

Practical Game Design
with Unity and Playmaker

Leverage the power of Unity 3D and Playmaker
to develop a game from scratch

Sergey Mohov

BIRMINGHAM - MUMBAI

Practical Game Design with Unity and Playmaker

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2013

Production Reference: 1131213

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-810-8

www.packtpub.com

Cover Image by Asif Khan (asifmuradkhan@gmail.com)

Credits

Author
Sergey Mohov

Reviewers
Sangram Dange

Philip 'MrPhil' Ludington

Pedro Machado Santa

Callan Winfield

Acquisition Editors
Meeta Rajani

Vinay Argekar

Lead Technical Editor
Ruchita Bhansali

Technical Editors
Tanvi Bhatt

Shiny Poojary

Faisal Siddiqui

Project Coordinator
Jomin Varghese

Proofreader
Lawrence A. Herman

Indexer
Tejal Soni

Graphics
Yuvraj Mannari

Production Coordinator
Saiprasad Kadam

Cover Work
Saiprasad Kadam

About the Author

Sergey Mohov is a game developer and designer with over three years of
experience in working on games in Unity. His prominent projects include Dédale,
Paradis Perdus, and Lune. The rest of Sergey's games can be found on his website
at http://sergeymohov.com along with his personal blog.

I would like to thank everyone in the Unity community who helped
me get from nothing to something. Special thanks to Mike Renwick
who leaves no question unanswered. Many thanks to my friends
and family for your continuing support. Thanks to Gwen, because
everyone needs to get distracted every now and then.

I can't go without thanking the staff at Packt Publishing for suggesting
that I write this book and for their guidance throughout the process.

About the Reviewers

Philip 'MrPhil' Ludington grew up on the Gulf Coast of Mississippi, in the small
city of Pascagoula, enthralled with computers and video games. He first learned
to program as a young boy reading the BASIC manual that came with the family's
first computer, a TI-99/4A. Working his way through college driving 40 ft. buses, he
earned a Bachelor of Science degree from the University of Maryland at College Park.
After more than 15 years as a programmer, he has worked at some recognizable
companies including AT&T and SAP, in a range of industries from government
contracting to education and casino gaming. In his spare time, Philip enjoys alpine
skiing, playing board games with friends, and making video games for his website,
www.MrPhilGames.com. Philip is currently working on a game about building
railroads called Iron Roads.

Pedro Machado Santa is a 29-year-old Portuguese digital crafter and relentless
hacker who has a software engineer title in his diploma. He holds a Masters degree
in Informatics Engineering from the University of Coimbra and was an R&D
research grant holder in 2011 at Instituto Pedro Nunes working in the fields of design
science research, augmented reality, interaction design, and game authoring tools.

He previously worked as a mobile game designer and developer at HumanSpot
(http://www.humanspot.com), a small technology and media services company
based in Coimbra, Portugal. Currently he is based in the United Arab Emirates
working at Sports Stars Media (SSM, http://www.sportsstarsmedia.com) where
he participated as game designer and Unity3D developer on the official mobile
soccer game and augmented reality app for the Mourinho and The Special Ones
franchise. He continues to perform both as a web and mobile developer for other
present and future SSM projects.

I can't go without thanking Paula for her relentless support and
encouragement in all my projects, to my Sports Stars Media
teammates Joel and José for the exciting and sincere enthusiasm
they always showed during our lengthy discussions about the best
Unity3D solutions and strategies, to Sergey for heartily attending
to all my comments, and to all the nice staff at Packt Publishing,
especially to Jomin and Aurita for the invitation to review this book.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface	 1
Chapter 1: Getting Started with Unity and Playmaker	 7

Downloading and installing Unity	 7
Buying and importing Playmaker	 11
Setting up your project	 13
Summary	 17

Chapter 2: Unity's and Playmaker's User Interface	 19
Interface overview and main menu	 19

Hierarchy panel	 23
Inspector panel	 25
Project panel	 28
Views	 29

Playmaker interface	 32
Summary	 34

Chapter 3: Components and State Machines	 35
Game objects, components, and properties	 35
Working with prefabs	 39
Finite state machines, states, and actions	 43
Interaction between game objects	 47
Summary	 50

Chapter 4: Creating Your First Game	 51
Using Vector geometry and physics	 51
Win or lose conditions	 55
Creating artificial intelligence	 60
Exercises	 67
Summary	 69

Table of Contents

[ii]

Chapter 5: Scripting and Custom Actions	 71
Writing a Unity Script	 71
Overview of standard Unity classes	 75
Creating a Playmaker action	 77
Summary	 82

Chapter 6: Networking and Multiplayer	 83
Understanding networking and multiplayer	 83
Setting up Photon Unity Networking	 86
Making multiplayer	 88
Summary	 96

Chapter 7: Working with External APIs	 97
About external application programming interfaces	 97
Uploading your game to Kongregate	 98
Writing Kongregate API code	 99
Summary	 104

Index	 105

Preface
Historically, game design has been a broad term. It is still often associated uniquely
with creating the rules of a game, establishing a system, defining what the game will
be in broad brushstrokes and then creating particular gameplay scenarios or levels.
Sometimes, we go a little farther and endow game designers with the power to
define how the game's universe and aesthetics will work. Broad as this definition
might seem, it remains very limited in one area, and that is technology.

As the game industry moves toward its maturation, many small studios begin
to emerge, often teams of one, two, or three individuals, attributing their success
to the new generation of tools now available to game developers. While the larger
game companies employing hundreds of developers have mostly been able to
stand their ground, in this new landscape, the focus has already shifted toward
polyvalence and self-sufficiency.

Game designers have always wanted more control over the games that they make,
and, for the first time in history, there is no reason why they should not reach out
and take it. Knowing how your game works on the inside means having more
control and creative freedom. It also means more effective communication with
other members of the team, provided there are any. It empowers you to go ahead
and simply make the game on your own, be it a mere prototype, a game jam project,
or a full commercial release.

Unity 3D is a game authoring tool that has changed the way we think about
game development forever, making it much cheaper and more democratic.
It allows anyone willing to invest their time into it to craft amazing game worlds
and experiences for next to nothing. It has been one of the major forces driving
this incredible change, with millions of new developers joining the game industry
simply because they can now. The industry becomes more open every day, which
enriches the pool of ideas that people bring to it from different backgrounds.

Preface

[2]

This book is an introduction to practical game design using Unity and Playmaker
by Hutong Games. The latter lets anyone make a game without writing any
programming code, while not giving up any of the power that Unity has to offer.
Knowing the basics of programming is still valuable while working on the technical
side of a game, but going deep into it is no longer an imperative, which means that
creating a game is now easier than it has ever been before.

Even if you know how to code, learning how to use Playmaker in Unity may help
you see the synergy between your game's mechanics and technology more clearly,
making the development of your project more about finding the right design and
less about working around the computer code.

There can be no doubt about the bright future of the practical aspect of game design,
and this book offers you to become part of this future.

What this book covers
Chapter 1, Getting Started with Unity and Playmaker, gives us information about
installing Unity, buying and installing Playmaker, creating and setting up
the project, and making some adjustments to the interface layout.

Chapter 2, Unity's and Playmaker's User Interface, gives an introduction to the essential
interface elements of Unity and Playmaker: menus, panels, and views.

Chapter 3, Components and State Machines, gives details about the project structure in
Unity with and without Playmaker and introduces the component-based approach
to game development.

Chapter 4, Creating Your First Game, gives information about applying and expanding
your Unity and Playmaker skills learned in previous chapters to create real
game mechanics.

Chapter 5, Scripting and Custom Actions, gives an introduction to Unity scripting
in JavaScript and C#, making a custom Playmaker action.

Chapter 6, Networking and Multiplayer, gives details about adding multiplayer
to your game using the plugin called Photon Cloud.

Chapter 7, Working with External APIs, gives information on working with external
APIs, making your game available online on Kongregate, and integrating its
online leaderboard.

Preface

[3]

What you need for this book
You need Windows XP SP2 or later, Windows 7 SP1, or Mac OS X "Snow Leopard"
10.6 or later. Your graphics card must support DirectX 9 with 2.0 shader model.

Playmaker is a paid plugin, so you need to either buy it before beginning to use
the book or get it at the Asset Store as explained in Chapter 1, Getting Started with
Unity and Playmaker.

While not a requirement for the first four chapters, you must have an internet
connection in order to be able to integrate multiplayer and external APIs.

Who this book is for
This book is for both new and experienced game designers willing to have
more control over the technical side of their games. It is also for people who
want a quick comprehensive guide to Unity and Playmaker that allows learning
these tools from scratch.

You need to be comfortable enough using your operating system and standard
software for it in order to be equally comfortable using Unity. While knowing
the basics of programming (such as functions, variables, and values) is important
to follow all of the steps in this book (specifically Chapter 5, Scripting and Custom
Actions), this book provides links to free online resources that will help you learn
these concepts quickly and efficiently.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "You already have the unitypackage
file with it on your hard drive."

Preface

[4]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Just
click the blue Download button ."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message. If there is a topic that
you have expertise in and you are interested in either writing or contributing to
a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across
all media. At Packt, we take the protection of our copyright and licenses
very seriously. If you come across any illegal copies of our works, in any form,
on the Internet, please provide us with the location address or website name
immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

Getting Started with
Unity and Playmaker

In this chapter, we are going to go through the process of getting the project ready
to work with this book. We will cover the following subjects:

•	 Downloading, installing, and setting up Unity
•	 Buying and installing Playmaker using the Asset Store
•	 Creating a new project and changing project settings

If you are familiar with the process of downloading and installing Unity and
plugins for it, you can move to the section of this chapter called Setting up your
project. It shows the layout of Unity and project settings that are going to be
used for examples in this book.

Downloading and installing Unity
Unity is available for both Mac OS X and Windows PC, and the process of
installation for these platforms is very similar. This book is going to use the Mac
version of Unity, but I will provide you with alternative directions and hotkeys
when they are different in the Windows version. Luckily, everything is, in fact, quite
similar, and you should not have any problems switching between the two platforms
if you choose to do so.

First things first, let us head over to http://unity3d.com/unity/download/ and
download the latest version of Unity available (as of writing this book the version is
4.3). Just click the blue Download button, and the file should start being downloaded
to your hard drive. The file in question will be a DMG file for Mac users or an
installer EXE for Windows users. Save it wherever you want on your hard drive.

Getting Started with Unity and Playmaker

[8]

If you are on a Mac, double-clicking the DMG file will reveal the PKG file, which is
the installer. Double-clicking Unity.pkg will produce essentially the same result as
double-clicking Unity.exe in Windows—it will prompt the installation wizard. You
are not given any Unity-specific options except for the location where you want to
install the engine.

You can install multiple versions of Unity on the same computer. To do
this, you just have to change the name of the folder in which Unity is
being installed and put the new installation into a different folder. You
might want to do this if you want to have different versions installed at
the same time, either because of license restrictions or because of some
version-specific features that you want to access. Keep in mind that if
you update a project to a newer version of Unity, you cannot go back
to an older one.

The following screenshot shows the installation window of Unity. In this stage of the
wizard you can specify the directory where Unity will be installed or change some
installation parameters. In most cases you will want to install Unity with the default
parameters. If that is the case, simply click on Install and skip the next step.

If you want to change the install location, click on Change Install Location.... The
Customize button lets you include or exclude specific packages, such as the main
Unity installation, example project, and Unity Web Player. Leave all of the boxes
checked for this installation. We will talk about packages later in the book.

Chapter 1

[9]

Clicking on Install will lead to installation of Unity on your hard drive. Once
installation is done, you can go to the folder where you installed it (by default,
Applications/Unity on Mac or C:\\Program Files\Unity in Windows)
and launch it.

If you are launching Unity for the first time, a window will pop up asking you to
select your type of license and enter your Unity account login and password. Do
create an account if you do not have one and enter the details. Later you will need
it for things like forum access and Unity answers—both very helpful when you are
looking for solutions to Unity-related problems. In this book we are going to be using
the free version of Unity, since none of the examples here will require any pro-license
features. So select Activate the free version of Unity and click on OK.

The first time you open Unity, a default project will likely be loaded. These test
projects included with the installation (and available through Unity's website)
will be quite helpful later on when you want to find out how to do some specific
thing (for example, mini-map or water physics), but do not know where to start.

Getting Started with Unity and Playmaker

[10]

For now, though, we want a new empty project. Once Unity is loaded, go to the File
menu in the main menu on the top-left corner of the screen and select New Project….

This will prompt the Project Wizard window, in which you can choose where
you want your future project to be located, as well as how it will be called. In
Unity, a project is a folder, so the name that you give to your project folder will
automatically be assigned to the project. For the examples in this book, you will
not need any packages at this point, so leave all the checkboxes empty, unless you
already have Playmaker downloaded, in which case check Playmaker. When you
are ready, click on Create Project.

If you want to always start from the Project Wizard (which is highly
recommended if you are planning to have multiple projects), go
to Unity | Preferences and check Always Show Project Wizard,
then close the Preferences window. For Windows users it is File |
Preferences instead.

Since we are not loading any heavy asset packages, the project will load really
quickly, and you should see the main Unity interface again, except this time
everything will be empty.

Chapter 1

[11]

Buying and importing Playmaker
Before we change anything in the layout of our project, there is one missing
component that we have to import, which is Playmaker by Hutong Games
(http://www.hutonggames.com/)—the main tool (apart from Unity itself) that
we are going to be using in most of the exercises in this book. To get Playmaker,
we are going to use the Asset Store. The latter is an online market place valuable
for any Unity developer, allowing us to save a lot of time by importing useful
plugins and asset packs made by other users into our own projects. Some of the
assets available through the Asset Store are free, but most of them, like Playmaker,
are user-made and cost money. You too can make your tools and assets available
through the Asset Store. Think of it as a developer-targeted analogue of the iTunes
Store or Amazon.

Although you can access and search the Asset Store through a web page
(http://unity3d.com/asset-store/), it is integrated directly into the
engine in its most practical form. To access the Asset Store directly from Unity,
go to the Window submenu in the main menu and select Asset Store from the
list. This will open the Asset Store window in Unity (you need to be connected
to the Internet to see the content of the store).

Getting Started with Unity and Playmaker

[12]

In the top-right corner of the Asset Store window, there is a search box. Type
Playmaker in there and press return (Enter) on your keyboard. When the search
results are displayed, click on the first one in the top-left corner of Search Results,
simply called Playmaker, as shown in the following screenshot:

The Asset Store window will now display the description of Playmaker, user
comments, some screenshots, its price, and the Buy button. Click on this button,
enter your credit card or PayPal details, and complete the purchase as you would
do with any other online store or service. After that Unity will offer to import the
package. Click on the Import button and when Playmaker is downloaded, in the
import window, leaving all the boxes checked, click on Import again. This will
add the Playmaker files to your new Unity project.

Another way of installing Playmaker (or any other plugin for that
matter) is going to Assets | Import Package | Custom Package...,
provided that you already have the unitypackage file with it
on your hard drive.

Playmaker also automatically imports some other popular Unity plugins it
depends on: iTween for movement and animation and Photon for networking and
multiplayer. We will talk about Photon later in Chapter 6, Networking and Multiplayer.

Chapter 1

[13]

Setting up your project
There is an important thing that you have to know about Unity: you can customize
it in many different ways and even expand its interface with your own custom
windows and panels. We are not going to discuss this just yet, as the user interface
is examined in more detail in Chapter 2, Unity's and Playmaker's User Interface, but
you should know that there is nothing to be surprised about if the user interface
changes when you install a new extension, such as Playmaker. You can also drag
different tabs around and see which layout fits your screen size/configuration and
project best. Now we are going to set up the interface in a way that will simplify
the explanations in the next couple of chapters. Once you are comfortable with the
interface, you can feel free to customize it however you want.

If you haven't dragged anything around, you should be seeing the default Unity
layout. If you have, go to Window | Layouts in the main menu and click on Default
in order to reset to the default window layout. You will see a tab called Hierarchy
on the left, Scene and Game in the middle, Inspector on the right, and Project and
Console on the bottom. We will talk more about these tabs and their functions in
Chapter 2, Unity's and Playmaker's User Interface. Right now, in order to save screen
space, we will drag some of them around and change their appearance.

Getting Started with Unity and Playmaker

[14]

The following screenshot shows the default interface layout in Unity.

Let us start with the Project tab that you can see on the bottom of the screen. If it is
not highlighted, click on the word Project. Right now both Project and Console tabs
are pinned to the bottom of the screen, so you can switch between them in order to
select one or the other. Unfortunately, this layout is not ideal, as in most cases you
will need direct access to both Project and Console tabs at the same time. Click and
drag the Project tab to the right of the Scene and Game tabs, until it snaps into place
next to the Inspector tab. It will become tall and narrow.

Unfortunately, now there's very little space in the Project panel with those large
icons. Luckily, Unity allows us to solve this problem easily by clicking on the
small options icon () in the top-right corner of the Project panel and selecting
One Column Layout from the list.

Now your Project panel will need much less space, and you will be able to see all
of your project's file structure without getting frustrated over icons and sub-panels
getting in your way.

It is important to note here that some developers do prefer the
Two Column Layout for its Favorites section and file manager-
like subfolder representation; however, you will most likely want
to have as much free work space as you can get, especially when
working with plugins like Playmaker that add additional tabs that
you need to have constant access to. You should consider the Two
Column Layout only if you have a relatively big screen.

Chapter 1

[15]

Now that the Project panel is set up and in place, let us free some more space for the
Hierarchy panel by moving the Console panel under Scene and Game. To do this,
click and drag the Console tab as you did with the Project tab, and move it to the
bottom of the Scene and Game panels until it snaps into place directly under them.

The following screenshot shows what your editor window should look like if you
followed all of the instructions in this chapter correctly.

