multiple support vectors to increase resistance to numerical inaccuracy.
In particular, we might choose to average over the two instances of different classes closest to
the decision boundary:

𝑤n+1 =
(1 − min

x1∈T1w1∶n ⚬ a1∶n(x1)) + (−1 − max
x0∈T0 w1∶n ⚬ a1∶n(x0))

2
(16.21)

= −
min

x1∈T1 w1∶n ⚬ a1∶n(x1) + max
x0∈T0 w1∶n ⚬ a1∶n(x0)

2
(16.22)

= −1
2

(
min

x1∈T1

∑
x∈T

c−(x)𝛼xa1∶n(x) ⚬ a1∶n(x1)

+max
x∈T0

∑
x∈T

c−(x)𝛼xa1∶n(x) ⚬ a1∶n(x0)

)
(16.23)
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Interestingly, all attribute values used in the optimization objective given by Equa-
tion 16.13 appear inside dot products. Expressing model predictions in terms of Lagrange
multipliers

h(x∗) =
∑
x∈T

c−(x)𝛼xa1∶n(x) ⚬ a1∶n(x∗) + c−(xs) −
∑
x∈T

c−(x)𝛼xa1∶n(x) ⚬ a1∶n(xs) (16.24)

reveals another noteworthy observation that all attribute value vectors used for prediction
appear inside dot products as well, and there is no need to explicitly calculate the primal form
parameter vector w at all. Using the dual form, both parameter estimation and prediction for
SVM models can therefore be performed without using any attribute values other than inside
dot products. This also makes it possible not to explicitly calculate model parameters and
just use Lagrange multipliers.

Example 16.2.4 Linear SVM parameter estimation based on the dual form representation of
the margin-maximization problem is demonstrated by the R code presented below. It uses the
same quadratic programming solvers as in Example 16.2.2, but with appropriately changed
input parameters. It then transforms the dual form solution (Lagrange multipliers) to model
parameters. The previous demonstrations are repeated and yield approximately same results.

## linear SVM parameter estimation using dual-form quadratic programming
## solvers: "solve.QP" or "ipop"
svm.linear.dual <- function(formula, data, svthres=1e-3, inf=1e3, solver="solve.QP")
{
class <- y.var(formula)
attributes <- x.vars(formula, data)
aind <- names(data) %in% attributes

cvec <- 2*as.num0(data[[class]])-1 # class vector using {-1, 1} labels
ccmat <- outer(cvec, cvec) # class-class product matrix
amat <- as.matrix(data[,aind]) # attribute value matrix
dpmat <- amat%*%t(amat) # dot product matrix

if (solver=="solve.QP")
args <- list(Dmat=nearPD(dpmat*ccmat)$mat,

dvec=rep(1, nrow(data)),
Amat=matrix(c(cvec, diag(1, nrow(data))), nrow=nrow(data)),
bvec=rep(0, nrow(data)+1),
meq=1)

else if (solver=="ipop")
args <- list(c=rep(-1, nrow(data)),

H=dpmat*ccmat,
A=cvec,
b=0,
l=rep(0, nrow(data)),
u=rep(inf, nrow(data)),
r=0)

else
stop("Unknown solver: ", solver)

qp <- do.call(solver, args)
alpha <- if (solver=="solve.QP") qp$solution else if (solver=="ipop") qp@primal
sv <- which(alpha>svthres)
w <- c(colSums(rmm(amat[sv,], cvec[sv]*alpha[sv]))) # no intercept yet
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p0 <- predict.par(list(repf=repf.linear, w=c(w, 0)), data[,aind,drop=FALSE])
w <- c(w, intercept=-(max(p0[cvec==-1])+min(p0[cvec==1]))/2)
list(model=‘class<-‘(list(repf=repf.threshold(repf.linear), w=w), "par"), sv=sv)

}

# estimate linear SVM model parameters
svm.d.ls <- svm.linear.dual(c̃a1+a2+a3+a4, kmdat.train.ls)

# misclassification error
err(predict(svm.d.ls$model, kmdat.train.ls[,1:4]), kmdat.train.ls$c)
err(predict(svm.d.ls$model, kmdat.test.ls[,1:4]), kmdat.test.ls$c)

As before, it may be helpful to take a closer look at the parameters passed to the two
quadratic programming solvers.

For the solve.QP function:

1. Dmat is the matrix specifying the coefficients of the quadratic term of the
optimization objective – here an |T| × |T| matrix that for all x1, x2 ∈ T contains
c−(x1)c−(x2)a1∶n(x1) ⚬ a1∶n(x2) in the cell corresponding to x1 and x2,

2. dvec is the vector specifying the coefficients of the linear term of the optimization
objective – here an |T|-element vector of 1’s,

3. Amat is the (transpose of) the matrix specifying the coefficients of the equality and
inequality constraints – here a |T| × (|T| + 1) matrix obtained by prepending a vec-
tor of c−(x) for each x ∈ T as the first column (representing the coefficients of the
equality constraint) to the |T| × |T| identity matrix (representing the coefficients of
the inequality constraints),

4. bvec is the vector specifying the values for equality and greater than inequality
constraints represented by Amat – here a (|T| + 1)-element vector of 0’s,

5. meq is the number of the first columns in Amat that represent equality
constraints – here set to 1.

For the ipop function:

1. c is the vector specifying the coefficients of the linear term of the optimization
objective – here a |T|-element vector of −1’s (the same as negated dvec for
solve.QP),

2. H is the matrix specifying the coefficients of the quadratic term of the opti-
mization objective – here an |T| × |T| matrix that for all x1, x2 ∈ T contains
c−(x1)c−(x2)a1∶n(x1) ⚬ a1∶n(x2) in the cell corresponding to x1 and x2 (the same as
Dmat for solve.QP),

3. A is the matrix specifying the coefficients of the box constraints – here a |T|-element
vector of c−(x) for each x ∈ T , representing the coefficients of the single equality
constraint (the same as the first column of Amat for solve.QP),

4. b is the vector specifying the values for the greater than inequality constraints repre-
sented by A – here a single 0 (the same as the first element of bvec for solve.QP),
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5. l is the vector specifying the lower bounds for the solution – here a |T|-element
vector of 0’s (the same as the remaining elements of bvec for solve.QP),

6. u is the vector specifying the upper bounds for the solution – here not needed and
hence set to an |T|-element vector of inf,

7. r is the vector that, added to b, specifies the values for the less than inequality con-
straints represented by A – here set to 0, to make the constraint actually an equality
constraint.

Notice that while the c and H parameters of the ipop function – used to specify the
optimization objective – directly correspond to the bvec and Dmat parameters of the
solve.QP function, it is not the case for the remaining parameters, used to specify
the constraints. For solve.QP both the equality and inequality constraints are specified
using Amat (coefficients) and bvec (values). The meq=1 argument instructs the function
to treat the first constraint as an equality constraint and the remaining ones as inequality
constraints. For ipop the equality constraint is represented by A and b (with r=0) and the
inequality constraints – by l (with u=inf).

16.2.5 Soft margin

As presented above, SVM heavily relies on the linear separability assumption, which is neces-
sary to make the primal form inequality constraints, representing the 𝛾̂w(T) = 1 restriction, sat-
isfiable. This version of the algorithm is referred to as hard-margin SVM. It is highly desirable
in practical classification tasks, however, to produce reasonable quality linear models even if
the target concept is not linearly separable on the training set. To make it possible with the
maximum margin approach, the underlying margin maximization problem has to be relaxed.

The most popular modified version of SVM capable of identifying parameter vectors that
fail to correctly separate all training instances of different classes is soft-margin SVM. It is
based on replacing the original primal form maximization problem’s inequality constraints,
that may be impossible to satisfy, by their relaxed counterparts:

(∀x ∈ T) c−(x)w ⚬ a(x) ≥ 1 − 𝜉x (16.25)

(∀x ∈ T) 𝜉x ≥ 0 (16.26)

where 𝜉x is the so-called slack variable for instance x, specifying the permitted difference
between the functional margin of w with respect to x and 1. It is therefore no longer guaranteed
that 𝛾̂w(x) ≥ 1 – we may also have 𝛾̂w(x) < 1 or even 𝛾̂w(x) < 0, i.e., some instances may lie
within the margin (rather than on or outside the margin) or even be misclassified.

It is of course desirable to keep the level of slackness relatively low. This requires incor-
porating slack variables to the minimization criterion. The primal form soft-margin problem
can be then formulated as follows:

maximize
1
2
||w1∶n||2 + Γ

∑
x

𝜉x (16.27)

subject to

(∀x ∈ T) c−(x)w ⚬ a(x) ≥ 1 − 𝜉x (16.28)

(∀x ∈ T) 𝜉x ≥ 0 (16.29)
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where Γ > 0 (more commonly designated by C, but the latter is reserved to denote the set
of classes in this book’s other chapters on classification) is a cost parameter that controls
the tradeoff between margin maximization and slackness minimization, i.e., trying to get a
possibly large geometric margin and possibly few misclassified instances (or more precisely,
instances with insufficient classification margin).

For small Γ violating the functional margin constraint costs little and geometric mar-
gin maximization is nearly unconstrained. This may yield a parameter vector with a large
geometric margin with respect to correctly classified instances, but with several instances
misclassified. Large Γ assigns high margin violation cost and may result in a parameter vector
with a small geometric margin, but no or few instances misclassified.

Soft-margin SVM has a particularly simple and elegant dual form representation. After
applying the Lagrangian transformation, it turns out that the minimization criterion remains
unchanged and single-sided inequality constrains for Lagrange multipliers are just replaced
by two-sided (box) inequality constraints:

maximize

−1
2

∑
x1∈T

∑
x2∈T

c−(x1)c−(x2)𝛼x1
𝛼x2

a1∶n(x1) ⚬ a1∶n(x2) +
∑
x∈T

𝛼x (16.30)

subject to ∑
x∈T

c−(x)𝛼x = 0 (16.31)

(∀x ∈ T) 0 ≤ 𝛼x ≤ Γ (16.32)

As before, support vectors are identified as instances with positive 𝛼 values. These are no
longer only instances lying exactly on the margin, though. The set of support vectors is larger
and also includes instances lying within the margin or on the wrong side of the hyperplane.
More specifically, we have

c−(x)w ⚬ a(x) = 1 ≡ 0 < 𝛼x < Γ (16.33)

c−(x)w ⚬ a(x) > 1 ≡ 𝛼x = 0 (16.34)

c−(x)w ⚬ a(x) < 1 ≡ 𝛼x = Γ (16.35)

Of course, testing for exact equalities is inappropriate in an actual implementation for numer-
ical reasons.

Support vectors lying on the margin (i.e., those with Lagrange multipliers positive but
less than Γ) can be used to calculate the intercept term in the same way as presented for
the hard-margin case, i.e., by applying Equation 16.20 for any xs such that 0 < 𝛼xs

< Γ. For
greater reliability, this can be averaged over multiple instances satisfying the condition or one
can choose an instance with an 𝛼 value possibly far from both the lower and upper bound (i.e.,
near Γ

2
). Notice, however, that the approach based on averaging over the instances closest to

the decision boundary, presented for the hard-margin case, is not valid here, as these instances
may lie within the margin rather than on the margin.

To reasonably compare the geometric margin of parameter vectors obtained using
soft-margin and hard-margin SVM, we can define the soft geometric margin of the parameter
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vector w with respect to the training set as follows:

𝛾̃w(T) =
1||w1∶n|| (16.36)

This can be seen as the geometric margin value corresponding to the functional margin of 1,
i.e., the geometric margin of instances that “lie on the margin.” It does not actually depend
directly on T and therefore makes sense only if w satisfies the soft-margin constraints on T ,
i.e., if w is actually a valid SVM parameter vector for T . Increasing the cost parameter tends
to decrease the soft geometric margin.

It is worthwhile to underline that soft-margin SVM may be a good choice even for linearly
separable data. Not being forced to achieve perfect training set accuracy, it may be able to
find better generalizing separating hyperplanes. This increases the algorithm’s resistance to
overfitting. Unfortunately the cost parameter usually requires some careful tuning and there
is no reasonable data-independent default value.

Example 16.2.5 The following R code defines the svm.linear function, implementing
the soft-margin linear SVM algorithm using dual-form quadratic programming. The cost
parameter corresponds to Γ in the above equations. The algorithm is demonstrated using both
the full artificial dataset and its linearly separable subset, as well as the real Pima Indians
Diabetes data.

## linear soft-margin SVM parameter estimation using quadratic programming
## solvers: "solve.QP" or "ipop"
svm.linear <- function(formula, data, cost=1, svthres=1e-3, solver="solve.QP")
{
class <- y.var(formula)
attributes <- x.vars(formula, data)
aind <- names(data) %in% attributes

cvec <- 2*as.num0(data[[class]])-1 # class vector using {-1, 1} labels
ccmat <- outer(cvec, cvec) # class-class product matrix
amat <- as.matrix(data[,aind]) # attribute value matrix
dpmat <- amat%*%t(amat) # dot product matrix

if (solver=="solve.QP")
args <- list(Dmat=nearPD(dpmat*ccmat)$mat,

dvec=rep(1, nrow(data)),
Amat=matrix(c(cvec, diag(1, nrow(data)), diag(-1, nrow(data))),

nrow=nrow(data)),
bvec=c(0, rep(0, nrow(data)), rep(-cost, nrow(data))),
meq=1)

else if (solver=="ipop")
args <- list(c=rep(-1, nrow(data)),

H=dpmat*ccmat,
A=cvec,
b=0,
l=rep(0, nrow(data)),
u=rep(cost, nrow(data)),
r=0)

else
stop("Unknown solver: ", solver)

qp <- do.call(solver, args)
alpha <- if (solver=="solve.QP") qp$solution else if (solver=="ipop") qp@primal
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sv <- which(alpha>svthres)
w <- c(colSums(rmm(amat[sv,], cvec[sv]*alpha[sv]))) # no intercept yet
i <- which.min(abs(alpha-cost/2))
w <- c(w, intercept=cvec[i]-unname(predict.par(list(repf=repf.linear, w=c(w, 0)),

data[i,aind,drop=FALSE])))
list(model=‘class<-‘(list(repf=repf.threshold(repf.linear), w=w), "par"), sv=sv)

}

# linear SVM for the artificial data
svm.s <- svm.linear(c̃a1+a2+a3+a4, kmdat.train)
svm.s.ls <- svm.linear(c̃a1+a2+a3+a4, kmdat.train.ls)

svm.s.01 <- svm.linear(c̃a1+a2+a3+a4, kmdat.train, cost=0.1)
svm.s.ls.01 <- svm.linear(c̃a1+a2+a3+a4, kmdat.train.ls, cost=0.1)

svm.s.10 <- svm.linear(c̃a1+a2+a3+a4, kmdat.train, cost=10)
svm.s.ls.10 <- svm.linear(c̃a1+a2+a3+a4, kmdat.train.ls, cost=10)

# linear SVM for the Pima Indians Diabetes data
pid.svm.s <- svm.linear(diabetes̃., pid.std.train)
pid.svm.s.01 <- svm.linear(diabetes̃., pid.std.train, cost=0.1)
pid.svm.s.10 <- svm.linear(diabetes̃., pid.std.train, cost=10)

# training set misclassification error
err(predict(svm.s$model, kmdat.train[,1:4]), kmdat.train$c)
err(predict(svm.s.01$model, kmdat.train[,1:4]), kmdat.train$c)
err(predict(svm.s.10$model, kmdat.train[,1:4]), kmdat.train$c)

err(predict(svm.s.ls$model, kmdat.train.ls[,1:4]), kmdat.train.ls$c)
err(predict(svm.s.ls.01$model, kmdat.train.ls[,1:4]), kmdat.train.ls$c)
err(predict(svm.s.ls.10$model, kmdat.train.ls[,1:4]), kmdat.train.ls$c)

err(factor(predict(pid.svm.s$model, pid.std.train[,-9]),
levels=0:1, labels=levels(pid.std.train$diabetes)),

pid.std.train$diabetes)
err(factor(predict(pid.svm.s.01$model, pid.std.train[,-9]),

levels=0:1, labels=levels(pid.std.train$diabetes)),
pid.std.train$diabetes)

err(factor(predict(pid.svm.s.10$model, pid.std.train[,-9]),
levels=0:1, labels=levels(pid.std.train$diabetes)),

pid.std.train$diabetes)

# test set misclassification error
err(predict(svm.s$model, kmdat.test[,1:4]), kmdat.test$c)
err(predict(svm.s.01$model, kmdat.test[,1:4]), kmdat.test$c)
err(predict(svm.s.10$model, kmdat.test[,1:4]), kmdat.test$c)

err(predict(svm.s.ls$model, kmdat.test.ls[,1:4]), kmdat.test.ls$c)
err(predict(svm.s.ls.01$model, kmdat.test.ls[,1:4]), kmdat.test.ls$c)
err(predict(svm.s.ls.10$model, kmdat.test.ls[,1:4]), kmdat.test.ls$c)

err(factor(predict(pid.svm.s$model, pid.std.test[,-9]),
levels=0:1, labels=levels(pid.std.train$diabetes)),

pid.test$diabetes)
err(factor(predict(pid.svm.s.01$model, pid.std.test[,-9]),

levels=0:1, labels=levels(pid.std.train$diabetes)),
pid.test$diabetes)

err(factor(predict(pid.svm.s.10$model, pid.std.test[,-9]),
levels=0:1, labels=levels(pid.std.train$diabetes)),

pid.test$diabetes)
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Notice that the new less than inequality constraints are specified for the solve.QP
function by additional |T| columns in Amat and additional |T| elements in bvec. Since
solve.QP only supports “greater than” inequality constraints, the corresponding new con-
straint coefficients and values are negated. For ipop this is achieved in a much more straight-
forward way using the u parameter, set to a |T|-element vector of cost.

As expected, the soft SVM algorithm no longer achieves a 0 training set error for the
linearly separable artificial data subset (although it could be forced to do so by specifying a
sufficiently large cost value). It delivers reasonable models for both the full artificial dataset
and the real Pima Indians Diabetes data, though.

Example 16.2.6 The R code presented below uses the soft-margin SVM implementation
from the previous example to graphically illustrate soft margin maximization. Using the same
kmdat.m dataset used before for margin illustrations in Example 16.2.1, the separating line
and the margin lines obtained for two values of the cost parameter are plotted. For Γ = 1
(solid lines) the results are nearly the same as in the hard-margin case presented before. For
Γ = 0.1 (dotted lines), we obtain a substantially larger soft geometric margin, with several
instances lying within the margin. The same demonstration is repeated using a modified lin-
early inseparable version of the data, with class labels of some instances flipped. The margin
plots are presented in Figure 16.3.

# soft-margin SVM
svm.ms.1 <- svm.linear(c̃., kmdat.m, solver="ipop", cost=1)
w.ms.1 <- svm.ms.1$model$w

svm.ms.01 <- svm.linear(c̃., kmdat.m, solver="ipop", cost=0.1)
w.ms.01 <- svm.ms.01$model$w

# soft margin: geometric margin corresponding to functional margin of 1
1/l2norm(w.ms.1[-length(w.ms.1)])
1/l2norm(w.ms.01[-length(w.ms.01)])

# separating and margin lines for cost=1
plot.margin(w.ms.1, kmdat.m[,1:2], 2*as.num0(kmdat.m$c)-1, main="Linearly separable")
# separating and margin lines for cost=0.1

plot.margin(w.ms.01, kmdat.m[,1:2], 2*as.num0(kmdat.m$c)-1, add=TRUE, lty=3)

# the same for linearly inseparable data

kmdat.m.nls <- kmdat.m
kmdat.m.nls$c <- as.factor(ifelse(runif(nrow(kmdat.m))<0.1,

1-as.numchar(kmdat.m$c), as.numchar(kmdat.m$c)))

svm.ms.nls.1 <- svm.linear(c̃., kmdat.m.nls, solver="ipop", cost=1)
w.ms.nls.1 <- svm.ms.nls.1$model$w

svm.ms.nls.01 <- svm.linear(c̃., kmdat.m.nls, solver="ipop", cost=0.1)
w.ms.nls.01 <- svm.ms.nls.01$model$w

# soft margin: geometric margin corresponding to functional margin of 1
1/l2norm(w.ms.nls.1[-length(w.ms.nls.1)])
1/l2norm(w.ms.nls.01[-length(w.ms.nls.01)])
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# separating and margin lines for cost=1
plot.margin(w.ms.nls.1, kmdat.m.nls[,1:2], 2*as.num0(kmdat.m.nls$c)-1,

main="Linearly inseparable")
# separating and margin lines for cost=0.1

plot.margin(w.ms.nls.01, kmdat.m.nls[,1:2], 2*as.num0(kmdat.m.nls$c)-1,
add=TRUE, lty=3)

16.3 Support vector regression

The support vector machines algorithm, originally proposed for linear classification, can
be modified to permit application to linear regression as well. One of such modifications,
known as support vector regression (SVR), attempts to achieve better generalization and
overfitting-prevention by relaxing the error minimization objective adopted by the gradient
descent and least-squares algorithms presented in Chapter 8. More specifically, it finds a
parameter vector acceptable as long as it yields predictions that differ from the corresponding
true target function values by no more than a fixed maximum deviation 𝜖:

|f (x) − h(x)| ≤ 𝜖 (16.37)

for each x ∈ T . The magnitude of differences between the predicted and true values is imma-
terial as long as they are below the permitted maximum. Among all parameter vectors that
satisfy this condition, support vector regression prefers those with the minimum Euclidean
norm ||w1∶n||, calculated with the intercept term 𝑤n+1 skipped (as it is only responsible for
shifting the hyperplane represented by w without changing its slope).

The minimization of ||w1∶n|| happens to be the same optimization objective as that is
adopted by SVM for classification, as presented in Section 16.2.3. In that case, it was used
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Figure 16.3 The soft classification margin maximized by the soft-margin SVM algorithm
using the full example dataset and the linearly separable subset.
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to maximize the classification geometric margin (with the functional margin kept fixed at 1).
In the case of the regression task it can be interpreted as ensuring the “flatness” of the model
prediction function represented by w. The smaller the model parameters, the less the function
represented thereby is sensitive to attributes (approaching a constant in the extreme case),
which makes it also less prone to overfitting. By specifying 𝜖 > 0 and minimizing the param-
eters one therefore agrees to accept a certain level of the model’s deviation from the target
function if it makes it possible to keep the predictions more “flat.”

16.3.1 Regression tube

The 𝜖 tolerance threshold for a linear regression model’s predictions may be thought of as
determining a tube around the hyperplane represented by the model’s parameter vector. An
instance x for which |f (x) − h(x)| = 𝜖 is said to lie on the 𝜖-tube. If |f (x) − h(x)| < 𝜖, the
instance is said to lie within the 𝜖-tube and |f (x) − h(x)| > 𝜖, it is said to lie outside the 𝜖-tube.

Example 16.3.1 The idea of regression tube is illustrated by the R code presented below.
It defines the plot.tube function to plot the regression line and the corresponding tube
lines in the basic two-dimensional case (i.e., with a single attribute). A small subset of the
kmdat.plot dataset is used for the purpose of tube illustration. The plot is presented in
Figure 16.4.

## plot regression tube lines for linear regression
## with a single attributes
plot.tube <- function(w, data, eps, add=FALSE,

col.point="black", col.line="black", ...)
{
# y value corresponding to x on the regression line represented by w
lry <- function(x, w) {sum(w*c(x, 1)) }

if (!add)
plot(data[,1], data[,2], col=col.point,

xlab="a1", ylab="h", xlim=range(data[,1]), ylim=range(data[,2]), ...)

lines(range(data[,1]), c(lry(min(data[,1]), w), lry(max(data[,1]), w)),
col=col.line)

lines(range(data[,1]), c(lry(min(data[,1]), w-c(0, eps)),
lry(max(data[,1]), w-c(0, eps))), col=col.line, lty=3)

lines(range(data[,1]), c(lry(min(data[,1]), w+c(0, eps)),
lry(max(data[,1]), w+c(0, eps))), col=col.line, lty=3)

}

# dataset for tube demonstration (take instances with similar a2 values)
kmdat.t <- kmdat.plot[abs(kmdat.plot$a2-mean(kmdat.plot$a2))<1,]
kmdat.t <- kmdat.t[sample(nrow(kmdat.t), 100), c("a1", "f")]

# parameter vector for tube demonstration
w.t <- lm(f̃a1, kmdat.t)$coef[2:1]

plot.tube(w.t, kmdat.t, eps=1)
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Figure 16.4 Linear regression tube.

16.3.2 Primal form

Model parameters for support vector regression can be identified by solving the following
quadratic programming problem:

minimize
1
2
||w1∶n||2 (16.38)

subject to

(∀x ∈ T) f (x) − w ⚬ a(x) ≤ 𝜖 (16.39)

(∀x ∈ T) w ⚬ a(x) − f (x) ≤ 𝜖 (16.40)

with the 1
2

multiplier introduced for mathematical convenience only. This is the primal form

of the SVR optimization problem, which assumes that indeed there is a parameter vector that
yields no deviations above 𝜖.

16.3.3 Dual form

As with SVM for classification, it is more convenient to solve the problem obtained by apply-
ing a Lagrangian transformation rather than the original problem directly. It is also more
realistic to assume that the maximum deviation of 𝜖 may be impossible to achieve and permit
relaxing it. The resulting dual form of SVR optimization can be stated as follows:

minimize

1
2

∑
x1∈T

∑
x2∈T

(𝛼x1
− 𝛼∗x1

)(𝛼x2
− 𝛼∗x2

)a1∶n(x1) ⚬ a1∶n(x2)

+ 𝜖
∑
x∈T

(𝛼x + 𝛼∗x ) −
∑
x∈T

f (x)(𝛼x − 𝛼∗x )
(16.41)
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subject to ∑
x∈T

(𝛼x − 𝛼∗x ) = 0 (16.42)

(∀x ∈ T) 0 ≤ 𝛼x ≤ Γ (16.43)

(∀x ∈ T) 0 ≤ 𝛼∗x ≤ Γ (16.44)

This additionally incorporates cost Γ (more commonly designated by C) associated with
training instances for which the difference between the true and predicted value exceeds the
specified maximum deviation 𝜖. This is analogous to soft-margin SVM for classification and
leads to the same constraints for Lagrange multipliers. In the case of support vector regression,
however, there are two Lagrange multipliers, 𝛼x and 𝛼∗x , for each instance x ∈ T , correspond-
ing to the fact that the difference f (x) − h(x) may be positive or negative. They relate to the
model parameter vector as follows:

w1∶n =
∑
x∈T

(𝛼x − 𝛼∗x )a1∶n(x) (16.45)

The problem can be solved using general-purpose quadratic programming solvers or more
efficient dedicated algorithms, not discussed here. The solution may also be represented by
𝛽x = 𝛼x − 𝛼∗x for convenience.

It can be verified that at most one of 𝛼x, 𝛼∗x can be nonzero for any x ∈ T , and instances for
which one of the corresponding Lagrange multipliers is positive (or 𝛽 is nonzero) are support
vectors. Clearly

𝛽x =

{
𝛼x if 𝛼x > 0

−𝛼∗x otherwise
(16.46)

and |𝛽x| = max{𝛼x, 𝛼
∗
x } for all x ∈ T . The parameter vector calculated as

w1∶n =
∑
x∈T

𝛽xa1∶n(x) (16.47)

depends on support vectors only. The solution can also be verified to exhibit the following
properties:

f (x) − w ⚬ a(x) = 𝜖 ≡ 0 < 𝛼x < Γ (16.48)

f (x) − w ⚬ a(x) < 𝜖 ≡ 𝛼x = 0 (16.49)

f (x) − w ⚬ a(x) > 𝜖 ≡ 𝛼x = Γ (16.50)

and, analogously:

w ⚬ a(x) − f (x) = 𝜖 ≡ 0 < 𝛼∗x < Γ (16.51)

w ⚬ a(x) − f (x) < 𝜖 ≡ 𝛼∗x = 0 (16.52)

w ⚬ a(x) − f (x) > 𝜖 ≡ 𝛼∗x = Γ (16.53)

Support vectors are therefore instances for which the difference between the predicted and
true target function value is equal or exceeds 𝜖.
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Notice that Equation 16.45 used to calculate model parameters based on Lagrange multi-
pliers does not apply to the intercept term. It can be calculated, though, based on any support
vector for which the absolute difference between the predicted and true target function value
is equal to 𝜖. Combining the conditions given by Equations 16.48 and 16.49 yields

f (x) − w ⚬ a(x) = sgn(𝛽x)𝜖 ≡ 0 < |𝛽x| < Γ (16.54)

and therefore
𝑤n+1 = f (xs) − w1∶n ⚬ a1∶n(xs) − sgn(𝛽xs

)𝜖 (16.55)

for any xs such that 0 < |𝛽xs
| < Γ (i.e., either 0 < 𝛼xs

< Γ or 0 < 𝛼∗xs
< Γ). For greater relia-

bility, this can be averaged over multiple instances satisfying the condition or one can choose
an instance with a |𝛽| value possibly far from both the lower and upper bound.

It is noteworthy that, similarly as for SVM, attribute value vectors used in the dual form
optimization objective appear inside dot products only. Expressing model predictions using
the dual form solution

h(x∗) =
∑
x∈T

𝛽xa1∶n(x) ⚬ a1∶n(x∗)

+ f (x) −
∑
x∈T

a1∶n(x) ⚬ a1∶n(xs) − sgn(𝛽xs
)𝜖

(16.56)

shows that also attribute value vectors used for prediction appear inside dot products only.
Using the dual form both parameter estimation and prediction for support vector regres-
sion models can therefore be performed without using any attribute values other than inside
dot products. It also makes it possible not to calculate the primal form parameter vector w
explicitly.

Example 16.3.2 The following R code implements and demonstrates the SVR algorithm,
following the pattern of the soft-margin SVM implementation by the svm.linear function
from Example 16.2.5. The demonstration uses the same artificial training and test sets as the
previous examples, with the target concept ignored, but two target functions f and g used

Ex. 10.2.3
dmr.regeval

instead. Additionally, support vector regression model creation and evaluation
for the real Boston Housing data is performed. The mse function is used for
mean square error calculation.

## linear SVR parameter estimation using quadratic programming
## solvers: "solve.QP" or "ipop"
svr.linear <- function(formula, data, eps=0.01, cost=1, svthres=1e-3,

solver="solve.QP")
{
f <- y.var(formula)
attributes <- x.vars(formula, data)
aind <- names(data) %in% attributes

fvec <- data[[f]] # target function vector
amat <- as.matrix(data[,aind]) # attribute value matrix
dpmat <- amat%*%t(amat) # dot product matrix
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if (solver=="solve.QP")
args <- list(Dmat=nearPD(rbind(cbind(dpmat, -dpmat), cbind(-dpmat, dpmat)))$mat,

dvec=c(fvec-eps, -fvec-eps),
Amat=matrix(c(rep(1, nrow(data)), rep(-1, nrow(data)),

diag(1, 2*nrow(data)), diag(-1, 2*nrow(data))),
nrow=2*nrow(data)),

bvec=c(0, rep(0, 2*nrow(data)), rep(-cost, 2*nrow(data))),
meq=1)

else if (solver=="ipop")
args <- list(c=c(-fvec+eps, fvec+eps),

H=rbind(cbind(dpmat, -dpmat), cbind(-dpmat, dpmat)),
A=c(rep(1, nrow(data)), rep(-1, nrow(data))),
b=0,
l=rep(0, 2*nrow(data)),
u=rep(cost, 2*nrow(data)),
r=0)

else
stop("Unknown solver: ", solver)

qp <- do.call(solver, args)
alpha <- if (solver=="solve.QP") qp$solution else if (solver=="ipop") qp@primal
beta <- alpha[1:nrow(data)]-alpha[(nrow(data)+1):(2*nrow(data))]
sv <- which(abs(beta)>svthres)
w <- c(colSums(rmm(amat[sv,], beta[sv]))) # no intercept yet
i <- which.min(abs(beta-cost/2))
w <- c(w, intercept=fvec[i]-unname(predict.par(list(repf=repf.linear, w=c(w, 0)),

data[i,aind,drop=FALSE]))-
sign(beta[i])*eps)

list(model=‘class<-‘(list(repf=repf.linear, w=w), "par"), sv=sv)
}

# linear SVR for f
svrf <- svr.linear(f̃a1+a2+a3+a4, kmdat.train)
svrf.e1 <- svr.linear(f̃a1+a2+a3+a4, eps=1, kmdat.train)
svrf.c01 <- svr.linear(f̃a1+a2+a3+a4, cost=0.1, kmdat.train)

# linear SVR for g
svrg <- svr.linear(g̃a1+a2+a3+a4, kmdat.train)
svrg.e1 <- svr.linear(g̃a1+a2+a3+a4, eps=1, kmdat.train)
svrg.c01 <- svr.linear(g̃a1+a2+a3+a4, cost=0.1, kmdat.train)

# linear SVR for the Boston Housing data
bh.svr <- svr.linear(medṽ., bh.std.train)
bh.svr.e1 <- svr.linear(medṽ., eps=1, bh.std.train)
bh.svr.c01 <- svr.linear(medṽ., cost=0.1, bh.std.train)

# training set MSE
mse(predict(svrf$model, kmdat.train[,1:4]), kmdat.train$f)
mse(predict(svrf.e1$model, kmdat.train[,1:4]), kmdat.train$f)
mse(predict(svrf.c01$model, kmdat.train[,1:4]), kmdat.train$f)

mse(predict(svrg$model, kmdat.train[,1:4]), kmdat.train$g)
mse(predict(svrg.e1$model, kmdat.train[,1:4]), kmdat.train$g)
mse(predict(svrg.c01$model, kmdat.train[,1:4]), kmdat.train$g)

mse(predict(bh.svr$model, bh.std.train[,-13]), bh.std.train$medv)
mse(predict(bh.svr.e1$model, bh.std.train[,-13]), bh.std.train$medv)
mse(predict(bh.svr.c01$model, bh.std.train[,-13]), bh.std.train$medv)
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# test set MSE
mse(predict(svrf$model, kmdat.test[,1:4]), kmdat.test$f)
mse(predict(svrf.e1$model, kmdat.test[,1:4]), kmdat.test$f)
mse(predict(svrf.c01$model, kmdat.test[,1:4]), kmdat.test$f)

mse(predict(svrg$model, kmdat.test[,1:4]), kmdat.test$g)
mse(predict(svrg.e1$model, kmdat.test[,1:4]), kmdat.test$g)
mse(predict(svrg.c01$model, kmdat.test[,1:4]), kmdat.test$g)

mse(predict(bh.svr$model, bh.std.test[,-13]), bh.std.test$medv)
mse(predict(bh.svr.e1$model, bh.std.test[,-13]), bh.std.test$medv)
mse(predict(bh.svr.c01$model, bh.std.test[,-13]), bh.std.test$medv)

The parameters passed to the two quadratic programming solvers are explained below.

For the solve.QP function:

1. Dmat is the matrix specifying the coefficients of the quadratic term of the optimiza-
tion objective – here an 2|T| × 2|T| matrix composed of four quarter submatrices:

upper left |T| × |T| containing data dot products (with a1∶n(x1) ⚬ a1∶n(x2) in the cell
corresponding to x1 and x2),

upper right |T| × |T| containing negated data dot products (with −a1∶n(x1) ⚬ a1∶n(x2)
in the cell corresponding to x1 and x2),

lower left the same as the upper right,

lower right the same as the upper left.

2. dvec is the vector specifying the coefficients of the linear term of the optimization
objective – here a vector containing f (x) − 𝜖 for all x ∈ T as the first |T| elements
and −f (x) − 𝜖 for all x ∈ T as the remaining |T| elements,

3. Amat is the (transpose of) the matrix specifying the coefficients of the equality
and inequality constraints – here a 2|T| × (4|T| + 1) matrix with a vector of |T| 1’s
followed by |T| −1’s as the first column (representing the coefficients of the equal-
ity constraint), the 2|T| × 2|T| identity matrix (representing the coefficients of the
greater than inequality constraints) as the subsequent 2|T| columns, and the negated
2|T| × 2|T| identity matrix (representing the coefficients of the less than inequality
constraints) as the last 2|T| columns,

4. bvec is the vector specifying the values for equality and inequality constraints rep-
resented by Amat – here a vector of (2|T| + 1) 0’s followed by a 2|T|-time repetition
of -cost,

5. meq is the number of the first columns in Amat that represent equality
constraints – here set to 1.

For the ipop function:

1. c is the vector specifying the coefficients of the linear term of the optimization
objective – here a vector containing 𝜖 − f (x) for all x ∈ T as the first |T| elements
and 𝜖 + f (x) for all x ∈ T as the remaining |T| elements (the same as negated dvec
for solve.QP),
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2. H is the matrix specifying the coefficients of the quadratic term of the optimization
objective – here an 2|T| × 2|T| matrix (the same as Dmat for solve.QP),

3. A is the matrix specifying the coefficients of the box constraints – here a vector of |T|
1’s followed by |T|−1’s, representing the coefficients of the single equality constraint
(the same as the first column of Amat for solve.QP),

4. b is the vector specifying the values for the greater than inequality constraints repre-
sented by A – here a single 0 (the same as the first element of bvec for solve.QP),

5. l is the vector specifying the lower bounds for the solution – here a 2|T|-element
vector of 0’s (the same as the 2 ∶ |T| + 1 elements of bvec for solve.QP),

6. u is the vector specifying the upper bounds for the solution – here a 2|T|-element
vector of cost (the same as the negated |T| + 2 ∶ 2|T| + 1 elements of bvec for
solve.QP),

7. r is the vector that, added to b, specifies the values for the less than inequality con-
straints represented by A – here set to 0, to make the constraint actually an equality
constraint.

Only greater than constraints are originally supported by the solve.QP function and the
less than constraints have to be indirectly specified by using negated constraint coefficients
and values. For ipop the equality constraint is represented by A and b (with r=0) and the
inequality constraints – by l and u.

With default settings, the SVR algorithm identifies a nearly perfect model for the f tar-
get function, which is not surprising given its truly linear dependence on attributes in the
example artificial dataset. Decreasing Γ (cost) has little effect, but increasing 𝜖 (eps) results
in a flatter model with a substantially larger error value. Somewhat different behavior is
observed for the nonlinear g target function in the artficial data. While the default settings
appear to yield a good linear approximation, this time larger 𝜖 gives no effect and smaller Γ
degrades performance. All the three parameter setups perform similarly well for the Boston
Housing data.

Example 16.3.3 The following R code illustrates the effect of the 𝜖 and Γ parameters of the
support vector regression algorithm on the flatness of the hyperplane represented by model
parameters. The svr.linear function from the previous example is applied to the sim-
ple single-attribute dataset previously generated for tube illustration, using different param-
eter setups. The resulting regression tubes are plotted using the plot.tube function and

dmr.util
presented in Figure 16.5. The norms of the parameter vectors obtained in each
case are calculated using the l2norm function to quantify the effect of larger 𝜖
or smaller Γ on model flatness.
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Figure 16.5 The linear regression tubes obained by the SVR algorithm.
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# eps=0.5, cost=1
svr.t.05.1 <- svr.linear(f̃., kmdat.t, solver="ipop", eps=0.5, cost=1)
w.t.05.1 <- svr.t.05.1$model$w
l2norm(w.t.05.1[-length(w.t.05.1)])

# eps=0.5, cost=0.1
svr.t.05.01 <- svr.linear(f̃., kmdat.t, solver="ipop", eps=0.5, cost=0.1)
w.t.05.01 <- svr.t.05.01$model$w
l2norm(w.t.05.01[-length(w.t.05.01)])

# eps=0.5, cost=0.01
svr.t.05.001 <- svr.linear(f̃., kmdat.t, solver="ipop", eps=0.5, cost=0.01)
w.t.05.001 <- svr.t.05.001$model$w
l2norm(w.t.05.001[-length(w.t.05.001)])

# eps=1, cost=1
svr.t.1.1 <- svr.linear(f̃., kmdat.t, solver="ipop", eps=1, cost=1)
w.t.1.1 <- svr.t.1.1$model$w
l2norm(w.t.1.1[-length(w.t.1.1)])

# eps=1, cost=0.1
svr.t.1.01 <- svr.linear(f̃., kmdat.t, solver="ipop", eps=1, cost=0.1)
w.t.1.01 <- svr.t.1.01$model$w
l2norm(w.t.1.01[-length(w.t.1.01)])

# eps=1, cost=0.01
svr.t.1.001 <- svr.linear(f̃., kmdat.t, solver="ipop", eps=1, cost=0.01)
w.t.1.001 <- svr.t.1.001$model$w
l2norm(w.t.1.001[-length(w.t.1.001)])

par(mfcol=c(3, 2))

plot.tube(w.t.05.1, kmdat.t, eps=0.5, main="eps=0.5, cost=1")
plot.tube(w.t.05.01, kmdat.t, eps=0.5, main="eps=0.5, cost=0.1")
plot.tube(w.t.05.001, kmdat.t, eps=0.5, main="eps=0.5, cost=0.01")

plot.tube(w.t.1.1, kmdat.t, eps=1, main="eps=1, cost=1")
plot.tube(w.t.1.01, kmdat.t, eps=1, main="eps=1, cost=0.1")
plot.tube(w.t.1.001, kmdat.t, eps=1, main="eps=1, cost=0.01")

16.4 Kernel trick

The property of using data (or, more precisely, attribute value vectors for instances) within
dot products only that is characteristic for both the SVM and SVR algorithms means that
all references to attribute values, other than a1∶n(x1) ⚬ a1∶n(x2) for instance pairs x1, x2, can
be avoided. This is achieved by adopting the dual form representations of the corresponding
quadratic programming problems, as presented in Sections 16.2.4 and 16.3.3, for which the
optimization objective does not refer to attribute value vectors other than within dot products.
According to Equations 16.16 and 16.45 , the resulting model parameters can be seen as the
averages of attribute value vectors. This, when the model is applied for prediction, also limits
the actual attribute value usage to dot product calculations only:

h(x∗) = H

(∑
x∈T

c−(x)𝛼xa1∶n(x) ⚬ a1∶n(x∗) +𝑤n+1

)
(16.57)
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for SVM, where H is the unit step function, and

h(x∗) =
∑
x∈T

(𝛼x − 𝛼∗x )a1∶n(x) ⚬ a1∶n(x∗) +𝑤n+1 (16.58)

for SVR.
Using an enhanced representation with new attributes a′1, a

′
2, … , a′N and (usually) N ≫ n

is possible by simply replacing the dot products in the original attribute space, a(x1) ⚬ a(x2),
with the corresponding dot products in the new attribute space, a′1∶N(x1) ⚬ a′1∶N(x2). The
so-called kernel trick makes it possible to avoid explicitly calculating the new attribute values
at all and use K(x1, x2) instead of a′1∶N(x1) ⚬ a′1∶N(x2), where K is a kernel function that can
be calculated based on attribute value vectors in the original representation. As long as there
exists some representation (i.e., a set of new attributes) for which K does indeed represent a
dot product, this representation would be then implicitly used, without the need to explicitly
calculate new attribute values. For kernel function K and dataset S the matrix of kernel function
values for all instance pairs from the dataset will be referred to as the kernel matrix with respect
to K for S and denoted by KS. Using instances as row and column indices we may write, for
any x1, x2 ∈ S

KS[x1, x2] = K(x1, x2) (16.59)

Consider a particularly simple kernel function defined as

K(x1, x2) = (a1∶n(x1) ⚬ a1∶n(x2))2 (16.60)

Assuming n = 2 for even greater simplicity, we have

K(x1, x2) = a2
1(x1)a2

1(x2) + a2
2(x1)a2

2(x2) + 2a1(x1)a2(x1)a1(x2)a2(x2) (16.61)

This does indeed represent a dot product for the enhanced attribute space defined as

a′1(x) = a2
1(x) (16.62)

a′2(x) = a2
2(x) (16.63)

a′3(x) = a1(x)a2(x) (16.64)

a′4(x) = a1(x)a2(x) (16.65)

or, to avoid two identical attributes:

a′1(x) = a2
1(x) (16.66)

a′2(x) = a2
2(x) (16.67)

a′3(x) =
√

2a1(x)a2(x) (16.68)

Any symmetric positive definite matrix is a kernel matrix with respect to some kernel
function and any positive definite symmetric function is a kernel function according to Mer-
cer’s theorem. For any such K it can be then guaranteed that K(x1, x2) is indeed equal to
a′1∶N(x1) ⚬ a′1∶N(x2) for some a′1, a

′
2, … , a′N , although providing the definitions of these new

attributes in terms of the original attributes may be often difficult and calculating their values
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is never necessary, if using algorithms designed to work with dot products only. More specif-
ically, the kernel trick brings two closely related advantages:

• high-dimensional nonlinear enhanced representations may be used for linear models
without defining new attributes explicitly,

• high-dimensional nonlinear enhanced representations may be used for linear models
without calculating new attributes explicitly.

The former makes it convenient to specify general-purpose, domain-independent enhanced
representations and incorporate them to dot product-based linear modeling algorithms. The
latter makes it computationally efficient to use such representations for linear model creation
and prediction, by avoiding the need to calculate the values of a possibly huge number of
new attributes, that are instead used implicitly. In essence, we get the increased representa-
tion power – that may suffice to overcome or alleviate the linearity limitation – without the
associated effort and cost.

Example 16.4.1 A simple illustration of the kernel trick is presented by the following R code.
It takes a small 10-row subset of the kmdat.train dataset and applies a transformation that
replaces the original 4 attributes with 16 new attributes, defined as all their pairwise products.
The dot product in this enhanced representation can be verified to be equal to the squared dot
product in the original representation.

## data transformation that generates new attributes
## defined as the products of all original attribute pairs
trans.mult2 <- function(data)
{
t(apply(data, 1, function(d) d %o% d))

}

# original dataset
kmdat.orig <- kmdat.train[1:10,1:4]
# dot product matrix for the original dataset

kmdat.dp <- as.matrix(kmdat.orig) %*% t(kmdat.orig)

# transformed dataset
kmdat.trans <- trans.mult2(kmdat.orig)
# dot product matrix for the transformed dataset

kmdat.dpt <- kmdat.trans %*% t(kmdat.trans)

# verify that the dot product matrix for the transformed dataset
# is the same as the squared original dot product matrix

max(abs((kmdat.dpt-kmdat.dp ̂ 2)))

16.5 Kernel functions

Choosing a kernel function appropriate for a particular classification or regression task is cru-
cial for the quality of predictions that can be obtained by models using the resulting enhanced
representation. Sometimes available domain knowledge helps make a good choice, but often
a trial-and-error approach may be necessary. Practical applications of kernel methods usually
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adopt a kernel function belonging to one of a few standard families, described below. These
families are sufficiently diverse to cover most common needs.

16.5.1 Linear kernel

A linear kernel function is defined as

K(x1, x2) = a1∶n(x1) ⚬ a1∶n(x2) (16.69)

This obviously leaves the original representation unchanged and does not overcome the lin-
earity limitation of linear classification and linear regression models in any way. It makes it
possible, however, to consider linear dot product-based algorithms (such as the linear sup-
port vector machines and linear support vector regression algorithms) as special cases of the
corresponding kernel-based algorithms.

16.5.2 Polynomial kernel

A polynomial kernel function basically takes a power of the dot product in the original repre-
sentation:

K(x1, x2) = (𝛾a1∶n(x1) ⚬ a1∶n(x2) + b)p (16.70)

where 𝛾 > 0, b ≥ 0, and p > 0 are parameters. This kernel family makes it possible to easily
control the enhanced representation size and degree of nonlinearity by adjusting the p parame-
ter. Positive b can be used to adjust the relative impact of higher order and lower order terms in
the resulting polynomial representation. To see how this is possible, assume p = 2 and n = 2
for simplicity and compare:

(a1∶n(x1) ⚬ a1∶n(x2))2 = a2
1(x1)a2

1(x2) + a2
2(x1)a2

2(x2)

+ 2a1(x1)a2(x1)a1(x2)a2(x2) (16.71)

(a1∶n(x1) ⚬ a1∶n(x2) + 1)2 = a2
1(x1)a2

1(x2) + a2
2(x1)a2

2(x2)

+ 2a1(x1)a2(x1)a1(x2)a2(x2) + 2a1(x1)a1(x2)

+ 2a2(x1)a2(x2) + 1 (16.72)

(a1∶n(x1) ⚬ a1∶n(x2) + 2)2 = a2
1(x1)a2

1(x2) + a2
2(x1)a2

2(x2)

+ 2a1(x1)a2(x1)a1(x2)a2(x2) + 4a1(x1)a1(x2)

+ 4a2(x1)a2(x2) + 4 (16.73)

This demonstrates that increasing b increases the coefficients of lower order terms. While
convenient to control and easy to understand, the polynomial kernel family may be insufficient
to adequately represent more complex relationships.

16.5.3 Radial kernel

A radial kernel (also called Gaussian or RBF) depends on the Euclidean distance between the
original attribute value vectors (i.e., the Euclidean norm of their difference) rather than their
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dot product:
K(x1, x2) = e−𝛾||a1∶n(x1)−a1∶n(x2)||2 (16.74)

where 𝛾 > 0 is a parameter. This type of kernel tends to be particularly popular, as it makes the
contribution of instance x to the prediction calculated for instance x∗, which is proportional
to K(x, x∗), exponentially decay with the increasing distance between them. The resulting
prediction is therefore highly localized and, as such, can be well fitted to arbitrarily complex
target functions or concepts. However, it is very sensitive to the choice of the 𝛾 parameter and
may be prone to overfitting.

16.5.4 Sigmoid kernel

A sigmoid kernel as defined as the hyperbolic tangent of the dot product in the original rep-
resentation:

K(x1, x2) = tanh(𝛾a1∶n(x1) ⚬ a1∶n(x2) + b) (16.75)

where 𝛾 and b are the parameters (usually 𝛾 > 0). The sigmoid function is widely used as the
activation function for neural networks (multilayer perceptrons) and hence has also become
popular for kernel methods. Like the radial kernel family, if used with properly adjusted
parameters, it can represent complex nonlinear relationships. For some parameter settings
it actually becomes similar to the radial kernel. However, the sigmoid function may not be
positive definite for some parameters, and therefore not actually represent a valid kernel.

Example 16.5.1 Kernel functions discussed above are implemented and demonstrated by the
following R code. Each function can be applied both to single instances (assumed to be repre-
sented by single matrix or data frame rows) or to a dataset of multiple instances (assumed to
be represented by a matrix or data frame, with rows corresponding to instances and columns
corresponding to attributes). In the latter case, the kernel matrix is calculated, i.e., the matrix
of kernel function values for all instance pairs.

## can be called for both single attribute value vectors and for the whole dataset
kernel.linear <- function(av1, av2=av1) { as.matrix(av1)%*%t(av2) }

## can be called for both single attribute value vectors and for the whole dataset
kernel.polynomial <- function(av1, av2=av1, gamma=1, b=0, p=3)
{ (gamma*(as.matrix(av1)%*%t(av2))+b) ̂p }

## can be called for both single attribute value vectors and for the whole dataset
kernel.radial <- function(av1, av2=av1, gamma=1)
{
exp(-gamma*outer(1:nrow(av1 <- as.matrix(av1)), 1:ncol(av2 <- t(av2)),

Vectorize(function(i, j) l2norm(av1[i,]-av2[,j]) ̂2)))
}

## can be called for both single attribute value vectors and for the whole dataset
kernel.sigmoid <- function(av1, av2=av1, gamma=0.1, b=0)
{ tanh(gamma*(as.matrix(av1)%*%t(av2))+b) }

# kernel functions called for instance pairs
kernel.linear(kmdat.train[1,1:4], kmdat.train[2,1:4])
kernel.polynomial(kmdat.train[1,1:4], kmdat.train[2,1:4])
kernel.radial(kmdat.train[1,1:4], kmdat.train[2,1:4])
kernel.sigmoid(kmdat.train[1,1:4], kmdat.train[2,1:4])
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# kernel functions called for the dataset (using the first 10 instances)
kernel.linear(kmdat.train[1:10,1:4])
kernel.polynomial(kmdat.train[1:10,1:4])
kernel.radial(kmdat.train[1:10,1:4])
kernel.sigmoid(kmdat.train[1:10,1:4])

16.6 Kernel prediction

Kernel-based prediction is basically linear prediction using kernel-based estimations of model
parameters. Assuming

w1∶n =
∑
x∈T

𝜂xa1∶n(x) (16.76)

to match both Equations 16.16 and 16.45, we receive the following kernel-based representa-
tion function:

g(x∗) =
∑
x∈T

𝜂xK(x, x∗) +𝑤n+1 (16.77)

that can be used directly as the model’s prediction function for regression or as the inner
representation function for classification. This covers both SVM and SVR as special cases.
For the former, we have

𝜂x = c−(x)𝛼x (16.78)

h(x∗) = H(g(x∗)) (16.79)

where 𝛼x is the Lagrange multiplier (dual form solution element) for instance x. For the latter:

𝜂x = 𝛼x − 𝛼∗x (16.80)

h(x∗) = g(x∗) (16.81)

In both cases, only training instances with nonzero 𝜂x values (i.e., support vectors) contribute
to prediction and the remaining instances can be skipped in the summations. A kernel-based
model can therefore be represented by a vector of coefficients and a corresponding set of
attribute value vectors or, equivalently, an attribute value matrix for a set of instances.

Example 16.6.1 The R code presented below implements and demonstrates kernel predic-
tion. The predict.kernel function assumes the supplied model contains the following
components:

• coef – the vector of kernel-based model coefficients,

• intercept – the intercept value,

• mat – the attribute value matrix representing the training set for kernel prediction (with
rows corresponding to instances and columns corresponding to attributes),

• kernel – the kernel function,

• kernel.args – the list of kernel function arguments,

• formula – the formula specifying attributes used for model creation.
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Then a random small subset of the kmdat.plot dataset is selected and used to create several
kernel-based models, using different kernel functions. The models use arbitrarily selected
meaningless coefficients and serve the illustration purpose only. Their predictions are then
plotted as surfaces, to visualize the nonlinearity introduced by the kernel transformation. The
obtained plots are presented in Figure 16.6.

a1a2

hl

a1a2

hp

a1a2

hr

a1a2

hs

Figure 16.6 Kernel predictions for different kernel types.

## predict using a kernel-based model
predict.kernel <- function(model, data)
{
attributes <- x.vars(model$formula, data)
aind <- names(data) %in% attributes
amat <- as.matrix(data[,aind,drop=FALSE])
kmat <- do.call(model$kernel, c(list(amat, model$mat), model$kernel.args))
rowSums(cmm(kmat, model$coef))+model$intercept

}
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# kernel models for producing plots
kmplot <- list(coef=c(rep(1, 50), rep(-2, 50)),

mat=as.matrix(kmdat.plot[sample(nrow(kmdat.plot), 100),1:2]),
intercept=1, formula=f̃a1+a2)

kmplot.l <- ‘class<-‘(c(kmplot, kernel=kernel.linear), "kernel")
kmplot.p <- ‘class<-‘(c(kmplot, kernel=kernel.polynomial), "kernel")
kmplot.r <- ‘class<-‘(c(kmplot, kernel=kernel.radial), "kernel")
kmplot.s <- ‘class<-‘(c(kmplot, kernel=kernel.sigmoid), "kernel")

# generate predictions using different kernel functions
kmdat.plot$hl <- predict(kmplot.l, kmdat.plot)
kmdat.plot$hp <- predict(kmplot.p, kmdat.plot)
kmdat.plot$hr <- predict(kmplot.r, kmdat.plot)
kmdat.plot$hs <- predict(kmplot.s, kmdat.plot)

# plot prediction surfaces
wf.kl <- wireframe(hl̃a1+a2, kmdat.plot, col="grey50", zoom=0.8)
wf.kp <- wireframe(hp̃a1+a2, kmdat.plot, col="grey50", zoom=0.8)
wf.kr <- wireframe(hr̃a1+a2, kmdat.plot, col="grey50", zoom=0.8)
wf.ks <- wireframe(hs̃a1+a2, kmdat.plot, col="grey50", zoom=0.8)

print(wf.kl, split=c(1, 1, 2, 2), more=TRUE)
print(wf.kp, split=c(2, 1, 2, 2), more=TRUE)
print(wf.kr, split=c(1, 2, 2, 2), more=TRUE)
print(wf.ks, split=c(2, 2, 2, 2))

16.7 Kernel-based algorithms

Arbitrary linear modeling algorithms that use data within dot products only for both model
creation and prediction can be combined with kernel methods. This section demonstrates this
more specifically for the support vector machines and support vector regression algorithms.

16.7.1 Kernel-based SVM

The dual form soft-margin version of the quadratic programming problem of support vector
machines parameter estimation from Section 16.2.4 can be restated as follows:

maximize
−1

2

∑
x1∈T

∑
x2∈T

c−(x1)c−(x2)𝛼x1
𝛼x2

K(x1, x2) +
∑
x∈T

𝛼x (16.82)

subject to ∑
x∈T

c−(x)𝛼x = 0 (16.83)

(∀x ∈ T) 0 ≤ 𝛼x ≤ Γ (16.84)

This simply replaces the a1∶n(x1) ⚬ a1∶n(x2) dot product used in the plain linear version of the
algorithm with K(x1, x2), which effectively transforms the problem to a new representation.
As in the linear case, a solution can be found using general-purpose quadratic programming
solvers or more efficient dedicated algorithms.
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Example 16.7.1 The following R code defines the svm.kernel function for kernel-based
soft-margin SVM model creation. It is basically a slightly modified version of the
svm.linear function from Example 16.2.5. The kernel and kernel.args arguments
specify the kernel function and its parameters. The same quadratic programming solvers,
solve.QP or ipop, are employed, and their arguments are prepared in the same way as
before. The only modification is that the kernel matrix replaces the dot product matrix and the
resulting model is represented by Lagrange multipliers (providing the model’s coefficients)
and support vectors (providing the model’s attribute value matrix). Unlike in the linear
case, primal form model parameters are not calculated. The predict.svm.kernel for
kernel-based SVM prediction is also defined, which simply applies the unit step function
ustep to the output of the predict.kernel function from the previous example.
The demonstrations use the previously defined kernel functions with very roughly tuned
parameters that may not actually provide the best possible results. All of them are applied to
the artificial data and two – the linear and radial kernel functions – to the real Pima Indians
Diabetes data. For the linear kernel the results can be verified to be the same as delivered

Ex. 7.2.1
dmr.claseval

by the svm.linear function (but with a different, kernel-based model repre-
sentation employed). The predictions are evaluated using the err function for
misclassification error calculation.

