

Unity Multiplayer Games

Build engaging, fully functional, multiplayer games with
Unity engine

Alan R. Stagner

BIRMINGHAM - MUMBAI

Unity Multiplayer Games

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2013

Production Reference: 2251113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-232-8

www.packtpub.com

Cover Image by Prashant Timappa Shetty (sparkling.spectrum.123@gmail.com)

Credits

Author
Alan R. Stagner

Reviewers
Clifford Champion

Fabio Ferrara

Sriram. A. S.

Acquisition Editor
Rubal Kaur

Lead Technical Editor
Madhuja Chaudhari

Technical Editors
Dipika Gaonkar

Mrunmayee Patil

Project Coordinator
Apeksha Chitnis

Proofreader
Linda Morris

Indexer
Hemangini Bari

Graphics
Abhinash Sahu

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

About the Author

Alan R. Stagner is an independent developer with a passion for Unity3D game
development. He was introduced to programming by his father, he sought out
different ways to create games in a variety of languages. Most recently, he found the
Unity game engine and was instantly hooked, and discovered his love of multiplayer
game development. He has also dabbled in database and server programming from
time to time, mostly involving PHP and MySQL with recent forays into ASP.NET.

I'd like to thank my family and friends, of course—my father is the
entire reason I'm a programmer and has helped me every step of
the way. Everyone I know has been incredibly supportive. I'd like
to thank the Unity community—without them I don't think I would
know Unity like I do today. I'd also like to thank Unity for providing
such an awesome platform and making it so easy for me to write my
first multiplayer game.

About the Reviewers

Clifford Champion has a broad background in software engineering, with years
of experience spanning 3D games and Internet applications, and more recently in
machine learning. He holds a degree in Mathematics from UCLA. In the past, he
has worked as an integration and support engineer at Havok, and also as a lead
interactive media and Internet apps programmer at PlainJoe Studios.

Now, he works for zSpace (zspace.com), a hardware/software company
creating highly immersive, interactive 3D displays for classrooms, industry, and
entertainment. At zSpace, he is a member of the software platform team, helping to
enable the holographic-like experience on a variety of game engines and platforms,
including Unity. Clifford can be found on Twitter at @duckmaestro and welcomes
any discussions.

Fabio Ferrara is a game developer. He is working for Chubby Pixel, an
independent game studio based in Milan, which he founded in 2012. They work
thoroughly to bring to the users the best possible gaming experience. He has also
collaborated for the publication of other books such as Unity iOS Essentials,
Packt Publishing.

Sriram. A. S. is a software developer who is currently living in Pune, India. He
works primarily in C/C++ and Java. He has been working with Unity 3D from its
very early versions; and has developed codes related to its integration with
features such as augmented reality, and shared them on his tech blog
(http://mypersonalsoft.blogspot.com).

In his spare time, he works on a few open source software. And he also likes to
experiment with various other technologies and ideas, along with his team of code
passionate friends—the "Hobby Coders" (http://hobbycoders.com).

http://mypersonalsoft.blogspot.com
http://hobbycoders.com

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.packtpub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.packtpub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.packtpub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.packtpub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface 1
Chapter 1: Unity Networking – The Pong Game 7

Introducing multiplayer games 8
Introducing UDP communication 9
Setting up Master Server 10
NetworkViews and state serialization 11
Writing a custom state serializer 12
Using RPCs 13
Initializing a server 15
Connecting to a server 16
Connecting to Master Server 18
Registering a server with Master Server 19
Browsing available servers 19
Setting up a dedicated server model 22

Servers in Unity 22
Compiler directives 22

Setting up a server console without Pro 23
Loading networked levels 26
Creating a multiplayer Pong game 28

Preparing the Field 29
The Ball script 31
The Paddle script 34
Keeping score 35
Displaying the score to the player 37
Networking the game 39
Spawning paddles 41
The networked ball 44
Networked scorekeeping 47

Table of Contents

[ii]

The Connect screen 50
Summary 52

Chapter 2: Photon Unity Networking – The Chat Client 53
Differences between PUN and Unity Networking 54
Setting up PUN with Photon Cloud 55
Using PhotonViews 57
Connecting to Photon and getting a list of rooms 58
Creating and joining rooms 61

Creating rooms 61
Joining rooms 62

Filtering results by user preference 63
Filtering arrays 63
Filtering and caching a room list 65

Automatic matchmaking 65
Finding friends 66
Syncing a level between players 68
Creating a chat client 69

The Connect screen 69
The Lobby screen 71
The chat room 74

Adding friends lists 76
Summary 80

Chapter 3: Photon Server – Star Collector 81
Dedicated servers 82
Getting Photon Server 82
Creating a server application 83

Creating a class library 83
Responding to operation requests 85
Deploying the server code 86

Connecting from Unity and passing messages 87
Creating a game logic class 90
Assigning player IDs 93
Building a star collector game 96

Preparing the class library 96
The Actor class 102
Sending an ID to a player 104
Keeping track of the game state 105
Spawning and picking up stars 108
Broadcasting events 110
Connecting from Unity 117

Table of Contents

[iii]

Creating/destroying actors 120
Controlling the player 123

Summary 126
Chapter 4: Player.IO – Bot Wars 127

Player.IO versus the Photon Server 128
Getting and setting up a development server 128
Setting up the Unity client SDK 129
Connecting to Player.IO 129
Getting a list of rooms 132

Connecting to rooms 134
Creating rooms 136
Random matchmaking 138
Sending/receiving messages 139

Server-side code 142
Working with BigDB 143
Creating a simple RTS prototype 146

The server-side code 146
The client-side code 156

Summary 168
Chapter 5: PubNub – The Global Chatbox 169

Overview of PubNub 169
Getting started 170
How PubNub works 171
Parsing JSON from PubNub 173
Building a PubNub interface 174
Creating a global chatbox application 180

Publishing chat messages 181
Displaying chat logs 184

Summary 187
Chapter 6: Entity Interpolation and Prediction 189

Entity interpolation 189
The client-side prediction 190
Rigidbody simulation 191
Creating a networked object 192
Adding naive interpolation 195
Improving interpolation 197
Preparing for server authoritative movement 200
Implementing server authoritative movement 202
Notes on hacking 206
Summary 206

Table of Contents

[iv]

Chapter 7: Server-side Hit Detection 207
Client-side versus server-side hit detection 208
Creating a testbed 211
Moving hit detection to the server 217
Entity rewinding 219
Summary 224

Index 225

Preface
This book intends to step you through the concepts and middleware involved
in creating multiplayer games with the Unity game engine. I've been a big fan of
multiplayer games for a while. They have a way of tapping into our basic desires,
fulfilling a need to compete, to co-operate, and most of all to socialize with our fellow
humans, in a way that no single player game can ever provide.

I've experienced a wide range of networking plugins and applications in Unity. As
I learn new networking systems, there are always stumbling blocks and difficult
issues. I wrote this book because I wanted to help others on the same path, and help
them surmount the issues I encountered myself.

Unity IDE crash course
To better understand this book, we'll need to cover the basic features of the
Unity IDE.

If you open Unity for the first time, you'll be presented with a window where you
can either open an existing project or create a new one. Select the Create New Project
tab, and choose a location for your project.

Once your project is created, you'll see a number of panels. There are the Scene and
Game tabs, the Hierarchy, Project, and Console tabs, and the Inspector tab.

The Scene view shows the current scene. This will allow you to navigate the scene,
select objects, move them around, and more. The Game view shows the view of the
main camera. If you press the Play button, the Game view is automatically shown
and allows you to play test your game from inside the editor.

The Hierarchy tab shows the object hierarchy of the current scene. This allows you to
select objects, parent or unparent them, delete them, rename them, and much more.

Preface

[2]

The Inspector tab shows the editors for each component attached to the selected
object (rather than being inheritance based like many traditional engines, Unity is
component based, where objects are a collection of components and each component
has a separate responsibility). It allows you to set values and change properties of
components. You can also remove components by right clicking on a component and
clicking on Remove Component. In Unity 4 and later, you can also click on the Add
Component button and select a component script.

The Project tab shows the assets in your project. You can drop game assets here to
import them, and you can create new materials, scripts, and shaders by right-clicking
and selecting the Create option. You can also drag objects from the Hierarchy to
the Project tab to create a prefab. Prefabs are essentially object templates—you can
Instantiate a prefab to create an exact copy of the prefab in the scene (for instance,
you might create an Enemy prefab, and instantiate it to spawn enemies). You can
also drag component scripts from the Project to the Inspector of a selected game
object to add the component to the object.

To learn more about Unity, you can get started here:

http://unity3d.com/learn

What this book covers
Chapter 1, Unity Networking – The Pong Game, introduces the concept of reliable UDP
communication, and different types of servers employed by games. It covers Unity
Networking, and creating a networked two-player Pong clone.

Chapter 2, Photon Unity Networking – The Chat Client, covers a third-party alternative
to Unity Networking. It introduces the concept of the cloud-hosted game servers,
simple matchmaking, and friends lists. It also covers the creation of a simple
chat client.

Chapter 3, Photon Server – Star Collector, introduces dedicated servers for games.
It covers creating a Photon Server application, connecting to a server, using the
request/response/event system to communicate, and creating a simple Star
Collector game.

Chapter 4, Player.IO – Bot Wars, covers an alternative dedicated server system. It
introduces the database features of Player.IO, how to create a Player.IO server,
connecting from Unity, and creating a simple RTS-style game with persistent
user stats.

Preface

[3]

Chapter 5, PubNub – The Global Chatbox, introduces communication over an HTTP
messaging service. It covers benefits and pitfalls of HTTP for communication, using
the WWW class to communicate via PubNub, and creating a chatroom application.

Chapter 6, Entity Interpolation and Prediction, introduces the concept of server-side
movement physics and potential issues and solutions. It covers client-side movement
prediction, and how to smooth the motion of remote entities.

Chapter 7, Server-side Hit Detection, introduces the concept of server-side hit detection
for shooter-style games. It covers the reasons behind target-leading problems in
many online games, and how to resolve the issue by rewinding the game state.

What you need for this book
You will need Unity 3 or later for this book. Many chapters require specific downloads:

• Chapter 2, Photon Unity Networking – The Chat Client, requires the Photon
Unity Networking plugin

• Chapter 3, Photon Server – Star Collector, requires the Photon Server client and
server SDKs

• Chapter 4, Player.IO – Bot Wars, requires the Player.IO developer package
• Chapter 5, PubNub – The Global Chatbox, requires a third-party JSON parser

Instructions to download the required materials are covered at the beginning of
each chapter.

Who this book is for
This book is for developers who want to get started writing multiplayer games with
the Unity game engine. Readers are expected to have a working knowledge of C#.
Knowledge of the Unity IDE is helpful, but not strictly required.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Navigate to the Release folder and run
the EXE."

Preface

[4]

A block of code is set as follows:

public class ExampleUnityNetworkSerializePosition : MonoBehaviour
{
 public void OnSerializeNetworkView(BitStream stream,
 NetworkMessageInfo info)
 {
 // we are currently writing information to the network
 if(stream.isWriting)
 {
 // send the object's position
 Vector3 position = transform.position;
 stream.Serialize(ref position);
 }

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

// the maximum score a player can reach
 public int ScoreLimit = 10;

 // the display test for player 1's score
 public TextMesh Player1ScoreDisplay;

 // the display text for player 2's score
 public TextMesh Player2ScoreDisplay;

 // Player 1's score
 private int p1Score = 0;

New terms and important words are shown in bold. Words that you see on the
screen, in menus, or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Unity Networking –
The Pong Game

Multiplayer is everywhere. It's a staple of AAA games and small-budget indie
offerings alike. Multiplayer games tap into our most basic human desires. Whether
it be teaming up with strangers to survive a zombie apocalypse, or showing off your
skills in a round of "Capture the Flag" on your favorite map, no artificial intelligence
in the world comes close to the feeling of playing with a living, breathing, and
thinking human being.

Unity3D has a sizable number of third-party networking middleware aimed at
developing multiplayer games, and is arguably one of the easiest platforms to
prototype multiplayer games.

The first networking system most people encounter in Unity is the built-in Unity
Networking API. This API simplifies a great many tasks in writing networked code
by providing a framework for networked objects rather than just sending messages.
This works by providing a NetworkView component, which can serialize object state
and call functions across the network.

Additionally, Unity provides a Master server, which essentially lets players
search among all public servers to find a game to join, and can also help players in
connecting to each other from behind private networks.

In this chapter, we will cover:

• Introducing multiplayer
• Introducing UDP communication
• Setting up your own Master server for testing
• What a NetworkView is

Unity Networking – The Pong Game

[8]

• Serializing object state
• Calling RPCs
• Starting servers and connecting to them
• Using the Master server API to register servers and browse available hosts
• Setting up a dedicated server model
• Loading networked levels
• Creating a Pong clone using Unity networking

Introducing multiplayer games
Before we get started on the details of communication over the Internet, what exactly
does multiplayer entail in a game?

As far as most players are concerned, in a multiplayer game they are sharing the
same experience with other players. It looks and feels like they are playing the same
game. In reality, they aren't. Each player is playing a separate game, each with its
own game state. Trying to ensure that all players are playing the exact same game
is prohibitively expensive. Instead, games attempt to synchronize just enough
information to give the illusion of a shared experience.

Games are almost ubiquitously built around a client-server architecture, where each
client connects to a single server. The server is the main hub of the game, ideally the
machine for processing the game state, although at the very least it can serve as a
simple "middleman" for messages between clients. Each client represents an instance
of the game running on a computer. In some cases the server might also have a
client, for instance some games allow you to host a game without starting up an
external server program.

While an MMO (Massively Multiplayer Online) might directly connect to one
of these servers, many games do not have prior knowledge of the server IPs. For
example, FPS games often let players host their own servers. In order to show the
user a list of servers they can connect to, games usually employ another server,
known as the "Master Server" or alternatively the "Lobby server". This server's sole
purpose is to keep track of game servers which are currently running, and report
a list of these to clients. Game servers connect to the Master server in order to
announce their presence publicly, and game clients query the Master server to get an
updated list of game servers currently running.

Chapter 1

[9]

Alternatively, this Master server sometimes does not keep track of servers at all.
Sometimes games employ "matchmaking", where players connect to the Lobby
server and list their criteria for a game. The server places this player in a "bucket"
based on their criteria, and whenever a bucket is full enough to start a game, a host is
chosen from these players and that client starts up a server in the background, which
the other players connect to. This way, the player does not have to browse servers
manually and can instead simply tell the game what they want to play.

Introducing UDP communication
The built-in Unity networking is built upon RakNet. RakNet uses UDP
communication for efficiency.

UDP (User Datagram Protocols) is a simple way to send messages to another
computer. These messages are largely unchecked, beyond a simple checksum to
ensure that the message has not been corrupted. Because of this, messages are not
guaranteed to arrive, nor are they guaranteed to only arrive once (occasionally a
single message can be delivered twice or more), or even in any particular order. TCP,
on the other hand, guarantees each message to be received just once, and in the exact
order they were sent, although this can result in increased latency (messages must
be resent several times if they fail to reach the target, and messages must be buffered
when received, in order to be processed in the exact order they were sent).

To solve this, a reliability layer must be built on top of UDP. This is known as rUDP
(reliable UDP). Messages can be sent unreliably (they may not arrive, or may arrive
more than once), or reliably (they are guaranteed to arrive, only once per message,
and in the correct order). If a reliable message was not received or was corrupt, the
original sender has to resend the message. Additionally, messages will be stored
rather than immediately processed if they are not in order. For example, if you
receive messages 1, 2, and 4, your program will not be able to handle those messages
until message 3 arrives.

Allowing unreliable or reliable switching on a per-message basis affords better
overall performance. Messages, such as player position, are better suited to
unreliable messages (if one fails to arrive, another one will arrive soon anyway),
whereas damage messages must be reliable (you never want to accidentally drop a
damage message, and having them arrive in the same order they were sent reduces
race conditions).

In Unity, you can serialize the state of an object (for example, you might serialize
the position and health of a unit) either reliably or unreliably (unreliable is usually
preferred). All other messages are sent reliably.

Unity Networking – The Pong Game

[10]

Setting up the Master Server
Although Unity provide their own default Master Server and Facilitator (which is
connected automatically if you do not specify your own), it is not recommended to
use this for production. We'll be using our own Master Server, so you know how to
connect to one you've hosted yourself.

Firstly, go to the following page:

http://unity3d.com/master-server/

We're going to download two of the listed server components: the Master Server and
the Facilitator as shown in the following screenshot:

The servers are provided in full source, zipped. If you are on Windows using Visual
Studio Express, open up the Visual Studio .sln solution and compile in the Release
mode. Navigate to the Release folder and run the EXE (MasterServer.exe or
Facilitator.exe). If you are on a Mac, you can either use the included XCode
project, or simply run the Makefile (the Makefile works under both Linux and
Mac OS X).

Chapter 1

[11]

The Master Server, as previously mentioned, enables our game to show a server
lobby to players. The Facilitator is used to help clients connect to each other by
performing an operation known as NAT punch-through. NAT is used when
multiple computers are part of the same network, and all use the same public IP
address. NAT will essentially translate public and private IPs, but in order for one
machine to connect to another, NAT punch-through is necessary. You can read more
about it here:

http://www.raknet.net/raknet/manual/natpunchthrough.html

The default port for the Master Server is 23466, and for the Facilitator is 50005.
You'll need these later in order to configure Unity to connect to the local Master
Server and Facilitator instead of the default Unity-hosted servers.

Now that we've set up our own servers, let's take a look at the Unity Networking
API itself.

NetworkViews and state serialization
In Unity, game objects that need to be networked have a NetworkView component.
The NetworkView component handles communication over the network, and even
helps make networked state serialization easier. It can automatically serialize the
state of a Transform, Rigidbody, or Animation component, or in one of your own
scripts you can write a custom serialization function.

When attached to a game object, NetworkView will generate a NetworkViewID
for NetworkView. This ID serves to uniquely identify a NetworkView across the
network. An object can be saved as part of a scene with NetworkView attached
(this can be used for game managers, chat boxes, and so on), or it can be saved in
the project as a prefab and spawned later via Network.Instantiate (this is used to
generate player objects, bullets, and so on). Network.Instantiate is the multiplayer
equivalent to GameObject.Instantiate—it sends a message over the network to
other clients so that all clients spawn the object. It also assigns a network ID to the
object, which is used to identify the object across multiple clients (the same object
will have the same network ID on every client).

A prefab is a template for a game object (such as the player object).
You can use the Instantiate methods to create a copy of the
template in the scene.

Unity Networking – The Pong Game

[12]

Spawned network game objects can also be destroyed via Network.Destroy. It is the
multiplayer counterpart of GameObject.Destroy. It sends a message to all clients so
that they all destroy the object. It also deletes any RPC messages associated with
that object.

NetworkView has a single component that it will serialize. This can be a
Transform, a Rigidbody, an Animation, or one of your own components that has
an OnSerializeNetworkView function. Serialized values can either be sent with
the ReliableDeltaCompressed option, where values are always sent reliably and
compressed to include only changes since the last update, or they can be sent with
the Unreliable option, where values are not sent reliably and always include the
full values (not the change since the last update, since that would be impossible to
predict over UDP). Each method has its own advantages and disadvantages. If data
is constantly changing, such as player position in a first person shooter, in general
Unreliable is preferred to reduce latency. If data does not often change, use the
ReliableDeltaCompressed option to reduce bandwidth (as only changes will
be serialized).

NetworkView can also call methods across the network via Remote Procedure Calls
(RPC). RPCs are always completely reliable in Unity Networking, although some
networking libraries allow you to send unreliable RPCs, such as uLink or TNet.

Writing a custom state serializer
While initially a game might simply serialize Transform or Rigidbody for testing,
eventually it is often necessary to write a custom serialization function. This is a
surprisingly easy task.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Here is a script that sends an object's position over the network:

using UnityEngine;
using System.Collections;

public class ExampleUnityNetworkSerializePosition : MonoBehaviour
{
 public void OnSerializeNetworkView(BitStream stream,
 NetworkMessageInfo info)
 {

Chapter 1

[13]

 // we are currently writing information to the network
 if(stream.isWriting)
 {
 // send the object's position
 Vector3 position = transform.position;
 stream.Serialize(ref position);
 }
 // we are currently reading information from the network
 else
 {
 // read the first vector3 and store it in 'position'
 Vector3 position = Vector3.zero;
 stream.Serialize(ref position);

 // set the object's position to the value we were sent
 transform.position = position;
 }
 }
}

Most of the work is done with BitStream. This is used to check if NetworkView is
currently writing the state, or if it is reading the state from the network. Depending
on whether it is reading or writing, stream.Serialize behaves differently. If
NetworkView is writing, the value will be sent over the network. However, if
NetworkView is reading, the value will be read from the network and saved in
the referenced variable (thus the ref keyword, which passes Vector3 by reference
rather than value).

Using RPCs
RPCs are useful for single, self-contained messages that need to be sent, such as a
character firing a gun, or a player saying something in chat.

In Unity, RPCs are methods marked with the [RPC] attribute. This can be called
by name via networkView.RPC("methodName", …). For example, the following
script prints to the console on all machines when the space key is pressed.

using UnityEngine;
using System.Collections;

public class ExampleUnityNetworkCallRPC : MonoBehavior
{
 void Update()
 {
 // important – make sure not to run if this networkView is not

Unity Networking – The Pong Game

[14]

 ours
 if(!networkView.isMine)
 return;

 // if space key is pressed, call RPC for everybody
 if(Input.GetKeyDown(KeyCode.Space))
 networkView.RPC("testRPC", RPCMode.All);
 }

 [RPC]
 void testRPC(NetworkMessageInfo info)
 {
 // log the IP address of the machine that called this RPC
 Debug.Log("Test RPC called from " + info.sender.ipAddress);
 }
}

Also note the use of NetworkView.isMine to determine ownership of an object. All
scripts will run 100 percent of the time regardless of whether your machine owns
the object or not, so you have to be careful to avoid letting some logic run on remote
machines; for example, player input code should only run on the machine that owns
the object.

RPCs can either be sent to a number of players at once, or to a specific player.
You can either pass an RPCMode to specify which group of players to receive the
message, or a specific NetworkPlayer to send the message to. You can also specify
any number of parameters to be passed to the RPC method.

RPCMode includes the following entries:

• All (the RPC is called for everyone)
• AllBuffered (the RPC is called for everyone, and then buffered for when new

players connect, until the object is destroyed)
• Others (the RPC is called for everyone except the sender)
• OthersBuffered (the RPC is called for everyone except the sender, and then

buffered for when new players connect, until the object is destroyed)
• Server (the RPC is sent to the host machine)

Note that, with the exception of RPCMode.All and RPCMode.
AllBuffered, a client cannot send an RPC to itself.

Chapter 1

[15]

Initializing a server
The first thing you will want to set up is hosting games and joining games. To
initialize a server on the local machine, call Network.InitializeServer.

This method takes three parameters: the number of allowed incoming connections,
the port to listen on, and whether to use NAT punch-through. The following script
initializes a server on port 25000 which allows 8 clients to connect:

using UnityEngine;
using System.Collections;

public class ExampleUnityNetworkInitializeServer : MonoBehavior
{
 void OnGUI()
 {
 if(GUILayout.Button("Launch Server"))
 {
 LaunchServer();
 }
 }

 // launch the server
 void LaunchServer()
 {
 // Start a server that enables NAT punchthrough,
 // listens on port 25000,
 // and allows 8 clients to connect
 Network.InitializeServer(8, 25005, true);
 }

 // called when the server has been initialized
 void OnServerInitialized()
 {
 Debug.Log("Server initialized");
 }
}

Unity Networking – The Pong Game

[16]

You can also optionally enable an incoming password (useful for private games)
by setting Network.incomingPassword to a password string of the player's
choice, and initializing a general-purpose security layer by calling Network.
InitializeSecurity(). Both of these should be set up before actually initializing
the server.

Note that incoming connections does not mean maximum player
count, since it does not include the host (for example, if you allow
8 players to connect, it's possible for 9 players to play in the same
room—8 clients plus the host).

Connecting to a server
To connect to a server you know the IP address of, you can call Network.Connect.

The following script allows the player to enter an IP, a port, and an optional
password and attempts to connect to the server:

using UnityEngine;
using System.Collections;

public class ExampleUnityNetworkingConnectToServer : MonoBehavior
{
 private string ip = "";
 private string port = "";
 private string password = "";

 void OnGUI()
 {
 GUILayout.Label("IP Address");
 ip = GUILayout.TextField(ip, GUILayout.Width(200f));

 GUILayout.Label("Port");
 port = GUILayout.TextField(port, GUILayout.Width(50f));

 GUILayout.Label("Password (optional)");
 password = GUILayout.PasswordField(password, '*',
 GUILayout.Width(200f));

 if(GUILayout.Button("Connect"))
 {
 int portNum = 25005;

 // failed to parse port number – a more ideal solution is to
 limit input to numbers only, a number of examples can be
 found on the Unity forums
 if(!int.TryParse(port, out portNum))

Chapter 1

[17]

 {
 Debug.LogWarning("Given port is not a number");
 }
 // try to initiate a direct connection to the server
 else
 {
 Network.Connect(ip, portNum, password);
 }
 }
 }

 void OnConnectedToServer()
 {
 Debug.Log("Connected to server!");
 }

 void OnFailedToConnect(NetworkConnectionError error)
 {
 Debug.Log("Failed to connect to server: " +
 error.ToString());
 }

}

Unity Networking – The Pong Game

[18]

Connecting to the Master Server
While we could just allow the player to enter IP addresses to connect to servers (and
many games do, such as Minecraft), it's much more convenient to allow the player to
browse a list of public servers. This is what the Master Server is for.

Now that you can start up a server and connect to it, let's take a look at how to
connect to the Master Server you downloaded earlier. First, make sure both the
Master Server and Facilitator are running. I will assume you are running them on
your local machine (IP is 127.0.0.1), but of course you can run these on a different
computer and use that machine's IP address. Keep in mind, if you want the Master
Server publicly accessible, it must be installed on a machine with a public IP address
(it cannot be in a private network).

Let's configure Unity to use our Master Server rather than the Unity-hosted test
server. The following script configures the Master Server and Facilitator to connect to
a given IP (by default 127.0.0.1):

using UnityEngine;
using System.Collections;

public class ExampleUnityNetworkingConnectToMasterServer :
 MonoBehaviour
{
 // Assuming Master Server and Facilitator are on the same
 machine
 public string MasterServerIP = "127.0.0.1";

 void Awake()
 {
 // set the IP and port of the Master Server to connect to
 MasterServer.ipAddress = MasterServerIP;
 MasterServer.port = 23466;

 // set the IP and port of the Facilitator to connect to
 Network.natFacilitatorIP = MasterServerIP;
 Network.natFacilitatorPort = 50005;
 }
}

Chapter 1

[19]

Registering a server with the
Master Server
Now that you've configured the Master Server, it's time to register a server with it.
This is easy to do.

Immediately after making a call to Network.InitializeServer, make another call
to MasterServer.RegisterHost. This call connects to the Master Server and tells it
to display our server in the public game list.

The RegisterHost function takes three parameters, all strings: gameTypeName,
gameName, and comment. The game type name is used to separate different game
listings from each other. For example, if two games use the same Master Server,
they would both supply different game type names in order to avoid getting listings
for the other game. The game name is the name of the host server, for example
"John's server". The comment is a general purpose data string, essentially anything
can be stored here. For example you could store data about the server (such as map
rotation, available modes, and so on) and display these to the user while they browse
the lobby.

Because RegisterHost is a separate call from InitializeServer, you can simply omit the
call to RegisterHost to implement private or LAN-style servers.

You can call RegisterHost more than once while a server is running
to update the information stored on the Master Server. For example,
if the server changes to a new level, you might call RegisterHost
again to update the lobby.

Browsing available servers
To browse the available servers, call MasterServer.RequestHostList. This takes
one single parameter: the game type name (this is the same game type name you
passed to RegisterHost).

This does not return anything, instead the result will be asynchronously
downloaded, and the last known list of servers can be accessed via MasterServer.
PollHostList. Additionally, to ensure you aren't using old data, you can call
MasterServer.ClearHostList. For example, if the user hits the Refresh button in
the lobby you might clear the host list and then request a new list from the
Master Server.

Unity Networking – The Pong Game

[20]

The following script shows a lobby for users to browse available servers and connect
to them:

using UnityEngine;
using System.Collections;

public class ExampleUnityNetworkingBrowseServers : MonoBehavior
{
 // are we currently trying to download a host list?
 private bool loading = false;

 // the current position within the scrollview
 private Vector2 scrollPos = Vector2.zero;

 void Start()
 {
 // immediately request a list of hosts
 refreshHostList();
 }

 void OnGUI()
 {
 if(GUILayout.Button("Refresh"))
 {
 refreshHostList();
 }

 if(loading)
 {
 GUILayout.Label("Loading...");
 }
 else
 {
 scrollPos = GUILayout.BeginScrollView(scrollPos,
 GUILayout.Width(200f), GUILayout.Height(200f));

 HostData[] hosts = MasterServer.PollHostList();
 for(int i = 0; i < hosts.Length; i++)
 {
 if(GUILayout.Button(hosts[i].gameName,
 GUILayout.ExpandWidth(true)))
 {
 Network.Connect(hosts[i]);
 }
 }

Chapter 1

[21]

 if(hosts.Length == 0)
 {
 GUILayout.Label("No servers running");
 }

 GUILayout.EndScrollView();
 }
 }

 void refreshHostList()
 {
 // let the user know we are awaiting results from the master
 server
 loading = true;
 MasterServer.ClearHostList();
 MasterServer.RequestHostList("GameTypeNameHere");
 }

 // this is called when the Master Server reports an event to the
 client – for example, server registered successfully, host
 list received, etc
 void OnMasterServerEvent(MasterServerEvent msevent)
 {
 if(msevent == MasterServerEvent.HostListReceived)
 {
 // received the host list, no longer awaiting results
 loading = false;
 }
 }
}

The preceding code will list available servers registered to the Master Server.
Clicking one of the buttons will call the Network.Connect function and connect
to the corresponding server, and clicking on Refresh will display a Loading...
message while results are fetched from the Master Server. There are a number of
improvements and other tweaks that can be made to this code, left as an exercise for
the reader:

• Refresh the host list every few seconds. This should be done transparently,
without displaying a "Loading" message.

• Allow the user to add servers to a "favorites" list (possibly saved as CSV to
PlayerPrefs), if your game allows players to run dedicated servers.

Unity Networking – The Pong Game

[22]

• If the user attempts to connect to a password-protected game (HostData.
passwordProtected is true), display a password entry field.

• Save game information such as map, mode, and so on in the Comments field
when registering a server, and allow the user to filter server results.

Setting up a dedicated server model
Many games allow players to host their own dedicated servers, as separate
applications from the game client. Some games even allow players to modify the
behavior of the server through scripting languages, allowing player-run servers to
employ novel behaviors not originally designed into the game.

Let's see how we can set up a similar system in Unity. I will not be covering
modding, although readers can look up Lua scripting in Unity—there are a number
of resources on the topic.

Servers in Unity
Most games have a specialized "server" build, which contains much the same code as
the client, designed to run as a dedicated server. This allows the server to process the
same logic as the client.

Unity, however, does not directly support this concept out of the box. Unity Pro does
allow builds to be run in "headless mode", which runs the game without initializing
any graphics, resources, but the server runs the exact same code as the client. The
game must be designed to operate in both server and client mode.

To do this, we'll take advantage of a compiler feature known as "conditional
compilation". This allows us to wrap code in special tags which allows us to strip
out entire sections of code when compiling. This way, our server-only code will
only be included in server builds, and our client-only code will only be included in
client builds.

Compiler directives
The first thing we will do, is figure out how the application knows whether it is a
client or a server. We will use a compiler directive to do this.

If you are using Unity 4, you can go to Edit | Project Settings | Player and under
Other Settings is a section that allows you to define these.

Chapter 1

[23]

However, for any version prior to Unity 4, you'll have to define these yourself. To do
this, create a new text file in the Assets folder and name it smcs.rsp. Open Notepad
and type:

-define:SERVER

This creates a global symbol define for your C# scripts. You would use the symbol
like this:

#if SERVER
 //code in here will not be compiled if SERVER isn't defined
#endif

You might consider writing an editor script which replaces the contents of this
file (when compiling for the client, it would replace SERVER with CLIENT, and
vice versa). It is important to note that changes to this file will not automatically
recompile, when changing the file you should save one of your scripts. Your editor
script might do this automatically, for example it could call AssetDatabase.
Refresh(ImportAssetOptions.ForceUpdate).

Now that we can detect whether the application was built as a server or a client, we'll
need some way for the server to act as autonomously as possible. The server should
have a configuration file which allows the user to set, for example, network settings
before the server runs. This book will not cover how to load the configuration file
(XML or JSON are recommended), but once these are loaded the server should
immediately initialize and register itself with the Master Server using the data in
the configuration file (for example, server name, maximum connections, listen port,
password, and so on).

Setting up a server console without Pro
Usually, a game server is a console application. This is nearly possible in Unity if
you have purchased a Pro license, by appending the -batchmode argument to the
executable (actually, Unity does not create a console window, instead the game
simply runs in the background). If you do have Pro, feel free to skip this section.
However, if you own a free license, you'll need to get a bit creative.

We want the server to use as few resources as possible. We can create a script that
turns off rendering of the scene when running in server mode. This won't completely
disable the rendering system (as running in command line would), but it does
significantly reduce the GPU load of the server.

using UnityEngine;
using System.Collections;

public class DisableServerCamera : MonoBehavior

Unity Networking – The Pong Game

[24]

{
#if SERVER
 void Update()
 {
 // culling mask is a bitmask – setting all bits to zero means
render nothing
 camera.cullingMask = 0;
 }
#endif
}

This script can be attached to a camera, and will cause that camera to not render
anything when running on the server.

Next we're going to set up a console-type display for our server. This "console" will
hook into the built-in Debug class and display a scrolling list of messages. We'll do
this via Application.RegisterLogCallback.