Getting Started with Unity and Playmaker

[16]

Finally, your work space is all set! Now it is time to change the project settings. It is
a good idea to do this before you start working in order to get this out of the way, so
let us get to it. We will not go into much detail about why certain project settings are
set in a certain way, and most of them are quite self-explanatory.

First, select Edit | Project Settings | Player from the main menu. A new menu
should appear in the Inspector panel on the right. You can put your name or the
name of your company in the Company Name field near the top of the menu, and
Product Name (just below it) by default should be the same as the name of your
project folder that you specified while creating the project. Changing the project
name will not rename your project folder. In fact, everything you change in the
Player settings only affects the output game or application. We are going to be
building a Unity WebPlayer project for this book's examples, so click on the tab
with a little planet icon ().

There are only two things here that we are interested in right now: screen resolution
and WebPlayer template. Make sure that the Default Screen Width and Height are
set to 960 and 600, respectively, and the active template is No Context Menu. There
are more options here, but we are going to leave them at their default values for now.

Next, we will change the build settings to match our target platform. Go to
File | Build Settings… and select WebPlayer from the list of available platforms
(it should be the topmost item on the list). Then click on the Switch Platform button
(as shown in the following screenshot). This will allow you to test the game directly
with the output resolution. Once Unity finishes reimporting files, you can close the
Build Settings window.

Chapter 1

[17]

Summary
In this chapter you learned how to download and install Unity, purchase and install
plugins for it from the Asset Store, prepare your project for work, optimize your
workspace, and select the output platform. In the next chapter, we will look at
Unity's interface in more detail. In particular, we will examine various panels and
views (for example, Inspector, Hierarchy, Game, Scene) that you have encountered
in this chapter and start using them.

Unity's and Playmaker's
User Interface

In the previous chapter, we looked at the process of downloading and installing
Unity, Playmaker, and setting up the project for work with this book. You have
learned how to move the panels around within the Unity window in order to
organize your workflow and how to change some of the project settings.

In this chapter, we will take a closer look at each Unity panel and interface element
you have encountered so far, as well as some of those you have not seen, including
the Playmaker's Actions panel and the Finite State Machine (FSM) view. You will
also learn how to create simple game objects and modify their properties, such as
position, location, and scale.

Interface overview and main menu
Unity's interface is modular: this means that you can drag its elements around,
attach them to different parts of the Editor window or even detach them completely
and put them on another screen for convenience. Editor is everything you see when
you open Unity: panels, views, controls, and so on. Editor is how Unity itself is called
within Unity. Let us take a look at the main interface elements.

Unity's and Playmaker's User Interface

[20]

There is the main menu on the top of the screen. Yours should include File, Edit,
Assets, GameObject, Component, PlayMaker, Window, and Help submenus.
They will help you create game objects (for example, primitives, lights, and cameras),
attach components, and open new panels and views. The submenus can be explained
as follows:

Submenus Description
File This submenu contains all the commands about building, saving, and

opening projects and scenes. There are three commands here that you
will use quite often, so it is a good idea to remember hotkeys for them:
command + S (Ctrl + S in Windows) to save the current scene, command
+ N (Ctrl + N in Windows) to create a new scene, and command + Shift
+ B (Ctrl + Shift + B in Windows) to open the Build Settings window.

Edit This submenu lets you perform various operations on files and
game objects, such as copying (command + C or Ctrl + C in Windows),
pasting (command + V or Ctrl + V in Windows), duplicating (command
+ D or Ctrl + D in Windows), and deleting (command +Delete or just
Delete in Windows). There are also undo (command + Z or Ctrl + Z
in Windows) and redo (command + Shift + Z or Ctrl + Shift + Z in
Windows) commands under it. These are all standard commands that
are the same across your operating system, so you should just assume
that they work the same as they do in Finder (Windows Explorer) or
TextEdit (Windows Notepad).

Assets This submenu lets you create, import, and export files, also known
as assets using the game development term. These can be scripts,
animations, shaders, materials, and so on. The list of assets that are
currently in your project can be seen in the Project panel. You will
use commands available through this submenu later on in this chapter.

GameObject This submenu lets you create new game objects. Not unlike the way
the Assets submenu is linked to the Project panel, the GameObject
submenu is linked to the Hierarchy panel. You will learn more about
different types of game objects later when we talk about the panels
and views in Unity. For now just remember that you can create a new
empty game object by pressing command + Shift + N (Ctrl + Shift + N
in Windows). This is something you will be doing a lot while working
in Unity.

Component This submenu lets you add new components to your game objects. This
is very important, because an empty game object does not do anything,
and it is invisible. By adding components to it, you can change its
appearance and behavior. We will talk about components in more
detail in the next chapter.

Chapter 2

[21]

Submenus Description
PlayMaker This submenu is not a default Unity submenu; it was added to the

main menu by the Playmaker plugin that you imported from the Asset
Store. This Playmaker-dedicated submenu lets you access Playmaker
components and panels, such as the FSM view and its panel that allow
you to choose new actions and transitions for your objects. We will
look at Playmaker later on in this and the following chapters.

Window This submenu lets you open new panels and views, such as Asset
Store, Hierarchy, and Scene. This submenu is useful if you have lost
or accidentally closed one of your panels or views and want to find
or open it again. It doesn't allow you to open multiple instances of the
same interface elements, so you will always find the existing panel if
it is open already.

Help This submenu allows you to access useful Unity reference resources,
such as Unity Manual, Reference Material, and Scripting Reference.
There are copies of these available on the web, but it is always a good
idea to use the ones provided with your installation: this way you are
making sure that the documentation you are using is consistent with
your version of Unity, plus the local copy of the documentation always
works faster. The Help submenu also provides shortcuts to Unity's
community sites, such as forum, answers, and feedback, and lets you
report bugs and check for updates.

Now, below the main menu is the toolbar that includes (left to right) main controls
for the Scene view, game execution controls, and drop-down boxes of layer filter and
layout selection.

Under the toolbar you will see the panel and the view tabs. We will look at
them closer later in this chapter, but for now you just need to know that there
is a distinction between views that include Scene and Game and panels that
include Hierarchy, Console, Project, and Inspector. Panels and views can all be
manipulated, resized, detached, and attached in the same way, but the difference
between them is that views (as the name suggests) let you see your game scene in
one way or another, while panels provide additional information and tools for game
objects, the scene, or the project as a whole.

Unity's and Playmaker's User Interface

[22]

Keep in mind that the distinction between views and panels
is merely a helpful convention and by no means limits the
functionality of a tab. This is especially true of custom tabs
added by various plugins or, indeed, by yourself. In this book
this distinction is made for convenience.

The following figure shows what your Editor window is supposed to look like if
you haven't moved any tabs around since Chapter 1, Getting Started with Unity and
Playmaker. We will be referring to this layout throughout this chapter, so if your
layout differs, I suggest you change it to match the image. You can always go
back to it later.

On the very bottom of the Unity Editor window there is a long empty gray line. This
is the status bar: it shows the last thing displayed in the Console panel, and clicking
on it reveals the Console, highlighting the last log message in it. The status bar, the
main menu, and the toolbar are all permanent interface elements in Unity and,
unlike the tabs, cannot be closed, detached, or resized without manipulating
the Editor window itself.

Chapter 2

[23]

Hierarchy panel
A panel in Unity is a tab that provides information about or gives you additional
control over a game object, a scene, or the project as a whole. Panels can be added,
closed, detached, and attached at will. You can drag them around as you see fit
in order to optimize your workflow. If you followed the instructions in Chapter 1,
Getting Started with Unity and Playmaker, your current layout should match that of
the last screenshot in the previous section of this chapter.

To begin, let us look at the Hierarchy panel (you should have it attached on the left
of the Editor window).

The place where you see the word Hierarchy written is the tab's header. You can drag
any tab by its header, be it a view or a panel. Any number of panels can be present
in any position in the Editor, so sometimes you will have a situation when you have
multiple tabs attached to the same area of the screen (as on the following figure):

Let us try to reproduce this situation. Click the Options () button in the top-right
corner of the Hierarchy panel. Then hover the Add Tab option from the drop-down
list and, finally, click on Hierarchy. Now you should have two Hierarchy panels
attached to the same side of the screen. Their headers should be next to each other:
one of them active, and the other one inactive. The active panel is the one that has
a lighter color.

The following figure shows the menu that allows you to add new tabs to a certain
area of the screen; in this case it is on the right, in the same place where the
Hierarchy panel is. Use it to add another Hierarchy panel.

Unity's and Playmaker's User Interface

[24]

Click on the inactive panel's header to see its contents. At this point you should see
that both panels look exactly the same: the only thing inside both is Main Camera.
This is because both panels show the contents of the same scene. You can have as
many Hierarchy panels as you want, but they will all show exactly the same thing.
We don't need two of them, so let us close one: right click on one of the Hierarchy
tabs' headers and choose Close Tab from the contextual menu that appears. Note
that this is the same menu that appears when you click on the Options button in
the top-right corner of the panel. This is just another way of doing the same thing.

I have just mentioned something called scene and a scene's contents—but what does
it mean? A project in Unity is composed of scenes; think of them as level files if you
like, except apart from the actual game levels, scenes can contain things like intro
cinematics, loading screens, game menus, or anything. This is just a convenient way
of dividing your game into manageable chunks, and the Hierarchy panel reveals
everything that is inside of the currently open scene. You can have only one scene
open at any given moment, which is why no matter how many Hierarchy panels
you open, they will all show the same exact thing. We will talk about scenes in
more detail in the next chapter.

Another thing that you should notice is the Create button in the top-left corner of
the panel just below the header. Click on it, and you will see the same menu that you
would see if you navigated to GameObject | Other from the main menu. This menu
allows you to create game objects that are added to the current scene when you click
on their names in the list.

A game object in Unity is kind of a shell, a container that can be anything: a cube, a
light, a camera, or a character. Go ahead and create a cube, a quad, and a directional
light. We will use these in the following chapters to create a game.

Now that we have all these game objects, we want to position them in a certain way
in the scene. To do this, we are going to use the Inspector panel, among other things.

Chapter 2

[25]

Inspector panel
The main purpose of the Inspector panel is performing various actions on game
objects, including changing their properties, such as appearance, behavior, position,
size, and rotation. Select the Cube game object in the Hierarchy panel by clicking
on it once. The appearance of the Inspector panel should now change to include
a number of things displayed in the following screenshot:

Unity's and Playmaker's User Interface

[26]

The first thing that you should notice is the small padlock () icon in the
top-right corner of the panel next to the Options button. Unlike the Hierarchy
panel, Inspector shows properties of an object rather than a scene, and, since
you can have any number of game objects in your currently active scene at the
same time, you can assign different inspectors to always focus on specific objects.
Open a new Inspector tab by right-clicking the Inspector header and selecting Add
Tab | Inspector. Both inspectors will be focused on the cube that you selected in
Hierarchy. Click on the padlock icon in one of the inspectors. This will make this
Inspector always display the properties of Cube, so, if you select Quad in Hierarchy,
the locked () Inspector will continue showing the Cube's properties, while the
other one will show Quad. You can verify this by clicking on the headers of the
two Inspector panels that you have opened.

If you want to expose the properties of two objects at the same time
without having to click on the headers, you can detach one of the
Inspector panels by clicking and dragging its header wherever
you want that panel to be. This can be helpful if you want to copy
components or properties from one object to another or if you want
to keep one important object always on display.

Make sure you are comfortable with the idea of having multiple inspectors and the
fact that they correspond to the selected game object. Also note that an Inspector
panel can expose properties of multiple game objects at the same time. You can select
multiple game objects in the Hierarchy panel by pressing and holding command
(Ctrl in Windows). You can also press Shift and select a range of game objects. These
operations are similar to those you would perform in Finder (or Windows Explorer).
Try doing this a few times until you are comfortable performing these actions in the
Hierarchy panel and always take note of how the contents of the unlocked Inspector
panel change based on the game objects that you select. Once you feel like you have
experimented enough, close the locked Inspector by right-clicking its header and
selecting Close Tab from the contextual menu.

Just below the header in the Inspector panel is the name of the selected game object.
You can change it however you want. For now, let us rename our Cube Wall. Make
sure that you have Cube selected in Hierarchy and that its properties are displayed
in the Inspector panel. Click within the text field where you see Cube written at the
moment, delete everything, and type Wall, then press return (Enter). You will notice
that the name has changed in the Hierarchy panel as well.

Chapter 2

[27]

Below the name field there is a long section with various components separated
by black horizontal lines. A default cube (now called Wall) has Transform, Mesh
Filter, Box Collider, and Mesh Renderer components. We will closely examine
the components in the next chapter. For now you should focus on the Transform
component (shown in the following image along with the Inspector panel header),
which is the only component that every game object in Unity has.

Transform defines position, rotation, and scale of a game object in 3D space. These
are all its properties. Set the position of Wall to (0, 0.5, 0) by clicking in the X, Y,
and Z fields, deleting everything in there, entering the value you want instead,
and pressing return (Enter) on your keyboard. You have just changed the position
property of the Transform component of the Wall game object. The next chapter will
examine properties and components more closely. For now just set the positions and
rotations of the game objects you have in the scene to the following values:

Name Position Rotation
Directional light 0, 0, 0 50, -30, 0
Main Camera 0, 10, 0 90, 0, 0
Quad 0, 0, 0 90, 0, 0
Wall 0, 0.5, 0 0, 0, 0

For now, we will leave the Scale property of all the objects at its default value (1, 1, 1).

Unity's and Playmaker's User Interface

[28]

Now that you have modified your scene, you might want to save it. Press command
+ S (Ctrl + S in Windows). A dialog window should appear asking you where you
would like to save your scene. By default it should offer to save it in the Assets
folder. Name your scene Scene1 and click on Save. The following screenshot shows
the path where the scene file should be saved. Note that you cannot save the scene
outside of the Assets folder. If you try, an error message will pop-up warning
you about it.

Project panel
Have a look at the Project panel: you should have four folders and a file called
Scene1 displayed there. The Project panel is your project's file browser, similar
to Mac OSX Finder or Windows Explorer, but it only shows files and folders that
are situated inside the Assets folder of your project.

Unlike Hierarchy and Inspector, Project (see the following screenshot) always
displays the same thing as long as you have the same Unity project open. All of
the scene files, scripts, and art assets are shown and can be manipulated from here.
Using the icons to the right of the search field, you can filter the things displayed
in the Project panel either by tag or by type.

Chapter 2

[29]

It is generally a good practice to keep your project's file structure well-organized,
as it helps to increase productivity and save time looking for files. To organize
your assets, you can put things inside folders with clear names, such as Artwork,
Scripts, or Music. To begin with, let us try to organize what we have in our Project
panel already.

Click on the Create button in the top-left corner of the panel; this should reveal
a menu that allows you to create different types of assets. This is the same menu
you get by going to Assets | Create in the main menu.

The third way to access the Assets menu is right-clicking
anywhere in the empty area below the list of files in the Project
panel and clicking on Create in the contextual menu that appears.

Create a folder called Scenes. In order to rename a folder if you forgot to enter
a name when the folder was just created, press return (or F2 if you are using
Windows). Once you have it named appropriately, click and drag the Scene1
file and drop it into the Scenes folder. From now on, we will save all of the
scenes into that folder instead of the Assets root. This way, they will be
easier to find when we want to open a specific scene.

Views
Now that the Project panel is well-organized and your objects are positioned in the
scene, it is time to have a look at the view tabs: Game and Scene. The former shows
the output of all the cameras, while the latter is your main workspace in Unity.
This is where the level design is done. The Game view becomes interactive when
you click on the play button in the toolbar () or use the hotkey command + P
(or Ctrl + P in Windows), provided there is some kind of input defined in Playmaker
or other components. You can also pause () the game by pressing command
+ Shift + P (Ctrl + Shift + P in Windows). This is how you will test your game later.
Right now there are no interactions yet, but we will get to that soon enough.

Unity's and Playmaker's User Interface

[30]

Activate the Scene view by clicking on its header if it is not active right now. In the
Hierarchy panel, select Wall and press F. This will focus the Scene view on Wall.
You should be seeing the cube that you created, with a Quad and Directional light
gizmo below it (it looks like a little sun). A gizmo is generally a 2D element in 3D
space that lets you select and/or manipulate objects even if they are not represented
in any other way in the scene. A gizmo can also be non-interactive, such as a simple
line or a wire cube. These are generally used to reveal position or direction of
something otherwise invisible.

Selecting an object and pressing F is one way to navigate the 3D space. Another way
is using your mouse. You can select different objects directly in the Scene view by
clicking on their meshes (3D models) or gizmos. To look around, press and hold the
right mouse button while moving your mouse in the Scene view. Zoom in and out
by using your scroll wheel. Use middle click to drag the view around. You can also
rotate around a point by pressing and holding Alt and clicking the left mouse button
and moving your mouse around.

Chapter 2

[31]

Click on the Directional light gizmo and press W or in the toolbar. You should
see three arrows appear: red, green, and blue. These arrows correspond to the X, Y,
and Z axes in 3D space, respectively. Clicking and dragging one of the arrows will
move the object in space. Move Directional light anywhere you want: its position
does not matter. What does matter, however, is its rotation.

Press E or in the toolbar. A sphere with colored and white circles will appear
around the object. Each colored circle is responsible for the object's rotation around
one axis. Once again: red for X, green for Y and blue for Z. When you select your
light, you should also see yellow rays coming out of it. This is a gizmo that shows
in what direction your Directional light is lighting the scene. Rotate Directional
light in such a way that Wall and Quad appear well-lit, almost white in the Game
view. Do not forget that you can switch between the Game and Scene views at any
moment to see a preview of what you will see in the game.