## kernel-based soft-margin SVM parameter estimation using quadratic programming
## solvers: "solve.QP" or "ipop"
svm.kernel <- function(formula, data, kernel=kernel.linear, kernel.args=NULL,

cost=1, svthres=1e-3, solver="solve.QP")
{
class <- y.var(formula)
attributes <- x.vars(formula, data)
aind <- names(data) %in% attributes

cvec <- 2*as.num0(data[[class]])-1 # class vector using {-1, 1} labels
ccmat <- outer(cvec, cvec) # class-class product matrix
amat <- as.matrix(data[,aind]) # attribute value matrix
kmat <- do.call(kernel, c(list(amat), kernel.args)) # kernel matrix

if (solver=="solve.QP")
args <- list(Dmat=nearPD(kmat*ccmat)$mat,

dvec=rep(1, nrow(data)),
Amat=matrix(c(cvec, diag(1, nrow(data)), diag(-1, nrow(data))),

nrow=nrow(data)),
bvec=c(0, rep(0, nrow(data)), rep(-cost, nrow(data))),
meq=1)

else if (solver=="ipop")
args <- list(c=rep(-1, nrow(data)),

H=kmat*ccmat,
A=cvec,
b=0,
l=rep(0, nrow(data)),
u=rep(cost, nrow(data)),
r=0)

else
stop("Unknown solver: ", solver)

qp <- do.call(solver, args)
alpha <- if (solver=="solve.QP") qp$solution else if (solver=="ipop") qp@primal
sv <- which(alpha>svthres)
model <- list(coef=cvec[sv]*alpha[sv], mat=amat[sv,,drop=FALSE],

kernel=kernel, kernel.args=kernel.args, formula=formula)
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i <- which.min(abs(alpha-cost/2))
’class<-’(c(model, intercept=cvec[i]-

unname(predict.kernel(c(model, intercept=0),
data[i,aind,drop=FALSE]))),

"svm.kernel")
}

## kernel-based SVM prediction
predict.svm.kernel <- function(model, data)
{
ustep(predict.kernel(model, data))

}

# kernel-based SVM for the artificial data
svm.kl <- svm.kernel(c̃a1+a2+a3+a4, kmdat.train)
svm.kp <- svm.kernel(c̃a1+a2+a3+a4, kmdat.train,

kernel=kernel.polynomial, kernel.args=list(p=2, b=1))
svm.kr <- svm.kernel(c̃a1+a2+a3+a4, kmdat.train,

kernel=kernel.radial, kernel.args=list(gamma=0.5))
svm.ks <- svm.kernel(c̃a1+a2+a3+a4, kmdat.train,

kernel=kernel.sigmoid, kernel.args=list(gamma=0.04,b=-0.8))

# kernel-based SVM for the Pima Indians Diabetes
pid.svm.kl <- svm.kernel(diabetes̃., pid.std.train)
pid.svm.kr <- svm.kernel(diabetes̃., pid.std.train,

kernel=kernel.radial, kernel.args=list(gamma=0.1))

# training set misclassification error
err(predict(svm.kl, kmdat.train), kmdat.train$c)
err(predict(svm.kp, kmdat.train), kmdat.train$c)
err(predict(svm.kr, kmdat.train), kmdat.train$c)
err(predict(svm.ks, kmdat.train), kmdat.train$c)

err(factor(predict(pid.svm.kl, pid.std.train[,-9]),
levels=0:1, labels=levels(pid.std.train$diabetes)),

pid.std.train$diabetes)
err(factor(predict(pid.svm.kr, pid.std.train[,-9]),

levels=0:1, labels=levels(pid.std.train$diabetes)),
pid.std.train$diabetes)

# test set misclassification error
err(predict(svm.kl, kmdat.test), kmdat.test$c)
err(predict(svm.kp, kmdat.test), kmdat.test$c)
err(predict(svm.kr, kmdat.test), kmdat.test$c)
err(predict(svm.ks, kmdat.test), kmdat.test$c)

err(factor(predict(pid.svm.kl, pid.std.test[,-9]),
levels=0:1, labels=levels(pid.std.train$diabetes)),

pid.test$diabetes)
err(factor(predict(pid.svm.kr, pid.std.test[,-9]),

levels=0:1, labels=levels(pid.std.train$diabetes)),
pid.test$diabetes)

It can be observed that nonlinear kernels may, but always have to improve predictive per-
formance for linearly inseparable data. For the artificial data the polynomial kernel works
best, which should not be surprising given the quadratic function used for data generation.
The radial kernel achieves a low training set error, but appears to suffer from overfitting. The
latter can also be observed for the Pima Indians Diabetes data.
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16.7.2 Kernel-based SVR

Applying the kernel trick to the support vector regression algorithm results in the following
quadratic programming problem formulation:

minimize

1
2

∑
x1∈T

∑
x2∈T

(𝛼x1
− 𝛼∗x1

)(𝛼x2
− 𝛼∗x2

)K(x1, x2)

+ 𝜖
∑
x∈T

(𝛼x + 𝛼∗x ) −
∑
x∈T

f (x)(𝛼x − 𝛼∗x )
(16.85)

subject to ∑
x∈T

(𝛼x − 𝛼∗x ) = 0 (16.86)

(∀x ∈ T) 0 ≤ 𝛼x ≤ Γ (16.87)

(∀x ∈ T) 0 ≤ 𝛼
∗
x ≤ Γ (16.88)

This is directly based on the original linear SVR dual form from Section 16.3.3, with kernel
function values used instead of dot products.

Example 16.7.2 Kernel-based support vector regression is implemented and demonstrated by
the R code presented below. The svr.kernel function is a straightforward modification
of the svr.linear function, using the kernel matrix instead of the dot product matrix and
returning a kernel-based model representation. All the four kernel types from Example 16.5.1
are applied to the artificial data and two of them – the linear and radial kernel functions – to
the real Boston Housing data. Kernel function parameters are only very roughly tuned and
may not lead to the best possible results.

## kernel-based SVR parameter estimation using quadratic programming
## solvers: "solve.QP" or "ipop"
svr.kernel <- function(formula, data, eps=0.01,

kernel=kernel.linear, kernel.args=NULL,
cost=1, svthres=1e-3, solver="solve.QP")

{
f <- y.var(formula)
attributes <- x.vars(formula, data)
aind <- names(data) %in% attributes

fvec <- data[[f]] # target function vector
amat <- as.matrix(data[,aind]) # attribute value matrix
kmat <- do.call(kernel, c(list(amat), kernel.args)) # kernel matrix

if (solver=="solve.QP")
args <- list(Dmat=nearPD(rbind(cbind(kmat, -kmat), cbind(-kmat, kmat)))$mat,

dvec=c(fvec-eps, -fvec-eps),
Amat=matrix(c(rep(1, nrow(data)), rep(-1, nrow(data)),

diag(1, 2*nrow(data)), diag(-1, 2*nrow(data))),
nrow=2*nrow(data)),
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bvec=c(0, rep(0, 2*nrow(data)), rep(-cost, 2*nrow(data))),
meq=1)

else if (solver=="ipop")
args <- list(c=c(-fvec+eps, fvec+eps),

H=rbind(cbind(kmat, -kmat), cbind(-kmat, kmat)),
A=c(rep(1, nrow(data)), rep(-1, nrow(data))),
b=0,
l=rep(0, 2*nrow(data)),
u=rep(cost, 2*nrow(data)),
r=0)

else
stop("Unknown solver: ", solver)

qp <- do.call(solver, args)
alpha <- if (solver=="solve.QP") qp$solution else if (solver=="ipop") qp@primal
beta <- alpha[1:nrow(data)]-alpha[(nrow(data)+1):(2*nrow(data))]
sv <- which(abs(beta)>svthres)
model <- list(coef=beta[sv], mat=amat[sv,,drop=FALSE],

kernel=kernel, kernel.args=kernel.args, formula=formula)
i <- which.min(abs(beta-cost/2))
‘class<-‘(c(model,

intercept=fvec[i]-unname(predict.kernel(c(model, intercept=0),
data[i,aind,drop=FALSE]))-

sign(beta[i])*eps),
"svr.kernel")

}

## kernel-based SVR prediction
predict.svr.kernel <- predict.kernel

# kernel-based SVR for f
svrf.kl <- svr.kernel(f̃a1+a2+a3+a4, kmdat.train)
svrf.kp <- svr.kernel(f̃a1+a2+a3+a4, kmdat.train,

kernel=kernel.polynomial, kernel.args=list(p=2, b=1))
svrf.kr <- svr.kernel(f̃a1+a2+a3+a4, kmdat.train,

kernel=kernel.radial, kernel.args=list(gamma=0.02))
svrf.ks <- svr.kernel(f̃a1+a2+a3+a4, kmdat.train,

kernel=kernel.sigmoid, kernel.args=list(gamma=0.2, b=0))

# kernel-based SVR for g
svrg.kl <- svr.kernel(g̃a1+a2+a3+a4, kmdat.train)
svrg.kp <- svr.kernel(g̃a1+a2+a3+a4, kmdat.train,

kernel=kernel.polynomial, kernel.args=list(p=2, b=1))
svrg.kr <- svr.kernel(g̃a1+a2+a3+a4, kmdat.train,

kernel=kernel.radial, kernel.args=list(gamma=0.1))
svrg.ks <- svr.kernel(g̃a1+a2+a3+a4, kmdat.train,

kernel=kernel.sigmoid, kernel.args=list(gamma=0.02, b=-1))

# kernel-based SVR for the Boston Housing data
bh.svr.kl <- svr.kernel(medṽ., bh.std.train)
bh.svr.kr <- svr.kernel(medṽ., bh.std.train,

kernel=kernel.radial, kernel.args=list(gamma=0.1))

# training set MSE
mse(predict(svrf.kl, kmdat.train), kmdat.train$f)
mse(predict(svrf.kp, kmdat.train), kmdat.train$f)
mse(predict(svrf.kr, kmdat.train), kmdat.train$f)
mse(predict(svrf.ks, kmdat.train), kmdat.train$f)

mse(predict(svrg.kl, kmdat.train), kmdat.train$g)
mse(predict(svrg.kp, kmdat.train), kmdat.train$g)
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mse(predict(svrg.kr, kmdat.train), kmdat.train$g)
mse(predict(svrg.ks, kmdat.train), kmdat.train$g)

mse(predict(bh.svr.kl, bh.std.train[,-13]), bh.std.train$medv)
mse(predict(bh.svr.kr, bh.std.train[,-13]), bh.std.train$medv)

# test set MSE
mse(predict(svrf.kl, kmdat.test), kmdat.test$f)
mse(predict(svrf.kp, kmdat.test), kmdat.test$f)
mse(predict(svrf.kr, kmdat.test), kmdat.test$f)
mse(predict(svrf.ks, kmdat.test), kmdat.test$f)

mse(predict(svrg.kl, kmdat.test), kmdat.test$g)
mse(predict(svrg.kp, kmdat.test), kmdat.test$g)
mse(predict(svrg.kr, kmdat.test), kmdat.test$g)
mse(predict(svrg.ks, kmdat.test), kmdat.test$g)

mse(predict(bh.svr.kl, bh.std.test[,-13]), bh.std.test$medv)
mse(predict(bh.svr.kr, bh.std.test[,-13]), bh.std.test$medv)

As in the previous example, the polynomial kernel delivers by far the most accurate predic-
tions for the nonlinear target function g, which is to be expected given the quadratic function
used for data generation. Not surprisingly, it also works well for the linear target function f,
with which other nonlinear kernels appear to have problems. For the Boston Housing data the
radial kernel function does not appear to give any improvement.

16.8 Conclusion

Kernel methods constitute an elegant, convenient, and computationally efficient approach to
using enhanced representation with linear regression and linear classification algorithms that
restrict data usage during model creation and prediction to dot products only. The kernel trick
makes it possible to use dot products in high-dimensional spaces of nonlinearly transformed
attributes without increased computational effort. A few standard kernel function families are
sufficient for most practical needs. Determining the right kernel family and parameters for
a particular task may require extensive tuning, though, as no universally good defaults are
available. Without sufficiently careful experimental adjustments the predictive potential of
this approach may remain waisted and lead to poor results. Domain knowledge, if available,
may help narrow down the scope of such experiments, but not replace them entirely.

The most popular and successful kernel-based algorithms – support vector machines and
support vector regression – have much more to offer than the implicit representation enhance-
ment. Separating margin maximization by the former, hypersurface flatness maximization by
the latter, and relaxing the training error-minimization requirement by both, makes them less
prone to overfitting. These advantages often outweigh the inconvenience and effort associated
with properly tuning the cost parameter.

The kernel-based SVM and SVR algorithms belong to the most useful, but not the easiest
to used modeling algorithms. The underlying optimization problem may be computationally
demanding for large data, and the obtained model representation can be hardly considered
comprehensible – not even comparing to symbolic decision or regression tree representations,
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but also to plain linear representations. Judging their utility for particular applications requires
balancing their potential prediction quality capabilities and these disadvantages.

16.9 Further readings

The family of kernel-based learning algorithms made an impressive entrance on the machine
learning and data mining stage in the 1990s, attracting strong research interest and rapidly
gaining popularity. Their development and spreading out coincided, by the way, with that
of model ensembles are presented in Chapter 15. The level of excitement that surrounded
support vector machines and related algorithms at the turn of the 2000s may be even compared
to the renaissance of interest in neural networks a decade earlier, after the backpropagation
algorithm was re-invented and became widely known (Rumelhart et al. 1986). They now
keep a solid position of well theoretically grounded and practically successful modeling
algorithms and, as such, are presented by contemporary machine learning and data mining
books (Bishop 2007; Han et al. 2011; Hastie et al. 2011; James et al. 2013; Tan et al. 2013;
Theodoridis and Koutroumbas 2008; Witten et al. 2011). There is also a number of dedicated
books on support vector algorithms and kernel methods (Cristianini and Shawe-Taylor 2000;
Hamel 2009; Herbrich 2001; Schölkopf and Smola 2001). Of those, the last one offers a
noteworthy combination of thoroughness and accessibility which makes it, along with its R
code examples, a particularly good text for self-study. An insightful tutorial article by Burges
(1998) can also be very helpful.

The idea of maximum-margin separating hyperplanes which is at the heart of support vec-
tor machines is due to Vapnik (1982). The first hard-margin version of the SVM algorithm was
described by Boser et al. (1992), who presented both the primal and dual form of the underly-
ing quadratic programming problem. Kernel-based soft-margin SVM, which remains the most
widely used member of the support vector family of algorithms, was presented by Cortes and
Vapnik (1995). Platt (1998) introduced a dedicated sequential minimal optimization (SMO)
algorithm for SVM parameter estimation, substantially more efficient than general-purpose
quadratic programming solvers.

The SVR algorithm, as described in this chapter, was presented by Drucker et al. (1996).
This version of support vector regression, known as 𝜖-SVR, was subsequently enhanced by
Schölkopf et al. (2000), whose 𝜈-SVR algorithm automatically finds a possibly minimum
value of the tolerance threshold 𝜖. An alternative approach of adapting the idea of support
vectors to the regression task, called least-squares SVM, was proposed by Suykens and Van-
dewalle (1999).

Support vector machine classifiers are usually applied to multiclass tasks using the
general-purpose multiclass encoding approach presented in Chapter 17. The success of SVM
has actually provided a substantial part of motivation for the research on such encoding
techniques (Allwein et al. 2000). Other noteworthy approaches to multiclass classification
using SVM include the directed acyclic graph technique of Platt et al. (1999) for combining
two-class models created for every pair of classes and the multiclass quadratic optimization
method of Crammer and Singer (2001). Platt (2000) showed how a logit link function can
be applied to support vector machines predictions to transform them into calibrated class
probability predictions. Several other enhancements and variations of support vector and
kernel-based modeling are presented in research articles collections (Schölkopf et al. 1998;
Smola et al. 2000). Meyer et al. (2003) systematically compared the predictive performance
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of radial kernel-based support vector models with that achieved by several other classification
and regression models, created using algorihms available in R.

Support vector machines took over some part of interest earlier devoted to neural net-
works, and in particular multilayer nonlinear perceptrons (Hertz et al. 1991). While both
these types of algorithms have proved useful in numerous applications and may deliver excel-
lent results when used skillfully, the latter may suffer from local optima and do not have a
similarly solid theory. Links between these two families of algorithms were highlighted by
Collobert and Bengio (2004). In this context it is also worthwhile to mention the work of
Freund and Schapire (1999), who presented an extension to the linear perceptron algorithm
for approximate margin maximization, which is easier to implement and more efficient than
parameter estimation via quadratic optimization, although does not quite match the predictive
performance of SVM.
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17

Attribute transformation

17.1 Introduction

Attribute transformation alters the data by replacing a selected attribute by one or more new
attributes, functionally dependent on the original one, to facilitate further analysis. This is
typically performed prior to creating classification, regression, or clustering models to bypass
some limitations of the modeling algorithms used or improve model quality. The latter is pos-
sible, since – like attribute selection covered in Chapter 19 – attribute transformation modifies
the space of models being searched by changing the representation of instances and may make
good models more likely or easier to find. This chapter presents the description and examples
illustrating the most commonly used attribute transformations.

Example 17.1.1 Attribute transformation algorithms presented in this chapter will be

Ex. 1.3.2
dmr.data

illustrated by R code examples, containing simple implementations and usage
demonstrations thereof. The latter will be using the toy weatherc data, as well as
the more realistic Vehicle Silhouettes and Glass datasets from the mlbench pack-
age. The effects of some transformations will be illustrated by creating classification models
based on the original and transformed datasets. The dmr.claseval and dmr.util pack-
ages will be used to evaluate prediction quality and provide auxiliary utility functions. The
popular R implementations of the decision tree and naïve Bayes algorithms, provided by
the rpart and e1071 packages, will be used for this purpose. The following R code sets
up the environment for this chapter’s demonstrations by loading the packages and datasets,
partitioning the larger two of those into training and tests subsets for simple hold-out model
evaluation, and creating baseline models (using the original, untransformed dataset versions).

library(dmr.claseval)
library(dmr.util)

library(rpart)
library(e1071)

Data Mining Algorithms: Explained Using R, First Edition. Paweł Cichosz.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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data(weatherc, package="dmr.data")
data(Vehicle, package="mlbench")
data(Glass, package="mlbench")

set.seed(12)

rv <- runif(nrow(Vehicle))
v.train <- Vehicle[rv>=0.33,]
v.test <- Vehicle[rv<0.33,]

rg <- runif(nrow(Glass))
g.train <- Glass[rg>=0.33,]
g.test <- Glass[rg<0.33,]

# baseline models and their prediction
v.tree <- rpart(Class̃., v.train)
v.tree.pred <- predict(v.tree, v.test, type="c")

g.tree <- rpart(Typẽ., g.train)
g.tree.pred <- predict(g.tree, g.test, type="c")

v.nb <- naiveBayes(Class̃., v.train)
v.nb.pred <- predict(v.nb, v.test, type="c")

g.nb <- naiveBayes(Typẽ., g.train)
g.nb.pred <- predict(g.nb, g.test, type="c")

17.2 Attribute transformation task

Since attribute transformation serves as a form of preprocessing for inductive learning tasks,
it can be most naturally defined using the context provided by their definitions presented in
Section 1.2. In particular, we will assume the same view of the data as a set of instances from
a domain, described by a number of attributes.

17.2.1 Target task

The data mining task for which attribute transformation is to be performed is the target task.
It is usually one of the three major inductive learning tasks, classification, regression, or clus-
tering. If attribute transformation is used prior to another form of data preprocessing, such
as attribute selection, they share the same target task, which is the ultimate modeling task to
be addressed after they are all completed. Sometimes the same attribute transformation may
be used to preprocess data subsequently used to perform multiple tasks, independently or in
combination, e.g., classification for one (discrete) attribute and regression for another (con-
tinuous) attribute, or clustering and then classification or regression within clusters. In such
cases we can speak of several target tasks for the same attribute transformation task.

While specific attribute transformations tend to be more useful and frequently applied
for certain target tasks than for others, the actual transformation techniques described in this
chapter are task independent. Discussing target tasks may only be needed to explain their
typical application context or justify their utility, but not to present their computational details.
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17.2.2 Target attribute

If the target task is the classification or regression task, a target attribute is also specified. It
is completely irrelevant for most simple attribute transformations, though.

17.2.3 Transformed attribute

While it is possible for practical implementations of attribute transformation to be applied
to multiple attributes in a dataset at the same time rather than sequentially one by one, for
conceptual clarity we can consider transforming a single attribute as a single instance of the
attribute transformation task. Transforming multiple attributes can be then viewed as multiple
instances of the task. This does not necessarily match the way some more refined transforma-
tion algorithms actually work, since they may exploit inter-attribute relationships or transform
one attribute within the context provided by other transformed attributes to better preserve
their predictive utility. This is the case, in particular, for certain linear algebra-based transfor-
mations that map a set of original attributes into a set of new attributes in such a way that each
new attribute depends on multiple (possibly all) original attributes. For the simple techniques
described in this chapter, the assumption of each attribute being transformed independently
holds perfectly, though.

17.2.4 Training set

The target task’s training set is usually the dataset on which attribute transformation is per-
formed, and can therefore be considered the training set for attribute transformation as well.
A smaller subset thereof or an independent sample from a larger available dataset can be used
as well.

As explained when discussing model evaluation caveats in Section 7.3.2, appropriately
separating the data used in the modeling process from that used to subsequently evaluate
models is crucial for avoiding the effect of evaluation overfitting, i.e., arriving at unreliably
optimistic model performance estimates. It has to be underlined that whenever attribute trans-
formation becomes a part of the modeling process, the attribute transformation training set
becomes a part of the data that impacts the finally obtained model, even if it is entirely
separate from the training set passed to the subsequently applied modeling algorithm. It is
therefore important to strictly separate the data used for attribute transformation from that
subsequently used for the evaluation of models created when performing the target task after
attribute transformation. More precisely, this is the case for modeling transformations, as
explained below.

17.2.5 Modeling transformations

Attribute transformation is often viewed as a simple operation that, once applied to the avail-
able dataset, can be completely ignored thereafter, with all subsequent analytical processing
performed on the transformed data. This is not exactly correct if attribute transformation is
performed not on a per-instance basis, but based on the whole dataset to be transformed, and
is a part of a modeling process in which one or more predictive models need to be created
and evaluated. The latter is actually quite often the case. In such situations one has to take
care of properly transforming not only the training set, but also any other datasets to which
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the models may be subsequently applied (including, in particular, data subsets used for model
evaluation). Two apparently natural and reasonable approaches:

All-data transformation. Apply attribute transformation to the combined dataset, including
the training set and any other available datasets from the same domain that might be
subsequently used for any purpose.

Separate transformation. Apply attribute transformation separately to the training set and
each of the other available datasets from the same domain before using any of them for
any purpose,

may be applicable in some specific circumstances, but in general they are both severely flawed.
The all-data approach has two obvious downsides:

• performing attribute transformation on the whole available dataset makes the model
creation process potentially benefit from indirectly having access to all that data (since
attribute transformation may cause some characteristics of the whole dataset, used to
determine the exact way of transforming attributes, to have impact on their transformed
values in the training set), which makes it impossible to evaluate it reliably,

• the ultimate purpose of any predictive models is to be applied to new data that were not
available at the time of their creation, which makes all-data transformation completely
pointless.

The separate transformation approach yields other problems:

• transforming data to which a model is to be applied separately from the data used for
its creation may degrade its performance due to data inconsistencies,

• datasets to which a model is to be applied may be arbitrarily small, including even
single instances, for which several attribute transformations are either not applicable or
unreliable.

What makes therefore most sense, even if it is surprisingly unpopular, is to consider
attribute transformation as a simple degenerate form of modeling, which creates a transfor-
mation model from the training set and makes it applicable to any dataset from the same
domain. Attribute transformations following this approach will be referred to as modeling
transformations. The exact representation of such transformation models depends on the par-
ticular transformation and will be discussed in the corresponding subsections. According to
this approach, and contrary to many popular views, replacing the original attribute with a
newly created transformed attribute cannot be simply reduced to replacing the original values
with new values in the training set. What attribute transformation should produce is not (or,
at least, not just) a modified copy of the data, but the definition of a new attribute that can be
subsequently applied to transform any dataset from the same domain from which the training
set originated.

The modeling view of attribute transformation makes it clear how to apply predictive mod-
els obtained based on transformed training sets. Whenever a model is created after attribute
transformation, it has to be considered tied to the transformation model that was applied to
the training set beforehands. It is the very same transformation model that needs to be subse-
quently applied to any datasets for which the model would be used to predict.
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Example 17.2.1 The R code presented below defines the transmod.all function to gener-
ate a wrapper around a single-attribute modeling transformation that applies it to all attributes
specified by the provided formula. The transformation specified via the transm argument
is a function that receives the vector of values of a single attribute for a dataset and returns
the transformation model created therefrom. The optional condf argument specifies a trans-
formation condition – a function that must return TRUE for an attribute value vector to be

dmr.util
transformed. The x.vars function is used to extract attribute names from an R
formula. The predict.transmod function can be similarly used to generate
a multiattribute transformation model application wrapper around a single-attribute transfor-
mation application function. The wrapper calls the latter for all attributes for which there is a
corresponding component in the transformation model.

The transmod.all function is used to generate an all-attribute wrapper around a sim-
ple centering (mean subtraction) transformation, subsequently applied to the weatherc data.
The obtained transformation model is then applied using the predict.transmod function
to generate the transformed version of the same dataset.

## wrap single-attribute modeling transformation transm
## so that it is applied to all attributes for which condf returns TRUE
transmod.all <- function(transm, condf=function(v) TRUE)
{
function(formula, data, ...)
{
attributes <- x.vars(formula, data)
sapply(attributes,

function(a) if (condf(data[[a]])) transm(data[[a]], ...),
simplify=FALSE)

}
}

## apply transformation model to a dataset
predict.transmod <- function(pred.transm)
{
function(model, data, ...)
{
as.data.frame(sapply(names(data),

function(a)
if (a %in% names(model) && !is.null(model[[a]]))
pred.transm(model[[a]], data[[a]], ...)

else data[[a]],
simplify=FALSE))

}
}

# simple centering (mean subtraction) transformation
center.m <- transmod.all(mean, is.numeric)
# performed on the weatherc data

w.cm <- center.m(plaỹ., weatherc)
# applied to the weatherc data

predict.center.m <- predict.transmod(function(m, v) v-m)
predict.center.m(w.cm, weatherc)
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17.2.6 Nonmodeling transformations

The above discussion applies to many, but not all commonly used attribute transformations.
Those that operate on a per-instance basis may be applied to any datasets (including
single instances), either combined or separately, with the very same effect. It makes no sense
therefore to consider them models. We will refer to them as to nonmodeling transformations.
For any instance, its transformed attribute values depend only on the value of the original
attribute for the same instance.

Example 17.2.2 The following R code defines the transnonmod.all function to generate
a wrapper around any specified nonmodeling transformation that applies it to all attributes in
a dataset. The transformation specified via the transnm takes a vector of a single attribute’s
values and returnes the transformed version thereof, represented by one or more value vec-
tors. The optionalcondf argument specifies a transformation condition – a function that must
return TRUE for an attribute value vector to be transformed. The transnonmod.all func-
tion is used to generate all-attribute wrappers around two simple transformations of continuous
attributes: centering (this time treated as a nonmodeling transformation) and integer division
by 10. The latter yields two new attributes, representing the quotient and the remainder. They
are both subsequently applied to the weatherc data.

transnonmod.all <- function(transnm, condf=function(v) TRUE)
{
function(formula, data, ...)
{
attributes <- x.vars(formula, data)
as.data.frame(sapply(names(data),

function(a)
if (a %in% attributes && condf(data[[a]]))
transnm(data[[a]], ...)

else data[[a]],
simplify=FALSE))

}
}

# simple centering (mean subtraction) transformation
center.nm <- transnonmod.all(function(v) v-mean(v), is.numeric)
# performed on the weatherc data

center.nm(plaỹ., weatherc)

# simple round to a multiple of 10 transformation
divmod10 <- transnonmod.all(function(v) cbind(v %/% 10, v %% 10), is.numeric)
# performed on the weatherc data

divmod10(plaỹ., weatherc)

Not surprisingly, the first transformed dataset is the same as obtained in the previous
example. Note, however, that while the latter was obtained by applying the previously cre-
ated transformation model (which could also be applied to any other instances from the same
domain), the one presented here was obtained without a model. Integer division is actually a
better example of nonmodeling transformations, though, since the transformed attribute values
for each instance do not indeed depend on any other instances.
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17.3 Simple transformations

The most commonly used modeling and nonmodeling attribute transformations perform sim-
ple arithmetic or logical operations, needed to adjust the data to the requirements or capabil-
ities of some classification, regression, or clustering algorithms. This section reviews those
that are particularly popular and routinely applied.

17.3.1 Standardization

Standardization is used to compensate for differences in continuous attribute distributions that
could mislead some modeling algorithms. This applies, in particular, to dissimilarity-based
clustering algorithms, presented in Chapters 12 and 13. They all rely on instance dissimilarity
measures, such as described in Chapter 11. Many of those may be misled by substantial differ-
ences in attribute ranges and distributions. Standardization may help by making all attributes
have the same mean of 0 and standard deviation of 1, which is accomplished by replacing
each continuous attribute a by a new attribute a′ defined as follows:

a′(x) =
a(x) − mT (a)

sT (a)
(17.1)

where mT (a) and sT(a) are the mean and standard deviation of the original attribute, respec-
tively, on the training set T .

Notice that using training set statistics to calculate new attribute values makes standard-
ization a modeling transformation. The transformation model determined using the training
set, represented by the mean and standard deviation values, can then be applied to an arbitrary
new dataset from the same domain. However, it is not entirely uncommon to see standardiza-
tion being performed in a – severely flawed – nonmodeling way, either on the complete data
or separately on particular data subsets.

Example 17.3.1 The following R code uses thetransmod.all andpredict.transmod
wrapper generators from Example 17.2.1 to implement standardization as a modeling trans-
formation. The resulting std.all and predict.std functions, for transformation model
creation and application, are then used to standardize all continuous attributes in the weatherc
and Glass datasets. For the latter, the standardization model created on the training set is
applied to both the training and test set.

## single-attribute standardization transformation
std <- function(v)
{
list(mean=mean(v, na.rm=TRUE), sd=sd(v, na.rm=TRUE))

}

## standardization of all continuous attributes
std.all <- transmod.all(std, is.numeric)

## standardization model prediction
predict.std <- predict.transmod(function(m, v) (v-m$mean)/m$sd)

# standardization model for the weatherc data
w.stdm <- std.all(plaỹ., weatherc)
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# applied to the weatherc data
w.std <- predict.std(w.stdm, weatherc)

# standardization model for the Glass data
g.stdm <- std.all(Typẽ., g.train)

# applied to the training and test sets
g.train.std <- predict.std(g.stdm, g.train)
g.test.std <- predict.std(g.stdm, g.test)

17.3.2 Normalization

While standardization unifies the distributions of continuous attributes, normalization uni-
fies their ranges. It is similarly motivated and has a similar scope of applications. Being less
popular than standardization, it may be preferred in some situations. It forces all continuous
attributes to have the same range, usually [0, 1] or [−1, 1], by appropriate scaling. Assuming
the former, the new attribute replacing attribute a is defined as

a′(x) =
a(x) − minx′∈Ta(x)

maxx′∈T a(x) − minx′∈T a(x)
(17.2)

This view of normalization as attribute scaling is the most common in data mining, but the
term “normalization” tends to be used with other meanings as well, particularly in statistics.

Similarly to standardization, normalization is clearly a modeling transformation (even
if not always used as such in practice), as it requires training set minimum and maximum
attribute values. When applied to new data, they may yield some transformed values out of
the [0, 1] interval, if the original values fall beyond the range observed on the training data,
but this is usually acceptable. For obvious reasons, normalization is extremely sensitive in
outliers and should be always used with particular care.

Example 17.3.2 Strictly following the pattern of the previous example, the R code presented
below implements and demonstrates continuous attribute normalization.

## single-attribute normalization transformation
nrm <- function(v)
{
list(min=min(v, na.rm=TRUE), max=max(v, na.rm=TRUE))

}

## normalization of all continuous attributes
nrm.all <- transmod.all(nrm, is.numeric)

## standardization model prediction
predict.nrm <- predict.transmod(function(m, v) (v-m$min)/(m$max-m$min))

# normalization model for the weatherc data
w.nrmm <- nrm.all(plaỹ., weatherc)

# applied to the weatherc data
w.nrm <- predict.nrm(w.nrmm, weatherc)

# normalization model for the Glass data
g.nrmm <- nrm.all(Typẽ., g.train)
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# applied to the training and test sets
g.train.nrm <- predict.nrm(g.nrmm, g.train)
g.test.nrm <- predict.nrm(g.nrmm, g.test)

17.3.3 Aggregation

A large number of discrete attribute values may be problematic for some implementations of
modeling algorithms, such as decision trees or the naïve Bayes classifier, increasing the com-
putation time at best or sometimes making them refuse to work altogether. The former is due
to the obvious dependence of their computational expense on the number of attribute values
and the latter may be due to the limited capacity of some adopted internal data structures.
Even if a model can be created in acceptable time, its comprehensibility may be considerably
reduced. This provides motivation for discrete attribute value aggregation.

In principle, aggregation can be addressed using quite refined algorithms, similar to those
used for discretizing continuous attributes, extensively discussed in Chapter 18. It is much
more common and often sufficient to stick with a much simpler approach of just combining
a number of the least frequently occurring values. It may be unobvious at first, but even in
this basic form this should be viewed again a modeling transformation, with the training set
used to obtain attribute value frequencies and decide which values will be retained and which
combined.

Example 17.3.3 A simple frequency-based version of discrete attribute aggregation is imple-
mented as a modeling transformation by the R code presented below. The single-attribute
aggregation function agg creates an aggregation model containing the list of the specified
number of the most frequent original values to retain and the new value to replace the remain-
ing original values. Multiattribute functions for aggregation model creation and application
are then generated using the transmod.all and predict.transmod functions from
Example 17.2.1 and demonstrated on the weatherc data. Its tiny size does not provide much
opportunities for aggregation, with only the outlook attribute taking more than two values.

## single-attribute aggregation transformation with m most frequent values retained
## and others replaced by comb.val
agg <- function(v, m, comb.val="other")
{
list(retained=names(sort(table(v), decreasing=TRUE))[1:min(m, nlevels(v))],

combined=comb.val)
}

## normalization of all discrete attributes
agg.all <- transmod.all(agg, is.factor)

## aggregation model prediction
predict.agg <- predict.transmod(function(m, v)

factor(ifelse(v %in% m$retained,
as.character(v),
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ifelse(is.na(v), NA, m$combined)),
levels=c(m$retained, m$combined)))

# aggregation model for the weatherc data
w.aggm <- agg.all(plaỹ., weatherc, 1)

# applied to the weatherc data
w.agg <- predict.agg(w.aggm, weatherc)

17.3.4 Imputation

Some modeling algorithms include internal techniques for handling missing attribute values
with a possibly minimal loss of predictive performance. Such techniques were presented for
decision trees in Section 3.7 and for regression trees in Section 9.7. For some other mod-
eling algorithms simply ignoring missing values may be a perfectly acceptable solution, as
discussed for the naïve Bayes classifier in Section 4.4.4. It is often necessary, however, to take
care of missing values outside a modeling algorithm, to make it possible to create models and
generate predictions using incomplete data. Filtering out incomplete instances from the data
if they are relatively sparse may work for model creation, but is of course unacceptable for
prediction. With a higher rate of missingness all or nearly all instances may be incomplete and
all or nearly all attributes may have missing values, making any simple omitting techniques
useless. This is where the imputation transformation is needed.

Imputation is basically filling in missing values with reasonable guesses. In the simplest
and most common case, this is performed using means or medians for continuous attributes
and modes for discrete attributes. A more refined form of imputation is also possible where a
classification or regression model is created to predict missing values of a particular attribute
based on the available values of other attributes, but its additional complexity does not nec-
essarily always pay off with predictive performance improvement. What is essential, in any
case, is to consider imputation a modeling attribute transformation, with a transformation
model determined using the training set also applicable to any other datasets from the same
domain. In the simplest but most common case of mean, median, or mode imputation, it is
the means, medians, or modes of particular attributes that have to be determined using the
training set and reapplied whenever transforming new data prior to prediction.

Example 17.3.4 The R code presented below provides a simple implementation of missing
value imputation as a modeling transformation. The imputed values are stored in an impu-
tation model that can be then applied to an arbitrary dataset from the same domain. This
is demonstrated using copies of the weatherc and Glass datasets with some attribute values
removed. For the latter the imputation model determined on the training set is applied both to
the training and test sets.

## single-attribute mean/median/mode imputation transformation
imp <- function(v, med=FALSE)
{
if (!is.numeric(v))
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modal(v)
else if (med)
median(v, na.rm=TRUE)

else
mean(v, na.rm=TRUE)

}

## imputation for all attributes
imp.all <- transmod.all(imp)

## imputation model prediction
predict.imp <- predict.transmod(function(m, v) { v[is.na(v)] <- m; v } )

weathercm <- weatherc
weathercm$outlook[c(1, 3)] <- NA
weathercm$temperature[c(2, 4)] <- NA
weathercm$humidity[c(3, 5)] <- NA
weathercm$wind[c(4, 6)] <- NA

gm.train <- g.train
gm.train[sample.int(nrow(gm.train), 0.1*nrow(gm.train)),

sample.int(ncol(gm.train)-1, 3)] <- NA
gm.test <- g.test
gm.test[sample.int(nrow(gm.test), 0.1*nrow(gm.test)),

sample.int(ncol(gm.test)-1, 3)] <- NA

# imputation model for the weatherc data
wm.impm <- imp.all(plaỹ., weathercm, med=TRUE)

# applied to the weatherc data
wm.imp <- predict.imp(wm.impm, weathercm)

# imputation model for the Glass data
gm.impm <- imp.all(Typẽ., gm.train)

# applied to the training and test sets
gm.train.imp <- predict.imp(gm.impm, gm.train)
gm.test.imp <- predict.imp(gm.impm, gm.test)

17.3.5 Binary encoding

Not only the large number of discrete attribute values may cause problems for modeling
algorithms. Some of them are inherently limited to continuous attributes only and cannot
directly process discrete attributes at all. This is the case, in particular, for modeling algo-
rithms using instance dissimilarity measures without discrete attribute handling capability
or using parametric model representation. Specifically, the issue always arises for linear
classification and regression algorithms and also often for dissimilarity-based clustering
algorithms. This is when discrete attributes may have to be transformed to a numerical
representation.

A naïve approach of just numbering discrete values consecutively and using such ordi-
nal numbers as new values may be only acceptable for ordered attributes, which are often
treated as continuous anyway. Otherwise it would introduce an objectively nonexisting and
meaningless ordering into attribute values, likely to mislead the model creation process.
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A much more reasonable approach is based on simple 1-of-k coding. The idea is to
replace a discrete k-valued attribute a ∶ X → {𝑣1, 𝑣2, … , 𝑣k} with k binary attributes
aj ∶ X → {𝑣+, 𝑣−}, defined for j = 1, 2 … , k as

aj(x) =

{
𝑣+ if a(x) = 𝑣j

𝑣− otherwise
(17.3)

where 𝑣+ and 𝑣− are different numbers (typically 1 and 0 or 1 and−1, respectively). These new
attributes can be then treated as continuous for any further calculations. Sometimes this trans-
formation is performed internally by modeling algorithms when processing discrete attributes,
without explicitly creating a transformed dataset copy.

Notice that the number of binary attributes replacing each discrete attributes can be actu-
ally decreased by 1 without reducing the representation power. These binary attributes, defines
as presented above, would correspond to arbitrarily selected k − 1 out of k values of the
original attributes. Whenever all of them take a value of 𝑣−, this indicates that the original
attribute takes the remaining kth value. More precisely, a discrete k-valued attribute a ∶ X →
{𝑣1, 𝑣2, … , 𝑣k}would be replaced with k − 1 binary attributes aj ∶ X → {𝑣+, 𝑣−}, defined for
j = 1, 2 … , k − 1 in the same way as before. The value a(x) = 𝑣j for any j = 1, 2, … , k − 1
is represented by aj(x) = 𝑣+ and aj′ (x) = 𝑣− for j′ ≠ j, and the value a(x) = 𝑣k is represented
by a1(x) = a2(x) = · · · = ak−1(x) = 𝑣−. This modification is usually desirable, since it simpli-
fies the representation and reduces the number of parameters used, which is likely to simplify
the model creation process and reduce the risk of overfitting. In the basic form with as many
binary attributes as discrete attribute values the encoding is redundant.

Unlike the other simple transformations discussed above, binary encoding is a nonmod-
eling transformation, since the transformed attribute values for each instance are determined
based on the original values and the encoding scheme only. The latter is predetermined rather
than derived from data. Binary attributes representing an originally continuous attribute by
1-of-k encoding are referred to as dummy coding or treatment contrasts in statistical termi-
nology and represent a specific instantiation of a more general methodology of introducing
continuous attributes representing discrete attribute values or their combinations to parametric
classification and regression models. The binary attributes introduced by dummy coding are
referred to as dummy variables.

Example 17.3.5 The discrete attribute encoding transformation as described above is imple-
mented and illustrated by the following R code. The discode1 function transforms a single
discrete attribute value by returning a vector of binary values. The discode.a function
applies this transformation to all values of a single attribute in a dataset (a complete dataset
column). The transnonmod.all nonmodeling transformation wrapper generator from
Example 17.2.2 applied to the latter yields the discode function that performs discrete value
encoding for all attributes in a dataset. All these functions accept three optional arguments: b
that specifies the set of binary values to use, red that can be used to request the redundant ver-
sion of the transformation, and na.all that instructs them to encode missing attribute values
as if the attribute took all of its possible values simultaneously rather than return a vector of
missing values. The latter may turn out convenient when dealing with datasets containing
missing values.
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## binary encoding of a single discrete attribute value
discode1 <- function(v, b=c(0,1), red=FALSE, na.all=FALSE)
{
r <- 1-as.integer(red)
if (is.factor(v) && ! (is.na(v) && na.all))
b[1+as.integer(v==levels(v)[1:(nlevels(v)-r)])]

else if (is.factor(v))
rep(b[2], nlevels(v)-r)

else
v

}

## binary encoding of an discrete attribute
discode.a <- function(a, b=c(0,1), red=FALSE, na.all=FALSE)
{
do.call(rbind, lapply(a, discode1, b, red, na.all))

}

## binary encoding of all discrete attributes in a given dataset
discode <- transnonmod.all(discode.a)

# encoding a single attribute value
discode1(weatherc$outlook[1])
discode1(weatherc$outlook[1], red=TRUE)
discode1(factor(NA, levels=levels(weatherc$outlook)))
discode1(factor(NA, levels=levels(weatherc$outlook)), na.all=TRUE)

# encoding single attributes of the weatherc data
discode.a(weatherc$outlook)
discode.a(weatherc$temperature)
discode.a(weatherc$outlook, b=c(-1,1), red=TRUE)
discode.a(weatherc$wind, b=c(-1,1))

# encoding single instances of the weatherc data
discode(̃., weatherc[1,])
discode(̃., weatherc[1,], red=TRUE)

# encoding the complete weatherc data
discode(̃., weatherc)

# leave the target attribute unchanged
discode(plaỹ., weatherc)

17.4 Multiclass encoding

While most popular classification algorithms, such as decision trees and the naïve Bayes clas-
sifier, can handle an arbitrary number of classes (within reasonable practical limits), there
are also algorithms that heavily rely on the assumption of dealing with two-class classifica-
tion tasks only. This is the case, in particular, for linear classification algorithms presented
in Chapter 5, for the highly successful AdaBoost ensemble modeling algorithm presented
in Section 15.5.3, and the increasingly popular SVM algorithm presented in Section 16.2.
There also performance measures, in particular those derived from the confusion matrix and
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the related ROC analysis, presented in Sections 7.2.4 and 7.2.5, specifically designed for
the two-class case only. While many practical classification task instantiations may actu-
ally address binary classification only – with diagnostics and anomaly (in particular, fraud)
detection being the most typical examples – multiclass tasks are also common in data mining
practice. Modeling algorithms and model evaluation techniques designed for the former may
be applied to the latter by means of binary multiclass encoding, based on decomposing the
original multiclass task into a number of two-class tasks.

17.4.1 Encoding and decoding functions

Multiclass encoding is based on the decomposition of the original classification task with
a multiclass target concept into a number of tasks with two-class target concepts. Consider
replacing the concept c ∶ X → C, where |C| > 2, with a set of m concepts c1, c2, … , cm,
ci ∶ X → {0, 1}. This can be represented by a encoding function 𝜅 ∶ C → {0, 1}m that assigns
a binary vector of length m to each class label from C. Then the binary concepts are defined
as follows:

ci(x) = 𝜅(c(x))[i] (17.4)

for i = 1, 2, … ,m, where the square bracket indexing notation is used to refer to binary vector
elements. A separate classification model hi can then be created for each concept ci. For these
models – referred to as binary models thereafter – to be useful, their predictions have to be
combined appropriately, to obtain the original class labels rather that 0/1 vectors. This can be
accomplished using a decoding function 𝜅−1 ∶ {0, 1}m → C, which may be considered the
inverse of the encoding function:

h∗(x) = 𝜅−1(h(x)) (17.5)

where h(x) denotes the vector of binary model predictions h1(x), h2(x), … , hm(x) for
instance x.

In principle, an arbitrary binary code can be adopted for multiclass task decomposition,
including even the simplest natural binary or Grey code, with codeword length equal⌈log2|C|⌉. These can be found not to be particularly well suited to this application, though.
This is because, due to the lack of code redundancy, even the misclassification of an instance
by a single binary model will usually cause the decoded class to be incorrect. Selected codes
that are more appropriate for multiclass task decomposition are presented in the subsequent
sections.

It is worthwhile to explicitly mention one difficulty that may arise during the prediction
decoding process. For most commonly used encoding functions, due to their redundancy, only
a subset of the set of all length-m binary vectors {0, 1}m correspond to class labels from C:

C𝜅 = {𝜅(d) | d ∈ C} ⊂ {0, 1}m (17.6)

which are valid codewords for the encoding function 𝜅. This leaves the inverse function 𝜅−1

undefined for binary vectors outside this subset, which may occur when applying models
h1, h2, … , hm. Special precautions may be required to make sure that predicted class decoding
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is always possible. One possibility is to – explicitly or implicitly – use a dissimilarity measure
over binary strings 𝛿 ∶ {0, 1}m × {0, 1}m →  to identify the least dissimilar valid codeword
to that produced by binary model application:

𝜅
−1(h(x)) = argmin

d∈C
𝛿(h(x), 𝜅(d)) (17.7)

This effectively extends the domain of 𝜅−1 from C𝜅 (the codomain of 𝜅) to {0, 1}m. The 𝜅−1

notation will be used to refer to the decoding function regardless of whether it is strictly the
inverse of the encoding function or an extension thereof.

Multiclass decomposition by using encoding and decoding functions strongly resembles
ensemble modeling discussed in Chapter 15, and may be actually considered a specific form
thereof. Multiple models are created for the same task and then combined. What is specific to
multiclass decomposition are the mechanisms of base model creation and aggregation.

Example 17.4.1 To illustrate the idea of multiclass task decomposition, the following R code
defines the multi.class function which is a wrapper generator. It takes a modeling algo-
rithm and a prediction function on input and returns the list of two functions, for multiclass
model creation and prediction. The former uses the supplied encoding function to generate
multiple binary concepts and calls the modeling algorithm for each of them, to create the cor-
responding model. It returns the list of binary models obtained that way along with the set of
original class labels that will be needed for prediction. The latter applies all the binary models
to the data and then uses the supplied decoding function to generate multiclass predictions
based on their two-class predictions. The encoding function takes three arguments, the vector
of class labels for all instances, the target concept attribute name, and the vector of all possible
class labels, and returns a matrix with rows corresponding to instances and columns corre-
sponding to the new binary concepts. The decoding function takes two arguments, a matrix of
binary model predictions, with rows corresponding to instances and columns corresponding to
the binary models, and the vector of possible classes of the original multiclass concept (more
precisely, a factor with both the contents and levels equal to the set of original class labels),
and returns the vector of decoded predictions. Trivial encoding and decoding functions, using
the natural binary code, are defined and used for this illustration, as more practically useful

dmr.utilencoding schemes will be discussed later and illustrated by subsequent examples.
They use the int2binvec and binvec2int functions. The implementation
of decoding is particularly simplistic, as instead of matching the codeword against a list of

dmr.utilvalid codewords to find the closest match it simply converts the codeword to an
integer and forces it to be between 1 and the number of classes. This is performed
using the clip.val function. Some other utility functions are also used: x.vars, y.var,

dmr.util
and flevels. The resulting multiclass wrappers around rpart and
naiveBayes are applied to the Vehicle Silhouettes and Glass datasets.

## natural binary multiclass encoding function
multi.enc.nbc <- function(d, class, clabs=levels(d))
{
‘colnames<-‘(ed <- t(sapply(as.integer(d), int2binvec, length(clabs))),

paste(class, 1:ncol(ed), sep="."))
}
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## natural binary multiclass decoding function
multi.dec.nbc <- function(pred, clabs)
{
clabs[clip.val(apply(pred, 1, binvec2int), 1, length(clabs))]

}

## generate a multiclass wrapper around alg using predf for prediction
## and the specified encoding and decoding functions
multi.class<-function(alg, predf=predict,

encode=multi.enc.nbc, decode=multi.dec.nbc)
{
mc.alg <- function(formula, data, ...)
{
attributes <- x.vars(formula, data)
class <- y.var(formula)
aind <- names(data) %in% attributes
clabs <- flevels(data[[class]])

d.enc <- encode(data[[class]], class, clabs)
binmodels <- lapply(1:ncol(d.enc),

function(i)
alg(make.formula(colnames(d.enc)[i], attributes),

‘names<-‘(cbind(data[,aind],
factor(d.enc[,i], levels=0:1)),

c(names(data[,aind]), colnames(d.enc)[i])),
...))

list(binmodels=binmodels, clabs=clabs)
}

mc.predict <- function(model, data, ...)
{
decode(sapply(model$binmodels, predf, data, ...), model$clabs)

}

list(alg=mc.alg, predict=mc.predict)
}

# encoding class labels and decoding verification
v.nbc <- multi.enc.nbc(Vehicle$Class, "Class")
err(multi.dec.nbc(v.nbc, levels(Vehicle$Class)), Vehicle$Class)

# basic encoding applied to rpart
rp.n <- multi.class(rpart, predf=function(...) predict(..., type="c"))
v.tree.n <- rp.n$alg(Class̃., v.train)
v.tree.n.pred <- rp.n$predict(v.tree.n, v.test)
g.tree.n <- rp.n$alg(Typẽ., g.train)
g.tree.n.pred <- rp.n$predict(g.tree.n, g.test)

# basic encoding applied to naive Bayes
nb.n <- multi.class(naiveBayes)
v.nb.n <- nb.n$alg(Class̃., v.train)
v.nb.n.pred <- nb.n$predict(v.nb.n, v.test)
g.nb.n <- nb.n$alg(Typẽ., g.train)
g.nb.n.pred <- nb.n$predict(g.nb.n, g.test)
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17.4.2 1-ok-k encoding

The simplest and most commonly used approach to multiclass encoding is based on the same
1-of-k code that is typically used for the binary encoding of discrete attributes. This technique
uses the encoding function defined as follows:

𝜅(d)[i] =
⎧⎪⎨⎪⎩

1 if d = di

0 otherwise
(17.8)

for i = 1, 2, … , |C|, where C = {d1, d2, … , d|C|} is the original set of class labels. Each class
label is therefore encoded by a binary vector of length |C| with a single 1 on the corresponding
position.

Basic 1-of-k encoding is unfortunately prone to the above-mentioned issue of the decoding
function not being properly defined as the inverse of the encoding function in its particu-
larly severe form. While the codomain of the encoding function contains exactly |C| different
binary vectors, each with a single 1, a binary string with two or more 1’s may be obtained
during prediction, if several binary models return class 1 for the same instance. Any resolu-
tion scheme for such prediction conflicts based on codeword dissimilarity would be totally
arbitrary and possibly leading to degraded prediction quality, since a codeword with 1’s on
several positions is equally dissimilar to each valid codeword with a single 1 on one of these
positions.

This is why 1-of-k multiclass encoding is applied with scoring classification models only,
which are, as discussed in Section 1.3.3, capable of not only producing 0/1 class labels, but
also real-valued scores 𝜋(x) for each instance x. This makes it possible to define the decoding
function as a function of scores, 𝜅−1 ∶ m → C, rather than class labels:

h∗(x) = 𝜅−1(𝜋(x)) = argmax
i

𝜋i(x) (17.9)

where 𝜋(x) denotes the vector of scores 𝜋1(x), 𝜋2(x), … , 𝜋|C|(x) for instance x and 𝜋i is the
scoring function of model hi. This simply follows the recommendation of the model that
returns the highest score for the instance being classified. While this is not, strictly speaking,
the inverse of the encoding function, we continue to use the 𝜅−1 notation.

Example 17.4.2 To illustrate the 1-of-k multiclass encoding technique, the following R code
defines the encoding and decoding functions based on the 1-of-k code and uses them as
arguments to the multi.class function from the previous example. This generates 1-of-k
encoding wrappers around the rpart and naiveBayes functions which are then demon-
strated on the Vehicle Silhouettes and Glass datasets. The encoding functions assign one binary
concept to each of the multiple original classes. The decoding function assumes that the pre-
dictions of the binary models created for these concepts are real-valued scores and returns
the class labels corresponding to the maximum scores. This is achieved by using the second
column (corresponding to class 1) of probabilistic predictions for rpart and naiveBayes
models.
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## 1-of-k multiclass encoding function
multi.enc.1ofk <- function(d, class, clabs=levels(d))
{
‘colnames<-‘(sapply(clabs, function(cl) as.integer(d==cl)),

paste(class, clabs, sep="."))
}

## 1-of-k multiclass encoding function
multi.dec.1ofk <- function(pred, clabs)
{
clabs[max.col(pred)]

}

# encoding class labels and decoding verification
v.1ofk <- multi.enc.1ofk(Vehicle$Class, "Class")
err(multi.dec.1ofk(v.1ofk, levels(Vehicle$Class)), Vehicle$Class)

# 1-of-k encoding applied to rpart
rp.1 <- multi.class(rpart, predf=function(...) predict(...)[,2],

encode=multi.enc.1ofk, decode=multi.dec.1ofk)
v.tree.1 <- rp.1$alg(Class̃., v.train)
v.tree.1.pred <- rp.1$predict(v.tree.1, v.test)
g.tree.1 <- rp.1$alg(Typẽ., g.train)
g.tree.1.pred <- rp.1$predict(g.tree.1, g.test)

# 1-of-k encoding applied to naive Bayes
nb.1 <- multi.class(naiveBayes, predf=function(...) predict(..., type="r")[,2],

encode=multi.enc.1ofk, decode=multi.dec.1ofk)
v.nb.1 <- nb.1$alg(Class̃., v.train)
v.nb.1.pred <- nb.1$predict(v.nb.1, v.test)
g.nb.1 <- nb.1$alg(Typẽ., g.train)
g.nb.1.pred <- nb.1$predict(g.nb.1, g.test)

17.4.3 Error-correcting encoding

Multiclass encoding based on the 1-of-k code is only applicable with scoring binary models
and heavily depends on their ability to deliver reliable scores. While they happen to be the type
of models for which multiclass encoding is most often needed and used, a different approach is
needed for nonscoring models. A universal technique that works well for arbitrary binary mod-
els is based on error-correcting codes. Such codes, commonly used for data transfer through
unreliable communication channels or data storage on unreliable media, are designed with
purposeful redundancy to minimize the risk of incorrect codeword decoding even if some of
its bits are flipped. This perfectly suits the requirements of multiclass task decomposition, by
reducing the risk of misclassification of an instance even if it is misclassified by some binary
models.

The following two desirable properties of error-correcting codes are crucial for their appli-
cation to multiclass encoding:

Codeword separation. All pairs of valid codewords should differ on possibly many bits.

Bit independence. There should be no correlation between individual bits.
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The former makes correct decoding possible with a small number of bits flipped. The latter
avoids using overly many useless bits. There are several possible approaches to designing
codes with these properties. If the required number of different codewords is relatively small,
as in most classification tasks, the following code design scheme can be, applied with k denot-
ing the number of codewords:

Codeword 1. 2k−1 − 1 ones.

Codeword 2. 2k−2 zeroes followed by 2k−2 − 1 ones.

Codeword 3. 2k−3 zeroes followed by 2k−3 ones followed by 2k−3 zeroes followed by 2k−3 −
1 ones.