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

// contains data about the logged message
struct LogMessage
{
 public string message;
 public LogType type;
}

public class CustomLog : MonoBehavior
{
 // how many past log messages to store
 public int MaxHistory = 50;

 // a list of stored log messages
 private List<LogMessage> messages = new List<LogMessage>();

 // the position within the scroll view
 private Vector2 scrollPos = Vector2.zero;

 void OnEnable()
 {
 // register a custom log handler
 Application.RegisterLogCallback(HandleLog);
 }

Chapter 1

[25]

 void OnDisable()
 {
 // unregister the log handler
 Application.RegisterLogCallback(null);
 }

 void OnGUI()
 {
 scrollPos = GUILayout.BeginScrollView(scrollPos, GUILayout.
ExpandWidth(true), GUILayout.ExpandHeight(true));

 //draw each debug log – switch colors based on log type
 for(int i = 0; i < messages.Count; i++)
 {
 Color color = Color.white;
 if(messages[i].type == LogType.Warning)
 {
 color = Color.yellow;
 }
 else if(messages[i].type != LogType.Log)
 {
 color = Color.red;
 }

 GUI.color = color;
 GUILayout.Label(messages[i].message);
 }

 GUILayout.EndScrollView();
 }

 void HandleLog(string message, string stackTrace, LogType type)
 {
 // add the message, remove entries if there's too many
 LogMessage msg = new LogMessage();
 msg.message = message;
 msg.type = type;

 messages.Add(msg);

 if(messages.Count >= MaxHistory)
 {
 messages.RemoveAt(0);
 }

Unity Networking – The Pong Game

[26]

 // scroll to the newest message by setting to a huge amount
 // will automatically be clamped
 scrollPos.y = 1000f;
 }
}

Now the user can see the debug information being printed as the server runs—very
useful indeed.

You should strive for as much code reuse as possible in fact, if your game allows
players to host a game from inside the client, most of the same code will already
work with a few minor differences:

• As previously mentioned, the server starts up automatically with a
configuration loaded from the user-editable files (unlike the client).

• The server does not spawn any player objects of its own, unlike the client.
• The server does not have any UIs or menus to display to the user beyond the

log dump. Beyond starting up the server and shutting it down, there is zero
interaction with the server application.

Loading networked levels
There are a few tricks to loading networked levels in the Unity game engine. If you
just use Application.LoadLevel, you'll encounter a number of issues; specifically
you may find that a client connecting to the game won't see any objects that were
instantiated via Network.Instantiate. The reason for this is because the level
loading process doesn't happen instantly—it actually takes two frames to complete.
This occurs after the list of networked objects was received, so the load process will
delete them.

Note that Application.LoadLevel is purely client side. Unity imposes no
limitations on which level a client or server loads in a networked game. In fact, it's
entirely possible that you might have different levels within a networked session,
and this is what Network.SetLevelPrefix is for. Each of these levels is assigned
some kind of "ID" that uniquely identifies the level. Before loading the level you
would use Network.SetLevelPrefix. This essentially separates players into
channels, so all players with level prefix 0 are separate from players with level
prefix 1, for example.

Chapter 1

[27]

Note that if your game needs all clients to load the same level, you'll have to ensure
this yourself. If a client has a different level loaded than the host, without setting
the level prefix to something different than the host, the client might see some
odd situations, such as players floating or sunk into the ground (a player could be
standing on a bridge in one level, and a different level at the same position might
have a building; so the player would appear to be clipped into the building).

The correct way to load levels in a networked game, is to first disable the network
queue, load the level, wait two frames, and then re-enable the network queue. This
means any incoming messages will not be processed, and will instead be buffered
until the new level has completely finished loading.

Let's write a simple network level loader that will handle all of these for us.
It's designed as a singleton so we don't need one present in the scene (one will
automatically be created):

using UnityEngine;
using System.Collections;

public class NetworkLevelLoader : MonoBehavior
 {
 // implements singleton-style behavior
 public static NetworkLevelLoader Instance
 {
 get
 {
 // no instance yet? Create a new one
 if(instance == null)
 {
 GameObject go = new GameObject("_networkLevelLoader");
 // hide it to avoid cluttering up the hieararchy
 go.hideFlags = HideFlags.HideInHierarchy;
 instance = go.AddComponent<NetworkLevelLoader>();

 // don't destroy it when a new scene loads
 GameObject.DontDestroyOnLoad(go);
 }
 return instance;
 }
 }
 private static NetworkLevelLoader instance;

 public void LoadLevel(string levelName, int prefix = 0)
 {
 StopAllCoroutines();

Unity Networking – The Pong Game

[28]

 StartCoroutine(doLoadLevel(levelName, prefix));
 }

 // do the work of pausing the network queue, loading the level,
 waiting, and then unpausing
 IEnumerator doLoadLevel(string name, int prefix)
 {
 Network.SetSendingEnabled(0, false);
 Network.isMessageQueueRunning = false;

 Network.SetLevelPrefix(prefix);
 Application.LoadLevel(name);
 yield return null;
 yield return null;

 Network.isMessageQueueRunning = true;
 Network.SetSendingEnabled(0, true);
 }
}

You can now replace any calls to Application.LoadLevel with
NetworkLevelLoader.Instance.LoadLevel. For example, the server might call an
RPC which loads the level via the helper class we just wrote, as a buffered RPC so
that all clients connecting will automatically load the level.

If your server needs to change level during the connection, for example,
in many FPS games players can vote on a new map at the end of a
round, things get a bit more complicated. The server should first delete
all networked objects belonging to players, remove RPCs from all
players (via Network.RemoveRPCs), and then call the load-level RPC.

Creating a multiplayer Pong game
Now that we've covered the basics of using Unity Networking, we're going to apply
them to creating a multiplayer Pong clone.

The game will play pretty much as standard Pong. Players can choose their name,
and then view a list of open servers (full rooms will not be shown). Players can also
host their own game.

Chapter 1

[29]

Once in a game, players bounce a ball back and forth until it hits the opponent's
side. Players get one point for this, and the ball will reset and continue bouncing.
When a player hits 10 points, the winner is called, the scores are reset, and the game
continues. While in a match with no other players, the server will inform the user
to wait. If a player leaves, the match is reset (if the host leaves, the other player is
automatically disconnected).

Preparing the Field
First, create a cube (by navigating to GameObject | Create Other | Cube) and scale
it to 1 x 1 x 4. Name it Paddle and set the Tag to Player. Check the Is Trigger box on
the collider.

Our ball will detect when it hits the trigger zone on the player paddle, and reverse
direction. We use triggers because we don't necessarily want to simulate the ball
realistically with the Unity physics engine (we get far less control over the ball's
physics, and it may not behave exactly as we would like).

Unity Networking – The Pong Game

[30]

We will also line our playing field in trigger boxes. For these you can duplicate the
paddle four times and form a large rectangle outlining the playing field. The actual
size doesn't matter so much, as long as the ball has room to move around. We will
add two more tags for these boundaries: Boundary and Goal. The two boxes on the
top and bottom of the field are tagged as Boundary, the two boxes on the left and
right are tagged as Goal.

When the ball hits a trigger tagged Boundary, it reverses its velocity along the z axis.
When the ball hits a trigger tagged Player, it reverses its velocity along the x axis.
And when a ball hits a trigger tagged Goal, the corresponding player gets a point
and the ball resets.

Let's finish up the playing field before writing our code:

1. Firstly, set the camera to Orthographic and position it at (0, 10, 0). Rotate
it 90 degrees along the x axis until it points straight down, and change its
Orthographic Size to a value large enough to frame the playing field (in my
case, I set it to 15). Set the camera's background color to black.

Chapter 1

[31]

2. Create a directional light that points straight down. This will illuminate the
paddles and ball to make them pure white.

3. Finally, duplicate the player paddle and move it to the other half of the field.

The Ball script
Now we're going to create the Ball script. We'll add the multiplayer code later, for
now this is offline only:

using UnityEngine;
using System.Collections;

public class Ball : MonoBehavior
{
 // the speed the ball starts with
 public float StartSpeed = 5f;

 // the maximum speed of the ball
 public float MaxSpeed = 20f;

 // how much faster the ball gets with each bounce
 public float SpeedIncrease = 0.25f;

 // the current speed of the ball
 private float currentSpeed;

 // the current direction of travel
 private Vector2 currentDir;

 // whether or not the ball is resetting
 private bool resetting = false;

 void Start()
 {
 // initialize starting speed
 currentSpeed = StartSpeed;

 // initialize direction
 currentDir = Random.insideUnitCircle.normalized;
 }

 void Update()
 {
 // don't move the ball if it's resetting

Unity Networking – The Pong Game

[32]

 if(resetting)
 return;

 // move the ball in the current direction
 Vector2 moveDir = currentDir * currentSpeed * Time.deltaTime;
 transform.Translate(new Vector3(moveDir.x, 0f, moveDir.y));
 }

 void OnTriggerEnter(Collider other)
 {
 if(other.tag == "Boundary")
 {
 // vertical boundary, reverse Y direction
 currentDir.y *= -1;
 }
 else if(other.tag == "Player")
 {
 // player paddle, reverse X direction
 currentDir.x *= -1;
 }
 else if(other.tag == "Goal")
 {
 // reset the ball
 StartCoroutine(resetBall());
 // inform goal of the score
 other.SendMessage("GetPoint",
 SendMessageOptions.DontRequireReceiver);
 }

 // increase speed
 currentSpeed += SpeedIncrease;

 // clamp speed to maximum
 currentSpeed = Mathf.Clamp(currentSpeed, StartSpeed, MaxSpeed);
 }

 IEnumerator resetBall()
 {
 // reset position, speed, and direction
 resetting = true;
 transform.position = Vector3.zero;

 currentDir = Vector3.zero;
 currentSpeed = 0f;

Chapter 1

[33]

 // wait for 3 seconds before starting the round
 yield return new WaitForSeconds(3f);

Start();

 resetting = false;
 }
}

To create the ball, as before we'll create a cube. It will have the default scale of 1 x 1 x
1. Set the position to origin (0, 0, 0). Add a rigidbody component to the cube, untick
the Use Gravity checkbox, and tick the Is Kinematic checkbox. The Rigidbody
component is used to let our ball get the OnTriggerEnter events. Is Kinematic
is enabled because we're controlling the ball ourselves, rather than using Unity's
physics engine.

Add the new Ball component that we just created and test the game. It should look
something like this:

Unity Networking – The Pong Game

[34]

You should see the ball bouncing around the field. If it hits either side, it will move
back to the center of the field, pause for 3 seconds, and then begin moving again.
This should happen fairly quickly, because the paddles aren't usable yet (the ball will
often bounce right past them).

The Paddle script
Let's add player control to the mix. Note that at the moment player paddles will both
move in tandem, with the same controls. This is OK, later we'll disable the player
input based on whether or not the network view belongs to the local client (this is
what the AcceptsInput field is for):

using UnityEngine;
using System.Collections;

public class Paddle : MonoBehavior
{
 // how fast the paddle can move
 public float MoveSpeed = 10f;

 // how far up and down the paddle can move
 public float MoveRange = 10f;

 // whether this paddle can accept player input
 public bool AcceptsInput = true;

 void Update()
 {
 // does not accept input, abort
 if(!AcceptsInput)
 return;

 //get user input
 float input = Input.GetAxis("Vertical");

 // move paddle
 Vector3 pos = transform.position;
 pos.z += input * MoveSpeed * Time.deltaTime;

 // clamp paddle position
 pos.z = Mathf.Clamp(pos.z, -MoveRange, MoveRange);

 // set position
 transform.position = pos;
 }
}

Chapter 1

[35]

You can now move the paddles up and down, and bounce the ball back and forth.
The ball will slowly pick up speed as it bounces, until it hits either of the goals. When
that happens, the round resets.

Keeping score
What we're going to do now is create a scorekeeper. The scorekeeper will keep track
of both players' scores, and will later keep track of other things, such as whether
we're waiting for another player to join:

using UnityEngine;
using System.Collections;

public class Scorekeeper : MonoBehavior
{
 // the maximum score a player can reach
 public int ScoreLimit = 10;

 // Player 1's score
 private int p1Score = 0;

 // Player 2's score
 private int p2Score = 0;

 // give the appropriate player a point
 public void AddScore(int player)
 {
 // player 1
 if(player == 1)
 {
 p1Score++;
 }
 // player 2
 else if(player == 2)
 {
 p2Score++;
 }

 // check if either player reached the score limit
 if(p1Score >= ScoreLimit || p2Score >= ScoreLimit)
 {
 // player 1 has a better score than player 2
 if(p1score > p2score)
 Debug.Log("Player 1 wins");

Unity Networking – The Pong Game

[36]

 // player 2 has a better score than player 1
 if(p2score > p1score)
 Debug.Log("Player 2 wins");
 // both players have the same score - tie
 else
 Debug.Log("Players are tied");

 // reset scores and start over
 p1Score = 0;
 p2Score = 0;
 }
 }
}

Now our scorekeeper can keep score for each player, let's make the goals and add
points with a Goal script. It's a very simple script, which reacts to the GetPoint
message sent from the ball upon collision to give the other player a point:

using UnityEngine;
using System.Collections;

public class Goal : MonoBehavior
{
 // the player who gets a point for this goal, 1 or 2
 public int Player = 1;

 // the Scorekeeper
 public Scorekeeper scorekeeper;

 public void GetPoint()
 {
 // when the ball collides with this goal, give the player a point
 scorekeeper.AddScore(Player);
 }
}

Attach this script to both goals. For player 1's goal, set the Player to 2 (player 2 gets
a point when the ball lands in player 1's goal), for player 2's goal, set the Player to 1
(player 1 gets a point when the ball lands in player 2's goal).

The game is almost completely functional now (aside from multiplayer). One
problem is that we can't tell that points are being given until the game ends, so let's
add a score display.

Chapter 1

[37]

Displaying the score to the player
Create two 3D Text objects as children of the scorekeeper. Name them p1Score and
P2Score, and position them on each side of the field:

Let's make the scorekeeper display the player scores:

using UnityEngine;
using System.Collections;

public class Scorekeeper : MonoBehavior
{
 // the maximum score a player can reach
 public int ScoreLimit = 10;

 // the display test for player 1's score
 public TextMesh Player1ScoreDisplay;

 // the display text for player 2's score

Unity Networking – The Pong Game

[38]

 public TextMesh Player2ScoreDisplay;

 // Player 1's score
 private int p1Score = 0;

 // Player 2's score
 private int p2Score = 0;

 // give the appropriate player a point
 public void AddScore(int player)
 {
 // player 1
 if(player == 1)
 {
 p1Score++;
 }
 // player 2
 else if(player == 2)
 {
 p2Score++;
 }

 // check if either player reached the score limit
 if(p1Score >= ScoreLimit || p2Score >= ScoreLimit)
 {
 // player 1 has a better score than player 2
 if(p1Score > p2Score)
 Debug.Log("Player 1 wins");
 // player 2 has a better score than player 1
 if(p2Score > p1Score)
 Debug.Log("Player 2 wins");
 // both players have the same score - tie
 else
 Debug.Log("Players are tied");

 // reset scores and start over
 p1Score = 0;
 p2Score = 0;
 }

 // display each player's score
 Player1ScoreDisplay.text = p1Score.ToString();

 Player2ScoreDisplay.text = p2Score.ToString();
 }
}

Chapter 1

[39]

The score is now displayed properly when a player gets a point. Be sure to give it a
test run—the ball should bounce around the field, and you should be able to deflect
the ball with the paddle. If the ball hits player 1's goal, player 2 should get 1 point,
and vice versa. If one player gets 10 points, both scores should reset to zero, the ball
should move back to the center of the screen, and the game should restart.

With the most important gameplay elements complete, we can start working on
multiplayer networking.

Networking the game
For testing purposes, let's launch a network game as soon as the level is launched:

using UnityEngine;
using System.Collections;

public class RequireNetwork : MonoBehavior
{
 void Awake()
 {
 if(Network.peerType == NetworkPeerType.Disconnected)
 Network.InitializeServer(1, 25005, true);
 }
}

If we start this level without hosting a server first, it will automatically do so for us in
ensuring that the networked code still works.

Now we can start converting our code to work in multiplayer.

Let's start by networking the paddle code:

using UnityEngine;
using System.Collections;

public class Paddle : MonoBehavior
{
 // how fast the paddle can move
 public float MoveSpeed = 10f;

 // how far up and down the paddle can move
 public float MoveRange = 10f;

 // whether this paddle can accept player input
 public bool AcceptsInput = true;

Unity Networking – The Pong Game

[40]

 // the position read from the network
 // used for interpolation
 private Vector3 readNetworkPos;

 void Start()
 {
 // if this is our paddle, it accepts input
 // otherwise, if it is someone else's paddle, it does not
 AcceptsInput = networkView.isMine;
 }

 void Update()
 {
 // does not accept input, interpolate network pos
 if(!AcceptsInput)
 {
 transform.position = Vector3.Lerp(transform.position,
 readNetworkPos, 10f * Time.deltaTime);

 // don't use player input
 return;
 }

 //get user input
 float input = Input.GetAxis("Vertical");

 // move paddle
 Vector3 pos = transform.position;
 pos.z += input * MoveSpeed * Time.deltaTime;

 // clamp paddle position
 pos.z = Mathf.Clamp(pos.z, -MoveRange, MoveRange);

 // set position
 transform.position = pos;
 }

 void OnSerializeNetworkView(BitStream stream)
 {
 // writing information, push current paddle position
 if(stream.isWriting)
 {
 Vector3 pos = transform.position;
 stream.Serialize(ref pos);

Chapter 1

[41]

 }
 // reading information, read paddle position
 else
 {
 Vector3 pos = Vector3.zero;
 stream.Serialize(ref pos);
 readNetworkPos = pos;
 }
 }
}

The paddle will detect whether it is owned by the local player or not. If not, it will
not accept player input, instead it will interpolate its position to the last read position
value over the network.

By default, network views will serialize the attached transform. This is OK for
testing, but should not be used for production. Without any interpolation, the
movement will appear very laggy and jerky, as positions are sent a fixed number of
times per second (15 by default in Unity Networking) in order to save on bandwidth,
so snapping to the position 15 times per second will look jerky. In order to solve
this, rather than instantly snapping to the new position we smoothly interpolate
towards it. In this case, we use the frame delta multiplied by a number (larger is
faster, smaller is slower), which produces an easing motion; the object starts quickly
approaching the target value, slowing down as it gets closer.

When serializing, it either reads the position and stores it, or it sends the current
transform position, depending on whether the stream is for reading or for writing.

Now, add a Network View to one of your paddles, drag the panel component
attached to the Paddle into the Observed slot, and make it a prefab by dragging it
into your Project pane.

Next, delete the paddles in the scene, and create two empty game objects where the
paddles used to be positioned. These will be the starting points for each paddle
when spawned.

Spawning paddles
Next, let's make the scorekeeper spawn these paddles. The scorekeeper, upon a
player connecting, will send an RPC to them to spawn a paddle:

using UnityEngine;
using System.Collections;

public class Scorekeeper : MonoBehavior

Unity Networking – The Pong Game

[42]

{
 // the maximum score a player can reach
 public int ScoreLimit = 10;

 // the start points for each player paddle
 public Transform SpawnP1;
 public Transform SpawnP2;

 // the paddle prefab
 public GameObject paddlePrefab;

 // the display test for player 1's score
 public TextMesh Player1ScoreDisplay;

 // the display text for player 2's score
 public TextMesh Player2ScoreDisplay;

 // Player 1's score
 private int p1Score = 0;

 // Player 2's score
 private int p2Score = 0;

 void Start()
 {
 if(Network.isServer)
 {
 // server doesn't trigger OnPlayerConnected, manually spawn
 Network.Instantiate(paddlePrefab, SpawnP1.position,
 Quaternion.identity, 0);
 }
 }

void OnPlayerConnected(NetworkPlayer player)
 {
 // when a player joins, tell them to spawn
 networkView.RPC("net_DoSpawn", player, SpawnP2.position);
 }

 [RPC]
 void net_DoSpawn(Vector3 position)
 {
 // spawn the player paddle

Chapter 1

[43]

 Network.Instantiate(paddlePrefab, position,
 Quaternion.identity, 0);
 }

 // give the appropriate player a point
 public void AddScore(int player)
 {
 // player 1
 if(player == 1)
 {
 p1Score++;
 }
 // player 2
 else if(player == 2)
 {
 p2Score++;
 }

 // check if either player reached the score limit
 if(p1Score >= ScoreLimit || p2Score >= ScoreLimit)
 {
 // player 1 has a better score than player 2
 if(p1Score > p2Score)
 Debug.Log("Player 1 wins");
 // player 2 has a better score than player 1
 if(p2Score > p1Score)
 Debug.Log("Player 2 wins");
 // both players have the same score - tie
 else
 Debug.Log("Players are tied");

 // reset scores and start over
 p1Score = 0;
 p2Score = 0;
 }

 // display each player's score
 Player1ScoreDisplay.text = p1Score.ToString();
 Player2ScoreDisplay.text = p2Score.ToString();
 }
}

Unity Networking – The Pong Game

[44]

At the moment, when you start the game, one paddle spawns for player 1, but player
2 is missing (there's nobody else playing). However, the ball eventually flies off
toward player 2's side, and gives player 1 a free point.

The networked ball
Let's keep the ball frozen in place when there's nobody to play against, or if we aren't
the server. We're also going to add networked movement to our ball:

using UnityEngine;
using System.Collections;

public class Ball : MonoBehavior
{
 // the speed the ball starts with
 public float StartSpeed = 5f;

 // the maximum speed of the ball
 public float MaxSpeed = 20f;

 // how much faster the ball gets with each bounce
 public float SpeedIncrease = 0.25f;

 // the current speed of the ball
 private float currentSpeed;

 // the current direction of travel
 private Vector2 currentDir;

 // whether or not the ball is resetting
 private bool resetting = false;

 void Start()
 {
 // initialize starting speed
 currentSpeed = StartSpeed;

 // initialize direction
 currentDir = Random.insideUnitCircle.normalized;
 }

 void Update()
 {
 // don't move the ball if it's resetting

Chapter 1

[45]

 if(resetting)
 return;

 // don't move the ball if there's nobody to play with
 if(Network.connections.Length == 0)
 return;

 // move the ball in the current direction
 Vector2 moveDir = currentDir * currentSpeed * Time.deltaTime;
 transform.Translate(new Vector3(moveDir.x, 0f, moveDir.y));
 }

 void OnTriggerEnter(Collider other)
 {
 // bounce off the top and bottom walls
 if(other.tag == "Boundary")
 {
 // vertical boundary, reverse Y direction
 currentDir.y *= -1;
 }
 // bounce off the player paddle
 else if(other.tag == "Player")
 {
 // player paddle, reverse X direction
 currentDir.x *= -1;
 }
 // if we hit a goal, and we are the server, give the
 appropriate player a point
 else if(other.tag == "Goal" && Network.isServer)
 {
 // reset the ball
 StartCoroutine(resetBall());
 // inform goal of the score
 other.SendMessage("GetPoint", SendMessageOptions.
 DontRequireReceiver);
 }

 // increase speed
 currentSpeed += SpeedIncrease;

 // clamp speed to maximum
 currentSpeed = Mathf.Clamp(currentSpeed, StartSpeed, MaxSpeed);
 }

Unity Networking – The Pong Game

[46]

 IEnumerator resetBall()
 {
 // reset position, speed, and direction
 resetting = true;
 transform.position = Vector3.zero;

 currentDir = Vector3.zero;
 currentSpeed = 0f;

 // wait for 3 seconds before starting the round
 yield return new WaitForSeconds(3f);

 Start();

 resetting = false;
 }

 void OnSerializeNetworkView(BitStream stream)
 {
 //write position, direction, and speed to network
 if(stream.isWriting)
 {
 Vector3 pos = transform.position;
 Vector3 dir = currentDir;
 float speed = currentSpeed;
 stream.Serialize(ref pos);
 stream.Serialize(ref dir);
 stream.Serialize(ref speed);
 }
 // read position, direction, and speed from network
 else
 {
 Vector3 pos = Vector3.zero;
 Vector3 dir = Vector3.zero;
 float speed = 0f;
 stream.Serialize(ref pos);
 stream.Serialize(ref dir);
 stream.Serialize(ref speed);
 transform.position = pos;
 currentDir = dir;
 currentSpeed = speed;
 }
 }
}

Chapter 1

[47]

The ball will stay put if there's nobody to play against, and if someone we're playing
against leaves, the ball will reset to the middle of the field. The ball will also work
correctly on multiple machines at once (it is simulated on the server, and position/
velocity is relayed to clients). Add NetworkView to the ball and have it observe the
Ball component.

Networked scorekeeping
There is one final piece of the puzzle that is keeping score. We're going to convert
our AddScore function to use an RPC, and if a player leaves we will also reset
the scores:

using UnityEngine;
using System.Collections;

public class Scorekeeper : MonoBehavior
{
 // the maximum score a player can reach
 public int ScoreLimit = 10;

 // the start points for each player paddle
 public Transform SpawnP1;
 public Transform SpawnP2;

 // the paddle prefab
 public GameObject paddlePrefab;

 // the display test for player 1's score
 public TextMesh Player1ScoreDisplay;

 // the display text for player 2's score
 public TextMesh Player2ScoreDisplay;

 // Player 1's score
 private int p1Score = 0;

 // Player 2's score
 private int p2Score = 0;

 void Start()
 {
 if(Network.isServer)
 {

Unity Networking – The Pong Game

[48]

 // server doesn't trigger OnPlayerConnected, manually spawn
 Network.Instantiate(paddlePrefab, SpawnP1.position,
 Quaternion.identity, 0);

 // nobody has joined yet, display "Waiting..." for player 2
 Player2ScoreDisplay.text = "Waiting...";
 }
 }

void OnPlayerConnected(NetworkPlayer player)
 {
 // when a player joins, tell them to spawn
 networkView.RPC("net_DoSpawn", player, SpawnP2.position);

 // change player 2's score display from "waiting..." to "0"
 Player2ScoreDisplay.text = "0";
 }

 void OnPlayerDisconnected(NetworkPlayer player)
 {
 // player 2 left, reset scores
 p1Score = 0;
 p2Score = 0;

 // display each player's scores
 // display "Waiting..." for player 2
 Player1ScoreDisplay.text = p1Score.ToString();
 Player2ScoreDisplay.text = "Waiting...";
 }

 void OnDisconnectedFromServer(NetworkDisconnection cause)
 {
 // go back to the main menu
 Application.LoadLevel("Menu");
 }

 [RPC]
 void net_DoSpawn(Vector3 position)
 {
 // spawn the player paddle
 Network.Instantiate(paddlePrefab, position,
 Quaternion.identity, 0);
 }

Chapter 1

[49]

 // call an RPC to give the player a point
 public void AddScore(int player)
 {
 networkView.RPC("net_AddScore", RPCMode.All, player);
 }

 // give the appropriate player a point
 [RPC]
 public void net_AddScore(int player)
 {
 // player 1
 if(player == 1)
 {
 p1Score++;
 }
 // player 2
 else if(player == 2)
 {
 p2Score++;
 }

 // check if either player reached the score limit
 if(p1Score >= ScoreLimit || p2Score >= ScoreLimit)
 {
 // player 1 has a better score than player 2
 if(p1Score > p2Score)
 Debug.Log("Player 1 wins");
 // player 2 has a better score than player 1
 if(p2Score > p1Score)
 Debug.Log("Player 2 wins");
 // both players have the same score - tie
 else
 Debug.Log("Players are tied");

 // reset scores and start over
 p1Score = 0;
 p2Score = 0;
 }

 // display each player's score
 Player1ScoreDisplay.text = p1Score.ToString();
 Player2ScoreDisplay.text = p2Score.ToString();
 }
}

Unity Networking – The Pong Game

[50]

Our game is fully networked at this point. The only problem is that we do not yet
have a way to connect to the game. Let's write a simple direct connect dialog which
allows players to enter an IP address to join.

With direct IP connect, note that NAT punch-through is not possible.
When you use the Master Server, you can pass either HostData or
GUID of a host which will perform NAT punch-through.

The Connect screen
The following script shows the player IP and Port entry fields, and the Connect and
Host buttons. The player can directly connect to an IP and Port, or start a server on
the given Port. By using direct connect we don't need to rely on a master server, as
players directly connect to games via IP. If you wanted to, you could easily create a
lobby screen for this instead of using direct connect (allowing players to browse a list
of running servers instead of manually typing IP address). To keep things simpler,
we'll omit the lobby screen in this example:

using UnityEngine;
using System.Collections;

public class ConnectToGame : MonoBehavior
{
 private string ip = "";
 private int port = 25005;

 void OnGUI()
 {
 // let the user enter IP address
 GUILayout.Label("IP Address");
 ip = GUILayout.TextField(ip, GUILayout.Width(200f));

 // let the user enter port number
 // port is an integer, so only numbers are allowed
 GUILayout.Label("Port");
 string port_str = GUILayout.TextField(port.ToString(),
 GUILayout.Width(100f));
 int port_num = port;
 if(int.TryParse(port_str, out port_num))
 port = port_num;

Chapter 1

[51]

 // connect to the IP and port
 if(GUILayout.Button("Connect", GUILayout.Width(100f)))
 {
 Network.Connect(ip, port);
 }

 // host a server on the given port, only allow 1 incoming
 connection (one other player)
 if(GUILayout.Button("Host", GUILayout.Width(100f)))
 {
 Network.InitializeServer(1, port, true);
 }
 }

 void OnConnectedToServer()
 {
 Debug.Log("Connected to server");
 // this is the NetworkLevelLoader we wrote earlier in the
 chapter – pauses the network, loads the level, waits for the
 level to finish, and then unpauses the network
 NetworkLevelLoader.Instance.LoadLevel("Game");
 }

 void OnServerInitialized()
 {
 Debug.Log("Server initialized");
 NetworkLevelLoader.Instance.LoadLevel("Game");
 }
}

With this, we now have a complete, fully functional multiplayer Pong game. Players
can host games, as well as join them if they know the IP.

When in a game as the host, the game will wait for another player to show up before
starting the game. If the other player leaves, the game will reset and wait again. As a
player, if the host leaves it goes back to the main menu.

Unity Networking – The Pong Game

[52]

Summary
In this chapter, we covered:

• The basics of UDP and reliable/unreliable communication
• Setting up a lobby server
• What a Network View is
• How to serialize object state
• How to send reliable RPCs
• Hosting game servers and connecting to them
• Registering servers with the lobby
• The basics of dedicated servers
• How to load levels in a networked game

We applied these concepts to create a multiplayer clone of Pong in Unity.

In the next chapter, we will cover a third-party alternative to Unity Networking,
known as Photon Unity Networking.

Photon Unity Networking –
The Chat Client

In the last chapter, we reviewed the Unity Networking API provided with the Unity
game engine. In this chapter, we will review an alternative to Unity Networking,
called Photon Unity Networking (PUN).

In this chapter, we will cover:

• How PUN works
• The differences and similarities between PUN and Unity Networking
• Setting up PUN with Photon Cloud
• Using PhotonViews
• Connecting to Photon
• Getting a list of rooms
• Creating and joining rooms
• Filtering lobby results by preference
• Automatic matchmaking
• Using FindFriends
• Syncing a level between players
• At the end of the chapter, we will create a chat client built on top of PUN

Photon Unity Networking is provided by ExitGames. It aims to provide an
API consistent with Unity Networking, while at the same time solving many of the
issues with Unity Networking, such as the dreaded NAT punch-through problem
(players behind NAT are often unable to host games).

Photon Unity Networking – The Chat Client

[54]

Photon Unity Networking works with another service known as Photon Cloud.
Just like Unity Networking, Photon Unity Networking uses UDP for communication,
but the key difference is that players don't directly host servers. Instead, clients
connect to a server cluster (known as the "cloud") and request a room. A room will
be created on one of the servers in the cluster, and clients connect to this room.

This, in almost all cases, solves the aforementioned NAT issues with Unity, as all
the players connect to a public server (with the ideal network configuration) instead
of connecting directly to each other. Rather than making players do port-forwarding
and other workarounds to get their private, self-hosted server visible to the public,
servers are hosted externally and all of the work is done already. Players don't
connect to each other anymore, they simply connect to a server which acts as a
middleman for communication.

Additionally, rather than having a "host" (which would normally be the player who
hosts the server), Photon Unity Networking defines a "master client". The player to
create a room is, by default, the master client. However, if that player leaves, another
player will be chosen to be the master client. Contrast this to Unity Networking,
where if a host leaves, the game is simply ended or must be migrated, in PUN the
game can seamlessly continue.

Differences between PUN and Unity
Networking
PUN provides a consistent, familiar API to those who have already worked with
Unity Networking. However, there are many key differences and some code is not
compatible without changes.

In PUN, nearly all of the main functions are contained in the PhotonNetwork class
(meant to be analogous to the Network class in Unity). There is no MasterServer
equivalent in PUN: all the required functions are moved to the PhotonNetwork class.

Rather than initializing servers, in PUN you create "rooms" via PhotonNetwork.
CreateRoom. Rooms are essentially partitions on the game server to separate groups
of players from each other.

There is no longer a concept of host IP. Instead, to connect to a room, you pass either
Room to the JoinRoom function, or you pass the name of the room (room names are
required to be unique).

Chapter 2

[55]

Because of the way Photon Unity Networking works, direct LAN
connection is not possible as rather than connecting to each other,
players connect to a central server cluster. Players are required to
be connected to the Internet to play with each other, even if they
are on the same local network.

PUN also has PhotonViews, rather than NetworkViews, although they serve a very
similar purpose. State serialization is done via the OnSerializePhotonView method,
and RPC calls work almost exactly the same way they do in Unity.

There is a key difference in behavior between the PUN RPC calls
and Unity RPC calls. In Unity, unless you broadcast a message
to all, you can't directly send a message to yourself. However,
PUN does not have this restriction.

There is one very big difference between Photon Unity Networking and Unity
Networking. Whereas Network.Instantiate simply takes a prefab and instantiates
it, PhotonNetwork.Instantiate does not have access to many of the things
Network.Instantiate makes use of (for example, Network.Instantiate likely
sends some kind of metadata like an asset ID which can be used to instantiate the
object on the receiving end). So PhotonNetwork.Instantiate instead takes a string
for the name of the object, and it will load the object from a Resources folder in your
project (via Resources.Load). Therefore, all of your networked objects need to be
included in a Resources folder.

Now that we've covered what makes PUN different, let's get started setting up
PUN and Photon Cloud

Setting up PUN with Photon Cloud
To begin, go ahead and sign up for Photon Cloud at:

https://cloud.exitgames.com

After you've created an account, go to the Dashboard (My Photon | Applications)
and create a new Application. The name is not important, but you'll want to copy
the ID for later.

Photon Unity Networking – The Chat Client

[56]

Next, visit the Asset Store and search for Photon Unity Networking. The first
asset you see should be Photon Unity Networking Free. Download this asset
into your project.

Upon downloading the plugin, and importing via Assets | Import Package |
Custom Package, you are prompted with a window asking you to sign up,
enter an app ID, or setup a custom-hosted server.

Click on the Setup option, assuming you have already created an account with
Photon Cloud. Select which region you want to use by default, and paste the
ID you copied from the website into the AppId field, and click on Save.

You are now ready to begin using the PUN plugin.

Photon relies on sockets to connect, and while it does work in
webplayer or standalone builds with Unity Free, it does not work
on iOS or Android builds with the free license (since these disallow
use of .NET sockets). However, in some cases there appears to be
undocumented Android support on the 30 day Pro trial.

