

Unity 3 Game
Development
HOTSH T

Eight projects specifically designed to exploit Unity's full
potential

Jate Wittayabundit

 BIRMINGHAM - MUMBAI

http://www.packtpub.com/authors/profiles/jate-wittayabundit

Unity 3 Game Development HOTSH T

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals. However,
Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2011

Production Reference: 1180811

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK

ISBN 978-1-849691-12-3

www.packtpub.com

Cover Image by Jate Wittayabundit (jatewit@jatewit.com)

Credits

Author
Jate Wittayabundit

Reviewers
Jaap Kreijkamp

Fraser McCormick

Brad McGinn

Clifford Peters

Acquisition Editor
Steven Wilding

Development Editor
Maitreya Bhakal

Technical Editor
Manasi Poonthottam

Project Coordinator
Zainab Bagasrawala

Copy Editor
Laxmi Subramanian

Proofreader
Aaron Nash

Indexer
Monica Ajmera Mehta

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

http://www.packtpub.com/authors/profiles/jate-wittayabundit

About the Author

Jate Wittayabundit was born in Bangkok, Thailand in 1980 and has a passion for both
Arts and Mathematics. He received a bachelor's degree in Architecture in 2003 and was
an interior architect for several companies. Then, he came to Ottawa, Canada in 2005 and
graduated in the Game Development program at Algonquin College in 2008.

Since he graduated in the Game Development program, he started working at Launchfire
Interactive Inc. (www.launchfire.com) as a Flash ActionScript programmer and developed
many games and interactive content (for clients such as Dell, Alaska Airline, and so on). In
2009, he decided to move to Toronto, which is a bigger city, to get more chances to work
in the game industry. He started a new position as a Game Developer and 3D Artist at
Splashworks.com Inc. (www.splashworks.com). At Splashworks, he got a chance to work
with many different games and clients (such as Shockwave, Swiss Chalet, and so on). It also
gave him a chance to get to know Unity and to work with it.

The first video game he played was Super Mario Bros. and he has loved playing games ever
since. He believes that being an architect is also his strength; it supports his concepts and
ideas of how the real world could apply in the virtual world.

In his spare time, he loves to work on 3D software, such as Zbrush or 3D Studio Max. He also
loves painting and drawing. Currently, he's trying to marry his architectural and 3D skills with
his game development skills to create the next innovation game.

You can go to www.jatewit.com to check out some of his works.

http://www.packtpub.com/authors/profiles/jate-wittayabundit
http://www.launchfire.com
http://www.splashworks.com

About the Reviewers

Jaap Kreijkamp completed his master's degree in Computer Science at Vrije Universiteit,
Amsterdam. He started his career as a software developer at the university. After four years,
he moved into developing embedded software and large payment servers before ending up
as a game developer. Jaap has worked on several educational computer programs as a lead
developer, and recently published the iOS title Revolt together with Kristopher Peterson
using Unity as the main development tool.

Fraser McCormick has been programming professionally for over a decade, building
online applications, tools, and games with a combination of server-side code and frontend
technologies, such as Flash and Unity. He likes biscuits, playing Capoeira, and trying to take
over the world with indie games.

Clifford Peters first started using Unity back in 2008 and has enjoyed using it ever
since. He has made a few games in his spare time, including the one submitted to a Unity
programming contest. He is currently attending college, pursuing a degree in Computer
Science.

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface	 1
Project One: Develop a Sprite and Platform Game	 9

Mission briefing	 9
Creating a camera and a level	 11
Creating a 2D character	 20
Creating CharacterControl class and SpriteManager class	 25
Jumping and physics	 33
Creating a key and door	 40
Adding a sound and replay button	 44
Game over-Wrapping it up	 49
Are you ready to go gung ho? A Hotshot challenge	 50

Project Two: Create a Menu for an RPG Game—Add Powerups, Weapons,
and Armor	 51

Mission briefing 	 51
Custom skin with GUI Skin	 54
Creating a menu object	 70
Creating a status tab	 76
Creating an inventory tab	 82
Creating an equipment tab	 88
Game over-Wrapping it up	 98
Are you ready to go gung ho? A Hotshot challenge	 99

Project Three: Model and Shade your Hero/Heroine	 101
Mission briefing 	 102
Exporting from 3D Studio Max	 106
Shader programming—Diffuse and bump (normal) map	 112
Shader programming—Ambient and specular light	 124
Shader programming—Rim light and toon ramp	 130

ii

Table of Contents

Game over-Wrapping it up 	 136
Are you ready to go gung ho? A Hotshot challenge	 137

Project Four: Add Character Control and Animation to your Hero/Heroine	 139
Mission briefing	 139
Setting up character animation and level	 141
Creating the character controller and built-in script	 151
Creating a custom character control script	 155
Creating CrossFade animation	 162
Creating a third-person camera to follow our character	 166
Game over-Wrapping it up 	 171
Are you ready to go gung ho? A Hotshot challenge	 172

Project Five: Build a Rocket Launcher! 	 173
Mission briefing	 173
Setting up the character with the first-person controller prefab	 175
Creating the New3PSController and MouseLook_JS scripts	 182
Creating the rocket launcher and scope target	 191
Creating the rockets and particles	 196
Creating the rocket bullet UI	 205
Game over-Wrapping it up	 208
Are you ready to go gung ho? A Hotshot challenge	 210

Project Six: Create Smart AI	 211
Mission briefing	 212
Creating the waypoint and gizmos	 215
Creating an enemy AI	 226
Creating the enemy movement with AIController script	 229
Creating a hit-point UI	 243
Game over-Wrapping it up	 247
Are you ready to go gung ho? A Hotshot challenge	 249

Project Seven: Forge a Destructible and Interactive Virtual World	 251
Mission briefing	 252
Optimizing the AIController script	 254
Creating a ragdoll	 261
Creating a destructible wall	 270
Creating a rockslide and trigger area	 275
Game over-Wrapping it up	 281
Are you ready to go gung ho? A Hotshot challenge	 284

iii

Table of Contents

Project Eight: Let the World See the Carnage! Save, Load, and
Post High Scores	 285

Mission briefing	 285
Creating a high score menu	 288
Saving and loading the local high score	 295
Getting XML data from the server	 306
Posting and loading high scores to the server	 312
Game over-Wrapping it up	 321
Are you ready to go gung ho? A Hotshot challenge	 322

Appendix A: Important Functions	 323
Awake	 323
Start	 324
Update	 324
FixedUpdate	 324
LateUpdate	 325
OnGUI	 325
OnDrawGizmos	 326

Appendix B: Coroutines and Yield	 329
YieldInstruction	 329
WaitForSeconds	 330
WaitForFixedUpdate	 331
Coroutine	 332
StartCoroutine	 333
StopCoroutine	 335
StopAllCoroutines	 336

Appendix C: Major Differences between C# and Unity JavaScript	 339
Unity Script Directives	 339
Type names	 340
Variable declaration	 340
Variable with Dynamic Type 	 341
Resolution	 341
Multi-dimensional array declaration	 341
Character literals not supported	 341
Class declarations	 342
Limited interface support	 343
Generics	 343
The foreach keyword	 344
The new keyword	 345

iv

Table of Contents

YieldInstruction and coroutine	 345
Casting	 346
Properties with getters/setters	 347
Changing Struct properties by value VS by reference	 348
Function/method definitions	 348
Reference	 349

Appendix D: Shaders and Cg/HLSL Programming	 351
ShaderLab properties	 352
Surface shaders	 353
Cg/HLSL programming	 358
Reference	 360

Index	 361

Preface

Only Unity fits the bill of being a game engine that allows you to create a full 3D game for
free, and with phenomenal community support. This book will equip you with the skills to
create professional looking games at no cost.

Unity 3 Game Development Hotshot will teach you how to exploit the full array of Unity
3D's technology in order to create an advanced gaming experience for the user, with eight
exciting and challenging projects that provide a step-by-step explanation, diagrams, and
screenshots to help you achieve that goal.

Every project is designed to push your Unity skills to the very limits and beyond. You will
create a hero/heroine which will be used in an RPG game. You will create a menu for the RPG
game allowing you to customize your character with powerups, armor, and weapons. You
will shade, model, rig, and animate your hero/heroine, so that they start to look more like a
character from Final Fantasy than a simple sprite.

Now for some damage—rocket launchers! Typically the most powerful weapon in any first-
person shooter, you will create a rocket launcher that has fire and smoke particles and
most importantly causes splash damage for that all-important area effect. You will create
AI-controlled enemies for your hero/heroine to eliminate the rocket launcher. We will create
an interactive world that is destructible, so if the rocket launchers miss their target they will
damage the surrounding environment. Finally, you learn to save and load so you can take a
break from the action for life's necessities like going to the bathroom. The final touch will be
for you to upload your scores online so everyone can see the carnage.

Preface

2

What this book covers
Project 1, Develop a Sprite and Platform Game: This project will show the user how to create
a sprite animation for a 2D platform game. There will be an explanation of the difference
between a perspective and orthographic camera, how to set up a background camera and
the character camera, how to create a 2D sprite from your texture (using mainTexture
and mainTextureOffset function in Unity), how to set up a sprite sheet, as well as the
jumping and gravity animations.

Project 2, Create a Menu for an RPG Game- Add Powerups, Weapons, and Armor: This project
will use the first project to create a cool and complex UI that is mostly used in the RPG game.
The project starts by creating the menu window with OnGUI(), which will include the tab
button for the user to go to different menus, and be able to manage the items, change the
armor or weapon for the character, and choose the items and skills.

Project 3, Model and Shade your Hero/Heroine: We will start by exporting the 3D character
model from 3D Studio MAX with the right unit scale and rotation by using the FBX exporter
from 3D Studio Max and import it to Unity. Then, we will write a custom shader by using the
new surface shader, which will be available from version 3.0.

Project 4, Add Character Control and Animation to your Hero/Heroine: Beginning with setting
up the walk, run, idle, jump, and fall animations, we will adapt the built-in third-person
controller in Unity to create a custom third-person controller. We will also use the character
controller, cross fade animation, and the camera to follow our character.

Project 5, Build a Rocket Launcher!: In this project, we will create a first-person controller
similar to the Resident Evil Style with the character animation. We will create a rocket
launcher, rocket, and the particle effect by using the prefab and instantiate function to clone
the object.

Project 6, Create Smart AI: This project will continue from the last project, and we will create
an AI enemy and make it smart enough to follow our character, shoot at us, and follow the
way point. We will also use the Gizmo class to help us show the direction of the AI.

Project 7, Forge a Destructible and Interactive Virtual World: We will use the new unity built-
in beast lightmap to create a lightmap to make the world more realistic. Then, we will create
the Physics object in the scene that will react with our character by walking through it or
shooting at it.

Project 8, Let the World See the Carnage! Save, Load, and Post High Scores: This project will
show you how to load, save, and post your high score by using playerPref. We will also
learn to make the web game load faster and not let the user wait too long by using streaming
when we publish from Unity.

Preface

3

Appendix A, Important Functions: This appendix includes the details of some important
functions such as, Awake(), Start(), and so on, sourced from Unity scripting reference.

Appendix B, Coroutines and Yield: This appendix includes the explanation of Coroutines/Yield
and how to use them, sourced from Unity scripting reference.

Appendix C, Major Differences between C# and Unity JavaScript: This appendix shows the
differences between C# and Unity JavaScript by using examples sourced from the Unity
answer website and Unity scripting reference.

Appendix D, Shaders and Cg/HLSL Programming: This appendix explains the structure of the
Shaders and Cg/HLSL language, basic function in CG/HLSL, and so on, sourced from Unity
scripting reference and NVIDIA website.

What you need for this book
You will need Unity 3.x that you can download from http://www.unity3d.com/
download/ and 3D Studio Max (Optional), which can be downloaded from
http://usa.autodesk.com/3ds-max/trial/.

Who this book is for
This book is for users who already have some basic knowledge of how to use the Unity
game engine and intermediate users who want to explore Unity above and beyond the basic
techniques.

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Mission briefing
This section explains what you will build, with a screenshot of the completed project.

Preface

4

Why Is It Awesome?
This section explains why the project is cool, unique, exciting, and interesting. It describes
what advantage the project will give you.

Your Hotshot Objectives
This section explains the major tasks required to complete your project.

ff Task 1

ff Task 2

ff Task 3

ff Task 4, and so on

Mission Checklist
This section explains any pre-requisites for the project, such as resources or libraries that
need to be downloaded, and so on.

Task 1
This section explains the task that you will perform.

Prepare for Lift Off
This section explains any preliminary work that you may need to do before beginning work
on the task.

Engage Thrusters
This section lists the steps required in order to complete the task.

Objective Complete - Mini Debriefing
This section explains how the steps performed in the previous section allow us to complete
the task. This section is mandatory.

Preface

5

Classified Intel
The extra information in this section is relevant to the task.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: " We can change the Tiling by calling the
material.mainTextureScale function to set the X tile and Y tile."

A block of code is set as follows:

public var f_speed : float = 5.0;
public var loopSprites : SpriteManager[];
private var in_direction : int;

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

if (hit.collider.tag == "Key") {
 if (!b_hasKey) {
 //We hit our Key
 audio.volume = 1.0;
 audio.PlayOneShot(getKeySound);
 b_hasKey = true;
 Destroy (hit.gameObject);
 }
 }

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Click on the Continue button
to break the prefab."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

6

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles
that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to have the files e-mailed directly
to you.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots used in
this book. The color images will help you better understand the changes in the
output. You can download this file from https://www.packtpub.com/sites/default/
files/Images.pdf.

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

7

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/support, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Project 1
Develop a Sprite and

Platform Game

Even in today's world, people remember Mario, Sonic, and Mega Man. Of course, Mario was
first introduced in the Eighties, followed by Mega Man and Sonic, but even now the new
generation love these games. Yes, we are talking about the old style 2D platform games,
which still exist.

In this book, we will start the first chapter with a 2D platform game because there are
some basic tricks for a 2D platform game, which will help you—those who haven't got into
the 3D world yet—to understand more before jumping into the 3D world for the project in
later chapters.

Mission briefing
We'll be creating a 2D platform or side-scrolling game, which is similar to Mario or other
games that we have mentioned previously; it will have a simple character that the player
will be able to move, jump, and collect a key item to be able to pass the level, and a Restart
button for the player to play the game again.

Develop a Sprite and Platform Game

10

We will use the 2D character sprite sheet (as shown in the previous image), and create the
sprite manager class to control it instead of the 3D character model. Some of you might have
a few questions: Why are we doing this? Why don't we just use the 3D model, which should
be easier to do, instead of creating the sprite manager class?

Well, there are some advantages of using a sprite manager class. Firstly, creating a 3D model
and animation takes time. It takes more time to create a simple 3D character with animation
than to create a 2D character with a sprite sheet because you don't have to deal with the
polygon count, rigging the character, unwarping the textures, and animating it. You just draw
it. Since the 2D sprite object only shows one view, we can use the plane object to save the
number of polygons instead of using the 3D character object. It is also an advantage to learn
this sprite technique to create an animated texture in your game.

The purpose of this chapter is to familiarize you with all the tools and language syntax
in Unity, which is very important to create a playable game. We will also see how to use
MonoDevelop for a JavaScript user (sometimes called UnityScript; in the rest of the book, we
will call it Unity JavaScript) and what is good about MonoDevelop when compared to Unitron
(or UniSciTE in PC).

What does it do?
In this project, we will start with creating a camera for our game, and adding light and level
to the scene. Next, we want to create our character object as a plane, apply the transparent
material, and use the 2D graphic sprite sheet for its texture. We will also create the script,
which will control the sprite sheet to show the right graphic on our character object. This
script will allow us to be able to control our character to walk and jump by pressing the
arrow key. Also, we will learn how to set up the custom input manager. Then, we will have
the right animation for the character idle, walking, or jumping.

For the level, we will create it by using a Unity built-in cube and give it a collision which will
react with the character by using a Unity built-in physics. To end the game, we will create a
trigger event by creating a door and a key. The player needs to collect the key to open the
door and end the game. We will also add sound to make our game seem alive, but we are
not finishing it yet. The game needs to be replayable. Lastly, we will add a Replay or Play
again button to replay our game by using destroy and instantiate to reset our character
position and key item.

Project 1

11

Why Is It Awesome?
When we are done with this chapter, we will get a good understanding of how to create a
sprite and 2D platform game by using a 3D game engine such as Unity. Also, we will be able
to create our own 2D platform style game like Sonic, Mario, Mega Man, and so on, and reuse
some of our techniques, scripts, and concepts to create a 3D game at a later stage.

Your Hotshot Objectives
This project will be split into six tasks. Since we are not creating any enemies in our game, we
don't have to deal with any complex scripting. It will be a simple step-by-step process from
beginning to end. Here is the outline of the tasks:

ff Creating a camera and a level

ff Creating a 2D character

ff Creating CharacterController and SpriteManager classes

ff Jumping and physics

ff Creating key and door

ff Adding Sound and Replay button

Mission Checklist
Before we start, we will need to get the latest Unity version http://unity3d.com/
unity/download/ which includes MonoDevelop that we will use for our scripting
editor. We will also need a few graphics for our character, key, and door as well as a
collection of sound FX. These could be downloaded as ZIP files from Packt's website:
http://www.packtpub.com/support?nid=8267.

Browse to the preceding URL and download Chapter1.zip package and unzip it. Inside the
Chapter1 folder, there are five subfolders, which are Buttons, Characters, FBX, Level,
and Sound.

Creating a camera and a level
This part is just about creating a camera and a level to use in our platform game.
We will be creating a camera that will show all the objects in the scene and follow
our character movement.

Develop a Sprite and Platform Game

12

Prepare for Lift Off
Before we start creating this project, we will create the project in Unity by following
these steps:

1.	 Create a new project by going to File | New Project to bring up the Project Wizard
window. Next, click on the Create new Project tab and set the Project Directory as
you want, as we can see in the following screenshot:

As we can see from the preceding screenshot, we won't
import any Unity assets packages because we won't be using
any in this chapter.

2.	 Import the Chapter1 package folder that you downloaded into the project assets
folder, by copying it into the project's Assets folder or drag-and-dropping it into the
Unity window, as we can see in the following screenshot:

Project 1

13

3.	 Go back to Unity and make sure that you have Plane and background.png in your
Project folder, as shown in the following screenshot:

4.	 Click on the Plane object in the Project view to bring up its Inspector view. Next,
we go to the FBXImporter | Meshes component, and set the Scale Factor to 1, as
shown in the following screenshot, and click on the Apply button:

Engage Thrusters
We are now ready to start, so let's get on with it!

1.	 Let's start by creating the background with the Plane prefab object in the FBX
folder—go to the Project view, click on the Plane prefab object, and drag it into the
Hierarchy view.

Develop a Sprite and Platform Game

14

There is also the Unity built-in Plane object that you can use, but you don't
really want to use it, because the Unity built-in Plane object will have way
too many triangles for our 2D objects. As we can see from the following
screenshot, our prefab Plane only has two triangles, but the Unity built-in
Plane object will have around 200 triangles.

2.	 In the Hierarchy view, right-click on the Plane prefab object, and choose Rename to
change the name to Background.

3.	 Then, click on this object and go to its Inspector view, and set its transform Position
to X: 0, Y: 0, Z: 24, Rotation to X: 0, Y: 180, Z: 0, Scale to X: 200, Y: 200, Z: 1.

4.	 Right-click on the Animation component in the Inspector view and choose the
Remove Component option to remove it, as shown in the following screenshot:

Project 1

15

This will bring up the pop-up window, as shown in the following screenshot. Click on
the Continue button to break the prefab:

5.	 Now, to create the background material, go to Assets | Create | Material, and
name it whatever you want; here we will call it M_Background. Then, we assign our
background texture to this material, in the project window click on M_Background.
We will see the Inspector view of the background material, as shown in the
following screenshot:

If you don't see the detail as seen in the preceding screenshot,
you can click anywhere that isn't a button on the banner (the
lighter gray area that says M_Background) to show the details.

6.	 Next, drag the background.png file from the Chapter1/Level folder in the
Project view and drop it in the texture thumbnail, and then set the following:

�� Shader: Diffuse

�� Main Color:R:164, G:219, B:225, A: 255

�� Base (RGB): x-Tiling: 2, Offset: 0; y-Tiling: 2, Offset: 0

Develop a Sprite and Platform Game

16

Now, we are adding our material to the background object, click on Background
object in the Hierarchy view to open the Inspector view, and in Mesh Renderer |
Materials, set the parameters as follows:

�� Size: 1

�� Element 0: M_Background

7.	 Next, we will create a new Tag and Layer for our Background object; go to Edit |
Project Settings | Tags and click on the arrow next to the Tags option to open it, as
shown in the following screenshot:

Project 1

17

8.	 Enter the parameters as follows:

For Element 0 type Background, for Element 1 type Floor, for Element 2 type Wall,
and then for User Layer 8 type Background, for User Layer 9 type Level; we select
our Background object, and then go back to the Background object's Inspector
view setup as follows:

�� Tag: Background

�� Layer: Background

9.	 Set the Main Camera, which is already in our scene when we first create the project,
as follows:

�� Position: x: 0, y: 0, z: -20

�� Projection: Perspective

10.	 To light up our scene by adding sound light into it, go to GameObject | Create Other
| Directional Light and set its parameters as follows:

�� Rotation: x:20, y:0, z:0

11.	 For the last step, we will create our quick, easy, and simple level:

�� First, we need to create our container to contain all the objects for the level.
Go to GameObject | Create Empty or use Command + Shift + N in Mac and
Ctrl + Shift + N in Windows, and change the name to Level, and reset the
transform position to X: 0, Y:0, Z: 0), rotation to X: 0, Y: 0, Z: 0, and scale to
X: 1, Y: 1, Z: 1.

�� For creating our floor, let's go to GameObject | Create Other | Cube,
change the name of this object to Floor, and change the tag and layer as
follows:

ff Tag: Floor

ff Layer: Level

�� Same thing for creating a wall; just repeat the same step
and change the name to Wall, and set the tag and layer
as follows:

ff Tag: Wall

ff Layer: Level

Develop a Sprite and Platform Game

18

So, now we have our Floor cube and Wall cube.

�� Next, we want to apply the material to our cubes. We will have only one
material for both the floor and wall to make it simple. Go to Assets | Create
| Material, name it M_Level, adjust the color to R: 150, G: 230, B: 225, A:
255, and apply this material to the Floor and Wall objects by dragging the
material Floor and Wall objects in the Hierarchy view. Then we drag-and-
drop Floor and Wall inside our Level object, as shown in the following
screenshot:

�� Now, we will click on the floor object in the hierarchy, and press
Command + D for Mac users or Ctrl + D for Windows users to copy it six
times, and click on the wall object in the hierarchy and copy it twice. So
now we have seven floor objects and three wall objects.

�� Next we create our level by setting up the position and scale of our floor
and wall objects. Let's set them up as follows:

ff 1st Floor object: Position: x: -4, y: -9, z: 0 Scale: x: 125, y: 15, z: 1

ff 2nd Floor object: Position: x: -6, y: 5, z: 0 Scale: x: 32, y: 1, z: 1

ff 3rd Floor object: Position: x: -25, y: 12, z: 0 Scale: x: 19.5, y: 1, z: 1

ff 4th Floor object: Position: x: 14, y: 12, z: 0 Scale: x: 20, y: 1, z: 1

ff 5th Floor object: Position: x: -7, y: 9, z: 0 Scale: x: 9, y: 1, z: 1

ff 6th Floor object: Position: x: -31, y: 1, z: 0 Scale: x: 6, y: 1, z: 1

ff 7th Floor object: Position: x: 21, y: 2, z: 0 Scale: x: 10, y: 1, z: 1

ff 1st Wall object: Position: x: -49, y: 17, z: 0 Scale: x: 36, y: 40, z: 1

ff 2nd Wall object: Position: x: 42, y: 17, z: 0 Scale: x: 38, y: 39, z: 1

ff 3rd Wall object: Position: x: -7, y: 23, z: 0 Scale: x: 1, y: 36, z: 1

�� Finally, we will save the scene by pressing Command + s in Mac or
Control + s in Windows. Since it is our first save, we will be asked to
name this scene, so let's name it SimplePlatform.

Project 1

19

Objective Complete - Mini Debriefing
Basically, what we have done here is create a Background object behind the Level object,
and set the Main Camera in front of the Level object. Our Main Camera will also follow
our character while he is moving. This way we can make sure that the player will always
see our character and background image. We can set our scene and level, as shown in the
following diagram:

In our Main Camera, we set the Projection to Perspective because we want to show the
thickness of our level and the depth of the object, which will give a nice view for the player.

Classified Intel
We can set the Camera Projection in our scene to be either Orthographic or Perspective.
The difference between both projections is that with the Orthographic Projection, the object
won't scale by the distance of the camera. So in our scene, we will see only one side of the
object that faces the camera. On the other hand, in Perspective Projection we will see the
depth of the object that will scale down by the distance of the camera, which is very similar
to real life.

Develop a Sprite and Platform Game

20

In our scene, we won't see any significant difference on our background object because our
background object is a plane and doesn't have any thickness on it, but if we are trying to
adjust the Projection of our camera, we will see the difference between the two projections.
We can do this by going to the Hierarchy view, clicking on Main Camera, changing Projection
to Orthographic, and Size to 8.5, and then changing Projection back to Perspective. The
difference is shown in the following screenshot:

Creating a 2D character
In this step, we will create our 2D character and material, which will contain our 2D character
sprite sheet from our Chapter1 package folder. We will have our character act out three
different types of animation: staying, walking, and jumping.

Prepare for Lift Off
Let's make sure that we have all the sprites we need in the project folder:

1.	 Go to Chapter1/Characters where you will see three subfolders, Jump, Stay,
and Walk.

2.	 Open the jump folder. We will see the files J_Frame1.png, J_Frame2.png,
and J_Frame3.png. Next, open the Stay folder, we will see the s_set.png file.
Then, open the last folder Walk, we will see the w_set.png file as shown in the
following screenshot:

Project 1

21

Now, we are ready to get started.

Engage Thrusters
Since our character is a 2D sprite animation, we only need to have a plane object to contain
it. Let's do it as the follows:

1.	 Go to the Plane prefab object in the FBX folder and drag it into the Hierarchy view.

2.	 Next, right-click on the Animation component in the Inspector view and choose the
Remove Component option to remove it. We will see the pop-up window, so just
click on the Continue button, similar to the one we did for our Background object.

3.	 Then, we click on this object and go to its Inspector view, and set it as follows:

�� Tag: Player

�� Position: x: -25, y: 16, z: 0

�� Rotation: x: 0, y: 180, z: 0

�� Scale: x: 5, y: 5, z: 1

4.	 We will call our character Player. Go to the Hierarchy view, right-click on the
Plane prefab object, and choose Rename to change the name to Player.

5.	 Next, go to Assets | Create | Material and name it M_Character.

6.	 Go to material's Inspector view and set it up as follows:

�� Shader: Transparent | Cutout | Soft Edge Unlit

�� Base (RGB) Alpha (A)

�� Drag-and-drop our s_set.png from the Characters/Stay folder to the
texture thumbnail in material inspector

Develop a Sprite and Platform Game

22

�� X: Tiling: 0.5, Offset: 0

�� Y: Tiling: 1, Offset: 0

�� Base Alpha cutoff: Drag the dragger to the very right end

We have now got the material for our Player.

7.	 Next, we go back to the Player and assign this material to him by dragging
and dropping M_Character from the Project view to the Player object in the
Hierarchy view. Finally, add the Box Collider and add a RigidBody to the Player.
We will use the Box Collider because our Player is basically a plane and doesn't
need any complex collider to detect his collision.

8.	 Let's click on the Player and go to Component | Physics | Box Collider set Size: x:
0.4, y: 0.875, z: 1 and Center: x: 0, y: -0.06275, z: 0.

9.	 Then, we will add the RigidBody, which is used to calculate our walking speed,
jumping, and collision detection with the level; go to Component | Physics |
RigidBody and make sure that Use Gravity is On and the Kinematic option is Off.

10.	 Set the freeze the rotation of the object (Freeze Rotation) by clicking on the arrow
in front of Constraints. In Freeze Rotation, check each box X, Y, and Z to freeze
rotation. We will also check the Z box to freeze the character movement in the
Z-axis, as shown in the following screenshot:

Objective Complete - Mini Debriefing
We just created a plane that will act as our main character, our Player. We also created
a material for our Player by using Transparent | Cutout | Soft Edge Unlit Shader. This
Shader will cut out the Alpha channel and make it transparent. In addition, it will also soften
the edge, not to the shape of the object it is on, but instead it will soften the edges of the
image itself. We can control which portion of the image will be cut out, and how much the
edge will soften by adjusting the Base Alpha Cutoff slider.

Project 1

23

We also set the tiling for the X-axis to 0.5 because our image contains two frames, but we
want to use only one image at a time. We used the Box Collider instead of Mesh Collider.
We were also adding a RigidBody for our character and setting it to enable Freeze Rotation,
which will ignore all the rotation on our character that will be calculated by Physics Engine in
Unity. This will cause our Player not to rotate.

The RigidBody will also give our character the ability to activate the Physics Engine in Unity,
such as gravity or velocity, and act as real-life physics. We will see this in the next step.

Classified Intel
Why do we need to freeze the rotation and position of the Rigidbody in our character?

We freeze the rotation of the Rigidbody because we are using the
sprite texture to present the character movement. So, we don't want
our character to rotate when it moves. We also freeze the position on
the Z-axis because our character will only move on the X and Y axes. In
this way, we can also save the CPU cycles because Unity will ignore the
unnecessary calculation and only calculate the one it needs.

Box Collider and Mesh Collider
So why are we using Box Collider instead of Mesh Collider? Both the colliders are basically
similar. Think about it this way: each surface of the mesh will have its own normal that will
be perpendicular to each vertices and check if it hits any object. So, if we think about our
plane object, we will see that it has only one face that has the normal pointing towards the
camera. So, it means that if we apply the Mesh Collider to the plane object, we won't get
any collision detection from the top, bottom, left, right, and back side of the plane. This is
basically because there is no surface at the top, bottom, left, right, and back side of this
object to create the collision detection with the other objects.

Develop a Sprite and Platform Game

24

On the other hand, Box Collider uses the volume that it represents to check for the collision
detection. This result will be a lot faster than the Mesh Collider. In this case, we are checking
the volume of the character Box Collider with the the Floor Box Collider to see whether
there is any part of the Floor collider without Player or not, as we can see in the following
diagram:

The Box Collider can save a lot of memory and CPU cycles in
real-time rendering compared to the Mesh Collider.

Next, we will talk about Tiling in Material, which is very similar to many 3D programs. Every
texture that we applied to the material there will be stretched to fit in the square space,
which we can see in the 1x1 cube.

Project 1

25

Tiling is very much similar to scaling, and it's basically repeating the texture on X and Y
axes. So, if we set the Tiling X: 0.5, Y: 1.0, we see the result as shown in the previous figure
with the texture on X-axis that scales half size, but it still looks the same in Y. We also see
that the second image will show only the first left side of the texture (the first frame of our
character). Now, if we want to show the right side of our texture what will we do? We will
use Offset in Material, which will give a different result from Tiling. The Offset basically tells
us the starting position of our texture. So, if we set the Offset X: 0.0, Y: 0.0, this means that
our texture will display from the top-left corner of the original texture. On the other hand,
if we set Offset X: 0.5, Y: 0.0, we will see the result that our texture's start point is at the
middle of the original texture image, and we will see our material show the right side of our
texture (the second frame of our character, as we can see in the following figure):

We can change the Tiling by calling the material.mainTextureScale function to set the
X tile and Y tile, and use calling material.mainTextureOffset to set the X and Y Offset.

After learning this technique, we can manage our sprite image by just changing the number
of Tiling and Offset of our character Material in the next step.

Creating CharacterControl class and
SpriteManager class

In this section, we will create new Unity JavaScript code to control the movement of our
character, and a sprite animation for each action of our character. We have a choice to
use Unitron (Mac), UniSciTE (Windows), or MonoDevelop, but in this book we will use
MonoDevelop as our scripting editor instead of Unitron or UniSciTE. MonoDevelop is mainly
designed for C# and .NET environment, so if you are comfortable with C#, you will probably
love it. However, we will still use it to edit our JavaScript because it has a lot of functions that
will help us to write the script faster and debug better, such as finding and replacing words in
the whole project by pressing Command + Shift + F in Mac or Control + Shift + F in Windows,
and autocomplete, to name a few. Moving from Unity JavaScript to C# is also a comparatively
smooth transition.

Develop a Sprite and Platform Game

26

Prepare for Lift Off
Now, we are just about to start coding, but first let's make it organized:

1.	 Create a new folder in your project window and name it Scripting. This folder will
contain our script for this chapter.

2.	 Next, we want to set up our Unity to use MonoDevelop as our main Scripting editor
(Unity | Preferences in Mac or Edit | Preferences in Windows).

3.	 We will see a Unity preferences window. In the General tab, go to the External
Script Editor and change Use build-in editor (Unitron/UniSciTE) to MonoDevlop by
clicking on Browse… and choose Applications | Unity | MonoDevelop.app in Mac
or {unity install path} | Unity | MonoDevelop | MonoDevelop.exe in Windows,
and we are done.

The default Unity script editor is set to Unitron/UniSciTE because they are the
built-in editors that are included in Unity from the beginning. MonoDevelop is
basically the IDE that is just included in Unity 3.X, which has a better scripting
and debugging environment. We can see more information about how to set
up the MonoDevelop on this website: http://unity3d.com/support/
documentation/Manual/HOWTO-MonoDevelop.html.

Engage Thrusters
1.	 First, go to Assets | Create | Javascript and name our script as

CharacterController_2D.

2.	 Double-click on the script; it will open the MonoDevelop window.

Project 1

27

3.	 Now, we will see three windows in the MonoDevelop screen:

�� On the top-left is Solution; we can see our project folder here, but it will
only show the folder that contains a script.

�� On the bottom-left, we will see a Document Outline; this window will show
all the functions, classes, and parameters in the file.

�� The last window on the right will be used to type our code.

4.	 Let's get our hands dirty with some code—first create the
CharacterController_2D class. At present, we are creating parameters:
public var f_speed : float = 5.0;
public var loopSprites : SpriteManager[];
private var in_direction : int;

f_speed is the speed of our character, and we set it to public so we can adjust
it inside the Unity editor. The array loopSprites of the SpriteManager class
will control the update of our sprite animation texture, which we will create later.
in_direction tracks the direction of our character, which will return only 1
(right direction) or -1 (left direction).

5.	 Next, we will include the script in the Start() function, which is already created
by default:
public function Start() : void {
 in_direction = 1;
//Initialization Sprite Manager
 for (var i : int = 0; i<loopSprites.length; i++) {
 loopSprites[i].init();
 }
 //Update Main Camera to the character position
 Camera.main.transform.position = new Vector3(transform.
position.x, transform.position.y, Camera.main.transform.
position.z);
}

6.	 Next, we will include the script in the Update() function, which is already created
by default similar to the Start() function:
// Update is called once per frame
public function Update () : void {
 if (Input.GetButton("Horizontal")) {
 //Walking
 in_direction = Input.GetAxis("Horizontal") < 0 ? -1: 1;
 rigidbody.velocity = new Vector3((in_direction*f_speed),
rigidbody.velocity.y, 0);
 //Reset Stay animation frame back to the first frame
 loopSprites[0].resetFrame();

Develop a Sprite and Platform Game

28

 //Update Walking animation while the character is walking
 loopSprites[1].updateAnimation(in_direction, renderer.
material);
 } else {
 //Stay
 //Reset Walking animation frame back to the first frame
 loopSprites[1].resetFrame();
 //Update Stay animation while the character is not walking
 loopSprites[0].updateAnimation(in_direction, renderer.
material);
 }
}

7.	 Then, we create a LateUpdate() function, which is called after all the Update()
functions have been called. We will use this function to update our camera position
after our character movement by setting its transform to follow our character:
public function LateUpdate() : void {
//Update Main Camera
 Camera.main.transform.position = new Vector3(transform.
position.x, transform.position.y, Camera.main.transform.
position.z);

}

8.	 Next, we create the SpriteManager class to manage our sprite texture in the
CharacterController_2D.js file; continue from our preceding script, and add
the following:
class SpriteManager {
 public var spriteTexture : Texture2D; //Set Texture use for a
loop animation such as walking, stay, etc.
 public var in_framePerSec : int; //Get frame per sec to
calculate time
 public var in_gridX : int; //Get max number of Horizontal images
 public var in_gridY : int; //Get max number of Vertical images

 private var f_timePercent : float;
 private var f_nextTime : float; //Update time by using frame
persecond
 private var f_gridX : float;
 private var f_gridY : float;
 private var in_curFrame : int;

 public function init () : void {
 f_timePercent = 1.0/in_framePerSec;

Project 1

29

 f_nextTime = f_timePercent; //Update time by using frame
persecond
 f_gridX = 1.0/in_gridX;
 f_gridY = 1.0/in_gridY;
 in_curFrame = 1;
 }

 public function updateAnimation (_direction : int, _material :
Material) : void {
 //Update material
 _material.mainTexture = spriteTexture;
 //Update frame by time
 if (Time.time>f_nextTime) {
 f_nextTime = Time.time + f_timePercent;
 in_curFrame++;
 if (in_curFrame>in_framePerSec) {
 in_curFrame = 1;
 }
 }
 _material.mainTextureScale = new Vector2 (_direction * f_
gridX, f_gridY);
 var in_col : int = 0;
 if (in_gridY>1) {
 //If there is more than one grid on the y-axis update the
texture
 in_col= Mathf.Ceil(in_curFrame/in_gridX);
 }
 if (_direction == 1) { //Right
 _material.mainTextureOffset = new Vector2(((in_curFrame)%in_
gridX) * f_gridX, in_col*f_gridY);
 } else { //Left
 //Flip Texture
 _material.mainTextureOffset = new Vector2(((in_gridX + (in_
curFrame)%in_gridX)) * f_gridX, in_col*f_gridY);
 }
 }

 public function resetFrame () :void {
 in_curFrame = 1;
 }
}

Develop a Sprite and Platform Game

30

9.	 Now, save it and go back to Unity; drag-and-drop our script to our Player, then
click on Player and go to the Inspector window. Click on the Loop Sprites, and set
Size to 2, then set the following:

�� Element 0:

ff Sprite Texture: s_set

ff In_frame Per Sec: 2

ff In_grid X: 2

ff In_grid Y: 1

�� Element 1:

ff Sprite Texture: w_set

ff In_frame Per Sec: 8

ff In_grid X: 4

ff In_grid Y: 2

We are done. Let's click on the play button to play the game. We will see our Player moving
his hand back and forth. Next, press the A key or ¬ key, D key or ® key to move the Player to
the left or to the right; now we see that he is walking. Isn't that cool?

Objective Complete - Mini Debriefing
We just created a script that controls the movement of our character, and his animation.
First, we set in_direction to 1 because we want our character To start by facing the right-
hand side. Then, we are looping through the array and initializing the SpriteManager class
from its length. We will get the main camera from the current scene by using Camera.main.
This syntax allows us to access the Main Camera object from anywhere we want, and then
we assign the main camera position point to our character. Next, we will put the script in the
Update() function, which is already created by default —similar to the Start() function.
This function will be used to control our character movement from walking to jumping, and
for updating the animation.

Project 1

31

Then, we used the Input class to detect when the player presses a key on the keyboard.
We do all the character control in the update() function. First, we use if (Input.
GetButton("Horizontal")) { } to check if the player pressed a Horizontal key,
(for which the default in Unity is A, D, left arrow, or right arrow key), and we move our
character if he/she did. The first line in this if statement checks the direction, which we
are using, in_direction =Input.GetAxis("Horizontal") < 0 ? -1: 1;, which
means that if the player presses a Horizontal key, we will get the axis number from the
Input.GetAxis("Horizontal") function. The Input.GetAxis function will return
the range from -1 to 1 depending on the pressure of the player pressing. Then, we check if
the number is lower than 0 or not, if it's then the function returns -1 (move to left), if not it
returns 1 (move to right). Then in the line rigidbody.velocity = new Vector3((in_
direction*f_speed), rigidbody.velocity.y, 0);,we applied the direction and
speed to the rigidbody velocity. We don't apply any velocity in the Z-axis because we are
not moving our character in that direction.

Lastly, we included the SpriteManager class in our CharacterController_2D.js file
to control our sprite texture to play loop animation by using the maximum of frame we
had calculated with the time to play each frame. Let's take a look at our SpriteManager
class. spriteTexture is basically a set of sprite texture that get held in this class. This
textures will get a call and apply to the main material texture when the character is changing
their movement, such as from walk to stay, stay to walk, or walk to jump, and so on. in_
framePerSec is the total frames of the sprite texture, which will be used to calculate when
the next frame will be showed. in_gridX is the number of the row in our sprite texture,
and in_gridY is the number of the column in our sprite texture, which will be used to
calculate the Tiling and Offset of the texture that we have already seen in the last step. We
also have private parameters f_timePercent, f_nextTime, f_gridX, f_gridY, and
in_curFrame, which are used to calculate in the updateAnimation() function. Next, we
have the init() function. This function is basically for setting up our parameters. Then, the
updateAnimation() function will get the material and direction from our main character
to calculate and update our sprite animation. Lastly, we have a resetFrame() function to
reset our animation frame back to one.

Develop a Sprite and Platform Game

32

Classified Intel
There are a few more things that we need to know:

Input Manager
In Unity, we can set a custom Input Manager by going to Edit | Project Settings | Input.
In the Inspector, click on Axes and you will see Size: 17, which is the array length of all the
inputs. If we want more than 17 inputs, we can put the number here (the default is 17).
Next, we will see all 17 names from Horizontal to Jump as a default setting. Each one will
have its own parameters, which we can set up, as follows:

We can see the information of each parameter on the Unity website:

http://unity3d.com/support/documentation/Components/class-
InputManager.html.

Project 1

33

In our code, we use the Input.GetButton("Horizontal") function. GetButton means
we are checking if the Horizontal button is being held down. The Horizontal is the
name of the first input button, as we can see in the preceding screenshot. We can also use
Input.GetKey("left") to control our character. It will have the same result with Input.
GetButton, but the difference is GetKey will only detect the specific key in our code. It
isn't flexible for the user to adjust the key configuration during the game play. The Negative
Button and Positive Button here will send the negative and positive value, which in most
cases is used for controlling direction such as left, right, up, and down. There is a Dead
parameter, which will set any number that is lower than this parameter to 0, which is very
useful when we use a joystick. Also, setting the Type to key/mouse button and enabling the
Snap parameter will reset axis values to zero after it receives opposite inputs.

Jumping and physics
Now, we are making our character jump by using Physics.Raycast in Unity. We can also
use the OnCollisionEnter, OnCollisionExit, or OnCollisionStay functions to
check the collision detection between our character and the floor, but in this case we will use
Raycast because it's more flexible to adjust.

However, because the Raycast is only a line with no thickness, there is a chance that if
we have a very thin platform, the Raycast can miss it. And it will cause the problem that
we might not be able to jump. So, we should make sure that the platform should have the
thickness of least 0.1 units.

Engage Thrusters
Continuing from the last step, let's get on with it as follows:

1.	 Let's open our CharacterController_2D.js file and add this code to it; first
our parameters:
private var b_isJumping : boolean;
private var f_height : float;
private var f_lastY : float;
public var jumpSprite : JumpSpriteManager;
public var layerMask : LayerMask; //to check for the raycast

2.	 Then, we go to the public function Start () function and add the following
code inside this function:
 //Get mesh from the character MeshFilter
 mesh = GetComponent(MeshFilter).sharedMesh;
 //Get hight from the top of our character to the bottom of our
box collider
 f_height = mesh.bounds.size.y* transform.localScale.y;

Develop a Sprite and Platform Game

34

 //Set up the last y-axis position of our character
 f_lastY = transform.position.y;
 b_isJumping = false;

3.	 Next, we go to the public function Update () function and add some code as
follows (the highlighted part is our new code):
 //If our character isn't jumping
 if (!b_isJumping) {
if (Input.GetButton("Horizontal")) {
 //Walking
 in_direction = Input.GetAxis("Horizontal") < 0 ? -1 : 1;
 rigidbody.velocity = new Vector3((in_direction*f_speed),
rigidbody.velocity.y, 0);
 loopSprites[0].resetFrame();
 loopSprites[1].updateAnimation(in_direction, renderer.
material);
 } else {
 loopSprites[1].resetFrame();
 loopSprites[0].updateAnimation(in_direction, renderer.
material);
 }
 if (Input.GetButton("Jump")) { //Jump
 b_isJumping = true;
 //Then make it Jump
 loopSprites[0].resetFrame();
 loopSprites[1].resetFrame();
 rigidbody.velocity = new Vector3(rigidbody.velocity.x,
-Physics.gravity.y, 0);
 }
 } else {
 //update animation while it Jump
 jumpSprite.updateJumpAnimation(in_direction, rigidbody.
velocity.y, renderer.material);
 }

So, we basically add the statement to check if our character is jumping or not.

4.	 Next, we add the highlighted code in the LateUpdate() function, in which we
already had our camera update position:
public function LateUpdate() : void {
 //Checking Jumping by using Raycast
 var hit : RaycastHit;
 var v3_hit : Vector3 = transform.TransformDirection (-Vector3.
up) * (f_height * 0.5);
 var v3_right : Vector3 = new Vector3(transform.position.x +
(collider.bounds.size.x*0.45), transform.position.y, transform.
position.z);

Project 1

35

 var v3_left : Vector3 = new Vector3(transform.position.x -
(collider.bounds.size.x*0.45), transform.position.y, transform.
position.z);
if (Physics.Raycast (transform.position, v3_hit, hit, 2.5,
layerMask.value)) {
b_isJumping = false;
 } else if (Physics.Raycast (v3_right, v3_hit, hit, 2.5,
layerMask.value)) {
 if (b_isJumping) {
 b_isJumping = false;
 }
 } else if (Physics.Raycast (v3_left, v3_hit, hit, 2.5,
layerMask.value)) {
if (b_isJumping) {
 b_isJumping = false;
 }
 } else {
 if (!b_isJumping) {
 if (Mathf.Floor(transform.position.y) == f_lastY) {
 b_isJumping = false;
 } else {
 b_isJumping = true;
 }
 }
 }
f_lastY = Mathf.Floor(transform.position.y);
//Update Main Camera
 mainCamera.transform.position = new Vector3(transform.
position.x, transform.position.y, mainCamera.transform.
position.z);

}

5.	 This is a very nice function that will allow us to debug our game, the result of which
we won't see in the real game. Let's add the following block of code:
public function OnDrawGizmos() : void {
 mesh = GetComponent(MeshFilter).sharedMesh;
 f_height = mesh.bounds.size.y* transform.localScale.y;
 var v3_right : Vector3 = new Vector3(transform.position.x +
(collider.bounds.size.x*0.45), transform.position.y, transform.
position.z);
 var v3_left : Vector3 = new Vector3(transform.position.x -
(collider.bounds.size.x*0.45), transform.position.y, transform.
position.z);
 Gizmos.color = Color.red;
 Gizmos.DrawRay(transform.position, transform.TransformDirection
(-Vector3.up) * (f_height * 0.5));
 Gizmos.DrawRay(v3_right, transform.TransformDirection (-Vector3.
up) * (f_height * 0.5));

Develop a Sprite and Platform Game

36

 Gizmos.DrawRay(v3_left, transform.TransformDirection (-Vector3.
up) * (f_height * 0.5));
}

6.	 Finally , we add another SpriteManager class, which is a little different from our
first sprite class. This SpriteManager is for our jumping animation. Since our
jumping animation is quite unique and not a loop animation, we need another sprite
class to control it. Let's add this code underneath our SpriteManager class and call
it JumpSpriteManager:
class JumpSpriteManager {
 public var t_jumpStartTexture : Texture2D; //Alternative Jump
Texture play after t_jumpReadyTextures
 public var t_jumpAirTexture : Texture2D; //Alternative Jump
Texture play when the player in the air at the top position of
projectile
 public var t_jumpDownTexture : Texture2D; //Alternative Jump
Texture play when the player fall to the ground

 public function updateJumpAnimation (_direction : int, _
velocityY : float, _material : Material) : void {
 //Checking for the player position in the air
 if ((_velocityY>= -2.0) && (_velocityY<= 2.0)) { //Top of the
projectile
 _material.mainTexture =t_jumpAirTexture;
 } else if (_velocityY> 2.0) { //Start Jump
 _material.mainTexture = t_jumpStartTexture;
 } else { //Fall
 _material.mainTexture = t_jumpDownTexture;
 }
 _material.mainTextureScale = new Vector2 (_direction * 1, 1);
 _material.mainTextureOffset = new Vector2 (_direction * 1, 1);
 }
}

7.	 Now we are done with coding, go back to Unity, go to Hierarchy, and click on our
Player, then go to the Inspector view. Now, we will see a new parameter Jump
Sprite; click on it to get the parameters, then set the following:

�� T_jump Start Texture: J_Frame1

�� T_jump Air Texture: J_Frame2

�� T_jump Down Texture: J_Frame3

�� Layer Mask: Level

We have now finished this step. Let's click plays the game and Space on the keyboard. Now,
you will see your Player Jumping.

Project 1

37

Objective Complete - Mini Debriefing
First, we attached the jumping ability to our character. b_isJumping is for checking if the
character is already jumping in the air or not. f_height is the height from top to bottom of
our character, which we will use to calculate physics later. f_lastY is the last position of our
character in the Y-axis. jumpSprite is the SpriteJumpManager class, which will be a bit
different from our SpriteManager class because our jumpsprite is not loop animation,
so we need to create a new class to control this.

Then, in the start function we had a code that sets up and gets the information that we
need as soon as our character is created. The mesh = GetComponent(MeshFilter).
sharedMesh; line will basically get the mesh information from the GameObject that our
CharacterController_2D script attached, which is our Player. Next, we get the height
of this mesh by its size multiplied by the local scale of this object. Then, we set up f_lastY
to the object's current position and set the b_isJumping parameter to false.

Next, if it is jumping, it will update the jumping Sprite animation. If it isn't jumping, it
will go to our old code to check for walking or staying. We also added a new Input.
GetButton("Jump"), which will check if the player pressed jump; in that case it will reset
all the loop sprites and change the Y-velocity to negative gravity. This will basically make our
character jump after the player presses the jump button.

We also added a Physics.Raycast to make our character move better and bug free.
Then, we used the OnDrawGizmos() function to see and check if our ray from Physics.
Raycast is from the right position or not. We can also use this to test or debug our game
without taking the code out because it won't be shown on the real game. As we can see from
the following figure, the red arrows represent where the raycast is, but we don't actually see
them in the game:

Develop a Sprite and Platform Game

38

The Physics.Raycast is used to check if our character is on the floor or not. If it isn't,
it will tell the game that now our character isn't on the floor, making its state equal to the
jumping state (or we can say that it is in the air). By using this checking statement, we will be
able to play a jumping animation when our character is falling down, but the player doesn't
press the jump button.

We also draw three rays:

1.	 We draw the ray from the middle of our character to the bottom.

2.	 We draw the ray at the very right bound of the object to the bottom; we won't draw
the ray at exactly the right bound position because we don't want it to hit the edge
thickness of the floor.

3.	 Then, we do the same thing as with the right bound to the left bound.

Next, we check to make sure that the ray didn't hit anything and our character isn't jumping.
We check the last Y-position for our character—whether it is equal to the current Y-position
or not. If it is, it means the character is on the floor, so we set b_isJumping = false. If it
doesn't, the character will fall down and we set b_isJumping = true. Finally, we update
our character's last position on the Y-axis.

Next, we want the OnDrawGizmos() function to show our Physics Raycast in our editor
scene which will give us a nice visual to see our Ray pointing to the right direction. In this
function, we will use Gizmos, which is the class that basically allows us to draw the visual
debugging or set-up aids in the scene view. We can get more information on how to use
Gizmos from the following website:

http://unity3d.com/support/documentation/ScriptReference/Gizmos.html

Lastly, we create another Sprite class to manage our jumping texture to show the jumping
animation by checking its velocity in the Y-axis. In the JumpSpriteManager, we almost
have everything similar to our SpriteManager. Since we don't need a loop animation in
this Jumping Sprite, but we still need to change the texture. First, we will change the main
texture to t_jumpAirTextures, which will show the sprite while the character is at the
top in the air. So, we check the velocity in the Y-axis, to see if it is between -2 to 2. Next,
we check if the velocityY is greater than 2. This means that the player has just started
jumping, but anything other than that means our character has fallen. Finally, we update our
character's Tiling and Offset.

Classified Intel
There is something else we must look at in this chapter—the Physics.Raycast.

Project 1

39

Physics.Raycast
Why do we need to shift a little bit from the collider edge by multiple 0.45 instead of 0.5?

var hit : RaycastHit;
 var v3_hit : Vector3 = transform.TransformDirection (Vector3.
forward) * (f_height * 0.5);
var v3_right : Vector3 = new Vector3(transform.position.x + (collider.
bounds.size.x*0.45), transform.position.y, transform.position.z);

From the line of code if (Physics.Raycast (v3_right, v3_hit, hit, 2.5)), we
will see that the Raycast is drawing from the middle of our character on the right bound
downward by 2.5 units. Now we can take a look at the Gizmos that we drew in the editor:

As we can see in the preceding figure, our gizmo (the red line) is basically shifting from the
boundary of the box collider (green box) a little bit. This will only check at the bottom of our
character because our box collider covers the line. On the other hand, if we draw the Raycast
at the edge of the box collider, it will cause the problem that our character will be able to walk
on air while the edge of the floor hits the Raycast, as shown in the previous figure.

Develop a Sprite and Platform Game

40

One last thing for the Gizmos: if we want to see our gizmos in the game scene, we can click
on the Gizmos tab on the top-right corner of the game scene:

Creating a key and door
In this step, we will create the finish point, which is the door in this case. We will also create
a Trigger Collider, which makes it so that the player can't end the game if he/she didn't
collect our item; of course it's the key to our door.

Prepare for Lift Off
Let's prepare and make sure that we have all the graphics that we need; go to the
Graphics folder in the Project window, and make sure in our subfolder Level, we have
doorClose.png, doorOpen.png, and key.png. Let's get start.

Engage Thrusters
Here, we will create the object's Key and Door. Let's do this as follows:

1.	 Let's create the new material for our key, so go to Assets | Create | Material, name
it M_Key, and set the following:

�� Shader: Transparent | Cutout | Specular
�� Main Color: R: 255, G: 166, B: 0, A: 255
�� Specular Color: R: 236, G: 224, B: 26, A: 0
�� Shininess: Drag the dragger almost to the right side
�� Base (RGB) TransGloss (A)
�� Drag-and-drop our key.png in the Graphics/Level to the texture

thumbnail in the material inspector:

Project 1

41

2.	 Next, we create another material for our door; go to Assets | Create | Material,
name it M_Door, and set the following:

�� Shader: Diffuse

�� Main Color: R: 219, G: 255, B: 255, A: 255

�� Base (RGB)

�� Drag-and-drop our doorClose.png in the Graphics/Level to the
texture thumbnail in the material inspector

3.	 Before we create our mesh object, we have to create a new Tag for our Door and
Key, so go to Edit | Project Settings | Tags.

4.	 Under the Element 3 type Door, and under Element 4 type Key. Now, we will create
a key object by using a plane in Unity; it's very similar to our Player. So, go to the
Plane prefab object in the FBX folder and drag it into the Hierarchy view.

5.	 In the Hierarchy view, right-click on the Plane prefab object, and choose Rename to
change the name to Key.

6.	 Next, right-click on the Animation component in the Inspector view and choose the
Remove Component option to remove it. We will see the pop-up window, so just
click on the Continue button similar to how we did for our Player object.

7.	 Click on this object and go to its Inspector view, and set the following:

�� Tag: Key

�� Position: x: 21, y: 7.5, z: 0

�� Rotation: x: 0, y: 180, z: 0

�� Scale: x: 2.75, y: 2.75, z: 2.75

8.	 Assign our M_Key to this material. Then add the Box Collider to the Key as we
did for our Player; go to Component | Physics | Box Collider set Size: x: 1, y: 1, z: 1
and Center: x: 0, y: 0, z: 0, and toggle Is Trigger to true.