…
Codeword i. Alternating sequences of 2k−i zeros and ones (with one bit dropped from the

last sequence of ones).

This code generation scheme can be verified to be equivalent to the following recursive
definition:

𝜐k(i) = rev(𝜐k−1(i − 1) • 1) • 𝜐k−1(i − 1) (17.10)

where

• 𝜐k(i) denotes the ith codeword of the code for a total of k codewords,

• neg denotes the bit negation operation,

• rev denotes the reversion operation,

• “•” denotes the concatenation operation.

This produces 2(k−1) − 1 output bits, making the code hardly applicable to more than a few
codewords, but it remains perfectly sufficient for classification tasks with up to 7 or 8 classes.
With more classes, selected bits may have to dropped, ideally without significantly degrading
the code’s properties. In the simplest case, a random sample of encoding bits can be retained,
but more refined approaches employ optimization techniques for bit selection.

Example 17.4.3 The following R code defines the ecc function for generating codewords of
the error-correcting code discussed above. It is then used to generate code tables for 3, 4, and
5 codewords, illustrating code properties. The rows of the resulting matrices correspond to
codewords and their columns correspond to bits.

## error correcting codeword for i out of k
ecc <- function(i, k)
{
if (i>1)
c(rev(1-c(ecc(i-1, k-1), 1)), ecc(i-1,k-1))

else
rep(1, 2̂(k-1)-1)

}

# error-correcting code for 3 codewords
t(sapply(1:3, ecc, 3))
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# error-correcting code for 4 codewords
t(sapply(1:4, ecc, 4))
# error-correcting code for 5 codewords

t(sapply(1:5, ecc, 5))

The resulting codes are presented in Table 17.1.

A multiclass encoding function based on the error-correcting code presented above can
be defined as follows:

𝜅(d) = 𝜐|C|(𝜄C(d)) (17.11)

where 𝜄C assigns unique consecutive numbers between 1 and |C| to each class from C in an
arbitrary way (e.g., based on the ordering implied by their internal representation). Decod-
ing for a vector of binary model predictions requires finding the closest (least dissimilar)
codeword:

𝜅−1(h(x)) = argmin
d∈C

𝛿ham(h(x), 𝜅(d)) (17.12)

where 𝛿ham is the Hamming distance, presented in Section 11.3.6 in the context of
dissimilarity-based clustering (the number of different bits).

Error-correcting multiclass encoding can be expected to deliver superior results in com-
parison to the naïve approaches using the natural binary or Grey code due to its resistance
to (a small number of) binary model mistakes. When applied to scoring classifiers, by using
their class label predictions rather than scores, it is likely to outperform the 1-of-k encoding.

Table 17.1 Error-correcting codes for multiclass encoding.

3 classes

1 1 1
0 0 1
0 1 0

4 classes

1 1 1 1 1 1 1
0 0 0 0 1 1 1
0 0 1 1 0 0 1
0 1 0 1 0 1 0

5 classes

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0



Trim size: 170mm x 244mmCichosz c17.tex V3 - 11/04/2014 10:22 A.M. Page 518

518 ATTRIBUTE TRANSFORMATION

Actually, it makes sense and may be beneficial to apply error-correcting multiclass encoding,
as another ensemble modeling technique, even with algorithms that are capable of handling
multiple classes directly.

Example 17.4.4 Error-correcting multiclass encoding is illustrated by the R code presented
below. It defines the multi.ecc function that can be used to generate the encoding and
decoding functions for the specified number of classes. The optional maxbits argument
may be used to limit the number of codeword bits by simple sampling. The function internally
generates the code table using the ecc function from the previous example and stores it for
the encoding and decoding functions. The latter are passed as the enc and dec components
of the returned list. Notice that, while the decoding function does not explicitly call a function
for Hamming distance calculation, it does compare the supplied codeword to all code table
entries looking for the one with the least number of differing bits. Error-correcting wrappers
for 4 and 6 classes (as appropriate for the Vehicle Silhouettes and Glass data, respectively) are
then created around rpart and naiveBayes and demonstrated exactly as in the previous
two examples.

## error-correcting multiclass encoding and decoding function generator
## for k classes with up to maxbits bits
multi.ecc <- function(k, maxbits=Inf)
{
code <- sapply(1:k, ecc, k)
if (nrow(code)>maxbits)
code <- code[sample.int(nrow(code), maxbits),]

enc <- function(d, class, clabs=levels(d))
{
‘colnames<-‘(t(code[,d]), paste(class, 1:nrow(code), sep = "."))

}

dec <- function(pred, clabs)
{
clabs[apply(pred, 1, function(p) which.min(colSums(p!=code)))]

}
list(enc=enc, dec=dec)

}

# error correcting encoding/decoding for 4 and 6 classes
multi.ecc4 <- multi.ecc(4)
multi.ecc6 <- multi.ecc(6)

# error-correcding encoding applied to rpart
rp.e4 <- multi.class(rpart, predf=function(...) predict(..., type="c"),

encode=multi.ecc4$enc, decode=multi.ecc4$dec)
rp.e6 <- multi.class(rpart, predf=function(...) predict(..., type="c"),

encode=multi.ecc6$enc, decode=multi.ecc6$dec)
v.tree.e <- rp.e4$alg(Class̃., v.train)
v.tree.e.pred <- rp.e4$predict(v.tree.e, v.test)
g.tree.e <- rp.e6$alg(Typẽ., g.train)
g.tree.e.pred <- rp.e6$predict(g.tree.e, g.test)

# error-correcting encoding applied to naive Bayes
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nb.e4 <- multi.class(naiveBayes, encode=multi.ecc4$enc, decode=multi.ecc4$dec)
nb.e6 <- multi.class(naiveBayes, encode=multi.ecc6$enc, decode=multi.ecc6$dec)

v.nb.e <- nb.e4$alg(Class̃., v.train)
v.nb.e.pred <- nb.e4$predict(v.nb.e, v.test)
g.nb.e <- nb.e6$alg(Typẽ., g.train)
g.nb.e.pred <- nb.e6$predict(g.nb.e, g.test)

17.4.4 Effects of multiclass encoding

In most cases using multiclass encoding techniques is a matter of necessity rather than choice.
They are needed to bypass the limitations of some classification algorithms that are unable
to handle more than two classes, but have other desirable properties. In such cases, different
encoding techniques can be compared to one another, but not to the original algorithm. Noth-
ing prevents, however, applying multiclass encoding in combination with algorithms that can
handle multiple classes directly. This makes it possible to evaluate their effects in comparison
to the common baseline, corresponding to no encoding used. They are not unlikely to give
prediction quality improvement, at least with the most refined encoding schemes.

Example 17.4.5 The following R code collects misclassification error values for the directly

Ex. 7.2.1
dmr.claseval

multiclass and encoded multiclass rpart models created in the previous
examples, applying the err function. The results are presented using barplots.

v.tree.err <- c(direct=err(v.tree.pred, v.test$Class),
nbc=err(v.tree.n.pred, v.test$Class),
‘1ofk‘=err(v.tree.1.pred, v.test$Class),
ecc=err(v.tree.e.pred, v.test$Class))

v.nb.err <- c(direct=err(v.nb.pred, v.test$Class),
nbc=err(v.nb.n.pred, v.test$Class),
‘1ofk‘=err(v.nb.1.pred, v.test$Class),
ecc=err(v.nb.e.pred, v.test$Class))

g.tree.err <- c(direct=err(g.tree.pred, g.test$Type),
nbc=err(g.tree.n.pred, g.test$Type),
‘1ofk‘=err(g.tree.1.pred, g.test$Type),
ecc=err(g.tree.e.pred, g.test$Type))

g.nb.err <- c(direct=err(g.nb.pred, g.test$Type),
nbc=err(g.nb.n.pred, g.test$Type),
‘1ofk‘=err(g.nb.1.pred, g.test$Type),
ecc=err(g.nb.e.pred, g.test$Type))

barplot(v.tree.err, main="Vehicle Silhouettes, rpart", ylab="Error", las=2)
lines(c(0, 5), rep(v.tree.err[1], 2), lty=2)

barplot(v.nb.err, main="Vehicle Silhouettes, naiveBayes", ylab="Error", las=2)
lines(c(0, 5), rep(v.nb.err[1], 2), lty=2)
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barplot(g.tree.err, main="Glass, rpart", ylab="Error", las=2)
lines(c(0, 5), rep(g.tree.err[1], 2), lty=2)

barplot(g.nb.err, main="Glass, naiveBayes", ylab="Error", las=2)
lines(c(0, 5), rep(g.nb.err[1], 2), lty=2)
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Figure 17.1 The barplots of misclassification error for models using multiclass encoding.

The obtained barplots, presented in Figure 17.1, confirm predictive performance improve-
ment due to multiclass encoding is possible indeed. Not surprisingly, the error-correcting
encoding technique turns out superior to the other two less refined approaches.
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17.5 Conclusion

Attribute transformation is apparently one of the simplest topics in data mining that does
not receive very much attention. Most commonly used general-purpose transformations have
clear motivation and very simple definitions that do not need extensive discussion. More
refined transformations, whenever necessary, are usually domain specific, possibly incorporat-
ing background knowledge, and fall beyond the scope of this chapter anyway. What tends to be
overlooked and therefore has been highlighted above with particular emphasis is the distinc-
tion between modeling and nonmodeling transformations. It is important to understand how
the dependence on dataset statistics of even the simplest and most popular standardization
and normalization transformations justifies treating them as modeling, with transformation
models determined on the training set and applicable to arbitrary other datasets from the same
domain. The extremely simple representation of such transformation models is completely
irrelevant for this modeling perspective that is, unfortunately, not always adopted. Alterna-
tive approaches, that calculate statistics needed to perform transformations separately on each
dataset to be transformed or combine all such datasets for the purpose of transformation, suffer
from important deficiencies.

Multiclass encoding techniques occupy a distinct place in the data transformation field.
What makes them special is that, by transforming the target concept, they effectively decom-
pose the original classification task into subtasks. By such decomposition they enhance the
capabilities of classification algorithms originally limited to two classes, making them applica-
ble to arbitrary classification tasks. This is an important achievement, given the fact that some
of those algorithms, such as AdaBoost presented in Section 15.5.3 and SVM presented in
Section 16.2, often deliver high-quality predictions. Multiclass encoding techniques can also
be combined with algorithms that have direct multiclass capabilities, and – with an appropriate
encoding scheme – possibly improve their predictions. In this application scenario, multiclass
encoding can be considered another approach to ensemble modeling. An associated disadvan-
tage is the unavoidable loss of model human readability, which may cause direct multiple class
handling to be preferred for algorithms that produce human-readable model representations.

17.6 Further readings

While most books on data mining include some discussion of data transformation, the
scope of techniques covered differ significantly. Unlike this chapter, limited to simple single
attribute transformations, they often discuss more complex mathematical transformations
of both single and multiple attributes, including, e.g., PCA and SVD as well as the Fourier,
Karhunen–Loève, and wavelet transformations. This is the case, in particular, for Theodoridis
and Koutroumbas (2008) and, to some extent, for Han et al. (2011). Such complex transfor-
mations may be viewed as generating new attributes, which is often referred to as feature
extraction.

Considering only simple transformations, Witten et al. (2011) best match the scope
and perspective adopted in this chapter, briefly discussing normalization, standardiza-
tion, binary encoding, and multiclass encoding. Weiss and Indurkhya (1997) presented
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other similarly simple transformations that may be useful in specific applications, such
as continuous attribute smoothing and basic time series attribute transformations (value
differences or ratios). Pyle (1999) gives a broad discussion of various data preparation tasks,
including attribute transformation. The distinguishing between modeling and nonmodeling
transformations emphasized in this chapter tends not to be explicitly noticed and discussed
in these presentations.

The binary encoding of discrete attributes, or dummy coding, is a widely used standard
approach to using them for linear classification and regression models, dating back at least to
Suits (1957). Linear regression and statistical modeling books usually discuss this technique,
as well as other types of contrasts (e.g., Draper and Smith 1998; Freedman et al. 2007; Glantz
and Slinker 2000).

While the standardization transformation has a well-established meaning and is applied
in the same way, there is some ambiguity about the meaning of normalization, as can be
easily seen by consulting dictionaries of statistical terms (e.g., Dodge 2006; Everitt and Skro-
ndal 2010). The scaling view of normalization adopted in this chapter appears to be the most
common in data mining practice.

Most of early work on multiclass encoding occurred in the context of neural networks,
which are only capable of producing binary class predictions or numerical scores. Nilsson
(1965) may have been the first to describe the basic and self-suggesting 1-of-k multiclass
encoding scheme, applied numerous times since then. Zadrozny and Elkan (2002) used the
1-of-k encoding for multiclass probability prediction. Sejnowski and Rosenberg (1987) pre-
sented a more refined approach for their NETtalk system, using a distributed output code,
with each class represented by a unique binary string. Subsequent successful two-class clas-
sification algorithms, such as AdaBoost (presented in Chapter 15) and SVM (presented in
Chapter 16), stimulated more intense interest in this issue.

Using error-correcting codes for multiclass classification was first proposed by Dietterich
and Bakiri (1995), who also discussed the desirable code properties and designed the particu-
lar coding scheme presented in Section 17.4.3, as well as possible approaches to handling large
numbers of classes when the resulting codewords are unacceptably long. Crammer and Singer
(2000) further studied the issue of good code design. A similar idea was subsequently adapted
by Ferng and Lin (2011) to multilabel classification, in which each instance is assigned several
class labels. This variation of the classification task has been studied in the machine learning
literature (Tsoumakas and Katakis 2007), but is rarely encountered in the practice of data min-
ing and therefore not covered in this book. A systematic framework for multiclass encoding
and its theoretical analysis were presented by Allwein et al. (2000).
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18

Discretization

18.1 Introduction

Continuous attribute discretization – which basically consists in creating discrete attributes
to replace originally continuous attributes – belongs to the most frequently used forms of
attribute transformation. Unlike most of others, it is sufficiently complex to give space for
a variety of algorithms of the varying level of refinement and computational expense. Some
of them are actually much closer to classification algorithms than to simple arithmetic trans-
formations. This, along with the possible impact of discretization on the process and results
of subsequent modeling, justifies presenting them separately in this chapter.

Discretized attribute values correspond to intervals of the original continuous attribute’s
values, to which its range is divided. Determining the number and boundaries of these intervals
in order to preserve the original attribute’s predictive utility is the major challenge addressed
by discretization algorithms. The most successful of them are those that take into account
the purpose the discretized attribute is supposed to be used for, which is usually creating a
classification model. Such discretization algorithms receive most attention in this chapter.

Example 18.1.1 Discretization algorithms presented in this chapter will be illustrated by R

Ex. 1.3.2
dmr.data

code examples, containing simple implementations and usage demonstrations
thereof. The latter will be using the tiny weatherc data, as well as more realis-
tically sized Vehicle Silhouettes and Glass datasets from the mlbench package.
To observe the effects of discretization, classification models will be created based
on the original and discretized datasets using the R implementations of the decision tree and
naïve Bayes algorithms (provided by the rpart and e1071 packages). Several DMR pack-
ages provide auxiliary functions for the illustrative implementations and example calls. The
following R code sets up the environment for this chapter’s demonstrations by loading the
packages and datasets, and partitioning the larger two of those into training, and also tests
subsets for simple holdout model evaluation.

Data Mining Algorithms: Explained Using R, First Edition. Paweł Cichosz.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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library(dmr.claseval)
library(dmr.stats)
library(dmr.trans)
library(dmr.util)

library(rpart)
library(e1071)

data(weatherc, package="dmr.data")
data(Vehicle, package="mlbench")
data(Glass, package="mlbench")

set.seed(12)

rv <- runif(nrow(Vehicle))
v.train <- Vehicle[rv>=0.33,]
v.test <- Vehicle[rv<0.33,]

rg <- runif(nrow(Glass))
g.train <- Glass[rg>=0.33,]
g.test <- Glass[rg<0.33,]

18.2 Discretization task

Discretization consists in replacing an originally continuous attribute by a discrete attribute,
with different values assigned to particular intervals of the original attribute’s range. This
section outlines the motivation behind discretization and discusses the definition of the task
in more detail.

18.2.1 Motivation

Replacing continuous attributes with their newly created discrete counterparts – ideally
without loosing too much of the precious information contained therein – is an obvious
necessity if one is willing to apply a data mining algorithm that is incapable of handling
continuous attributes on its own. This may be the case, e.g., for simple implementations
of decision trees or the naïve Bayes classifier. This is more common in classification
algorithms than in regression or clustering algorithms, since the latter are usually much
more friendly to continuous attributes and more likely to require a semi-inverse numerical
encoding transformation, as described in Section 17.3.5. For some attribute selection filters
presented in Section 19.4 it may also be necessary or convenient to have a uniform attribute
relationship measure applied to all attributes regardless of their type. One way to achieve
this is to use a relationship measure for discrete attributes, such as the mutual information
or the symmetric uncertainty presented in Section 2.5.3, after discretizing continuous
attributes.

Practical necessity is not the only motivation for discretization, though. It may be some-
times a good idea to discretize continuous attributes even if algorithms to be subsequently
applied could cope with them directly. This is because there may be two undesirable effects
of in-algorithm continuous attribute processing:
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• increased computational expense,

• more opportunities to overfit.

Again, these are much more likely for classification algorithms than any other data mining
algorithms, because many of them have been developed with the primary focus on discrete
attributes and tend to be applied to datasets with the majority of attributes being discrete.
This is when continuous attributes, particularly if they take many different values (perhaps
approaching the number of instances in the training set), may incur a substantial amount of
extra computation and increase the risk of overfitting. The latter results from the possibil-
ity of making very fine-grained separations between instances even with a single continuous
attribute. It makes it indeed easier to create a near-perfectly fitted model with poor general-
ization performance.

Properly performed discretization may help us to fight the two problems described above.
Creating models with continuous attributes used in their original form may be computationally
more economic, particularly when multiple models are created using the same discretized
dataset. It may also, by reducing the useless excessive information contained in the original
continuous attributes and preserving what is most likely to be predictively useful, increase the
chance of arriving at properly generalizing models. These are just possibilities, not guarantees,
but they are sufficient to consider discretization as a potentially useful attribute transformation
even when it is not strictly necessary.

18.2.2 Task definition

As a type of attribute transformation, discretization clearly inherits the general attribute
transformation task definition from Section 17.2, although there are some noteworthy
discretization-specific issues.

18.2.2.1 Target task

The target task for discretization is usually one of the three major inductive learning tasks
introduced in Section 1.2, classification, regression, or clustering, with the latter two being
much less common than the first one, for reasons already discussed above. The description
of discretization algorithms presented in this section does not explicitly consider target tasks
other than classification, although some of them are target task independent and others could
be modified at least for the regression task easily, in the unlikely case discretization for the
latter would be needed at all.

18.2.2.2 Target attribute

If the target task is classification (or regression, even if this is quite untypical, to say the least), a
target attribute is also specified. It may be used during discretization to explicitly or implicitly
observe the predictive utility of the original attribute and its possible loss due to discretization,
as well as to make efforts to minimize the latter. Discretization algorithms that exploit this
possibility, i.e., take the target attribute into account, are referred to as supervised whereas
those which do not use the target attribute, even if it is available, are called unsupervised. The
former, which are usually preferred, differs from the most simple data transformations, for
which the target attribute is completely irrelevant.
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18.2.2.3 Discretized attribute

While practical implementations of discretization algorithms can be usually applied to all con-
tinuous attributes in a dataset at the same time, we will consider discretizing a single attribute
as a single instance of the discretization task. This also preserves consistency with the gen-
eral attribute transformation task definition presented in Section 17.2, assuming one attribute
being transformed. Discretizing multiple attributes can then be viewed as multiple indepen-
dent instances of the task. Some discretization algorithms may not adhere to this view, if they
exploit relationships among attributes. This is not the case for algorithms described in this
chapter, though.

The continuous attribute to discretize a is supposed to be replaced by a newly created
discrete attribute a′ with unique values corresponding to nonoverlapping intervals (bins) com-
pletely covering the co-domain of the original attribute. The definition of such a new attribute
can be written as follows:

a′(x) =
⎧⎪⎨⎪⎩
𝑣′1 if a(x) ∈ (−∞, b1]
𝑣′2 if a(x) ∈ (b1, b2]
…
𝑣′k if a(x) ∈ (bk−1,∞)

where 𝑣′1, 𝑣
′
2, … , 𝑣′k designate new discrete values corresponding to k intervals to which

the original attribute is discretized and b1, b2, … , bk−1 are the cut points or breaks from its
co-domain, representing interval bounds.

When discussing discretization algorithms, it is often necessary to refer to the subsets of
the training set corresponding to particular intervals. The following notational convention will
be used for this purpose:

T1 = {x ∈ T | a(x) ∈ (−∞, b1]} (18.1)

T2 = {x ∈ T | a(x) ∈ (b1, b2]} (18.2)

…

Tk = {x ∈ T | a(x) ∈ (bk−1,∞)} (18.3)

assuming the set of breaks is {b1, b2, … , bk−1}.

18.2.2.4 Training set

Discretization is usually performed on the same dataset which serves as the target task’s
training set, but – whenever convenient or necessary – another subset of the available data
can be used. The precautions mentioned in Section 17.2.4 for the general data transformation
task apply here as well. Since discretization has, possibly substantial, impact on models cre-
ated using the discretized data, it definitely belongs to the modeling process and its training
set becomes a part of the data used for model creation. This is true even if the actual training
set passed to the modeling algorithm is completely independent.

18.2.3 Discretization as modeling

What is important to underline and sometimes gets overlooked is that replacing the origi-
nal continuous attribute with a newly created discrete attribute cannot be simply reduced to
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replacing the original continuous values with new discrete values in the training set. What
discretization should produce is not (or at least not just) a modified copy of the data, but the
definition of a new attribute that can be subsequently applied to transform any dataset from the
same domain from which the training set was originated. It is therefore a modeling attribute
transformation, as discussed in Section 17.2.5, with the definition of the new discrete attribute
playing the role of a model created based on the training set and then available to be applied
to any other dataset from the same domain.

Adopting the modeling view of discretization is necessary to properly integrate it with the
target modeling task. To have model produced using the discretized training set applicable to
new data (possibly a single instance), the very same discretization breaks should be applied
to the latter. This is the case even if the new dataset was actually available at the time of
modeling and could be merged with the training set for discretization or if it is sufficiently
large to be discretized independently (for supervised discretization algorithms it would also
have to labeled). The former would effectively use the new data for training and the latter
would usually yield inconsistencies between discretization intervals assumed by the model
creation and appearing in the new data. Both are clearly unacceptable. The modeling view of
discretization makes it possible to consider the target task’s model tied to the discretization
model that were applied to the training set beforehands (i.e., the particular sets of interval
breaks) . It is the very same discretization model that needs to be subsequently applied to any
datasets for which the target task’s model would be used to predict.

Example 18.2.1 Discretization algorithm implementations that will be presented in
subsequent examples will follow the assumption of working with one discretized attribute
at a time. To make them applicable to all continuous attributes in a dataset in a convenient
way, the following R code defines the disc.all function which creates, when applied to
a single-attribute discretization function, a wrapper around it that applies it sequentially to
multiple attributes specified using the standard formula interface. The target (left-hand side)
attribute specified by the formula is also retrieved and passed to the discretization function

dmr.util
if it is found to expect the target argument. The x.vars and y.var functions
are used to extract input and target attribute names from the supplied formula.
Note that the class attribute of the object representing discretization breaks for
all continuous attributes is set to disc, to enable appropriate prediction method dispatching.
To demonstrate the wrapper generator, it is applied to a simple random discretization func-
tion, serving only the illustration purpose. The multiattribute wrapper function returned by
disc.all is then applied to the weatherc data.

## create a wrapper for all attributes discretization
disc.all <- function(disc)
{
disc1 <- function(v, k, class, ...)
{
if (is.numeric(v))
{
if (is.null(formals(disc)$class))
disc(v, k=k, ...) # unsupervised

else
disc(v, k=k, class=class, ...) # supervised

}
}
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function(formula, data, k=5, ...)
{
attributes <- x.vars(formula, data)
class <- y.var(formula)
if (length(k)==1)
k <- sapply(attributes, function(a) k)

km <- match(attributes, names(k))
‘class<-‘(mapply(function(a, k1) disc1(data[[a]], k=k1, class=data[[class]], ...),

attributes, k[km], SIMPLIFY=FALSE),
"disc")

}
}

## apply discretization breaks to a dataset
predict.disc <- predict.transmod(function(m, v) cut(v, c(-Inf, m, Inf)))

# random all-attributes discretization
disc.rand <- disc.all(function(v, k=3) sort(runif(k-1, min=min(v), max=max(v))))

# random discretization for the weatherc data
w.dr3m <- disc.rand(plaỹ., weatherc, 3)
w.dr43m <- disc.rand(plaỹ., weatherc, list(temperature=4, humidity=3))

# apply discretization breaks to the weatherc data
w.dr3 <- predict(w.dr3m, weatherc)
w.dr43 <- predict(w.dr43m, weatherc)

Notice that the predict.disc function, which applies discretization breaks to actually

Ex. 17.2.1
dmr.trans

replace continuous attribute values with the corresponding interval labels, is
obtained using the wrapper generator for modeling transformation prediction,
predict.transmod. As a matter of fact, it would be straightforward to use
the corresponding modeling transformation wrapper generator, transmod.all,
instead of the disc.all function defined above. The latter adds some discretization-specific
capabilities, however: specifying the number of intervals on per-attribute basis and detecting
whether the supplied single-attribute discretization function is supervised or not.

18.2.4 Discretization quality

As discussed above, the purpose of discretization is to make subsequent modeling –
performing the target task – easier (i.e., to make it possible to use algorithms that do not
handle continuous attributes or reducing the computational expense of those that do without
substantial model quality loss) or more effective (i.e., to make it possible to obtain models
with better generalization capabilities). Hence, there are no other requirements for the new
discrete attribute attribute than its utility in performing the target task. This can be considered
roughly equivalent to the following postulates:

Arity reduction. The number of values of the new discrete attribute should be considerably
less than the number of distinct values of the original continuous attribute observed in
the training set.

Predictiveness preservation. The new discrete attribute should retain most of the predictive
power of the original continuous attribute.
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There is an obvious tradeoff between these two which has to be either resolved by
discretization algorithms or by their user, who may be required to set up parameters,
typically including the desired number of intervals. The ultimate verification of the effects of
discretization is always provided by the evaluation of models obtained when performing the
target task using discretized data.

18.3 Unsupervised discretization

Unsupervised discretization algorithms, which do not take any target attribute into account,
are based entirely on the observed distribution of the continuous attribute to be discretized
in the training set. It is no surprising therefore that they tend to be less refined than super-
vised algorithms. The set of breaks for attribute a determined on the training set T using an
unsupervised discretization algorithm will be designated by BT (a).

18.3.1 Equal-width intervals

The simplest discretization algorithm that can be considered useful is based on the principle
of equal interval width. After determining the range of the attribute to be discretized in the
training set

minT (a) =min
x∈T

a(x) (18.4)

maxT (a) =max
x∈T

a(x) (18.5)

it just needs to be partitioned into k bins of equal width

Δk
T (a) =

maxT(a) − minT (a)
k

(18.6)

using the following set of k − 1 breaks:

b1 = minT (a) + Δk
T (a) (18.7)

b2 = minT (a) + 2Δk
T(a) (18.8)

…

bk−1 = minT (a) + (k − 1)Δk
T (a) = maxT (a) − Δk

T (a) (18.9)

or shortly
BT (a) = {minT (a) + iΔk

T(a) | i = 1, 2, … , k − 1} (18.10)

What gives this algorithm its unrivaled simplicity (conceptual, implementational, and
computational) also makes it unfortunately prone to problems with the predictive utility of
the created discrete attribute. By looking at the range only, it ignores all other possibly impor-
tant aspects of the original attribute’s distribution, which may be nonuniform, asymmetric, and
suffering from outliers. The latter are particularly dangerous, as they are likely to mislead the
algorithm completely, leading it to creating several empty or nearly empty intervals. If using
this simple algorithm in emergency situations (lack of time and tools needed for more refined
and reliable algorithms), one should at least take care of checking the data for the presence of
outliers and filtering them out if necessary.
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Example 18.3.1 Equal-width discretization is implemented and demonstrated by the
following R code. It defines the disc.eqwidth1 function that performs the equal-width
discretization of a single-attribute and creates a multiattribute wrapper around it using the
previously presented disc.all function.

## equal-width discretization for a single attribute
disc.eqwidth1 <- function(v, k=5)
{
w <- diff(r <- range(v))/k
seq(r[1]+w, r[2]-w, w)

}

## equal-width discretization for a dataset
disc.eqwidth <- disc.all(disc.eqwidth1)

# equal-width discretization of the temperature attribute in the weatherc data
disc.eqwidth1(weatherc$temperature, 4)

# equal-width discretization for the weatherc data
disc.eqwidth(plaỹ., weatherc, 3)
disc.eqwidth(plaỹ., weatherc, list(temperature=4, humidity=3))

# equal-width discretization for the Vehicle Silhouettes data
v.disc.ew <- disc.eqwidth(Class̃., v.train, 7)
summary(predict(v.disc.ew, v.train))

# equal-width discretization for the Glass data
g.disc.ew <- disc.eqwidth(Typẽ., g.train, 7)
summary(predict(g.disc.ew, g.train))

For the two larger datasets used by the demonstrations the obtained intervals are applied to
the data and the distributions of the resulting discrete attributes are summarized. Note extreme
differences between instance counts for different intervals that can be observed for many
attributes.

18.3.2 Equal-frequency intervals

It takes relatively little additional effort to overcome the most striking deficiency of
equal-width discretization. The equal-frequency algorithm is outlier-resistant and adapts
itself to the actual value distribution of the attribute being discretized, yielding increased
interval resolution wherever higher value density is observed. Its operation principle reflected
by the name is to select interval breaks so as to achieve the same number of training set
instances corresponding to each bin, or – since this cannot be usually achieved exactly – to
minimize the differences among bin frequencies.

To perform the equal-frequency discretization of attribute a to k intervals, it is neces-
sary to partition the training set T using a into k subsets T1,T2, … ,Tk satisfying the condi-
tions given by Equations 18.1 -18.3 such that |T1| ≈ |T2| ≈ · · · ≈ |Tk| ≈ |T|

k
. Then BT (a) =

{b1, b2, … , bk−1} is the set of equal-frequency discretization breaks.
Perfect interval frequency equality may be possible to obtain only if the training set size

is a multiple of k and finding appropriate breaks is not prevented by two or more instances
having the same value of a. Otherwise an approximation to equal-frequency partitioning
needs to be accepted. There are several possible approaches that can be used to obtain
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such approximations. They all work similarly well if the attribute being discretized exhibits
sufficient variability in the training set and may differ more noticeably otherwise. In extreme
cases, if the number of training instances with the same value of a approaches or exceeds |T|

k
,

they may produce intervals with clearly nonequal frequencies or end up with less intervals
than requested. One simple approach that should be usually sufficient is to use quantiles of
order i

k
for i = 1, 2, … , k − 1 as breaks, after removing any duplicates they should appear.

Example 18.3.2 The R code presents and demonstrates a simple implementation of
equal-frequency discretization, using the standard quantile function.

## equal-frequency discretization for a single attribute
disc.eqfreq1 <- function(v, k=5) { unique(quantile(v, seq(1/k, 1-1/k, 1/k))) }

## equal-frequency discretization for a dataset
disc.eqfreq <- disc.all(disc.eqfreq1)

# equal-width discretization of the temperature attribute in the weatherc data
disc.eqfreq1(weatherc$temperature, 4)

# equal-frequency discretization for the weatherc data
disc.eqfreq(plaỹ., weatherc, 3)
disc.eqfreq(plaỹ., weatherc, list(temperature=4, humidity=3))

# equal-frequency discretization for the Vehicle Silhouettes data
v.disc.ef <- disc.eqfreq(Class̃., v.train, 7)
summary(predict(v.disc.ef, v.train))

# equal-frequency discretization for the Glass data
g.disc.ef <- disc.eqfreq(Typẽ., g.train, 7)
summary(predict(g.disc.ef, g.train))

Notice that the number of created discretization intervals is less than requested for some
attributes. The corresponding interval counts, while not perfectly equal, are usually much
more uniform than observed previously for equal-width discretization.

18.3.3 Nonmodeling discretization

In the vast majority of discretization usage scenarios, discretized datasets are used for the clas-
sification model creation. As discussed in Section 18.2.3, this is when discretization has to be
performed as a modeling transformation, to make it possible to apply the same interval breaks
to whatever new data the created classification model will be used for prediction. However,
discretization may sometimes be a useful data preprocessing operation even if subsequently
applied modeling algorithms receive and process continuous attributes in their original form.
This is the case when a discretized dataset version is used “temporarily” for performing some
data analysis tasks. Even if the results of these tasks have impact on subsequent model cre-
ation, there is no need to retain discretization interval breaks as long as the model to be created
only uses the original continuous attributes. In such situations, discretization could be per-
formed in a nonmodeling way, without retaining any reusable discretization model. This is
possible for both unsupervised and supervised discretization, although it s more common and
may appear more natural with the former.
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One noteworthy potential application of nonmodeling discretization is the attribute rela-
tionship detection using statistical techniques presented in Section 2.5 for domains with both
discrete and continuous attributes. It is often desirable not only to detect statistically strong
relationships between attributes of different types (discrete–discrete, discrete–continuous,
continuous–continuous), but also rank attribute pairs with respect to the strength of their
relationship. Since relationship measures applicable to different attribute types can hardly be
comparable, one simple solution would be to temporarily replace all continuous attributes
with their discretized counterparts, to enable applying the same relationship measure to all
attribute pairs, regardless of their original type. This may be particularly convenient for
filtering attribute selection techniques, presented in Section 19.4.

Example 18.3.3 The disc.nm function defined by the following R code returns a simple
nonmodeling wrapper around the supplied discretization function that discards the obtained
discretization model after applying it to the same data on which it has been created. It is then
used to generate nonmodeling wrappers around the implementations of the equal-width and
equal-frequency discretization algorithms from Examples 18.3.1 and 18.3.2. The latter are
demonstrated on the weatherc data.

## create a nonmodeling discretization wrapper disc.nm <-
function(disc) { function(formula, data, k=5, ...)
predict(disc(formula, data, k, ...), data) }

## nonmodeling equal-width discretization discnm.eqwidth <-
disc.nm(disc.eqwidth)

## nonmodeling equal-frequency discretization discnm.eqfreq <-
disc.nm(disc.eqfreq)

# nonmodeling discretization for the weatherc data
discnm.eqwidth(plaỹ., weatherc, 4)
discnm.eqfreq(plaỹ., weatherc, 3)
discnm.eqfreq(plaỹ., weatherc, list(temperature=4, humidity=3))

18.4 Supervised discretization

Supervised discretization requires considerably more effort than the simple unsupervised
algorithms discussed above. The effort is usually well paid off, though, by the possibility to
adjust interval breaks so as to preserve the discretized attribute’s predictive utility with respect
to the target attribute. This section will focus entirely on the most common case where the
target task is classification and the target attribute is the target concept, assigning class labels
to instances. The set of breaks for attribute a with respect to the target concept c, determined
on the training set using a supervised discretization algorithm, will be designated by BT ,c(a).

18.4.1 Pure-class discretization

One particularly simple approach to supervised discretization that is not directly useful by
itself, but may serve as the starting point for discussing more refined algorithms, consists
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in keeping attribute values corresponding to different classes in separate intervals, as far as
possible, and with as many intervals used as necessary. Basically, each interval should only
contain attribute values for instances of the same class, unless some instances of different
classes have the values of the attribute being discretized equal. This guarantees that the newly
created discrete attribute will fully preserve the predictive utility of the original continuous
attribute, at least on the training set, but – in the extreme case – may use as many intervals as
unique attribute values occurring therein.

Technically, pure-class discretization may be performed by ordering the training set T
with respect to the continuous attribute a to be discretized and then adding a break point in
the middle between each pair of consecutive different values that correspond to instances of
different classes. If x1, x2, … , x|T| is the sequence of all training instances ordered such that
a(x1) ≤ a(x2) ≤ · · · ≤ a(x|T|), then the set of interval breaks can be determined as

BT ,c(a) =
{

a(xi−1) + a(xi)
2

|||| i = 2, 3, … , |T|,
c(xi) ≠ c(xi−1), a(xi) ≠ a(xi−1)

} (18.11)

Example 18.4.1 Pure-class discretization is implemented by the disc.pure1 function
defined in the following R code. It accepts the k argument for compatibility with the
wrapper-generation function disc.all from Example 18.2.1, but its value is ignored. The
application of the generated disc.pure wrapper to the weatherc, Vehicle Silhouettes, and
Glass datasets is demonstrated.

## pure-class discretization for a single attribute
disc.pure1 <- function(v, class, k=NULL)
{
ord <- order(v)
class <- class[ord]
v <- v[ord]
b <- diff(as.integer(class))!=0 & diff(v)!=0
(v[1:(length(v)-1)][b]+v[2:length(v)][b])/2

}

## pure-class discretization for a dataset
disc.pure <- disc.all(disc.pure1)

# pure-class discretization for the weatherc data
disc.pure(plaỹ., weatherc)

# pure-class discretization for the Vehicle Silhouettes data
v.disc.p <- disc.pure(Class̃., v.train)
summary(predict(v.disc.p, v.train), maxsum=100)

# pure-class discretization for the Glass data
g.disc.p <- disc.pure(Typẽ., g.train)
summary(predict(g.disc.p, g.train), maxsum=100)

The number of intervals obtained for the two larger datasets reaches a few dozen for several
attributes, which would be usually much more than desired.
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18.4.2 Bottom-up discretization

While pure-class discretization is of rather little practical use by itself, as it fails to achieve the
expected benefits of discretization due to an overly large number of intervals usually created,
several more refined algorithms may be considered that start from pure-class interval breaks
and then proceed by eliminating some (or, not untypically, most) of them according to some
specific utility measures. Repeatedly merging selected adjacent intervals by removing breaks
between them is referred to as bottom-up discretization and the simple pure-class algorithm
provides a perfect initialization for it.

18.4.2.1 Algorithm scheme

The bottom-up discretization algorithm scheme is presented below. It can be instantiated by
specifying an initialization operation used to set the initial breaks, stop criteria used to deter-
mine whether a satisfactory set of breaks has been reached, and an evaluation function that
measures the utility of each currently existing break and can be used to determine the least
useful one to drop. The latter, for break b, attribute a, target concept c, and training set T ,
is designated by 𝜚T ,c(b, a) and assumed to assign less values to less useful breaks. On each
iteration the two intervals separated by the least useful break are merged.

1: find the set of initial breaks BT ,c(a);
2: while stop criteria are not satisfied do
3: BT ,c(a) ∶= BT ,c(a) − {arg minb∈BT ,c(a) 𝜚T ,c(b, a)};
4: end while

While it is not reflected by the above algorithm scheme to keep it simple, it is worthwhile
to notice that after each merge operation (break removal) only the utilities of the remaining left
and right neighbor breaks may change (as long as the evaluation function takes into account
only the two intervals separated by the break being evaluated, which is a perfectly reasonable
assumption). Only these two therefore need to be re-evaluated for the next iteration.

Example 18.4.2 The bottom-up discretization scheme is implemented by the following R
code. The disc.bottomup1 function that discretizes a single attribute receives two func-
tions as arguments: one used for initialization (defaulting to pure-class discretization) and
the other used for break evaluation. The latter has to be a function that takes three breaks
as arguments (the one to be evaluated along with its left and right neighbors) as well as
the values of the attribute to discretize and the corresponding classes for the training set.
The evaluation function is initially applied to all breaks, but on subsequent iterations it is
only used for breaks that need to re-evaluated after dropping a neighbor of theirs. The stop

dmr.util
criteria are specified either as the maximum number of intervals or as the maxi-
mum utility a dropped break may have. The shift.left and shift.right
functions are used to shift the breaks vector left and right, to identify right
and left neighbors for each break, respectively. A multiattribute wrapper around the
disc.bottomup1 function is created as usual and demonstrated on the weatherc data,
with a trivial identity break evaluation function, serving the illustration purpose only. With
each break’s utility being estimated as its value, the bottom-up discretization process simply
removes as many smallest breaks as necessary to meet the stop criteria.
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## bottom-up discretization for a single attribute
disc.bottomup1 <- function(v, class, k=5, initf=disc.pure1, evalf, maxev=Inf)
{
breaks <- initf(v, class)
utils <- mapply(evalf, breaks,

shift.right(breaks, first=-Inf), shift.left(breaks, last=Inf),
MoreArgs=list(v, class))

b <- which.min(utils)

while (length(breaks)+1>k && utils[b]<=maxev)
{
breaks <- breaks[-b]
utils <- utils[-b]
if (b>1)
utils[b-1] <- evalf(breaks[b-1],

ifelse(b>2, breaks[b-2], -Inf),
ifelse(b<=length(breaks), breaks[b], Inf),
v, class)

if (b<=length(breaks))
utils[b] <- evalf(breaks[b],

ifelse(b>1, breaks[b-1], -Inf),
ifelse(b<length(breaks), breaks[b+1], Inf),
v, class)

b <- which.min(utils)
}
breaks

}

## bottom-up discretization for a dataset
disc.bottomup <- disc.all(disc.bottomup1)

# bottom-up discretization of the temperature attribute in the weatherc data
disc.bottomup1(weatherc$temperature, weatherc$play, 3,

evalf=function(b, bl, br, v, class) b)

# bottom-up discretization for the weatherc data
disc.bottomup(plaỹ., weatherc, 3, evalf=function(b, bl, br, v, class) b)

18.4.2.2 Initialization

As mentioned above, the results of pure-class discretization can serve as the ideal initial set
of breaks for bottom-up algorithms. This is because any reasonable discretization may be
obtained by merging some of pure-class intervals and there would never be need for any
smaller (more fine-grained) intervals than those. With that being said, the bottom-up dis-
cretization process can actually start with any set of initial intervals, both more fine-grained
and more coarse-grained than provided by pure-class discretization. While in the latter case
the final discretization quality may be degraded, in the former case most algorithms (using rea-
sonable interval merge criteria) may just take more merging iterations to arrive at a satisfactory
result. For such algorithms, it is safe (albeit inefficient) to start bottom-up discretization even
from singleton intervals, each containing just a single value of the attribute being discretized.
They can be obtained by using mid-points between each pair of the attribute’s consecutive
values as initial discretization breaks.
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18.4.2.3 Merge criterion

The criterion used to evaluate the utility of breaks, i.e., determine the pair of intervals to merge,
is the central component of bottom-up discretization algorithms. A variety of approaches are
possible, with different level of refinement and complexity, including:

Instance count. Drop breaks that separate intervals with the least (individual or total)
instance count (to eliminate intervals with too little instances).

Dominating class count. Drop breaks that separate intervals with the least (individual or
total) dominating class count (to eliminate intervals with too little dominating class
representatives).

Misclassification count. Drop breaks that separate intervals with the least misclassification
count increase after merging (to minimize the misclassification error possible to obtain).

Class impurity. Drop breaks that separate intervals with the least class impurity increase
after merging (to prevent the loss of predictive utility).

Class distribution dissimilarity. Drop breaks that separate intervals with the least dissimilar
class distribution (to prevent the loss of predictive utility).

Break utility functions representing these approaches will be discussed in the correspond-
ing subsections below. When considering a break b ∈ BT ,c(a), we will refer to the subsets of
the training instances corresponding to the two intervals they separate as follows:

Tb− ={x ∈ T | a(x) ∈ (b−, b]} (18.12)

Tb+ ={x ∈ T | a(x) ∈ [b, b+]} (18.13)

where

• b− is the left neighbor break of b in BT ,c(a) or −∞ if b = min BT ,c(a),

• b+ is the right neighbor break of b in BT ,c(a) or ∞ if b = max BT ,c(a).

Instance count One of the simplest possible merge criteria for bottom-up discretization is
based on instance count, i.e., the number of training instances corresponding to each interval.
It is motivated by the belief that too small intervals (corresponding to small data subsets) are
not useful, may be misleading, and therefore should be merged, even at the cost of introducing
considerable class impurity. It makes sense, in particular, to consider the total instance count
for a pair of adjacent intervals, which – if minimized – would identify intervals that have small
instance count on the average. The corresponding break utility function may be defined as
simply as

𝜚T ,c(b, a) = |Tb−| + |Tb+| (18.14)

i.e., as the sum of instance counts for the two intervals separated by the break being evaluated.
Such break evaluation results in the two intervals with the least total number of corresponding
training instances being merged on each iteration. This would have the disadvantage of not
being able to merge a single small-count interval with any of its neighbors if they are both
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large count. One alternative would therefore be to always identify a single least-count interval
and then merge it with one of its neighbors (obviously, the less-populated one). This could be
accomplished with the following, somewhat more complex, break utility function:

𝜚T ,c(b, a) = min{|Tb−|, |Tb+|} + 𝛾 max{|Tb−|, |Tb+|} (18.15)

The first term is responsible for identifying the least-count interval, for which the evaluated
break is either the left or right bound. The second term is needed to decide whether the
least-count interval should be merged with its left or right neighbor. If used with sufficiently
small 𝛾 (in particular, 𝛾 <

1|T| ), it will only break ties occurring for the first term, which is
what we want. To see why this formula works, assume |Ti| = minj=1,… ,k|Tj| to be the least
per-interval instance count. Under the notational convention introduced above, the left bound
of the corresponding interval is then bi−1 and the right bound is bi. The utility of breaks bi−1
and bi will be calculated by the above formula as

𝜚T ,c(bi−1, a) = |Ti| + 𝛾|Ti−1| (18.16)

𝜚T ,c(bi, a) = |Ti| + 𝛾|Ti+1| (18.17)

since both |Ti−1| ≥ |Ti| and |Ti+1| ≥ |Ti|. The less of these evaluations will therefore indicate
whether the least-count interval should be merged with its left or right neighbor.

Notice that this merge criterion (in any version), making no use of class labels, is
clearly unsupervised. If combined with pure-class interval initialization, it will therefore
yield, in a sense, a hybrid supervised–unsupervised discretization algorithm. If used with
singleton interval initialization, it would become just an overly complex and inefficient way
of performing equal-frequency discretization. As already mentioned before, though, these
two initialization methods may actually become equivalent in the extreme case where every
two consecutive values of the continuous attribute being discretized correspond to instances
of different classes. Instance count-based merge criterion will therefore be useful only if the
pattern of attribute values and classes is substantially different from this extreme. Pure-class
discretization will then yield a reasonable initial set of interval breaks that may only need
relatively minor corrections, accomplished within a small number of merging iterations. Such
corrections can be handled by the instance count approach easily and quickly. Whenever the
number of necessary merging iterations becomes large, the unsupervised nature of the merge
criterion dominates the algorithm, potentially leading to the loss of the original attribute’s
predictive utility. It makes therefore most sense to think of instance count-based bottom-up
discretization as of a straightforward enhancement of pure-class discretization than as of a
stand-alone algorithm useful by its own.

Example 18.4.3 The following R code implements and demonstrates the instance count break
utility function in the two versions discussed above: based on the total count for the two
intervals separated by the break to be evaluated and based on their minimum individual count.

## instance count break evaluation
## using the total instance count after merging
evdisc.incount1 <- function(b, bl, br, v, class) { sum(v>bl & v<=br) }
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## instance count break evaluation
## using the minimum individual instance count before merging
evdisc.incount2 <- function(b, bl, br, v, class, gamma=1/length(v))
{
min(sum(v>bl & v<=b), sum(v>b & v<=br)) +
gamma*max(sum(v>bl & v<=b), sum(v>b & v<=br))

}

# instance count bottom-up discretization for the weatherc data
disc.bottomup(plaỹ., weatherc, 3, evalf=evdisc.incount1)
disc.bottomup(plaỹ., weatherc, 3, evalf=evdisc.incount2)

# instance count bottom-up discretization for the Vehicle Silhouettes data
v.disc.bu.ic1 <- disc.bottomup(Class̃., v.train, 7, evalf=evdisc.incount1)
v.disc.bu.ic2 <- disc.bottomup(Class̃., v.train, 7, evalf=evdisc.incount2)
summary(predict(v.disc.bu.ic1, v.train))
summary(predict(v.disc.bu.ic2, v.train))

# instance count bottom-up discretization for the Glass data
g.disc.bu.ic1 <- disc.bottomup(Typẽ., g.train, 7, evalf=evdisc.incount1)
g.disc.bu.ic2 <- disc.bottomup(Typẽ., g.train, 7, evalf=evdisc.incount2)
summary(predict(g.disc.bu.ic1, g.train))
summary(predict(g.disc.bu.ic2, g.train))

Dominating class count The dominating class count-based merge criterion is nearly as
simple as the instance count-based one, but – unlike the latter – it remains supervised. It is
based on the belief that useful discretization intervals should contain values corresponding
to sufficiently many instances of the dominating class. The number of such instances for an
interval is referred to as the interval’s dominating class count. It therefore merges intervals
with the least dominating class counts. There are at least the following three different exact
interpretations of this general principle.

• Merge intervals with the least dominating class count after merging. The corresponding
break utility function is defined as follows:

𝜚T ,c(b, a) = max
d∈C

|Td
b− ∪ Td

b+| (18.18)

This will drop breaks between intervals that have small combined dominating class
counts.

• Merge intervals with the least sum of dominating class counts before merging, i.e., min-
imizing the following utility function:

𝜚T ,c(b, a) = max
d∈C

|Td
b−| + max

d∈C
|Td

b+| (18.19)

This is equivalent to the previous interpretation if the two intervals separated by the
evaluated break have the same dominating class. It will yield higher values for pairs of
intervals with different dominating classes and therefore is less likely to pick them for
merging, which is usually preferred.
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• Merge the interval with the least dominating class count with the one of its neighbors
that has more instances of the same class. This can be achieved by eliminating the break
that minimizes the following utility function:

𝜚T ,c(b, a) = min{max
d∈C

|Td
b−|,max

d∈C
|Td

b+|} − 𝛾 max{|Td∗
b−|, |Td∗

b+|} (18.20)

where

d∗ =
{

arg maxd∈C|Td
b−| if maxd∈C|Td

b−| ≤ maxd∈C|Td
b+|

arg maxd∈C|Td
b+| otherwise

(18.21)

is the dominating class in whichever of the two sets Tb−, Tb+ has less dominating class
count. The first term is the minimum dominating class count for the two intervals sep-
arated by the evaluated break, and it identifies which interval needs to be merged with
its left or right neighbor, by dropping its left or right bound from the set of breaks. The
second term is the maximum number of occurrences of the minimum-count dominating
class identified by the first term in the two intervals separated by the evaluated break,
multiplied by a 𝛾 coefficient. If the latter is sufficiently small (e.g., 𝛾 ≤

1|T| ), this will
make the second term matter only for breaking ties occurring when comparing breaks
with respect to the first term. In effect, the minimization of the above break utility func-
tion will first identify the interval with the least dominating class count and then choose
either its left or right bound, depending on whether the left or right neighbor has more
instances of its dominating class.

The above two-term break utility formula is constructed and can be explained similarly as
presented above for the instance count criterion. Assuming |Td∗

i | = minj=1,… ,kmaxd∈C|Td
j | is

the least per-interval dominating class count, the corresponding interval’s left and right bounds
are breaks bi−1 and bi (unless i = 1 or i = k). These breaks would then be evaluated as

𝜚T ,c(bi−1, a) =|Td∗
i | − 𝛾|Td∗

i−1| (18.22)

𝜚T ,c(bi, a) =|Td∗
i | − 𝛾|Td∗

i+1| (18.23)

Choosing the less of these two corresponds to choosing the neighbor interval with more
instances of the dominating class d∗.

The last interpretation of the dominating class count criterion is the most refined and
appears to make most sense. It attempts to always eliminate the single interval with the least
dominating class count by merging it with the one of its neighbors for which it is a better
match. While it requires somewhat more implementational and computational effort than
the interval-count criterion, it is more likely to deliver good quality discretization breaks.
Still, it remains useful mostly as a way to correct an overly fine-grained initial pure-class
discretization.

Example 18.4.4 The following R code implements the three versions of the dominating class
count break utility function discussed above and demonstrates their application.

## dominating class count break evaluation
## using the total dominating class count after merging
evdisc.dccount1 <- function(b, bl, br, v, class) { max(table(class[v>bl & v<=br])) }

## dominating class count break evaluation
## using the sum of individual dominating class counts before merging
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evdisc.dccount2 <- function(b, bl, br, v, class)
{
max(table(class[v>bl & v<=b])) + max(table(class[v>b & v<=br]))

}

## dominating class count break evaluation
## using the minimum individual dominating class count before merging
evdisc.dccount3 <- function(b, bl, br, v, class, gamma=1/length(v))
{
ccl <- table(class[v>bl & v<=b]) # class counts: left
ccr <- table(class[v>b & v<=br]) # and right

dcl <- which.max(ccl) # dominating classes: left
dcr <- which.max(ccr) # and right

dcmin <- ifelse(ccl[dcl]<=ccr[dcr], dcl, dcr)
min(ccl[dcl], ccr[dcr]) - gamma*max(ccl[dcmin], ccr[dcmin])

}

# dominating class count bottom-up discretization for the weatherc data
disc.bottomup(plaỹ., weatherc, 3, evalf=evdisc.dccount1)
disc.bottomup(plaỹ., weatherc, 3, evalf=evdisc.dccount2)
disc.bottomup(plaỹ., weatherc, 3, evalf=evdisc.dccount3)

# dominating class count bottom-up discretization for the Vehicle Silhouettes data
v.disc.bu.dc1 <- disc.bottomup(Class̃., v.train, 7, evalf=evdisc.dccount1)
v.disc.bu.dc2 <- disc.bottomup(Class̃., v.train, 7, evalf=evdisc.dccount2)
v.disc.bu.dc3 <- disc.bottomup(Class̃., v.train, 7, evalf=evdisc.dccount3)
summary(predict(v.disc.bu.dc1, v.train))
summary(predict(v.disc.bu.dc2, v.train))
summary(predict(v.disc.bu.dc3, v.train))

# dominating class count bottom-up discretization for the Glass data
g.disc.bu.dc1 <- disc.bottomup(Typẽ., g.train, 7, evalf=evdisc.dccount1)
g.disc.bu.dc2 <- disc.bottomup(Typẽ., g.train, 7, evalf=evdisc.dccount2)
g.disc.bu.dc3 <- disc.bottomup(Typẽ., g.train, 7, evalf=evdisc.dccount3)
summary(predict(v.disc.bu.dc1, g.train))
summary(predict(v.disc.bu.dc2, g.train))
summary(predict(v.disc.bu.dc3, g.train))

Misclassification count The dominating class count criterion may merge intervals with
different dominating classes, resulting in considerable class minorities, i.e., the new interval
containing several attribute values corresponding to instances of classes different than its
dominating class. No classification model using the discretized attribute alone would be
able to classify those instances correctly. They will be therefore referred to as misclassified
instances for a given set of discretization breaks. The misclassification count merge criterion
is an attempt to keep those minorities as small as possible by always merging intervals with
the least total number of instances additionally misclassified due to merging. It is therefore
not the misclassification count before or after merging for the two candidate intervals,
separated by the break being evaluated, but the raise thereof due to merging, which translates
to the following break utility function:

𝜚T ,c(b, a) =|Tb− ∪ Tb+| − max
d∈C

|Td
b− ∪ Td

b+|
− (|Tb−| − max

d∈C
|Td

b−| + |Tb+| − max
d∈C

|Td
b+|) (18.24)
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It calculates the misclassification count (for the interval that would be obtained after merging
and for the two candidates for merging) as the difference between the total instance count
and its dominating class count. Using this difference for break utility evaluation minimizes
the misclassification error of a basic single-attribute model that for each instance predicts the
dominating class of the corresponding interval.

If starting from pure-class initial intervals, with the minimum possible number of mis-
classified instances, the misclassification count merge criterion will always attempt to add as
few misclassified instances as possible. If starting from singleton intervals, it will do the same,
ultimately arriving at pure-class intervals and continuing from that point, until the stop criteria
are satisfied.

Notice that, unlike the merge criteria presented before, the misclassification count criterion
will always merge any two adjacent intervals with the same dominating class, as merging them
never adds new misclassified instances. While it may appear perfectly reasonable, it is not
necessarily always the best way to maximize the predictive power of the new discrete attribute,
since identically labeled intervals may still differ substantially in their class distribution, both
for the dominating class and minority classes.

Example 18.4.5 The following R code implements and demonstrates the misclassification
count-based break utility function.

## misclassification count break evaluation
evdisc.mcount <- function(b, bl, br, v, class)
{
mcount <- function(cond) { sum(cond) - max(table(class[cond])) }

mcount(v>bl & v<=br) - (mcount(v>bl & v<=b) + mcount(v>b & v<=br))
}

# misclassification count bottom-up discretization for the weatherc data
disc.bottomup(plaỹ., weatherc, 3, evalf=evdisc.mcount)

# misclassification count bottom-up discretization for the Vehicle Silhouettes data
v.disc.bu.mc <- disc.bottomup(Class̃., v.train, 7, evalf=evdisc.mcount)
summary(predict(v.disc.bu.mc, v.train))

# misclassification count bottom-up discretization for the Glass data
g.disc.bu.mc <- disc.bottomup(Typẽ., g.train, 7, evalf=evdisc.mcount)
summary(predict(g.disc.bu.mc, g.train))

Class impurity One deficiency of misclassification-count merging is that it is always
concerned about every single misclassified instance to the same extent regardless of whether
merging small- or large-count intervals. While for the former a single instance does indeed
make a substantial difference, it should not matter that much for the latter. One self-suggesting
modification that could address this issue would be using relative misclassification rates (i.e.,
per-interval misclassification error values) rather than absolute counts, but employing an
impurity measure is usually a better approach. This is because, while either misclassification
counts or rates are completely blind to the distribution of nonmajority classes, impurity
measures take it into account. Even for two-class classification tasks, with exactly one
nonmajority class, impurity measures, proven successful for decision tree growing, may turn
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out to be superior to simple misclassification rates, being able not to necessarily always
merge identically labeled adjacent intervals. This may help us to retain more predictive utility
of the discretized attribute.