Chapter 2

[57]

Using PhotonViews
Photon Unity Networking features PhotonViews. These essentially act exactly as
their Unity Networking counterpart, allowing an object to serialize its state and
send RPCs over the network. Nearly every part of PhotonView is equivalent to
Network View, with a few script differences.

If you want to get the PhotonView for an object, you have two options: you can
either call the static PhotonView.Get method, use GetComponent<PhotonView>(),
or you can have your script inherit from Photon.MonoBehaviour and use this.
photonView to get the view.

To serialize object state, add the OnPhotonSerializeView function to your script.
This function takes a PhotonStream, and a PhotonMessageInfo. This works exactly
like serialization in Unity Networking.

To call RPCs, you can call the RPC function on the PhotonView. As with Unity
Networking, RPC methods are marked with the [RPC] attribute.

Here's an example that serializes position and calls an RPC when the spacebar
is pressed:

using UnityEngine;
using System.Collections;

public class Example_PhotonView : Photon.MonoBehaviour
{
 void Update()
 {
 if(photonView.isMine)
 {
 // if the space key is pressed, and this photon view belongs
 to the local player, call the RPC
 if(Input.GetKeyDown(KeyCode.Space))
 {
 photonView.RPC("TestRPC", PhotonTargets.All);
 }
 }
 }

Photon Unity Networking – The Chat Client

[58]

 [RPC]
 void TestRPC()
 {
 Debug.Log("An RPC was called!");
 }

 void OnPhotonSerializeView(PhotonStream stream,
 PhotonMessageInfo info)
 {
 if(stream.isWriting)
 {
 // writing to the stream, send position
 stream.SendNext(transform.position);
 }
 else
 {
 // reading from the stream, get position
 transform.position = (Vector3)stream.ReceiveNext();
 }
 }
}

Note the minor API changes between Photon and Unity. The two are not always
completely compatible, but there is almost always an equivalent function call from
one to the other.

Connecting to Photon and getting a list
of rooms
Let's connect to Photon Cloud. There are three main ways of doing this:

• You can call PhotonNetwork.ConnectUsingSettings which will connect
via the settings defined in the editor panel

• You can call PhotonNetwork.ConnectToBestCloudServer which will ping
each available server cluster and connect to the best one

• You can call PhotonNetwork.Connect, passing the server address of the
appropriate Photon region and the port

• You can also use ConnectUsingSettings which will connect to the region
we defined in the editor panel. We'll be using this for the rest of the chapter

Chapter 2

[59]

If you wish to use Connect manually, as of the time of writing,
the addresses for each region are:

US (East Coast): app-us.exitgamescloud.com

EU (Amsterdam): app-eu.exitgamescloud.com

Asia (Singapore): app-asia.exitgamescloud.com

Japan (Tokyo): app-jp.exitgamescloud.com

And the port to connect on can be read from the static
ServerSettings.DefaultMasterPort field. You will
also have to provide your app ID to the connect function.

For instance, a script to connect to Photon and display a list of rooms currently open
is as follows:

using UnityEngine;
using System.Collections;

public class Example_ConnectToPhoton : MonoBehaviour
{
 bool joined = false;

 void Start()
 {
 // connect to Photon
 PhotonNetwork.ConnectUsingSettings("v1.0");
 }

 void OnJoinedLobby()
 {
 // we joined Photon and are ready to get a list of rooms
 joined = true;
 }

 void OnFailedToConnectToPhoton(DisconnectCause cause)
 {
 // some error occurred, 'cause' is an enumeration of the
 error that happened
 }

Photon Unity Networking – The Chat Client

[60]

 void OnGUI()
 {
 if(!joined && string.IsNullOrEmpty(error))
 {
 // we're still connecting to photon, display a loading GUI
 }
 else if(joined)
 {
 // we're connected to Photon, so now we can draw the
 lobby screen

 drawLobby();
 }
 }

 void drawLobby()
 {
 // no rooms available
 if(PhotonNetwork.GetRoomList().Length == 0)
 {
 // display a message informing the user that there aren't
 any rooms available to join
 }
 // draw each room in a scroll view
 else
 {
 foreach(RoomInfo room in PhotonNetwork.GetRoomList())
 {
 // draw the room info to the GUI
 }

 }
 }
}

Notice that we only use GetRoomList, unlike in Unity Networking where we would
use GetHostList and PollHostList. In Photon, this room list is automatically
updated in near real time, so there's no need to manually download the list from
the server. If you need some kind of Refresh functionality, you can simply grab the
results from GetRoomList and cache the results.

Chapter 2

[61]

Creating and joining rooms
Let us have a look at how to create rooms.

Creating rooms
To create a room in PUN, use the CreateRoom function:

using UnityEngine;
using System.Collections;

public class Example_CreateRoom : MonoBehaviour
{
 void OnGUI()
 {
 // if we're not inside a room, let the player create a room
 if(PhotonNetwork.room == null)
 {

 // if create room button clicked
 {
 // create a room called "RoomNameHere", visible to the
 lobby, allows other players to join, and allows up to 8
 players
 PhotonNetwork.CreateRoom("RoomNameHere", true, true, 8);
 }
 }
 else
 {
 // we're connected to a room, display some info such as room
 name, player count, etc.

 // disconnect from the current room
 // if disconnect button clicked
 {
 PhotonNetwork.LeaveRoom();
 }
 }
 }
}

Photon Unity Networking – The Chat Client

[62]

Creating a room triggers the following callbacks:

• OnCreatedRoom, if the room is successfully created.
• OnPhotonCreateRoomFailed, if the call to CreateRoom failed.

Unfortunately, no parameters are sent, so it's impossible to truly know
the reason (however, the most likely reason is that the room name is
already in use).

• Note that there is no naming convention for rooms, but room names must
be unique (otherwise the room creation will fail). Uniqueness is enforced
on a per-app basis. You can also provide null to have a unique room name
generated for you.

You can also specify a maximum number of players for the room. Unlike Unity
Networking, this is exactly the number of players which can play, including the host
(whereas in Unity networking, this number does not include the host, so specifying 8
players allows 9 players to play if the host participates).

Photon Cloud will automatically close rooms if all players leave
the game.

Joining rooms
Joining a room is just as easy as creating a room. We could modify our lobby
example, so that clicking a room calls the JoinRoom function, such as:

foreach(RoomInfo room in PhotonNetwork.GetRoomList())
{
 // if this room's join room button is clicked
 {
 PhotonNetwork.JoinRoom(room);
 }
}

Joining a room triggers the following callbacks:

• OnJoinedRoom, if the client has successfully connected to the given room.
• OnPhotonJoinRoomFailed, if the client could not join the room.

Again, no parameters are provided, so it's impossible to know the exact
cause, but the most likely reason is that either the room no longer exists,
or it is full.

Chapter 2

[63]

Filtering results by user preference
Many game lobbies allow players to filter the results by various criteria. For example,
you might hide all private rooms, or only show rooms on a certain map.

Filtering arrays
We can filter out our room list array based on the user's preference, this way the
user can more easily search for a suitable game to join:

using UnityEngine;
using System.Collections;
using System.Linq;
using System.Collections.Generic;

public class Example_FilterRooms
{
 public static RoomInfo[] FilterRooms(RoomInfo[] src, bool
 includeFull, Hashtable properties)
 {
 // use a Where expression to filter out rooms that do not
 match the given criteria
 // then convert that to an array
 return src.Where(room =>
 (
 filterRoom(room, includeFull, properties)
)).ToArray();
 }

 private static bool filterRoom(RoomInfo src, bool includeFull,
 Hashtable properties)
 {
 // if includeFull is false, filter out the room if it's full
 bool include_full = (src.playerCount >= src.maxPlayers
 || includeFull);

 // compare each custom property in the room for a match
 bool include_props = true;

Photon Unity Networking – The Chat Client

[64]

 if(properties != null)
 {
 foreach(object key in properties)
 {
 // does not contain the key, therefore doesn't match our
 criteria
 if(!src.customProperties.ContainsKey(key))
 {
 include_props = false;
 break;
 }

 // value of key does not match, therefore doesn't match
 our criteria
 if(src.customProperties[key] != properties[key])
 {
 include_props = false;
 break;
 }
 }
 }

 return include_full && include_props;
 }
}

If you haven't seen the => symbol before, it's a special expression
which allows us to perform an operation on each element in an
array. This is part of the LINQ (Language Integrated Query)
feature of .NET. This is used in addition to methods such as
Where, which evaluates a given Boolean expression per element
and returns all elements which evaluate to true. In this case, we call
a function per element which checks the room against the user's
preferences, so only rooms which match the user's preferences
are returned.

For more information about LINQ, see:

http://msdn.microsoft.com/en-us/library/vstudio/
bb397897.aspx

Chapter 2

[65]

Filtering and caching a room list
Now we can call the preceding class's static FilterRooms function to get a filtered
list of rooms.

Note that we probably do not want to call this every frame (or in the case of OnGUI,
several times a frame), so instead of directly displaying the results of GetRoomList,
we will wait until a room list is received, filter it, and cache the results. We can
handle updates to the room list in the OnReceivedRoomListUpdate callback. Let's
modify our connection/lobby script.

Whereas before we used:

foreach(RoomInfo room in PhotonNetwork.GetRoomList())
{
 //...
}

We can now replace this with:

foreach(RoomInfo room in Example_FilterRooms.FilterRooms(
 PhotonNetwork.GetRoomList(), includeFullRooms,
 filterRoomProperties))
{
 //...
}

Where includeFullRooms indicates whether we want to include rooms in the search
which are full to capacity, and filterRoomProperties is a hashtable of properties
we want the room to match (for instance, what map we would like to play on).

Right now filtering doesn't serve any purpose (properties are null, and includeFull
is true, so all rooms are included). However, these could be made public, and set by
other scripts, or perhaps read from static fields.

Automatic matchmaking
Many games do not use a lobby. For example, console games often opt to randomly
match players together rather than allowing them to browse a list of games (which
could be unwieldy with a controller), or some games also have a "Quick Play" button
in the lobby which allows the user to jump right into the action without having to
browse the server lists. Usually, players can specify a preference, such as which map
to play on, or what game mode they want.

Luckily, random matchmaking in PUN is very easy.

Photon Unity Networking – The Chat Client

[66]

In PUN, you can call the PhotonNetwork.JoinRandomRoom function. This function
takes a Hashtable of expected properties, and the desired max player count. It will
attempt to join a random room, which will either call OnJoinedRoom if a room was
found and the client was able to connect, or OnPhotonRandomJoinFailed if no room
could be found (usually, this means all rooms are full, or no rooms are available).

Our lobby example might have a "Quick Play" button to do this:

// if quick play button is clicked
{
 // attempt to join a random room
 PhotonNetwork.JoinRoom(filterProperties, 0);
}

If there are no rooms available to join, we can also start a new room.

void OnPhotonRandomJoinFailed()
{
 // failed to join a room, create a new one
 // passing a null name autogenerates a unique name.
 PhotonNetwork.CreateRoom(null, true, true, 8);
}

Now the player can either manually find a room, or they can click the quick play
button to immediately play. If no room is available, a new one is automatically
created with a random name.

Finding friends
Let's say your game features a friends list, and you want to know if a friend is
online or offline, or perhaps even want to join your friend if they are playing
in a room. Luckily Photon Cloud recently added easy support for this via the
FindFriends feature, which allows you to query the online states of a given list
of users, as well the rooms the users are currently in, if any. The following example
will locate and display a list of friends as defined in the inspector (in a real use case,
these would likely be fetched from a database or some other source):

using UnityEngine;
using System.Collections;

public class Example_FindFriends : MonoBehaviour
{

Chapter 2

[67]

 public string[] Friends = new string[0];

 void OnJoinedLobby()
 {
 // Set our player name
 // Note that player names are not enforced to be unique. For
 the most part, this is used for screen names, but is also
 used for the FindFriends call
 // You can also change the name at any time
 PhotonNetwork.playerName = "TestPlayerName";

 // fetch the friends list from Photon
 // note that this is asynchronous, when the friends list is
 downloaded the results will be available via
 PhotonNetwork.Friends
 PhotonNetwork.FindFriends(Friends);
 }

 void OnGUI()
 {
 if(!PhotonNetwork.connected)
 return;

 if(PhotonNetwork.Friends == null)
 return;

 foreach(FriendInfo friend in PhotonNetwork.Friends)
 {

 // display information about this friend
 // you can get the friend's name via friend.Name
 // friend.IsOnline is the online status of the friend
 // friend.IsInRoom indicates whether the friend is currently
 connected to a room
 // friend.Room indicates which room the friend is in, if any
 }

 GUILayout.EndArea();
 }
}

Photon Unity Networking – The Chat Client

[68]

In order for this to work, each player will need to set their name via PhotonNetwork.
playerName. FindFriends will attempt to find the status of each friend by their
username. There is no harm in including users that don't exist; they will simply show
up as offline.

Note that FindFriends cannot be called before connecting to the
lobby. That is, calling FindFriends in OnConnectedToPhoton
will result in an error, but OnJoinedLobby will work fine.

Syncing a level between players
In Unity Networking, we had to develop our own way to make sure each player
was running on the same level, via RPCs, disabling the network queue, waiting
for the load to finish, and so on.

In Photon, this problem is significantly easier to solve. You simply set
PhotonNetwork.automaticallySyncScene to true, and to load a level call
PhotonNetwork.LoadLevel on the master client. For example, we can modify
our lobby example to automatically sync the scene between players in a room.

Firstly, in Start we would enable automatic level syncing:

void Start()
{
 // ...
 // ensure that all players play on the same map
 PhotonNetwork.automaticallySyncScene = true;
}

Then, when starting a game, we use PhotonNetwork's load level replacement in
order to load the level for all players:

void OnCreatedRoom()
{
 PhotonNetwork.LoadLevel("Level Name Here");
}

Note that level loads can also occur in-game. For example, this feature makes it
incredibly easy to add a map vote feature, where players can vote for the next
map, and at the end of the round the map with the most votes is loaded.

Chapter 2

[69]

Creating a chat client
We're going to put what we've learned about Photon to use, creating a chat client
from scratch. Players can choose from a list of running chatrooms, create a new
chatroom, or join a random chatroom (if there are none available, one is created).
While in a chatroom, players can chat with everybody in the chatroom. From the
main menu, players can also manage a list of "friends" (they can add and remove
names). They can see the online states of each friend, as well as join friends if they
are in a room.

The Connect screen
The first screen the user is presented with is the Connect screen.

Here, they enter their username and connect to Photon. It will automatically remember
the last username they entered, since they are likely to want to use it again.

This script accomplishes the Connect screen. This goes on an empty game object.
After the user connects, it will disable itself and activate the lobby screen on another
game object:

using UnityEngine;
using System.Collections;

public class ConnectToPhoton : MonoBehaviour
{
 public GameObject LobbyScreen;

 private string username = "";

Photon Unity Networking – The Chat Client

[70]

 private bool connecting = false;
 private string error = null;

 void Start()
 {
 // load the last username the player entered
 username = PlayerPrefs.GetString("Username", "");
 }

 void OnGUI()
 {
 // in the process of connecting...
 if(connecting)
 {
 GUILayout.Label("Connecting...");
 return;
 }

 // an error occurred, display it
 if(error != null)
 {
 GUILayout.Label("Failed to connect: " + error);
 return;
 }

 // let the user enter their username
 GUILayout.Label("Username");
 username = GUILayout.TextField(username, GUILayout.Width(
 200f));

 if(GUILayout.Button("Connect"))
 {
 // remember username for next time
 PlayerPrefs.SetString("Username", username);

 // in the process of connecting
 connecting = true;

 // set username, connect to photon
 PhotonNetwork.playerName = username;
 PhotonNetwork.ConnectUsingSettings("v1.0");
 }
 }

Chapter 2

[71]

 void OnJoinedLobby()
 {
 // joined the lobby, show lobby screen

 connecting = false;
 gameObject. SetActiveRecursively (false);
 LobbyScreen. SetActiveRecursively (true);
 }

 void OnFailedToConnectToPhoton(DisconnectCause cause)
 {
 // failed to connect, store error for display

 connecting = false;
 error = cause.ToString();
 }
}

Right now, if you run this, you can enter your username and connect. It will then
display Connecting... until it connects, or an error occurs. If an error occurs it will
be displayed. Otherwise, the message goes away and we're left with a blank screen.
You'll also notice a null reference exception in the console, as our lobby screen is not
yet defined. Let's remedy these by creating our lobby script.

The Lobby screen
The lobby screen will allow the user to join a random game, host a game, or browse
available games to manually join. We'll also add a button that will show the user's
friends list, for now it won't do anything.

Earlier in this chapter, we covered filtering room lists by preference.
A good use case for our chatroom might be to allow players to
specify a language upon creating a room. For instance, add buttons
for English, Spanish, or French. The room could be created with a
Language key containing the user-specified language. This can then
be filtered in the Lobby, so the user could either select All, English,
Spanish, or French to join rooms of a specific language.

using UnityEngine;
using System.Collections;

public class LobbyScreen : MonoBehaviour
{
 Vector2 lobbyScroll = Vector2.zero;

Photon Unity Networking – The Chat Client

[72]

 void Awake()
 {
 // as explained before, we use automaticallySyncScene to
 ensure all players load the same level automatically
 PhotonNetwork.automaticallySyncScene = true;
 }

 void OnGUI()
 {
 // allow the player to join a random room if they don't feel
 like browsing room lists
 if(GUILayout.Button("Join Random", GUILayout.Width(200f))
)
 {
 PhotonNetwork.JoinRandomRoom();
 }

 // create a new room
 if(GUILayout.Button("Create Room", GUILayout.Width(200f))
)
 {
 // create a room with the user's name, visible in the lobby,
 allow other players to join, maximum of 32 players
 allowed.
 PhotonNetwork.CreateRoom(PlayerPrefs.GetString("Username"
) + "'s Room", true, true, 32);
 }

 // TODO: show the friends list management page
 GUILayout.Button("Friends", GUILayout.Width(200f));

 // get a list of rooms currently open
 RoomInfo[] rooms = PhotonNetwork.GetRoomList();
 // no rooms available, inform the user
 if(rooms.Length == 0)
 {
 GUILayout.Label("No Rooms Available");
 }
 else
 {
 // show a scrollable list of rooms

 lobbyScroll = GUILayout.BeginScrollView(lobbyScroll,
 GUILayout.Width(220f), GUILayout.ExpandHeight(true));

Chapter 2

[73]

 // iterate over each room and display a line for that room,
 in addition to an "Enter" button
 foreach(RoomInfo room in PhotonNetwork.GetRoomList())
 {
 GUILayout.BeginHorizontal(GUILayout.Width(200f));

 // display room name and number of players / capacity
 GUILayout.Label(room.name + " - " + room.playerCount +
 "/" + room.maxPlayers);

 // connect to the room if the player clicks the "Enter"
 button
 if(GUILayout.Button("Enter"))
 {
 PhotonNetwork.JoinRoom(room);
 }

 GUILayout.EndHorizontal();
 }

 GUILayout.EndScrollView();
 }
 }

 // if no room could be randomly joined, create a new room
 void OnPhotonRandomJoinFailed()
 {
 // create a new room with the player's name, visible to the
 lobby, open to other players, maximum of 32 players.
 PhotonNetwork.CreateRoom(PlayerPrefs.GetString("Username")
 + "'s Room", true, true, 32);
 }

 // after creating the room, load the chat room scene
 void OnCreatedRoom()
 {
 // load the chatroom scene via PhotonNetwork.LoadLevel, this
 way everyone who joins will automatically load the level.
 PhotonNetwork.LoadLevel("ChatRoom");
 }
}

Attach this to an empty game object, drag the game object onto the LobbyScreen slot
of the Connect script, and deactivate the lobby screen game object.

Photon Unity Networking – The Chat Client

[74]

The chat room
Note that either Join Random or Create Room will both result in an error, that the
"ChatRoom" scene does not exist. Let's find a remedy to this.

Save the current scene as Main and add it to the build settings. Then, create a new
scene, save it as ChatRoom, and add it to the build settings as well.

Now we can create our chatroom script and add it to this scene shown as follows:

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

public class Chatbox : Photon.MonoBehaviour
{
 // keep up to this many messages, after which older messages
 start to be deleted
 public int MaxMessages = 100;

 private Vector2 chatScroll = Vector2.zero;
 private List<string> chatMessages = new List<string>();

 private string message = "";

 void OnGUI()
 {
 if(GUILayout.Button("Leave Room"))
 {
 // leave the room we're in
 PhotonNetwork.LeaveRoom();
 }

 // display a scrolling list of chat messages
 chatScroll = GUILayout.BeginScrollView(chatScroll,
 GUILayout.Width(Screen.width), GUILayout.ExpandHeight(
 true));

 foreach(string msg in chatMessages)
 {
 GUILayout.Label(msg);
 }

Chapter 2

[75]

 GUILayout.EndScrollView();

 GUILayout.BeginHorizontal();

 // let the user type a message
 message = GUILayout.TextField(message, GUILayout.ExpandWidth(
 true));

 if(GUILayout.Button("Send", GUILayout.Width(100f)))
 {
 // tell everybody to add this message
 photonView.RPC("AddChat", PhotonTargets.All, message);
 message = "";
 }

 GUILayout.EndHorizontal();
 }

 [RPC]
 void AddChat(string message, PhotonMessageInfo info)
 {
 // store the received message
 chatMessages.Add(info.sender.name + ": " + message);

 // enforce maximum stored messages
 if(chatMessages.Count > MaxMessages)
 {
 chatMessages.RemoveAt(0);
 }

 // set scroll Y to a really big value
 // Unity will automatically clamp this, having the effect of
scrolling to the bottom
 chatScroll.y = 10000;
 }

 // if the user leaves, go back to the main scene
 void OnLeftRoom()
 {
 Application.LoadLevel("Main");
 }
}

Photon Unity Networking – The Chat Client

[76]

What happens here is that the user is allowed to type a message. On clicking the
Send button this message is passed to an RPC (PhotonTargets.All will call the
RPC for every player in the room). This RPC will add the new message, prefixed
with the player name (PhotonMessageInfo.sender.name is the name of the player
who sent the RPC), to the list of messages (which it also limits to a maximum count),
and scroll the chatbox to the bottom.

Our chat script is now fully functional. Next, we're going to add the friends list
functionality to our chatroom app.

Adding friends lists
Players can add and remove friends from the main menu. They can also view a list of
friends, online states, and optionally join their friends if the friend is inside a chatroom.
The actual list of friends is persisted to PlayerPrefs as a comma-delimited string:

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

public class FriendsScreen : MonoBehaviour
{
 public GameObject LobbyScreen;

 private string addFriendName = "";

 private List<string> friends = new List<string>();

 private Dictionary<string, bool> onlineStates = new
 Dictionary<string, bool>();
 private Dictionary<string, string> rooms = new
 Dictionary<string, string>();

 void Awake()
 {
 // load friends from PlayerPrefs
 string stored_friends = PlayerPrefs.GetString("FriendsList",
 "");
 if(!string.IsNullOrEmpty(stored_friends))
 {
 friends.AddRange(stored_friends.Split(','));
 }

 // request friend states

Chapter 2

[77]

 if(friends.Count > 0)
 {
 PhotonNetwork.FindFriends(friends.ToArray());
 }
 }

 void OnGUI()
 {
 // go back to the lobby screen
 if(GUILayout.Button("Back", GUILayout.Width(200f)))
 {
 gameObject. SetActiveRecursively (false);
 LobbyScreen. SetActiveRecursively (true);
 }

 GUILayout.Label("Add Friend:");

 GUILayout.BeginHorizontal();

 // let the player type in a friend name
 addFriendName = GUILayout.TextField(addFriendName,
 GUILayout.Width(200f));

 // add player name to friends list, request friend states
 if(GUILayout.Button("Add", GUILayout.Width(100f)))
 {
 AddFriend(addFriendName);
 }

 GUILayout.EndHorizontal();

 if(PhotonNetwork.Friends != null)
 {
 foreach(FriendInfo friend in PhotonNetwork.Friends)
 {
 GUILayout.BeginHorizontal();

 GUILayout.Label(friend.Name + " [" + (GetOnlineState(
 friend) ? "Online]" : "Offline]"));

 if(GetIsInRoom(friend))
 {

Photon Unity Networking – The Chat Client

[78]

 if(GUILayout.Button("Join", GUILayout.Width(50f)))
 {
 // join the friend in whatever room they are in
 PhotonNetwork.JoinRoom(GetRoom(friend));
 }
 }

 // remove the friend from the friends list, and fetch
 friend states
 if(GUILayout.Button("Remove", GUILayout.Width(100f))
)
 {
 RemoveFriend(friend.Name);
 }

 GUILayout.EndHorizontal();
 }
 }
 }

 void Update()
 {
 if(PhotonNetwork.FriendsListAge >= 1000)
 {
 PhotonNetwork.FindFriends(friends.ToArray());
 }
 }

 // while updating a friends list, Photon will temporarily set
 isOnline and isInRoom to false
 // if you update on a timer, you will notice state rapidly
 switching between offline and online
 // therefore, we will store online state and room in a
 dictionary and wait until an update is actually received
 // and store the updated value
 void OnUpdatedFriendList()
 {
 foreach(FriendInfo friend in PhotonNetwork.Friends)
 {
 onlineStates[friend.Name] = friend.IsOnline;
 rooms[friend.Name] = friend.IsInRoom ? friend.Room : "";
 }
 }

 bool GetOnlineState(FriendInfo friend)
 {

Chapter 2

[79]

 if(onlineStates.ContainsKey(friend.Name))
 return onlineStates[friend.Name];
 else
 return false;
 }

 bool GetIsInRoom(FriendInfo friend)
 {
 if(rooms.ContainsKey(friend.Name))
 return !string.IsNullOrEmpty(rooms[friend.Name]);
 else
 return false;
 }

 string GetRoom(FriendInfo friend)
 {
 if(rooms.ContainsKey(friend.Name))
 return rooms[friend.Name];
 else
 return "";
 }

 void AddFriend(string friendName)
 {
 friends.Add(friendName);
 PhotonNetwork.FindFriends(friends.ToArray());

 // save friends to PlayerPrefs
 PlayerPrefs.SetString("FriendsList", string.Join(",",
 friends.ToArray()));
 }

 void RemoveFriend(string friendName)
 {
 friends.Remove(friendName);
 PhotonNetwork.FindFriends(friends.ToArray());

 // save friends to PlayerPrefs
 PlayerPrefs.SetString("FriendsList", string.Join(",",
 friends.ToArray()));
 }
}

Photon Unity Networking – The Chat Client

[80]

Place this script on an empty game object, and deactivate the game object.
Drag the lobby screen game object onto the LobbyScreen slot.

Finally, let's modify our lobby script to go to the friends list screen.

Firstly, we'll add a reference to the friends list object:

public GameObject FriendsListScreen;

And in OnGUI, we'll add a button to display the friends list:

if(GUILayout.Button("Friends", GUILayout.Width(200)))
{
 gameObject.SetActiveRecursively(false);
 FriendsListScreen.SetActiveRecursively(true);
}

Note that as of Unity 4, SetActiveRecursively is
deprecated. You should instead use SetActive. However, this
function does not exist in Unity 3.

Drag the friends list game object onto the new FriendsListScreen slot.

The chatbox example is now completely functional.

Summary
In this chapter, we learned what Photon Unity Networking does differently to Unity
Networking and how to use PhotonViews. We learned to get a list of rooms
in the lobby, filtered by user preference, and how to create and join rooms as well
as how to add random matchmaking. We learned how to add friends list features,
and making sure everyone plays on the same level.

We also applied these concepts to create a fully functional chat client. Players can
create or join, manage a list of friends, and of course, chat with others.

In the next chapter, we will be exploring another networking technology from
ExitGames, called Photon Server.

Photon Server –
Star Collector

In the last chapter, we covered Photon Unity Networking, coupled with Photon
Cloud. In this chapter, we'll be covering another multiplayer technology from Exit
Games, called Photon Server.

Photon Server is a dedicated server middleware. That means, unlike Unity
Networking or Photon Unity Networking, games are not organized by players (in
rooms or hosts). Instead, players connect to a single dedicated server, which is in
charge of processing game logic. This is the kind of setup you would see in an MMO
(for example, a single region in the game might be a server).

In this chapter we will cover the following topics:

• What differs Photon Server from Photon Unity Networking or Unity
Networking

• Getting the Photon Server
• Setting up a Photon Server instance
• Setting up the Photon Client SDK in Unity
• Creating a new server application
• Connecting and sending/receiving messages
• Creating a central game logic class
• Assigning player IDs
• Creating a semi-server-authoritative Star Collector game
• Let's get started.

Photon Server – Star Collector

[82]

Dedicated servers
Photon Server is built on the concept of dedicated servers. Whereas in Unity
Networking one player is the host and other players directly connect to their
machine, in Photon Server you host one or more dedicated servers that players
connect to. Additionally, this server usually performs as much game logic as
possible, unlike Photon Unity Networking /Photon Cloud, where clients are
responsible for game logic.

Dedicated servers are most often used for MMO-type games, as mentioned
previously. By processing as much logic on the server as possible, the potential for
cheating is dramatically reduced. For example, many MMOs implement simple
point-and-click movement logic, where the player simply points where they want
to move to. The client would most likely send a simple move request containing
the point the user clicked. The server handles path finding and actually moving the
character to that point. The client can also predict how the character will move (by
generating its own path and moving the character), but ultimately the server gets
total control over the character (and likely broadcasts an absolute position often,
which the client "corrects" as its own state, to ensure the client is always in step with
the server).

Photon Server also includes a redistributable package. This allows players to
host their own servers, similar to games like Minecraft (where the server logic is
separated into another application, which is running with the game). This can be an
improvement over games hosted within the client, as players can run their server on
a dedicated machine without playing actively.

Getting the Photon Server
Assuming that you've created an ExitGames account (as detailed in the last chapter),
you can visit this page: https://www.exitgames.com/Download, for downloading
client and server SDKs:

Download the first link, the Photon Server SDK exe. This is a self-extracting archive,
so after downloading simply browse to the location you want to extract the server
code to.

You'll also want to download the Unity3D SDK, so find the download link among
the list of client SDKs and download it.

After downloading the client SDK, navigate to libs | Release and drop the
Photon3Unity3D.dll file into a Plugins folder in your Unity project.

Chapter 3

[83]

You will also want to download the server license file, so choose the first on the
download page (100 CCU, no expiry) and drop it into the deploy | bin_win32
directory of your server application. To run the Photon Server, simply run
PhotonControl.exe. It's not ready to connect as—first, we need to create our own
server application.

Creating a server application
Let's create a new server application. Upon receiving any message, it will simply get
an echo, a confirmation that it has received the message (an acknowledgement).

Creating a class library
Create a new class library project called PhotonAckServer. I have put mine in the
src-server directory.

Now, we'll add three references to our project. These can be found in the libs
directory of the Photon Server:

• ExitGamesLibs.dll

• Photon.SocketServer.dll

• PhotonHostRuntimeInterfaces.dll

With these added, create a new PhotonAckServer class. This will inherit from
ApplicationBase, code for the same is as follows:

using Photon.SocketServer;

public class PhotonAckServer : ApplicationBase
{
 protected override PeerBase CreatePeer(InitRequest initRequest
)
 {
 }

 protected override void Setup()
 {
 }

 protected override void TearDown()
 {
 }
}

Photon Server – Star Collector

[84]

And we'll also create a new PhotonAckPeer class as follows:

using Photon.SocketServer;
using PhotonHostRuntimeInterfaces;

class PhotonAckPeer : PeerBase
{
 public PhotonAckPeer(IRpcProtocol protocol, IPhotonPeer
 unmanagedPeer)
 : base(protocol, unmanagedPeer)
 {
 }

 protected override void OnDisconnect(DisconnectReason
 reasonCode, string reasonDetail)
 {
 }

 protected override void OnOperationRequest(OperationRequest
 operationRequest, SendParameters sendParameters)
 {
 }
 }
}

And modify our PhotonAckServer to return the PhotonAckPeer we just created:

using Photon.SocketServer;

public class PhotonAckServer : ApplicationBase
{
 protected override PeerBase CreatePeer(InitRequest initRequest
)
 {
 return new PhotonAckPeer(initRequest.Protocol,
 initRequest.PhotonPeer);
 }

 protected override void Setup()
 {
 }

 protected override void TearDown()
 {
 }
}

Chapter 3

[85]

So, what did we just do here? We have created a class library (which compiles down
to a DLL). This is known as a server application. It is in charge of handling all server-
side logic in Photon. It compiles to a DLL, which is referenced by the actual Photon
Server EXE.

This setup involves at least two classes, an Application and a Peer. The
Application class isn't much more than glue code, creating and returning a new
instance of our Peer class (it can also handle startup and shutdown if need be)
when requested.

The Peer class essentially wraps a specific client (when a client connects, the
Application class will create and return a new peer for that client). It can handle
messages coming from the client (known as operation requests), and can send
messages back to the client (either as responses to operation requests, or as events,
which don't need to be in response to anything).

Responding to operation requests
So, let's send our "ack" as a response. First, we'll create an enum variable of values,
which map to response codes using following code:

public enum PhotonAckResponseTypes : byte
{
 Ack = 0
}

Right now there is only one entry, but we can easily add more responsive codes by
adding the enum variable values (the point of using an enum variable value is for
organization and more readable code)

Now, in our PhotonAckPeer, let's modify our OnOperationRequest function to
return an ack response.

using Photon.SocketServer;
using PhotonHostRuntimeInterfaces;
using System.Collections.Generic;

class PhotonAckPeer : PeerBase
{
 public PhotonAckPeer(IRpcProtocol protocol, IPhotonPeer
 unmanagedPeer)
 : base(protocol, unmanagedPeer)
 {
 }

Photon Server – Star Collector

[86]

 protected override void OnDisconnect(DisconnectReason
 reasonCode, string reasonDetail)
 {

 }

 protected override void OnOperationRequest(OperationRequest
 operationRequest, SendParameters sendParameters)
 {
 // send an "ack" back to the client
 OperationResponse response = new OperationResponse(
 (byte)PhotonAckResponseTypes.Ack);
 this.SendOperationResponse(response, sendParameters);
 }
}

Deploying the server code
Although this is a very simple example, we've now got a fully functional server
application. To build this, first ensure that the built server DLL is placed under your
project's directory under bin (this is required by the Photon Server application), now
start to build the project.

Copy the bin folder you just built to the deploy folder under deploy/
PhotonAckServer/. Now ,we'll need to edit the Photon Server configuration to
ensure that it knows about our new application. The configuration file is located
at deploy/bin_win32/PhotonServer.config. You should see a section titled
Applications. Add the following entry:

<Application
 Name="PhotonAckServer"
 BaseDirectory="PhotonAckServer"
 Assembly="PhotonAckServer"
 Type="PhotonAckServer">
</Application>

Now, our server is ready to handle clients. Let's make a client in Unity, which will
send and receive messages from Photon.

