
www.it-ebooks.info

http://www.it-ebooks.info/

Unity Shaders and
Effects Cookbook

Discover how to make your Unity projects look stunning
with Shaders and screen effects

Kenny Lammers

 BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Unity Shaders and Effects Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: June 2013

Production Reference: 1110613

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-508-4

www.packtpub.com

Cover Image by Erol Staveley (erols@packtpub.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Kenny Lammers

Reviewers
Vincent Lim

Christian 'XeviaN' Meneghini

Acquisition Editor
Edward Gordon

Lead Technical Editors
Joel Noronha

Chalini Snega Victor

Technical Editors
Jalasha D'costa

Amit Ramadas

Project Coordinator
Leena Purkait

Proofreaders
Dirk Manuel

Aaron Nash

Indexer
Tejal Soni

Graphics
Ronak Dhruv

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Kenny Lammers has been working in the games industry for 13 years now. He has worked
for companies such as Microsoft, Activision, and the late Surreal Software. He currently runs
two companies; the first is Creative TD, where he does Unity3D consulting / asset creation
for companies such as IGT, Microsoft, Janus Research, and Allegorithmic, and the second
company he owns and operates, with his business partner Noah Kaarbo, is Ozone Interactive.
Ozone specializes in creating interactive applications and high-quality design with a focus on
Untiy3D, for companies such as Amazon, E-line Media, Microsoft, and Sucker Punch games.
His games industry experience has given him the opportunity to create characters using
Zbrush and Maya, to write real-time Shaders and post effects, and to program full games in
Unity3D using C#. He is currently working on a few games and developing toolsets within Unity
to expedite the game creation process.

There are so many people I would like to thank, that it would take up a
whole chapter by itself. First and foremost I would definitely like to thank
my mom, for always telling me to keep working toward my dreams and
always being there for me! I would like to thank my business partner Noah
Kaarbo, for supporting me throughout the writing of this book and being
my friend. I want to thank all the people I have worked with in the past, but
most importantly I want to thank the few individuals who always urged me
to push my skill sets even further and opened new worlds of the industry
to me. These people are Ben Cammerano (MGS), Paul Amer (MGS), Fillipo
Costanzo (5D Institute), Alessandro Tento (Lakshya), James Rogers (MGS),
and Tony Garcia (Unity Technologies). I wouldn't be where I am today without
any of these people, and they have my utmost respect!

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Vincent Lim is a graduate from The One Academy with a Diploma in Digital Animation and
Game Development. He joined Big Ant Studio immediately after graduation, where he was
sculpted into a game developer. Spending a couple of years with them, Vincent has learned
much, from low poly modeling to tiling textures to terrain sculpting, a little bit of programming
and MEL scripting. With the variety of tasks he encountered during his active employment
with Big Ant Studio, Vincent has equipped himself with knowledge about the game engine,
how certain Shaders work, and the workflow pipeline. He was given several opportunities to
construct or restructure certain pipelines for better efficiency. His MEL scripting skills were
fostered through practical implementations within the pipeline. This enabled him to create
the tools artist could use to speed up the process and shorten the gap to get a 3D model
from a base mesh to in-game. With these experiences from Big Ant Studios, Vincent has been
broadening his knowledge by learning new software and reading up about game mechanics
and game engines. This has allowed him to discover Unity, and he has been experimenting
with it as he strives to make his learning curves sky rocket.

Christian 'XeviaN' Meneghini is the young owner and enthusiast of Sinclair ZX
Spectrum. He started to snoop the game development world with hardcoded sprites in basic
and assembly languages. Years passed by and he worked with great technologies such as
C64, the glorious Amiga, and all the PC's family processors, using all the video cards from
Hercules and CGA from the first 3D accelerators to the actual ones. He felt an addiction
to real-time rendering and demo scene, while specializing in graphics programing and
performance optimization. Christian also composes music in his spare time.

After years of night-hour works with friends and colleagues, studying tech books, writing
engines, and working for third-party companies, Christian founded a small studio in 2011,
along with his friends Marco Di Timoteo and Luca Marchetti, and called it STUDIO EVIL. The
first product of STUDIO EVIL was Syder Arcade, an old-style retro Shoot 'em up with actual 3D
graphics for PC and Mac platforms, subsequently ported to iOS, Android, and OUYA platforms.

I'd like to thank all of my Italian game-developer friends for their
commitment in growing the game development industry in our country.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.it-ebooks.info/

Table of Contents
Preface 1
Chapter 1: Diffuse Shading 7

Introduction 7
Creating a basic Surface Shader 8
Adding properties to a Surface Shader 12
Using properties in a Surface Shader 14
Creating a custom diffuse lighting model 17
Creating a Half Lambert lighting model 20
Creating a ramp texture to control diffuse shading 22
Creating a faked BRDF using a 2D ramp texture 24

Chapter 2: Using Textures for Effects 29
Introduction 29
Scrolling textures by modifying UV values 30
Animating sprite sheets 33
Packing and blending textures 39
Normal mapping 44
Creating procedural textures in the Unity editor 48
Photoshop levels effect 54

Chapter 3: Making Your Game Shine with Specular 59
Introduction 59
Utilizing Unity3D's built-in Specular type 60
Creating a Phong Specular type 62
Creating a BlinnPhong Specular type 66
Masking Specular with textures 69
Metallic versus soft Specular 74
Creating an Anisotropic Specular type 79

www.it-ebooks.info

http://www.it-ebooks.info/

ii

Table of Contents

Chapter 4: Reflecting Your World 87
Creating Cubemaps in Unity3D 88
Simple Cubemap reflection in Unity3D 93
Masking reflections in Unity3D 96
Normal maps and reflections in Unity3D 100
Fresnel reflections in Unity3D 104
Creating a simple dynamic Cubemap system 108

Chapter 5: Lighting Models 113
Introduction 113
The Lit Sphere lighting model 114
The diffuse convolution lighting model 119
Creating a vehicle paint lighting model 125
Skin shader 130
Cloth shading 137

Chapter 6: Transparency 143
Introduction 143
Creating transparency with alpha 143
Transparent cutoff shader 146
Depth sorting with render queues 148
GUI and transparency 151

Chapter 7: Vertex Magic 159
Introduction 159
Accessing a vertex color in a Surface Shader 160
Animating vertices in a Surface Shader 164
Using vertex color for terrains 168

Chapter 8: Mobile Shader Adjustment 173
Introduction 173
What is a cheap Shader? 174
Profiling your Shaders 179
Modifying your Shaders for mobile 185

Chapter 9: Making Your Shader World Modular with CgIncludes 191
Introduction 191
CgInclude files that are built into Unity 192
Creating a CgInclude file to store lighting models 195
Building Shaders with #define directives 199

www.it-ebooks.info

http://www.it-ebooks.info/

iii

Table of Contents

Chapter 10: Screen Effects with Unity Render Textures 203
Introduction 203
Setting up the screen effects script system 204
Brightness, saturation, and contrast with screen effects 213
Basic Photoshop-like blend modes with screen effects 218
The Overlay blend mode with screen effects 224

Chapter 11: Gameplay and Screen Effects 229
Introduction 229
Creating an old movie screen effect 230
Creating a night vision screen effect 239

Index 249

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
Welcome to Unity Shaders and Effects Cookbook! This book is your guide to becoming
familiar with the creation of Shaders and post effects in Unity3D. You will start your journey
at the beginning, creating the most basic Shaders and learning how the Shader code is
structured. This foundational knowledge will arm you with the means to progress further into
each chapter and produce Shaders that simulate human skin, Shaders that handle dynamic
reflections, and will also develop post effects such as night vision.

By the end of each chapter you will have gained new skill sets that will increase the quality of
your Shaders, and even make your Shader-writing process more efficient. These chapters have
been tailored so that you can jump into each section and learn a specific skill, from beginner
to expert. Or, for those new to Shader writing in Unity, you can progress through each chapter,
one at a time, to build on your knowledge. Either way, you will learn the techniques that make
modern games look the way they do.

Once you have completed this book, you will have a set of Shaders that you can use in your
Unity3D games, as well as the understanding to add to them, to accomplish new effects and
address performance needs. So let's get started!

What this book covers
Chapter 1, Diffuse Shading, teaches the foundations of Shader writing by explaining how
to structure a Shader in Unity3D. It then applies that knowledge to creating default diffuse
lighting, and provides tips and tricks from the industry for creating custom diffuse lighting.

Chapter 2, Using Textures for Effects, describes how to utilize textures to create different
effects. You will learn how to animate textures on a sprite sheet through a Shader, as well as
how to utilize the different channels of a texture to make your Shaders more efficient. By the
end of this chapter you will have the power to use textures to create your own custom effects.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

2

Chapter 3, Making Your Game Shine with Specular, teaches you everything you need to know
about creating the most widely used Specular type, Blinn and Phong. You will learn how to
apply these Shader effects to create masked specular, metallic specular, and will even learn
a technique to create anisotropic specular. By the end of the chapter, you will feel confident
enough to create your own custom specular effects for your own custom Shaders.

Chapter 4, Reflecting Your World, gives you a peek into one of the more popular effects for
modern games and that is to incorporate reflection techniques into Shaders. This chapter will
teach you everything from the basics of reflections in Unity3D Shaders to setting up your own
simple dynamic reflection system using C#.

Chapter 5, Lighting Models, begins the process of creating more complex Shaders. You will
learn how to create your own lighting models to achieve your own types of surfaces. Each
recipe demonstrates different techniques to accomplish different tasks, all meant to enhance
your Shader-writing skill set. By the end of the chapter you will have created your own skin
shader, your own Lit Sphere shader, and your own car paint shader.

Chapter 6, Transparency, shows you that, at some point in a games production, transparency
becomes a necessary technique. Just about every game employs transparency to some
extent, for things such as GUI, foliage, decals, and so on. In this chapter you will learn
how to use transparency in Unity3D and how to deal with issues that might arise when
incorporating transparency.

Chapter 7, Vertex Magic, covers how to access the information that is stored in each vertex of
our 3D mesh. You will learn how to take this information and utilize it in a Shader to produce
effects such as texture blending and animation.

Chapter 8, Mobile Shader Adjustment, is all about looking at ways in which you can utilize
Unity3D's built-in flags and values to reduce the overhead of your Shaders. This becomes
especially important when dealing with Shaders on a mobile platform.

Chapter 9, Making Your Shader World Modular with CgIncludes, shows you that it is necessary
to learn how to re-use code that you have written, over and over again, in order to make your
Shader-writing more efficient. This chapter shows you how to create your own CgInclude files
to store all the repetitious code for re-use.