Just like for the misclassification count criterion, it makes sense to use the change of
impurity due to merging rather than the actual impurity after merging for break utility eval-
uation. By comparing the impurity after merging with the impurity before merging we will
be able to assess the impurity raise due to merging, and then select the break that yields the
minimum raise. Using the impurity alone would lead us into merging intervals that have rather
low impurity after merging, which is not necessarily bad, but merging intervals for which the
impurity does not raise much due to merging is an arguably better idea. The impurity dif-
ference before and after merging could be considered a measure of how much predictively
useful information gets lost rather than how much is retained. The former is what one should
be primarily concerned with when selecting intervals to merge.

It is easy to notice, however, that both the impurity and (even more evidently) the impurity
increase applied as a merge criterion directly will strongly resist against merging even small
pure-class intervals with different classes if they have the same or similar instance count. This
is because such an operation would yield the maximum possible impurity increase (and the
maximum possible impurity after merging): from perfect purity before merging to perfect
impurity thereafter. More generally, it is likely to delay or entirely avoid merging small inter-
vals with different dominating classes. While this behavior may at first appear reasonable, it
actually leads to substantial problems. In many cases one or few huge-count intervals would
be created with the other left as small-count pure-class intervals, since the utility function
would often recommend dropping breaks that separate large-count intervals from small-count
ones. This is clearly undesirable and can be avoided by weighting the impurity-based break
utility with the total instance count after merging. This makes the discretization process more
sensitive to impurity increases that correspond to many instances. Using the entropy to mea-
sure impurity, which is by far the most popular choice, the proposed break evaluation function
may be defined as follows:

𝜚T ,c(b, a) = |Tb− ∪ Tb+|(ETb−∪Tb+
(c) − ETb−∪Tb+

(c|b)) (18.25)

where

ETb−∪Tb+
(c|b) = |Tb−||Tb− ∪ Tb+|ETb−

(c) +
|Tb+||Tb− ∪ Tb+|ETb+

(c) (18.26)

is, according to the definition presented in Section 2.5.3, the weighted entropy before merging
or, equivalently, the conditional entropy of the target concept in the merged interval given the
partitioning into subintervals by the break being evaluated.

Notice, by the way, that the impurity increase is no different from the mutual information
between the target concept and interval membership, calculated on the Tb− ∪ Tb+ set,
and instance count weighting makes it proportional to the corresponding log-likelihood
ratio statistic.

The class impurity criterion is an attempt to overcome the weaknesses of the misclassifi-
cation count criterion and its additional complexity is likely to pay off by better discretization
quality. The improvement is more likely to be observed when many intervals have to be
merged, i.e., when the final number of intervals is much less than the initial one obtained
by pure-class discretization (if started from singleton intervals, class impurity merging will
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clearly arrive at pure-class intervals at some point anyway, as it will merge intervals with
instances of the same class only in the first place).

Example 18.4.6 The following R code defines and demonstrates the evdisc.entropy

Ex. 2.4.26
dmr.stats

function that implements class impurity-based break evaluation, using the entropy
as the impurity measure, using the entropy and entropy.cond functions.

## entropy break evaluation
evdisc.entropy <- function(b, bl, br, v, class)
{
sum(v>bl & v<=br)*(entropy(class[v>bl & v<=br])-

entropy.cond(class[v>bl & v<=br], v[v>bl & v<=br]<=b))
}

# entropy bottom-up discretization for the weatherc data
disc.bottomup(plaỹ., weatherc, 3, evalf=evdisc.entropy)

# entropy bottom-up discretization for the Vehicle Silhouettes data
v.disc.bu.e <- disc.bottomup(Class̃., v.train, 7, evalf=evdisc.entropy)
summary(predict(v.disc.bu.e, v.train))

# entropy bottom-up discretization for the Glass data
g.disc.bu.e <- disc.bottomup(Typẽ., g.train, 7, evalf=evdisc.entropy)
summary(predict(g.disc.bu.e, g.train))

Class distribution dissimilarity It can easily be seen that the raise of class impurity due to
interval merging will be small if the class distribution for the corresponding subsets of training
instances is similar. This suggests that explicitly measuring and minimizing class distribution
dissimilarity (if it is supposed to represent break utility) for the two intervals separated by the
break being evaluated is another related and possibly useful merge criterion. Measuring class
distribution dissimilarity is equivalent to measuring the relationship between the target con-
cept (which is a discrete attribute) and interval membership (which can be considered a binary
attribute, indicating either the left or right of the two intervals separated by the break being
evaluated). This makes it possible to employ any relationship detection statistics presented in
Section 2.5.3, with the 𝜒2 statistic being the most popular choice. The corresponding break
utility function can be then defined as

𝜚T ,c(b, a) = 𝜒2
Tb−∪Tb+

(c, b) (18.27)

where

𝜒2
Tb−∪Tb+

(c, b) =
∑
d∈C

(|Td
b−| − ed

b−)
2

ed
b−

+
∑
d∈C

(|Td
b+| − ed

b+)
2

ed
b+

(18.28)

is the 𝜒2 statistic for target concept c and interval break b, and for s = −,+

ed
bs =

|Tbs| ⋅ |Td
b− ∪ Td

b+||Tb− ∪ Tb+| (18.29)

is the expected number of training instances of class d in the interval on the left (for s = −) or
right (for s = +) side of b, assuming no relationship between the target concept and interval
membership.
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Depending on the particular choice of the relationship detection measure employed,
break evaluation based on class distribution dissimilarity may or may not be prone to the
same effect of overly strong resistance against merging small-count intervals with different
dominating classes, possibly asking for instance count-based weighting as discussed above.
For the most popular 𝜒2 statistic it is not the case, as it implicitly includes instance count
weighting internally (with the relative distribution kept constant, the statistic’s value is
proportional to the data size).

As the class impurity criterion, the class distribution dissimilarity criterion belongs to the
most refined merge criteria for bottom-up discretization and may be expected to often yield
good results. It is in fact used by the best-known bottom-up discretization algorithm called
ChiMerge. As a matter of fact, the impurity-based and distribution dissimilarity-based break
utility functions can be actually considered variations of the same approach, which evaluates
breaks according to the strength of relationship between the target concept and interval
membership, with just different approaches to measuring this relationship. In particular,
as mentioned above, the impurity increase can be verified to be the same as the mutual
information, and with instance count weighting applied it becomes proportional to the
log-likelihood ratio statistic.

Example 18.4.7 The R code presented below implements and demonstrates class distribu-
tion dissimilarity-based break evaluation, using the 𝜒2 statistic, calculated by the standard
chisq.test function. Notice the use of the correct=FALSE argument which prevents
applying a small-data correction. While normally useful, it would ruin the capability of merg-
ing very small-count intervals reasonably, by making them always appear to have similar class
distributions.

## chi-square break evaluation
evdisc.chisq <- function(b, bl, br, v, class)
{
chisq.test(class[v>bl & v<=br], v[v>bl & v<=br]<=b, correct=FALSE)$statistic

}

# chi-square bottom-up discretization for the weatherc data
disc.bottomup(plaỹ., weatherc, 3,evalf=evdisc.chisq)

# chi-square bottom-up discretization for the Vehicle Silhouettes data
v.disc.bu.chi <- disc.bottomup(Class̃., v.train, 7, evalf=evdisc.chisq)
summary(predict(v.disc.bu.chi, v.train))

# chi-square bottom-up discretization for the Glass data
g.disc.bu.chi <- disc.bottomup(Typẽ., g.train, 7, evalf=evdisc.chisq)
summary(predict(g.disc.bu.chi, g.train))

18.4.2.4 Stop criteria

One stop criterion that is likely to be useful for all bottom-up discretization algorithms (and,
as we will see, for top-down algorithms as well) is the number of intervals to be created.
If used in combination with other stop criteria, it would be the minimum number of intervals
allowed (with no further merging permitted after reaching it), as those other stop criteria could
terminate the discretization process earlier). The latter are usually closely tied to the merge
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criteria discussed above. For each of the merge criteria it is straightforward to specify the
corresponding stop criterion with which it can be coupled:

Instance count. Stop if the minimum per-interval instance count is sufficiently large.

Dominating class count. Stop if the minimum per-interval dominating class count is suffi-
ciently large.

Misclassification count. Stop if the minimum per-interval misclassification count is suffi-
ciently large.

Class impurity. Stop if the minimum per-interval class impurity is sufficiently large.

Class distribution dissimilarity. Stop if the minimum class distribution similarity for a pair
of adjacent intervals is sufficiently large.

An alternative and nonequivalent, but closely related universal stop criterion could consist
in comparing the minimum value of the break utility function (indicating the best possible
break to be dropped) against a threshold, specified as a parameter:

min
b∈BT ,c(a)

𝜚T ,c(b, a) > 𝜃𝜚 (18.30)

This is actually adopted in the illustrative implementation of bottom-up discretization and
used in the examples presented above (more precisely, the negated version of this inequality
is used as a continuation condition).

18.4.3 Top-down discretization

The top-down discretization process is essentially a reverse of the bottom-up one. It starts
with one interval covering the whole co-domain of the original continuous attribute (i.e., with
no breaks) and then continues to add breaks until a satisfactory set of intervals is reached.

18.4.3.1 Algorithm scheme

Top-down discretization is described by the algorithm scheme presented below. It assumes that
a set of candidate breaks is maintained from which one new break is selected in each iteration,
corresponding to one existing interval being cut into two subintervals. Its exact operation is
controlled by a cut criterion used to select new breaks and stop criteria used to terminate the
process. The cut criterion is assumed to be represented by a break utility function 𝜚T ,c, as
before for bottom-up discretization, but this time it is to be maximized (i.e., the most useful
new break is added, whereas the least useful break was dropped in the bottom-up approach).

1: BT ,c(a) ∶= ∅;
2: initialize the set of candidate breaks B′

T ,c(a);
3: while B′

T ,c(a) ≠ ∅ and stop criteria are not satisfied do
4: b∗ ∶= arg maxb∈B′

T ,c(a)𝜚T ,c(b, a);
5: BT ,c(a) ∶= BT ,c(a) ∪ {b∗};
6: B′

T ,c(a) ∶= B′
T ,c(a) − {b∗};

7: end while

Since it does indeed look as a straightforward reverse of bottom-up discretization (with
just a separate candidate break set used), it might appear just like a rearranged version of
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the former, with only minor implementational differences and without substantial capability
differences. While indeed the two approaches to supervised discretization may be combined
with similar cut and stop criteria and may yield similar results, top-down discretization is
better suited to a much more common discretization scenario where the desired final number
of intervals is much less than the number of singleton or pure-class intervals. In such situations
it just needs to add a small number of breaks, avoiding a lot of work that is required for
bottom-up discretization to deal with many small-count intervals. This may not only mean
computational savings, but also different – and possibly better – results due to not having to
deal with small data subsets at any stage.

While the above formulation of the top-down discretization scheme is quite natural
and straightforward to implement, an alternative recursive formulation appears to be more
popular, where the algorithm receives an interval to discretize as its argument. It first uses
a single break to cut interval into two subintervals and then invokes itself for the latter. It is
noteworthy that whatever cut criterion is used by such recursive top-down discretization, it
will be only applied to select the best new break points within intervals, and not to determine
the order in which intervals should be divided. The latter will be clearly the depth-first
order implied by the recursive algorithm invocations. This will not have any impact on
the final results for stop criteria that only depend on the properties of individual intervals,
but will clearly matter a lot for the basic and common stop criterion of the (maximum)
number of intervals. The depth-first recursive formulation of top-down discretization is not
applicable with this stop criterion and the above best-first iterative formulation should be
used instead.

One possible advantage of the recursive version of top-down discretization is that it could
employ simpler cut criteria, as their responsibility is limited to selecting break points within
a single interval at a time. This may be indeed much easier than picking both an interval to
cut and a break to use. Still, with the best-first version being generally more useful and better
controllable, the remainder of this section will focus entirely on the latter.

It is worthwhile to notice that top-down discretization can be viewed as a special
simple case of decision tree growing, with only one continuous attribute available. Splits
selected at decision tree nodes correspond to discretization breaks and leaves to finally
obtained discretization intervals. It may be even possible to employ a decision tree growing
implementation to perform top-down discretization as long as it permits specifying stop
criteria appropriate for the latter.

Example 18.4.8 The top-down discretization scheme is implemented and demonstrated by

dmr.util
the following R code. It uses the closest.below, closest.above, and
insert.ord auxiliary functions for finding the left and right existing neighbor
breaks for a given candidate break as well as for inserting the selected candidate
break to the ordered vector of breaks, respectively. Similarly as before for bottom-up
discretization, the disc.topdown1 function has to be supplied with a break evaluation
function and, optionally, with a candidate-generation function that returns a set of candi-
date breaks to be considered, defaulting to pure-class discretization. Notice that the supplied
break evaluation function is internally wrapped to add checking for empty intervals (with no
instances) and prevent trying to break such intervals. For the purpose of demonstration, a
meaningless trivial break evaluation function is used that returns a candidate break’s value
as its utility, just like in Example 18.4.2. This has the effect of adding breaks in the greatest
first order.
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## top-down discretization for a single attribute
disc.topdown1 <- function(v, class, k=5, candf=disc.pure1, evalf, minev=0)
{
evalf.td <- function(b, bl, br, v, class)
{
if (any(v>bl & v<=br))
evalf(b, bl, br, v, class)

else
-Inf

}

breaks <- NULL
candidates <- candf(v, class)

utils <- mapply(evalf.td, candidates,
closest.below(candidates, breaks),
closest.above(candidates, breaks),
MoreArgs=list(v, class))

b <- which.max(utils)

while (length(candidates)>0 && length(breaks)+1<k && utils[b]>=minev)
{
breaks <- insert.ord(breaks, candidates[b])
candidates <- candidates[-b]
utils <- utils[-b]
if (b>1)
utils[b-1] <- evalf.td(candidates[b-1],

closest.below(candidates[b-1], breaks),
closest.above(candidates[b-1], breaks),
v, class)

if (b<=length(candidates))
utils[b] <- evalf.td(candidates[b],

closest.below(candidates[b], breaks),
closest.above(candidates[b], breaks),
v, class)

b <- which.max(utils)
}
breaks

}

## top-down discretization for a dataset
disc.topdown <- disc.all(disc.topdown1)

# top-down discretization of the temperature attribute in the weatherc data
disc.topdown1(weatherc$temperature, weatherc$play, 3,

evalf=function(b, bl, br, v, class) b)

# top-down discretization for the weatherc data
disc.topdown(plaỹ., weatherc, 3, evalf=function(b, bl, br, v, class) b)

18.4.3.2 Initialization

Literally speaking, the initialization of top-down discretization is trivial, as it simply starts
with the empty set of breaks, BT ,c(a) = ∅. It is however convenient conceptually – although not
necessary implementationally – to assume that a set of candidate breaks that are considered
by the cut criterion on each iteration, designated by B′

T ,c(a), is also explicitly maintained.
It is usually assumed to initially contain exactly one value between each pair of consecutive
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values of the attribute being discretized occurring in the training set, which is clearly the same
as the set of breaks for singleton intervals. As discussed above, it is most common to select
mid-points between every two values to separate as such breaks. One may notice, though,
that under any reasonable cut criterion no break between attribute values corresponding to
the instances of the same class would ever be added. This observation makes it possible to
exclude such breaks from the set of candidates, which is clearly equivalent to using pure-class
discretization breaks to initialize the set of candidate breaks for top-down discretization.

18.4.3.3 Cut criterion

To discuss different cut criteria that may be used to instantiate the generic top-down dis-
cretization scheme, we will adopt a similar notation as used before during the discussion of
the bottom-up approach. When considering a candidate break b ∈ B′

T ,c(a), we will designate
the closest less and greater previously added breaks in BT ,c(a) as b− and b+, and refer to the
following subsets of training instances:

Tb− ={x ∈ T | a(x) ∈ (b−, b]} (18.31)

Tb+ ={x ∈ T | a(x) ∈ (b, b+]} (18.32)

corresponding to the intervals between candidate break b and the closest existing breaks b−
and b+.

The cut criteria for top-down discretization may be direct counterparts of the bottom-up
merge criteria discussed above. In particular, useful cut criteria include:

Misclassification count. Add breaks that yield the greatest misclassification count
reduction.

Class impurity. Add breaks that yield the greatest class impurity increase.

Class distribution dissimilarity. Add breaks that yield intervals with the greatest class
distribution dissimilarity.

Whilst the two simplest merge criteria, based on instance count and dominating class
count, could also be adapted to top-down discretization, they have no counterparts that would
be truly useful as cut criteria and will not be considered. This is because what they could
be most reasonably used for is only determining which interval to divide rather than which
exactly possible break to use.

It is easy to verify that the very same formulae as presented before for merge criteria can
also serve as break utility function definitions corresponding to their cut criteria counterparts.
This perfect break utility function reusability is not at all surprising. While a merge criterion
selects a break to drop and a cut criterion selects a break to add, they may share exactly the
same measure of break utility, with the former minimizing it and the latter maximizing it for
break selection. As before for bottom-up discretization, one may expect the class impurity and
class distribution dissimilarity criteria to usually yield best discretization results. It is the for-
mer that is actually the most popular for top-down discretization, with the entropy being used
as the impurity measure. The resulting algorithm is commonly referred to as entropy-based
discretization.

As mentioned above, adopting the recursive formulation of bottom-up discretization
reduces the responsibility of the cut criterion to selecting breaks within a single interval at a
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time. In that case, simplified versions of some of the above cut criteria would be sufficient to
achieve the same effects. In particular, for the most popular class impurity criterion, it would
be sufficient just to use the weighted impurity after cutting, i.e., the conditional entropy after
cutting (if the entropy is used to measure the impurity):

ETb−∪Tb+
(c|b) = |Tb−||Tb− ∪ Tb+|ETb−

(c) +
|Tb+||Tb− ∪ Tb+|ETb+

(c) (18.33)

Neither subtracting it from the impurity before cutting ETb−∪Tb+
(c), nor applying instance

count weighting, would have any effect on the selected break, if Tb− ∪ Tb+ remains con-
stant due to dealing with a single interval only. Focusing on the preferred best-first version
of bottom-up discretization, though, we do not adopt any such simplifications of break utility
functions.

Example 18.4.9 The R code presented below demonstrates top-down discretization with the
misclassification count, class impurity (using the entropy), and class distribution dissimilar-
ity (using the 𝜒2 statistic) break evaluation functions, previously defined and used in merge
criteria examples for bottom-up discretization.

# misclassification count top-down discretization for the weatherc data
disc.topdown(plaỹ., weatherc, 3, evalf=evdisc.mcount)

# misclassification count top-down discretization for the Vehicle Silhouettes data
v.disc.td.mc <- disc.topdown(Class̃., v.train, 7, evalf=evdisc.mcount)
summary(predict.disc(v.disc.td.mc, v.train))

# misclassification count top-down discretization for the Glass data
g.disc.td.mc <- disc.topdown(Typẽ., g.train, 7, evalf=evdisc.mcount)
summary(predict.disc(g.disc.td.mc, g.train))

# entropy top-down discretization for the weatherc data
disc.topdown(plaỹ., weatherc, 3, evalf=evdisc.entropy)

# entropy top-down discretization for the Vehicle Silhouettes data
v.disc.td.e <- disc.topdown(Class̃., v.train, 7, evalf=evdisc.entropy)
summary(predict.disc(v.disc.td.e, v.train))

# entropy top-down discretization for the Glass data
g.disc.td.e <- disc.topdown(Typẽ., g.train, 7, evalf=evdisc.entropy)
summary(predict.disc(g.disc.td.e, g.train))

# chi-square top-down discretization for the weatherc data
disc.topdown(plaỹ., weatherc, 3, evalf=evdisc.chisq)

# chi-square top-down discretization for the Vehicle Silhouettes data
v.disc.td.chi <- disc.topdown(Class̃., v.train, 7, evalf=evdisc.chisq)
summary(predict.disc(v.disc.td.chi, v.train))

# chi-square top-down discretization for the Glass data
g.disc.td.chi <- disc.topdown(Typẽ., g.train, 7, evalf=evdisc.chisq)
summary(predict.disc(g.disc.td.chi, g.train))

18.4.3.4 Stop criteria

Similarly as for bottom-up discretization, the simplest useful stop criterion is based on the
number of discretization intervals. For the top-down approach, if used in combination with
other stop criteria, it would be the maximum number of intervals allowed (with no further
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cutting permitted after reaching it, as those other stop criteria could terminate the discretiza-
tion process earlier). As explained above, this criterion should not be used with the recursive
version of the top-down algorithm scheme, which divides intervals in a depth-first order.

Other reasonable stop criteria include:

Instance count. Stop if the maximum per-interval instance count is sufficiently small.

Dominating class count. Stop if the maximum per-interval dominating class count is suf-
ficiently small.

Misclassification count. Stop if the maximum per-interval misclassification count is suffi-
ciently small.

Class impurity. Stop if the maximum per-interval class impurity is sufficiently small.

Class distribution dissimilarity. Stop if the maximum class distribution dissimilarity for a
pair of adjacent intervals is sufficiently small.

The instance count and dominating class count criteria, although not found useful for can-
didate break selection, are worth listing here, since they are simple to implement and use while
capable of delivering satisfactory results in many cases. They can be used in combination with
any cut criteria. The remaining criteria are more refined and may sometimes perform better,
but setting the threshold parameters (to define “sufficiently small”) for them may be much
more difficult and they should be rather considered tied to the corresponding cut criteria. A
closely related and usually similarly useful universal stop criterion can be obtained, however,
by simply comparing the maximum value of the adopted break utility function (indicating the
best possible break to be added) against a threshold, specified as a parameter:

max
b∈B′

T ,c(a)
𝜚T ,c(b, a) < 𝜃𝜚 (18.34)

which stops adding breaks if the best possible break is not sufficiently good. The negated
version of this inequality is used as a continuation condition in the illustrative implementation
of top-down discretization presented and used in the previous example. It suffers from the
same inconvenience, related to parameter setup, although a reasonable heuristic for adjusting
the required minimum break utility can be adopted at least for the entropy-based cut criterion.
It is derived using the minimum description length principle and falls beyond the scope of
this book.

18.5 Effects of discretization

Since discretization is a part of the modeling process, its effects have to be therefore eval-
uated using an independent data subset. This can be accomplished by employing a selected
evaluation procedure, such as those presented in Section 7.3. For this evaluation procedure the
model creation process includes both discretization and model building using the discretized
dataset. It can be as simple as the hold-out procedure (i.e., holding out a separate data sub-
set for the evaluation purpose), although more refined and reliable procedures, such as k-fold
cross-validation, should be preferred when the data size and computational resources permit.

Example 18.5.1 A simple experiment that evaluates the effects of discretization is performed
by the following R code. It uses the datasets discretized using discretization models from the
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previous examples to create and evaluate decision tree and naïve Bayes classification models.

Ex. 7.2.1
dmr.claseval

Their test set performance is evaluated using the misclassification error,
implemented by the err function. Previously created models for original
dataset versions are included for comparison. Notice that pure-class discretiza-
tion models are not used. This is because the resulting discrete attributes have
large numbers of values, which makes model creation computationally expensive and overly
both time- and memory consuming.

# discretization models for the Vehicle Silhouettes data
v.disc <- list(nodisc=‘class<-‘(list(), "disc"),

ew=v.disc.ew, ef=v.disc.ef,
bu.ic1=v.disc.bu.ic1, bu.ic2=v.disc.bu.ic2,
bu.dc1=v.disc.bu.dc1, bu.dc2=v.disc.bu.dc2, bu.dc3=v.disc.bu.dc3,
bu.mc=v.disc.bu.mc, bu.e=v.disc.bu.e, bu.chi=v.disc.bu.chi,
td.mc=v.disc.td.mc, td.e=v.disc.td.e, td.chi=v.disc.td.chi)

# discretization models for the Glass data
g.disc <- list(nodisc=‘class<-‘(list(), "disc"),

ew=g.disc.ew, ef=g.disc.ef,
bu.ic1=g.disc.bu.ic1, bu.ic2=g.disc.bu.ic2,
bu.dc1=g.disc.bu.dc1, bu.dc2=g.disc.bu.dc2, bu.dc3=g.disc.bu.dc3,
bu.mc=g.disc.bu.mc, bu.e=g.disc.bu.e, bu.chi=g.disc.bu.chi,
td.mc=g.disc.td.mc, td.e=g.disc.td.e, td.chi=g.disc.td.chi)

# misclassification error values for the Vehicle Silhouettes data
v.err <- lapply(v.disc,

function(dm)
{
v.train.d <- predict(dm, v.train)
v.test.d <- predict(dm, v.test)
v.tree.d <- rpart(Class̃., v.train.d)
v.nb.d <- naiveBayes(Class̃., v.train.d)
list(tree=err(predict(v.tree.d, v.test.d, type="c"),

v.test.d$Class),
nb=err(predict(v.nb.d, v.test.d), v.test.d$Class))

})

# misclassification error values for the Glass data
g.err <- lapply(g.disc,

function(dm)
{
g.train.d <- predict(dm, g.train)
g.test.d <- predict(dm, g.test)
g.tree.d <- rpart(Typẽ., g.train.d)
g.nb.d <- naiveBayes(Typẽ., g.train.d)
list(tree=err(predict(g.tree.d, g.test.d, type="c"),

g.test.d$Type),
nb=err(predict(g.nb.d, g.test.d), g.test.d$Type))

})

# error comparison
v.tree.err <- sapply(v.err, function(e) e$tree)
g.tree.err <- sapply(g.err, function(e) e$tree)
v.nb.err <- sapply(v.err, function(e) e$nb)
g.nb.err <- sapply(g.err, function(e) e$nb)

barplot(v.tree.err, main="Vehicle Silhouettes, rpart", ylab="Error", las=2)
lines(c(0, 17), rep(v.tree.err[1], 2), lty=2)
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barplot(g.tree.err, main="Glass, rpart", ylab="Error", las=2)
lines(c(0, 17), rep(g.tree.err[1], 2), lty=2)

barplot(v.nb.err, main="Vehicle Silhouettes, naiveBayes", ylab="Error", las=2)
lines(c(0, 17), rep(v.nb.err[1], 2), lty=2)

barplot(g.nb.err, main="Glass, naiveBayes", ylab="Error", las=2)
lines(c(0, 17), rep(g.nb.err[1], 2), lty=2)

Barplots that compare the misclassification error for the two classification algorithms used,
with and without discretization, produced by the above code, are presented in Figures 18.1
and 18.2. As it could be expected, naïve Bayes models benefit from being supplied discretized
data more than decision trees. Discretization appears to always yield worse decision tree
models for the Vehicle Silhouettes data, sometimes substantially. Surprisingly, in this case
supervised discretization algorithms do not turn out superior to unsupervised ones. There is a
noticeable error reduction due to discretization in all the remaining cases, though, with super-
vised discretization sometimes – but not always – giving the best results. This experimental
study, serving the illustration purpose only, is simplified in many ways (the most important
of which are using two datasets only and no tuning of the number of intervals or the maxi-
mum/minimum break utility stop criteria), so it hardly provides any basis for generally reliable
conclusions.

18.6 Conclusion

Several traditional machine learning algorithms or their simple implementations assumed
discrete attributes, making discretization a necessity during the early period when data min-
ing emerged as a kind of “applied machine learning.” This has changed substantially since
then and most currently used practical algorithms and their implementations support both
discrete and continuous attributes. Even then there is sufficient motivation to at least consider
discretization as a usually optional, but potentially useful attribute transformation. And if dis-
cretization is often not a necessity, but a deliberate choice for model readability improvement,
computational savings, or overfitting prevention, its quality becomes even more important.

The two primitive unsupervised algorithms and the two more refined supervised ones (with
multiple instantiations using different break utility measures) presented in this chapter are
far from being sufficient representatives of the variety of existing discretization techniques,
particularly those more recently developed. They should be sufficient, though, to highlight the
utility of discretization and its usage scenarios. The modeling perspective, according to which
discretization algorithms use the training set to create discretization models (represented as
simply as by sets of interval breaks) applicable to new data from the same domain is essential
for the latter, although not always properly recognized and adhered to.

18.7 Further readings

The utility of discretization and the importance of its quality has gained appreciation over the
last two decades. Most work of discretization occured in the area of machine learning, in which
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Figure 18.1 The barplots of the test set misclassification error for the decision tree models
using discretized attributes.

classification algorithms that “prefer” discrete attributes, such as decision trees, rule induc-
tion, or the naïve Bayes classifier, are much more often studied than in statistics. Contemporary
data mining books that cover such algorithms usually include an adequate representation of
discretization techniques as well (e.g., Cios et al. 2007; Han et al. 2011, Tan et al. 2013,
Witten et al. 2011). There are also numerous review articles written and experimental com-
parisons performed over the years that can be referred to for description of a greater variety
of algorithms and information on their performance (Aguilar et al. 2004; Dougherty et al.
1995; Garcia et al. 2013; Kotsiantis and Kanellopoulos 2006; Liu et al. 2002). They present
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Figure 18.2 The barplots of the test set misclassification error for the naïve Bayes models
using discretized attributes.

a much broader spectrum of discretization techniques than this chapter, but do not put similar
emphasis on the modeling view of discretization.

The increase of interest in discretization started from the works of Catlett (1991) and
Kerber (1992). The former contributed a basic top-down entropy-based discretization
algorithm and the latter the bottom-up ChiMerge algorithm using the 𝜒2 statistic. Both these
algorithms were subsequently investigated and refined by other authors. Fayyad and Irani
(1992) examined and confirmed the suitability of the entropy for interval break evaluation.
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Shortly thereafter they introduced a minimum description length (MDL, Grünwald 2007;
Rissanen 1978) stop criterion for top-down discretization, making the entropy-based
algorithm capable of automatically adjusting the best number of intervals (Fayyad and Irani
1993). In this version, it remains probably the most widely used discretization algorithm.
Similar capabilities of “automatic stop criteria” were introduced to the 𝜒2-based bottom-up
discretization in a different way, by observing class inconsistency and adjusting the p-value
level below which no merging is allowed (Liu and Setiono 1997; Su and Hsu 2005; Tay and
Shen 2002). Bay (2001) pointed out the deficiencies of the common practice of discretizing
one continuous attribute at a time and proposed a multivariate bottom-up algorithm that works
with multiple continuous attributes simultaneously. Boulle (2004) proposed a bottom-up
algorithm using the 𝜒2 statistic to evaluate the quality of the discretization globally (consid-
ering all intervals) rather than locally (i.e., for particular adjacent interval pairs). Pfahringer
(1995) defined an MDL-based discretization quality measure and used it globally to select
the best subset of interval breaks out of a candidate set obtained by fixed-depth top-down
discretization. Holte (1993) adopted (nearly) pure-class discretization mechanism for his
simple One-Rule classification algorithm, restricted to a fixed minimum interval count.

Several other techniques have been developed, which indicates that discretization remains
an attractive research topic with still some substantial space for improvements (e.g., Bondu
et al. 2010; Ching et al. 1995; Kurgan and Cios 2004; Liu and Wang 2005; Zighed et al.
1998; Zou et al. 2013). While most of this work does not make any assumptions about the
classification algorithm that would be applied to the discretized data, the special case of the
naïve Bayes classifier has also received some interest. Hsu et al. (2003) analyzed the effects
of discretization for this algorithm – usually yielding improved predictive performance – and
proposed a lazy form of discretization performed at the time of prediction, when conditional
attribute value probabilities are actually needed. Yang and Webb (2009) identified sufficient
conditions for useful naïve Bayes discretization and proposed algorithms that satisfy them in
an efficient way.

References

Aguilar J, Bacardit J and Divina F 2004 Experimental evaluation of discretization schemes for rule
induction Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2004).
Springer.

Bay SD 2001 Multivariate discretization for set mining. Knowledge and Information Systems 3,
491–512.

Bondu A, Boulle M and Lemaire V 2010 A non-parametric semisupervised discretization method.
Knowledge and Information Systems 24, 35–57.

Boulle M 2004 Khiops: A statistical discretization method of continuous attributes. Machine Learning
55, 53–69.

Catlett J 1991 On changing continuous attributes into ordered discrete attributes Proceedings of the
European Working Session on Learning. Springer.

Ching JY, Wong AKC and Chan KCC 1995 Class-dependent discretization for inductive learning from
continuous and mixed-mode data. IEEE Transactions on Pattern Analysis and Machine Intelligence
17, 641–651.

Cios KJ, Pedrycz W, Swiniarski RW and Kurgan L 2007 Data Mining: A Knowledge Discovery
Approach. Springer.



Trim size: 170mm x 244mmCichosz c18.tex V3 - 11/04/2014 10:22 A.M. Page 557

REFERENCES 557

Dougherty J, Kohavi R and Sahami M1995 Supervised and unsupervised discretization of continu-
ous features Proceedings of the Twelfth International Conference on Machine Learning (ICML-95).
Morgan Kaufmann.

Fayyad UM and Irani KB 1992 On the handling of continuous-valued attributes in decision tree gener-
ation. Machine Learning pp. 87–102.

Fayyad UM and Irani KB1993 Multi-interval discretization of continuous-valued attributes for classifi-
cation learning Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence
(IJCAI-93). Morgan Kaufmann.

Garcia S, Luengo J, Sáez JA, López V and Herrera F 2013 A survey of discretization techniques: Tax-
onomy and empirical analysis in supervised learning. IEEE Transactions on Knowledge and Data
Engineering 25, 734–750.

Grünwald P 2007 The Minimum Description Length Principle. MIT Press.
Han J, Kamber M and Pei J 2011 Data Mining: Concepts and Techniques 3rd edn. Morgan Kaufmann.
Holte RC 1993 Very simple classification rules perform well on most commonly used datasets. Machine

Learning 11, 63–90.
Hsu CN, Huang HJ and Wong TT 2003 Implications of the Dirichlet assumption for discretization of

continuous variables in naive Bayesian classifiers. Machine Learning 53, 235–263.
Kerber R 1992 ChiMerge: Discretization of numeric attributes Proceedings of the Tenth National Con-

ference on Artificial Intelligence (AAAI-92). AAAI Press.
Kotsiantis S and Kanellopoulos D 2006 Discretization techniques: A recent survey. GESTS International

Transactions on Computer Science and Engineering 32, 47–58.
Kurgan LA and Cios KJ 2004 CAIM discretization algorithm. IEEE Transactions on Knowledge and

Data Engineering 16, 145–153.
Liu H, Hussain F, Tan CL and Dash M 2002 Discretization: An enabling technique. Data Mining and

Knowledge Discovery 6, 393–423.
Liu H and Setiono R 1997 Feature selection via discretization. IEEE Transactios on Knowledge and

Data Engineering 9, 642–645.
Liu X and Wang H 2005 A discretization algorithm based on a heterogeneity criterion. IEEE Transac-

tions on Knowledge and Data Engineering 17, 1166–1173.
Pfahringer B 1995 Compression-based discretization of continuous attributes Proceedings of the Twelfth

International Conference on Machine Learning (ICML-95). Morgan Kaufmann.
Rissanen J 1978 Modeling by shortest data description. Automatica 14, 465–658.
Su CT and Hsu JH 2005 An extended Chi2 algorithm for discretization of real value attributes. IEEE

Transactions on Knowledge and Data Engineering 17, 437–441.
Tan PN, Steinbach M and Kumar V 2013 Introduction to Data Mining 2nd edn. Addison-Wesley.
Tay FEH and Shen L 2002 A modified Chi2 algorithm for discretization. IEEE Transactions on Knowl-

edge and Data Engineering 14, 666–670.
Witten IH, Frank E and Hall MA 2011 Data Mining: Practical Machine Learning Tools and Techniques

3rd edn. Morgan Kaufmann.
Yang Y and Webb GI 2009 Discretization for naive-Bayes learning: Managing discretization bias and

variance. Machine Learning 74, 39–74.
Zighed DA, Rabaseda S and Rakotomalala R 1998 Fusinter: A method for discretization of con-

tinuous attributes for supervised learning. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 6, 307–326.

Zou L, Yan D, Karimi HR and Shi P 2013 An algorithm for discretization of real value attributes based
on interval similarity. Journal of Applied Mathematics 2013, 8.



Trim size: 170mm x 244mmCichosz c19.tex V3 - 11/04/2014 10:23 A.M. Page 558

19

Attribute selection

19.1 Introduction

Unlike the classification, regression, or clustering tasks, the attribute selection task is not a data
mining task per se, as – contrary to the former – it is not concerned with delivering models
representing generalizations of predictively useful relationships discovered in the data. While
the results of attribute selection – taking the form of a subset of attributes – can be interesting
and insightful on their own – there is always another task (usually classification, regression, or
clustering) for which attribute selection serves as preprocessing, and which provides the moti-
vation, context, and quality criteria therefore. This puts attribute selection in the same category
as data transformation techniques discussed in Chapter 17. What distinguishes attribute selec-
tion from the latter is that it often requires much more refined and computationally demanding
algorithms to be adequately performed, and its impact on the final model quality may be even
more substantial. It cannot be therefore reduced to something purely technical and trivial by
any means, and definitely deserves more interest than it usually receives.

Example 19.1.1 Attribute selection algorithms presented in this chapter will be illustrated

dmr.data
by R code examples, using the toy weather, weatherc, and weatherr datasets from
Examples 1.3.1, 1.3.2, and 1.4.1, as well as the more realistic Vehicle Silhouettes,
Soybean, and Boston Housing datasets from the mlbench package. The follow-
ing R code sets up the environment for these demonstrations by loading the datasets, as well
as several DMR packages providing auxiliary functions and the rpart package for creating
decision and regression tree models. The larger datasets are split into train and test subsets for
subsequent demonstrations of the effects of attribute selection.

Data Mining Algorithms: Explained Using R, First Edition. Paweł Cichosz.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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library(dmr.claseval)
library(dmr.disc)
library(dmr.regeval)
library(dmr.stats)
library(dmr.trans)
library(dmr.util)

library(rpart)

data(weather, package="dmr.data")
data(weatherc, package="dmr.data")
data(weatherr, package="dmr.data")

data(Vehicle, package="mlbench")
data(Soybean, package="mlbench")
data(BostonHousing, package="mlbench")

set.seed(12)

rv <- runif(nrow(Vehicle))
v.train <- Vehicle[rv>=0.33,]
v.test <- Vehicle[rv<0.33,]

rs <- runif(nrow(Soybean))
s.train <- Soybean[rs>=0.33,]
s.test <- Soybean[rs<0.33,]

rbh <- runif(nrow(BostonHousing))
bh.train <- BostonHousing[rbh>=0.33,]
bh.test <- BostonHousing[rbh<0.33,]

19.2 Attribute selection task

The attribute selection task essentially consists in selecting a subset of originally available
attributes to be subsequently used for model creation. This section outlines the motivation
behind attribute selection and discusses the definition of the task in more detail.

19.2.1 Motivation

As mentioned above, identifying a subset of predictively useful attributes provides possibly
interesting insights about the domain and can impact the data mining process, but the primary
motivation is the hope for better models. Although reducing the informational content of the
data might appear harmful, using a smaller subset of available attributes can actually improve
the true performance of created models by reducing the risk of overfitting. Less attributes
means a smaller space to search during model construction and less opportunities to make
wrong decisions and arrive at misleading, insufficiently justified generalizations.

Contrary to a popular misconception, attribute selection is not usually motivated by com-
putational savings, possible when creating and applying models using a smaller attribute
subset. This is because the attribute selection process is often much more demanding com-
putationally than actual model building, and would pay off in computational terms only if a
particularly simple attribute selection algorithm is applied or the selected attribute subset is
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subsequently used for creating a large number of models (e.g., based on different data samples,
using different modeling algorithms with different parameter settings, etc.).

With that being said, reducing the number of attributes is usually desirable even if it does
not improve but only retains the predictive performance. This is because models using smaller
attribute subsets are easier to inspect and understand as well as more efficient and safer to
apply. In particular, they are less likely to be affected by possible data quality issues at the
time of prediction.

19.2.2 Task definition

Given the nature of the attribute selection task as preprocessing for inductive learning tasks,
it is not surprising that it inherits the major parts of its definition from the latter. In particular,
it adopts exactly the same view of the data as a set of instances from a domain, described by
a number of attributes, more extensively discussed in Section 1.2.

19.2.2.1 Target task

The modeling task for which attribute selection is to be performed is the target task. It is
usually one of the three major inductive learning tasks, classification, regression, or clustering.

19.2.2.2 Target algorithm

For some attribute selection methods it is necessary to specify not only the target modeling
task, but also the target algorithm that will be used for model creation.

19.2.2.3 Training set

Attribute selection is often performed on the same dataset which serves as the training set for
the target task. It is not uncommon to use a smaller subset thereof when computational sav-
ings are necessary, given the computational expense associated with most attribute selection
algorithms. For sufficiently large datasets, entirely separate subsets can be used for attribute
selection and for subsequent model creation, making the attribute selection training set disjoint
with the modeling training set.

The exact usage of the training set heavily depends on a particular attribute selection
algorithm. In particular, attribute selection algorithms may perform some data partitioning
internally and use different subsets for different operations (e.g., create a model on one subset
and evaluate it on another subset). Regardless of such internal data management issues, from
the external perspective the attribute selection training set should be viewed as the set of all
instances that are used in any way and in any part of the attribute selection process and may
have any impact on its final outcome.

As underlined in Section 7.3.2, reliable model performance estimates can be only obtained
on data strictly separate from that used in the modeling process. Otherwise there is a signif-
icant risk of evaluation overfitting, i.e., arriving at unreliably optimistic model performance
estimates. Whenever attribute selection becomes a part of the modeling process, the attribute
selection training set clearly becomes a part of the data that impacts the finally obtained model,
even if it is entirely disjoint with the training set supplied to the applied modeling algorithm.
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It is therefore important to strictly separate the data used for attribute selection from that
subsequently used for the evaluation of models created when performing the target task after
attribute selection.

19.2.2.4 Attribute subset

The attribute selection task consists in finding a subset of the set of all attributes defined on the
domain and available in the training set to be subsequently used for the target task. Roughly
speaking, this subset should be substantially smaller than the original full set of attributes
yet sufficient to obtain good quality models. The exact criteria to be satisfied by the selected
subset usually take one of the following forms:

• the smallest subset that makes it possible to obtain a model of a specified minimum
estimated quality (e.g., the same as with the full original set of attributes),

• a subset of a specified maximum size that makes it possible to obtain a model of the
best estimated quality,

• a subset that makes it possible to obtain a model of the best estimated quality, regardless
of the size,

or some mixture of these three. Most typically, maximizing the estimated model quality is
the primary criterion, with the preference for smaller attribute subsets playing a supplemen-
tary role.

19.2.3 Algorithms

Any algorithm that can use a provided training set to select a subset of attributes for a specified
target task, meeting criteria like those presented above, can be considered an attribute selection
algorithm. Some attribute selection algorithms may be dedicated only to particular target tasks
and particular target algorithms. General-purpose attribute selection algorithms can be applied
to select attributes for arbitrary target algorithms, and – sometimes – also for different target
tasks. They fall into two main categories:

Attribute selection filters. Algorithms that rank single attributes or attribute subsets with
respect to some utility measures, dependent on the target task, but independent of the
target algorithm.

Attribute selection wrappers. Algorithms that rank attribute subsets with respect to the
estimated true performance of models obtained by applying the target algorithm to the
training set using these attribute subsets.

The primary difference between these two is in the criteria used to estimate the utility
of candidate attribute subsets. For the latter, it involves actually building a model using the
attribute subset to be evaluated by applying the target algorithm, while for the former some
other (usually, but not necessarily simpler) utility criteria are used. Some popular filtering
attribute selection algorithms actually estimate the utility of single attributes only rather than
of attribute subsets, generating an attribute ranking that can be used to select a number of
top-ranked attributes.
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19.3 Attribute subset search

A search strategy is needed for any attribute selection technique that is based on evaluating
attribute subsets rather than single attributes. This includes primarily attribute selection wrap-
pers presented in Section 19.5, but also some of attribute selection filters presented in Section
19.4. An attribute selection search strategy is responsible for generating candidate attribute
subsets in a systematic, but nonexhaustive way. Ideally, it should make it possible to identify
a near-optimum attribute subset after examining only a fraction of the whole attribute sub-
set space. It becomes particularly important if the space is huge, which is usually the case,
unless the number of attributes is small (which would make attribute selection questionable,
though).

19.3.1 Search task

Attribute selection search is an instantiation of the generic search task which casts problem
solving as traversing the space of problem states, searching for those that represent good
solutions. Problem solving by search belongs to the most thoroughly studied topics in artificial
intelligence and for the most part it lies beyond the scope of our interest in this chapter; hence,
it will be only briefly and superficially discussed here, to the extent necessary to present the
most common attribute selection search strategies.

A search task is usually defined by specifying:

State space. The set of all possible states of the problem to be solved.

Operators. Actions that generate one or more new states based on the current state.

Initial state. The state at which the problem solving process starts.

Final states. The subset of states corresponding to acceptable problem solutions.

Evaluation function. (Optionally) a function that evaluates the quality of problem solutions
represented by final states.

Cost function. (Optionally) a function that assigns a cost value to each operator application.

The task then consists in finding a minimum-cost sequence of operators that leads from the
initial state to a possibly best-evaluated final state. An algorithm capable of performing this
task is a search algorithm. The major component of any search algorithm is its search strat-
egy, responsible for selecting next states out of all those that can be generated by applying the
available operators to the current state, as well as for determining when the search for bet-
ter solutions should be terminated, after one or more acceptable solutions have been already
found. There are two major genres of those:

Blind (uninformed). Not using any information on the properties of particular states.

Heuristic (informed). Using information on the properties of particular states, usually rep-
resented by the numerical values of a heuristic function which indicates which states
should be preferred.

The purpose of the latter is to improve the efficiency of the search process by making it possible
to arrive at a good solution without visiting an excessive number of states. In general, the
heuristic function should not be confused with the evaluation function: the former is applicable
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to any state and indicates how promising it is as the next search direction whereas the latter is
applicable to final states only and measures the quality of problem solutions they represent.

There are several variations of the search task definition depending on the particular type
of problem to be solved. For some problems there is no evaluation function, since there is
only one final state or all final states represent equally good solutions. For some problems
there is no cost function, since it is only the quality of the solution that matters and not the
number of steps required to arrive at it. In fact, for most search task instantiations one would
either have the evaluation function or the cost function specified, but rarely both. When the
cost function is specified, final states are often perfectly known a priori and the purpose of the
search process is to find the sequence of operator applications that transform the initial state
to one of them. When the evaluation function is specified, there are usually many final states
(or, sometimes, even all states are final) and the purpose of the search process is to just find
one that is not far from the best, regardless of the sequence of operators that is used to reach
it. The latter is actually the case for attribute selection search, where:

• the state space consists of all possible nonempty attribute subsets,

• all states are final since all attribute subsets can be accepted as selection results,

• a possibly best subset needs to be found,

• the initial state and operators can be defined arbitrarily as long as they serve the above
purpose, which makes it possible to consider them elements of the search strategy rather
than of the task.

Since all states are final, the same function can be used as the evaluation function and as the
heuristic function. Although this is not necessarily a universally good idea for all search tasks
with this property, it tends to work well for attribute selection search. This assumption, with
the evaluation function being already preselected, reduces the design of an attribute selec-
tion search strategy to determining the initial state, the available search operators, the next
states selection criteria based on the evaluation function, and the stop criteria that control the
termination of the search process.

19.3.2 Initial state

There are two natural possible initial states for attribute selection search:

• the empty attribute set,

• the complete original attribute set,

and one of those two is adopted in most situations. Sometimes it may make sense to start from
a random attribute set (particularly if attribute selection is to be performed several times, with
the ultimately best subset selected from the outcomes of these multiple runs) or from a partic-
ular subset preselected based on the available domain knowledge or using a simple attribute
selection algorithm that does not require subset space search (usually a simple statistical filter).

Example 19.3.1 The following R code defines two one-line functions that initialize attribute
selection search either to the subset containing all or none of the original attributes. The func-
tions are demonstrated using attribute names for the weather data.
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## attribute selection search initialization
asel.init.none <- function(attributes) { character(0) }
asel.init.all <- function(attributes) { attributes }

# attribute selection search initialization for the weather data
asel.init.none(names(weather)[-5])
asel.init.all(names(weather)[-5])

19.3.3 Search operators

With the state space consisting of all possible attribute subsets the role of search operators is
to generate new subsets based on the current subset. The two simplest and most natural ways
of doing this are:

Attribute addition. Adding a single attribute to the current subset (unless it already contains
all attributes) – applied to an attribute subset A, it generates |A′| new subsets, one for
each a ∈ A′, where A′ denotes the set of attributes from the complete original attribute
set that are not in A.

Attribute removal. Removing a single attribute from the current subset (unless it already
contains one attribute only) – applied to an attribute subset A, it generates |A| new sub-
sets, one for each a ∈ A.

Note that it makes little sense to consider any more complex operators that add or remove
multiple attributes at a time (or add some attributes while removing some other attributes) as
these two are sufficient to make a transition between two arbitrary attribute subsets possible
in a number of steps that is bound by the sum of their sizes. Adding or removing even a single
attribute in an attribute subset may have huge impact on its predictive utility, which makes it
hard to justify changing more than one attribute at a time.

19.3.4 State selection

With the two possible initial states and the two search operators presented above there are
several possibilities of organizing the search process. The following two basic approaches are
obtained when only one search operator is used:

Forward selection. Start from an empty set as the initial state and use the attribute addition
operator only.

Backward elimination. Start from the complete original attribute set as the initial state and
use the attribute removal operator only.

They keep the search process one-directional and monotonic with respect to attribute subset
size, which prevents excessive computational expense, but may lead to suboptimal results,
since attribute subset utility does not necessarily change monotonically with attribute sub-
set size.

By permitting the use of the other operator in each of these two simple search strategies
one can increase the chance of arriving at a good finally selected subset. The downside of
such extensions is the increased search algorithm complexity and computational cost. The
latter results not only from the usually greater number of evaluated attribute subsets, but also
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from the necessity of preventing search loops. While it is straightforward to forbid directly
going back to the previous state, in general loop prevention would require memorizing all
states (attribute subsets) visited so far to avoid considering them again.

Example 19.3.2 Functions that implement forward and backward next state generation for
attribute selection search are defined and demonstrated by the R code presented below.

## forward attribute selection search next state generation
asel.next.forward <- function(subset, attributes)
{
lapply(setdiff(attributes, subset), function(a) c(subset, a))

}

## backward attribute selection search next state generation
asel.next.backward <- function(subset, attributes)
{
if (length(subset)>1)
lapply(1:length(subset), function(i) subset[-i])

else
list()

}

# attribute selection next state generation for the weather data
asel.next.forward(c("outlook", "humidity"), names(weather)[-5])
asel.next.backward(c("outlook", "humidity"), names(weather)[-5])

19.3.5 Stop criteria

With pure forward selection and backward elimination there is a natural ultimate stop cri-
terion, which terminates search when no next states can be generated by the corresponding
attribute addition or attribute removal operator. In practice, such ultimate stop criteria are usu-
ally supplemented with some mechanism that prevents continuing search when there is little
hope for further improvement. This is usually achieved by specifying the maximum num-
ber of search steps without the improvement of the evaluation function value. This is not the
case for hybrid strategies that use both the attribute addition and removal operators, which
can always generate next states unless they are equipped with some form of state memory to
avoid re-vising past states.

19.3.5.1 Additional preference criteria

The subset evaluation function, guiding the attribute subset space search process, is primar-
ily based on the predictive utility of candidate subsets. It may be measured in several ways,
specific to particular search-based attribute selection algorithms. If any other criteria, apart
from subset predictive utility, are adopted for a particular attribute selection task, they can
be incorporated into the search evaluation function as well. This may include, in particular,
preference for smaller attribute subsets or domain-specific attribute costs. Both of these can
be represented by appropriate penalty terms added to the predictive utility estimate. In par-
ticular, one simple approach to introduce the preference for smaller subsets when evaluating
attribute subset A is to add a penalty term 𝛾|A|, where 𝛾 is a penalty coefficient that controls
the tradeoff between subset size and utility.
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19.3.5.2 Greedy search

Regardless of whether using forward selection, backward elimination, or a mix of these two,
at each search step a number of next states can be generated. The evaluation function (which
plays the role of the heuristic function for attribute selection search) applied to all of them
indicates which one will be selected for the next step. In the simplest and most common case
all the other candidate subsets are discarded. This approach can be referred to as greedy search
and is described by the algorithm presented below. Depending on the particular initial state,
search operators, and stop criteria choices, it can be instantiated into a several different search
strategies, including greedy forward selection and greedy backward elimination as well as
hybrids of these two.

1: initialize A; A∗ ∶= A;
2: repeat
3: if stop criteria are satisfied then return A∗;
4: end if
5: use search operators to generate the set of candidate next attribute subsets S;
6: select the best-evaluated subset A ∈ S;
7: if A is better than A∗ then
8: A∗ ∶= A;
9: end if

10: until true;

More refined search strategies are also possible that preserve more than one best-evaluated
subset, either to use them all for candidate generation in the next step, or to possibly consider
them later when the search path starting from the best subset no longer appears promising. It
may be also reasonable to consider for candidate generation one or more of the best subsets
generated on any iteration so far rather than just on the single last iteration. In any case, it is
important to keep track of the best subset found so far, returned when the stop criteria for the
search process are satisfied.

Of the two basic variants of greedy search, forward selection and backward elimination,
the former may be usually expected to yield smaller subsets (as it starts from the empty subset).
On the other hand, the latter is likely to be faster (as long as the cost of the modeling algorithm
does not heavily depend on the number of attributes), since – starting from the full original
attribute set – it may encounter the no further improvement stop condition sooner.

Example 19.3.3 The R code presented below implements a generic greedy search strategy
for attribute selection. The asel.search.greedy function iteratively generates and
evaluates candidate subsets, keeping track of the best subset found so far, until a spec-
ified maximum number of iterations lead to no improvement. The evaluation function
specified via the evalf argument is assumed to assign higher values to better attribute
subsets, which means it will be maximized. The penalty parameter specifies the penalty
coefficient used to incorporate preference for smaller attribute subsets. The exact search
strategy used is specified by providing the initf and nextf arguments, which are
functions used to generate the initial attribute subset and the candidate next subsets. The
asel.init.all and asel.init.none functions defined in Example 19.3.1 (returning
the empty set of attributes, to initialize forward selection, and returning the set of all
attributes, to initialize backward elimination, respectively) can be used for the former and
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the asel.next.forward and asel.next.backward functions from Example 19.3.2
(generating candidate next subsets by forward selection and by backward elimination,
respectively) for the latter (with backward elimination settings used by default). The search
process terminates when no new candidate subsets can be generated or the number of search
steps without evaluation improvement exceeds the value specified by the max.noimp
parameter. The asel.search.greedy function is demonstrated using the weather
data with a trivial and useless evaluation function returning a constant value of 1, serving
the illustration purpose only. There will be several opportunities to demonstrate attribute
subset space search with more meaningful evaluation functions when illustrating particular
search-based attribute selection algorithms.

## greedy attribute selection search
asel.search.greedy <- function(attributes, target, evalf,

initf=asel.init.all, nextf=asel.next.backward,
max.noimp=3, penalty=0.01)

{
ev <- function(subset)
{
ifelse(is.finite(v<-evalf(subset, target)), v-penalty*length(subset)*abs(v), v)

}

best.subset <- subset <- initf(attributes)
best.eval <- eval <- ev(subset)
noimp <- 0

while (noimp < max.noimp)
{
candidates <- nextf(subset, attributes)
if (length(candidates)>0)
{
cand.eval <- sapply(candidates, ev)
cand.best <- which.max(cand.eval)
noimp <- ifelse(cand.eval[cand.best]>eval, 0, noimp+1)
subset <- candidates[[cand.best]]
eval <- cand.eval[cand.best]
if (eval>best.eval)
{
best.subset <- subset
best.eval <- eval

}
}
else
break

}

list(subset=best.subset, eval=best.eval)
}

# greedy attribute selection search for the weather data
asel.search.greedy(names(weather)[-5], "play", evalf=function(subset, target) 1)
asel.search.greedy(names(weather)[-5], "play", evalf=function(subset, target) 1,

penalty=0)
asel.search.greedy(names(weather)[-5], "play", evalf=function(subset, target) 1,

initf=asel.init.none, nextf=asel.next.forward)
asel.search.greedy(names(weather)[-5], "play", evalf=function(subset, target) 1,

initf=asel.init.none, nextf=asel.next.forward, penalty=0)
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Not surprisingly, the empty attribute subset is returned in all cases except when running
backward elimination with no subset size penalty, when the full attribute set is returned.

19.4 Attribute selection filters

The filtering approach to the attribute selection task is based on evaluating individual attributes
or candidate attribute subsets with respect to their predictive utility. Utility measures used for
this purpose are task dependent (i.e., they depend on the target task), but algorithm inde-
pendent (i.e., they do not depend on the target algorithm). With these basic features being
common, there is a variety of attribute selection filters, some representatives of which are
presented in this section.