9.	 Copy the Key by pressing Command + D or Control + D to create the Door object.
Then, we name it Door, assign material M_Door to it, and set the following:

�� Tag: Door

�� Position: x: 19.5, y: 16, z: 0

�� Rotation: x: 0, y: 180, z: 0

�� Scale: x: 7.5, y: 7.5, z: 1

Develop a Sprite and Platform Game

42

10.	 We have finished creating our Door and Key. Next, we will go back to our code
and add some scripting to make our Door and Key work. Double-click our
CharacterController_2D.js, and add these parameters to it:
public var doorOpenTexture : Texture2D;
public var doorCloseTexture : Texture2D;
private var b_hasKey : boolean;

11.	 Then, we add these lines of code to the Start() function:
 //Start with no Key
 b_hasKey = false;

This will set the character to start without a key.

12.	 Next, we add the OnTriggerEnter() function to our code; this function will check
if our character hit Key or Door:
public function OnTriggerEnter (hit : Collider) : IEnumerator {
 if (hit.collider.tag == "Key") {
 if (!b_hasKey) {
 //We hit our Key
 b_hasKey = true;
 Destroy (hit.gameObject);
 }
 }

 if (hit.collider.tag == "Door") {
 if (b_hasKey) {
 //If we had Key and hit door the door will open
 hit.gameObject.renderer.material.mainTexture =
doorOpenTexture;
 //wait for 1 second and destroy our character
 yieldWaitForSeconds(1);
 Destroy (gameObject);
 //We close the door
 hit.gameObject.renderer.material.mainTexture =
doorCloseTexture;
 }
 }
}

In this function, we are checking if our character hit the key or door by checking
their tag. When the player hits the key, the key will destroy itself and we set our
character to have a key by setting b_hasKey = true. Also, when we hit the door,
we are checking if our character has the key or not. If the character has the key, it
will change the door texture to doorOpen texture. Then, we wait for one second to
remove our character and we change the door texture back to doorClose texture
to close the door.

Project 1

43

13.	 Before we are done, we need to add doorOpen.png and doorClose.png to the
Player. Go back to Unity, and click on the Player; in the Inspector view now, we
will see two new parameters, Door Open Texture and Door Close Texture; drag-and-
drop doorOpen.png to Door Open Texture and doorClose.png to Door Close
Texture. Now we are done.

Click play and try out your game, collecting the key and going to the door. Behold the door
opening and closing!

Objective Complete - Mini Debriefing
We just created a key and door object, and placed them at our level. We also created
the function that will trigger when the character hits the key and door objects. Then, we
changed the texture of our door object when our character had a key object and hit the
door. Lastly, we waited for one second to remove our character from the scene and changed
the door texture back to closed state by using yield and Destroy.

Classified Intel
We can pause or wait for the next action by using coroutines.

Coroutines
In our script, we need to wait for a second between opening the door and ending the game.
We could do this by looping or performing some other task for a second, but that would
stop the animations, the sound, and everything else. We get around this by using the yield
command; this tells Unity to stop running our function and come back later (in our game,
1 second later as we call yield WaitForSecond(1)). By using the yield command our
function becomes Coroutines and now it must return IEnumerator (Unity needs this
so that it can tell when to start our function again). This means Coroutines can't return a
value like a normal function. We can change most functions in our MonoBehaviours script
into Coroutines, apart from the ones which already run in every frame, such as Update(),
FixedUpdate(), OnGUI(), and so on. We can get more information about coroutines
from the following Unity script reference:

http://unity3d.com/support/documentation/ScriptReference/Coroutine.
html.

Develop a Sprite and Platform Game

44

Next, we will talk about the return type. Sometimes, when we use JavaScript, we don't
really care about what type to return or what type of parameters we will pass to the
function, because it is really convenient to type only var myParams = 0 or function
DoSomething(var). This isn't a bad thing to do, but if we are working with a team of
people, it is very important to have code that is readable for others. So, it is better to have
this habit. It also makes the code run faster, since it doesn't have to go and do type lookups.
On the other hand, if we use C#, we will be forced by the language itself to type the return
type of this function or the type of this parameter. So, it's a good thing to know because you
will be able to read C# code easily if you have to and it is readable for everyone, even the
person using C#.

Adding a sound and replay button
Finally, we are in the last step of this chapter. We will add sound effects and a simple replay
button for us to be able play this again.

Prepare for Lift Off
Let's make sure that we have all the graphics that we need for the replay button; go to the
Chapter1 folder in the Project window, and make sure we have restartButtonOut.
png and restartButtonOver.png in our subfolder Buttons. We also need some sound
effects to use for our character, go to our Sound subfolder. We will see button_click.
aiff, doorOpen.wav, getKey.aiff, and Jump.wav. Unity, by default, translates every
sound that we import in our project to 3D, but we don't really need it as we are creating a 2D
game. So, we will click on each sound in the Sound folder in the Project view and go to their
Inspector window and uncheck 3D Sound and then click on the Apply button:

Project 1

45

Engage Thrusters
In this section, we will create the button and script for the restart button:

1.	 First, we need to create a simple TextureButton class to control our restart button
(Assets | Create | Javascript) and name our script to TextureButton. Double-click
to open MonoDevelop and add the following code:
public var normalTexture : Texture2D;
public var rollOverTexture : Texture2D;
public var clickSound : AudioClip;
public var key : GameObject;
public var Player : GameObject;

From the preceding code, we have two Texture2D parameters, normalTexture
and rollOverTexture, for the restart button when it's in the rollout and rollover
state. We also have an audio to play a click sound FX.

2.	 Next, we have key and Player GameObject, which we will assign the prefab of
key and Player to use when the game is at an end. We are creating a function to
change our restart button texture when the user performs rollover and rollout. Add
the following script:
public function OnMouseEnter () : void { //Mouse Roll over
function
 guiTexture.texture = rollOverTexture;
}

public function OnMouseExit() : void { //Mouse Roll out function
 guiTexture.texture = normalTexture;
}

3.	 Now, we will create the function that will reset our character back to the start
position, and the key will appear in the scene again by using Instatiate to clone
our object from our prefab object in the projects, which we will create at a later state.

4.	 Finally, we have @script RequireComponent(AudioSource) to basically force
the script to add an AudioSource script to our restartButton, and to prevent
the error when we are running this script without the AudioSource script. Let's
add the following script:
public function OnMouseUp() : IEnumerator{ // Mouse up function
 audio.PlayOneShot(clickSound);
 yield new WaitForSeconds (1.0); //Wait for 0.5 secs. until do
the next function
 //Create a new Player at the start position by cloning from our
prefab
 Instantiate(Player, new Vector3(Player.transform.position.x,
Player.transform.position.y, 0.0), Player.transform.rotation);

Develop a Sprite and Platform Game

46

 //Create a new key at the start position by cloning from our
prefab
 Instantiate(key, new Vector3(key.transform.position.x, key.
transform.position.y, 0.0), key.transform.rotation);
 //Hide restart button
 guiTexture.enabled = false;
}

@scriptRequireComponent(AudioSource)

5.	 Then, we go back to our CharacterController_2D.js to add sound code for
playing the sound effect and a restart button. Add these parameters to the top of
this class:
private var restartButton : GUITexture;
public var doorOpenSound : AudioClip;
public var getKeySound : AudioClip;
public var jumpSound : AudioClip;

6.	 Add code to get the restartButton from our game scene; put this code in the
Start() function:
//Get restartButton from the Game Scene
 restartButton = GameObject.FindWithTag("RestartButton").
guiTexture;
 //make restart Button disabled
 restartButton.enabled = false;

7.	 Add a jump sound, inside the Update() function and inside if (Input.
GetButton("Jump")) {} as follows:
if (Input.GetButton("Jump")) { //Jump
 b_isJumping = true;

 //Then make it Jump
 audio.volume = 0.3;
 audio.PlayOneShot(jumpSound);

 loopSprites[0].resetFrame();
 loopSprites[1].resetFrame();
 rigidbody.velocity = new Vector3(rigidbody.velocity.x,
-Physics.gravity.y, 0);
 }

8.	 Next, we add the getKey sound, doorOpen sound, and enable our
restartButton. Go to OnTriggerEnter() and update the code. First, inside if
(hit.collider.tag == "Key") {} add the highlighted code:
if (hit.collider.tag == "Key") {
 if (!b_hasKey) {
 //We hit our Key

Project 1

47

 audio.volume = 1.0;
 audio.PlayOneShot(getKeySound);

 b_hasKey = true;
 Destroy (hit.gameObject);
 }
 }

9.	 Inside if (hit.collider.tag == "Door") {}, add the highlighted code:
if (hit.collider.tag == "Door") {
 if (b_hasKey) {

 audio.volume = 1.0;
 audio.PlayOneShot(doorOpenSound);

 //If we had Key and hit door the door will open
 hit.gameObject.renderer.material.mainTexture =
doorOpenTexture;
 //wait for 1 second and destroy our character
 yieldWaitForSeconds(1);
 Destroy (gameObject);
 //We close the door
 hit.gameObject.renderer.material.mainTexture =
doorCloseTexture;

 //Show Restart Button
 restartButton.enabled = true;

 }
 }

And for the last thing before we go back to Unity, put this line at the end
of the code to basically force the script to add an AudioSource script to
CharacterController_2D.js:
@scriptRequireComponent (AudioSource)

10.	 Then, we go back to Unity, and click on the Player to open the Inspector. We
will see Door Open Sound, Get Key Sound, and Jump Sound. Then, we assign the
sounds to these as follows:

�� Door Open Sound: doorOpen.wav

�� Get Key Sound: getKey.aiff

�� Jump Sound: Jump.wav

11.	 Next, we need to add an Audio Source script to be able to use our sound for the
Player. This is because we already attached this script to the game object, so Unity
doesn't add it for us.

Develop a Sprite and Platform Game

48

12.	 Go to Component | Audio | AudioSource. There, create three prefabs for the key,
Player, and restartButton. Go to Assets | Create | Prefab three times, and
name all of them as follows: Key, Player, and restartButton.

13.	 Next, we drag our Player in Hierarchy to the Player Prefab in the Project window.
We will also do the same with Key; drag our Key in Hierarchy to the Key Prefab in
the Project window.

14.	 For the restartButton, we need to create a new tag; go to Edit | Project Settings
| Tags. Under Element 5 type RestartButton.

15.	 Next, create a new GUI Texture object, which is for our replay button
GameObject | Create Other | GUI Texture and name it restartButton, and in the
object inspector set it as follows:

�� Tag: RestartButton

�� Position: x: 0.5, y: 0.5, z: 0

�� Rotation: x: 0, y: 0, z: 0

�� Scale: x: 0, y: 0, z: 1

�� GUITexture:

�� Texture: Drag-and-drop restartButtonOut.png here

�� Color: Leave it as default

�� Pixel Inset:

ff X: -64, Y: -16, Width: 128, Height: 32

16.	 Drag restartButton in Hierarchy and drop to the restartButtonPrefab in the
Project Window, click on the restartButtonPrefab in the Project window, and drag
our TextureButton.js script to restartButtonPrefab. In the Inspector, we add all
objects needed for Texture Button (Script) as follows:

�� Normal Texture: Drag-and-drop restartButtonOut.png in here

�� Roll Over Texture: Drag-and-drop restartButtonOver.png in here

�� Click Sound: Drag-and-drop button_click.aiff here

�� Key: Drag-and-drop Key Prefab here

�� Player: Drag-and-drop Player Prefab here

Ok, now we are done; click play to see what we have. Now, when we collect the key
and go inside the door, we will see a restart button appear; click on this button and the
game will restart.

Project 1

49

Objective Complete - Mini Debriefing
We just finished creating a restart button for our platform game. We used Destroy and
Instantiate to remove and create a new clone of the object from the prefab. We also
added a sound effect to our restart button and character. Then, we set audio.volume to
1.0; to set the volume of our sound effect and used audio.PlayOneShot(AudioClip);
to play a sound effect once it is triggered.

Classified Intel
In restartButton, we can also add Application.LoadLevel(LevelName) to
reset our game, which is much easier than using instantiate, but the Application.
LoadLevel will destroy all the game objects in the scene and reload again. In this case, we
use instantiate in our game because we only have one scene and don't want to load the
whole game level again. However, we can also put DontDestroyOnLoad() in the Awake()
function of the object that we don't want to destroy, but it needs a bit of setup. So, there is
no right or wrong. It depends on what we want to use or where we want the project to go.

Game over-Wrapping it up
We just created a simple 2D platform game, and it is our first piece to get started with Unity.
In this chapter, we have learnt how to manage a sprite animation by adjusting the Tiling
and Offset of the material. We have gone through the MonoDevelop scripting editor and
created a JavaScript class. Also, we have learnt the basics of how to use Input Manager,
Physics Raycast, Gizmos, and Collider. Finally, we have attached the sound effect and a
restart button to our game. Let's take a look at what we have:

Develop a Sprite and Platform Game

50

Are you ready to go gung ho?
A Hotshot challenge

Now we have a game that looks good, but it's not complete, yet. So, why don't you try to do
something by using the knowledge gained from this chapter to add more fun to your game
and make it look better? Let's try the following:

ff Add a background music and more sound effects

ff Make more challenges in our level, such as create a movable platform, collect more
items to open the door, or even have a longer level

ff Add obstacles that can make your character dead, lose Hit Points, or restart to
another position

ff Add Hit Point for our character

ff Create an animated background or level by using the concept from our
SpriteManager class swapping the texture

ff Create a parallax background by adding more layers for the background or
foreground object

Project 2
Create a Menu for

an RPG Game—Add
Powerups, Weapons,

and Armor

Here we are in the second chapter. When we talk about traditional role-playing games, we
will probably be thinking about the development of the character, such as the attributes,
skills, powers, levels or experience, and so on. When we are playing an RPG, we typically
have to open the menu or UI to adjust and manage our main character, such as increase the
character attribute, change the weapon, or choose skills. The menu is very important in an
RPG game. So, in this chapter, we will make the menu in an RPG game by using the GUI class
in Unity.

Mission briefing
We'll create a simple menu, yet complex enough for the RPG game. In this chapter, we
will continue using some assets from the first chapter. So, we won't have to recreate the
character again. This menu will include a STATUS tab, which will show the current attributes,
skills, and equipment of our character. Next is an INVENTORY tab that will contain all
the items that our character has as well as the information for each item when the user
rolls over.

Create a Menu for an RPG Game—Add Powerups, Weapons, and Armor

52

The last tab is the EQUIPMENT tab with which the user will be able to change the weapon,
armor, accessory, and skill, as shown in the following screenshot:

The purpose of this chapter is to understand the GUI class in Unity and create our custom
user interface, which is different from GUITexture that we used to create our restart
button in the first chapter. There is also GUIText, which we will use to display the text of
any font we import in the screen coordinate. Both are the type of rendering component that
can be used once per object. So, if we try to create a complete menu, we will need many
GUITexture/GUIText objects and the scripts to handle them. On the other hand, GUI class
is operating inside one function OnGUI, and we only deal with one object and only create a
script that will display all buttons in the menu tab.

Project 2

53

What does it do?
In this project, we will apply the custom GUI graphics to Unity by using GUI Skin. We can
have multiple styles of our GUI graphics in Unity. Let's say that we have multiple types of
fonts that we want to use in our menu; Unity has a way to do this. We can create a GUI Skin
and apply our custom skin to the area that we want to show the font in. That is the great
thing about Unity.

Now, we want to create a menu scripting class that will bring up a new menu window in the
game scene when the player presses M. Next, we create a script to make three tab buttons,
which will take the player to each tab, STATUS, INVENTORY, and EQUIPMENT.

In the STATUS tab, we will create a script that will show the image of our character, hit
points, magic points, skill, and all the attributes of this character. Next, we will create an
INVENTORY tab, which will contain all the items that the player can scroll up and down to
choose an item. Finally, we will create the tab that the player can use to manage and change
the equipment and skills of the character by clicking it.

Next, we will create a menu game object and apply the script to this game object. Lastly, we
will add the parameter and textures to our menu and start playing.

Why Is It Awesome?
When we complete this chapter, we will be able to create our custom UI for our RPG game,
not only RPG, but we will also be able to create the user interface for every genre. Also, we
will get a good understanding of the GUI class in Unity, which is very powerful, if we want to
create an awesome user interface such as with Dragon Age, Final Fantasy, and so on.

Your Hotshot Objectives
Since we are creating a menu for an RPG style game, we need a menu that is a little
more complex than the usual menu. So, it will be split into five tasks. Here is the outline
of the tasks:

ff Custom skin with GUI Skin

ff Creating a menu object

ff Creating a status tab

ff Creating an inventory tab

ff Creating an equipment tab

Create a Menu for an RPG Game—Add Powerups, Weapons, and Armor

54

Mission Checklist
Before we start, we will need to get the project folder and assets from this book's website:
http://www.packtpub.com/support?nid=8267, which includes the finished project
from the first chapter and the assets that we need to use in this chapter. Browse to the
URL and download the Chapter2.zip package; unzip it, and we will see Chapter2.
unitypackage, which we will use to import to our second project in Unity.

Custom skin with GUI Skin
Those of you who are familiar with HTML will probably have a good understanding of using
a repeating image for a background to reduce memory usage. Unity uses the same idea to
create a graphic for the user interface, which will save a lot of memory and size for our game.
In this section, we will take a look at the GUI Skin, which is the main key to creating a custom
skin in Unity.

Prepare for Lift Off
We will begin by creating the new project in Unity. Let's start:

1.	 First, create a new project and name it MenuInRPG, similar to what we did in the first
chapter. Click on the Create Project button, as shown in the following screenshot:

Project 2

55

2.	 Next, import the assets package by going to Assets | Import Package | Custom
Package…); choose the Chapter2.unityPackage, which we just downloaded,
and then click on the Import button in the pop-up window link, as shown in the
following screenshot:

3.	 Wait until it's done, and you will see the MenuInRPGGame and SimplePlatform
folders in the Window view. Next, click on the arrow in front of the
MenuInRPGGame folder to bring up the drop-down and you will see the Chapter2
folder and the MenuInRPG scene, as shown in the following screenshot:

Create a Menu for an RPG Game—Add Powerups, Weapons, and Armor

56

4.	 Next, double-click on the MenuInRPG scene, as shown in the preceding screenshot,
to open the scene that we will work on in this chapter.

5.	 When you double-click on the MenuInRPG scene, Unity will display a pop-up
asking whether we want to save the current scene or not. As we want to use the
MenuInRPG scene, just click on the Don't save button to open up the MenuInRPG
scene, as shown in the following screenshot:

6.	 Then, go to Chapter2/UI folder and click on the arrowDHover.png to bring up its
Inspector view. In the Inspector view, make sure that GUI is selected in the Texture
Type properties, and Truecolor is selected in Format. Then, we will click on the
Apply button, as shown in the following screenshot:

Project 2

57

So why do we set it up in this way? It is because we want to have a UI
graphic to look as close to the source image as possible. However, we set
the Format to Truecolor, which will make the size of the image larger than
Compress, but will show the right color of the UI graphics.

7. 	 At last, we will edit the layers' name by going to the Layer Inspector and set the
User Layer 8 to Background and User Layer 9 to Level.

Engage Thrusters
Now, we are ready to create the GUI Skin:

1.	 Let's create a new GUI Skin by going to Assets | Create | GUI Skin, and we will see
New GUISkin in our project window. Name the GUI Skin as MenuSkin. Then, we
click on our MenuSkin and go to its Inspector. We will see something similar to the
following screenshot:

Create a Menu for an RPG Game—Add Powerups, Weapons, and Armor

58

2.	 You will see many properties, but don't be afraid, because this is the main key to
creating a custom graphics for our UI. Font is the base font for the GUI Skin. From
Box to Scroll View, each property is a GUIStyle, which we will be able to use for
creating our custom UI. The Custom Styles property is the array of GUIStyle that we
can set up for the extra style. Settings are the setup for the entire GUI.

3.	 Next, we will set up the new font style for our menu UI; go to Font line in this
Inspector view, click the circle icon, and select the font Federation Kalin.

4.	 Now you have set up the base font for our GUI Skin. Next, click on the arrow in
front of the Box line to bring up a drop-down. We will see all the properties. We
can see more information and learn more about these properties on the Unity
website: http://unity3d.com/support/documentation/Components/
class-GUISkin.html.

Project 2

59

5.	 Name is basically the name of this style, which the box is the default style of the
GUI.Box. Next, we will start by setting our custom UI to this GUI Skin; click on
the arrow in front of Normal to bring up the drop-down, and you will see two
parameters Background and Text Color.

6.	 Click on the circle icon at the right of the Background line to bring up the Select
Texture2D window and choose the boxNormal.png texture, or you can drag
the boxNormal.png texture from our Chapter2/UI folder and drop it to the
Background space.

We can also use the search bar to find our texture by going to
the Project view and typing boxNormal in the search bar, as
shown in the following screenshot:

7.	 Then under the Text Color line, we leave the color as the default color—because
we will not have any text shown in this style—and repeat the previous step with On
Normal by using the boxNormal.png texture.

8.	 Next, click on the arrow in front of Hover under the Background. Choose
boxActive.png texture, and repeat this step for Active and On Active.

9.	 Then, go to each property in the Box style and set the following:

�� Border: Left: 14, Right: 14, Top: 14, Bottom: 14

�� Padding: Left: 6, Right: 6, Top: 6, Bottom: 6

For the other properties in this style, we will leave them as default.

10.	 Next, we go to the following properties in GUISkin inspector and set them
as follows:

�� Label

�� Normal | Text Color: R: 27, G: 95, B: 104, A: 255

�� Window

�� Normal | Background: myWindow.png

�� On Normal | Background: myWindow.png

�� Border: Left: 27, Right: 27, Top: 55, Bottom: 96

�� Padding: Left: 30, Right: 30, Top: 60, Bottom: 30

Create a Menu for an RPG Game—Add Powerups, Weapons, and Armor

60

�� Horizontal Scrollbar

ff Normal | Background: horScrollBar.png

ff Border: Left: 4, Right: 4, Top: 4, Bottom: 4

�� Horizontal Scrollbar Thumb

ff Normal | Background: horScrollBarThumbNormal.png

�� Hover | Background: horScrollBarThumbHover.png

ff Border: Left: 4, Right: 4, Top: 4, Bottom: 4

�� Horizontal Scrollbar Left Button

ff Normal | Background: arrowLNormal.png

ff Hover | Background: arrowLHover.png

ff Fixed Width: 14

ff Fixed Height: 15

�� Horizontal Scrollbar Right Button

ff Normal | Background: arrowRNormal.png

ff Hover | Background: arrowRHover.png

ff Fixed Width: 14

ff Fixed Height: 15

�� Vertical Scrollbar

ff Normal | Background: verScrollBar.png

ff Border: Left: 4, Right: 4, Top: 4, Bottom: 4

ff Padding: Left: 0, Right: 0, Top: 0, Bottom: 0

�� Vertical Scrollbar Thumb

ff Normal | Background: verScrollBarThumbNormal.png

ff Hover | Background: verScrollBarThumbHover.png

ff Border: Left: 4, Right: 4, Top: 4, Bottom: 4

Project 2

61

�� Vertical Scrollbar Up Button

ff Normal | Background: arrowUNormal.png

ff Hover | Background: arrowUHover.png

ff Fixed Width: 16

ff Fixed Height: 14

�� Vertical Scrollbar Down Button

ff Normal | Background: arrowDNormal.png

ff Hover | Background: arrowDHover.png

ff Fixed Width: 16

ff Fixed Height: 14

We have finished the setup of the default style.

11.	 Now we will go to the Custom Styles property and create our custom GUIStyle to
use for this menu; go to Custom Styles and under Size change the number to 6.
Then, we will see Element 0 to Element 5.

12.	 Next, we go to the first element or Element 0; under Name type Tab Button, and we
will see Element 0 change to Tab Button. Set it as follows:

ff Tab Button (or Element 0)

�� Name: Tab Button

�� Normal

�� Background: tabButtonNormal.png

�� Text Color: R: 27, G: 62, B: 67, A: 255
ff Hover

�� Background: tabButtonHover.png
�� Text Color: R: 211, G: 166, B: 9, A: 255

ff Active

�� Background: tabButtonActive.png

�� Text Color: R: 27, G: 62, B: 67, A: 255

ff On Normal:

�� Background: tabButtonActive.png

�� Text Color: R: 27, G: 62, B: 67, A: 255

Create a Menu for an RPG Game—Add Powerups, Weapons, and Armor

62

ff Border: Left: 12, Right: 12, Top: 12, Bottom: 4

ff Padding: Left: 6, Right: 6, Top: 6, Bottom: 4

ff Alignment: Middle Center

ff Fixed Height: 31

ff Font Size: 14

For the Text Color, we can also use the Eyedropper tool next to the color
box to copy the same color, as we can see in the following screenshot:

Project 2

63

13.	 We have finished our first style, but we still have five left, so let's carry on:

ff Exit Button (or Element 1)

�� Name: Exit Button

�� Normal | Background: buttonCloseNormal.png
�� Hover | Background: buttonCloseHover.png
�� Fixed Width: 26

�� Fixed Height: 22

Create a Menu for an RPG Game—Add Powerups, Weapons, and Armor

64

ff Text Item (or Element 2)

�� Name: Text Item

�� Normal | Text Color: R: 27, G: 95, B: 104, A: 255

�� Alignment: Middle Left

�� Word Wrap: Check

ff Text Amount (or Element 3)

�� Name: Text Amount

�� Normal | Text Color: R: 27, G: 95, B: 104, A: 255

�� Alignment: Middle Right

�� Word Wrap: Check

Project 2

65

ff Selected Item (or Element 4)

�� Name: Selected Item

�� Normal | Text Color: R: 27, G: 95, B: 104, A: 255

�� Hover

�� Background: itemSelectNormal.png

�� Text Color: R: 27, G: 95, B: 104, A: 255

ff Active

�� Background: itemSelectNormal.png

�� Text Color: R: 27, G: 95, B: 104, A: 255

ff On Normal

�� Background: itemSelectActive.png

�� Text Color: R: 27, G: 95, B: 104, A: 255

Create a Menu for an RPG Game—Add Powerups, Weapons, and Armor

66

�� Border: Left: 6, Right: 6, Top: 6, Bottom: 6

�� Padding: Left: 4, Right: 4, Top: 4, Bottom: 4

�� Margin: Left: 2, Right: 2, Top: 2, Bottom: 2

�� Alignment: Middle Center

�� Word Wrap: Check

Project 2

67

ff Disabled Click (or Element 5)

�� Name: Disabled Click

�� Normal

�� Background: itemSelectActive.png

�� Text Color: R: 27, G: 95, B: 104, A: 255

�� Border: Left: 6, Right: 6, Top: 6, Bottom: 6

�� Padding: Left: 4, Right: 4, Top: 4, Bottom: 4

�� Margin: Left: 2, Right: 2, Top: 2, Bottom: 2

�� Alignment: Middle Center

�� Word Wrap: Check

And we have now finished this step.

Create a Menu for an RPG Game—Add Powerups, Weapons, and Armor

68

Objective Complete - Mini Debriefing
Basically, what we have done here is create the GUISkin asset as the skin for our menu.
First, we tell the GUI that we will use the font name Federation Kalin as our main
font for this GUI Skin by setting up the Font in the first line in this skin inspector. Then, we
changed all the default skin textures to use our UI graphics from our UI folder by setting
all the necessary properties and parameters in Box, Label, Window, Horizontal Scrollbar,
Horizontal Scrollbar Thumb, Horizontal Scrollbar Left Button, Horizontal Scrollbar Right
Button, Vertical Scrollbar, Vertical Scrollbar Thumb, Vertical Scrollbar Up Button, Vertical
Scrollbar Down Button style. Then, we created six Custom Styles, Tab Button, Exit Button,
Text Item, Text Amount, Selected Item, and Disabled Click, which will be used in our script
in the next section.

The Custom Style is basically the GUIStyle that we can add into our GUISkin.
This Style allows us to create a custom Style that will act differently from the
default style (Box, Label, Window, and so on) in this GUISkin.

Classified Intel
In this section, we applied UI graphics to GUISkin. You might have a question here—how
does it work? Here, we will go through the basic concept of how to create a custom UI in
Photoshop and get the right texture to use in our GUISkin.

First, let's take a look at the myWindow.png in our Chapter2/UI folder. We will see the
capsule shape. You might be curious—how are we going to create a window graphics with
this capsule shape? Well, the trick is the properties Border on which we set the parameters
Left, Right, Top, and Bottom. As we already mentioned, use the repeating image in the
background of the HTML code.

Here is how the Unity GUIStyle works. Take a look at the following figure:

Project 2

69

First, we set the parameters for the Border. These parameters will offset the pixels of the
current UI graphics from 0 to the number that we assigned. For example, if we want to draw
a rectangular window, which is 320 pixels in width and 240 pixels in height, and we set the
Left Border to 27, Right to 27, Top to 55, and Bottom to 96, this will tell Unity GUIStyle to
always draw the graphics from pixel 0 to pixel 27 on the left side with the same scale as the
source texture. What will happen from pixel 28? Basically, it will repeat pixel 27 until it hits
the right Border, which is also set to 27 pixels from the right. So, this means that we tell the
GUIStyle to draw graphics from the source texture from pixel 0 to pixel 27, and repeat the
texture from pixel 28 to pixel 293, then switch back and draw pixel 294 to pixel 320 from the
source texture, which is the offset of 27 pixels from the right. This also applies to the top and
bottom Borders, as we can see on the left side of the preceding figure.

From this concept, we can save a lot of memory because instead of using a 320 x 240 pixel
image, we just use 54 x 151 pixels. However, in some cases we don't want any repeating
pixels for our UI such as fixed button graphics—for example, our Exit Button style—or any
fixed texture, and so on, as we can see in the following figure:

Create a Menu for an RPG Game—Add Powerups, Weapons, and Armor

70

We can just set the Fixed Width and Fixed Height properties in GUIStyle to match our image
size. For instance, we have our exit button image, which is 26 pixels wide and 22 pixels high.
We just set the Fixed Width to 26 and Fixed Height to 22. We can also set only Fixed Width
or Fixed Height in GUIStyle—as we already did in our Custom Styles Tab Button—as we
can see in the following figure:

We set the Fixed Height to 31, and we leave the Fixed Width at 0, which means that the
height of the style will always be 31 pixels but the width can vary from zero to infinity.

Creating a menu object
Continuing from the first step, we will now create our menu game object in the scene, with
which we will be able to open and close the menu window. Pressing the M key will open the
menu window, and clicking on the close button in the window will close the menu window.
We will also create three tab buttons for the player to be able to see through the different
pages, STATUS, INVENTORY, and EQUIPMENT, as we can see in the following screenshot:

Project 2

71

Prepare for Lift Off
Just make sure that we have our Player.png texture in the Chapter2/images folder.
Now, we are ready.

Engage Thrusters
We will begin by creating the menu:

1.	 First, we want to create an empty game object in our scene and name it menu; go
to GameObject | Create Empty and name it MenuObject. We will use this object
for our menu.

2.	 Next, we will create the menu JavaScript that will control our entire menu;
go to Assets | Create | Javascript, name it Menu, double-click on it to launch
MonoDevelop, and we will get our hands dirty with the code.

3.	 Open the Menu.js file, and type these variables as follows:
//For toggle the open and close our menu window
//We made it static so that we can access this variable from
everywhere.
public static var b_openMenu : boolean;

public var customSkin : GUISkin; //We assign our MenuSkin here
public var t_hero : Texture; //Character background texture
public var t_statusBox1 : Texture; //First Info box background
texture
public var t_statusBox2 : Texture; //Second Info box background
texture
public var t_skillBox : Texture; //Skill box background texture

private var in_toolbar : int = 0;
private var s_toolbars : String[] = ["STATUS", "INVENTORY",
"EQUIPMENT"];
private var r_hero : Rect = new Rect (19, 35, 225, 441);
private var r_window : Rect = new Rect (10, 10, 640, 480);
private var r_closeBtn : Rect = new Rect (598, 8, 26, 22);
private var r_tabButton : Rect = new Rect (35, 15, 480, 40);

Create a Menu for an RPG Game—Add Powerups, Weapons, and Armor

72

Here, we just created the necessary variables for our Menu window, as shown in the
following screenshot:

The result of t_statusBox1, t_statusBox2, and t_
skillBox will be shown in the Creating the Status tab section.

4.	 Next, we will set b_openMenu to false in the Start function, because we
don't want our menu to show until the player presses the M key, so type the
code as follows:
public function Start () : void {
 b_openMenu = false; //Set our menu disabled at the first run
}

5.	 Then, we go to the Update function and set it as follows:
// Update is called once per frame
public function Update () : void {
 //When the user press M key show the menu window
 if (Input.GetKey(KeyCode.M)) {
 if (b_openMenu == false) {
 b_openMenu = true;
 }
 }
}

Project 2

73

6.	 Next, we will use the OnGUI function to create our window.

OnGUI function acts similar to an Update function, but OnGUI
gets called more than once, for rendering and handling GUI events,
meaning that OnGUI implementation might be called several times
per frame (one call per event).

7.	 In the OnGUI function, we will assign our customSkin, create a window menu,
make it draggable, and check to make sure that the window is always on the screen;
so add this code after the Update function:
//All GUI Class will create in this function
public function OnGUI () : void {
 GUI.skin = customSkin; //Assign our MenuSkin to the Gui Skin
 if (b_openMenu) { //If open menu == true create a menu window
 r_window = GUI.Window (0, r_window, DoMyWindow, ""); //create
a new window by the size of rect
 //This whole code is to make sure that our window can't be
dragged outside of the screen area
 //
/////////////////
 r_window.x = Mathf.Clamp(r_window.x, 0.0, Screen.width - r_
window.width);
 r_window.y = Mathf.Clamp(r_window.y, 0.0, Screen.height - r_
window.height); //
//////////////////////////////////
 }
}

//Our window function operates here
private function DoMyWindow (windowID : int) : void {
 //We create tab button here.
 in_toolbar = GUI.Toolbar (r_tabButton, in_toolbar, s_toolbars,
GUI.skin.GetStyle("Tab Button"));

 switch (in_toolbar) {
 case 0 : //Status
 //Create a status page
 break;
 case 1 : //Items
 //Create an item page
 break;
 case 2 : //Equip
 //Create an equipment page
 break;

Create a Menu for an RPG Game—Add Powerups, Weapons, and Armor

74

 }
 //Draw our background character texture
 GUI.DrawTexture(r_hero, t_hero);

 //We create a close button here
 if (GUI.Button (r_closeBtn, "", GUI.skin.GetStyle("Exit
Button"))) {
 b_openMenu = false;
 }

 //Make our window dragable in whole area
 GUI.DragWindow();
}

Since we want everything inside our menu window, we used the DoMyWindow
function to take a GUI.Window as one parameter. Inside the DoMyWindow function,
we create all the buttons and textures. Then, we make our window draggable by
adding GUI.DragWindow(). With that we are done with coding for this step.

8.	 Next, go back to Unity, click on Menu.js, and drag-and-drop it to the Menu game
object in the Hierarchy. Next, click on the Menu game object in the Hierarchy, open
the Menu (Script), and set the parameters as follows:

�� Custom Skin: Drag-and-drop our MenuSkin (GUISkin) here

�� T_hero: Drag-and-drop blackDude.png from the Chapter2/images
folder here

�� T_status Box 1: Drag-and-drop stat1.png from the Chapter2/images
folder here

�� T_status Box 2: Drag-and-drop stat2.png from the Chapter2/images
folder here

�� T_skill Box: Drag-and-drop skill0.png from the Chapter2/images
folder here

9.	 Then, we can click on the play button to see the result. In the game scene, we can
press the M key to bring up our window and click the x button at the top-right
corner to close it.

Project 2

75

Objective Complete - Mini Debriefing
We just created a menu window, which can be opened by pressing the M key and closed
by clicking on the x button at the top-right corner of the menu window. We also have our
character texture nicely placed inside our menu window. Next, we made this window
draggable and made sure it is always on the screen by using the following code:

r_window.x = Mathf.Clamp(r_window.x, 0.0, Screen.width - r_window.
width);
r_window.y = Mathf.Clamp(r_window.y, 0.0, Screen.height - r_
window.height);

Basically, we set the minimum limit of our window in the x-position to 0 and the maximum
to the screen width subtracted by the window width; we also set the minimum limit of
y-position to 0 and the maximum to the screen height subtracted by the window height.

We will see this result when we click play the game and try to drag this window off the
screen. Lastly, we created a tab that can be clicked to change to a different page.

Create a Menu for an RPG Game—Add Powerups, Weapons, and Armor

76

Classified Intel
In this step, we were using a GUI class to create our window, box, and button, but we can
also use a GUILayout class to create the same thing as we did with GUI class. The only
difference between these two classes is that GUI will need to take a Rect object to specify
the size and position of the UI. On the other hand; GUILayout doesn't need to take the
Rect object. It will automatically adjust the size related to the source it has. Let's say, we
want to create a box that contains a text or image, GUILayout will automatically adjust
the height and width to nicely fit your text or image. For the position, GUILayout will
automatically set the first position to the top-left corner of the screen, which is (0, 0), and it
will continue to the right or down depending on the GUILayout object that we already have
on the screen. However, the downside is that we will not be able to create a fixed position
or size for the GUILayout. So, both classes are very powerful to use. We can use them in
different situations.

You can see more details of the GUI class at this URL:

http://unity3d.com/support/documentation/ScriptReference/GUI.html.

You can also see the details of the GUILayout class at this URL:

http://unity3d.com/support/documentation/ScriptReference/GUILayout.
html.

The GUI.DragWindow() function allows us to create a draggable window by specifying the
drag area on our window. You can visit the following URL to see the details:

http://unity3d.com/support/documentation/ScriptReference/GUI.
DragWindow.html.

We will see this function take one Rect parameter, which is the area that allows the user
to drag the window around. However, we didn't assign Rect parameters to our GUI.
DragWindow() function, which means that we can drag the whole window area.

Creating a status tab
In this step, we will create a status page for our menu, which will show all attributes of
this character, including hit points, magic points, level, experience, experience needed for
the next level, attack, defense, agility, intelligence, and luck. We will also show the current
equipment and skill of this character.

http://unity3d.com/support/documentation/ScriptReference/GUI.html
http://unity3d.com/support/documentation/ScriptReference/GUI.html
http://unity3d.com/support/documentation/ScriptReference/GUILayout.html
http://unity3d.com/support/documentation/ScriptReference/GUILayout.html
http://unity3d.com/support/documentation/ScriptReference/GUILayout.html
http://unity3d.com/support/documentation/ScriptReference/GUI.DragWindow.html
http://unity3d.com/support/documentation/ScriptReference/GUI.DragWindow.html
http://unity3d.com/support/documentation/ScriptReference/GUI.DragWindow.html

Project 2

77

Engage Thrusters
We will start with assigning the status parameters for our character and displaying them on
our menu:

1.	 Let's go back to MonoDevelop and add more code to our Menu.js. Include these
variables before the Start function:
public var fullHP : int = 9999; //The current full HP
public var fullMP : int = 999; //The current full MP
public var currentHP : int = 9999; //The current HP
public var currentMP : int = 999; //The current MP
public var currentLV : int = 99; //The current LV
public var currentEXP : int = 9999999; //The current EXP
public var currentNEXT : int = 99999; //The current NEXT
public var currentATK : int = 999; //The current ATK
public var currentDEF : int = 999; //The current DEF
public var currentAGI : int = 999; //The current AGI
public var currentINT : int = 999; //The current INT
public var currentLUC : int = 999; //The current LUC

public var a_weapons : Item[]; //weapons array that the character
currently has
public var a_armors : Item[]; //armors array that the character
currently has
public var a_accessories : Item[]; //accessories array that the
character currently has

Create a Menu for an RPG Game—Add Powerups, Weapons, and Armor

78

public var a_items : Item[]; //items array that the character
currently has
public var a_skills : Texture[]; //skills array that the character
currently has

private var currentWeapon : Item; //current weapon that character
uses
private var currentArmor : Item; //current armor that character
uses
private var currentAccessory : Item; //current accessory that
character uses
private var currentItem : Item; //current item that character uses
private var currentSkill : Texture; //current skill that character
uses

private var s_unequip : String = "UNEQUIP";
private var s_none : String = "NONE";

//Status Tab
private var maxHP : int = 9999; //Maximum limit of HP
private var maxMP : int = 999; //Maximum limit of MP
private var maxLV : int = 99; //Maximum limit of LV
private var maxEXP : int = 9999999; //Maximum limit of EXP
private var maxNEXT : int = 99999; //Maximum limit of NEXT
private var maxATK : int = 999; //Maximum limit of ATK
private var maxDEF : int = 999; //Maximum limit of DEF
private var maxAGI : int = 999; //Maximum limit of AGI
private var maxINT : int = 999; //Maximum limit of INT
private var maxLUC : int = 999; //Maximum limit of LUC

//Rect position for the GUI
private var r_statTexture1 : Rect = new Rect (252, 77, 331, 125);
private var r_statTexture2 : Rect = new Rect (252, 244, 331, 142);
private var r_hpLabel : Rect = new Rect (313, 75, 120, 25);
private var r_mpLabel : Rect = new Rect (313, 100, 120, 25);
private var r_lvLabel : Rect = new Rect (313, 124, 120, 25);
private var r_expLabel : Rect = new Rect (313, 150, 120, 25);
private var r_nextLabel : Rect = new Rect (313, 177, 120, 25);
private var r_atkLabel : Rect = new Rect (529, 75, 50, 25);
private var r_defLabel : Rect = new Rect (529, 100, 50, 25);
private var r_agiLabel : Rect = new Rect (529, 124, 50, 25);
private var r_intLabel : Rect = new Rect (529, 150, 50, 25);
private var r_lucLabel : Rect = new Rect (529, 177, 50, 25);
private var r_statBox : Rect = new Rect (237, 67, 360, 147);
private var r_weaponBox : Rect = new Rect (237, 230, 360, 207);

Project 2

79

private var r_weaponLabel : Rect = new Rect (252, 264, 180, 40);
private var r_armorLabel : Rect = new Rect (252, 324, 180, 40);
private var r_accessLabel : Rect = new Rect (252, 386, 180, 40);
private var r_skillTexture : Rect = new Rect (464, 288, 119, 117);
private var r_skillBox : Rect = new Rect (460, 284, 127, 125);
//GUIContent
private var gui_weaponCon : GUIContent;
private var gui_armorCon : GUIContent;
private var gui_accessCon : GUIContent;
private var gui_skillCon : GUIContent;

Now we've got all the variables for our status page.

2.	 Next, we need the Item class to contain the information for our items. Let's add this
to the preceding code:
//Items class to contain our information
class Item{
 public var icon : Texture;
 public var name : String;
 public var amount : int;

 private var itemName : String;

 //This function is just to put the space between name of the
item and amount of the item
 public function setUpItemName () : void {
 var in_length : int = (this.name.Length + this.amount.
ToString().Length);
 if (in_length < 25) {
 while (this.name.Length < 17) {
 this.name += " ";
 }
 }
 if(this.amount < 10) {
 itemName = (this.name + " " + this.amount.ToString());
 } else {
 itemName = (this.name + this.amount.ToString());
 }
 }

 public function get itemNA () : String {
 return itemName;
 }
}

Create a Menu for an RPG Game—Add Powerups, Weapons, and Armor

80

Basically, the Item class will contain the information that we need to show for every
item.

3.	 Next, we go to the Start() function and add the highlighted code:
public function Start () : void {
 b_openMenu = false; //Set our menu disabled at the first run

gui_weaponCon = GUIContent(s_unequip);
 gui_armorCon = GUIContent(s_unequip);
 gui_accessCon = GUIContent(s_unequip);
 gui_skillCon = GUIContent("");

4.	 We just finished all the setup that we need for our status page in the menu window.
Next, we go to DoMyWindow (windowID : int) and uncomment the highlighted
line as follows:
switch (in_toolbar) {
 case 0 : //Status
 //Create a status page

 StatusWindow();
 break;

5.	 Next, we need to create a StatusWindow() function, as follows:
private function StatusWindow() : void {
 GUI.Box (r_statBox, "");
 GUI.Box (r_weaponBox, "");
 GUI.DrawTexture(r_statTexture1, t_statusBox1);
 GUI.DrawTexture(r_statTexture2, t_statusBox2);
 GUI.DrawTexture(r_skillBox, t_skillBox);

 CheckMax();

 GUI.Label(r_hpLabel, currentHP.ToString() + "/" + fullHP.
ToString(), "Text Amount");
 GUI.Label(r_mpLabel, currentMP.ToString() + "/" + fullMP.
ToString(), "Text Amount");
 GUI.Label(r_lvLabel, currentLV.ToString(), "Text Amount");
 GUI.Label(r_expLabel, currentEXP.ToString(), "Text Amount");
 GUI.Label(r_nextLabel, currentNEXT.ToString(), "Text Amount");

 GUI.Label(r_atkLabel, currentATK.ToString(), "Text Amount");
 GUI.Label(r_defLabel, currentDEF.ToString(), "Text Amount");
 GUI.Label(r_agiLabel, currentAGI.ToString(), "Text Amount");
 GUI.Label(r_intLabel, currentINT.ToString(), "Text Amount");
 GUI.Label(r_lucLabel, currentLUC.ToString(), "Text Amount");

Project 2

81

 GUI.Label(r_weaponLabel, gui_weaponCon, "Text Item");
 GUI.Label(r_armorLabel, gui_armorCon, "Text Item");
 GUI.Label(r_accessLabel, gui_accessCon, "Text Item");
 GUI.Label(r_skillTexture, gui_skillCon, "Text Item");
}

6.	 Before we finish this step, we need to add another function, checkmax(), to
the preceding code. This function will make sure that the maximum number of
attributes is not over the limit. Let's add the code to create this function:
private function CheckMax () : void {
 fullHP = Mathf.Clamp(fullHP, 0.0, maxHP);
 fullMP = Mathf.Clamp(fullMP, 0.0, maxMP);
 currentHP = Mathf.Clamp(currentHP, 0.0, fullHP);
 currentMP = Mathf.Clamp(currentMP, 0.0, fullMP);
 currentLV = Mathf.Clamp(currentLV, 0.0, maxLV);
 currentEXP = Mathf.Clamp(currentEXP, 0.0, maxEXP);
 currentNEXT = Mathf.Clamp(currentNEXT, 0.0, maxNEXT);
 currentATK = Mathf.Clamp(currentATK, 0.0, maxATK);
 currentDEF = Mathf.Clamp(currentDEF, 0.0, maxDEF);
 currentAGI = Mathf.Clamp(currentAGI, 0.0, maxAGI);
 currentINT = Mathf.Clamp(currentINT, 0.0, maxINT);
 currentLUC = Mathf.Clamp(currentLUC, 0.0, maxLUC);
}

7.	 Now, we go back to Unity, click play, and press the M key to bring up our menu window.
We will see all the attributes for our character, as shown in the following screenshot:

Create a Menu for an RPG Game—Add Powerups, Weapons, and Armor

82

Objective Complete - Mini Debriefing
We just added an Item class to contain our item's information, which will be shown on
the equipment box, and will use this in the next step. Then, we created a GUIContent to
contain the image, name, and information of our items in the Start() function, and set it
to an UNEQUIP stage. Next, we added and created the StatusWindow() function to show
the status page when the player sees our menu at first click on the status tab button. We also
created a CheckMax()function to make sure that the number of the character attributes is
not over the limit.

Classified Intel
In this section, we used GUIContent to contain the information of our items and pass
to GUI.Label() function. Basically, if we take a look at each GUI class function, we will
see that it can take many variables such as Rect, string, Texture, GUIContent, and
GUIStyle. We already know what Rect, string, and Texture are. GUIStyle is the name
of the style from our MenuSkin object that we created, but what is GUIContent? It is
basically a class that contains the necessary variables to apply to our GUI. For example, if we
want our button to have an icon, name, and information when the user rolls over it, we can
add this code: GUI.Button(Rect(0,0,100,20), GUIContent("My Button Name",
icon, "This is the button info"). The first parameter is the string that will be
shown inside the button, and next is the graphic Texture that will also be shown inside
this button. The last string is the information that will be stored in this button, which we
call tooltip. We can show this tooltip when the user rolls over this button by calling GUI.
tooltip. It will automatically show the current button tooltip that the user rolls over. We
will use it in the next section.

For more details about GUIContent and GUI.tooltip, we can
check out this website:
http://unity3d.com/support/documentation/
ScriptReference/GUIContent.GUIContent.html.

Creating an inventory tab
So, we are in the second page of our menu window, which is the inventory page. In this
section, we will create an item scroll that the player can use to scroll up and down to select
the item and see its name, amount, and information of the item.

http://unity3d.com/support/documentation/ScriptReference/GUIContent.GUIContent.html
http://unity3d.com/support/documentation/ScriptReference/GUIContent.GUIContent.html
http://unity3d.com/support/documentation/ScriptReference/GUIContent.GUIContent.html

Project 2

83

Engage Thrusters
We will start with adding the parameters, which we will use to store the data in our
inventory page:

1.	 Open Menu.js, and add the following code to it; first the parameters:
//Item Tab
private var r_itemsBox : Rect = new Rect (237, 67, 360, 247);
private var r_tipBox : Rect = new Rect (237, 330, 360, 107);
private var r_itemsButton : Rect = new Rect (257, 87, 340, 227);
private var r_tipButton : Rect = new Rect (257, 350, 340, 87);
private var r_verScroll : Rect = new Rect (600, 87, 20, 227);
private var f_scrollPos : float = 1.0;
private var scrollPosition : Vector2 = Vector2.zero;
private var scrollPosition2 : Vector2 = Vector2.zero;
private var in_toolItems : int = 0;

2.	 Then, go to the Start() function and add the following code at the end:
if (a_items.Length > 0) {
 a_items[0].setUpItemName();
 currentItem = a_items[0];
 }

3.	 Next, go to DoMyWindow (windowID : int) and uncomment the highlighted
line as follows:
 case 1 : //Items
 //Create an item page

 ItemWindow();
 break;

4.	 Then, we need to create an ItemWindow() function to show this inventory page.
Type this following function in Menu.js:
private function ItemWindow() : void {
 var in_items : int = 8;
 //Create Item Information box
 GUI.Box (r_itemsBox, "");
 GUI.Box (r_tipBox, "");
 scrollPosition = GUI.BeginScrollView (new Rect (257, 87, 320,
200), scrollPosition, new Rect (0, 0, 280, 40*in_items));
 // We just add a single label to go inside the scroll view.
Note how the
 // scrollbars will work correctly with wordwrap.
 var itemsContent : GUIContent[] = new GUIContent[in_items];

Create a Menu for an RPG Game—Add Powerups, Weapons, and Armor

84

 //We create a GUIContent array of key item here (if you have
more than 1 items, you can also use your item array instead of the
current item)
 for (var i: int = 0; i < in_items; i++) {
 if (a_items.Length > 0) {
 if (i == 0) {
 itemsContent[i] = GUIContent(currentItem.itemNA,
currentItem.icon, "Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor incididunt ut labore
et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat.");
 } else {
 itemsContent[i] = GUIContent(currentItem.itemNA,
currentItem.icon, "This is key " + i);
 }
 } else {
 itemsContent[i] = GUIContent("NONE", "");
 }
 }

 //We create the grid button here.
 in_toolItems = GUI.SelectionGrid (Rect (0, 0, 280, 40*in_
items), in_toolItems, itemsContent, 1, GUI.skin.GetStyle("Selected
Item"));
 GUI.EndScrollView (); //End Scroll Area

 //Checking if there is an item information
 var s_info : String = itemsContent[in_toolItems].tooltip;
 if (s_info == "") {
 s_info = "Show items information here";
 }
 var style : GUIStyle = GUI.skin.GetStyle("Label");
 if (GUI.tooltip != "") {
 //Get height from this style
 var f_height : float = style.CalcHeight(GUIContent(GUI.
tooltip), 330.0);
 scrollPosition2 = GUI.BeginScrollView (new Rect (257, 343,
320, 75), scrollPosition2, new Rect (0, 0, 280, f_height));
 GUI.Label(new Rect (0, 0, 280, f_height), GUI.tooltip);
 } else {
 //Get height from this style
 f_height = style.CalcHeight(GUIContent(s_info), 330.0);
 scrollPosition2 = GUI.BeginScrollView (new Rect (257, 343,
320, 75), scrollPosition2, new Rect (0, 0, 280, f_height));
 GUI.Label(new Rect (0, 0, 280, f_height), s_info);
 } GUI.EndScrollView ();
}

Project 2

85

In this function, first we set the maximum of our items in this container, and next we
create a GUI.Box for the background of the item scroll area. Then, we create the
scroll by using GUI.BeginScrollView. Next, we create a GUIContent array to
contain our items, create GUI.SelectionGrid, and apply our GUIContent array
to show them. Then, we get the item information from the GUIContent.tooltip,
calculate the height of that information, and put it in the Label, which is also a
scroll view.

5.	 Now, go back to Unity and click on the Menu object in the Hierarchy view to bring
up its inspector. Then, click on the A_items option to bring up the drop-down and
assign the parameters as follows:

�� Size: 1

�� Element 0

ff Icon: key.png (located in Chapter2/images folder)

ff Name: Key

�� Amount: 1

Now, click play, and press the M key to bring up our menu window. Click on the
INVENTORY tab and we will see our item page. Isn't that cool?

Create a Menu for an RPG Game—Add Powerups, Weapons, and Armor

86

Objective Complete - Mini Debriefing
We just created our inventory page that we'll be able to view by clicking the INVENTORY
tab. In the Start() function, we set up our item object if there is more than one item
assigned in a_items. Next, we added ItemWindow() line in the DoMyWindow() function,
and created ItemWindow() function to control our item page. In this function, we created a
scroll view by using GUI.BeginScrollView() and GUI.EndScrollView(), and created
a scrollable area that contains all the items. We also used GUI.SelectionGrid to create
our items list from which the player can select any item. Then, we get the current tooltip
from GUIContent and check to see whether there is any information or not. Next we check
GUI.tooltip for any stored string; if nothing is stored here we assign the current tooltip
from our selected items to GUI.tooltip, which will show the result that if we roll over
each item the current information will change to the rollover item. On the other hand, if
we rollover from our items list, the result of the information will show the selected item
information. Next, we get the Label style height from the current GUI.tooltip. Then, we
created another scroll view to show this tooltip information in the box area.

Classified Intel
In this step, we were using GUI.SelectionGrid to create the list of the items. By using
GUI.SelectionGrid, we were able to create a list of buttons that have a fixed height and
space in one line of code, which was very convenient. We can see more details on how to
use GUI.SelectionGrid at this URL:

http://unity3d.com/support/documentation/ScriptReference/GUI.
SelectionGrid.html.

We also used the GUI.tooltip parameter to be able to show our items' information when
the player rolls over each item and show the selected item information if the player rolls out.
So, how does GUI.tooltip work? Basically, GUI.tooltip will return the string from each
button that contains a tooltip string when the player rolls over it. However, if the player
rolls out or that button doesn't have any tooltip store, this parameter will automatically
return a blank string, similar to the following code that we used:

 if (GUI.tooltip != "") {
 //Get height from this style
 var f_height : float = style.CalcHeight(GUIContent(GUI.tooltip),
330.0);
 scrollPosition2 = GUI.BeginScrollView (new Rect (257, 343, 320,
75), scrollPosition2, new Rect (0, 0, 280, f_height));
 GUI.Label(new Rect (0, 0, 280, f_height), GUI.tooltip);
 } else {
 //Get height from this style
 f_height = style.CalcHeight(GUIContent(s_info), 330.0);

Project 2

87

 scrollPosition2 = GUI.BeginScrollView (new Rect (257, 343, 320,
75), scrollPosition2, new Rect (0, 0, 280, f_height));
 GUI.Label(new Rect (0, 0, 280, f_height), s_info);
 }

We basically tell GUI.tooltip that we will assign rollover tooltip information to the
label when the player rolls over. And if the player rolls out, we show the selected item
information, for which the default is the first item as we can see in the following screenshot:

From the preceding screenshot, the left image shows that when we roll over the second key,
the information box shows the tooltip of the second key. The right image shows that when
we rollout from the second key, the information box shows the tooltip of the selected key,
which is the first key.

You can see more details about GUI.tooltip at this URL:
http://unity3d.com/support/documentation/
ScriptReference/GUI-tooltip.html.