Chapter 3

[87]

Connecting from Unity and passing
messages
Connecting to a Photon Server from Unity is very simple. You just need to specify
the IP, port, and application which you want to use (in this case, we will specify
PhotonAckServer as the application). Each application defined in the Photon Server
configuration will run alongside each other—this lets you run a number of different
server types such as master servers and game servers on a single physical machine.

Let's create a script to connect to Photon, service the connection ten times per
second, and sends a test message to the server (which responds with an
acknowledgement message).

First, we'll start with this:

using UnityEngine;
using System.Collections;
using ExitGames.Client.Photon;

public class PhotonAckClient : MonoBehaviour, IPhotonPeerListener
{
}

We'll add some variables to the top of the script:

public PhotonPeer peer;
private bool connected = false;

In Start, we'll connect to the server and kick off a co-routine, which services
the connection:

public void Start()
{
 // connect to Photon server
 peer = new PhotonPeer(this, ConnectionProtocol.Udp);
 peer.Connect("127.0.0.1:5055", "PhotonAckServer");

 StartCoroutine(doService());
}

Our service co-routine calls service and then delays for 0.1 seconds, in a while loop:

IEnumerator doService()
{
 while(true)
 {

Photon Server – Star Collector

[88]

 peer.Service();
 yield return new WaitForSeconds(0.1f);
 }
}

We'll also implement some methods required by the IPhotonPeerListener
interface:

#region IPhotonPeerListener Members

public void DebugReturn(DebugLevel level, string message)
{
 // log message to console
 Debug.Log(message);
}

public void OnEvent(EventData eventData)
{
 //server raised an event
 Debug.Log("Received event - type: " + eventData.Code.ToString()
);
}

public void OnOperationResponse(OperationResponse operationResponse)
{
 //server sent operation response
 Debug.Log("Received op response - type: " +
 operationResponse.OperationCode.ToString());
}

public void OnStatusChanged(StatusCode statusCode)
{
 // connected to Photon server
 if(statusCode == StatusCode.Connect)
 {
 connected = true;
 }

 // log status change
 Debug.Log("Status change: " + statusCode.ToString());
}

#endregion

Chapter 3

[89]

Finally, we'll display a GUI with a button that sends a test message to the server
using the following code:

void OnGUI()
{
 GUILayout.Label("Connected: " + connected.ToString());

 if(connected)
 {
 if(GUILayout.Button("Send Operation Request"))
 {
 // send a message to the server
 peer.OpCustom(0, new System.Collections.Generic.
 Dictionary<byte, object>(), true);
 }
 }
}

So, what exactly does this script accomplish?

• It creates a new PhotonPeer class, which represents a connection to the
Photon Server instance. It passes itself to the constructor, which causes the
PhotonPeer class to call the IPhotonPeerListener methods that our class
implements. It also specifies to use UDP for communication. This lets you
specify which messages are reliable, and which are unreliable.

• It calls the service method of our PhotonPeer ten times per second. This
causes the PhotonPeer class to process incoming messages and send
outgoing messages. In a twitch-based game, this should be called more often
to reduce lag (twenty times per second should suffice).

• It displays the connection status in OnGUI. If connected, it also shows a
button, which will cause a test message to be sent to the server (via the
OpCustom method of the PhotonPeer class, which sends an operation
request to the server).

• It implements the DebugReturn, OnEvent, and OnOperationResponse
methods to log the values to the console.

• It implements the OnStatusChange method to detect when the PhotonPeer
class has successfully established a connection.

This is really all that is needed for basic communication with a Photon Server. You
can handle connection/disconnection with OnStatusChange, send messages to the
server with the OpCustom method, and receive messages with OnOperationResponse
and OnEvent.

Photon Server – Star Collector

[90]

Creating a game logic class
When writing game servers, it's very common that you need some central class for
processing game logic. What we have right now doesn't allow for that, so we're
going to modify our ack server to add a central class for processing game logic.

Our game class will accomplish the same thing that our ack server already does
(sends acknowledgements in response to operation requests). It will also be able to
keep track of a list of peers connected to the server, and when the server shuts down
it will automatically disconnect any peers that are currently connected.

using Photon.SocketServer;
using PhotonHostRuntimeInterfaces;

using System.Collections.Generic;

public class PhotonAckGame
{
 public static PhotonAckGame Instance;

 public List<PeerBase> Connections;

 public void Startup()
 {
 Connections = new List<PeerBase>();
 }

 public void Shutdown()
 {
 // kick out any players still on the server before shutting
 down
 foreach(PeerBase peer in Connections)
 {
 peer.Disconnect();
 }
 }

 public void PeerConnected(PeerBase peer)
 {
 lock(Connections)
 {
 Connections.Add(peer);
 }
 }

Chapter 3

[91]

 public void PeerDisconnected(PeerBase peer)
 {
 lock(Connections)
 {
 Connections.Remove(peer);
 }
 }

 public void OnOperationRequest(PeerBase src, OperationRequest
 request, SendParameters sendParams)
 {
 // send ack to peer
 src.SendOperationResponse(new OperationResponse(
 (byte)PhotonAckResponseTypes.Ack), sendParams);
 }
}

Note the use of lock statements—peers in Photon Server are executed
in parallel for performance. This presents thread safety issues, so you
need to be careful to properly deal with thread safety.

In our Application class, in the Setup method we'll create a new instance of the
game and call its Startup method. Additionally, in the Teardown method, we'll call
the game instance's Shutdown method.

using Photon.SocketServer;

public class PhotonAckServer : ApplicationBase
{
 protected override PeerBase CreatePeer(InitRequest initRequest
)
 {
 return new PhotonAckPeer(initRequest.Protocol,
 initRequest.PhotonPeer);
 }

 protected override void Setup()
 {
 PhotonAckGame.Instance = new PhotonAckGame();
 PhotonAckGame.Instance.Startup();
 }

 protected override void TearDown()

Photon Server – Star Collector

[92]

 {
 PhotonAckGame.Instance.Shutdown();
 }
}

And finally, in our peer class we need to inform the game instance of connecting
peers, disconnecting peers, and operation requests.

using Photon.SocketServer;
using PhotonHostRuntimeInterfaces;
using System.Collections.Generic;

class PhotonAckPeer : PeerBase
{
 public PhotonAckPeer(IRpcProtocol protocol, IPhotonPeer
 unmanagedPeer)
 : base(protocol, unmanagedPeer)
 {
 PhotonAckGame.Instance.PeerConnected(this);
 }

 protected override void OnDisconnect(DisconnectReason
 reasonCode, string reasonDetail)
 {
 PhotonAckGame.Instance.PeerDisconnected(this);
 }

 protected override void OnOperationRequest(OperationRequest
 operationRequest, SendParameters sendParameters)
 {
 PhotonAckGame.Instance.OnOperationRequest(this,
 operationRequest, sendParameters);
 }
}

If you run this server and connect from Unity, you should have the same results as
you did before, but the difference is that we are now processing messages from a
central class rather than on a per-peer basis, which makes designing server logic for
multiplayers far easier.

Chapter 3

[93]

Assigning player IDs
Another feature required by nearly all multiplayer games, is the ability to track
players by player ID. We need some kind of lightweight data, which uniquely
identifies a specific player, such as a number (for instance, an object might store
this number as a reference to the player who owns it). So, let's modify our server to
assign player IDs to peers as they connect. It will also notify the client of its player ID
upon connecting.

We'll use a long integer for the purpose.

A static long variable is initialized with the smallest value possible
(long.MinValue), the last assigned player ID. When a player joins, we
copy the static variable as their ID, and then increment the static
variable.using Photon.SocketServer;
using PhotonHostRuntimeInterfaces;
using System.Collections.Generic;

class PhotonAckPeer : PeerBase
{
 // note that we use long.MinValue rather than zero. Signed integer
 values have a negative minimum and positive maximum. Starting at
 zero divides the possible range of IDs in half, but starting at
 the lowest possible value gives us the largest possible range.
 private static long lastAssignedPlayerID = long.MinValue;
 private static object lockPlayerID = new object();

 public long PlayerID;

 public PhotonAckPeer(IRpcProtocol protocol, IPhotonPeer
 unmanagedPeer)
 : base(protocol, unmanagedPeer)
 {
 lock(lockPlayerID)
 {
 this.PlayerID = lastAssignedPlayerID;
 lastAssignedPlayerID++;
 }
 PhotonAckGame.Instance.PeerConnected(this);
 }

 protected override void OnDisconnect(DisconnectReason
 reasonCode, string reasonDetail)
 {
 PhotonAckGame.Instance.PeerDisconnected(this);

Photon Server – Star Collector

[94]

 }

 protected override void OnOperationRequest(OperationRequest
 operationRequest, SendParameters sendParameters)
 {
 PhotonAckGame.Instance.OnOperationRequest(this,
 operationRequest, sendParameters);
 }
}

Now, our peer has a player ID but the client doesn't know what their player ID is.
Let's create an event type enum variable instance (just as we did for the response type
enum), since we'll send an event to the peer containing the peer's assigned player ID.

public enum PhotonAckEventType : byte
{
 AssignPlayerID = 0
}

And in our peer constructor, send an event with the AssignPlayerID event type:

using Photon.SocketServer;
using PhotonHostRuntimeInterfaces;
using System.Collections.Generic;

class PhotonAckPeer : PeerBase
{
 private static long lastAssignedPlayerID = long.MinValue;
 private static object lockPlayerID = new object();

 public ulong PlayerID;

 public PhotonAckPeer(IRpcProtocol protocol,
 IPhotonPeer unmanagedPeer)
 : base(protocol, unmanagedPeer)
 {
 lock(lockPlayerID)
 {
 this.PlayerID = lastAssignedPlayerID;
 lastAssignedPlayerID++;
 }

 PhotonAckGame.Instance.PeerConnected(this);

 EventData evt = new EventData(
 (byte)PhotonAckEventType.AssignPlayerID);

Chapter 3

[95]

 evt.Parameters = new Dictionary<byte, object>() { { 0,
 this.PlayerID } };
 this.SendEvent(evt, new SendParameters());
 }

 protected override void OnDisconnect(DisconnectReason
 reasonCode, string reasonDetail)
 {
 PhotonAckGame.Instance.PeerDisconnected(this);
 }

 protected override void OnOperationRequest(OperationRequest
 operationRequest, SendParameters sendParameters)
 {
 PhotonAckGame.Instance.OnOperationRequest(this,
 operationRequest, sendParameters);
 }
}

Now, copy the PhotonAckEventTypes file to our Unity project, and we'll modify our
Unity client to receive and store player ID from the OnEvent function:

public void OnEvent(EventData eventData)
{
 //server raised an event
 Debug.Log("Received event - type: " + eventData.Code.ToString());

 if((PhotonAckEventType)eventData.Code ==
 PhotonAckEventType.AssignPlayerID)
 {
 long playerID = (long)eventData.Parameters[0];
 Debug.Log("Received player ID: " + playerID);
 localPlayerID = playerID;
 }
}

Now, upon connecting you will see that it has received the player ID in the console.

We're now going to use these concepts to build a star collector game in Photon.

Photon Server – Star Collector

[96]

Building a star collector game
Our star collector game will be a semi-server-authoritative game. That is, players
send move commands (which makes it possible to speedhack, teleport, and so on)
but the server gets control over spawning players, stars, controlling star pickup, and
other game logic.

Upon joining the server, players are spawned. Players will find stars they can collect.
When all stars have been collected, the winner is announced in chat based on the
player with the most stars, the stars are re-spawned, and the players reset.

Preparing the class library
Again, we're going to make a class library for our game server. This class library, as
before, contains the Peer class and the Application class.

You may find it easier, if you will work with Photon frequently, to create
a project template in Visual Studio, so you already have a base to work
from instead of recreating the project from scratch each time.

We'll also create a Game class just as we did with the Ack server.

using Photon.SocketServer;
using PhotonHostRuntimeInterfaces;

using System.Collections.Generic;

namespace StarCollectorDemo
{
 public class StarCollectorDemoGame
 {
 public static StarCollectorDemoGame Instance;

 public void Startup()
 {
 }

 public void Shutdown()
 {
 }

 public void PeerJoined(StarCollectorDemoPeer peer)
 {

Chapter 3

[97]

 }

 public void PeerLeft(StarCollectorDemoPeer peer)
 {
 }

 public void OnOperationRequest(StarCollectorDemoPeer sender,
 OperationRequest operationRequest, SendParameters
 sendParameters)
 {
 }
 }
}

And, we'll create a new instance of the Game class when our application starts up:

using Photon.SocketServer;
using PhotonHostRuntimeInterfaces;

namespace StarCollectorDemo
{
 public class StarCollectorDemoApplication : ApplicationBase
 {
 protected override PeerBase CreatePeer(InitRequest
 initRequest)
 {
 return new StarCollectorDemoPeer(initRequest.Protocol,
 initRequest.PhotonPeer);
 }

 protected override void Setup()
 {
 StarCollectorDemoGame.Instance = new
 StarCollectorDemoGame();
 StarCollectorDemoGame.Instance.Startup();
 }

 protected override void TearDown()
 {
 StarCollectorDemoGame.Instance.Shutdown();
 }
 }
}

Photon Server – Star Collector

[98]

And finally, we'll also hook up our Peer class to the Game class:

using Photon.SocketServer;
using PhotonHostRuntimeInterfaces;

namespace StarCollectorDemo
{
 public class StarCollectorDemoPeer : PeerBase
 {
 public StarCollectorDemoPeer(IRpcProtocol protocol,
 IPhotonPeer unmanagedPeer)
 : base(protocol, unmanagedPeer)
 {
 lock(StarCollectorDemoGame.Instance)
 {
 StarCollectorDemoGame.Instance.PeerJoined(this);
 }
 }

 protected override void OnDisconnect(DisconnectReason
 reasonCode, string reasonDetail)
 {
 lock(StarCollectorDemoGame.Instance)
 {
 StarCollectorDemoGame.Instance.PeerLeft(this);
 }
 }

 protected override void OnOperationRequest(OperationRequest
 operationRequest, SendParameters sendParameters)
 {
 StarCollectorDemoGame.Instance.OnOperationRequest(this,
 operationRequest, sendParameters);
 }
 }
}

Before we move on to actually creating the game logic, we're going to make one
important change: We need to create some kind of message queue for our Game
class, so that it can thread-safely process messages. We're going to use a handy class
provided with Photon called PoolFiber.

Chapter 3

[99]

What does this do? Well, when our Game class starts up we'll create a new
PoolFiber instance. When a message is received, we call our PoolFiber instance's
Enqueue method, queuing a new action, which calls a ProcessMessage function. The
PoolFiber class is essentially a way for other threads to schedule actions to be called
on the main thread. So, we'll use this as a way for peer threads to schedule messages
to be processed on the main thread.

So, here's what our Game class will look like:

using Photon.SocketServer;
using PhotonHostRuntimeInterfaces;
using ExitGames.Concurrency.Fibers;

using System.Collections.Generic;

namespace StarCollectorDemo
{
 public class StarCollectorDemoGame
 {
 public static StarCollectorDemoGame Instance;

 private IFiber executionFiber;

 public void Startup()
 {
 // create a new execution fiber and start it
 executionFiber = new PoolFiber();
 executionFiber.Start();
 }

 public void Shutdown()
 {
 // dispose the execution fiber
 executionFiber.Dispose();
 }

 public void PeerJoined(StarCollectorDemoPeer peer)
 {
 }

 public void PeerLeft(StarCollectorDemoPeer peer)
 {
 }

Photon Server – Star Collector

[100]

 public void OnOperationRequest(StarCollectorDemoPeer sender,
 OperationRequest operationRequest, SendParameters
 sendParameters)
 {
 // schedule a message to be processed on the main thread
 executionFiber.Enqueue(() => { this.ProcessMessage(sender,
 operationRequest, sendParameters); });
 }

 public void ProcessMessage(StarCollectorDemoPeer sender,
 OperationRequest operationRequest, SendParameters
 sendParameters)
 {
 // process messages here
 }
 }
}

Now, we can safely process messages in our ProcessMessage function without
worrying about thread safety.

We can also use this for other features. For example, let's keep a list of all peers
connected to the game. We'll use the execution fiber to schedule Add and Remove
operations on a List object:

using Photon.SocketServer;
using PhotonHostRuntimeInterfaces;
using ExitGames.Concurrency.Fibers;

using System.Collections.Generic;

namespace StarCollectorDemo
{
 public class StarCollectorDemoGame
 {
 public static StarCollectorDemoGame Instance;

 public List<StarCollectorDemoPeer> PeerList;

 private IFiber executionFiber;

 public void Startup()
 {
 // create a new execution fiber and start it
 executionFiber = new PoolFiber();
 executionFiber.Start();

 PeerList = new List<StarCollectorDemoPeer>();
 }

Chapter 3

[101]

 public void Shutdown()
 {
 // dispose the execution fiber
 executionFiber.Dispose();
 }

 public void PeerJoined(StarCollectorDemoPeer peer)
 {
 // schedule peer to be added to PeerList on the main thread
 executionFiber.Enqueue(() =>
 {
 PeerList.Add(peer);
 });
 }

 public void PeerLeft(StarCollectorDemoPeer peer)
 {
 // schedule peer to be removed from PeerList on the main
 thread
 executionFiber.Enqueue(() =>
 {
 PeerList.Remove(peer);
 });
 }

 public void OnOperationRequest(StarCollectorDemoPeer sender,
 OperationRequest operationRequest, SendParameters
 sendParameters)
 {
 // schedule a message to be processed on the main thread
 executionFiber.Enqueue(() => { this.ProcessMessage(sender,
 operationRequest, sendParameters); });
 }

 public void ProcessMessage(StarCollectorDemoPeer sender,
 OperationRequest operationRequest, SendParameters
 sendParameters)
 {
 // process messages here
 }
 }
}

We now have convenient access to a list of peers currently connected to the server.
Now, we have a framework in place, so let's start working on the actual game code.

Photon Server – Star Collector

[102]

The Actor class
I want all objects in the game to have a common base. While this isn't necessary, it
often makes for better organization, and limits code reuse as common functionality
can be defined in parent classes. So, let's create an Actor class for this. The Actor
class will form the basis for Player objects, Stars, or whatever else we decide to add.

using Photon.SocketServer;

namespace StarCollectorDemo
{
 public class Actor
 {
 public PeerBase Owner; // the Peer that owns this actor, or
 NULL if actor is owned by server
 public long ActorID; // the ID of this actor instance
 public byte ActorType; // the type of this actor (player,
 star, etc)
 public float PosX; // the world X position of this actor
 public float PosY; // the world Y position of this actor
 public float Radius; // the collision radius of this actor
 }
}

We'll also create a Star class:

using Photon.SocketServer;
namespace StarCollectorDemo
{
 public class Star : Actor
 {
 public Star()
 {
 this.ActorType = 0; // star
 this.Radius = 0.25f; // radius, used to detect pickup
 }

 public bool DetectCollision(Actor other)
 {
 // calculate square distance between actors
 float sqrDist = ((this.PosX - other.PosX) * (this.PosX -
 other.PosX) + (this.PosY - other.PosY) * (this.PosY -
 other.PosY));

 // if the distance is less than the sum of the radii,
 collision occurs

Chapter 3

[103]

 if(sqrDist <= (this.Radius + other.Radius))
 {
 return true;
 }

 return false;
 }
 }
}

Our Star class also detects collisions with other actors via the DetectCollision
method. This is used to detect when a player walks over a Star class and picks it up.

Finally, the Player class. We're actually going to make our movement semi-server
authoritative. So, a player provides a movement direction, and the server will set
the velocity of the player. At regular intervals, the server will broadcast the absolute
position and velocity of all player objects using the following code:

using Photon.SocketServer;

namespace StarCollectorDemo
{
 public class Player : Actor
 {
 public float VelocityX = 0f; // the X velocity of the player
 public float VelocityY = 0f; // the Y velocity of the player

 public int Score = 0; // the number of stars this player has
 collected

 public Player()
 {
 this.ActorType = 1; // player
 this.Radius = 0.5f; // radius, used to detect pickup
 }

 public void Simulate(float timestep)
 {
 this.PosX += this.VelocityX * timestep;
 this.PosY += this.VelocityY * timestep;
 }
 }
}

Photon Server – Star Collector

[104]

Sending an ID to a player
As before, we'll need to assign player IDs to our peers. Again, we'll just keep an
incrementing static counter, and send the ID of a player to them when they connect.
This becomes useful as we need a way to provide info about which peer owns a
given player object.

using Photon.SocketServer;
using PhotonHostRuntimeInterfaces;

namespace StarCollectorDemo
{
 public class StarCollectorDemoPeer : PeerBase
 {
 private static long lastAssignedID = long.MinValue;
 private static object allocateIDLock = new object();

 public long PlayerID;

 public StarCollectorDemoPeer(IRpcProtocol protocol,
 IPhotonPeer unmanagedPeer)
 : base(protocol, unmanagedPeer)
 {
 lock(StarCollectorDemoGame.Instance)
 {
 StarCollectorDemoGame.Instance.PeerJoined(this);
 }

 lock(allocateIDLock)
 {
 PlayerID = lastAssignedID;
 lastAssignedID++;
 }

 //notify player of their ID
 EventData evt = new EventData();
 evt.Code = (byte)StarCollectorEventTypes.ReceivePlayerID;
 evt.Parameters = new System.Collections.Generic.Dictionary
 <byte, object>();
 evt.Parameters[0] = PlayerID;

 this.SendEvent(evt, new SendParameters());
 }

Chapter 3

[105]

 protected override void OnDisconnect(DisconnectReason
 reasonCode, string reasonDetail)
 {
 lock(StarCollectorDemoGame.Instance)
 {
 StarCollectorDemoGame.Instance.PeerLeft(this);
 }
 }

 protected override void OnOperationRequest(OperationRequest
 operationRequest, SendParameters sendParameters)
 {
 StarCollectorDemoGame.Instance.OnOperationRequest(this,
 operationRequest, sendParameters);
 }
 }
}

We'll also add an enum variable instance for event types:

namespace StarCollectorDemo
{
 public enum StarCollectorEventTypes : byte
 {
 ReceivePlayerID = 0,
 }
}

So now, when a player connects they receive player ID. This can be used to check, for
example, which objects a player owns, or who sent a specific message (for instance
move messages).

Keeping track of the game state
Now, we're going to add to our Game class a list of actors. We'll separate our Stars
and Players for easier management, although in production games you'll likely
want to unify your actor management (this way you can more easily extend the
types of actors your game has).

First, we'll add some variables:

public List<Star> Stars = new List<Star>();
public List<Player> Players = new List<Player>();

private long lastAssignedActorID = long.MinValue;

private System.Random rand = new System.Random();

Photon Server – Star Collector

[106]

Next, we'll add a function to allocate an object ID for actors using the following code:

public long AllocateActorID()
{
 return lastAssignedActorID++;
}

We'll add a couple of methods to spawn objects—one for spawning stars, and the
other for spawning players:

public void SpawnStar()
{
 // find a random position
 double x = rand.NextDouble();
 double y = rand.NextDouble();

 // map to the range -50, +50
 x -= 0.5f;
 x *= 100f; // 0.5 * 100 = 50
 y -= 0.5f;
 y *= 100f;

 Star star = new Star();
 star.PosX = (float)x;
 star.PosY = (float)y;

 star.ActorID = AllocateActorID();

 Stars.Add(star);
}

public void SpawnPlayer(StarCollectorDemoPeer peer)
{
 Player player = new Player();
 player.Owner = peer;
 player.ActorID = AllocateActorID();

 Players.Add(player);
}

We'll modify our PeerJoined and PeerLeft methods to create and destroy
player objects:

public void PeerJoined(StarCollectorDemoPeer peer)
{
 // schedule peer to be added to PeerList on the main thread
 executionFiber.Enqueue(() =>
 {
 PeerList.Add(peer);

Chapter 3

[107]

 SpawnPlayer(peer);
 });
}

public void PeerLeft(StarCollectorDemoPeer peer)
{
 // schedule peer to be removed from PeerList on the main thread
 executionFiber.Enqueue(() =>
 {
 PeerList.Remove(peer);

 // remove player object belonging to this peer
 Players.RemoveAll(player => { return player.Owner == peer; }
);
 });
}

And finally, we'll add a Simulate function to simulate players and detect collisions
between players and stars using the following code:

public void Simulate(float timeStep)
{
 // copy star collection so we can modify collection while
 iterating
 Star[] stars = Stars.ToArray();

 foreach(Player player in Players)
 {
 // simulate "physics"
 player.Simulate(timeStep);

 // compare player with each star
 foreach(Star star in stars)
 {
 if(star.DetectCollision(player))
 {
 // collision detected with star
 }
 }
 }
}

So, we're now keeping track of stars and players. Players are created when a peer
joins, and removed when the peer leaves. In every game tick, players are simulated,
and then compared against each star for collision.

Photon Server – Star Collector

[108]

There are a few things remaining. We still need to spawn new stars at the beginning
of the round, destroy stars, and increment scores when they are picked up, and send
events to clients when these occur so clients stay synchronized with the game state.

Spawning and picking up stars
First, we'll create a new InitRound method. This method will reset all players, and
spawn hundred stars. Add this to your Game class:

public void InitRound()
{
 // reset players
 foreach(Player player in Players)
 {
 player.PosX = 0f;
 player.PosY = 0f;
 player.VelocityX = 0f;
 player.VelocityY = 0f;
 player.Score = 0;
 }

 // spawn new stars
 for(int i = 0; i < 100; i++)
 {
 SpawnStar();
 }
}

And, we'll start by calling this in the Startup method of our game, so a round is
started as soon as the server starts up.

public void Startup()
{
 // create a new execution fiber and start it
 executionFiber = new PoolFiber();
 executionFiber.Start();

 PeerList = new List<StarCollectorDemoPeer>();

 // start a new round
 InitRound();
}

Chapter 3

[109]

We'll also handle the case of stars being picked up by players with a new function:

public void StarPickedUp(Star star, Player taker)
{
 Stars.Remove(star);

 taker.Score++;

 if(Stars.Count == 0)
 {
 // the round is over!

 // restart round
 InitRound();
 }
}

And we'll call this when a collision is detected with a star:

public void Simulate(float timeStep)
{
 // copy star collection so we can modify collection while
 iterating
 Star[] stars = Stars.ToArray();

 foreach(Player player in Players)
 {
 // simulate "physics"
 player.Simulate(timeStep);

 // compare player with each star
 foreach(Star star in stars)
 {
 if(star.DetectCollision(player))
 {
 // collision detected with star
 StarPickedUp(star, player);
 }
 }
 }
}

Our server logic is almost complete. We still need to announce the winner, as well as
broadcast important events to clients.

Photon Server – Star Collector

[110]

Broadcasting events
We're going to start broadcasting important gameplay events to players.

When a player joins, we first need to inform them of all available actors in the scene.

We'll add some event types for creating, destroying, and updating actors.

namespace StarCollectorDemo
{
 public enum StarCollectorEventTypes : byte
 {
 ReceivePlayerID = 0,
 CreateActor = 1,
 DestroyActor = 2,
 UpdateActor = 3
 }
}

We'll also add a new method to our Game class for broadcasting events to all
connected peers:

public void BroadcastEvent(IEventData evt, SendParameters param)
{
 foreach(StarCollectorDemoPeer peer in PeerList)
 {
 peer.SendEvent(evt, param);
 }
}

Now, let's broadcast events for when players or stars are created. In our SpawnStar
method:

public void SpawnStar()
{
 // find a random position
 double x = rand.NextDouble();
 double y = rand.NextDouble();

 // map to the range -50, +50
 x -= 0.5f;
 x *= 100f; // 0.5 * 100 = 50
 y -= 0.5f;
 y *= 100f;

 Star star = new Star();
 star.PosX = (float)x;

Chapter 3

[111]

 star.PosY = (float)y;

 star.ActorID = AllocateActorID();

 Stars.Add(star);

 EventData evt = new EventData(
 (byte)StarCollectorEventTypes.CreateActor);
 evt.Parameters = new Dictionary<byte, object>();
 evt.Parameters[0] = star.ActorType;
 evt.Parameters[1] = star.ActorID;
 evt.Parameters[2] = star.PosX;
 evt.Parameters[3] = star.PosY;

 BroadcastEvent(evt, new SendParameters());
}

When broadcasting a CreateActor event for Stars, we don't need to send info about
owner ID because Stars are always owned by the server.

Our player CreateActor event looks much the same, but we'll also broadcast the
player ID of the owner:

public void SpawnPlayer(StarCollectorDemoPeer peer)
{
 Player player = new Player();
 player.Owner = peer;
 player.ActorID = AllocateActorID();

 Players.Add(player);

 EventData evt = new EventData(
 (byte)StarCollectorEventTypes.CreateActor);
 evt.Parameters = new Dictionary<byte, object>();
 evt.Parameters[0] = player.ActorType;
 evt.Parameters[1] = player.ActorID;
 evt.Parameters[2] = player.PosX;
 evt.Parameters[3] = player.PosY;
 evt.Parameters[4] = peer.PlayerID;

 BroadcastEvent(evt, new SendParameters());
}

When a player leaves, we'll need to broadcast a DestroyActor event:

public void PeerLeft(StarCollectorDemoPeer peer)
{
 // schedule peer to be removed from PeerList on the main thread
 executionFiber.Enqueue(() =>
 {
 PeerList.Remove(peer);

Photon Server – Star Collector

[112]

 // find the player object belonging to the peer
 Player player = Players.Find(actor => { return actor.Owner
 == peer; });

 // broadcast DestroyActor event with player's actor ID
 EventData evt = new EventData(
 (byte)StarCollectorEventTypes.DestroyActor);
 evt.Parameters = new Dictionary<byte, object>();
 evt.Parameters[0] = player.ActorID;

 BroadcastEvent(evt, new SendParameters());

 // remove from Players list
 Players.Remove(player);
 });
}

Note that the DestroyActor event only needs to contain an Actor ID. Clients can
look up at game object by using an Actor ID and destroy the game object.

And, we'll need to do the same when a Star is picked up:

public void StarPickedUp(Star star, Player taker)
{
 Stars.Remove(star);

 // broadcast DestroyActor event
 EventData evt = new EventData(
 (byte)StarCollectorEventTypes.DestroyActor);
 evt.Parameters = new Dictionary<byte, object>();
 evt.Parameters[0] = star.ActorID;

 BroadcastEvent(evt, new SendParameters());

 taker.Score++;

 if(Stars.Count == 0)
 {
 // the round is over!

 // restart round
 InitRound();
 }
}

Chapter 3

[113]

We also need to make sure we send the current game state to new clients. We'll
iterate through each player and star, sending the CreateActor events to the new
peer (rather than broadcasting them).

public void PeerJoined(StarCollectorDemoPeer peer)
{
 // schedule peer to be added to PeerList on the main thread
 executionFiber.Enqueue(() =>
 {
 PeerList.Add(peer);

 // send player CreateActor events for all players and stars

 foreach(Player p in Players)
 {
 EventData evt = new EventData(
 (byte)StarCollectorEventTypes.CreateActor);
 evt.Parameters = new Dictionary<byte, object>();
 evt.Parameters[0] = p.ActorType;
 evt.Parameters[1] = p.ActorID;
 evt.Parameters[2] = p.PosX;
 evt.Parameters[3] = p.PosY;
 evt.Parameters[4] = (p.Owner as StarCollectorDemoPeer
).PlayerID;

 peer.SendEvent(evt, new SendParameters());
 }

 foreach(Star s in Stars)
 {
 EventData evt = new EventData(
 (byte)StarCollectorEventTypes.CreateActor);
 evt.Parameters = new Dictionary<byte, object>();
 evt.Parameters[0] = s.ActorType;
 evt.Parameters[1] = s.ActorID;
 evt.Parameters[2] = s.PosX;
 evt.Parameters[3] = s.PosY;

 peer.SendEvent(evt, new SendParameters());
 }

 SpawnPlayer(peer);
 });
}

Photon Server – Star Collector

[114]

We will also want to broadcast chat messages. So let's add a new event type for this:

namespace StarCollectorDemo
{
 public enum StarCollectorEventTypes : byte
 {
 ReceivePlayerID = 0,
 CreateActor = 1,
 DestroyActor = 2,
 UpdateActor = 3,
 ChatMessage = 4
 }
}

For now, we'll broadcast one thing: When the last star is picked up, we'll broadcast a
chat message announcing the winner.

We'll be using LINQ to do this. We will order the players by Score, descending,
and then pick the first player in the list (this is the player with the highest score). We
display a chat message announcing the winner, before restarting the round.

public void StarPickedUp(Star star, Player taker)
{
 Stars.Remove(star);

 // broadcast DestroyActor event
 EventData evt = new EventData((byte)StarCollectorEventTypes.
DestroyActor);
 evt.Parameters = new Dictionary<byte, object>();
 evt.Parameters[0] = star.ActorID;

 BroadcastEvent(evt, new SendParameters());

 taker.Score++;

 if(Stars.Count == 0)
 {
 // the round is over!

 // order players by score, pick the player with the highest score
 Player winner = (from p in Players orderby taker.Score
 descending select p).First();

 // broadcast a chat message
 EventData chatEvt = new EventData(
 (byte)StarCollectorEventTypes.ChatMessage);

Chapter 3

[115]

 chatEvt.Parameters = new Dictionary<byte, object>();
 chatEvt.Parameters[0] = "Player " + (winner.Owner as
 StarCollectorDemoPeer).PlayerID.ToString() + " wins the round
 with " + winner.Score + " stars!";

 BroadcastEvent(chatEvt, new SendParameters());

 // restart round
 InitRound();
 }
}

There is one final event we need to broadcast. After every simulate tick, we'll
broadcast move events for each player (our simulate will happen ten times per
second). This is what the UpdateActor event code is for:

public void Simulate(float timeStep)
{
 // copy star collection so we can modify collection while iterating
 Star[] stars = Stars.ToArray();

 foreach(Player player in Players)
 {
 // simulate "physics"
 player.Simulate(timeStep);

 // broadcast move event
 EventData moveEvt = new EventData(
 (byte)StarCollectorEventTypes.UpdateActor);
 moveEvt.Parameters = new Dictionary<byte, object>();
 moveEvt.Parameters[0] = player.ActorID;
 moveEvt.Parameters[1] = player.PosX;
 moveEvt.Parameters[2] = player.PosY;

 BroadcastEvent(moveEvt, new SendParameters());

 // compare player with each star
 foreach(Star star in stars)
 {
 if(star.DetectCollision(player))
 {
 // collision detected with star
 StarPickedUp(star, player);
 }
 }
 }
}

Photon Server – Star Collector

[116]

We also need to respond, to some kind of move request from the player. We'll add a
new request code for this:

namespace StarCollectorDemo
{
 public enum StarCollectorRequestTypes : byte
 {
 MoveCommand = 0
 }
}

And when processing a request, if it's a move command from the player we'll set the
player's velocity:

public void ProcessMessage(StarCollectorDemoPeer sender,
 OperationRequest operationRequest, SendParameters sendParameters)
{
 if(operationRequest.OperationCode ==
 (byte)StarCollectorRequestTypes.MoveCommand)
 {
 // move command from player
 long actorID = (long)operationRequest.Parameters[0];
 float velX = (float)operationRequest.Parameters[1];
 float velY = (float)operationRequest.Parameters[2];

 // find actor
 Player player = (Players.Find(pl => { return pl.ActorID ==
actorID; }));

 // apply velocity
 player.VelocityX = velX;
 player.VelocityY = velY;
 }
}

Now, players can send a MoveCommand operation request to the server, which
modifies the server-side player actor velocity.