Two major flavors of filtering attribute selection algorithms can be distinguished depend-
ing on whether they evaluate individual attributes or candidate attribute subsets. The former
generate attribute utility ranks, which can be used to select a number of top-ranked attributes
by cutting off a portion of the obtained ranking. Such algorithms can be fully specified by the
adopted utility measure and cutoff criteria. The latter consider a number of candidate attribute
subsets and select the one with the highest estimated utility. They can be specified by the
adopted utility measure and search strategy for searching the space of candidate subsets.

19.4.1 Simple statistical filters

A particularly popular approach to attribute selection is based on applying statistical measures
of relationship as attribute utility measures. The idea is to evaluate attributes with respect to the
strength of their relationship to the target attribute of the target task, i.e., the target concept for
the classification task or the target function for the regression task. For the clustering task, an
attribute representing an external labeling of instances or cluster membership with respect to a
previously created clustering model, as used by external clustering quality measures discussed
in Section 14.4, could serve sometimes the same purpose.

The exact kind of statistical relationship measures that can be used depends on attribute
types and the target task. Depending on whether the attribute to be evaluated and the target
attribute are discrete or continuous, we may need statistics for measuring the relationship:

Between two discrete attributes. Like the symmetric uncertainty, the mutual information,
or the 𝜒2 statistic presented in Section 2.5.3 (with the first of those being often preferred
due to its built-in normalization).

Between two continuous attributes. Like the linear correlation or the rank correlation pre-
sented in Section 2.5.2.

Between one continuous and one discrete attribute. Like the t statistic for two means,
one-way ANOVA, or the Kruskal–Wallis statistic presented in Section 2.5.4.

One practical problem that arises when simple filters are applied to mixed attribute sets
(containing both discrete and continuous attributes) is the questionable (to say the least) com-
parability of utility values obtained using different relationship measures, appropriate for
particular attribute types. The same range and distribution of the adopted relationship mea-
sures would be necessary to rank attributes of different types with respect to their utility in
a truly meaningful way. This would be possible in some cases by using the appropriately
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transformed statistics of the statistical tests based on the adopted relationship measure. To
keep simple filters simple, though, this is usually not addressed in any other way than simply:

• filtering discrete and continuous attributes separately (and then selecting a number of
top-ranked attributes from the two groups),

• using the p-value of corresponding statistical test (or its 1’s complement) rather than the
underlying relationship measure (i.e., measuring the significance of attribute relation-
ships rather than their strength),

• discretizing continuous attributes and using a relationship measure for discrete attributes
only.

Whereas the first approach is inconvenient and may lead to suboptimal results, it is sometimes
a sufficient solution in practice. The second approach is apparently convenient and elegant,
but may not work as expected for large datasets, where most relationships are likely to be
maximally statistically significant (with p-values indistinguishable within the limits of arith-
metic precision), resulting in all or nearly all attributes being selected. The deficiency of the
last approach is that by using the discretized versions of continuous attributes it may underes-
timate their predictive utility. Making it possible to apply the same relationship measure for
all attribute pairs is a very significant advantage, though, that usually outweighs this risk. It is
worthwhile to note that a simple nonmodeling form of discretization can be applied here, as
discussed in Section 18.3.3, since there is no need to retain and re-apply discretization interval
breaks to any other datasets.

Example 19.4.1 The following R code defines a function that automates attribute filtering
using simple statistical attribute utility measures. The function accepts three relationship
measures on input, for the discrete–discrete, discrete–continuous, and continuous–continuous
attribute type combinations (passed via the dd, cd, and cc arguments, respectively). For the
purpose of illustration, default relationship measures are defined as 1’s complements of the
p-values obtained using the 𝜒2 test, the Kruskal–Wallis test, and the rank correlation test,
despite the reservations against this approach discussed above. Attributes to consider are

dmr.util
specified using the formula interface. The x.vars and y.var functions are
used to extract attribute names from the supplied formula, and the attr.type
function to determine the attribute type.

The function is applied to the weather, weatherc, weatherr, Vehicle Silhouettes, Soybean,
and Boston Housing datasets. For the three small datasets, apart from filtering all attributes
with the above-mentioned default relationship measures, the separate filtering of discrete and
continuous attributes is also demonstrated with more appropriate relationship measures: the

Ex. 2.5.7
dmr.stats

symmetric uncertainty for the discrete–discrete case, implemented by thesymunc
function, the Kruskal–Wallis test statistic for the continuous–discrete case, and
the squared rank correlation for the continuous-continuous case. For the three
larger datasets, attribute utility is measured using the symmetric uncertainty only, after

Ex. 18.3.3
dmr.disc

transforming continuous attributes by equal-frequency discretization imple-
mented by the discnm.eqfreq function. Note that attribute filtering for the
Vehicle Silhouettes, Soybean, and Boston Housing data is performed on their
training subsets, and the obtained attribute utilities are stored in the v.utl.simple,
s.utl.simple, and bh.util.simple variables. The same practice will be followed
by subsequent examples, and Example 19.6.1 will use the corresponding test subsets to
evaluate the performance of models created after attribute selection.



Trim size: 170mm x 244mmCichosz c19.tex V3 - 11/04/2014 10:23 A.M. Page 570

570 ATTRIBUTE SELECTION

dd.chi2 <- function(a1, a2) 1-chisq.test(a1, a2)$p.value
cd.kruskal <- function(a1, a2) 1-kruskal.test(a1, a2)$p.value
cc.spearman <- function(a1, a2) 1-cor.test(a1, a2, method="spearman")$p.value

## simple statistical attribute selection filter
simple.filter <- function(formula, data, dd=dd.chi2, cd=cd.kruskal, cc=cc.spearman)
{
attributes <- x.vars(formula, data)
target <- y.var(formula)

utility <- function(a)
{
unname(switch(attr.type(data[[a]], data[[target]]),

dd = dd(data[[a]], data[[target]]),
cd = cd(data[[a]], data[[target]]),
dc = cd(data[[target]], data[[a]]),
cc = cc(data[[a]], data[[target]])))

}

sort(sapply(attributes, utility), decreasing=TRUE)
}

# simple filter for the weather data
simple.filter(plaỹ., weather)
simple.filter(plaỹ., weather, dd=symunc)

# simple filter for the weatherc data
simple.filter(plaỹ., weatherc)
simple.filter(plaỹoutlook+wind, weatherc, dd=symunc)
simple.filter(plaỹtemperature+humidity, weatherc,

cd=function(a1, a2) kruskal.test(a1, a2)$statistic)

# simple filter for the weatherr data
simple.filter(playabilitỹ., weatherr)
simple.filter(playabilitỹoutlook+wind, weatherr,

cd=function(a1, a2) kruskal.test(a1, a2)$statistic)
simple.filter(playabilitỹtemperature+humidity, weatherr,

cc=function(a1, a2) cor(a1, a2, method="spearman")̂2)

# simple filter for the Vehicle Silhouettes data
v.utl.simple <- simple.filter(Class̃., discnm.eqfreq(̃., v.train, 7), dd=symunc)

# simple filter for the Soybean data
s.utl.simple <- simple.filter(Class̃., Soybean, dd=symunc)

# simple filter for the BostonHousing data
bh.utl.simple <- simple.filter(medṽ., discnm.eqfreq(̃., bh.train, 7), dd=symunc)

Simple statistical filters are computationally efficient and easy to apply. They are also
widely available, since the underlying utility measures can be calculated using virtually all
analytical software kits, even those that do not offer explicit attribute selection functional-
ity. Their single, but severe drawback is that they evaluate attribute predictive utility in a
context-insensitive way, i.e., the utility of each attribute does not depend on the presence
or absence of other attributes in any way. This makes it possible for several closely related
attributes that exhibit strong relationship to the target attribute to be considered similarly
highly useful, even if selecting one of them would make the others unnecessary. This issue
will be referred to as apparent utility. Similarly, this makes it possible for some attributes
that individually appear unrelated to the target attribute to be considered useless, even if they
are essential when used in combination, which can be called apparent disutility and is not as
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frequent as apparent utility, but also harder to fight. The remaining attribute selection filters
presented in this section make various attempts to achieve some context-sensitivity of their
attribute utility measures.

19.4.2 Correlation-based filters

The idea of correlation-based attribute selection (originally called correlation-based feature
selection, or CFS) is to use statistical relationship measures – such as those on which sim-
ple statistical filters are based – in a more refined, context-sensitive way. This is achieved by
considering a number of candidate attribute subsets and evaluating them both with respect
to their relationship to the target attribute and with respect to their mutual relationships. A
specific correlation-based filter algorithm can therefore be fully described by

• a set of relationship measures appropriate for different attribute types (discrete–discrete,
discrete–continuous, continuous–continuous),

• a search strategy to systematically (but usually nonexhaustively) consider candidate
subsets.

The latter has been discussed in Section 19.3 and now we may focus on the former.

19.4.2.1 Relationship measures

Despite the term “correlation” used in the name under which this approach is known, the
employed relationship measure does not have to be the linear or rank correlation, unless both
the target attributes and all other attributes are continuous. With discrete or mixed attribute
spaces, appropriate relationship measures are needed for different attribute types, but they
should ideally have the same range and distribution so that they can be aggregated additively in
a meaningful way. A recommended approach is therefore to choose a single measure that can
handle different attribute types (or can be adapted accordingly). This can be easily achieved
in one of the following two ways:

• using a normalized (i.e., insensitive to the number of attribute values) discrete-attribute
relationship measure such as the symmetric uncertainty, after discretizing any continu-
ous attributes (including the target attribute, if the target task is regression),

• using a continuous-attribute relationship measure such as (typically, the absolute value
or square of) the linear or rank correlation, after encoding any discrete attributes
numerically.

The former has already been presented before as an approach to overcoming the diffi-
culties with applying simple statistical filters to mixed attribute spaces. The latter – based
on a roughly inverse attribute transformation – employs the same discrete attribute binary
encoding technique presented in Section 17.3.5 that is commonly applied for parametric clas-
sification and regression or dissimilarity calculation with discrete attributes. It is based on
simple 1-of-k coding, which replaces a discrete k-valued attribute with k binary attributes.
Then the correlation between a1 and a2, if a1 is discrete and a2 is continuous, is calculated
as the probability-weighted average of the correlations between a2 and the binary attributes
replacing a1:

𝜌T (a1, a2) =
∑
𝑣∈A1

P(a1 = 𝑣)𝜌T (a1𝑣, a2) (19.1)
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where a1𝑣 is the binary attribute corresponding to 𝑣 ∈ A1 and P(a1 = 𝑣) is the probability
of a1 taking the value of 𝑣, estimated on the training set in the usual way. When both a1
and a2 are discrete, all pairwise binary attribute correlations are considered, weighted by the
corresponding probabilities:

𝜌T (a1, a2) =
∑

𝑣1∈A1

∑
𝑣2∈A2

P(a1 = 𝑣1, a2 = 𝑣2)𝜌T(a1𝑣1
, a2𝑣2

) (19.2)

Example 19.4.2 The R code presented below implements and demonstrates correlation cal-
culation for continuous or discrete attributes, with the latter processed by binary encoding
and the resulting multiple correlations averaged as described above. The absolute value of the

Ex. 17.3.5
dmr.trans

rank correlation serves as a base correlation measure, passed as the default
value of the corf argument. Discrete attribute encoding is performed using
the discode.a function, called with the na.all=TRUE argument to reason-
ably handle missing values of discrete attributes. Similarly, the default corf function is a

Ex. 2.4.22
dmr.stats

wrapper around standard cor that specifies the use=“complete.obs”
argument to omit missing values for continuous attributes. The pdisc function
is used to calculate discrete attribute probability distributions.

## discrete attribute correlation using binary encoding
discor <- function(a1, a2,

corf=function(a1, a2)
abs(cor(a1, a2, method="spearman", use="complete.obs")))

{
switch(attr.type(a1, a2),

cc=p12<-1,
dc=p12<-as.matrix(pdisc(a1)),
cd=p12<-t(as.matrix(pdisc(a2))),
dd=p12<-pdisc(a1, a2))

a1dc <- discode.a(a1, red=TRUE, na.all=TRUE)
a2dc <- discode.a(a2, red=TRUE, na.all=TRUE)
cor12 <- outer(1:ncol(a1dc), 1:ncol(a2dc),

Vectorize(function(i, j) corf(a1dc[,i], a2dc[,j])))
weighted.mean(cor12, p12)

}

# two continuous attributes
discor(weatherc$temperature, weatherc$humidity)
# one discrete and one continuous attribute

discor(weatherc$outlook, weatherc$temperature)
discor(weatherc$temperature, weatherc$play)
# two discrete attributes

discor(weatherc$outlook, weatherc$play)
# attributes with missing values

discor(Soybean$seed, Soybean$roots)

19.4.2.2 Subset evaluation

The utility of an attribute subset A with respect to the target attribute a0 is calculated by
correlation-based filters in the following way:

uT (A) =
|A|RT (A, a0)√|A| + |A|(|A| − 1)RT (A)

(19.3)
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where RT (A, a0) and RT(A) are the mean strength of relationship between attributes from A
and the target attribute, and the mean strength of pairwise relationship between attributes from
A, respectively, calculated on the training set T using the adopted relationship measure 𝜌:

RT(A, a0) =
1|A| ∑

a∈A

𝜌T(a, a0) (19.4)

RT (A) = 1|A|(|A| − 1)
∑

a1∈A

∑
a2∈A−{a1}

𝜌T (a1, a2) (19.5)

It is easy to see that the definition of uT (A) can be rewritten as

uT(A) =
∑

a∈A𝜌T(a, a0)√|A| +∑
a1∈A

∑
a2∈A−{a1}𝜌T(a1, a2)

(19.6)

which is actually a simpler form than the previous one, appearing in the original description
of CFS filters.

The subset utility measure of correlation-based filters favors attribute subsets that combine
strong relationships with the target attribute and weak or sparse mutual relationships, which
is intuitively clear and perfectly reasonable although the particular formula used to tradeoff
between these types of relationships is not necessarily obvious. It is borrowed from classical
psychometric test theory and has been found to represent a good estimate of the relationship
between the composite attribute that could be obtained by combining all attributes from the
subset and the target attribute. The numerator provides a measure of the combined predictive
power of all attributes in the subset and the denominator applies a punishment for redundancy
that manifests itself by their mutual relationships.

Example 19.4.3 Correlation-based attribute selection is implemented and demonstrated
by the R code presented below. It uses the search strategy implementation provided by
the asel.search.greedy, asel.init.none, asel.init.all, asel.next.
forward, and asel.next.backward functions, defined in Examples 19.3.1, 19.3.2,
and 19.3.3, with backward elimination performed by default. They are combined with
correlation-based attribute subset evaluation implemented by the cfs.eval function, which
accepts a matrix of pairwise attribute correlations on input. The cfs.filter function,
which organizes the correlation-based filtering process, takes care of calculating the matrix,
using the relationship measure specified by the corf argument. It defaults to the symmetric

Ex. 2.5.7
dmr.stats

uncertainty, implemented by the symunc function. To make it applicable to
datasets with continuous attributes, they are discretized in example calls in the
same way as in Example 19.4.1. The alternative approach of using the absolute
value of the rank correlation, with discrete attribute support via binary encoding, implemented
by the discor function from the previous example, is also demonstrated.

## subset evaluation for correlation-based filters
cfs.eval <- function(subset, target, data, cormat)
{
if (length(subset <- unique(subset))>0)
{
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cor.at <- mean(sapply(subset, function(a) cormat[a,target]))
cor.aa <- mean(outer(subset, subset,

Vectorize(function(a1, a2)
ifelse(a1!=a2, cormat[a1,a2], NA))),

na.rm=TRUE)
cor.aa <- ifelse(is.finite(cor.aa), cor.aa, 0)
length(subset)*cor.at/
sqrt(length(subset)+length(subset)*(length(subset)-1)*cor.aa)

}
else
-Inf

}

## correlation-based filter
cfs.filter <- function(formula, data, corf=symunc,

searchf=asel.search.greedy,
initf=asel.init.all, nextf=asel.next.backward)

{
target <- y.var(formula)
attributes <- x.vars(formula, data)
atnames <- c(attributes, target)

cormat <- outer(1:length(atnames), 1:length(atnames),
Vectorize(function(i, j)

ifelse(j<i, corf(data[[atnames[i]]], data[[atnames[j]]]),
NA)))

cormat[upper.tri(cormat)] <- t(cormat)[t(lower.tri(cormat))]
dimnames(cormat) <- list(atnames, atnames)

searchf(attributes, target,
evalf=function(subset, target) cfs.eval(subset, target, data, cormat),
initf=initf, nextf=nextf)

}

# correlation-based filter for the weather data
cfs.filter(plaỹ., weather)
cfs.filter(plaỹ., weather, initf=asel.init.none, nextf=asel.next.forward)
cfs.filter(plaỹ., weather, corf=discor)
cfs.filter(plaỹ., weather, corf=discor,

initf=asel.init.none, nextf=asel.next.forward)

# correlation-based filter for the weatherc data
cfs.filter(plaỹ., discnm.eqfreq(̃., weatherc, 4))
cfs.filter(plaỹ., weatherc, corf=discor)
cfs.filter(plaỹ., weatherc, corf=discor,

initf=asel.init.none, nextf=asel.next.forward)

# correlation-based filter for the weatherr data
cfs.filter(playabilitỹ., weatherr, corf=discor)
cfs.filter(playabilitỹ., weatherr, corf=discor,

initf=asel.init.none, nextf=asel.next.forward)

# correlation-based filter for the Vehicle Silhouettes data
v.sel.cfs <- cfs.filter(Class̃., discnm.eqfreq(̃., v.train, 7))$subset

# correlation-based filter for the Soybean data
s.sel.cfs <- cfs.filter(Class̃., s.train)$subset

# correlation-based filter for the Boston Housing data
bh.sel.cfs <- cfs.filter(medṽ., discnm.eqfreq(̃., bh.train, 7))$subset
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19.4.3 Consistency-based filters

The consistency-based approach to attribute selection is directly applicable to the classifica-
tion target task only. It can be roughly described as an attempt to identify the smallest attribute
subset sufficient to perfectly discriminate among classes. Each value combination of attributes
from such a subset corresponds to a consistent subset of training instances, i.e., containing
instances of a single class only. It is often impossible and usually unreasonable to achieve this
goal exactly, since

• it may require searching the attribute subset space exhaustively – which is computa-
tionally prohibitive for all but the smallest attribute sets,

• perfect consistency may be impossible to achieve for real-world data (particularly
affected by noise), and actually may be in conflict with one of the goals of attribute
selection, which is overfitting prevention.

This is why practical consistency-based filters try to approach the consistency in an approx-
imate way, by using inexhaustive search strategies, such as those presented in Section 19.3,
and relaxing the notion of consistency (accepting minor inconsistencies). The latter requires
an attribute subset evaluation function that measures the degree of its consistency.

There are number of consistency-based attribute selection algorithms that use different
evaluation functions. The one that most directly represents the notion of consistency is based
on calculating the inconsistency rate for an attribute subset, defined as follows:

𝜈T (A) = 1|T∕A| ∑
T′∈T∕A

𝜈T′ (c) (19.7)

where T∕A denotes all subsets of T induced by the attribute subset A (corresponding to all
distinct value combinations of attributes from A occurring in T) and 𝜈T′ (c) is the inconsistency
count of the target concept on data subset T ′ calculated as the number of instances from the
subset with a nonmajority class label:

𝜈T′ (c) = |||{x ∈ T ′ | c(x) ≠ arg max
d∈C

|T ′d|}||| (19.8)

It is easy and worthwhile to note that the inconsistency rate is monotonic. By adding one or
more attributes to an attribute subset, we cannot increase its inconsistency rate. It makes it
possible to simplify the attribute subset space search process.

Another idea is to relax the notion of consistency by adopting an impurity measure for this
purpose, such as presented in Section 2.4.2, applying it over all data subsets induced by the
attribute subset being evaluated, and aggregating the results appropriately. With the entropy
serving as the impurity measure, the corresponding formula can be written as follows:

ET (A) =
∑

T′∈T∕A

|T′||T| ET′ (c) (19.9)

where ET′ (c) is the entropy of the target concept on data subset T′. This is the weighted average
entropy over all data subsets induced by the attribute subset.

Consistency-based filters can be safely applied only when all attributes are discrete, since
continuous attributes usually exhibit sufficient diversity of values to yield an overwhelming
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number of distinct value combinations. This is why it makes sense to discretize continu-
ous attributes prior to consistency-based filtering. In particular, by discretizing the target
attribute, consistency-based attribute filtering can be applied even if the target task is
regression.

Example 19.4.4 A simple version of consistency-based attribute filtering is implemented
and demonstrated by the R code presented below. It defines the cons.eval function that
evaluates an attribute subset by the weighted average entropy over the induced data subsets,
and the cons.filter function that uses it as an evaluation function to guide the attribute

Ex. 2.4.26
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subset space search process. The former uses the entropy function, and the
digest function from the digest package (optionally, if available) to generate
MD5 hash strings for attribute value vectors, which makes it possible to efficiently
identify data subsets induced by the attribute subset being evaluated. As in Example 19.4.3,
the search strategy implementation provided by the asel.search.greedy, asel.

Ex. 18.3.3
dmr.disc

init.none, asel.init.all, asel.next.forward, and asel.next.
backward functions, is employed, and continuous attributes are discretized using
the discnm.eqfreq function. For the weatherc data consistency-based filtering
is demonstrated both with and without discretization.

## subset evaluation for consistency-based filters
cons.eval <- function(subset, target, data)
{
if (require(digest, quietly=TRUE))
hashfun <- function(x) digest(as.numeric(x))

else
hashfun <- function(x) paste(as.numeric(x), collapse="")

aind <- names(data) %in% subset
datahash <- sapply(1:nrow(data), function(j) hashfun(data[j,aind]))
-sum(sapply(unique(datahash),

function(xh)
sum(datahash==xh)/nrow(data)*entropy(data[datahash==xh,target])))

}

## consistency-based filter
cons.filter <- function(formula, data,

searchf=asel.search.greedy,
initf=asel.init.all, nextf=asel.next.backward)

{
target <- y.var(formula)
attributes <- x.vars(formula, data)
searchf(attributes, target,

evalf=function(subset, target) cons.eval(subset, target, data),
initf=initf, nextf=nextf)

}

# consistency-based filter for the weather data
cons.filter(plaỹ., weather)
cons.filter(plaỹ., weather, initf=asel.init.none, nextf=asel.next.forward)

# consistency-based filter for the weatherc data
cons.filter(plaỹ., discnm.eqfreq(̃., weatherc, 4))
cons.filter(plaỹ., discnm.eqfreq(̃., weatherc, 4),

initf=asel.init.none, nextf=asel.next.forward)
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cons.filter(plaỹ., weatherc)
cons.filter(plaỹ., weatherc, initf=asel.init.none, nextf=asel.next.forward)

# correlation-based filter for the weatherr data
cons.filter(playabilitỹ., discnm.eqfreq(̃., weatherr, 4))
cons.filter(playabilitỹ., discnm.eqfreq(̃., weatherr, 4),

initf=asel.init.none, nextf=asel.next.forward)

# consistency-based for the Vehicle Silhouettes data
v.sel.cons <- cons.filter(Class̃., discnm.eqfreq(̃., v.train, 7))$subset

# consistency-based for the Soybean data
s.sel.cons <- cons.filter(Class̃., s.train)$subset

# consistency-based for the Boston Housing data
bh.sel.cons <- cons.filter(medṽ., discnm.eqfreq(̃., bh.train, 7))$subset

Notice that the forward-search consistency-based filter applied to the weatherc data
without discretization selects a single continuous attribute. The example calls for the larger
datasets make it possible to observe the computational expense of consistency-based filtering,
since they take a considerable amount of time (particularly for the Soybean data, with 35
attributes).

19.4.4 RELIEF

The RELIEF algorithm is an attribute selection filter originally designed for the classification
task that estimates attribute utility based on the observed difference of their values for similar
instances. Basically, an attribute is considered more useful if it appears to help distinguish
between similar instances of different classes and less useful if it contributes to distinguishing
between similar instances from the same class.

19.4.4.1 Basic algorithm

The estimation of attribute utility is performed by going through a number of randomly
selected training instances and for each of them identifying the most similar instances of
the same class and of a different class. Attribute value differences between the currently
processed instance and these neighbors contribute to the utility of each attribute. The
algorithm can be written as follows:

1: for i = 1, 2, ..., n do
2: ui ∶= 0;
3: end for
4: for j = 1, 2, ..., K do
5: randomly select x∈ T;
6: T1

x ∶= argk minx′∈Tc(x) 𝛿(x, x′);
7: T0

x ∶= argk minx′∈Tc(x) 𝛿(x, x′);
8: for i = 1,2,...,n do
9: ui ∶= ui +

1
K

(
1|T0
x |
∑

x0∈T0
x
𝛿i

(
x, x0

)
− 1|T1

x |
∑

x1∈T1
x
𝛿i

(
x, x1

))
;

10. end for
11. end for
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The algorithm processes K randomly selected training instances, where K is a parameter
that controls the tradeoff between the reliability of attribute utility estimation and the compu-
tational expense. For each selected instance x, it identifies the set of k most similar instances of
the same class, designated by T1

x , and the set of k most similar instances of other classes, des-
ignated by T0

x , where k ≥ 1 is another parameter. These instances, called the nearest hits and
the nearest misses, are determined based on a dissimilarity measure 𝛿. The arg k min notation
is used to refer to the set of k instances with the least dissimilarity to x.

In principle, any reasonable dissimilarity measure could be adopted for finding the nearest
hits and the nearest misses, including in particular those presented in Chapter 11, but the
RELIEF algorithm assumes it is defined simply as the sum of per-attribute differences:

𝛿(x1, x2) =
n∑

i=1

𝛿i(x1, x2) (19.10)

where 𝛿i calculates the difference of values of attribute ai, depending on its type:

For continuous attributes:

𝛿i(x1, x2) =
|ai(x1) − ai(x2)|

maxx∈T ai(x) − minx∈T ai(x)
(19.11)

For discrete attributes:

𝛿i(ai(x1), ai(x2)) =
{

0 if ai(x1) = ai(x2)
1 if ai(x1) ≠ ai(x2)

(19.12)

which is actually the same as the contribution of individual attributes to Gower’s dissimilarity,
defined in Section 11.3.7.

Attribute value differences calculated that way are also used to update attribute utility
estimates, initialized to 0. An attribute’s utility is decreased proportionally to the averaged
difference between the currently processed instance and its nearest hits, and increased
proportionally to the averaged difference between the currently processed instance and its
nearest misses. This rewards attributes for contributions to distinguishing between similar
instances of different classes, and punishes for contributions to distinguishing between
similar instances of the same class. With attribute value differences defined to fall in the [0, 1]
interval and with K updates scaled down by the 1

K
coefficient, the estimated attribute utilities

remain between −1 and 1.
The RELIEF algorithm achieves the desired context sensitivity by focusing on how par-

ticular attributes help to distinguish between instances that are similar, i.e., have the same or
close values of most other attributes. This provides the context: the differences observed for
an attribute contribute to its estimated utility only if most other attributes do not differ sub-
stantially, and are ignored otherwise. This is why the algorithm is not fooled by several closely
related attributes being apparently highly useful, i.e., it is not susceptible to the apparent utility
issue. Although it is not similarly secured against apparent disutility, it at least captures the
predictive utility much better than simple statistical filters when there are dependences among
attributes. The original formulation of the algorithm assumed using just one nearest hit and
nearest miss, but k > 1 was found to improve results, particularly for noisy data.

Example 19.4.5 The R code presented below implements the RELIEF algorithm in a
straightforward way that closely matches the previously presented pseudocode. The auxiliary
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relief.diss function calculates the dissimilarity measure, returned as the vector of
per-attribute value differences that can be either summed up (when searching for the nearest
hits and misses) or used individually (when updating attribute utilities). It uses the ranges
function to determine attribute ranges and the arg.min function to perform the arg min

dmr.util
operation. The algorithm is demonstrated using the weather, weatherc, Vehicle Sil-
houettes, and Soybean datasets. The K argument – the number of randomly drawn
instances – defaults to 10% of the dataset size, but for these small datasets it is explicitly set
to 100 to increase the stability of results. The number of nearest hits and misses defaults to 1,
but the effect of k = 3 is also demonstrated.

## RELIEF dissimilarity
relief.diss <- function(x1, x2, rngs)
{
ifelse(is.na(rd <- mapply(function(v1, v2, r)

ifelse(is.numeric(v1), abs(v1-v2)/r, v1!=v2),
x1, x2, rngs)),

0, rd)
}

## RELIEF filter
relief.filter <- function(formula, data, k=1, K=floor(0.1*nrow(data)))
{
attributes <- x.vars(formula, data)
class <- y.var(formula)
aind <- names(data) %in% attributes
rngs <- ranges(data)[aind]

util <- sapply(attributes, function(a) 0)

for (i in 1:K)
{
xi <- sample(nrow(data), 1)
x <- data[xi, ]
data.x <- data[-xi,]
hits <- arg.min((1:nrow(data.x))[data.x[[class]]==x[[class]]],

function(j) sum(relief.diss(data.x[j,aind], x[aind], rngs)),
k=k)

misses <- arg.min((1:nrow(data.x))[data.x[[class]]!=x[[class]]],
function(j) sum(relief.diss(data.x[j,aind], x[aind], rngs)),
k=k)

util <- util +
rowSums(sapply(misses,

function(j) relief.diss(data.x[j,aind], x[aind], rngs)))/K-
rowSums(sapply(hits,

function(j) relief.diss(data.x[j,aind], x[aind], rngs)))/K
}
sort(util, decreasing=TRUE)

}

# RELIEF for the weather data
relief.filter(plaỹ., weather, K=100)
relief.filter(plaỹ., weather, k=3, K=100)

# RELIEF for the weatherc data
relief.filter(plaỹ., weatherc, K=100)
relief.filter(plaỹ., weatherc, k=3, K=100)

# RELIEF for the Vehicle Silhouettes data
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v.utl.rel <- relief.filter(Class̃., v.train, k=3, K=200)
# RELIEF for the Soybean data

s.utl.rel <- relief.filter(Class̃., s.train, k=3, K=200)

For the two smallest datasets used in this example, the obtained attribute rankings do not
substantially differ from those produced by the simple statistical filter presented in Example
19.4.1. The only difference is the lower position of the humidity attribute. It disappears
for k = 3, although using more than single nearest hits and misses for datasets that small
is definitely objectionable. For the Vehicle Silhouettes and Soybean dataset, the results of
the RELIEF algorithm differ from those obtained using the simple statistical filter more
substantially.

19.4.4.2 Enhancements

The RELIEF algorithm as presented above handles both discrete and continuous attributes,
and already incorporates one enhancement that was not present in its original formulation –
using more than one nearest hit and nearest miss. It still leaves space for other enhancements,
though, which make it more widely applicable to real-world datasets. These, contributed by
further work on the algorithm, include missing attribute value handling, improved multiple
class processing for target classification tasks with more than two classes, and support for the
regression target task.

Missing value handling Attribute values are directly used in the RELIEF algorithm only
for determining attribute value differences, which are needed for two purposes:

• dissimilarity calculation to identify the nearest hits and the nearest misses,

• utility update.

These are the two operations of RELIEF that are affected by missing values. Whereas the
simplistic approach of entirely ignoring them when performing these two operations might
work sufficiently well when relatively few values are missing, in general one can do somewhat
better than that.

One reasonable approach is to redefine 𝛿i(x1, x2) if one or both of ai(x1), ai(x2) are missing
as the expected difference between ai(x1) and ai(x2), given c(x1) and c(x2). For continuous
attributes, it reduces simply to replacing ai(x), if it is missing, by the mean value of ai in
Tc(x), i.e., mTc(x) (ai). It becomes more complicated for discrete attributes, where the expected
difference is the probability of two attribute values (one or both of which are missing) being
different, estimated based on the training set. If the value of ai is missing for x1 and available
for x2, this translates to

𝛿i(x1, x2) = 1 − PT (ai = ai(x2)|c = c(x1)) (19.13)
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i.e., 1’s complement of the probability that an instance of class c(x1) has the value of ai equal
ai(x2). If both ai(x1) and ai(x2) are missing, this requires considering all possible values of ai
as follows:

𝛿i(x1, x2) = 1 −
∑
𝑣∈Ai

PT (ai = 𝑣|c = c(x1))PT (ai = 𝑣|c = c(x2)) (19.14)

This is a direct instantiation of the general internal missing value handling approach for dis-
similarity measures outlined in Section 11.5.

Multiclass target tasks The RELIEF algorithm was originally developed as dealing with
two-class classification tasks only, assuming the nearest misses are selected from the single
class other than the class of the currently processed instance. The version of the algorithm pre-
sented above drops this assumption simply by permitting that the nearest misses are selected
from any classes other than the class of the currently processes instance. This straightforward
approach to handling multiple classes is not necessarily sufficient, though, since it does not
guarantee that all classes would be actually taken into account when rewarding attributes for
their discrimination capabilities. It is not unlikely that due to the similarity patterns exhibited
by the data the nearest misses might come entirely or mostly from one or few out of several
other classes, which makes the algorithm ignore attribute value differences for the remaining
classes. In effect, the final utility estimates could favor attributes that help us to distinguish
between similar instances from some but not necessarily all classes.

A slightly more complex, but arguably superior approach consists in finding a specified
number of nearest misses from each class other than the class of the currently processed
instance, and averaging their contributions, weighted by the corresponding estimated class
probabilities. When processing instance x, instead of the two T1

x and T0
x subsets, we would

therefore consider multiple Td
x nearest neighbor subsets for each d ∈ C:

Td
x ∶= argk min

x′∈Td
𝛿(x, x′) (19.15)

with Tc(x)
x containing the nearest hits and all of Td

x for d ≠ c(x) containing the nearest misses.
The modified utility update rule can be written as follows:

ui ∶= ui +
1
K

⎛⎜⎜⎝
∑

d∈C−{c(x)}
PT (d)

1|Td
x |

∑
x0∈Td

x

𝛿i(x, x0) −
1|Tc(x)
x |

∑
x1∈Tc(x)

x

𝛿i(x, x1)
⎞⎟⎟⎠ (19.16)

where PT (d) is the probability of class d estimated from the training set. It has been found
indeed to improve the reliability of RELIEF attribute utility estimates for target classification
tasks with more than two classes, particularly for noisy data.

A similar effect could be obtained by decomposing the original multiclass classifica-
tion task into a number of two-class tasks using one of encoding techniques presented in
Section 17.4, applying the original RELIEF algorithm to each of them separately, and aver-
aging the results.
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Continuous target attribute The assumption of dealing with the classification task is only
at heart of the RELIEF algorithm, since it makes it possible to update attribute utility esti-
mates based on the nearest hits and the nearest misses. This idea is clearly not applicable to
continuous target attributes. The algorithm can be adapted to handle the regression target task,
though, in a way that leaves at least other of its essential design principles unchanged.

The original RELIEF utility update rule rewards attributes for contributions to distinguish-
ing between similar instances from different classes (based on the nearest misses) and punishes
them for contributions to distinguishing between similar instances from the same class (based
on the nearest hits). When the target attribute is continuous, the set of nearest neighbors of the
currently processed instance x, that will be referred to as Tx, is not partitioned into the nearest
hits and the nearest misses. The absolute difference between their target function values can
be used instead of this partitioning to determine their contribution to attribute utility update.
Attributes that have substantially different values for instances with substantially different
target function values would then have their utility estimates increased, and those that have
substantially different values for instances with close target function values would have their
utility estimates decreased.

It also makes sense to take into account the dissimilarity between the currently processed
instance and its nearest neighbors when calculating attribute utility updates. The most similar
neighbors should contribute to attribute utility estimates to a greater extent than those not so
similar. One way to achieve this is to use an exponentially decaying function of the rank with
respect to dissimilarity, normalized to sum up to one 1 on Tx:

WTx
(x, x′) =

exp

(
−

r2
x,x′

𝜎2

)
∑

x′′∈Tx
exp

(
−

r2
x,x′′

𝜎2

) (19.17)

where rx,x′ is the rank of x′ in the set of nearest neighbors Tx with respect to the 𝛿(x′, x)
dissimilarity and 𝜎 is a parameter that controls the exponential decay. This quantity is used
to weight attribute value differences, calculated as in the original RELIEF algorithm. The
modified algorithm is presented below.

1: Δf ∶= 0
2: for i = 1, 2, ... , n do
3: Δi ∶= 0; Δf

i ∶= 0;
4: end for
5: repeat
6: randomly select x∈T;
7: Tx ∶= argk minx′∈ T𝛿(x, x′);
8: Δf ∶= Δf +

∑
x′∈Tx

|f (x′) − f (x)|WTx
(x, x′);

9: for i = 1, 2, ... , n do
10: Δi ∶= Δi +

∑
x′∈Tx

𝛿i(x, x′)WTx
(x, x′);

11: Δf
i ∶= Δf +

∑
x′∈Tx

| f (x′) − f (x)|𝛿i(x, x′)WTx
(x, x′);

12: end for
13: until K instances are processed;
14: for i = 1, 2, ... , n do
15: ui ∶= Δf

i ∕Δ
f − (Δi − Δf

i )∕(K − Δf );
16: end for
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For each instance x, the algorithm identifies the set of its k nearest neighbors Tx and uses
them to incrementally update the following quantities:

• Δf – the weighted sum of absolute target function value differences,

• Δi – the weighted sum of value differences for attribute ai, for i = 1, 2, … , n,

• Δf
i – the weighted sum of value differences for attribute ai multiplied by absolute target

function value differences.

All these differences are measured between x and all its neighbors x′ ∈ Tx and summed up
after weighting by WTx

(x, x′). When the main loop of the algorithm is completed, they are

used to obtain attribute utility estimates, with Δf
i∕Δ

f representing the “reward” assigned to
attribute ai for its contribution to (desirable) distinguishing between similar instances with
substantially different target function values, and (Δi − Δf

i )∕(K − Δf ) representing the “pun-
ishment” assigned to attribute ai for its contribution to (undesirable) distinguishing between
similar instances with close target function values. The K − Δf denominator only makes sense
for Δf < K, which can be easily achieved by normalizing target function values to fit in the
[0, 1] interval. This will make the absolute differences between target function values for any
instance pairs to fall in the same interval.

Example 19.4.6 The regression version of the RELIEF algorithm is implemented by the

Ex. 17.3.2
dmr.trans

following R code. Its application to the weatherr and Boston Housing datasets is
demonstrated. Target function value normalization is internally performed using

dmr.util
the nrm.all and predict.nrm functions. The make.formula function is
used to construct the formula argument for the former.

## regression RELIEF filter
rrelief.filter <- function(formula, data, k=1, K=floor(0.1*nrow(data)), sigma=10)
{
attributes <- x.vars(formula, data)
target <- y.var(formula)
aind <- names(data) %in% attributes
rngs <- ranges(data)[aind]
data <- predict.nrm(nrm.all(make.formula("", target), data), data)

delta.f <- 0
delta.i <- delta.fi <- sapply(attributes, function(a) 0)

for (i in 1:K)
{
xi <- sample(nrow(data), 1)
x <- data[xi, ]
data.x <- data[-xi,]
diss <- sapply(1:nrow(data.x),

function(j) sum(relief.diss(data.x[j,aind], x[aind], rngs)))
neighbors <- arg.min(1:nrow(data.x), function(j) diss[j], k=k)
nbranks <- rank(diss[neighbors])
weights <- (weights <- exp(-(nbranks/sigma)̂2))/sum(weights)
adiff <- sapply(neighbors, function(j)

relief.diss(data.x[j,aind], x[aind], rngs))
fdiff <- abs(data.x[neighbors,target]-x[,target])
delta.f <- delta.f + sum(fdiff*weights)
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delta.i <- delta.i + rowSums(adiff %*% diag(weights, nrow=length(weights)))
delta.fi <- delta.fi +

rowSums(adiff %*% diag(fdiff*weights, nrow=length(weights)))
}
sort(util<-delta.fi/delta.f-(delta.i-delta.fi)/(K-delta.f), decreasing=TRUE)

}

# RELIEF for the weatherr data
rrelief.filter(playabilitỹ., weatherr, K=100)
rrelief.filter(playabilitỹ., weatherr, k=3, K=100)

# RELIEF for the Boston Housing data
bh.utl.rel <- rrelief.filter(medṽ., bh.train, k=3, K=200)

19.4.5 Random forest

Random forests, as described in Section 15.5.4, are a successful example of model ensembles,
consisting of multiple decision or regression trees, grown from bootstrap data samples using
randomized algorithms for greater diversity. A useful side effect of creating random forest
models is the evaluation of attribute predictive utility – or importance, in standard random
forest terminology. The technique used for this purpose, based on estimating the effect of
attribute perturbation by evaluating individual trees on their out-of-bag instances, is described
in Section 15.5.4.

Random forest-based attribute importance belongs to the most reliable and widely used
measures of attribute predictive utility. It is context sensitive, since each attribute is evaluated
with other attributes being present. An attribute that is rarely needed to grow a tree or usually
appears on bottom levels, is likely to have little effect on the overall accuracy and to be consid-
ered rather unimportant. An attribute that appears in most trees, usually on top levels, is likely
to have substantial effect on the overall performance and to be considered highly important.
In both cases, the appearance and position of an attribute in particular trees, as well as the
impact of its perturbation on the accuracy, clearly depends on other attributes available during
tree growing.

Random forest attribute filters involve building multiple models, which makes them super-
ficially similar to attribute selection wrappers. They remain substantially different, though, in
the purpose of building the models and the way of using them. And of course there is no rea-
son to consider decision trees and regression trees as the only possible target algorithms for
random forest filters. What these approaches have in common, though, is the computational
expense of building hundreds or thousands of models, that may sometimes enforce aggressive
sampling to reduce the training set size.

Example 19.4.7 Random forest-based attribute filtering is illustrated by the following R code,
which defines a convenience wrapper around the appropriate functions from the random-
Forest package and demonstrates its application.

## random forest filter
rf.filter <- function(formula, data, ...)
{
if (require(randomForest, quietly=TRUE))



Trim size: 170mm x 244mmCichosz c19.tex V3 - 11/04/2014 10:23 A.M. Page 585

ATTRIBUTE SELECTION FILTERS 585

{
rf <- randomForest(formula, na.roughfix(data), importance=TRUE, ...)
sort(importance(rf, type=1)[,1], decreasing=TRUE)

}
else
{
attributes <- x.vars(formula, data)
names<-(rep(1, length(attributes), attributes))

}
}

# random forest filter for the weather data
rf.filter(plaỹ., weather)

# random forest filter for the weatherc data
rf.filter(plaỹ., weatherc)

# random forest filter for the weatherr data
rf.filter(playabilitỹ., weatherr)

# random forest filter for the Vehicle Silhouettes data
v.utl.rf <- rf.filter(Class̃., v.train)

# random forest filter for the Soybean data
s.utl.rf <- rf.filter(Class̃., s.train)

# random forest filter for the BostonHousing data
bh.utl.rf <- rf.filter(medṽ., bh.train)

19.4.6 Cutoff criteria

Attribute selection filters that evaluate single attributes require some cutoff criteria to select a
number of top-ranked attributes. These can be simple rules, such as

1. select top k attributes for some 0 < k < n, where n is the number of all attributes,

2. select a fraction of p top attributes for some 0 < p < 1.

The k or p parameters cannot be reasonably set up other than by tuning, i.e., trying a number
of values, and building and evaluating models obtained using the selected attributes. Alterna-
tively, the attribute ranking can be analyzed searching for the biggest predictive utility gaps
between two consecutive attributes. These identify the most reasonable cutoff points, all of
which can be tried or one of which can be chosen based on other task-specific preferences.

Example 19.4.8 The following R code implements simple cutoff criteria for attribute selec-
tion, based on a named vector of attribute utilities sorted in a decreasing order. The number of
attributes to select can be specified directly via the k parameter or as a fraction of all attributes
via the p parameter. If neither of these is specified, the cutoff point is identified as the one cor-
responding to the biggest utility gap. The application of these cutoff criteria is demonstrated
for the weather, weatherc, and weatherr data using random forest-based attribute utilities. For
the larger datasets, the top halves of their available attribute sets with respect to the simple
statistical, RELIEF, and random forest filters are selected.



Trim size: 170mm x 244mmCichosz c19.tex V3 - 11/04/2014 10:23 A.M. Page 586

586 ATTRIBUTE SELECTION

## cutoff based on decreasingly sorted named attribute utilities
cutoff <- function(utils, k=NA, p=NA)
{
k <- ifelse(is.na(k), round(p*length(utils)), k)
k <- ifelse(is.na(k), which.max(-diff(utils)), k)
k <- ifelse(is.na(k), 1, k)

names(utils)[1:min(k, length(utils))]
}

# cutoff based on the random forest filter for the weather data
cutoff(rf.filter(plaỹ., weather), k=3)

# cutoff based on the random forest filter for the weatherc data
cutoff(rf.filter(plaỹ., weatherc), p=0.5)

# cutoff based on the random forest filter for the weatherr data
cutoff(rf.filter(playabilitỹ., weatherr))

# cutoff for the Vehicle Silhouettes data
v.sel.simple <- cutoff(v.utl.simple, p=0.5)
v.sel.rf <- cutoff(v.utl.rf, p=0.5)
v.sel.rel <- cutoff(v.utl.rel, p=0.5)

# cutoff for the Soybean data
s.sel.simple <- cutoff(s.utl.simple, p=0.5)
s.sel.rf <- cutoff(s.utl.rf, p=0.5)
s.sel.rel <- cutoff(s.utl.rel, p=0.5)

# cutoff for the Boston Housing data
bh.sel.simple <- cutoff(bh.utl.simple, p=0.5)
bh.sel.rf <- cutoff(bh.utl.rf, p=0.5)
bh.sel.rel <- cutoff(bh.utl.rel, p=0.5)

Not surprisingly, the attribute subsets obtained using different attribute selection filters
contain some common attributes, the utility of which may therefore be considered double- (or,
actually, triple-) confirmed. Nevertheless, the discrepancies between them may be perfectly
sufficient to yield models of vastly different quality.

19.4.7 Filter-driven search

When computational resources permit and the target algorithm is predetermined, the best
cutoff level can be determined by applying a subset evaluation function, such as used by
correlation-based filters, consistency-based filters, or attribute selection wrappers. The result-
ing hybrid technique can be viewed as combining single attribute evaluation for for ranking
attributes and subset evaluation for selecting the best subset of top-level attributes.

As discussed above, attribute selection filters that evaluate candidate attribute subsets
rather than single attributes use attribute subset search strategies. Filtering techniques that gen-
erate per-attribute utility estimates, on the other hand, can become helpful for organizing the
search process in an alternative way that radically cuts down the number of candidate subsets
to consider. This is possible by following either the forward selection or backward elimina-
tion pattern, but instead of greedily selecting the best-evaluated subset out of all candidates
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obtained by applying the addition or removal operator, respectively, to always generate only
one candidate, obtained by:

• adding the next highest utility attribute not yet in the subset,

• or removing the next lowest utility attribute from the subset.

Both these approaches are equivalent, as they generate and evaluate subsets of top k attributes
for each k = 1, 2, … , n, where n is the number of original attributes. The number of different
attribute subsets considered using this approach is therefore equal to the size of the original
attribute set, which is usually much less than considered using forward selection or backward
elimination.

Clearly, the results obtained using filter-driven search severely depend on the quality of
the utility estimates used. Simple statistical filters may not guide the search process properly.
Good utility estimates, such as produced by the RELIEF or random forest filters, are costly
to obtain, making the computational savings due to reducing the number of candidate subsets
not so obvious.

Example 19.4.9 The filter-driven search strategy is implemented by the following R code.
The asel.search.filter function takes a vector of named attribute utilities on input,
generates all subsets of top k attributes with respect to these utilities for k between 1 and
the number of original attributes, and returns the best subset according to the specified eval-
uation function. For the demonstrations using the weather data, the meaningless evaluation
function returning a fixed value of 1 is used. A simple symmetric uncertainty-based statistical

Ex. 2.5.6
dmr.stats

filter is employed to guide the search, using the simple.filter function from
Example 19.4.1 and the mutinfo function for mutual information calculation.

## filter-driven attribute selection search
asel.search.filter <- function(attributes, target, utils, evalf, penalty=0.01)
{
ev <- function(subset)
{
ifelse(is.finite(v<-evalf(subset, target)), v-penalty*length(subset)*abs(v), v)

}

subsets <- unname(lapply(utils, function(u) names(utils)[utils>=u]))
subsets.eval <- sapply(subsets, ev)
s.best <- which.max(subsets.eval)

list(subset=subsets[[s.best]], eval=subsets.eval[s.best])
}

# filter attribute selection search for the weather data
# using mutual information-based utility estimates

asel.search.filter(names(weather)[-5], "play",
simple.filter(plaỹ., weather, dd=symunc),
evalf=function(subset, target) 1)

asel.search.filter(names(weather)[-5], "play",
simple.filter(plaỹ., weather, dd=symunc),
evalf=function(subset, target) 1, penalty=0)

asel.search.filter(names(weather)[-5], "play",
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simple.filter(plaỹ., weather, dd=symunc),
evalf=function(subset, target) 1)

asel.search.filter(names(weather)[-5], "play",
simple.filter(plaỹ., weather, dd=symunc),
evalf=function(subset, target) 1, penalty=0)

19.5 Attribute selection wrappers

The motivation behind attribute selection wrappers is based on the belief that there is no
single best (most predictively useful) attribute subset for any given domain and target task,
since different target algorithms are likely to reach their maximum model quality for different
attribute subsets. A reasonable approach to attribute selection would therefore be wrapping
the selected target algorithm within an attribute subset evaluation function, that builds a model
using the algorithm and evaluates its quality, usually by calculating an estimate of its true per-
formance. The resulting subset evaluation function, combined with an attribute subset space
search method that generates a number of candidate subsets to evaluate, yields an attribute
selection wrapper.

Unlike attribute selection filters, the wrapper approach explicitly uses the estimated
model quality as the subset utility measure when searching for the best attribute subset.
Whereas the limited reliability of the estimation, inherent to all model evaluation procedures,
as well as the inexhaustiveness of the search, necessary to make it computationally feasible,
may often prevent attribute selection wrappers from identifying the truly best possible
attribute subset, they attempt to directly (albeit approximately) achieve this natural attribute
selection objective. Attribute selection filters try to do the same not only approximately,
but – more importantly – indirectly and implicitly. While this does not prevent some of
them from delivering excellent results, attribute selection wrappers are definitely more
predictable.

19.5.1 Subset evaluation

Unlike attribute selection filters, the wrapper approach to attribute selection is inherently tied
to evaluating complete attribute subsets rather than single attributes. An attribute subset is
evaluated by giving it a try – using the target algorithm to create a model (or multiple models)
based on the training set and then evaluating its (or their) quality. Since the main purpose of
attribute selection is to improve the true performance of the model that can be created from
the training set, the evaluation should provide a reliable estimation thereof, with the misclas-
sification error defined in Section 7.2.1 and the mean square error defined in Section 10.2.3
being the most popular (but not necessarily always the most appropriate) performance mea-
sures for the classification and regression target tasks, respectively. This is accomplished using
an appropriate evaluation procedure, and k-fold cross-validation presented in Section 7.3.4 is
the most natural choice, unless working with a large dataset for which the simple holdout pro-
cedure may be sufficiently good and less computationally demanding alternative. Of the two
evaluation characteristics discussed in Section 7.3.2, bias and variance, that usually need to
properly balanced, the variance is particularly crucial for attribute selection. Since candidate
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subset evaluation is used to guide the attribute subset space, high evaluation variance may
lead to misleading search space directions being taken. The bias is more tolerable as long as
it remains systematic and does not favor some attribute subsets against the others.

If cross-validation with k-folds is employed for attribute subset evaluation, actually
k models are created end evaluated for each candidate attribute subset, to produce the
aggregated evaluation. To keep the evaluation variance low, this may be repeated n times
with the performance estimates averaged (as per n × k-fold cross-validation). To allocate
computational resources most economically, the value of n can be adjusted dynamically
depending on the actually observed variance. One simple reasonable approach is to start
with n = 2 and then allow additional iterations, as long as the dispersion of the performance
estimates produced by the previous ones is above an acceptance threshold and a maximum
number of iterations has not been reached. The latter is necessary to prevent excessive
computational expense. The former may be measured using the variance or the standard
deviation, although relative measures such as the coefficient of variation or the relative
standard deviation may be more convenient, since they make it possible to set the acceptance
threshold in a dataset- and algorithm-independent way. These and other dispersion measures
are described in Section 2.4.1.

A similar on the fly adjustment procedure is obviously not possible for k, as the number
of cross-validation folds needs to be predetermined. The value of k = 5 is usually consid-
ered a reasonable compromise between the computational expense and reliability, with the
above-mentioned possibility to switch to holdout if the dataset is sufficiently large.

The model evaluation process internally employed by attribute selection wrappers
should never be used as a source of reliable quality assessment of the final model created
using the selected attribute subset. This is because, regardless of the evaluation procedure
employed, attribute selection wrappers naturally fit to their training set by evaluating multiple
candidate subsets and using these evaluations to guide the search for better subsets. As more
extensively discussed in Section 7.3.2, no part of the data used for final model creation (in
any way, including in particular attribute selection) may provide reliable true performance
estimates, and failing to perform independent final model evaluation may lead to evaluation
overfitting.

Example 19.5.1 The following R code implements the wrapper evaluation of candi-
date attribute subsets and demonstrates it using the weather and weatherr datasets. The
wrapper.eval function makes it possible to specify the modeling algorithm and
its arguments as well as the evaluation procedure and its arguments, defaulting to
5-fold cross-validation. The performance measure to be calculated defaults to the
misclassification error for the classification target task and to the mean square error
for the regression target task. Since these most common performance measures take
lower values for better models, the finally returned evaluation value is negated, to
adhere to the more intuitive convention that higher evaluation means better subsets as
well as to the expectations of the asel.search.greedy function from Example
19.3.3. The specified evaluation procedure is called multiple times until a sufficiently
small relative standard deviation of the calculated performance measure is obtained

dmr.util(below minrelsd) or the maximum number of maxn iterations is reached.
The make.formula function is used to construct the formula argument to the

Ex. 7.3.2
dmr.claseval

evaluation procedure on the fly. The default cross-validation evaluation proce-
dure is implemented by the crossval function.
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## subset evaluation for attribute selection wrappers
wrapper.eval <- function(subset, target, data, alg, args=NULL, predf=predict,

perf=if (is.numeric(data[[target]])) mse else err,
evproc=crossval, evargs=list(k=5),
minrelsd=0.01, maxn=5)

{
if (length(subset <- unique(subset))>0)
{
aind <- names(data) %in% subset
ev <- do.call(evproc, c(list(alg, make.formula(target, subset), data,

args=args, predf=predf),
evargs))

p <- perf(ev$pred, ev$true)
repeat
{
ev <- do.call(evproc, c(list(alg, make.formula(target, subset), data,

args=args, predf=predf),
evargs))

p <- c(p, perf(ev$pred, ev$true))
if (length(p)>=maxn || sd(p)/abs(mean(p))<=minrelsd)
break;

}
-mean(p)

}
else
-Inf

}

# wrapper evaluation for the weather data
wrapper.eval(c("outlook", "temperature"), "play", weather,

rpart, args=list(minsplit=2),
predf=function(...) predict(..., type="c"))

wrapper.eval(c("outlook", "temperature", "humidity"), "play", weather,
rpart, args=list(minsplit=2),
predf=function(...) predict(..., type="c"))

wrapper.eval(names(weather)[-5], "play", weather,
rpart, args=list(minsplit=2),
predf=function(...) predict(..., type="c"))

# wrapper evaluation for the weatherc data
wrapper.eval(c("outlook", "temperature"), "play", weatherc,

rpart, args=list(minsplit=2),
predf=function(...) predict(..., type="c"))

wrapper.eval(c("outlook", "temperature", "humidity"), "play", weatherc,
rpart, args=list(minsplit=2),
predf=function(...) predict(..., type="c"))

wrapper.eval(names(weatherc)[-5], "play", weatherc,
rpart, args=list(minsplit=2),
predf=function(...) predict(..., type="c"))

# wrapper evaluation for the weatherr data
wrapper.eval(c("outlook", "temperature"), "playability", weatherr,

rpart, args=list(minsplit=2))
wrapper.eval(c("outlook", "temperature", "humidity"), "playability", weatherr,

rpart, args=list(minsplit=2))
wrapper.eval(names(weatherr)[-5], "playability", weatherr,

rpart, args=list(minsplit=2))

Notice the use of the minsplit=2 argument for rpart, which would create a
single-leaf tree for the small datasets used in the above calls if left at default settings.
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19.5.2 Wrapper attribute selection

An attribute selection wrapper is obtained by combining a wrapper evaluation function with an
attribute subset search strategy. For the former, this requires selecting a performance measure
and an evaluation procedure to be employed for assessing the quality of models created using
the attribute subset being evaluated. For the latter, this requires selecting the initialization and
next state selection methods as well as stop criteria. Many different combinations are possible
that lead to a variety of particular attribute selection wrappers. The most common choices are
those already mentioned above:

• misclassification error or mean square error as the performance measure (depending on
the target task),

• k-fold cross-validation or holdout as the evaluation procedure, depending on the
data size,

• forward selection, backward selection, a mix of these two, or a filter-driven
search strategy.

Example 19.5.2 The R code presented below demonstrates how to combine wrapper
subset evaluation with state space search to create an attribute selection wrapper. The
wrapper.select function applies the function specified via the searchf argument to
search the attribute subset space using the wrapper.eval function for subset evaluation.
Its application to the weather, weatherc, weatherr, Vehicle Silhouettes, Soybean, and Boston
Housing datasets is presented. Not surprisingly, the calls for the three larger datasets require
substantial time to complete. As in the previously presented examples of attribute selection
filters, the attribute subsets obtained for them are retained, to be subsequently used for model
creation in Example 19.6.2.