Chapter 10, Screen Effects with Unity Render Textures, starts off with a look at how any
modern game utilizes screen effects, sometimes called post effects, to alter the look of
the final rendered image of a game. You will learn how to create your own screen effects,
and learn the secrets behind how to add color adjustments and texture overlays to produce
different visual looks in your game.

Chapter 11, Gameplay and Screen Effects, takes the knowledge you have learned about
screen effects a step further, and shows you how you can create screen effects that heighten
a moment in a game. You will learn how to create an old movie screen effect as well as a night
vision screen effect.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

3

What you need for this book
The following is a list of required and optional software for completing the recipes in this book:

 f Unity3D (Unity3D Pro is required for Chapters 10 and 11)

 f A 3D application such as Maya, Max, or Blender (optional)

 f A 2D image editing application such as Photoshop or Gimp (optional)

Who this book is for
This book is meant for all Unity3D developers, beginner- to advanced-level. It is best if you have
experience with C# or JavaScript, and feel comfortable enough creating simple assets inside
of the Unity3D editor. It is recommended that you take a look at Packt Publishing's Unity 3.x
Game Development by Example Beginner's Guide (http://www.packtpub.com/unity-3-
x-game-development-by-example-beginners-guide/book), to get a solid grounding
on the use of Unity3D basics.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Enter the following code into the Properties block
of your Shader."

A block of code is set as follows:

 void surf (Input IN, inout SurfaceOutput o)
 {
 float4 c;
 c = pow((_EmissiveColor + _AmbientColor), _MySliderValue);

 o.Albedo = c.rgb;
 o.Alpha = c.a;
 }

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "This creates a Cubemap
swatch in the Inspector tab and allows a user to drag-and-drop a Cubemap into the Shader."

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

4

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams used in
this book. The color images will help you better understand the content of the chapter. You
can download this file from http://www.packtpub.com/sites/default/files/
downloads/5084OT_Images.pdf.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.it-ebooks.info/

Preface

5

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are verified, the errata will be uploaded on our website, or added
to any list of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

www.it-ebooks.info

mailto:copyright@packtpub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

1
Diffuse Shading

This chapter will cover some of the more common diffuse techniques found in today's Game
Development Shading Pipelines. You will learn about:

 f Creating a basic Surface Shader
 f Adding properties to a Surface Shader
 f Using properties in a Surface Shader
 f Creating a custom diffuse lighting model
 f Creating a Half Lambert lighting model
 f Creating a ramp texture to control diffuse shading
 f Creating a faked BRDF using a 2D ramp texture

Introduction
The beginning of any good Shader always relies on having a foundational diffuse component
or lighting model. So it always makes sense to start the Shader writing process with the
diffuse component of the Shader.

Previously in computer graphics, diffuse shading was done with what was called the fixed
function lighting model. It gave graphics programmers just a single lighting model that they
could tweak, using a set of parameters and textures. In our current industry, we have access
to much more control and flexibility with Cg, and especially in Unity with its Surface Shaders.

The diffuse component of a Shader basically describes the way light reflects off a surface in
all directions. That might sound very similar to the description of how a reflective mirror works,
but it is actually different. A reflective surface actually reflects the image of the surrounding
environment, while diffuse lighting takes all the light from light sources, such as the sun, and
reflects its light back to the viewer's eye. We will be covering reflections in a later chapter, but
for our purposes right now, this will help us differentiate between the two.

www.it-ebooks.info

http://www.it-ebooks.info/

Diffuse Shading

8

To achieve a basic diffuse lighting model, we will have to create a Shader that will include an
emissive color, an ambient color, and the total light accumulated from all light sources. The
following recipes show you how to build up a complete diffuse lighting model, and also show
some various industry tricks that come in handy for creating more complicated diffuse models
using only textures.

By the end of this chapter you will have learned how to build basic Shaders that perform
basic operations. Armed with this knowledge, you will be able to create just about any
Surface Shader.

Creating a basic Surface Shader
As we progress further into the recipes in this book, it is important that you know how to set
up your workspace in Unity, so that you can work efficiently, and without any pain. If you are
already quite familiar with creating Shaders and setting up Materials in Unity 4, you may skip
this recipe. It is here to ensure that newcomers to surface shading in Unity 4 can work with
the rest of the recipes.

Getting ready
To get started with this recipe, you will need to have Unity 4 running, and must have created a
new project. There will also be a Unity project included with this cookbook, so you can use that
one as well and simply add your own custom Shaders to it, as you step through each recipe.
With that completed, you are now ready to step into the wonderful world of real-time shading!

How to do it…
Before getting into our first Shader, let's create a small scene for us to work with. This can be
done by going to GameObject | Create Other in the Unity editor. From there you can create
a plane, to act as a ground, a couple of spheres, to which we will apply our Shader, and a
directional light to give the scene some light. With our scene generated, we can move onto
the Shader writing steps:

1. In the Project tab in your Unity editor, right-click on the Assets folder and select
Create | Folder.

If you are using the Unity project that came with the cookbook,
you can skip to step 4.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

9

2. Rename the folder that you created to Shaders by right-clicking on it and selecting
Rename from the drop-down list, or by selecting the folder and hitting F2 on the
keyboard.

3. Create another folder and rename it to Materials.

4. Right-click on the Shaders folder and select Create | Shader. Then right-click on the
Materials folder and select Create | Material.

5. Rename both the Shader and the Material to BasicDiffuse.

6. Launch the BasicDiffuse Shader into MonoDevelop (the default script editor for
Unity) by double-clicking on it. This will automatically launch the editor for you and
display the Shader code.

You will see that Unity has already populated our Shader with
some basic code. This, by default, will get you a basic diffuse
Shader that accepts one texture. We will be modifying this base
code so that we can learn how to quickly start developing our
own custom Shaders.

www.it-ebooks.info

http://www.it-ebooks.info/

Diffuse Shading

10

7. Now let's give our Shader a custom folder from which it's selected. The very first line
of code in the Shader is the custom description we have to give the Shader so that
Unity can make it available in the Shader drop-down list when assigning to Materials.
We have renamed our path to Shader "CookbookShaders/BasicDiffuse", but
you can name it to whatever you want and can rename it at any time. So don't worry
about any dependencies at this point. Save the shader in MonoDevelop and return to
the Unity editor. Unity will automatically compile the Shader when it recognizes that
the file has been updated. This is what your Shader should look like at this point:
Shader "CookbookShaders/BasicDiffuse"
{
 Properties
 {
 _MainTex ("Base (RGB)", 2D) = "white" {}
 }

 SubShader
 {
 Tags { "RenderType"="Opaque" }
 LOD 200

 CGPROGRAM
 #pragma surface surf Lambert

 sampler2D _MainTex;

 struct Input
 {
 float2 uv_MainTex;
 };

 void surf (Input IN, inout SurfaceOutput o)
 {
 half4 c = tex2D (_MainTex, IN.uv_MainTex);
 o.Albedo = c.rgb;
 o.Alpha = c.a;
 }
 ENDCG
 }
 FallBack "Diffuse"
}

8. Select the Material called BasicDiffuse that we created in step 4 and look at
the Inspector tab. From the Shader drop-down list, select CookbookShaders |
BasicDiffuse (your Shader path might be different if you chose to use a different path
name). This will assign your Shader to your material and now make it ready for you to
assign to an object.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

11

To assign a material to an object, you can simply click-and-drag
your Material from the Project tab to the object in your scene.
You can also drag a Material onto the Inspector tab of an
object, within the Unity editor, to assign a Material.

Not much to look at, at this point, but our Shader development environment is set up and we
can now start to modify the Shader to suit our needs.

How it works…
Unity has made the task of getting your Shader environment up and running, very easy for you.
It is simply a matter of a few clicks and you are good to go. There are a lot of elements working
in the background, with regard to the Surface Shader itself. Unity has taken the Cg Shader
language and made it more efficient to write, by doing a lot of the heavy Cg code lifting for you.
The Surface Shader language is a more component-based way of writing Shaders. Tasks such
as processing your own texture coordinates and transformation matrices have already been
done for you, so you don't have to start from scratch any more. In the past, we would have to
start a new Shader and rewrite a lot of code over and over again. As you gain more experience
with Surface Shaders, you will naturally want to explore more of the underlying functions of
the Cg language and how Unity is processing all of the low-level graphics processing unit
(GPU) tasks for you.

So, by simply changing the Shader's path name to a name of our choice, we have got our
basic diffuse Shader working in the Unity environment, working with lights and shadows
and all that, by just changing one line of code!

www.it-ebooks.info

http://www.it-ebooks.info/

Diffuse Shading

12

See also
For more information on where to find a large portion of the built-in Cg functions for Unity,
go to your Unity install directory and navigate to Unity4\Editor\Data\CGIncludes.
Within that folder there are three files that are of note at this point, the UnityCG.cginc,
Lighting.cginc, and UnityShaderVariables.cginc. Our current Shader is making
use of all these files at the moment.

We will go more in-depth with CgInclude files in Chapter 9, Making Your Shader World Modular
with CgIncludes.

Adding properties to a Surface Shader
Properties of a Shader are very important to the Shader pipeline, as they are the method
you use to let the artist or user of the Shader assign textures, and tweak your Shader values.
Properties allow you to expose GUI elements in a Material's Inspector tab without you having
to use a separate editor, which provides visual ways to tweak a Shader.

With your Shader opened in MonoDevelop, look at the block of lines 3 through 6. This is called
the Properties block. Currently, it will have one property in it called _MainTex. If you look at
your Material that has this Shader applied to it, you will notice that there is one texture GUI
element in the Inspector tab. These lines of code, in our Shader, is creating this GUI element
for us.

Again, Unity has made this process very efficient in terms of coding and the amount of time it
takes to iterate through changing your properties.

How to do it…
Let's see how this works in our current Shader called BasicDiffuse, by creating our own
properties and learning more about the syntax involved:

1. In our Properties block of our Shader, remove the current property by deleting the
following code from our current Shader.
_MainTex ("Base (RGB)", 2D) = "white" {}

2. Now enter the following code, save the Shader, and re-enter the Unity editor.
_EmissiveColor ("Emissive Color", Color) = (1,1,1,1)

3. When you return to Unity, the Shader will compile and you will see that our Material's
Inspector tab now has a color swatch, named Emissive Color, instead of a texture
swatch. Let's add one more and see what happens. Enter the following code:
_AmbientColor ("Ambient Color", Range(0,10)) = 2

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

13

4. We have added another Color Swatch to the Material's Inspector tab. Now let's
add one more to get a feel for other kinds of properties that we can create. Add the
following code to the properties block:
_MySliderValue ("This is a Slider", Range(0,10)) = 2.5

5. We have now created another GUI element that allows us to visually interact with our
Shader. This time we created a slider with the name This is a Slider, as shown in the
following screenshot:

Properties allow you to create a visual way to tweak Shaders without having to change values
in the Shader code itself.