Create a Menu for an RPG Game—Add Powerups, Weapons, and Armor

88

Creating an equipment tab
This is the last step of our menu. We will create a tab with which the player can change the
weapon, armor, accessory, and skill of the character, which will also update the status tab, as
we can see in the following screenshot:

Engage Thrusters
We will start this section by adding the parameters:

1.	 Go back to MonoDevelop, open Menu.js, and add the following code to it:
//Equip tab
private var r_equipBox : Rect = new Rect (237, 67, 360, 207);
private var r_equipWeaponBox : Rect = new Rect (237, 280, 360,
157);

Project 2

89

private var r_statTextureEquip : Rect = new Rect (252, 81, 331,
142);
private var r_skillBoxEquip : Rect = new Rect (460, 121, 127,
125);

//The position of each equip button from 0 - weapon, 1 - armor, 2
- accessory, 3 - skill
private var r_equipRect : Rect[] = [new Rect (252, 101, 180, 40),
new Rect (252, 161, 180, 40), new Rect (252, 221, 180, 40), new
Rect (464, 125, 119, 117)];
private var r_equipWindow : Rect = new Rect (500, 0, 70, 100);
private var scrollPosition3 : Vector2 = Vector2.zero;
private var scrollPosition4 : Vector2 = Vector2.zero;
private var scrollPosition5 : Vector2 = Vector2.zero;
private var scrollPosition6 : Vector2 = Vector2.zero;
private var a_equipBoolean : boolean[] = new boolean[4];
private var in_toolWeapons : int = 0;
private var in_toolArmors : int = 0;
private var in_toolAccess : int = 0;
private var in_toolskill : int = 0;

2.	 Then, go to the Start() function and add the following code at the end:
//Setup boolean equip
 for (var i : int = 0 ; i < a_equipBoolean.length; i++) {
 a_equipBoolean[i] = false;
 }

3.	 We go to DoMyWindow (windowID : int) and uncomment the highlighted line
as follows:
 case 2 : //Equip
 //Create an equipment tab

 EquipWindow();
 break;

4.	 Next, we are going to create an EquipWindow()function, which will control our
equipment tab:
private function EquipWindow() : void {
 GUI.Box (r_equipBox, "");
 GUI.Box (r_equipWeaponBox, "");
 GUI.DrawTexture(r_statTextureEquip, t_statusBox2);
 GUI.DrawTexture(r_skillBoxEquip, t_skillBox);

 SetupEquipBox();
}

Create a Menu for an RPG Game—Add Powerups, Weapons, and Armor

90

5.	 In the next function, we will see four function calls, which are SetupEquipBox(),
ShowWeapon(), ShowArmor(), ShowAccess(), and ShowSkill(). The first
function is to set each equipment label as clickable or not. The other functions are
enabled when the player clicks on each equipment label at the top box, and inside
each function will contain the script that allows the player to change and select new
equipment for weapon, armor, accessory, or skill. So, let's type the following code:
//Setting the ability to enabled or disable the button
private function SetupEquipBox () : void {
 var equipContent : GUIContent[] = [gui_weaponCon, gui_armorCon,
gui_accessCon, gui_skillCon];
 for (var i : int = 0; i < a_equipBoolean.length; i++) {
 if (a_equipBoolean[i] == true) {
 //Set up disabled Button
 GUI.Label(r_equipRect[i], equipContent[i], "Disabled
Click");
 //Show each equipment window
 switch (i) {
 case 0:
 ShowWeapon();
 break;
 case 1:
 ShowArmor();
 break;
 case 2:
 ShowAccess();
 break;
 case 3:
 ShowSkill();
 break;
 }
 } else {
 //Set up enabled Button
 if (GUI.Button(r_equipRect[i], equipContent[i], "Selected
Item")) {
 a_equipBoolean[i] = true;
 //Set others to false
 for (var j : int = 0; j < a_equipBoolean.length; j++) {
 if (i != j) {
 a_equipBoolean[j] = false;
 }
 }
 }
 }
 }
}

Project 2

91

6.	 Next, we will start the first function with the ShowWeapon() function, which will
display the weapon selection box; type the following code:
private function ShowWeapon () : void {
 var in_items : int = 6;
 var itemsContent : GUIContent[] = new GUIContent[in_items];
 //We create a GUIContent array of key item here (if you have
more than 1 item, you can also use your item array instead of the
current item)
 for (var i: int = 0; i < in_items; i++) {
 if (i == 0) {
 itemsContent[i] = GUIContent(s_unequip, "");
 } else {
 itemsContent[i] = GUIContent(a_weapons[0].name, a_
weapons[0].icon);
 }
 }
 scrollPosition3 = GUI.BeginScrollView (new Rect (257, 300, 320,
120), scrollPosition3, new Rect (0, 0, 280, 40*in_items));
 //We create grid button here.
 in_toolWeapons = GUI.SelectionGrid (Rect (0, 0, 280,
40*in_items), in_toolWeapons, itemsContent, 1, GUI.skin.
GetStyle("Selected Item"));
 //End the scrollview we began above.
 GUI.EndScrollView ();

 gui_weaponCon = itemsContent[in_toolWeapons];
}

7.	 Then, we will create the ShowArmor() function, which will be used to display the
armor box as follows:
private function ShowArmor () : void {
 var in_items : int = 6;
 var itemsContent : GUIContent[] = new GUIContent[in_items];
 //We create a GUIContent array of key item here (if you have
more than 1 item, you can also use your item array instead of the
current item)
 for (var i: int = 0; i < in_items; i++) {
 if (i == 0) {
 itemsContent[i] = GUIContent(s_unequip, "");
 } else {
 itemsContent[i] = GUIContent(a_armors[0].name, a_
armors[0].icon);
 }
 }

Create a Menu for an RPG Game—Add Powerups, Weapons, and Armor

92

 scrollPosition3 = GUI.BeginScrollView (new Rect (257, 300, 320,
120), scrollPosition3, new Rect (0, 0, 280, 40*in_items));
 //We create grid button here.
 in_toolArmors = GUI.SelectionGrid (Rect (0, 0, 280,
40*in_items), in_toolArmors, itemsContent, 1, GUI.skin.
GetStyle("Selected Item"));
 // End the scrollview we began above.
 GUI.EndScrollView ();

 gui_armorCon = itemsContent[in_toolArmors];
}

8.	 Next, we will create the ShowAccess() function, which will be used to display the
accessory box as follows:
private function ShowAccess () : void {
 var in_items : int = 6;
 var itemsContent : GUIContent[] = new GUIContent[in_items];
 //We create a GUIContent array of key item here (if you have
more than 1 item, you can also use your item array instead of the
current item)
 for (var i: int = 0; i < in_items; i++) {
 if (i == 0) {
 itemsContent[i] = GUIContent(s_unequip, "");
 } else {
 itemsContent[i] = GUIContent(a_accessories[0].name, a_
accessories[0].icon);
 }
 }
 scrollPosition3 = GUI.BeginScrollView (new Rect (257, 300, 320,
120), scrollPosition3, new Rect (0, 0, 280, 40*in_items));
 //We create grid button here.
 in_toolAccess = GUI.SelectionGrid (Rect (0, 0, 280,
40*in_items), in_toolAccess, itemsContent, 1, GUI.skin.
GetStyle("Selected Item"));
 // End the scrollview we began above.
 GUI.EndScrollView ();

 gui_accessCon = itemsContent[in_toolAccess];
}

Project 2

93

9.	 In the last function, we will create the ShowSkill() function, which will be used to
display the skills box as follows:
private function ShowSkill () : void {
 var in_items : int = a_skills.length + 1;
 var itemsContent : GUIContent[] = new GUIContent[in_items];
 //We create a GUIContent array of key item here (if you have
more than 1 item, you can also use your item array instead of the
current item)
 for (var i: int = 0; i < in_items; i++) {
 if (i == 0) {
 itemsContent[i] = GUIContent(t_skillBox);
 } else {
 itemsContent[i] = GUIContent(a_skills[i-1]);
 }
 }
 scrollPosition3 = GUI.BeginScrollView (new Rect (253, 286, 330,
140), scrollPosition3, new Rect (0, 0, 600, 117));
 //We create grid button here.
 in_toolskill = GUI.SelectionGrid (Rect (0, 4, 600, 117), in_
toolskill, itemsContent, in_items, GUI.skin.GetStyle("Selected
Item"));
 // End the scrollview we began above.
 GUI.EndScrollView ();
 if(in_toolskill != 0) {
 gui_skillCon = itemsContent[in_toolskill];
 } else {
 gui_skillCon = GUIContent("");
 }
}

10.	 Now, we go back to Unity and click on the Menu object in the Hierarchy to bring up
its Inspector. Then, we set up the following properties:

ff A_weapons

�� Size: 1
�� Element 0

�� Icon: Drag-and-drop weapon.png from Chapter2/
images here

�� Name: Dark Fist

�� Amount: 1

Create a Menu for an RPG Game—Add Powerups, Weapons, and Armor

94

ff A_armors

�� Size: 1
�� Element 0

�� Icon: Drag-and-drop armor.png from Chapter2/images
here

�� Name: Dark Suit

�� Amount: 1

ff A_accessories

�� Size: 1
�� Element 0

�� Icon: Drag-and-drop accessory.png from Chapter2/
images here

�� Name: Dark Mask

�� Amount: 1

ff A_skills

�� Size: 4

�� Element 0: Drag-and-drop skill1.png from Chapter2/images
here

�� Element 1: Drag-and-drop skill2.png from Chapter2/images
here

�� Element 2: Drag-and-drop skill3.png from Chapter2/images
here

�� Element 3: Drag-and-drop skill4.png from Chapter2/images
here

We finish the last step of the menu, click play, open the menu window, click on the
EQUIPMENT tab, and roll over and click on the UNEQUIP label or the skill box. We will be
able to change the character equipment, as we can see from the following screenshot:

Project 2

95

Objective Complete - Mini Debriefing
We just finished the last tab of our menu window. In this step, we created an EQUIPMENT
button that will bring up the selection window, from which the player can choose the type of
equipment or skill. It will update the current equipment status on the status tab too.

In the ShowArmor() function, we had the following code to display the six items in the scroll
view, which is just an example to use, to set up the multiple selected items within the scroll
view area when a_armors.length = 1:

var in_items : int = 6;
 var itemsContent : GUIContent[] = new GUIContent[in_items];
for (var i: int = 0; i < in_items; i++) {
 if (i == 0) {
 itemsContent[i] = GUIContent(s_unequip, "");
 } else {
 itemsContent[i] = GUIContent(a_armors[0].name, a_armors[0].
icon);
 }
 }

Create a Menu for an RPG Game—Add Powerups, Weapons, and Armor

96

The preceding code will assign the GUIContent to the itemContent[] array and display
the result, as shown in the following screenshot:

If we have set the amount of a_armors.length to be more than 1, we
can modify the code to something like the highlighted code as follows:

var in_items : int = a_armors.length+1;
var itemsContent : GUIContent[] = new GUIContent[in_
items];
for (var i: int = 0; i < in_items; i++) {
 if (i == 0) {
 itemsContent[i] = GUIContent(s_unequip, "");
 } else {
 itemsContent[i] = GUIContent(a_armors[i-1].
name, a_armors[i-1].icon);
 }
}

This will set the value of the display item in the armor box related to the
length of a_armors. We assign in_items = a_armors.length+1
because we want to assign unequip as the first object. So, we add 1
to in_items for the for loop to unequip and the a_armors[].
We also subtract 1 from i in the a_armors[i-1].name and a_
armors[i-1].icon. This will make sure that we aren't going out of the
length, while we are looping through it.

Classified Intel
In this step, we have created a vertical and horizontal scroll view by using GUI.
BeginScrollView() to begin the scroll view at how this function works. Basically, we
can use this function, which is very convenient to use, when we want to create a scrollable
area that contains any type of GUI object, because this function will automatically create a
scrollable area from the two Rect parameters that we set up.

Project 2

97

For example, in order to create a vertical scroll area at position x: 0, y: 0, width: 100 pixels,
and height: 40 pixels, which contains three buttons with each button having 40 pixels height,
we can have code like this:

var scrollPostion : Vector2 = Vector2.zero;
function OnGUI() {
 scrollPostion = GUI.BeginScrollView(Rect(0,0,100,40), scrollPostion,
Rect(0,0,80,120));
 GUI.Button(Rect(0,0,80,40),"Button 1");
 GUI.Button(Rect(0,40,80,40),"Button 2");
 GUI.Button(Rect(0,80,80,40),"Button 3");
 GUI.EndScrollView();
}

From the preceding code, we can see that the GUI.BeginScrollView() function returns
Vector2, which is a vertical and horizontal of this scroll view. It also takes two Rect objects,
the first Rect is the area that the player will see or we can call a mask area. The second
Rect is the area of our content, which is based on the content that we included between
GUI.BeginScrollView() and GUI.EndScrollView() functions, which are the three
lines of GUI.Button. We can also see more details of this function from the following URL.

http://unity3d.com/support/documentation/ScriptReference/GUI.
BeginScrollView.html.

The following figure shows how the GUI.BeginScrollView()works in visual:

http://unity3d.com/support/documentation/ScriptReference/GUI.BeginScrollView.html
http://unity3d.com/support/documentation/ScriptReference/GUI.BeginScrollView.html
http://unity3d.com/support/documentation/ScriptReference/GUI.BeginScrollView.html

Create a Menu for an RPG Game—Add Powerups, Weapons, and Armor

98

Game over-Wrapping it up
In this chapter, we just created a nice menu, which has the feature for an RPG game menu.
This menu can move around the screen, and we can change the equipment of the character,
too. We used a GUI class, GUI Skin, and OnGUI function to create this menu. In the GUI
class, we used GUI.window to create our main menu, GUI.box to create the background box
area, GUI.DrawTexture to show our character graphics, GUI.Button to create a button,
GUI.ToolBar to create a tab button, GUI.SelectionGrid to create a list of clickable
items, GUI.BeginScrollView, and GUI.EndScrollView to create a scrolling area, and
last we also used GUI.Label to create a text label. We also used GUIContent to contain the
information of our button or label. Let's take a look at what we learned from this chapter:

Project 2

99

We can also go back to the STATUS tab to see the result when we equip all the equipments,
as seen in the following screenshot:

Are you ready to go gung ho?
A Hotshot challenge

Now, we have a nice menu, but we still have room to improve this menu to work better. So,
why don't you try something to make this menu much more interesting?

ff Add an option tab with which the player will be able to adjust music and sound
volume

ff Create more items or any equipment to make the menu much more interesting

ff Add the ability to update the character graphics when we change the equipment or
skill of the character

ff Pause the game when we bring up our menu

ff You can also create your own custom UI graphic and use it instead of the one in
this chapter

Project 3
Model and Shade your

Hero/Heroine

In the last two chapters, we have learned how to create a UI by using the OnGUI function,
and a 2D platform game that used the 2D sprite texture to create our 2D character, and also
got to know a bit of the 3D world in the first chapter. So, in this chapter, we will be using a
full 3D character. We will take a close look at how to import the next generation 3D character
modeling, and how to apply the material to the model. We will also get an understanding
of the shader programming in Unity, and create a custom shader by writing and adapting
shader programming. We can then use the Cg/HLSL shader language to write vertex and
fragment programming.

"Cg (C for Graphics) is a high-level shader language developed by NVIDIA in
close collaboration with Microsoft for programming vertex and pixel shader. It is
similar to HLSL (High Level Shader Language or High Level Shading Language),
which is a proprietary shading language developed by Microsoft for use with the
Microsoft Direct3D API." References taken from:
http://en.wikipedia.org/wiki/Cg_%28programming_
language%29.
http://en.wikipedia.org/wiki/High_Level_Shader_
Language.

Model and Shade your Hero/Heroine

102

The shader programming language is very complex and difficult, especially when we have to
deal with lighting. It can be a nightmare, but Unity 3.x has come up with a new style of writing
the shader program that is shorter and simpler. We still need to know the basics of Cg/HLSL
programming, but we won't go too deep into how to create a shader from scratch or how Cg/
HLSL works. We will use the new surface shader and create our own custom shader.

Mission briefing
We will create a basic custom shader and apply this shader to the character model that we
already have. That's it. We might say "Hey! Why is it so short?". Well, it's short to say but it
takes a long time to explain the whole concept of writing a shader.

1.	 First, we will open the character model in 3Ds Max (this is an optional step).

We can get the trial version for free from this website:
http://usa.autodesk.com/adsk/servlet/
download/item?siteID=123112&id=16324410.

2.	 Then, we will set up its scale and rotation, and export it as an FBX file format to work
with Unity. Then, we will import the character model to Unity and start applying a
build material in Unity.

3.	 Next, we will start creating a shader, which includes diffuse texture, bump map
(normal map) texture, ambient color, specular color and glossiness, rim light (or
back light) color and power, and ramp texture, as shown in the following screenshot:

Project 3

103

4.	 Then, we will apply all of them together to create our custom toon shade style, as
shown in the following screenshot:

What does it do?
In this project, we will start with opening the character model in 3D Studio Max, set up the
unit scale and rotation, export it as an FBX file, and then put it in our Unity project. This will
give us a basic understanding of how to export the FBX file format from 3D Studio Max.

Next, we will create our first shading language by using the surface shaders, which are
included in Unity 3.0.

"Surface shaders in Unity is the code generation approach that makes it
much easier to write lit shaders than using low level vertex/pixel shader
programs, which is much more complicated. However, there is no easy
way to write the shader programming, we still have to write the code in
Cg/HLSL."
Reference: http://unity3d.com/support/documentation/
Components/SL-SurfaceShaders.html.

Model and Shade your Hero/Heroine

104

We will start creating by adding the diffuse texture and bump (normal) texture and using the
built-in lighting models, which are Lambert (diffuse lighting) and BlinnPhong (specular
lighting) that are located in the Lighting.cginc file inside the Unity application. This way,
we can see the structure and algorithm of the shader programming, and it will be helpful
when we adapt it to our custom shader.

Lambert, or diffuse reflection, will cause all closed polygons to reflect light
equally in all directions when rendered. This algorithm is named after Johann
Heinrich Lambert who invented it.
Blinn-Phong, or Blinn-Phong reflection, is the shading model that is the
modification of the Phong reflection model developed by Jim Blinn.
Phong reflection model is the shading model that includes a model for the
reflection of light from surfaces. It also has a compatible method of estimating
pixel colors using interpolation surface normals across rasterized(or bitmap)
polygons developed by Bui Tuong Phong.
Reference:
http://en.wikipedia.org/wiki/Lambertian_reflectance.
http://en.wikipedia.org/wiki/Phong_shading.
http://en.wikipedia.org/wiki/Blinn%E2%80%93Phong_
shading_model.

Next, we will add the ambient color and specular color, and create the custom lighting
model. In this step, we will learn how to create a custom lighting model in a surface shader.

Finally, we will add the rim light (back light) and the ramp texture to create the toon shader
style, and see a result similar to the previous figure.

Project 3

105

Why Is It Awesome?
When we complete this chapter, we will know how to set up the export unit scale and
rotation from 3D Studio Max to Unity, which will be the same scale from MAYA or other 3D
software. We will also be able to understand the basics of how to create our custom shader
and the custom lighting model by using the surface shader in Unity, which we will be able to
adapt to a more advanced shader in the future.

Your Hotshot Objectives
Since we are not shader programmers, and we just want to understand how the shader
programming in Unity works, we will go through four steps from exporting our character
from 3D Studio Max to creating a custom shader in Unity, as follows:

1.	 Exporting FBX from 3D Studio Max.

2.	 Shader programming—Diffuse and bump (normal) map.

3.	 Shader programming—Ambient and specular light.

4.	 Shader programming—Rim light and toon ramp.

Mission Checklist
First, we need a 3D character model with all the textures included. So, browse to
http://www.packtpub.com/support?nid=8267 and download the Chapter3.zip
package; unzip it and we will see the 3DSMax folder and Chapter3.unitypackage file.
The 3DSMax folder will contain the 3D Studio Max file that we will only use in the first step
and the Chapter3.unitypackage file will contain all the assets (FBX file exported from 3D
Studio Max, textures, and scene) that we will use for this chapter.

If you already know how to export an FBX file from 3D Studio Max, use a Mac
or other 3D software, or if you don't have 3D Studio Max installed, we can
skip the Exporting FBX from 3D Studio Max step and go to the Diffuse and
bump (normal) map step, right away. (The FBX file that was exported from 3D
Studio Max is already included in the Chapter3.unitypackage file.)

Model and Shade your Hero/Heroine

106

Exporting from 3D Studio Max
As we know, Unity can read .FBX, .dae, .3DS, .dxf, and .obj files, which can be exported
from other 3D software (3D Studio Max, MAYA, and so on.). However, if we are running our
3D software in the same OS as Unity, we can basically save our 3D files to the Unity project.
Unity will convert a lot of 3D file formats such as (.ma or .mb) MAYA, (.c4d) Cinema4D,
(.blend) Blender, (.lxo) Modo, (.jas) Cheetah3D, (.max) 3D Studio Max file to .FBX file
format excepting (.lwo) Lightwave file format (need to export to .FBX manually). You can
find the information on how to export a 3D file at the following URL:

http://unity3d.com/support/documentation/Manual/HOWTO-importObject.
html.

In most cases, this works perfectly if we are working on the same machine or the same
operating system. But wait! Let's say we create a 3D model in 3D Studio Max on our PC
and we want to use it on another machine, or even the same machine, but on a different
operating system, such as a Mac. Here is what we are going to do in this section: we will set
up the unit scale in 3D Studio Max and rotation. Then, we will export it as an FBX file format.

Although this step will teach us how to export our 3D file to .FBX, it is
recommended to save the 3D file directly to the Unity project, which
will be the right flow of work when we have to go back and forth
between Unity and our 3D software.

Prepare for Lift Off
In this step, we will use 3D Studio Max 2010 and the FBX version 2011.3.1 for exporting the
FBX format. Let's browse to the following website:

http://usa.autodesk.com/adsk/servlet/pc/
item?siteID=123112&id=16126683.

Then, we click on FBX 2011.3.1 Plug-in for 3ds Max 2010 (exe - 16019Kb) to
make sure that we have the same FBX version 2011.3.1 that is suitable for 3D Studio Max
2009 – 2011. However, if you have the older version of 3D Studio Max, the FBX exporter
might not look the same as shown here. You can check the FBX exporter plugin from the
following Autodesk website:

http://usa.autodesk.com/adsk/servlet/pc/
item?siteID=123112&id=10775920.

Then, we install the plugin file to our 3D Studio Max. Next, we will make sure that we have
our 3D Studio Max file for this chapter. Let's check the 3DSMax folder to make sure that we
have the Heroine.max file.

Project 3

107

Engage Thrusters
Now, we are ready! Let's start by following these steps:

1.	 Open up 3D Studio Max and open the character file Heroine.max. We will see our
character without any texture, as shown in the following screenshot:

2.	 Then, go to (Customize | Units Setup). You will see the Units Setup window pop
up. Under the Display Unit Scale, choose Metric and then Meters, and you will see
something similar to the following screenshot:

Model and Shade your Hero/Heroine

108

3.	 Click on System Unit Setup to bring up the System Unit Setup window. Under the
System Unit Scale, we choose Meters for the Unit, and leave the rest as it is. And
now we have done the unit scale setup; click OK on both the windows to close them.

4.	 Since 3D Studio Max uses the Z-axis to represent the vertical direction (which is very
different from other 3D software such as Unity, which uses the Y-axis to do this), we
need to rotate the pivot point of our model. So, we need to adjust our pivot before
we export it to use in Unity; go to the Hierarchy toolbar by clicking on the Hierarchy
icon on the right-hand side, as shown in the following screenshot:

Project 3

109

5.	 You will see the Hierarchy window. Click on the Pivot button and then on the Affect
Pivot Only button, as shown in the preceding screenshot, to bring up the pivot of
our character.

6.	 Now, we can see the pivot of our character which is made up of the colored
coordinate axes at the bottom. Press the E key to bring up the rotation gizmo and
rotate it by having the Z-axis point out from the character and Y-axis point up (rotate
90 degrees on the X-axis in other words), as you can see in the following screenshot:

7.	 Finally, we have to export our file to the FBX format. Let's go to Export, choose
Autodesk(*.FBX), name it Heroine, and put it in the 3DSMax folder. Now we will
see the FBX exporter pop up; go through each step as follows:

ff Include

�� Animation: Uncheck the Animation toggle box. (If we have the
animation included in the character we will check this box.)

�� Cameras: Uncheck the Cameras toggle box. (We don't need
a camera.)

Model and Shade your Hero/Heroine

110

�� Lights: Uncheck the Lights toggle box. (We don't need a light.)

ff Advanced Options

�� Units

�� Automatic: Uncheck the toggle box.

�� Scene units converted to: Meters (make sure that you
have the Scale Factor as 1.0).

ff Axis Conversion

�� Up Axis: Y-up

Then, click on the OK button and you have finished the first step.

Project 3

111

Objective Complete - Mini Debriefing
Basically, what we have done here is set up the unit scale, transformed the rotation of our
character, and exported it to a FBX format that will fit with Unity's world scale and space. We
set up the unit scale in 3D Studio Max to have 1 unit equal to 1 meter and convert to meters.
In some cases, you might want to set 1.0 unit equal to 1 inch or anything else; just make sure
that when you export to the FBX format under Units, you choose the same unit that you set in
3D Studio Max and make sure that the Scale Factor equals 1.0. We also rotate the pivot of the
character 90 degrees on the X-axis to create the Y-up axis that is suitable to use in Unity.

Classified Intel
You might have a question—why do we need to do something like this to export the FBX and
import it to Unity? Well, this method of setup will make sure that we won't get any wrong
scale and rotation when we put our model in Unity. Since the FBX exporter from 3D Studio
Max will convert the unit scale and the rotation for our character, sometimes we might get
the FBX file the transformation already attached to it. For example, if we set the unit scale
in 3D Studio Max to have 1 unit equal to 1 inch and export FBX to meters, it will work fine
in Unity; however, the start of the XYZ scale of our character might be 0.0254 (as one inch
equals 0.0254 meters) instead of 1, as you can see in the following screenshot:

This is because the FBX exporter will convert the unit in 3D Studio Max file to the unit that
we set up for export in the FBX exporter. So, we need to make sure that Scale Factor in the
FBX exporter window is equal to 1.0. Also, if we didn't rotate the pivot of the character 90
degrees on the X-axis, export it to FBX, and put it in Unity, it would still work, but you would
see the default rotation of the character in the X-axis as 270 degrees instead of all being 0.

Why do we need the default number to be 1 (for scale) or 0 (for rotation)?
The answer is that when we write the script to control our model, we will
have to deal with lots of numbers. If we don't have the default setting for
the model as 1 for scale or 0 for rotation, it can be really difficult to write
the script to control our model.

Model and Shade your Hero/Heroine

112

Shader programming—Diffuse and
bump (normal) map

From the last step, we have a FBX model ready to use in Unity. In this step, we will import
Chapter3.unitypackage (which is already included in the FBX model that we export
from the 3D Studio Max), and begin creating a shader programming, which will include all
properties that we can edit from the Material Inspector. We will start with assigning the
diffuse and bump (normal) map. Then, we will use the Lambert lighting model, which comes
with Unity, to see our result.

Prepare for Lift Off
Now, we can start the shader programming by implementing the following steps:

1.	 Let's create a new project named Shader similar to that in the last chapter and click
on the Create Project button, as shown in the following screenshot:

2.	 Import the assets package by going to (Assets | Import Package | Custom
Package…), choose the Chapter3.unityPackage, which we downloaded
earlier, and then click on the Import button in the pop-up window, as shown in the
following screenshot:

Project 3

113

3.	 Wait until it's done, and you will see the FBX, Materials, and Textures folders, as we
can see in the following screenshot:

4.	 Next, double-click on the Shader scene, as shown in the preceding screenshot, to
open the scene that we will work on in this chapter. When you double-click on the
Shader scene, Unity will bring up the pop-up and ask whether we want to save the
current scene or not, similar to what we saw in the last chapter. Just click on the
Don't save button to open up the Shader scene.

Model and Shade your Hero/Heroine

114

5.	 Then, go to the FBX folder, and click on Heroine.FBX in this folder to bring up its
Inspector view. In the Inspector view, make sure that the (FBXImporter) | Scale
Factor properties equals 1, and then click on the Apply button, as shown in the
following screenshot:

Project 3

115

6.	 Then, go to the Textures folder, and click on Normal.tga to bring up its Inspector
view. In the Inspector view, change the (Texture Importer) | Texture Type to Normal
Map, then uncheck Generate from greyscale, and click on the Apply button, as
shown in the following screenshot:

Why do we set it up this way? First, we want our model scale factor
default equal to 1. Then, we set the Texture Type for the Normal.tga
to Normal map type, which we will use for the bump map.

Engage Thrusters
Here, we will put the 3D model into our scene and start writing our custom shader
programming:

1.	 First, we drag the Heroine.FBX model in the FBX folder from the Project view to
the Hierarchy view.

2.	 Next, we will click on the Heroine.FBX model in the Hierarchy view to bring up its
Inspector view. Then, we will go to the Inspector view and set rotation Y to 180, as
shown in the following screenshot:

Model and Shade your Hero/Heroine

116

If we go to the material component, we will see Diffuse applied to the Shader
in this material, which has two properties: Main Color and Base (RGB). Main
Color takes the color that we can edit and it will apply the color to our model.
Base (RGB) takes the texture, which is used for our model. Both properties
can be edited and adjusted in the Unity editor to get the best look for our
model, as shown in the following screenshot:

3.	 Now, we will start coding by going to Assets | Create | Shader, and naming it
MyShader. Then, we right-click on it and choose Sync MonoDevelop Project to
open our MonoDevelop.

Warning: The Sync MonoDevelop Project step might not work
if we didn't set the MonoDevelop as our default editor. (This
was discussed in the first chapter.)

4.	 In MonoDevelop, you will see the default setup of the shader script, as shown in the
following screenshot:

Project 3

117

If you create the shader inside the MonoDevelop, the default
setup of the shader script will be different from the preceding
screenshot and similar to the following screenshot.

5.	 Next, go to the first line in MyShader.shader and modify the existing code
as follows:
Shader "My Shader/Toon Rim Light" {

In this line, we change the position and name our shader, which will appear in
the drop down Shader when we select the Shader properties in the object's
Inspector view.

Model and Shade your Hero/Heroine

118

6.	 Then, go back to Unity and click on the Heroine.FBX model in the Hierarchy view
to bring up its Inspector.

7.	 In the Shader properties in the material component, we will click on the small arrow
on the right side to bring up the drop-down, then select the My Shader | Toon Rim
Right, as shown in the following screenshot:

8.	 Then, we go back to MonoDevelop again, and go to the next line of the MyShader.
shader and start modifying the Properties section, as follows:
 Properties {
 _MainTex ("Texture", 2D) = "white" {}

 _BumpMap ("Bumpmap", 2D) = "bump" {}
}

Then, we go to SubShader section to modify and add the following code:
SubShader {
 Tags { "RenderType"="Opaque" }

 LOD 300

 CGPROGRAM
 #pragma surface surf Lambert

Project 3

119

 sampler2D _MainTex;
 sampler2D _BumpMap;

 struct Input {
 float2 uv_MainTex;

 float2 uv_BumpMap;
 };

 void surf (Input IN, inout SurfaceOutput o) {
 half4 c = tex2D (_MainTex, IN.uv_MainTex);
 o.Albedo = c.rgb;
 o.Alpha = c.a;

 o.Normal = UnpackNormal (tex2D (_BumpMap, IN.uv_BumpMap));
 }

 ENDCG
 }

9.	 Finally, we go back to Unity and apply the texture to our model.

Let's click on the Heroine.FBX model in the Hierarchy view to bring up its Inspector view.
In the Inspector view, we will go to the material component and set the following:

ff Texture: Drag-and-drop the Diffuse.tga in the Textures folder from the Project
view to this thumbnail

ff Bumpmap: Drag-and-drop the Normal.tga in the Textures folder from the
Project view to this thumbnail

You will see the Inspector view, as shown in the following screenshot:

Model and Shade your Hero/Heroine

120

Now, click Play and behold the result:

Objective Complete - Mini Debriefing
Let's take a look at what we did here.

First, we added the new property (_BumpMap), which will be used to get the surface normals
from our character.

Properties can be created by using the following syntax:

name ("display name", property type) = default value

ff name is the name of property inside the shader script

ff display name is the name that will be shown in the material inspector

ff property type is the type of the property that we can use in our shader
programming, which can be Range, Color, 2D, Rect, Cube, Float, or Vector

ff default value is the default value of our property

Project 3

121

Every time you add new properties in the Properties section, you
will need to create the same parameter inside the CGPROGRAM in the
SubShader section, as shown in the following code:

Properties { _BumpMap ("Bumpmap", 2D) = "bump" {} }
SubShader {
 ………
 CGPROGRAM
 #pragma surface surf Lambert
 sampler2D _BumpMap;
 ……..
 ENDCG

}

We can see more details at the following website and see what each
parameter does:
http://unity3d.com/support/documentation/Components/
SL-Properties.html

Then, we set LOD (Level of Detail) for our shader to 300. The Level of Detail is the setup that
will limit our shader to use the maximum of detail to the number that we set. We used 300
because we have included the bump map to our shader, which is the same number of the
Unity built-in setup for the diffuse bump. You can take a look at the following link to get
more information on the Shader Level of Detail:

http://unity3d.com/support/documentation/Components/SL-ShaderLOD.html

We added the sampler2D _BumpMap; line, which is the same property that gets passed
from the Properties section (_BumpMap ("Bumpmap", 2D) = "bump" {}).

sampler2 is basically the type of parameter that is used in the Cg/HLSL
shader programming language, which is a two-dimensional texture. We can
get more information about the Cg parameter from the following website:
http://http.developer.nvidia.com/CgTutorial/cg_
tutorial_chapter03.html

Next, we added float2 uv_BumpMap in struct Input {}, which will be used to
calculate the color information from our _BumpMap. The uv_BumpMap parameter is the
texture coordinate, which is the vector2.

Model and Shade your Hero/Heroine

122

In the surf() function, we have the following:

half4 c = tex2D (_MainTex, IN.uv_MainTex);
 o.Albedo = c.rgb;
 o.Alpha = c.a;
 o.Normal = UnpackNormal (tex2D (_BumpMap, IN.uv_BumpMap));

surf(Input IN, inout SurfaceOutput o) function is basically the
function that will get the input information from struct Input {}. Then,
we will assign the new parameter to SurfaceOutput o. This parameter will
get passed and used next in the vertex and pixel processor.
We can get more details on the Input struct and the default parameter of
SurfaceOutput struct here:
http://unity3d.com/support/documentation/Components/
SL-SurfaceShaders.html.

The tex2D function will return the color value (Red, Green, Blue, Alpha) or (R,G,B,A) from
the sample state (_MainTex) and the texture coordinate (IN.uv_MainTex), which we will
then assign to the o.Albedo and o.Alpha. The o.Albedo parameter will store the color
information (RGB) and the o.Alpha parameter will store the alpha information.

"Albedo or reflection coefficient, is the diffuse reflectivity or reflecting power
of a surface. It is defined as the ratio of reflected radiation from the surface
to incident radiation upon it."
Reference from http://en.wikipedia.org/wiki/Albedo

The next line is to get the normal information, which is the vector that contains the position
(x, y, and z). Then, we used the tex2D function to get the color value (R,G,B,A) from the
sample state (_BumpMap) and the texture coordinate (IN.uv_BumpMap). Then, we used the
UnpackNormal function to get the Normal as the result of the tex2D function.

Classified Intel
Talking about shader programming, there are a lot of things to get to know and understand,
for example, how the shader works. We will take a look at the basic structure of the shader
programming in Unity.

Project 3

123

The preceding diagram is from Amir Ebrahimi and Aras Pranckevčius, who
presented the Shader Programming course at Unite 2008, and represents how
the shader works in Unity. We can get more information from the following
website. (Warning: this presentation might be difficult to understand, since
it showed how to create the shader without using any surface shader and it
used the old version of Unity.)
http://unity3d.com/support/resources/unite-
presentations/shader-programming-course

Let's get back to the diagram—you will see that the shader file that we are writing is working
on the vertex and pixel (fragment) level. Then, it will show the result to the frame buffer,
but what are vertex and pixel shaders? These are the different types of processors in the
GPU. First, the vertex processor gets the vertex data, which is the position and color of each
vertex in the 3D model; then, draw a triangle from these vertices and pass the data to the
pixel processor. The pixel processor will get that value and translate it to the per pixel screen.
It is similar to taking a vector art from Illustrator or Flash and translating it to a pixel art in
Photoshop. Then, it interpolates color data to each pixel, as shown in the following diagram:

Model and Shade your Hero/Heroine

124

From the explanation, we know that we need to deal with the vertex and pixel shader
programming when we want to write a shader program. For example, if we want to create a
shader, we will need to get the vertex data from our geometry, calculate the data, and pass it
out to the pixel level. At the pixel level, we will calculate the color of the geometry, light, and
shadow, and then we will get the result.

However, this can be very complex when we have to handle lighting manually. That's why
we are using the surface shaders, so we don't have to deal with various types of lightning,
rendering, and so on.

If you check out the ShaderLab link in Unity, you will see that there are a lot of things
to do, but don't be afraid because we don't need to understand everything that's there to
create our custom shader. In the next step, we will create the custom lighting models in
surface shaders.

Shader programming—Ambient and
specular light

In this step, we will add the ambient and specular light to our script as well as create our
custom lighting models.

The custom lighting model is basically the function that will be used to
calculate our surface shader, which is the output of (surf() function)
interaction with the lights.
surf() function is the function that will take any UVs or data we need as
input, and fill in the output structure SurfaceOutput (the predefined
structure, such as Albedo, Normal, Emission, Specular, Gloss, and Alpha).

Engage Thrusters
1.	 Go to MonoDevelop, open MyShader.shader file, and go to the Properties

section and add the highlighted script as follows:
Properties {
 _MainTex ("Texture", 2D) = "white" {}
 _BumpMap ("Bumpmap", 2D) = "bump" {}

 _AmbientColor ("Ambient Color", Color) = (0.1, 0.1, 0.1, 1.0)
 _SpecularColor ("Specular Color", Color) = (0.12, 0.31, 0.47, 1.0)
 _Glossiness ("Gloss", Range(1.0,512.0)) = 80.0

 }

Project 3

125

2.	 Next, go to the SubShader section, modify, and add the following highlighted code:
SubShader {
 Tags { "RenderType"="Opaque" }

 LOD 400

 CGPROGRAM

 // Custom lighting function that uses a texture ramp based on
angle between light direction and normal

 #pragma surface surf RampSpecular

 sampler2D _MainTex;
 sampler2D _BumpMap;

 fixed4 _AmbientColor;
 fixed4 _SpecularColor;
 half _Glossiness;

 struct Input {
 float2 uv_MainTex;
 float2 uv_BumpMap;
 };

3.	 We set LOD to 400, and set #pragma surface surf to RampSpecular instead
of Lambert, and get the other three properties for Ambient and Specular light.
Now, we will need the custom lighting models function. Let's add the following
highlighted code under the surf() function:

 void surf (Input IN, inout SurfaceOutput o) {
 fixed4 c = tex2D (_MainTex, IN.uv_MainTex);

 o.Albedo = c.rgb;
 o.Alpha = c.a;
 o.Normal = UnpackNormal (tex2D (_BumpMap, IN.uv_BumpMap));
 }

 inline fixed4 LightingRampSpecular (SurfaceOutput s, fixed3
lightDir, fixed3 viewDir, fixed atten) {
 //Ambient Light
 fixed3 ambient = s.Albedo * _AmbientColor.rgb;

 //Diffuse
 fixed NdotL = saturate(dot (s.Normal, lightDir)); //Get the
direction of the light source related to the normal of character
 fixed3 diffuse = s.Albedo * _LightColor0.rgb * NdotL;

Model and Shade your Hero/Heroine

126

 //Specular - Gloss
 fixed3 h = normalize (lightDir + viewDir); // Get the Normalize
of the lighting direction and view direction
 float nh = saturate(dot (s.Normal, h)); //Make sure that
the return number isn't lower than 0 or greater than 1
 float specPower = pow (nh, _Glossiness);

 fixed3 specular = _LightColor0.rgb * specPower * _
SpecularColor.rgb;

 //Result
 fixed4 c;
 c.rgb = (ambient + diffuse + specular) * (atten * 2);
 c.a = s.Alpha + (_LightColor0.a * _SpecularColor.a * specPower
* atten);

 return c;
 }

 ENDCG
 }

We have finished this step. We can now go back to Unity, and click Play to see our result with
the specular reflection, as shown in the following screenshot:

Project 3

127

Objective Complete - Mini Debriefing
In this step, we first added the new properties _AmbientColor, e, and _Glossiness,
which will be used to calculate in our custom lighting models function to get the
specular reflection.

Next, we increased the LOD to 400 because we wanted to increase the Level of Detail
for our custom lighting model that will calculate the specular lighting. Then we changed
#pragma surface surf from Lambert to RampSpecular, which means that we changed
our lighting calculated from the Lambert built-in to RampSpecular (our custom lighting
function, LightingRampSpecular).

In the surf() function, we have changed the first line from half4 c = tex2D (_
MainTex, IN.uv_MainTex); to fixed4 c = tex2D (_MainTex, IN.uv_MainTex);
to increase the performance of our shader. Also, since the return value from the tex2D()
function is the color value (R,G,B,A), which has a range from 0 to 1, it will be expensive to use
half or float.

What are half and fixed parameters for? When we are writing a shader
in Cg/HLSL, there are three types of the parameter that we can use, which
are fixed, half, and float. These parameters determine the precision of
computations. The parameter fixed is low precision (11 bits, the range of -2.0
to +2.0 and 1/256th precision), half is medium precision (16 bits, the range
of -60000 to +60000 and 3.3 decimal digits of precision), and float is high
precision (32 bits, similar to the float in regular programming language).
Reference from:
http://unity3d.com/support/documentation/Components/
SL-ShaderPerformance.html

However, it follows a trend wherein the more precision we have, the more
calculation we need. If we use all float for our shader, it will cause the game to
slow down. So, if we want to improve the performance of our game, we should
use the lowest precision as possible.

Then, we created our custom lighting function, which is inline half4
LightingRampSpecular (SurfaceOutput s, half3 lightDir, half3
viewDir, half atten). This function passes four parameters, SurfaceOutput, light
Direction, view direction, and light attenuation that we will use to calculate the
output for our shader.

Model and Shade your Hero/Heroine

128

Why is the name of this function not RampSpecular? First, we call this
function by using #pragma surface surf RampSpecular, but to have
this function working properly, we need to add Lighting in front of the
name of our custom lighting function, so that Unity will know that this function
is a custom lighting function. This is the way that the surface shaders are set up
in Unity. You can find out more details from the following website:
http://unity3d.com/support/documentation/Components/
SL-SurfaceShaderLighting.html

In this function, we first get the ambient color value by getting s.Albedo, which is
the parameter from the surf() function o.Albedo, and then multiply the s.Albedo
by _AmbientColor.rgb, where _AmbientColor is the color information from the
Properties section at the beginning of our code.

The fixed, half, and float parameters in Cg/HLSL can contain one,
two, three, or four values of floating number such as 1.0, (1.0, 1.0), (1.0, 1.0,
1.0), or (1.0, 1.0, 1.0, 1.0) by calling it fixed, fixed2, fixed3, fixed4,
half, half2, half3, half4, float, float2, float3, float4. We
can also access the value in these parameters by using (x, y, z, w) or (r, g, b,
a). For example, if you have fixed4 color = (1.0, 0.5, 0.3,
0.8); and you want to create another parameter, which will contain only
three values (1.0, 0.5, 0.3) from the fixed4 color, you can do
it like this: fixed3 newColor = color.rgb;. However, if we want
the newColor value equal to (0.5, 1.0, 0.3), you can do it like this:
fixed3 newColor = color.grb;.

Then, we calculate the diffuse color by getting the dot product of the surface normal of the
object (s.Normal) that we pass out from the surf() function (o.Normal), and the light
direction (fixed NdotL = dot (s.Normal, lightDir);). Then, we use that value to
multiply with the object diffuse texture (s.Albedo) and light color (_LightColor0.rgb),
which is similar to the Lambert model.

Next, we calculate the specular color by first getting the normalize vector of light direction
and view direction (fixed3 h = normalize (lightDir + viewDir);). In float
nh = saturate(dot (s.Normal, h));, we calculate the dot product of the surface
normal and normalize vector, and make sure that the return number isn't greater than 1
or lower than 0 by using saturate(). Then, we use nh to calculate the specular power
by powering it with the _Glossiness properties (float specPower = pow (nh, _
Glossiness);), and we get the specular color from multiplying the light color, specular
power, and the specular color properties (_LightColor0.rgb * specPower * _
SpecularColor.rgb;), which is similar to the Blinn-Phong model.

Project 3

129

In the last step, we add ambient, diffuse, and specular together, and multiply the lighting
attenuation value doubled, to get the smooth specular effect (c.rgb = (ambient +
diffuse + specular) * (atten * 2);).

A major part of the code is in the Cg/HLSL language, so you might not be
familiar with it. However, you can still get an idea of how it works by trying
to see more examples and taking a look at the Cg/HLSL language:
http://http.developer.nvidia.com/CgTutorial/cg_
tutorial_appendix_e.html

We can also see an example of the custom lighting model from the following
Unity website:
http://unity3d.com/support/documentation/Components/
SL-SurfaceShaderExamples.html

Classified Intel
How exactly do the surface shaders work?

First, we get the parameters from the Input struct, and these parameters will get
passed to the SurfaceOutput struct inside the surf function. Then, the return of the
SurfaceOutput struct will go to the lighting model function to calculate both the vertex
and pixel (fragment) shader. Lastly, the result from the lighting model function will be passed
to the frame buffer, as shown in the following diagram:

Model and Shade your Hero/Heroine

130

Shader programming—Rim light and
toon ramp

In this last step, we will add the last three properties, _RimColor, _RimPower, and _Ramp
to get the toon shader result. The _RimColor and _RimPower properties basically control
the back lighting effect of our character. The _Ramp properties will be the ramp textures
that are used to calculate the lighting effect based on the angle between light direction and
surface normal of the object.

Engage Thrusters
This is the last section, after which you will be able to see the result of your custom shader.

1.	 Go to MonoDevelop, open the MyShader.shader file, and go to the Properties
section and add the highlighted script as follows:
Properties {
 _MainTex ("Texture", 2D) = "white" {}
 _BumpMap ("Bumpmap", 2D) = "bump" {}
 _AmbientColor ("Ambient Color", Color) = (0.1, 0.1, 0.1, 1.0)
 _SpecularColor ("Specular Color", Color) = (0.12, 0.31, 0.47,
1.0)
 _Glossiness ("Gloss", Range(1.0,512.0)) = 80.0

 _RimColor ("Rim Color", Color) = (0.12, 0.31, 0.47, 1.0)
 _RimPower ("Rim Power", Range(0.5,8.0)) = 3.0
 _Ramp ("Shading Ramp", 2D) = "gray" {}

 }

2.	 Go to the SubShader section, modify, and add the highlighted code as follows:
SubShader {
 Tags { "RenderType"="Opaque" }
 LOD 400

 CGPROGRAM
 // Custom lighting function that uses a texture ramp based on
angle between light direction and normal

 // We use exclude_path:prepass because this lighting model won't
work on the deferred lighting
// Since we don't have the angle between the light direction and
normal to calculate in the prepass

#pragma surface surf RampSpecular exclude_path:prepass

 sampler2D _MainTex;

Project 3

131

 sampler2D _BumpMap;
 sampler2D _Ramp;

 fixed4 _AmbientColor;
 fixed4 _SpecularColor;
 half _Glossiness;

 fixed4 _RimColor;
 half _RimPower;

 struct Input {
 float2 uv_MainTex;
 float2 uv_BumpMap;

 half3 viewDir;
 };

3.	 Add the following highlighted code inside the surf() function as follows:
 void surf (Input IN, inout SurfaceOutput o) {
 fixed4 c = tex2D (_MainTex, IN.uv_MainTex);
 o.Albedo = c.rgb;
 o.Alpha = c.a;
 o.Normal = UnpackNormal (tex2D (_BumpMap, IN.uv_BumpMap));

 fixed rim = 1.0 - saturate(dot (normalize(IN.viewDir),
o.Normal));
 o.Emission = (_RimColor.rgb * pow (rim, _RimPower));

 }

4.	 Finally, go to the custom lighting models function. Let's modify and add this
highlighted code as follows:

inline fixed4 LightingRampSpecular (SurfaceOutput s, fixed3
lightDir, fixed3 viewDir, fixed atten) {
 //Ambient Light
 fixed 3 ambient = s.Albedo * _AmbientColor.rgb;

 //Ramp - Diffuse color
 fixed NdotL = saturate(dot (s.Normal, lightDir));

 fixed diff = NdotL * 0.5 + 0.5;
 fixed3 ramp = tex2D (_Ramp, float2(diff, diff)).rgb;
 fixed3 diffuse = s.Albedo * _LightColor0.rgb * ramp;

 //Specular - Gloss
 fixed3 h = normalize (lightDir + viewDir); // Get the
Normalize of the lighting direction and view direction

Model and Shade your Hero/Heroine

132

 float nh = saturate(dot (s.Normal, h)); //Make sure that
the return number isn't lower than 0 and greater than 1
 float specPower = pow (nh, _Glossiness);

 fixed3 specular = _LightColor0.rgb * specPower * _
SpecularColor.rgb;

 //Result
 fixed4 c;
 c.rgb = (ambient + diffuse + specular) * (atten * 2);
 c.a = s.Alpha + (_LightColor0.a * _SpecularColor.a *
specPower * atten);

 return c;
 }

Finally, we go back to Unity and apply the ramp texture to our model. Let's click on the
Heroine.FBX model in the Hierarchy view to bring up its Inspector view. In the Inspector
view, we will go to the material component in the new property Shading Ramp and set
the following:

ff Shading Ramp: Drag-and-drop the Ramp.jpg in the Textures folder from the
Project view to this thumbnail

After finishing, we will see the Inspector view, as shown in the following screenshot:

Project 3

133

Now, we can click Play to see the result, as shown in the following screenshot:

We can also move or rotate our camera to see our character with the shader in a
different angle.

Next, we will go to our custom lighting function, LightingRampSpecular(). In this
function, we will add the following highlighted code:

Next, we calculate the diffuse color by using the Half Lambert or Warp Lambert method
to get the lighting warp around our model, and then we get the ramp texture from the
property, and multiply it with the light color and our main color texture.

Objective Complete - Mini Debriefing
In this section, first we added three properties (_RimColor, _RimPower, _Ramp) in the
Properties section, which will be used to calculate the rim light as well as the toon ramp
shader style.

Then, we put exclude_path:prepass after #pragma surface surf RampSpecular.
This means that we set our shader to compile without the deferred rendering. Why would
we want to do this? Because our toon ramp shader needs the angle data between the
light direction and surface normals to calculate the lighting that can't be calculated in the
deferred rendering, so we exclude it.

Model and Shade your Hero/Heroine

134

In Unity, we can choose three types of Rendering Paths: Vertex Lit,
Forward, and Deferred Lighting. Vertex Lit is basically the lowest lighting
quality and doesn't support any real-time shadows. Forward is shader-
based, which is the default setting in Unity and only supports real-time
shadow from one directional light. Deferred Lighting is the rendering path
with the most lighting and shadow quality, which is only for the Unity Pro
with no support on mobile devices. We can get more information about the
Rendering Path from the following website:
http://unity3d.com/support/documentation/Manual/
RenderingPaths.html

Next, we add half3 viewDir; in struct Input {}, which will allow us to get the user
view direction vector. This parameter will be used to calculate the specular reflection on
our model.

Inside the surf() function, we calculated the rim power or the brightness of our
backlight, which is fixed rim = 1.0 - saturate(dot (normalize(IN.viewDir),
o.Normal)); by using the saturation of the dot product of the view direction normalize
and surface normals. In the next line (o.Emission = (_RimColor.rgb * pow (rim, _
RimPower));), we multiply the rim light color with the power of the rim power that we got.
Then, we assigned the result to o.Emission to show the rim light effect on our object.

Then, in the LightingRampSpecular() function, we changed the calculation of the
lighting by using the Half-Lambert model, which will make our object brighter with the light
that will warp around the object by dividing it by half and plus half (fixed diff = NdotL
* 0.5 + 0.5;).

Half-Lambert lighting is a technique first developed in the original Half-Life.
It is designed to prevent the rear of an object losing its shape and looking too
flat. Half Lambert is a completely non-physical technique and gives a purely
perceived visual enhancement and is an example of a forgiving lighting model.
Reference from http://developer.valvesoftware.com/wiki/
Half_Lambert.

Project 3

135

Next, we use diff to calculate the ramp texture, _Ramp, to get the color result by using the
tex2D() function (fixed3 ramp = tex2D (_Ramp, float2(diff, diff)).rgb;).
Then we multiply this value with the diffuse color and light color (fixed3 rampDiffuse =
s.Albedo * _LightColor0.rgb * ramp;), and we will get a result which is different
from the previous section, as shown in the following screenshot:

Model and Shade your Hero/Heroine

136

Game over-Wrapping it up
In this chapter, we have learned how to export the model from 3D Studio Max, and how to
set the proper scale and rotation to use in Unity. We also learned the basic concept of shader
programming and created by using surface shader, and created the custom lighting model for
the shader. Some of you might find shader programming to be very complex with a lot of things
to learn; well, yes, that's true. There is no easy way to write code using shader programming.
However, if you want to know more about shader programming, you should definitely learn
Cg/HLSL language, which will help you to understand more about the structure and the syntax
of the shader language. Now, let's see our result in the following screenshot:

We can also get more detail on shader programming in Unity from the
following websites:
(Unity Shader Reference):
http://unity3d.com/support/documentation/Components/
SL-Reference.html

(Unity ShaderLab forum):
http://forum.unity3d.com/forums/16-ShaderLab

Project 3

137

Are you ready to go gung ho?
A Hotshot challenge

Now, we learned the basic concepts of how to write a custom shader by using surface shader
in Unity 3. Why don't we try out something to get more familiar with it by playing with the
properties to get a different type of rendering style?

ff Adjust a value in the material editor in our shader to create a different lighting color
and effect

ff Create the new ramp texture and apply it to the shader to see the new result of just
changing the ramp texture

ff Try taking out some properties and using new properties such as cube and so on

ff Try changing some parameters in the custom lighting function by adding a different
method to calculate the lighting direction

ff Adjust some equations by changing plus to multiple or have more properties to get
the different types of rendering techniques

ff You can also create your own custom lighting models

Project 4
Add Character Control

and Animation to our
Hero/Heroine

Here we are in part two of Hero/Heroine. In this chapter, we will make our character come
to life by using the animation script to control our character to walk, jump, and run with
smooth transition from one animation to another.

We will learn how to set up the animation clip for our imported 3D model, understanding the
concept of a built-in third-person controller, and creating a custom third-person controller
and camera, which is similar to the built-in third-person controller script. This way we will
obtain a good understanding of the built-in script and can adapt it to use for the specific
extra controller or animation later on.

Mission briefing
We will create a basic custom third-person controller and third-person camera script to control
our character's animation. This will allow us to control our character similar to the Hack and
Slash style game, such as the Devil May Cry series, Gods of Wars, Tomb Raider, and so on.

What does it do?
In this chapter, we will start with setting up the animation clip from the imported FBX model
with animation (walk, run, jump, and fall), which is created from other 3D software.

Add Character Control and Animation to your Hero/Heroine

140

Next, we will add the Physics Character Controller component instead of the Physics
Rigidbody. This Character Controller will give us the ability to access collision detection as
the well as Move() function, which is very easy to use.

We will use the Move() function to move our character while
playing the animation. This function can be accessed from the
CharacterController class when we add the Character
Controller component to our game object. The Move() function will
return the CollisionFlags, which will tell us which part of our
character hits other collider objects.

Then, we will apply the built-in third-person character controller script to our character, and
take a look at the script to get the basic idea for creating the custom character control script
and camera.

After that we will get rid of the built-in script and start creating the custom script to control
our character's walk, run, and jump by using the Move() function in the Character
Controller class. In this step, we will also create the transition between each animation
clip by using the Animation class in Unity, which allows us to adjust the speed of animation
clip, type of playing, and fading time. Next, we will create the camera script to follow our
character. We will then attach the script to our character and make it move on the level.

Why Is It Awesome?
After we complete this chapter, we will know how to set up the animation clip from FBX
file, which we already exported from another 3D software. We will also be able to create a
custom controller script to control our character in the 3D world and blend the animation
from idle to walk, walk to run and jump, and so on. We will also learn how to create the
third-person camera to follow our character.

This chapter will give you an understanding of how to create the third-person character
control script and you will be able to use it for other controllers.