Our game logic is now complete. There is one final thing to take care of before
our server is fully functional, and that is starting up a game loop, which calls our
Simulate method on a regular basis. Luckily we can take advantage of our execution
fiber to schedule a repeating event:

public void Startup()
{
 // create a new execution fiber and start it

Chapter 3

[117]

 executionFiber = new PoolFiber();
 executionFiber.Start();

 PeerList = new List<StarCollectorDemoPeer>();

 // start a new round
 InitRound();

 // schedule Simulate 10 times per second, or once every 100
 milliseconds
 executionFiber.ScheduleOnInterval(
 delegate()
 {
 Simulate(0.1f);
 }, 0, 100);
}

And our server is now fully functional. All that remains is to connect to it from Unity
and handle the various events from the server.

Connecting from Unity
The first thing we'll do is create a peer listener to connect to our server.

using UnityEngine;
using System.Collections;

using ExitGames.Client.Photon;

public class StarCollectorClient : MonoBehaviour,
 IPhotonPeerListener
{
 public static PhotonPeer Connection;
 public static bool Connected = false;
 public static long PlayerID;

 public string ServerIP = "127.0.0.1:5055";
 public string AppName = "StarCollectorDemo";

 void Start()
 {
 Debug.Log("Connecting...");
 Connection = new PhotonPeer(this, ConnectionProtocol.Udp);
 Connection.Connect(ServerIP, AppName);

Photon Server – Star Collector

[118]

 StartCoroutine(doService());
 }

void OnDestroy()
{
 // explicitly disconnect if the client game object is destroyed
 if(Connected)
 Connection.Disconnect();
}

 // update peer 20 times per second
 IEnumerator doService()
 {
 while(true)
 {
 Connection.Service();
 yield return new WaitForSeconds(0.05f);
 }
 }

 #region IPhotonPeerListener Members

 public void DebugReturn(DebugLevel level, string message)
 {
 // log message to console
 Debug.Log(message);
 }

 public void OnEvent(EventData eventData)
 {
 //server raised an event
 }

 public void OnOperationResponse(OperationResponse
 operationResponse)
 {
 //server sent operation response
 }

 public void OnStatusChanged(StatusCode statusCode)
 {
 // log status change
 Debug.Log("Status change: " + statusCode.ToString());
 switch(statusCode)
 {
 case StatusCode.Connect:
 Debug.Log("Connected, awaiting player ID...");
 break;
 case StatusCode.Disconnect:

Chapter 3

[119]

 case StatusCode.DisconnectByServer:
 case StatusCode.DisconnectByServerLogic:
 case StatusCode.DisconnectByServerUserLimit:
 case StatusCode.Exception:
 case StatusCode.ExceptionOnConnect:
 case StatusCode.SecurityExceptionOnConnect:
 case StatusCode.TimeoutDisconnect:
 StopAllCoroutines();
 Connected = false;
 break;
 }
 }

 #endregion
}

Firstly, startup connects to our server and begins servicing the peer 20 times per
second. If any exceptions, it disconnects, or timeouts occur, it stops servicing the
peer and sets connected to false. If the peer reports that, it has connected to our
application, we print a debug message (stating that our application is waiting for the
player ID, after which it will receive the game state).

Before we continue, copy the enum variable instances we defined on the server
(StarCollectorRequestTypes and StarCollectorEventTypes) to your
Unity project.

The first thing we'll do is receive the player ID and store it in a static long variable is
as follows:

public void OnEvent(EventData eventData)
{
 //server raised an event
 switch((StarCollectorEventTypes)eventData.Code)
 {
 // store player ID
 case StarCollectorEventTypes.ReceivePlayerID:
 long playerId = (long)eventData.Parameters[0];
 PlayerID = playerId;
 break;

 }
}

Now, when the client connects, it will store its player ID, which is used to check
which player actor it owns.

Photon Server – Star Collector

[120]

Creating/destroying actors
Next, we'll handle CreateActor/DestroyActor events by spawning and deleting
game objects. The first thing we'll do is create some scripts, one to store the actor ID
and the other to store the owner ID. Stars will only need the actor ID component, but
players will need both.

Our actor ID component looks like this:

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

public class GameActor : MonoBehaviour
{
 public static Dictionary<long, GameActor> Actors = new
Dictionary<long, GameActor>();

 public long ActorID;

 void SetActorID(long actorID)
 {
 this.ActorID = actorID;
 Actors.Add(this.ActorID, this);
 }

 public void Destruct()
 {
 Actors.Remove(this.ActorID);
 Destroy(gameObject);
 }
}

When we spawn an actor, we need to call SetActorID immediately. This causes the
object to be stored in a Dictionary object. The Dictionary object allows us to easily
look up at actors by ID. The Destruct method is mostly for convenience, which
handles cleaning up the Dictionary object entry and destroying the actual
game object.

We'll also make an OwnerID component using following code:

using UnityEngine;
using System.Collections;

public class OwnerInfo : MonoBehaviour
{

Chapter 3

[121]

 public long OwnerID;

 public bool IsMine
 {
 get
 {
 return OwnerID == StarCollectorClient.PlayerID;
 }
 }

 void SetOwnerID(long ownerID)
 {
 this.OwnerID = ownerID;
 }
}

The most important part of this script is checking whether or not the object belongs
to the local client, based on the OwnerID.

Now that we've created the necessary components, let's make some prefabs for the
players and stars.

First, the Player prefab. Create a Cube, and attach the GameActor and OwnerInfo
scripts. Save this as a prefab in your project. For the Star, create a Cube, scale it
down to 0.5 x 0.5 x 0.5, and attach the GameActor component. Save this as a
prefab, too.

Now, we'll modify our Client class to handle the Create and Destroy events.

First, we'll add some prefab references to the top of our script:

public class StarCollectorClient : MonoBehaviour, IPhotonPeerListener
{
 public static PhotonPeer Connection;
 public static bool Connected = false;
 public static long PlayerID;

 public string ServerIP = "127.0.0.1:5055";
 public string AppName = "StarCollectorDemo";

 public GameObject PlayerPrefab;
 public GameObject StarPrefab;

 // [...]

Photon Server – Star Collector

[122]

And, handle the appropriate events in our OnEvent method:

public void OnEvent(EventData eventData)
{
 //server raised an event
 switch((StarCollectorEventTypes)eventData.Code)
 {
 // store player ID
 case StarCollectorEventTypes.ReceivePlayerID:
 long playerId = (long)eventData.Parameters[0];
 PlayerID = playerId;
 Debug.Log("Received player ID, awaiting game state...");
 break;
 // spawn actor
 case StarCollectorEventTypes.CreateActor:
 byte actorType = (byte)eventData.Parameters[0];
 long actorID = (long)eventData.Parameters[1];
 float posX = (float)eventData.Parameters[2];
 float posY = (float)eventData.Parameters[3];
 GameObject actor = null;
 switch(actorType)
 {
 // Star
 case 0:
 actor = (GameObject)Instantiate(StarPrefab, new Vector3(
 posX, 0f, posY), Quaternion.identity);
 break;
 // Player
 case 1:
 long ownerID = (long)eventData.Parameters[4];
 actor = (GameObject)Instantiate(PlayerPrefab, new Vector3
 (posX, 0f, posY), Quaternion.identity);
 actor.SendMessage("SetOwnerID", ownerID);
 break;
 }
 actor.SendMessage("SetActorID", actorID);
 break;
 // destroy actor
 case StarCollectorEventTypes.DestroyActor:
 GameActor destroyActor = GameActor.Actors[
 (long)eventData.Parameters[0]];
 if(destroyActor != null)
 destroyActor.Destruct();
 break;
 }
}

Chapter 3

[123]

Place your client script on an empty game object (if you haven't already) and
assign the Player and Star prefabs to the appropriate slots. If you run the server
and connect from Unity, you will now see a field of randomly placed "stars" and a
single "player" in the middle of the field. We're almost there, just a few things left to
implement: Adding controls to the player object, receiving movement updates, and
displaying chat messages.

Controlling the player
The first thing we'll do, is create a Player script. This script will allow us to
control the Player object if it belongs to us. We will use the following code for
performing this:

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

public class Player : MonoBehaviour
{
 public float MoveSpeed = 5f;

 private OwnerInfo ownerInfo;
 private GameActor actorInfo;
 private bool isMine = false;

 private Vector3 lastReceivedMove;

 private float timeOfLastMoveCmd = 0f;

 void Start()
 {
 timeOfLastMoveCmd = Time.time;

 lastReceivedMove = transform.position;

 ownerInfo = GetComponent<OwnerInfo>();
 actorInfo = GetComponent<GameActor>();
 isMine = (ownerInfo.OwnerID == StarCollectorClient.PlayerID);
 }

 void Update()
 {
 if(isMine)
 {

Photon Server – Star Collector

[124]

 // get movement direction
 float mX = Input.GetAxis("Horizontal") * MoveSpeed;
 float mY = Input.GetAxis("Vertical") * MoveSpeed;

 if(Time.time >= timeOfLastMoveCmd + 0.1f)
 {
 timeOfLastMoveCmd = Time.time;

 // send move command to server every 0.1 seconds
 Dictionary<byte, object> moveParams = new Dictionary<byte,
object>();
 moveParams[0] = actorInfo.ActorID;
 moveParams[1] = mX;
 moveParams[2] = mY;
 StarCollectorClient.Connection.OpCustom((byte)
StarCollectorRequestTypes.MoveCommand, moveParams, false);
 }
 }

 // lerp toward last received position
 transform.position = Vector3.Lerp(transform.position,
 lastReceivedMove, Time.deltaTime * 20f);
 }

 void UpdatePosition(Vector3 newPos)
 {
 lastReceivedMove = newPos;
 }
}

This script goes on our Player prefab. It first grabs a reference to the GameActor
component, and the OwnerInfo component. It then checks and stores whether the
actor belongs to the local player by comparing the OwnerID with the local PlayerID.

If the actor does belong to the player, it proceeds to process input commands. Every
0.1 seconds (ten times per second), it sends a Move command to the server, which
tells the server to update the velocity of the given actor.

Additionally, it keeps track of a "last received position". When we receive move
updates from the server, we'll call the UpdatePosition method on the appropriate
actor. This will cause the actor to lerp toward that position.

Chapter 3

[125]

Next, let's start receiving move commands from the server. We'll find the appropriate
actor and call SendMessage to update it's position. In the switch statement of the
OnEvent method of our StarCollectorClient, we'll add this case:

// update actor
case StarCollectorEventTypes.UpdateActor:
 GameActor updateActor = GameActor.Actors[
 (long)eventData.Parameters[0]];
 float newPosX = (float)eventData.Parameters[1];
 float newPosY = (float)eventData.Parameters[2];
 updateActor.SendMessage("UpdatePosition", new Vector3(
 newPosX, 0f, newPosY), SendMessageOptions.
 DontRequireReceiver);
 break;

We're also going to display chat messages. For this example, we'll debug log them
(a real game would display them in the GUI, such as in a chatbox). So we'll add
another case for chat messages:

// log chat messages
case StarCollectorEventTypes.ChatMessage:
 Debug.Log((string)eventData.Parameters[0]);
 break;

There is one final thing we should do. In our main scene, we'll move the camera to
give an overhead view of the game world. Set the camera to Orthographic, move
it to (0,100,0), and set the Orthographic Size to 51. This should give the camera
enough room to see all of the stars (50 would be enough, but the extra 1 adds a slight
border, which makes it easier to see stars on the edge).

Now, make sure your server is running, and start up the main scene. You should
see the playing field populated with hundred small cubes, and a single larger cube
in the center. You should be able to control your cube with the arrow keys, and
collect stars by moving over them. When all stars are collected, your cube moves
back to the center, all stars are re-spawned, and the console displays your PlayerID
as the winner of the game (for example, "Player -9223372036854775808 is the
winner with 100 stars!")

Photon Server – Star Collector

[126]

Summary
In this chapter, we have learned what makes Photon Server different from
middleware, such as Unity Networking or Photon Unity Networking. We learned
how to connect to a Photon Server, send operation requests, and receive events or
operation responses. We also learned how to make a custom server application that
receives these requests and sends back responses, or broadcasts events.

We then applied these concepts to create a simple star collector game, where players
race to collect as many "stars" as possible, and the player with the most stars, after all
stars are collected wins the game.

In the next chapter, we will cover another dedicated server technology known as
Player.IO.

Player.IO – Bot Wars
In the last chapter, we have covered our first dedicated server technology, Photon
Server. In this chapter, we will be covering another dedicated server technology
known as Player.IO.

Just like Photon Server, Player.IO runs dedicated server code, where players connect
to the server and send messages, and the server processes game logic. Player.IO
also includes a variety of other features such as login/account systems, databases,
leaderboards, and so on. Additionally, it is similar to Photon Cloud in that servers
are hosted by the service, and cannot be self-hosted.

In this chapter we will cover the following topics:

• What makes Player.IO different from Photon Server
• Setting up a development server instance
• Setting up the Unity client SDK
• Connecting to Player.IO, joining rooms, and sending/receiving messages
• Loading and saving data via BigDB
• Generating instant object IDs client-side
• Creating a simple multiplayer RTS prototype

Let's dive in.

Player.IO – Bot Wars

[128]

Player.IO versus the Photon Server
Player.IO does a number of things differently from Photon Server. One of the biggest
differences is that Player.IO is cloud-hosted. That is, your game code runs on a
cluster of shared servers (whereas Photon requires you to host your own server),
and it is also possible to rent dedicated clusters in this cloud. Additionally, Player.
IO is room-based. Upon connecting to Player.IO, you specify a room to connect to,
and players are segregated into different rooms. For instance, in an MMO you might
have different "rooms" for regions in the world. Without a dedicated cluster, rooms
are limited to 45 players. If you rent a dedicated cluster, there is no limit.

One final, big difference in Player.IO: as Player.IO was originally designed for
Flash applications, and Flash does not support UDP, Player.IO supports TCP only.
Additionally, Player.IO has a strict limit on message processing, and too many
messages can result in disconnects.

Other than that, most concepts learned with Photon will apply to Player.IO, although
the specifics may be different. With that aside, let's set up a development server
for testing.

Getting and setting up a development
server
First, you'll need to sign up for a Player.IO developer account here: https://
playerio.com/register.

You will need to create a new game from the dashboard, so follow the Go to admin
panel link after logging in and click on the Create New Game button. Copy the game
ID for later, as we'll need it for connecting.

Next, download the developer package, which contains Flash and Unity client SDKs,
and the development server: https://playerio.com/download/.

After downloading and unzipping this, navigate to the Flash folder and copy
the NewGame folder. Paste this wherever you like (I usually paste it into the same
directory) and rename it, then delete the Flash folder inside. Now, you can open the
SLN file to begin developing.

The first time you run the server (by pressing F5 with the solution open) it will ask
for your credentials. Supply your developer username and password and log in.
username and password are stored on a per-server basis. If you ever need to log out
(for instance, before passing on server code to a third-party), there is a log out button
at the top-right corner of the server application.

Chapter 4

[129]

Now, the server is ready for developing.

Setting up the Unity client SDK
To use the Unity client SDK, navigate to the Unity3D folder and copy the
PlayerIOUnity3DClient DLL and XML file. Paste these into a Plugins folder in
your Unity project.

Now, the Unity project is ready.

Connecting to Player.IO
The first thing we will do is connect to Player.IO. Note that connecting to Player.IO
does not involve actually connecting to our development server. Essentially,
our client connects to the Player.IO cloud service, and then joins a room in the
chosen cluster.

Player.IO – Bot Wars

[130]

By default, Player.IO connects to the public cluster, but you can
tell the client library to connect to the "development cluster"
instead, which is your local server.

using UnityEngine;
using System.Collections;

using PlayerIOClient;

public class ConnectToPlayerIO : MonoBehaviour
{
 Client client;

 void Start()
 {
 PlayerIO.UnityInit(this);

 // We connect to Player.IO here. Parameters are:
 // - The ID you copied earlier
 // - The connection type to use. "public" specifies the
 "public" connection. It's possible to have different
 connection types with different permissions, but on a Free
 account we only have access to "public".
 // - The ID you wish to give the player, usually screen name
 // - The auth token. You can make a connection type require
 authentication, and if this connection is used you pass an
 auth value generated from the user ID. Don't worry about
 this for now, just pass null. For information see:
 // http://playerio.com/documentation/connections
 // - The "partner" to use. Third parties can sign up with
 Player.IO to be "partners", and can negotiate deals with
 developers via the PartnerPay service. Don't worry about
 this for now, just pass null. For more information see:
 // http://playerio.com/documentation/partnerpay
 PlayerIO.Connect("YourGameIDHere", "public",
 "YourUserIDHere", null, null,,
 delegate(Client c)
 {
 // connected successfully
 client = c;
 Debug.Log("Connected");
 },
 delegate(PlayerIOError error)
 {

http://playerio.com/documentation/connections
http://playerio.com/documentation/partnerpay/essentials

Chapter 4

[131]

 // did not connect successfully
 Debug.Log(error.Message);
 });
 }
}

Nearly all calls made to Player.IO, which are expected to return a result are done
via delegates. Usually, this involves a success and a failure delegate. In this case, on
success we get a client, which can be used to make calls to Player.IO services.

Once we have a client, we can make calls to the Multiplayer service. Before we do
that, we'll tell the client to connect to our local development server for testing.

using UnityEngine;
using System.Collections;

using PlayerIOClient;

public class ConnectToPlayerIO : MonoBehaviour
{
 public bool UseDevServer = true;

 Client client;

 void Start()
 {
 PlayerIO.UnityInit(this);

 PlayerIO.Connect("YourGameIDHere", "public",
 "YourUserIDHere", null, null,
 delegate(Client c)
 {
 // connected successfully
 client = c;
 Debug.Log("Connected");

 // if we're using the dev server, connect to the local IP
 // Note that the development server uses port 8184, this cannot
 be changed.
 if(UseDevServer)
 {
 client.Multiplayer.DevelopmentServer = new ServerEndpoint(
 "127.0.0.1", 8184);
 }
 },

Player.IO – Bot Wars

[132]

 delegate(PlayerIOError error)
 {
 // did not connect successfully
 Debug.Log(error.Message);
 });
 }
}

Now, when we go to connect to a game, our client will use the local server if
UseDevServer is enabled.

Getting a list of rooms
Now that we're connected to Player.IO, and to our local server, we can get a list
of rooms.

using UnityEngine;
using System.Collections;

using PlayerIOClient;

public class ConnectToPlayerIO : MonoBehaviour
{
 public bool UseDevServer = true;

 Client client;

 void Start()
 {
 PlayerIO.UnityInit(this);

 PlayerIO.Connect("YourGameIDHere", "public",
 "YourUserIDHere", null, null,
 delegate(Client c)
 {
 // connected successfully
 client = c;
 Debug.Log("Connected");

 // if we're using the dev server, connect to the local IP
 if(UseDevServer)
 {
 client.Multiplayer.DevelopmentServer = new ServerEndpoint(
 "127.0.0.1", 8184);

Chapter 4

[133]

 GetRoomList();
 }
 },
 delegate(PlayerIOError error)
 {
 // did not connect successfully
 Debug.Log(error.Message);
 });
 }

 void GetRoomList()
 {
 // get a list of all rooms with the given room type and search
 criteria (null = all rooms)
 client.Multiplayer.ListRooms("SomeRoomType", null, 0, 0,
 delegate(RoomInfo[] rooms)
 {
 Debug.Log("Found rooms: " + rooms.Length);
 },
 delegate(PlayerIOError error)
 {
 Debug.Log(error.Message);
 });
 }
}

This code gets a list of all rooms, and displays the number of available rooms.

The first parameter to ListRooms is the room type. On your Player.IO server,
you create a class for each room type. For instance, an FPS might have classes for
Deathmatch, TeamDeathmatch, CaptureTheFlag, and so on. Each of these has a
room type name assigned to it, and from the client we can query for the type of room
we want to join.

The second parameter is a dictionary of search criteria, where each property must
match between the search and the room. When a room is created on the server, it can
be assigned a dictionary of room properties. For instance, in the same hypothetical
FPS you might have room properties for player limit, time limit, friendly fire, map,
and so on. The client would allow players to search for rooms matching specific
criteria (for instance, only rooms where friendly fire is disabled) by providing a
dictionary to the ListRooms function. Passing null disables the search criteria (so all
rooms are returned).

Player.IO – Bot Wars

[134]

The next two parameters are room count and result offset. Some games might
implement a paged lobby, so the lobby might display 10 games at a time, and players
hit next and previous buttons to navigate the pages. In that case, room count would
be 10 and page offset would be which page the player is on, 0 for the first page,
incrementing by 10 for each page. We'll use 0 for room count (return as many rooms
as possible), and 0 for offset.

Before you run this, you will need to ensure your development server is running
(open the solution and press F5).

If you run this code, you'll see it connect, and then list the number of room open
(currently none).

Connecting to rooms
After you have a list of rooms, you can connect to a room via the JoinRoom method.
The JoinRoom method takes the name of the room, and can optionally take a
dictionary of "join data", which is supplied to the room on connect. This join data can
be used for a number of things (for example, supplying the username, if a room is
password protected this might contain password, and so on).

Let's store the returned rooms and iterate them in OnGUI.

Chapter 4

[135]

First, we'll add some variables, which are as follows:

Connection roomConnection;
private RoomInfo[] rooms = null;

Next, we'll modify our GetRoomList function:

void GetRoomList()
{
 // get a list of all rooms with the given room type and search
 criteria (null = all rooms)
 client.Multiplayer.ListRooms("SomeRoomType", null, 0, 0,
 delegate(RoomInfo[] rooms)
 {
 Debug.Log("Found rooms: " + rooms.Length);
 this.rooms = rooms;
 },
 delegate(PlayerIOError error)
 {
 Debug.Log(error.Message);
 });
}

And finally, we'll iterate and display these in OnGUI. We can also take the
opportunity to disconnect from whatever room we're in when the game client is
closed. This is not strictly necessary, but good practice.

void OnGUI()
{
 // no room list yet - abort
 if(rooms == null)
 return;

 // iterate rooms in room list
 foreach(RoomInfo room in rooms)
 {
 // click button to join room
 if(GUILayout.Button(room.Id, GUILayout.Width(200f)))
 {
 client.Multiplayer.JoinRoom(room.Id, null,
 delegate(Connection connection)
 {
 Debug.Log("Connected to room!");
 // store room connection so we can send/receive messages
 roomConnection = connection;
 },

Player.IO – Bot Wars

[136]

 delegate(PlayerIOError error)
 {
 Debug.Log(error.Message);
 });
 }
 }
}

void OnApplicationQuit()
{
 // if the application quits, disconnect from whatever room we're
 connected to. Not strictly necessary, but good practice.
 if(roomConnection != null)
 roomConnection.Disconnect();
}

When you connect to a room, you get a connection object. This object is used to
interact with the room, by sending and receiving messages. You can call the
Send method to send a message, and you can register message handlers to
receive messages.

Creating rooms
To create a room, there are two methods you can call: CreateRoom, and
CreateJoinRoom. The CreateRoom method takes the desired room name (or null
if you want a random room name), and room parameters (a dictionary of room
properties, such as time limit, map, password, and so on). The CreateJoinRoom
method takes both the properties of CreateRoom, and the properties of JoinRoom, as
it will either join the room if it exists or create a new one.

One thing to note is that CreateRoom will not automatically establish a connection.
It simply returns a string of the room ID on success, and then this is used to connect
via JoinRoom.

void OnGUI()
{
 if(roomConnection != null)
 return;

 if(GUILayout.Button("Create Room", GUILayout.Width(200f)))
 {
 // "MyCode" is the default room type provided with the Serverside
 Code solution
 client.Multiplayer.CreateRoom(null, "MyCode", true, null,

Chapter 4

[137]

 delegate(string roomID)
 {
 Debug.Log("Room created");
 client.Multiplayer.JoinRoom(roomID, null,
 delegate(Connection connection)
 {

Debug.Log("Connected to room!");
roomConnection = connection;
 },
 delegate(PlayerIOError error)
 {
 Debug.Log(error.Message);
 });
 },
 delegate(PlayerIOError error)
 {
 Debug.Log(error.Message);
 });
 }

 if(rooms == null)
 return;

 foreach(RoomInfo room in rooms)
 {
 if(GUILayout.Button(room.Id, GUILayout.Width(200f)))
 {
 client.Multiplayer.JoinRoom(room.Id, null,
 delegate(Connection connection)
 {
 Debug.Log("Connected to room!");
 roomConnection = connection;
 },
 delegate(PlayerIOError error)
 {
 Debug.Log(error.Message);
 });
 }
 }
}

So, we first attempt to create a room. If that succeeds, we then establish a connection
to that room (and store the resulting connection in roomConnection).

Player.IO – Bot Wars

[138]

Random matchmaking
It's also possible to employ a form of random matchmaking. That is, by supplying
the special room ID "$service-room$" to CreateJoinRoom, you will connect the user
to so called "Service Rooms". A service room is a room with a randomly created ID,
and a new room will only be created when the existing service rooms are all filled
up to 75 percent (this gives some leeway to move users between rooms). By using
CreateJoinRoom, the client will create a room if it doesn't exist, or join the existing
one if it does.

void OnGUI()
{
 if(roomConnection != null)
 return;

 if(GUILayout.Button("Join Random", GUILayout.Width(200f)))
 {
 client.Multiplayer.CreateJoinRoom("$service-room$", "MyCode",
 true, null, null,
 delegate(Connection connection)
 {
 Debug.Log("Joining room");
 roomConnection = connection;
 },
 delegate(PlayerIOError error)
 {
 Debug.Log(error.Message);
 });
 }

 if(GUILayout.Button("Create Room", GUILayout.Width(200f)))
 {
 client.Multiplayer.CreateRoom(null, "MyCode", true, null,
 delegate(string roomID)
 {
 Debug.Log("Room created");
 client.Multiplayer.JoinRoom(roomID, null,
 delegate(Connection connection)
 {
 Debug.Log("Connected to room!");
 roomConnection = connection;
 },
 delegate(PlayerIOError error)
 {

Chapter 4

[139]

 Debug.Log(error.Message);
 });
 },
 delegate(PlayerIOError error)
 {
 Debug.Log(error.Message);
 });
 }

 if(rooms == null)
 return;

 foreach(RoomInfo room in rooms)
 {
 if(GUILayout.Button(room.Id, GUILayout.Width(200f)))
 {
 client.Multiplayer.JoinRoom(room.Id, null,
 delegate(Connection connection)
 {
 Debug.Log("Connected to room!");
 roomConnection = connection;
 },
 delegate(PlayerIOError error)
 {
 Debug.Log(error.Message);
 });
 }
 }
}

Sending/receiving messages
Once connected to a room, we have a connection that can be used to send and
receive messages. Let's register event handlers for receiving messages, as well as
disconnections.

First, we'll add methods to handle these events:

// called when we've disconnected from the room
void OnDisconnect(object sender, string message)
{
 Debug.Log("Disconnected from room");
}

Player.IO – Bot Wars

[140]

// called when a message is received
void OnMessage(object sender, Message e)
{
}

Then we'll modify our OnGUI method to hook up these event handlers
upon connection:

void OnGUI()
{
 if(roomConnection != null)
 return;

 if(GUILayout.Button("Join Random", GUILayout.Width(200f)))
 {
 client.Multiplayer.CreateJoinRoom("$service-room$", "MyCode",
 true, null, null,
 delegate(Connection connection)
 {
 Debug.Log("Joining room");
 roomConnection = connection;
 roomConnection.OnMessage += new
 MessageReceivedEventHandler(OnMessage);
 roomConnection.OnDisconnect += new DisconnectEventHandler
 (OnDisconnect);
 },
 delegate(PlayerIOError error)
 {
 Debug.Log(error.Message);
 });
 }

 if(GUILayout.Button("Create Room", GUILayout.Width(200f)))
 {
 client.Multiplayer.CreateRoom(null, "MyCode", true, null,
 delegate(string roomID)
 {
 Debug.Log("Room created");
 client.Multiplayer.JoinRoom(roomID, null,
 delegate(Connection connection)
 {
 Debug.Log("Connected to room!");
 roomConnection = connection;
 roomConnection.OnMessage += new
 MessageReceivedEventHandler(OnMessage);

Chapter 4

[141]

 roomConnection.OnDisconnect += new DisconnectEventHandler
 (OnDisconnect);
 },
 delegate(PlayerIOError error)
 {
 Debug.Log(error.Message);
 });
 },
 delegate(PlayerIOError error)
 {
 Debug.Log(error.Message);
 });
 }

 if(rooms == null)
 return;

 foreach(RoomInfo room in rooms)
 {
 if(GUILayout.Button(room.Id, GUILayout.Width(200f)))
 {
 client.Multiplayer.JoinRoom(room.Id, null,
 delegate(Connection connection)
 {
 Debug.Log("Connected to room!");
 roomConnection = connection;
 roomConnection.OnMessage += new
 MessageReceivedEventHandler(OnMessage);
 roomConnection.OnDisconnect += new DisconnectEventHandler
 (OnDisconnect);
 },
 delegate(PlayerIOError error)
 {
 Debug.Log(error.Message);
 });
 }
 }
}

When the room sends a message to the client, the OnMessage function will be called.
If the client is disconnected from the room, the OnDisconnect function will be called.

Player.IO – Bot Wars

[142]

To send messages, we simply call the Send method on the Connection object. This
method can either take a Message object, or a string Message Type and parameter
list. Usually it's easier to simply provide the type and parameter list, but you can also
construct a Message via Message.Create, which takes the same type and parameter
list and you can also add parameters via the Add method (for instance, allow objects
to serialize their info by giving them the Message object and allowing them to add
parameters).

So, at the top of our GUI function, we could add this to allow the user to send a test
message while they're in a room:

if(roomConnection != null)
{
 if(GUILayout.Button("Send Message", GUILayout.Width(200f)))
 {
 roomConnection.Send("TestMessage", "Hello, world!");
 }
 return;
}

The first parameter is message type, used to identify what kind of message it is (for
instance, you might have a "move" message type, a "chat" message type, and so on).
All other parameters are values added to the message payload (so, for instance a
move message might contain X, Y, and Z position values, a chat message would have
a single string message, and so on).

Server-side code
The Server code handles things a bit differently. You have a single function for
processing messages from players (GotMessage); and can send a message to players
either by calling BroadcastMessage (which broadcasts a message to all players),
or by calling Send on a specific player (which sends to that player only). Note that
Player.IO servers are multithreaded, so keep this in mind while writing code to
ensure thread safety. The Client API is not multithreaded, however.

In the included server code, the default GotMessage function looks like this:

// This method is called when a player sends a message into the server
code
public override void GotMessage(Player player, Message message)
{
 switch(message.Type)
 {
 // This is how you would set a players name when they send in
 their name in a

Chapter 4

[143]

 // "MyNameIs" message
 case "MyNameIs":
 player.Name = message.GetString(0);
 break;
 }
}

If you wanted to handle a specific message type, you would likely use cases in a
switch-case for each type of message (as shown earlier). So, you might respond to the
TestMessage type message like this:

// This method is called when a player sends a message into the server
code
public override void GotMessage(Player player, Message message)
{
 switch(message.Type)
 {
 // This is how you would set a players name when they send in
 their name in a
 // "MyNameIs" message
 case "MyNameIs":
 player.Name = message.GetString(0);
 break;
 case "TestMessage":
 player.Send("TestResponse", message.GetString(0));
 break;
 }
}

When the player sends a TestMessage type message, the server responds with a
TestResponse type message, containing the first string value in the TestMessage
type message sent by the player.

Working with BigDB
Player.IO provides a database service known as BigDB. The objects can be saved
to BigDB and loaded from BigDB, and there is also a concept of "ownership" of a
database entry (for instance, you can configure databases so that players are only
allowed to modify their own DB entries).

Both the server and the client can access BigDB. Note that development servers
have the same permissions as the player—be aware of this, as restricting player
permissions will also restrict developer permissions.

Player.IO – Bot Wars

[144]

Note that BigDB is stored on Player.IO servers, not the local
development server. The data can be viewed from the admin
panel on the website. This data is stored per-game (for instance,
so you cannot access the data for other games). Also be aware
that no data is encrypted in Player.IO, so for instance storing
passwords in plain text is not advised, just as with most
conventional database systems.

BigDB also has a built-in player object's table. This is used to save data belonging
to a player, and you can retrieve your player object using the LoadMyPlayerObject
function:

DatabaseObject playerObj;

void Start()
{
 PlayerIO.UnityInit(this);

 PlayerIO.Connect("YourGameIDHere", "public", "YourUserIDHere",
 null, null,
 delegate(Client c)
 {
 // connected successfully
 client = c;
 Debug.Log("Connected");

 // load the player object
 client.BigDB.LoadMyPlayerObject(
 delegate(DatabaseObject obj)
 {
 playerObj = obj;

 Debug.Log("Player object loaded");
 },
 delegate(PlayerIOError error)
 {
 Debug.Log(error.Message);
 });

 // if we're using the dev server, connect to the local IP
 if(UseDevServer)
 {

Chapter 4

[145]

 client.Multiplayer.DevelopmentServer = new ServerEndpoint
 ("127.0.0.1", 8184);

 GetRoomList();
 }
 },
 delegate(PlayerIOError error)
 {
 // did not connect successfully
 Debug.Log(error.Message);
 });
}

This gives you a DatabaseObject instance. With a DatabaseObject instance you
can set properties using the Set method, supplying a key and a value. The value can
be one of the following types:

• Boolean
• Byte array
• Double
• Float
• Integer
• Long
• Unsigned Integer
• System.DateTime
• DatabaseObject
• DatabaseArray

Keep in mind that database objects are limited to 500 kb in size.

The DatabaseArrays instances are similar to DatabaseObjects, except that they
hold data in sequential indices rather than string keys. It's also possible to nest
DatabaseObjects and DatabaseArrays, so for instance on your player object you
could have a database array, which holds an array of items your player owns as
DatabaseObjects.