How it works…
Every Unity Shader has a built-in structure it is looking for in its code. The properties block
is one of those functions that is expected by Unity. The reason behind this is to give you,
the Shader programmer, a means of quickly creating GUI elements that tie directly into your
Shader code. These properties that you declare in the properties block can then be used in
your Shader code to change values, colors, and textures.

Let's take a look at what is going on underneath the hood here. When you first start writing a
new property, you will need to give it a Variable Name. The variable name is going to be the
name that your Shader code is going to use to get the value from the GUI element. This saves
us a lot of time because we don't have to set up that system ourselves.

www.it-ebooks.info

http://www.it-ebooks.info/

Diffuse Shading

14

The next elements of a property are the Inspector GUI Name and the type of the property,
which is contained within parentheses. The Inspector GUI Name is the name that is going
to appear in the Material's Inspector tab when the user is interacting with and tweaking the
Shader. The Type is the type of data that this property is going to control. There are many
types that we can define for properties inside of Unity Shaders. The following table describes
the types of variables we can have in our Shaders:

Surface Shader property types
Range (min, max) This creates a float property as a slider from the minimum value to

the maximum value
Color This creates a color swatch in the Inspector tab that opens up a

color picker = (float,float,float,float)
2D This creates a texture swatch that allows a user to drag a texture

into the Shader
Rect This creates a non-power-of-2 texture swatch and functions the

same as the 2D GUI element
Cube This creates a cube map swatch in Inspector and allows a user to

drag-and-drop a cube map into the Shader
Float This creates a float value in Inspector but without a slider
Vector This creates a four-float property that allows you to create

directions or colors

Finally, there is the default value. This simply sets the value of this property to the value you
place in the code. So, in the example image, the default value for the property named
_AmbientColor, which is of the type Color, is set to a value of 1,1,1,1. Since this is a
color property expecting a color, which is RGBA or a float4, or r, g, b, a = x, y, z,
w this color property, when it is first created, is set to white.

See also
 f The properties are documented in the Unity manual at http://docs.unity3d.

com/Documentation/Components/SL-Properties.html

Using properties in a Surface Shader
Now that we have created some properties, let's actually hook them up to the Shader so we
can use them as tweaks to our Shader and make the material process much more interactive.

We can use the properties' values from the Material's Inspector tab because we have
attached a variable name to the property itself, but in the Shader code you have to set
a couple things up before you can start calling the value by its variable name.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

15

How to do it…
The following steps show you how to use the properties in a Surface Shader:

1. To begin, let's remove the following lines of code, as we deleted the property called
MainTex in the Creating a basic Surface Shader recipe of this chapter:
sampler2D _MainTex;
half4 c = tex2D (_MainTex, IN.uv_MainTex);

2. Next, add the following lines of code to the Shader, below the CGPROGRAM line:
 float4 _EmissiveColor;
 float4 _AmbientColor;
 float _MySliderValue;

3. With step 2 complete, we can now use the values from the properties in our Shader.
Let's do this by adding the value from the _EmissiveColor property to the
_AmbientColor property, and giving the result of that to the o.Albedo line of
code. So, let's add the following code to the Shader inside the surf function:
 void surf (Input IN, inout SurfaceOutput o)
 {
 float4 c;
 c = pow((_EmissiveColor + _AmbientColor), _MySliderValue);

 o.Albedo = c.rgb;
 o.Alpha = c.a;
 }

4. Finally, your Shader should look like the following Shader code. If you save your
Shader in MonoDevelop and re-enter Unity, your Shader will compile. If there were no
errors, you will now have the ability to change the ambient and emissive colors of the
Material, as well as increase the saturation of the final color by using the slider value.
Pretty neat, huh!
Shader "CookbookShaders/BasicDiffuse"
{
 //We define Properties in the properties block
 Properties
 {
 _EmissiveColor ("Emissive Color", Color) = (1,1,1,1)
 _AmbientColor ("Ambient Color", Color) = (1,1,1,1)
 _MySliderValue ("This is a Slider", Range(0,10)) = 2.5
 }

 SubShader

www.it-ebooks.info

http://www.it-ebooks.info/

Diffuse Shading

16

 {
 Tags { "RenderType"="Opaque" }
 LOD 200

 CGPROGRAM
 #pragma surface surf Lambert

//We need to declare the properties variable type inside of the
 CGPROGRAM so we can access its value from the properties block.
 float4 _EmissiveColor;
 float4 _AmbientColor;
 float _MySliderValue;

 struct Input
 {
 float2 uv_MainTex;
 };

 void surf (Input IN, inout SurfaceOutput o)
 {
 //We can then use the properties values in our shader
 float4 c;
 c = pow((_EmissiveColor + _AmbientColor), _MySliderValue);

 o.Albedo = c.rgb;
 o.Alpha = c.a;
 }

 ENDCG
 }

 FallBack "Diffuse"
}

The pow(arg1, arg2) is a built-in function that will perform the
equivalent math function of power. So, argument 1 is the value we want to
raise to a power, and argument 2 is the power we want to raise it to.

To find out more information about the pow() function, look to the Cg
tutorial. It is a great free resource that you can use for learning more about
shading and to get a glossary of all the functions available to you in the Cg
shading language:

http://http.developer.nvidia.com/CgTutorial/cg_
tutorial_appendix_e.html

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

17

The following screenshot demonstrates the result obtained by using our properties to control
our Material's colors and saturation, from within the Material's Inspector tab:

How it works…
When you declare a new property in the property block, you are providing a way for the Shader
to retrieve the tweaked value from the Material's Inspector tab. This value is stored in the
variable name portion of the property. In this case, _AmbientColor, _EmissiveColor,
and _MySliderValue are the variables in which we are storing the tweaked values. In order
for you to be able to use the value in the SubShader{} block, you need to create three new
variables with the same names as the property's variable name. This automatically sets up a
link between these two so they know they have to work with the same data. Also, it declares
the type of data we want to store in our subshader variables, which will come in handy when
we look at optimizing Shaders in a later chapter.

Once you have created the subshader variables, you can then use the values in the surf()
function. In this case we want to add the _EmissiveColor and _AmbientColor variables
together and take it to a power of whatever the _MySliderValue variable is equal to in the
Material's Inspector tab.

We have now created the foundation for any Shader you will create that requires a
diffuse component.

Creating a custom diffuse lighting model
Using Unity's built-in lighting functions is all well and good, but you will quickly outgrow these
and want to create a lot more custom lighting models. Speaking from experience, we have never
worked on a project that has used just the built-in Unity lighting functions and called it good. We
would create custom lighting models for just about everything. This would allow us to do things
such as produce rim lighting effects, more Cubemap-based types of lightings, or even control
over how your Shaders react to gameplay, as seen in Shaders that control force fields.

www.it-ebooks.info

http://www.it-ebooks.info/

Diffuse Shading

18

This recipe will focus on creating our own custom diffuse lighting model that we can use to
modify and create a number of different effects.

How to do it…
Using the basic diffuse Shader we created in the last recipe, let's modify it again by
performing the following steps:

1. Let's modify the #pragma statement to the following code:
#pragma surface surf BasicDiffuse

2. Add the following code to the subshader:
inline float4 LightingBasicDiffuse (SurfaceOutput s, fixed3
lightDir, fixed atten)
{
 float difLight = max(0, dot (s.Normal, lightDir));

 float4 col;
 col.rgb = s.Albedo * _LightColor0.rgb * (difLight * atten * 2);
 col.a = s.Alpha;
 return col;
}

3. Save the Shader in MonoDevelop and return to Unity. The Shader will compile, and
if everything went well, you will see that no real visible change has happened to our
Material. What we have done is removed the connection to the built-in Unity diffuse
lighting and created our own lighting model that we can customize.

How it works…
There are definitely a lot of elements working here, so let's try to break it down piece by piece
and learn why this works in the way that it does:

 f The #pragma surface directive tells the Shader which lighting model to use for its
calculation. It worked when we first created the Shader because Lambert is a lighting
model defined in the Lighting.cginc file. So it was able to use this on creation.
We have now told the Shader to look for a lighting model by the name BasicDiffuse.

 f Creating a new lighting model is done by declaring a new lighting model function.
Once you have done that, you simply replace the function's name with a name of your
choice. For example, LightingName becomes Lighting<Your Chosen Name>.
There are three types of lighting model functions that you can use:

 � half4 LightingName (SurfaceOutput s, half3 lightDir,
half atten){}

This function is used for forward rendering when the view direction is
not needed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

19

 � half4 LightingName (SurfaceOutput s, half3 lightDir,
half3 viewDir, half atten){}

This function is used in forward rendering when a view direction is needed.
 � half4 LightingName_PrePass (SurfaceOutput s, half4

light){}

This function is used when you are using deferred rendering for your project.

 f The dot product function is another built-in mathematical function in the Cg language.
We can use it to compare the directions of two vectors in space. The dot product
checks whether two vectors are either parallel to each other or perpendicular. By
giving the dot product function, for two vectors you will get a float value in the range
of -1 to 1; where -1 is parallel and has the vector facing away from you, 1 is parallel
and has the vector facing toward you, and 0 is completely perpendicular to you.

"The vector dot product (or inner product) of the normalized
vectors N and L is a measure of the angle between the two
vectors. The smaller the angle between the vectors, the
greater the dot-product value will be, and the more incident
light the surface will receive."

Reference:

http://http.developer.nvidia.com/CgTutorial/
cg_tutorial_chapter05.html

 f To complete the diffuse calculation, we need to multiply it with the data being
provided to us by Unity and by the SurfaceOutput struct. For this we need to
multiply the s.Albedo value (which comes from our surf function) with the
incoming _LightColor0.rgb value (which Unity provides), and then multiply the
result of that with (difLight * atten). Then, finally, return that value as the
color. See the following code:

inline float4 LightingBasicDiffuse (SurfaceOutput s, fixed3
lightDir, fixed atten)
{
 float difLight = max(0, dot (s.Normal, lightDir));

 float4 col;
col.rgb = s.Albedo * _LightColor0.rgb * (difLight * atten * 2);
 col.a = s.Alpha;
 return col;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Diffuse Shading

20

The following screenshot demonstrates the result of our basic diffuse Shader:

There's more…
By using the built-in Cg function called max, we can clamp the values that get returned from
the dot product function. The max function takes two arguments, max(arg1, arg2). We
are using it in our Shader to make sure the values we are using for our diffuse calculation are
between 0 and the maximum of the dot product. This way we will never get a value below 0,
especially not -1, which would create extremely black areas in your Shader that wouldn't play
well with your Shader math later in the Shader process.