Your Hotshot Objectives
Even though Unity is already provided with built-in third-person controller script, we will
create our third-person controller to get a good understanding of how to use the built-in
character controller. Here is what we will learn:

ff Setting up character animation and level

ff Creating character controller and built-in script

ff Creating a custom character control script

Project 4

141

ff Creating cross fade animation

ff Creating a third-person camera to follow our character

Mission Checklist
As we have already learned how to export the FBX file format from 3D Studio Max in the
previous chapter, we will download the new chapter package, which will include the new
FBX character with all the animation cycles, textures, and necessary assets for this chapter.
Download the Chapter4 package from this book's website, unzip it, and then you will see
Chapter4.unitypackage, which will contain all the assets for this chapter.

There is also a built-in animation system in Unity (that we will not cover in
this chapter), which we can use to animate a simple object such as a moving
platform or the animation of an opening door. You can get more details from
the following Unity website:
http://unity3d.com/support/documentation/Manual/
Animation.html.

Setting up character animation and
level

From the last chapter, we have imported the 3D character model from 3D Studio Max and
created the shader for it, but the model doesn't have any animation set up in it, yet. So, in
this chapter we will learn more about how to set up the animation clip from the FBX model
that is already exported from 3D software (in this book, we have used 3D Studio Max), and
use it in Unity.

In Unity, we can import the FBX format file with the rigging animation and set it up for
multiple clips to use, as we want. The concept is that we have one file that includes all
small clips from walking, running, or jumping. Then, we divide it to each type of animation
by telling Unity the range of frames for this animation. For example, if we create a walking
cycle animation from frames 1 to 30, we can just tell Unity that we want to use the range of
frames from 1 to 30 for the walking animation. This concept is very flexible to adjust and
change the animation clip on the fly.

Add Character Control and Animation to your Hero/Heroine

142

Prepare for Lift Off
In this section, we will begin with setting up the new FBX file, which is the same model and
shader from the last chapter, but this FBX file will include all the necessary animations that
we need for this section:

1.	 Create a new project with the name CharacterAnimation, and this time we
will include the built-in Character Controller package by checking on the
Character Controller.unityPackage in the Project Wizard, as shown in the
following screenshot:

2.	 Next, import the assets package by going to Assets | Import Package | Custom
Package…. Choose Chapter4.unityPackage, which we just downloaded,
and then click on the Import button in the pop-up window, as shown in the
following screenshot:

Project 4

143

3.	 Wait until it's done, and you will see the Chapter4 and Standard Assets folders in
the Window view, as shown in the following screenshot:

Engage Thrusters
Now we are ready to start this section:

1.	 Let's go to the FBX folder; click on Heroine_animate to bring up the Inspector
view. Then, scroll down a bit until you see the Animations section in the
FBXImporter. In the Animations section, you will see a small window below the
word Split Animations:

Here, we will see five parameters, which are Name, Start, End, WrapMode, and
Loop. The Name parameter is the name of the animation that we want to assign.
The Start parameter is the start frame of the clip. The End parameter is the end
frame of the clip. The WarpMode parameter is the type of animation that we want,
such as loop, default, once, and so on. And the last one, Loop, is the true or false
parameter; if it is checked, Unity will automatically increase an extra frame at the
end of animation to match with the first frame.

Add Character Control and Animation to your Hero/Heroine

144

There are two ways to import the animations to use in Unity. The first
method is the one that we mentioned previously. We import a single model
that contains all animations and split the animation by setting the duration
of the frame. In the second method, we don't have to set up the animation
frame from start to end. Unity will automatically export the animation clip for
you. However, this method will need to import the multiple model files, each
file having a different animation clip such as idle, walk, run, and so on. Also,
we need to follow the naming convention for Unity to be able to import the
animation clip properly. For example, we have imported the base FBX model
name Heroine_animate without any animation clip. Then we will import
another FBX model that contains only idle animation; we should name it
Heroine_animate@idle, as we can see in the following screenshot:

For more details, see the following website:
http://unity3d.com/support/documentation/
Manual/Character-Animation.html.

2.	 Next, we will create each animation clip by clicking on the plus sign on the right-
hand side. After you click on the plus sign, you will see the clip added to this
window. This is the animation clip that we can use in our game. For this chapter, we
need five clips, so after clicking on the plus sign five times, we set it as follows:

�� Name: idle	 Start: 7	 End: 210	 WrapMode: Loop	 Loop: uncheck

�� Name: walk	 Start: 230	 End: 280	 WrapMode: Loop	 Loop: uncheck

�� Name: run	 Start: 290	 End: 320	 WrapMode: Loop	 Loop: uncheck

�� Name: jump	 Start: 325	 End: 339	 WrapMode: Default	 Loop: uncheck

�� Name: fall	 Start: 340	 End: 360	 WrapMode: Default	 Loop: uncheck

Project 4

145

3.	 Then, click on the Apply button at the end of the Inspector view. Now, we have
finished adding our animation clip.

4.	 Next, we want to add the level to our scene. Go to the Project view under the
Prefabs folder and drag the Level Prefabs to the Hierarchy view, as we can see in
the following screenshot:

5.	 Then, we need to add light to our scene. Go to GameObject | Create Other |
Directional Light. In its Inspector view, set the Rotation in the X-axis to 30. (If
you have the Unity Pro version, you can set it up to use the Hard Shadows or Soft
Shadows to get a nice shadow on the ground.)

6.	 Before we finish this step, we will add our character to the scene. Go to the FBX
folder in the Project view and drag Heroine_animate to the Hierarchy view.

In the preceding screenshot, we can see the red frame, which shows the white
boxes on the character that represent extra bones to control the extra objects
on our character. In this case, the extra objects are the sword, sword sheath,
dragonhead on the shoulder, and the back plate.

Add Character Control and Animation to your Hero/Heroine

146

The extra bone meshes are usually exported from other 3D software,
depending on the artist or animator who sets it up. Sometimes, we
can use these meshes for collision detection for the attack action, if
we have a fighting animation attached on the character.

We don't need to show the mesh here, so we can remove or hide it, but we will
remove it because we don't have to use the Mesh Renderer component in this case.

7. 	 Let's do this by clicking on the Heroine_animate in the Hierarchy view.

8. 	 Then, we will use the search box in the Hierarchy view to search and put bone in
this box, as we can see in the following screenshot:

9. 	 Let's click on the first bone back_plate_bone to bring up its inspector and go to
the Inspector view, then right click on the Mesh Renderer component, and click
Remove Component to remove it as we can see in the following screenshot:

This will bring up the Losing Prefab popup; we just click Continue button to break it.

Project 4

147

10.	 Then, we go to the next bone shoulder_bones, sword_bone, and sword_sheath_
bone and perform tasks similar to what we performed for the back_plate_bone,
and we will see all the white boxes disappear as seen in the following screenshot:

Objective Complete - Mini Debriefing
Basically, what we have done here is set up the animation clip for idle, walk, run, jump, and
fall. Then, we also created the level and directional light for our scene. Next, we added our
character, which included the animation clips that we have set up. Lastly, we removed the
Mesh Renderer of the extra bones, because we don't want to show it in our scene.

If you click on the Body object (the child of Heroine_animate) in the
Hierarchy view to bring up its Inspector view, you will see the Skinned Mesh
Renderer in the Inspector view. The Skinned Mesh Renderer is automatically
added to the imported object when the imported object is skinned. The
Skinned Mesh Renderer will take care of drawing the mesh attached to the
animation. The advantage of using Skinned Mesh is that we can enable or
disable the bone by using scripting, which is very good for the ragdoll physics.
We can take a look at the details from the following website:
http://unity3d.com/support/documentation/Components/
class-SkinnedMeshRenderer.html.

Classified Intel
In the last chapter, we exported the 3D model from 3D Studio Max, but we did so without
the animation or rigging. So, we'd like to talk a bit about how to export the animation from
3D Studio Max with animation and all the rigs with it.

Add Character Control and Animation to your Hero/Heroine

148

As we know, 3D Studio Max uses the Z-axis as the upward direction, but Unity uses the Y-axis
for the same purpose. In Chapter 3, The Hero/Heroine Part I – Models and Shaders, when we
exported the 3D model, we set the X rotation of the character pivot to -90 degrees. However,
if we try to set up the character as the last, we will have the problem with the biped setup.
To problem the problem this time, we don't have to set up the rotation in the X-axis of the
pivot as in Chapter 3, The Hero/Heroine Part I – Models and Shaders. So, this means that we
will leave the rotation of the pivot as default, as shown in the following screenshot:

Project 4

149

This is because our character has two objects attached to it—the model and the bone. Then,
when we import it to Unity, the FBXImporter in Unity will basically create the container and
add both objects and its children, which will solve the problem of wrong rotation and set the
default rotation of the model to X: 0, Y: 0, Z: 0, as we can see in the following screenshot:

Some of you might be curious—how do we know when to rotate the pivot or not rotate the
pivot in 3D Studio Max? Well, it's very simple; just remember that any 3D model that is static
and not complicated or has only one mesh object included, will rotate the pivot. On the
other hand, if we have a character model with rigging or maybe a simple mesh for detecting
the collision, we can just leave it as it is.

We can also fix the rotation of the imported model in Unity by creating the
empty object as a parent of the imported model. For more information on
how to fix the rotation of the imported model in Unity, we can go to the
following website:
http://unity3d.com/support/documentation/Manual/
HOWTO-FixZAxisIsUp.html.

Add Character Control and Animation to your Hero/Heroine

150

Next, we will take a look at how to set up the FBX exporter to export the 3D model with
animation included. We can follow the next screenshot, which shows the extra parameter
that we need to set when exporting the FBX file from 3D Studio Max:

Then, we will take a look at the animation clip in the FBXImporter. We can see the action of
each animation clip in Unity by clicking on Heroine_animate in the Heirarchy view; then go
to Window | Animation, and we can bring up the Animation window. Here, we can click the
play button to play each animation clip, and we can see the result on the editor. We can also
change the animation clip by clicking on the name of the animation clip beside the character
name below the play button, as we can see in the following screenshot:

Project 4

151

Then, we can click to choose the animation that we want to see, as shown in the
following screenshot:

Creating the character controller and
built-in script

In the last section, we have a ready FBX with an animation clip, and a scene to use. In this
step, we will add a character controller script to our character. This script will allow us to
be able to access all the character control classes, which we can use to move the character,
detect the collision, limit the slope we can walk up, and how big of stairs (step offset) we can
climb. Then, we will add a third-person character controller and third-person camera script
to our character and set up the parameter to be able to control our character.

Prepare for Lift Off
Make sure to include the unity built-in Character Controllers package included in our project.
(We have already done this at the beginning of this chapter)

If you didn't do it earlier, you can go to Assets | Import Package |
Character Controller to import this package.

Add Character Control and Animation to your Hero/Heroine

152

Engage Thrusters
First, we will add the character controller script to our character by clicking on Heroine_
animate, and then we go to Component | Physics | Character Controller. Now, go to the
Inspector view, under Character Controller, and change the parameters as follows:

ff Height: 1.7

ff Radius: 0.2

ff Slope Limit: 45

ff Step Offset: 0.3

ff Skin Width: 0.08

ff Min Move Distance: 0

ff Center: X: 0, Y: 0.89, Z: 0

Right here, we set up the character controller script to fit with our character. We can see
more details about each parameter from the following link:

http://unity3d.com/support/documentation/Components/class-
CharacterController.html.

We can find all the animation clips of our character from the
Project view in the Chapter4 | FBX | Heroine_animate, as
shown in the following screenshot:

Project 4

153

Next, we will attach the Third-person Controller script to the character by going to
Component | Scripts | Third-person Controller and set the following:

ff Idle Animation: idle

ff Walk Animation: walk

ff Run Animation: run

ff Jump Pose Animation: jump

ff Walk Max Animation Speed: 1.5

ff Trot Max Animation Speed: 1.5

ff Run Max Animation Speed: 1.5

ff Jump Animation Speed: 4

ff Land Animation Speed: 0.1

ff Walk Speed: 2

ff Trot Speed: 2

ff Run Speed: 8

ff In Air Control Acceleration: 5

ff Jump Height: 2

ff Gravity: 20

ff Speed Smoothing: 10

ff Rotate Speed: 300

ff Trot After Seconds: 3

ff Can Jump: check the box

Lastly, we will add the Third-person Camera script to make the camera follow our
character smoothly; go to Component | Scripts | Third-person Camera and then go to the
Inspector view and set the following:

ff Camera Transform: Drag the Main Camera in the Hierarchy view here

ff Distance: 3

ff Height: 1

ff Angular Smooth Lag: 0.1

ff Angular Max Speed: 175

ff Height Smooth Lag: 0.3

ff Snap Smooth Lag: 0.2

ff Snap Max Speed: 720

Add Character Control and Animation to your Hero/Heroine

154

ff Clamp Head Position Screen Space: 0.6

ff Lock Camera Timeout: 0.2

Before we finish this step, we need to create a new prefab for this game object. So, we go to
Assets | Create | Prefab, name it Heroine_BuiltIn, and drag Heroine_animate in the
Hierarchy View to the Heroine_BuiltIn prefab.

Finally, we click on Play and control the character by pressing W, A, S, D, or up, down, left,
right arrow keys to move the character, Space key for jumping, and holding the Shift with
pressing the move key to run. If we didn't press any key, the character will be playing the
idle animation.

Objective Complete - Mini Debriefing
We just added the character controller and the built-in third-person character controller
script to our character and set up the parameters that are suitable for our character.

Classified Intel
In this step, we added the built-in third-person character controller, which is a good starting
point to set up the third-person character. We can set up and adjust the parameter the way
we want, such as the height or distance of the camera, speed of the animation clip, and so
on, as we can see in the following screenshot:

Project 4

155

However, the built-in third-person character controller has its own limitations. For example,
if we walk down from the box or try to fall down from the big box, we will see that our
character still uses the walk animation. This is because the built-in third-person controller
doesn't support the fall animation. We will solve this problem in the next step by creating
our custom CharacterControl script and CharacterCamera and adapt some of the code
from the built-in script to get a result similar to the following screenshot:

Creating a custom character control
script

From the last section, we know how to set up the character controller using the built-in
third-person character controller, which works very well. If we look at the built-in character
controller closely, we will see that it takes only four animation clips, but we want to add one
more clip, which is the fall animation (for the model that we had, it's the backward of the
jump animation clip). However, if we have more than four animation clips, we will need to
build our own script because there is no support for including a falling animation in the
built-in script. So, we will create our character control script which is similar to, but much
simpler than, the built-in third-person controller script.

Add Character Control and Animation to your Hero/Heroine

156

Prepare for Lift Off
Before we start coding, we need to get rid of the built-in Third-person Controller
and Third-person Camera scripts. So, let's go to Heroine_animate in the Hierarchy
View, under the Inspector view, right-click the Third-person Camera script, and then click
Remove Component. We will see the pop-up window that says we'll lose the prefab if we
remove it. We can just click on the OK button to remove it because we already created our
prefab. Then, we go to Third-person Controller, right-click and select Remove Component to
remove it. Now, we are ready to create our character control script.

Engage Thrusters
Now we will create the script to control our character:

1.	 Go to Assets | Create | JavaScript and name it CharacterControl, and then
right-click on this script and click Sync MonoDevelop Project (or double-click it
if you have already set MonoDevelop as your main editor, if not it will open the
default script editor either Unitron or UniScite) to open MonoDevelop, and we
are ready to code.

2.	 We start by adding these parameters as follows:
// Require a character controller to be attached to the same game
object
@script RequireComponent(CharacterController)

//All Animation Clip Params
public var idleAnimation : AnimationClip;
public var walkAnimation : AnimationClip;
public var runAnimation : AnimationClip;
public var jumpPoseAnimation : AnimationClip;
public var fallPoseAnimation : AnimationClip;

//Animation Clip Speed
public var jumpAnimationSpeed : float = 4;
public var fallAnimationSpeed : float = 0.1;
public var runAnimationSpeed : float = 1.5;
public var walkAnimationSpeed : float = 1.5;
public var idleAnimationSpeed : float = 0.5;

public var speed : float = 2; //Walk speed
public var runSpeed : float = 5.0;
public var jumpSpeed : float = 8.0;
public var gravity : float = 20.0;

private var controller : CharacterController;

Project 4

157

//Move Params
private var f_verticalSpeed : float = 0.0;
private var f_moveSpeed : float = 0.0;
private var v3_moveDirection : Vector3 = Vector3.zero;

//Boolean
private var b_isRun : boolean;
private var b_isBackward : boolean;
private var b_isJumping : boolean;

//Rotate Params
private var q_currentRotation : Quaternion; //current rotation of
the character
private var q_rot : Quaternion; //Rotate to left or right
direction
private var f_rotateSpeed : float = 1.0; //Smooth speed of
rotation

//Direction Params
private var v3_forward : Vector3; //Forward Direction of the
character
private var v3_right : Vector3; //Right Direction of the character

private var c_collisionFlags : CollisionFlags; //Collision Flag
return from Moving the character

//Create in air time
private var f_inAirTime : float = 0.0;
private var f_inAirStartTime : float = 0.0;
private var f_minAirTime : float = 0.15; // 0.15 sec.

Here, we have all the necessary parameters to use in our script. In the first line, we
want to make sure that we have the character controller script attached when we use
this script. Then, we have the animation clip parameters to contain all the animation
that we want to play when we control our character. Next, we have the animation
speed to control how fast we want our animation clip to play when it uses. We also
have the speed for the walk, run, jump and gravity parameters. We need the gravity
property because we will use the Move() function in the CharacterController
class, which doesn't have the gravity parameter included.

Add Character Control and Animation to your Hero/Heroine

158

3.	 Next, we will start creating the first function Awake() using the following code:
//Using Awake to set up parameters before Initialize
public function Awake() : void {
 controller = GetComponent(CharacterController);
 b_isRun = false;
 b_isBackward = false;
 b_isJumping = false;
 f_moveSpeed = speed;
 c_collisionFlags = CollisionFlags.CollidedBelow;
}

4.	 In this function, we set up the necessary parameters before we initialize it. Then, we
create the Start() function and initialize it as follows:
public function Start() : void {
 f_inAirStartTime = Time.time;
}

We use the Start() function to set up f_inAirStartTime because we need to
get the time when we first start the scene.

5.	 Next, we will add the scripts to check the stage of our character, such as jumping,
moving backward, on the ground, and in the air. Let's type this as follows:
//Checking if the character hit the ground (collide Below)
public function IsGrounded () : boolean {
 return (c_collisionFlags & CollisionFlags.CollidedBelow);
}
//Getting if the character is jumping or not
public function IsJumping() : boolean {
 return b_isJumping;
}
//Checking if the character is in the air more than the minimum
time
//This function is to make sure that we are falling not walking
down slope
public function IsAir() : boolean {
 return (f_inAirTime > f_minAirTime);
}
//Geting if the character is moving backward
public function IsMoveBackward() : boolean {
 return b_isBackward;
}

Project 4

159

6.	 Now we will set up the Update() function to make the character move; add the
following code:
public function Update() : void {
 //Get Main Camera Transform
 var cameraTransform = Camera.main.transform;

 //Get forward direction of the character
 v3_forward = cameraTransform.TransformDirection(Vector3.
forward);
 v3_forward.y = 0; //Make sure that vertical direction equals zero
 // Right vector relative to the character
 // Always orthogonal to the forward direction vector
 v3_right = new Vector3(v3_forward.z, 0, -v3_forward.x); // -90
degree to the left from the forward direction

In the preceding section, we get the transform from the main camera, the forward
direction, and right direction from this transform, because the controls are relative
to the camera orientation not the character orientation.

7.	 We need to get the Input button from the user by using the Input.GetAxis
"Horizontal" and "Vertical":
 //Get Horizontal move - rotation
 var f_hor : float = Input.GetAxis("Horizontal");
 //Get Vertical move - move forward or backward
 var f_ver : float = Input.GetAxis("Vertical");

8.	 We check whether the character is moving backward or forward by checking if the
result of f_ver is lower than 0, as shown in the following script:
 //If we are moving backward
 if (f_ver < 0) {
 b_isBackward = true;
 } else {
 b_isBackward = false;
 }

9.	 We get the target direction by multiplying the horizontal value with the camera
transform right direction and add the value of vertical multiply with forward
direction of the camera, as shown in the following script:
 //Get target direction
 var v3_targetDirection : Vector3 = (f_hor * v3_right) + (f_ver *
v3_forward);

Add Character Control and Animation to your Hero/Heroine

160

10.	 We calculate the move direction here by using Vector3.Slerp(), and normalize
it, because we only need the direction where our character moves from the user
input, as shown in the following script:
 //If the target direction is not zero - that means there is no
button pressing
 if (v3_targetDirection != Vector3.zero) {
 //Rotate toward the target direction
 v3_moveDirection = Vector3.Slerp(v3_moveDirection, v3_
targetDirection, f_rotateSpeed * Time.deltaTime);
 v3_moveDirection = v3_moveDirection.normalized; //Get only
direction by normalizing our target vector
 } else {
 v3_moveDirection = Vector3.zero;
 }

Vector3.Slerp() is the function that we can use to interpolate between
two vectors spherically by amount of time, and the return vector's magnitude
will be the difference between the magnitudes of the first vector and the
second vector. This function is usually used when we want to get the smooth
rotation from one vector to another vector in a fixed amount of time. You can
see more details at the following Unity website:
http://unity3d.com/support/documentation/
ScriptReference/Vector3.Slerp.html.

11.	 We get the moving speed of our character by checking if our character is walking or
running. In this section, we also check whether the character is grounded or not. We
will make sure that we cannot press the Run or Jump buttons while the character is
in the air:
 //Checking if character is on the ground
 if (!b_isJumping) {
 //Holding Shift to run
 if (Input.GetKey (KeyCode.LeftShift) || Input.GetKey (KeyCode.
RightShift)) {
 b_isRun = true;
 f_moveSpeed = runSpeed;
 } else {
 b_isRun = false;
 f_moveSpeed = speed;
 }
 //Press Space to Jump
 if (Input.GetButton ("Jump")) {
 f_verticalSpeed = jumpSpeed;
 b_isJumping = true;
 }
 }

Project 4

161

12.	 We apply the gravity and calculate in-air timing of our character. We need to apply
the gravity here because the Move() function in the character controller script
doesn't have any gravity applied to it. We will use the in-air time to track the time
when the character is in the air. This will make sure that our character can walk
down on the slope without any bugs:
 // Apply gravity
 if (IsGrounded()) {
 f_verticalSpeed = 0.0; //if our character is grounded
 b_isJumping = false; //Checking if our character is in the air
or not
 f_inAirTime = 0.0;
 f_inAirStartTime = Time.time;
 } else {
 f_verticalSpeed -= gravity * Time.deltaTime; //if our
character in the air
 //Count Time
 f_inAirTime = Time.time - f_inAirStartTime;
 }

13.	 We calculate the movement of our character and use the Move() function to move
our character:
 // Calculate actual motion
 var v3_movement : Vector3 = (v3_moveDirection * f_moveSpeed) +
Vector3 (0, f_verticalSpeed, 0); // Apply the vertical speed if
character fall down
 v3_movement *= Time.deltaTime;

 // Move the controller
 c_collisionFlags = controller.Move(v3_movement);

14.	 Finally, we apply rotation to our character when the user controls our character left
or right:

 //Update rotation of the character
 if (v3_moveDirection != Vector3.zero) {
 transform.rotation = Quaternion.LookRotation(v3_
moveDirection);
 }
}

Next, we will assign this script to our character by going back to Unity and dragging the
CharacterControl script to the Heroine_animate in the Hierarchy view; we will be able
to control our character, but there will be no animation applied to our character yet. We will
apply animation to our character/character animation in the next section.

Add Character Control and Animation to your Hero/Heroine

162

Objective Complete - Mini Debriefing
In this section, we have created a custom character control script to create the character
movement by using the Move() function in CharacterController class. This function
needs only the direction and it returns the collision flags, which are very convenient to use.
We also apply the Gravity and Jump buttons to make our character fall down when there is
no collider.

Classified Intel
In the first chapter, we created a 2D platform game which used a plane object to show a
sprite animation. We also attached Rigidbody to the character to be able to use a gravity
and access to the Rigidbody class to get a nice Physics movement.

However, in this chapter we didn't use Rigidbody, but we used CharacterController
to control our character. We can add Rigidbody to our character if we want to create a
ragdoll object, but we aren't doing it in this chapter. We will take care of the ragdoll
object in Chapter 7, Creating a Destructible and Interactive Virtual World.

The CharacterController script has a lot of advantages. In this case, we will talk about
the Move() function. This function takes one parameter, Vector3, which will be the motion
of our movement per frame. So, we basically need to get the direction from the input,
multiply the speed and Time.deltaTime, and pass it to this function.

The Move() function also returns the CollisionFlags, which we can check for each part
of our character collide to another object. This is very useful when we want to check if the
top of the character hit the ceiling, or the side of our character hit the wall, and so on. We
can read more details of the Move()function and CollisionFlags from the following link:

http://unity3d.com/support/documentation/ScriptReference/
CharacterController.Move.html.

http://unity3d.com/support/documentation/ScriptReference/
CollisionFlags.html.

Creating CrossFade animation
In this section, we will apply and create the animation clip to our character and make it
suitable for each action such as idle, walk, run, jump, and fall animation.

Project 4

163

Engage Thrusters
We will start with creating the Awake() function:

1.	 Go to the Awake() function to set up warpMode of the animation, and type the
following highlighted script:
//Using Awake to set up parameters before Initialize
public function Awake() : void {
 controller = GetComponent(CharacterController);
 b_isRun = false;
 b_isBackward = false;
 b_isJumping = false;
 f_moveSpeed = speed;
 c_collisionFlags = CollisionFlags.CollidedBelow;

 //Set warpMode for each animation clip
 animation[jumpPoseAnimation.name].wrapMode = WrapMode.ClampForever;
 animation[fallPoseAnimation.name].wrapMode = WrapMode.ClampForever;
 animation[idleAnimation.name].wrapMode = WrapMode.Loop;
 animation[runAnimation.name].wrapMode = WrapMode.Loop;
 animation[walkAnimation.name].wrapMode = WrapMode.Loop;

}

2.	 Go back to the Update() function in the CharacterControl.js file between
c_collisionFlags = controller.Move(v3_movement); and if (v3_
moveDirection != Vector3.zero) near the bottom line of this function; add
the following highlighted script:
// Move the controller
 c_collisionFlags = controller.Move(v3_movement);

 //Play animation
 if (b_isJumping) {
 if (controller.velocity.y > 0) {
 animation[jumpPoseAnimation.name].speed = jumpAnimationSpeed;
 animation.CrossFade(jumpPoseAnimation.name, 0.1);
 } else {
 animation[fallPoseAnimation.name].speed = fallAnimationSpeed;
 animation.CrossFade(fallPoseAnimation.name, 0.1);
 }
 } else {
 if (IsAir()) { // Fall down
 animation[fallPoseAnimation.name].speed = fallAnimationSpeed;
 animation.CrossFade(fallPoseAnimation.name, 0.1);
 } else { //Not fall down

Add Character Control and Animation to your Hero/Heroine

164

 //If the character has no velocity or very close to 0 show idle
animation
 if(controller.velocity.sqrMagnitude < 0.1) {
 animation[idleAnimation.name].speed = idleAnimationSpeed;
 animation.CrossFade(idleAnimation.name, 0.1);
 } else { //Checking if the character walks or runs
 if (b_isRun) {
 animation[runAnimation.name].speed = runAnimationSpeed;
 animation.CrossFade(runAnimation.name, 0.1);
 } else {
 animation[walkAnimation.name].speed = walkAnimationSpeed;
 animation.CrossFade(walkAnimation.name, 0.1);
 }
 }
 }
 }

 //Update rotation of the character
 if (v3_moveDirection != Vector3.zero) {
 transform.rotation = Quaternion.LookRotation(v3_
moveDirection);
 }
}

We just added the script to check what the animation clip should play when the
character is in each action. In the first section, we are checking if we are jumping. If we
are, we play also, Jump and not jump. If we are falling down, we play the Fall and not
fall. Then, if we are moving by walking, we play Walk Animation. If we are running, we
play Run Animation. If we are not doing anything, we play Idle Animation.

3.	 Finally, we go back to Unity and add the animation clip to our character by clicking
on the Heroine_animate object in the Hierarchy View to bring up its Inspector
view, under the Character Control component in the Inspector view, and set
the following:

�� Idle Animation: idle

�� Walk Animation: walk

�� Run Animation: run

�� Jump Animation: jump

�� Fall Animation: fall

Project 4

165

We will see the result of the Inspector view, as shown in the following screenshot:

We can find all the animation clips by going to the
Project view in Chapter4 | FBX | Heroine_animate, as
shown in the following screenshot.

Add Character Control and Animation to your Hero/Heroine

166

Objective Complete - Mini Debriefing
We just added a new script to check what the animation clip should play when the character
is in each action. We also set the speed of each animation by using animation[name].
speed, set the warpMode by using animation[name].warpMode, and we used the
animation.CrossFade(name, time) to blend one animation clip to another.

Classified Intel
In this step, we set the speed of our animation by using animation[name].speed, where
animation[name] is the animation clip that we have already set up in the first step.

The speed parameter is basically the speed with which the animation clip is played. For
example, if we set our animation from 3D Software to play this animation in one second,
and we set the speed of this animation equal to 1, then the animation clip will play at the
same speed as the source animation. On the other hand, if we set up the speed to 2, this
animation clip will play twice as fast as our source animation. Also, if we set the number
lower than 1, the animation will play that many times slower than the source.

The animation.CrossFade() function will cross fade from the current animation clip
to another animation, and we pass its name to this function. We can also control how
much time we want to cross fade for by setting the number of times. More details on
this function are available at: http://unity3d.com/support/documentation/
ScriptReference/Animation.CrossFade.html.

Creating a third-person camera to
follow our character

From the last section, we got the controllable character with the animation, but the camera
isn't actually following the character at all. So, in this section we will create the third-person
camera to follow our character.

Prepare for Lift Off
Create a new JavaScript in Unity by going to Assets | Create | JavaScript, and name it
CharacterCamera. Then right-click on this script and click Sync MonoDevelop Project (or
double-click it if we already set MonoDevelop as our main editor; if not it will open the
default script editor, either Unitron or UniScite) to open MonoDevelop. Now we are ready
to code.

Project 4

167

Engage Thrusters
Now, we will begin coding the CharacterCamera script:

1.	 Type the parameters script as follows:
//Make sure that we have CharacterControl included in this
gameobject
@script RequireComponent(CharacterControl)

//Angular smooth
public var smoothTime : float = 0.1;
public var maxSpeed : float = 150.0;

public var heightSmoothTime : float = 0.1;

public var distance : float = 2.5;
public var height : float = 0.75;

private var f_heightVelocity : float = 0.0;
private var f_angleVelocity : float = 0.0;

private var v3_velocity : Vector3;
//Transform
private var target : Transform;
private var cameraTransform : Transform;

private var f_maxRotation : float;
//Character Control
private var c_characterControl : CharacterControl;

//Target
private var f_targetHeight : float = Mathf.Infinity;
private var v3_centerOffset = Vector3.zero;

Using the preceding code, we created all the parameters to use in this script.

2.	 Next, we will set up the parameters by using the Awake() function:
public function Awake () : void {
 //Get Our Main Camera from the scene
 cameraTransform = Camera.main.transform;
 target = transform;
 c_characterControl = GetComponent(CharacterControl);

 //Get target center offset
 var characterController : CharacterController = target.collider;

Add Character Control and Animation to your Hero/Heroine

168

 v3_centerOffset = characterController.bounds.center - target.
position;
}

In this function, we get the camera transform and the CharacterController
script to get the center position of the target, which is the character we are
pointing at.

3.	 Then, we will create a function to get the angle distance between the current angle
and target; let's add the following code:
//Get the angle distance between two angle
//This function took from the built-in Third-person Camera Script
public function AngleDistance (a : float, b : float) : float {
 //Loop the value a and b not higher than 360 and not lower than
0
 a = Mathf.Repeat(a, 360);
 b = Mathf.Repeat(b, 360);

 return Mathf.Abs(b - a);
}

4.	 Next, we will create the LateUpdate() function to update the camera position and
rotation after all the objects have their Update functions called. So, let's add the
following code.

The LateUpdate() function is the function that will be called after the
Update() function has been called. This function will make sure that all
the calculation in the Update() function is finished before we start the
LateUpdate() function. We can see more details of this function at the
following Unity website:
http://unity3d.com/support/documentation/
ScriptReference/MonoBehaviour.LateUpdate.html.

//We use LateUpdate here because we need to wait for the user
input before we update our camera.
public function LateUpdate () : void {
 var v3_targetCenter : Vector3 = target.position + v3_
centerOffset;

 //Calculate the current & target rotation angles
 var f_originalTargetAngle : float = target.eulerAngles.y;
 var f_currentAngle : float = cameraTransform.eulerAngles.y;
 var f_targetAngle : float = f_originalTargetAngle;

Project 4

169

 // Lock the camera when moving backwards!
 // * It is really confusing to do 180 degree spins when turning
around. So We fixed the camera rotation
 if (AngleDistance (f_currentAngle, f_targetAngle) > 160 && c_
characterControl.IsMoveBackward ()) {
 f_targetAngle += 180;
 }
 //Apply rotation to the camera
 f_currentAngle = Mathf.SmoothDampAngle(f_currentAngle, f_
targetAngle, f_angleVelocity, smoothTime, maxSpeed);

 //Update camera height position
 f_targetHeight = v3_targetCenter.y + height;

 // Damp the height
 var f_currentHeight : float = cameraTransform.position.y;
 f_currentHeight = Mathf.SmoothDamp (f_currentHeight, f_
targetHeight, f_heightVelocity, heightSmoothTime);

 // Convert the angle into a rotation, by which we then
reposition the camera
 var q_currentRotation : Quaternion = Quaternion.Euler (0, f_
currentAngle, 0);

 // Set the position of the camera on the x-z plane to:
 // distance meters behind the target
 cameraTransform.position = v3_targetCenter;
 cameraTransform.position += q_currentRotation * Vector3.back *
distance;

 // Set the height of the camera
 cameraTransform.position.y = f_currentHeight;

 // Always look at the target
 SetUpRotation(v3_targetCenter);
}

5.	 Finally, we will create the SetupRotation() function to update the rotation of our
camera. Type the following code:

private function SetUpRotation (v3_centerPos : Vector3) {
 var v3_cameraPos = cameraTransform.position; //Camera position
 var v3_offsetToCenter : Vector3 = v3_centerPos - v3_cameraPos;
//Get the camera center offset

 //Generate base rotation only around y-axis

Add Character Control and Animation to your Hero/Heroine

170

 var q_yRotation : Quaternion = Quaternion.
LookRotation(Vector3(v3_offsetToCenter.x, v3_offsetToCenter.y +
height, v3_offsetToCenter.z));
 //Apply the rotation to the camera
 var v3_relativeOffset = Vector3.forward * distance + Vector3.
down * height;
 cameraTransform.rotation = q_yRotation * Quaternion.
LookRotation(v3_relativeOffset);
}

So, we are done with this chapter. We can go to Unity and click Play to see our result. We will
see that now the camera is following our character.

Objective Complete - Mini Debriefing
We just created a third-person camera to follow our character. This script also allows us to
set the distance from our character and the height of our camera position by using some
code from the third-person camera built-in script and adapting it to our character.

Classified Intel
Why do we need the LateUpdate() function instead of the Update() function for this
script? Well, we used it to guarantee that the player position is already updated when we
are doing the camera calculations. If we are doing the calculation in the Update() function,
the camera position might be calculated before the player position is updated. This will result
in jitter.

We can also explain it this way: We wait for the input from the user and then get the
direction where the character will go in the Update() function. Then, we use the position
of the character as the target position that our camera will follow, and calculate the camera
position in the LateUpdate() function. This way, we will be able to track each movement
of our character and the camera will follow the direction smoothly without any jitter, as we
can see in the following diagram:

Project 4

171

Game over-Wrapping it up
In this chapter, we have learned how to set up the animation from a 3D model and we also
learned a bit about how to export the model with animation from 3D Studio Max to use
in Unity. Then, we used the CharacterController script to our character and added
the built-in Third-person Controller and Third-person Camera to apply it to our
character and make it move.

Next, we created our CharacterControl script to control our character and add the fall
animation that we want to use for our character. We also learned how to use the Move()
function in the CharacterController script, and how to speed up or slow down the
animation clip by setting the speed of the clip. We also learned how to use Animation.
crossFade() to cross fade the current animation to another, giving animation clip. Lastly,
we created our CharacterCamera to follow our character by using the LateUpdate()
function to track the position of the character.

We will see a result similar to the following screenshot:

Add Character Control and Animation to your Hero/Heroine

172

Are you ready to go gung ho?
A Hotshot challenge

Now we know how to create a custom character control script, camera, and animation from
our custom script. Even though our custom script works great with this character, it still has a
lot of things that we can improve to make our script much more flexible. Let's do something
to make our script better, and much more flexible. Give the following ideas a try:

ff Add your own character with a different animation, even if the character has more
than five animation clips

ff Use a different method to make the camera not follow the character when our
character jumps (or basically just rotate the camera)

ff Change some parameters such as distance or height in the CharacterCamera
script to see how the game will look

ff Create more action for the character such as slide or crawl and create a script to
show using crossFade to fade from one action to another

ff Add the backward walk or run by setting the negative speed for those animation
clips and using the b_isBackward property to check it

Project 5
Build a Rocket

Launcher!

In this chapter, we will learn how to create a rocket launcher. Here, we will first use the FPS
camera and controller from the Unity built-in FPS package, but we will tweak our camera
view to see from the character's shoulder as in Resident Evil 4 or 5. We will also take the
character model and animation from the FPS tutorial package from Unity, which we can
download from the following website:

http://unity3d.com/support/resources/tutorials/fpstutorial.html.

Then, we will adapt the built-in FPS controller script to be able to play the animation of
the character, and make the controller similar to the Resident Evil style controller. Next, we
will create a rocket prefab and the rocket launcher script to fire our rocket, which will also
include the use of the built-in fire explosion particle and custom smoke particle effect from
the launcher when we fire.

Mission briefing
We will create a character that carries a rocket launcher and is able to shoot it as well as
creating the camera view looking back from the character shoulder (third-person camera
view). Then, we will add the character controller script to control our character, and the
player will have to hold the Aim button to be able to shoot the rocket, similar to the
Resident Evil 4 or 5 styles.

Build a Rocket Launcher!

174

What does it do?
We will start with applying the built-in CharacterMotor, FPSInputController,
and MouseLook scripts from the built-in FPS character controller. Then, we will add
the character model and start creating a new script by adapting part of the code in the
FPSInputController script. Then, we will be able to control the animation for our
character to shoot, walk, run, and remain idle.

Next, we will create a rocket prefab and the rocket launcher script to fire our rocket. We will
use and adapt the built-in explosion and fire trial particle in Unity, and attach them to our
rocket prefab. We will also create a new smoke particle, which will appear from the barrel of
the rocket launcher when the player clicks Shoot.

Then, we will create the scope target for aiming. We will also create the launcher and smoke
GameObject, which are the start position of the rocket and the smoke particle.

Finally, we will add the rocket GUITexture object and script to track the number of bullets
we have left, after each shot. We will also add the Reload button to refill our bullet when the
character is out of the bullet.

Why Is It Awesome?
When we complete this chapter, we will be able to create the third-person shooter style
camera view and controller, which is very popular in many games today. We will also be able
to create a rocket launcher weapon and particle by using the prefab technique. Finally, we
will be able to create an outline text with the GUITexture object for tracking the number of
bullets left.

Your Hotshot Objectives
In the last chapter, we already talked about how to create a third-person controller script to
control our character. In this chapter, we will use a similar concept and combine it with the
built-in first-person controller prefab style to create our third-person shooter script to fire a
rocket from the rocket launcher. Here is what we will do:

ff Setting up the character with the first-person controller prefab

ff Creating the New3PSController and MouseLook_JS scripts

ff Create a rocket launcher and a scope target

ff Create the rockets and particles

ff Create the rocket bullet UI

Project 5

175

Mission Checklist
First, we need the chapter 5 project package, which will include the character model with
a gun from the Unity FPS tutorial website, and all the necessary assets for this chapter.

So, let's browse to http://www.packtpub.com/support?nid=8267 and download
Chapter5.zip package. Unzip it and we will see Chapter5.unitypackage, and we are ready.

Setting up the character with the
first-person controller prefab

In the first section of this chapter, we will make all the necessary settings before we create
our character on the scene. We will set up the imported assets and make sure that all the
assets are imported in the proper way and are ready to use by using the Import Package
in the Project view inside Unity. Then, we will set the light, level, camera, and put our
character in the scene with the first-person controller prefab.

We will import the Chapter5.unitypackage package to Unity, which contains the
Chapter5 folder. Inside this folder, we will see five subfolders, which are Fonts, Level,
Robot Artwork, Rocket, and UI. The Fonts folder will contain the Font file, which will
be used by the GUI. The Level folder will contain the simple level prefab, its textures, and
materials that we used in Chapter 3, The Hero/Heroine Part I – Models and Shaders, and
Chapter 4, The Hero/Heroine Part II – Animation and Controls . Robot Artwork is the folder
that includes the character FBX model, materials, and textures, which can be taken from the
Unity FPS tutorial. The Rocket folder contains the rocket and rocket launcher FBX models,
materials, and textures, which can be taken from the Unity FPS tutorial. Finally, the UI folder
includes all the images, which we will use to create the GUI.

Prepare for Lift Off
In this section, we will begin by importing the chapter 5 Unity package, checking all
the assets, setting up the level, and adding the character to the scene with the FPS
controller script.

Build a Rocket Launcher!

176

First, let's create a new project and name it RocketLauncher, and this time we will include
the built-in Character Controller package and Particles package by checking
the Character Controller.unityPackage and Particles.unityPackage checkboxes in
the Project Wizard. Then, we will click on the Create Project button, as shown in the
following screenshot:

Next, import the assets package by going to Assets | Import Package | Custom Package….
Choose Chapter5.unityPackage, which we just downloaded, and then click on the
Import button in the pop-up window link, as shown in the following screenshot:

Project 5

177

Wait until it's done, and you will see the Chapter5 folder in the Window view. Make sure
that we have all five folders, which are Fonts, Level, Robot Artwork, Rocket, and UI, inside
this folder. Now, let's create something.

Engage Thrusters
In this section, we will set up the scene, camera view, and place our character in the scene:

1.	 First, let's begin with creating the directional light by going to GameObject | Create
Other | Directional Light, and go to its Inspector view to set the rotation X to 30 and
the position (X: 0, Y: 0, Z: 0).

2.	 Then, add the level to our scene by clicking on the Chapter5 folder in the Project
view. In the Level folder, you will see the Level Prefab; drag it to the Hierarchy view
and you will see the level in our scene.

3.	 Next, remove the Main Camera from the Hierarchy view because we will use the
camera from the built-in First Person Controller prefab. So, right-click on the Main
Camera on the Hierarchy view and choose Delete to remove it.

4.	 Then, add the built-in First Person Controller prefab to the Hierarchy view by going
to the Standard Assets folder. Under the Character Controllers folder, you will see
the First Person Controller prefab; drag it to the Hierarchy view.

Build a Rocket Launcher!

178

5.	 In the Hierarchy view, click on the arrow in the front of the First Person Controller
object to see its hierarchy, similar to the one shown in the following screenshot:

6.	 Then, we go back to the Project view. In the Chapter5 folder inside Robot Artwork,
drag the robot.fbx object (as shown in the following screenshot) on top of the
Main Camera inside the First Person Controller object in the Hierarchy.

7.	 This will cause the editor to show the window that tells us this action will break the
prefab, so we just click on the Continue button to break it. It means that this game
object will not be linked to the original prefab.

8.	 Next, remove the Graphics object above the Main Camera. Right-click on it and
choose Delete. Now we will see something similar to the following screenshot:

We have put the robot object as a child of the camera because
we want our character to rotate with the camera. This will make
our character always appear in front of the camera view, which is
similar to the third-person view. This setup is different from the
original FPS prefab because in the first person view, we will not see
the character in the camera view, so there is no point in calculating
the rotation of the character.

Project 5

179

9.	 Now, click on the First Person Controller object in the Hierarchy view to bring up the
Inspector view, and set up the Transform | Position of X: 0, Y: 1.16, Z: 0. Then, go to
the Character Controller, and set all values as follows:

ff Character Controller (Script)

ff Height: 2.25

ff Center

�� X: -0.8, Y: 0.75, Z: 1.4

10.	 Move down one step by clicking on Main Camera in the Hierarchy view and go to its
Inspector view to set the value of Transform and Mouse Look as follows:

ff Transform

ff Position

�� X: 0, Y: 1.6, Z: 0

ff Mouse Look (Script)

ff Sensitivity Y: 5

ff Minimum Y: -15

We will leave all the other parameters as default and use the default values.

Then, we will go down one more step to set the Transform of the robot by clicking on it to
bring up its Inspector view, and set the following:

ff Transform

�� Position

�� X: -0.8, Y: -0.8, Z: 1.4

�� Rotation

�� X: 0, Y: 10, Z: 0

Build a Rocket Launcher!

180

Now, we are done with this step. In the next step, we will adjust and add some code to
control the animation and movement of our character the FPSInputController script.

Objective Complete - Mini Debriefing
Basically, what we have done here is preparing the scene ready for the next step. In this step,
we added the directional light, level prefab, and the built-in First Person Controller
prefab to the scene. We also adjusted the built-in First Person Controller prefab by
removing the Graphics object from the prefab object and adding the robot prefab as a
child of the Main Camera of the First Person Controller prefab object for the new
graphics, which we will see from the Main Camera, as shown in the following screenshot:

However, we will see the character's arm block half of the screen, which is because we don't
have the script to control the animation, yet. We will do that in the next step.

Classified Intel
At the beginning of this chapter, we imported the Chapter5.unityPackage file, but what
about exporting?

A good way to share assets between projects is by exporting them as
unitypackage. A unitypackage also saves the import settings of
the assets. To make it easier to include all needed assets, the export dialog
automatically checks for dependencies. To export assets as unitypackage,
just select the items, right-click, and choose Export Package.

Project 5

181

For example, if we copy the png file from another project to the Unity Assets folder
or import in the Project view, the default Texture Importer | Texture Type in Unity will
always set to Texture. On the other hand, if we export this file by using unityPackage,
we will be able to set the Texture Type to GUI or Normal map. Then, when we import this
unityPackage to other projects, we will get the same settings we can see in the following
screenshot:

We can easily create the unityPackage file by just right-clicking on the file or folder in
the Project view that we want to export and choosing Export Package… to bring up the
Exporting package window as we can see in the following screenshot (we have selected the
Chapter 5 folder for the example):

Build a Rocket Launcher!

182

In this window, we can choose what we want to export by enabling the checkbox. Then, we
can click on the Export Package… button and choose the path that we want to export.

When the file is chosen in the Project window and we choose Export
Package..., Unity will collect all the dependencies for that file and show
them in the Exporting package window. So, selecting a scene file and
exporting that will automatically export all the assets used in that scene. If
an asset is only loaded from code and is not used directly in the scene or
referenced from a public member variable, Unity will not know that it needs
to be included. More information on the topic can be found at:
http://unity3d.com/support/documentation/Manual/
HOWTO-exportpackage.html.

Creating the New3PSController and
MouseLook_JS scripts

In the last section, we imported the Chapter5 Unity package and created our scene, which
included all the basic setup. In this step, we will create a New3PSController script by using
the old built-in FPSInputController script, and add some script to control the animation
or the character to run, walk, aim, or shoot. We will also create the MouseLook_JS script,
which is the JavaScript version of the MouseLook built-in script that is written in C#. The
MouseLook_JS script is used to control the rotation of the camera in our scene.

Prepare for Lift Off
We are first going to create the New3PSController script.

We will start by creating a new MouseLook_JS by going to Assets | Create | Javascript and
name it MouseLook_JS, then double-click to open it in MonoDevelop and replace the script
as follows:

@script AddComponentMenu("Camera-Control/Mouse Look JS")

enum RotationAxes { MouseXAndY, MouseX, MouseY }
public var axes : RotationAxes = RotationAxes.MouseXAndY;
public var sensitivityX : float = 15;
public var sensitivityY : float = 15;

public var minimumX : float = -360;
public var maximumX : float = 360;

Project 5

183

public var minimumY : float = -60;
public var maximumY : float = 60;

private var rotationY : float = 0;

public function Start () : void {
 // Make the rigid body not change rotation
 if (rigidbody)
 rigidbody.freezeRotation = true;
}

public function Update () : void {
 if (axes == RotationAxes.MouseXAndY)
 {
 var rotationX : float = transform.localEulerAngles.y + Input.
GetAxis("Mouse X") * sensitivityX;

 rotationY += Input.GetAxis("Mouse Y") * sensitivityY;
 rotationY = Mathf.Clamp (rotationY, minimumY, maximumY);

 transform.localEulerAngles = new Vector3(-rotationY, rotationX,
0);
 }
 else if (axes == RotationAxes.MouseX)
 {
 transform.Rotate(0, Input.GetAxis("Mouse X") * sensitivityX, 0);
 }
 else
 {
 rotationY += Input.GetAxis("Mouse Y") * sensitivityY;
 rotationY = Mathf.Clamp (rotationY, minimumY, maximumY);

 transform.localEulerAngles = new Vector3(-rotationY, transform.
localEulerAngles.y, 0);
 }
}

This script is the JavaScript version of the MouseLook built-in script. This
way we can edit and adapt the script without bothering anything in the built-
in script. Even though, in Unity we can use both C# and JavaScript languages
in the same project (we will talk about this in more detail in Chapter 8, Let
the World See your Carnage! Saving, Loading, and Posting your High Score),
it's better to pick one language for the entire project because it will be very
difficult to access the parameters between different languages.

Build a Rocket Launcher!

184

Then, we will go back to Unity and create a new script named New3PSController by going
to Assets | Create | Javascript. Then, we will right-click it and choose Sync MonoDevelop
Project (if you set MonoDevelop as the main editor) or just double-click it to open the script.
It will open the new script in MonoDevelop (or your default editor Unitron/UniScite).

In MonoDevelop, at the top left in the Solution view, you will see the name of our project;
click on the arrow in front of it. In the Assets folder, go to Assets | Standard Assets |
Character Controllers | Sources | Scripts. Double-click the FPSInputController file to open it.

Next, we go to the FPSInputController file, copy the code in it to the
New3PSController file that we just created. Then, we close the FPSInputController
file, and go to the New3PSController file at the end of this script. We will see the
following line of code:

@script AddComponentMenu ("Character/FPS Input Controller")

Change the preceding line of the script to the following one:

@script AddComponentMenu ("Character/New 3PS Controller")

We are changing the name of this script because we don't want to replace the built-in script
with the new one. This script will be added to the Component menu, which we will see in
the Unity Editor Component | Character | New 3PS Controller.

Project 5

185

Engage Thrusters
Now we are ready to create our script. We will start by creating the new parameters that will
be used to control our character:

1.	 Go to New3PSController.js, and set up the new parameters. Go to the first line
of this script and type the following highlighted code:
//Character movement speed
public var runSpeed : int = 6;
public var walkSpeed : int = 2;
private var int_moveSpeed : int;
//Animation Params
public var _animation : Animation;
public var idleAnimation : AnimationClip;
public var walkAnimation : AnimationClip;
public var runAnimation : AnimationClip;
public var shotAnimation : AnimationClip;
public var walkAnimationSpeed : float = 1.5;
public var idleAnimationSpeed : float = 1.0;
public var runAnimationSpeed : float = 2.0;
public var shotAnimationSpeed : float = 0.5;
//Camera Rotation Limit
public var minRotateY : float = -15;
public var maxRotateY : float = 60;

//Mouse Look
private var mouseLook : MouseLook_JS;

//Character Motor
private var motor : CharacterMotor;

Here, we just set up the necessary parameters for controlling the animation of our
character, as we did in the last chapter, and set the Y-axis camera limit rotation.

2.	 Next, we will add some code in the Awake() function. Go to the function and add
the following highlighted code:
// Use this for initialization
public function Awake () : void {
 motor = GetComponent(CharacterMotor);
 //Hide cursor
 Screen.showCursor = false;
 //Setup the character move speed to walk speed
 int_moveSpeed = walkSpeed;

 //Get MouseLook component

Build a Rocket Launcher!

186

 mouseLook = Camera.main.GetComponent(MouseLook_JS);

 //Setup Animation
 _animation[walkAnimation.name].speed = walkAnimationSpeed;
 _animation[walkAnimation.name].wrapMode = WrapMode.Loop;
 _animation[runAnimation.name].speed = runAnimationSpeed;
 _animation[runAnimation.name].wrapMode = WrapMode.Loop;
 _animation[idleAnimation.name].speed = idleAnimationSpeed;
 _animation[idleAnimation.name].wrapMode = WrapMode.Loop;
}

Here, we just add the code to hide the mouse cursor, set the character movement
speed value equal to the walk speed, get the mouse look component, and set up the
animation speed and warp mode.

3.	 Go to the Update() function and add the highlighted code after the if
(directionVector != Vector3.zero) {} statement:
// Update is called once per frame
public function Update () : void {
 // Get the input vector from keyboard or analog stick
 var directionVector = new Vector3(Input.GetAxis("Horizontal"),
0, Input.GetAxis("Vertical"));

 if (directionVector != Vector3.zero) {
 ……………
 }

 if (Input.GetKey(KeyCode.E)) {
 //Set the maximum and minimum limit rotation on Y-axis for the
main camera
 mouseLook.minimumY = minRotateY;
 mouseLook.maximumY = maxRotateY;
 //No Movement Direction
 motor.inputMoveDirection = Vector3.zero;
 } else {
 //No Y-axis Rotation
 mouseLook.minimumY = 0;
 mouseLook.maximumY = 0;
 //Change the movement speed of the character
 if (Input.GetKey(KeyCode.LeftShift) || Input.GetKey(KeyCode.
RightShift)){
 int_moveSpeed = runSpeed;
 } else {
 int_moveSpeed = walkSpeed;
 }

Project 5

187

 motor.movement.maxForwardSpeed = int_moveSpeed;
 motor.movement.maxSidewaysSpeed = int_moveSpeed;
 motor.movement.maxBackwardsSpeed = int_moveSpeed;
 //
 //Checking if the character is moving or not
 if (directionVector != Vector3.zero) {
 if (int_moveSpeed == walkSpeed) {
 _animation.CrossFade(walkAnimation.name);
 } else {
 _animation.CrossFade(runAnimation.name);
 }
 } else {
 _animation.CrossFade(idleAnimation.name);
 }
 // Apply the direction to the CharacterMotor
 motor.inputMoveDirection = transform.rotation *
directionVector;
 motor.inputJump = Input.GetButton("Jump");
 }
}

In the preceding function, we have used Input.GetKey(KeyCode.E)
for aiming and Input.GetKey(KeyCode.LeftShift) || Input.
GetKey(KeyCode.RightShift) for running, which will get the input
as the E key and right arrow/left arrow keys on the keyboard. However, this
isn't flexible if we want to change the input or if we want to put this game on
another platform that doesn't have a keyboard. We can solve this by setting the
custom Input button via the Input Manager and using Input.GetButton()
instead of Input.GetKey(), which is much more dynamic for adjusting the
input controller for different platforms. We can go to the Input Manager (Edit |
Project Settings | Input), which we have already mentioned in the first chapter.

4.	 Go back to Unity, click on the First Person Controller object in the Hierarchy view,
go to its Inspector view, and right-click the FPSInput Controller (Script) and choose
Remove Component to remove it. Then, we will go to the Project view and drag
the New3PSController script that we just created to the First Person Controller
object in the Hierarchy view.

5.	 Go to the Inspector view of First Person Controller object in the New3PSController
component and set the following:

�� Animation: robot (robot game object in the Hierarchy view)

�� Idle Animation: idle (Chapter5/Robot Artwork/robot@idle/idle)

�� Walk Animation: walk (Chapter5/Robot Artwork/robot@walk/walk)

�� Run Animation: run (Chapter5/Robot Artwork/robot@run/run)

Build a Rocket Launcher!

188

�� Shoot Animation: shoot (Chapter5/Robot Artwork/robot@idle/
shoot)

The Idle, Walk, Run, and Shoot Animation will be located in the Project view inside
robot@idle, robot@walk, robot@run, and robot@shoot objects, as shown in
the following screenshot:

6.	 Before we finish the section, we will add our MouseLook_JS script to the First
Person Controller instead of the old MouseLook. So, click on the First Person
Controller object in the Hierarchy view, go to its Inspector view. In the Mouse Look
(Script) component, we will click on the circle icon at the right of Script and choose
MouseLook_JS, as shown in the following screenshot:

Project 5

189

7.	 Then, go down one step and click on the Main Camera object in the Hierarchy view;
go to its Inspector view. In the Mouse Look (Script) component, click on the circle
icon at the right of Script and choose MouseLook_JS as we did earlier.