You can also switch between the ways your rotation, position, and scale gizmos
appear by clicking the Global/Local toggle button in the toolbar. The Pivot/Center
toggle button determines where it appears: in the pivot point of the object or in its
geometric center.

Once you are happy with the light, select the Quad object and press R or in the
toolbar. This is the scale manipulation mode. If you press F to focus on Quad, you
will see a gizmo similar to that of the movement manipulator, but with little colored
cubes instead of arrows on the ends of each line. As before, colors correspond to
axes: red for X, green for Y, and blue for Z. There is also a white cube in the middle,
which is the uniform scale manipulator that allows you to change scale on all three
axes at the same time.

Using this gizmo, scale Quad to be about 100 on the X and Y axes. Its Z scale should
stay the same. You can check the current values of position, rotation, and scale in the
Transform component in the Inspector panel when you have an object selected.

Save your scene by pressing command + S (Ctrl + S in Windows).

Unity's and Playmaker's User Interface

[32]

Playmaker interface
It is time to finally take a look at Playmaker. In the main menu, go to PlayMaker
| PlayMaker Editor. A welcome window with different Playmaker options and
a playMaker panel should appear. Close the welcome window, then attach the
playMaker panel to the same region of the Editor where you have your Console
panel as shown in the following screenshot (this should be just below the Scene
and Game views if you haven't changed anything since Chapter 1, Getting Started
with Unity and Playmaker).

The darker area on the left is the FSM view.

Keep in mind that the FSM view is called Playmaker Editor in
the official Playmaker documentation. In this book we will use a
clearer name, FSM view, to distinguish between different areas of
the playMaker panel.

It is here that you will edit your finite state machines and create state nodes
and transitions between them, which we will talk about in more detail in the
next chapter. For now, follow the instructions given in the lower-right corner
of the FSM view:

1.	 Select the Wall game object in the Hierarchy panel or in the Scene view
by clicking on it.

2.	 Right-click anywhere in the FSM view and select Add FSM from the
contextual menu that appears to add a finite state machine to the Wall
game object. When you do that, note the red icon that appears next to Wall
in the Hierarchy panel. This icon means that the object has a Playmaker FSM
component. Also note the Playmaker FSM component that appeared in the
Inspector panel.

3.	 Now you can manipulate FSM to assign various behaviors to Wall.
Read all the tips displayed in the playMaker panel carefully.

Chapter 2

[33]

To take a better look at any one of the tabs, including the playMaker
panel, press the Space key with your mouse cursor hovering over the
tab. Then press space again to minimize. You can do this with any
view or panel in the Unity Editor.

On the right side of the playMaker panel, there are tabs that display and let you
modify different information types, including the FSM as a whole, as well as its
states, events, and variables. Click on each tab and examine the tips in grey rectangles
explaining the contents of each tab. Once you are done with the tips, you can press the
Hint toggle button on the bottom of the panel to disable them. You can also do this by
pressing F1. Before you do that, click on the Preferences button next to it and read the
tips there. We will examine the necessary changes to the Playmaker preferences in the
next chapter.

Under the FSM view you should see controls similar to pause/play in the toolbar.
These are, in fact, the same buttons, and are there just to make it more convenient
for you to control the game when you are working with Playmaker.

The second most important Playmaker-related panel is the Action Browser. You can
open it by selecting PlayMaker | Editor Window | Action Browser from the main
menu. A part of the Actions panel is shown in the following screenshot:

Unity's and Playmaker's User Interface

[34]

Drag it by its header to the right side of the Editor until it snaps into the same area of
the screen as Inspector. This panel shows categories of actions that you have in your
Playmaker library. Clicking on one of the categories, for example, Camera, will reveal
the actions. There is also a search bar near the top of the panel that allows you to access
the actions you need faster. When you select an action, for example, Camera | Screen
To World Point, a preview of its parameters appears on the bottom of the panel. It
shows what the selected action will look like in the State tab of the playMaker panel.
If you have a Playmaker-enabled object and a state in the FSM view selected, you can
add an action to it by clicking the Add Action To State button in the bottom-right
corner of the Actions panel.

You can press the play button (or use the shortcut command + P or Ctrl + P Windows)
to see that there are no errors and everything is working properly. When you are
done, press play again and save the scene.

Summary
In this chapter, you examined some of the main interface elements in Unity
and Playmaker, added some objects to the scene and manipulated those objects.
You also looked at game objects and components and learned about properties
of components. These subjects will be examined in more detail in the next chapter.
The scene that you created in this chapter lays a foundation for creating a game,
and all objects that you have created and manipulated so far are going to be used
in the final game.

Components and State
Machines

In the previous chapter, we learned about Unity's interface, and the way things
are organized and displayed in the Editor. You added a FSM to a game object and
briefly looked at the interface elements related to Playmaker. You also manipulated
game objects and components using such interface elements as the Hierarchy and
Inspector panels, as well as the Scene view. In this chapter we will cover:

•	 The Component-based approach to game development that Unity relies on
•	 Game objects, components, and their properties in more detail
•	 The interchangeable nature of game objects when using components

to define appearance and behavior
•	 Finite state machines, actions, and transitions
•	 Making simple game mechanics using Playmaker

Game objects, components,
and properties
Unity works using a popular and common approach for game development, which
is called the component-based architecture. This approach is widely used in software
development to make things more reusable and easier to manage.

Let us talk about the way things are organized in Unity. Some of them have already
been mentioned in previous chapters, but I will repeat them briefly so that you can
see the game objects, components, and their properties in the larger context.

Components and State Machines

[36]

First of all, you have a project, which is essentially a folder that contains all of the
files and information about your game. Some of the files are called scenes (think of
them as levels). A scene contains a number of game objects that you have added to
it. The contents of your scenes are determined by you, and you can have as many of
them as you want. You can also make your game switch between different scenes,
thus making different sets of game objects active.

On a smaller scale, you have game objects and components. A game object by itself is
simply an invisible container that does not do anything. Without adding appropriate
components to it, it cannot, for instance, appear in the scene, receive input from the
player, or move and interact with other objects. Using components, you can easily
assemble powerful game objects while reusing several small parts, each responsible
for a simple task or behavior—rendering the game object, handling the input, taking
damage, playing an audio effect, and so on—making your game much simpler to
develop and manage. Unity relies heavily on this approach, so the better you grasp
it, the faster you will get good at it.

The only component that each and every game object in Unity has attached to it by
default is Transform. It lets you define the game object's position, rotation, and scale.
Normally, you can attach, detach, and destroy components in any given game object
at will, but you cannot remove Transform.

Each component has a number of properties that you can access and change:
these can be integer or floating point numbers, strings of text, textures, scripts,
references to game objects or other components. They are used to change the way
a certain component behaves, to influence its appearance or interaction. Some of the
properties that you have already encountered in Chapter 2, Unity's and Playmaker's
User Interface, include the position, rotation, and scale properties of the Transform
component. There are others that you have seen, including FSM, that we will talk
about later in this chapter.

The following screenshot shows the Wall game object with the Transform, Mesh
Filter, Box Collider, Mesh Renderer, and Script components attached to it. the
properties of Transform are displayed. In order to reveal or hide a component's
properties you need to left-click on its name or on the small arrow on the left of
its icon.

Chapter 3

[37]

Unity has a number of predefined game objects that already have components
attached to them, such as cameras, lights, and primitives. You can access them by
choosing GameObject | Create from the main menu. Alternatively, you can create
empty game objects by pressing command + Shift + N (Ctrl + Shift + N in Windows)
and attach components to them using the Components submenu.

Components and State Machines

[38]

The following figure shows the project structure that we have discussed.
Note that there can be any number of scenes within a single project, any
number of game objects within a single scene, any number of components
attached to a single game object, and finally, any number of properties
within a single component.

One final thing that you need to know about components right now is that you can
copy them by right-clicking on the name of the component in the Inspector panel
and selecting Copy Component from the contextual menu shown in the following
screenshot. You can also reset the properties of the components to their default
values, remove components, and move them up or down for your convenience.

Chapter 3

[39]

The copied component can be pasted by right-clicking any component's name
in the Inspector panel and selecting either Paste Component As New or Paste
Component Values from the same contextual menu. The difference between
these two commands is that the former will add a new component identical
to the one that you have copied, while the latter will simply transfer the values
of all the properties. These commands become active once you have copied
a component.

Working with prefabs
In order to create multiple instances of a game object with the same components
and properties, or access the same game object from different scenes, you can save
it as a file in your Assets folder. These files are called prefabs in Unity and act like
game object templates. To create an empty prefab, right-click on the empty space in
the Project panel, then select Create | Prefab from the contextual menu. A new file
called New Prefab should appear in the Project panel. Call this prefab Wall. Now
create an empty folder called Prefabs and put the Wall prefab in this folder.

Right now the prefab is empty.

1.	 In the Hierarchy panel, select the Wall game object that you created
in Chapter 2, Unity's and Playmaker's User Interface. Click and drag it
into the Wall prefab in the Project panel.

2.	 The name of the Wall game object will become blue in Hierarchy,
and when you select the Wall prefab, you will see all of the components
that the original Wall game object had in the Inspector panel.

Now, if you drag-and-drop the Wall prefab into the scene, a new object called Wall
will be created with exactly the same properties as those defined in the prefab.

Components and State Machines

[40]

Moreover, if you change some of the components and/or properties in the prefab
using the Inspector panel, these changes will be automatically applied to all the
instances of the prefab in the scene. This can save you a lot of time if you have
multiple objects of the same type (that is, walls, monsters, trees, and so on) as you
do not have to select them one-by-one in the Hierarchy and make the same changes
multiple times.

You can also modify your prefab (and, by extension, all of its instances in the scene)
by selecting one of the instances in Hierarchy, making your changes, and clicking
the Apply button near the top of the Inspector panel. You can also undo all of the
changes by clicking on the Revert button. This will reset the currently selected
instance to the way its prefab was set up.

This works because, in fact, all the components and properties of an instance are
linked to the ones of the prefab. Only when you change them in the instance they
become unlinked, which means that further updates of that property on the prefab
won't be applied to this instance. These unlinked properties can be distinguished
because their name becomes bold in the Inspector panel. If you want to re-link a
specific unlinked property you can right-click on it and select Revert value to Prefab.

Besides the Apply and Revert buttons, all prefab instances also have a Select button.
This button lets you select and highlight the prefab corresponding to the currently
selected instance in the Project panel, so you can access it more easily. Moreover, as
we saw earlier, a prefab instance can be easily identified by its blue tinted name in
the Hierarchy panel. The alternative way of creating a prefab is even simpler: you
can simply drag-and-drop a game object from the Hierarchy panel into the Project
panel. An appropriately named file will be created in the Assets folder.

Another very important thing to know about prefabs is that they can be copied and
shared on the Web, since they are little more than the files recognized by Unity that
contain information about components and properties. Now, follow these steps to
modify the Wall prefab to suit our needs better:

1.	 Create a new folder in the Project panel and call it Materials. It will contain
material files that contain information about textures, shaders, and colors of
your game objects.

2.	 Create a new material file by clicking on the Create button in the top-left
corner of the Project panel and selecting Material from the drop-down list.

3.	 Name the new material WallMaterial and put it inside the Materials folder.

Chapter 3

[41]

4.	 Select WallMaterial in the Project panel, then in Inspector, click on the
rectangle next to the text that says Main Color. In the Color window
that appears, select the black color and close the Color window. The
following screenshot shows the Material modification interface as well
as the Color window:

5.	 Now that you have this new material set up, select the Wall prefab, then
drag-and-drop WallMaterial into the Element 0 element of the Materials
property of the prefab's Mesh Renderer component. It should replace
Default Diffuse. The following screenshot shows what the Mesh Renderer
component should look like once your are done assigning the new material.

6.	 Now all of the instances of the Wall prefab will be black.
7.	 Also, set the X scale property of the Transform component to 15. This will

make all the new walls longer.

Components and State Machines

[42]

8.	 Select the Main Camera game object and set its Projection property
of the Camera component to Orthographic using the Inspector panel.
This will make the view of the camera flat; the game view will now
appear two-dimensional.

9.	 Set the Size property to 5. You can adjust the look later, but for now
this will help us focus on gameplay.

It is often a good idea to restrict yourself to simple primitives,
color-coded untextured materials, and orthographic projection
cameras in the beginning of the design process, because it will
let you focus on gameplay. This way, if your game is fun, you
will know about it, and if it is not, you will not get distracted
by fancy visuals.

Make four walls and arrange them in the scene so that what you see in the Game
view looks like the following screenshot. If this is not the case, you can go back to the
table in Chapter 2, Unity's and Playmaker's User Interface, and see if your Main Camera
game object is positioned and rotated correctly. Its position should be set to (0, 10,
0) and rotation to (90, 0, 0). Don't forget that you can rotate the objects to precise
values such as 90 and 180 degrees by changing their rotation angle in the Transform
component. Also make sure that the Y position of all the walls remains equal to 0.5.

Chapter 3

[43]

Finite state machines, states, and actions
We have talked about game objects and components. Now it is time to have a look
at Playmaker FSMs, states, and actions in them.

An FSM in Playmaker is a graph that consists of states and transitions between them,
attached to a game object. It allows for a way of visual programming using different
states of the graph and events that trigger transitions to other states.

If you select the Wall prefab and open the playMaker panel, you will see that its
FSM has two states: the default Start state where everything begins and another
one called State 1 by default, with an arrow connecting the former to the latter. The
arrow is a transition. You cannot remove the Start state or the one it is connected to,
because if you could you would not need the FSM attached to the object. However,
you can create new states and define transitions to them.

You can navigate the FSM view almost exactly the same way you
would do the Scene view. Use the middle mouse button to drag
the view. Use the left mouse button to move the states around.
This does not change anything in the logic of the state machine,
but lets you organize everything the way that makes sense to
you, as well as look at the parts of the graph that you are most
interested in at the moment if the whole state machine is too big
to be shown at once.

A state in FSM is empty by default and does not do anything, a lot like an empty
game object without any components attached to it. In order to make a state do
something, you need to attach actions to it.

As we have seen in Chapter 2, Unity's and Playmaker's User Interface, you can add
an FSM to an object by selecting the latter, right-clicking in the FSM view of the
playMaker panel, and then selecting Add FSM from the contextual menu. You
can remove an object from the Playmaker control by right-clicking the header of the
Playmaker FSM (Script) component in Inspector and selecting Remove Component
from the contextual menu. This will remove the FSM and erase all of the changes
you made to it, including added states and transitions. An object has an FSM
attached to it if there is a red Playmaker hieroglyph icon () next to its name
in the Hierarchy panel.

As an example for this book, we will be making a version of the classic air hockey
game. In order to begin, we will need to add a puck and a mallet. In this chapter,
you will make the mallet move based on the mouse position and push the puck
as you would expect it to do in real life.

Components and State Machines

[44]

Right now in your scene there are four walls, a background quad, a camera,
and a directional light (created in Chapter 2, Unity's and Playmaker's User Interface).
Now it is time to make things interactive. Let us start with a mallet.

1.	 Create a new cylinder primitive by selecting GameObject | Create Other |
Cylinder in the main menu.

2.	 Rename this game object to Mallet and make a dark green (RGB color set
to 10, 155, 10 in the Color window) material called MalletMaterial for it,
then assign the material to it, as you did for the Wall prefab before.

3.	 Set the scale of Mallet to (1.35, 1.35, 1.35) and its position to (-6.5, 1.45, 0).
4.	 Now we are going to make the mallet move. First of all, we need to add

a component called Character Controller to it. This component is in charge
of character physics. Select Mallet, then click on the Add Component button
near the bottom of the Inspector panel. Type Character Controller in the
search bar, and then double-click on the Character Controller item in the list
(as shown in the following screenshot). When Unity asks you if you want
to replace the existing CapsuleCollider component, click on Replace.

5.	 In the Character Controller component, set the Skin Width property to 0
(it will be set to the minimum possible value, which is 0.0001). We are
doing this to make sure that our mallet's collisions look precise.

6.	 Add an FSM to Mallet by selecting it, right-clicking in the FSM view of
the playMaker panel, and selecting Add FSM from the contextual menu.

7.	 Select State 1, then in the State tab on the right of the playMaker panel enter
Move in the first text field from the top. It is responsible for the name of the
currently selected state. When you enter the new name, you should see the
state change in the FSM view as well.

Chapter 3

[45]

8.	 Keeping the Move state selected, open the Actions panel (it should be
attached to the same area of the Editor window as the Inspector panel;
alternatively, click on the Action Browser button on the bottom-right of the
State tab) and find the Mouse Pick action under the Input category. Click
on it, then click on the Add Action To State button in the bottom-right corner
of the panel. You should notice that the Mouse Pick action appeared in the
State tab of the playMaker panel.
This action gets the cursor position in 3D space when you hover an object.
Under the hood it draws an invisible ray (this action is called raycast) from
the mouse position on the camera's near clipping plane (you can see it as
one of the white gizmo rectangles in the Scene view when you select Main
Camera). If there is something in the way of the ray, a ray hit gets detected,
and Unity finds out where exactly it happened. In our case, we will use the
background quad to get the position of the mouse cursor, and then make
the mallet follow it.

9.	 In order to pick a correct ray-hit position, we need to make sure that
nothing else gets in the way of the ray. To do this, we will tell the ray to
interact only with the background quad. Select the Quad game object and
rename it Background for clarity. Then find the Layer drop-down menu in
the top-right corner of the Inspector panel, click on the drop-down button
that says Default by default, and press Add Layer… in it. The appearance
of Inspector should now change to reveal a list of tags and layers as shown
in the following screenshot:

Components and State Machines

[46]

This menu is called TagManager. Click on the right of User Layer 8 and
enter Background in the edit field that appears, then press Return on your
keyboard. Select the Background object again and set its layer to Background
by choosing the appropriate element from the drop-down Layer list you used
to access the TagManager before.