There is also the saturate function within the Cg function library. This helps us to clamp
float values between 0 and 1 as well. The only difference between max() and saturate(),
is that you simply feed your float value into saturate. The max function takes two arguments
and returns the maximum value between the two.

See also
 f You can find more information on the Surface Shader lighting model function

arguments at http://docs.unity3d.com/Documentation/Components/SL-
SurfaceShaderLighting.html

Creating a Half Lambert lighting model
Half Lambert was a technique created by Valve as a way of getting the lighting to show the
surface of an object in low-light areas. It basically brightens up the diffuse lighting of the
Material and wraps the diffuse light around an object's surface.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

21

"Half Lambert" lighting is a technique first developed in the
original Half-Life (https://developer.valvesoftware.
com/wiki/Half-Life). It is designed to prevent the rear of
an object losing its shape and looking too flat. Half Lambert is a
completely nonphysical technique and gives a purely perceived
visual enhancement. It is an example of a forgiving lighting model.

Reference:

https://developer.valvesoftware.com/wiki/Half_
Lambert

How to do it…
Using the basic Shader that we created in the last recipe, let's update the diffuse calculation
by following the next step:

 f Modify the diffuse calculation by multiplying it by 0.5. So, you would add the following
code to your lighting function:

The following screenshot demonstrates the result of the implementation of the Half Lambert
technique into our Shader's lighting model:

www.it-ebooks.info

http://www.it-ebooks.info/

Diffuse Shading

22

How it works…
The Half Lambert technique works by taking the range of values of the diffuse lighting,
dividing it in half, and then adding 0.5 back to it. This basically means that if you have a value
of 1 and you cut it in half, you will have 0.5. Then, if you add 0.5 back to it, you will have 1
again. If you did this same operation to a value of 0, you would end up with 0.5. So, we have
taken a range of values from 0 to 1 and re-mapped it to be within a range of 0.5 to 1.0.

The following shows the diffuse value mapped to a function graph, showing the result of the
Half Lambert calculation:

1

0 1Dot Product Value

Creating a ramp texture to control diffuse
shading

Another great tool in your Shader writing toolbox is the use of a ramp texture to drive the color
of the diffuse lighting. This allows you to accentuate the surface's colors to fake the effects of
more bounce light or a more advanced lighting setup. You see this technique used a lot more
for cartoony games, where you need a more artist-driven look to your Shaders and not so
much of a physically-accurate lighting model.

This technique became more popular with Team Fortress 2, where Valve came up with
a unique approach to lighting their characters. They produced a very popular white paper
on the subject, and you should definitely give it a read.

The Valve White Paper on Team Fortress 2 Lighting and shading available
at http://www.valvesoftware.com/publications/2007/NPAR07_
IllustrativeRenderingInTeamFortress2.pdf.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

23

Getting ready
To get this started you will need to create a ramp texture in some image editing application.
We used Photoshop for this particular demonstration, but any image editing application
should be able to make a gradient:

How to do it…
Let's begin our Shader by entering the following code:

 f Simply modify the lighting function so that it includes this new code:

The following is the result you will see after running the code:

www.it-ebooks.info

http://www.it-ebooks.info/

Diffuse Shading

24

How it works…
This line of code is returning a set of colors, or a float3, which is also the same as r, g, b.
These colors are being produced by a Cg function called tex2D. The tex2D() function takes
two arguments. The first is the texture property we use for this operation. The second includes
the UVs from the model that we want to map to the texture.

In this case we do not want to use any UVs from a vertex, but instead we want to use the
diffuse float range to map the UVs of the ramp texture. This ultimately wraps the ramp
texture around the surface of the object, based on the direction to the light being calculated.

We take the re-mapped diffuse values from the Half Lambert operation and pass them
into float2() to create the lookup values for the texture. When a value of 0 is set as the
hLambert variable, the tex2D function looks up the pixel value at the UV value of (0,0). In
this case it's the subtle peach color from the ramps gradient. When a value of 1 is set for
the hLambert variable, the tex2D function looks up the pixel at the UV value of (1,1), or
the white color.

Now it is possible for the artist to have some custom control over how the light looks on the
surface of an object. This is why this technique is more commonly seen on a project where
you need more of an illustrative look.

Creating a faked BRDF using a 2D ramp
texture

We can take the ramp diffuse recipe one step further by using the view direction, provided by
the lighting functions, to create a more advanced visual look to our lighting. By utilizing the
view direction, we will be able to generate some faked rim lighting.

If we look at the ramp diffuse technique, we are only using one value to place into the UV
lookup of the ramp texture. This means that we will get a very linear type of lighting effect. In
this recipe we will change our lighting function to take advantage of an additional argument,
the view direction.

The view direction is the user's view of the object itself. It is a vector, pointing in a direction
that we can use in conjunction with the normal and light direction. This view vector will provide
us with the means to create a more advance texture lookup.

In the Cg industry this technique is often referred to as a BRDF effect. BRDF stands for
bidirectional reflectance distribution function. While that is a mouthful, it simply means the
way in which light is reflected off an opaque surface from both the view direction and the light
direction. To see the effects of this BRDF Shader, let's continue by setting up our scene and
writing the Shader.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

25

Getting ready
Before starting, we will need a more embellished ramp texture this time. We need to include
gradients for both dimensions of the texture.

1. Create a new texture with a size of 512 x 512.

2. Create a gradient, diagonally starting from the bottom left of the image, going to the
top-right of the image.

3. Create another gradient from the top-left side, going until just before the middle of
the image.

4. Finally, create another ramp from the bottom-right side to just before the middle of
the image. You should end up with a texture shown in the following image:

How to do it…
Let's go through this recipe by following the next few steps, using the basic diffuse Shader as
our starting point:

1. First we need to change our lighting function to include the viewDir variable that
Unity provides us, to get the current view direction of the camera in the scene as it
looks at our object. Modify your lighting function to look like the following code:

www.it-ebooks.info

http://www.it-ebooks.info/

Diffuse Shading

26

2. We then need to calculate the dot product of the view direction and the surface
normal (as shown in the following code). This will produce a falloff type effect
that we can use to drive our BRDF texture.

3. To complete the operation, we need to feed our dot product result into the float2()
function of the tex2D() function. Modify your lighting function to the following code:

4. Save your Shader and re-enter Unity. Make sure you are using your new BRDF texture
as the ramp texture in Unity. You should notice that your lighting now includes two rim
light type effects: one for the bottom of the model and one for the top.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

27

The following image demonstrates the results of using a BRDF ramp texture to drive the
overall diffuse color. This technique is great for a production team as it makes it easy for
an artist to update a texture, in Photoshop, rather than tweak lighting in the game:

How it works…
When using the view direction parameter, we can create a very simple falloff type effect. You
can use this parameter to create a lot of different types of effects: a bubble type transparency,
the start of a rim light effect, shield effects, or even the start of a toon outline effect.

The preceding image shows the dot product of the view direction and the surface normal.
Consider if you were to look at the values being produce by taking the dot product of the
view direction and the surface normal.

www.it-ebooks.info

http://www.it-ebooks.info/

Diffuse Shading

28

In this case we are using it as one of the components in the BRDF ramp texture lookup. Since
the diffLight calculation and the rimLight calculation both produce a linear range of
values from 0 to 1, we can use both the ranges to pick different areas of the ramp texture.

A visualization of what is happening inside the Shader code and how it is picking the color to put on the surface

So the key here is to understand what values we get from the dot product functions as well as
how we can manipulate texture, inside of a lighting function, to wrap them around a surface
in order to simulate a more complex lighting effect.

See also
 f Refer to Polycount BRDF Map at wiki.polycount.com/BrdfMap

www.it-ebooks.info

http://www.it-ebooks.info/

2
Using Textures

for Effects

In this chapter we start looking at ways in which you can use textures to create different
effects in your Shaders. As we saw in the previous chapter, textures can help us achieve more
complex lighting effects. We can also use texture to animate, to blend and really, to drive any
other property we want. In this chapter we learn about the following methods:

 f Scrolling textures by modifying UV values

 f Animating sprite sheets

 f Packing and blending textures

 f Normal mapping

 f Creating procedural textures in the Unity editor

 f Photoshop levels effect

Introduction
Textures can bring our Shaders to life, very quickly, in terms of achieving very realistic effects.
Unfortunately, you have to be very careful about how many textures you use in your Shader
as they can add up really quickly, and that will increasingly hit performance the more textures
you add to your Shader. This is especially true for mobile solutions where you need to keep the
amount of textures to a minimum, so that your application downloads faster and runs faster.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Textures for Effects

30

Textures themselves are images that are usually created in an image editing application,
such as Photoshop, but can also be created inside of Unity itself. Textures themselves are
mapped to the surface of an object by using the UVs of the object to create a relationship
between the 2D point in the UVs, and the 3D point of a vertex. The pixel values are then
interpolated between the vertices of the object to create the illusion of the 2D image being
mapped on to the 3D surface.

We have already set up a texture property in the last chapter, so we won't have to cover
that again, but if you would like to know more about the inner workings of how textures
are mapped to a 3D surface, you can read the information available at http://http.
developer.nvidia.com/CgTutorial/cg_tutorial_chapter03.html.

Let's start by taking a look at what we can do with textures and how they can make our
real-time 3D visuals even more interesting and compelling. This chapter is going to start with
some very basic textures effects, and then take you into the more advanced world of texturing
for materials and Shaders.

Scrolling textures by modifying UV values
One of the most common texture techniques used in today's game industry is the process
of allowing you to scroll their textures over the surface of an object. This allows you to create
effects such as waterfalls, rivers, lava flows, and so on. It's also a technique that is the basis
for creating animated sprite effects, but we will cover that in a subsequent recipe of this
chapter. Let's first see how we will create a simple scrolling effect inside of a Surface Shader.

Getting ready
To begin this recipe, you will need to create a new Shader file and a new Material. This will set
us up with a nice clean Shader that we can use to study the scrolling effect by itself.