Now, click Play to see the result. You will be able to control your character's moves; run by
holding the Shift key and jump by pressing the space bar. However, pressing the E key will
stop our character's movements because we didn't set up the aiming and shoot animation in
our script yet. We will do this in the next section.

Objective Complete - Mini Debriefing
We just created our New3PSController.js script by using the old built-in
FPSInputController.js script as the base script. We also added the new code section to
control the animation of the character while it is moving, running, or idle. Then, we limited
the movement and rotation of the camera by applying the character movement direction to
Character Motor and the Main Camera.

Then, in the Update() function, we added the new section of the code to control the
animation of our character. At first, we check whether or not the user has pressed E:

ff If the user presses it, we want the character to stop moving and play the shooting
animation to prepare the character to be able to fire. We also set the maximum and
minimum of the camera rotation on the Y-axis, which limits the camera to rotate
up and down only. Then, we set the motor.inputMoveDirection to Vector3.
zero because we don't want our character to move while he/she is executing the
shooting action.

ff On the other hand, if the user doesn't press E, we check for the user input. If the
user presses the right arrow or left arrow, we change the speed to run speed; if
not we set it to walk speed. Then, we applied the movement speed to motor.
movement.maxForwardSpeed, motor.movement.maxSidewaysSpeed, and
motor.movement.maxBackwardsSpeed.

Next, we checked the character movement direction to play the run animation, walk
animation, or idle animation (we can also have the jump animation in here, but in this
example we don't have the jump animation, so we just leave it).

At last, we applied the movement direction and jump to the character motor for the user
to be able to control the movement of this character, and we are done with this step. In the
next step, we will add the shoot animation and function, fire script, rocket launcher, and
scope target to our character.

Build a Rocket Launcher!

190

Classified Intel
In this step, we have access to the Character Motor and can change MouseLook script to
MouseLook_JS script. If we take a look at the Character Motor script, we will see that
it has a lot of parameters to adjust. In our case, we only pass the inputMoveDirection,
inputJump, movement.maxForwardSpeed, movement.maxSidewaysSpeed, and
movement.maxBackwardsSpeed parameters. We don't need to go to every parameter in
the Character Motor, but there is something that we will need to know to be able to use
it with our script. The Character Motor will help us to calculate the smooth movement
speed including moving forward, backward, and sideways. It will calculate the gravity when
the character is jumping and falling as well as check for the moving platform.

Next, we will take a look at the MouseLook script. If we open up this script, we will see that it is
written in C#, but we need not worry as Unity allows us to access the parameters even though
we are using JavaScript. As we know, we can use C# (and also Boo) scripting language to write
the script in Unity similar to JavaScript. So, let's open the MouseLook and look inside—it's
very similar to what we did for MouseLook_JS in JavaScript. However, there are numerous
differences between writing JavaScript and C#, but we will talk about the basics of syntax.

Both of the preceding scripts do the same thing, but use different syntaxes. For example, if
we want to create a float variable in JavaScript, we can use the following line of code:

public var myNumber : float = 0;

To create a function we can use the following line of code:

public function Myfuncion () : void { //dosomething }

On the other hand, if we are using C#, we can write the following line of code:

public float myNumber = 0F;

We put the F here to tell the complier
that it is a float value.

And for the function, we will use the following line of code:

public void Myfuncion () { //dosomething }

There is also some difference in syntax between both the languages. For more information,
we can go to the following websites:

http://unity3d.com/support/documentation/ScriptReference/index.
Writing_Scripts_in_Csharp.html

http://answers.unity3d.com/questions/12911/what-are-the-syntax-
differences-in-c-and-javascrip.html.

Project 5

191

We can also see the syntax for each language in the Unity scripting document, as shown in
the following screenshot:

You can also buy the JavaScript to C# converter package or C# to Javascript converter
package there.

Creating the rocket launcher and
scope target

From the last section, we have the setup for the Aiming button to stop our character's
movement as well as control the animation of our character by using crossFade(). In this
section, we will add the aiming animation, shot animation, scope target UI, rocket launcher
script, and rocket launcher object.

Engage Thrusters
We will start with creating a rocket launcher and adding the New3PSController script to it.
Then, our character will be able to shoot the rocket:

1.	 Go to Unity editor, GameObject | Create Empty, and name the object
RocketLauncher, and then we drag this object inside the Main Camera object in
the Hierarchy view as shown in the following screenshot:

Build a Rocket Launcher!

192

2.	 Then, go to the Inspector view of the RocketLauncher to set up the Transform
| Position, X: 0, Y: 0, Z: 2. Next, we create the GUITexture for the scope target by
going to GameObject | Create Other | GUI Texture and naming it ScopeUI. Go to
its Inspector and set the following:

ff GUITexture

�� Texture: scopeTarget.png (Chapter5/UI folder/
scopeTarget)

�� Pixel Inset

�� X: -16, Y: -16, Width: 32, Height: 32

3.	 Create a new RocketLauncher script by going to Assets | Create | Javascript and
name it RocketLauncher, double-click on it to open MonoDevelop. Then, go to
the script and replace the code as follows:
public var speed : float = 10;
public var ammoCount : int = 20;

private var lastShot : float = 0.0;

public function Fire(_reloadTime : float) : void {
 if (Time.time > (_reloadTime + lastShot) && ammoCount > 0) {

 //Get the last shot time
 lastShot = Time.time;
 //Decrease the bullet
 ammoCount--;
 }
}

public function Reload () : void {
 ammoCount = 20;
}

�� Here, we create the Fire and Reload() functions to trigger when the user
presses R to reload the bullet or presses E to aim, which will be called from
New3PSController.

4.	 Go back to Unity and go to the Project view and drag your RocketLauncher script
to the RocketLauncher object in the Hierarchy view.

Project 5

193

5.	 Go to the New3PSController script to add the highlighted code between the
maxRotateY and mouseLook parameters (before the Awake() function),
as shown next:
//Camera Rotation Limit
public var minRotateY : float = -15;
public var maxRotateY : float = 60;

//Scope UI
public var scopeUI : GUITexture;
//Rocket Launcher
public var rocketLauncher : RocketLauncher;
//Shot Params
private var b_isPrepare : boolean = false;
private var b_isShot : boolean = false;

//Mouse Look
private var mouseLook : MouseLook_JS;
//Character Motor
private var motor : CharacterMotor;

6.	 Then, go to the Update() function and add the code before and inside if
(Input.GetKey(KeyCode.E)) { (after if (directionVector != Vector3.
zero) { statement) as highlighted:
if (directionVector != Vector3.zero) {

 }

//Reload the rocket bullet

if (Input.GetKey(KeyCode.R)) {
 BroadcastMessage("Reload");
}

if (Input.GetKey(KeyCode.E)) {
 //Show the Scope UI
 scopeUI.enabled = true;
 //Set the maximum and minimum limit rotation on Y-axis for the
main camera
 //Set the maximum and minimum limit rotation on Y-axis for the
main camera
 mouseLook.minimumY = minRotateY;
 mouseLook.maximumY = maxRotateY;

 //Checking if the character is playing the shot animation

Build a Rocket Launcher!

194

 if (!b_isPrepare) {
 b_isShot = false;
 //Play the shot preparing animation function
 WaitForPrepare();
 } else {
 //If the player click fire play the shot animation again
 if ((Input.GetButton("Fire1")) && (!b_isShot)) {
 b_isShot = true;
 //Play the shot animation function
 WaitForShot();
 }
 }
 //No Movement Direction
 motor.inputMoveDirection = Vector3.zero;
 }

7.	 Go to the else section and add the highlighted code at the first line before if
(Camera.main.GetComponent(MouseLook)) {, as follows:
else {
 //Hide the Scope UI
 scopeUI.enabled = false;
 //Set the prepare animation to false
 b_isPrepare = false;

 //No Y-axis Rotation
 mouseLook.minimumY = 0;
 mouseLook.maximumY = 0;

 //Change the movement speed of the character
 if (Input.GetKey(KeyCode.LeftShift) || Input.GetKey(KeyCode.
RightShift)) {

8.	 We are now done with the adding part for the Update() function. We will need to
add other two functions for the WaitForPrepare() and WaitForShot() functions.
So, let's go to the Update() function before @script RequireComponent
(CharacterMotor) line and add the following two functions:
private function WaitForShot () : IEnumerator {
 _animation[shotAnimation.name].speed = shotAnimationSpeed;
 _animation[shotAnimation.name].wrapMode = WrapMode.ClampForever;
 _animation.PlayQueued(shotAnimation.name, QueueMode.PlayNow);
 BroadcastMessage("Fire", shotAnimation.length); //Call Fire
function in attached scripts of this GameObject or any of its
children

Project 5

195

 yield WaitForSeconds (shotAnimation.length);
 b_isShot = false;
}

private function WaitForPrepare () : IEnumerator {
 _animation[shotAnimation.name].speed = shotAnimationSpeed * 2;
 _animation[shotAnimation.name].wrapMode = WrapMode.ClampForever;
 _animation.CrossFade(shotAnimation.name, 0.6);

 yield WaitForSeconds(shotAnimation.length);
 b_isPrepare = true;
}

The preceding two functions are basically to play the aiming and shooting
animation. Now, we are done with adding the New3PSController script.

9.	 Then, go back to Unity and click on the First Person Controller object in the
Hierarchy view, and go to its Inspector view; at the New 3PSController (Script) drag
both objects that we just created, as follows:

�� Scope UI: ScopeUI (Drag ScopeUI object here)

�� Rocket Launcher: RocketLauncher (Drag RocketLauncher object here)

We are done with this section. Click Play to see the result. Now, if you hold the E key, the
scope target will appear and our character will start playing aiming animation. If we left-click
on the mouse while holding the E key, the character will start playing the shot animation.
However, there is no rocket coming out right now. We will create the rocket and the particle
object in the next section.

Objective Complete - Mini Debriefing
In this step, we just added some code to our New3PSController.js for controlling the
aiming and shot animation as well as created the rocket launcher object and script that will
trigger when the user presses fire or aim. We also created the GUITexture object to show
the scope target graphic, which will show when the player presses E to aim and hide when
the player doesn't press E.

In the Fire() function, we added the rocket launcher object. We checked for the time that
our rocket will be fired after the shot animation ended by checking for the reloaded time
plus the last time that the character was shot. We also decreased the amount of bullet when
the character clicks shot. In the next section, we will add the rocket prefab and the particle
object in the Fire() function.

Build a Rocket Launcher!

196

Classified Intel
If we take a look at New3PSController.js, we will see that we used the
BroadcastMessage("Reload"); and BroadcastMessage("Fire", shotAnimation.
length);. Both of these functions basically call all the functions named Reload or Fire,
in this game object or any of its children. This is a great way to make our script and object
more organized.

Performance wise, BroadcastMessage() is slower than a
function call because it iterates through all possible target objects,
finds matches of the desired function, and executes them. Therefore,
it won't cause a huge increase in performance if we don't have a large
number of function calls.

We can have different scripts attached to the children of this object and trigger at the same
time. For example, BroadcastMessage("Fire", shotAnimation.length) will call
the Fire(var f:float) function in each component attached to the object (irrespective
of whether we're calling it on the Component or the GameObject). So, when the user hits
fire, we will have the rocket shot at the same time with the smoke coming out from the
launcher without having to code everything in one big script. We can see more details from
the following links:

http://unity3d.com/support/documentation/ScriptReference/Component.
BroadcastMessage.html.

http://unity3d.com/support/documentation/ScriptReference/GameObject.
BroadcastMessage.html.

Next, we will take a look at the waitForShot() function, we will see that we use _
animation.PlayQueued(shotAnimation.name, QueueMode.PlayNow); instead of
the CrossFade() function. This is because we want to play the shot animation as soon as
the player presses fire. The PlayQueued() function will help us to fade between the same
animation smoothly. We can see further details of this function from the following website:

http://unity3d.com/support/documentation/ScriptReference/Animation.
PlayQueued.html.

Creating the rockets and particles
In this section, we will continue creating the rocket prefab, which will shoot out from the
launcher. We will also create the trail smoke the follows this rocket, the smoke from the
launcher barrel, and the explosion when the rocket hits something.

Project 5

197

Engage Thrusters
We will start with creating the SmokePosition, which is the position of the smoke particle
when the character fires the rocket.

1.	 Go to the Unity editor to create the smoke position by going to GameObject |
Create Empty to create an empty game object and name it SmokePosition, and
drag it inside the gun object, which is a child of the robot object, as shown in the
following screenshot. By doing this we will break the prefab again, so we just click on
continue to break it.

2.	 Then, we set Transform as follows:

�� Position: X: 1.5, Y: -0.08, Z: 0.25

�� Rotation: X: 90, Y: 0, Z: 0

�� Scale: X: 1, Y: 1, Z: 1

Now, we got the smoke position from the launcher barrel.

3.	 Next, create a smoke prefab object by going to the Project view, and click on the
folder in this order: Standard Assets | Particles | Smoke, we will see Fluffy
Smoke prefab, drag it to the Hierarchy view. Then, we will go to its Inspector view
and start changing the parameters as follows:

�� Ellispsoid Particle Emitter:

�� Min Size: 0.5

�� Max Size: 0.75

�� Min Energy: 0.75

�� Max Energy: 1.5

�� Min Emission: 8

Build a Rocket Launcher!

198

�� Max Emission: 12

�� Local Velocity: X: 0, Y: 0.75, Z: 0

�� Rnd Velocity: X: 0, Y: 0, Z: 0

�� Ellispsoid: X: 0.1, Y: 0, Z: 0.1

�� Particle Animator:

�� Color Animation[0]: R: 162, G: 162, B: 162, A: 0

�� Color Animation[1]: R: 147, G: 147, B: 147, A: 199

�� Color Animation[2]: R: 114, G: 114, B: 114, A: 143

�� Color Animation[3]: R: 126, G: 126, B: 126, A: 87

�� Color Animation[4]: R: 59, G: 59, B: 59, A: 0

�� Size Grow: -0.1

�� Rnd Force: X: 0, Y: 0, Z: 0

4.	 Create the Smoke script by going to Assets | Create | Javascript and name it Smoke.
Then, we go to the script and type the following code:
public var timeOut : float = 0.5; // Destroy after 0.5 seconds.

// Use this for initialization
public function Start () : void {
 Invoke("KillObject", timeOut);
}

public function KillObject () : void {
 //Stop the emit the particle
 var emitter : ParticleEmitter = GetComponentInChildren(ParticleE
mitter);
 if (emitter != null) {
 emitter.emit = false; // Stop Emit
 }

 //In here We set the particle to auto destruct to destroy itself
after a life time (or we can setup it up in the editor)
 var particleAnimator : ParticleAnimator = GetComponentInChildren
(ParticleAnimator);
 if (particleAnimator != null) {
 particleAnimator.autodestruct = true;
 }
}

Project 5

199

This Smoke script will be added to the Fluffy Smoke object that we just created.
In this function, we use the Invoke() function, which will tell the script to call the
KillObject() function after the timeout (0.5 seconds).

5.	 Next, we will drag our Smoke script which we created to this Fluffy Smoke object
(this will break the prefab again, so click on continue to break the prefab).

6.	 Now, create a new prefab for our new Fluffy Smoke object by going to Assets |
Create | Prefab and name it ShotSmoke. Then, drag the Fluffy Smoke object in
the Hierarchy view to the ShotSmoke prefab in the Project view. Finally, we remove
the Fluffy Smoke object in the Hierarchy view by right-clicking on the Fluffy
Smoke object in the Hierarchy view and choosing Delete; now we have the new
ShotSmoke prefab.

7.	 Create the rocket prefab by dragging the rocket (FBX) model in the Project view,
inside (Chapter5/Rocket) to the Hierarchy view.

8.	 Click on the rocket model and go to its Inspector view to remove the Animation by
right-clicking and choosing Remove Component. (This will bring up the losing prefab
pop-up, so we just click Continue to break the prefab.)

In Unity, every imported FBX model will have the
Animation component attached to itself automatically,
but for our rocket, we don't need to use the Animation
component, so we removed it from our model.

9.	 We will now create the Rocket script, so go to Assets | Create | Javascript and
name it Rocket; double-click on it to open MonoDevelop. Then, go to the script
and replace the code as follows:
@script RequireComponent(ConstantForce)

public var timeOut : float = 3.0; // Destroy after 3.0 seconds.
public var explosionParticle : GameObject;

// Use this for initialization
public function Start () : void {
 Invoke("KillObject", timeOut);
}

public function OnCollisionEnter (others : Collision) : void {
 //Create the explosion on the first impact point of the rocket
and collider
 var contactPoint : ContactPoint = others.contacts[0];

Build a Rocket Launcher!

200

 var rotation : Quaternion = Quaternion.FromToRotation(Vector3.
up, contactPoint.normal);
 GameObject.Instantiate(explosionParticle, contactPoint.point,
rotation);

 KillObject();
}

public function KillObject () : void {
 //Stop the emit the particle
 var emitter : ParticleEmitter = GetComponentInChildren(ParticleE
mitter);
 if (emitter != null) {
 emitter.emit = false; // Stop Emit
 }

 //In here We set the particle to auto destruct to destroy itself
after a life time (or we can setup it in the editor)
 var particleAnimator : ParticleAnimator = GetComponentInChildren
(ParticleAnimator);
 if (particleAnimator != null) {
 particleAnimator.autodestruct = true;
 }

 //Detach the trail renderer in our particles
 transform.DetachChildren();

 //Destroy this Object
 GameObject.Destroy(gameObject);
}

10.	 Next, add the Rocket script that we created by dragging the script to the rocket
object in the Hierarchy.

11.	 Then, go to the object's Inspector view to add the Box Collider to the rocket object
by going to Component | Physics | Box Collider.

When we add the Box Collider to the new object, the Box Collider will
automatically adjust its size to fit around the object. This is why we
don't have to set up the size or the position of the Box Collider.

12.	 Then, we go to the Inspector view and set the following:

�� Transform

�� Position: X: 0, Y: 0, Z: 0

Project 5

201

�� Rigidbody

�� Use Gravity: Uncheck (We don't need the gravity for our rocket)

�� Rocket (Script)

�� Explosion Particle: explosion (Drag the explosion built-in prefab in the
Standard Assets | Particles | Legacy Particles | explosion)

13.	 Next, we will add the built-in Smoke Trail prefab as a child of this rocket object.
Go to the Project view, and click on Standard Assets | Particles | Smoke and drag
the Smoke Trail prefab to the rocket object in the Hierarchy view.

14.	 Then, we will click on the Smoke Trail object in the Hierarchy view and set the
following in its Inspector view:

�� Transform: X:0, Y: 0, Z: -0.25

�� Ellispsoid Particle Emitter:

�� Min Size: 0.25

�� Max Size: 0.65

�� Min Energy: 0.75

�� Max Energy: 1

�� Particle Animator

�� Size Grow: 0.5

15.	 Next, we will create a new prefab for our rocket object. Go to Assets | Create |
Prefab and name it Rocket, and then drag our rocket object in the Hierarchy view
to Rocket prefab, which we just created in the Project view. Finally, we remove the
rocket object from the Hierarchy view by deleting it, and now we have the new
Rocket prefab.

16.	 Go back to the RocketLauncher script by going to the Project view, double-click
on the RocketLauncher script to go to MonoDevelop, and add the following new
script at the beginning:
public var smoke : GameObject;
public var smokePosition : Transform;
public var rocket : ConstantForce;
public var speed : float = 10;
public var ammoCount : int = 20;

private var lastShot : float = 0.0;

17.	 Go to the Fire() function and add the following highlighted code:
public function Fire(_reloadTime : float) : void {
 if (Time.time > (_reloadTime + lastShot) && ammoCount > 0) {

Build a Rocket Launcher!

202

 var rocketPrefab : ConstantForce = ConstantForce.
Instantiate(rocket, transform.position, transform.rotation);
 rocketPrefab.relativeForce = new Vector3(0, 0, speed);

 var smoke : GameObject = GameObject.Instantiate(smoke,
smokePosition.position, smokePosition.rotation);

 //We ignore the collision between rocket and character
 Physics.IgnoreCollision(rocketPrefab.collider, transform.root.
collider);

 //Get the last shot time
 lastShot = Time.time;
 //Decrease the bullet
 ammoCount--;
}
}

18.	 Go back to Unity and click on the First Person Controller object in the
Hierarchy view. Then, go down two more steps inside this object until we see the
RocketLauncher object, as shown in the following screenshot:

19.	 Click on the RocketLauncher object to bring up its Inspector view. Then set
the following:

�� Rocket Launcher (Script)

�� Smoke: ShotSmoke (Drag the ShotSmoke prefab that we created in the
Project view here)

�� Smoke Position: Smoke Position (Drag the SmokePosition object inside the
gun child in the Hierarchy here)

�� Rocket: Rocket (drag the Rocket prefab that we created in the Project
view here)

Project 5

203

Now, we can click Play to see the result. We should be able to walk around by pressing the
arrow, W, A, S, D, or Space key to jump, move the mouse to rotate around, press E to aim,
press R to reload the rocket, and click on the left mouse button to fire the rocket. However,
we won't be able to see the number of bullets right now, because we don't have any UI set
up to show the number yet. So, in the next step, we will create a bullet count UI by using
GUITexture and OnGUI().

Objective Complete - Mini Debriefing
In this section, we just created the rocket and particle effect that will appear when the player
presses fire. It seems like a lot to do in one section, but it was worth it.

First, in the Rocket script, we used @script RequireComponent(ConstantForce) to
tell the script to require the ConstantForce for this rocket; this will tell Unity to basically add
the ConstantForce automatically when we add this script to the object.

ConstantForce is one of the Physics components in Unity that will add a
constant force to the RigidBody object (the ConstantForce works with the
RigidBody components, so when we add the ConstantForce to our object,
Unity will automatically add the RigidBody as well), which will contain the
properties that we can use to control the rocket movement. For more details
please have a look at the following website:
http://unity3d.com/support/documentation/Components/
class-ConstantForce.html.

Next, we have the timeout and explosion parameters. We then have the Invoke()
function calling the KillObject() function after the timeout (3.0 seconds). Then, we
check for the collision object—if the rocket hits something, it will get to the position where
the collision occurs, add the explosion object to that position, and then the rocket object will
kill itself.

The KillObject() function basically stops the particle emitter, makes sure that the particle
will destroy itself by setting the autodestruct parameter to true, detaches the particle,
and destroys the game object itself.

Now, we create the script for the rocket and smoke particle. Then, we use the built-in particle
package and adapt to the way we want for smoke and smoke trial. Finally, we put everything
together and get the result as expected.

Build a Rocket Launcher!

204

Classified Intel
In this section, we used the Instantiate() function to clone a new game object from the
prefab object in the Project view. The Instantiate() function takes three parameters,
which are the original Object, Position (Vector3), and Rotation (Quaternion). The Position
and Rotation objects are the transform parameters at the start position of the object, which
will be created in the scene. The Instantiate() function can take any kind of object and
the result can also be returned to any kind of objects. We can also see more examples and
details from the Unity document at:

http://unity3d.com/support/documentation/ScriptReference/Object.
Instantiate.html

http://unity3d.com/support/documentation/Manual/Instantiating%20
Prefabs.html.

Next, we will talk about the Invoke() function, which we used to call the function after the
time we have set in seconds. If some of you have experience with Actionscript, this function
is very similar to the setTimeOut() function. We can also use InvokeRepeating()
to call the method similar to the Invoke() function, but this function will repeat calling
that function every time we set in seconds. We can see more details about the Invoke()
function from the Unity document at:

http://unity3d.com/support/documentation/ScriptReference/
MonoBehaviour.Invoke.html.

For the InvokeRepeating() function, refer to the following website:

http://unity3d.com/support/documentation/ScriptReference/
MonoBehaviour.InvokeRepeating.html.

Finally, let's talk about the position of the rocket that launches from the same position of
the scope target UI. This is a bit tricky because we want the player to be able to aim and
shoot the rocket exactly to the same position that he/she is aiming at. So, we add the
RocketLauncher object as a child of the Main Camera because we want it to move or
rotate with the user view, which is the Main Camera. Then, we add the scope target UI at
the center of the screen because it is easier for the player to aim than than if we put it on
one side. So, we set up the positions X and Y of RocketLauncher object to 0 because it
is the same position to the Main Camera and if we get the position of the Main Camera
to the screen position it will be the center of the screen. Then, we set up the Z position
of RocketLauncher object to 2 because it is the same depth as our character weapon
graphics. This is to make the rocket not too close to the camera. We can also see it from the
following diagram:

Project 5

205

Creating the rocket bullet UI
Here we are at the last section of this chapter. As we know from the last step, we need a
way to show the number of rockets left on the screen. In this step, we will create the rocket
UI, which will show the number of rockets left and the rocket graphics. We will use both
GUITexture and OnGUI() to create the UI.

Engage Thrusters
This is the last section, which will create the RocketUI script to display the remaining rocket
bullets on the screen:

1.	 Go to Assets | Create | Javascript and name it RocketUI. Then, double-click on it
to open MonoDevelop and replace the script as follows:
public var rocketLauncher : RocketLauncher;
public var customSkin : GUISkin;
public var width : float = 80;
public var height : float = 25;
public var pixelShift : int = 2;

public function OnGUI() : void {
 GUI.skin = customSkin;
 DrawShadowText(new Rect(Screen.width*transform.position.x,
(Screen.height*(1.0 - (transform.position.y - 0.005))), width,
height), rocketLauncher.ammoCount.ToString(), customSkin.
GetStyle("RocketText"), Color.white);

Build a Rocket Launcher!

206

}

//Draw a 45 degree black shadow text by shifting 2 pixel bottom-
right
public function DrawShadowText (position : Rect, text : String,
style : GUIStyle, textColor : Color) : void {
 var backupStyle : GUIStyle = style;
 //Draw a Shadow Text
 style.normal.textColor = Color.black;
 //Shift 2 pixel left and 2 pixel bottom
 position.x += pixelShift;
 position.y += pixelShift;
 GUI.Label(position, text, style);
 ///
 //Draw a Text
 style.normal.textColor = textColor;
 //Shift pixel back
 position.x -= pixelShift;
 position.y -= pixelShift;
 GUI.Label(position, text, style);
 style = backupStyle; // Set style back
}

2.	 Now, go back to Unity editor. Create the new GUISkin by going to Assets | Create |
GUI Skin and name it CustomSkin; then click to bring up its Inspector view and set
the following:

ff Font: Federation (Drag the Federation font in Chapter5/Fonts folder
here)

ff Custom Styles

ff Size: 1

ff Element 0:

�� Name: RocketText

�� Normal

�� Text Color: R: 255, G: 255, B: 255, A: 255

�� Font: Federation

�� Font Size: 20

�� Font Style: Bold

Other than the parameters mentioned earlier, we will leave everything as default.

Project 5

207

3.	 Next, create the new GUITexture object by going to GameObject | Create Other
| GUI Texture and name it as RocketUI. Next, we drag our RocketUI script, which
we just created on this object. Then set the following:

�� Transform: Position: X: 0.91, Y: 0.08, Z: 0

�� GUITexture:

�� Texture: rocketUI (Drag the rocketUI.png in the Chapter5/UI folder
from the Project view here)

�� Pixel Inset: X: -64, Y: -32, Width: 128, Height: 64

�� Rocket UI (Script)

�� Rocket Launcher: RocketLauncher (Drag RocketLauncher child of the First
Person Controller here)

�� Custom Skin: CustomSkin (Drag the CustomSkin that we just created in the
Project view here)

We are now done with this chapter. We can click Play to see the result, and now if we press
the R key to reload the bullet, we will see the number changes to 20 as we set the maximum
number of bullets.

Objective Complete - Mini Debriefing
We just created the UI to show the rocket graphics UI and the number of bullets left by using
GUITexture and OnGUI(). Here, we also created the text with a shadow by drawing another
text layer and shifting the position bottom-right 2 pixels each, and then we drew the top
layer by using the default position and color.

Classified Intel
In Unity, there is no easy way to create an outline or shadow for the dynamic text that can be
easily adjustable like other software such as Flash, Photoshop, and so on. So we can create
it by drawing another layer to act as the outline of the shadow, as we did for the onGUI()
function in this chapter.

This is not the best way to create the outlined text or the shadow text because if we adjust the
size of the pixel by shifting more than 2 pixels, we will see that the background text shifts too
much and doesn't look like the outline or shadow, as we can see in the following screenshot:

Build a Rocket Launcher!

208

In this section, we can just use this technique to create the shadow or outlined text because
it is a quick way to create the outline or shadow for the dynamics text.

To create the outlined text, we just create four text labels and shift
each corner, top-left, top-right, bottom-left, bottom-right like we did for
creating the shadow, and then create the last text labels on the top layer.

Game over-Wrapping it up
In this chapter, we have created the Resident Evil camera game style by adapting the built-
in First Person Controller. We have also learned how to set up the FPS Character
Controller, created the New3PSController script to control the character animation,
created a rocket launcher, created the rocket prefab, and used the built-in particle to create
the smoke from the launcher barrel, smoke trial from the rocket, and the explosion.

Next, we also learned how to use the Instantiate() function to clone the game object
and display it in the scene. Then, we use Invoke() to call the function after the time
that we assigned. Lastly, we created the UI to track the number of rockets left by using
GUITexture and the OnGUI() function.

So, let's take a look at the following screenshot of what we have done so far:

Project 5

209

The preceding screenshot shows the camera view of the character.

The preceding screenshot shows the character shooting.

The preceding screenshot shows the rocket hitting the obstacle.

Build a Rocket Launcher!

210

Are you ready to go gung ho?
A Hotshot challenge

Now, we know how to create the First Person Controller, the rocket launcher weapon using
particles, and the shadow text by using the OnGUI() function. Let's make this project more
fun by:

ff Including your own character or even your own type of weapon

ff Adjusting the particle, or using a different particle effect to create the smoke effect
or explosion

ff Adding the ability to change the type of rocket or bullet; you can even have a
different type of rocket that is slower or faster than the one in this chapter or even
add gravity to it and make it as a grenade launcher

ff Adding sound for each action

ff Adding physics and explosions to our rocket when the rocket hits something

ff Creating the dynamics outline text by using the OnGUI() function and the
technique we used for the dynamics shadow text.

Project 6
Create Smart AI

Creating AI can be the most difficult and complex task in the development of a game because
we have to calculate every possible way to make it as smart as a human brain. Most games
need the AI for the enemy to be able to react to the player. The AI will run towards and
attack the player, or when the player hits the wall, he or she will jump or walk avoiding the
obstacles, and so on.

However, we have to be careful with the balance between making the AI smart and the
performance speed to get the best moves. To get the best moves means more calculation, so
it might cause a problem with performance slowing down.

We can use A* Algorithm for the pathfinder or Minimax Algorithm to calculate the best
move, but these algorithms are very complex for a beginner.

A* Algorithm or A Star Algorithm is a computer algorithm that is widely used in
path finding and graph traversal nodes. Noted for its performance and accuracy,
it enjoys widespread use. Peter Hart, Nils Nilsson, and Bertram Raphael first
described the algorithm in 1968. It is an extension of Edsger Dijkstra's 1959
algorithm. Reference from:
http://en.wikipedia.org/wiki/A*_search_algorithm.

Minimax Algorithm is a decision rule used in decision theory, game theory,
statistics, and philosophy for minimizing the possible loss while maximizing the
potential gain. Alternatively, it can be thought of as maximizing the minimum gain
(maximin). Originally formulated for two-player zero-sum game theory, covering
both the cases where players take alternate moves and those where they make
simultaneous moves, it has also been extended to more complex games and to
general decision making in the presence of uncertainty. Reference from:

http://en.wikipedia.org/wiki/Minimax.

Create Smart AI

212

The AI code is a lot to cover, and can be written in a whole new book, but we will learn how
to create a simple and easy way to make our AI look smart by using a simple method like the
random function instead of using search algorithm to get the possible move for the enemies.
It might not make our AI as smart as using those algorithms, but we will get the basic idea of
how to create the smart AI.

In this chapter, we will continue from Project 5, Creating a Rocket Launcher, reuse the code
assets from the last chapter to implement the AI enemy. We will be creating an enemy by
implementing the simple AI but smart enough to detect when to jump, run, walk, stop, or
shoot at the player by creating the waypoint for the enemy to walk to each point, run towards
the player then shoot when the player gets closer, and jump when it detects the wall.

Mission briefing
We will be creating an enemy that responds to our character. This enemy will be able to walk
from one point to another and check to see if the player is in shooting range, and he can
then shoot or run towards the player.

Finally, we will add the hit point bar to the player character and AI character as well as the
damage cost for the character weapon, which is the rocket from the last chapter.

What does it do?
We will start by adapting the old scripts from Project 5, Creating a Rocket Launcher, which
are New3PSController, RocketLauncher, and Rocket to be able to apply the hit
damage to the player or enemy.

Then, we will create the AIController script to control the enemy by adapting the
CharacterControl script from Project 4, The Hero/Heroine Part II – Animation and
Controls. In the CharacterControl script, we will use the Physics class to check if there
are any walls in front of the direction in which the enemy is moving, so that it jumps over it.

Next, we will create the Waypoint script, which will control the AI moving towards
each waypoint position randomly or in an order. The Waypoint script will also use the
OnDrawGizmos() function, which will allow us to see the wireframe, ray cast line, icons,
and the area while we are playing in the game or editing in the editor. This is very powerful
for debugging.

Project 6

213

In the last section, we will add the hit point bar for our character and the enemy to show
how much is the damage caused when we are attacked by the enemy or when we shoot at
the enemy.

Why Is It Awesome?
When we complete this chapter, we will be able to create the simple AI behavior, which is
smart enough to detect the player and response to the player's reaction. From this chapter,
we begin to create a smart AI for any kind of game. Most of the methods or equations in
this chapter are very straightforward and easy enough to create a simple AI, and can be
developed to make the AI smarter.

Your Hotshot Objectives
We will use the New3PSController script from the last chapter for our character and the
rocket launcher. For the enemy, we will adapt the CharacterControl script from Project 4,
The Hero/Heroine Part II – Animation and Controls, to control the AI movement and behavior
by implementing the new waypoint system to limit the movable area of our enemy. Then,
we will create the hit point UI for both player and enemy, as well as the Restart button when
either one dies. Here are the steps that we will go through in this chapter:

ff Creating the waypoint and gizmos

ff Creating an AI enemy

ff Creating the enemy movement with AIController script

ff Creating a hit-point UI

Mission Checklist
First, we need the project created in Project 5, Creating a Rocket Launcher, and assets for
this chapter . We can start a new project by going to the URL http://www.packtpub.
com/support?nid=8267 and downloading the Chapter 6 package. The package will
contain all resources from Project 5, Creating a Rocket Launcher, and some new assets for
this chapter.

Create Smart AI

214

Then, we run the Unity editor, create a new project, and name it as AI. Next, we import the
Chapter6.unitypackage to our project as we did in the last chapter by going to Assets
| Import Package | Custom Package…, choose Chapter6.unityPackage, which we just
downloaded, and then click on the Import button on the pop-up window link, as shown in
the following screenshot:

In the Project view, we will see the AI scene, Chapter5 folder, Chapter6 folder, CustomSkin
GUISkin, Prefabs folder, Scripts folder, and the Standard Assets folder. The Chapter5 folder
will contain the entire Chapter 5 assets. The Chapter6 folder will contain the Chapter 6
assets. The Prefabs folder will contain the Rocket prefabs and ShotSmoke prefab, and the
Scripts folder will contain all the scripts we used in the last chapter.

Then, we need to double-click the AI scene to open the scene from the last chapter, as
shown in the following screenshot:

Project 6

215

Creating the waypoint and gizmos
In the first section, we will create the waypoint script to place the waypoint for our AI
movement direction, which can be edited in the editor. We will also learn how to use the
OnDrawGizmos() function, which we have used in Project 1, Creating a Sprite and
Platform Game.

In this chapter, we will add the functions below the OnDrawGizmos() function to show the
visual for our waypoint.

We use the Gizmos.DrawIcon() function to draw the icon image, see the direction
line between two waypoints by using the Gizmos.Draw Line() function, to draw the
line between two waypoints, and show the visual of the waypoint by using the Gizmos.
DrawWireSphere() function to draw the wire sphere at the position of the waypoint.

Prepare for Lift Off
First, we need to drag-and-drop the Gizmos folder, which is located outside the Chapter6
folder, as shown in the following screenshot:

Why did we move the folder outside the Chapter6 folder?

Take a look at this: http://unity3d.com/support/documentation/
ScriptReference/Gizmos.DrawIcon.html.

We see that the function takes two parameters: the first is the position of the object
to draw the icon, and the second is the name of the icon image, which is string.
The documentation says:

"The icon's path can be found in the Assets/Gizmos folder or in the Unity.app/
Contents/Resources folder."

Create Smart AI

216

This simply means that if we want to have our custom icon image, we basically need to put
our image inside either of the folders mentioned earlier. Both the paths have advantages
and disadvantages. If we want to use the image icon for every project in the same machine,
we can put it inside the Unity.app/Contents/Resources folder, but this will be difficult
when we want to move the project to another person. On the other hand, if we want to use
only the icon image in this project, we can create a Gizmos folder in the Project view and
put the icon image inside that folder, which we just did.

Engage Thrusters
Now we are ready to start the first section:

1.	 Create a new JavaScript file (we can add it to our Scripts folder to make it more
organized) by going to Assets | Create | Javascript, and name it Waypoints.

2.	 Double-click to open it in MonoDevelop and start creating the necessary parameters
for this waypoint script. Let's replace the script as follows:
//Name of the icon image
public var iconName : String = "wayIcon.psd";
//Radius of each way point - use for checking the collision
detection with the enemy
public var radius : float = 1.0;
//Toggle this to make the enemy move by order from the first index
to last index (Looping)
public var orderDirection : boolean = false;

//Get all the transform of the waypoint - including the the parent
private var waypoints : Transform[];
//Current waypoint index
private var int_wayIndex : int;
//Next waypoint index
private var int_nextIndex : int;
//Length of all waypoints
private var int_wayLength : int;
//Movement direction of the enemy to next waypoint
private var v3_direction : Vector3;
//Checking if the enemy hit the waypoint
private var b_isHitRadius : boolean;
Here, we just finished implementing the necessary parameters to
use for our waypoint.

Project 6

217

3.	 Next, we will add the Awake() function to set up all the necessary parameters
before calling the Start() function by adding the following code:

The Awake() function is used to initialize all the variables before the
game starts or before calling the Start() function. You can check out the
following Unity scripting document for more details:
http://unity3d.com/support/documentation/
ScriptReference/MonoBehaviour.Awake.html.

//Set up all parameters before Initialize
public function Awake() : void {
 //Get all Transforms of the gameObject include the children and
the transform of this gameObject
 waypoints = gameObject.GetComponentsInChildren.<Transform>();
 //Set up the length of all transform
 int_wayLength = waypoints.Length;
 int_wayIndex = 0;
 int_nextIndex = 1;
 //Checking the orderDirection; if it's false, it means the AI
isn't moving by order, so using the random index of waypoint
 if(orderDirection == false) {
 var int_randomWay : int = Mathf.Floor(Random.value * int_
wayLength);
 //Checking to make sure that the waypoint length is more than
1
 if (int_wayLength > 1) {
 //Use Random Index
 while (int_wayIndex == int_randomWay) {
 int_randomWay = Mathf.Floor(Random.value * int_wayLength);
 }
 }
 int_nextIndex = int_randomWay;
 }
 //Set the direction to zero
 v3_direction = Vector3.zero;
 //To ignore the first waypoint at the beginning of the game
 b_isHitRadius = true;
}

In this function, we get the transform of each waypoint in the gameObject and all
the children included in this gameObject by using the gameObject.GetCompon
entsInChildren.<Transform>() to return the array of the Transform type
object. Then, we set the length of this array, the start index, and next index of the
waypoint. We also check to see if orderDirection is false, in which case the
next index waypoint will be orderly picked. On the other hand, if it is true, the next
index waypoint will be randomly picked.

Create Smart AI

218

4.	 Next, we add the function to set up the position of the enemy at the start position of
the waypoint, which we will call from the Start() function of our AIController
script in the next step. Add the following code:
public function StartPosition() : Vector3 {
 return waypoints[0].position;
}

This way, we can make sure that the enemy will always start at the waypoint index 0.

5.	 Then, we will create the core of this function, which will calculate and return the
direction of the current position character to the waypoint position. Type the
following code:
//Return the direction of the enemy toward the next waypoint
public function GetDirection(_AI : Transform) : Vector3 {
 if (Vector3.Distance(_AI.position, waypoints[int_nextIndex].
position) <= radius) {
 //Only check once when the AI hit the way point
 if (!b_isHitRadius) {
 b_isHitRadius = true;
 //Update the current way index
 int_wayIndex = int_nextIndex;
 //Get Direction by order
 if (orderDirection == true) {
 //Get the next way index
 int_nextIndex = (int_nextIndex + 1) % int_wayLength;
 } else {
 var int_randomWay : int = Mathf.Floor(Random.value *
int_wayLength);
 //Checking to make sure that the waypoint length is more
than 1
 if (int_wayLength > 1) {
 //Use Random Index
 while (int_wayIndex == int_randomWay) {
 int_randomWay = Mathf.Floor(Random.value * int_
wayLength);
 }
 }
 int_nextIndex = int_randomWay;
 }
 }
 } else {
 b_isHitRadius = false;
 }

Project 6

219

 //Get Direction from the current position of the character to
the next way point
 //Make sure that the y position equal to the waypoint y position
 var v3_currentPosition : Vector3 = new Vector3(_AI.position.x,
waypoints[int_nextIndex].position.y, _AI.position.z);
 v3_direction = (waypoints[int_nextIndex].position - v3_
currentPosition).normalized;

 return v3_direction;
}

6.	 Next, we will add two more functions to check the direction from the enemy to
the player, and check to see whether the enemy is away from the target waypoint
at a specific distance or not. Both of these functions will give the enemy more
characteristics. Let's type both the functions as follows:
//To get the direction from current position of the enemy to the
player
public function GetDirectionToPlayer (_AI : Transform, _player :
Transform) : Vector3 {
 //Make sure that the y position equal to the waypoint y position
 var v3_currentPosition : Vector3 = new Vector3(_AI.position.x,
waypoints[int_wayIndex].position.y, _AI.position.z);
 var v3_playerPosition : Vector3 = new Vector3(_player.
position.x, waypoints[int_wayIndex].position.y, _player.
position.z);
 v3_direction = (v3_playerPosition - v3_currentPosition).
normalized;

 return v3_direction;

}

//Checking if the enemy is away from the target waypoint in the
specific distance or not
public function AwayFromWaypoint (_AI : Transform, _distance :
float) : boolean {
 if (Vector3.Distance(_AI.position, waypoints[int_nextIndex].
position) >= _distance) {
 return true;
 } else {
 return false;
 }
}

Create Smart AI

220

7.	 The last function of this script is the OnDrawGizmos() function, which will only
be used in the editor or debugging process. We will use this function to draw the
icon image, the radius, and the line direction between each waypoint. Let's add
it as follows:

//Draw Gizmos and Directional line
public function OnDrawGizmos() : void {
 //Get all Transform of this game objects include the children
and the transform of this gameobject
 var waypointGizmos : Transform[] = gameObject.GetComponentsInChi
ldren.<Transform>();
 if (waypointGizmos != null) {
 if (orderDirection == true) {
 //Draw line by the order of each waypoint 0,1,2,3,...
 for (var i : int = 0; i < waypointGizmos.Length; i++) {
 Gizmos.color = Color.red;
 //Get the next way point
 var n : int = (i + 1) % waypointGizmos.Length;
 Gizmos.DrawLine(waypointGizmos[i].position,
waypointGizmos[n].position);
 Gizmos.DrawIcon(waypointGizmos[i].position, iconName);
 Gizmos.color = Color.green;
 Gizmos.DrawWireSphere(waypointGizmos[i].position, radius);
 }
 } else {
 //Draw line from one point to every points except itself
 for (var j : int = 0; j < waypointGizmos.Length; j++) {
 for (var k : int = j; k < waypointGizmos.Length; k++) {
 Gizmos.color = Color.red;
 Gizmos.DrawLine(waypointGizmos[j].position,
waypointGizmos[k].position);
 }
 Gizmos.DrawIcon(waypointGizmos[j].position, iconName);
 Gizmos.color = Color.green;
 Gizmos.DrawWireSphere(waypointGizmos[j].position, radius);
 }
 }
 }
}

We use Gizmos.DrawLine() to draw the line between each waypoint, and
Gizmos.DrawIcon() to draw the icon image for each waypoint game object in
the scene to make it easier to edit. Then, we use Gizmos.DrawWireSphere()
to draw and calculate the area of each waypoint related to the radius.

Project 6

221

Now, we are done with the Waypoints script. Go back to Unity editor to create the waypoint
game object by going to GameObject | Create Empty to create the empty game object
and name it Waypoints. Then, drag the Waypoints script (that we just created) to this
Waypoints game object, and set its Transform | Position to X: 0, Y: 0, Z: 0, Rotation X:0, Y:
0, Z: 0, Scale X: 1, Y: 1, Z: 1, or we can click on the little gear in the Inspector view and choose
Reset to reset all to the default positions, as shown in the following screenshot:

You will see something similar to the following screenshot:

Right now, we have the first or start position of the waypoint. We need more waypoint
positions, which is very easy to achieve. You just need to create a new empty game object again
and drag Waypoints inside. Go to GameObject | Create Empty to create the empty game
object and name it Waypoint. Then, we drag the object to Waypoints, which we already
have in the scene, and set its transform position to X: 5.2, Y: 0, Z: 4.3. We can also create more
waypoints by pressing Crtl + D (in Windows) or Command + D (on a Mac) to duplicate another
four Waypoint game object, and set all these objects' transform positions as follows:

ff Position X: 7.2 Y: 0 Z: 10.2

ff Position X: 3.4 Y: 0 Z: 12.1

Create Smart AI

222

ff Position X: -0.8 Y: 0 Z: 10.7

ff Position X: -2.2 Y: 2.7 Z: 5.2

If we take a look at the Hierarchy view, we will see something similar to the
following screenshot:

Then, if we click on Waypoints, and go to its Inspector view under the Waypoints (Script),
we will see the Order Direction. We can also toggle it On or Off to enable the movement
direction of the AI, which will also show the result on the editor screen by using the
OnDrawGizmos() function, as we can see in the following screenshot:

We can also move the waypoint object around to serve what we need or even increase or
decrease the waypoint to fit our level.

Project 6

223

The waypoint script will not work properly if we put the waypoint where
the enemy can't walk through, which means that our enemy should be able
to walk through and touch each waypoint (hit the green wire sphere area of
each waypoint, as shown in the preceding screenshot). Otherwise, the enemy
won't be able to move to the next waypoint.
We can also adjust the radius (you will see the green wire sphere change
its size) in the Waypoints script, which will make our enemy start turning
to the next waypoint faster or slower. However, we should be careful while
adjusting the radius. If we set it too low, the character might not hit it and not
turn to the next waypoint. So, the minimum radius should be 1.0.

In the next step, we will continue by creating the AIController script to make our enemy
walk through each waypoint.

Objective Complete - Mini Debriefing
What we have done here is created the waypoint, which basically controls the movement of
the enemy. We started by creating the Waypoints script, which gets the transform position
of the game object and its children by using gameObject.GetComponentsInChildren.<
Transform>().

Then, we added the getDirection() function, which checked the distance between the
enemy position and waypoint position, as shown in the following diagram:

We can see from the preceding diagram that if the distance between the enemy and
the waypoint position is smaller than the radius of the waypoint, it will trigger the
waypoint to change the next waypoint index, which will also change the movement
direction of the enemy.

Create Smart AI

224

Then, we added two functions: the first one is the GetDirectionToPlayer()
function which was used to make the enemy move towards the player, and the
AwayFromWaypoint() function was used to check the distance between the enemy and
the next waypoint while the enemy is chasing the player. If it does, then we will return true
and make our enemy go back to the next waypoint.

The GetDirectionToPlayer() function will make the enemy follow the player at a
certain distance, and the AwayFromWaypoint() function will make the enemy go back to
the waypoint if its position is too far away.

Next, we used the OnDrawGizmos() function to create the visual for the waypoint game
objects to show in the editor. The waypoint is the empty game object, which is sometimes
difficult to edit in the editor because we cannot see it in the editors.

It is better to use gizmo than trying to use camera layers
and meshes for the waypoint.

So, using gizmo is the best solution and the better way that Unity provides us to see the
visual of some empty game object. We also have the trigger parameter in the Inspector
view to tell our enemy to walk randomly or by the order of the waypoint index.

Classified Intel
At the beginning of the script, we use GetComponentsInChildren.<Transform>()
function. Have a look at the Unity document at the following link:

http://unity3d.com/support/documentation/ScriptReference/GameObject.
GetComponentsInChildren.html.

You might ask—why do we call it something different than the document, and why don't we
just use the GetComponentsInChildren(Transform) or the difference between those
two function calls? Well, as is specified in the document, we will see that the GetCompon
entsInChildren(Transform) function will return Component[] Or, it means that the
script is attached to this game object but not the Transform[] type, which we need for our
Waypoints script.

Project 6

225

In this Unity document page, if we scroll down a little bit, we will see the following
screenshot, which gives us our answer:

You will see that there are two types of GetComponentsInChildren() function. So, refer
to the following URL for more details:

http://unity3d.com/support/documentation/ScriptReference/GameObject.
GetComponentsInChildren.ltTgt.html.

If we go to the preceding link, we will see the following function:

function GetComponentsInChildren.<T> () : T[]

We can see that the preceding function takes the type T and returns an array of type T,
which we will use in this step.

In our script, we cannot use the GetComponentsInChildren.<T>()
function, if we don't specify the type of our parameter as follows:
var waypointGizmos = gameObject.GetComponentsInChildre
n(Transform); //Correct

However, we will see the following error if we specify the type of our parameter:
var waypointGizmos : Transform[] = gameObject.GetCompo
nentsInChildren(Transform); //Error

The preceding code will cause the error in Unity shown in the following
screenshot:

It is better to specify the type of the parameter based on its performance.

Create Smart AI

226

Finally, we used the OnDrawGizmos() function to create the visual for the waypoint game
object, which will show only in the editor. We won't see anything while we are playing the
real game after we build it.

However, if we want to see it while we are playing the game in the Game view, we can click
on the Play button and click on the Gizmos button on the top-right to toggle the Gizmos On
or Off as shown in the following screenshot:

Creating an enemy AI
In the last section, we created the Waypoints script and the Waypoints object, which will
be used to limit the enemy movement and direction. In this section, we need to create the
enemy game object, which will contain the waypoint and our AI character. We will use a
prefab similar to that of the player character but remove some of it that is not necessary for
the enemy.

Engage thrusters
We will start by creating the empty game object to contain the AI and the Waypoints object:

1.	 Go to GameObject | Create Empty to create the empty game object and name
it Enemy. Then, assign its transform by clicking on this game object and go to the
Inspector view to reset the transform to default, as follows:

�� Position X: 0 Y: 0 Z: 0

�� Rotation X: 0 Y: 0 Z: 0

�� Scale X: 1 Y: 1 Z: 1

2.	 Next, drag the Waypoints game object in the Hierarchy view that we created in the
first section inside the Enemy game object.

3.	 Then, create another empty game object by going to GameObject | Create Empty
again and this time name it AI. Set the transform in the AI game object as follows:

�� Position X: 0 Y: 0 Z: 0

�� Rotation X: 0 Y: 0 Z: 0

�� Scale X: 1 Y: 1 Z: 1

Project 6

227

4.	 Drag the AI game object inside the Enemy game object in the Hierarchy view, and
then go to the Prefabs folder in the Project view. We will see the robot_AI prefab
object; drag it inside the AI game object, which is a child of the Enemy game object
in the Hierarchy view similar to the Waypoints game object, as shown in the
following screenshot:

We still need one more thing inside our AI game object, which is the RocketLauncher.
This is basically a similar setup as for our player character; so go to the First Person
Controller game object, click on the arrow in front of it to bring down the Main Camera,
and then click on the arrow in front of the Main Camera. We will see the RocketLauncher
game object, which we need for our enemy. Let's press Ctrl + D (in Windows) or Command +
D (on a Mac) to duplicate it, and then drag this duplicate RocketLauncher game object inside
the AI game object, as shown in the following screenshot:

If we take a look at the Hierarchy view of the AI game and the Main Camera game object,
we will see a similar structure. The only difference is that the AI game object has the
AIController script and CharacterController attached to it as we can see in the
preceding screenshot.

Create Smart AI

228

Then, we will click on RocketLauncher to bring up its Inspector view and set up the
Transform and Rocket Launcher (Script) as follows:

ff Transform:

�� Position X: 0.28 Y: 0.31 Z: 1.55

ff Rocket Launcher (Script)

�� Smoke Position: SmokePosition (Drag the SmokePosition in the robot_
AI prefab, as shown in the following screenshot.)

�� Ammo Count: -1

The last thing in this section—we will set up the position of our Enemy game object, which
is the parent of the AI game object. So, let's click on the Enemy game object and go to its
transform position, and then set the following:

ff Position X: -2.43 Y: 1.3 Z: 4.9

Now, we are done with this section. In the next section, we will create the script to control
our enemy to be able to walk, run, jump, and shoot.

Objective Complete - Mini Debriefing
In this step, we just created the Enemy and AI empty game objects, which will be the
container of the Waypoints game object and AI game object. In the AI game object, we
also added the robot_AI prefab and RocketLauncher prefab.

Project 6

229

Creating the enemy movement with
AIController script

From the last section, we now have our Enemy object, but there is no movement, yet. So, in
this section, we will create the core script to control our enemy by using the similar concept
used for the CharacterControl script in Project 4, The Hero/Heroine Part II – Animation
and Controls, and New3PSController in Project 5, Creating a Rocket Launcher. We will mix
both the scripts and create a new script to control the movements of our enemy following
the waypoint and detect the player using the Waypoints script.

Engage Thrusters
We will start by creating the AIController script:

1.	 Go to Assets | Create | Javascript, name it AIController, and double-click on it to
open MonoDevelop. Since we need to attach the built-in CharacterController,
we will replace the old code with the following:
@script RequireComponent(CharacterController)

2.	 Then, continue adding all necessary parameters to this script as follows:
//Waypoint
public var wayPoint : Waypoints;
//Rocket Launcher
public var rocketLauncher : RocketLauncher;
//Get the Player
public var player : Transform;
//Animation Params
public var _animation : Animation;
public var idleAnimation : AnimationClip;
public var walkAnimation : AnimationClip;
public var runAnimation : AnimationClip;
public var shotAnimation : AnimationClip;
public var walkAnimationSpeed : float = 1.5;
public var idleAnimationSpeed : float = 1.0;
public var runAnimationSpeed : float = 2.0;
public var shotAnimationSpeed : float = 0.5;
//Character movement speed
public var runSpeed : int = 6;
public var walkSpeed : int = 2;
public var jumpSpeed : float = 8.0;
public var gravity : float = 20.0;
//Shot Range

Create Smart AI

230

public var shotRange : float = 15.0;
//Detected the player - increase from the shot range
public var getPlayerRange : float = 5.0;
//Max distance from waypoint
public var waypointDistance : float = 10.0;
//To make the enemy walk for 4 seconds - then think
public var walkingTime : float = 4.0;
//To make the enemy stop for 2 seconds - then walk
public var thinkingTime : float = 2.0;
//Ai current HP
public var aiHP : float = 100;

//AI MAx HP
private var aiMaxHP : float;
//Character Controller
private var controller : CharacterController;
//Collision Flag return from Moving the character
private var c_collisionFlags : CollisionFlags;
//Move Params
private var f_verticalSpeed : float = 0.0;
private var f_moveSpeed : float = 0.0;
private var v3_moveDirection : Vector3 = Vector3.zero;
//Boolean
private var b_isRun : boolean;
private var b_isAiming : boolean;
private var b_isJumping : boolean;
private var b_isStop : boolean;
//Shot Params
private var b_isPrepare : boolean = false;
private var b_isShot : boolean = false;
//Rotate Params
private var q_currentRotation : Quaternion; //current rotation of
the character
private var q_rot : Quaternion; //Rotate to left or right
direction
private var f_rotateSpeed : float = 1.0; //Smooth speed of
rotation
//Stop time Counting
private var f_lastTime : float = 0;

With the preceding code, we basically created all the necessary parameters for our
AIController script.