## wrapper attribute selection
wrapper.select <- function(formula, data, alg, args=NULL, predf=predict,

searchf=asel.search.greedy,
initf=asel.init.all, nextf=asel.next.backward,
perf=if (is.numeric(data[[target]])) mse else err, ...)

{
target <- y.var(formula)
attributes <- x.vars(formula, data)
searchf(attributes, target,

evalf=function(subset, target)
wrapper.eval(subset, target, data, alg, args, predf, perf, ...),

initf=initf, nextf=nextf)
}

# wrapper selection for the weather data
wrapper.select(plaỹ., weather, rpart, args=list(minsplit=2),

predf=function(...) predict(..., type="c"))
wrapper.select(plaỹ., weather, rpart, args=list(minsplit=2),

predf=function(...) predict(..., type="c"),
initf=asel.init.none, nextf=asel.next.forward)

# wrapper selection for the weatherc data
wrapper.select(plaỹ., weatherc, rpart, args=list(minsplit=2),

predf=function(...) predict(..., type="c"))
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wrapper.select(plaỹ., weatherc, rpart, args=list(minsplit=2),
predf=function(...) predict(..., type="c"),
initf=asel.init.none, nextf=asel.next.forward)

# wrapper selection for the weatherr data
wrapper.select(playabilitỹ., weatherr, rpart, args=list(minsplit=2))
wrapper.select(playabilitỹ., weatherr, rpart, args=list(minsplit=2),

initf=asel.init.none, nextf=asel.next.forward)

# wrapper selection for the Vehicle Silhouettes data
v.sel.fwd <- wrapper.select(Class̃., v.train, rpart,

predf=function(...) predict(..., type="c"),
initf=asel.init.none, nextf=asel.next.forward)

v.sel.bwd <- wrapper.select(Class̃., v.train, rpart,
predf=function(...) predict(..., type="c"))

# wrapper selection for the Soybean data
s.sel.fwd <- wrapper.select(Class̃., s.train, rpart,

predf=function(...) predict(..., type="c"),
initf=asel.init.none, nextf=asel.next.forward)

s.sel.bwd <- wrapper.select(Class̃., s.train, rpart,
predf=function(...) predict(..., type="c"))

# wrapper selection for the Boston Housing data
bh.sel.fwd <- wrapper.select(medṽ., bh.train, rpart,

initf=asel.init.none, nextf=asel.next.forward)
bh.sel.bwd <- wrapper.select(medṽ., bh.train, rpart)

Example 19.5.3 The following R code demonstrates wrapper attribute selection using
filter-driven search by defining the wrapper.filter.select function and applying it
to the same datasets as used in the previous example. For the weather, weatherc, and weatherr
datasets, attribute utilities generated by the simple statistical filter from Example 19.4.1 are
used. For the three larger datasets the search process is guided by the random forest attribute
utilities from Example 19.4.7.

## filter-driven wrapper attribute selection
wrapper.filter.select <- function(formula, data, utils, alg, args=NULL,

predf=predict, searchf=asel.search.filter,
perf=if (is.numeric(data[[target]])) mse else err,
...)

{
target <- y.var(formula)
attributes <- x.vars(formula, data)
searchf(attributes, target, utils,

evalf=function(subset, target)
wrapper.eval(subset, target, data, alg, args, predf, perf, ...))

}

# simple filter-driven wrapper selection for the weather data
wrapper.filter.select(plaỹ., weather, simple.filter(plaỹ., weather),

rpart, args=list(minsplit=2),
predf=function(...) predict(..., type="c"))



Trim size: 170mm x 244mmCichosz c19.tex V3 - 11/04/2014 10:23 A.M. Page 593

EFFECTS OF ATTRIBUTE SELECTION 593

# simple filter-driven wrapper selection for the weatherc data
wrapper.filter.select(plaỹ., weatherc, simple.filter(plaỹ., weatherc),

rpart, args=list(minsplit=2),
predf=function(...) predict(..., type="c"))

# simple filter-driven wrapper selection for the weatherr data
wrapper.filter.select(playabilitỹ., weatherr,

simple.filter(playabilitỹ., weatherr),
rpart, args=list(minsplit=2))

# RF filter-driven wrapper selection for the Vehicle Silhouettes data
v.sel.flt <- wrapper.filter.select(Class̃., Vehicle, rf.filter(Class̃., v.train),

rpart, predf=function(...)
predict(..., type="c"))

# RF filter-driven wrapper selection for the Soybean data
s.sel.flt <- wrapper.filter.select(Class̃., Soybean, rf.filter(Class̃., s.train),

rpart, predf=function(...)
predict(..., type="c"))

# RF filter-driven wrapper selection for the Boston Housing data
bh.sel.flt <- wrapper.filter.select(medṽ., BostonHousing,

rf.filter(medṽ., bh.train), rpart)

The evaluations of the returned attribute subsets are worse than those previously received
using greedy search, which is not at all surprising given the vastly less number of generated
candidate subsets. This does not necessarily mean that the subsets would indeed lead to sub-
stantially worse models, though, since only independent data subset evaluation could verify
this reliably.

19.6 Effects of attribute selection

Attribute selection has to be always considered as a part of the modeling process in a broader
sense. Its effects have to be therefore evaluated using an independent data subset. This can
be accomplished by employing a selected evaluation procedure outside attribute selection.
For this evaluation procedure the model creation process includes both attribute selection and
model building using the selected attribute subset. It can be as simple as using the holdout
procedure (i.e., holding out a separate data subset for the evaluation purpose), although more
refined and reliable procedures, such as k-fold cross-validation, should be preferred when the
data size and computational resources permit.

Example 19.6.1 A simple experiment that evaluates the effects of filter attribute selection is
performed by the following R code. A manual holdout procedure is used to estimate the true
performance of decision and regression trees for the Vehicle Silhouettes, Soybean, and Boston
Housing datasets. They will be created using therpart package, both without attribute selec-
tion and with filtering attribute selection performed in the previously presented examples.

# selected attribute subsets
v.self <- list(nosel=setdiff(names(v.train), "Class"),
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simple=v.sel.simple, cfs=v.sel.cfs, cons=v.sel.cons,
rel=v.sel.rel, rf=v.sel.rf)

s.self <- list(nosel=setdiff(names(s.train), "Class"),
simple=s.sel.simple, cfs=s.sel.cfs, cons=s.sel.cons,
rel=s.sel.rel, rf=s.sel.rf)

bh.self <- list(nosel=setdiff(names(bh.train), "medv"),
simple=bh.sel.simple, cfs=bh.sel.cfs, cons=bh.sel.cons,
rel=bh.sel.rel, rf=bh.sel.rf)

# misclassification error
v.errf <- sapply(v.self, function(sel)

{
tree <- rpart(make.formula("Class", sel), v.train)
err(predict(tree, v.test, type="c"), v.test$Class)

})
s.errf <- sapply(s.self, function(sel)

{
tree <- rpart(make.formula("Class", sel), s.train)
err(predict(tree, s.test, type="c"), s.test$Class)

})
bh.errf <- sapply(bh.self, function(sel)

{
tree <- rpart(make.formula("medv", sel), bh.train)
mse(predict(tree, bh.test), bh.test$medv)

})

# attribute subset size
v.sizef <- sapply(v.self, length)
s.sizef <- sapply(s.self, length)
bh.sizef <- sapply(bh.self, length)

barplot(v.errf, main="Vehicle Silhouettes", ylab="Error", las=2)
lines(c(0, 8), rep(v.errf[1], 2), lty=2)
barplot(v.sizef, main="Vehicle Silhouettes", ylab="Size", las=2)

barplot(s.errf, main="Soybean", ylab="Error", las=2)
lines(c(0, 8), rep(s.errf[1], 2), lty=2)
barplot(s.sizef, main="Soybean", ylab="Size", las=2)

barplot(bh.errf, main="Boston Housing", ylab="Error", las=2)
lines(c(0, 8), rep(bh.errf[1], 2), lty=2)
barplot(bh.sizef, main="Boston Housing", ylab="Size", las=2)

Barplots that compare the performance (misclassification error or mean square error) and
attribute set size before and after the application of attribute selection filters, produced by
the above code, are in Figures 19.1, 19.2, and 19.3. Attribute selection appears to improve
model quality for the Boston Housing data only, with no substantial effect or some predictive
performance degradation observed for the other two datasets. In any case, it at least makes
it possible to create models as good or nearly as good as without attribute selection using
a fraction of the original number of attributes. Not all attribute selection filters turn out
equally successful, though. The correlation-based filter yields small attribute subsets which
may however degrade model performance. The consistency-based filter selects all available
attributes for the Vehicle Silhouettes data, a small subset of attributes resulting in a poor
model for the Soybean data, and about a half of attributes preserving model quality for the
Boston Housing data. The simple statistical filter turns out surprisingly successful compared
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Figure 19.1 Effects of filtering attribute selection for the Vehicle Silhouettes data.
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Figure 19.2 Effects of filtering attribute selection for the Soybean data.
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Figure 19.3 Effects of filtering attribute selection for the Boston Housing data.
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Figure 19.4 Effects of wrapper attribute selection for the Vehicle Silhouettes data.
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Figure 19.5 Effects of wrapper attribute selection for the Soybean data.
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Figure 19.6 Effects of wrapper attribute selection for the Boston Housing data.
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to the more refined and theoretically superior RELIEF and random forest filters, at least
under the arbitrary 50% cutoff applied.

Example 19.6.2 The R code presented below demonstrates a simple experiment that evaluates
the effects of wrapper attribute selection, using the same design and datasets as in the previous
example for attribute selection filters.

# selected attribute subsets
v.selw <- list(nosel=setdiff(names(v.train), "Class"),

fwd=v.sel.fwd$subset, bwd=v.sel.bwd$subset, flt=v.sel.flt$subset)
s.selw <- list(nosel=setdiff(names(s.train), "Class"),

fwd=s.sel.fwd$subset, bwd=s.sel.bwd$subset, flt=s.sel.flt$subset)
bh.selw <- list(nosel=setdiff(names(bh.train), "medv"),

fwd=bh.sel.fwd$subset, bwd=bh.sel.bwd$subset, flt=bh.sel.flt$subset)

# misclassification error
v.errw <- sapply(v.selw, function(sel)

{
tree <- rpart(make.formula("Class", sel), v.train)
err(predict(tree, v.test, type="c"), v.test$Class)

})
s.errw <- sapply(s.selw, function(sel)

{
tree <- rpart(make.formula("Class", sel), s.train)
err(predict(tree, s.test, type="c"), s.test$Class)

})
bh.errw <- sapply(bh.selw, function(sel)

{
tree <- rpart(make.formula("medv", sel), bh.train)
mse(predict(tree, bh.test), bh.test$medv)

})

# attribute subset size
v.sizew <- sapply(v.selw, length)
s.sizew <- sapply(s.selw, length)
bh.sizew <- sapply(bh.selw, length)

barplot(v.errw, main="Vehicle Silhouettes", ylab="Error", las=2)
lines(c(0, 5), rep(v.errw[1], 2), lty=2)
barplot(v.sizew, main="Vehicle Silhouettes", ylab="Size", las=2)

barplot(s.errw, main="Soybean", ylab="Error", las=2)
lines(c(0, 5), rep(s.errw[1], 2), lty=2)
barplot(s.sizew, main="Soybean", ylab="Size", las=2)

barplot(bh.errw, main="Boston Housing", ylab="Error", las=2)
lines(c(0, 5), rep(bh.errw[1], 2), lty=2)
barplot(bh.sizew, main="Boston Housing", ylab="Size", las=2)

Barplots that compare the performance (misclassification error or mean square error) and
attribute set size without selection, with forward selection, and with backward elimination,
produced by the above code, are presented in Figures 19.4, 19.5, and 19.6.

Similarly as in the previous example for attribute selection filters, wrapper attribute selec-
tion improves model quality for the Boston Housing data only, with forward selection and
backward elimination yielding the same performance (although different attribute subsets)
and filtering selection clearly less effective. For the remaining datasets it only makes it pos-
sible to reduce the number of attributes. The sizes of the attribute subsets obtained using the
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forward, backward, and filter-driven search strategies do not differ substantially. The results
of wrapper attribute selection might be better with other setups of the minrelsd and maxn
parameters controlling the internal evaluation procedure.

19.7 Conclusion

The attribute selection task plays a special role in data mining. While rarely exposed as the
primary objective, it may be often a required step, essential for obtaining high-quality models.
This is particularly true for domains where the number of attributes can not only be as large as
hundreds or thousands, but also for moderate attribute sets of several dozens or less it would
not harm to try attribute selection. It is by no means guaranteed to always give model quality
improvements, but whenever time and resources permit, it is worthwhile to investigate. Even
if no improvement is obtained, the resulting insight on the domain may be a useful side effect.

The distinctive feature of attribute selection filters is their algorithm independence – they
are not untied to a particular target algorithm, but do not even require one to be specified at
all. The selected attribute subset can be used with arbitrary algorithms appropriate for the tar-
get modeling task. While it can be considered an important advantage, making it possible to
perform attribute selection once and then build multiple models using a variety of algorithms,
it may also turn out to be a deficiency. Since different algorithms represent and create their
models in a substantially different way, they are not unlikely to require different attribute sub-
sets to achieve the best possible model performance. In particular, filter methods are naturally
focused on global predictive utility (in the whole domain or in major parts thereof) and may
fail to include attributes that turn out locally useful (in selected small domain regions), which
is likely to sometimes affect the performance of models created by algorithms capable of
exploiting such attributes (in particular, decision trees and regression trees). This is the major
argument behind the alternative wrapper approach to attribute selection.

With that reservation worthwhile to keep in mind, filtering attribute selection algorithms
remain useful and can be safely recommended whenever wrappers are impossible or incon-
venient to apply. Clearly, more refined context-sensitive filters should be preferred whenever
possible, since simple context-insensitive statistical filters can be often misleading and should
only be used when enforced by computational economics reasons.

The general assumption of attribute selection wrappers – that different target algorithms
may require different attribute subsets to reach the best model quality – is in general hardly
questionable, given the diversity of model representation and identification methods employed
by modeling algorithms. It is not always desirable and acceptable, however, to perform
attribute selection independently for each target algorithm considered for a given application.
While some attribute selection filters employ essentially the same subset space search
schemes, their subset evaluation functions are usually much easier and faster to calculate
than the full model building and evaluation cycle needed by attribute selection wrappers.

When computational savings are not necessary (which may be the case, e.g., when work-
ing with small data or the repertoire of modeling algorithms to consider has been narrowed
down by prior analysis) and the ultimate model quality has top priority (which is usually
the case), the wrapper approach to attribute selection should be usually the best way to go.
Attribute selection filters remain a useful alternative when a single attribute subset for mul-
tiple target algorithms is to be selected or when a faster and more computationally efficient
attribute selection process is needed, particularly for large datasets.
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One potential caveat when using attribute selection wrappers is failing to spare a sepa-
rate dataset for evaluating models created using the attribute subset obtained after attribute
selection. It may be indeed tempting to treat the performance estimate produced by wrapper
evaluation for the best attribute subset as representing the expected model quality on new data.
As mentioned above and more extensively discussed in Section 7.3.2, this is likely to lead to
evaluation overfitting, i.e., overoptimistic model quality assessment.

19.8 Further readings

During recent years, attribute selection has evolved from a relatively small research niche
to one of mainstream machine learning and data mining directions. Its practical utility has
become recognized and the increased computational power makes it more common to see
attribute selection performed as part of practical data mining projects. It has not yet attracted
a similar level of interest and appreciation as the most popular modeling algorithms, but has
already found its way into recent data mining books (e.g., Cios et al. 2007; Tan et al. 2013;
Witten et al. 2011). Some of them present attribute selection as one of possible approaches
to data reduction (Han et al. 2011; Theodoridis and Koutroumbas 2008), with other possibil-
ities including mathematical transformations that replace the original set of attributes with a
different smaller subset, e.g., based on matrix factorization.

A somewhat dated, but thorough review of attribute selection algorithms is given by Liu
and Motoda (1998). The more recent collection of articles (Liu and Motoda 2007) covers
important directions of attribute selection research. Guyon and Elisseeff (2003) reviewed
major filter and wrapper attribute selection algorithms. Guyon et al. (2004) summarized the
results of an attribute selection competition that provided useful insights about the utility of
different algorithms. Blum and Langley (1997) discussed both attribute and training instance
selection in a unified perspective. Forman (2003) experimentally evaluated a number of
attribute utility measures in the speficic application domain of text classification. Liu et al.
(2010) presented a unified view of different attribute selection algorithms and a review of
ongoing research.

The RELIEF algorithm introduced by Kira and Rendell (1992a,b) belongs to the first
refined attribute selection filters that attempt to achieve context sensitivity when evaluating
the predictive utility of attributes. Subsequent extensions added more capabilities, including
handling missing attribute values and multiple classes (Kononenko 1998) as well as continu-
ous target attributes (Robnik-Šikonja and Kononenko 1997). Robnik-Šikonja and Kononenko
(2003) presented an in-depth analysis of the extended versions of RELIEF. The random forest
measure of attribute utility, originally called variable importance, was proposed by Breiman
(2001) and then used or modified by other authors (e.g., Genuer et al. 2010; Hapfelmeier and
Ulm 2013; Sandri and Zuccolotto 2006).

The attribute subset space search problem is an instantiation of the general search prob-
lems in artificial intelligence for which several algorithms are available (e.g., Russell and
Norvig 2011). The work of Marill and Green (1963) is an early example of backward elimina-
tion. Forward selection and backward elimination strategies were discussed by Kittler (1978).
Siedlecki and Sklansky (1988) used more refined beam and bi-directional search strategies. Xu
et al. (1989) presented a best-first search strategy for attribute selection. Evolutionary search
was also considered as an alternative approach by several authors (e.g. Tan et al. 2009; Vafaie
and De Jong 1992). The search view of attribute selection was emphasized by Langley (1994).
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The correlation-based filter was proposed by Hall (1999, 2000). Dash et al. (2000)
introduced the consitency-based filter, later more extensively described and evaluated by
Dash and Liu (2003), although a similar idea of searching for a minimum attribute subset
sufficient for making consistent predictions appeared before (Almuallim and Dietterich
1992). Shin et al. (2011) presented several consistency measures and a greedy backward
elimination consistency-based selection algorithm.

The seminal article by Kohavi and John (1997) argued for the advantages of wrapper
attribute subset evaluation and discussed how it can be combined with different search strate-
gies. Strazucci and Utgoff (2004) demonstrated how the number of subsets to evaluate can
be reduced by an appropriate randomization technique. Dy and Brodley (2004) adopted the
idea of wrapper selection to the clustering target task, when working with unlabeled data. A
survey and a unified view of attribute selection algorithms for classification and clustering
was presented by Liu and Yu (2005).
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Case studies

20.1 Introduction

The previous chapters of this book contain R code examples that illustrate the operation
mechanics of data mining algorithms. While some of the datasets used for these illustrations
and demonstrations can be considered realistic (even if small), their scope is by far too limited
to adequately represent the typical data mining process. This is supposed to be partially com-
pensated by this chapter, containing case studies that somewhat better portray the path from
data to models that has to be traversed in a real-world data mining project.

With the above being said, the case studies remain limited with respect to the scope and
depth in comparison to what would be usually done in reality. To make them easily repro-
ducible, they all use publicly available datasets that can be loaded to R with single function
calls, are relatively clean, and require very limited preprocessing. To keep the computational
requirements within the reach of even aged and low-performant personal computers, compu-
tationally intensive operations are avoided. No more than two or three modeling algorithms
are used in each study with none or limited parameter tuning, hopefully providing an encour-
agement for the reader to continue with other algorithms and parameter setups. Little or no
statistical exploration of attribute distribution and relationships is included. Some methods
of analysis that could be applied to all the datasets are only demonstrated for one of them to
avoid uninstructive repetitions. All this helps us to keep the amount of code to be presented
within reasonable limits and its contents easy to follow, but departs from the full realism
of data mining practice. On the other hand, it leaves space for the reader’s own analytic
initiative.

The best possible use of the case studies is to repeat them completely in R, taking care to
understand all function calls and inspect their output. Introducing modifications or trying to
similarly proceed with other datasets would be a natural and useful follow-up. It also makes

Data Mining Algorithms: Explained Using R, First Edition. Paweł Cichosz.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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sense to adhere to the order of case study presentation in this chapter, since the level of detail
of the provided explanations and result discussion gradually decreases.

20.1.1 Datasets

The following datasets used for the case studies all come from the UCI Machine Learning
Repository:

Census income. Dataset from the 1994–1995 US Census population surveys, with demo-
graphic and employment attributes.

Communities and crime. Dataset combining the socioeconomic attributes from 1990 US
Census community survey, local police department data from the 1990 US LEMAS
survey,1 and the with the 1995 FBI UCR crime statistics.2

Cover type. Dataset containing cartographic attributes with the forest cover type from the
US Forest Service.

Appendix C can be referred to for information how to locate the corresponding UCI reposi-
tory pages, providing more details about the origin and past usage of these datasets, as well
as attribute characteristics. Each of these datasets has a designated target attribute for classi-
fication or regression, but of course they can also be used to perform clustering.

All the datasets are loaded from the corresponding files downloaded from the repository
using the read.table function. The presented data loading calls assume the files are placed
in the Data directory, located one level above R’s current working directory, and have to be
modified for other settings.

20.1.2 Packages

The case studies will use data mining algorithm implementations from CRAN packages.
While the same or similar algorithms, sometimes in more refined versions, are also provided
by the popular Weka library and available from R via theRWeka interface package, only native
R packages are used.

Selected functions from the DMR family of packages accompanying this book will be
also applied when convenient, particularly for the purpose of model evaluation. They will be
used even if the same or similar functionality is available from CRAN packages, to make it
easier for the reader to fully understand their operation by referring to the examples where
they were defined. All the packages are listed in Appendix B and will be explicitly loaded
when necessary.

20.1.3 Auxiliary functions

Besides CRAN and DMR packages, a few R functions specifically written for this chapter
will come handy. They are all very simple utility functions that automate certain operations
related to rpart decision and regression trees.

1 Law Enforcement Management and Administrative Statistics.
2 Uniform Crime Reporting.
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The following three functions will be used for accessing cost-complexity tables gener-
ated by the rpart decision and regression tree implementations, available in the cptable
component of rpart objects:

## complexity parameter corresponding to the minimum cross-validated error
cpmin <- function(cptab) { cptab[which.min(cptab[,4])[1], 1] }

## complexity parameter corresponding to the smallest tree within 1-SD
## from the minimum cross-validated error
cp1sd <- function(cptab)
{ cptab[which(cptab[,4]<min(cptab[,4]) + cptab[which.min(cptab[,4]),5])[1], 1] }

## sequence of complexity parameter values corresponding to the minimum
## cross-validated error, s next smaller trees, and l next larger trees
cpminrange <- function(cptab, s=5, l=5)
{
m <- which.min(cptab[,4])[1]
cptab[max(m-s, 1):min(m+l, nrow(cptab)), 1]

}

The cpmin function selects a complexity parameter value for cost-complexity pruning
corresponding to the minimum cross-validated error. The cp1sd function selects a com-
plexity parameter value for cost-complexity pruning using the one standard deviation rule.
The cpminrange function identifies a sequence of the most promising cost-complexity
values around the minimum-error one. The actual usage demonstrated later will clarify
the purpose and the correct way of applying these functions. Section 3.4.2 can be referred
to for background on cost-complexity pruning. The fourth column of the cost-complexity
table, used by the functions, contains the cross-validated error corresponding to particular
complexity parameter values.

The rpart.pmin and rpart.p1sd functions defined below wrap rpart tree grow-
ing and pruning in a single function. It may be sometimes convenient to have one call per-
forming the whole model creation process.

## grow and prune an rpart tree using minimum-error cost-complexity pruning
rpart.pmin <- function(formula, data, ...)
{
tree.f <- rpart(formula, data, minsplit=2, cp=0, ...)
prune(tree.f, cpmin(tree.f$cptable))

}

## grow and prune an rpart tree using 1-SD cost-complexity pruning
rpart.p1sd <- function(formula, data, ...)
{
tree.f <- rpart(formula, data, minsplit=2, cp=0, ...)
prune(tree.f, cp1sd(tree.f$cptable))

}

The two more refined auxiliary functions defined below automate piecewise linear model
creation and prediction in R, with a regression tree used to decompose the domain into regions
and linear models assigned to particular regions. This can be thought of as a simple form of
model trees, discussed in a more general setting in Section 9.8, in which the tree structure is
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created using the rpart function, linear models for leaves are created using the lm function,
and some simple additional code takes care of matching the latter with the former. Such
models are created by the lmrpart function and applied by the predict.lmrpart
prediction method. The optional skip.attr argument for the former may be used to
request skipping attributes used for splitting in the tree structure during linear model creation.

dmr.util
The make.formula function is used to construct the formula argument for lm.
It would be actually a better idea to independently adjust the set of attributes for
each leaf’s linear model, skipping only those occurring on the corresponding path,
but using the common set of attributes keeps the implementation simple.

## create a piecewise linear model represented by an rpart regression tree
## with linear models corresponding to leaves
lmrpart <- function(formula, data, skip.attr=FALSE, ...)
{
m.tree <- rpart(formula, data, ...)
m.leaves <- sort(unique(predict(m.tree, data)))
lmattr <- if (skip.attr)

setdiff(x.vars(formula, data), setdiff(m.tree$frame$var, "<leaf>"))
else "."

m.lm <- ‘names<-‘(lapply(m.leaves, function(l)
lm(make.formula(y.var(formula), lmattr),

data[predict(m.tree, data)==l,])),
m.leaves)

‘class<-‘(list(tree=m.tree, lm=m.lm), "lmrpart")
}

## prediction method for lmrpart
predict.lmrpart <- function(model, data)
{
leaves <- as.character(predict(model$tree, data))
sapply(1:nrow(data),

function(i) predict(model$lm[[leaves[i]]], data[i,]))
}

No usage examples for these functions are provided here, as they will appear naturally
when needed in the case studies.

20.2 Census income

This case study is devoted to the classification of individuals described by socioeconomic
Census attributes into income categories. The R packages used by this case study can be
loaded as follows:

library(dmr.claseval)
library(dmr.util)
library(dmr.trans)

library(rpart)
library(rpart.plot)
library(randomForest)
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20.2.1 Data loading and preprocessing

The following code loads the Census Income data and sets attribute names based on the data
description available in its repository page.

census <- read.table("../Data/census-income.data",
sep=",", na.strings="?", strip.white=TRUE)

census.test <- read.table("../Data/census-income.test",
sep=",", na.strings="?", strip.white=TRUE)

names(census) <- c("age",
"class.of.worker",
"detailed.industry.recode",
"detailed.occupation.recode",
"education",
"wage.per.hour",
"enroll.in.edu.inst.last.wk",
"marital.stat",
"major.industry.code",
"major.occupation.code",
"race",
"hispanic.origin",
"sex",
"member.of.a.labor.union",
"reason.for.unemployment",
"full.or.part.time.employment.stat",
"capital.gains",
"capital.losses",
"dividends.from.stocks",
"tax.filer.stat",
"region.of.previous.residence",
"state.of.previous.residence",
"detailed.household.and.family.stat",
"detailed.household.summary.in.household",
"instance.weight",
"migration.code.change.in.msa",
"migration.code.change.in.reg",
"migration.code.move.within.reg",
"live.in.this.house.1.year.ago",
"migration.prev.res.in.sunbelt",
"num.persons.worked.for.employer",
"family.members.under.18",
"country.of.birth.father",
"country.of.birth.mother",
"country.of.birth.self",
"citizenship",
"own.business.or.self.employed",
"fill.inc.questionnaire.for.veterans.admin",
"veterans.benefits",
"weeks.worked.in.year",
"year",
"income")

names(census.test) <- names(census)

There are actually two datasets loaded, the training set and the accompanying test set. All
subsequent preprocessing applies to both of them.

We need to make sure that discrete attributes that are just represented numerically in
the dataset are not treated as numbers. The following code achieves this by applying the
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as.factor function to the numerically represented discrete attributes. Notice that theyear
is also treated as discrete, since it only distinguishes between instances from the 1994 and 1995
surveys.

ci.discrete <- c("detailed.industry.recode", "detailed.occupation.recode",
"own.business.or.self.employed", "veterans.benefits", "year")

for (a in ci.discrete)
{
census[[a]] <- as.factor(census[[a]])
census.test[[a]] <- as.factor(census.test[[a]])

}

As we can find out from the description of the dataset, the instance.weight attribute,
related to Census data gathering procedures, is not meaningful for classification. The follow-
ing code removes it:

census$instance.weight <- NULL
census.test$instance.weight <- NULL

It will be convenient to modify the class labels stored in the income factor column, which
may be prone to typing errors in their original form:

ci.labels <- c("low", "high")
census$income <- factor(ifelse(census$income=="50000+.", "high", "low"),

levels=ci.labels)
census.test$income <- factor(ifelse(census.test$income=="50000+.", "high", "low"),

levels=ci.labels)

By explicitly specifying factor levels, we override the default lexicographic ordering and
make sure that the low class comes before the high class, which will also turn out convenient
during model evaluation. This is because we will consider the latter positive when calculating
confusion matrix-based performance measures.

The test set will be reserved solely for the final evaluation of created models, but several
decisions will have to be made before the ultimate models are achieved. These decisions are
based on building and evaluating several trial models. Therefore, the original training set is
randomly decomposed into a 67% training and 33% validation subsets as follows, with the
random generator seed explicitly initialized for reproducibility:

set.seed(12)

rci <- runif(nrow(census))
ci.train <- census[rci>=0.33,]
ci.val <- census[rci<0.33,]
ci.train.small <- census[rci>=0.9,]

The last ci.train.small subset is a small sample of the training subset, intended to be
used for the most computationally intensive operation of random forest growing.



Trim size: 170mm x 244mmCichosz c20.tex V3 - 11/04/2014 10:23 A.M. Page 608

608 CASE STUDIES

20.2.2 Default model

The following line of code builds a basic decision tree model on the training subset, with all
parameters taking default values, no misclassification costs specified, no attribute selection,
and no pruning.

ci.tree.d <- rpart(incomẽ., ci.train)

Ex. 7.2.1
dmr.claseval

To evaluate this default tree on the validation subset, we will calculate the
misclassification error using the err function:

ci.tree.d.pred <- predict(ci.tree.d, ci.val, type="c")
err(ci.tree.d.pred, ci.val$income)

Ex. 7.2.4
dmr.claseval

Although the error value of less than 0.05 may appear quite promising,
inspecting the confusion matrix calculated using the confmat function allows
one to better verify the actual utility of this model.

ci.tree.d.cm <- confmat(ci.tree.d.pred, ci.val$income)

The rows of the produced matrix correspond to predicted class labels and the columns to
the true ones. Not surprisingly, the high class, which has considerably less representation
in the training set, is much harder to predict. With this more interesting class considered

Ex. 7.2.6
dmr.claseval

“positive,” the true positive rate and the false positive rate, two convenient indi-
cators of model quality based on the confusion matrix defined in Section 7.2.4,
can be calculated using the tpr and fpr functions:

ci.tree.d.tpr <- tpr(ci.tree.d.cm)
ci.tree.d.fpr <- fpr(ci.tree.d.cm)

While the false positive rate of just slightly above 0.01 is more than satisfactory, the true
positive rate below 0.4 shows that the majority of the positive class (high income) remains
undetected by the model.

Ex. 7.2.11, 7.2.14
dmr.claseval

Finally, the following code shows how to produce the ROC curve and cal-
culate the area under the curve, as discussed in Section 7.2.5, using the roc
and auc functions:

ci.tree.d.roc <- roc(predict(ci.tree.d, ci.val)[,2], ci.val$income)
plot(ci.tree.d.roc$fpr, ci.tree.d.roc$tpr, type="l", xlab="FP rate", ylab="TP rate")
points(ci.tree.d.fpr, ci.tree.d.tpr, pch=8)
auc(ci.tree.d.roc)

Calling the predict function without the type="c" argument makes it return class
probabilities for each classified instance, in the order corresponding to the ordering of class
labels. Given our ordering (“negative” class low first, “positive” class high second), we
need to take the second column of the results returned by the predict functions to get the
“positive” class probability.

The obtained plot is presented in Figure 20.1. The asterisk mark represents the model’s
default operating point, obtained when using the predict function with type="c".
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Figure 20.1 The ROC curve of the default decision tree for the Census Income data.

It corresponds to classifying each instance to the more likely of the two classes, with respect
to the probability estimates from decision tree leaves. The ROC curve shows that the very
same decision tree could produce considerably more true positives, without adding too many
false positives, just by changing the cutoff value used to assign class labels based on estimated
class probabilities. To exploit this possibility, we need to replace the default classification
rule applied by predict(..., type="c"), selecting the most likely class, which
corresponds to a cutoff value of 0.5, with an alternative rule using an appropriately selected
probability cutoff.

The following code identifies cutoff values corresponding to the true positive rate
above 0.6:

ci.tree.d.cut06 <- ci.tree.d.roc$cutoff[ci.tree.d.roc$tpr>0.6]

Ex. 7.2.12
dmr.claseval

The first element of the resulting vector is the least cutoff value with the true
positive rate greater than 0.6. To generate predicted class labels with this cutoff
value, we will use the cutclass function as follows:

ci.tree.d.cm06 <- confmat(cutclass(ci.tree.d.prob, ci.tree.d.cut06[1], ci.labels),
ci.val$income)
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ci.tree.d.tpr06 <- tpr(ci.tree.d.cm06)
ci.tree.d.fpr06 <- fpr(ci.tree.d.cm06)
points(ci.tree.d.fpr06, ci.tree.d.tpr06, pch=1)

The last line adds the obtained modified operating point, marked by a circle, to the previous
ROC plot. The result is presented in Figure 20.2.

By looking at the curve or examining the ci.tree.d.roc object, it can be easily seen
that an additional small improvement of the true positives rate is possible (before the false
positive rate becomes 1), but still leaving it below 0.7.

20.2.3 Incorporating misclassification costs

The decision tree built using default parameter settings of rpart had trouble with accurately
predicting the minority class high on the validation set. The ROC curve analysis confirmed
that a better operating point is possible than the default one corresponding to the 0.5 class
probability cutoff, but we may seek for other improvements. One possible way is to specify
misclassification costs, as discussed in Section 6.2, with the cost of misclassifying high as
low (false negatives) higher than the cost of misclassifying low than high (false positives).
This is likely to produce more false positives, but also more true positives. In some real-world
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Figure 20.2 The ROC curve of the default decision tree for the Census Income data with
the operating point shifted to reach a TP rate above 0.6.
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applications the “true” misclassification costs may be known based on the underlying “busi-
ness” model, but in our case we will experiment with a few arbitrarily selected settings to
examine their effects.

Misclassification costs can be specified for rpart using the loss slot of the parameter
list passed via the parms argument. This is easier than using general-purpose cost-sensitive
wrappers defined in the examples presented in Section 6.3 and sufficient for this study. The
following rpart call builds a decision tree with a 2:1 cost matrix, i.e., with the cost of false
negatives twice greater than the cost of false positives:

ci.cost2 <- matrix(c(0, 1, 2, 0), nrow=2, byrow=TRUE)
ci.tree.c2 <- rpart(incomẽ., ci.train, parms=list(loss=ct.cost2))

The rows of the misclassification cost matrix correspond to true class labels and the
columns to predictions, with the ordering of labels corresponding to the ordering of levels of
the class column in the training dataset, which is low (negative) first and high (positive)
second in our case. The matrix used above specifies that the cost of predicting low instead
of high is 2, whereas the cost of predicting high instead of low is 1. The effect of such
a cost specification is that rpart puts twice as much weight to the instances of the high
class as to the instances of the low class, which affects both split selection and stop criteria
used when growing the tree, as well as class label assignment.

The resulting decision tree can be evaluated on the validation set in the exactly same way
as before:

ci.tree.c2.pred <- predict(ci.tree.c2, ci.val, type="c")
err(ci.tree.c2.pred, ci.val$income)
# confusion matrix

ci.tree.c2.cm <- confmat(ci.tree.c2.pred, ci.val$income)
# true positives/false negative rates

ci.tree.c2.tpr <- tpr(ci.tree.c2.cm)
ci.tree.c2.fpr <- fpr(ci.tree.c2.cm)

Note the improvement of the true positive rate, which now approaches 0.45 (at the cost of
an increased increased false positive rate above 0.02). We reach an arguably more preferred
performance level than for the default model, but without even coming close to its performance
at the shifted operating point with the modified probability cutoff.

The following code produces the ROC curve (adding the curve previously obtained for
the default model plotted with a dashed line for comparison) and calculates the area under the
curve for the decision tree incorporating the 2:1 cost matrix:

ci.tree.c2.prob <- predict(ci.tree.c2, ci.val)[,2]
ci.tree.c2.roc <- roc(ci.tree.c2.prob, ci.val$income)
plot(ci.tree.c2.roc$fpr, ci.tree.c2.roc$tpr, type="l", xlab="FP rate", ylab="TP rate")
points(ci.tree.c2.fpr, ci.tree.c2.tpr, pch=8)
lines(ci.tree.d.roc$fpr, ci.tree.d.roc$tpr, lty=2)
points(ci.tree.d.fpr, ci.tree.d.tpr, pch=4)
auc(ci.tree.c2.roc)

The obtained plot is presented in Figure 20.3. As shown in the figure, the default
operating point (i.e., the one corresponding to the default classification cutoff used by
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Figure 20.3 The ROC curve of the cost-sensitive decision tree for the Census Income data
using the 2:1 misclassification cost matrix.

predict(..., type="c)) is marked by an asterisk (with the default operating point
for the previously created default decision tree marked by an “X”). The area under the ROC
curve is slightly greater than for the default model, suggesting that a more favorable operating
point could be possible. It can also be immediately seen by comparing the ROC curves. Now
we can set the goal of achieving a true positive rate of more than 0.7, more aggressively than
before for the default model. The shifted operating point – added to the ROC curve presented
in Figure 20.4 – is identified and used as follows.

ci.tree.c2.cut07 <- ci.tree.c2.roc$cutoff[ci.tree.c2.roc$tpr>0.7]
ci.tree.c2.cm07 <- confmat(cutclass(ci.tree.c2.prob, ci.tree.c2.cut07[1], ci.labels),

ci.val$income)
ci.tree.c2.tpr07 <- tpr(ci.tree.c2.cm07)
ci.tree.c2.fpr07 <- fpr(ci.tree.c2.cm07)
points(ci.tree.c2.fpr07, ci.tree.c2.tpr07, pch=1)

A true positive rate of more than 0.7 was not possible with the default model. Even given
an increased false positive rate of more than 0.1, this would be usually considered a better per-
formance level, which shows that incorporating a 2:1 misclassification cost matrix brought an
improvement. Comparing the ROC curves clearly confirms that the current model is capable
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Figure 20.4 The ROC curve of the cost-sensitive decision tree for the Census Income data
using the 2:1 misclassification cost matrix with the operating point shifted to reach a TP rate
above 0.7.

of achieving more true positives with more (but still acceptably little) false positives. What it
is unfortunately not capable of is reducing the false positive rate with keeping the same level
of the true positive rate.

It is worthwhile to notice, by the way, that the same effect as obtained using the 2:1
cost matrix can be achieved in the following alternative way, by specifying explicit instance
weights:

ci.tree.w2 <- rpart(incomẽ., census.train,
weights=ifelse(census.train$income=="high", 2, 1))

It can be easily verified that the resulting decision tree has the same structure and achieves
exactly the same performance as the one built using the cost matrix.

To examine the effects of putting even more weight to the positive class, consider using a
5:1 cost matrix, as in the code below.

ci.cost5 <- matrix(c(0, 1, 5, 0), nrow=2, byrow=TRUE)
ci.tree.c5 <- rpart(incomẽ., ci.train, parms=list(loss=ci.cost5))

# error
ci.tree.c5.pred <- predict(ci.tree.c5, ci.val, type="c")
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err(ci.tree.c5.pred, ci.val$income)
# confusion matrix

ci.tree.c5.cm <- confmat(ci.tree.c5.pred, ci.val$income)
# true positive/false positive rates

ci.tree.c5.tpr <- tpr(ci.tree.c5.cm)
ci.tree.c5.fpr <- fpr(ci.tree.c5.cm)
# ROC

ci.tree.c5.prob <- predict(ci.tree.c5, ci.val)[,2]
ci.tree.c5.roc <- roc(ci.tree.c5.prob, ci.val$income)
plot(ci.tree.c5.roc$fpr, ci.tree.c5.roc$tpr, type="l", xlab="FP rate", ylab="TP rate")
points(ci.tree.c5.fpr, ci.tree.c5.tpr, pch=8)
lines(ci.tree.d.roc$fpr, ci.tree.d.roc$tpr, lty=2)
points(ci.tree.d.fpr, ci.tree.d.tpr, pch=4)
auc(ci.tree.c5.roc)

Figure 20.5 displays the produced ROC curve plot. As before, the dashed curve presents
the performance of the default model, as a comparison baseline. Notice a further and more
unquestionable improvement. Even the default operating point yields performance level that
is better than that corresponding to the modified operating point of the default model, both
with respect to the true positive rate (greater) and with respect to the false positive rate (less).
It can also be clearly seen from the ROC curve that a further substantial improvement of the
true positive rate is possible, raising it above 0.8, if we would be ready to accept an increase
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Figure 20.5 The ROC curve of the cost-sensitive decision tree for the Census Income data
using the 5:1 misclassification cost matrix.
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Figure 20.6 The ROC curve of the cost-sensitive decision tree for the Census Income data
using the 5:1 misclassification cost matrix with the operating point shifted to reach a TP rate
above 0.8.

of the false positive rate (still leaving it below 0.2, though). The following code exploits this
possibility, adding a modified operating point marked by a circle to the plot, the resulting
modified form of which is presented in Figure 20.6.

ci.tree.c5.cut08 <- ci.tree.c5.roc$cutoff[ci.tree.c5.roc$tpr>0.8]
ci.tree.c5.cm08 <- confmat(cutclass(ci.tree.c5.prob, ci.tree.c5.cut08[1], ci.labels),

ci.val$income)
ci.tree.c5.tpr08 <- tpr(ci.tree.c5.cm08)
ci.tree.c5.fpr08 <- fpr(ci.tree.c5.cm08)
points(ci.tree.c5.fpr08, ci.tree.c5.tpr08, pch=1)

Now we might be tempted to see if using an even higher ratio of misclassification costs, say
10:1, brings some additional improvement. The following code builds and evaluates decision
tree using a 10:1 cost matrix. Again, the ROC plot includes the curve for the default model
using a dashed line for comparison.

ci.tree.c10.prob <- predict(ci.tree.c10, ci.val)[,2]
ci.tree.c10.roc <- roc(ci.tree.c10.prob, ci.val$income)
plot(ci.tree.c10.roc$fpr, ci.tree.c10.roc$tpr, type="l",
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xlab="FP rate", ylab="TP rate")
points(ci.tree.c10.fpr, ci.tree.c10.tpr, pch=8)
lines(ci.tree.d.roc$fpr, ci.tree.d.roc$tpr, lty=2)
points(ci.tree.d.fpr, ci.tree.d.tpr, pch=4)
auc(ci.tree.c10.roc)

As we can see in Figure 20.7, the obtained model does not exhibit better properties than
the one built with the 5:1 cost matrix. The ROC curve is quite similar, with a slightly less area
under the curve. The most important difference is in the default operating point, which now
corresponds to a true positive rate between 0.7 and 0.8. To achieve a true positive rate above
0.8, one would have to accept a false positive rate of above 0.2, which is worse than possible
with the previous tree using the 5:1 cost matrix.

20.2.4 Pruning

The decision trees constructed and evaluated above were all built using default pre-pruning
stop criteria of the rpart function without applying any post-pruning. Now it is time to
investigate the possible effects of cost-complexity pruning when applied to fully grown trees,
both with and without misclassification costs incorporated. Only the 5:1 cost matrix will be
considered, which appeared to yield the best results in the previous section.
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Figure 20.7 The ROC curve of the cost-sensitive decision tree for the Census Income data
using the 10∶1 misclassification cost matrix.
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One can request a fully grown tree (with no pre-pruning) by specifying the cp and
minsplit parameters of rpart as in the following call:

ci.tree.f <- rpart(incomẽ., ci.train, minsplit=2, cp=0)

Unfortunately, it takes considerably longer than with default stop criteria, and – depending
on the available computational power and patience – one may prefer to choose larger val-
ues of minsplit and/or cp, accepting the theoretical risk that the resulting tree might be
pre-pruned too much (i.e., some nodes that would not be pruned by cost-sensitivity pruning
using a subsequently selected complexity parameter value, would get pre-pruned). Setting
minsplit=10 and cp=0.0001 should be safe in our case.

When the fully (or almost fully) grown tree is ready, one can either select the value
of the complexity parameter yielding the minimum cross-validated error, or apply the
one-standard-deviation rule (1-SD for short), which recommends the cp value yielding
the smallest tree with cross-validated error within one standard deviation of the minimum
cross-validated error. This selection is performed by the following R code, using the cpmin
and cp1sd functions defined in Section 20.1.3:

# minimum-error cost-complexity pruning
ci.tree.pmin <- prune(ci.tree.f, cpmin(ci.tree.f$cptable))
# 1-sd cost-complexity pruning

ci.tree.p1sd <- prune(ci.tree.f, cp1sd(ci.tree.f$cptable))

Since the selection of the complexity parameter is based on internally cross-validated
errors, which are obtained by randomly partitioning the training set into cross-validation folds,
several independent runs of tree growing may yield slightly different complexity tables. This
may cause different cp value selections, yielding different pruned trees.

Note the difference in the sizes of the default (pre-pruned), fully grown, and pruned deci-
sion trees, which can be compared as follows:

c(default=nrow(ci.tree.d$frame), full=nrow(ci.tree.f$frame),
pruned.min=nrow(ci.tree.pmin$frame), pruned.1sd=nrow(ci.tree.p1sd$frame))

The frame component of the rpart object represents the structure of the decision tree,
as has as many rows as the total number of nodes and leaves. The pruned tree is much smaller
than the fully grown tree, but noticeably larger than the default (pre-pruned) one, which sug-
gests that the default level of pre-pruning might have been too aggressive.

Now the fully grown and pruned trees can be evaluated in exactly the same way as before,
by calculating error values, the true positive and false positive rates, and plotting the ROC
curves. The following code evaluates the fully grown tree and plots its ROC curve, with the
ROC curve for the default model shown using a dashed line for comparison.

ci.tree.f.pred <- predict(ci.tree.f, ci.val, type="c")
err(ci.tree.f.pred, ci.val$income)

ci.tree.f.cm <- confmat(ci.tree.f.pred, ci.val$income)
ci.tree.f.tpr <- tpr(ci.tree.f.cm)
ci.tree.f.fpr <- fpr(ci.tree.f.cm)

ci.tree.f.prob <- predict(ci.tree.f, ci.val)[,2]
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ci.tree.f.roc <- roc(ci.tree.f.prob, ci.val$income)
plot(ci.tree.f.roc$fpr, ci.tree.f.roc$tpr, type="l", xlab="FP rate", ylab="TP rate")
points(ci.tree.f.fpr, ci.tree.f.tpr, pch=8)
lines(ci.tree.d.roc$fpr, ci.tree.d.roc$tpr, lty=2)
points(ci.tree.d.fpr, ci.tree.d.tpr, pch=4)
auc(ci.tree.f.roc)

The produced ROC curve plot is presented in Figure 20.8. The fully grown tree definitely
represents a poor model, although it becomes evident only after looking at the ROC curve.
The default operating point is no worse than for the default model, it just represents a dif-
ferent (and arguably better) compromise between true and false positives. The error value is
only marginally greater. However, whereas for the default model one could shift the oper-
ating point to achieve a much more satisfactory performance level, this is impossible for
the fully grown tree. In particular, the highest possible true positive rate, without reaching
a false positive rate value of 1, is about 0.52. The area under the ROC curve is substantially
less as well. Notice, by the way, that the ROC curve of the fully grown tree is much more
smooth. This is a side effect of its big size – with so many leaves there are many distinct class
probability values, and even small changes of the cutoff level result in some instances being
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Figure 20.8 The ROC curve of the fully grown decision tree for the Census Income data.
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classified differently, which makes the number of points of which the ROC curve is created
much larger.

The pruned trees can be evaluated and their ROC curves plotted (again, with the ROC
curve of the default model shown for comparison) as follows.

ci.tree.pmin.pred <- predict(ci.tree.pmin, ci.val, type="c")
err(ci.tree.pmin.pred, ci.val$income)

ci.tree.pmin.cm <- confmat(ci.tree.pmin.pred, ci.val$income)
ci.tree.pmin.tpr <- tpr(ci.tree.pmin.cm)
ci.tree.pmin.fpr <- fpr(ci.tree.pmin.cm)

ci.tree.pmin.prob <- predict(ci.tree.pmin, ci.val)[,2]
ci.tree.pmin.roc <- roc(ci.tree.pmin.prob, ci.val$income)
plot(ci.tree.pmin.roc$fpr, ci.tree.pmin.roc$tpr, type="l",

xlab="FP rate", ylab="TP rate", main="Minimum error CCP")
points(ci.tree.pmin.fpr, ci.tree.pmin.tpr, pch=8)
lines(ci.tree.d.roc$fpr, ci.tree.d.roc$tpr, lty=2)
points(ci.tree.d.fpr, ci.tree.d.tpr, pch=4)
auc(ci.tree.pmin.roc)

ci.tree.p1sd.pred <- predict(ci.tree.p1sd, ci.val, type="c")
err(ci.tree.p1sd.pred, ci.val$income)

ci.tree.p1sd.cm <- confmat(ci.tree.p1sd.pred, ci.val$income)
ci.tree.p1sd.tpr <- tpr(ci.tree.p1sd.cm)
ci.tree.p1sd.fpr <- fpr(ci.tree.p1sd.cm)

ci.tree.p1sd.prob <- predict(ci.tree.p1sd, ci.val)[,2]
ci.tree.p1sd.roc <- roc(ci.tree.p1sd.prob, ci.val$income)
plot(ci.tree.p1sd.roc$fpr, ci.tree.p1sd.roc$tpr, type="l",

xlab="FP rate", ylab="TP rate", main="1-SD CCP")
points(ci.tree.p1sd.fpr, ci.tree.p1sd.tpr, pch=8)
lines(ci.tree.d.roc$fpr, ci.tree.d.roc$tpr, lty=2)
points(ci.tree.d.fpr, ci.tree.d.tpr, pch=4)
auc(ci.tree.p1sd.roc)

Figure 20.9 shows the plotted ROC curves. It can be immediately seen that the pruned trees
clearly outperform both the fully grown tree and the default tree, although – again – it takes
looking at the ROC curves to fully appreciate the improvement. Those for the pruned trees
are consistently above the one for the default model, which shows that the improvement is
unquestionable. Whatever true positive rate is required, we can get it with less false positives.
The ROC curves of the two pruned trees are very similar to each other and it makes sense to
prefer the smaller tree in this situation.

The default operating points of the pruned trees are actually quite similar to that of
the default model. Using a different probability cutoff value makes it possible, however,
to raise the true positive rate above 0.8 while keeping the false positive rate at about
0.2 – something that was not possible with the default model. The following R code exploits
this possibility, adding a shifted operating point marked by a circle to the plot, for the tree
pruned using the one-standard-deviation rule. The resulting modified plot is presented in
Figure 20.10.
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Figure 20.9 The ROC curves of the pruned decision trees for the Census Income data.
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Figure 20.10 The ROC curve of the 1-SD pruned decision tree for the Census Income data
with the operating point shifted to reach a TP rate above 0.8.
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ci.tree.p1sd.cut08 <- ci.tree.p1sd.roc$cutoff[ci.tree.p1sd.roc$tpr>0.8]
ci.tree.p1sd.cm08 <- confmat(cutclass(ci.tree.p1sd.prob, ci.tree.p1sd.cut08[1],

ci.labels),
ci.val$income)

ci.tree.p1sd.tpr08 <- tpr(ci.tree.p1sd.cm08)
ci.tree.p1sd.fpr08 <- fpr(ci.tree.p1sd.cm08)
points(ci.tree.p1sd.fpr08, ci.tree.p1sd.tpr08, pch=1)

The process of building a fully grown tree and cost-complexity pruning can be repeated
with misclassification costs incorporated. The following call uses the 5:1 cost matrix for
growing:

ci.tree.c5f <- rpart(incomẽ., ci.train, minsplit=2, cp=0, parms=list(loss=ci.cost5))

The obtained fully grown tree can be evaluated by calculating its error value, true positives
and false positive rates, and plotting the ROC curve, as presented below. This time the dashed
curve shown for comparison represents the performance of the tree built with default stop
criteria (pre-pruning) and the same 5:1 cost matrix.

ci.tree.c5f.pred <- predict(ci.tree.c5f, ci.val, type="c")
err(ci.tree.c5f.pred, ci.val$income)

ci.tree.c5f.cm <- confmat(ci.tree.c5f.pred, ci.val$income)
ci.tree.c5f.tpr <- tpr(ci.tree.c5f.cm)
ci.tree.c5f.fpr <- fpr(ci.tree.c5f.cm)

ci.tree.c5f.prob <- predict(ci.tree.c5f, ci.val)[,2]
ci.tree.c5f.roc <- roc(ci.tree.c5f.prob, ci.val$income)
plot(ci.tree.c5f.roc$fpr, ci.tree.c5f.roc$tpr, type="l",

xlab="FP rate", ylab="TP rate")
points(ci.tree.c5f.fpr, ci.tree.c5f.tpr, pch=8)
lines(ci.tree.c5.roc$fpr, ci.tree.c5.roc$tpr, lty=2)
points(ci.tree.c5.fpr, ci.tree.c5.tpr, pch=4)
auc(ci.tree.c5f.roc)

As can be seen in Figure 20.11, the fully grown tree is clearly inferior to the pre-
pruned one, both with respect to its default operating point and its – virtually nonexistent –
improvement potential. It cannot deliver much more than 0.5 of true positive rate, despite
incorporating misclassification costs. It is no better (slightly worse, actually) than the
fully-grow tree built without specifying nonuniform misclassification costs. This may appear
surprising at first, but some more thoughts are enough to realize that misclassification costs
can only affect predictions generated probabilistically (i.e., by inaccurate leaves), where they
may justify selecting a less probable class. A fully grown tree may have several perfectly
accurate leaves (fitting the training set exactly), and these leaves will always predict their
assigned class labels regardless of misclassification costs.

To prune the fully grown cost-sensitive decision tree, we will apply the complexity param-
eter values previously determined for its cost-insensitive counterpart:

# minimum-error cost-complexity pruning (with cp determined based on ci.tree.f)
ci.tree.c5pmin <- prune(ci.tree.c5f, cpmin(ci.tree.f$cptable))
# 1-sd cost-complexity pruning (with cp terming based on ci.tree.f)

ci.tree.c5p1sd <- prune(ci.tree.c5f, cp1sd(ci.tree.f$cptable))
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Figure 20.11 The ROC curve of the fully grown cost-sensitive decision tree for the Census
Income data using the 5:1 cost matrix.

This may appear strange and questionable, but turns out useful in this case, since the more
obvious approach of determining the cp values for pruning based on the cost-complexity
table for the cost-sensitive fully grown tree fails, overpruning to a single leaf. This suggests
that the misclassification error-based pruning criterion adopted by cost-complexity pruning
is not necessarily a good choice for cost-sensitive models. We may still see whether the fully
grown cost-sensitive tree – pruned to cost-complexity levels identified for the fully grown
cost-insensitive tree – can give any improvement over the pre-pruned cost-sensitive models
created before. The usual evaluation process is performed by the following code:

ci.tree.c5pmin.pred <- predict(ci.tree.c5pmin, ci.val, type="c")
err(ci.tree.c5pmin.pred, ci.val$income)

ci.tree.c5pmin.cm <- confmat(ci.tree.c5pmin.pred, ci.val$income)
ci.tree.c5pmin.tpr <- tpr(ci.tree.c5pmin.cm)
ci.tree.c5pmin.fpr <- fpr(ci.tree.c5pmin.cm)

ci.tree.c5pmin.prob <- predict(ci.tree.c5pmin, ci.val)[,2]
ci.tree.c5pmin.roc <- roc(ci.tree.c5pmin.prob, ci.val$income)
plot(ci.tree.c5pmin.roc$fpr, ci.tree.c5pmin.roc$tpr, type="l",

xlab="FP rate", ylab="TP rate", main="Minimum error CCP")
points(ci.tree.c5pmin.fpr, ci.tree.c5pmin.tpr, pch=8)
lines(ci.tree.c5.roc$fpr, ci.tree.c5.roc$tpr, lty=2)
points(ci.tree.c5.fpr, ci.tree.c5.tpr, pch=4)
auc(ci.tree.c5pmin.roc)
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ci.tree.c5p1sd.pred <- predict(ci.tree.c5p1sd, ci.val, type="c")
err(ci.tree.c5p1sd.pred, ci.val$income)

ci.tree.c5p1sd.cm <- confmat(ci.tree.c5p1sd.pred, ci.val$income)
ci.tree.c5p1sd.tpr <- tpr(ci.tree.c5p1sd.cm)
ci.tree.c5p1sd.fpr <- fpr(ci.tree.c5p1sd.cm)

ci.tree.c5p1sd.prob <- predict(ci.tree.c5p1sd, ci.val)[,2]
ci.tree.c5p1sd.roc <- roc(ci.tree.c5p1sd.prob, ci.val$income)
plot(ci.tree.c5p1sd.roc$fpr, ci.tree.c5p1sd.roc$tpr, type="l",

xlab="FP rate", ylab="TP rate", main="1-SD CCP")
points(ci.tree.c5p1sd.fpr, ci.tree.c5p1sd.tpr, pch=8)
lines(ci.tree.c5.roc$fpr, ci.tree.c5.roc$tpr, lty=2)
points(ci.tree.c5.fpr, ci.tree.c5.tpr, pch=4)
auc(ci.tree.c5p1sd.roc)
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Figure 20.12 The ROC curves of the pruned cost-sensitive decision tree for the Census
Income data using the 5:1 misclassification cost matrix.