10.	 Select Mallet again. In the Mouse Pick action of the Move state, set the
Layer Mask parameter to 1. This determines how many layers you will set to
interact with the raycast. Element 0 should appear below. In the drop-down
list to its right, select the Background layer you created before.

11.	 From now on, the raycast in the Mouse Pick action will ignore all objects
that are not in the Background layer. Now we need to store the ray-hit
position in a variable. Go to the Variable tab of the playMaker panel and
enter mousePos in the New Variable field on the bottom. Click on the Add
button. Set the Variable Type to Vector3. A Vector 3 variable contains three
numbers: X, Y, and Z.

12.	 Go back to the State tab and set the Store Point property of the Mouse
Pick action to mousePos. This will save the position of the ray hit in the
Vector3 type variable that you just created. Finally, check the Every Frame
property checkbox on the bottom of the Mouse Pick action to make sure that
the mouse position is updated continuously as opposed to just once in the
beginning of the game.

13.	 Add the action called Controller Simple Move located under the Character
category of the Actions panel to your Move state. It should appear just
below the Mouse Pick action. If it appears above it, you can move it down
by clicking and dragging it by its header.
It is important to note that the order of actions in the state matters: the
actions mentioned earlier will be executed before the ones that are mentioned
later, so if you want to use a variable set in the Mouse Pick action, you must
make sure that Mouse Pick is above whatever action is going to use it (in our
case it is Controller Simple Move).

14.	 Set the Move Vector property of the Controller Simple Move action
to mousePos. Leave the rest of the properties at their default values.

Chapter 3

[47]

Interaction between game objects
Now that the mallet moves, we are going to make it interact with a puck. When the
mallet touches the puck, we are going to apply a force to it in the opposite direction.

You can click the Play button in the toolbar and see how the mallet moves based on
the mouse position. You will notice that it collides with the walls, follows the mouse
cursor smoothly, and changes its movement speed based on how fast and far you
move your mouse.

1.	 Create another cylinder called Puck and place it in (-3, 0.85, 0). Set its
scale to (1, 0.7, 1).

2.	 Add a Rigidbody component to it (Component | Physics | Rigidbody).
Set the Mass property to 0.1, uncheck Use Gravity, open the Constraints
section, and check Freeze Position Y and Freeze Rotation X, Y and Z.

3.	 Make a new dark grey (65, 60, 60) material (Assets | Create | Material)
called PuckMaterial and assign it to the puck's Mesh Renderer.

4.	 Now that the puck is all set, we will make the mallet push it. Go to
the mallet's Move state in FSM and add an action called Collision Event
(under Physics) to it. Set the Collision property to On Controller Collider Hit.

5.	 Open TagManager by selecting the Puck game object and choosing Add
Tag... from the Tag drop-down menu in Inspector. Create a tag called Puck
by adding a new tag the same way you did with a layer for the background.
Tags are situated near the top of TagManager. You can have as many as you
want if you modify the Size variable. Set the Puck game object's tag to Puck.

6.	 Go back to the Move state in Mallet's FSM. Set the Collide Tag property of
the Collision Event action to Puck.

7.	 Open the Events tab in the playMaker panel, enter Push in the Add Event
field near the bottom of the tab, and press Return on your keyboard.

8.	 Open the State tab again and set the Send Event property of the Collision
Event action to Push.

Components and State Machines

[48]

9.	 Now we have to tell the FSM what will happen once the event is called.
Create a new state in the Mallet's FSM by right-clicking anywhere in the
FSM view and selecting Add State from the context menu. Name the new
state Push Puck. Right-click on the Move state in the FSM view and select
Add Transition | Push from the contextual menu. A new light label saying
Push should appear below the Move state. Click on it and drag the line that
appears to the Push Puck state. This line is the transition that will happen
once the Push event is called in the Move state. Add a FINISHED event to
the Push Puck state the same way. You do not need to create it, because it is
a default Playmaker event.

10.	 Make a transition from the FINISHED event to the Move state to make
sure that when the puck is pushed the mallet will remain under the player's
control. The following figure shows what your FSM is supposed to look like:

11.	 Add the following actions to the Push Puck state in Mallet's FSM one-by-one:
Get Controller Hit Info, Get Position, Vector3 Subtract, Vector3 Normalize,
Vector3 Multiply, and Add Force. Keep in mind that the order of the actions
matters, because the ones higher on the list will get executed earlier. The
following screenshot shows the correct order of the actions.

12.	 Create the following variables using the Variables tab of the playMaker
panel: hitPos (Vector3), pushDir (Vector3), pushMag (Float). Select
pushMag and set its Float Value to 20. This value will determine
how hard the mallet pushes the puck.

Chapter 3

[49]

13.	 Back in the State tab, set the Contact Point property of Get Controller Hit
Info action to hitPos.

14.	 Drag the Puck game object from Hierarchy to the Game Object slot of the
Get Position action, then set Vector to pushDir.

15.	 In Vector3 Subtract action, set Vector3 Variable to pushDir. Click on the
small option () icon next to Subtract Vector. This will allow you to pick
a variable from the list instead of using a numeric value. Set Subtract Vector
to hitPos.

16.	 In Vector3 Normalize action, set Vector3 Variable to pushDir.
17.	 In Vector3 Multiply action, set Vector3 Variable to pushDir and Multiply

By to pushMag. Click on the small option icon to show the FSM variables
if needed.

18.	 Finally, in Add Force, set the Game Object property to Specify Game
Object and drag the Puck game object into the slot that will appear below.
Set Vector to pushDir. Click on the option icons next to X, Y, and Z and
leave them at None to make sure they are not reset to 0 and are simply not
assigned instead. Click the small option icon to show the None option if
needed. Then set Space to World.

Your puck should now become interactive if you click on play and make the Mallet
collide with it. I realize that the last bit was a lot of actions at once, so we will discuss
what exactly happens in those actions in the next chapter. This is an example of some
complex logic that we will look into when we talk more about game mechanics. For
now consider it an exercise to familiarize yourself with actions and variables and the
way they are added and assigned in the playMaker panel.

As another exercise, save your scene, create a few new game objects with FSMs, and
try to experiment with different actions and variables, see how they are added and
assigned. Don't worry if your actions do not do much. Try to familiarize yourself
with the Playmaker interface and remember how to add, move, and remove actions,
create new variables and events, and assign them.

Once you feel like you are comfortable with these actions, you can delete the objects
you used for practice or simply reload the scene without saving it by double-clicking
the Scene1 file in the Project panel.

Components and State Machines

[50]

Summary
In this chapter, we discussed the project structure in Unity: scenes, game objects,
components, and properties. We also took a closer look at the Playmaker interface:
actions, events, variables, and transitions. You took the first step in creating an air
hockey game by implementing a real game mechanic—a mallet that is moved with
the mouse and a puck that is pushed when the mallet touches it. In the next chapter,
we will add even more game mechanics, explain the ones already implemented in
more detail, and try to make the game more fun and pretty.

Creating Your First Game
In Chapter 3, Components and State Machines, you made your first game mechanic for
the air hockey game, which we are going to keep improving for the rest of this book.
You made a puck and a mallet that is controlled using the mouse pointer and pushes
the puck. The pushing mechanic was rather complex and requires some in-depth
analysis, which will be the first thing we talk about in this chapter. This chapter is
going to cover the following topics:

•	 Using vector geometry and physics
•	 Win/lose conditions
•	 Creating artificial intelligence
•	 Playmaker debugging

In the end, I will give you a couple of exercises that you will be able to complete with
skills and knowledge you will have acquired by the end of this chapter, as well as
some advice on how to look for answers to your questions if you have any.

Using Vector geometry and physics
If you are anything like me, you found the title of this section intimidating. However,
before you decide to skip it or start looking for a new book about Unity, I assure you
that it will not expose you to a single mathematical formula. Instead, it will use the
Playmaker actions and explain what each of them does, which, in turn, will lead us
to a conclusion about the science behind it.

Practically no 3D video game is possible without vector geometry and physics of
some kind, and naturally both are instrumental in explaining how the mallet-puck
interaction works in your new air hockey game.

Creating Your First Game

[52]

To begin, let us select the Push Puck state in the Mallet FSM by clicking on it in the
FSM view of the playMaker panel and open the Variables tab on the right. There
are three variables of type Vector3 and one of type Float in the list. The following
variables are of interest to us, since they are used for the calculation of push force
and direction:

•	 hitPos is a Vector3 variable in which we store the X, Y, and Z coordinates
of the collision point between the mallet and the puck

•	 pushDir is a Vector3 variable we store the X, Y, and Z direction
in which the puck is going to be pushed when it collides with the mallet

•	 pushMag is a Float variable that is currently equal to 20 and corresponds
to the magnitude of the push

To understand how things work in video games, you will have to be comfortable
using Vector3 variables, because much of everything you will do is going to happen
in 3D space. Each Transform component has three Vector3 properties: Position,
Rotation, and Scale, each of which has its own X, Y, and Z values.

Each point in 3D space has coordinates that can be written down in the form of three
Float variables: a position on the X axis, a position on the Y axis, and a position on
the Z axis. A Vector3 variable can store these three position values at the same time.

You can perform various actions over Vector3, you can add it to another vector,
you can multiply it by a float (or an integer), you can store its X, Y, and Z in separate
Float variables or write separate float values into its X, Y, and Z. Most of these
actions are under the Vector3 category of the Actions panel.

The first action that we use is called Get Controller Hit Info, and it gets the position
of the last collision that happened to a game object. If you look at the Collision Event
action in the Move state that triggers the Push event, you will see that this only
happens when the mallet collides with the puck, so we do not have to worry about
weeding out false collisions once we are already in the Push Puck state. All we have
to do is save the contact point in a variable, which is exactly what happens.

Chapter 4

[53]

Next, we simply get the current position of the mallet and store it in the pushDir
variable, for the time being using the GetPosition action. This variable is called
pushDir, because later it will contain the direction in which the mallet will be
pushed. We get this position simply by accessing the Position property of the
mallet's Transform component.

If these are all positions, how do you get a direction? What is a direction and how
can you write it down in Vector3? The answer is quite simple. A direction is the
relative position of one point with respect to another point in space, which is
another way of saying that it is the difference between Position A and Position B.
The following figure shows two points and their relative directions.

Position A

Direction from B to A

Direction from A to B

Position B

So, in order to find the direction in which point B lies in relation to point A, you will
have to subtract the position of point B from the position of point A. Then you need
to normalize the result, which means writing it down as a Vector3 variable that has
its X, Y, and Z properties as numbers between 0 and 1 (that is, without a magnitude).

Creating Your First Game

[54]

For example, if the original result of subtraction was (-1, 27, 350), the normalized
vector of direction will be (-0.00284867, 0.076914, 0.997034), and the best part
of it is that you do not need to know how this happens, because there is a Playmaker
action that does it automatically for you. The following screenshot shows the two
actions that are used to get the direction from the center of the mallet to the hit point:

Let us go through the things we have covered so far:

•	 We need the position of the mallet, because this is where we are going
to push the puck from

•	 We need the point of the impact between the mallet and the puck in order
to find where the puck lies in space in relation to the mallet when the mallet
hits it

•	 Both of these values are saved as Vector3 variables, each of which contains
an X, Y, and Z position

•	 We can find out in which direction the puck lies in relation to the mallet
by subtracting the position of the impact from the position of the mallet
and normalizing the resulting vector, that is, writing down its X, Y, and Z
properties as numbers between 0 and 1

Now that we know how to find the direction in which the puck lies in relation to the
mallet, we want to push it in that direction, so this is exactly what we are going to do.
However, we cannot just assign the direction vector as the puck's velocity, because
the direction vector does not have a magnitude, which means that the velocity of the
puck will be way smaller than we want it to be.

In order to control the force with which the puck is being pushed, we have to
multiply the direction by a magnitude, which is stored in the pushMag variable.
This variable determines how fast the puck will move in the opposite direction
once it meets the mallet.

Chapter 4

[55]

If you assign pushMag a negative value, the puck will be pushed
towards the mallet every time it collides with it, which, in turn, means
that it will stick to it. This too can be a useful game mechanic, albeit
not in this case.

The following screenshot shows the Vector3 Multiply action that multiplies the
pushDir direction vector by pushMag magnitude as well as the Add Force action
that applies the force to the puck at the impact point.

Win/Lose conditions
While there are games where win/lose conditions are not necessary, air hockey
is definitely not one of them. In classic air hockey, there are two goal slots on the
opposite sides of the table. If the puck gets into the goal of player 1, then player 2
gets a point and vice versa. The game ends when one of the players has 7 points.

There is the short-term win condition (score once) and the long-term win condition
(score seven times before your opponent does). We will only implement the short-
term win condition, although you are highly encouraged to try and implement the
long-term one once you are done with this chapter.

Creating Your First Game

[56]

Before we start implementing the win/lose conditions, let us make sure that the puck
cannot get stuck in the corner, because this kind of behavior will prevent the win/
lose condition from being triggered. Make four new walls, rotate them 45 degrees on
the Y axis, and place them in the corners so as to get rid of the straight angles there,
as shown in the next figure. This should solve the problem.

Now that this is taken care of, let us make the goal slots. Change the puck's Scale
property to (1, 0.7, 1) and place it in (-3, 0.3, 0).

1.	 Make one more wall on the left and one more wall on the right. The walls
should be placed as shown in the following figure:

2.	 Make two new cubes (GoalLeft and GoalRight) and place them in the gaps
on the left and on the right, as shown in the next figure. Make the cube on the
left green (0, 255, 0) and the cube on the right red (255, 0, 0) by making new
materials for them. Both of them should be in 2.5 on the Y axis. These are
there to block the mallet, but not the puck.

3.	 Make two more cubes. Call them GoalTriggerLeft and GoalTriggerRight.
Place them just behind the game field on either side of the table. These
objects will act as triggers to detect which goal the puck has scored. Check
the Is Trigger property of these game objects' Box Collider component. This
property of the collider component makes sure that the object does not do
any physics collisions (as opposed to the puck or the walls), but instead acts
as a trigger, detecting when rigidbodies enter, stay inside, and exit it. These
objects are the actual goals that will trigger the win/lose conditions.

Chapter 4

[57]

4.	 Your Scene view should look something like the following screenshot at
this point:

5.	 Select the GoalTriggerLeft game object and add an FSM to it. Make two
states and rename State1 to Scored and State2 to LoadLevel.

6.	 Right-click the Scored state and go to Add Transition | System Events |
TRIGGER ENTER from the contextual menu.

7.	 Make a transition from TRIGGER ENTER to LoadLevel. When something
enters the trigger (and it should only be the puck, because of the way things
are placed in the scene), this event will get called, and the transition will
be made.

8.	 Select the LoadLevel state and add a Load Level action to it. It should be
located under the Level category.

9.	 In the Level Name property of the Load Level action, type the name of your
game scene. It should be called Scene1 if you haven't changed anything.
To make sure, look at the top of the Unity Editor window. It always says
[SceneName].unity - [ProjectName] - [Platform], where the things in
the brackets are Scene1, UPMTutorial, and Web Player for me, but can differ
for you.

10.	 Do the same thing for GoalTriggerRight. For now, keep the FSM exactly
the same.

Now, we can add some finishing touches to our scene by importing a 3D model:

1.	 Make sure that you have downloaded the project archive from the Packt
Publishing website. If you haven't, do it now and unpack the archive.

Creating Your First Game

[58]

2.	 Right-click in the empty space under the file list in the Project panel and
select Import New Asset... from the contextual menu. A file browser should
pop up.

3.	 Locate the WallVisual.fbx file in the UnityPlaymakerTutorial directory
and click on Import. The file browser will close and a WallVisual file will
appear in the Project panel. Create a Models folder and drag it there.

4.	 Select the WallVisual file and have a look at Inspector. There are three tabs
in this Inspector: Model, Rig, and Animations. These are all responsible for
changing import settings of your model.

5.	 Since the model that we have imported is not an animated one, only the
Model tab is of interest to us. Set Scale Factor to 1.05 and uncheck Import
Materials. Leave the rest of the properties at their default values. Scale
Factor changes the scale of the model on import, meaning that the Transform
Scale property will be equal to (1, 1, 1) while the actual size in 3D space
may change. This is needed because the working scale in the 3D modeling
software (such as Maya or 3DS Max) may differ from that in Unity. To
make the model appear bigger, increase the scale factor. See the following
screenshot to confirm that your import settings are set correctly:

Chapter 4

[59]

6.	 Drag WallVisual into Hierarchy twice. Position the first instance in (0, 0.5,
-3.5) and the second one in (0, 0.5, 3.5). Set the first one's Rotation to
(0, 0, 0) and the second one's to (0, 180, 0).

The difference between a prefab and an imported model is that you
cannot apply the changes that you made to one of the instances. You
also cannot add or remove any components from the model. You
can make a prefab from one of the instances of the model to be able
to do that.

7.	 Set the material of both WallVisual game objects to WallMaterial that you
created previously to be used on walls. Select all of the Wall objects and
deactivate their Mesh Renderer components. The following figure shows
what you should see in the Game view if you did everything right:

Now, when you hit play, you should be able to score in both goals. Doing so will
reload the currently loaded level. We also made sure that the puck does not get
stuck in the corners of the table and imported a model that covers our cubic walls
and makes the game look more like an actual air hockey table. This means that the
game is finally playable, if, admittedly, not very fun yet.

Creating Your First Game

[60]

Creating artificial intelligence
Having an artificial intelligence (AI) in the game, even a really simple one, will
definitely make it more challenging and fun, so let us get to it with no further delay.