Player.IO – Bot Wars

[146]

Saving a DatabaseObject instance looks like this:

if(GUILayout.Button("Save Test Player Object", GUILayout.Width
 (200f)))
{
 playerObj.Set("TestProperty", "someValue");
 playerObj.Save(
 delegate()
 {
 Debug.Log("Player object saved");
 },
 delegate(PlayerIOError error)
 {
 Debug.Log(error.Message);
 });
}

Besides LoadMyPlayerObject, you can also use several other methods such as
Load, LoadOrCreate (which creates the object if it doesn't exist), LoadKeys (to load
several at once), LoadKeysOrCreate, and LoadRange (which allows you to use an
"index" to get a list of database objects, for instance you could use this to implement
leaderboards by creating an index for scores).

For more information, please read the documentation on BigDB: http://playerio.
com/features/bigdb/.

Creating a simple RTS prototype
Using the knowledge we've gained about Player.IO and applying the concepts from
the previous chapter, we're going to create a simple RTS style game.

The player will own five bots. Each of these bots can be commanded to move, or
attack another bot. The number of bots killed and lost will be recorded (and persisted
to the database for a leaderboard).

Upon losing all five bots the player is kicked out of the game to the main menu.

Server-side code
We'll start by modifying the server code as follows:

using System;
using System.Collections.Generic;
using System.Text;
using System.Collections;

http://playerio.com/features/bigdb/
http://playerio.com/features/bigdb/

Chapter 4

[147]

using PlayerIO.GameLibrary;
using System.Drawing;

namespace BotWarsGame
{
 public class Player : BasePlayer
 {
 public string Name;
 }

 // This attribute is used to identify the room type
 // When starting a room, you can specify room type - it
 corresponds to this value.
 // Note that the Game class is the base class for room code – it
 takes a Type which is the type to use for Players
 [RoomType("GameRoom")]
 public class GameCode : Game<Player>
 {
 // This method is called when an instance of your the game is
 created
 public override void GameStarted()
 {
 }

 // This method is called when the last player leaves the room,
 and it's closed down.
 public override void GameClosed()
 {
 }

 // This method is called whenever a player joins the game
 public override void UserJoined(Player player)
 {
 player.Name = player.JoinData["Name"];

 // send the player their own ID
 player.Send("SetID", player.Id);

 // inform everyone that this user has joined
 Broadcast("UserJoined", player.Id, player.Name);

 // inform the user of everyone else in the room,
 foreach(Player p in Players)
 {
 if(p == player)

Player.IO – Bot Wars

[148]

 continue;

 player.Send("UserJoined", player.Id, player.Name);
 }
 }

 // This method is called when a player leaves the game
 public override void UserLeft(Player player)
 {
 Broadcast("UserLeft", player.Id);
 }

 // This method is called when a player sends a message into
 the server code
 public override void GotMessage(Player player, Message
 message)
 {
 }
 }
}

This is the base class we will start from. At the moment, it does very little aside from
store your name from join data, send your Player ID, and broadcast your presence to
other players (as well as send you join messages for all existing players).

We'll also create a class to represent our bots using the following code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace BotWarsGame
{
 public class Bot
 {
 public ulong BotID;
 public int OwnerID;

 public float PositionX = 0f;
 public float PositionY = 0f;

 public int Health = 100;

 public Bot(Player owner, ulong botID)

Chapter 4

[149]

 {
 this.OwnerID = owner.Id;
 this.BotID = botID;
 }
 }
}

You may notice that we aren't generating an ID for our bots. We're going to learn
how to generate objects instantly on the client side without server intervention. This
will include how to generate a unique object ID on the client. For the time being,
we'll continue with the server code and worry about the details of this later.

Let's modify our Player class so that the player can own a list of bots.

public class Player : BasePlayer
{
 public string Name;

 // the bots this player owns
 public List<Bot> OwnedBots = new List<Bot>();
}

And, we'll handle a message that spawns a bot for the player:

// This method is called when a player sends a message into the
 server code
Dictionary<ulong,Bot> bots = new Dictionary<ulong,Bot>();
public override void GotMessage(Player player, Message message)
{
 switch(message.Type)
 {
 case "SpawnBot":
 {
 // player spawned a bot
 ulong botID = message.GetULong(0);
 float botPosX = message.GetFloat(1);
 float botPosY = message.GetFloat(2);
 Bot bot = new Bot(player, botID);
 bot.PositionX = botPosX;
 bot.PositionY = botPosY;
 player.OwnedBots.Add(bot);

 // add bot to dictionary so we can later look up bots by ID
 bots.Add(botID, bot);

 // broadcast spawn message to other players

Player.IO – Bot Wars

[150]

 foreach(Player pl in Players)
 {
 if(pl == player)
 continue;

 pl.Send("OnBotSpawned", pl.Id, botID, botPosX, botPosY);
 }
 }
 break;
 }
}

So, on the client side, a player will spawn a bot and send the SpawnBot message to
the server. The server will handle this message by adding a new bot to the list of bots
the player owns and notifying everyone else that the bot was spawned.

We'll also need to notify new players of all the bots currently spawned, which we'll
do in UserJoined:

// This method is called whenever a player joins the game
public override void UserJoined(Player player)
{
 player.Name = player.JoinData["Name"];

 // send the player their own ID
 player.Send("SetID", player.Id);

 // inform everyone that this user has joined
 Broadcast("UserJoined", player.Id, player.Name);

 // inform the user of everyone else in the room,
 // plus their bots
 foreach(Player p in Players)
 {
 if(p == player)
 continue;

 player.Send("UserJoined", player.Id, player.Name);

 // notify new player of existing bots
 foreach(Bot bot in p.OwnedBots)
 {
 player.Send("OnBotSpawned", p.Id, bot.BotID, bot.PositionX,
 bot.PositionY);
 }
 }
}

Chapter 4

[151]

Players will be in control of their own bots (client-authoritative), so we'll accept
update messages from players to move bots:

// This method is called when a player sends a message into the server
code
public override void GotMessage(Player player, Message message)
{
 switch(message.Type)
 {
 case "SpawnBot":
 {
 // player spawned a bot
 ulong botID = message.GetULong(0);
 float botPosX = message.GetFloat(1);
 float botPosY = message.GetFloat(2);
 Bot bot = new Bot(player, botID);
 bot.PositionX = botPosX;
 bot.PositionY = botPosY;
 player.OwnedBots.Add(bot);

 // broadcast spawn message to other players
 foreach(Player pl in Players)
 {
 if(pl == player)
 continue;

 pl.Send("OnBotSpawned", pl.Id, botID, botPosX, botPosY);
 }
 }
 break;
 case "UpdateBot":
 {
 // update one of the player's bots
 ulong botID = message.GetULong(0);
 float botPosX = message.GetFloat(1);
 float botPosY = message.GetFloat(2);

 if(bots.ContainsKey(botID))
 {
 Bot bot = bots[botID];
 bot.PositionX = botPosX;
 bot.PositionY = botPosY;
 }
 }
 break;
 }
}

Player.IO – Bot Wars

[152]

We'll also handle Damage messages for when one unit attacks another.

// This method is called when a player sends a message into the
 server code
public override void GotMessage(Player player, Message message)
{
 switch(message.Type)
 {
 case "SpawnBot":
 {
 // player spawned a bot
 ulong botID = message.GetULong(0);
 float botPosX = message.GetFloat(1);
 float botPosY = message.GetFloat(2);
 Bot bot = new Bot(player, botID);
 bot.PositionX = botPosX;
 bot.PositionY = botPosY;
 player.OwnedBots.Add(bot);
 bots.Add(bot.BotID, bot);

 // broadcast spawn message to other players
 foreach(Player pl in Players)
 {
 if(pl == player)
 continue;

 pl.Send("OnBotSpawned", pl.Id, botID, botPosX, botPosY);
 }
 }
 break;
 case "UpdateBot":
 {
 // update one of the player's bots
 ulong botID = message.GetULong(0);
 float botPosX = message.GetFloat(1);
 float botPosY = message.GetFloat(2);

 if(bots.ContainsKey(botID))
 {
 Bot bot = bots[botID];
 bot.PositionX = botPosX;
 bot.PositionY = botPosY;
 }
 }

Chapter 4

[153]

 break;
 case "TakeDamage":
 {
 // one bot damaged another
 ulong destBotID = message.GetULong(0);

 if(bots.ContainsKey(destBotID))
 {
 Bot destBot = bots[destBotID];
 destBot.Health -= 10;

 // check if the bot died
 if(destBot.Health <= 0)
 {
 // remove bot from world
 foreach(Player pl in Players)
 {
 if(pl.Id == destBot.OwnerID
 { pl.OwnedBots.Remove(destBot);
 break;
 }
 }
 bots.Remove(destBot.BotID);

 // broadcast death message
 Broadcast("BotDied", destBot.BotID);

 // send got kill message to player sending the damage
 message
 player.Send("GotKill");
 }
 else
{
// send new health amount to victim
foreach(Player pl in Players)
{
 if(pl.Id == destBot.OwnerID)
 {
 pl.Send("TookDamage", destBot.BotID, destBot.Health);
 break;
 }
}
}
 }

Player.IO – Bot Wars

[154]

 }
 break;
 }
}

We'll also periodically broadcast the state of all bots currently alive. Player.IO has a
fairly small bandwidth limit, so we'll do this five times per second (in a twitch-based
game you would generally broadcast anywhere from ten to twenty times per second)

We'll hook up a timer in GameStarted to accomplish this:

// This method is called when an instance of your the game is
 created
public override void GameStarted()
{
 // broadcast game state 5 times per second
 AddTimer(
 delegate()
 {
 foreach(Player player in Players)
 {
 foreach(Bot bot in player.OwnedBots)
 {

// broadcast bot state (position & health)
 foreach(Player target in Players)
 {
 if(target != player)
 Broadcast("UpdateBot", bot.BotID, bot.PositionX,
 bot.PositionY, bot.Health);
 } }
 }
 }, 200);
}

And finally, when a player's bots have all been killed, we will kick them out of the
game. We'll modify our TakeDamage message case:

case "TakeDamage":
{
 // one bot damaged another
 ulong destBotID = message.GetULong(0);

 if(bots.ContainsKey(destBotID))
 {
 Bot destBot = bots[destBotID];

Chapter 4

[155]

 destBot.Health -= 10;

 // check if the bot died
 if(destBot.Health <= 0)
 {
 // remove bot from world
 foreach(Player pl in Players)
 {
 if(pl.Id == destBot.OwnerID)
 {
 pl.OwnedBots.Remove(destBot);

 // player is out of bots?
 if(pl.OwnedBots.Count == 0)
 {
 // boot them from the game
 pl.Disconnect();
 }
 break;
 }
 }
 bots.Remove(destBot.BotID);

 // broadcast death message
 Broadcast("BotDied", destBot.BotID);

 // send got kill message to player sending the damage
 message
 player.Send("GotKill");
 }
 else
 {
 // send new health amount to victim
 foreach(Player pl in Players)
 {
 if(pl.Id == destBot.OwnerID)
 {
 pl.Send("TookDamage", destBot.BotID, destBot.Health);
 break;
 }
 }
 }
 }
}
 break;

We are now finished with our server-side code. Now to work on the client side.

Player.IO – Bot Wars

[156]

Client-side code
In our game we'll have two scenes. The first scene lets the player choose a name,
displays their stats, and lets them join a random room, and the second scene is used
for gameplay.

First, we'll need some place to store our client and connection, among other things.
Let's create a class with static variables for these.

using UnityEngine;
using System.Collections.Generic;

using PlayerIOClient;

public class NetworkUtils : MonoBehaviour
{
 public static Client client;
 public static Connection connection;
 public static DatabaseObject playerObject;
 public static int localPlayerID;
 public static Dictionary<int, string> PlayersInRoom = new
Dictionary<int, string>();
}

Now, our Connect script can set these values, and we can later retrieve them easily.

The next thing we'll add is a Connect script that connects to Player.IO, saves the
client, loads the player object, saves that, and displays the player's stats (bots
killed, and bots lost), and will additionally join a random room and load the
gameplay scene.

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

using PlayerIOClient;

public class ConnectScreen : MonoBehaviour
{
 string playerName = "Player";

 bool connecting = true;

 int botsKilled = 0;
 int botsLost = 0;

Chapter 4

[157]

 void Connect()
 {
 // we need some monobehavior in the scene for player.io to
 work, but it can be any monobehavior so we'll just put our
 NetworkUtils component on it.
 if(GameObject.Find("_playerIO") == null)
 {
 GameObject go = new GameObject("_playerIO");
 go.AddComponent<NetworkUtils>();
 DontDestroyOnLoad(go);
 PlayerIO.UnityInit(go.GetComponent<NetworkUtils>());
 }

 PlayerIO.Connect("YourGameIDHere", "public", playerName,
 null, null,
 delegate(Client client)
 {
 Debug.Log("Connected");

 // store client for later retrieval
 NetworkUtils.client = client;

 // load player object
 client.BigDB.LoadMyPlayerObject(
 delegate(DatabaseObject playerObj)
 {
 // store player object for later retrieval
 NetworkUtils.playerObject = playerObj;

 // read stats from player object
 botsKilled = playerObj.GetInt("Kills", 0);
 botsLost = playerObj.GetInt("Deaths", 0);
 },
 delegate(PlayerIOError error)
 {
 Debug.Log("Failed loading player object: " +
 error.Message);
 });
 },
 delegate(PlayerIOError error)
 {
 Debug.Log("Failed to connect: " + error.Message);
 });
 }

Player.IO – Bot Wars

[158]

 void JoinRoom()
 {
 NetworkUtils.client.Multiplayer.CreateJoinRoom("$service-
 room$", "GameRoom", true,
 null,
 new Dictionary<string, string> { },
 delegate(Connection connection)
 {
 Debug.Log("Connected to room");
 NetworkUtils.connection = connection;

 // load gameplay scene
 Application.LoadLevel("GameplayScene");
 },
 delegate(PlayerIOError error)
 {
 Debug.Log("Failed to join room: " + error.Message);
 });
 }

 void OnGUI()
 {
 if(!connecting)
 {
 if(NetworkUtils.playerObject != null)
 {
 GUILayout.Label("Enemy Bots Destroyed: " + botsKilled);
 GUILayout.Label("Bots Lost: " + botsLost);
 if(GUILayout.Button("Play", GUILayout.Width(100f)))
 {
 // join random room
 JoinRoom();
 }
 }
 else
 {
 playerName = GUILayout.TextField(playerName,
 GUILayout.Width(200f));
 if(GUILayout.Button("Connect", GUILayout.Width(100f))
)
 {
 Connect();
 }
 }

Chapter 4

[159]

 }
 else
 {
 GUILayout.Label("Connecting...");
 }
 }
}

This code displays a screen allowing the player to enter their name and connect
to Player.IO. Once connected, the player's stats are displayed, and the player
can click on "Play" to join a service room. After it connects to a room, it loads the
"GameplayScene". We'll need to create this scene, and add our gameplay scripts
to it.

First, we'll create a script to handle incoming messages:

using UnityEngine;
using System.Collections;

public class MessageHandler : MonoBehaviour
{
 void OnEnable()
 {
 NetworkUtils.connection.OnMessage += connection_OnMessage;
 NetworkUtils.connection.OnDisconnect +=
 connection_OnDisconnect;
 }

 // We'll also disconnect our event handlers. This is not
 necessary in some cases, but it is always good practice.
 void OnDisable()
 {
 NetworkUtils.connection.OnMessage -= connection_OnMessage;
 NetworkUtils.connection.OnDisconnect -=
 connection_OnDisconnect;
 }

 void connection_OnDisconnect(object sender, string message)
 {
 Debug.Log("Disconnected from server");
 NetworkUtils.connection = null;

 // save player object
 NetworkUtils.playerObject.Save();

Player.IO – Bot Wars

[160]

 // go back to main menu
 Application.LoadLevel("MainMenu");
 }

 void connection_OnMessage(object sender, PlayerIOClient.
 Message e)
 {
 // handle incoming messages
 }
}

All messages sent to us by the server will trigger our connection_OnMessage
function. Additionally, if the client is disconnected from the server the game will
dispose of the Connection object, save the player object, and load the main scene.

Next, let's create a component to keep track of the owner ID and instance ID of a bot,
so that we always have a way to tell who owns a bot:

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

public class BotInfo : MonoBehaviour
{
 // a map of botID -> bot
 public static Dictionary<ulong,BotInfo> botMap =
 new Dictionary<ulong,BotInfo>();

 // the player that owns this bot
 public int OwnerID;

 // the ID of this bot
 public ulong BotID;

 // whether this bot belongs to the local player
 public bool IsMine
 {
 get
 {
 return OwnerID == NetworkUtils.localPlayerID;
 }
 }

 public void Register()
 {

Chapter 4

[161]

 botMap.Add(this.BotID, this);
 }

 void OnDestroy()
 {
 botMap.Remove(this.BotID);
 }

 float timer = 0f;
 void Update()
 {
 if(IsMine)
 {
 timer += Time.deltaTime;
 if(timer >= 0.1f)
 {
 // send update message to server
 NetworkUtils.connection.Send("UpdateBot", BotID,
 transform.position.x, transform.position.z);
 }
 }
 }
}

When a bot is spawned we'll set its OwnerID and BotID, and then call Register.
Register adds the bot to a dictionary, so later we can look up bots by ID. When the
bot is destroyed, it is removed from the dictionary.

Next, we'll handle a few message types:

void connection_OnMessage(object sender, PlayerIOClient.
 Message e)
{
 // handle incoming messages
 switch(e.Type)
 {
 // server sent us our ID
 case "SetID":
 NetworkUtils.localPlayerID = e.GetInt(0);
 break;
 // add a player to list of players in the room
 case "UserJoined":
 NetworkUtils.PlayersInRoom.Add(e.GetInt(0), e.GetString
 (1));
 break;

Player.IO – Bot Wars

[162]

 // remove player from list of players
 case "UserLeft":
 NetworkUtils.PlayersInRoom.Remove(e.GetInt(0));
 //clean up this player's bots
 foreach(ulong botID in BotInfo.botMap.Keys)
 {
 Destroy(BotInfo.botMap[botID].gameObject);
 }
 break;
 // spawn a bot
 case "OnBotSpawned":
 break;
 // update a bot
 case "UpdateBot":
 break;
 // destroy a bot
 case "BotDied":
 break;
 // local player got a kill
 case "GotKill":
 break;
 // one of local player's bots took damage
 case "TookDamage":
 break;
 }
}

Currently, this handles the server sending us our ID (this is stored in NetworkUtils,
which is important in order to know which bots belong to us), users joining (the
user's name is stored in a dictionary so we can look up the player name by ID), and
leaving. We also have stubs for gameplay-related messages, which we'll start
filling in.

public GameObject BotPrefab;
void connection_OnMessage(object sender, PlayerIOClient.
 Message e)
{
 // handle incoming messages
 switch(e.Type)
 {
 // server sent us our ID
 case "SetID":
 NetworkUtils.localPlayerID = e.GetInt(0);
 break;
 // add a player to list of players in the room

Chapter 4

[163]

 case "UserJoined":
 NetworkUtils.PlayersInRoom.Add(e.GetInt(0), e.GetString(1)
);
 break;
 // remove player from list of players
 case "UserLeft":
 NetworkUtils.PlayersInRoom.Remove(e.GetInt(0));
 //clean up this player's bots
 foreach(ulong botID in BotInfo.botMap.Keys)
 {
 Destroy(BotInfo.botMap[botID].gameObject);
 }
 break;
 // spawn a bot
 case "OnBotSpawned":
 int spawnedBotOwnerID = e.GetInt(0);
 ulong spawnedBotID = e.GetULong(1);
 float spawnedBotPosX = e.GetFloat(2);
 float spawnedBotPosY = e.GetFloat(3);

 GameObject bot = (GameObject)Instantiate(BotPrefab, new
 Vector3(spawnedBotPosX, 0f, spawnedBotPosY),
 Quaternion.identity);
 bot.GetComponent<BotInfo>().OwnerID = spawnedBotOwnerID;
 bot.GetComponent<BotInfo>().BotID = spawnedBotID;
 bot.GetComponent<BotInfo>().Register();
 break;
 // update a bot
 case "UpdateBot":
 ulong updateBotID = e.GetULong(0);
 float updatePosX = e.GetFloat(1);
 float updatePosY = e.GetFloat(2);
 int updateBotHealth = e.GetInt(3);

 BotInfo updateBot = BotInfo.botMap[updateBotID];
 updateBot.transform.position = new Vector3(updatePosX,
 0f, updatePosY);
 updateBot.SendMessage("SetHealth", updateBotHealth,
 SendMessageOptions.DontRequireReceiver);
 break;
 // destroy a bot
 case "BotDied":

 // kill bot
 ulong killedBotID = e.GetULong(0);

Player.IO – Bot Wars

[164]

 BotInfo killedBot = BotInfo.botMap[killedBotID];
 if(killedBot.IsMine)
 {
 // increment lost bots
 NetworkUtils.playerObject.Set("Deaths",
 NetworkUtils.playerObject.GetInt("Deaths") + 1);
 }

 // destroy bot obj
 GameObject.Destroy(killedBot);
 break;
 // local player got a kill
 case "GotKill":
 // increment kills
 NetworkUtils.playerObject.Set("Kills",
 NetworkUtils.playerObject.GetInt("Kills") + 1);
 break;
 // one of local player's bots took damage
 case "TookDamage":
 Debug.Log("Taking damage!");
 break;
 }
}

This is mostly straightforward, the Spawn Bot message instantiates a bot prefab and
assigns network IDs, the update and death messages look up the appropriate bot by
ID and call methods/set properties, GotKill increments the number of kills, and so
on. Most of the code should be self-explanatory at this point.

Next, we'll create the script for bots. This script will allow us to select a single bot
with left-click, and order that bot with right click. If we click the ground, the bot will
move to that spot. Otherwise, if we click on another bot that isn't ours, the bot will
move to within range and attack (send damage messages).

using UnityEngine;
using System.Collections;

public class BotScript : MonoBehaviour
{
 public static BotScript SelectedBot;

 private Vector3 targetMovePos;
 private BotInfo targetEnemy;

 private float attackTimer = 0f;

Chapter 4

[165]

 void Awake()
 {
 targetMovePos = Vector3.zero;
 }

 void Update()
 {
 // left mouse button pressed?
 if(Input.GetMouseButtonDown(0))
 {
 // raycast
 RaycastHit hit;
 if(Physics.Raycast(Camera.main.ScreenPointToRay(Input.
 mousePosition), out hit))
 {
 BotInfo hitBot = hit.collider.GetComponent<BotInfo>();
 if(hitBot != null && hitBot.IsMine)
 {
 // select bot
 SelectedBot = hitBot.GetComponent<BotScript>();
 }
 }
 }

 if(!GetComponent<BotInfo>().IsMine)
 return;

// current target not null? move towards and attack
 if(targetEnemy != null)
 {
 moveTowards(targetEnemy.transform.position, 2f);
 targetMovePos = transform.position;

 // close enough to target? attack
 if(Vector3.Distance(transform.position,
 targetEnemy.transform.position) <= 2f)
 {
 attackTimer += Time.deltaTime;
 if(attackTimer >= 1f)
 {
 attackTimer = 0f;
 // send damage message
 NetworkUtils.connection.Send("TakeDamage",
 targetEnemy.BotID);

Player.IO – Bot Wars

[166]

 }
 }
 }
 else
 {
 moveTowards(targetMovePos, 0.5f);
 }

 if(SelectedBot != this)
 return;

 // right mouse button pressed?
 if(Input.GetMouseButtonDown(1))
 {
 // raycast
 RaycastHit hit;
 if(Physics.Raycast(Camera.main.ScreenPointToRay(Input.
 mousePosition), out hit))
 {
 BotInfo hitBot = hit.collider.GetComponent<BotInfo>();
 if(hitBot != null && !hitBot.IsMine)
 {
 // target selected bot
 targetEnemy = hitBot;
 }
 else if(hitBot == null)
 {
 // move to position
 targetMovePos = hit.point;
 }
 }
 }
 }

 // move to within a certain distance of the target
 void moveTowards(Vector3 pos, float range)
 {
 if(Vector3.Distance(transform.position, pos) > range)
 {
 // move toward at 5 meters per second
 transform.position = Vector3.MoveTowards(transform.position,
 pos, Time.deltaTime * 5f);
 }
 }
}

Chapter 4

[167]

We'll attach this to a cube alongside the BotInfo component and save it as a prefab.

Next, we'll spawn our bots in the scene at five predetermined spawn points. For the
purposes of learning, our game is client-authoritative, and this includes generating
object IDs. What we're doing here is basing the ID off of the player's ID (four bytes
are player ID, the other four bytes are just an incrementing counter), which is why
we used an unsigned long for the bot ID. As the player ID is unique for each player,
we have a fairly painless way to generate instant network-unique client-side IDs.

using UnityEngine;
using System.Collections;

public class SpawnBots : MonoBehaviour
{
 public GameObject BotPrefab;

 public Transform[] SpawnPoints;

 private int lastGeneratedBotID = 0;

 IEnumerator Start()
 {
 // 3 second prepare time
 yield return new WaitForSeconds(3f);

 foreach(Transform spawn in SpawnPoints)
 {
 ulong botID = AllocateBotID();

 GameObject bot = (GameObject)Instantiate(BotPrefab, new
 Vector3(spawn.position.x, 0f, spawn.position.z),
 Quaternion.identity);
 bot.GetComponent<BotInfo>().OwnerID =
 NetworkUtils.localPlayerID;
 bot.GetComponent<BotInfo>().BotID = botID;

 // send spawn message to server
 NetworkUtils.connection.Send("SpawnBot", botID,
 spawn.position.x, spawn.position.z);
 }
 }

 ulong AllocateBotID()
 {

Player.IO – Bot Wars

[168]

 // here, we will generate a unique network ID for one of our
 bots
 // to do this without server intervention, the ID will be
 based on the Player ID (which is guaranteed to be unique per
 player)
 // four of the bytes will be player ID, and the other four
 bytes will be bot instance ID
 ulong id = (ulong)lastGeneratedBotID++; // int fills
 four bytes, leaving a remaining four
 id |= ((ulong)NetworkUtils.localPlayerID << 4); // shift
 player ID to fill the remaining four bytes

 return id;
 }
}

At this point, we are nearly done. We just have to set up our gameplay scene. This
is a fairly simple matter, just drop in a plane (make sure Y is set to 0) for the floor,
and create starting points for each of the bots as empty game objects (these are then
dropped onto the spawn array for the SpawnBot script, in addition to our bot prefab).

And now, our Bot Wars example game is complete.

Summary
In this chapter, we learned about another server technology known as Player.IO.
Player.IO differs from Photon in that it's better suited to room-based setups and
smaller Flash-type games, rather than network-heavy twitch games or massively
multiplayer games. It also cannot be self-hosted, similar to Photon Cloud.

We have learned how to connect, join rooms, send and receive messages, and work
with BigDB for persisting player data. We then applied this knowledge in creating
a pseudo-RTS demo where the player can command 5 units to attack other player-
controlled units. In the process, we also learned how we can generate a unique 64 bit
ID on the client with no server intervention by using a 32 bit player ID.

In the next chapter, we'll cover our final networking system, an HTTP push service
known as PubNub.

PubNub – The Global
Chatbox

In this chapter, we will be covering a radically different networking system known as
PubNub. PubNub differs from most traditional networking systems, in which it uses
HTTP to communicate, rather than straight TCP or UDP sockets. While PubNub does
not work well for twitch-based games requiring low latency or authoritative server
setups, it is just fine for other forms of communication such as instant messaging.

In this chapter, we'll learn:
• How PubNub works over HTTP
• Parsing JSON returned from PubNub
• Building a WWW wrapper around PubNub
• Creating a global chatbox application

Overview of PubNub
Unlike traditional TCP or UDP communication methods, PubNub is based around
HTTP. Users are divided by application, into channels. Within each channel, users
can publish messages, which are broadcast to all users in the channel. There are some
limitations in this regard. It is not possible to direct a message to a specific user within
a channel, and this message is stored in a plain text format. Latency is also a major
factor, as messages can take some time to be received. These factors make PubNub
unsuitable for games requiring fast and efficient communication, but it has other uses.
For instance, if players cannot be directly connected to each other to communicate
(for instance, for an instant messaging feature), it's possible to use specially named
channels based on the user ID to send messages to players (each player listens on their
own dedicated channel for incoming private messages).

PubNub – The Global Chatbox

[170]

Getting started
Before we continue, you'll need to sign up for an account at PubNub. Navigate to
the following URL to sign up for a free account:

http://www.pubnub.com/free-trial

After you've logged in, you'll need to create a new app as shown in the
following screenshot:

Under the More Apps menu, select create new app. Enter a name and hit Enter.

After the app is created, there should be a section containing two important pieces
of information:

• Your Publish Key
• Your Subscribe Key

Chapter 5

[171]

• The Publish and Subscribe keys are both needed in order to publish messages
to PubNub and receive messages from PubNub.

Now that you have these two things, we can get started.

How PubNub works
As mentioned earlier, PubNub works over HTTP rather than TCP or UDP sockets.
This means, the PubNub service is entirely interacted with via a web service.
How does this work?

There are two URLs which form all interactions with PubNub. One is used for
publishing. You request this URL and pass all information such as Publish key,
Subscribe key, the channel to publish on, and the message to publish, and so on.

The other URL is used for subscribing. For the best latency, you make a request to
this URL, and as soon as it returns something you make another request, and so on.
Unlike most web requests, this URL has an especially long time out, and won't return
anything until somebody else publishes a message on that channel. That means you
generally only make requests after you receive a message.

PubNub – The Global Chatbox

[172]

When you request the subscribe URL, you pass a few bits of information just as with
publishing, with the addition of a "time token". The first time you request it, you pass
a time token of 0. This tells PubNub to give you the current time token. Every time
you get a response from the subscribed URL, you store the time token and use that
for the next request. This ensures that you don't get old messages.

PubNub's subscribed URL will return JSON, so before we write our wrapper around
PubNub we'll need a way to parse JSON.

JSON (JavaScript Object Notation) is a format for storing structured
data stored as key/value pairs. For instance, a simple JSON object
might look like this:

{"key1":value1, "key2":value2, ... "key n":value n}

Values can be of several types such as Booleans, integers, floats, and so
on. They can also be arrays, or nested objects.

For more information, check out the following resource on the
JSON format:

http://www.json.org/

This method of communication, using a request/response system, can have a big
impact on any networking built on top of it. Keep in mind, this request/response
system of HTTP is designed for browsers to request web pages from a server, not
necessarily for real-time communication. In addition, while HTTP is implemented
with TCP, it is not the same thing as TCP. It carries lots of information designed to
fetch resources from a web server, rather than sending/receiving general purpose
messages. In particular, the browser URL or the POST parameters are the only
methods available to the client to pass any data to the server. Additionally, a whole
host of other information will be sent as part of the request, such as user agent
(what browser is requesting the data), the content type the client expects, language,
content length, and more. This could potentially lead to fairly large messages being
passed around. In general, while PubNub can be invaluable for some things that
don't need to be instant such as lobby room chat, it does not make a good candidate
for real-time multiplayers. Additionally, one benefit of using HTTP is that firewalls
are generally configured to allow most web traffic through—there is significantly less
danger of the firewall blocking game network traffic (such as on corporate networks).

Chapter 5

[173]

Parsing JSON from PubNub
All responses from the subscribe service are structured as follows:

• An array, containing:

 ° An array of new messages since the last call to subscribe
 ° A new time token to use for the next call

The first time you make a request to subscribe, you get something like this:

[[],"13782280489181338"]

This is a JSON array. The first is an array of messages—for the first request, it will be
empty. The second entry is a string, and it is the new time token to use.

After the first request, you'll see something that looks more like this:

[["Some message here", "Another message here"], "13782280489181345"]

Now, the first entry isn't full. It's an array of strings (in fact, these are JSON data
which means they can hold any data you want, but in the case of our chat application
we are sending string values). These are all of the new messages which have been
published to the channel since the last time you subscribed.

To parse this, we'll use a JSON parser made for Unity called SimpleJSON. It can be
downloaded for free from the Unify Community wiki, here:

http://wiki.unity3d.com/index.php/SimpleJSON

Follow the setup instructions to add it to a Unity project.

Next, let's build a helper function for parsing PubNub responses:

using UnityEngine;
using System.Collections;

using SimpleJSON;

public class PubNubUtils
{
 public static string[] ParseSubscribeResponse(string response,
 out string timeToken)
 {
 // parse the JSON as a JSON array
 var json = JSON.Parse(response).AsArray;

PubNub – The Global Chatbox

[174]

 // first entry is another JSON array
 var messages = json[0].AsArray;

 // second entry is new time token
 timeToken = json[1].Value;

 // parse message JSON array into string array
 string[] ret = new string[messages.Count];
 for(int i = 0; i < ret.Length; i++)
 {
 ret[i] = messages[i].Value;
 }

 // return messages
 return ret;
 }
}

Now that we can take the response from subscribe and parse a list of messages and
the new time token, let's build our wrapper around PubNub.

Building a PubNub interface
Our system will make use of the built-in WWW class of Unity to make requests, and
a very useful Unity script feature known as coroutines to asynchronously wait until
the request is finished—since a web request can take a while to complete, we do not
want our game loop to be paused while waiting for the server to respond.

In Unity, a coroutine is a way to semi-asynchronously execute some
code by dividing the function into steps which can be performed across
multiple frames. Coroutines "yield" values during execution. This
value is interpreted by Unity and used to determine when to resume
the coroutine. For instance, yielding null will cause Unity to pause our
function and resume it on the next frame. In this case, we can yield a
WWW object, which will cause Unity to pause our function and resume
it once the WWW request has finished (the WWW request itself is
handled asynchronously in the background).

First, we'll create a MonoBehaviour class to accomplish this. It will store the
necessary keys, and make the needed requests, as well as keep a static reference to
the current instance:

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

Chapter 5

[175]

public class PubNubWrapper : MonoBehaviour
{
 public static PubNubWrapper instance;

 public string PublishKey = "";
 public string SubscribeKey = "";

 private Dictionary<string, System.Action<string>>
 channelMessageHandlers = new Dictionary<string,
 System.Action<string>>();

 private string timeToken = "0";

 void Awake()
 {
 instance = this;
 }

 // publish a message to the given channel
 public void Publish(string message, string channel)
 {
 }

 // subscribe to receive messages from the given channel
 public void Subscribe(string channel, System.Action<string>
 messageHandler)
 {
 }

 // unsubscribe to stop receiving messages from the given channel
 public void Unsubscribe(string channel)
 {
 }
}

Right now it does nothing, but we'll begin filling in the functions. First, we'll create
the publish function:

// publish a message to the given channel
public void Publish(string message, string channel)
{
 // escape the message so we can put it in a URL
 string escapedMessage = WWW.EscapeURL(message).Replace("+",
 "%20"); // Unity's URL escaping function replaces space with
 '+'. It's better on some platforms to use %20

PubNub – The Global Chatbox

[176]

 // form the URL
 // http://pubsub.pubnub.com
 // /publish
 // /[publish key]
 // /[subscribe key]
 // /0
 // /[channel name]
 // /0
 // /[JSON message data]
 string url =
 "http://pubsub.pubnub.com" +
 "/publish" +
 "/" + PublishKey +
 "/" + SubscribeKey +
 "/0" +
 "/" + channel +
 "/0" +
 "/\"" + escapedMessage + "\"";

 // make the request
 WWW www = new WWW(url);
}

This is fairly straightforward. The data for the publish call is formatted as a URL,
containing among other things the Publish key, the channel to publish on, and the
message to publish. Note that the message is wrapped in quotes—remember that the
message we post is actually a JSON object, not simply a string. In this case, we are
simply formatting it as a JSON string. We create a new WWW object with the URL
to actually make the request, which publishes the message.