How to do it…
To begin with, we will launch our new Shader file that we just created, and enter the code
mentioned in the following steps:

1. The Shader will need two new properties that will allow us to control the speed of
the texture scrolling. So let's add a speed property for the X direction and a speed
property for the Y direction, as shown in the following code:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

31

2. Modify the Cg properties in the CGPROGRAM section and create new variables so that
we can access the values from our properties:

3. Modify the surface function to change the UVs being given to the tex2D() function.
Then use the built-in _Time variable to animate the UVs over time when Play is
pressed in the editor:

www.it-ebooks.info

http://www.it-ebooks.info/

Using Textures for Effects

32

The following image demonstrates the result of utilizing the scrolling UV system to create a
simple river motion for your environments. It's hard to show something moving in a book,
so you'll have to take my word for it.

How it works…
The scrolling system starts with the declaration of a couple of properties, which will allow the
user of this Shader to increase or decrease the speed of the scrolling effect itself. At their core
they are float values being passed from the Material's Inspector tab to the surface function of
the Shader. For more information on Shader properties, see Chapter 1, Diffuse Shading.

Once we have those float values from the Material's Inspector tab, we can use them to offset
our UV values in the Shader.

To begin that process we first store the UVs in a separate variable called scrolledUV. This
variable has to be a float2 / fixed2 because the UV values are being passed to us from
the Input structure:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

33

Once we have access to the mesh's UVs, we can offset them using our scroll speed variables
and the built-in _Time variable. This built-in variable returns a variable of type float4,
meaning that each component of that variable contains different values of time, as it pertains
to game time. A complete description of these individual time values are described at the
following link:

http://docs.unity3d.com/Documentation/Components/SL-BuiltinValues.
html

This _Time variable will give us an incremented float value based on Unity's game time clock.
So, we can use that value to move our UVs in a UV direction and scale that time with our scroll
speed variables:

With the correct offset being calculated by time, we can add the new offset value back to the
original UV position. This is why we are using the += operator in the next line. We want to take
the original UV position, add on the new offset value, and then pass that to the tex2D()
function as the texture's new UVs. This creates the effect of the texture moving on the surface.
We are really manipulating the UVs so we are faking the effect of the texture moving.

Animating sprite sheets
Learning how to animate a sprite sheet will always come in handy. It can be used for particle
effects, or for flip-book effects, and is most commonly seen in 2D side scroller games.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Textures for Effects

34

A sprite sheet, also referred to as a sprite atlas, if you aren't
familiar with the term, is a big texture that has many smaller
images embedded into it, and is sometimes referred to as an
image sequence.

When you scroll over each of these smaller images in the sheet, you will get the effect of
the content being animated. The concept is the same as making a flip book out of a sticky
notepad or the frames on the film reel of a movie. If we cycle through each of the frames in
our sprite sheet, we will create an animated effect.

This recipe will use a bit more math for the code, but no worries; we step through each new
line of code and explain it thoroughly.

Getting ready
In order for us to be able to test our Shader code we will need some art content. We will have to
either make a sprite sheet ourselves or find one on the Internet. The sprite sheet doesn't have
to be complicated, it just needs a sequence of images to flip through. There is also this sprite
sheet included in the book's support page located at www.packtpub.com/support.

Create a new Material and a new Shader. Then set up your Material by placing it onto a plane
in the Scene view. Then place the sprite sheet into the texture swatch of the Material.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

35

How to do it…
Let's get our sprite animation Shader working by entering the code in the following steps:

1. Create three new properties in the Properties block of the Shader. These will
help us modify the system from the Materials Inspector without having to hardcode
values:

2. Then store the input UVs into separate variables so that we can work with the values:

3. Next we need to get the width of each cell. In the sprite sheet, this takes up a value in
the range 0 to 1, so we need to produce a percentage value:

4. Next, we have to get the time component of our system that will give us the ability to
move, or offset the UVs, from cell to cell:

www.it-ebooks.info

http://www.it-ebooks.info/

Using Textures for Effects

36

5. Finally, we create the offset UVs that we can feed into the x direction of our sprite
sheet. You should now have a Shader that creates a flip book for you.

The following is the result of offsetting the UVs of an object inside a Surface Shader. Again,
you will have to take our word for it that the image is animated:

How it works…
The calculation starts by storing the UVs being passed from the Input struct into a separate
variable. You don't necessarily have to do this, as it is more of a preference choice rather than
a hard rule—it's just a way of reading code. In this case we called our new variable spriteUV,
and declared it as a type float2. This is because we need to store the x and y values of our
meshe's UVs in one variable.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

37

The next step takes the width of our current texture and divides it up into smaller bits using
the _CellAmount property declared in the property block. So if we have a texture that is
512 in width, and we divided it into 16 cells, we would get a value of 32. This represents the
number of pixels that each cell has for its width, but we also need to know what percentage
each cell takes up. This is because UV values are always calculated in a range of 0 to 1 or 0
percent to 100 percent. So we take the cellPixelWidth variable and divide it by the width
of the texture itself. If we dive the cell width of 32 pixels by the texture width of 512 pixels, we
end up with a value of 0.06, or 6 percent of the total width of the texture. This represents the
value by which we need to offset the UVs in order to move to the next cell of the sprite sheet.

Next, we need to calculate some values that increase with time but are whole numbers.
For instance, a value that increases as 0, 1, 2, 3, 4, and so on, until it reaches the total
number of cells we have in our sprite sheet. To do this we can use the CGFX built-in function
called fmod().

Function Description
fmod(x ,
y)

This returns the remainder of x / y, with the same sign as x.

If y is 0, the result is defined by the implementation.

If we feed a value of x into the fmod() function and divide it by the value of y, we get the
remainder of that operation returned to us. So, if we use the _Time value for x and use the
_CellAmount property value for y, we will get a return value that increases with time, and it
will repeat once it is equal to the _CellAmount value.

With that type of value generated, we then use the ceil() function to make sure that the
value is a whole number, instead of some decimal. This basically works by taking a number
such as 1.5 and forcing it to be 2. This creates the number pattern 0, 1, 2, 3, 4,… all the way
to the _CellAmount property value. Once it reaches that cell amount value, it starts over
at 0.

Function Description

ceil(x) Where the smallest integer is not less than x.

Finally, we get the current x value from the input UV and add the product of the cell
percentage and the current time value multiplied by the total cell amount. This will move our
UVs from cell to cell, but we have to also scale our UV value so that only one cell is visible at
any one particular time. To accomplish this, we simply multiply the result of the offset UV by
the cell percentage, and we have our final UV value. All that needs to be done is to pass that
new UV value into the UV value of the tex2D function for the texture.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Textures for Effects

38

There's more…
You might have see it already, but you don't have to use only one of the offset directions. Just
like we gave two directions to the offset in the previous scrolling UVs recipe, we can have
a 2D animated sprite sheet. You simply need to add the y offset to the final offset value.

This is the same as the horizontal scrolling we set up, but now you can cycle through a larger
sheet of images in multiple dimensions. While this shows just the number of things you can
do on the Shader side of development, it might end up adding too many Shader instructions
to your Shader. This means that it will eat up your application's performance.

To combat this, you can move the frame offset selection code to a C# script that talks to the
Shader, and have the CPU drive that portion of the code. It really comes down to balancing
your application when it's time to optimize, but it never hurts to think of elements that you
may encounter in the future, and design your production around that. This book includes a C#
script that demonstrates how a simple sprite animation system can be created using a script
to pass data to a Shader. It basically does the time calculations for us, and passes only the
time value to the Shader using the following code:

See also
If you aren't up for creating a whole system for animating sprites yourself, there are many
resources on the Asset Store that takes care of most, if not all, sprite animation needs.
Here is a list of a few of those resources:

 f SpriteManager (Free):

http://wiki.unity3d.com/index.php?title=SpriteManager

 f 2D ToolKit (Asset Store / $65.00):

http://www.unikronsoftware.com/2dtoolkit/

 f Sprite Manager 2 (Asset Store / $150.00):
http://anbsoft.com/middleware/sm2/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

39

If you are looking for a good application to help you make sprites, here is a list of a few
of them:

 f TimelineFX ($46.79):

http://www.rigzsoft.co.uk/

 f Anime Studio Pro ($199.99):

http://anime.smithmicro.com/index.html

 f Adobe Flash Professional ($699.00):

http://www.adobe.com/products/flash.html

Packing and blending textures
Textures are also useful for storing loads of data, not just pixel colors as we generally tend to
think of them, but for storing multiple sets of pixels in both the x and y directions and in the
RGBA channels. We can actually pack multiple images into one single RGBA texture and use
each of the R, G, B, and A components as individual textures themselves, by extracting each
of those components in the Shader code.

The result of packing individual grayscale images into a single RGBA texture can be seen in
the following image:

Why is this helpful? Well, in terms of the amount of actual memory your application takes up,
textures are a large portion of your application's size. So, to begin reducing the size of your
application, we can look at all of the images that we are using in our Shader and see if we can
merge those textures into a single texture.

Any texture that is grayscale can be packed into one of the RGBA channels of another texture.
This might sound a bit odd at first, but this recipe is going to demonstrate one of the uses for
packing a texture and using those packed textures inside a Shader.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Textures for Effects

40

One example of using these packed textures is when you want to blend a set of textures
together onto a single surface. You see this most often in terrain type Shaders, where you
need to blend nicely into another texture using some sort of control texture, or the packed
texture in this case. This recipe covers that technique and shows you how you can construct
the beginnings of a nice four-texture blended terrain Shader.

Getting ready
Let's create a new Shader file in your Shader folder, and then create a new Material for this
Shader. The naming convention is entirely up to you for your Shader and Material files,
so try your best to keep them organized and easy to reference later on.

Once you have your Shader and Material ready, create a new scene in which we can test
our Shader.

You will also need to gather up four textures that you would want to blend together. These
can be anything, but for a nice terrain Shader, you will want a grass, dirt, rocky dirt, and
a rock texture.

These are the color textures we will be using for this recipe, which are included with this book.

Finally, we will also need a blending texture that is packed with grayscale images. This will give
us the four blending textures that we can use to direct how the color textures will be placed on
the object surface.

We can use very intricate blending textures to create a very realistic distribution of terrain
textures over a terrain mesh, as seen in the following image:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

41

How to do it…
Let's learn how to use packed textures by entering the code shown in the following steps:

1. We need to add a few properties to our Properties block. We will need five
sampler2D objects, or textures, and two color properties.