Here is how our AI is going to work: it is going to constantly try and move to the
point on the right side of the puck, pushing it to the left upon collision. We will keep
the same collision logic that we use for the player's mallet in order to keep the game
fair. In order to make sure that the AI does not get stuck in a wall while pushing
directly to the left, we will make adjustments to the direction based on the current
position of the mallet. This way, the AI will appear to aim at the player's goal slot.

Follow the given steps to implement the AI:

1.	 Duplicate the Mallet game object by selecting it in Hierarchy and pressing
command + D (Ctrl + D in Windows).

2.	 Move the copy to the right side of the table and put it next to the red goal.
3.	 Name the original mallet on the left MalletLeft, and the copy on the

right MalletRight.
4.	 Make a new red material for MalletRight and assign it to it.
5.	 Put both mallets on a new layer called Player using the TagManager menu

accessible from Inspector.
6.	 In the main menu, go to Edit | Project Settings | Physics. You will see a

matrix of checkboxes with names of layers written horizontally and vertically
next to each row and column in the Inspector panel.

7.	 Find the intersection between Player horizontally and Player vertically
and uncheck that box. Make sure that the rest of the boxes stay checked.
This matrix determines which layers can interact with each other and with
themselves, so if you accidentally uncheck something else, such as Default/
Player or Default/Default, the puck may no longer collide with the goal
triggers and the mallets may stop colliding with the walls.

8.	 Select the MalletRight game object. In Inspector, remove the Character
Controller component and add Capsule Collider. Add a Rigidbody
component. Set Freeze Rotation on the Rigidbody component to X, Y and Z.
If you don't, the red mallet will fall when you press play. Rigidbody is the
component responsible for physics interactions.

9.	 In the FSM view of the playMaker panel, select the Move state. It is here that
we are going to set up the AI.

Chapter 4

[61]

10.	 Remove all the actions except Collision Event. You can select multiple
actions at the same time by Shift-clicking their headers. Open the Actions
panel and add the following actions to the state, keeping in mind that the
order of the actions matters, and moving Collision Event to the very bottom:
Get Property, Get Property, Get Property, Float Multiply, Float Add, Float
Add, Set Vector3 XYZ, and Move Towards. The following screenshot shows
the exact order of the actions that you should have in the Move state of the
FSM of MalletRight.

11.	 In the Events tab, add a new event, calling it Return.
12.	 Open the Variables tab and add/remove variables until you have the

variables shown in the following screenshot:

13.	 These are the variables used for collision calculations that were left from
before, and some new ones used for the simple AI behavior that we
discussed earlier.

Creating Your First Game

[62]

14.	 Go back to the State tab and open the first Get Property action. Drag and
drop the Puck game object into Target Object, and set Property to transform
| position | x and Store Float to puckX. Check Every Frame. In fact, check
Every Frame every time you see this checkbox in this state.

15.	 Do the same for the second Get Property tab, but choose z instead of x and
puckZ instead of puckX. These actions are used to retrieve the position of the
puck on the two axes that matter to us.

16.	 Open the third Get Property action and drag MalletRight into its Target
Object property; store its Z position in the offset variable.

17.	 In the Float Multiply action, set Float Variable to offset and Multiply By to
0.2. This is where we define how hard the AI should try to aim the player's
goal. If it tries too hard, it will miss. If it tries not hard enough, it will miss
as well.

18.	 In the first Float Add action, set Float Variable to puckX and the Add
property to offset. You need to click on the option button on the right to
do that. This is where the offset is actually applied.

19.	 In the second Float Add action, set Float Variable to puckZ, and Add to 0.9.
This value can be changed as you want later. It defines the distance between
the actual center of the puck and the point to which the AI is going to move.
It is very important that the AI aim somewhat to the right, because otherwise
it will never be able to hit the player's goal.

20.	 In Set Vector3 XYZ, set Vector3 Variable to targetPos, X to puckX, and Z to
puckZ. Make sure that Y is set to None. This is where we define the actual
position where the AI is going to try and go in the current frame.

21.	 Move Towards is the action that applies movement to the AI. Set Target
Position to targetPos, Max Speed to 5, Finish Distance to 0.15, and Finish
Event to Return.

22.	 Finally, open Collision Event and change its Collision property to On
Collision Stay; leaving everything else intact.

Chapter 4

[63]

23.	 Now you might have an error in the Move Towards action. That would be
because there is no transition from the Return event. Right-click the Move
state in the FSM view and add a transition from the Return event to Move.
Yes, this is a state that loops on itself. The following figure shows the layout
that you should see in the FSM view of MalletRight now.

If you click on the play button right now, the AI should be completely functional
and, in fact, quite strong. Now, there are ways of improving it that will be discussed
in the Exercises section of this chapter, but it should be enough to have a good bit of
fun with the game debugging in Playmaker.

Now that you have a player controller, a win/lose condition, and a functional AI
in the game, it begins to get quite big, and if you want to add anything to it or if
something goes wrong, you will be hard-pressed to know what exactly is going on
in your actions in real time. This is what debugging is for: it is a diagnosis tool that
lets you get additional information about your game or its specific systems that you
can later use in order to fix something.

Let us look at an example. Select MalletLeft and open its Move state in the FSM view
of the playMaker panel. If you look at the bottom of the State tab, you will see two
checkboxes there: Debug and Hide Unused. The first one shows you the values of all
your properties at all time, while the second one hides the unused ones. Check both
of them and, keeping MalletLeft selected, press the play button.

As you move the mallet around, observe the numbers that change under all the
properties of the actions. When you implement a new gameplay feature, you will
want to know in what range values change, and if they do at all.

Creating Your First Game

[64]

You can also use the Console panel for debugging some things. Uncheck both
Debug and Hide Unused, and then open the Push Puck state of the same FSM. Add
a Debug Log action (under the Debug category) to the very top of it. Set Log Level
to Warning and write Hit! in the text field.

You should know that there are three types of debug logs: Info,
Warning, and Error, each with a specific function. Warning is there
to attract your attention to an issue, Info is a simple message that
provides information about something, while Error lets you know
that there is a problem. These are merely conventions, but you will
see some Unity internal Info, Warnings, and Errors that follow them.

Now open the Console panel. We have talked about it briefly before, but let us have
a detailed look at various buttons in it now (from left to right).

•	 Clear is quite self-explanatory; it clears the log, removing all the messages
from it, apart from compilation errors that were not fixed

•	 Collapse is a toggle button that makes similar debug messages appear in the
same line or separately

•	 Clear on Play is a toggle button that forces the Console to clear the log when
you press play.

•	 Error Pause automatically pauses the game when there is an error to give
you a better look at it.

Finally, the three toggle buttons on the right are filters for Console that let you focus
on different types of debug messages: Info, Warning, and Error.

If you press play now and hit the puck with your mallet, a message with a yellow
triangle should appear in Console saying something like MalletLeft : FSM : Push
Puck : DebugLog : Hit! You might also have several of them. Stop the game and see
what happens when you switch Collapse on and off and toggle the Warning filter.
If you press play now and hit the puck with your mallet, a message with a yellow
triangle should appear in Console saying something like MalletLeft : FSM : Push
Puck : DebugLog : Hit! You might also have several of them. Stop the game and see
what happens when you switch Collapse on and off and toggle the Warning filter.
You might also have several of them, as shown in the following screenshot:

Chapter 4

[65]

You can also debug variable values in the same way. Open playMaker, remove
the Debug Log action, and put a Debug Vector3 action right after Get Controller
Hit Info, setting the Log Level to Error and Vector3 Variable to hitPos. Then open
Console and test the game again, pushing the puck with your mallet. You should
see red error messages appear in Console now. If you have Error Pause toggled, the
game will pause and the Console panel will be revealed to show you the errors.

You can achieve a similar effect by using something called breakpoints. Get rid of the
Debug Vector3 action in the Push Puck state of the FSM of MalletLeft, then right-
click on the Push Puck state in the FSM view and select Toggle Breakpoint from the
contextual menu. A red line will appear next to the state's name in the FSM view.

Now, if you press play and touch the puck with your mallet, the game will stop the
same way it did when you used an Error Debug log and the Error Pause toggle in
Console, except this time the pause will be triggered by Playmaker. A red circle
with the name of the breakpoint's state will appear in the FSM view. The following
screenshot shows what it is supposed to look like:

Note that the transition arrow from the Push event to the Push Puck state became
yellow. This means that the breakpoint was triggered after this particular transition
and not something else.

You can unpause the game when it was paused because of a breakpoint, but it will
be paused all over again if this or another breakpoint gets triggered. You can remove
the breakpoint by right-clicking the state with a breakpoint and selecting Toggle
Breakpoint from the contextual menu.

Creating Your First Game

[66]

Another useful debugging tool is step-by-step execution. When the game is paused
(including when it was paused because of breakpoints or Error Pause), you can press
the next step () button in the toolbar or on the bottom of the playMaker panel.
This will execute the next frame of the game. As you already know, some actions are
executed in every frame so, using the Debug checkbox on the bottom of the State
tab in the playMaker panel, you can see the exact values of each parameter of each
action in any particular frame. You can press the next step button as you want to
observe changes. When you are done debugging, just unpause or stop the game.

The final debug tool that we are going to talk about is the Playmaker FSM Log panel
that lets you see everything that happens to your objects that are under Playmaker
control. You can open it by pressing the Debug button on the bottom of the playMaker
panel next to the play/pause/next step buttons, then select Open Log Window from
the drop-down menu. The following screenshot shows the FSM Log panel in action:

It might be a good idea to keep this log handy, so you could attach it as the second
panel to the same area of the screen as Hierarchy or Project.

Chapter 4

[67]

Exercises
There are some exercises that I would like to suggest that you try doing before you
move on to the next chapters, which cover more advanced topics. You already know
the basics of Unity and Playmaker—enough to make your game better or make a
completely new one from scratch. Doing these exercises will improve your skills
and help consolidate the new information that you have been exposed to in this
book. Exercises are sorted by difficulty, from the easiest to the hardest one:

1.	 Debug log all the important events in the game, including puck hits, goal
hits, and wall collisions for both mallets.

2.	 Hit sounds: Your Wall prefab has a FSM. Use it to play some sounds when
a mallet and/or a puck hits the wall. Freesound.org is a good resource for
free sound effects. If you are more into retro sounds, try bfxr.net.

3.	 Multiple levels: Try making multiple levels with obstacles/additional walls
in the middle. You can just duplicate them all over the place and then, when
the round is over, move on to the next level.

4.	 By now you have probably encountered a situation where the puck falls off
of the table, and you are forced to restart the game using the play button.
This is annoying for other players as well! You could try changing the table
set up, detecting the puck position, or some other way of fixing this.

When you are working on this, think about the way goal triggers
work, or be creative and come up with your own solution.

5.	 You know how to manipulate the Scene view and make new materials for
objects, and you also know how to change the size and the projection of
the camera. You can make your game much prettier if you come up with
a beautiful color scheme and/or camera projection/orientation.

6.	 By now you have probably started wondering whether mouse controls are
the best solution for this game. This is a perfectly valid question, and you
should make this decision yourself. You will never know for sure until you
try different ones, so take a look at the Input category in the Actions panel.

7.	 If you manage to implement keyboard controls, why not go a step further
and make a level where instead of competing with an AI opponent you could
play with your friend or family member while sitting at the same computer?

Creating Your First Game

[68]

8.	 Have a close look at states and actions that control the AI. Try modifying
some of the properties there or even replacing actions themselves in order
to make the AI more intelligent and life-like. You could try and make the AI
alternate its behavior based on the position of the puck by going back to its
own goal slot in order to protect it. You can also try and figure out a way to
stop the AI from being pushed backwards whenever the player pushes the
puck that the AI is trying to push itself.

In order to do this, you will need to add a Playmaker variable
to the puck and then use one of the Get FSM actions under the
StateMachine category.

9.	 Introduce a new game mechanic to the game: how about rounds of seven
games instead of one? Or power-ups? Or limiting the mallets to their side
of the table? You choose, you can do them all if you like.

Before you take up any of these challenges, you should know about some of the
useful Unity and Playmaker online resources that can help you find answers to
some, if not all, of the questions. You can be sure that questions will inevitably
appear when you start implementing something on your own.

•	 Unity answers: http://answers.unity3d.com/
•	 Unity wiki: http://wiki.unity3d.com/
•	 Unity forum: http://forum.unity3d.com/
•	 Unity documentation: http://unity3d.com/learn/documentation
•	 Playmaker manual: https://hutonggames.fogbugz.com/
•	 Playmaker forums: http://hutonggames.com/playmakerforum/

On Unity answers and the Unity forums, you should not hesitate to ask questions;
the Unity community is very active, and there are chances that your problem will be
solved in a matter of minutes. Just make sure you explain it well. But before asking,
I strongly advise you to use the search option first, since there is a good chance that
most of the problems that you might encounter have already been solved.

Chapter 4

[69]

Summary
In this chapter, you learned the fundamentals of game development with Unity
and Playmaker. You now know how to make objects, have them interact, make
them respond to input, and even move on their own based on your algorithm.
On top of that, you now know the fundamentals of vector geometry that you
are going to use in most of the games you will make.

The next chapter is about programming. You will learn how to code your own Unity
component and then make it into a Playmaker action. We will also demonstrate that
Playmaker is essentially visual programming that uses logic very similar to that of
conventional scripts.

Scripting and Custom Actions
In previous chapters, you learned how to make a game using Playmaker's in-built
actions. Unfortunately, their capabilities are limited, and sooner or later you will
find yourself in need of something that Playmaker does not know how to do out-
of-the-box. In this case, you can try and find a ready-made solution on the Internet,
but to make sure that there is an answer to every one of your questions, you will
certainly have to learn how to write scripts. These are the topics that we will
discuss in this chapter:

•	 Programming in Unity JavaScript (sometimes also called UnityScript) and C#
•	 Common Unity classes, variables, and functions
•	 Writing a script and using it as component
•	 Transforming a script into a Playmaker action

Writing a Unity Script
Explaining how programming works in general is beyond the scope of this book,
so I am going to assume that you already know what variables, functions, classes,
and operators are. If, however, you do not know these things, it should not take
you too long to pick up the basics using either Code Academy (http://www.
codecademy.com/tracks/javascript) or Unity's own starting level tutorials
(http://unity3d.com/learn/tutorials/modules/beginner/scripting).

We are going to start with JavaScript (JS) in this section, because it is much simpler
to use and does not require any understanding of object-oriented programming
beyond the component-based approach to development that we already discussed
in Chapter 3, Components and State Machines. Besides, you will end up writing
significantly less code.

Scripting and Custom Actions

[72]

Both JS and C# use the same Unity classes and functions, and the difference in syntax
is not very significant at all. However, for more complex things it is generally a good
idea to use C# (for one thing, it is currently impossible to write a Playmaker action in
JavaScript). We will start with a JS script and then translate it into C#, explaining the
differences. You can later choose whichever language works better for you.

We are going to create a script that replaces all the Playmaker actions in the Push
Puck state of both mallets' FSMs. When you see that you have to make a chain of
five or more actions, it is generally easier to combine them in a single custom action,
especially if you are planning to use this compound action on multiple objects.

Let us start by creating a new script. First of all, create a new folder named Scripts
using the Project panel. Then, right-click on the newly created folder and navigate
to Create | Javascript. Name the file PushPuck. Double-click on the file. The
standard Unity programming environment, MonoDevelop, should open. Select
everything there is in that script and replace it with the following code:

// Automatically added, compiler =directive
// that makes JavaScript more explicit
#pragma strict

// Global variables available from Inspector
var pushMag : float = 20f;

var collisionTag : String = String.Empty;

// Function that will detect the collision with
// controller and apply force in point of the collision
function OnControllerColliderHit (hit : ControllerColliderHit)
{
 if (hit.gameObject.tag == collisionTag)
 {
 // Get the position of the object we collided with
 var hitObjectPos : Vector3 = hit.transform.position;

 // Get the position of the collision
 var hitPointPos : Vector3 = hit.point;

 // Calculate the direction of the force,
 // multiply it by magnitude
 var pushForce : Vector3 = Vector3.Normalize(hitObjectPos -
 hitPointPos) * pushMag;

 // Finally, apply force in position
 hit.rigidbody.AddForceAtPosition(pushForce, hitPointPos);

Chapter 5

[73]

 // Print a message in Console saying that
 //the collision did happen and force was indeed applied
 Debug.Log("Detected hit with " + collisionTag +
 ", applying force of " + pushForce + " in " + hitPointPos +
 ".");
 }
}
@script RequireComponent(CharacterController)

You can download the example code files for all Packt Publishing books
you have purchased from your account at http://www.packtpub.
com. If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed directly
to you.

Press command + S (Ctrl + S in Windows) in MonoDevelop to save the changes
to the script.

Let us examine this code line-by-line. The first line is #pragma strict. This is
a preprocessor directive. If you have some previous programming experience, you
have probably seen something similar before. It does not participate in script logic;
what it does is make JavaScript more explicit by imposing more strict error handling
in the compiler. What it means for you is that you have to explicitly define the types of
your variables, which is something you would not normally do in standard JavaScript.

Another common preprocessor directive for JS is #pragma downcast,
which lets you get rid of warnings of implicit downcast if you do not
care about them.

After that there are two lines of variable declaration: pushMag and collisionTag
are declared as float and String. Once you attach this script to an object, these
variables will be displayed in the Inspector, because they are both public and
serialized. Since a script in Unity is treated as a component, variables appear
as parameters in the Inspector once you attach the script to a game object.

If you want to declare a variable that does not appear in the Inspector, but want
other scripts to still have access to it, you should put [System.NonSerialized]
before it. If you want to both hide it and close all access to it, you just need to put
private before the var keyword. Finally, if you want to expose a private variable in
Inspector, you should put [System.SerializableAttribute] before its declaration.