Project 6

231

3.	 Now we will create the Awake() function to set up the necessary values for
our parameter before it gets initialized in the Start() function, so add the
following code:
//Using Awake to set up parameters before Initialize
public function Awake() : void {
 controller = GetComponent(CharacterController);
 b_isRun = false;
 b_isAiming = false;
 b_isJumping = false;
 f_moveSpeed = walkSpeed;
 c_collisionFlags = CollisionFlags.CollidedBelow;
 f_moveSpeed = walkSpeed;
 //To make the character stop moving at a certain time
 f_lastTime = Time.time; //Tracking the time between each
movement of the character
 b_isStop = false;
 aiMaxHP = aiHP;

 //Set up animation speed and wrapmode
 _animation[walkAnimation.name].speed = walkAnimationSpeed;
 _animation[walkAnimation.name].wrapMode = WrapMode.Loop;
 _animation[runAnimation.name].speed = runAnimationSpeed;
 _animation[runAnimation.name].wrapMode = WrapMode.Loop;
 _animation[idleAnimation.name].speed = idleAnimationSpeed;
 _animation[idleAnimation.name].wrapMode = WrapMode.Loop;
}

In the preceding Awake() function, we just assigned the value of each parameter,
set up the movement speed, animation clip speed, animation wrapmode of the
enemy, and the current time, which we will use to calculate the time to stop the
enemy or make him walk.

4.	 Next, add the following Start() function to set the position of our enemy equal to
the first waypoint position:
//Initialize
public function Start() : void {
 transform.position = wayPoint.StartPosition();
}

Create Smart AI

232

5.	 After adding the Start() function, we need the function to check for the
CollisionFlags parameter of the enemy to see if our enemy hits the ground,
which is very similar to the CharacterControl script that we used in Project 4,
The Hero/Heroine Part II – Animation and Controls:
//Checking if the character hit the ground (collide Below)
public function IsGrounded () : boolean {
 return (c_collisionFlags & CollisionFlags.CollidedBelow);
}

6.	 Next, create OnCollisionEnter(), which is the built-in function to check whether
the enemy got hit by the player, and decrease the hit-points if necessary. Also, we
can add another function to get the percent of the current enemy hit-points and
maximum enemy hit-points by adding the following code:
//Checking for the collision if the rocket hit the enemy
public function OnCollisionEnter(collision : Collision) : void {
 if (StaticVars.b_isGameOver == false) {
 if (collision.transform.tag == "Rocket") {
 var rocket : Rocket = collision.gameObject.
GetComponent(Rocket);
 var f_damage : float = rocket.getDamage();
 //Clamp down the hitpoint - not lower than 0, and not higher
than max hitpoint
 aiHP = Mathf.Clamp(aiHP-f_damage, 0, aiMaxHP);
 }
 }
}

//Get the percent of the maximum HP with the current HP
public function GetHpPercent() : float {
 return aiHP/aiMaxHP;
}

7.	 Then, we will create four functions to give the enemy a personality and make our
enemy smarter:

�� The first one is the Shoot() function, which will make the enemy shoot
when the player is within shooting range of the enemy by checking the
distance of the player and enemy. We will also use the Physics.Raycast()
function to see if there is any wall blocking the direction of the shot; if there
isn't, we just make the enemy shoot by adding the following code:
//Give the Enemy Characteristic
///
///
//Checking for the character is shooting

Project 6

233

public function Shoot (_direction : Vector3) : boolean {
 var hit : RaycastHit;
 //Checking if the player hit the shooting range
 if (Vector3.Distance(transform.position, player.position)
<= shotRange) {
 // Cast ray shotRange meters in shot direction, to see
if nothing block the rocket
 if (Physics.Raycast(transform.position, _direction,
hit, shotRange)) {
 if (hit.transform.tag != "Wall") {
 b_isAiming = true;
 return b_isAiming;
 }
 }
 }
 b_isAiming = false;
 return b_isAiming;
}

�� Second, we will create the Jump() function to make our enemy smarter by
using another Physics class function, Physics.CapsuleCast(). This
function will cast the capsule object from the enemy's position towards its
movement direction to see if the enemy hits the wall. This will trigger the
enemy to jump over the wall and continue walking towards its direction as
in the following code:
//Make character Jump
public function Jump (_direction : Vector3) : boolean {
 //Checking for Jumping if the next y position is different
than the current y position
 var hit : RaycastHit;
 var p1 : Vector3 = transform.position + controller.
center + Vector3.up * (-controller.height*0.5);
 var p2 : Vector3 = p1 + Vector3.up * controller.height;
 // Cast character controller shape moveSpeed meters
forward, to see if it is about to hit anything
 if ((Physics.CapsuleCast (p1, p2, 0.1, _direction, hit))
&& (c_collisionFlags & CollisionFlags.Sides)) {
 if (hit.transform.tag == "Wall") {
 return true;
 }
 }
 return false;
}

Create Smart AI

234

�� Then, we will check the distance between the player and the enemy to see
if the distance is higher than the shotRange and inside the shotRange +
getPlayerRange. So, let's add it as follows:
//Make the enemy run when the player hit certain radius
which is between the shotRange and getPlayerRange
public function Run () : boolean {
 //Checking for Running
 if ((Vector3.Distance(transform.position, player.
position) <= (getPlayerRange+shotRange)) && ((Vector3.
Distance(transform.position, player.position) > shotRange)))
{
 b_isRun = true;
 } else {
 b_isRun = false;
 }
 return b_isRun;
}

�� In the last function, to control the enemy behavior, we will make our enemy
walk and stop for a certain amount of time:

//Calculate the time that let enemy walk and stop for the
certain time
public function IsThinking() : boolean {
 //Get the time when enemy stop walking
 if (b_isStop) {
 var f_time : float = thinkingTime;
 } else {
 //Get the time when enemy is walking
 f_time = walkingTime;
 }
 if (Time.time >= (f_lastTime + f_time)) {
 if (b_isStop) {
 b_isStop = false;
 } else {
 b_isStop = true;
 }
 f_lastTime = Time.time;
 }
 return b_isStop;
}

Now we are done with all the functions that give personality to our enemy.

Project 6

235

8.	 The next step is the Update() function, which will control all the movement and
animation of our enemy. So, let's type it as follows:
public function Update() : void {
 if (StaticVars.b_isGameOver == false) {
 var v3_rocketDirection : Vector3 = (player.position -
transform.position).normalized;
 //Checking if the enemy position is away from the waypoint in
the certain distance,
 //Make the enemy stop running, shooting, and walk back to the
target waypoint
 if (wayPoint.AwayFromWaypoint(transform, waypointDistance)) {
 b_isAiming = false;
 b_isRun = false;
 } else {
 //Checking if the enemy is not aiming - check for running
 if (!Shoot(v3_rocketDirection)) {
 //Checking if the ai is run or not aiming
 Run();
 }
 }

9.	 Continue to add the following script in the Update() function, which will check
when the enemy isn't aiming, and then we will check for b_isRun to see if the
enemy is running or not:
 if (!b_isAiming) {
 //If the ai is running don't make it think
 //Get the direction
 if (b_isRun) {
 var v3_targetDirection : Vector3 = wayPoint.
GetDirectionToPlayer(transform, player); //Move Direct to the
player
 } else {
 if (thinkingTime > 0) {
 if (!IsThinking()) {
 v3_targetDirection = wayPoint.GetDirection(transform);
//Use random Direction
 } else {
 v3_targetDirection = Vector3.zero;
 }
 } else {
 v3_targetDirection = wayPoint.GetDirection(transform);
//Use random Direction
 }
 }

Create Smart AI

236

10.	 Add the script to get the movement direction of the enemy and check for the
jumping behavior as follows:
 //If the target direction is not zero - means there is no
button pressing
 if (v3_targetDirection != Vector3.zero) {
 //Rotate toward the target direction
 v3_moveDirection = Vector3.Slerp(v3_moveDirection, v3_
targetDirection, f_rotateSpeed * Time.deltaTime);
 //Get only direction by normalize our target vector
 v3_moveDirection = v3_moveDirection.normalized;
 } else {
 v3_moveDirection = Vector3.zero;
 }

 //Checking if character is on the ground
 if (!b_isJumping) {
 //Holding Shift to run
 if (b_isRun) {
 f_moveSpeed = runSpeed;
 } else {
 b_isRun = false;
 f_moveSpeed = walkSpeed;
 }
 //Press Space to Jump
 if (Jump(v3_moveDirection)) {
 b_isJumping = true;
 f_verticalSpeed = jumpSpeed;
 }
 }

11.	 Now we can add gravity checking, get the actual movement direction, and apply the
animation clip as we did in the CharacterControl script in Project 4, The Hero/
Heroine Part II – Animation and Controls. Let's add the script as follows:
 // Apply gravity
 if (IsGrounded()) {
 f_verticalSpeed = 0.0; //if our character is grounded
 b_isJumping = false; //Checking if our character is in the
air or not
 f_inAirTime = 0.0;
 f_inAirStartTime = Time.time;
 } else {
 f_verticalSpeed -= gravity * Time.deltaTime; //if our
character in the air
 //Count Time

Project 6

237

 f_inAirTime = Time.time - f_inAirStartTime;
 }

 // Calculate actual motion
 var v3_movement : Vector3 = (v3_moveDirection * f_moveSpeed)
+ Vector3 (0, f_verticalSpeed, 0); // Apply the vertical speed if
character fall down
 v3_movement *= Time.deltaTime;

 //Set the prepare animation to false
 b_isPrepare = false;

 //
 //Checking if the character is moving or not
 if (v3_moveDirection != Vector3.zero) {
 if (f_moveSpeed == walkSpeed) {
 _animation.CrossFade(walkAnimation.name);
 } else {
 _animation.CrossFade(runAnimation.name);
 }
 } else {
 _animation.CrossFade(idleAnimation.name);
 }
 // Move the controller
 c_collisionFlags = controller.Move(v3_movement);

 //Update rotation of the character
 if ((v3_moveDirection != Vector3.zero) && (!b_isAiming)) {
 transform.rotation = Quaternion.LookRotation(v3_
moveDirection);
 }

12.	 Now we are done with the no aiming part. We will continue to add the script to
check for the aiming part, which is similar to what we did in Project 5, Creating a
Rocket Launcher. So, let's add the script as follows:
} else {//Aiming
 v3_moveDirection = Vector3.MoveTowards(v3_moveDirection,
v3_rocketDirection, 0.1);
 v3_moveDirection = v3_moveDirection.normalized;

 // Apply gravity
 if (IsGrounded()) {
 f_verticalSpeed = 0.0; //if our character is grounded
 b_isJumping = false; //Checking if our character is in the
air or not

Create Smart AI

238

 f_inAirTime = 0.0;
 f_inAirStartTime = Time.time;
 } else {
 f_verticalSpeed -= gravity * Time.deltaTime; //if our
character in the air
 //Count Time
 f_inAirTime = Time.time - f_inAirStartTime;
 }

 // Calculate actual motion
 v3_movement = Vector3 (0, f_verticalSpeed, 0); // Apply the
vertical speed if character fall down
 v3_movement *= Time.deltaTime;

 //Checking if the character is playing the shoot animation
 if (!b_isPrepare) {
 b_isShot = false;
 //Play the shot preparing animation function
 WaitForPrepare();
 } else {
 if (v3_rocketDirection == v3_moveDirection) {
 if (!b_isShot) {
 b_isShot = true;
 //Play the shoot animation function
 WaitForShot();
 }
 }
 }

 // Move the controller
 c_collisionFlags = controller.Move(new Vector3(0, v3_
movement.y, 0));
 //Update rotation of the character
 transform.rotation = Quaternion.LookRotation(v3_
moveDirection);
 }

Project 6

239

13.	 As the last step of the Update() function, we will add the script for the game over
state and close our function as follows:
} else {
 //Gameover
 _animation.CrossFade(idleAnimation.name);
 }
}

14.	 Then, we will add two functions, which will be used to control the aiming and
shoot animations:
//Wait for shoot animation
private function WaitForShot () : IEnumerator {
 _animation[shotAnimation.name].speed = shotAnimationSpeed;
 _animation[shotAnimation.name].wrapMode = WrapMode.ClampForever;
 _animation.PlayQueued(shotAnimation.name, QueueMode.PlayNow);
 BroadcastMessage("Fire", shotAnimation.length); //to enable all
the function name Fire in every MonoBehaviour Script

 yield WaitForSeconds (shotAnimation.length);
 b_isShot = false;
}

//Wait for aiming animation
private function WaitForPrepare () : IEnumerator {
 _animation[shotAnimation.name].speed = shotAnimationSpeed * 2;
 _animation[shotAnimation.name].wrapMode = WrapMode.ClampForever;
 _animation.CrossFade(shotAnimation.name, 0.6);

 yield WaitForSeconds(shotAnimation.length);
 b_isPrepare = true;
}

15.	 The last function that we add is the OnDrawGizmos() function, which we used in
the last step to draw the line between the player position and the enemy position:

//Draw Gizmos and Directional line from the enemy position to the
player position
public function OnDrawGizmos() : void {
 if (player != null) {
 Gizmos.color = Color.blue;
 Gizmos.DrawLine(transform.position, player.position);
 }
}

Create Smart AI

240

With that we are done with our AIController script. Next, we will go back to Unity and
apply the AIController script to the AI game object by dragging it from the Project view
to the AI game object in the Hierarchy view. Then, we will go to its Inspector view and set
the following:

ff Character Controller

�� Height: 2.25

�� Radius: 0.4

�� Step Offset: 0.4

�� Skin Width: 0.05

ff AIController (Script)

�� Way Point: Waypoints (Drag the Waypoints game object to the Hierarchy
view here)

�� Rocket Launcher: RocketLauncher (Drag the RocketLauncher game
object inside the AI game object to the Hierarchy view here)

�� Player: robot (Drag the robot game object inside the First Person
Controller game object to the Hierarchy view here)

�� Animation: robot_AI (Drag the robot_AI game object inside this AI game
object to the Hierarchy here)

�� Idle Animation: idle (Drag the idle animation inside the Chapter5/
Robot Artwork/robot@idle/ to the Project view here)

�� Walk Animation: walk (Drag the walk animation inside the Chapter5/
Robot Artwork/robot@walk/ to the Project view here)

�� Run Animation: run (Drag the run animation inside the Chapter5/Robot
Artwork/robot@run/ to the Project view here)

�� Shot Animation: shoot (Drag the shoot animation inside the Chapter5/
Robot Artwork/robot@shoot/ to the Project view here)

The enemy will also walk for 4 minutes and stop for 2 minutes, and will jump over the wall.

Project 6

241

We can set up the walking time and thinking time by going the
AIController (Script) component in the Inspector view of AI and set up
the Thinking Time or Walking Time, as shown in the following screenshot:

Objective Complete - Mini Debriefing
We just created our AIController script by mixing two scripts, the CharacterControl
script from Project 4, The Hero/Heroine Part II – Animation and Controls, and the
New3PSController script from Project 5, Creating a Rocket Launcher.

We also added the new code section to give our enemy some characteristics and make it
smart enough to shoot the player, run towards the player, jump when it hits the wall, and to
stop and walk after a certain time.

Create Smart AI

242

In the Run() function, we used the if ((Vector3.Distance(transform.position,
player.position) <= (getPlayerRange+shotRange)) && ((Vector3.
Distance(transform.position, player.position) > shotRange))) {}
statement to check for the distance between the enemy and the player, which we can see
from the following diagram:

As we can see from the preceding diagram, the enemy will run towards the player if the
distance between the player and the enemy is higher than the shotRange but lower than or
equal to the getPlayerRange. And the enemy will shoot the player if the distance between
him and the player is in the shotRange.

We also use both Physics.CapsuleCast() and Physics.RayCast() to check for the
wall in front of the enemy.

Classified Intel
In this step, we have used both the Physics.CapsuleCast() and Physics.RayCast()
functions. Both functions are very useful when one wants to check if there is anything
blocking the enemy movement direction or the rocket bullet direction.

We use Physics.CapsuleCast() for our Jump() function because we want to check the
area in front of the enemy and whether the capsule hits the wall or not. We also check the
CollisionFlag.Sides for when the side of enemy collides with the wall as we use in the
Jump() function, as shown in the following script:

if ((Physics.CapsuleCast (p1, p2, 0.1, _direction, hit)) && (c_
collisionFlags & CollisionFlags.Sides)) {

Project 6

243

In this script, we also give the radius of the Capsule a value equal to 0.1 because we want
to make sure that our enemy is very close to the wall or collides with the wall to make it
jump, as shown in the following diagram:

For Physics.RayCast(), it is very similar to the function that we used in the first chapter.
It basically casts a ray from the position of the enemy's rocket launcher to the player by
checking to see if there is anything blocking it, as shown in the following diagram:

Creating a hit-point UI
Now we are at the last step of this chapter. We will add the hit-point game object for the
player and enemy as well as create the HitPointUI script.

Engage Thrusters
Before we start creating the HitPointUI script, we will need to create the HitPointUI
game object to contain it:

1.	 First, go to Unity and create an empty game object by going to GameObject | Create
Empty, and name it HitPointUI. Then, we will reset the Transform to default
as follows:

�� Position X: 0 Y: 0 Z: 0

�� Rotation X: 0 Y: 0 Z: 0

�� Scale X: 1 Y: 1 Z: 1

Create Smart AI

244

2.	 Next, create a new script by going to Assets | Create | Javascript, name it
HitPointUI, double-click on it to open MonoDevelop, and replace it with the
following code:
public var ai : AIController;
public var player : New3PSController;

public var frameTexture : Texture2D;
public var hpTexture : Texture2D;
public var aiTexture : Texture2D;
public var textHpTexture : Texture2D;
public var textAiTexture : Texture2D;

Here, we just set up all the parameters needed for our HitPointUI.

3.	 Then, add the Update() function to check for the game over state:
public function Update() : void {
 //Checking if the player or AI Hit-point equal 0 or below 0
 if ((player.GetHpPercent() <= 0.0) || (ai.GetHpPercent() <=
0.0)) {
 StaticVars.b_isGameOver = true;
 }
}

4.	 We will add the OnGUI() function to create the hit-point UI:
public function OnGUI() : void {
 //Draw Text
 GUI.DrawTexture (Rect (10,10,46,32), textHpTexture);
 GUI.DrawTexture (Rect (10,42,95,32), textAiTexture);

 //Character Hp
 // Create one Group to contain both images
 // Adjust the first 2 coordinates to place it somewhere else on-
screen
 GUI.BeginGroup (Rect (110,15,156,21));
 // Draw the background image
 GUI.DrawTexture(Rect (0,0,156,21), frameTexture);
 // Create a second Group which will be clipped
 // We want to clip the image and not scale it, which is why we
need the second Group
 GUI.BeginGroup (Rect (0,0,player.GetHpPercent() * 156, 21));
 // Draw the foreground image
 GUI.DrawTexture (Rect (0,0,156,21), hpTexture);
 // End both Groups
 GUI.EndGroup ();
 GUI.EndGroup ();

Project 6

245

 //AI HP
 // Create one Group to contain both images
 // Adjust the first 2 coordinates to place it somewhere else on-
screen
 GUI.BeginGroup (Rect (110,47,156,21));
 // Draw the background image
 GUI.DrawTexture(Rect (0,0,156,21), frameTexture);
 // Create a second Group which will be clipped
 // We want to clip the image and not scale it, which is why we
need the second Group
 GUI.BeginGroup (Rect (0,0,ai.GetHpPercent() * 156, 21));
 // Draw the foreground image
 GUI.DrawTexture (Rect (0,0,156,21), aiTexture);
 // End both Groups
 GUI.EndGroup ();
 GUI.EndGroup ();
}

In this function, we just use the new GUI function, GUI.BeginGroup(), to draw
the mask for the hit-point bar.

5.	 Now, we will go to back to Unity and drag the HitPointUI.js script to the
HitPointUI game object in the Hierarchy view. Then we will go to its Inspector
view and set the following:

�� Hit Point UI (Script)

�� Ai: AI (Drag the AI game object inside the Enemy game object to the
Hierarchy view here)

�� Player: First Person Controller (Drag the First Person Controller
game object to the Hierarchy view here)

�� Frame Texture: hitPointFrame (Drag the hitPointFrame.png from the
Chapter6/UI/ folder here)

�� Hp Texture: hitPointBarHP (Drag the hitPointBarHP.png from the
Chapter6/UI/ folder here)

�� Ai Texture: hitPointEnemy (Drag the hitPointEnemy.png from the
Chapter6/UI/ folder here)

�� Text Hp Texture: HP (drag the HP.png from the Chapter6/UI/ folder
here)

�� Text Ai Texture: Enemy (drag the ENEMY.png from the Chapter6/UI/
folder here)

Now we have finished our game, so click on Play to see the result. We will see that when the
player or enemy gets shot the hit-point bar will decrease.

Create Smart AI

246

Objective Complete - Mini Debriefing
We just created the UI game object and the script, which we use to control the hit-point UI.
We also used GUI.BeginGroup() to mask the decreasing damage from either the player or
enemy hitpoints.

Classified Intel
In this section, we have used GUI.BeginGroup() to mask out the texture to show
how much hit points are left. The GUI.BeginGroup() function must be close to GUI.
EndGroup().

In our code, we basically created the first group to contain the background texture, which
is the bar frame. Then, we drew another group on top of the first group, which contains the
bar texture as a clip mask. This second group's width will relate to the hit-point value left for
the player or enemy, as shown in the following code:

//Draw the background group
GUI.BeginGroup (Rect (110,15,156,21));
 GUI.DrawTexture(Rect (0,0,156,21), frameTexture);

// Create a second Group which will be clipped
 GUI.BeginGroup (Rect (0,0, player.GetHpPercent() * 156, 21));
 GUI.DrawTexture (Rect (0,0,156,21), hpTexture);

//End both Groups
 GUI.EndGroup ();
 GUI.EndGroup ();

From the preceding code, we can translate to the following diagram:

Project 6

247

Game over-Wrapping it up
In this chapter, we just created the Waypoints for the enemy to follow. We also created
the enemy AI that can jump, run towards the player, walk, and stop for a certain time—by
creating the AIController script. This script used the mix of CharacterControl script
from Project 4, The Hero/Heroine Part II – Animation and Controls, and New3PSController
script from the Project 5, Creating a Rocket Launcher.

We also learned more about the Gizmos() function to display the visual of our Waypoints
empty game object by using Gizmo.DrawIcon(), Gizmo.DrawLine(), and Gizmo.
DrawWireSphere().

Finally, we learned how to use the GUI.BeginGroup() function to mask and show the hit-
point UI object for the player and the enemy.

So, let's take a look at the following screenshot to see what we have done so far:

Create Smart AI

248

We start the game and then we get shot:

We fight back:

Project 6

249

However, we lost:

Are you ready to go gung ho?
A Hotshot challenge

Now we have an understanding of the basic concept of creating the enemy AI, but our AI
script still needs a lot of improvement to make it smarter. Why don't we do something to
spice it up?

ff Try making a wall that the AI cannot jump over and add the ability for the enemy to
avoid the wall by using Physics.CapsuleCast or Physics.RayCast and rotate
the enemy rotate when it hits the wall

ff Add different types of weapons for our enemy

ff Try changing or adjusting the parameter of the AIController, such as the
shotRange or getPlayerRange, to make the enemy react to the player faster

ff Add more waypoints for our Waypoints game object to make sure our enemy has
more choice to walk

ff Add multiple enemies in the scene (you will need to adapt the HitPointUI game
object to be able to track the hit points for each enemy)

ff Try changing the AIController code for the enemy to avoid the rocket and maybe
make the rocket follow the player's movement

Project 7
Forge a Destructible and
Interactive Virtual World

Most games need an environment to create the feeling and experience for the players of the
game's world. In games, we can also call it a level. It can interact with the player as well. The
level will create the difficulty and challenges for the players to play through and finish the
game. Each level will include static and non-static objects. The static objects include houses,
buildings, bridges, trees, and so on, and won't be movable. On the other hand, non-static
objects will interact with the player, and include rocks, doors, switches, and so on.

In many cases, we will see that games use the non-static objects to make the level much
more fun to play by adding the events or triggers to the objects and making them interact
with the players. For example, the players have to push the switch to open the door, or get
blocked because the bridge was destroyed when the player triggered the event. We can also
add physics to the non-static objects to make the objects behave realistically, such as adding
physics to the rocks when they are falling down to the ground.

In this chapter, we will continue from the last chapter to optimize our AIController script
and add the ragdoll object to replace the AI when it dies. Then, we will create a destructible
rock that will trigger when the player gets close to it, and a destroyable rock that the player
and AI can shoot and destroy. We will also create the ragdoll character object for the AI to
behave realistically when he is killed by the player.

Forge a Destructible and Interactive Virtual World

252

Mission briefing
We will start by optimizing the AIController script to make it run faster and attaching the
ragdoll object to replace the AI with the ragdoll character object when the AI is dead.

Next, we will create simple, non-static destructible rocks, which will be triggered when
the character gets close to it, and a simple destructible wall that the player can shoot the
rocket to destroy. By making both of the destructible objects fall down, we will need to have
a physics calculation in Unity by attaching the rigidbody to each object and activating it
when it is triggered.

What does it do?
First, we will open our old AIController script (from Project 6, Creating Smart AI Enemies)
to optimize some parameters and add the ability to replace the AI with the ragdoll object
when it dies. Then, we will create the destructible wall from four multiple cube objects,
which will each have a rigidbody. Of course, we will need to create the script to make the
object break apart into ParentRocks and Rock scripts when the character's shot hits it. We
will also create another destructible rock from multiple cubes, which will fall when the player
gets close to it. To make this rock fall down, we will create a trigger area and a TriggerArea
script, which will trigger and make the rock fall down when the player enters this area.

Why Is It Awesome?
Unity has the NVIDIA PhysX physics engine built-in, which is very powerful for
creating the realistic physics simulation for our game world. In this chapter, we will learn how
to apply physics to our game by applying ragdoll physics to the character as well as attaching
the rigidbody to make the objects or environment react to the player whenever we want.
This technique will add more variety to the game and will make it very challenging to play.

Your Hotshot Objectives
We will start by importing the chapter 7 package, and then we will go to each topic
as follows:

ff Optimizing the AIController script

ff Creating a ragdoll

ff Creating a destructible wall

ff Creating a Rockslide and trigger area

ff Creating ParentRocks and rock script

Project 7

253

Mission Checklist
First, we need the chapter 7 package. Go to the book website—http://www.packtpub.
com/support?nid=8267—to download the Chapter7.zip package. The package will
contain all the necessary resources— assets, scripts, and prefabs—that we will be using in
this chapter.

Import the package to Unity as you did for the previous chapters, as shown in the
following screenshot:

In the Project view, we will see the Chapter5 folder, Chapter6 folder, Chapter7 folder,
Gizmos folder, Standard Assets, and VirtualWorld scene. The Chapter5 and Chapter6
folders will contain the entire assets of Chapter 5 and Chapter 6. The Chapter7 folder
will contain all the scripts, assets, terrain, and prefabs that will be used in this chapter. The
Gizmos folder will contain the wayIcon.png. The Standard Assets folder contains all the
necessary built-in assets that will be used in the chapter. Finally, we will use the VirtualWorld
scene to create the destructible objects in this chapter. VirtualWorld scene includes the old
work from Chapter 5 and Chapter 6, and some new scripts to make it more suitable for
this project. Let's double-click on it to open the scene.

http://www.jatewit.com/Packt/Chapter7e

Forge a Destructible and Interactive Virtual World

254

Optimizing the AIController script
In this first section, we will go back to our AIController script, which we had already
created in the previous chapter. However, this AIController script needs a little more
tweaking to make our game frame rate higher.

Prepare for Lift Off
Before we start tweaking the AIController script, we need to see the frame rate result in
our game.

First, click Play to run the game and open the Statistics window by clicking on the Stats
option on the top-right corner of the Game view to bring up the Statistics window. In this
window, you can see many parameters that are very useful if you are trying to debug your
game and see how much Frame Rate, Draw Calls, Tris (triangles), Verts (vertices), Textures,
and Memory the game is using or running on right now.

When the game is running, you will see that often the frame rate (FPS) is not stable. It will go
from more than 120 FPS down to 20 FPS, which will cause the problem of lagging while we
are playing the game.

You might see the different frame rates, as shown in the following screenshot, but you
should be able to notice the rise and drop in the fast rate regardless of how fast or slow the
FPS is:

Project 7

255

Now, we know that the FPS is not stable and we need to fix it, but how can we know where
the problem came from, what is its actual cause? You will need to play through the game and
see when the FPS is going down.

First, let's think about the problem. If you look closely, you will observe that the FPS keeps
fluctuating. Hence, we can assume that this is not a graphics or memory problem, as that
would have caused the game to crash or the FPS to remain consistently low.

If you are using Unity Pro, you can also use the profiling
option in Unity to find the problematic code, which will be
explained later in this section.

Next, let's take a look at the issue that might have caused the problem. It might be our
player script or the AI script. As we haven't even controlled our character, it is likely that the
problem is in our AIController script. In order to verify this, let's move our character to a
position where we can see our AIs.

In the Statistics window, we see something wrong. The problem is that every time the AIs
start moving, the FPS decreases. On the other hand, when the AIs stop moving, the FPS goes
back to normal:

Forge a Destructible and Interactive Virtual World

256

Now we know that our problem comes from something inside the AIController
script, which should be the function that we call while the AI is moving. So, open the
AIController script, which is located in the Chapter7/Scripts folder in the Project
view, as shown in the following screenshot:

Now, double-click it, open the script and take a look at the Update() function, which is the
core function to control our AI.

Engage Thrusters
Inside the Update() function, we know that the problem arises only when the character
moves (which will be when the AI is not stopping or aiming).

Let's take a look inside if (!b_isAiming) {……}; we will see nothing different from the
CharacterControl script, which we already used to control our character in Project 4, The
Hero/Heroine Part II – Animation and Controls, so it shouldn't be a problem, right? However,
one part of the script that we have changed to make our AI jump instead of getting the Input
key is the Jump(_direction : Vector3) function.

In the Jump(_direction : Vector3) function, you will see that we have used Physics.
CapsuleCast to check for the AI to jump if the step is in front of it. As we discussed in the
last chapter, Physics.CapsuleCast will cast the capsule collision in the given direction
(which is the _direction that gets passed from Jump function) to check if the capsule
hit something.

Now, just think about it—do we really need to cast the capsule checking for the step and
make the AI jump? Can't we cast only one ray to check for it?

The answer is "Yes. We can do it".

Project 7

257

So, let's replace some old code in the Jump() function so that it looks similar to the
following code:

 //Make character Jump
public function Jump (_direction : Vector3) : boolean {
 //Checking for Jumping if the next y position is different than the
current y position
 var hit : RaycastHit;

 //Optimization
 var v3_leg : Vector3 = transform.position + controller.center +
Vector3.up * (-controller.height*0.5);
 var f_distance : float = controller.radius * 2;
 if ((Physics.Raycast(v3_leg, _direction, hit, f_distance)) &&
(c_collisionFlags & CollisionFlags.Sides)) {
 if (hit.transform.tag == "Wall") {
 return true;
 }
 }

 return false;
}

From the preceding code, we basically change the checking from the capsule cast to the
ray cast by drawing the line from the bottom of our AI in the given direction, which is much
faster because we only draw one line and not a whole capsule.

Now, we click Play and check our FPS to see whether the problem has been fixed by checking
the Statistics window while the AI is moving and is stationary.

Forge a Destructible and Interactive Virtual World

258

We can see that right now the FPS is a lot more stable, as shown in the following screenshot:

Objective Complete - Mini Debriefing
What we have done here is optimize our AIController script to increase the FPS by using
the Physics.Raycast instead of Physics.CapsuleCast to speed up the checking
process of making the AI jump.

Classified Intel
As we have seen in this chapter, we had to go through a lot of checking and coding to be
able to track down and see which part of the game decreases the FPS. We were aware of the
problem because we were coding it. However, if we didn't create the whole game or we use
somebody else's code, it might become a nightmare to track down which section is causing the
problem.

Project 7

259

In Unity Pro, it is easier to solve or find the problem within our code by using the Profiler
to debug our game. The way to see it is by going to Window | Profiler to open the Profiler
view; you will see two sections in this window.

The first part is the graph for CPU Usage, Rendering, Memory, Audio, and Physics, as shown
in the following screenshot:

Forge a Destructible and Interactive Virtual World

260

The second part will show us the functions and scripts that relate to the CPU Usage,
Rendering, Memory, Audio, and Physics, while we are playing this scene, as shown in the
following screenshot:

By opening the Profiler, we will be able to see the performance and the reason for the game
to slow down. If we use the old AIController script and open the Profiler view, we will be
able to see the cause that affects the performance of this game right away, as we can see in
the following screenshot:

Project 7

261

From the preceding graph, we can see that the yellow graph—which represents the
Physics—is very high. Then, we can also see the second section, which will show the function
in the script that causes the FPS issue, as shown in the following screenshot:

From the preceding screenshot, we will see the line Physics.CapsuleCast inside AIController.
Update() causes 95.0% of the CPU usage, which is exactly what we are looking for.

You can get more details on how to use the Profiler from the following URL:
http://unity3d.com/support/documentation/Manual/
Profiler.html.

Creating a ragdoll
In this section, we will apply the ragdoll to the AI ragdoll game object and replace it with the
current AI game object when it dies.

Prepare for Lift Off
Go to the Project view and open the Prefabs folder inside the Chapter7 folder. Drag the
robot_AI_ragdoll prefab to the Hierarchy view. Then, go to the Scene view and press the
F key to zoom into the robot_AI_ragdoll game object in the scene.

Forge a Destructible and Interactive Virtual World

262

Engage Thrusters
Now, we can start applying ragdoll physics to the robot_AI_ragdoll:

1.	 Go to GameObject | Create Other | Ragdoll… and you will see the Create Ragdoll
window pop up, as shown in the following screenshot:

2.	 Go back to the Hierarchy view and click on the triangle in front of robot_AI_
ragdoll to see the child names roothandle, then drag it to the Root in the
Create Ragdoll window, as shown in the following screenshot:

Project 7

263

3.	 Drag the upleg_L to the Left Hips in the Create Ragdoll window and click on the
upleg_L to bring its child names lowleg_L.

4.	 Drag the lowleg_L to the Left Knee in the Create Ragdoll window. Then, we will
click on the lowleg_L to bring up its child names heel_L and drag it to the Left Foot
in the Create Ragdoll window.

5.	 Do the same thing with the right side by dragging the upleg_R to the Right Hips,
lowleg_R to the Right Knee, and heel_R and drag it to the Right Foot in the
Create Ragdoll window, as shown in the following screenshot:

We can hold down the Option (for Mac) or Alt (for Windows)
key and click on the triangle in front of the object to expand
or collapse the object's children.

6.	 We are done with the lower part of the character, so let's continue with the upper
part of the body by applying everything as follows:

�� Left Arm: uparm_L

�� Left Elbow: elbow_L

�� Right Arm: uparm_R

�� Right Elbow: elbow_R

�� Middle Spine: spine1

�� Head: head

Forge a Destructible and Interactive Virtual World

264

We can also see the results as shown in the following screenshot:

7.	 Click on the Create button to create the ragdoll for our AI object. If you click on
robot_AI_ragdoll, you will see that the capsule and box colliders add on each
joint, as shown in the following screenshot:

Project 7

265

However, we are not done yet. From the preceding screenshot, we will see that we
still need to adjust the colliders associated with the character shape.

8.	 Click on head in the Hierarchy view, go to the Inspector view, and set the following:

ff Sphere Collider

�� Radius: 0.15

�� Center: X: -0.04 Y: -0.06 Z: 0

9.	 Next, click on roothandle in the Hierarchy view, go to the Inspector view, and set
the following:

ff Box Collider

�� Size: X: 1.3 Y: 0.5 Z: 0.35

�� Center: X: -0.5 Y: -0.1 Z: -0.175

10.	 Click on spine1 in the Hierarchy, go to the Inspector view, and set the following:

ff Box Collider

�� Size: X: 1.3 Y: 0.5 Z: 0.35

�� Center: X: -0.32 Y: 0.1 Z: -0.175

11.	 We just set up the ragdoll for the AI game object, but we still need to apply the
collider and Rigidbody to the gun. So click on the gun game object and apply the
Rigidbody to it by going to Component | Physics | Rigidbody. Go to the Inspector
view of this game object and set the following:

ff Rigidbody

�� Mass: 20

12.	 Next, click on the triangle in front of the gun game object to bring up the gun_
model, as shown in the following screenshot:

13.	 Apply the Box Collider to the gun_model, (which will make the gun collide with
other objects when it falls down), by going to Component | Physics | Box Collider.
We are now done with the creation of the robot_AI_ragdoll game object.

Forge a Destructible and Interactive Virtual World

266

14.	 You can also click on the robot_AI_ragdoll game object in the Hierarchy view and go
to the Inspector view, and then click on the Apply button to update the prefab, as
shown in the following screenshot:

15.	 As we have already updated the robot_AI_ragdoll prefab in the Project view, we
don't need the robot_AI_ragdoll game object in the Hierarchy view anymore, so
we just delete it by right-clicking on it and choosing Delete.

16.	 Now, we need to go back to the AIController script to enable the robot_AI_
ragdoll game object when the AI is dead. Let's open the AIController script
and add this script at the beginning, as highlighted in the following code:
@script RequireComponent(CharacterController)
//Ragdoll
public var aiRagdoll : GameObject;
//Waypoint
public var wayPoint : Waypoints;

Project 7

267

17.	 Then, go to OnCollisionEnter(collision : Collision) and add the
following highlighted lines of code:
//Checking for the collision if the rocket hit the AI
public function OnCollisionEnter(collision : Collision) : void {
 if (collision.transform.tag == "Rocket") {
 var rocket : Rocket = collision.gameObject.
GetComponent(Rocket);
 var f_damage : float = rocket.getDamage();
 aiHP -= f_damage;
 b_isGotHit = true;
 if (aiHP <= 0) {
 aiHP = 0;
 var obj_aiPrefab : GameObject = Instantiate(aiRagdoll,
transform.position, transform.rotation);
 GameObject.Destroy(transform.parent.gameObject);
 }
 }
}

18.	 Save the AIController script, and go back to the Project view; click on the AI
Prefab, and go to the Inspector view.

19.	 We will go to the Ai Ragdoll under the AIController (Script) and drag robot_AI_
ragdoll to this Ai Ragdoll parameter, as shown in the following screenshot:

With that we are done with this step. We can click Play and see the result—when we kill the
AI, we will see that the ragdoll game object (the one that we just created) replaces the AI.

Forge a Destructible and Interactive Virtual World

268

Objective Complete - Mini Debriefing
We just created the ragdoll prefab game object to replace the AI when the AI is dead, which
will make it look realistic. We also have used GameObject.Destroy() to destroy the AI
game object in the scene and use the Instantiate() function to clone the ragdoll prefab
to replace the AI game object that has already been destroyed.

Classified Intel
In this section, we created the ragdoll object to replace our Enemy when it dies, which looks
good. However, we will see that robot_AI_ragdoll just fell down to the ground without
any force from the rocket that was fired at it.

To make it much more fun and realistic, we can do this using two different equations.

First, we can add force (using the AddForce() function) to our ragdoll's rigidbody, which
will make our ragdoll move following the rocket direction. We can do this by adding a script
in the OnCollisionEnter(collision : Collision) in the AIController script, as
highlighted in the following code:

//Checking for the collision if the rocket hit the AI
public function OnCollisionEnter(collision : Collision) : void {
 if (collision.transform.tag == "Rocket") {
 var rocket : Rocket = collision.gameObject.GetComponent(Rocket);
 var f_damage : float = rocket.getDamage();
 aiHP -= f_damage;
 b_isGotHit = true;
 if (aiHP <= 0) {
 aiHP = 0;
 var obj_aiPrefab : GameObject = Instantiate(aiRagdoll,
transform.position, transform.rotation);
 var obj_aiPrefab : GameObject = Instantiate(aiRagdoll,
transform.position, transform.rotation);

Project 7

269

 /* Make the ragdoll react to the rocket force*/
 var f_force : float = 1000;
 //Get transform direction of the rocket
 var v3_rocketDir : Vector3 = rocket.transform.
TransformDirection(Vector3.forward);
 //Get the rigid body of gun and the ragdoll
 var a_rigid : Rigidbody[] = obj_aiPrefab.GetComponentsInChil
dren.<Rigidbody>();
 //Apply force to the gun rigidbody and ragdoll
 for (var r : Rigidbody in a_rigid) {
 r.AddForce(v3_rocketDir * f_force);
 }

 GameObject.Destroy(transform.parent.gameObject);
 }
 }
}

The second is using the explosive force (using the AddExplosionForce() function),
which will make our ragdoll move in a different direction depending on the distance from
the explosive position to our ragdoll's rigidbody object. We can do this by replacing the
following script in the same function as in the preceding code:

//Checking for the collision if the rocket hit the AI
public function OnCollisionEnter(collision : Collision) : void {
 if (collision.transform.tag == "Rocket") {
 var rocket : Rocket = collision.gameObject.GetComponent(Rocket);
 var f_damage : float = rocket.getDamage();
 aiHP -= f_damage;
 b_isGotHit = true;
 if (aiHP <= 0) {
 aiHP = 0;
 var obj_aiPrefab : GameObject = Instantiate(aiRagdoll,
transform.position, transform.rotation);

 /* Make the ragdoll react to the explosion force*/
 var f_force : float = 1000;
 //Get the rigid body of gun and the ragdoll
 var a_rigid : Rigidbody[] = obj_aiPrefab.GetComponentsInChil
dren.<Rigidbody>();
 //Apply force to the gun rigidbody and ragdoll
 for (var r : Rigidbody in a_rigid) {
 r.AddExplosionForce(f_force, rocket .transform.position,
100.0);
 }

 GameObject.Destroy(transform.parent.gameObject);
 }
 }
}

Forge a Destructible and Interactive Virtual World

270

The AddExplosionForce() function basically applies a force to
the rigidbody, which will simulate the explosion effects. You can
see more details on the AddExplosionForce() function from the
following Unity scripting document:
http://unity3d.com/support/documentation/
ScriptReference/Rigidbody.AddExplosionForce.html.

Creating a destructible wall
In this section, we will start creating the destructible wall with the multiple cube game
objects in the Unity engine as well as adding some code to the rocket script to make this
wall breakable when the player shoots the rocket to hit it.

Prepare for Lift Off
First, we will create the new Tag by going to (Edit | Project Settings | Tags) to bring out the
Tags' Inspector view. In the Inspector view, we click on the triangle in front of the Tags element
and at the Element 4 type Destructible, as we can see in the following screenshot:

Next, we will go to GameObject | Create Empty to create the empty game object and name
it Wall and reset its transform position to X: 0, Y: 0, Z: 0.

Engage Thrusters
Now we have set the Destructible tag and created an empty game object, Wall. Next,
we will be creating the four cubes to represent each piece of the broken wall:

1.	 Go to GameObject | Create Other | Cube name it Cube1, and drag it inside the
Wall game object, which we just created.

2.	 Add the Rigidbody to the Cube to make it fall realistically when it breaks by going to
Component | Physics | Rigidbody and adding Rigidbody.

Project 7

271

3.	 Next, we will go to the cube Inspector view to set up the parameters as follows:

ff Tag: Destructible

ff Transform

�� Position: X: 3 Y: 23.5 Z: 0

�� Rotation: X: 0 Y: 0 Z: 0

�� Scale: X: 6 Y: 6 Z: 1

ff Box Collider

�� Material: Rock (Drag Rock physics material in the Chapter7 folder
to Project view here)

ff Mesh Renderer

�� Materials:

�� Size: 1

�� Element 0: Rock (Drag Rock material in the Chapter7
folder to Project view here)

ff Rigidbody

�� Mass: 100

�� Is Kinematic: Check

4.	 Now we have finished setting up the first cube. Let's duplicate three more cubes by
pressing Command + D (for Mac), or Control + D (for Windows) and name all three
Cube2, Cube3, and Cube4, as shown in the following screenshot:

5.	 Then, we go to each new cube's Inspector view and set up its transform position
as follows:

ff Transform (Cube2)

�� Position: X: 3 Y: 29.5 Z: 0

ff Transform (Cube3)

�� Position: X: -3 Y: 29.5 Z: 0

Forge a Destructible and Interactive Virtual World

272

ff Transform (Cube4)

�� Position: X: -3 Y: 23.5 Z: 0

6.	 We will click on the Wall game object in the Hierarchy view and go to the Inspector
view and set up its Transform as follows:

ff Transform

�� Position: X: 1037.5 Y: -16.5 Z: 693

�� Rotation: X: 0 Y: 36 Z: 0

�� Scale: X: 1 Y: 1 Z: 1

7.	 Now, we will create the script that makes this wall object break apart when the
character shoots at it. Let's go to the Chapter7/Scripts folder and double-click
the rocket script to open this script in the script editor.

8.	 Inside the rocket script, we will add two parameters at the beginning of the script,
as highlighted in the following code:
@script RequireComponent(ConstantForce)
//Add the explosion force and radius
public var explosionRadius : float = 50;
public var explosionForce : float = 1000;

9.	 Next, we will go to the OnCollisionEnter (others : Collision) function
and add the following highlighted script:
public function OnCollisionEnter (others : Collision) : void {
 //Create the explosion on the first impact point of the rocket
and collider
 var contactPoint : ContactPoint = others.contacts[0];
 var rotation : Quaternion = Quaternion.FromToRotation(Vector3.
up, contactPoint.normal);
 GameObject.Instantiate(explosionParticle, contactPoint.point,
rotation);

 //Get the transform position of the rocket
 var v3_position : Vector3 = transform.position;
 //Get all colliders that touches or insides the explosion radius
 var a_hits : Collider[] = Physics.OverlapSphere(v3_position,
explosionRadius);
 for (var c : Collider in a_hits) {
 // Check tag
 if (c.tag == "Destructible") {
 //Get all rigidbody of the colliders
 var r : Rigidbody = c.rigidbody;
 if (r != null) {
 //Explosion
 r.isKinematic = false;
 r.AddExplosionForce(explosionForce, v3_position,
explosionRadius);

Project 7

273

 }
 }
 }

 KillObject();
}

10.	 Save and click on the Play button; if we go to the right path in the scene, we will see
the Wall object that we have just created. We can shoot at it and it will break, as
shown in the following screenshot:

Objective Complete - Mini Debriefing
In this step, we basically just created the four cube objects, and each one will have its own
collider and rigidbody, which will make them have their direction when we apply the
explosion force from the rocket that was fired at them. This will create a realistic behavior for
the wall when it's breaking apart, as shown in the following diagram:

Forge a Destructible and Interactive Virtual World

274

We also use the Physics.OverlapSphere() function to check for all the colliders that
touch or get inside the explosion radius.

For more information about the Physics.OverlapSphere()
function, you can go to the following Unity scripting document:
http://unity3d.com/support/documentation/
ScriptReference/Physics.OverlapSphere.
html?from=Rigidbody.

Classified Intel
In this step, we have used the Rock Physics Material apply to the Box Collider material in
the cube, to which we can apply the friction and bounciness value for each object to get a
realistic reaction when calculating the physics.

For the Rock Physics Material, we set the Dynamic Friction to 0.3 and Static Friction to 0.3,
which will make each piece have some small friction when it collides with another, because
we don't want the rock too slippery or too hard to move. Since we don't want each piece of
wall bouncing, we set the Bounciness to 0, as shown in the following screenshot:

For more details, you can go to the Unity website at:
http://unity3d.com/support/documentation/
Components/class-PhysicMaterial.html.

Project 7

275

Creating a rockslide and trigger area
In the last section we created the destructible wall object, which contains four cubes, each
with the Rigidbody and Box Collider attached to it, and we can shoot to break it.

In this last section, we will create the rockslide that the rock will fall on when the player hits
the trigger area and creates the Rocks and TriggerArea script to enable and disable the
Rockslide object.

Prepare for Lift Off
Go to GameObject | Create Empty to create the empty game object and name it
Rockslide and reset its position to X: 0, Y: 0, Z: 0.

Then, create another empty game object by going to GameObject | Create Empty; name it
Break and drag it inside the Rockslide, as shown in the following screenshot:

Next, create two cube objects, which will be the static object to make it look like some part
of the rock is still stuck to the terrain, and the trigger area to make the rock fall down when
the player hits it. Before we start, we need to reset the Transform of the Break game object
to default by clicking on the little gear on the right-hand side and then choose Reset.

Engage Thrusters
We will start by creating eight cubes to represent the rock pieces that will fall down:

1.	 Let's go to GameObject | Create Other | Cube, name it Cube1, and drag it inside
the Break game object inside Rockslide, which we just created.

2.	 Then, we will add the Rigidbody to the Cube1 by going to Component | Physics |
Rigidbody.

3.	 Next, we will go to the cube Inspector view to set up the parameters as follows:

ff Transform

�� Position: X: -1.5 Y: 0 Z: 0

�� Rotation: X: 0 Y: 0 Z: 0

�� Scale: X: 3 Y: 3 Z: 5

Forge a Destructible and Interactive Virtual World

276

ff Box Collider

�� Material: Rock (Drag Rock physics material in the Chapter7 folder
to Project view here)

ff Mesh Renderer

�� Materials:

�� Size: 1

�� Element 0: Rock (Drag Rock material in the Chapter7
folder in Project view here)

ff Rigidbody

�� Mass: 6000

�� Is Kinematic: Check

4.	 Now, we have finished setting up the first cube. Let's duplicate seven more cubes by
pressing Command + D (for Mac) or Control + D (for Windows) keys, and naming all
seven cubes Cube2, Cube3, Cube4, Cube5, Cube6, Cube7, and Cube8 similar to
what we did for the Wall game object in the third step. Then, we go to each new
cube's Inspector view and set up its position as follows:

ff Transform (Cube2)

�� Position: X: 1.5 Y: 0 Z: 0

ff Transform (Cube3)

�� Position: X: -1.5 Y: 0 Z: 5

ff Transform (Cube4)

�� Position: X: 1.5 Y: 0 Z: 5

ff Transform (Cube5)

�� Position: X: -1.5 Y: 0 Z: 10

ff Transform (Cube6)

�� Position: X: 1.5 Y: 0 Z: 10

ff Transform (Cube7)

�� Position: X: -1.5 Y: 0 Z: 15

ff Transform (Cube8)

�� Position: X: 1.5 Y: 0 Z: 15

Project 7

277

5.	 Now, we need two static objects that won't be falling down. Let's duplicate the Cube1
object that we just created by pressing Command + D (for Mac) or Control + D
(for Windows), name it CubeBase1, and drag it outside the Break game object
but inside the Rockslide game object, as shown in the following screenshot:

6.	 Go to the CubeBase1 Inspector view and set the parameters as follows:

ff Transform

�� Position: X: 0 Y: 0 Z: -5

�� Rotation: X: 0 Y: 0 Z: 0

�� Scale: X: 6 Y: 3 Z: 5

ff Rigidbody: Right-click and choose Remove Component

7.	 Duplicate this object to another side by pressing Command + D (for Mac) or Control
+ D (for Windows), name it CubeBase2, and set its Transform as follows:

ff Transform

�� Position: X: 0 Y: 0 Z: 20

�� Rotation: X: 0 Y: 0 Z: 0

�� Scale: X: 6 Y: 3 Z: 5

8.	 We are almost done creating this object. The last thing is creating the trigger area
to make the rock fall down when the player hits this area. So, we go to GameObject
| Create Empty, name it TriggerArea, and drag it inside the Rockslide game
object.

9.	 Then, add the Box Collider to it by going to Component | Physics | Box Collider, and
then set the parameters as follows:

ff Transform

�� Position: X: -35 Y: -15 Z: -3

�� Rotation: X: 0 Y: -25 Z: 0

�� Scale: X: 1 Y: 1 Z: 1

ff Box Colider

�� Is Trigger: Check

�� Size: X: 12 Y: 36 Z: 24

Forge a Destructible and Interactive Virtual World

278

We are done with creating the Rockslide game object, which will look something similar to
the following screenshot:

We now need to create the new script to control the Rockslide. Go to Assets | Create |
Javascript, name it Rocks, and replace the code as follows:

public var downForce : float = 10;
private var a_rigid : Rigidbody[]; //Array of the children's Rigidbody
private var b_isTrigger : boolean = false; // Is this object is
already triggered (Use for Trigger object)
private var in_count : int = 0; //Counting the number of Kinematic
Rock

//Setup Index of Children before start
public function Awake () : void {
 b_isTrigger = false;
 a_childRock = new Array();
 int_childLength = 0;
 in_count = 0;
 //Get all children's rigidbody
 a_rigid = gameObject.GetComponentsInChildren.<Rigidbody>();
}

// Use this for initialization
public function Start () : void {
 //Disable rigidbody before it triggered or hit by rocket
 DisabledRigidBody();
}

Project 7

279

From the preceding code, we get the array of the children of rigidbody by using the
gameObject.GetComponentsInChildren.<Rigidbody>() function. Next, we will add
the code to make the rocks stop moving when they fall down and their velocity is close to
zero by adding the following code:

// Update every frame
public function Update () : void {
 if (b_isTrigger == true) {
 for (var r : Rigidbody in a_rigid) {
 if (r.isKinematic == false) {
 var f_sqrLen : float = (r.velocity).sqrMagnitude;
 if (f_sqrLen <= 0.0) {
 r.useGravity = false;
 r.isKinematic = true;
 in_count++;
 }
 }
 }
 //Stop updating if all the rocks stop moving
 if (in_count >= a_rigid.Length) {
 b_isTrigger = false;
 }
 }
}

As the last step of the script, we will add the function for getting and setting b_isTrigger,
and also enable and disable rigidbody, as shown in the following script:

public function GetTrigger() : boolean {
 return b_isTrigger;
}

public function SetTrigger(_isTrigger : boolean) : boolean {
 b_isTrigger = _isTrigger;
}

public function EnabledRigidbody () : void {
 for (var r : Rigidbody in a_rigid) {
 r.useGravity = true;
 r.isKinematic = false;
 //Apply the velocity to the rigidbody in the -y direction to make
the object fall faster
 r.velocity = new Vector3(0, -downForce, 0);
 }
}

Forge a Destructible and Interactive Virtual World

280

public function DisabledRigidBody() : void {
 for (var r : Rigidbody in a_rigid) {
 r.useGravity = false;
 r.isKinematic = true;
 }
}

We will use this Rocks script with our Break game object in the Rockslide to enable and
disable rigidbody of its children by setting the isKinematic to false or true.

Next, we will need another script to control the trigger area, which will trigger the
Rockslide falling down. Go back to Unity and go to Assets | Create | Javascript to create a
new script and name this new script TriggerArea, and replace the code as follows:

public var rocks : Rocks;

public function OnTriggerEnter(collider : Collider) : void {
 if ((collider.transform.tag == "Player") && (rocks.GetTrigger() ==
false)) {
 rocks.EnabledRigidbody();
 rocks.SetTrigger(true);
 }
}

The preceding code basically tells us that if the player enters the trigger area, we will enable
the rigidbody and make the rock fall down.

Go back to Unity and we will do the last step, which is attaching the script to the Rockslide
game object. Let's click on the Break game object inside Rockslide and drag the Rocks
script on it.

Then, we will click on the TriggerArea object inside Rockslide and drag the
TriggerArea script that we just created on it. Then, we will go to the TriggerArea
Inspector view and set the following:

ff Trigger Area (Script):

�� Rocks: Break (Drag Break game object, the child of the Rockslide object,
to the Hierarchy here)

Project 7

281

Finally, we will click on the Rockslide game object and set its Transform as follows:

ff Transform:

�� Position: X: 1069 Y: 32.5 Z: 677

�� Rotation: X: 0 Y: 140 Z: 0

�� Scale: X: 1 Y: 1 Z: 1

Now, we are finished, let's click Play to see our result. We will see that if we are entering the
TriggerArea the rock will start falling down.

We can also click on TriggerArea and watch our
character walk into it from the Scene view.

Objective Complete - Mini Debriefing
We have created another destructible object, which will fall down when the player gets close
to it by creating the trigger area that will be triggered when the player has entered the area.
We also created the new TriggerArea script that was used to detect the player as well as
the Rocks script to enable rigidbody and make the object destructible.

Classified Intel
In this step, we have used the rigidbody.isKinematic = true to disable our
rigidbody and enable the rigidbody by setting it to false. This is the trick that we can
use to check whether our object reacted with the physics or not. We can also adapt this
trick when we want to play animation of this object that has the rigidbody attached to it
by setting the rigidbody.isKinematic to true—to play the animation and disable the
physics movement—or setting the rigidbody.isKinematic to false—to disable the
animation and enable the physics movement.