2. We then need to create the SubShader variables that will be our link to the data in
the Properties block:

3. So now we have our texture properties, and we are passing them into our SubShader
function. In order to allow the user to change the tiling rates on a per-texture basis,
we will need to modify our Input struct. This will allow us to use the tiling and offset
parameters on each texture:

www.it-ebooks.info

http://www.it-ebooks.info/

Using Textures for Effects

42

4. In the surf function, get the texture information and store them into their own
variables so we can work with the data in a clean, easy-to-understand way:

5. Let's blend each of our textures together using the lerp() function. It takes in three
arguments, lerp(value : a, value : b, blend: c). The lerp function
takes in two textures and blends them with the float value given in the last argument:

6. Finally, we multiply our blended textures with the color tint values and use the red
channel to determine where the two different terrain tint colors go:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

43

The result of blending together four terrain textures and creating a terrain tinting technique
can be seen in the following image:

How it works…
This might seem like quite a few lines of code, but the concept behind blending is actually
quite simple. For the technique to work we have to employ the lerp() built-in function from
the CGFX standard library. This function allows us to pick a value between argument one and
argument two by using argument three as the blend amount.

Function Description

lerp(a ,
b, f)

Involves linear interpolation:

(1 – f)* a + b * f

Here, a and b are matching vector or scalar types. f can be either a
scalar or a vector of the same type as a and b.

So, for example, if we wanted to find the mid-value between 1 and 2, we could feed the value
0.5 as the third argument to the lerp() function and it would return the value 1.5. This
works perfectly for our blending needs as the values of an individual channel in an RGBA
texture are single float values, usually in the range of 0 to 1.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Textures for Effects

44

In the Shader, we simply take one of the channels from our blend texture and use it to drive the
color that is picked in a lerp function, for each pixel. For instance, we take our grass texture
and our dirt texture and use the red channel from our blending texture, and feed that into a
lerp() function. This will give us the correct blended color result for each pixel on the surface.

A more visual representation of what is happening when using the lerp() function is shown
in the following image:

The Shader code simply uses the four channels of the blend texture, and all the color textures,
to create a final blended texture. This final texture then becomes our color that we can
multiply with our diffuse lighting.

See also
The terrain for this recipe was created with World Machine. This is a great way to produce very
complex terrain blending textures and meshes.

 f World Machine ($189.00):

http://www.world-machine.com/

Normal mapping
One of the most common texture techniques used in today's game development pipelines
is the use of normal maps. These give us the ability to fake the effect of high-resolution
geometry on a low-resolution model. This is because instead of performing lighting
calculations on a per-vertex level, we are using each pixel in the normal map as a normal
on the model, giving us much more resolution on how the lighting should be, while still
maintaining the low polygon count of our object.

In 3D computer graphics, normal mapping, or "Dot3 bump mapping", is a technique
used for faking the lighting of bumps and dents – an implementation of Bump
mapping. It is used to add details without using more polygons. A common use of
this technique is to greatly enhance the appearance and details of a low polygon
model by generating a normal map from a high polygon model or height map.

Normal maps are commonly stored as regular RGB images where the RGB
components corresponds to the X, Y, and Z coordinates, respectively, of the
surface normal.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

45

The previous text is a quote from Wikipedia (http://en.wikipedia.org/wiki/Normal_
mapping).

There are many ways to create normal maps these days. Some applications such as
CrazyBump (http://www.crazybump.com/) and N2DO (http://quixel.se/ndo/)
will take in 2D data and convert it to normal data for you. Other applications, such as Zbrush
(http://www.pixologic.com/) and Mudbox (http://usa.autodesk.com), will take
3D sculpted data and create normal maps for you. The actual process of creating normal
maps is definitely out of the scope of this book, but the links in the previous text should help
you get started.

Unity makes the process of adding normals to your Shaders quite an easy process within the
Surface Shader realm, using the UnpackNormals() function. Let's see how this is done.

Getting ready
Create a new Material and Shader and set them up on a new object in the Scene view. This
will give us a clean workspace in which we can look at just the normal mapping technique.

You will need a normal map for this recipe, but there is also one included in the Unity project
that is included with this book.

An example normal map included with this book's contents is shown here:

www.it-ebooks.info

http://www.it-ebooks.info/

Using Textures for Effects

46

How to do it…
1. Let's get our Properties block set up to have a color tint and a texture:

2. Link the properties to the Cg program by declaring them inside the subshader below
the CGPROGRAM statement:

3. We need to make sure that we update the Input struct with the proper variable
name, so that we can use the model's UVs for the normal map texture.

4. Finally, we extract the normal information from the normal map texture by using the
built-in UnpackNormal() function. Then you only have to apply those new normals
to the output of the Surface Shader:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

47

The following image demonstrates the result of our normal map Shader:

How it works…
The actual math to perform the normal mapping effect is definitely beyond the scope of this
chapter, but Unity has done it all for us already anyway. They have created the functions for us,
so that we don't have to keep doing it over and over again. This another reason why Surface
Shaders are a really efficient way to write Shaders.

If you look inside the UnityCG.cginc file, found in the Data folder in your Unity install
directory, you will find the definitions for the UnpackNormal() function. When you declare
this function inside your Surface Shader, Unity takes the provided normal map and processes
it for you, and gives you the correct type of data back to you so that you can use it in your per-
pixel lighting function. It's a huge time saver!

Once you have processed the normal map with the UnpackNormal() function, you send it
back to your SurfaceOutput struct, so that it can be used in the lighting function. This is
done by the line o.Normal = normalMap.rgb;.

There's more…
You can also add some controls to your normal map Shader that lets a user adjust the
intensity of the normal map. This is easily done by modifying the x and y components
of the normal map variable, and then adding it all back together.

1. Add another property to the properties block and name it _NormalMapIntensity,
as shown in the following code:

www.it-ebooks.info

http://www.it-ebooks.info/

Using Textures for Effects

48

2. Make sure to declare that property inside the SubShader function:

3. Multiply the x and y components of the unpacked normal map and re-apply that
value back to the normal map variable. Now you can let a user adjust the intensity
of the normal map in the Material Inspector:

The following image shows the result of modifying the normal map with our scalar values:

Creating procedural textures in the Unity
editor

There are times when you want to dynamically create textures and modify their pixels at
runtime, to produce different effects. These are usually called procedural texture effects.
Instead of having to manually create some new texture inside an image editing application,
you can create a set of pixels in a two-dimensional nature and apply that to a new texture.
Then, take that new texture and pass it to the Shader itself to use in its calculations.

This technique can be very useful for painting onto an already-existing texture map, using a
dynamically created texture map, to create some interaction between the gamer and the game
environment. It can also be used as a decal type effect, or for creating procedural shapes used
in the functions of the Shader. There are many situations in which you might want to create a
new texture and fill it with some procedural pattern, and use it in your Shaders.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

49

The process of creating dynamic textures does rely on creating a separate script that
processes the texture for you, but it is something that you should know how to do, in terms of
having a good set of techniques for your shading pipeline. Let's see how to set up a script that
will send its dynamically-created texture to a Surface Shader.

Getting ready
You will need to prepare yourself for this recipe by carrying out the following steps:

1. Create a new C# script in your Unity project, and name it ProceduralTexture.

2. Create an empty GameObject in your scene, zero-out its Position values, and assign
the ProceduralTexture.cs script to it.

3. Next, create a new Shader, a new Material, and a new object that will hold our
Shader and Material. Make sure you name the Shader and Material, so that you
can find them easily.

4. With all of that set up, we are ready to create the code that will generate a parabola
type shape, apply it to the texture, and give that texture to the Shader. By the end of
the recipe you will have created a texture that looks like the following image:

www.it-ebooks.info

http://www.it-ebooks.info/

Using Textures for Effects

50

How to do it…
1. Create a variable to control the height and width of our texture, and a Texture2D

variable to store our generated texture. We will also need some private variables to
store some data while the script is working.

2. In the Start() function of the script, we need to first check to see if the object, to
which this script is attached does in fact have a Material assigned to it. If it does, we
will call our custom function GenerateParabola() and pass its return value back
to our Texture2D variable:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

51

3. We then need to declare our custom function that will produce the desired effect
for us:

4. Finally, we fill our custom function with the algorithm that produces the parabola
shape in the texture. Don't worry if this doesn't make sense yet; we will cover each
line of code in the next section of this recipe.

How it works…
The script starts out simply by checking to see if this particular object in the scene
actually has a material on it that we can assign a texture to. If it does, we assign
our currentMaterial variable the return value of transform.renderer.
sharedMaterial, which returns a Material.

We then move to our next if() statement and check to see if we have a valid Material. If we
do, we call the GenerateParabola() function, which will return a Texture2D for us.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Textures for Effects

52

Once the program has moved to the GenerateParabola() function, it begins by creating
a new texture, using the new Texture2D() constructor, and passing in our widthHeight
variables. The result of this action creates an empty texture that allows us to add in pixel
colors for each pixel in widthHeight squared.

With the new texture, we calculate the center pixel position and store it in the
centerPixelPosition variable.

We then start two for loops that will simply loop through each pixel in the new empty texture
that we created. If you aren't familiar with the C# for loop, see http://msdn.microsoft.
com/en-us/library/ch45axte.aspx.

Then, for each pixel at Vector2(x,y) currently selected in the loops, we measure its
distance from the center pixel, using the Vector2.Distance() function. This function
will return a float value for us. For instance, if the current pixel position in the loop is equal
to Vector2(32,32), we would get a distance value of 316.78, if we created a 512 x 512
texture. That is, the pixel distance is (32,32) from the center.

We will then need to re-map the pixel distance to be within a range of 0. 0 to 1.0, so it can be
used as a color value (Unity uses values from 0.0 to 1.0 as color values). All we have to do in
order to achieve this remapping is to divide the distance value by half the texture's width or
height. So, in this case, we divide our distance by 256, since it is half the value 512. So, if we
have a distance of 316.78, as we saw in the previous example, we would get a value of 1.23.

Now, we need to make sure we don't get any values above 1.0 or below 0.0, so we use the
Mathf.Clamp() function, which allows us to clamp the value to limits that you pass in as
arguments. We passed in 0 and 1 to make sure we get a normalized value.

Finally, we invert the color by subtracting the current value from 1, and then pass that final
value into the channels of a new color variable. See the following image:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

53

There's more…
Now that you have seen how to generate pixel values by using just a little bit of vector math,
think of all the other types of data you can generate and store into a texture. The following
code demonstrates other types of data you can generate, by looking at the dot product of a
world vector and the pixel direction from the center of the image.

1. Here is the math to create rings around the center of the texture:

2. The following is the math for creating the dot product of the pixel direction as
compared with the right and up world vectors:

3. The following is the math for creating the angle of the pixel direction as compared to
world directions:

www.it-ebooks.info

http://www.it-ebooks.info/

Using Textures for Effects

54

The different results of processing the pixels with different vector and angle calculations can
be seen in the following image.