Scripting and Custom Actions

[74]

Next goes the function declaration: function OnControllerColliderHit (hit
: ControllerColliderHit). OnControllerColliderHit is one of the standard
Unity functions that are responsible for detecting collisions. Other such functions
are OnCollisionEnter, OnCollisionStay, OnCollisionExit, OnTriggerEnter,
OnTriggerStay, and OnTriggerExit.

The OnControllerColliderHit function gets called automatically if the object that
the script is attached to has a Character Controller component and that Character
Controller collides with a collider. The hit variable of type ControllerColliderHit
gets assigned and can be used inside the function. By typing hit and a dot, one can
access all kinds of information about the collision.

For instance, inside the function there is an if condition: if (hit.gameObject.tag
== collisionTag). We access the gameObject that our Character Controller has
collided with, using the dot operator, and then we use it again to access that tag in
gameObject. Then we compare that tag with the collisionTag string variable that
is assigned in the Inspector. If the tag matches the string we specified, the code inside
the curly brackets is executed.

In this script, we reproduced the exact sequence of actions in the Push Puck state of
the mallets' FSMs. You can consult it for reference. First, we get the position of the
puck and store it in a Vector3 variable called hitObjectPos. Then we get the point
of the hit and store it in another Vector3 variable called hitPointPos. We then
calculate the force of the push in one step instead of three that we used in Playmaker.
Finally, the force is applied to the puck's rigidbody.

After that there is a line with Debug.Log that prints information about every hit
in the Console. You can comment this line out by typing // in front of it. Keep it
uncommented for now to make sure that the script works.

The very last line of the script is @script RequireComponent
(CharacterController). It is there to make sure that there is a Character Controller
component attached to the game object that this script is attached to. If you attach
this script to a game object that does not have a Character Controller, it will be
attached automatically. If you try to remove the Character Controller without
removing PushPuck first, Unity will display a warning dialog window and not allow
you to do it.

Now it is time to see if our newly created script works. Go back to Unity and open
the Console panel. If there are no red errors, this means that the script was compiled
correctly and is ready to be used. If there is some kind of error in a script, double-
clicking on it in the Console will open the script in MonoDevelop and direct you to
the line where the error has occurred.

Chapter 5

[75]

If everything is okay, select MalletLeft, open the playMaker panel and in the Move
state disable the Collision Event action by unchecking the box next to its name.
If you start the game now, colliding with the puck will not push it. Now it is time
to use our brand-new PushPuck script. Drag and drop the PushPuck file from the
Project panel to the Inspector panel while having MalletLeft selected. It will attach
to it as a component. Set its parameters as shown in the following screenshot:

Open the Console panel and launch the game. Note how messages appear in the
Console every time you hit the puck with your mallet. If you stop the game and
double-click on one of the Debug.Logs, MonoDevelop will open and point you to the
Debug.Log line of the PushPuck script. Now that you know the script works, you can
comment that line out in order to prevent it from spamming the console.

Also, now you can apply it to the AI opponent as well. Remember to deactivate the
Collision Event action first.

Overview of standard Unity classes
While I am not going to copy the whole Unity Script Reference into this chapter of
the book, I would like to list a few important classes and functions that you are going
to use quite often.

The most obvious and frequently used standard functions are Awake, Start,
OnEnable, OnDisable, Update, and FixedUpdate:

•	 Awake is the first function that is called when a scene is loaded. The Awake
function can happen only once per scene load. It is generally a good idea
to put all initialization code into the Awake function.

•	 Start happens after Awake and also runs once. Sometimes it is a good idea
to put some code into Awake and some other code into Start in order to
make sure that one is executed after the other. When you have an Awake
function in one script and another Awake function in another script, you
cannot be sure which one will be executed first. If the order matters, put
one of the pieces of code into the Start function.

Scripting and Custom Actions

[76]

There's another way to ensure a correct script execution order. You
can decide which script is executed before or after by navigating to
Edit | Project Settings | Script Execution Order from the main menu
and then pressing the plus button in the Inspector, selecting the script
whose execution order you would like to define, and then dragging
it up or down in the interface. You will notice that the number on
the right changes as you drag the script: this number is the script's
execution order. You give the script its default execution order by
removing it from this list. You can do this by pressing the minus
button on the right from its name in the list.

•	 The OnEnable function is a lot like Start, except it is called every time the
object to which the script is attached is activated, as well as every time the
component itself is enabled.

•	 OnDisable is the opposite of OnEnable. It is called when the object or the
component gets disabled.

•	 Update is called every frame. Most of the games' logic usually happens here.
•	 FixedUpdate is called on physics update, which is generally significantly

more frequent than Update. All the code that cannot be frame rate dependent
(such as, for instance, movement) should be in the FixedUpdate function.

Apart from the functions, there are whole classes with their methods and variables
that you should absolutely know about when programming in Unity. It is hard
to emphasize something in particular, and you really should just go through all
the major classes listed in the Scripting Reference (http://docs.unity3d.com/
Documentation/ScriptReference/). There are really a lot of classes, and there is
hardly anyone who knows what all of them do, but we are going to go through a
few that you should look at first thing: Mathf, Vector3, Color, Input, GameObject,
Transform, Renderer, Material, Collision, Collider, and of course Object,
Behaviour, Component, and MonoBehaviour.

The last four classes are especially important, since they include things that you are
going to use every time you write a script in Unity, including functions like Update,
Destroy, GetComponent, and Start, as well as variables such as enabled, name,
layer, and tag. Try to read descriptions of these classes and their functions and
variables very carefully, and look at the basic examples the documentation offers
with them.

Chapter 5

[77]

Creating a Playmaker action
It is time to translate our script to C#. Create a new C# script the same way you
created the JS one. Call it PushPuckAction. Open the script and find the line starting
with the public class keywords. Make sure that the name of the class is the same
as the name of the script, then press command + S (Ctrl + S in Windows) to save your
changes if you made any.

As you can see, the default template for a C# script looks different from that of JS.
This is because more things are shown to you. For instance, in JS it is implied that
everything inside a script is, in fact, in a class with the same name, but you do not
see the class declaration anywhere. Component classes in Unity have to inherit from
MonoBehaviour, and it is shown in C#, while JS hides it from you. Then you have
the two lines with the using keyword. All JS scripts use these namespaces, but JS
hides it from you as well. The following script is the same one that we had before,
but this time translated to C#. Replace the template with it.

using UnityEngine;
using System.Collections;
[RequireComponent (typeof (CharacterController))]

public class PushPuckAction : MonoBehaviour
{
 // Global variables available from Inspector
 public float pushMag = 20f;

 public string collisionTag = string.Empty;

 // Function that will detect the collision with
 // controller and apply force in point of the collision
 void OnControllerColliderHit (ControllerColliderHit hit)
 {
 if (hit.gameObject.tag == collisionTag)
 {
 // Get the position of the object we collided with
 Vector3 hitObjectPos = hit.transform.position;

 // Get the position of the collision
 Vector3 hitPointPos = hit.point;

 // Calculate the direction of the force,
 // multiply it by magnitude
 Vector3 pushForce = Vector3.Normalize(hitObjectPos -
 hitPointPos) * pushMag;

Scripting and Custom Actions

[78]

 // Finally, apply force in position
 hit.rigidbody.AddForceAtPosition(pushForce, hitPointPos);

 // Print a message in Console saying that
 //the collision did happen and force was indeed applied
 Debug.Log("Detected hit with " + collisionTag +
 ", applying force of " + pushForce + " in " +
 hitPointPos + ".");
 }
 }
}

Press command + S (Ctrl + S in Windows), and let us look at what has changed apart
from the things already mentioned. The syntax of the component requirement is
different in C#. On top of that, the RequireComponent attribute has to be placed
before the class declaration.

The #pragma strict directive is gone. C# is explicit by nature and requires that
you specify types of everything, so it is not needed.

In C#, the following are quite useful: #region [Name]/#endregion,
which is a good way of dividing your code into regions that you
can fold. For example, writing #region Variables will create a
region called Variables. Then you will be able to press a minus in
a rectangle on the left of the MonoDevelop window to fold the code
region, the end of which you have to mark with #endregion.

The function keyword is not used. Instead, function declarations are preceded by
return types. You can specify a return type in JS as well, but this is done with the :
operator after the brackets, for example, function Update() : void.

Finally, all variable declarations are preceded with types of variables instead of
the var keyword. There are more differences in syntax that we cannot see in this
example because of the relative simplicity of our script, but these are the main ones.

Now, if you replace your JS script with the C# one on the Mallets, they will
act exactly the same way as before. Try doing this, then remove the Push Puck
Action component from the mallets. It is time to modify the script and transform
PushPuckAction.cs into an actual Playmaker action. Replace the contents of
PushPuckAction.cs with the following code:

using UnityEngine;
using System.Collections;

namespace HutongGames.PlayMaker.Actions
{
 [ActionCategory(ActionCategory.Character)]

Chapter 5

[79]

 [Tooltip("Detect collision with CharacterController, then push
 the other object into the opposite direction.")]
 public class PushPuckAction : FsmStateAction
 {
 [Tooltip("Push magnitude")]
 public FsmFloat pushMag;

 [Tooltip("Object with this tag will be pushed")]
 public FsmString collisionTag;

 public override void Reset ()
 {
 pushMag = 20f;
 collisionTag = string.Empty;
 }

 public override void DoControllerColliderHit(
 ControllerColliderHit hit)
 {
 if (hit.gameObject.tag == collisionTag.Value)
 {
 FsmVector3 hitObjectPos = hit.transform.position;

 FsmVector3 hitPointPos = hit.point;

 FsmVector3 pushForce = (hitObjectPos.Value - hitPointPos.
 Value).normalized * pushMag.Value;

 hit.rigidbody.AddForceAtPosition(pushForce.Value,
 hitPointPos.Value);

 Debug.Log("Detected hit with " + collisionTag.Value +
 ", applying force of " + pushForce.Value + " in " +
 hitPointPos.Value + ".");
 }
 }
 }
}

Press command + S (Ctrl + S in Windows) to save the script. As you can see, this time
more things have changed, although you can still see the same structure. Let us go
through the code line-by-line and examine it.

Scripting and Custom Actions

[80]

The using directives are the same, but the difference begins right after them. The
line namespace HutongGames.PlayMaker.Actions is obligatory for all Playmaker
actions. Without it Playmaker will not know that the script that you are writing is,
in fact, an action.

The [ActionCategory(ActionCategory.Character)] line puts your new
action into a category. In this case, we are putting it into the Character category,
because the action is about things colliding with the Character Controller. It could
also go into the Physics category. To move it there, the line would have to be
[ActionCategory(ActionCategory.Physics)].

After that there is [Tooltip("...")], which is quite self-explanatory. It shows
a short description when you select the action from the list in the Actions panel.

The PushPuckAction class now inherits from FsmStateAction instead of
MonoBehavior. You still have access to all the standard Unity classes, but
Playmaker-specific ones are added now.

Then there is another Tooltip, this time for a variable rather that a whole action.
The text within this tooltip will appear when you hover your mouse pointer over
the variable in the State tab of the playMaker panel or in the Actions panel.

Note that the type of the pushMag variable has changed from float to FsmFloat,
and the same goes for the string variable collisionTag—it is FsmString now.
These are Playmaker types of variables. The same operations can be performed on
them as before, but to access their value you now have to use the dot operator with
the word Value, so, for example, pushMag.Value will return a float, the value of
the Playmaker variable.

If you do not want to be able to assign a value directly in the State tab
of the playMaker panel and force choosing from existing variables,
you can write [UIHint(UIHint.Variable)] in the line before the
variable declaration, the same way we did for the tooltips.

A Reset function was added. This is what happens when a new action is added
to a state or when you right-click on the header of the action and press Reset. In it,
we reinitialize the variables.

Chapter 5

[81]

Then there is the DoControllerColliderHit function. Its name has changed from
the standard Unity OnControllerColliderHit. Inside the function everything has
stayed more or less the same with the only difference that types of Vector3 variables
have changed to FsmVector3, so to access their values .Value is used. Also, instead
of Vector3.Normalize, we used .nomalized, which does exactly the same thing.

While it is clear that in order to find examples and standard Unity
classes' API one has to go to Unity Script Reference, it may be less clear
about Playmaker-specific things. The easiest way to find examples is
opening the script files of existing Playmaker actions that are located
under the PlayMaker/Actions path, in your project. For example, if
you are not quite sure how to detect mouse input and you want to do it
via a Playmaker custom action, you can open PlayMaker/Actions/
MousePick.cs and look at how the creators of Playmaker solved
this problem.

Note that both Reset and DoControllerColliderHit have override preceding their
types. This means that we are replacing a base function defined in the Playmaker with
our own function. As a general rule, you will need to override all of the Playmaker
standard functions using this keyword.

Now that we are done writing a custom Playmaker action, we can try using it.
Remove the Push Puck and/or Push Puck Action components from MalletLeft and
MalletRight. In their Move state, remove the Collision Event action. Then locate the
newly created Push Puck Action in the Actions panel and add it to the state. Set the
properties as shown in the following screenshot. Finally, delete the Push Puck state
from the FSM as well as the Push event and transition. To delete a transition, you
just need to right-click on the event in the FSM view and press Delete Transition.

Scripting and Custom Actions

[82]

Summary
In this chapter, you were introduced to scripting in Unity, both JavaScript and C#,
and learned how to create custom Playmaker actions. You should try repeating
the process described in this chapter with another set of actions on your own.
Set yourself a gameplay goal, for instance, you could take one of the exercises
offered at the end of Chapter 4, Creating Your First Game, write a JS or C# script that
accomplishes the goal; and then translate it into a Playmaker action. You will feel
much more comfortable with scripting by the time you are done, as it is all about
practice, and no amount of reading and theory can replace a hands-on experience
with a text editor and a search engine.

The next chapters continue talking about advanced subjects, such as networking
and external APIs, and we are going to do some more scripting in Chapter 7,
Working with External APIs.

Networking and Multiplayer
In previous chapters you learned how to use Unity's interface, manipulate objects,
and add components and behaviors to them. You created gameplay using Playmaker
actions and Unity scripting. We also looked at making custom actions from C# scripts.
You made a fully playable air hockey game with an AI opponent using all these tools.

In this chapter, we are going to talk about networking. You will make a multiplayer
mode for the game using Photon Unity Networking (PUN), which is a helpful plugin
that comes with Playmaker and lets you make multiplayer games almost effortlessly.
We will also talk about the theory of networking in games and discuss Unity native
networking as an alternative to Photon.

In this chapter, you will cover:

•	 Understanding networking and multiplayer
•	 Setting up Photon Unity Networking
•	 Making a multiplayer game

Understanding networking and
multiplayer
Explaining things like TCP/IP and other low-level networking concepts is beyond
the scope of this book, and we are going to try and keep everything as close
to practical application as possible. On the other hand, it will be much easier
for you to build multiplayer if you are familiar with at least some theory.

Networking and Multiplayer

[84]

The first thing that you need to know is what servers and clients are. In simple terms,
a server is a computer that responds to network requests from other computers,
or more precisely, a system that responds to network requests from other systems,
because you may have multiple servers and multiple clients on the same computer.
This means that clients communicate with each other through a server. Typically,
player systems are clients in multiplayer games, while servers are on computers that
are accessed remotely. Sometimes, a player can host a game, in which case the player
either acts as a server or simply tells the server to reserve its resources for the game.

You may have heard about network architectures before. In games, the most popular
architectures are arguably client-server and peer-to-peer. The former means that
all the clients subscribe to a single server. The server hosts most of the important
information about the game and distributes it between the players. The latter is about
peers (players) connecting to one another directly, so all the clients are connected to
each other, and the network workload is distributed evenly.

The advantage of client-server is that it allows creating a more stable system that
ensures that cheating is either impossible or very hard, as well as makes it easier for
the developer to monitor everything and make changes to the game on the fly. This
method, however, is generally expensive and relatively hard to implement yourself if
you are just a solo developer who is learning to make his/her first multiplayer game.

Peer-to-peer does not require having a powerful server hosting multiple game
sessions at the same time, allowing players to connect to each other, distributing the
network workload between them. The drawback of peer-to-peer is that it tends to be
less stable, and it is relatively hard to monitor. On top of that, you still need a server
if you want to keep track of game sessions, perform matchmaking, and let your
players play on the Internet instead of just a local network.

It is hard to connect to the Internet without having a server, because
of something called Native Address Translation (NAT). Without
getting into much detail, it should be noted that it is something that
network routers do, and most of us have routers these days. A process
commonly called NAT punchthrough is used in order to connect one
computer to another, and this process requires a server acting as a
mediator for the first connection between two computers.

Chapter 6

[85]

In Unity, it is relatively easy to set up a Local Area Network (LAN), peer-to-peer
connection, or client-server connection with one of the players hosting the game
without using any external plugins. A LAN connection means that all the players are
connected to the same local computer network. Unfortunately, whatever you do, you
will need a server to make sure that players can always connect to each other over
the Internet, which is what we want to do. Photon takes client-server and wraps it
in an extremely easy to use interface that allows anyone to create multiplayer games
without any prior experience. On top of that, it is very affordable for what it is.

Some of the Photon services allow players to host their own servers, but those take
some time to set up. What we are going to use in this book is Photon Cloud. As the
name implies, all the game sessions happen in the cloud, thus on remote Photon
servers. All you need to do is synchronize your game's data through them and make
sure that players can find each other. You do not need to set up a server, and you do
not have to worry about the problems involved in making peer-to-peer multiplayer.

The way the synchronization works is that there is something called Network View
(Photon View in Photon), which is a component that makes one or more game
object's properties synchronized over the network. When such a property changes
in one client, it changes in all the clients, with the server keeping track of everything
and sending commands to clients. For example, mallet's position can be such a
property. This way, when player 1 moves their mallet, player 2 sees them move it
and vice versa. The same goes for almost any other property.