Game over-Wrapping it up
In this chapter, we have optimized the AIController.js by changing from the Physics.
CapsuleCast to Physics.Raycast to increase the FPS in our game. Then, we learned
how to create the ragdoll object and apply it to the character when it is dead by using
Instatiate() and Destroy() functions to clone the ragdoll prefab and replace the old
object.

Then, we created the destructible Wall and destroyed it when we shot at it by adding some
script to the rocket script.

Forge a Destructible and Interactive Virtual World

282

We also created the Rockslide game object, the Rocks script to enable and disable
rigidbody of the rocks, and the triggerArea game object to make the object fall down
when the player hits the triggerArea by using another script (TriggerArea).

So, let's take a look at the screenshot of what we have done so far:

The rock falls down when the player hits the trigger area as shown in the previous screenshot.

Project 7

283

The player shoots and destroys the destructible wall as shown in the previous screenshot.

The AI gets killed as shown in the previous screenshot.

The player gets killed as shown in the previous screenshot.

Forge a Destructible and Interactive Virtual World

284

Are you ready to go gung ho?
A Hotshot challenge

Now we understand the concept of creating the destructible objects, but the objects that we
just created are on the cube from the Unity engine. We can make it more interesting with
something like the following:

ff Creating your own object in any 3D software, instead of the cube, to make it much
more realistic and attach the ParentRocks.js script to it and see how it works

ff Adding some script that will make the rock damage the player and AIs when they get
hit while the rock is falling down

ff Adding the smoke particle to the rocks when they are falling down

ff Making the ragdoll match the last AI animation post by creating the ragdoll with the
AI game object and using the isKinematic method to enable or disable ragdoll
physics instead of replacing the new object

ff Creating a random rock that will fall every time the player walks by the lake

Project 8
Let the World See the
Carnage! Save, Load,
and Post High Scores

In this chapter, we will talk about saving and loading the high score from the local machine
or web server.

Why do we need to save the high score? The advantage of the high score is to keep a record
of the players and how well they progress each time they play the game. It also creates a
challenge for the players to beat their record and keep playing the game again. For the online
game, the high score is very important to let the players see their progress and compare with
their friends or other players.

Mission briefing
We will create a simple high score table so that the players can save the score locally
as well as post their score to the server database, by using the example project that is in
this chapter.

This chapter is basically the extension of the project in Project 7, Creating a Destructible and
Interactive Virtual World, and it includes the new RESTART button (using the OnGUI function
instead of the GUITexture button). It also includes the time UI and score UI for the player to
see the result when they complete the game.

Let the World See the Carnage! Save, Load, and Post High Scores

286

We will start by creating the high score menu for saving and loading the score from our local
machine by using the PlayerPrefs class in Unity, which allows us to save the parameters
locally to our machine (this is very similar to SharedObject in ActionScript 3.0).

Then, we will create the C# XMLParser script that will be used to get the XML value of the
return data from the provided database server. Next, we will create the Unity Javascript,
which will handle the posting and loading of scores from the database server.

Finally, we need to encrypt our high score by using the MD5 encryption class written by
Matthew Wegner. For more details please refer to the following website:

http://www.unifycommunity.com/wiki/index.php?title=MD5.

The MD5 encryption script will allow us to encrypt the hash key, which will prevent
submission of fake high scores.

What Does It Do?
When we finish this chapter, we will have the GAME OVER menu, which has four buttons to
allow the players to submit their score on their local machine and server database, to load
the high score data from the player's local machine, to load the high score from the server
database, and a RESTART button to replay the game.

Why Is It Awesome?
What we will get from this chapter is the way to use PlayerPrefs to save high score. This
PlayerPrefs also allows us to save game data, such as the location of the player, current
stage, or current hit points. We will learn how to set up the basic database server by using
MySQL and PHP script to return the high score data in the XML format to the game. We will
also look at how to create the C# script to parse our XML data for using our high score table.
Lastly, we will get to know how to use MD5 script to encrypt the user data before sending to
the server database.

Your Hotshot Objectives
We will start by importing the chapter8 package, which we will download in the next
section, and then begin creating the high score table with the following topics:

ff Creating a high score menu

ff Saving and loading local high score

ff Getting XML data from server

ff Posting and loading high score to server

Project 8

287

Mission Checklist
First, we need the chapter8 package. We can start by going to this URL:
http://www.packtpub.com/support?nid=8267 to download the Chapter8.zip
package. The package will contain all the necessary resources such as assets, scripts, and
prefabs that we will be using for this project.

Then, we import the package to Unity as we did for the other chapters, as shown in the
following screenshot:

In the Project view, we will see the Chapter5, Chapter6, Chapter7, Chapter8, Gizmos folders,
the HiScore scene, and Standard Assets. The Chapter5, Chapter6, and Chapter7 folders
will contain all the scripts, assets, terrain, and prefabs, which we will use from the previous
chapters. The Chapter8 folder will have the Box.psd file, HiScore.php script, and a
scripts folder that contains the HiScore.js script, which we will use in this chapters.
The Gizmos folder will contain the wayIcon.png file. Standard Assets contains all the
necessary built-in assets that will be used in the chapter. Finally, HiScore is the scene we
will use for this chapter.

Double-click on the HI-SCORE scene to open the scene for Chapter8.

Let the World See the Carnage! Save, Load, and Post High Scores

288

Creating a high score menu
In this section, we will create three menu pages.

First is the game over menu, which will contain the following:

ff The final score of the player

ff The text field for the player to enter his/her name

ff The SUBMIT button to save the player's score

ff The LOCAL HI-SCORE button to see the scores from the player's local machine

ff The SERVER HI-SCORE button to see the scores from the database server

ff The RESTART button to replay the game

Second is the local high score table menu, which will contain the high score data in the
scrolled area that loads the local high score data from the player machine when the player
clicks on the LOCAL HI-SCORE button on the first page.

Also, the server high score table page will be similar to the local high score page except
that the score data in this table will load from the database on the server, which allows the
duplicate names.

Prepare for Lift Off
Double-click the HiScore script to open MonoDevelop and start adapting in HiScore
script. Now we are ready to roll.

Engage Thrusters
We will start creating the GAMEOVER menu by using the OnGUI() function, similar to what
we did in Project 2, Creating a Menu in an RPG:

1.	 At the beginning of this script, type the highlighted code in the HiScore.js after
the line public var customSkin : GUISkin;, as shown next:
public var customSkin : GUISkin;

//Setting the default string on the submit text field
public static var userName : String = "Player 1";

//Setting the maximum number of users displayed on the scoreboard
public var maxUsers : int = 10;

Project 8

289

//Creating the enum parameter for the menu page
enum Page { GAMEOVER, LOCALSCORE, SERVERSCORE };

//Creating the enum parameter for the menu page
private var e_page : Page = Page.GAMEOVER;

//Creating the scroll position for the local high score scroller
area
private var scrollPositionL : Vector2 = Vector2.zero;

//Creating the scroll position for the server high score scroller
area
private var scrollPositionS : Vector2 = Vector2.zero;

//Checking if the restart button is clicked by the user
private var b_isClickRestart : boolean = false;

//Checking if the submit button is clicked by the user
private var b_isClickSubmit : boolean = false;

2.	 Next, set up the default value for our parameters by adding the following script to
the Start() function:
public function Start() : void {
 //Initializing
 e_page = Page.GAMEOVER;
 scrollPosition = Vector2.zero;
 b_isClickRestart = false;
 b_isClickSubmit = false;
}

3.	 Continue to the next function OnGUI(); we will add more script here to create our
GAMEOVER menu page. So let us add the highlighted script as follows:
public function OnGUI() : void {
 if (StaticVars.b_isGameOver) {
 GUI.skin = customSkin;
 //Checking if we didn't click on the restart button
 if (b_isClickRestart == false) {
 //Checking for the current page
 switch (e_page) {
 case Page.GAMEOVER:
 GameoverPage(); //Creating game over page
 break;
 case Page.LOCALSCORE:
 LocalScorePage(); //Creating local score page

Let the World See the Carnage! Save, Load, and Post High Scores

290

 break;
 case Page.SERVERSCORE:
 ServerScorePage(); //Creating server score page
 break;
 }
 //Creating the Restart Button
 if (GUI.Button(new Rect((Screen.width - 240)*0.5, (Screen.
height*0.1) + 320, 240, 30), "RESTART")) {
 b_isClickRestart = true;
 Restart();
 }
 } else {
 //If we clicked on the restart button - just put the
Loading... text here
 GUI.Box(new Rect(Screen.width*0.1, Screen.height*0.1,
Screen.width * 0.8, Screen.height * 0.8), "", GUI.skin.
GetStyle("Box2"));
 GUI.Label(new Rect((Screen.width-150)*0.5, (Screen.
height-50)*0.5, 150, 50), "LOADING...", GUI.skin.
GetStyle("Text1"));
 }
 }
}

4.	 Then, create the new GameoverPage() function:
//Creating Gameover Page GUI
private function GameoverPage() : void {
 //Creating the background box
 GUI.Box(new Rect(Screen.width*0.1, Screen.height*0.1, Screen.
width * 0.8, Screen.height * 0.8), "GAMEOVER", GUI.skin.
GetStyle("Box2"));
 //Creating Text Label to show the final score of the player
 GUI.Label(new Rect((Screen.width - 400)*0.5, (Screen.height*0.1)
+ 50, 400, 25), "Final Score: " + TimeScoreUI.int_currentScore.
ToString(), GUI.skin.GetStyle("Text1"));
 //If the user didn't click submit, we create the submit button
and text field for the player to submit the score
 if (b_isClickSubmit == false) {
 GUI.Label(new Rect((Screen.width - 300)*0.5, (Screen.
height*0.1) + 80, 300, 25), "Enter Your Name", GUI.skin.
GetStyle("Text1"));
 //Creating the input text field to get the player name
 userName = GUI.TextField(new Rect((Screen.width - 240)*0.5,
(Screen.height*0.1) + 120, 240, 40), userName, 8);
 //Submit button

Project 8

291

 if (GUI.Button(new Rect((Screen.width - 240)*0.5, (Screen.
height*0.1) + 200, 240, 30), "SUBMIT")) {
 b_isClickSubmit = true;
 //TODO: Submitting both local and server high score here
 }
 }
 //Creating the Local Hi-Score page button
 if (GUI.Button(new Rect((Screen.width - 240)*0.5, (Screen.
height*0.1) + 240, 240, 30), "LOCAL HI-SCORE")) {
 e_page = Page.LOCALSCORE;
 }
 //Creating the Server Hi-Score page button
 if (GUI.Button(new Rect((Screen.width - 240)*0.5, (Screen.
height*0.1) + 280, 240, 30), "SERVER HI-SCORE")) {
 //TODO: Loading the score data from server here
 e_page = Page.SERVERSCORE;
 }
}

5.	 Next, we will create the LocalScorePage() function. This function will load the
high score from the player's local machine and display it on the menu. This menu
will include the scrolled area and scroll bar to show the player's score data. Let's
create the LocalScorePage() function as follows:
//Loading the local scores
private function LocalScorePage() : void {
 //Creating the background box
 GUI.Box(new Rect(Screen.width*0.1, Screen.height*0.1, Screen.
width * 0.8, Screen.height * 0.8), "LOCAL HI-SCORE", GUI.skin.
GetStyle("Box2"));
 //Creating the scrolled area and scrollbar to view the player
scores
 scrollPositionL = GUI.BeginScrollView (new Rect ((Screen.width
- 320)*0.5, (Screen.height*0.1) + 80, 320, 180), scrollPositionL,
new Rect (0, 0, 300, 30*maxUsers));
 for (var i: int = 0; i < maxUsers; i++) {
 //Setting the number of the user
 GUI.Label(new Rect(0, i * 30, 35, 30), (i+1).ToString() +
".");
 //TODO: Showing the user name and score here
 }
 GUI.EndScrollView (); //End Scroll Area
 if (GUI.Button(new Rect((Screen.width - 240)*0.5, (Screen.
height*0.1) + 280, 240, 30), "BACK")) {
 e_page = Page.GAMEOVER;
 }
}

Let the World See the Carnage! Save, Load, and Post High Scores

292

6.	 This function will create the LOCAL HI-SCORE menu that includes the background
box, the scrolled area to display the user's scores, and the Back button to go back to
the GAMEOVER page.

7.	 Finally, we will create the last function for the HiScore script, the
ServerScorePage() function. This function is very similar to the
LocalScorePage() function that we created earlier, except that this function will
load the score data from the server (we will have to wait until it is loaded). We will
talk about this in a later step. So right now, we will create the ServerScorePage()
function as follows:
//Loading score from server
private function ServerScorePage() : void {
 //Creating the background box
 GUI.Box(new Rect(Screen.width*0.1, Screen.height*0.1, Screen.
width * 0.8, Screen.height * 0.8), "SERVER HI-SCORE", GUI.skin.
GetStyle("Box2"));
 //TODO: Checking is the loader completed
 scrollPositionS = GUI.BeginScrollView (new Rect ((Screen.width
- 320)*0.5, (Screen.height*0.1) + 80, 320, 180), scrollPositionS,
new Rect (0, 0, 300, 30*maxUsers));
 for (var i: int = 0; i < maxUsers; i++) {
 //Setting the number of the user
 GUI.Label(new Rect(0, i * 30, 35, 30), (i+1).ToString() +
".");
 //TODO: Showing the user name and score here
 }
 GUI.EndScrollView (); //End Scroll Area
 //TODO: If the loader doesn't complete display Loading... text
 if (GUI.Button(new Rect((Screen.width - 240)*0.5, (Screen.
height*0.1) + 280, 240, 30), "BACK")) {
 e_page = Page.GAMEOVER;
 }
}

8.	 Now, we can go back to Unity and click Play to see our result by letting the
character die or killing all enemies in the scene. We will see something similar
to the following screenshot:

Project 8

293

We can also include StaticVars.b_isGameOver = true; in the
Start() function to see our GAMEOVER menu, right away.

We can click on the LOCAL HI-SCORE button or SERVER HI-SCORE button to go to another
page, click on the RESTART button to replay the game, enter the name or the text field and
click on the SUBMIT button, even though it won't save or send any score right now. At the
LOCAL HI-SCORE or SERVER HI-SCORE page, you can also see the BACK button to go back to
the GAMAEOVER menu, and the RESTART button to restart the game.

In the next step, we will be creating the script to save the local high score for the user, which
will check whether the player's final score is saved or not. This script will automatically sort
the score order from the maximum to minimum, and display it to the scoreboard.

Objective Complete - Mini Debriefing
We just finished creating the GAMEOVER menu that will display the player's final score, has
the option for the player to submit his/her score, and a button to see the local scoreboard as
well as the server scoreboard.

First, we created the userName parameter to set the default username on the Submit
text field, and maxUsers to limit the maximum number of users that will display on
our scoreboard.

Then, we created the enum variable to check for the current page of our menu, which
contains the GAMEOVER page, local score page, and server score page. We also have the
scrollPosition parameter to create the scrolled area for the high score table. Then, we
have two boolean parameters to check whether the RESTART and SUBMIT buttons have
been clicked by the user or not.

Let the World See the Carnage! Save, Load, and Post High Scores

294

In the OnGui() function, we first checked if the RESTART button is clicked by using the if
statement to check it. If the RESTART button has been clicked, the Restart() function
will be called and the loading menu will be displayed for the user to wait for the game to
restart. On the other hand, if the player doesn't click on the RESTART button, the game will
show that the menu page depends on the current stage of the page by using the switch
statement to check for the e_page parameters, which are Page.GAMEOVER, Page.
LOCALSCORE and Page.SERVERSCORE. Each case will call the function to draw the UI of its
menu, which are the GameoverPage(), LocalScorePage(), and ServerScorePage().

Next, we created the GameoverPage() function, which we can divide into three sections.
First, we created the background, then the label for our menu, and then we displayed the
final score, which is TimeScoreUI.int_currentScore. Then, we checked if the player
clicked the SUBMIT button. If not, we will have the SUBMIT button and the text field for the
players to enter their names and post their scores. In the last step, we created the LOCAL
HI-SCORE and SERVER HI-SCORE button, which will set the e_page parameter to Page.
LOCALSCORE and Page.SERVERSCORE.

Finally, we created the other two functions. The LocalScorePage() function will show the
result of the high-score table from the local machine, and ServerScorePage() will show
the result of the high-score table from the server.

Classified Intel
In this chapter, we created the enum parameter to check for the menu page.

The enum parameter is very similar to the object class that only contains the Integer type
or we can say that only int type in the Unityscript. In Unity JavaScript or C#, we create enum
by using the same syntax, which is enum Page { OBJECT1, OBJECT2, OBJECT3 }; or
enum Page { OBJECT1=1, OBJECT2, OBJECT3 };.

From those scripts, if we don't assign the integer value to any object, the value of each object
will automatically be assigned, starting from 0 and so on. If we assign the integer 1 to the first
value, then that object value will be 1 instead of 0 and the rest will continue from 1 and so on.
We can also assign the number for each object manually, such as enum Page { OBJECT1=2,
OBJECT2=7, OBJECT3=0 };. This will assign each object to have its own value.

For more details on enum, we can go to the following website:

http://msdn.microsoft.com/en-us/library/sbbt4032%28v=vs.80%29.aspx.

Project 8

295

What is the advantage of using enum in Unity? If we take a look at our code at the line
private var e_page : Page = Page.GAMEOVER; and change the word private
to public, then go back to the Unity and click on the HiScore game object to see the
Inspector view, we will see the new editable parameter names E_page, which is the drop-
down button. If we click on it, we will see that we can choose only three values, which are
GAMEOVER, LOCALSCORE, and SERVERSCORE:

Those names are from the enum objects that we assigned in the HiScore.js script. The
advantage of using enum parameter is that we will be able to create the editable value that
limits the number of choices and protects an invalid input data, which will save us from
having to write an extra code to check for the invalid input data. For example, if we were
using integers, having a page value of 500—which is an invalid page number—would not
make any sense.

This is very useful when we work with other people or when we are testing the game
because we can make it readable for everyone; they can just basically set up the enum
parameter and then adjust it in the editor while they are testing the game.

Saving and loading the local high
score

In this section, we will be creating two scripts for saving and loading the high score from
our local machine. The first script will be the UsersData script, which will contain all the
functions to save and load the score to our local machine by using the PlayerPrefs class.
Then, we will create the LocalHiScore script, which will contain the function to sort user
scores and check for the final score submission. Finally, we will go back to the HiScore
script to create a LocalHiscore object to save and load high scores locally.

Let the World See the Carnage! Save, Load, and Post High Scores

296

Prepare for Lift Off
Before we start, we need to know the basic parameters we need to include in the high-
score table. We will need the order number, username, and the user score, as shown in the
following screenshot:

Engage Thrusters
We will start by creating the UsersData class to contain the user data and functions, which
will load and save the user data to the local machine using PlayerPref:

1.	 In Unity, go to Assets | Create | Javascript, name it UsersData and double-click to
open MonoDevelop, and then replace the script as follows (you should remove all
the existing script that is automatically created with Unity):
class UsersData {
 //Game Key - to make sure that each object has different key set
 public var keylocal : String = "ShooterLocal";
 private var s_keyScore : String = "Score";
 private var s_keyName : String = "Name";

 private var s_name : String;
 private var int_score : int;
 private var as_randomNames : String[] = ["Antony", "John",
"Will", "Kate", "Jill"]; //To get a random name

 //Setting the user name and score
 public function Init(name : String, score : int) : void {
 int_score = score;
 s_name = name;
 }

Project 8

297

 public function GetName() : String {
 return s_name;
 }

 public function GetScore() : int {
 return int_score;
 }

2.	 We just created the Init() function to set up the score and name from this object.
Next, we will create the SaveLocal() function, which will get the index and save
the name and score to our local machine by using PlayerPref:

//Saving Data
 public function SaveLocal (index : int) : void {
 //Saving user score
 PlayerPrefs.SetInt(keylocal + s_keyScore + index.ToString(),
int_score);
 //Saving user name
 PlayerPrefs.SetString(keylocal + s_keyName + index.ToString(),
s_name);
 }

3.	 Then, we will create the LoadLocal(), LoadScore(), and LoadName()
functions, which will load the user's score and name from the index:
 //Loading Data
 public function LoadLocal (index : int) : void {
 int_score = LoadScore(index);
 s_name = LoadName(index);
 }

 private function LoadScore (index : int) : int {
 //Checking to see if the value already exists
 var s_newKey : String = keylocal + s_keyScore + index.
ToString();
 if (PlayerPrefs.HasKey(s_newKey)) {
 return PlayerPrefs.GetInt(keylocal + s_keyScore + index.
ToString());
 } else {
 //If no key exist return 0 score
 return 0;
 }
 }

 private function LoadName (index : int) : String {

Let the World See the Carnage! Save, Load, and Post High Scores

298

 //Checking to see if the value already exist
 var s_newKey : String = keylocal + s_keyName + index.
ToString();
 if (PlayerPrefs.HasKey(s_newKey)) {
 return PlayerPrefs.GetString(keylocal + s_keyName + index.
ToString());
 } else {
 //If no key exist return random name;
 var int_random : int = Random.Range(0, as_randomNames.
length);
 return as_randomNames[int_random];
 }
 }
}

4.	 Next, we will continue creating the next script, so let's create the LocalHiScore
script and replace it as follows:
class LocalHiScore {
 private var int_maxUser : int;
 private var int_minScore : int;
 private var as_users : UsersData[]; //To get all loader data
name

}

5.	 Here, we set up the LocalHiScore script to have class keyword, which is
similar to the UsersData script, because we don't need this class to inherit from
MonoBehaviour. We also set up all necessary parameters for this class. Next, we
will add the setup function and load function to this class. Let's add the following
highlighted code:
class LocalHiScore {
 private var int_maxUser : int;
 private var int_minScore : int;
 private var as_users : UsersData[]; //To get all loader data
name

 //Setting the maximum user to display on the menu
 //Loading the user data and store it in here
 public function SetMaxUser (maxUser : int) : void
 int_maxUser = maxUser;
 //Loading all the users data from the local machine
 LoadGameLocal();
 }

 public function LoadGameLocal () : void {

Project 8

299

 //Creating the array of UsersData object
 as_users = new UsersData[int_maxUser];
 //Creating the array of int to store all the user scores data
 var a_scores : int[] = new int[int_maxUser];
 for (var i: int = 0; i < int_maxUser; i++) {
 //Creating the user data object, load data, and store it to
the UsersData array
 var obj_user : UsersData = new UsersData();
 obj_user.LoadLocal(i);
 as_users[i] = obj_user;
 a_scores[i] = as_users[i].GetScore();
 }
 //Getting the minimum score for the save data purpose
 int_minScore = Mathf.Min(a_scores);
 }
}

6.	 Then, we will add the SaveGame (scores : int, name : String) and
SortUser (array : UsersData[]) functions to sort the user data and save it
to the local machine after the LoadGameLocal() function, as shown highlighted in
the following code:
 class LocalHiScore {
 //Above Script
 //////////////////////////

 public function LoadGameLocal () : void {
 //Creating the array of UsersData object
 as_users = new UsersData[int_maxUser];
 //Creating the array of int to store all the user scores data
 var a_scores : int[] = new int[int_maxUser];
 for (var i: int = 0; i < int_maxUser; i++) {
 //Creating the user data object, load data, and store it to
the UsersData array
 var obj_user : UsersData = new UsersData();
 obj_user.LoadLocal(i);
 as_users[i] = obj_user;
 a_scores[i] = as_users[i].GetScore();
 }
 //Getting the minimum score for the save data purpose
 int_minScore = Mathf.Min(a_scores);
 }

 public function SaveGame (scores : int, name : String) : void {

Let the World See the Carnage! Save, Load, and Post High Scores

300

 //Submitting the score if the score is higher than the minimum
score of the database
 if (scores >= int_minScore) {
 var a_newData : Array = new Array(as_users);
 //Removing the last Array
 a_newData.Pop();
 //Create new user and save it to array
 var obj_user : UsersData = new UsersData();
 obj_user.Init(name, scores);
 a_newData.Add(obj_user);
 //Setting JS Array back to Builtin
 as_users = a_newData.ToBuiltin(UsersData);
 //Sorting Data
 SortUser(as_users);
 }
 for (var i: int = 0; i < int_maxUser; i++) {
 as_users[i].SaveLocal(i);
 }
 }

 //Sorting the score from the maximum to minimum
 private function SortUser (array : UsersData[]) : void {
 for (var i : int = 0; i < array.length-1; i++) {
 for (var j : int = i+1; j < array.length; j++) {
 //If the first score is lower than second score swap the
position
 if (array[i].GetScore() <= array[j].GetScore()) {
 var obj_temp : UsersData = array[i];
 array[i] = array[j];
 array[j] = obj_temp;
 }
 }
 }
 }
}

7.	 We will add two more functions for getting the user score and name from the index
to use it to display on the menu after the SortUser (array : UsersData[])
function, as shown in the following code:
class LocalHiScore {
 //Above Script
 //////////////////////////

 //Sort the score from the maximum to minimum

Project 8

301

 private function SortUser (array : UsersData[]) : void {
 for (var i : int = 0; i < array.length-1; i++) {
 for (var j : int = i+1; j < array.length; j++) {
 //If the first score is lower than the second score swap
the position
 if (_array[i].GetScore() <= array[j].GetScore()) {
 var obj_temp : UsersData = array[i];
 array[i] = array[j];
 array[j] = obj_temp;
 }
 }
 }
 }

 public function GetNameData(index : int) : String {
 return as_users[index].GetName();
 }

 public function GetScoreData(index : int) : int {
 return as_users[index].GetScore();
 }
}

8.	 We are almost done. Finally, we will go back to the HiScore script to add some
scripts and enable the game to save and load the high score locally. Let's go back to
the HiScore script, at the line before the Start() function, and add the following
highlighted code:
private var b_isClickSubmit : boolean = false; //Checking if the
submit button is clicked by the user

private var obj_localHiScore : LocalHiScore; //Creating the
LocalHiScore Object

public function Start() : void {
 //Initializing

9.	 Then, we will go to the Start() function and create the LocalHiScore object, as
shown highlighted in the following code:
public function Start() : void {
 //Initializing
 e_page = Page.GAMEOVER;
 scrollPosition = Vector2.zero;
 b_isClickRestart = false;
 b_isClickSubmit = false;

Let the World See the Carnage! Save, Load, and Post High Scores

302

 //Creating a Local Hiscore Object
 obj_localHiScore = new LocalHiScore();
 //Setting the maximum scores to show on the table & loading the
local high score data here
 obj_localHiScore.SetMaxUser(maxUsers);
}

In this Start() function, we created the new LocalHiScore object, and set the
max user display and load the user data from the local machine.

10.	 We already have the user data object, and now we need to save the score by going
to the GameoverPage() function inside the Submit button function and type
the following highlighted code:
 //Submit button
 if (GUI.Button(new Rect((Screen.width - 240)*0.5, (Screen.
height*0.1) + 200, 240, 30), "SUBMIT")) {
 b_isClickSubmit = true;
 //TODO: Submitting both local and server high score here
 obj_localHiScore.SaveGame(TimeScoreUI.int_currentScore,
userName); //Submitting to the local score
 }

11.	 This is the code for saving the score locally after the player clicks on the SUBMIT
button. Then, we save the score to our local machine. Now we need to load the
user score data and display it on the menu in the scrolled area by going to the
LocalScorePage() function and adding the highlighted code as follows:

//Loading the local scores
private function LocalScorePage() : void {
 //Creating the background box
 GUI.Box(new Rect(Screen.width*0.1, Screen.height*0.1, Screen.
width * 0.8, Screen.height * 0.8), "LOCAL HI-SCORES", GUI.skin.
GetStyle("Box2"));
 //Creating the scrolled area and scrollbar to view the player
scores
 scrollPosition = GUI.BeginScrollView (new Rect ((Screen.width -
320)*0.5, (Screen.height*0.1) + 80, 320, 180), scrollPosition, new
Rect (0, 0, 300, 30*maxUsers));
 for (var i: int = 0; i < maxUsers; i++) {
 //Set the number of the user
 GUI.Label(new Rect(0, i * 30, 35, 30), (i+1).ToString() +
".");
 //TODO: Showing the user name and score here

 GUI.Label(new Rect(35, i * 30, 120, 30), obj_localHiScore.
GetNameData(i));

Project 8

303

 GUI.Label(new Rect(155, i * 30, 145, 30), GlobalFunction.
addCommasInt(obj_localHiScore.GetScoreData(i)), GUI.skin.
GetStyle("Score"));
 }
 GUI.EndScrollView (); //End Scroll Area
 if (GUI.Button(new Rect((Screen.width - 240)*0.5, (Screen.
height*0.1) + 280, 240, 30), "BACK")) {
 e_page = Page.GAMEOVER;
 }
}

These two lines will load the username and score, and display it on the scrolled area in the
LOCAL HI_SCORE menu page.

Next, we can go back to Unity, click Play, and try to complete the game by killing all the
enemies to bring up the GAMEOVER menu. Right now, we will be able to enter our name,
submit the score, and see the high score board if we click on the LOCAL HI-SCORE button:

We typed our name and clicked to submit the score.

Let the World See the Carnage! Save, Load, and Post High Scores

304

If we clicked on the LOCAL HI-SCORE button, we will see that our name and score appears on
the scoreboard, as shown in the following screenshot:

Objective Complete - Mini Debriefing
We just created two classes, UsersData and LocalHiScore, for saving and loading the
user's local high score data and displayed it on the LOCAL HI-SCORE page by using the
PlayerPrefs to save and load the array of UsersData objects. We also checked for the
user submission score and sorted the score before saving it to the local object.

In the UsersData script, we started by creating the class UsersData {. This is because
this class only contains the data and doesn't want to use any Start() or Update() function
that inherits from the MonoBehaviour class. If we don't put the class keyword, Unity will
automatically inherit this class from MonoBehaviour, which is the default setting for Unity
Javascript, so it means that we can run this script without adding the class keyword.

We can also inherit the class from MonoBehaviour in Javascript by
using the class keyword, as shown in the following script:
class MyClass extends MonoBehaviour { }

The preceding script will also inherit MyClass from MonoBehaviour.
However, it will be too expensive to use. To make it easy to understand,
all scripts that inherit from MonoBehaviour will have the Start(),
Update() classes, and all the MonoBehaviour functions run in the
Unity background.
The classes that aren't derived from MonoBehaviour objects,
Start(), Update(), and so on, won't be called on MonoBehaviour
unless they are connected to the game objects.

Project 8

305

Next, we set up the necessary parameters for this class. Then, we save the score in the
SaveLocal(index : int) function, which will take the index number of each user
included with the local key and put in the PlayerPrefs key. This will allow us to save
multiple users without having any problems.

In the SaveLocal() function, we use PlayerPrefs.SetInt(KeyString, int_
score); to save the score and PlayerPrefs.SetString(KeyString, s_name); to
save the username.

Next, we have the LoadLocal(index : int) function, which will take the index number
of the users and load the username and score from the PlayerPrefs.

The LoadLocal() function will contain two functions. The first is LoadScore(index
: int), which will load the user's score by using PlayerPrefs.HasKey(KeyString)
to check for the similar key saved on this local machine. If it has, we will load the score
by using the PlayerPrefs.GetInt(KeyString) function, and if not, we will return
0 for the score. The next function is LoadName(index : int), which is very similar
to the LoadScore(index : int) function, but this time we will use PlayerPrefs.
GetString(KeyString) to get the username. Also, if we can't find the key, we will return
the random name in the as_randomNames array of string.

Then, we created the LocalHiScore script to load and save our user data. In this script, we
created SetMaxUser(maxUser : int) to get the maximum number of users to display on
the menu, and called the LoadGameLocal() function. This function will load the user data,
and then store the data to the array. The function also gets the minimum score from the user
data and stores this score for comparing when the player submits the score.

In the LocalHiScore script, we also created SaveGame (scores : int, name :
String) to save the player's final score to the local machine and the SortUser (array :
UsersData[]) function to sort the user data before saving. In the SaveGame (scores :
int, _name : String) function, first we checked whether the player's submitted score
is higher than the minimum score from the user data or not. If it isn't, we don't add the new
score to the user data. On the other hand, if the submitted score is higher than the minimum
score, the old minimum score will be removed, and the new score will be added to the new
user data. Then, we call the SortUser (array : UsersData[]) function. This function
will sort the array of the UsersData from the highest to lowest user score.

Finally, we go back to the HiScore script to add the script that will display our local
high score.

Let the World See the Carnage! Save, Load, and Post High Scores

306

Classified Intel
In this section, we have used the PlayerPrefs to load and save the user data (name and
score) to our local machine. The PlayerPrefs class is basically used for saving or loading
the data by using the key string to identify each piece of data. We can set the value that we
want to store and load to string, float, or int type.

For storing or saving the data, we can use PlayerPrefs.SetInt(Key, Value),
PlayerPrefs.SetFloat(Key, Value), or PlayerPrefs.SetString(Key, Value).
We can create the new data by giving a different Key for each saving data. On the other
hand, if we want to replace the old data with the new data, we just have to set the same Key
to the new data that we will save.

For loading the data, we will use PlayerPrefs.GetInt(Key), PlayerPrefs.
GetFloat(Key), or PlayerPrefs.GetString(Key) to get value that we have stored.
We can also check whether the data is already stored in this machine or not by using
PlayerPrefs.HasKey(Key).

We already talked about how to save and load the data from PlayerPref, but we didn't
talk about how to remove it. We can use PlayerPrefs.Delete(Key) to remove the data
that we don't want by specifying the Key. Also, if we want to remove all the data that we
have saved, we can use PlayerPrefs.DeleteAll().

We can also go to the following website for more details on the
PlayerPrefs class:
http://unity3d.com/support/documentation/
ScriptReference/PlayerPrefs.html.

Getting XML data from the server
In this section, we will create the C# script that will parse the XML data from the server
to use in the next step. We will create the C# script because it is much easier to use the
XmlDocument from .Net framework in C#.

Prepare for Lift Off
Let's go to Assets | Create | C Sharp Script and name it XMLParser and put it inside the
Standard Assets folder, as shown in the following screenshot:

Project 8

307

Before we begin to code the C#, we should know that the way to write the script in C# is
different from Unity JavaScript (we can see more details in Appendix C, Major Differences
Between C# and Unity JavaScript), which we already know from the previous chapter.
However, we will have a quick refresh of the idea for writing C#. First of all, when we declare
the variable in C#, we will use Type varName = value; instead of var varName :
Type = value; in Unityscript. Second, when we create the function in C#, the syntax
is very similar to when we create the variable. We will use something like public void
functionName () { … } instead of public function functionName () : void
{ … } that we used in Unityscript. Also, if we want the function to return the type, we will
just replace the word void with the type that we want. For example, if we want this function
to return the string type, we will write the code like public string functionName
() { … }. It's just a small switch of the syntax. Also, if we take a look at the C# syntax, we
will see that in C# we don't use the words function or var to declare either the variable or
function. It only uses the type to declare.

Engage Thrusters
We will double-click the XMLParser script that we just created to open it in MonoDevelop:

1.	 First, we will start coding at the beginning of the XMLParser script, as shown in the
following highlighted code:
using UnityEngine;
using System.Collections;
using System.Xml;

Let the World See the Carnage! Save, Load, and Post High Scores

308

The using System.Xml allows us to access the System.
Xml library in the .NET Framework. If you have any experience with
ActionScript, this is similar to import flash.something. The
using System.Xml will include the XmlDocument and XmlNode
object, which we will use in our XMLParser script.

2.	 Then, we will replace all the rest with the following script:
public static class XMLParser {
 private static XmlDocument doc;
 private static static XmlNode root;

 private string[] names;
 private static int[] scores;
 private static int userLength;

3.	 Next, we will add the Parse() function to parse the XML string. Let's type it
as follows:
 public static void Parse(string xml) {
 doc = new XmlDocument();
 doc.LoadXml(xml); // Loading from String
 //Using doc.Load("HiScore.xml"); When load from an xml file

 //Using Last Child to Skip the <?xml version="1.0"
encoding="UTF-8"?>
 //If we load from the xml file we will use the FirstChild
instead
 root = doc.LastChild;
 if (root.HasChildNodes) {
 //Getting the Node Length
 userLength = root.ChildNodes.Count;
 names = new string[userLength];
 scores = new int[userLength];
 for (int i = 0; i < userLength; i++) {
 //Getting the user name and score XmlAttribute
 XmlAttribute nameAtt = root.ChildNodes[i].
Attributes["name"];
 XmlAttribute scoreAtt = root.ChildNodes[i].
Attributes["score"];
 //Assigning the user name data to array
 names[i] = (string)nameAtt.Value;
 //Assigning the user score data to array
 scores[i] = ConvertStringtoInt((string)scoreAtt.Value);
 }
 }
 }

Project 8

309

4.	 Then, we will create the ConvertStringtoInt() function, which will convert
the string type to integer type as well as create the Name(), Score(), and
UserLength() functions as follows:
 //Converting string to int
 private static int ConvertStringtoInt(string s) {
 int j;
 bool result = System.Int32.TryParse(s, out j);
 if (true == result) {
 return j;
 } else {
 Debug.Log("Error...");
 return 0;
 }
 }

 //Getting user name from index
 public static string Name (int index) {
 return names[index];
 }
 //Getting user score from index
 public static int Score (int index) {
 return scores[index];
 }
 //Getting user length
 public static int UserLength () {
 return userLength;
 }
}

Objective Complete - Mini Debriefing
In this section, we basically just created the C# XMLParser script, to parse the XML string
that we loaded from the server, and then we stored the user's data in this class to use it at a
later stage.

First, we used the static keyword for this class, because we want it to be accessible from
the entire project. Then, we created the XmlDocument and XmlNode parameters to hold the
XML data that we want to parse. Then, we have one array of string and one array of int
to store the users' name and score. And the last parameter is to store the length of the users
that we got from the XML data.

Let the World See the Carnage! Save, Load, and Post High Scores

310

Next, we created the Parse(string xml) function. This function will create the
XmlDocument and we use LoadXml(xml) to load the string XML that we pass to this
function. Then, we get the XmlNode from the last child of the XmlDocument:

root = doc.LastChild;

We used LastChild() because we want to skip the first node, which is the headline of
the XML file <?xml version="1.0" encoding="UTF-8"?>. After we got the root
XmlNode, we checked for the child in this node, assigned the number of its children, and
created the array to store username and score data from this node:

 //Getting the Node Length
 userLength = root.ChildNodes.Count;
 names = new string[userLength];
 scores = new int[userLength];
Then, we loop to all the children, get the attribute of each child,
and store it to names[] and scores[] array by using the script below:
 for (int i = 0; i < userLength; i++) {
 //Getting the user name and score XmlAttribute
 XmlAttribute nameAtt = root.ChildNodes[i].Attributes["name"];
 XmlAttribute scoreAtt = root.ChildNodes[i].
Attributes["score"];
 //Assigning the user name data to array
 names[i] = (string)nameAtt.Value;
 //Assigning the user score data to array
 scores[i] = ConvertStringtoInt((string)scoreAtt.Value);
 }

Since scoreAtt.Value is a string and we want to store it as an integer, we need to convert
the string data to an integer by creating the function that will convert the string type to
int type, which we call ConvertStringtoInt(string s).

private int ConvertStringtoInt(string s) {
 int j;
 bool result = System.Int32.TryParse(s, out j);
 if (true == result) {
 return j;
 } else {
 Debug.Log("Error...");
 return 0;
 }
 }

Project 8

311

From the preceding function, first we create the int variable j, and then we use System.
Int32.TryParse(s, out j); to convert the string to an integer. This function will return
the result true or false; if true, it means that the result got converted to an integer, and
then we return j, which is the output from the System.Int32.TryParse(s, out j);
function. On the other hand, if the result is not an integer, we trace out the error and
return 0.

The out keyword in C# will cause the arguments to be passed by
reference, which means that we can use the out keyword to return
the values in the same variable as a parameter of the method.

For example, if we created the C# script named Test, as shown in the following script, and
attach this script to the game object in Unity, we will see the trace result display i = 5 and
j = 0:

using UnityEngine;
using System.Collections;

public class Test : MonoBehaviour {
 // Use this for initialization
 public void Start() {
 int i;
 int j = Testout(out i);
 Debug.Log("i = " + i); //Will show the result i = 5
 Debug.Log("j = " + j); //Will show the result j = 0
 }

 public int Testout(out int i) {
 i = 5;
 return 0;
 }
}

Then, the rest of the XMLParser script is to get the value for the length of user, the
username, and score. We create this function because we only want to get the data from this
XML class, we don't need to set it. This is just some protection to make sure that our user's
data that loaded from the XML doesn't change.

Let the World See the Carnage! Save, Load, and Post High Scores

312

Classified Intel
At the beginning of this section, we added the XMLParser script to the Standard Assets
folder. Why did we do that? Is it really important to add the script in the Standard Assets
folder? The answer is "Yes". We need to put this script in the Standard Assets folder. This
is because of the way Unity builds the script. In Unity, the JavaScript is built first and then the
C# script, so if we want to call a C# script from our JavaScript, we will get the error, as shown
in the following screenshot (you can see more details in Appendix C, Major Differences
between C# and Unity JavaScript):

So, the best way to do it is to code our entire project either in JavaScript or C#. However,
there is a way to call the C# script function or class from Unity JavaScript, which is the way
we just did in this chapter. As we know JavaScript is complied before the C# script. Also,
all the code or scripts in the Standard Assets folder will be compiled before the rest
of the code in the project is compiled. So, we just reordered the code complier to compile
XMLParser first and then the rest of our code later.

We can read more details of the compiler order from the following
Unity website:
http://unity3d.com/support/documentation/
ScriptReference/index.Script_
compilation_28Advanced29.html.

Posting and loading high scores to
the server

In this section, we will create the ServerHiScore script to post and load the high score
data from the server, which we will use in the WWWForm class to communicate with the PHP
file on the website, which I already set up. We will also create a hash key and encrypt it
with the MD5 encryption to protect and check for the user before posting the score to
the database.

Prepare for Lift Off
Before we create the ServerHiScore script, we will need to get the MD5 encryption
script to encrypt our data. Let's create the new Unity JavaScript and name it MD5.js in
MonoDevelop. Then, browse to the following link:

http://www.unifycommunity.com/wiki/index.php?title=MD5.

Project 8

313

On this page, you will see the MD5 class for C# script and JavaScript that is written by
Matthew Wegner. Go to JavaScript and copy the code and paste it in the MD5.js script that
we just created:

#pragma strict

static function Md5Sum(strToEncrypt: String)
{
 var encoding = System.Text.UTF8Encoding();
 var bytes = encoding.GetBytes(strToEncrypt);

 // encrypt bytes
 var md5 = System.Security.Cryptography.MD5CryptoServiceProvider();
 var hashBytes:byte[] = md5.ComputeHash(bytes);

 // Convert the encrypted bytes back to a string (base 16)
 var hashString = "";

 for (var i = 0; i < hashBytes.Length; i++)
 {
 hashString += System.Convert.ToString(hashBytes[i], 16).
PadLeft(2, "0"[0]);
 }

 return hashString.PadLeft(32, "0"[0]);
}

This script will allow us to encrypt our string with the MD5 encryption.

We can use #pragma strict in the Unity JavaScript to tell Unity to
disable the dynamics typing var name = 5 and force us to use the static
typing var name : int = 5. This will also make it easy for us to debug
because if we forgot to use the static typing, Unity will give us an error when
the script is being compiled.

Let the World See the Carnage! Save, Load, and Post High Scores

314

Engage Thrusters
We will create the ServerHiScore script to send and load the user data to the server,
which is also encrypted with the MD5.

1.	 Let's go to Assets | Create | JavaScript and name it ServerHiScore. Then, we will
double-click it to open MonoDevelop and add the following code:
//Setting the PHP url here
public var PHPUrl : String = "http://www.jatewit.com/Packt/
HiScore.php";
//Setting the hash key id
public var hashKey : String = "UNITYGAMEDEVELOPMENTHOTSHOT";

private var obj_WWW : WWWForm;
private var b_loaded : boolean;

public function Start() : void {
 // Empty Check for Inspector values
 if(PHPUrl == "") {
 Debug.LogError("PHP Url cannot be null.");
 }
 if(hashKey == "") {
 Debug.LogError("Hash Key cannot be null.");
 }
}

In the preceding script, we created the parameter to set the PHP URL that we will be
connected to (we won't see anything if we try to view the link in our browser), set
the hash key to check for the user, and create the WWWFrom and boolean objects to
use in this script. In the Start() function, we just checked to make sure that the
PUPUrl and hashKey are not null.

2.	 Then, create the SendScore(score : int, name :String) function, which
will take two parameters score and name. This function will create the WWWFrom,
set the parameter, and send it to the URL that we just assigned. Let's type the
function as follows:
//Creating the function to send
public function SendScore(score : int, name : String) : void {
 var w_form : WWWForm = new WWWForm();
 //Telling PHP that the user is submitting the data
 w_form.AddField("action", "PostScore");
 //Sending hash code key to prevent unwanted user
 w_form.AddField("hash", MD5.Md5Sum(name + "-" + score.ToString()
+ "-" + hashKey)); //Encrypt with MD5
 //Sending the user score

Project 8

315

 w_form.AddField("score", score);
 //Sending the user name
 w_form.AddField("name", name);
 //Start waiting for the response back from the server
 StartCoroutine(WaitingForResponse(new WWW(PHPUrl, w_form),
null));
}

3.	 Create the WaitingForResponse(www : WWW, callback : Function)
: IEnumerator function as mentioned previously. Let's continue from after the
SendScore() function and type it as follows:
//Waiting for the response back from the server
public function WaitingForResponse(www : WWW, callback :
Function) : IEnumerator {
 yield www;

 if (www.error == null) {
 Debug.Log("Successful.");
 } else {
 Debug.Log("Failed.");
 }

 if (callback != null) {
 callback(www.text);
 callback = null;
 }

 //Clears data
 www.Dispose();
}

4.	 We already have the function to send; now we need to load the data from the
server, so we will create the GetScores() function to load the user's score data
from the server. Let's type it as follows:
//Getting the score from the server
public function GetScores() : void {
 b_loaded = false;
 var w_form : WWWForm = new WWWForm();
 //Telling PHP that the user is loading the data
 w_form.AddField("action", "GetScore");
 //Start waiting for the response back from the server
 StartCoroutine(WaitingForResponse(new WWW(PHPUrl, w_form),
LoadXMLData));
}

Let the World See the Carnage! Save, Load, and Post High Scores

316

5.	 Next, we create the LoadXMLData(string : String) function, which will parse
the XML string data that returns from the server. We will type this script after the
GetScores() function as follows:
//Parse the XML data from the server
public function LoadXMLData(string : String) : void {
 XMLParser.Parse(string);
 b_loaded = true;
 Debug.Log(string);
}

6.	 Next, type the rest of the code as follows:
//Getting User length
public function GetUserLength() : int {
 if (XMLParser != null) {
 return XMLParser.UserLength();
 } else {
 return 0;
 }
}
//Getting User Name by index
public function GetNameData(index : int) : String {
 if (XMLParser != null) {
 return XMLParser.Name(index);
 } else {
 return "";
 }
}
//Getting User Score by index
public function GetScoreData(index : int) : int {
 if (XMLParser != null) {
 return XMLParser.Score(index);
 } else {
 return 0;
 }
}
//Loaded XML
public function IsLoaded() : boolean {
 return b_loaded;
}

The preceding functions get the server data from the XMLParser (where we stored
users' data that returns from the server).

Project 8

317

7.	 Now, we will go back to the HiScore.js script to add some code in it and make it
work. In the HiScore.js script before the Awake() function, add the highlighted
code as follows:
private var obj_localHiScore : LocalHiScore; //Creating the
LocalHiScore Object
private var obj_serverHiScore : ServerHiScore; //Creating the
ServerHiScore Object

public function Start() : void {
 //Initializing

8.	 Go inside the Start() function and type the highlighted code:
public function Start() : void {
 //Initializing
 e_page = Page.GAMEOVER;
 int_items = 10;
 scrollPosition = Vector2.zero;
 b_isClickRestart = false;
 b_isClickSubmit = false;

 //Creating a Local Hiscore Object
 obj_localHiScore = new LocalHiScore();
 //Setting the maximum scores to show on the table & loading the
local high score data here
 obj_localHiScore.SetMaxUser(int_items);
 //Creating a Server Hiscore Object
 obj_serverHiScore = GetComponent.<ServerHiScore>();
}

9.	 Now we have the ServerHiScore object created, we need to go to the
GameoverPage() function inside the SERVER HI-SCORE button page code,
and type the following highlighted code:
if (b_isClickSubmit == false) {
 GUI.Label(new Rect((Screen.width - 300)*0.5, (Screen.
height*0.1) + 80, 300, 25), "Enter Your Name", GUI.skin.
GetStyle("Text1"));
 //Creating the input text field to get the player name
 userName = GUI.TextField(new Rect((Screen.width - 240)*0.5,
(Screen.height*0.1) + 120, 240, 40), userName, 8);
 //Submit button
 if (GUI.Button(new Rect((Screen.width - 240)*0.5, (Screen.
height*0.1) + 200, 240, 30), "SUBMIT")) {
 b_isClickSubmit = true;
 //TODO: Submitting both local and server high score here

Let the World See the Carnage! Save, Load, and Post High Scores

318

 obj_localHiScore.SaveGame(TimeScoreUI.int_currentScore,
userName); //Submitting to the local score
 //Submitting to server
 obj_serverHiScore.SendScore(TimeScoreUI.int_currentScore,
userName);
 }
 }
 //Creating the Local Hi-Score page button
 if (GUI.Button(new Rect((Screen.width - 240)*0.5, (Screen.
height*0.1) + 240, 240, 30), "LOCAL HI-SCORE")) {
 e_page = Page.LOCALSCORE;
 }
 //Creating the Server Hi-Score page button
 if (GUI.Button(new Rect((Screen.width - 240)*0.5, (Screen.
height*0.1) + 280, 240, 30), "SERVER HI-SCORE")) {
 //TODO: Loading the score data from server here
 obj_serverHiScore.GetScores();
 e_page = Page.SERVERSCORE;
 }

10.	 This will submit and load the score from the server. Then, we go to the
ServerScorePage() function and replace the code as follows:
//Loading score from server

private function ServerScorePage() : void {
 //Creating the background box
 GUI.Box(new Rect(Screen.width*0.1, Screen.height*0.1, Screen.
width * 0.8, Screen.height * 0.8), "SERVER HI-SCORE", GUI.skin.
GetStyle("Box2"));
 //TODO: Checking is the loader completed
 if (obj_serverHiScore.IsLoaded()) {
 var int_numUsers : int = obj_serverHiScore.GetUserLength();
 if (int_numUsers >= maxUsers) {
 int_numUsers = maxUsers;
 }
 scrollPositionS = GUI.BeginScrollView (new Rect ((Screen.width
- 320)*0.5, (Screen.height*0.1) + 80, 320, 180), scrollPositionS,
new Rect (0, 0, 300, 30*int_numUsers));
 for (var i: int = 0; i < int_numUsers; i++) {
 //Setting the number of the user
 GUI.Label(new Rect(0, i * 30, 35, 30), (i+1).ToString() +
".");
 //TODO: Showing the user name and score here
 GUI.Label(new Rect(35, i * 30, 120, 30), obj_
serverHiScore.GetNameData(i));
 GUI.Label(new Rect(155, i * 30, 145, 30), GlobalFunction.
addCommasInt(obj_serverHiScore.GetScoreData(i)), GUI.skin.
GetStyle("Score"));

Project 8

319

 }
 GUI.EndScrollView (); //End Scroll Area
 } else {
 //TODO: If the loader doesn't complete display Loading... text
 GUI.Label(new Rect((Screen.width-150)*0.5, (Screen.
height*0.1)+120, 150, 50), "LOADING...", GUI.skin.
GetStyle("Text1"));
 }
 if (GUI.Button(new Rect((Screen.width - 240)*0.5, (Screen.
height*0.1) + 280, 240, 30), "BACK")) {
 e_page = Page.GAMEOVER;
 }
}

The preceding code will wait for the server to finish loading and display the users'
scoreboard. If the loading didn't finish, the menu will show only the Loading… text;
otherwise, it will display the users' names and scores that were returned from the
server database.

11.	 Finally, go back to Unity editor, click on the HiScore game object in the Hierarchy
to bring up the Inspector, then drag-and-drop the ServerHiScore script in the
HiScore game object and click Play. When we die or kill all the enemies in the scene,
we will be able to load the SERVER HI-SCORE board by clicking on the SERVER HI-
SCORE button, and the SUBMIT button will now submit the score to the server and
save the score to our local machine at the same time.

We might not get the same image as shown in the preceding screenshot
because the server database will be updated with different users.

Let the World See the Carnage! Save, Load, and Post High Scores

320

Objective Complete - Mini Debriefing
We learned how to use the WWWForm and WWW object to post and load the high score from
the server. We also used the MD5 encryption to encrypt the key before posting the data to
protect it from unwanted users. Then, we used the StartCoroutine() function to wait for
the response from the server.

First, we created the ServerHiScore script to send and receive the user data from the
server database. In the Start() function, we checked to make sure that we have the server
URL and encryption key.

Next, in the SendScore() function, we first created WWWForm. Then we used
AddField("action", "Posting");, which will tell PHP that we want to send the score
by setting the action to Posting. (The action parameter and Posting value are set in
the PHP code, which you can see in the HiScore.php that I have attached with this code).
Then, we set the hash with the MD5 encryption value of hashKey, set the score, and
name to the WWWForm object. In the last line, we use StartCoroutine(WaitingForRe
sponse(new WWW(PHPUrl, w_form), null)) function to wait for the response from
the server. The StartCoroutine() function basically takes the IEnumerator, which we
pass to the WaitingForResponse(new WWW(PHPUrl, w_form), null) function here.
This function basically creates the WWW object that sends our WWWForm object to the specific
PHPUrl. It also takes the Function to callback when it is finished.

Then, we have the WaitingForResponse() function, which will wait for the response from
the server, and check if the sending request succeeds. Then we check if there is any callback
function to call. If there is a callback function, we will call it. Finally, we just clear all data by
using www.Dispose().

Next, we created the GetScore() function, which is very similar to the SendScore()
function except that we only send one parameter to PHP, which is action to tell PHP that
we want GetScore. Also, in the StartCoroutine() function, we put the callback function
in the WaitingForResponse() function, which is LoadXMLData. This will be called after
the loading is finished.

Then, we have the LoadXMLData() function, which will call the XMLParser.
Parse() function to parse the XML string data that returns from the server, then store
it in the XMLParser class. We also created GetUserLength(), GetNameData(),
GetScoreData(), and IsLoaded() to get the user data from index and check if the data
has been loaded.

Then, we go back to the HiScore script to add the function that will save and load the user
data to the server database.

Finally, we applied the ServerHiScore script to the HiScore game object in Hierarchy view
to get the result we want.

Project 8

321

Classified Intel
In this step, we use AddField("fieldname", "value"); in WWWForm to add the value
and pass it to the server. In this function, the fieldname mostly depends on the PHP script
on the server.

We can open the HiScore.php file that we have in this project package and take a look at
the following line:

$action = $_POST['action']; //Get request action from Unity

We will see that the word action is the same keyword that we assigned in the AddField()
function at the beginning of the SendScore() function:

w_form.AddField("action", "PostScore");

It is basically the keyword that we use to communicate the value between Unity and PHP.
In this PHP file, we used MySQL to set up the database on my website, so if you have your
website and the database set up with MySQL, you can adjust this PHP to point to your
database and put it to your website.

For more information on how to set up MySQL database on your website,
you can go to the following link and download the file:
http://www.webwisesage.com/addons/free_ebook.html.
There is also a video tutorial of How to set up MySQL database, PHP, and
flash, from Lee Brimelow. You can find it from the following link:
http://www.gotoandlearn.com/play.php?id=20.

Game over-Wrapping it up
In this chapter, we have created the scripts that help us to be able to save, load, and post
the high score locally and to the server database. We also created the C# script to use for
parsing the XML string format to the value that we want as well as the using of mixing script
between the C# and JavaScript.

Finally, I want to thank all of you for reading this book. I hope you got some useful
information from it.