Photoshop levels effect
If you have ever done any sort of image editing, such as touching up a family photograph,
making game textures, or digitally painting a picture, we are sure you understand the power
of having levels to globally adjust your entire image. Well, it is completely possible to create
Photoshop-like effects inside your Shaders as well.

All the different image editing tools and blending modes that you find in Photoshop are all
described with a set of math operations. Ultimately, we are multiplying, adding, subtracting,
and comparing pixel values with some other value, to finally get a return value. This return
value then becomes the new pixel color in the image you're editing.

While we could write a whole book on just the different math recipes for the Photoshop
effects, we are focusing on just levels here. We will cover more advanced blending modes
in Chapter 10, Screen Effects with Unity Render Textures.

Getting ready
In order to complete this recipe, you will need to have a new Shader and Material created, and
assign it to an object in a new Unity scene. You will also need a source texture with which to
test out our level's code. You can also use the Materials that are included with this cookbook.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

55

How to do it…
1. Add the following properties to the new Shader:

2. Make sure to also declare those properties as variables in your CGPROGRAM
statement:

3. Create a new variable to store only the red channel of our current _MainTex texture:

4. Since the values that are given to us by the tex2D() function are in a range from 0.0
to 1.0, we need to re-map the range to 0.0 to 255.0.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Textures for Effects

56

5. We then subtract our input black colors to bring all pixels to black as you slide the
slider towards 255.0:

6. Then we increase the whites of all pixels as we slide the input white slider towards
0.0, and take the result to a power of input gamma:

7. Finally, we multiply the new pixel value by the output white minus the output black,
and then re-map the new pixel value to a range from 0.0 to 1.0:

The following image demonstrates the final effect of applying a level's procedure to our
texture, through a Shader:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

57

How it works…
The Shader's surf function starts by sampling a color texture using the tex2D() function
and stores it in a variable called c. At this point, we want to start to work on the individual
channels and modify each channel's pixels. To do this, we create a new variable called
outRPixel and assign it the value of c.r * 255.0. This will take the value from the range
0.0 to 1.0 to a value of 0.0 to 255.0.

The program then takes the current pixel value and subtracts the _inBlack property value, in
order to darken the pixels value. We also make sure that the value doesn't go below 0.0 after
the subtraction, by using the max() function, which gives us the maximum of two values.

Function Description
max(a, b) This returns the maximum of a and b

We now want to take our modified pixel value and divide it by the new white point values. We
can get the new white point value by subtracting the _inBlack value from the _inWhite
value. This will simply raise the pixel value or make it brighter. This raised pixel value is then
taken to a power of _inGamma, which basically allows you to move the midpoint value of the
current pixel.

Finally, we modify the pixel again with the _outWhite and _outBlack, so you can have a
final global control of what the minimum pixel value can be, as well as what the maximum pixel
value can be. This result is then divided by 255.0, to get it back within the 0.0 to 1.0 range.

We take that final result and pass it to o.Albedo for our final diffuse color. When you play
with the sliders in the Material's Inspector tab, you notice that you have a lot of control over
the texture's contrast and brightness.

There's more…
We are sure you noticed, but we have a lot of duplicate code in our Shader. We can actually
create a custom function within our Shader to clean our Shader code. This will help keep
things clear and to make our Shader more efficient from a development standpoint. See the
following custom function:

www.it-ebooks.info

http://www.it-ebooks.info/

Using Textures for Effects

58

By using this new function inside our Shader to process the final pixel level, we reduced our
surf function Shader code to only three lines for all channels, instead of 15. This greatly
cleans up our code and we now only have to make code changes in a single place, rather
than three.

See also
 f More information on levels can be found at GPU Gems (http://http.developer.

nvidia.com/GPUGems/gpugems_ch22.html)

www.it-ebooks.info

http://www.it-ebooks.info/

3
Making Your Game

Shine with Specular

Everybody loves games like Gears of War and Call of Duty, but what is it about these games that
make them so visually compelling and very realistic? Well, it is a combination of things really, but
one of the more key elements that these games employ in their Shader pipelines are different
types of Specular. This chapter will introduce you to the basics of Specular and demonstrate
some of the tricks that today's AAA games use every day in their Shader pipelines.

In this chapter, will learn the following:

 f Utilizing Unity3D's built-in Specular type
 f Creating a Phong Specular type
 f Creating a BlinnPhong Specular type
 f Masking Specular with textures
 f Metallic versus soft Specular
 f Creating an Anisotropic Specular type

Introduction
The specularity of an object surface simply describes how shiny it is. These types of effects
are often referred to as view-dependent effects in the Shader world. This is because in order
to achieve a realistic Specular effect in your Shaders, you need to include the direction the
camera or user is facing the object's surface. Although Specular requires one more component
to achieve its visual believability, which is the light direction. By combining these two directions
or vectors, we end up with a hotspot or highlight on the surface of the object, half way between
the view direction and the light direction. This half-way direction is called the half vector and
is something new we are going to explore in this chapter, along with customizing our Specular
effects to simulate metallic and cloth Specular surfaces.

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Game Shine with Specular

60

Utilizing Unity3D's built-in Specular type
Unity has already provided us with a Specular function we can use for our Shaders. It is called
the BlinnPhong Specular lighting model. It is one of the more basic and efficient forms of
Specular, which you can find used in a lot of games even today. Since it is already built into
the Unity Surface Shader language, we thought it is best to start with that first and build on
it. You can also find an example in the Unity reference manual, but we will go into a bit more
depth with it and explain where the data is coming from and why it is working the way it is.
This will help you to get a nice grounding in setting up Specular, so that we can build on that
knowledge in the future recipes in this chapter.

Getting ready
Let's start by carrying out the following:

1. Create a new Shader and give it a name.

2. Create a new Material, give it a name, and assign the new Shader to its shaper
property.

3. Then create a sphere object and place it roughly at world center.

4. Finally, let's create a directional light to cast some light onto our object.

When your assets have been set up in Unity, you should have a scene that resembles the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

61

How to do it…
1. Begin by adding the following properties to the Shader's Properties block:

2. We then need to make sure we add the variables to the CGPROGRAM block, so that
we can use the data in our new properties inside our Shader's CGPROGRAM block.
Notice that we don't need to declare the _SpecColor property as a variable. This is
because Unity has already created this variable for us in the built-in Specular model.
All we need to do is declare it in our Properties block and it will pass the data along to
the surf() function.

3. Our Shader now needs to be told which lighting model we want to use to light our
model with. You have seen the Lambert lighting model and how to make your own
lighting model, but we haven't seen the BlinnPhong lighting model yet. So, let's add
BlinnPhong to our #pragma statement like so:

4. We then need to modify our surf() function to look like the following:

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Game Shine with Specular

62

How it works…
This basic Specular is a great starting point when you are prototyping your Shaders, as you
can get a lot accomplished in terms of writing the core functionality of the Shader, while not
having to worry about the basic lighting functions.

Unity has provided us with a lighting model that has already taken the task of creating your
Specular lighting for you. If you look into the UnityCG.cginc file found in your Unity's install
directory under the Data folder, you will notice that you have Lambert and BlinnPhong lighting
models available for you to use. The moment you compile your Shader with the #pragma
surface surf BlinnPhong, you are telling the Shader to utilize the BlinnPhong lighting function
in the UnityCG.cginc file, so that we don't have to write that code over and over again.

With your Shader compiled and no errors present, you should see a result similar to the
following screenshot:

Creating a Phong Specular type
The most basic and performance-friendly Specular type is the Phong Specular effect. It is
the calculation of the light direction reflecting off of the surface compared to the user's view
direction. It is a very common Specular model used in many applications, from games to
movies. While it isn't the most realistic in terms of accurately modeling the reflected Specular,
it gives a great approximation that performs well in most situations. Plus, if your object is
further away from the camera and the need for a very accurate Specular isn't needed, this
is a great way to provide a Specular effect on your Shaders.

In this recipe, we will be covering how to implement the per vertex version of the and also see
how to implement the per pixel version using some new parameters in the surface Shader's
Input struct. We will see the difference and discuss when and why to use these two different
implementations for different situations.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

63

Getting ready
1. Create a new Shader, Material, and object, and give them appropriate names so that

you can find them later.

2. Finally, attach the Shader to the Material and the Material to the object. To finish off
your new scene, create a new directional light so that we can see our Specular effect
as we code it.

How to do it…
1. You might be seeing a pattern at this point, but we always like to start out with our

most basic part of the Shader writing process: the creation of properties. So, let's
add the following properties to the Shader:

2. We then have to make sure to add the corresponding variables to our CGPROGRAM
block inside our SubShader block.

3. Now we have to add our custom lighting model so that we can compute our own
Phong Specular. Add the following code to the Shader's SubShader() function.
Don't worry if it doesn't make sense at this point; we will cover each line of code
in the next section:

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Game Shine with Specular

64

4. Finally, we have to tell the CGPROGRAM block that it needs to use our custom lighting
function instead of one of the built-in ones. We do this by changing the #pragma
statement to the following:

The following screenshot demonstrates the result of our custom Phong lighting model using
our own custom reflection vector:

How it works…
Let's break down the lighting function by itself, as the rest of the Shader should be pretty
familiar to you at this point.

We simply start by using the lighting function that gives us the view direction. Remember
that Unity has given you a set of lighting functions that you can use, but in order to use
them correctly you have to have the same arguments they provide. Refer to the following
table, or go to http://docs.unity3d.com/Documentation/Components/SL-
SurfaceShaderLighting.html:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

65

Not view
Dependent

half4 Lighting Name You choose (SurfaceOutput s,
half3 lightDir, half atten);

View
Dependent

half4 Lighting Name You choose (SurfaceOutput s,
half3 lightDir, half3 viewDir, half atten);

In our case, we are doing a Specular Shader, so we need to have the view-dependent lighting
function structure. So, we have to write:

This will tell the Shader that we want to create our own view-dependent Shader. Always make
sure that your lighting function name is the same in your lighting function declaration and the
#pragma statement, or Unity will not be able to find your lighting model.

The lighting function then begins by declaring the usual Diffuse component by dotting
the vertex normal with the light direction or vector. This will give us a value of 1 when a
normal on the model is facing towards the light, and a value of -1 when facing away from
the light direction.

We then calculate the reflection vector taking the vertex normal, scaling it by 2.0 and by
the diff value, then subtracting the light direction from it. This has the effect of bending the
normal towards the light; so as a vertex normal is pointing away from the light, it is forced to
look at the light. Refer to the following screenshot for a more visual representation. The script
that produces this debug effect is included at the book's support page at www.packtpub.
com/support.