As we will show in this chapter's example, synchronizing positions
can be okay for player objects (such as mallets in air hockey or
characters in first person shooters), but objects that have physical
behaviors (such as the puck), can experience serious network delays
on remote computers. There is currently no easy solution for this
problem apart from using Unity native networking.

There are objects that can belong to the scene (like the walls and the background)
and so are exactly the same and unchangeable throughout all clients, and then there
are objects that belong to different clients, such as the mallets. Generally, you want
to synchronize as little data over the network as possible in order to avoid high
response times. Scene objects do not have to get synchronized since they do not
change. Moreover, this way each player's mallet responds only to that player's
input, which makes perfect sense gameplay-wise.

You are now ready to start setting up Photon. All this theory may sound
complicated, but it really comes down to synchronizing variables over
the network using a special Photon component called Photon View.

Networking and Multiplayer

[86]

Setting up Photon Unity Networking
Photon Unity Networking is a free Unity plugin with an optional paid subscription
that allows you to outsource most of the heavy lifting for building multiplayer games.
The free version has full functionality but is limited by the number of players that can
be online at the same time. This is not a problem, because all you need for testing is to
be able to connect as many players as your game requires for being playable (so two
for air hockey).

1.	 First of all, we will need to set up PUN. In the main menu, navigate to
PlayMaker | Addons | Photon Networking | Set up Photon Networking.
This should open the Photon Setup Wizard window. Click on the orange
Setup button.

2.	 If this is the first time you are using Photon, you are going to need an
account, so enter your e-mail in the appropriate field and click on the
Send button.

3.	 After that you can finish the registration process by clicking on the link that
you will have received by e-mail. Sign in to your account on http://cloud.
exitgames.com/, click on the New App button on your account page, enter
the game's name and description, and then click on Create. You should be
redirected back to your account page. In the Details section, copy the code
under AppID and go back to Unity.

4.	 In the Photon Setup Wizard, click on the Setup button, paste your AppID
into the Your AppId text field, and choose your region by pressing one
of the Cloud Region buttons. Make sure you choose the region that is
closer to you geographically as this will affect the connection speed of your
game's multiplayer.

5.	 Once you have pasted the AppID and chosen the region, click on the Save
button below. A window should pop up saying that your settings have been
saved. Click on OK. The following screenshot shows what the setup window
is supposed to look like once you do:

http://cloud.exitgames.com/
http://cloud.exitgames.com/
http://cloud.exitgames.com/
http://cloud.exitgames.com/
http://cloud.exitgames.com/
http://cloud.exitgames.com/
http://cloud.exitgames.com/
http://cloud.exitgames.com/

Chapter 6

[87]

6.	 Make sure that the green label saying Photon server is set up properly
appears near the top of the window. Press the Main Menu button right
below it. It should take you back to the first screen of Photon Setup Wizard.

7.	 Make a copy of your main game scene and call it Multiplayer, load it by
double-clicking it in the Project panel, and then go back to Photon Setup
Wizard window and click on Add Photon System to the scene. The button
should disappear, and you should see the second green label saying The
scene is set up properly.

8.	 At this point Photon Cloud is set up, and you can feel free to close the wizard
window. Save the Multiplayer scene, making sure that the PlayMaker
Photon Proxy game object was added to Hierarchy.

You can modify the settings any time you want. You can also change your AppID
if you choose to do so.

Now that we have added Photon to the project and made a scene dedicated
to multiplayer, it is time to synchronize objects over the network and set up
matchmaking.

Networking and Multiplayer

[88]

Making multiplayer
There are a few game objects that have to be synchronized in our game, including
the goals, the puck, and the mallets. We also need to make a few adjustments to
the scene and set up matchmaking.

We are going to use the Photon Playmaker example as a template for our game,
using the scenes from there and modifying them to suit our purposes. This is
generally a good idea if you want to set up multiplayer quickly, because these
examples feature numerous and complex FSMs that would take quite a lot of time
to set up, while most of the things you will need have already been implemented.

You can download the demo scenes here: http://www.hutonggames.com/samples.
php. Simply click on the link Download PlayMaker Photon Demo (requires Unity
3.5+ Playmaker 1.6.1+). Then you will need to find the downloaded unitypackage
file on your computer and double-click on it. This will prompt the import window.
Click on the Import button in the bottom-right corner of it.

The warning on the example download page advises against importing
the example into existing projects. We can ignore this warning, because
none of our files are named in the same way the ones in the example
are. As a general rule, you should always make sure that this is the case
before importing new packages into new empty projects. Otherwise
you might find yourself losing important assets in your projects.

Save the Multiplayer scene, and let us add the demo scenes to our project. They
should be under Photon Unity Networking/PlayMaker/Demo/Separated
Scenes Demo. Open the demo_lobby scene by double-clicking on its file.

The first thing we need to do is add the new scenes to our project. Open Build
Settings by pressing Shift + command + B (Shift + Ctrl + B in Windows), then click
on the Add Current button shown in the following screenshot. This will add the
currently open scene to the project. Do this for demo_lobby and demo_room.
Then close Build Settings.

http://www.hutonggames.com/samples.php
http://www.hutonggames.com/samples.php
http://www.hutonggames.com/samples.php
http://www.hutonggames.com/samples.php
http://www.hutonggames.com/samples.php
http://www.hutonggames.com/samples.php
http://www.hutonggames.com/samples.php
http://www.hutonggames.com/samples.php
http://www.hutonggames.com/samples.php
http://www.hutonggames.com/samples.php
http://www.hutonggames.com/samples.php

Chapter 6

[89]

These two scenes are going to be responsible for two states of the game: the
matchmaking state where players can find and create servers and the match state
where the game itself takes place. You can test how it works by opening two
instances of your game at once: one in the Unity Editor, one in your web browser.

1.	 To make a browser build, select File | Build & Run from the main menu
and save the build files wherever you want on your computer when the file
browser appears. You might want to create a special Build folder to make
sure that you can always find your build. This should automatically open
the game in your browser.

Please note that your platform has to be set to Web Player as
described in Chapter 1, Getting Started with Unity and Playmaker. If it
is not, open Build Settings, select Web Player from the list on the
left, and click on the Switch Platform button. Then close the Build
Settings window.

2.	 Specify your nickname, and the name of the room next to CREATE ROOM,
then click on GO on the right from the room name text field.

3.	 A new scene should load, where you control a construction worker that can
walk around on a plane.

4.	 Keeping the game open in your web browser, go back to the Unity Editor;
make sure that demo_scene is open and click on play.

5.	 Click on the GO button next to EXISTING ROOMS. This will join a random
exiting room. Since we only created one room, both of the game instances
will now be connected to the same game session. This way you can test how
networking works by looking at your scene from the points of view of
two players.

Networking and Multiplayer

[90]

Now that you have seen how multiplayer works in the example project, it is time
to modify its scenes to work with our game. We are going to keep the matchmaking
intact (in fact, it can be kept this way for almost any multiplayer game). The only
thing that needs changing is the maximum number of players that can join a single
room. You may have noticed that the example project allows for 100 players. We
need to change it to 2.

1.	 In the demo_lobby scene, select the Menu game object.
2.	 Open the Create Room FSM from the second drop-down list from the left

in the menu on top of the playMaker FSM view.

3.	 In the Photon Network Create Room action of the create room state, set the
Max Number Of Players property to 2. Now up to two players will be able
to join one room.

4.	 Save the scene.

Now that the lobby is all set, it is time to set up the game itself to work via the
network.

1.	 Make a copy of the demo_room scene as backup to be able to go back to if
something goes wrong. Open the original demo_room scene. You should
have an unnamed game object with four children as well as Chat, Game,
and the PlayMaker Photon Proxy game objects.

2.	 You can delete everything except the Game game object. This is where most
of the initial multiplayer logic (such as instantiating players) takes place.

3.	 Save the scene and go back to the Multiplayer scene.
4.	 Select all the objects in this scene's Hierarchy by either pressing command

+ A (Ctrl + A in Windows) or clicking on the first item in the list and then
Shift-clicking on the last one.

5.	 Copy the selected objects by pressing command + C (Ctrl + C in Windows),
then open the demo_room scene again and press command + V (Ctrl + V
in Windows) to paste them.

Chapter 6

[91]

6.	 Create empty prefabs called Goal, Mallet, and Puck under Prefabs/
Resources. Create the folders if you don't have them yet.

7.	 Drag the GoalLeft game object into the Goal prefab, MalletLeft game
object into the Mallet prefab, and Puck game object into the Puck prefab.

8.	 Delete the following objects from the scene: MalletLeft, MalletRight,
and Puck. They are going to be instantiated from prefabs that you just
created when players join the room.

9.	 Make GoalLeft and GoalRight invisible by deactivating their Mesh
Renderer components. These objects will be instantiated from prefabs
as well, but not right away, so we need to keep them in the scene for their
colliders to make sure that no mallets can get out of the table. You can also
rename both of them Blocker, since they are needed to block the mallets.

10.	 Select the Game game object and open its Game Manager FSM in the
playMaker panel.

11.	 In the Variables tab, make sure you have three GameObject variables:
goalRef, player prefab, and puck prefab, as well as an Int variable player
count. Drag the Mallet prefab into the GameObject slot of player prefab
and the Puck into the the GameObject slot of puck prefab.

12.	 In the Events tab, create a new event called Two Players.
13.	 In the Photon Network Instantiate action of the instantiate player state,

make sure that Rotation is set to (0, 0, 0).
14.	 Add another Photon Network Instantiate action to the same state. Set its

Game Object property to Goal by dragging the Goal prefab from the Project
panel. Set the Position property to (-7.98, 2, 0) and the Rotation property to
(0, 90, 0). Set Store Object to goalRef.

15.	 Make a new state called How many players? and add Photon Network
Get Room Properties and the Int Compare actions to it. Make
sure the former is before the latter in the list. If an error saying that
PlayMakerPhotonGameObjectProxy component is required appears, click on
it, and the component in question will be added automatically.

16.	 Set the Player Count property of the Photon Network Get Room Properties
action to the player count variable.

17.	 In the Int Compare action, set the Integer 1 property to the player count
variable and the Integer 2 property to 2. Set Equal to Two Players. Check the
Every Frame box. If you see an error about an event, ignore it for now; it will
be fixed later on.

18.	 Make a new state called Create Puck.

Networking and Multiplayer

[92]

19.	 Add a FINISHED event to the instantiate player state. Drag a transition
from it to How many players?

20.	 Add a Two Players event to How many players? and drag a transition
from it to Create Puck.

21.	 In the Create Puck state, add two actions: Photon Network Instantiate and Set
Position. Make sure that Set Position is the last in the list. If an error saying
that a PlayMakerPhotonGameObjectProxy component is required appears,
click on it, and the component in question will be added automatically.

22.	 Set the Game Object property of Photon Network Instantiate to the Puck
prefab variable. Set Position to (0, 0.3, 0) and Rotation to (0, 0, 0).

23.	 In the Set Position action, set Game Object to Specify Game Object and
select the goalRef variable from the drop-down list. Make sure that Vector
is None, X is 7.98, and Y and Z are None.

24.	 Save your scene.

This state machine is responsible for spawning objects that should be unique to
different players: players' mallets and goals are spawned as soon as the players
connect to the room, while the puck is spawned once the second player connects
to make sure that player 1 does not win while alone in the room.

Now we are going to set the individual parameters and synchronization of each
of the prefabs we created, starting with Goal.

1.	 Select the Goal prefab in the Project panel and add three components to
it using the Inspector panel: PlayMaker FSM (Script), Photon View, and
Play Maker Photon Game Object Proxy. You can find these components by
clicking on the Add Component button in Inspector and typing their names
in the search field.

2.	 Drag the Transform component of Goal prefab into the Photon
View component's Observe property.

3.	 Name the state machine ColorSync using the FSM tab of the
playMaker panel.

4.	 Rename the starting state to is mine? and add two events to it: YES
and NO.

5.	 Create two new states: Green and Red. Then make transitions from YES
to Green and from NO to Red.

6.	 In the is mine? state, add a Photon View Get Is Mine action. Set Is Mine
Event to YES and Is Not Mine Event to NO.

Chapter 6

[93]

7.	 In the Green state, add a Set Material action. Set Material to the material
you created for the green goal.

8.	 Do the same for the Red state, but choose the red material instead.

This state machine makes sure that goals change color in the beginning of the game.
Verify that you still have the PlayMaker Photon Proxy game object in the scene. If
you don't copy it from the Multiplayer scene. At this point you may want to build
and launch two instances of the game to test that everything works well.

Now let us change the color of the mallets to match the goals' colors. We will also
make sure that only the owner of the Mallet can move it.

1.	 Find the Fsm Photon player prefab under Photon Unity Networking/
PlayMaker/Demo/Resources in the Project panel and select it.

2.	 Copy Play Maker Photon Game Object Proxy and the Photon View
components over to the Mallet prefab by right-clicking the components'
headers of Fsm Photon player and selecting Copy Component from the
drop-down menu and then right-clicking one of the components' headers
in the Mallet prefab and selecting Paste Component As New from the
drop-down menu.

3.	 Do the same for three of the Fsm Photon player prefab's Play Maker FSM
components: the ones called GameObject naming, Position synch, and
variable synch repository.

4.	 Now the Mallet should have four FSMs. Rename the one called FSM
to Movement to make sure we remember what it does.

5.	 Drag the Play Maker FSM called variable synch repository into the
Observe slot of Photon View. Set the Observe option property to
Reliable Data Compressed.

6.	 In the playMaker panel, open the Movement FSM and add a Bool variable
to it called isMine.

7.	 Set up the FSM as shown in the following screenshot, making sure that both
the Move and Push Puck states stay unchanged. If you don't have the Push
Puck state (you probably have it) confirm that the Move state has the Push
Puck action attached to it. In order to set a state as a start state, right click
on it and select Set as Start State from the contextual menu.

Networking and Multiplayer

[94]

8.	 Select the Is mine? state and add the Photon View Get Is Mine action to it.
Set its parameters as shown in the following screenshot, then add a transition
from the Yes event to the Move state:

9.	 Switch to the GameObject naming FSM.
10.	 In the add "me" to the gameObject name state, add a Set Material action

and set its Material property to the green material you created for one of the
mallets. Don't worry if it is no longer green, just make sure that each player's
Goal material matches his/her Mallet material.

11.	 In the add player to gameObject name state, add a SetMaterial action as
well. This time set the Material property to the material that matches the red
goal's material.

12.	 Switch to the Position synch FSM, and select the Set player position with
lerp state.

13.	 In the Set Position action, set X to None, Y to 0.85, and Z to None.

Now the mallets should be good to go, their positions synched over the network
and colors set on startup. Save your scene and confirm that mallets' positions are
synced by building the game and launching two instances of it while connecting
to the same match.

All that is left is to sync the Puck's position over the network.

1.	 Select the Puck prefab and add the Photon View and Play Maker Photon
Game Object Proxy components to it.

2.	 Copy the Position synch and variable synch repository FSMs to it from the
Fsm Photon player prefab.

Chapter 6

[95]

3.	 Drag the variable synch repository component of Play Maker FSM into
the Observe slot of Photon View and set its Observer option to Reliable
Data Compressed.

4.	 Switch to the Position synch FSM and select the Set player position with
lerp state.

5.	 In the Set Position action, set X to None, Y to 0.3, and Z to None.
6.	 Save your scene.

The last thing that you need to do is make sure that one of the players leaves
the room instead of just reloading the level once the puck hits a goal. To do that,
select the GoalTriggerLeft game object and, in the LoadLevel state of its FSM,
replace the Load Level action with Photon Network Leave Room. Do the same for
GoalTriggerRight.

Now your multiplayer should be set up. Before testing everything, confirm that you
have copied all of the files over from the Multiplayer scene correctly. Make sure
that there is a game object called PlayMakerPhotonProxy in both demo_lobby and
demo_room scenes. If it is missing in one of the scenes, add it by going to PlayMaker
| Addons | Photon Networking | Components | Add Photon proxy to scene from
the main menu, then save the scene.

You can test it by making a build and opening it in your browser while launching the
game in the Editor. Make sure you always start from the demo_lobby scene, because
otherwise the matchmaking will not work.

You will see that the mallets' and the puck's positions are synched over the network.
That is, they move simultaneously in both Editor and web browser. You will also
notice that the movement of the remote object is somewhat jerky and imprecise
(especially the puck on the host's client). This is due to the inevitable network delay
and physics data being calculated more often than Photon packages are being sent.
At the moment the only real solution to this problem is switching to Unity native
networking, which, however, requires that you have your own server if you want
the game to work over the Internet.

The place where the objects' movement is smoothed out is the Position synch FSM
of Puck and Mallet prefabs. If you look at the get player position and Set player
position with lerp states of these state machines, you will see that, if the object was
first created on the local machine, its position gets saved in a variable every frame
and synched over the network. If the object does not belong to the player's client, the
variable is read, and then the position of the local copy of the object is interpolated.

Networking and Multiplayer

[96]

You could try changing the Amount property of the Vector3 Lerp
2 action in the Set player position with lerp state. This variable
determines the precision of the interpolation. If you want to know
more about the way PUN works under the hood, make sure you
consult its online documentation that explains every state machine in
the demo scenes in great detail: https://hutonggames.fogbugz.
com/default.asp?W927

As you can see, Photon networking is quite easy to set up, but is not a very good
solution for games that require physics simulation. This is mostly due to cloud
server limitations and limited integration with the Unity engine. Most simple
games that don't rely on physics so heavily can benefit from Photon greatly.
In other cases, Unity native networking should be used. More information
about it can be found in the Network Reference Guide section of the Unity
documentation: http://docs.unity3d.com/Documentation/Components/
NetworkReferenceGuide.html

Playmaker is capable of working with native Unity networking as well. You can
check the Network section of the Actions panel for the list of available Playmaker
actions and compare them with the actions described in the reference material.