The obtained ROC plots, with the dashed line representing the ROC curve for the
pre-pruned 5:1 cost-sensitive tree, are displayed in Figure 20.12. The two pruned trees
outperform their pre-pruned counterpart and make it possible to raise the true positive rate
above 0.85 while keeping the false positive rate below 0.2. This is demonstrated below for
the smaller of the pruned trees:

ci.tree.c5p1sd.cut085 <- ci.tree.c5p1sd.roc$cutoff[ci.tree.c5p1sd.roc$tpr>0.85]
ci.tree.c5p1sd.cm085 <- confmat(cutclass(ci.tree.c5p1sd.prob,

ci.tree.c5p1sd.cut085[1], ci.labels),
ci.val$income)

ci.tree.c5p1sd.tpr085 <- tpr(ci.tree.c5p1sd.cm085)
ci.tree.c5p1sd.fpr085 <- fpr(ci.tree.c5p1sd.cm085)
points(ci.tree.c5p1sd.fpr085, ci.tree.c5p1sd.tpr085, pch=1)

Figure 20.13 presents the ROC curve with a new operating point marked by a circle. This
is arguably the most preferable of all operating points we have managed to achieve so far. It
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Figure 20.13 The ROC curve of the 1-SD pruned cost-sensitive decision tree for the Census
Income data using the 5:1 misclassification cost matrix with the operating point shifted to
reach a TP rate above 0.85.

represents indeed a striking improvement in comparison to the default operating point for the
default cost-insensitive decision tree we started from.

20.2.5 Attribute selection

To see whether a smaller attribute subset, by constraining the model search space, would
improve the predictive power of decision trees for the Census Income data, one may employ
the random forest algorithm for attribute utility estimation, as discussed in Section 19.4.5.
Some more data preprocessing is needed to meet the requirements of the randomForest

Ex. 17.3.3
dmr.trans

package, which does not permit more than 32 discrete attribute values (fac-
tor levels) and any missing values. The former can be ensured by applying the
aggregation transformation, as described in Section 17.3.3, using the agg.all
and predict.agg functions, and the latter – by applying the imputation

Ex. 17.3.4
dmr.trans

transformation, as described in Section 17.3.4, using the imp.all and pre-
dict.imp functions. There are other functions that could be used to per-
form aggregation and imputation in R (e.g., the combine.levels function
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from the Hmisc package and the na.roughfix and rfImpute functions from the
randomForest package), but they do not support the modeling view of these transforma-
tions, discussed in Section 17.2.5, making it problematic to apply a predictive model created
on the transformed training data to new instances. It would not matter if the random forest
algorithm were used for attribute selection only, but once the forest is grown, it would be a
waste not to consider it as a candidate classification model as well.

Aggregation and imputation is performed by the code presented below. Notice that the
small sample of the training set is used to reduce the computational expense of random forest
growing.

# aggregation (ensure no more than 32 discrete attribute values)
ci.aggm <- agg.all(incomẽ., ci.train.small, 31)
cirf.train <- predict.agg(ci.aggm, ci.train.small)
cirf.val <- predict.agg(ci.aggm, ci.val)
# imputation (ensure no missing values)

cirf.impm <- imp.all(incomẽ., cirf.train)
cirf.train <- predict.imp(cirf.impm, cirf.train)
cirf.val <- predict.imp(cirf.impm, cirf.val)

Now the random forest model can be created as follows:

ci.rf <- randomForest(incomẽ., cirf.train, importance=TRUE)

with theimportance=TRUE argument used to request calculating attribute utility estimates.
Before using them for attribute selection, let us evaluate the random forest model on the vali-
dation subset, as with all the decision tree models created so far.

ci.rf.pred <- predict(ci.rf, cirf.val)
err(ci.rf.pred, cirf.val$income)
ci.rf.cm <- confmat(ci.rf.pred, cirf.val$income)

ci.rf.tpr <- tpr(ci.rf.cm)
ci.rf.fpr <- fpr(ci.rf.cm)

ci.rf.prob <- predict(ci.rf, cirf.val, type="p")[,2]
ci.rf.roc <- roc(ci.rf.prob, cirf.val$income)
plot(ci.rf.roc$fpr, ci.rf.roc$tpr, type="l", xlab="FP rate", ylab="TP rate")
points(ci.rf.fpr, ci.rf.tpr, pch=8)
auc(ci.rf.roc)

The ROC curve is presented in Figure 20.14. While the default operating point, marked
by an asterisk, is rather unimpressive, the curve indicates a very good predictive performance
potential, clearly superior to even the best decision tree created so far. The area under the ROC
curve exceeds 0.9 and an operating point with a true positive rate above 0.9 is possible with
no more than 0.2 false positive rate. The following code identifies the correspondingly shifted
operating point and adds it to the plot presented in Figure 20.15.

ci.rf.cut09 <- ci.rf.roc$cutoff[ci.rf.roc$tpr>0.9]
ci.rf.cm09 <- confmat(cutclass(ci.rf.prob, ci.rf.cut09[1], ci.labels), ci.val$income)
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ci.rf.tpr09 <- tpr(ci.rf.cm09)
ci.rf.fpr09 <- fpr(ci.rf.cm09)
points(ci.rf.fpr09, ci.rf.tpr09, pch=1)
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Figure 20.14 The ROC curve of the random forest model for the Census Income data.

It is worthwhile to notice that the random forest model outperforms the previous deci-
sion tree models despite using a considerably smaller training sample and a single default
parameter setup. The capability to deliver good models without extensive parameter tuning is
definitely an important practical advantage. What may be disappointing is the default operat-
ing point, but we have seen that shifting it at the time of prediction is straightforward. This
could become unnecessary by controlling the class balance of bootstrap samples using the
sampsize parameter, which usually gives better results than specifying class weights via
the classwt parameter. The reader may want to explore both these possibilities.

Finally getting to attribute selection, the following R code produces a plot of attribute
utility estimates and, somewhat arbitrarily, takes top 10%, 25%, and 50% of them as candidate
attribute subsets, adding also the full attribute subset for easy direct comparison. The plot
is presented in Figure 20.16. It is certainly reassuring to see education at the top of the
attribute utility ranking for income prediction.
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Figure 20.15 The ROC curve of the random forest model for the Census Income data with
the operating point shifted to reach a TP rate above 0.9.

region.of.previous.residence
family.members.under.18
member.of.a.labor.union
full.or.part.time.employment.stat
marital.stat
tax.filer.stat
fill.inc.questionnaire.for.veterans.admin
citizenship
num.persons.worked.for.employer
wage.per.hour
detailed.household.summary.in.household
weeks.worked.in.year
age
race
hispanic.origin
country.of.birth.self
class.of.worker
detailed.household.and.family.stat
veterans.benefits
dividends.from.stocks
capital.losses
country.of.birth.father
major.industry.code
country.of.birth.mother
major.occupation.code
sex
detailed.industry.recode
detailed.occupation.recode
capital.gains
education

•
•

•
•

•
•
•
•
•

•
•
•

•
•
•
•
•

•
•

•
•

•
•
•

•
•

•
•

•
•

10 20 30 40

ci.rf

MeanDecreaseAccuracy

Figure 20.16 The random forest attribute utilities for the Census Income data.
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varImpPlot(ci.rf, type=1)

ci.attr.utl <- sort(importance(ci.rf)[,1], decreasing=TRUE)
ci.asets <-
‘names<-‘(lapply(c(10, 25, 50, 100),

function(p)
names(ci.attr.utl)[1:round(p*length(ci.attr.utl)/100)]),

paste("as", c(10, 25, 50, 100), "p", sep=""))

The selected attribute sets can now be used for decision tree growing as presented below:

# models using selected subsets
ci.tree.c5.as <-
lapply(ci.attrs,

function(as)
{
tree.as <- rpart(make.formula("income", as), ci.train,

parms=list(loss=ci.cost5))
cm.as <- confmat(predict(tree.as, ci.val, type="c"), ci.val$income)
roc.as <- roc(predict(tree.as, ci.val)[,2], ci.val$income)
list(tree=tree.as,

tpr=tpr(cm.as),
fpr=fpr(cm.as),
roc=roc.as,
auc=auc(roc.as))

})

This creates and evaluates 5:1 cost-sensitive decision trees (with default stop criteria and no
pruning) using each selected attribute subset, with the full set of attributes also included for
easier comparison. To quickly assess the predictive power of the obtained trees one can look
at the corresponding AUC values as follows:

sapply(ci.tree.c5.as, function(ta) ta$auc)

This immediately shows that, while the full attribute set yields the best model, the 50% and
25% subsets are not much worse. It might be interesting to see whether they also remain
comparable to the full attribute set with the more refined growing and pruning scenario and
the reader may want to modify the above code accordingly.

20.2.6 Final models

A number of models have been created and evaluated in previous sections. By this thorough
investigation, we have arguably reached the best performance possible on the Census Income
dataset with decision tree classifiers, noticeably departing from the performance level of the
default model. From these several models and their different operating points one should be
able to easily select the one best matching the actual practical needs, if we were dealing with a
real-world application. This most satisfactory model could be described, e.g., as achieving as
many true positives as the application requires, with as little false negatives as possible, or as
little false positives as the application requires, with as many true positives as possible, or as
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maximizing some combined performance metric (such as the F-measure), or as minimizing
the underlying application-specific misclassification costs, etc.

Once the most promising models have been identified using the validation set, the same
modeling procedures could be applied to the combined training and validation sets to produce
the final models ready for deployment. However, since the best models created in this section
use shifted operating points determined based on their validation set performance, the valida-
tion set has already been used within the modeling procedure. Therefore, we will accept the
pruned cost-sensitive decision tree and the random forest, with operating points shifted appro-
priately using the validation set, as two potential final models and evaluate their performance
on the test set, which contains instances not used for any purpose so far. The reason why the
operating point adjustment is not performed using the test set – which would make it possible
to create models on the combined training and validation sets – is that it is used in this study to
simulate the “new data” to which any final prediction model is eventually applied. It can there-
fore be used to see whether the performance expectations based on the previous validation set
evaluation are confirmed, but not for model adjustments. In real application conditions, the
true class labels for new data would be clearly unknown at the time of prediction, making any
such adjustments impossible.

The test set evaluation of the pruned decision tree using the 5:1 misclassification cost
matrix is performed by the following code, which identifies the default operating point, the
ROC curve, and the shifted operating point. The latter uses the probability cutoff value previ-
ously determined using the validation set.

# default operating point
ci.tree.c5p1sd.test.pred <- predict(ci.tree.c5p1sd, census.test, type="c")
ci.tree.c5p1sd.test.cm <- confmat(ci.tree.c5p1sd.test.pred, census.test$income)
ci.tree.c5p1sd.test.tpr <- tpr(ci.tree.c5p1sd.test.cm)
ci.tree.c5p1sd.test.fpr <- fpr(ci.tree.c5p1sd.test.cm)
# ROC

ci.tree.c5p1sd.test.prob <- predict(ci.tree.c5p1sd, census.test)[,2]
ci.tree.c5p1sd.test.roc <- roc(ci.tree.c5p1sd.test.prob, census.test$income)
plot(ci.tree.c5p1sd.test.roc$fpr, ci.tree.c5p1sd.test.roc$tpr, type="l",

xlab="FP rate", ylab="TP rate", main="Decision tree")
points(ci.tree.c5p1sd.test.fpr, ci.tree.c5p1sd.test.tpr, pch=8)
auc(ci.tree.c5p1sd.roc)
# operating point shifted based on the validation set

ci.tree.c5p1sd.test.cm085 <- confmat(cutclass(ci.tree.c5p1sd.test.prob,
ci.tree.c5p1sd.cut085[1], ci.labels),

census.test$income)
ci.tree.c5p1sd.test.tpr085 <- tpr(ci.tree.c5p1sd.test.cm085)
ci.tree.c5p1sd.test.fpr085 <- fpr(ci.tree.c5p1sd.test.cm085)
points(ci.tree.c5p1sd.test.fpr085, ci.tree.c5p1sd.test.tpr085, pch=1)

The same is repeated below for the random forest model. Notice that this requires prepro-
cessing the test set by aggregation and imputation, as before for random forest model creation.
This is performed by applying the aggregation and imputation models previously created on
the training set.

# test set preprocessing
cirf.test <- predict.agg(ci.aggm, census.test)
cirf.test <- predict.imp(cirf.impm, cirf.test)
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# default operating point
ci.rf.test.pred <- predict(ci.rf, cirf.test)
ci.rf.test.cm <- confmat(ci.rf.test.pred, cirf.test$income)
ci.rf.test.tpr <- tpr(ci.rf.test.cm)
ci.rf.test.fpr <- fpr(ci.rf.test.cm)
# ROC

ci.rf.test.prob <- predict(ci.rf, cirf.test, type="p")[,2]
ci.rf.test.roc <- roc(ci.rf.test.prob, cirf.test$income)
plot(ci.rf.test.roc$fpr, ci.rf.test.roc$tpr, type="l",

xlab="FP rate", ylab="TP rate", main="Random forest")
points(ci.rf.test.fpr, ci.rf.test.tpr, pch=8)
auc(ci.rf.test.roc)
# operating point shifted based on the validation set

ci.rf.test.cm09 <- confmat(cutclass(ci.rf.test.prob, ci.rf.cut09[1], ci.labels),
cirf.test$income)

ci.rf.test.tpr09 <- tpr(ci.rf.test.cm09)
ci.rf.test.fpr09 <- fpr(ci.rf.test.cm09)
points(ci.rf.test.fpr09, ci.rf.test.tpr09, pch=1)
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Figure 20.17 The test set ROC curves of the 1-SD pruned cost-sensitive decision tree using
the 5:1 misclassification cost matrix and the random forest for the Census Income data.

The obtained test set ROC curves, with the default operating points marked by asterisks
and the shifted operating points marked by circles, are presented in Figure 20.17. It is easy to
see that the test set performance of the two models is nearly the same as previously observed
on the validation set. If we were deploying these models for a real application, we would
not therefore be disappointed by the results. While the random forest is noticeably better, the
interpretability of the decision tree remains its important advantage that in some applications
could outweigh the performance difference. The tree structure can be verified to be indeed
quite comprehensible and makes it possibly to explain the predictions quite well, although
slightly too large to fit on a book page. The following code generates a plot of a top part of
the tree presented in Figure 20.18, obtained by more aggressive pruning:

prp(prune(ci.tree.c5p1sd, 0.01), varlen=8, faclen=2)
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Figure 20.18 The 1-SD pruned cost-sensitive decision tree using the 5:1 misclassification
cost matrix for the Census Income data.

While the comprehensibility of the tree is certainly limited due to the large number of values
of the discrete attributes used for splitting (and abbreviations necessary to put attribute name
and value labels in the plot), it can be definitely inspected and understood, using an attribute
value dictionary.

20.3 Communities and crime

The primary objective of this study is to predict the number of violent crimes (per population)
in US communities based on attributes describing their sociodemographic and economic pro-
files as well as local law enforcement agencies. Regression trees and linear models, combined
with random forest attribute selection, will be used for modeling. The set of packages used by
this case study is loaded by the following code:

library(dmr.regeval)
library(dmr.util)
library(dmr.trans)

library(rpart)
library(rpart.plot)
library(randomForest)
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20.3.1 Data loading

The Communities and Crime dataset can be loaded to R from the original text file as follows:

# read column names (extracted from the data description web page)
commnorm.names <- read.table("../Data/commnorm.names",

stringsAsFactors=FALSE)[,1]
# read the actual data

commnorm <- read.table("../Data/communities.data",
sep=",", na.strings="?", col.names=commnorm.names)

# input attribute names
cn.input.attrs <- names(commnorm)[6:127]

This assumes that the attribute names are provided in a separate file, with one name per line.
This names file is not directly available from the UCI repository and has to be created using
the attribute names provided in the available data description. Including them inline in the
code would not be a very good idea due to their large number. The first five attributes identify
particular communities and are therefore not predictively useful. The cn.input.attrs
stores the names of attributes that can be used for model creation.

Once the data is loaded, it can be partitioned into the training and validation subsets for
simple holdout model evaluation, with a fixed initial random generator seed which makes it
possible to reproduce the presented results:

set.seed(12)

rcn <- runif(nrow(commnorm))
cn.train <- commnorm[rcn>=0.33,]
cn.val <- commnorm[rcn<0.33,]

Unlike in the previous study, there is no designated separate test file. Since the number of
available instances is small, particularly compared to the number of attributes, such a test set
for final model evaluation will not be created. The validation set will be used to evaluate a
number of candidate models and identify the most promising ones, but their expected true
performance on new data will not be estimated.

20.3.2 Data quality

The Crime and Communities data can be easily seen to have some quality issues. In particular,
it turns out to suffer from extremely severe attribute value missingness. Only about 5–6% of
instances in the training and validation sets have no missing values:

sum(complete.cases(cn.train))/nrow(cn.train)
sum(complete.cases(cn.val))/nrow(cn.val)

The below code snippet identifies attributes for which more values are missing than
available.
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# attributes with many (>50%) missing values
cn.input.attrs.miss <-
names(which(sapply(cn.input.attrs,

function(a)
sum(is.na(cn.train[a]))/nrow(cn.train))>0.5))

There are 22 such attributes, mostly describing local law enforcement agencies. Similarly,
attributes that appear to have many outlying values can be identified as follows:

# attributes with many (>10%) outliers
cn.input.attrs.out <-
names(which(sapply(cn.input.attrs,

function(a)
length(boxplot(cn.train[a], range=2, plot=FALSE)$out)/
nrow(cn.train))>0.1))

There are five attributes with more than 10% outlying values, based on the standard
quartile-based criterion described in Section 2.4.1 (with the inter-quartile range multiplier
set to 2). They may be rather indicative of high diversity of US communities than of data
corruption, though.

It is also easy to see that some attribute pairs are very strongly correlated:

cn.input.attrs.cor <- cor(cn.train[,cn.input.attrs], use="pairwise.complete.obs")
cn.input.attrs.corind <- which(upper.tri(cn.input.attrs.cor) &

abs(cn.input.attrs.cor)>0.98, arr.ind=TRUE)
cn.input.attrs.corpairs <- data.frame(a1=cn.input.attrs[cn.input.attrs.corind[,1]],

a2=cn.input.attrs[cn.input.attrs.corind[,2]])

This identifies the following 14 attribute pairs exhibiting near-perfect correlation:

a1 a2
1 population numbUrban
2 FemalePctDiv TotalPctDiv
3 PctFam2Par PctKids2Par
4 PctRecentImmig PctRecImmig5
5 PctRecImmig5 PctRecImmig8
6 PctRecImmig5 PctRecImmig10
7 PctRecImmig8 PctRecImmig10
8 PctLargHouseFam PctLargHouseOccup
9 PctPersOwnOccup PctHousOwnOcc
10 OwnOccLowQuart OwnOccMedVal
11 OwnOccMedVal OwnOccHiQuart
12 RentMedian RentHighQ
13 RentMedian MedRent
14 LemasSwFTPerPop PolicPerPop

While this is not a quality issue, strictly speaking, it at least suggests that not all attributes
may be actually predictively useful. It would not be unreasonable to consider removing some
attributes of particularly questionable quality, clipping outlying values, or leaving only sin-
gle representatives of each strongly correlated attribute pair. The reader may want to explore
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these possibilities. In this study, we will address the utility of attributes by random forest
attribute selection later and for now leave all attributes in place. The only attribute transfor-
mation that is applied below is the one actually required by some of the regression algorithms
to be used: missing value imputation. Similarly as in the previous study and as presented
in Section 17.3.4, it is performed as a modeling transformation, with the imputation model
determined on the training set applied both to the training and validation sets (and potentially
applicable to any new data, should such be available).

cn.impm <- imp.all(make.formula(NULL, cn.input.attrs), cn.train)
cni.train <- predict.imp(cn.impm, cn.train)
cni.val <- predict.imp(cn.impm, cn.val)

It is worthwhile to mention that attribute values in the dataset used for this study, coming
from Census, LEMAS, and crime statistics, are already normalized and partially filtered. The
original unnormalized dataset, also available from the UCI repository, suffers from even more
severe quality issues.

20.3.3 Regression trees

Our modeling attempts start from regression trees, created using the rpart function. Since
it handles missing values using surrogate splits, and with many attributes this technique can
be expected to be quite successful, the training and validation sets are used in their original
form, without imputation applied. The reader may find it worthwhile to verify whether and
how using the data processed by imputation changes the achieved predictive performance.

The following code creates a regression tree by calling rpart with default parameters:

cn.tree.d <- rpart(make.formula("ViolentCrimesPerPop", cn.input.attrs), cn.train)
r2(predict(cn.tree.d, cn.val), cn.val$ViolentCrimesPerPop)

and then evaluates its validation set performance by calculating the coefficient of

dmr.regeval
determination (R2) using the r2 function. It relates the mean square error to the
target function variance, making it easier to interpret. The obtained value of about
0.54 indicates some quite limited, but potentially useful predictive power. In the
remainder of this section, we will be seeking for possible improvements.

One obvious direction to consider is regression tree pruning. It can be performed in the
same way as demonstrated for decision trees in the Census Income study, by creating a fully
grown tree first and then identifying the most promising complexity cutoff values from the
cost-complexity table. This is performed below using two complexity parameter selection
rules: the minimum cross-validated error and the minimum tree size within one standard devi-
ation from the minimum cross-validated error.

# fully grown tree
cn.tree.f <- rpart(make.formula("ViolentCrimesPerPop", cn.input.attrs), cn.train,

minsplit=2, cp=0)
r2(predict(cn.tree.f, cn.val), cn.val$ViolentCrimesPerPop)
# minimum-error cost-complexity pruning

cn.tree.pmin <- prune(cn.tree.f, cpmin(cn.tree.f$cptable))
r2(predict(cn.tree.pmin, cn.val), cn.val$ViolentCrimesPerPop)
# 1-sd cost-complexity pruning

cn.tree.p1sd <- prune(cn.tree.f, cp1sd(cn.tree.f$cptable))
r2(predict(cn.tree.p1sd, cn.val), cn.val$ViolentCrimesPerPop)
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Not surprisingly, the fully grown tree turns out to yield poor predictions with an R2 value below
0.3, but – rather surprisingly – none of the pruned trees outperforms the previously created
pre-pruned tree (grown with default stop criteria). The pruned trees are both smaller than the
latter, and the larger of them is better than the smaller one, which suggests that cost-complexity
pruning may have been too aggressive here due to the variance of the cross-validation per-
formed by rpart on the relatively small dataset. On the other hand, there is also no reason
to overly trust the validation set performance, either.

Tuning the complexity parameter using a reliable external evaluation procedure, such as
n × k-fold cross-validation for some n > 1, may help us make a more informed decision about

Ex. 7.3.2
dmr.claseval

the right pruning level. This is performed by the R code presented below,
using the crossval function. A sequence of candidate cp values around
the minimum-error value is preselected and then each of them is evaluated
by 10 × 10 cross-validation, which is a low-variance and low-bias evaluation
procedure. The value maximizing the coefficient of determination is then applied to prune
the full-grown tree, and the resulting pruned tree is evaluated on the validation subset. Notice
the xval=0 argument specified for rpart. It switches off its internal cross validation for
computational savings.

# 10x10-fold cross-validated R2 values for the most promising cp sequence
cn.cp.cv <-
sapply(unname(cpminrange(cn.tree.f$cptable, 5, 10)),

function(cp)
{
cv <- crossval(rpart, make.formula("ViolentCrimesPerPop", cn.input.attrs),

cn.train, args=list(cp=cp, minsplit=2, xval=0), n=10)
‘names<-‘(r2(cv$pred, cv$true), cp)

})

cn.tree.pcv <- prune(cn.tree.f, as.numeric(names(cn.cp.cv)[which.max(cn.cp.cv)]))
r2(predict(cn.tree.pcv, cn.val), cn.val$ViolentCrimesPerPop)

Several cost-complexity values appear to yield very similar performance, making the final
choice of the best cp level somewhat arbitrary. The obtained tree turns out to be identical to
the default pre-pruned one and slightly better than the previously pruned trees. We now have
a stronger reason to believe it might be also good on new data.

20.3.4 Linear models

Having had limited success with regression tree models, let us now see how good predictions
can be obtained using linear regression. With the extreme level of missingness in the
Communities and Crime data that we have observed before and no internal missing value
handling capabilities of least-squares linear regression (other than skipping incomplete
instances), it is necessary to used transformed datasets for model creation and evaluation,
with missing value imputed:

cn.lm <- lm(make.formula("ViolentCrimesPerPop", cn.input.attrs), cni.train)
r2(predict(cn.lm, cni.val), cni.val$ViolentCrimesPerPop)

The obtained linear model with the coefficient of determination approaching 0.59 outperforms
the best regression trees created before.
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With so many attributes it makes sense to examine their statistical significance levels
reported by the summary function. The following code identifies a subset attributes with
p-values below 0.05 and repeats model creation using these significant attributes only.

signif.attrs <- cn.input.attrs[(summary(cn.lm)$coefficients)[-1,4]<0.05]
cn.lm.s <- lm(make.formula("ViolentCrimesPerPop", signif.attrs), cni.train)
r2(predict(cn.lm.s, cni.val), cni.val$ViolentCrimesPerPop)

The simple attribute selection of the subset of significant attributes turned out to reduce rather
than improve model quality. More refined attribute selection will be attempted in the next
subsection.

20.3.5 Attribute selection

As in the previous study, the random forest algorithm will be employed to produce attribute
utility estimations. Similarly as linear regression, the random forest algorithm (in the version
implemented by the randomForest package) does not handle missing values and therefore
we use transformed data with missing values imputed for model creation and evaluation:

cn.rf <- randomForest(make.formula("ViolentCrimesPerPop", cn.input.attrs), cni.train,
importance=TRUE)

r2(predict(cn.rf, cni.val[,cn.input.attrs]), cni.val$ViolentCrimesPerPop)

The predictive performance of the random forest model is clearly superior to that of both
regression trees and linear models. It achieves an R2 value of nearly 0.65 and this is likely
near the top performance level possible for the Communities and Crime data, at least with the
original set of attributes.

The following code produces the attribute utility plot, presented in Figure 20.19, and picks
three subsets, consisting of 10%, 25%, and 50% most useful attributes, as well as the full 100%
subset for easy comparison:

varImpPlot(cn.rf, type=1)

cn.attr.utl <- sort(importance(cn.rf)[,1], decreasing=TRUE)
cn.asets <-
‘names<-‘(lapply(c(10, 25, 50, 100),

function(p)
names(cn.attr.utl)[1:round(p*length(cn.attr.utl)/100)]),

paste("as", c(10, 25, 50, 100), "p", sep=""))

With all attributes being continuous, it is also particularly straightforward to apply a sim-
ple statistical filter using the linear or rank correlation. This is demonstrated below for the
rank correlation, and the correspondingly sized subsets of top correlated attributes are iden-
tified and appended to the list of considered attribute subsets. The reader may find it inter-
esting to examine how much the random forest and correlation-based rankings of attribute
utility differ.
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Figure 20.19 The random forest attribute utilities for the Communities and Crime data.

cn.attr.cor <- sort(abs(cor(cn.train[,cn.input.attrs], cn.train$ViolentCrimesPerPop,
method="spearman", use="pairwise.complete.obs")[,1]),

decreasing=TRUE)
cn.asets <- c(cn.asets,

‘names<-‘(lapply(c(10, 25, 50, 100),
function(p)
names(cn.attr.cor)[1:round(p*length(cn.attr.cor)/100)]),

paste("as", c(10, 25, 50, 100), "p.cor", sep="")))

The following code uses each of candidate attribute subsets for regression tree grow-
ing. Both default pre-pruned and pruned trees are created and evaluated, but with no
time-consuming cost-complexity tuning demonstrated before. Instead, the minimum-error
and one-standard-deviation rules are applied as cp selection heuristics.

cn.tree.as <-
lapply(cn.asets,

function(as)
{
tree.d <- rpart(make.formula("ViolentCrimesPerPop", as), cn.train)
tree.f <- rpart(make.formula("ViolentCrimesPerPop", as), cn.train,

minsplit=2, cp=0)
tree.pmin <- prune(tree.f, cpmin(tree.f$cptable))
tree.p1sd <- prune(tree.f, cp1sd(tree.f$cptable))
list(tree.d=tree.d,

r2.d=r2(predict(tree.d, cn.val), cn.val$ViolentCrimesPerPop),
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tree.pmin=tree.pmin,
r2.pmin=r2(predict(tree.pmin, cn.val), cn.val$ViolentCrimesPerPop),
tree.p1sd=tree.p1sd,
r2.p1sd=r2(predict(tree.p1sd, cn.val), cn.val$ViolentCrimesPerPop))

})

By checking the R2 values:

sapply(cn.tree.as,
function(ta) c(r2.d=ta$r2.d, r2.pmin=ta$r2.pmin, r2.p1sd=ta$r2.p1sd))

we can find the 25% random forest utility-based subset yield the best pruned tree perfor-
mance of about 0.56 (for the minimum-error complexity parameter). The differences between
different-size random forest-based subsets are surprisingly small. Interestingly, this is not
quite the case for correlation-based subsets, the smallest 10% of which is noticeably worse
than the others. This shows the advantage of random forest attribute utility ranking when
selecting small attribute subsets. The default pre-pruned tree created for the 10% random for-
est subset appears to be the smallest reasonably accurate regression tree, with an R2 value of
0.55 and 13 nodes. The following call to the prp function generates a plot of the tree structure,
presented in Figure 20.20. It is indeed more than sufficiently simple for human inspection.

prp(cn.tree.as$as10p$tree.d, varlen=0, faclen=0)

PctIlleg < 0.39

PctKids2Par >= 0.71

racePctWhite >= 0.8

PctKids2Par >= 0.29

NumIlleg < 0.035 racePctHisp < 0.025

 >= 0.39

 < 0.71

 < 0.8

 < 0.29

 >= 0.035  >= 0.025

0.24

0.16

0.081 0.23

0.18 0.31

0.54

0.45

0.37 0.52

0.69

0.57 0.8

Figure 20.20 The default regression tree for the Communities and Crime growing using top
10% attributes.

We can similarly proceed with creating and evaluating linear models for different attribute
subsets:

cn.lm.as <-
lapply(cn.asets,

function(as)
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{
lmod <- lm(make.formula("ViolentCrimesPerPop", as), cni.train)
list(lm=lmod,

r2=r2(predict(lmod, cni.val), cni.val$ViolentCrimesPerPop))
})

sapply(cn.lm.as, function(ta) ta$r2)

The smallest attribute subset selected based on the random forest utility turns out to work best,
with an R2 value of about 0.63 – not far behind the performance level of the random forest
model. With so few attributes the model is quite simple and easy to inspect. Its parameter
vector is presented below:

Coefficients:
(Intercept) PctKids2Par PctIlleg racePctWhite

0.18989 -0.33895 0.17937 -0.02939
PctFam2Par TotalPctDiv PctPersDenseHous NumIlleg

0.06962 0.33632 0.24192 -0.09450
racepctblack racePctHisp pctWInvInc FemalePctDiv

0.16736 0.02117 0.05614 -0.19992
HousVacant

0.29761

While some more refined nonlinear algorithms, such as support vector regression with a non-
linear kernel, might lead to better performance, this is most probably the simplest good model
possible for the Communities and Crime data. The reader is encouraged to experiment with
other algorithms to examine whether and how much performance advantage they can offer
in this case. Another possibility that is worth consideration, but falls beyond the scope of
this book, is performing dimensionality reduction of the original attribute set (e.g., via the
principal component analysis) instead of attribute selection.

20.3.6 Piecewise-linear models

This section will demonstrate that, with little effort, one can combine regression trees and lin-
ear regression to create piecewise linear models. The lmrpart function used for this purpose
was already defined above and now it remains to review its definition and verify its effects. It
performs three basic operations:

• creating a regression tree that serves as the model tree structure by calling rpart,

• determining unique predicted target values that serve as leaf identifiers,

• creating a linear model for each leaf by calling lm, with the training set restricted to
instances from the corresponding leaf and, optionally, the set of attributes restricted to
those not used for splitting in the tree structure.

In our case, the function will be called using the top 10% attributes according to the random
forest utility measure as follows:

cn.mtree <- lmrpart(make.formula("ViolentCrimesPerPop", cn.asets[["as10p"]]),
cn.train, cp=0.02, skip.attr=TRUE))
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where the cp=0.02 argument is passed to rpart to restrict tree complexity. Attributes used
for splitting in the tree will be skipped when creating linear models.

The prediction method, also defined above, basically assigns instances to leaves and then
applies the corresponding linear models to generate predictions. Their quality can then be
evaluated on the validation set:

r2(predict(cn.mtree, cni.val), cni.val$ViolentCrimesPerPop)

The obtained R2 value of nearly 0.64 is considerably better than that of the best regression
tree created before, but only slightly better than of the best single single linear model. While
this may appear disappointing, it is nearly the same performance level as that of the random
forest model. Adjusting the complexity of the tree structure or the attribute sets used for tree
growing and linear model fitting might lead to some more improvement. This path is not fur-
ther followed here, since our intention was to demonstrate a very simple automated technique
of model tree creation in R than to fully explore its predictive potential.

20.4 Cover type

This study addresses the task of predicting forest cover type based on cartographic attributes.
With seven cover types to distinguish, this will provide an opportunity to experience typical
challenges encountered in multiclass classification. The study also demonstrates clustering.
The R packages used by this case study can be loaded as follows:

library(rpart)
library(rpart.plot)
library(randomForest)
library(cluster)

library(dmr.claseval)
library(dmr.cluseval)
library(dmr.trans)
library(dmr.util)

20.4.1 Data loading and preprocessing

The Cover Type data is loaded to R by the following call to the read.table function:

covtype <- read.table("../Data/covtype.data", sep=",",
col.names=c("Elevation",

"Aspect",
"Slope",
"Horizontal.Distance.To.Hydrology",
"Vertical.Distance.To.Hydrology",
"Horizontal.Distance.To.Roadways",
"Hillshade.9am",
"Hillshade.Noon",
"Hillshade.3pm",
"Horizontal.Distance.To.Fire.Points",
paste("Wilderness.Area", 1:4, sep=""),
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paste("Soil.Type", 1:40, sep=""),
"Cover.Type"))

ct.input.attrs <- setdiff(names(covtype), "Cover.Type")

The specified attribute names are based on the data description available in the UCI reposi-
tory. Notice that there are 4 Wilderness.Area attributes and 40 Soil.Type attributes,
which – with 10 other attributes – makes the total number of input attributes equal 54. Their
names are stored in the ct.input.attrs. The target Cover.Type attribute is repre-
sented by integer numbers, but has to be treated as a nominal attribute. This is ensured by
converting to a factor:

covtype$Cover.Type <- as.factor(covtype$Cover.Type)

The original numerical representation of all input attributes is left unchanged, although the
Wilderness.Area and Soil.Type attributes are actually binary-valued and could be
also converted to factors. This would make no effect for the decision tree and random forest
algorithms used for classification, though.

With more than 580,000 instances, the dataset is sufficiently large to cause some perfor-
mance issues on slow-CPU or low-memory machines. A half of it will be used as the training
set, with the remaining half equally split into the validation set for intermediate model evalu-
ation and the test set for the evaluation of final most promising models.

set.seed(12)

rct <- runif(nrow(covtype))
ct.train <- covtype[rct>=0.5,]
ct.val <- covtype[rct>=0.25 & rct<0.5,]
ct.test <- covtype[rct<0.25,]

20.4.2 Class imbalance

It is common for multiclass classification tasks to have unbalanced classes, which is usually
associated with substantially different predictability. This may be the case for the Cover Type
data, for which the occurrence counts of particular classes vastly differ. This can be verified
as follows:

table(ct.train$Cover.Type)/nrow(ct.train)

The first two cover types dominate, accounting for 85% of the training set, and cover type 4
is the least frequent one, with less than 0.5%.

20.4.3 Decision trees

The following code creates the default-setup pre-pruned decision tree and evaluates its vali-
dation set predictions. The xval=0 argument turns off the internal cross-validation to reduce
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computation time. It is only needed to calculate error levels for different complexity parameter
values used for pruning.

ct.tree.d <- rpart(Cover.Typẽ., ct.train, xval=0)
ct.tree.d.pred <- predict(ct.tree.d, ct.val, type="c")
err(ct.tree.d.pred, ct.val$Cover.Type)
confmat(ct.tree.d.pred, ct.val$Cover.Type)

The obtained error level is rather unimpressive and inspecting the confusion matrix immedi-
ately reveals that only three out of seven cover types are detected by the model:

true
predicted 1 2 3 4 5 6 7

1 38212 16958 0 0 0 0 5115
2 14703 52912 2761 1 2420 1345 14
3 1 796 6171 686 33 3031 0
4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0

Ex. 7.2.8
dmr.claseval

Per-class performance indicators are calculated according to the 1-vs-rest
approach presented in Section 7.2.4 using theconfmat01 function as follows:

ct.tree.d.cm01 <- confmat01(ct.tree.d.pred, ct.val$Cover.Type)
ct.tree.d.tpfp <- sapply(ct.tree.d.cm01,

function(cm) c(tpr=tpr(cm), fpr=fpr(cm), fm=f.measure(cm)))

which yields the following true positive rate, false positive rate, and F-measure values for all
the cover types (rounded to two significant digits for greater readability):

1 2 3 4 5 6 7
tpr 0.72 0.75 0.690 0 0 0 0
fpr 0.24 0.29 0.033 0 0 0 0
fm 0.68 0.73 0.630 0 0 0 0

Averaging over classes:

rowMeans(ct.tree.d.tpfp)

we receive an average TP rate of about 0.31 and average F-measure of about 0.29. The cor-
responding averages weighted with class counts:

apply(ct.tree.d.tpfp, 1, weighted.mean, table(ct.val$Cover.Type))

appear better, since the impact of 0’s for the low-frequency classes is minimized.
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To see whether pruning can deliver better trees than the default pre-pruned tree created
above, we proceed in the usual way by creating a fully grown tree:

ct.tree.f <- rpart(Cover.Typẽ., ct.train, minsplit=2, cp=0)

and then selecting appropriate complexity parameter values for cost-complexity pruning.
Before that, however, let us evaluate the fully grown tree:

ct.tree.f.pred <- predict(ct.tree.f, ct.val, type="c")
ct.tree.f.cm01 <- confmat01(ct.tree.f.pred, ct.val$Cover.Type)
ct.tree.f.tpfp <- sapply(ct.tree.f.cm01,

function(cm) c(tpr=tpr(cm), fpr=fpr(cm), fm=f.measure(cm)))
rowMeans(ct.tree.f.tpfp)

One can see a huge improvement in all quality indicators of interest. In particular, a much
more acceptable average true positive rate of about 0.87 is obtained, with a false positive rate
of less than 0.02. The detailed per-class indicators, presented below, after rounding for better
readability:

1 2 3 4 5 6 7
tpr 0.920 0.940 0.910 0.79000 0.7700 0.8400 0.9300
fpr 0.045 0.064 0.006 0.00082 0.0036 0.0048 0.0023
fm 0.920 0.930 0.910 0.80000 0.7800 0.8400 0.9300

confirm that now all classes are detected with a reasonable accuracy, although clearly cover
types 4, 5, and 6 are harder to correctly predict than the others. This is not surprising given
their extremely low, 0.5–3% occurrence rate that has been observed before.

Now it remains to see whether pruning can make the performance any better. The follow-
ing code uses the minimum-error cp value:

ct.tree.pmin <- prune(ct.tree.f, cpmin(ct.tree.f$cptable))
ct.tree.pmin.pred <- predict(ct.tree.pmin, ct.val, type="c")
ct.tree.pmin.cm01 <- confmat01(ct.tree.pmin.pred, ct.val$Cover.Type)
ct.tree.pmin.tpfp <- sapply(ct.tree.pmin.cm01,

function(cm) c(tpr=tpr(cm), fpr=fpr(cm),
fm=f.measure(cm)))

rowMeans(ct.tree.pmin.tpfp)

The per-class performance indicators:

1 2 3 4 5 6 7
tpr 0.920 0.940 0.920 0.78000 0.7600 0.8400 0.9200
fpr 0.043 0.064 0.006 0.00071 0.0031 0.0045 0.0021
fm 0.920 0.940 0.910 0.81000 0.7800 0.8500 0.9300

do not substantially differ from those observed for the fully grown tree. Proceeding similarly
with the complexity parameter value selected using the one-standard-deviation rule:
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ct.tree.p1sd <- prune(ct.tree.f, cp1sd(ct.tree.f$cptable))
ct.tree.p1sd.pred <- predict(ct.tree.p1sd, ct.val, type="c")
ct.tree.p1sd.cm01 <- confmat01(ct.tree.p1sd.pred, ct.val$Cover.Type)
ct.tree.p1sd.tpfp <- sapply(ct.tree.p1sd.cm01,

function(cm) c(tpr=tpr(cm), fpr=fpr(cm),
fm=f.measure(cm)))

rowMeans(ct.tree.p1sd.tpfp)

we observe comparable, but slightly worse performance.
It is interesting to compare the sizes of the default tree, the fully grown tree, and the two

pruned trees:

c(default=nrow(ct.tree.d$frame), full=nrow(ct.tree.f$frame),
pruned.min=nrow(ct.tree.pmin$frame), pruned.1sd=nrow(ct.tree.p1sd$frame))

The numbers of nodes (including leaves):

default full pruned.min pruned.1sd
5 35759 26989 18115

speak for themselves. Default stop criteria fail entirely it this case, and much more model
complexity is necessary to satisfactorily separate all the seven classes. Full-depth growing
gives good results with no signs of overfitting, and pruning only helps to somewhat reduce
the tree size.

20.4.4 Class rebalancing

While sufficiently complex trees appear to successfully handle the unbalanced classes of the
Cover Type data, there is one other self-suggesting approach to increasing the sensitivity of
decision trees to less frequent classes. Per-class instance weights can be used to compensate
for class frequency differences (similarly as for incorporating misclassification costs). The
rpart function makes it quite straightforward by its prior argument, used as follows:

ct.tree.w <- rpart(Cover.Typẽ., ct.train, xval=0,
parms=list(prior=rep(1/nlevels(ct.train$Cover.Type),

nlevels(ct.train$Cover.Type))))

which can be easily verified to be exactly equivalent to explicit instance weighting with
weights inversely proportional to their class occurrence counts (and is therefore another way
of specifying per-class instance weights). Evaluating the obtained model in the usual way:

ct.tree.w.pred <- predict(ct.tree.w, ct.val, type="c")
ct.tree.w.cm01 <- confmat01(ct.tree.w.pred, ct.val$Cover.Type)
ct.tree.w.tpfp <- sapply(ct.tree.w.cm01,

function(cm) c(tpr=tpr(cm), fpr=fpr(cm), fm=f.measure(cm)))
rowMeans(ct.tree.w.tpfp)
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we can find that it is indeed quite good at detecting the low-frequency classes, but performs
considerably worse for the three dominating classes:

1 2 3 4 5 6 7
tpr 0.42 0.44 0.41 0.860 0.83 0.520 0.95
fpr 0.14 0.15 0.01 0.017 0.17 0.046 0.14
fm 0.51 0.55 0.53 0.310 0.14 0.340 0.33

While the class-weighted tree is arguably better than the default tree with no weighting
and – with 19 nodes and leaves – much smaller than the pruned trees with no weighting, with
so poor dominating class performance it can be hardly considered useful. It makes therefore
sense to repeat the pruning process with classes rebalanced by weighting. As usual, this starts
from the fully grown tree:

ct.tree.w.f <- rpart(Cover.Typẽ., ct.train, minsplit=2, cp=0,
parms=list(prior=rep(1/nlevels(ct.train$Cover.Type),

nlevels(ct.train$Cover.Type))))

which can be then evaluated as follows:

ct.tree.w.f.pred <- predict(ct.tree.w.f, ct.val, type="c")
ct.tree.w.f.cm01 <- confmat01(ct.tree.w.f.pred, ct.val$Cover.Type)
ct.tree.w.f.tpfp <- sapply(ct.tree.w.f.cm01,

function(cm) c(tpr=tpr(cm), fpr=fpr(cm),
fm=f.measure(cm)))

rowMeans(ct.tree.w.f.tpfp)

As mentioned earlier, it is the per-class values of the true positive and false positive rate
as well as the F-measure that are the most interesting:

1 2 3 4 5 6 7
tpr 0.920 0.920 0.9000 0.76000 0.830 0.8200 0.9200
fpr 0.045 0.064 0.0067 0.00091 0.011 0.0051 0.0028
fm 0.920 0.930 0.9000 0.78000 0.680 0.8200 0.9200

They are quite close to those previously observed for the fully grown tree with no class weight-
ing. This is not overly surprising, since for large trees with highly fitted leaves there is actually
no space for improvement by introducing instance weights.

It remains to see how much of a change can be obtained by pruning, which should be
normally performed as follows:

ct.tree.w.p1sd <- prune(ct.tree.w.f, cp1sd(ct.tree.w.f$cptable))
ct.tree.w.pmin <- prune(ct.tree.w.f, cpmin(ct.tree.w.f$cptable))

Unfortunately, these calls fail with the rpart version used for preparing this case study due
to a bug. As a workaround, we may simply re-grow the trees from scratch using the two
complexity parameter values determined above, which is equivalent to pruning (if it worked):

ct.tree.w.pmin <- rpart(Cover.Typẽ., ct.train, xval=0,
minsplit=2, cp=cpmin(ct.tree.w.f$cptable),
parms=list(prior=rep(1/nlevels(ct.train$Cover.Type),

nlevels(ct.train$Cover.Type))))
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ct.tree.w.p1sd <- rpart(Cover.Typẽ., ct.train, xval=0,
minsplit=2, cp=cp1sd(ct.tree.w.f$cptable),
parms=list(prior=rep(1/nlevels(ct.train$Cover.Type),

nlevels(ct.train$Cover.Type))))

The evaluation of the first of these class-weighted pruned trees:

ct.tree.w.pmin.pred <- predict(ct.tree.w.pmin, ct.val, type="c")
ct.tree.w.pmin.cm01 <- confmat01(ct.tree.w.pmin.pred, ct.val$Cover.Type)
ct.tree.w.pmin.tpfp <- sapply(ct.tree.w.pmin.cm01,

function(cm) c(tpr=tpr(cm), fpr=fpr(cm),
fm=f.measure(cm)))

rowMeans(ct.tree.w.pmin.tpfp)

reveals that it performs much better than the class-weighted pre-pruned tree, achieving a TP
rate above 0.8 for each class:

1 2 3 4 5 6 7
tpr 0.870 0.850 0.9100 0.8000 0.900 0.870 0.9600
fpr 0.077 0.079 0.0098 0.0013 0.017 0.011 0.0095
fm 0.870 0.880 0.8800 0.7800 0.620 0.790 0.8700

In comparison to the fully grown and pruned trees without class weighting, as well as the
class-weighted fully grown tree, it is less successful at predicting the two dominating classes,
but gives an improvement for most other classes, particularly 4 and 5.

Similarly pruning at the complexity level determined by the one-standard-deviation rule:

ct.tree.w.p1sd.pred <- predict(ct.tree.w.p1sd, ct.val, type="c")
ct.tree.w.p1sd.cm01 <- confmat01(ct.tree.w.p1sd.pred, ct.val$Cover.Type)
ct.tree.w.p1sd.tpfp <- sapply(ct.tree.w.p1sd.cm01,

function(cm) c(tpr=tpr(cm), fpr=fpr(cm),
fm=f.measure(cm)))

rowMeans(ct.tree.w.p1sd.tpfp)

may be verified to yield slightly worse average performance and slightly less tree size. Inter-
estingly, the two pruned trees are both considerably smaller than their counterparts created
without class weights. This can be verified as follows:

c(weighted.pruned.min=nrow(ct.tree.w.pmin$frame),
weighted.pruned.1sd=nrow(ct.tree.w.p1sd$frame))

Of all the decision tree models created for the Cover Type data those using default stop
criteria are clearly useless. The remaining fully grown and pruned trees, either with or with-
out class weighting, can be all considered reasonable and the final choice may depend on the
specific requirements of a particular application: the relative importance of correctly predict-
ing for the dominating and rare classes (possibly expressed by misclassification costs) and
the level of preference for the reduced tree size (if any). Nevertheless, the class-weighted tree
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pruned with minimum-error cost-complexity pruning appears to represent a good overall bal-
ance of per-class predictive performance and model complexity for most typical requirements.

20.4.5 Multiclass encoding

Although the more complex decision tree models created so far in this study turned out to be
quite good multiclass classifiers, the Cover Type datasets provides an opportunity to examine
the utility of the multiclass encoding technique described in Section 17.4. We will use the
most straightforward 1-of-k encoding, in which there is a separate binary scoring model for

Ex. 17.4.2
dmr.trans

each class, and the highest score determines the class label at the time of prediction.
The corresponding multiclass wrapper around rpart can be created using the
multi.enc.1ofk function as follows:

rp.1k <- multi.class(rpart, predf=function(...) predict(...)[,2],
encode=multi.enc.1ofk, decode=multi.dec.1ofk)

It can then be applied to create a set of binary decision trees with default parameter settings:

ct.tree.1k <- rp.1k$alg(Cover.Typẽ., ct.train, xval=0)

The resulting model is evaluated by the following code:

ct.tree.1k.pred <- rp.1k$predict(ct.tree.1k, ct.val)
ct.tree.1k.cm01 <- confmat01(ct.tree.1k.pred, ct.val$Cover.Type)
ct.tree.1k.tpfp <- sapply(ct.tree.1k.cm01,

function(cm) c(tpr=tpr(cm), fpr=fpr(cm), fm=f.measure(cm)))
rowMeans(ct.tree.1k.tpfp)

While the observed classification performance is far below the best models created before,
it is definitely superior to that delivered by the first decision tree with default parameters.
Unlike the latter, which was unable to detect any more than the three most common classes,
this one recognizes most of the rare classes (with class 6 as a notable exception):

1 2 3 4 5 6 7
tpr 0.64 0.80 0.850 0.61000 0.13000 0 0.4300
fpr 0.18 0.31 0.031 0.00089 0.00063 0 0.0033
fm 0.66 0.75 0.730 0.68000 0.23000 0 0.5600

While this indicates some potential usefulness of the multiclass encoding path for the
Cover Type data, the overall performance level is still unacceptably poor. The individual trees,
grown with default stop criteria, may be too simple to capture the complex patterns needed to
distinguish between all classes. Using the following code:

sapply(ct.tree.1k$binmodels, function(m) nrow(m$frame))
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we may find that they have between 5 and 31 nodes, and just above 100 nodes in total
(including leaves), which is several times less than was necessary before with directly
multiclass trees.

The same directions of search for improvement that were explored for the directly mul-
ticlass trees – adjusting tree complexity and rebalancing classes – remain available here. We
will focus on the former, but – instead of building per-class fully grown trees and then pruning
each of them – we will first try specifying a small complexity parameter value and enabling
splitting even small subsets instances:

ct.tree.1k.cp <- rp.1k$alg(Cover.Typẽ., ct.train, xval=0, minsplit=2, cp=1e-5)

The particular value of 10−5 used in the above call seems to be a good initial guess, as it
is about the same order of magnitude as the cp values previously found when pruning the
directly multiclass fully grown trees. Evaluating the obtained model:

ct.tree.1k.cp.pred <- rp.1k$predict(ct.tree.1k.cp, ct.val)
ct.tree.1k.cp.cm01 <- confmat01(ct.tree.1k.cp.pred, ct.val$Cover.Type)
ct.tree.1k.cp.tpfp <- sapply(ct.tree.1k.cp.cm01,

function(cm) c(tpr=tpr(cm), fpr=fpr(cm),
fm=f.measure(cm)))

rowMeans(ct.tree.1k.cp.tpfp)

shows unquestionable improvement due to increased tree complexity:

tpr 0.920 0.940 0.8900 0.7400 0.7500 0.770 0.9100
fpr 0.044 0.073 0.0055 0.0012 0.0033 0.004 0.0027
fm 0.920 0.930 0.9000 0.7400 0.7700 0.810 0.9200

This is in fact quite close to (but slightly worse than) the performance level of the directly
multiclass pruned trees (without class rebalancing). It is not unlikely that more carefully
adjusted complexity parameter values, possibly different for each class, might make the encod-
ing approach deliver the best model for this study. A simple way to achieve this with the
multi.class wrapper generator is to use a single function that performs tree growing and
pruning, such as the rpart.pmin function defined above. A multiclass wrapper can then be
generated and used similarly as before:

rp.1k.pmin <- multi.class(rpart.pmin, predf=function(...) predict(...)[,2],
encode=multi.enc.1ofk, decode=multi.dec.1ofk)

ct.tree.1k.pmin <- rp.1k.pmin$alg(Cover.Typẽ., ct.train)

Verifying the validation set performance:

ct.tree.1k.pmin.pred <- rp.1k$predict(ct.tree.1k.pmin, ct.val)
ct.tree.1k.pmin.cm01 <- confmat01(ct.tree.1k.pmin.pred, ct.val$Cover.Type)
ct.tree.1k.pmin.tpfp <- sapply(ct.tree.1k.pmin.cm01,

function(cm) c(tpr=tpr(cm), fpr=fpr(cm),
fm=f.measure(cm)))

rowMeans(ct.tree.1k.pmin.tpfp)
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reveals that it is actually very similar to that obtained above with the ad hoc chosen cp value:

1 2 3 4 5 6 7
tpr 0.92 0.940 0.9000 0.7800 0.7100 0.8000 0.9200
fpr 0.04 0.064 0.0062 0.0015 0.0044 0.0053 0.0049
fm 0.92 0.940 0.9000 0.7400 0.7200 0.8100 0.8900

20.4.6 Final classification models

We arrived at reasonably good cover type prediction models as soon as we departed from
the default stop criteria of the rpart function and permitted more complex trees. It turned
out to take several thousand nodes to sufficiently well discriminate between the seven differ-
ent classes. The 1-of-k multiclass encoding technique did not help. The two minimum-error
pruned trees, with and without class rebalancing, are the best models we have been able to find,
representing somewhat different tradeoffs between the predictive performance for the domi-
nating and rare classes. Now the test set performance of these two can be determined, to see
whether and how much it differs from the corresponding estimates obtained on the validation
set. In principle, one could re-create the selected models on the combined training and valida-
tion test and the reader is encouraged to do so, but for simplicity and computational savings
this possibility is not demonstrated here. The same models that were created on the training
set and previously evaluated on the validation set are therefore now evaluated on the test set:

ct.tree.pmin.test.pred <- predict(ct.tree.pmin, ct.test, type="c")
ct.tree.pmin.test.cm01 <- confmat01(ct.tree.pmin.test.pred, ct.test$Cover.Type)
ct.tree.pmin.test.tpfp <- sapply(ct.tree.pmin.test.cm01,

function(cm) c(tpr=tpr(cm), fpr=fpr(cm),
fm=f.measure(cm)))

rowMeans(ct.tree.pmin.test.tpfp)

ct.tree.w.pmin.test.pred <- predict(ct.tree.w.pmin, ct.test, type="c")
ct.tree.w.pmin.test.cm01 <- confmat01(ct.tree.w.pmin.test.pred, ct.test$Cover.Type)
ct.tree.w.pmin.test.tpfp <- sapply(ct.tree.w.pmin.test.cm01,

function(cm) c(tpr=tpr(cm), fpr=fpr(cm),
fm=f.measure(cm)))

rowMeans(ct.tree.w.pmin.test.tpfp)

The performance is nearly the same as observed on the validation set, and is probably a
reliable estimate of the true performance that can be expected on new data.

It is not unlikely that systematic complexity parameter tuning, using a reliable evalua-
tion procedure and a performance measure more appropriate than the misclassification error
normally used by cost-complexity pruning, would lead to better results. This would be a
computationally demanding process with relatively little performance gain expectations, but
even minor increase of predictive power may be worthwhile considerable effort in real-world
applications. The complexity parameter tuning process demonstrated in the Communities and
Crime study provides a pattern to follow for the reader who would like to undertake this chal-
lenge. Attribute selection might help find models with better performance or less complexity,
as demonstrated in the previous studies. Finally, the more refined multiclass encoding tech-
nique with error-correcting codes is another promising – although computationally expensive
due to the considerably increased number of binary models – direction to explore.
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20.4.7 Clustering

The Cover Type data, with its several dozen cartographic attributes, provides an interesting
opportunity for terrain clustering. All the attributes can be reasonably considered numeric,
which is convenient for dissimilarity calculation and k-centers cluster representation. How-
ever, the majority of them are actually binary and the remaining ones have very diverse ranges,
hugely exceeding the [0, 1] range. This suggests applying the normalization transformation,
described in Section 17.3.2, to prevent a small number of large range attributes dominate dis-
similarity calculation. It is arguably a better choice here than standardization, since – unlike

Ex. 17.3.2
dmr.trans

the latter – it leaves the binary attributes unchanged. The transformation is per-
formed below using the nrm.all and predict.nrm functions, which create
the normalization model on the training set and apply it to all data subsets.

ct.nrmm <- nrm.all(Cover.Typẽ., ct.train)
ctn.train <- predict.nrm(ct.nrmm, ct.train)
ctn.val <- predict.nrm(ct.nrmm, ct.val)
ctn.test <- predict.nrm(ct.nrmm, ct.test)

The Cover Type data is relatively large and may cause performance problems for memory-
or CPU-intensive clustering algorithms on some machines. The basic k-means algorithm from
the standard stats package should be able to handle the full training set smoothly, but
for this study an approximate efficient version of the k-medoids algorithm will be adopted,
which internally subsamples data, performs partitioning around medoids for each sample,
and combines the results appropriately. The algorithm, known as CLARA (Clustering Large
Applications) is implemented by the clara function from the cluster package. Its advan-
tages over k-means, apart from possibly better robustness, include the immediate availability
of training set silhouette width evaluations. This is a highly convenient feature in practice,
since – as discussed in Sections 14.2.4 and 14.3.4 – it makes it possible to immediately assess
the quality of the obtained clustering models and make a well-informed choice of the number
of clusters. The silhouette width values are approximate (based on data subsamples), but cal-
culating exact cluster quality measures for large data may be too computationally expensive
to serve this purpose.