Next, the subscribe function. This one will actually kick off a coroutine, this
coroutine will run in a loop making subscribe requests to PubNub. If when one of
these requests is finished, the callback is not present in the dictionary, that must
mean Unsubscribe was called, so we simply break out of the coroutine.

// subscribe to receive messages from the given channel
public void Subscribe(string channel, System.Action<string>
messageHandler)
{
 channelMessageHandlers.Add(channel, messageHandler);
 StartCoroutine(doSubscribe(channel));
}

IEnumerator doSubscribe(string channel)
{

Chapter 5

[177]

 // as long as we have a message handler for the given channel (we're
subscribed), keep making requests
 while(channelMessageHandlers.ContainsKey(channel))
 {
 // form the URL
 // http://pubsub.pubnub.com
 // /subscribe
 // /[subscribe key here]
 // /[channel name here]
 // /0
 // /[time token here]
 string url =
 "http://pubsub.pubnub.com" +
 "/subscribe" +
 "/" + SubscribeKey +
 "/" + channel +
 "/0" +
 "/" + timeToken;

 // make the request
 WWW www = new WWW(url);

 // in Unity, we can yield a WWW object,
 // which makes Unity "pause" this coroutine
 // until the request has either encountered an error
 // or finished.
 yield return www;

 // www.error is a string
 // it will either be null/empty if there is no error, or it
 // will contain the error message if there was one.
 if(!string.IsNullOrEmpty(www.error))
 {
 // log the error to the console
 Debug.LogWarning("Subscribe failed: " + www.error);

 // unsubscribe from the channel,
 // we don't want error messages spamming the console.
 Unsubscribe(channel);

 // yield break causes Unity to stop exiting this
 // coroutine. It is equivalent to "return;" in
 // a regular method.
 yield break;

PubNub – The Global Chatbox

[178]

 }

 // parse the response
 string newToken;
 // parse the response from the server
 // returned is an array of new messages posted since we
 // last made a request
 string[] newMessages = PubNubUtils.ParseSubscribeResponse(
 www.text, out newToken);

 // store the returned time token
 // this is important to ensure we only get new messages
 timeToken = newToken;

 // make sure we're still subscribed to this channel
 if(channelMessageHandlers.ContainsKey(channel))
 {
 // handle each message separately
 for(int i = 0; i < newMessages.Length; i++)
 {
 channelMessageHandlers[channel](newMessages[i]);
 }
 }
 }
}

And finally, the unsubscribe method. This will simply remove the callback associated
with a given channel, which will break out of the doSubscribe coroutine loop.

// unsubscribe to stop receiving messages from the given channel
public void Unsubscribe(string channel)
{
 channelMessageHandlers.Remove(channel);
}

We now have a functional wrapper around PubNub. To test this, we'll do a simple
script that posts a message to a channel, and listens on the same channel logging
received messages to the console.

using UnityEngine;
using System.Collections;

public class PubNubTest : MonoBehaviour
{
 void Start()

Chapter 5

[179]

 {
 PubNubWrapper.instance.Subscribe("HelloWorld",
 delegate(string message)
 {
 Debug.Log("Received message: " + message);
 });

 PubNubWrapper.instance.Publish("Hello, world!", "HelloWorld");
 }
}

If you place this script, as well as PubNubWrapper, in a scene and click on Play
you'll see after a short delay Received message: Hello, world! printed to the console.
Note that you'll need to paste your Publish and Subscribe keys into the fields in the
PubNubWrapper inspector, like this:

Now that we have a framework built around PubNub, let's get started creating
a global chatbox application.

PubNub – The Global Chatbox

[180]

Creating a global chatbox application
In many ways, our global chatbox will look a lot like the chatbox that we built in
Photon. However, rather than having separate chatrooms, we'll create one single
global chatbox for everyone. There will also be major API differences to keep in
mind—in Photon, we were able to use RPCs to conveniently call a function on all
connected clients which handled chat messages. However, in PubNub we will need
to handle incoming messages, parse them, and process them as chat messages.

In this chatbox example, we'll expand our chatbox with extra functions such as the
/me command. Additionally, you'll be able to change your name (which will be
announced to the room):

using UnityEngine;
using System.Collections;

public class Chatbox : MonoBehaviour
{
 private string PlayerName;
 private string _playerName;

 void Start()
 {
 // we'll assign a random guest name to the player, or load up
 their last name from player prefs
 PlayerName = PlayerPrefs.GetString("PlayerName", "Guest" +
 Random.Range(0, 9999));

 // we use a temporary _playerName to pass to
 GUILayout.TextField so that we avoid changing our actual
 name until we've hit the "Change" button.
 _playerName = PlayerName;

 // subscribe to the chatroom.
 // if you wanted, you could easily create separate chatrooms,
 allow the user to pick a chatroom and simply insert the name
 of the chatroom here.
 PubNubWrapper.instance.Subscribe("Chatbox", HandleMessage);
 }

 // for now we'll simply log messages to the console for testing.
 void HandleMessage(string message)
 {
 Debug.Log(message);
 }

Chapter 5

[181]

 void OnGUI()
 {
 _playerName = GUILayout.TextField(_playerName,
 GUILayout.Width(200f));
 if(GUILayout.Button("Change Name", GUILayout.Width(200f
)))
 {
 // inform everyone else in the room that the player has
 changed their name.
 PubNubWrapper.instance.Publish(PlayerName + " changed
 their name to " + _playerName, "Chatbox");

 // assign the new name
 PlayerName = _playerName;
 }
 }

 void OnApplicationQuit()
 {
 // when the player quits, save their name to player prefs
 so when they come back later it's saved for them.
 PlayerPrefs.SetString("PlayerName", PlayerName);
 }
}

Let's step through this script. Firstly, we load a player name, or generate a new one.
We then subscribe to the Chatbox channel. In OnGUI, we draw a text field for the
player's name and a "Change Name" button. When the player changes their name,
it's announced to the chatroom and the player's name is set. Upon quitting, the name
is saved. Received messages are debug logged to the console.

Publishing chat messages
Next, let's add a text field for publishing messages to the chatbox.

First, we'll add a variable to store the value of the text field. On clicking the Send
button, the text entered by the user is broadcast to the channel and cleared:

private string chatText = "";

We'll add the text field to the end of our OnGUI call as follows:

GUILayout.BeginHorizontal(GUILayout.Width(Screen.width));
{
 chatText = GUILayout.TextField(chatText, GUILayout.ExpandWidth(
true));

PubNub – The Global Chatbox

[182]

 if(GUILayout.Button("Send", GUILayout.Width(100f)))
 {
 // publish the message the player typed as:
 // [playername]: [message]
 PubNubWrapper.instance.Publish(PlayerName + ": " + chatText,
"Chatbox");
 // clear the textbox
 chatText = "";
 }
}
GUILayout.EndHorizontal();

Now you can enter text in the text field and hit Send, and you'll soon see the
message logged to the console.

Right now it always prefixes the message with your name, but let's change this to
support the common /me command. In our GUI Send button code, we'll make
a simple change:

if(GUILayout.Button("Send", GUILayout.Width(100f)))
{
 // did the player type a message like this:
 // /me [message]?
 // If so, publish as:
 // [playername] [message] without the colon.
 if(chatText.StartsWith("/me "))
 {
 chatText = chatText.Replace("/me", "");
 PubNubWrapper.instance.Publish(PlayerName + chatText,
 "Chatbox");
 }
 else
 {
 // publish the message the player typed as:
 // [playername]: [message] PubNubWrapper.instance.
 Publish(PlayerName + ": " + chatText, "Chatbox");
 }
}
 chatText = "";"";}

We simply check if the text begins with "/me", and if so we send the player's name
appended to the text without the colon. The full script so far is as follows:

using UnityEngine;
using System.Collections;

Chapter 5

[183]

public class Chatbox : MonoBehaviour
{
 private string PlayerName;
 private string _playerName;

 private string chatText = "";

 void Start()
 {
 // we'll assign a random guest name to the player, or load up
 their last name from player prefs
 PlayerName = PlayerPrefs.GetString("PlayerName", "Guest" +
 Random.Range(0, 9999));

 // we use a temporary _playerName to pass to
 GUILayout.TextField so that we avoid changing our actual
 name until we've hit the "Change" button.
 _playerName = PlayerName;

 // subscribe to the chatroom.
 // if you wanted, you could easily create separate chatrooms,
 allow the user to pick a chatroom and simply insert the
 name of the chatroom here.
 PubNubWrapper.instance.Subscribe("Chatbox", HandleMessage);
 }

 // for now we'll simply log messages to the console for testing.
 void HandleMessage(string message)
 {
 Debug.Log(message);
 }

 void OnGUI()
 {
 _playerName = GUILayout.TextField(_playerName,
 GUILayout.Width(200f));
 if(GUILayout.Button("Change Name", GUILayout.Width(200f))
)
 {
 // inform everyone else in the room that the player has
 changed their name.
 PubNubWrapper.instance.Publish(PlayerName + " changed
 their name to " + _playerName, "Chatbox");

 // assign the new name

PubNub – The Global Chatbox

[184]

 PlayerName = _playerName;
 }

 GUILayout.BeginHorizontal(GUILayout.Width(Screen.width));
 {
 chatText = GUILayout.TextField(chatText,
 GUILayout.ExpandWidth(true));
 if(GUILayout.Button("Send", GUILayout.Width(100f)))
 {
 // did the player type a message like this:
 // /me [message]?
 // If so, publish as:
 // [playername] [message] without the colon.
 if(chatText.StartsWith("/me "))
 {
 chatText = chatText.Replace("/me", "");
 PubNubWrapper.instance.Publish(PlayerName + chatText,
 "Chatbox");
 }
 else
 {
 // publish the message the player typed as:
 // [playername]: [message]
 PubNubWrapper.instance.Publish(PlayerName + ": " +
 chatText, "Chatbox");
 }
 chatText = "";
 }
 }
 GUILayout.EndHorizontal();
 }

 void OnApplicationQuit()
 {
 PlayerPrefs.SetString("PlayerName", PlayerName);
 }
}

Displaying chat logs
We've finished our basic text commands, so next we'll work on displaying the
received messages.

We'll add received messages to a "List" of strings, and display these in a scroll view.

Chapter 5

[185]

First, we'll add some variables:

private List<string> messages = new List<string>();
private Vector2 scrollPosition = Vector2.zero;

Next, in our HandleMessage function we'll add the message to our list and update
the scroll position:

void HandleMessage(string message)
{
 Debug.Log(message);
 messages.Add(message);

 // too many messages? Remove the oldest one
 if(messages.Count > 100)
 messages.RemoveAt(0);

 // Unity clamps the scroll value. Setting it sufficiently high will
cause it to scroll to bottom.
 scrolPosition.y = messages.Count * 100f;
}

And finally, in our OnGUI method we'll display the message list in a scroll view:

void OnGUI()
{
 _playerName = GUILayout.TextField(_playerName,
 GUILayout.Width(200f));
 if(GUILayout.Button("Change Name", GUILayout.Width(200f)))
 {
 PubNubWrapper.instance.Publish(PlayerName + " changed their
 name to " + _playerName, "Chatbox");
 PlayerName = _playerName;
 }

 scrollPosition = GUILayout.BeginScrollView(scrollPosition,
 GUILayout.Width(Screen.width), GUILayout.Height
 (Screen.height - 75f));
 {
 // display each message
 for(int i = 0; i < messages.Count; i++)
 {
 GUILayout.Label(messages[i]);
 }
 }
 GUILayout.EndScrollView();

PubNub – The Global Chatbox

[186]

 GUILayout.BeginHorizontal(GUILayout.Width(Screen.width));
 {
 chatText = GUILayout.TextField(chatText,
 GUILayout.ExpandWidth(true));
 if(GUILayout.Button("Send", GUILayout.Width(100f)))
 {
 if(chatText.StartsWith("/me "))
 {
 chatText = chatText.Replace("/me", "");
 PubNubWrapper.instance.Publish(PlayerName +
 chatText, "Chatbox");
 }
 else
 {
 PubNubWrapper.instance.Publish(PlayerName + ": " +
 chatText, "Chatbox");
 }
 chatText = "";
 }
 }
 GUILayout.EndHorizontal();
}

At this point, you now have a fully functional global chatbox made with PubNub.
You should now know everything you need to send and receive messages.
Some modifications you could make are as follows:

• Convert your messages to JSON rather than plain text. This allows you to
associate all kinds of extra data with a message, such as who sent a message,
what time it was sent, and so on.

• Add a whisper function. Converting messages to JSON will make this easier.
The chatbox could include "Whisper/Say" tabs. When in Whisper mode,
users enter the name of another user to whisper to. Only that user will
receive the message.

• Add profile pictures. Users can set their picture URL, and messages they sent
will have their picture next to it (if any). Additionally, you could integrate
the "Gravatar.com" service by allowing users to specify their email,
and calculating their avatar URL.

Chapter 5

[187]

Gravatar is a service for avatars which allows users to tie an avatar
to their email address for use by multiple services. Avatar images are
requested by calculating an MD5 hash from the user's email address,
then using the hash to request an image via:

http://www.gravatar.com/avatar/HASH

For more information on requesting Gravatar images, see:

http://en.gravatar.com/site/implement/images/

Summary
In this chapter, we learned about a different method of communication based
around HTTP web services, and learned about an HTTP communication service
known as PubNub. PubNub is good for group communication and passing simple
messages around, rather than multiplayer networking. It also has the advantage of
communicating over HTTP, which is allowed by most firewalls (such as school or
corporate networks).

We learned how to publish messages to channels, and subscribe to receive messages
from a channel. We applied this knowledge to creating a global chatbox application
where users can talk to each other.

In the next chapters, we'll begin covering more advanced networking concepts,
starting with interpolating networked entities, and client-side prediction.

Entity Interpolation
and Prediction

In nearly all games that employ multiplayer networking, entities need to be
interpolated to hide lag and jittery updates. While the updates for an entity only
arrive relatively few times per second, and may even be dropped if using UDP, the
interpolation needs to smooth these and make the final motion appear smooth, and
close to the original player's movements.

Previously, we implemented a simple form of interpolation, by simply interpolating
toward the current network position. This looks sluggish and artificial in many cases,
especially in twitch-style action games where players move quickly and can change
direction on a dime. In this chapter, we'll learn how to implement a form of entity
interpolation inspired by the source game engine, employed in a wide variety of
AAA games.

In many games, it's also very common to give the server full control over everything.
We did this in the chapter on Photon Server, but notice that when the player moved,
it took a while before the commands reached the player and movement felt sluggish
as a result. In this chapter, we'll learn about a way to solve this using client-side
prediction, using methods also inspired by the source game engine, the engine
created by Valve to power games such as Left 4 Dead, Portal, and Team Fortress 2,
and the upcoming Titanfall.

Entity interpolation
So, we need a way to interpolate entities in a way that is smooth and doesn't appear
sluggish to the player (for instance, it should appear to accurately replicate another
player's actions faithfully). Let's take a look at how this is done in the source game
engine by Valve Studios.

Entity Interpolation and Prediction

[190]

By default source sends twenty snapshots per second. Objects only being viewed at
these positions would result in approximately 20 FPS animation, not ideal. In Unity
Networking the default send rate is 15, so it would look even worse.

The way source solves this is by introducing a constant view delay of 100 ms. By
doing so, under normal circumstances there are always two snapshots available to
interpolate between even if a snapshot is lost (due to packet loss). So, as long as the
networking engine has a concept of network time, you can use the current network
time to interpolate between these two snapshots.

This scheme handles dropped packets fairly well. Under normal circumstances, a
dropped packet or two simply means a larger interpolation step (by using network
time to interpolate between two packets, we ensure that the interpolation time is
always correct). In the rare case that more than one packet in a row is dropped, the
entity may pause for a very short duration.

The client-side prediction
If a game employs server-authoritative physics, it usually also needs to employ
client-side prediction of player-controlled objects in order to hide the effects of lag.
However, this is a more difficult problem than it appears at the outset.

Let's say the server periodically broadcasts the state of all objects. If a player is
predicting their own object (and sending inputs to the server), what happens when
the player receives a server update? Usually, especially when moving, they snap
backward to where they were a moment ago in a motion deemed "rubber-banding".
This is because there is always a lag between the client and server.

c

c

s

s

c
s

Chapter 6

[191]

• Client sends input to server and begins moving (resulting in picture 2).
• Server receives message and starts moving player (resulting in picture 3).
• Server sends current position to client (snapping client back to the old

position as shown by the dotted circle). The way Source engine and other
games handle this involves a fair bit of bookkeeping, but in essence it isn't
so hard.

Firstly, the client sends input to the server. The client begins applying this input,
and additionally saves the input to a buffer. The message it sends to the server also
contains the result of the input, such as position.

When the server receives the input, it applies the input to the player object, and then
compares the result with what the client sent as the result. If the client computes
the wrong result (for instance, the position sent by the client is too far off the server
position), the server sends a message to the client telling the client what is the
real result.

When the client receives this correction, it will have been sent some time ago, so the
client needs to figure out what the current state is. To do this, it rewinds back to that
point, and uses the inputs it stored to replay up to the current state. Essentially, you
can think of this as "changing the past"—we're trying to simulate the effects of going
back in time and changing the result of a calculation.

One of the most important things to remember about client-side prediction is that,
it requires the predicted code to be entirely deterministic—given the same input, it
needs to have the same output. Your client and server not only need to run the exact
same code with the exact same inputs, you also often need to ensure this code is run
in the exact same order (for example, if your client gathers input then updates, while
your server updates then gathers input, you'll have plenty of problems).

Rigidbody simulation
If you read through this chapter, you may notice we do not cover rigid bodies.

There's a reason for this. At the moment, Unity's built-in physics do not support
manually stepping physics. Manually stepping the simulation is crucial for both
client-side prediction, as well as server-side logic. Since we can't accurately step rigid
bodies, we can't perform client-side prediction on them.

Entity Interpolation and Prediction

[192]

However, if your game relies on Rigid body simulation (for instance, if players are in
control of vehicles), and you require client-side prediction, one possible solution is to
integrate a third-party physics engine. This will require some work, but will give you
the most control over how the world is stepped, when, and so on. There are a wide
variety of free and opensource third-party physics engines written in .NET, such
as the Jitter physics engine, or Henge3D. Many of these were designed for use with
Microsoft's XNA toolkit, but some are framework-agnostic.

Again, integrating a third-party physics engine is not a task to be taken lightly, but
if you need Rigid body simulation with server-authoritative movement it may
prove necessary.

Most C# engines are based on (and require) XNA framework classes and will not
work in Unity. However, the Jitter engine is one of the few that is completely self-
contained. You can check out Jitter at: http://jitter-physics.com/wordpress/.

Creating a networked object
Before we can apply interpolation or prediction, we'll need a base to build off of.
We'll create a networked object which can be moved around via arrow keys. We'll
start with absolutely no interpolation whatsoever—the object instantly appears at the
newest location received over the network.

First, let's create a very simple player script.

using UnityEngine;
using System.Collections;

public class Player : MonoBehaviour
{
 public float MoveSpeed = 5f;

 void Update()
 {
 if(networkView == null || networkView.isMine)
 {
 transform.Translate(new Vector3(Input.GetAxis(
 "Horizontal"), 0, Input.GetAxis("Vertical")) *
 MoveSpeed * Time.deltaTime);
 }
 }
}

http://jitter-physics.com/wordpress/

Chapter 6

[193]

This script is very basic. It simply checks if the network view belongs to the local
player (or does not exist), and if so it moves the transform with the horizontal and
vertical axes (in Unity, by default these correspond to WASD and arrow key pairs, as
well as left thumb stick axes on many controllers).

We'll also create our networking script, which is watched by the network view:

using UnityEngine;
using System.Collections;

public class NetworkedPlayer : MonoBehaviour
{
 void OnSerializeNetworkView(BitStream stream,
 NetworkMessageInfo info)
 {
 Vector3 position = Vector3.zero;
 if(stream.isWriting)
 {
 position = transform.position;
 stream.Serialize(ref position);
 }
 else
 {
 stream.Serialize(ref position);
 transform.position = position;
 }
 }
}

This is the absolute simplest script for networking. It simply sends and receives
position. Upon receiving position it immediately "snaps" to the received value.
Naturally, this is going to suffer the most in the presence of lag—even the smallest
delay will be noticeable, and even with zero lag, position updates will appear jittery
as most games send position updates between 10 to 20 times per second. However, it
will serve well as the basis for our demo.

To complete our testbed, we'll create two scenes: Our main menu, and our
networked scene. I'll name these MainMenu and GameScene.

We'll first create the script for the main menu as follows:

using UnityEngine;
using System.Collections;

public class MainMenu : MonoBehaviour

Entity Interpolation and Prediction

[194]

{
 private string connectIP = "127.0.0.1";

 void OnGUI()
 {
 if(GUILayout.Button("Host"))
 {
 // host a game
 Network.InitializeServer(8, 25005, true);

 // load level
 Application.LoadLevel("GameScene");
 }

 connectIP = GUILayout.TextField(connectIP);
 if(GUILayout.Button("Connect"))
 {
 // connect
 Network.Connect(connectIP, 25005);
 }
 }

 void OnConnectedToServer()
 {
 Network.isMessageQueueRunning = false;

 // load level
 Application.LoadLevel("GameScene");
 }
}

This script allows the user to either host a server (by clicking on the Host button), or
connect to a server (by entering the server's IP and clicking on Connect).

In both cases, the game will load the GameScene object after hosting or joining a
game. If the user is joining a server, it will additionally disable the network queue, so
that important messages do not arrive until the level has been loaded (otherwise, as
covered in the first chapter, spawned objects will be deleted upon level load).

Place this script on an empty object in the MainMenu scene.

Next, we'll create a script to spawn our networked object. For simplicity, we'll simply
spawn at the game object position the script is attached to. In a real game you might
randomly select a spawn point.

Chapter 6

[195]

Note that we use a coroutine for this. We first wait for two frames, then enable the
message queue and spawn our object.

This is because, if we join a server, we've disabled the network queue before loading
the level. Level loading takes two frames, so we'll need to wait for those two frames
and then enable the message queue.

using UnityEngine;
using System.Collections;

public class SpawnPlayer : MonoBehaviour
{
 public GameObject Player;

 IEnumerator Start()
 {
 yield return null;
 yield return null;
 Network.isMessageQueueRunning = true;
 Network.Instantiate(Player, Vector3.zero,
 Quaternion.identity, 0);
 }
}

This is placed on an empty game object in our game scene. We'll also need to save
our networked object as a prefab and drag it onto the Player slot.

If you run the game now, you should have an example with movable cubes for each
player. As you can see, movement of other players appears very jittery. We're going
to resolve this using interpolation.

Adding naive interpolation
First, let's add the simplest form of entity interpolation. We'll simply store the
position of the object received over the network, and in Update we simply lerp to the
new position. This is the interpolation we used in the first chapter when creating the
Pong clone.

First, we'll create a temporary variable to hold values received over the network.

private Vector3 lastReceivedPosition;

We'll initialize this to the current position in Start.

void Start()
{

Entity Interpolation and Prediction

[196]

 lastReceivedPosition = transform.position;
}

In our OnSerializeNetworkView function, we'll store our received value in this
variable, rather than directly assigning transform position.

void OnSerializeNetworkView(BitStream stream, NetworkMessageInfo
 info)
{
 Vector3 position = Vector3.zero;
 if(stream.isWriting)
 {
 position = transform.position;
 stream.Serialize(ref position);
 }
 else
 {
 stream.Serialize(ref position);
 lastReceivedPosition = position;
 }
}

And finally, we'll use the Lerp function to interpolate towards the received value.

void Update()
{
 if(!networkView.isMine)
 {
 transform.position = Vector3.Lerp(transform.position,
 lastReceivedPosition, Time.deltaTime * 10f);
 }
}

Now, the movement of remote players will be significantly less jerky. However,
this method has a number of problems. Using Lerp in this fashion tends to produce
what is referred to as "ease-out" behavior: the object initially moves quickly towards
the target, slowing down as it approaches until it comes to a stop at the target
point (Time.deltaTime yields a good base value, which we can multiply by some
arbitrary factor to speed up or slow down the interpolation).

This works based on essentially a percentage of the remaining distance—as the
distance is shorter, the same percentage of that distance becomes a smaller value
(which results in the interpolation slowing down as it approaches the target). This
is one of the easiest forms of interpolation, as it involves zero bookkeeping or
temporary variables.

Chapter 6

[197]

However, it can lead to a very "mushy" feel, especially in a game where players have
a high degree of control over their character. We could increase the interpolation
speed, but this takes fine-tuning so as to strike a balance between the aforementioned
"mushy" feel, and interpolation which is too fast and leads to jerkiness.

What we need is a way to closely replicate the original movement of the player object
in a way that looks natural and doesn't need fine tuning to get right. We'll borrow
some ideas from the aforementioned source game engine to interpolate our entities.

Improving interpolation
Here's how our new interpolation will work, inspired by the methods employed in
the Source game engine:

• As we receive network states, we buffer them up
• Each network state is timestamped with network time
• We subtract a value from time to find a time in the past (in source, this

value is 0.1 by default—so entities are always shown one tenth of a second
in the past)

• We find the two states on either side of this time value, and interpolate
between them

• Let's get started

First, we need some kind of struct to store a snapshot of the network state:

// a snapshot of values received over the network
private struct networkState
{
 public Vector3 Position;
 public double Timestamp;

 public networkState(Vector3 pos, double time)
 {
 this.Position = pos;
 this.Timestamp = time;
 }
}

We'll keep a buffer of these to interpolate in between. Note our use of arrays for this
purpose. We use a statically sized array for better performance (if we used a List,
internally the List allocates new arrays whenever it needs to resize, which can
trigger garbage collection). This also gives us a strict upper limit on the number of
states which can be stored.

Entity Interpolation and Prediction

[198]

When we need to store a new state, we shift the entire array to the right (that is, the
element at index 0 is moved to 1, 1 is moved to 2, and so on). The element at index
19 has nowhere to go, and is therefore deleted. We then insert the newest state at
index 0:

// we'll keep a buffer of 20 network states
networkState[] stateBuffer = new networkState[20];
int stateCount = 0; // how many states have been recorded

And finally, we'll expose how far back interpolation goes as an inspector field for
easy tweaking. By default, it's one tenth of a second:

// how far back to rewind interpolation?

public float InterpolationBackTime = 0.1f;

We'll create a utility function for buffering a state received over the network. This
will first shift the array to the right, as mentioned previously, before storing the
newest state at 0. It will then increase the count of states recorded, up to a maximum
of 20 (the length of our buffer). We'll do this by setting stateCount to the smaller
value, either the current state count plus one, or the maximum number of states.

// save new state to buffer
void bufferState(networkState state)
{
 // shift buffer contents to accommodate new state
 for(int i = stateBuffer.Length – 1; i > 0; i--)
 {
 stateBuffer[i] = stateBuffer[i – 1];
 }

 // save state to slot 0
 stateBuffer[0] = state;

 // increment state count
 stateCount = Mathf.Min(stateCount + 1, stateBuffer.Length);
}

Next, we'll modify the OnSerializeNetworkView function to buffer states received
over the network.

void OnSerializeNetworkView(BitStream stream, NetworkMessageInfo
 info)
{
 Vector3 position = Vector3.zero;
 if(stream.isWriting)
 {

Chapter 6

[199]

 position = transform.position;
 stream.Serialize(ref position);
 }
 else
 {
 stream.Serialize(ref position);
 bufferState(new networkState(position, info.timestamp));
 }
}

And finally, we'll perform the interpolation. This involves subtracting
InterpolationBackTime from Network.time, which essentially yields a time
value in the past, finding the two states on either side of this time, and interpolating
between them based on the time. If we don't have enough states to interpolate
between, we simply do nothing—this will result in the occasional hitch or pause, but
can't really be avoided and is present in nearly every multiplayer game.

void Update()
{
 if(networkView.isMine) return; // don't run interpolation on
 the local object
 if(stateCount == 0) return; // no states to interpolate

 double currentTime = Network.time;
 double interpolationTime = currentTime - InterpolationBackTime;

 // the latest packet is newer than interpolation time - we have
 enough packets to interpolate
 if(stateBuffer[0].Timestamp > interpolationTime)
 {
 for(int i = 0; i < stateCount; i++)
 {
 // find the closest state that matches network time, or use
 oldest state
 if(stateBuffer[i].Timestamp <= interpolationTime || i ==
 stateCount - 1)
 {
 // the state closest to network time
 networkState lhs = stateBuffer[i];

 // the state one slot newer
 networkState rhs = stateBuffer[Mathf.Max(i - 1, 0)];

 // use time between lhs and rhs to interpolate
 double length = rhs.Timestamp - lhs.Timestamp;

Entity Interpolation and Prediction

[200]

 float t = 0f;
 if(length > 0.0001)
 {
 t = (float)((interpolationTime - lhs.Timestamp) /
 length);
 }

 transform.position = Vector3.Lerp(lhs.Position,
 rhs.Position, t);
 break;
 }
 }
 }
}

If you test our demo game with this new method of interpolation, remote player
objects should move very smoothly, completely natural (past 10 states per second it
can closely reproduce player movement even in a fast-paced shooter), and with no
jitter whatsoever. But, we still have a big problem—players have a lot of control over
their player object. Because players have such control over their own avatar, there
are a variety of well-known cheating methods in the hacker community. One such
cheat is called "noclipping", named after a developer command in the source game
engine, which disables all collisions for the player object and allowed them to fly
about the map like a ghost. Another exploit, called N-stepping (for "ninja stepping")
or alternatively lag-stepping involves temporarily disconnecting your internet,
moving, and then reconnecting. This results in teleporting, as the player doesn't
send any move updates for some amount of time until the Internet is reconnected (at
which point, the player has moved some distance away). This can easily circumvent
speed hack detection, as generally speed hack heuristics must deal with lagging
players and can't tell the difference between N-stepping and honest lag.

The way we solve all of these problems is by employing server authoritative
movement.

Preparing for server authoritative
movement
Before we get started, we'll need to restructure our scripts. We're going to change
the Update function so that it isn't called automatically, and instead will be called by
our networking scripts. We need to do this so that we have direct control over the
exact order in which the simulation is stepped, otherwise we can easily end up with
desyncs and rubber banding.

Chapter 6

[201]

using UnityEngine;
using System.Collections;

public class Player : MonoBehaviour
{
 public float MoveSpeed = 5f;

 [System.NonSerialized]
 public float horizAxis = 0f;
 [System.NonSerialized]
 public float vertAxis = 0f;

 void Update()
 {
 if(networkView.isMine)
 {
 horizAxis = Input.GetAxis("Horizontal");
 vertAxis = Input.GetAxis("Vertical");
 }
 }

 public void Simulate()
 {
 transform.Translate(new Vector3(horizAxis, 0, vertAxis) *
 MoveSpeed * Time.fixedDeltaTime);
 }
}

A few things to take note of: instead of using Update, we've moved our movement
code into a Simulate function (which later will be called from FixedUpdate). We've
also changed our Update function to store input in temporary variables. This is for
two reasons: we'll be gathering input data on every frame. If we sent input with
every instance of Update, that would make things heavily frame rate dependent—a
game that runs at 200 FPS will have 200 frames of input to send to the server,
whereas a game that runs at 30 FPS will have 30 frames to send to the server for the
exact same time period. However, FixedUpdate runs a fixed number of times per
second—by default, 50. Our client will have 50 frames of input to send to the server
regardless of frame rate. Additionally, FixedUpdate utilizes a fixed delta time which
does not vary regardless of frame rate. This reduces the chance of getting hacked—if
we used Update, we would have to send the frame delta to the server in order for
the server to properly reproduce the same motion, making it possible for clients to
teleport by specifying a sufficiently high delta value.

Entity Interpolation and Prediction

[202]

This is why we store the input values in Update and act on them in our Simulate
function—the Input class does not work properly when called directly from
FixedUpdate, and in many cases button presses will be skipped.

Implementing server authoritative
movement
Now that we have our script structured the way we need, we can go ahead and
implement the rest. First, we'll create a structure to hold move commands:

// represents a move command sent to the server
private struct move
{
 public float HorizontalAxis;
 public float VerticalAxis;
 public double Timestamp;

 public move(float horiz, float vert, double timestamp)
 {
 this.HorizontalAxis = horiz;
 this.VerticalAxis = vert;
 this.Timestamp = timestamp;
 }
}

On the server, we'll store a buffer of move states sent from the client. We'll also keep
a reference to our Player script for the client and server:

// a history of move states sent from client to server
List<move> moveHistory = new List<move>();

// a reference to the Player script attached to the game object.
Player playerScript;

// get the Player component
void Start()
{
 playerScript = GetComponent<Player>();
}

Chapter 6

[203]

Now, in FixedUpdate we'll grab the current move state, buffer it, call the Simulate
function, then send the move state and the resulting position to the server. This part
runs on the client:

 void FixedUpdate()
 {
 if(networkView.isMine)
 {
 // get current move state
 move moveState = new move(playerScript.horizAxis,
 playerScript.vertAxis, Network.time);

 // buffer move state
 moveHistory.Insert(0, moveState);

 // cap history at 200
 if(moveHistory.Count > 200)
 {
 moveHistory.RemoveAt(moveHistory.Count - 1);
 }

 // simulate
 playerScript.Simulate();

 // send state to server
 networkView.RPC("ProcessInput", RPCMode.Server,
 moveState.HorizontalAxis, moveState.VerticalAxis,
 transform.position);
 }
 }

On the server, we simulate the player, then compare the resulting position with the
position sent by the player. If the position sent by the player is too far apart from
the position calculated by the server, a message is sent to the client telling them to
correct their state.