Summary
In this chapter, you learned the basics of networking in games, set up the Photon
Unity Networking plugin to work with Playmaker, and added PUN multiplayer
to your game. We also examined the advantages and disadvantages of Photon and
showed that it may not be suitable for physics games such as air hockey, because
of the network delay.

The next chapter will show how to put your game on the Web and add Kongregate
API to save game scores in an online leaderboard.

https://hutonggames.fogbugz.com/default.asp?W927
https://hutonggames.fogbugz.com/default.asp?W927
https://hutonggames.fogbugz.com/default.asp?W927
https://hutonggames.fogbugz.com/default.asp?W927
https://hutonggames.fogbugz.com/default.asp?W927
https://hutonggames.fogbugz.com/default.asp?W927
https://hutonggames.fogbugz.com/default.asp?W927
https://hutonggames.fogbugz.com/default.asp?W927
https://hutonggames.fogbugz.com/default.asp?W927
https://hutonggames.fogbugz.com/default.asp?W927
https://hutonggames.fogbugz.com/default.asp?W927
https://hutonggames.fogbugz.com/default.asp?W927
https://hutonggames.fogbugz.com/default.asp?W927
https://hutonggames.fogbugz.com/default.asp?W927
http://docs.unity3d.com/Documentation/Components/NetworkReferenceGuide.html
http://docs.unity3d.com/Documentation/Components/NetworkReferenceGuide.html

Working with External APIs
In previous chapters you created a multiplayer air hockey game. One way of
expanding it would be making more levels and mechanics for it, but you already
know how to do that. The other way would be integrating it with different external
services, such as analytics, online scoring platforms, and leaderboards.

In this chapter we are going to talk about application programming interfaces
(APIs). We will cover the following topics:

•	 API—what it is and what it's used for
•	 Existing useful external APIs
•	 The way Unity typically communicates with external APIs
•	 Integrating a game with one of the existing APIs (Kongregate)

We will look at some code snippets that you are going to use to integrate your game
with Kongregate, test the game online, and save the number of times the player wins
on Kongregate's servers.

About external application programming
interfaces
In simple terms and in the context of Unity, an external API is an external library
of code that can be accessed from a Unity script and provides some additional
functionality to your game. Some APIs let you access the JavaScript code of the page
your WebPlayer game is on, while others provide a possibility of transferring game
data and getting information to remote servers.

You have already used one API in your air hockey game in the previous chapter:
that of Photon Unity Networking. Most of the calls to remote servers are buried
deep inside of its source code, but it is nevertheless an API.

Working with External APIs

[98]

Other APIs that you might encounter include online game platforms, such as
Kongregate and Facebook; analytics tools, such as Google Analytics and Game
Analytics; and online data storage platforms, such as Scoreoid and Steamworks.

In addition to different functions, APIs use different ways to connect to the external
code base and different ways to communicate with it later, which may seem like a
hard task, but rarely is. There is generally a comprehensive guide to the API on its
website, and even when there is not the Unity community often comes to the rescue,
putting together its own guides, template files, and code snippets readily available in
Unity answers or forums.

We are going to integrate our game with Kongregate to show how this works
and what kind of code you need to use. Kongregate was chosen as a fairly
straightforward, very common, and completely free API.

Uploading your game to Kongregate
Before starting to use the Kongregate API, you have to see that you can actually
upload your game to the website. To do that, you are going to need a Kongregate
account if you do not have one yet.

1.	 Go to http://kongregate.com and near the top of the page find and click
the Register link, as shown in the following screenshot:

2.	 A registration form should appear, offering you to either connect using
Facebook or enter your account information manually. Do that and click
on the Sign Up button.

3.	 Now, if you go to the Kongregate main page and hover over the GAMES
button just under the sign-in block of the website, a submenu should
appear, divided into three sections: FEATURED, CATEGORIES, and
DEVELOPERS. It is the last one that is of interest to us. Find the UPLOAD
A GAME button there and click on it.

4.	 Open Unity and make a Web build, like you did to test multiplayer in
Chapter 6, Networking and Multiplayer; remember where you saved it.

5.	 On the Kongregate website, you now should have the game information
menu. Enter the game's name, category, and description, then click
on Continue.

Chapter 7

[99]

6.	 The next step asks you to choose game files and upload them to Kongregate's
server. Click on the Choose File button next to Game File, navigate to the
folder where you saved your Web build from Unity, select the file with the
unity3d extension, and click on Open.

7.	 In the two text fields below, enter the game's resolution (width 960 and
height 600).

8.	 Upload an image as an icon. You can test, but cannot publish a game that
does not have an icon.

9.	 You can also upload images as screenshots. This is not necessary, and you
can do this later.

10.	 Check This game is exclusive to Kongregate if you are not planning to
upload the game anywhere else. This will ensure that you get more ad profits
for people playing your game.

11.	 Read the License Agreement and check the four checkboxes below it.
12.	 The Statistics API section is what we are going to be using the Kongregate

API for. Click on Add a statistic.
13.	 Set Statistic Name to Wins and select the Add Type radio button. This is the

statistic type, which determines how the statistic will behave. In our case, we
will simply add the player's wins up. If your game had a scoring system, you
could create another statistic of Max type for it.

14.	 Check Display in leaderboards to make sure that the statistic shows up on
the game's public page.

15.	 Click on Save, then click on Upload on the bottom of the form.
16.	 After a short waiting period, the game should show up on your screen, being

completely functionally playable. You can test the multiplayer mode to make
sure that nothing has changed since you uploaded it to the server.

If everything works correctly, we should integrate our Wins parameter with the
game itself. To do that, we will need to write a couple of scripts.

Writing Kongregate API code
There are two scripts that we are going to have to make in order to get our Wins
scoring parameter saved and appearing in the leaderboards. The first one will set up
Kongregate, make sure that the game is indeed on the Kongregate page, and inform
the game about the API connection status.

Working with External APIs

[100]

The second script is going to be about incrementing a score for the player who wins
based on the goal the puck hits.

Without any further delay, the following is the code for the handshake script, which
is called KongregateAPI:

using UnityEngine;
using System.Collections;

// You have to add System in order to access the Convert class
using System;

public class KongregateAPI : MonoBehaviour
{
 // We are going to check this variable to confirm that
 // Kongregate connection is established
 public static bool isKongregate = false;

 // Player ID
 public static int userId;

 // Player account name. This can be used for greeting the player,
 // for example
 public static string userName;

 // Game ID
 public static string gameAuthToken;

 void Start()
 {
 // Establishing connection with Kongregate
 // Make sure that the game object this script is attached to
 // is in the first scene that gets loaded,
 // and that the name of the object it is attached to is
KongregateAPI
 Application.ExternalEval(
 "if(typeof(kongregateUnitySupport) != 'undefined'){" + "
 kongregateUnitySupport.initAPI('" + gameObject.name +
 "','OnKongregateAPILoaded');" + "};");
 }

 // This method gets called if the game is on Kongregate
 void OnKongregateAPILoaded(string userInfoString)
 {
 Debug.Log("Kongregate connection established.");

Chapter 7

[101]

 isKongregate = true;

 // Kongregate returns a string of chars that we divide
and save into variables
 string[] parms = userInfoString.Split("|"[0]);
 userId = Convert.ToInt32(parms[0]);
 userName = parms[1];
 gameAuthToken = parms[2];
 }
}

This code is fairly straightforward and does not require much explanation on top
of the comments already given within the script. Only two things should be noted:
Application.ExternalEval is what makes your Unity game communicate with
the JavaScript of the page it is on. Unity sends a message in the form of a string of
text to the page, which is picked up by Kongregate and interpreted as code. The
contents of this string are using the Kongregate API, the full version of which can
be consulted here: http://www.kongregate.com/developer_center/docs/en/
using-the-api-with-unity3d. ExternalEval is a very common method for
accessing external APIs.

It is imperative that the game object your script is attached to (as well as the script
itself) is called KongregateAPI. Create an empty game object in the demo_lobby
scene and attach the script to it, then save the scene.

Once the JavaScript code on the page is executed, Kongregate sends a
callback message back to Unity. This message always takes the form of the
OnKongregateAPILoaded(string userInfoString) method. This, too, is part
of the API. We then separate the string that it gives us using the | symbol and
save parts of it into variables.

There is really no point in making the Kongregate API script into
a Playmaker action, unless you don't want to use any components
other that Playmaker in your game, in which case I will leave it up to
you to do it: the process is similar to that which we used in Chapter 5,
Scripting and Custom Actions.

Working with External APIs

[102]

Unless you have changed something in the winning condition, the game does not
currently distinguish between player 1 and 2 winning, and simply restarts the
game no matter what happens. However, due to the fact that we have a multiplayer
mode and want to save each player's wins, this does not work for us anymore. We
are going to need to make the goal trigger into prefabs and spawn them the way
we already spawn the goals and the mallets; then, when the puck hits one of them,
detect if it belongs to us, and, if it does not, send the win to Kongregate.

To begin with, let us prepare a Playmaker action that sends wins to Kongregate.

using UnityEngine;
using System.Collections;

namespace HutongGames.PlayMaker.Actions
{
 [ActionCategory(ActionCategory.Level)]
 [Tooltip("Increment the Wins variable on Kongregate.")]
 public class KongregateSendAction : FsmStateAction
 {
 public override void OnEnter()
 {
 if (KongregateAPI.isKongregate)
 Application.ExternalCall("kongregate.stats.submit", "Wins", 1);
 }
 }
}

Here Application.ExternalCall is used. It calls an external function in the page
as opposed to ExternalEval, which evaluates a code snippet that may or may not
contain function calls.

ExternalCall and ExternalEval both only work in
Unity Webplayer.

Follow these steps in order to increment the Wins statistic on Kongregate:

1.	 Open the demo_room scene.
2.	 Create a prefab called GoalTrigger, then drag the GoalTriggerLeft game

object to it from Hierarchy.
3.	 Delete both GoalTriggerLeft and GoalTriggerRight game objects from the

scene; we are going to spawn them on startup.

Chapter 7

[103]

4.	 Select the Game game object and, in its Game Manager FSM, add a
GameObject variable called goalTriggerRef.

5.	 Navigate to this FSM's instantiate player state. Add a new Photon Network
Instantiate action to this state. Set the Game Object property to GoalTrigger,
Position to (-9, 0.42, 0), Rotation to (0, 90, 0), and Store Object to
goalTriggerRef.

6.	 Open the Create Puck state and add a Set Position action to it. In this action,
set the Game Object property to Specify Game Object, then set it to the
goalTriggerRef variable. Set Vector, Y, and Z to None and X to 9.

7.	 Now that we have set up the instantiation of our goal triggers, we need to
send our scores to Kongregate. Select the GoalTrigger prefab in the Project
panel and add a Photon View component to it, then drag its Transform
component into the Observe slot of Photon View.

8.	 Add a PlayMaker Photon GameObject Proxy component to the prefab.
9.	 In the playMaker panel, make the FSM look as shown in the following

figure, adding all the missing states, events, and transitions.

10.	 Add a Photon View Get Is Mine action to the is mine? state. Set Is Mine
Event to YES and Is Not Mine Event to NO, provided that you have created
the YES and NO events in the Events tab before. If you haven't, go ahead
and do it now.

11.	 Add Kongregate Send Action to the KongregateSend state. This is the action
that we created earlier.

12.	 Save the scene.

Now, if you build the game, upload it to Kongregate, play, and win, a score will be
added. You should see a HIGH SCORE tab appear on the right on your game's page.

Working with External APIs

[104]

If it does not, don't worry, sometimes it can take some time for the first score to be
submitted. If you feel like there is a problem, you can see exactly what commands
Kongregate exchanges with your game by opening the JavaScript console of your
internet browser while on the game's page.

Once you are sure that the game is working well and the Wins statistic is being
submitted properly, you can either try adding some more stats or just publish the
game by pressing the appropriate link near the top of the page. Then you can test it
by either sending the public link to your friends or by opening it twice yourself and
joining the same server.

Summary
In this chapter, you learned what an external API in Unity is and what kinds of
external APIs there are, and then added one to your game. You uploaded your
game to Kongregate and saved a game statistic for your multiplayer air hockey
game on Kongregate's servers.

Index
Symbols
#pragma strict directive 78

A
Artificial Intelligence (AI)

about 60
implementing 60-66

Assets submenu 20
Asset Store

URL 11
used, for buying Playmaker 11, 12

Awake function 75

C
client-server networking 84
Code Academy

URL 71
component

about 36
properties 38, 39

component-based architecture 35
Component submenu 20

D
default interface layout, Unity 14

E
Edit submenu 20
external application programming

interfaces 97, 98

F
File submenu 20
Finite State Machine. See FSM
FixedUpdate function 76
FSM

about 19, 43

G
game

uploading, to Kongregate 98, 99
Game Analytics 98
GameObject submenu 20
game objects

about 36, 37
interactions 47-49

gizmo 30
Google Analytics 98

H
Help submenu 21
Hierarchy panel, Unity 23, 24
Hutong Games

URL 11

I
Inspector panel, Unity 25-27
installation, Unity 8-10
interface, Playmaker 32-34
interface view 19

[106]

J
JavaScript (JS) 71

K
Kongregate

game, uploading to 98, 99
URL 98
Wins statistic, incrementing on 102

Kongregate API code
writing 100-103

L
Local Area Network (LAN) 85
low-level networking concepts 83-85

M
main menu 20
mallet

moving 44-46
multiplayer

about 83
creating 88-96

N
Native Address Translation (NAT) 84
NAT punchthrough 84
Network View 85

O
OnControllerColliderHit function 74
OnDisable function 76
OnEnable function 76

P
peer-to-peer networking 84
Photon Unity Networking (PUN)

about 83, 86
setting up 86, 87

physics
using 51-54

Playmaker
about 11

buying 12
importing 12
interface 32-34

Playmaker action
script, transforming into 77-81

PlayMaker submenu 21
prefabs

working with 39-42
project

setting up 13-16
Project panel, Unity 28, 29
properties, component 38, 39

R
raycast 45

S
scenes 36
Scoreoid 98
script

transforming, into Playmaker action 77-81
server 84
standard Unity classes

overview 75, 76
Start function 75
state, FSM 43
Steamworks 98

U
Unity

about 7
default interface layout 14
downloading 7
Hierarchy panel 23, 24
Inspector panel 25-27
installing 8-10
interface view 19
main menu 20-22
Project panel 28, 29
URL, for downloading 7
URL, for tutorial 71

Unity.exe 8
Unity.pkg 8

[107]

Unity script
writing 71- 75

Update function 76

V
vector geometry

using 51-54
views, Unity 29-31

W
Window submenu 21
win/lose conditions 55-59
Wins statistic

incrementing, on Kongregate 102, 103

Thank you for buying
Practical Game Design
with Unity and Playmaker

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Unity 4.x Cookbook
ISBN: 978-1-84969-042-3 Paperback: 386 pages

Over 100 recipes to spice up your Unity skills

1.	 A wide range of topics are covered, ranging
in complexity, offering something for every
Unity 4 game developer

2.	 Every recipe provides step-by-step instructions,
followed by an explanation of how it all works,
and alternative approaches or refinements

3.	 Book developed with the latest version of Unity
(4.x)

Unity iOS Game Development
Beginners Guide
ISBN: 978-1-84969-040-9 Paperback: 314 pages

Develop iOS games from concept to cash flow
using Unity

1.	 Dive straight into game development
with no previous Unity or iOS experience

2.	 Work through the entire lifecycle of developing
games for iOS

3.	 Add multiplayer, input controls, debugging,
in app, and micro payments to your game

Please check www.PacktPub.com for information on our titles

Unity for Architectural
Visualization
ISBN: 978-1-78355-906-0 Paperback: 144 pages

Transform your architechtural design into an
interactive real-time experience using Unity

1.	 Simple instructions to help you set up
an interactive and real-time scene

2.	 Excellent tips on making your presentations
attractive by creating interactive designs

3.	 Most important features of computer games
covered, to develop compelling, interactive
scenes for so-called “serious games

Unity 4.x Game AI Programming
ISBN: 978-1-84969-340-0 Paperback: 232 pages

Learn and implement game AI in Unity 3D with a lot
of sample projects and next-generation techniques to
use in your 3D projects

1.	 A practical guide with step-by-step instructions
and example projects to learn Unity3D scripting

2.	 Learn pathfinding using A* algorithms as well
as Unity3D pro features and navigation graphs

3.	 Implement finite state machines (FSMs),
path following, and steering algorithms

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with
Unity and Playmaker
	Downloading and installing Unity
	Buying and importing Playmaker
	Setting up your project
	Summary

	Chapter 2: User Interface
	Interface overview and main menu
	Hierarchy panel
	Inspector panel
	Project panel
	Views

	Playmaker interface
	Summary

	Chapter 3: Components and State Machines
	Game objects, components,
and properties
	Working with prefabs
	Finite state machines, states, and actions
	Interaction between game objects
	Summary

	Chapter 4: Creating Your First Game
	Using Vector geometry and physics
	Win/Lose conditions
	Creating artificial intelligence
	Exercises
	Summary

	Chapter 5: Scripting and Custom Actions
	Writing a Unity Script
	Overview of standard Unity classes
	Creating a Playmaker action
	Summary

	Chapter 6: Networking and Multiplayer
	Understanding networking and multiplayer
	Setting up Photon Unity Networking
	Making multiplayer
	Summary

	Chapter 7: Working with External APIs
	About external application programming interfaces
	Uploading your game to Kongregate
	Writing Kongregate API code
	Summary

	Index