Are you ready to go gung ho?
A Hotshot challenge

We have learned many things from this chapter, such as save and load the value locally by
using PlayerPrefs, using the WWWForm to post and load the high score from the server,
encrypt the key code with MD5, and load the XML string by using XmlDocument. However,
those aren't the things that we can do. Let's try something out and see how much we
learned from this chapter:

ff Create the save game position for our game by using PlayerPrefs to save the
current position of our character in the game and load it as well

ff Try adapting the XMLParser script to load the XML file by using xml.
Load(filename.xml) to load the XML file to your game

ff Create your database and PHP on your website by using HiScore.php and
changing the PHPUrl to your website; you can also change the hash key to the one
that you prefer

ff Make the game prompt the user to enter their name only if they actually qualify for
the new high score

Appendix A
Important Functions

The purpose of this appendix is to explain the meaning of some important methods used in
Unity, referenced from the Unity Scripting Documentation.

Awake
The Awake function is called when the script instance is being loaded.

Awake is used to initialize any variable or game state before the game starts. It is called
only once during the lifetime of the script instance. It is also called after all the objects
are initialized, so you can safely speak to other objects or query them using, for example,
GameObject.FindWithTag. Each Awake function of the GameObject is called in a random
order between objects. Because of this, you should use Awake to set up references between
scripts, and use Start to pass any information back and forth. Awake is always called before
any Start functions. This allows you to order initialization of scripts.

For C# and Boo, users use Awake instead of the constructor for initialization,
as the serialized state of the component is undefined at construction time.
Awake is called once, just like the constructor.
Awake cannot be a coroutine.

Example
private var myTarget : GameObject;
function Awake() {
 myTarget = GameObject.FindWithTag("Target");
}

Important Functions

324

Start
Start is called just before any of the Update methods are called.

Start is only called once in the lifetime of the behavior. The difference between Awake and
Start is that Start is only called if the script instance is enabled. This allows you to delay
any initialization code, until it is really needed.

The Start function is called after all Awake functions on all script instances have been called.

Example
private var myLife : int;
function Start() {
 myLife = 5;
}

Update
Update is called for every frame, if MonoBehaviour is enabled.

Update is the most commonly used function to implement any kind of game behavior.

Example
// Moves the object forward 1 meter per second
function Update () {
 transform.Translate(0, 0, Time.deltaTime*1);
}

FixedUpdate
FixedUpdate is called for every fixed framerate frame, if MonoBehavior is enabled.

FixedUpdate should be used instead of Update when dealing with Rigidbody. For example,
when adding a force to a rigidbody, you have to apply the force for every fixed frame inside
FixedUpdate instead of every frame inside Update, because the physics simulation is
carried out in discrete timesteps. The FixedUpdate function is called immediately before
each step.

Appendix A

325

Example
// Apply an upward force to the rigidbody every frame
function FixedUpdate () {
 rigidBody.AddForce(Vector3.up);
}

LateUpdate
LateUpdate is called for every frame, if MonoBehaviour is enabled.

LateUpdate is called after all Update functions have been called. This is useful to
order script execution. For example, a follow camera should always be implemented in
LateUpdate because it tracks objects that might have moved inside Update.

Example
// Moves the object forward 1 meter per second
function LateUpdate () {
 transform.Translate(0, 0, Time.deltaTime*1);
}

OnGUI
OnGUI is called for rendering and handling GUI events, such as GUI.Button, GUI.Label,
GUI.Box, and so on.

This means that your OnGUI implementation might be called several times per frame (one
call per event). If the enabled property of MonoBehaviour is set to false, OnGUI will not
be called.

Example
// Draw the Button (width = 150, height = 50) at the position x = 10,
y = 10.
function OnGUI () {
 if (GUI.Button(Rect(10, 10, 150, 50), "My Button")) {
 Debug.Log("Hello World");
 }
}

Important Functions

326

OnDrawGizmos
Implement OnDrawGizmos if you want to draw gizmos that are also pickable and always
drawn. This allows you to quickly pick important objects in your scene. You can also use
OnDrawGizmos to draw the line or different types of Gizmos, such as Gizmos.DrawRay,
Gizmos.DrawLine, Gizmos.DrawWireSphere, and so on, which will make it easier for
you to debug.

OnDrawGizmos will use a mouse position that is
relative to the Scene view.

Example
var target : Transform;
// Draw the blue line from this object to the target
function OnDrawGizmos () {
 if (target != null) {
 Gizmos.color = Color.Blue;
 Gizmos.DrawLine(transform.position, target.position);
 }
}

Reference
The methods mentioned earlier can be referenced from the following Unity Scripting
Reference:

http://unity3d.com/support/documentation/ScriptReference/
MonoBehaviour.Awake.html

http://unity3d.com/support/documentation/ScriptReference/
MonoBehaviour.Start.html

http://unity3d.com/support/documentation/ScriptReference/
MonoBehaviour.Update.html

http://unity3d.com/support/documentation/ScriptReference/
MonoBehaviour.FixedUpdate.html

http://unity3d.com/support/documentation/ScriptReference/
MonoBehaviour.LateUpdate.html

Appendix A

327

http://unity3d.com/support/documentation/ScriptReference/
MonoBehaviour.OnGUI.html

http://unity3d.com/support/documentation/ScriptReference/
MonoBehaviour.OnDrawGizmos.html

http://unity3d.com/support/documentation/ScriptReference/Gizmos.
DrawLine.html

Appendix B
Coroutines and Yield

This appendix presents a brief review of coroutines and yield, referenced from the Unity
Scripting Reference.

YieldInstruction
When writing game code, one often ends up needing to script a sequence of events. This
could result in a code similar to the following.

Example
private var state = 0;
function Update() {
 if (state == 0) {
 // do step 0
 Debug.Log("Do step 0");
 state = 1;
 return;
 }
 if (state == 1) {
 // do step 1
 Debug.Log("Do step 1");
 state = 0;
 return;
 }
}

The preceding code basically does step0 and step1, then goes back to step 0 (as a loop),
and then if there are more events that will happen after step1, and so on. Too many if
statements can make the code look ugly in the long run.

Coroutines and Yield

330

In this case, it's more convenient to use the yield statement. The yield statement is a
special kind of return that ensures that the function will continue from the line after the
yield statement the next time it is called. The result would be something similar to the
following code.

Example
function Start() {
 while (true) { //Use this line instead of Update()
 //do step 0
 Debug.Log("Do step 0");
 yield; //wait for one frame
 //do step 1
 Debug.Log("Do step 1");
 yield; //wait for one frame
 }
}

The preceding code will have a similar result without having a new variable and an extra if
statement to check for each step event.

You can also pass special values to the yield statement to delay the execution of
the Update function until a certain event has occurred, such as WaitForSeconds,
WaitForFixedUpdate, Coroutine, and StartCoroutine.

You can't use yield from within Update or FixedUpdate,
but you can use StartCoroutine to start a function that can
use yield.

WaitForSeconds
Suspends the coroutine execution for the given amount of seconds.

WaitForSeconds can only be used with an yield statement in coroutines.

Example
function Start() {
 // Prints 0
 Debug.Log (Time.time);
 // Waits 5 seconds
 yield WaitForSeconds (5);
 // Prints 5.0

Appendix B

331

 Debug.Log (Time.time);
}

You can both stack and chain coroutines.

The following example will execute Do but will continue after calling Do immediately:

function Start() {
 Do();
 Debug.Log ("This is printed immediately");
}

function Do() {
 Debug.Log ("Do now");
 yield WaitForSeconds (5); //Wait for 5 seconds
 Debug.Log ("Do 5 seconds later");
}

The following example will execute Do and wait until it is finished before continuing its
own execution:

//Chain Coroutine
function Start() {

 //The below line is similar to the yield Do(); only if you
are using Unity JavaScript. However, if you use C#, you must use
StartCoroutine. (For more details in the Appendix C)
 yield StartCoroutine(Do());

 Debug.Log ("This is printed after 5 seconds");

 Debug.Log ("This is after the Do coroutine has finished execution");
}

function Do() {
 Debug.Log ("Do now");
 yield WaitForSeconds (5); //Wait for 5 seconds
 Debug.Log ("Do 5 seconds later");
}

WaitForFixedUpdate
Waits until the next frame rate of FixedUpdate function. (For more details have a look at
Appendix A, Important Functions.)

WaitForFixedUpdate can only be used with a yield statement in coroutines.

Coroutines and Yield

332

Example
function Start() {
 // Wait for FixedUpdate to finished
 yield new WaitForFixedUpdate();
 // Call After FixedUpdate
 Debug.Log ("Call after FixedUpdate");
}

function FixedUpdate() {
 Debug.Log ("FixedUpdate");
}

Coroutine
StartCoroutine returns a coroutine. Instances of this class are only used to reference
these coroutines and do not hold any exposed properties or functions.

A coroutine is a function that can suspend its execution of yield until the given
YieldInstruction finishes.

Example
function Start() {
 // Starting = 0.0
 Debug.Log ("Starting = " + Time.time);

 // Start function WaitAndPrint as a Coroutine
 yield WaitAndPrint();

 // Done WaitAndPrint = 5.0
 Debug.Log ("Done WaitAndPrint = " + Time.time);
}

function WaitAndPrint() {
 //Suspend execution for 5 seconds
 yield WaitForSeconds(5);

 // WaitAndPrint = 5.0
 Debug.Log ("WaitAndPrint = " + Time.time);
}

Appendix B

333

StartCoroutine
Starts a coroutine.

The execution of a coroutine can be paused at any point using the yield statement. The
yield return value specifies when the coroutine is resumed. Coroutines are excellent when
modeling behavior over several frames. Coroutines have virtually no performance overhead.
StartCoroutine function always returns immediately, however you can yield the result.
This will wait until the coroutine has finished execution.

When using JavaScript it is not necessary to use StartCoroutine,
as the compiler will do this for you. When writing C# code you must
call StartCoroutine. (For more details, refer to Appendix C,
Major differences Between C# and Unity JavaScript.)

In the following example, we show how to invoke a coroutine and continue executing the
function in parallel:

function Start() {
 // Starting = 0.0
 Debug.Log ("Starting = " + Time.time);

 // StartCoroutine WaitAndPrint (In JavaScript, you can also use
WaitAndPrint(5.0) which will get the same result.
 StartCoroutine(WaitAndPrint(5.0));

 // Before WaitAndPrint = 5.0
 Debug.Log ("Before WaitAndPrint = " + Time.time);
}

function WaitAndPrint(waitTime : float) {
 //Suspend execution for 5 seconds
 yield WaitForSeconds(waitTime);

 // WaitAndPrint = 5.0
 Debug.Log ("WaitAndPrint = " + Time.time);
}

Coroutines and Yield

334

The following example will wait until the WaitAndPrint function is finished and then
continues executing the rest of the code in the Start function:

function Start() {
 // Starting = 0.0
 Debug.Log ("Starting = " + Time.time);

 // StartCoroutine WaitAndPrint (In JavaScript, you can also use
yield WaitAndPrint(5.0) which will get the same result.
 yield StartCoroutine(WaitAndPrint(5.0));

 // Done WaitAndPrint = 5.0
 Debug.Log ("Done WaitAndPrint = " + Time.time);
}

function WaitAndPrint(waitTime : float) {
 //Suspend execution for 5 seconds
 yield WaitForSeconds(waitTime);

 // WaitAndPrint = 5.0
 Debug.Log ("WaitAndPrint = " + Time.time);
}

Using StartCoroutine with method name
(string)
In most cases, you would want to use the preceding StartCoroutine variation. However,
StartCoroutine using a string method name allows you to use StopCoroutine with a
specific method name.

The downside is that the string version has a higher runtime overhead
to start the coroutine and you can pass only one parameter.

In the following example, we show how to invoke a coroutine using a string name and how
to stop it:

function Start() {
 // Start Coroutine DoSomething
 StartCoroutine("DoSomething", 5.0);

 // Wait for 2 seconds
 yield WaitForSeconds(2.0);

Appendix B

335

 // Stop Coroutine DoSomething
 StopCoroutine("DoSomething");
}

function DoSomething (someParameter : float) {
 while (true) {
 // DoSomething Loop
 Debug.Log ("DoSomething Loop = " + Time.time);
 // Yield execution of this coroutine and return to the main loop
until next frame
 yield;
 }
}

StopCoroutine
Stops all coroutines for the specific method name running on this behavior.

Only StartCoroutine using a string method name can
be stopped using StopCoroutine.

Example
function Start() {
/ / Start Coroutine DoSomething
 StartCoroutine("DoSomething", 5.0);

 // Wait for 2 seconds
 yield WaitForSeconds(2.0);

 // Stop Coroutine DoSomething
 StopCoroutine("DoSomething");
}

function DoSomething (someParameter : float) {
 while (true) {
 // DoSomething Loop
 Debug.Log ("DoSomething Loop = " + Time.time);
 // Yield execution of this coroutine and return to the main loop
until next frame
 yield;
 }
}

Coroutines and Yield

336

StopAllCoroutines
Stops all coroutines running on this behavior.

Example
 function Start() {
// Start Coroutine DoSomething
 StartCoroutine("DoSomething", 5.0);

// Wait for 1 seconds
 yield WaitForSeconds(1.0);

 // Stop All Coroutine
 StopAllCoroutines();
}

function DoSomething (someParameter : float) {
 while (true) {
 // DoSomething Loop
 Debug.Log ("DoSomething Loop = " + Time.time);
 // Yield execution of this coroutine and return to the main loop
until next frame
 yield;
 }
}

Reference
The methods discussed earlier are referenced from the following pages:

http://unity3d.com/support/documentation/ScriptReference/index.
Corouines_26_Yield.html

http://unity3d.com/support/documentation/ScriptReference/
aitForSeconds.html

http://unity3d.com/support/documentation/ScriptReference/
WaitorFixedUpdate.html

http://unity3d.com/support/documentation/ScriptRefernce/Coroutine.
html

http://unity3d.com/support/documentation/ScriptReference/
MonoBehaviour.StartCoroutne.html?from=index

Appendix B

337

http://unity3d.com/support/documentation/ScriptReference/
MonoBehaviour.StoCoroutine.html

http://unity3d.com/support/documentation/ScriptReference/
MonoBehaviour.StopAllCoroutines.html

More details
The following link provides a good explanation and tutorial of how to use coroutine:

http://marvelopermedia.com/tutorial-coroutines-pt-1-waiting-for-
input/.

Appendix C
Major Differences

between C# and
Unity JavaScript

This appendix will provide a brief reference of the syntactical differences between C# and
JavaScript in Unity. This section references from the Unity answer forum:

http://answers.unity3d.com/questions/12911/what-are-the-syntax-
differences-in-c-and-javascrip.html.

Unity Script Directives
Unity has a number of Script Directives, and we can find them at this URL: http://
unity3d.com/support/documentation/ScriptReference/20_class_hierarchy.
Attributes.html, for example RequireComponent.

JavaScript:

@script RequireComponent(Rigidbody)

C#:

[RequireComponent(typeof(Rigidbody))]

Major Differences between C# and Unity JavaScript

340

Type names
A couple of the basic types are spelt differently in pure Unity C#. In JavaScript, we use
Boolean and String, but in pure Unity C#, we use bool and string.

JavaScript:

var isHit : Boolean;
var myName : String;

C#:

bool isHit;
string myName;

However, there is an exception. If you include System in your C# script, you will be able to
use String and Boolean classes (the upper-case) of .NET, similar to the following script:

C#:

using System;

Boolean isHit;
String myName;

Variable declaration
Variable declaration is different, including access and type specification.

JavaScript: The type specification is not necessary.

public var playerLife = 1; // a public var
int playerLife = 2; // **private** access is default
public GameObject myObj; // a type is specified (no value
assigned)

C#: The type is always stated when declaring a variable.

var playerLife = 1; // **public** access is default
private var playerLife = 2; // a private var
var myObj : GameObject; // a type is specified (no value
assigned)

Appendix C

341

Variable with Dynamic Type
Resolution

Only in JavaScript, variables can have an unspecified type. This only occurs if you don't assign
a value or specify a type while declaring the variable.

JavaScript: The type specification is not necessary.

var playerLife : int; // statically typed (because type specified)
var playerLife = 2; // statically typed (because type is inferred
from value
assigned)
var playerLife; // dynamically typed (because neither a type or value
is specified)

The dynamically typed variables will cause slower performance, and you can run into casting
problems. You can use #pragma strict, including it at the top of a script, to tell Unity to
disable the dynamic typing in the script and report compile errors when this is a dynamic
type in the script.

Multi-dimensional array declaration
JavaScript:

var myArray = new int[8,8]; // 8x8 2d int array

C#:

int[,] myArray = new int[8,8]; // 8x8 2d int array

Character literals not supported
Unity's JavaScript seems to be missing the syntax to declare character literals. This means
you need to get them implicitly by referencing a character index from a string.

JavaScript:

var myChar = "a"[0]; // implicitly retrieves the first character
of the string "a"

C#:

char myChar = 'a'; // character 'a'

Major Differences between C# and Unity JavaScript

342

Class declarations
You can define classes in JavaScript, in a similar way as you do it in C#. The following example
is a class that inherits from MonoBehaviour.

JavaScript:

class MyClass extends MonoBehaviour {
 var myVar = 1;
 function Start() {
 Debug.Log("Hello World!");
 }
}

C#:

class MyClass : MonoBehaviour {
 public int myVar = 1;
 void Start() {
 Debug.Log("Hello World!");
 }
}

However in JavaScript, if you're inheriting from MonoBehaviour, you don't need to write a
class body at all. You can also write the following script in JavaScript, which will get a similar
result as the preceding JavaScript:

var myVar = 1;
function Start() {
 Debug.Log("Hello World!");
}

Unity will automatically implement an explicit class body for you.

You can also write classes that do not inherit from anything; however, you can't place these
scripts on the game objects—you have to instantiate them with the new keyword.

JavaScript:

class MyClass {
 var myVar = 1;
 function MyClass() {
 Debug.Log("Hello World!");
 }
}

Appendix C

343

C#:

class MyClass {
 public int myVar = 1;
 void MyClass() {
 Debug.Log("Hello World!");
 }
}

If you are inheriting from MonoBehaviour, you should not
use constructors or destructors. Instead, use the event handler
functions Start, Awake, and OnEnabled.

Limited interface support
While Unity's JavaScript does support inheritance and interfaces, it has very limiting caveat
that you can either inherit your class from an existing class, or declare one interface.

JavaScript (only one allowed):

class MyClass extends MyObject {…}

C#:

class MyClass : MonoBehaviour, IMyObject, IMyItem {…}

Generics
The C# syntax supports generics that allows you to use classes and methods, which do
not specifically declare a type. Instead, the type is passed as a parameter when calling the
method or instantiating the class at runtime.

.Net comes with some useful generic classes, such as the List and Dictionary, and
Unity's own API has some generic functions, which remove the need for some of the verbose
casting that would otherwise be necessary in C#.

JavaScript:

//Automatically cast the correct type
var someScript : MyScript = GetComponent(MyScript);

//or using the Generic version in Javascript
var someScript : MyScript = GetComponent.<MyScript>();

Major Differences between C# and Unity JavaScript

344

C#:

//with out Generic
var someScript : MyScript = (MyScript)GetComponent(typeof(MyScript));
//or using the Generic version in C#
var someScript : MyScript = GetComponent<MyScript>();

The foreach keyword
C# iterators use foreach instead of for. Also, notice the variable declaration within
the for/foreach statement. C# requires the type of the item contained in the list to be
explicitly declared.

JavaScript:

for (var item in itemList) {
 item.DoSomething();
}

C#:

foreach (ItemType item in itemList) {
 item.DoSomething();
}

Although the JavaScript version uses inefficient dynamic
typing (since you can't declare the type), the static-typed
alternative is as follows.

JavaScript:

for (var item = itemList.GetEnumerator(); item.MoveNext();) {
 item.DoSomething();
}

Appendix C

345

The new keyword
In JavaScript, you can create a new instance of an object or struct without using the new
keyword. In C#, using new is mandatory.

JavaScript:

var myPosition = Vector3(0,0,0);
var myInstance = MyClass();
//We can also use new keyword in JavaScript
var myInstance = new MyClass();

C#:

Vector3 myPosition = new Vector3(0,0,0);
MyClass myInstance = new MyClass();

YieldInstruction and coroutine
There are differences in the syntax of C# and JavaScript as follows:

JavaScript:

yield WaitForSeconds(3); //pauses for 3 seconds
yield WaitForMyFunction(); //start coroutine

function WaitForMyFunction() {…} //coroutine function

C#:

yield return new WaitForSeconds(3); //pauses for 3 seconds
yield return WaitForMyFunction(); //start coroutine

IEnumerator WaitForMyFunction() {…} //coroutine function

In JavaScript, it will automatically generate the return type to
IEnumerator if you put yield instruction inside the function. On the
other hand, in C# you will need to specify the return type to IEnumerator.

Major Differences between C# and Unity JavaScript

346

However, if we want to wait for the user input in C#, which might be over several frames, we
will have to use StartCoroutine. In JavaScript, the compilers will automatically do it for us.

JavaScript:

yield WaitForMyFunction(5);
//This is similar with
yield StartCoroutine(WaitForMyFunction(5));

function WaitForMyFunction(waitTime : float) {…}
//coroutine function

C#:

//Need to put StartCoroutine
yield return StartCoroutine(WaitForMyFunction(5));

IEnumerator WaitForMyFunction(waitTime : float) {…}
//coroutine function

Casting
JavaScript automatically casts from one type to another, wherever possible. For example, the
Instantiate command returns a type of Object:

JavaScript:

//There's no need to cast the result of "Instantiate" provided the
variable's type is declared.
var newObject : GameObject = Instantiate(sourceObject);

C#:

// in C#, both the variable and the result of instantiate must be
declared.
// C# first version
GameObject foo = (GameObject) Instantiate(sourceObject);
// C# second version
GameObject foo = Instantiate(sourceObject) as GameObject;

Appendix C

347

There are two different ways of casting in C#. For the first line in the
preceding code, if the object can't be instantiated, it will throw an exception.
You would need to use a try/catch to properly handle it. The second line,
if it fails, will set foo to null, and not throw an exception. Then you would
just need to test, if the returned object was null.

Properties with getters/setters
In C#, it is possible to define special functions that can be accessed as if they were variables.
For instance, we could say foo.someVar = "testing";, and under the hood, there are
get and set functions, which process the argument testing and store it internally. However,
they could also do any other processing on it, for instance, capitalizing the first letter before
storing it. So you're not just doing a variable assignment, you're calling a function that sets
the variable, and it can do whatever the functions do.

C#:

public class MyClass {
private int foo = 8; //"backing store"
public int Foo {
 get {
 return foo;
 }
 set {
 foo = value;
 }
}
}

However, in Unity JavaScript, we can also use get and set functions similar to the
C# version, but we need to write the class body whenever you want to use the get or
set function.

JavaScript:

public class MyClass {
private var foo = 8; //"backing store"
function get Foo () : int {
 return foo;
}
function set Foo (value) {
 foo = value;
}
}

Major Differences between C# and Unity JavaScript

348

Changing Struct properties by value
VS by reference

Structures are passed by value in C#, so you cannot change the x or y value of a Vector3
and you need to create a new Vector3 and assign it to the Vector3 that you want.
However, in JavaScript, you can write it as follows.

JavaScript:

transform.position.x = 1;

C#:

transform.position = new Vector3(1, transform.position.y, transform.
position.z);

Function/method definitions
First of all, terminology – JavaScript uses the term function, while C# calls these methods.
They mean the same thing, and most C# coders understand the term function.

JavaScript functions are declared with the keyword function before the function name. C#
method declarations just use the return type, and the method name. The return type is often
void for common Unity events. JavaScript functions are public by default, and you can
specify them as private if required. C# methods are private by default, and you can specify
that they should be public if required.

In JavaScript, you can omit the parameter types and the return type from the declaration,
but it's also possible to explicitly specify these (which is sometimes necessary if you run into
type ambiguity problems).

JavaScript:

// a common Unity Monobehaviour event handler:
function Start () { ...function body here... }

// a private function:
private function TakeDamage (amount) {
energy -= amount;
}

// a public function with a return type.
// the parameter type is "Transform", and the return type is "int"

Appendix C

349

function GetHitPoint (hp : int) : int {
 return (maxHp – hp);
}

C#:

// a common Unity monobehaviour event handler:
void Start() { ...function body here... }

// a private function:
void TakeDamage(int amount) {
energy -= amount;
}

// a public function with a return type.
// the parameter type is "Transform", and the return type is "int"

public int GetHitPoint (int hp) {
 return (maxHp – hp);
}

Reference
The methods mentioned earlier can be referenced from the following websites:

http://answers.unity3d.com/questions/12911/what-are-the-syntax-
differences-in-c-and-javascrip.html

http://www.unifycommunity.com/wiki/index.php?title=Csharp_
Differences_from_JS

http://unity3d.com/support/documentation/ScriptReference/index.
Writing_Scripts_in_Csharp.html

http://www.unifycommunity.com/wiki/index.php?title=Csharp_
Differences_from_JS.

Appendix D
Shaders and Cg/HLSL

Programming

This appendix presents a brief overview of the structure of surface shaders and Cg/HLSL
programming.

Shaders in Unity can be written in one of the following three different ways:

ff Surface shaders will probably be your best bet. Write your shader as a surface shader
if it needs to interact properly with lighting, shadows, projectors, and so on. Surface
shaders also make it easy to write complex shaders in a compact way—it's a higher
level of abstraction. Lighting for most surface shaders can be calculated in a deferred
manner (except for some custom lighting models), which allows your shader to
efficiently interact with many real-time lights. You write surface shaders in a couple of
lines of Cg/HLSL and a lot more code gets autogenerated from that.

ff Vertex and fragment shaders will be required, if you need some very exotic effects
that the surface shaders can't handle, if your shader doesn't need to interact with
lighting, or if it's an image effect. Shader programs written this way are the most
flexible way to create the effect you need (even surface shaders are automatically
converted to a bunch of vertex and fragment shaders), but that comes at a price—
you have to write more code and it's harder to make it interact with lighting. These
shaders are written in Cg/HLSL as well.

ff Fixed function shaders need to be written for old hardware that doesn't support
programmable shaders. You will probably want to write fixed function shaders as an
nth fallback to your fancy fragment or surface shaders, to make sure your game still
renders something sensible when run on old hardware or simpler mobile platforms.
Fixed function shaders are entirely written in a language called ShaderLab, which is
similar to Microsoft's .FX files or NVIDIA's CgFX.

Shaders and Cg/HLSL Programming

352

Regardless of which type you choose, the actual meat of the shader code will always be
wrapped in ShaderLab, which is used to organize the shader structure. It looks similar to the
following code:

Shader "MyShader" {
 Properties {
 // All properties go here
 _MyTexture ("My Texture", 2D) = "white" { }
}

SubShader {
 // Choose your written style
 // - surface shader or
 // - vertex and fragment shader or
 // - fixed function shader
}

SubShader {
 // Optional - A simpler version of the SubShader above that can run
on older graphics cards
}
}

However, we will only talk about the surface shaders, which we used in Project 3, The Hero/
Heroine Part I – Models and Shaders.

ShaderLab properties
From the preceding example code, in the Properties block, we can define the type of
properties, as shown in the following table:

Type Description
name ("display name", Range (min,
max)) = number

Defines a float property, represented as a
slider from min to max in the Inspector view.

name ("display name", Color) =
(number,number,number,number)

Defines a float property, represented as a
slider from min to max in the Inspector view.

name ("display name", Color) =
(number,number,number,number)

Defines a color property.

name ("display name", 2D) = "name"
{ options }

Defines a 2D texture property.

Appendix D

353

Type Description
name ("display name", Rect) =
"name" { options }

Defines a rectangle (non power of 2) texture
property.

name ("display name", Cube) =
"name" { options }

Defines a cubemap texture property.

name ("display name", Float) =
number

Defines a float property.

name ("display name", Vector) =
(number,number,number,number)

Defines a four-component vector property.

Each property inside the shader is referenced by name (in Unity, it's common to start shader
property names with underscore). The property will show up in material inspector as Display
name. For each property a default value is given after the equals sign:

ff For Range and Float properties: It's just a single number

ff For Color and Vector properties: It's four numbers in parentheses

ff For texture (2D, Rect, Cube): The default value is either an empty string, or one of
the built-in default textures—white, black, gray, or bump.

Example
Properties {
 _MainTex ("Texture ", 2D) = "white" {} // textures

 _SpecColor ("Specular color", Color) = (0.30, 0.85, 0.90, 1.0) //
color

 _Gloss ("Shininess", Range (1.0,512)) = 80.0 // sliders
}

Surface shaders
To use the surface shaders, you need to define a surface function (void surf(Input IN,
inout SurfaceOutput o)) that takes any UVs or data you need as input, and fills in
the output structure SurfaceOutput. The SurfaceOutput structure basically describes
properties of the surface (that is albedo color, normal, emission, specularity, and so on).
Then, you write this code in Cg/HLSL.

Surface shader compiler then figures out the inputs that are needed, the outputs that are
filled, and so on, and generates actual vertex and pixel shaders as well as rendering passes to
handle forward and deferred rendering.

Shaders and Cg/HLSL Programming

354

The surface shaders placed inside CGPROGRAM...ENDCG block, must be placed inside the
SubShader block, and uses the #pragma surface ... directive to indicate that it's a
surface shader. You will see that the surface shaders placed inside CGPROGRAM and ENDCG
block in the following example:

Shader "My Lambert" {
 Properties {
 _MainTex ("Texture", 2D) = "white" {}
 }
 SubShader {
 Tags { "RenderType"="Opaque" }
 LOD 200 //Optional that allows the script to turned the shader on
or off when the player's hardware didn't support your shader.
 CGPROGRAM
 #pragma surface surf Lambert
 sampler2D _MainTex;

 struct Input {
 float2 uv_MainTex;
 };

 void surf (Input IN, inout SurfaceOutput o) {
 fixed4 c = tex2D (_MainTex, IN.uv_MainTex);
 o.Albedo = c.rgb;
 o.Alpha = c.a;
 }
 ENDCG
 }
 FallBack "Diffuse"
}

#pragma surface
The #pragma surface directive is:

#pragma surface surfaceFunction lightModel [optionalparams]

Required parameters
The following are the required parameters for the #pragma surface directive:

ff surfaceFunction—the Cg function that has surface shader code. The function
should have the form void surf (Input IN, inout SurfaceOutput o),
where Input is a structure you have defined. Input should contain any texture
coordinates and extra automatic variables needed by the surface function.

Appendix D

355

ff lightModel—lighting model to use. Built-in ones are Lambert (diffuse) and
BlinnPhong (specular). You can also write your own by using the following custom
lighting models:

�� half4 LightingName (SurfaceOutput s, half3 lightDir,
half atten);: This is used in a forward rendering path for light models
that are not view direction dependent (for example, diffuse).

�� half4 LightingName (SurfaceOutput s, half3 lightDir,
half3 viewDir, half atten);: This is used in a forward rendering
path for light models that are view direction dependent.

�� half4 LightingName_PrePass (SurfaceOutput s, half4
light);: This is used in a deferred lighting path.

Note that you don't need to declare all functions. A lighting model
either uses view direction or it does not. Similarly, if the lighting
model will not work in deferred lighting, you just do not declare the
_PrePass function. All the shaders that use it will compile to forward
rendering only, such as the shader that we did in Chapter 3, The Hero/
Heroine Part I – Models and Shaders. We don't need the _PrePass
function because our shader needs the view direction(viewDir) and
the light direction(lightDir) for our custom lighting function to
calculate the ramp effect for the cartoon style shader (Toon Shader/
Cel Shader), which is only available in forward rendering.

ff Optional parameters [optionalparams]:

Type Description
alpha Alpha blending mode. Use this for semitransparent

shaders.
alphatest:VariableName Alpha testing mode. Use this for transparent-cutout

shaders. Cutoff value is in float variable with VariableName.
vertex:VertexFunction Custom vertex modification function. See the Tree Bark

shader, for example.

exclude_path:prepass or
exclude_path:forward

Do not generate passes for given rendering path.

addshadow Add shadow caster and collector passes. Commonly used
with custom vertex modification, so that shadow casting
also gets any procedural vertex animation.

dualforward Use dual lightmaps in forward path.
fullforwardshadows Support all shadow types in forward rendering path.
decal:add Additive decal shader (for example, terrain AddPass).
decal:blend Semitransparent decal shader.

Shaders and Cg/HLSL Programming

356

Type Description
softvegetation Makes the surface shader only be rendered when Soft

Vegetation is on.
Noambient Do not apply any ambient lighting or spherical harmonics

lights.
novertexlights Do not apply any spherical harmonics or per-vertex lights in

forward rendering.
nolightmap Disables lightmap support in this shader (makes a shader

smaller).
Noforwardadd Disables forward rendering additive pass. This makes the

shader support one full directional light, with all other
lights computed per-vertex/SH. Makes shaders smaller as
well.

approxview Computes normalized view direction per-vertex instead of
per-pixel, for shaders that need it. This is faster, but view
direction is not entirely correct when camera gets close to
the surface.

halfasview Pass half-direction vector into the lighting function instead
of view-direction. Half-direction will be computed and
normalized per vertex. This is faster, but not entirely
correct.

Additionally, you can write #pragma debug inside the CGPROGRAM block, and then the
surface compiler will spit out a lot of comments of the generated code. You can view that
using Open Compiled Shader in shader inspector.

Surface shaders input structure
The input structure Input generally has any texture coordinates needed by the shader.
Texture coordinates must be named uv followed by a texture name (or start it with uv2 to
use the second texture coordinate set).

Example:
Properties {
 _MainTex ("Texture", 2D) = "white" {}
 }
 ……

 sampler2D _MainTex;
 ……
 struct Input {
 float2 uv_MainTex;
 };

Appendix D

357

We can also have the additional values that can be put into the input structure:

Type Description
float3 viewDir Contains view direction, for computing parallax effects, rim

lighting, and so on.

float4 with COLOR semantic Contains interpolated per-vertex color.

float4 screenPos Contains screen space position for reflection effects. Used by
WetStreet shader in Dark Unity, for example.

float3 worldPos Contains world space position.

float3 worldRefl Contains world reflection vector if surface shader does not
write to o.Normal. See Reflect-Diffuse shader, for example.

float3 worldNormal Contains world normal vector if surface shader does not write
to o.Normal.

float3 worldRefl;
INTERNAL_DATA

Contains world reflection vector if surface shader writes to
o.Normal. To get the reflection vector based on per-pixel
normal map, use WorldReflectionVector (IN, o.Normal). See
Reflect-Bumped shader, for example.

float3 worldNormal;
INTERNAL_DATA

Contains world normal vector if surface shader writes to
o.Normal. To get the normal vector based on per-pixel normal
map, use WorldNormalVector (IN, o.Normal).

SurfaceOutput structure
The standard output structure of surface shaders is as follows:

struct SurfaceOutput {
 fixed3 Albedo;
 fixed3 Normal;
 fixed3 Emission;
 half Specular;
 fixed Gloss;
 fixed Alpha;
};

You can also find it in the Lighting.cginc file inside Unity in {unity install path}/
Data/CGIncludes/Lighting.cginc on Windows, and in /Applications/Unity/
Unity.app/Contents/CGIncludes/Lighting.cginc on a Mac.

Shaders and Cg/HLSL Programming

358

Cg/HLSL programming
This section presents a brief description of how to access the shader Properties in Cg/
HLSL programming, and the data types and common methods used in Cg/HLSL programming.

Accessing shader properties in Cg/HLSL
Shader can be declared with properties in a Properties block. If you want to access some
of those properties in a Cg/HLSL shader program, you need to declare a Cg/HLSL variable
with the same name and a matching type.

Example:
Properties {
 _MainTex ("Texture", 2D) = "white" {}
 }

 SubShader {
 ……
 CGPROGRAM
 sampler2D _MainTex;
 …

Property types to Cg/HLSL variable types are as follows:

ff Color and Vector properties map to float4 variables.

ff Range and Float properties map to float variables.

ff Texture properties map to sampler2D variables for regular (2D) textures. CUBE
and RECT textures map to samplerCUBE and samplerRECT variables, respectively.

Data type
Cg/HLSL has six basic data types. Some of them are the same as in C, while others are
especially added for GPU programming. These types are:

Date type Description
float A 32-bit floating point number (high precision floating point.

Generally 32 bits, just like float type in regular programming languages).
half A 16-bit floating point number (medium-precision floating point. Generally 16 bits,

with a range of -60000 to +60000 and 3.3 decimal digits of precision)
int A 32-bit integer.

Appendix D

359

Date type Description
fixed A 12-bit fixed point number (low-precision fixed point. Generally 11 bits, with a

range of -2.0 to +2.0 and 1/256th precision).
bool A Boolean variable (FALSE = 0, TRUE = 1).
sampler* Represents a texture object (sampler1D, sampler2D, sampler3D, samplerCUBE,

samplerRECT).

Cg/HLSL also features vector and matrix data types that are based on the basic data
types, such as float3 and float4x4. Such data types are quite common when dealing with
3D graphics programming. Cg/HLSL also has struct and array data types, which work in a
similar way to their C equivalents.

Common methods to create shaders

Method Description
dot(a, b) Dot product of two vectors.
cross(A , B) Cross product of vectors A and B; A and B must be three-

component vectors.
max(a, b) Maximum of a and b.
min(a , b) Minimum of a and b.
floor(x) Get largest integer not greater than x.
round(x) Get closest integer to x.
ceil(x) Get smallest integer not less than x.
pow(x , y) Computes x raised to the power y.
normalize(v) Returns a vector of length 1 that points in the same direction as

vector v.
saturate(x) Clamps x to the [0, 1] range.
tex2D(sampler, x) 2D texture lookup (sampled data at the location indicated by the

texture coordinate set in the sampler object).

The preceding methods are the common methods that you can use to create your shader
with Cg/HLSL. There are a lot of methods that you can also use in Cg/HLSL.

For more details, you can refer to the following site:

http://http.developer.nvidia.com/CgTutorial/cg_tutorial_appendix_e.
html.

Shaders and Cg/HLSL Programming

360

Note that UnpackNormal(x) is the method that is provided by Unity
to unpack the normal or bump texture, which you can find in the UnityCG.
cginc file inside Unity {unity install path}/Data/CGIncludes/
UnityCG.cginc on Windows, and in /Applications/Unity/Unity.
app/Contents/CGIncludes/UnityCG.cginc on Mac.

Reference
The preceding content is referenced from the following websites:

http://unity3d.com/support/documentation/Manual/Shaders.html

http://unity3d.com/support/documentation/Components/SL-
SurfaceShaders.html

http://unity3d.com/support/documentation/Components/SL-
PropertiesInPrograms.html

http://unity3d.cba.pl/Documentation/Documentation/Components/SL-
Properties.html

http://unity3d.com/support/documentation/Components/SL-
ShaderPerformance.html

http://en.wikipedia.org/wiki/Cg_%28programming_language%29

http://http.developer.nvidia.com/CgTutorial/cg_tutorial_frontmatter.
html

Index
Symbols
2D character

box collider 23-25
creating 20
creating, steps 21, 22
mesh collider 23-25
working 22

3D file
exporting 106

3D Studio Max
exporting from 106-109

_Glossiness properties 128
#pragma surface ... directive 354
#pragma surface, surface shaders

lightModel 355
Optional parameters [optionalparams] 355, 356
parameters 354
surfaceFunction 354

#pragma surface, surface shaders;about 354
#pragma surface, surface shaders;parameters

355, 356
_PrePass function 355
_Ramp property 130

A
A* Algorithm 211
AddExplosionForce() function 269, 270
AddField() function 321
AddForce() function 268
addshadow parameter 355
AI

creating 211
AIController 249
AIController script 218, 223, 227, 230, 240, 241,

247, 251, 252, 254, 256, 258, 260, 266,

267
enemy movement, creating with 229-243
Jump(_direction $ Vector3) function 256
optimizing 254-257

AI Enemy
creating 226-228
Waypoints object 226

Aim button 173
alpha parameter 355
alphatest$VariableName parameter 355
Animation class 140
animation.CrossFade() function 166
approxview parameter 356
A Star Algorithm 211
AudioSource script 45
Awake function

about 323
example 323

Awake() function 49, 158, 163, 193, 217, 231,
317

AwayFromWaypoint() function 224

B
Blinn-Phong 104
bool, data type 359
box collider 23-25
built-in script

creating 151-154
bump map 112

C
C#

and JavaScript, syntax differences 345, 346
camera

creating 11-13

362

creating, steps 13-18
tips 19, 20
working 19

casting 346
ceil(x), method 359
Cg 101
Cg/HLSL programming

about 358
shader properties, accessing 358
shader properties, accessing example 358

CGPROGRAM...ENDCG block 354
character

setting up, with first-person controller prefab
175-181

character animation
setting up 141-150

CharacterCamera 155
CharacterCamera script 167
CharacterControl class

creating 25
creating, steps 26-30

character controller
creating 151-154

CharacterController 227
CharacterController class 140, 162
Character Controller component 140
Character Controller package 142
CharacterController script 171
CharacterControl script 155, 161, 171, 212, 213,

236, 256
character literals 341
CharacterMotor script 174
class declarations 342, 343
class keyword 304
CollisionFlags parameter 232
Controller prefab 180
ConvertStringtoInt() function 309
Coroutine

example 332
cross(A , B), method 359
crossFade() 191
CrossFade animation

creating 162-166
custom character control script

creating 155-162
custom shader

applying, to character model 102-104
creating 102-104
creating, steps 105

D
data type, Cg/HLSL programming

about 358
bool, data type 359
fixed, data type 359
float, data type 358
half, data type 358
int, data type 358
sampler*, data type 359

decal
add parameter 355

decal$blend parameter 355
Destroy() function 281
destructible wall

creating 270-272
diffuse map 112
diffuse reflection 104
DoMyWindow() function 86
door

creating 40
creating, steps 40-43

doorOpen texture 42
dot(a, b), method 359
dualforward parameter 355

E
Enemy game object 228
enemy movement

creating, with AIController script 229-243
enum objects 295
enum parameter 294
e_page parameters 294
equipment tab

creating 88
parameters, adding 88-94

EquipWindow()function 89
exclude_path$forward parameter 355
exclude_path$prepass parameter 355
Exporting package window 182
Export Package� button... 182

363

F
FBX folder 143
Fire() function 195, 201
First Person Controller object 202
first-person controller prefab

character, setting up with 175-181
fixed, data type 359
fixed function shaders 351
fixed parameter 127
FixedUpdate

about 324
example 325

float3 viewDir, type 357
float3 worldNormal; INTERNAL_DATA, type 357
float3 worldNormal, type 357
float3 worldPos, type 357
float3 worldRefl; INTERNAL_DATA, type 357
float3 worldRefl, type 357
float4 screenPos, type 357
float, data type 358
float variable 190
floor(x), method 359
Fluffy Smoke object 199
Fonts folder 175
Foreach keyword 344
FPSInputController file 184
FPSInputController script 174, 182
FPS tutorial package

URL 173
fragment shaders 351
fullforwardshadows parameter 355
function definitions 348

G
GameObject.FindWithTag 323
gameObject.GetComponentsInChildren.<Rigidbo

dy>() function 279
GAMEOVER menu 293
GameoverPage() function 290, 294, 302, 317
generics 343
GetComponentsInChildren() function 225
GetComponentsInChildren.<T>() function 225
GetComponentsInChildren(Transform) function

224
getDirection() function 223
GetDirectionToPlayer() function 224

GetScore() function 320
GetScores() function 315
getters

properties with 347
gizmos

AIController script 218
Awake() function 217
creating 215
JavaScript file, creating 216
lift off, preparing for 215, 216
OnDrawGizmos() function 220
Start() function 217

Gizmos.DrawIcon() function 215, 220
Gizmos.DrawLine() 220
Gizmos.DrawWireSphere() function 215, 220
Gizmos folder 287
Gizmos() function 247
gravity property 157
GUI.BeginGroup() 246
GUI.BeginGroup() function 246, 247
GUI class 51, 52, 53, 98
GUIContent array 85
GUI function 245
GUI.Label() function 82
GUIText object 52
GUITexture object 52, 174, 207
GUI.tooltip parameter 86

H
Hack and Slash style game 139
halfasview parameter 356
half, data type 358
Heroine_animate 150, 152
Heroine_animate object 164
Heroine_BuiltIn prefab 154
high score

AddField() function 321
loading, to server 312-319
posting, to server 312-319
ServerHiScore script 320
StartCoroutine() function 320

high score menu
about 288
creating 288
enum objects 295
enum parameter 294

364

e_page parameters 294
GAMEOVER menu 293
GAMEOVER menu, creating 288, 289
GameoverPage() function 290, 294
lift off, preparing for 296
Lift Off, preparing for 288
loading 295
LOCAL HI-SCORE button 293
LocalScorePage() function 291, 294
OnGui() function 294
saving 295
ServerScorePage() function 292
thrusters, engaging 296, 297

HiScore game object 295
HiScore script 301
hit-point UI

AIController 249
creating 243
GUI.BeginGroup() 246
GUI.BeginGroup() function 246
HitPointUI game object 245
HitPointUI script 243
Update() function 244

HitPointUI game object 245
HitPointUI script 243
HLSL (High Level Shader Language) 101
HLSL (High Level Shading Language) 101
Horizontal button 33

I
Init() function 297
Input struct 129
Instantiate() function 204, 208, 268, 281
int, data type 358
inventory tab

creating 82-85
working 86

Invoke() function 199, 204
InvokeRepeating() function 204
isKinematic method 284
Item class 80, 82
ItemWindow() function 83, 86

J
JavaScript

and C#, syntax differences 345, 346

Jump(_direction $ Vector3) function 256
Jump() function 233, 242, 257

K
key

creating 40
creating, steps 40-43

KillObject() function 199, 203

L
Lambert 104
LateUpdate

about 325
example 325

LateUpdate() function 28, 34, 168, 170, 171
level

setting up 141-150
Level folder 175
LightingRampSpecular() function 133, 134
lightModel 355
limited interface support 343
LoadGameLocal() function 299, 305
LoadLocal() function 305
LoadName() function 297
LoadXMLData() function 320
LOCAL HI-SCORE button 293
LocalHiScore script 298
LocalScorePage() function 291, 294, 302
lowleg_R 263

M
max(a, b), method 359
maxRotateY parameters 193
M_Character 22
MenuInRPG scene 56
menu object

creating 70, 71
creating, steps 71, 72, 74

mesh collider 23-25
Mesh Renderer component 146
method definitions 348
min(a , b), method 359
Minimax Algorithm 211
mission briefing 285, 286
MonoBehaviour 324, 325

365

MonoBehaviours script 43
MonoDevelop 26
MouseLook built-in script 182, 183
MouseLook_JS scripts

about 174, 182, 190
creating 182-189

mouseLook parameters 193
MouseLook script 174, 190
Move() function 140, 161, 162, 171
multi-dimensional array declaration 341

N
Name parameter 143
New3PSController

creating 182-189
New3PSController script 174, 182, 191, 195, 213
new keyword 345
Noambient parameter 356
Noforwardadd parameter 356
nolightmap parameter 356
normalize(v), method 359
novertexlights parameter 356

O
OnDrawGizmos

about 326
example 326

OnDrawGizmos() function 37, 38, 212, 215, 220,
222, 224, 226, 239

OnGUI
about 325
example 325

OnGUI function 98, 101, 285
OnGUI() function 208, 210, 288, 289, 294
OnTriggerEnter() function 42
out keyword 311

P
ParentRocks script 252
Parse(string xml) function 310
particles

creating 196-204
Phong 104
Physics.CapsuleCast() function 233, 242
Physics class function 233

Physics.OverlapSphere() function 274
Physics.Raycast() function 232, 242
play button 150, 273
PlayerPrefs class 286
pow(x , y), method 359
Prefabs folder 145
Project window 182
Properties block 352

R
ragdoll

creating 261-263
random function 212
Raycast

about 33
Physics.Raycast 39, 40

references
URLs 360

Reload() function 192
Remove Component 146
replay button

adding 44
adding, steps 45-48

restart button 9, 52, 213
rigidbody 252, 273
rigidbody object 269
robot_AI_ragdoll 262, 264
robot_AI_ragdoll game object 261, 266
robot_AI_ragdoll prefab 261, 266
robot prefab 180
rocket bullet UI

creating 205-209
Rocket folder 175
rocket launcher

creating 191-196
RocketLauncher game object 227
RocketLauncher object 202, 204
RocketLauncher prefab 228
RocketLauncher script 192, 201
rockets

creating 196-204
rocket script 199, 203, 281
Rock script 252
rockslide

creating 275-279
Rockslide game object 277, 282

366

Rockslide object 275
roothandle 265
round(x), method 359

S
sampler, data type 359
saturate(x), method 359
SaveLocal() function 297
script 168
SendScore() function 320
ServerScorePage() function 292, 318
setters

properties with 347
setTimeOut() function 204
SetupRotation() function 169
ShaderLab

about 351
properties 352, 353

ShaderLab properties
about 352
example 353

shader programming
about 101, 112, 124, 126, 127
starting, steps 112-115

shaders, Cg/HLSL programming
methods, for creating 359

Shoot() function 232
ShotSmoke prefab 199, 214
ShowArmor() function 91
ShowWeapon() function 91
Skinned Mesh 147
softvegetation parameter 356
SortUser (array

UsersData[]) function 300, 305
sound button

adding 44
adding, steps 45-48

speed parameter 166
SpriteManager class

about 28, 30, 31, 36, 37, 50
creating 25
creating, steps 26-30
working 30, 31

Standard Assets folder 253
start

about 324

example 324
StartCoroutine

about 333, 334
using, iwth method name (string) 334, 335

StartCoroutine function 333
Start function 77, 323
Start() function 27, 80, 83, 89, 158, 217, 218,

231, 289, 301, 304, 314, 317, 320
Start parameter 143
status tab

creating 76
status parameters, assigning 77-81

STATUS tab 53
StatusWindow() function 80
StopAllCoroutines

example 336
StopCoroutine

about 335
example 335

struct properties
changing, by reference 348
changing, by value 348

SubShader section 130
surfaceFunction 354
SurfaceOutput struct 129
SurfaceOutput structure 353
surface shaders

#pragma surface 354
about 103, 351, 353, 354
input structure 356
input structure, example 356, 357
SurfaceOutput structure 357

surf() function 124, 125, 128, 131

T
tex2D() function 127, 135
tex2D(sampler, x), method 359
TextureButton class 45
third-person camera

creating, to follow camera 166-171
Third-person Camera script 153
trigger area

creating 275-279
triggerArea game object 282
TriggerArea object 280
TriggerArea script 252, 275, 280, 281

367

trigger parameter 224
type names 340

U
unitypackage 180
Unity Script Directives 339
Unity ShaderLab forum

URL 136
Unity Shader Reference

URL 136
Unity website

URL 141
update

about 324
example 324

Update() function 27, 28, 31, 46, 159, 168, 170,
186, 189, 193, 194, 235, 244, 256, 304

Update functions 168
upleg_R 263
UserLength() function 309
userName parameter 293

V
variable declaration 340
Vector3.Slerp() 160
Vector3.Slerp() function 160
vertex$VertexFunction parameter 355
vertex shaders 351

W
WaitForFixedUpdate

example 331
WaitForSeconds

example 330, 331
WaitingForResponse() function 320

Wall game object 276
WarpMode parameter 143
waypoint

AIController script 218, 223
Awake() function 217
AwayFromWaypoint() function 224
creating 215
GetComponentsInChildren() function 225
GetComponentsInChildren.<T>() function 225
GetComponentsInChildren.<Transform>()

function 224
GetComponentsInChildren(Transform) function

224
getDirection() function 223
GetDirectionToPlayer() function 224
lift off, preparing for 215, 216
OnDrawGizmos() function 220, 222, 224, 226
Start() function 217
trigger parameter 224
Waypoint game object 221
waypoint script 223

Waypoint game object 221
Waypoints object 226
Waypoints script 221, 223, 229

X
XML data

getting, from server 306-312
lift off, preparing for 306, 307

XMLParser script 286, 307

Y
YieldInstruction

about 329
example 329, 330

yield statement 330

Thank you for buying
Unity 3 Game
Development HOTSHOT

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our unique
business model allows us to bring you more focused information, giving you more of what you need to
know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be sent
to author@packtpub.com. If your book idea is still at an early stage and you would like to discuss
it first before writing a formal book proposal, contact us; one of our commissioning editors will get in
touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Unity 3D Game Development
by Example Beginner's Guide
ISBN: 978-1-849690-54-6 Paperback: 384 pages

A seat-of-your-pants manual for building fun, groovy little
games quickly

1.	 uild fun games using the free Unity 3D game engine
even if you've never coded before

2.	 Learn how to "skin" projects to make totally
different games from the same file – more games,
less effort!

3.	 Deploy your games to the Internet so that your
friends and family can play them

4.	 Packed with ideas, inspiration, and advice for your
own game design and development

Unity 3.x Game Development
Essentials
ISBN: 978-1-849691-44-4 Paperback: 420 pages

Build fully functional, professional 3D games with realistic
environments, sound, dynamic effects, and more!

1.	 Kick start your game development, and build ready-
to-play 3D games with ease.

2.	 Understand key concepts in game design including
scripting, physics, instantiation, particle effects, and
more.

3.	 Test & optimize your game to perfection with
essential tips-and-tricks.

4.	 Written in clear, plain English, this book takes you
from a simple prototype through to a complete 3D
game with concepts you’ll reuse throughout your
new career as a game developer.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Project 1:
Develop a Sprite and Platform Game
	Mission Briefing
	Creating a camera and a level
	Creating a 2D character
	Creating CharacterControl class and
	SpriteManager class
	Jumping and physics
	Creating key and door
	Adding a sound and replay button
	Mission Accomplished
	Hotshot Challenge

	Project 2:
Create a Menu for an RPG Game—Add Powerups, Weapons
and Armor
	Mission Briefing
	Custom skin with GUI Skin
	Creating a menu object
	Creating a status tab
	Creating an inventory tab
	Creating an equipment tab
	Mission Accomplished
	Hotshot Challenge

	Project 3:
Model and Shade our Hero/Heroine
	Mission Briefing
	Exporting from 3D Studio Max
	Shader programming—Diffuse and
	bump (normal) map
	Shader programming–Ambient and
	specular light
	Shader programming—Rim light and
	toon ramp
	Mission Accomplished
	Hotshot Challenge

	Project 4:
Add Character Control and Animation to our Hero/Heroine
	Mission Briefing
	Setting up character animation and
	level
	Creating the character controller and
	built-in script
	Creating a custom character control
	script
	Creating CrossFade animation
	Creating a third-person camera to
	follow our characte
	Mission Accomplished
	Hotshot Challenge

	Project 5:
Build a Rocket Launcher!
	Mission Briefing
	Setting up the character with the
	first-person controller prefab
	Creating the New3PSController and
	MouseLook_JS scripts
	Creating the rocket launcher and
	scope target
	Creating the rockets and particles
	Creating the rocket bullet UI
	Mission Accomplished
	Hotshot Challenge

	Project 6:
Create Smart AI
	Mission Briefing
	Creating the waypoint and gizmos
	Creating an enemy AI
	Creating the enemy movement with
	AIController script
	Creating a hit-point UI
	Mission Accomplished
	Hotshot Challenge

	Project 7:
Forge a Destructible and Interactive Virtual World
	Mission Briefing
	Optimizing the AIController script
	Creating a ragdoll
	Creating a destructible wall
	Creating a rockslide and trigger area
	Mission Accomplished
	Hotshot Challenge

	Project 8:
Let the World See the Carnage! Save, Load, and Post High Scores
	Mission Briefing
	Creating a high score menu
	Saving and loading the local high
	score
	Getting XML data from server
	Posting and loading high scores to
	server
	Mission Accomplished
	Hotshot Challenge

	Appendix A:
Important Functions
	Awake
	Start
	Update
	FixedUpdate
	LateUpdate
	OnGUI
	OnDrawGizmos

	Appendix B:
Coroutines and Yield
	YieldInstruction
	WaitForSeconds
	WaitForFixedUpdate
	Coroutine
	StartCoroutine
	StopCoroutine
	StopAllCoroutines

	Appendix C:
Major Differences between C# and
Unity JavaScript
	Unity Script Directives
	Type names
	Variable declaration
	Variable with Dynamic Type
	Resolution
	Multi-dimensional array declaration
	Character literals not supported
	Class declarations
	Limited interface support
	Generics
	The foreach keyword
	The new keyword
	YieldInstruction and coroutine
	Casting
	Properties with getters/setters
	Changing Struct properties by value
	VS by reference
	Function/method definitions
	Reference

	Appendix D:
Shaders and Cg/HLSL Programming
	ShaderLab properties
	Surface shaders
	Cg/HLSL programming
	Reference

	Index