[RPC]
void ProcessInput(float horizAxis, float vertAxis, Vector3
 position, NetworkMessageInfo info)
{
 if(networkView.isMine)
 return;
 if(!Network.isServer)
 return;

Entity Interpolation and Prediction

[204]

 // execute input
 playerScript.horizAxis = horizAxis;
 playerScript.vertAxis = vertAxis;
 playerScript.Simulate();

 // compare results
 if(Vector3.Distance(transform.position, position) > 0.1f)
 {
 // error is too big, tell client to rewind and replay
 networkView.RPC("CorrectState", info.sender,
 transform.position);
 }
}

Finally, on the client we'll receive this CorrectState message, rewind back to the
correct position, and replay all inputs from that point on to the current time.

[RPC]
void CorrectState(Vector3 correctPosition, NetworkMessageInfo
 info)
{
 // find past state based on timestamp
 int pastState = 0;
 for(int i = 0; i < moveHistory.Count; i++)
 {
 if(moveHistory[i].Timestamp <= info.timestamp)
 {
 pastState = i;
 break;
 }
 }

 // rewind
 transform.position = correctPosition;
 // replay
 for(int i = pastState; i >= 0; i--)
 {
 playerScript.horizAxis = moveHistory[i].HorizontalAxis;
 playerScript.vertAxis = moveHistory[i].VerticalAxis;
 playerScript.Simulate();
 }

 // clear
 moveHistory.Clear();
}

Chapter 6

[205]

We're not done yet, however. Our client is still sending raw position to other
clients, rather than the server. In order to implement full server authority in Unity
Networking, we'll have to scrap the OnSerialize function in favor of RPCs.
Unfortunately, this means our entire networking system will rely on reliable
messages—The network libraries covered in this book are not well suited to this
style of networking as they do not support unreliable RPCs, but for this example
Unity Networking will do to teach the concepts. In a production game there are
many similar alternatives, which would work better, such as uLink or TNet as they
support unreliable messages. So, instead of utilizing OnSerializeNetworkView,
we'll create a new RPC netUpdate. This will broadcast state information to clients:

[RPC]
void netUpdate(Vector3 position, NetworkMessageInfo info)
{
 if(!networkView.isMine)
 {
 bufferState(new networkState(position, info.timestamp));
 }
}

And, we'll broadcast this from our Update function, 10 times per second:

private float updateTimer = 0f;
void Update()
{
 // is this the server? send out position updates every 1/10th of
 a second.
 updateTimer += Time.deltaTime;
 if(updateTimer >= 0.1f)
 {
 updateTimer = 0f;
 networkView.RPC("netUpdate" RPCMode.Others,
 transform.position);
 }

 // [snip]
}

And now, our networking system is fully server authoritative, with no client-side lag
and in almost all cases no "rubber banding" at all.

Entity Interpolation and Prediction

[206]

Notes on hacking
There are some improvements which can be made here, in order to further protect it
from exploits. For instance, the server now immediately runs a simulation step when
the user sends input. One only needs to send input at a faster rate in order to exploit
this system.

We can modify our server to process input at a fixed rate, perhaps via a queue of
move commands which are processed one at a time in FixedUpdate. Care needs to
be taken to ensure that the server doesn't fall behind when processing user input.

The server could also keep track of the last processed input message, and when a
new message is received the server compares the timestamps, discarding the new
message if the timestamps are too close together. This could also be potentially
exploited if the user tampers with timestamp values sent with the message. You
could impose a limit on timestamps, so they cannot be older than a threshold (say,
a few seconds), and cannot be newer than the current time (which is physically
impossible). Additionally, the timestamp of the last message is recorded and
messages older than the last message are automatically discarded. This imposes a
much smaller window on hackers in which they can exploit timestamps, and once
they exhaust this window they can no longer use the exploit.

Summary
In this chapter, we learned how to apply concepts used in AAA releases to hiding
the effects of lag in order to create a better overall game experience. We applied
smart entity interpolation to smooth the movement of entities and closely replicate
the original motion of the player. We then modified our code to employ server-
authoritative simulation for a hack-free game, with client-side input prediction with
almost no rubber banding at all.

These concepts are particularly well suited to games utilizing direct client-to-server
connections where the server will be simulating the state of the game, and for
networking systems that allow for the use of unreliable messages to be sent.

In the next chapter, we'll cover a simple way to remove the need to lead targets in a
server-authoritative shooter game: hitbox rewinding.

Server-side Hit Detection
There are many multiplayer games which involve shooting at their core, and there
will be plenty more to come. These games all need some way to keep in sync who's
shooting at who, and who gets hurt and dies. There are a number of ways to solve
this problem.

The most obvious solution is simply to have player clients send a damage message.
If the player hits someone, send a damage message to the server. The server deals
damage to the appropriate player. There is a huge, glaring flaw in this design:
players can, and will, cheat the game. It's truly staggering how many client-side
hacking programs there are available—programs that send messages to the server,
programs that directly modify variables on the client, and so on. A player could
easily specify any player to be damaged, and any amount of damage to deal. It gets
even worse if the client handles damage messages instead of the server, as the client
can also make themselves invincible with almost no effort at all.

Clearly, we cannot trust the client at all, or our game will quickly become infested
with cheaters and hackers. Clearly, the solution is to have the server handle all of
this—it handles damage and health, it does its own hit detection, and so on.
The client almost has no part in the server's work, aside from sending input to the
server (just as in the last chapter, we'll have the client send input to the server—in
this case, the state of the fire button).

There is one problem with this method, and in fact many games have this problem.
When the player sends the button down message to the server, it may take some
time for the message to reach the server. By the time it does, the target the player
was looking at has moved—in some cases, out of the line of fire. This is why many
games require you to lead your target if they are moving.

Server-side Hit Detection

[208]

To solve this, we're going to implement entity rewinding. Entity rewinding involves
storing every network state of an entity—this may seem familiar to you, as we did
something very similar in the last chapter. When a player tries to fire their weapon,
the server actually rewinds the network state of every entity based on that player's
ping, performs the raycast, and then restores the network state of every entity.
Essentially, the server goes back in time to figure out where each entity was when
the player sent the message (before it reached the server). This allows players to aim
at their intended target without any sort of leading.

Client-side versus server-side hit
detection
Let's take a look at what our client-side and server-side hit detection might look
like. For client-side hit detection, you perform the hit detection on the client and
directly generate a damage message to send to the server. For instance:

using UnityEngine;
using System.Collections;

public class WeaponScript : MonoBehaviour
{
 public float Damage = 10f;
 public LayerMask HitLayers;

 public void Fire()
 {
 RaycastHit hit;
 if(Physics.Raycast(transform.position, transform.forward,
 out hit, 100f, HitLayers))
 {
 // a script on the object could handle this by generating an
 RPC, for example
 hit.collider.SendMessage("TakeDamage", Damage,
 SendMessageOptions.DontRequireReceiver);
 }
 }
}

It's very short, simple, and incredibly easy to understand. However, it's also
incredibly open to hacking. Players can easily spoof the damage message to send
damage messages to whoever they wish, and they can also easily modify the damage
amount to any amount. To solve this, we need the server to figure out by itself who
the player hits, and how much damage to deal.

Chapter 7

[209]

Let's take a look at what naive server-side hit detection might look like:

using UnityEngine;
using System.Collections;

public class WeaponScript : MonoBehaviour
{
 public float Damage = 10f;
 public LayerMask HitLayers;

 public void Fire()
 {
 // tell the server to perform hit detection
 networkView.RPC("serverDoFire", RPCMode.Server);
 }

 [RPC]
 public void serverDoFire()
 {
 RaycastHit hit;
 if(Physics.Raycast(transform.position, transform.forward,
 out hit, 100f, HitLayers))
 {
 // a script on the object could handle this by generating
 an RPC, for example
 hit.collider.SendMessage("TakeDamage", Damage,
 SendMessageOptions.DontRequireReceiver);
 }
 }
}

It's nearly the exact same code, the main difference is that we moved the hit
detection into an RPC and when we fire the weapon, this RPC is executed on the
server. This makes things much more difficult to hack, as players can only tell
the server they fired their weapon and the server handles the rest—hit detection,
damage, and death.

This does have the side effect of requiring target leading, which gets worse when
latency increases.

Server-side Hit Detection

[210]

For instance, let's say we have player A running toward and shooting at player
B. This is what the client and server see (approximately):

A

B

At this point, player A sends a fire message to the server. Let's say in an extreme case
this message takes a full second to reach the server (of course, it's rarely ever more
than a fraction of a second, but the effects can still be quite noticeable). By the time
the message reaches the server, this might be what the server sees:

A

B

If the server performed hitscan now, it would completely miss player B, and even
though this is a perfectly explainable situation, it may frustrate player A and even
cause them to quit playing, or accuse player B of hacking, and so on.

We can modify our hitscan function to make calls to a hypothetical rewinding function:

[RPC]
public void serverDoFire(NetworkMessageInfo info)
{
 // how long ago was this message sent?
 double timeDiff = Network.time – info.timestamp;
 // rewind network entities
 EntityRewinder.Rewind(timeDiff);

 //perform hitscan
 RaycastHit hit;
 if(Physics.Raycast(transform.position, transform.forward, out
 hit, 100f, HitLayers))
 {
 // a script on the object could handle this by generating an
 RPC, for example
 hit.collider.SendMessage("TakeDamage", Damage,
 SendMessageOptions.DontRequireReceiver);
 }

 // restore network entities
 EntityRewinder.Restore();
}

Chapter 7

[211]

So, we calculate how long ago, in seconds, the message was sent from the client.
We then rewind every entity to where they were at the time the message was sent.
Then, we perform the hitscan. Finally, we restore every entity back to the current
state. This way, the player does not have to lead their targets, and overall the game
will feel much more natural as a result.

Creating a testbed
Before we create our rewinding system, we'll need a demo game to build off. For
this one, we'll create a simple first person shooter (there is a pre-made first person
controller asset included with Unity). Players can click to shoot, which will deal
with 10 damages to the target. After receiving 100 or more damages, the player is
disconnected from the match.

First, we'll start on an empty project. Import the Character Controller package
(Assets | Import Package | Character Controller). This includes a first person
character controller prefab (Standard Assets | Character Controllers | First
Person Controller).

Server-side Hit Detection

[212]

Drag this prefab into your scene. Additionally, create a plane for the character
to stand on (make sure it's big enough for several players to run around).

The first thing we'll do is create a script for our networked player. For the sake
of the demonstration we'll use a very simple method of interpolation.

Firstly, the base script. We only need three functions here: Start, Update, and
OnSerializeNetworkView.

using UnityEngine;
using System.Collections;

public class NetworkPlayer : MonoBehaviour
{
 private Transform camTransform;

 private Vector3 lastReceivedPos;
 private Quaternion lastReceivedRot;
 private Quaternion lastReceivedCamRot;

 void Start()
 {
 }

 void Update()
 {
 }

 void OnSerializeNetworkView(BitStream stream,
 NetworkMessageInfo info)
 {
 }
}

In Start, we'll get a reference to the camera transform, and disable scripts as
needed, depending on whether this a local or remote player:

void Start()
{
 // get camera transform
 camTransform = GetComponentInChildren<Camera>().transform;

Chapter 7

[213]

 // if this doesn't belong to the local player, disable input and
 camera
 if(!networkView.isMine)
 {
 GetComponent<FPSInputController>().enabled = false;
 camTransform.camera.enabled = false;
 }
}

In OnSerializeNetworkView, we'll serialize the position of the player, rotation of the
player, and rotation of the camera:

void OnSerializeNetworkView(BitStream stream, NetworkMessageInfo
 info)
{
 if(stream.isWriting)
 {
 // serialize position and rotation
 Vector3 position = transform.position;
 Quaternion rotation = transform.rotation;
 Quaternion camRotation = camTransform.localRotation;

 stream.Serialize(ref position);
 stream.Serialize(ref rotation);
 stream.Serialize(ref camRotation);
 }
 else
 {
 // deserialize position and rotation
 Vector3 position = Vector3.zero;
 Quaternion rotation = Quaternion.identity;
 Quaternion camRotation = Quaternion.identity;

 stream.Serialize(ref position);
 stream.Serialize(ref rotation);
 stream.Serialize(ref camRotation);

 // store values to be interpolated towards
 lastReceivedPos = position;
 lastReceivedRot = rotation;
 lastReceivedCamRot = camRotation;
 }
}

Server-side Hit Detection

[214]

Finally, in Update we'll interpolate toward the values received over the network:

void Update()
{
 // interpolate towards last received network state
 if(!networkView.isMine)
 {
 transform.position = Vector3.Lerp(transform.position,
 lastReceivedPos, Time.deltaTime * 10f);
 transform.rotation = Quaternion.Slerp(transform.rotation,
 lastReceivedRot, Time.deltaTime * 10f);
 camTransform.localRotation = Quaternion.Slerp(
 camTransform.localRotation, lastReceivedCamRot,
 Time.deltaTime * 10f);
 }
}

With this code the server now has enough information to perform hitscans: it has
the position of the player, the player orientation, and the player look direction
(camera rotation).

Next, we'll create the base script for our weapon. This is equivalent to the first
naive weapon script introduced earlier:

using UnityEngine;
using System.Collections;

public class WeaponScript : MonoBehaviour
{
 public float Damage = 10f;

 public LayerMask HitLayers = ~0;
 // note: ~ [tilde] is the unary complement operator - basically
 it flips all bits of input
 // LayerMask, internally, is actually a bitmask where each bit
 represents a layer – every bit enabled includes the given
 layer in the mask (this is why there are 32 layers - there are
 32 bits in an integer). No bits on (zero) means an empty
 layermask,
 // in the number 0, all bits are zero. ~0 is the opposite - all
 bits are on (and is equal to int.MaxValue). This equivalent to
 an "Everything" layermask.

Chapter 7

[215]

 void Update()
 {
 // if this is the local network view, and the user presses the
 left mouse button, call the Fire function
 if(networkView.isMine && Input.GetMouseButtonDown(0))
 {
 Fire();
 }
 }

 void Fire()
 {
 RaycastHit hit;
 if(Physics.Raycast(transform.position, transform.forward,
 out hit, 100f, HitLayers))
 {
 // let a script on the object handle taking damage
 hit.collider.SendMessage("TakeDamage", Damage,
 SendMessageOptions.DontRequireReceiver);
 }
 }
}

This goes on the camera (you'll need to attach a network view to it as well).

We'll also create a damage component:

using UnityEngine;
using System.Collections;

public class Damage : MonoBehaviour
{
 public float Health = 100f;

 void TakeDamage(float damage)
 {
 if(!Network.isServer)
 {
 // send an RPC to the server
 networkView.RPC("serverTakeDamage", RPCMode.Server, damage
);
 }

Server-side Hit Detection

[216]

 else
 {
 // note: RPCs with RPCMode.Server, sent from the server "to
 itself" will not work, the RPC simply fails silently.
 // so we'll manually call the function instead
 serverTakeDamage(damage);
 }
 }

 [RPC]
 void serverTakeDamage(float damage)
 {
 // make sure the player isn't already dead
 if(Health <= 0) return;

 // subtract damage from health
 Health -= damage;

 // check if player is dead
 if(Health <= 0f)
 {
 // kick player out of the game when they die
 Network.CloseConnection(networkView.owner, true);
 }
 }
}

Whenever the component receives the TakeDamage message, it will send a message
to the server which subtracts the damage value from Health. If Health hits zero,
the player is kicked out of the game.
Finally, we'll create a spawn script for our player:

using UnityEngine;
using System.Collections;

public class SpawnScript : MonoBehaviour
{
 public GameObject PlayerObject;

 void Start()
 {
 // spawn the player object
 Network.Instantiate(PlayerObject, transform.position,
 transform.rotation, 0);
 }
}

Attach this to an empty game object in the scene and drag your player prefab onto
the PlayerObject slot.

Chapter 7

[217]

I won't cover how to create a main menu for this demo. You can refer to Chapter 1,
Unity Networking – The Pong Game for the example code.

By now, you should have a fully functioning testbed. We're now going to modify
this to add our server-side hit detection.

Moving hit detection to the server
Our first order of business is to move the raycast function to the server.

We have a readymade solution for this—we can simply mark our Fire function
as an RPC, and instead of calling it directly, we broadcast an RPC instead.

First, we'll modify our Fire function as follows:

[RPC]
void Fire()
{
 // this code should never execute on any machine other than the
 server/host
 if(!Network.isServer)
 return;

 RaycastHit hit;
 if(Physics.Raycast(transform.position, transform.forward, out
 hit, 100f, HitLayers))
 {
 // let a script on the object handle taking damage
 hit.collider.SendMessage("TakeDamage", Damage,
 SendMessageOptions.DontRequireReceiver);
 }
}

We'll then send an RPC to call the Fire function rather than directly calling it:

void Update()
{
 if(networkView.isMine && Input.GetMouseButtonDown(0))
 {
 // if we're the server, just directly call the function
 // remember, server cannot use RPCMode.Server, the RPC is
 simply dropped. So we have to directly call method instead
 if(Network.isServer) Fire();
 else networkView.RPC("Fire" RPCMode.Server);
 }
}

Server-side Hit Detection

[218]

And finally, we need to modify Damage to accommodate our new changes. Note that
clients do not send damage to the server anymore, so we'll modify our RPC to work in
the reverse—rather than clients sending to the server, the server now sends to clients.

The changes are pretty big, so it's best to simply rewrite the component altogether:

using UnityEngine;
using System.Collections;

public class Damage : MonoBehaviour
{
 public float Health = 100f;

 void TakeDamage(float damage)
 {
 // this code should only ever execute on the server
 if(!Network.isServer)
 return;

 // if you plan on calling TakeDamage multiple times per frame
 (for example, Shotgun-type weapons can easily result in
 this), this part is important – it checks if the entity
 already died earlier in the frame, to ensure the death code
 isn't triggered more than once.
 if(Health <= 0) return;

 // subtract damage from health
 Health -= damage;

 // check if player died
 if(Health <= 0)
 {
 // clamp to zero just in case – it looks weird when a player
 has negative health.
 Health = 0;

 // kick player out of the game when they die
 Network.CloseConnection(networkView.owner, true);
 }

 // notify clients of new health value
 networkView.RPC("setHealth" RPCMode.Others, Health);
 }

 [RPC]
 void setHealth(float health)
 {
 Health = health;
 }
}

Chapter 7

[219]

Note that we simply send the entire health value to the clients now, rather than just
the change in health. This ensures clients never have incorrect health values.

Now our hit detection is fully server authoritative, meaning players cannot cheat the
system as they could before. However, this still presents the issue of target leading,
as it takes time for the fire message to reach the server and in this time the target for
a shot likely has moved on.

Entity rewinding
In order to solve this, we need to store the state of entities at every network update.
When the entity needs to be rewound, we find the two states on either end of the
target past time, and interpolate between them. This technique actually shares
many similarities with the entity interpolation code we wrote in the last chapter,
and in some places you could potentially reuse some of the same code.

So, in our network player class, we'll create a new struct to store the network state:

private struct networkState
{
 public Vector3 Position;
 public Vector3 Rotation;
 public Vector3 CamRotation;
 public double Timestamp;
}

We'll keep a buffer of these states, using an array just as in the last chapter:

private networkState[] stateBuffer = new networkState[20];
private int stateCount = 0;

To store a state, we shift the states and insert the state at 0, incrementing the
state count:

void bufferState(networkState state)
{
 // shift states
 // the state at index 0 moves to index 1, 1 moves to 2, etc
 // the state at index 20 is deleted
 for(int i = stateBuffer.Length – 1; i > 0; i--)
 {
 stateBuffer[i] = stateBuffer[i-1];
 }

Server-side Hit Detection

[220]

 // insert newest state at 0
 stateBuffer[0] = state;

 // increment state count, up to a maximum of 20
 stateCount = Mathf.Max(stateBuffer.Length, stateCount + 1);
}

We'll store one of these states whenever we receive a state update over the network:

void OnSerializeNetworkView(BitStream stream, NetworkMessageInfo
 info)
 {
 if(stream.isWriting)
 {
 // serialize position and rotation
 Vector3 position = transform.position;
 Quaternion rotation = transform.rotation;
 Quaternion camRotation = camTransform.localRotation;

 stream.Serialize(ref position);
 stream.Serialize(ref rotation);
 stream.Serialize(ref camRotation);
 }
 else
 {
 // deserialize position and rotation
 Vector3 position = Vector3.zero;
 Quaternion rotation = Quaternion.identity;
 Quaternion camRotation = Quaternion.identity;

 stream.Serialize(ref position);
 stream.Serialize(ref rotation);
 stream.Serialize(ref camRotation);

 // store values to be interpolated towards
 lastReceivedPos = position;
 lastReceivedRot = rotation;
 lastReceivedCamRot = camRotation;

 // buffer network state
 networkState state = new networkState();
 state.Position = position;
 state.Rotation = rotation;
 state.CamRotation = camRotation;
 state.Timestamp = info.timestamp;

 bufferState(state);
 }
 }

Chapter 7

[221]

Next, we'll create a couple of utility functions: a Rewind function, which temporarily
stores the current state and then attempts to rewind to a past state, and a Restore
function, which restores the state which was stored in Rewind:

private Vector3 lastPosition;
private Quaternion lastRotation;
private Quaternion lastCamRotation;
public void Rewind(double timestamp)
{
 // we're going to rewind to a given position in time, in general
 this would be the timestamp value of a network message.

 // first, temporarily store the current state. We need this for
 when we "undo" the rewind.
 lastPosition = transform.position;
 lastRotation = transform.rotation;
 lastCamRotation = camTransform.localRotation;

 // check if we have enough states to perform a proper rewind
 // if not, return
 if(stateCount <= 1) return;

 // check if we have any packets older than the timestamp
 // if not, clamp the timestamp to whatever range we have.
 if(stateBuffer[stateCount-1].Timestamp > timestamp) timestamp
 = stateBuffer[stateCount-1].Timestamp;

 // network states on either side of the target timestamp
 networkState lhs = new networkState(), rhs = lhs;

 // find the first state with timestamp <= target rewind time, as
 well as the very next state
 for(int i = 0; i < stateCount; i++)
 {
 // is this state older than the given timestamp?
 if(stateBuffer[i].Timestamp <= timestamp)
 {
 // if the newest state we have is already older than the
 target timestamp, we just don't have enough information to
 provide a proper rewind, we'll just return instead.
 if(i == 0)
 return;

Server-side Hit Detection

[222]

 // store the state, and the next, which we will interpolate
 between
 lhs = stateBuffer[i];
 rhs = stateBuffer[i-1];
 break;
 }
 }

 // calculate the total time difference between each packet
 // we'll use this to calculate a normalized time value between 0
 and 1 for interpolation.
 double interpLen = rhs.Timestamp – lhs.Timestamp;

 // calculate the time difference between the first packet and
 the target timestamp;
 double diff = timestamp – lhs.Timestamp;

 // diff will range between 0 (if it is equal to the first
 packet's timestamp) and 'interpLen' (if it is equal to the
 second packet's timestamp). Dividing it by 'interpLen' will
 produce a value between 0 and 1
 double t = diff / interpLen;

 // interpolate between both packets
 transform.position = Vector3.Lerp(lhs.Position, rhs.Position, t
);
 transform.rotation = Quaternion.Slerp(lhs.Rotation,
 rhs.Rotation, t);
 camTransform.localRotation = Quaternion.Slerp(lhs.CamRotation,
 rhs.CamRotation, t);
}

void Restore()
{
 // restore the player to the state which was stored in Rewind.
 transform.position = lastPosition;
 transform.rotation = lastRotation;
 camTransform.localRotation = lastCamRotation;
}

So now we can rewind and restore a single entity. However, we need to perform this
on all entities at once.

Chapter 7

[223]

To do this, we'll create a static List that holds all spawned players:

//a list of all currently spawned players
private static List<NetworkPlayer> players = new
 List<NetworkPlayer>();

In Awake, we'll add the entity to the list, and in OnDestroy we'll remove it:

void Awake()
{
 // register the player with the static list
 players.Add(this);
}

void OnDestroy()
{
 // remove the player from the static list
 players.Remove(this);
}

And now, we can create two static versions of our Rewind and Restore methods
which perform this action on all players:

public static void RewindAll(double time)
{
 // iterate over each player, calling the Rewind function to
 rewind that player to a given point in time.
 foreach(NetworkPlayer player in players)
 {
 player.Rewind(time);
 }
}

public static void RestoreAll()
{
 // iterate over each player, calling the Restore function to
 restore that player to the current network state.
 foreach(NetworkPlayer player in players)
 {
 player.Restore();
 }
}

Server-side Hit Detection

[224]

Now we can rewind and restore all network players at once.

Finally, we'll modify our weapon script to perform this rewind before firing a shot:

[RPC]
void Fire(NetworkMessageInfo info)
{
 // this code should never execute on any machine other than the
server/host
 if(!Network.isServer)
 return;

 // first, rewind all entities to where they were when this message
 was sent
 NetworkPlayer.RewindAll(info.timestamp);

 // perform the hitscan
 RaycastHit hit;
 if(Physics.Raycast(transform.position, transform.forward, out
 hit, 100f, HitLayers))
 {
 // let a script on the object handle taking damage
 hit.collider.SendMessage("TakeDamage", Damage,
 SendMessageOptions.DontRequireReceiver);
 }

 // restore all entities to their current state
 NetworkPlayer.RestoreAll();
}

At this point, you should now have a fully functioning solution for server-side hit
detection. This can be easily combined with the techniques discussed in the last
chapter for reliable, hack-free multiplayer game.

Summary
In this chapter, we learned why the client-side hit detection is very easy to hack.
We saw how some games require the player to lead their targets to account for
lag. We then learned how we can alleviate this by rewinding potential targets before
performing hit detection, so that players can aim directly at their target as expected.

With this technique, in combination with the methods for server-side movement
code discussed in the last chapter, you have the tools you need for nearly hack-proof
multiplayer games which will boost your overall player experience.

Index
A
arrays, PUN room

filtering 63
available servers

browsing 19, 21

B
BigDB

working with 143, 145

C
chat client

chat room 74
connect screen 69
creating 69
lobby screen 71

chat room
about 74, 76
friends lists, adding 76, 80

client-side hit detection
versus, server-side hit detection 208-211

client-side prediction 190, 191
compiler directives

server console, setting up without Pro 23-
26

using 22
connect screen 69, 71
coroutines 174
CreateJoinRoom method 136
custom serialization function

writing 11

custom state serializer
writing 12, 13

D
dedicated server model

compiler directives 22
servers 22
setting up 22

development server, Player.IO
setting up 128

E
entity interpolation

performing 189, 190
entity rewinding 208, 219-224

F
friends

finding 66, 68

G
game logic class

creating 90-92
GameObject.Instantiate 11
global chatbox application

chat logs, displaying 184-186
chat messages, publishing 181, 182
creating 180, 181

Gravatar
about 187
URL 187

[226]

H
hacking 206
hit detection

moving, to server 217-219

I
interpolation

adding 195, 196
improving 197-200

J
JSON (JavaScript Object Notation)

about 172
parsing, from PubNub 173, 174
URL 172

L
level

syncing, between players 68
LINQ (Language Integrated Query) 64
LoadMyPlayerObject function 144
lobby screen 71, 73

M
Master Server

connecting to 18
server, registering 19
setting up 10

MasterServer.RequestHostList 19
matchmaking

automatic 65
manual 66

messages
sending/receiving 139-142
sending/receiving, server-side code used

142, 143
MMO (Massively Multiplayer Online) 8
multiplayer 8
multiplayer Pong game

ball script 31-34
creating 28
field, preparing 29-31

networked movement, adding to ball 44, 47
networked scorekeeping 47, 50
networking 39, 41
paddle script 34, 35
paddles, spawning 41, 44
score, displaying to player 37, 39
score, keeping 35, 36
screen, connecting 50, 51

N
NAT 11
NAT punch-through 11
networked levels

loading 26-28
networked object

creating 192-195
Network.Instantiate 11
NetworkView 11, 12

O
OnSerializeNetworkView function 12

P
Photon Cloud

about 54
connecting to 58
room list, displaying 59, 60
used, for setting up PUN 55, 56

Photon Server
about 81, 82
connecting to 87, 89
downloading 82
game logic class, creating 90-92
player IDs, assigning 93-95
server application, creating 83
star collector game, building 96

Photon Unity Networking. See PUN
PhotonViews

using 57, 58
player IDs

assigning 93-95
Player.IO

about 127

[227]

BigDB, working with 143, 145
connecting to 129, 131
development server, setting up 128
messages, sending/receiving 139, 142
random matchmaking 138
room list, displaying 132, 133
rooms, creating 136, 137
simple RTS style game, creating 146
versus, Photon Server 128

PubNub
about 169
account, registering 170, 171
functioning 171, 172
global chatbox application, creating 180,

181
interface, building 174-179
JSON, parsing from 173, 174
overview 169

PUN
matchmaking 65
rooms, creating 61, 62
rooms, joining 62
setting up, Photon Cloud used 55, 56
versus, Unity Networking 54, 55

R
RakNet 9
random matchmaking, Player.IO 138
RegisterHost function 19
ReliableDeltaCompressed option 12
rigidbody simulation 191, 192
room list, PUN

caching 65
filtering 65

rooms, Player.IO
connecting to 134-136
creating 136, 137
listing 132-134

rooms, PUN
arrays, filtering 63
creating 61, 62
joining 62
results, filtering by user preference 63
room list, caching 65

room list, filtering 65
RPC calls 55
RPCs

about 12, 13
entries 14
using 13, 14

rUDP (reliable UDP) 9

S
server

connecting to 16
initializing 15, 16
registering, with Master Server 19

server application
class library, creating 83, 84
creating 83
operation requests, responding 85
server code, deploying 86

server authoritative movement
implementing 202-205
preparing 200, 201

service room 138
simple RTS prototype

client-side code 156-168
creating 146
server-side code 146-155

star collector game
Actor Class 102, 103
actors, creating 120-123
actors, destroying 120-123
building 96
class library, preparing 96-101
events, broadcasting 110-117
game state, tracking 105-107
ID, sending to player 104, 105
player, controlling 123-125
stars, picking up 108, 109
stars, spawning 108, 109
Unity, connecting from 117-119

T
testbed

creating 211-217

[228]

U
UDP 9
Unity

Master Server, setting up 10, 11
Unity3D 7
Unity client SDK

setting up 129
Unity Networking API 7
Unreliable option 12
User Datagram Protocols. See UDP

Thank you for buying
Unity Multiplayer Games

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Unity 3.x Scripting
ISBN: 978-1-84969-230-4 Paperback: 292 pages

Write efficient, reusable scripts to build custom
characters, game environments, and control enemy
AI in your Unity game

1. Make your characters interact with buttons and
program triggered action sequences

2. Create custom characters and code dynamic
objects and players' interaction with them

3. Synchronize movement of character and
environmental objects

4. Add and control animations to new and
existing characters

Unity 3.x Game Development
Essentials
ISBN: 978-1-84969-144-4 Paperback: 488 pages

Build fully functional, professional 3D games with
realistic environments, sound, dynamic effects,
and more!

1. Kick start your game development, and build
ready-to-play 3D games with ease

2. Understand key concepts in game design
including scripting, physics, instantiation,
particle effects, and more

3. Test and optimize your game to perfection with
essential tips-and-tricks

Please check www.PacktPub.com for information on our titles

Unity 3D Game Development by
Example Beginner's Guide
ISBN: 978-1-84969-054-6 Paperback: 384 pages

A seat-of-your-pants manual for building fun, groovy
little games quickly

1. Build fun games using the free Unity 3D game
engine even if you've never coded before

2. Learn how to "skin" projects to make totally
different games from the same file – more
games, less effort!

3. Deploy your games to the Internet so that your
friends and family can play them

Unity iOS Essentials
ISBN: 978-1-84969-182-6 Paperback: 358 pages

Develop high performance, fun iOS games using
Unity 3D

1. Learn key strategies and follow practical
guidelines for creating Unity 3D games for
iOS devices

2. Learn how to plan your game levels to optimize
performance on iOS devices using advanced
game concepts

3. Full of tips, scripts, shaders, and complete
Unity 3D projects to guide you through game
creation on iOS from start to finish

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Unity Networking –
The Pong Game
	Introducing multiplayer
	Introducing UDP communication
	Setting up the Master Server
	NetworkViews and state serialization
	Writing a custom state serializer
	Using RPCs
	Initializing a server
	Connecting to a server
	Connecting to the Master Server
	Registering a server with the
Master Server
	Browsing available servers
	Setting up a dedicated server model
	Servers in Unity
	Compiler directives
	Setting up a server console without Pro

	Loading networked levels
	Creating a multiplayer Pong game
	Preparing the Field
	The ball script
	The Paddle script
	Keeping score
	Displaying the score to the player
	Networking the game
	Spawning paddles
	Networked ball
	Networked scorekeeping
	Connect screen

	Summary

	Chapter 2: Photon Unity Networking – The Chat Client
	Differences between PUN and Unity Networking
	Setting up PUN with Photon Cloud
	Using PhotonViews
	Connecting to Photon and getting a list of rooms
	Creating and joining rooms
	Creating rooms
	Joining rooms

	Filtering results by user preference
	Filtering arrays
	Filtering and caching a room list

	Automatic matchmaking
	Finding friends
	Syncing a level between players
	Creating a chat client
	The Connect screen
	The Lobby screen
	The chat room
	Adding friends lists

	Summary

	Chapter 3: Photon Server –
Star Collector
	Dedicated Servers
	Getting Photon Server
	Creating a server application
	Creating a class library
	Responding to operation requests
	Deploying the server code

	Connecting from Unity and passing messages
	Creating a game logic class
	Assigning player IDs
	Building a star collector game
	Preparing the class library
	The Actor Class
	Sending an ID to a player
	Keeping track of the game state
	Spawning and picking up stars
	Broadcasting events
	Connecting from Unity
	Creating/destroying actors
	Controlling the player

	Summary

	Chapter 4: Player.IO – Bot Wars
	Player.IO versus Photon Server
	Getting and setting up a development server
	Setting up the Unity client SDK
	Connecting to Player.IO
	Getting a list of rooms
	Connecting to rooms

	Creating rooms
	Random matchmaking
	Sending/receiving messages
	Server-side code

	Working with BigDB
	Creating a simple RTS prototype
	Server-side code
	Client-side code

	Summary

	Chapter 5: PubNub – The Global Chatbox
	Overview of PubNub
	Getting started
	How PubNub works
	Parsing JSON from PubNub
	Building a PubNub interface
	Creating a global chatbox application
	Publishing chat messages
	Displaying chat logs

	Summary

	Chapter 6: Entity Interpolation
And Prediction
	Entity interpolation
	Client-side prediction
	Rigidbody simulation
	Creating a networked object
	Adding naive interpolation
	Improving interpolation
	Preparing for server authoritative movement
	Implementing server authoritative movement
	Notes on hacking
	Summary

	Chapter 7: Server-side Hit Detection
	Client-side versus server-side hit detection
	Creating a testbed
	Moving hit detection to the server
	Entity rewinding
	Summary

	Index