The following code creates CLARA models for the sequence of k values between 2 and
10, using the normalized training set with input attributes only:

ctn.cla <-
‘names<-‘(lapply(2:10, function(k)

clara(ctn.train[,ct.input.attrs], k,
samples=100, sampsize=200, keep.data=FALSE)), 2:10)

The samples and sampsize arguments may be used to adjust the level of tradeoff
between the quality of k-medoids approximation and the computational expense. Also note
the keep.data=FALSE argument, used to prevent training set copies from being stored as
components of the created clara objects.

The average silhouette width for each k value can be plotted as follows:

plot(2:10, sapply(ctn.cla, function(cm) cm$silinfo$avg.width),
type="l", xlab="k", ylim=c(0, 0.5))
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lines(2:10, sapply(ctn.cla, function(cm) sd(cm$silinfo$clus.avg.widths)), lty=2)
legend("bottomright", legend=c("average silhouette width",

"sd(cluster silhouette widths)"), lty=1:2)

The resulting plot, presented in Figure 20.21, also shows the standard deviation of the average
per-cluster silhouette width values using a dashed line. The plot suggests 2, 7, or 10 as the
best justified numbers of clusters. For k = 2 we receive the most uniform quality clusters
(a low standard deviation of per-cluster silhouette widths) and for k = 10 the best average
cluster quality. While k = 7 is slightly worse than these two, it is worth considering as a local
maximum between the neighbory k values.
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Figure 20.21 The average silhouette width for different k values for the Cover Type data.

A more detailed picture of the quality of the two most promising clustering models is
provided by their silhouette plots:

par(mfrow=c(1, 3))
plot(silhouette(ctn.cla[["2"]]), main="k=2")
plot(silhouette(ctn.cla[["7"]]), main="k=7")
plot(silhouette(ctn.cla[["10"]]), main="k=10")
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As we can see in Figure 20.22, for k = 2 we have indeed two similarly good clusters,
whereas for k = 7 and k = 10 there are two or three clusters considerably worse than the
others. All the three clustering models might be useful depending on specific application
requirements. The remainder of this study will only use k = 7, which provides opportuni-
ties for more interesting demonstrations than the basic case of k = 2, but is simpler than
k = 10.

Since there is no prediction method provided in the cluster package, cluster mem-
bership for nontraining instances has to be determined by calculating their dissimilarities to
cluster medoids and choosing the least dissimilar medoid. This can be performed using the

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

k=2

Average silhouette width :  0.28

n = 200 2  clusters  Cj
j : nj ∣ avei∈ Cj si

7  clusters  Cj
j : nj ∣ avei∈ Cj si

10  clusters  Cj
j : nj ∣ avei∈ Cj si

1 :   82  |  0.33

2 :   118  |  0.25

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

k=7

Average silhouette width :  0.27

n = 200

1 :   38  |  0.40

2 :   18  |  0.29

3 :   17  |  0.56

4 :   15  |  0.18

5 :   46  |  0.15

6 :   48  |  0.18

7 :   18  |  0.34

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

k=10

Average silhouette width :  0.31

n = 200

1 :   44  |  0.40

2 :   8  |  0.32

3 :   15  |  0.51

4 :   15  |  0.46

5 :   14  |  0.23

6 :   30  |  0.14

7 :   23  |  0.13

8 :   19  |  0.38

9 :   14  |  0.38

10 :   18  |  0.26

Figure 20.22 The average silhouette width for different k values for the Cover Type data.
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dmr.cluseval
prediction method for pam and clara objects defined in Example 14.1.2. Its
implementation is very simple, but unfortunately rather inefficient computa-
tionally and the following call may take several minutes to complete.

ctn.cla7.pred <- predict(ctn.cla[["7"]], ctn.val[,ct.input.attrs])

It may be possible to assign new data to clusters more efficiently by creating classifiers
serving as cluster membership models. Using a decision tree classifier, grown with default
rpart settings, this can be performed as follows:

ct.cla7.tree <- rpart(make.formula("as.factor(ctn.cla[[\"7\"]]$clustering)",
ct.input.attrs),

ct.train, xval=0)

Notice that the above rpart call uses the original rather than normalized training set. This is
because normalization (and standardization) makes no difference for tree structure and quality,
and only affects the particular threshold values used for inequality-based splits. Using the
original training set makes the tree directly interpretable, with split threshold values coming
from the original attribute codomains.

To evaluate the quality of this cluster membership model, we can compare its predictions
with the dissimilarity-based cluster assignment on the validation set determined above:

ct.cla7.tree.pred <- predict(ct.cla7.tree, ct.val, type="c")
ct.cla7.tree.cm01 <- confmat01(ct.cla7.tree.pred, as.factor(ctn.cla7.pred))
ct.cla7.tree.tpfp <- sapply(ct.cla7.tree.cm01,

function(cm) c(tpr=tpr(cm), fpr=fpr(cm),
fm=f.measure(cm)))

rowMeans(ct.cla7.tree.tpfp)

This calculates the same per-class performance measures as used above for cover type classi-
fication models. Despite using default rpart stop criteria that performed so poorly for cover
type prediction, this cluster membership model appears quite good:

1 2 3 4 5 6 7
tpr 0.980 0.920 0.79 0.8700 0.940 0.970 0.90
fpr 0.004 0.018 0.00 0.0041 0.013 0.041 0.00
fm 0.980 0.870 0.89 0.9100 0.950 0.920 0.95

The true positive rate is above 0.9 on the average, with the false positive rate just above
0.01. This excellent predictive performance – that could be possibly even further improved
by adjusting parameters – shows that cluster membership is much easier to represent that the
original cover type target attribute. It is also easy to verify that clusters are much more balanced
than cover types. The tree can be presented graphically using the following call:

prp(ct.cla7.tree, varlen=0, faclen=0)

which produces the plot presented in Figure 20.23. The cluster membership model is indeed
quite simple and – with sufficient domain knowledge about attribute interpretation – would
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Soil.Type29 >= 0.5
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Soil.Type30 >= 0.5

Soil.Type23 < 0.5
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Figure 20.23 The decision tree modeling cluster membership for the Cover Type data.

probably permit describing the distinguishing characteristics of particular cluster in a com-
prehensible way.

20.5 Conclusion

The case studies presented in this chapter – despite their limited scope and adopted
simplifications – hopefully give some taste of data mining practice that the other chapters,
focused on explaining the mechanics of data mining algorithms, were unable to provide. It
not only shows how to put the previously described algorithms at some serious work, but
also demonstrates how understanding the algorithms makes their application easier and more
effective. This justifies its inclusion in the book.

This chapter is composed of text narration and R code in near equal proportions. While the
code is simple, it is not entirely limited to straightforward calls to modeling algorithm imple-
mentations. Some basic data preprocessing is performed, multiple models are created and
evaluated, different parameter setups and attribute subsets are tried. This should make it pos-
sible to appreciate the flexibility of R as an analytic environment, particularly in comparison
to point-and-click tools.

A side effect of the case studies is also some evidence of the practical utility of selected
R functions defined in this books examples. While standard CRAN implementations of
modeling algorithms are usually much more efficient and flexible than that the illustrative
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implementations presented in these examples, some of them do provide practically useful
functions for model evaluation and attribute transformation. This applies, in particular, to
the simple aggregation, imputation, and normalization transformations used in this chapter
in a way that adheres to the modeling view: with transformation models determined on the
training set and applicable to arbitrary other datasets from the same domain. This is not
always convenient using their standard R implementations.

20.6 Further readings

Some results obtained while analyzing the datasets used by this case study can be found in
the literature. Definitely the most popular of them is the Census Income dataset, which was
used by Oza and Russell (2001) to experimentally compare incremental and batch versions of
bagging and boosting, and by Frank et al. (2002) to evaluate an incremental boosting algorithm
applicable to large data. Bay (2001) performed experiments with a multivariate discretization
algorithm (working with multiple continuous attributes at a time) on this dataset. A smaller
version of the dataset (also known as Adult) with a subset of attributes was used for several
experimental studies (e.g., Chawla et al. 2002; Keerthi et al. 2005; Kohavi 1996; Platt 1998;
Zadrozny and Elkan 2002).

Redmond and Highley (2009) used the Communities and Crime dataset to experimentally
evaluate a training instance removal technique for memory-based regression. Redmond and
Baveja (2002) developed their system for crime similarity pattern identification based on a
differently normalized version thereof with less input attributes, but several additional target
attributes corresponding to specific crimes. Buczak and Gifford (2010) performed association
discovery on a preprocessed version of the data.

The Cover Type data was used to perform forest cover type prediction experiments with
neural networks and linear discriminant analysis by Blackard and Dean (2000). It was also
used as one of the datasets for bagging and boosting experiments reported by Oza and Rus-
sell (2001). Gama et al. (2003) mentioned the application of their incremental decision tree
algorithm to this data. More recently Chandra and Pallath (2007) presented results obtained
using a decision tree algorithm designed for large datasets, an enhancement of SLIQ (Mehta
et al. 1996).

The UCI repository, the source of datasets for this chapter’s case studies, as well as
examples presented in other chapters, have been serving the machine learning and data mining
community for more than a quarter-century (Bache and Lichman 2013). It is impossible
to overestimate its impact on research and education in these areas, stimulating progress in
algorithms and evaluation methodologies as well as providing students opportunities to get
hands-on experience with real-world modeling tasks.
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To be without some of the things you want is an indispensable part of hapiness.
BERTRAND RUSSELL

Retrospecting

This book has covered a selection of essential data mining algorithms, mostly originating from
machine learning and assuming a machine learning perspective. While both algorithm prop-
erties and usage principles are discussed, particular attention has been given to their internal
operation mechanisms, explained not only by textual descriptions, equations, and occasion-
ally pseudocode, but also by illustrative and simple R code examples. Apart from algorithms
directly used for creating predictive models, techniques for model evaluation, data transforma-
tion, and attribute selection have been presented that do not always receive as much attention in
data mining practice as they deserve. They may all have significant impact on the final model
quality. Regrettably, they also provide opportunities to do things wrong, resulting in produc-
ing poor models or overoptimistic performance estimates. The adopted modeling view of data
mining was extended even to basic statistics and data transformation. This helps not only to
achieve consistency, but also highlight possible pitfalls related to the latter. The above-average
space occupied in this book by the discussion of model evaluation techniques and – partially
related – methods of incorporating misclassification costs to classification models is moti-
vated by their high practical importance, not always sufficiently recognized.

Modeling algorithms presented in the book are deliberately limited to the three major and
most general data mining tasks: classification, regression, and clustering. All additionally dis-
cussed techniques are also presented in the context provided by these three tasks. A number
of other tasks remain undiscussed, including in particular time series forecasting, association
rule and temporal pattern discovery, geo-spatial analysis, graph mining and social network
analysis, clickstream analysis, and several types of text mining. Even if some of those can be
viewed as specific versions of classification, regression, and clustering, they can be much more
effectively addressed by dedicated rather than general-purpose algorithms. With these more
specific tasks gaining increasingly more attention, a book sticking to the basic general tasks
may appear outdated. The core tasks and algorithms still remain the most frequently encoun-
tered in practical applications. More importantly, they are essential for understanding data
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mining and acquiring good data mining practices. After getting intimate with them, extending
one’s competence to the more specific tasks becomes much easier. It would be definitely
great to see a follow-up to this book, covering the most important of those using a similar
R-illustrated presentation approach, but including them here by adding several more chapters
was not reasonably possible.

Even the coverage of the three basic tasks, classification, regression, and clustering, is far
from completeness and mostly limited to the best-known classic algorithms. This is motivated
by the naturally limited capacity of a single book on one hand and strong preference for con-
sistence with respect to the presentation style, accessibility, and depth. If the actually reached
level of consistency leaves a lot to be desired, striving for completeness would inevitably make
it much worse.

The book – as a practical guide to data mining algorithms – does not refer to the underly-
ing machine learning and statistics theory. This is not to question the usefulness of theoretical
achievements of these fields by any means. They provide solid grounds for understanding
the properties of data mining tasks and the capabilities of data mining algorithms, as well as
deeper justifications or refutations for common beliefs and intuitions. While many of those
theoretical results do not naturally fit to the adopted scope and style, some of them – in particu-
lar, probabilistic and information-theoretic model selection criteria – could become a valuable
complement of the presented model performance measures and evaluation procedures. Of all
the numerous omissions of this book this may be the hardest to forgive.

Final words

There is obviously no reason to find the adopted presentation method – focusing on algorith-
mic details, with rather limited maths and usage scenario discussion, but extensive R code
illustrations – universally superior to any other possible approaches, e.g., more oriented
toward the underlying theory or to possible practical applications. It may appeal to some read-
ers and repel others. Hopefully the latter will not be disappointed since they would not buy or
borrow this book in the first place. Unfortunately, even those who find the adopted perspective
and presentation interesting and useful may find the book somehow lacking. This is perfectly
understandable and I am the last to claim this book is satisfactory in all respects. The selection
of algorithms, the scope, depth, and clarity of their presentation, can be all considered justi-
fiably insufficient. The comprehensibility and utility of R code examples can be questioned.
Certainly many of them could be rewritten in a more readable form, they could be more con-
sistent with respect to R coding style, more comprehensively explained, and better organized.

With all these reservations, I have found myself early draft versions of the text useful for
my teaching and some code snippets useful for my practical data mining work. After making
extensive text and code portions available to my students, I have observed a noticeable quality
improvement of their project assignments, including more thoughtfully designed experimental
procedures for model creation and evaluation and better use of the power of R. This leads me
to the belief that there will be readers who find this book a helpful reference, a source of
guidance and inspiration, and maybe even enjoyable reading.
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A

Notation

This appendix lists notational conventions used throughout this book. While they are usually
explained when first used, they are collected here for reference.

A.1 Attribute values

The following notation is used to refer to attribute values of instance x.

Value of attribute ai for instance x. ai(x)

Co-domain of attribute ai. Ai

Vector of all attribute values for instance x. a(x).

A.2 Data subsets

The following notation is used to refer to subsets of dataset S.

Subset of S satisfying condition.

Scondition = {x ∈ S | x satisfies condition} (A.1)

Subset of S with the value of attribute a equal, not equal 𝑣.

Sa=𝑣 ={x ∈ S | a(x) = 𝑣} (A.2)

Sa≠𝑣 ={x ∈ S | a(x) ≠ 𝑣} (A.3)

Subset of S with the value of attribute a less, less or equal, greater, greater, or equal than 𝑣.

Sa<𝑣 ={x ∈ S | a(x) < 𝑣} (A.4)

Data Mining Algorithms: Explained Using R, First Edition. Paweł Cichosz.
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Sa≤𝑣 ={x ∈ S | a(x) ≤ 𝑣} (A.5)

Sa>𝑣 ={x ∈ S | a(x) > 𝑣} (A.6)

Sa≥𝑣 ={x ∈ S | a(x) ≥ 𝑣} (A.7)

Subset of S with the value of attribute a1 equal, not equal the value of attribute a2.

Sa1=a2
={x ∈ S | a1(x) = a2(x)} (A.8)

Sa1≠a2
={x ∈ S | a1(x) ≠ a2(x)} (A.9)

Subset of S with the value of attribute a missing.

Sa=? = {x ∈ S | a(x) is missing} (A.10)

Subset of S containing instances of class d.

Sd = Sc=d = {x ∈ S | c(x) = d} (A.11)

Subset of S containing instances of class d and satisfying condition.

Sd
condition = {x ∈ S | c(x) = d ∧ condition} (A.12)

A.3 Probabilities

The following notation is used to refer to probabilities estimated on a dataset S.

Probability of attribute a taking value 𝑣. PS(a = 𝑣)
Probability of attribute a taking value less, less or equal, greater, greater or equal than 𝑣.

PS(a < 𝑣), PS(a ≤ 𝑣), PS(a > 𝑣), PS(a ≥ 𝑣)
Probability of attribute a having a missing value. PS(a = ?).
Probability of class d. PS(d) = PS(c = d)
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B

R packages

Despite this book being heavily loaded with R code, it uses existing R packages quite frugally.
This is because the example code serves the purpose of illustrating the internal operation
mechanics of data mining algorithms rather than demonstrating the usage of their popular R
implementations. Even the case studies of Chapter 20 do not employ many of them. Those
few that are used in the book provide modeling algorithm implementations and other auxil-
iary functions, as well as datasets. Apart from the standard base, stats, and datasets
packages – which are always preinstalled and preloaded – the remaining contributed pack-
ages have to be explicitly loaded and – depending on the particular R environment, which may
come with several popular packages preinstalled – installed from a CRAN repository mirror.

A more important category of R packages related are those that serve as containers for
all the reusable R functions defined in this book’s examples, as well as some simple utility
functions not included in the book due to their lack of didactic value. They all have the dmr.
name prefix and are referred to as DMR packages. These can be downloaded from the book’s
website and then installed from local files.

Whenever a CRAN or DMR package is used by one or more examples presented in a
chapter, it is explicitly loaded in the chapter’s first example. This appendix contains a full
list of packages of both these categories that are required by any code snipped occurring in
the book.

B.1 CRAN packages

The Comprehensive R Archive Network (CRAN) is a repository of R sources, binaries, doc-
umentation, and contributed packages. The following table lists all the CRAN packages used
in this book, with a brief description summarizing what the package is used for. This may
sometimes be a fraction of the package’s functionality.

Data Mining Algorithms: Explained Using R, First Edition. Paweł Cichosz.
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CRAN repository links are not provided, since each of them can be constructed using the
following template:

cran.r-project.org/package=name

with name replaced by package name.

Package name What used for

cluster (Maechler et al. 2013) Dissimilarity measures and k-medoids
clustering

digest (Eddelbuettel 2013) Hash string generation
e1071 (Meyer et al. 2014) Naïve Bayes classifier
ipred (Peters and Hothorn 2013) Bagging model ensembles
kernlab (Karatzoglou et al. 2004) Quadratic programming solver
lattice (Sarkar 2008) Surface and level plots
Matrix (Bates and Maechler 2014) Finding the nearest positive-definite matrix
mlbench (Leisch and Dimitriadou 2010) Example datasets
randomForest (Liaw and Wiener 2002) Random forest model ensembles
rpart (Therneau et al. 2014) Decision and regression trees
rpart.plot (Milborrow 2014) Decision and regression tree plotting
quadprog (Turlach 2013) Quadratic programming solver

B.2 DMR packages

The relationship between DMR packages and this book’s chapters is mostly, but not entirely
1:1. Chapter 1 only contributes illustrative datasets for classification, regression, and cluster-
ing. The dmr.util package does not correspond to any chapter, but is used by most. The
definitions of its utility functions do not appear anywhere in the book, but can be seen by
inspecting its source code. As a matter of fact, since all functions from all DMR packages are
written entirely in R they are all built as source packages, simply typing a function’s name in
the R command line will list its code.

The main reason for packaging this book’s example functions is to make it easier to run
the example code, which frequently reuses functions defined in other chapters. These function
backward- and forward references are unavoidable and would incur extreme inconveniences
of copy-pasting or including source files if they were not organized into a set of packages.
Now, whenever an example code snippet calls a function defined in another chapter, it only
requires that the corresponding package be loaded. As mentioned above, the first example in
each chapter takes care of loading all packages required for the chapter’s examples.

The DMR packages with brief descriptions and the corresponding chapter numbers are
listed in the table below.



Trim size: 170mm x 244mmCichosz bapp02.tex V2 - 11/04/2014 10:16 A.M. Page 663

INSTALLING PACKAGES 663

Package name Description Chapter

dmr.attrsel Attribute selection filters and wrappers 19
dmr.bayes Naïve Bayes classifier 4
dmr.claseval Classification performance measures, model

evaluation procedures
7

dmr.cluseval Clustering quality measures 14
dmr.data Illustrative tiny datasets 1
dmr.dectree Decision trees 3
dmr.disc Discretization 18
dmr.dissim Dissimilarity and similarity measures 11
dmr.ensemble Model ensembles 15
dmr.hierclus Hierarchical clustering 13
dmr.kcenters k-centers clustering 12
dmr.kernel Support vector machines, support vector

regression, kernel functions
16

dmr.linclas Linear classification 5
dmr.linreg Linear regression 8
dmr.miscost Incorporating misclassification costs 6
dmr.regeval Regression performance measures 10
dmr.regtree Regression trees 9
dmr.rpartutil Utilities for using rpart decision and

regression trees
20

dmr.stats Descriptive statistics and statistical
relationship measures

2

dmr.trans Attribute transformations 17
dmr.util Utility functions

B.3 Installing packages

The standard platform-independent way of installing R packages is by using the
install.packages function. For CRAN packages, one just supplies a character
string with the package name as an argument, like in the following call:

install.packages("randomForest")

To request installing multiple packages a vector of package names can be specified:

install.packages(c("cluster", "e1071"))
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When calling install.packages for the first time in the current R session, the user will
be asked to select a CRAN mirror to use. It usually makes sense to choose the geographically
nearest one. With default settings, which should match all standard needs, the function will
automatically identify and download the suitable source or binary version of the package
(depending on the operating system), compile it if necessary, and install in the default location.

Installing DMR packages from local files can also be performed by the install.
packages function by providing a package file name instead of a package name and
specifying the repos=NULL argument:

install.packages("dmr.util_1.0.tar.gz", repos=NULL)

This assumes that the package file is in the current R working directory, which can be checked
using the getwd function and modified using the setwd function. Otherwise a file path has
to be specified, as in this call:

install.packages("DMR-packages/dmr.util_1.0.tar.gz", repos=NULL)

Alternatively, packages can be installed from local files by running R from the operating sys-
tem’s command line with the CMD INSTALL arguments, followed by a package file name,
as in the following example:

R CMD INSTALL dmr.util_1.0.tar.gz

This assumes the package file is in the current directory, otherwise a file path has to be speci-
fied:

R CMD INSTALL DMR-packages/dmr.util_1.0.tar.gz

More precise instructions, covering nonstandard installation options (such as library loca-
tions) and including operating system-specific details, are provided in R documentation.
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C

Datasets

Besides the tiny weather family of datasets presented in Chapter 1 and artificially generated
datasets in some chapters, the R code examples use a set of real datasets originating from
various sources. They are all available for download from the UCI Machine Learning Repos-
itory. Except for those used by case studies in Chapter 20, the datasets do not actually have
to be downloaded from the repository, since they are also available in R packages, mlbench
and datasets. It still makes sense to check the corresponding UCI pages for some basic
characteristics of the data as well as information about their origin and past usage. The table
presented below lists all the UCI datasets used in this book, providing their original repository
names as well R package names, where available. The corresponding links to the UCI pages
can be constructed using the following simple template:

http://archive.ics.uci.edu/ml/datasets/name

with name replaced by UCI dataset name.

Dataset UCI name R package/name

Census Income Census-Income+(KDD)
Communities and Crime Communities+and+Crime
Cover Type Covertype
Boston Housing Housing mlbench/BostonHousing
Glass Glass+Identification mlbench/Glass
HouseVotes84 Congressional+Voting+Records mlbench/HouseVotes84
Iris Iris datasets/iris
Pima Indians Diabetes Pima+Indians+Diabetes mlbench/PimaIndiansDiabetes
Soybean Soybean+(Large) mlbench/Soybean
Vehicle Silhouettes Statlog+(Vehicle+Silhouettes) mlbench/Vehicle
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0-1 loss, see loss function, 0-1

.632 bootstrap, 225–226, 306

absolute loss, see loss function, absolute
accuracy, 191, 196
AdaBoost, 435–437

instance weighting for, 435
model weighting for, 435
multiclass, 438–439

AdaBoost.MH, 439
adaptive boosting, see AdaBoost
add-one smoothing, see probability,

Laplace estimate of
agglomerative clustering, see hierarchical

clustering, agglomerative
aggregation, 506
AHC, see hierarchical clustering,

agglomerative
algorithm randomization, 412–413
anomaly detection, 163

by clustering, 17, 352
ANOVA, see F-test
AODE, see averaged one-dependence

estimators
apparent disutility, 570
apparent utility, 570
attribute, xxii, 5

continuous, 6, 25
discretization of, see

discretization
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discrete, 36
aggregation of, see aggregation
binary encoding of, see attribute

encoding
hidden, 16
input, see input attribute
nominal, 5
numeric, see attribute, continuous
observable, 16
ordinal, 6
target, see target attribute

attribute encoding, 154, 250, 508–509
attribute sampling, 410
attribute selection

motivation for, 559–560
target algorithm for, 560
target task for, 560

attribute selection filter, 561, 568
consistency-based, see

consistency-based filter
correlation-based, see

correlation-based filter
random forest, see random forest, for

attribute selection
simple statistical, see simple statistical

filter
attribute selection search, 562, 563

backward, see backward elimination
filter-driven, 586–587
forward, see forward selection
greedy, 566
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attribute selection search (continued)
initial state for, 563
operator for, 564
preference criteria for, 565
stop criteria for, 565

attribute selection wrapper, 561, 588,
591

seach strategy for, 591
subset evaluation for, 588–589

attribute transformation
as modeling, see attribute

transformation, modeling
for ensemble modeling, 411–412
model, see transformation model
modeling, 500–501
nonmodeling, 503
target attribute for, see target attribute,

for attribute transformation
target task for, 499
training set for, see training set, for

attribute transformation
attribute value vector, 137, 239, 240, 455
AUC, see ROC, curve, area under
average linkage, see linkage, average
averaged one-dependence estimators, 131

backward elimination, 564, 566
bagging, 431–432

base models for, 431
model aggregation for, 431
probabilistic, 171

barplot, 64
base models, 405, 406

aggregation of, see model
aggregation

combining of, see model aggregation
creation of

by algorithm randomization, see
algorithm
randomization

by attribute sampling, see
attribute sampling

by attribute transformation, see
attribute
transformation, for
ensemble modeling

by different algorithms, 412

by different parameter
setups, 412

by instance replication, see
instance replication

by instance sampling, see
instance sampling, for
ensemble modeling

by instance weighting, see
instance weighting, for
ensemble modeling

diversity of, 406, 418
basic statistics

as modeling, 24–25
for distribution description, 23, 25
for relationship detection, 23, 47,

568
Bayes rule, 118–119

for conditional class probability,
121

inverse conditional probability
for, 119

posterior probability for, 119
prior probability for, 119

Bayesian inference, 118, 120
for class probabilities, 120
for model probabilities, 120

Bayesian network, 130
Bernoulli trial, 42
boosting, 433–434

adaptive, see AdaBoost
base models for, 433–434
gradient, see gradient boosting
by instance weighting, 433, 435
by residual prediction, 434, 439

bootstrap sample, 43, 305, 406
bootstrapping, 171, 305

for model evaluation, 223–226, 306
bottom-up discretization, see discretization,

bottom-up
boxplot, 62
break evaluation

by class distribution
dissimilarity, 544–545

by class impurity, 542–544
by dominating class count, 539–540
by instance count, 537–538
by misclassification count, 541–542
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C index, 388
Canberra dissimilarity, see distance,

Canberra
center linkage, see linkage, center
centroid, 334
Cestnik estimate, see probability,

m-estimate of
CFS, see correlation-based filter
Chebyshev dissimilarity, see distance,

Chebyshev
𝜒2 discretization, see break evaluation, by

class distribution dissimilarity
𝜒2 statistic, see 𝜒2 test, statistic for
𝜒2 test, 52

p-value for, 52
statistic for, 52

for discretization breaks, 544
ChiMerge, 545
class, 10

negative, 195
positive, 195

class encoding, see multiclass encoding
class imbalance, 162
class label, see class
classification algorithm, 13

cost-sensitive, 13, 164
weight-sensitive, 13, 164

classification margin
functional, 457
geometric, 457

soft, 469
hyperplane, see margin hyperplane
instance lying on, 458, 461
instance lying outside, 461
instance lying within, 468
maximization of, 460

dual form of, 464–466
primal form of, 460–461
soft, 468–470

classification model, 11
discrete, 12
mixing of, see operating point,

interpolation
probabilistic, 12
scoring, 11–12, 200

classification performance, see predictive
performance, for classification

classification performance measures,
190

classification task, xxii, 9–10
binary, see classification task,

two-class
two-class, 10, 137, 162, 165, 170

classifier, see classification model
cluster center, 328
cluster formation, 16

for k-centers clustering, 331–332
cluster modeling, 16

for k-centers clustering, 332
explicit, 343–344
implicit, 343

clustering algorithm, 19
conceptual, 19
dissimilarity-based, 19
probabilistic, 19
similarity-based, see clustering

algorithm,
dissimilarity-based

clustering model, 18
crisp, 18
descriptive, 19
flat, 18
fuzzy, see clustering model, soft
hierarchical, 18
predictive, 19, 329, 369
soft, 18

clustering performance, see predictive
performance, for clustering

clustering quality
measures of, see clustering quality

measures
clustering quality measures, 373, 385

external, 393
per-cluster, 376
relationship detection-based, 396
using of, 397–398

clustering task, xxii, 16
hierarchical, 18
motivation for, 16–17

coefficient of determination, 300
weighted, 301

coefficient of variation, 33
complete linkage, see linkage, complete
complexity parameter, 99, 277
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concept, 10
example of, 10
multiclass, 10
negative example of, 10
single, 10, 195

confidence interval, 41
confidence level, 41
confusion matrix, 194

multiclass, 198
1-vs-1 analysis of, 198
1-vs-rest analysis of, 198

two-class, 196
weighted, 199

consistency-based filter, 575–576
constrasts, 509
correlation

as a regression performance
measure, 301

as a similarity measure, see similarity
measure, correlation-based

linear, 50
p-value for, 50

Pearson’s, see correlation, linear
rank, 51

p-value for, 51
Spearman’s, see correlation, rank

correlation-based filter, 571
relationship measure for, 571–572
subset evaluation for, 572–573

cost-complexity pruning
for decision trees, 99–100
for regression trees, 277
minimum-error, 100
one-standard-deviation, 100

cost-sensitive classification, 159
algorithm for, see classification

algorithm, cost-sensitive
by instance relabeling, see instance

relabeling
by instance resampling, see instance

resampling, for
cost-sensitive classification

by instance weighting, see instance
weighting, for cost-sensitive
classification

by the minimum-cost rule, see
minimum-cost rule

wrappers for, 164
cross-validation, 219–220, 277, 304

for attribute selection wrappers, 589
cutoff

for a scoring classifier, 200
for attribute selection, 585
for cost-sensitive classification, 171
for operating point shifting, 205
for ROC analysis, 201

data, see dataset
data mining, xxi, xxii

modeling view of, xxi, 3
roots of, xxiii
tasks, xxii

data preprocessing, 499, 532, 560
dataset, xxii, 5, 7

Boston Housing, 237, 296, 403, 455,
558

Census Income, 603
Communities and Crime, 603
Cover Type, 603
Glass, 329, 350, 498, 524
HouseVotes84, 403
incomplete, 20, 507
Iris, 329, 350, 374
linearly inseparable, see linear

separability
linearly separable, see linear

separability
noisy, 20
Pima Indians Diabetes, 135, 455
Soybean, 190, 558
Vehicle Silhouettes, 159, 498, 524,

558
weather, 10–11
weatherc, 11
weathercl, 17
weatherr, 15

Davies–Bouldin index, 382
average, 387
for a cluster, 383
for a cluster pair, 382

decision boundary, 138, 139
distance to, see separating hyperplane,

distance to
decision stump, 437
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decision tree
as a classification model, 74
as a nonparametric model, 136
as a probabilistic classifier, see

decision tree, prediction for,
probabilistic

branch of, 72
class distribution calculation for, 77,

78
class label assignment for, 77, 79
conversion to rules of, 101
growing of, see decision tree growing
leaf of, 72

subset corresponding to, 74
node of, 72

closed, 77
open, 77
subset corresponding to, 73,

74
post-prunning of, see decision tree

pruning
prediction for, 104

probabilistic, 105
with fractional instances, see

fractional instances,
decision tree prediction
with

preprunning of, 90
prunning of, see decision tree pruning
randomized, 412
split application for, 77, 86

with fractional instances, see
fractional instances,
split application with,
for decision trees

split evaluation for, 82–83
with fractional instances, see

fractional instances,
split evaluation with,
for decision trees

split for, 72
binary, 76
equality-based, 75
inequality-based, 75
interval-based, 75
membership-based, 75
multivariate, 74

subset-based, 75
univariate, 74
value-based, 74

split selection for, 77, 82
for continuous attributes, 86
by impurity minimization, 83
with two classes, 85

stop criteria for, 77
relaxed, 81
strict, 80–81

structure of, 72
test for, see decision tree, split for
top-down induction of, 76
with missing values, see missing value

handling, for decision trees
with weighted instances, 105

decision tree growing, 76
algorithm scheme for, 76–77
algorithm steps for, 77
recursive, 76
with fractional instances, see

fractional instances, decision
tree growing with

decision tree pruning, 90
best-first, 101
bottom-up, 101
by node removal, 91
by subtree cutoff, 91
control strategy for, 90, 100
cost-complexity, see cost-complexity

pruning, for decision trees
criterion for, 90
minimum error, see minimum error

pruning, for decision trees
operators for, 90, 91
pessimistic, see pessimistic pruning,

for decision trees
reduced error, see reduced error

pruning, for decision trees
top-down, 101

delta rule, 145, 243–244
batch, 244
for generalized linear

representation, 253
for linear logit classification, 148
for linear threshold classification, 146,

152
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delta rule (continued)
incremental, 243
linear, 244

dendrogram, 364
descriptive statistics, see basic statistics,

for distribution description
diameter, 376
discretization, 525

as a modeling
transformation, 527–528

as a nonmodeling transformation, 532
bin for, see discretization, interval for
bottom-up, 535

algorithm scheme for, 535
initialization for, 536
merge criterion for, 537
stop criteria for, 545–546

break evaluation for, see break
evaluation

break for, 527
equal-frequency, 531–532
equal-width, 530
interval for, 527
model for, 528
motivation for, 525–526
pure-class, 533–534
requirements for, 529
supervised, 526, 533
target attribute for, see target attribute,

for discretization
target task for, 526
top-down, 546

algorithm scheme for, 546–547
cut criterion for, 549–550
initialization for, 548–549
recursive, 547
stop criteria for, 550–551

training set for, see training set, for
discretization

unsupervised, 526, 530
dispersion, 31
dissimilarity measure

Canberra, see distance, Canberra
Chebyshev, see distance, Chebyshev
correlation based, see similarity

measure, correlation-based

difference-based, 314
weighted, 320
with discrete attributes, 315

Euclidean, see distance, Euclidean
Gower, see Gower’s coefficient
Hamming, see distance, Hamming
Manhattan, see distance, Manhattan
Minkowski, see distance, Minkowski

distance
Canberra, 316

weighted, 320
Chebyshev, 317

weighted, 320
chessboard, see distance, Chebyshev
Euclidean, 314

weighted, 320
Hamming, 318

weighted, 320
Manhattan, 316

weighted, 320
maximum, see distance, Chebyshev
Minkowski, 315

weighted, 320
distribution

binomial, 42
𝜒2, 52
F, 58
normal, 34, 42
t, 56

divisive clustering, see hierarchical
clustering, divisive

domain, xxii, 5
decomposition of

by clustering, 17, 352
by a decision tree, 72
by a regression tree, 262

dot product, 137, 241, 455
for SVM, 466
for SVR, 477

dummy coding, 509
dummy variable, 509
Dunn index, 386

ensemble modeling
base models for, see base models
justification of, 404–405
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model aggregation for, see model
aggregation

predictive performance of, 448
entropy, 39

as a consistency measure, 575
conditional, 54
for decision tree splits, 83
for discretization breaks, 543

entropy-based discretization, see break
evaluation, by class impurity

equal-frequency discretization, see
discretization, equal-frequency

equal-width discretization, see
discretization, equal-width

error-correcting code, 515, 516
estimator, 24, 25, 41
Euclidean dissimilarity, see distance,

Euclidean
evaluation overfitting, 213, 216
evaluation procedure, 190, 213

choosing of, 227, 307
for regression models, 303

exponential loss, see loss function,
exponential

false negative, 196
false positive, 196

rate, 196, 197
F-measure, 198
forward selection, 564, 566
fractional instances, 106, 279

decision tree growing with,
107

decision tree prediction with,
111–112

for decision trees, 106–107
for regression trees, 279
regression tree growing with, 279
regression tree prediction with, 283
split application with

for decision trees, 107
for regression trees, 280

split evaluation with
for decision trees, 107
for regression trees, 279

fraud detection, 163

F-test, 57
p-value for, 58
statistic for, 57

G test, see loglikelihood ratio test
generalization, 8

for classification, 13
for clustering, 19
for regression, 15

generalized linear model, 253
Gini index, 40
GLM, see generalized linear model
Gower’s coefficient, 319
gradient, 243
gradient ascent, 148, 149
gradient boosting, 439–441

model weighting for, 440, 441
with regression trees, 441

pseudoresidual for, 440
shrinkage for, 440
stochastic, 439

gradient descent, 145, 242, 245
batch, 245
for linear classification, 149
incremental, 245

with randomized instance
order, 246

online, see gradient descent,
incremental

stochastic, see gradient descent,
incremental

stop criteria for, 246

Hamming dissimilarity, see distance,
Hamming

heuristic function, 562
hierarchical clustering

agglomerative, 349, 353
algorithm scheme for, 353–355
cluster merging for, 354

cutting of, 366
dissimilarity measures for, 349
divisive, 349, 361

algorithm scheme for, 361
cluster partitioning for, 361
stop criteria for, 362
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hierarchical clustering (continued)
leaf of, 351
model representation for, 351–352
motivation for, 351–352
node of, 351
prediction for, 366, 368
visualization of, see dendrogram

histogram, 63
hold-out, 217, 304

impurity, 39, 82, 575
imputation, 507

with means, 507
with medians, 507
with modes, 507

inconsistency rate, 575
inductive bias, 8

preference, 9
representation, 9

inductive learning, 3, 5
algorithm for, see modeling algorithm
as search, 9

inference, 4
deductive, 4
inductive, 3, 4

information gain, 83
input attribute, xxii, 6
instance, xxii, 5

labeled, 10
negative, 195
positive, 195

instance relabeling, 174
instance replication, 167, 408
instance resampling, 162

for cost-sensitive
classification, 167–168

for ensemble modeling, see instance
sampling, for ensemble
modeling

instance sampling
bootstrap, see bootstrap sample
for ensemble modeling, 406–407

instance undersampling, 167
instance weighting, 8, 191, 199, 301

for boosting, see boosting, by instance
weighting

for classification, 13

for cost-sensitive
classification, 164–166

for decision trees, see decision tree,
with weighted instances

for ensemble modeling, 408
per-class, 13

intercept, 137, 240, 455
for SVM, 465

soft-margin, 469
for SVR, 477

interquartile range, 35
interval estimation, 41

bootstrapping, 43
parametric, 41–42

for binomial distribution, 42
isolated cluster, see isolation
isolation, 378

k-centers clustering
adaptive, 343
algorithm scheme for, 330
center adjustment for, 332
choice of k for, 343, 397
convergence of, 331
dissimilarity measures for, 329
initialization for, 331–332
instance assignment for, 331, 332
multiple runs of, 343
operation principle of, 328
prediction for, 332
stop criteria for, 331–332

k-means, 334
center adjustment for, 335
convergence of, 335
dissimilarity measures for, 335
dissimilarity minimization by, 338
with discrete attributes, 335
with the Euclidean dissimilarity,

336
k-medians, 338

dissimilarity measures for, 338
dissimilarity minimization by,

338
k-medoids, 340

center adjustment for, 340
dissimilarity measures for, 340
dissimilarity minimization by, 340
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kernel function, 483
Gaussian, see kernel function, radial
linear, 485
polynomial, 485
prediction using, 487
radial, 485
RBF, see kernel function, radial
sigmoid, 486

kernel matrix, 483
kernel trick, 482–483

advantages of, 484
for SVM, 489
for SVR, 492

knowledge, 3, 4
in inference, 4
representation of, 5

Kruskal–Wallis test, 60
p-value for, 61
statistic for, 60

labeling function, 12
Lagrange multiplier, 464
Laplace smoothing, see probability,

Laplace estimate of
least squares, 153, 248–249

for generalized linear
representation, 254

for linear threshold classification, 153
leave-one-out, 221–222, 305
likelihood

for classification, 147, 211
two-class, 211

linear classification
by boundary modeling, 138
by probability modeling, 138
logit

model representation for, 142,
253

parameter estimation
for, 147–149

vs. the naïve Bayes classifier,
127

prediction for, 136, 138
threshold

least squares for, see least
squares, for linear
threshold classification

model representation for, 139,
253

parameter estimation
for, 146–147

with discrete attributes, see
parametric classification,
with discrete attributes, 250

linear regression
model representation for, see linear

representation
prediction for, 240
with discrete attributes, see

parametric regression, with
discrete attributes

linear representation, 136, 240
advantages of, 251–252
enhanced, 241, 255, 454
generalized, 241, 252
logit, see linear classification, logit,

model representation for
piecewise, 257–258
piecewise-linear, 285
polynomial, 256
randomized, 255
threshold, see linear classification,

threshold, model
representation for

linear separability, 139, 152, 460, 461, 468
link function, 252

inverse, 252
linkage, 354, 356

average, 358
center, 359
choosing, 360
complete, 357
monotonicity of, 359, 361, 364
single, 357

LMS rule, see delta rule, linear
location, 25
log-loss, see loss function, logarithmic
logarithmic loss, see loss function,

logarithmic
logistic function, see logit, inverse
logistic regression, see linear classification,

logit
logit, 142

inverse, 142
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loglikelihood
for classification, 148, 212, 391

two-class, 212
for clustering, 390–392

loglikelihood ratio test, 53
p-value for, 53
statistic for, 53

loss function, 191, 296, 302
0–1, 191

absolute, 297, 302
asymmetric, 303
𝜖-insensitive, 303
exponential, 437
logarithmic, 148, 212
quadratic, 242, 298, 302

machine learning, xxiii, 3
MAE, see mean absolute error
Manhattan dissimilarity, see distance,

Manhattan
Mann-Whitney test, see

Mann-Whitney-Wilcoxon test
Mann–Whitney–Wilcoxon test, 58

p-value for, 60
statistic for, 59

margin hyperplane, 458
instance lying on, see classification

margin, instance lying on
instance lying outside, see

classification margin,
instance lying outside

instance lying within, see
classification margin,
instance lying within

maximum weighted spanning tree,
130

maximum-probability rule, 12, 142
mean, 25

m-estimated, see mean, m-estimate of
m-estimate of, 46, 276
weighted, 26

mean absolute error, 297
weighted, 301

mean misclassification cost, 165, 192,
193

mean square error, 242, 297
weighted, 301

median, 26
weighted, 27

median absolute deviation, 34
medoid, 339
m-estimation, 43, 276

of mean, see mean, m-estimate of
of probability, see probability,

m-estimate of
of variance, see variance, m-estimate

of
priors for, 47

miclassification error
for clustering, 393

minimum error pruning
for decision trees, 96–97
for regression trees, 276

minimum-cost rule, 169–170
two-class, 170–171

Minkowski dissimilarity, see distance,
Minkowski

misclassification costs, 192
expected, 170
experimental procedure for,

180
function, 164
incorporation of, see cost-sensitive

classification
instance-specific, 163, 165, 170
matrix, 161, 192
objective, 161
per-class, see misclassification costs,

vector
per-instance, see misclassification

costs, instance-specific
subjective, 161
vector, 162, 165, 192

misclassification error, 12, 191, 196
weighted, 164, 192

missing value handling
by imputation, see imputation
for decision trees, 106

using fractional instances, see
fractional instances, for
decision trees

using surrogate splits, see
surrogate splits, for
decision trees
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for dissimilarity measures, 324
for regression trees, 279

using fractional instances, see
fractional instances, for
regression trees

using surrogate splits, see
surrogate splits, for
regression trees

for similarity measures, see missing
value handling, for
dissimilarity measures

for the naïve Bayes
classifier, 128–129

modal value, see mode
mode, 36
model, xxi, xxii, 7

weighted, 37
model aggregation, 420

by averaging, 420–421
weighted, 424–425

by probability averaging, 422–423
by using as attributes, 427–428
by voting, 420–421

weighted, 424–425
model ensemble, see ensemble modeling
model evaluation

bias of, 214, 303
bias vs. variance, 214, 228, 307
final, 190, 215
for temporal data, 230–231
intermediate, 190, 215
intermediate vs. final, 214
procedure for, see evaluation

procedure
variance of, 214, 304

model parameter vector, 137, 239, 240, 455
canonical form of, 461
for SVM, 465
for SVR, 476
vector of, see model parameter vector

model parameters, 136, 239
estimation of, see parameter

estimation
vector of, see model parameter vector

model selection, 191
model tree, 285

growing of, see model tree growing

linear models for, 285
attribute preselection for, 285

prediction for, 290–291
with smoothing, 290

pruning of, see model tree pruning
split selection for, 286–287
stop criteria for, 286
target function dispersion for, 286

model tree growing, 285
model tree pruning, 289–290
modeling algorithm, 8

randomization of, see algorithm
randomization

stable, 407
unstable, 406, 431
weight-sensitive, 8

modeling procedure, 214, 303
MSE, see mean square error
multiclass decomposition, see multiclass

encoding
multiclass encoding, 439, 511

1-of-k, 514
as ensemble modeling, 512
binary models for, 511
codeword for, 511
decoding function for, 511
encoding function for, 511

inverse, 511
error-correcting, 515–518

multiconcept, see concept, multiclass
mutual information, 54

conditional, 130
vs. conditional entropy, 54
vs. loglikelihood ratio, 54

m-variance, see variance, m-estimate of

naïve Bayes classifier
as a linear classifier, 127
as a parametric model, 136
augmented, 130
conditional attribute value probability

for,
122

conditional joint probability for, 122
independence assumption for, 122
logarithmic form of, 126, 127
model representation for, 123
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naïve Bayes classifier (continued)
naïvety of, see naïve Bayes classifier,

independence assumption
for

not-so-naïve, 129
prediction for, 124
prior class probability for, 121
small probabilities for, 126
tree-augmented, 130
with continuous attributes, 127–128
with missing values, see missing

value handling, for the naïve
Bayes classifier

zero probabilities for, 125
nonlinear regression, see nonlinear

representation
nonlinear representation, 241
nonparametric representation, 136, 239
normalization, 505

as a modeling transformation, 505
for dissimilarity calculation, 321
for k-centers clustering, 329

observation, xxiii
Ockham’s razor 9

for regression trees, 268, 277
for decision trees, 81, 82, 90

OLS, see least squares
OOB, see out-of-bag
operating point, 12, 200, 201

default, 12, 204
interpolation of, 206
shifting of, 205

order statistic, 29
ordinary least squares, see least squares
out-of-bag, 224, 306, 445
outlier, 35, 63
overfitting, 8

for classification, 13
for clustering, 374
for gradient boosting, 440
for model evaluation, see evaluation

overfitting
for regression, 15
for regression trees, 268, 285
resistance to

for AdaBoost, 437

for bagging, 431
for random forest, 443
for SVM, 460, 470
for SVR, 474
for the naïve Bayes

classifier, 131
oversearching, 9

PAM, see partitioning around medoids
parameter estimation, 145, 242

by gradient descent, see gradient
descent

by least squares, see least squares
delta rule for, see delta rule
for linear threshold classification, see

linear classification,
threshold, parameter
estimation

for linear threshold logit, see linear
classification, logit,
parameter estimation

for SVM, see classification margin,
maximization of

for SVR, see regression flatness,
maximization of

parametric classification, 137
logit, 142
threshold, 139
with discrete attributes, 154

parametric regression
model representation for, see

parametric representation
prediction for, 239

parametric representation, 136, 239
partitioning around medoids, 341
perceptron, 147
performance, see predictive performance
pessimistic pruning

for decision trees, 95–96
piecewise-constant regression, 262
piecewise-linear regression, see linear

representation, piecewise
polynomial regression, see linear

representation, polynomial
population, xxiii
precision, 196, 197
prediction, xxii, 7
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for decision trees, see decision tree,
prediction for

for ensemble modeling, see model
aggregation

for hierarchical clustering, see
hierarchical clustering,
prediction for

for k-centers clustering, see k-centers
clustering, prediction for

for linear classification, see linear
classification, prediction for

for linear regression, see linear
regression, prediction for

for parametric regression, see
parametric regression,
prediction for

for regression trees, see regression
tree, prediction for

for SVM, see SVM, prediction for
for SVR, see SVR, prediction for
for the naïve Bayes classifier, see

naïve Bayes classifier,
prediction for

of class probabilities, 171
predictive performance, 7, 189, 295

dataset, 189, 295
evaluation of, see model evaluation
for classification, 12

measures of, see classification
performance measures

for clustering, 18
measures of, see clustering

quality measures
for regression, 15

measures of, see regression
performance measures

training, 7, 189, 295, 374
true, 7, 189, 295

probability, 37
conditional, 37
Laplace estimate of, 45, 96, 126
m-estimated, see probability,

m-estimate of
m-estimate of, 44, 95, 96, 125
weighted, 38

pure-class discretization, see discretization,
pure-class

quadratic loss, see loss function, quadratic
quadratic programming, 461, 464, 475, 476
quantile, 29

R type 3, 30
R type 7, 30
R type 8, 30
R type 9, 30

quartile, 30
quartile dispersion coefficient, 35

R package
cluster, 350, 362, 374–376, 640
datasets, 350
datasets, 329
digest, 576
e1071, 159, 403, 447, 498, 524
ipred, 159, 175
kernlab, 455, 461
lattice, 72, 135, 455
Matrix, 461
mlbench, 135, 159, 190, 237, 296,

350, 403, 498, 524, 558
quadprog, 455, 461
randomForest, 584, 605, 631, 640
rpart, 90, 100, 114, 159, 190, 261,

263, 296, 329, 344, 403,
498, 524, 558, 593, 605,
631, 640

rpart.plot, 72, 329, 344, 605,
631, 640

stats, 23, 355, 362, 403
R-squared, see coefficient of determination
R2, see coefficient of determination
RAE, see relative absolute error
Rand index, 394–395
random forest, 443

attribute utility estimation by, 446
base models for, 443
for attribute selection, 584
instance proximity by, 445–446
model agggregation for, 443
out-of-bag evaluation for, 445

random naïve Bayes, 446–447
base models for, 447
model aggregation for, 447

rank, 28
competition, 28
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rank (continued)
dense, 28
fractional, 28
ordinal, 28, 29

ranking, see rank
recall, 196
receiver operating characteristic, see ROC
reduced error pruning

for decision trees, 92–93
for regression trees, 275–276

regression algorithm, 16
regression flatness, 474

maximization of, 474
dual form of, 475–477
primal form of, 475

regression model, 15
regression performance, see predictive

performance, for regression
regression performance measures, 296
regression task, xxii, 14
regression tree

as a nonparametric model, 239
as a regression model, 262
branch of, 262
growing of, see regression tree

growing
leaf of, 262
node of, 262

closed, 264
open, 264

prediction for, 277
with fractional instances, see

fractional instances,
regression tree
prediction with

pruning of, see regression tree pruning
randomized, 412
split application for, 271

with fractional instances, see
fractional instances,
split application with,
for regression trees

split evaluation for, 269
with fractional instances, see

fractional instances,
split evaluation with,
for regression trees

split for, 262
stop criteria for, 267–268
structure of, 262
target function dispersion for, 265,

269
target function location for, 265, 266
target function statistics for, 265–266
target value assignment for, 266
test for, see regression tree, split for
top-down induction of, 263
with weighted instances, 278

regression tree growing, 263–264
with fractional instances, see

fractional instances,
regression tree growing with

regression tree pruning, 274
control strategy for, 275, 277
cost-complexity, see cost-complexity

pruning, for regression trees
criterion for, 275
minimum error, see minimum error

pruning, for regression trees
operators for, 275
reduced error, see reduced error

pruning, for regression trees
regression tube, 474

instance lying on, 474
instance lying outside, 474
instance lying within, 474

relative absolute error, 299
weighted, 301

relative square error, 277, 300
relative standard deviation, 34
RELIEF, 577

algorithm scheme for, 577–578
attribute utility estimation by, 578
dissimilarity measure for, 578
with missing values, 580–581
multiclass, 581
with multiclass encoding, 581
for regression, 582–583

representation function, 136, 239
inner, 137, 252
linear, 137
outer, 137

residual, 296, 297, 299
RMSE, see root mean square error
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ROC
analysis, 200

weighted, 209
curve, 201

area under, 209
for a random model, 202

plane, 200
point, 201

root mean square error, 299
weighted, 301

RSE, see relative square error
rule set

decision tree converted to, see
decision tree, conversion to
rules of

pruning of, see rule set pruning
rule set pruning, 101

by condition removal, 101
by rule removal, 101

SAMME, 439
sample, xxiii
scoring function, 12, 201
search, 562

cost function for, 562
evaluation function for, 562
final state for, 562
for attribute selection, see attribute

selection search
initial state for, 562
operator for, 562
state space for, 562

search strategy, 562
blind, 562
heuristic, 562
informed, see search strategy,

heuristic
uninformed, see search strategy, blind

sensitivity, 196
separaring hyperplane

maximum-margin, 460
separating hyperplane, 139, 152

distance to, 152, 457
minimization of, 152
signed, 152

separation, 377
significance test, 48

false negative for, 49
false positive for, 49
hypothesis for, 48

alternative, 48
null, 48

multiple, 62
nonparametric, 58
parametric, 58
p-value for, 49
significance level for, 49
statistic for, 48
type I error for, see significance test,

false positive for
type II error for, see significance test,

false negative for
unsatisfied assumptions of, 61
vs. relationship strength, 49

silhouette plot, 380
silhouette width, 379

average, 389
for a cluster, 380
for an instance, 379

similarity measure
correlation-based, 314, 322

linear, 322
Pearson’s, see similarity

measure,
correlation-based,
linear

rank, 323
Spearman’s, see similarity

measure,
correlation-based, rank

with discrete attributes, 322
cosine, 323
Gower, see Gower’s coefficient

simple statistical filter, 568–569
relationship measure for, 568

with mixed attributes
types, 568–569

single linkage, see linkage, single
slack variable, 468
specificity, 196, 197
spread, see dispersion
stacking, 433

base models for, 433
model aggregation for, 433
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standard deviation, 33
standardization, 504

as a modeling transformation,
504

for dissimilarity calculation,
321

for k-centers clustering, 329
statistical hypothesis, see significance test,

hypothesis
statistics, xxiii
step-size, 146, 243, 245

for gradient boosting, 440
support vector

for SVM, 461, 465
soft-margin, 469

for SVR, 476
support vector machines, see SVM
support vector regression, see SVR
surrogate splits, 106, 279

for decision trees, 113–114
for regression trees, 284

SVM, 460
cost parameter for, 469
dual form of, see classification

margin, maximization of,
dual form

hard-margin, 468
kernel-based, see kernel trick, for

SVM
prediction for, 466, 482
primal form of, see classification

margin, maximization of,
primal form of

soft-margin, see classification margin,
maximization of, soft

SVR, 473
cost parameter for, 476
dual form of, see regression flatness,

maximization of, dual form
of

kernel-based, see kernel trick, for
SVR

prediction for, 477, 483

primal form of, see regression
flatness, maximization of,
primal form of

symmetric uncertainty, 55

TAN, see naïve Bayes classifier,
tree-augmented

target attribute, xxii, 6
for attribute transformation, 500
for classification, see concept
for discretization, 526
for regression, see target function

target function, 14
target label, see target value
target value, 14
test set, 190, 213, 303
tile coding, 255
top-down discretization, see discretization,

top-down
total probability law, 119, 121
training information, 3, 5
training set, 6–7

for attribute transformation, 500
for attribute selection, 560
in a broad sense, 7
for classification, 10
for clustering, 17
for discretization, 527
generalized, 216
for regression, 14
in a narrow sense, 7

transformation model, 501
tree-augmented naïve Bayes classifier, see

naïve Bayes classifier,
tree-augmented

true negative, 196
true positive, 196

rate, 196, 197
t-test, 56

p-value for, 56
statistic for, 56

type I error, see false positive
type II error, see false negative
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unbalanced classes, see class imbalance
unit step function, 139

validation set, 190, 213, 215, 303
variable, xxiii
variance, 31

m-estimated, see variance, m-estimate
of

m-estimate of, 46, 276
pooled, 56

unbiased estimator of, 31
weighted, 32

Ward linkage, see linkage, Ward
weak learner, 434
weighted instances, see instance weighting
Welch’s test, 56
Widrow-Hoff rule, see delta rule, linear
Wilcoxon test, see

Mann-Whitney-Wilcoxon test
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