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Game Shine with Specular

66

Then all we have left to do is to create the final spec's value and color. To do this, we dot
the reflection vector with the view direction and take it to a power of _SpecPower. Finally,
we just multiply the _SpecularColor.rgb value over the spec value to get our final
Specular highlight.

The following screenshot displays the final result of our Phong Specular calculation isolated
out in the Shader:

Creating a BlinnPhong Specular type
Blinn is another more efficient way of calculating and estimating specularity. It is done by
getting the half vector from the view direction and the light direction. It was brought into the
world of Cg by a man named Jim Blinn. He found that it was much more efficient to just get
the half vector instead of calculating our own reflection vectors. It cut down on both code and
processing time. If you actually look at the built-in BlinnPhong lighting model included in the
UnityCG.cginc file, you will notice that it is using the half vector as well, hence the reason
why it is named BlinnPhong. It is just a simpler version of the full Phong calculation.

Getting ready
1. This time, instead of creating a whole new scene, let's just use the objects and scene

we have, and create a new Shader and Material and name them BlinnPhong.

2. Once you have a new Shader, double-click on it to launch MonoDevelop, so that we
can start to edit our Shader.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

67

How to do it…
1. First, we need to add our own properties to the Properties block, so that we can

control the look of the Specular highlight.

2. Then, we need to make sure that we have created the corresponding variables inside
our CGPROGRAM block, so that we can access the data from our Properties block,
inside of our subshader.

3. Now it's time to create our custom lighting model that will process our Diffuse and
Specular calculations.

4. To complete our Shader, we will need to tell our CGPROGRAM block to use our custom
lighting model rather than a built-in one, by modifying the #pragma statement with
the following code:

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Game Shine with Specular

68

The following screenshot demonstrates the results of our BlinnPhong lighting model:

How it works…
The BlinnPhong Specular is almost exactly like the Phong Specular, except that it is more
efficient because it uses less code to achieve almost the same effect. You will find this
approach nine times out of ten in today's modern Shaders, as it is easier to code and lighter
on the Shader performance.

Instead of calculating our own reflection vector, we are simply going to get the vector half way
between the view direction and the light direction, basically simulating the reflection vector. It
has actually been found that this approach is more physically accurate than the last approach,
but we thought it is necessary to show you all the possibilities.

So to get the half vector, we simply need to add the view direction and the light direction
together, as shown in the following code snippet:

Then, we simply need to dot the vertex normal with that new half vector to get our main
Specular value. After that, we just take it to a power of _SpecPower and multiply it by the
Specular color variable. It's much lighter on the code and much lighter on the math, but still
gives us a nice Specular highlight that will work for a lot of real-time situations.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

69

Masking Specular with textures
Now that we have taken a look at how to create a Specular effect for our Shaders, let's start to
take a look into the ways in which we can start to modify our Specular and give more artistic
control over its final visual quality. In this next recipe, we will look at how we can use textures
to drive our Specular and Specular power attributes.

The technique of using Specular textures is seen in most modern game development
pipelines because it allows the 3D artists to control the final visual effect on a per-pixel basis.
This provides us with a way in which we can have a mat-type surface and a shiny surface all
in one Shader; or, we can drive the width of the Specular or the Specular power with another
texture, to have one surface with a broad Specular highlight and another surface with a very
sharp, tiny highlight.

There are many effects one can achieve by mixing his/her Shader calculations with textures,
and giving artists the ability to control their Shader's final visual effect is key to an efficient
pipeline. Let's see how we can use textures to drive our Specular lighting models. This recipe
will introduce you to some new concepts, such as creating your own Input struct, and
learning how the data is being passed around from the output struct, to the lighting function,
to the Input struct, and to the surf() function. Understanding the flow of data between
these core Surface Shader elements is core to a successful Shader pipeline.

Getting ready
 f We will need a new Shader, Material, and another object to apply our Shader and

Material on to.

 f With the Shader and Material connected and assigned to your object in your scene,
double-click the Shader to bring it up in MonoDevelop.

 f We will also need a Specular texture to use. Any texture will do as long as it has some
nice variation in colors and patterns. The following screenshot shows the textures we
are using for this recipe:

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Game Shine with Specular

70

How to do it…
1. First, let's populate our Properties block with some new properties. Add the

following code to your Shader's Properties block:

2. We then need to add the corresponding variables to the subshader, so that we can
access the data from the properties in our Properties block. Add the following
code, just after the #pragma statement:

3. Now we have to add our own custom Output struct. This will allow us to store more
data for use between our surf function and our lighting model. Don't worry if this
doesn't make sense just yet. We will cover the finer details of this Output struct in
the next section of the recipe. Place the following code just after the variables in the
SubShader block:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

71

4. Just after the Output struct we just entered, we need to add our custom lighting
model. In this case, we have a custom lighting model called LightingCustomPhong.
Enter the following code just after the Output struct we just created:

5. In order for our custom lighting model to work, we have to tell the SubShader block
which lighting model we want to use. Enter the following code to the #pragma
statement so that it loads our custom lighting model:

6. Since we are going to be using a texture to modify the values of our base Specular
calculation, we need to store another set of UVs for that texture specifically. This
is done inside the Input struct by placing the word uv in front of the variable's
name that is holding the texture. Enter the following code just after your custom
lighting model:

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Game Shine with Specular

72

7. To finish off the Shader, we just need to modify our surf() function with the
following code. This will let us pass the texture information to our lighting model
function, so that we can use the pixel values of the texture to modify our Specular
values in the lighting model function:

The following screenshot shows the result of masking our Specular calculations with a color
texture and its channel information. We now have a nice variation in Specular over the entire
surface, instead of just a global value for the Specular:

How it works…
This Shader is basically the same as Phong calculations, except that we are now going to
modify our Specular with a per-pixel texture, giving our Specular much more visual interest
and depth.

To do this, we need to be able to pass information from our surface function to our lighting
functions. The reason is that we can't get the UVs of a surface within the lighting function.
You can procedurally generate UVs in the lighting function but if you want to unpack a texture
and get its pixel information, you have to use the Input struct, and the only way to access the
data from the Input struct is to use the surf() function.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

73

So to set up this data relationship, we have to create our own SurfaceCustomOutput struct.
This struct is the container for all the final data in a Surface Shader and luckily for us, the
lighting function and the surf() function can both access the data from it. So if we create
our own, we can add more data to it. The following code is our SurfaceCustomOutput
struct in our Shader:

So, we add this to our Shader and we need to tell the surf() function and the lighting
function that they should use this struct instead of the built-in one. This is done by the
following code:

Notice how the surf() function and the lighting function now have the struct
SurfaceCustomOutput for one of their arguments. We have also added a new entry into
our SurfaceOutput struct called SpecularColor. This will allow us to store the per-pixel
information from our Specular color texture and use it in our lighting function, instead of just
multiplying a single global color over our whole Specular value.

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Game Shine with Specular

74

We simply use the tex2D() function to get our texture information, and then pass that into
our SurfaceCustomOutput struct by assigning o.SpecularColor the return value of
the tex2D() function. Once that is done, you can now access the texture information in
the lighting function.

This technique is crucial for creating custom effects in your Shaders. Now you know how to
access textures from the surf() function and use it in your lighting function. This allows
you to create very high-quality, per-pixel effects in your Shader.

Metallic versus soft Specular
In this section, we are going to explore a way to create a Shader that gives us the versatility to
have a soft Specular as well as a hard Specular. You will find in most productions that you will
need to create a nice set of Shaders to perform many tasks. As managing too many Shaders
can become overwhelming, it is common for Shader programmers to create a set of Shaders
that can both be used for cloth and for metal in one Shader file. It's all about how the end user
sets the properties on their model. Our goal in this recipe is to achieve this modularity with
Specular, so that an end user can get a soft, shiny material and then using the same Shader,
achieve a very hard metallic Shader.

To accomplish this flexibility, we are going to create a similar Specular lighting model to the
Cook Torrance Shader, but we will give it our own touch so that it is a bit friendlier for the
artist or end user using this Shader.

Getting ready
1. Create a fresh Unity scene and set up a simple sphere, plane, and directional light in

the new scene. Make sure to save the scene with a name of your choice.

2. Create a new Shader and Material, and give them names that you decide on.

3. Finally, attach the Shader to the Material and attach the Material to the sphere object
in your new scene.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

75

4. We are also going to need to get some textures together that will allow an artist
to refine the roughness of the Specular by defining how blurry and how sharp the
Specular should be. Refer to the following screenshot for examples on how these
textures look.

The following screenshot visually shows examples of different roughness textures used in
this recipe:

How to do it…
1. First and foremost, we need to set up the properties we will need for our Shader.

Enter the following code into the Properties block of your Shader:

2. We then need to make sure that the property data is available to our SubShader
block. Enter the following code just after the #pragma statement in your Shader:

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Game Shine with Specular

76

3. We now need to declare our new lighting model and tell the #pragma statement to
look for it:

4. At this point we are ready to fill in our custom lighting model function with our
lighting calculations. We are first going to want to generate all of our diffuse and
view dependent vectors, as this lighting model is going to make use of them all.

5. The next section of code in the Shader takes care of producing the roughness values
for our Specular, by using a texture to define the Specular shape and to procedurally
simulate micro bumps in the surface of the object. Enter the following code:

6. The last element we need for our Specular calculation is a Fresnel term. This
will help us mask off the Specular when your view becomes very glancing to the
object's surface.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

77

7. Now that we have all the components ready for our Specular, we just need to
combine them together to generate our final Specular value.

8. To complete the lighting model, we simply need to add our Diffuse terms and our
Specular terms together:

With all the code entered into your Shader, return to the Unity editor to let the Shader compile.
If no errors were reported, you should have a result similar to the following screenshot:

How it works…
Alright…that might seem like a lot of stuff going on there, but actually it is all pretty simple
to understand. You can even debug each step of the Shader's code by assigning c.rgb with
a float3 value. Once you do that, you will see, in the editor view, that the Shader is now
displaying the step of whichever calculation you are feeding it; always a good tip to keep in
mind when debugging Shaders.

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Game Shine with Specular

78

If we actually debug the first block of code, where we are calculating all of our Diffuse and
view dependent vectors, you would see something very similar to the following screenshot:

Once we have all of this data we need to start to work with it, almost like layers in Photoshop.
We start this process by generating a procedural value that simulates small micro bumps in
the surface of the object, to fake the effect of light bouncing around and distributing the light.

One of the more key aspects of this lighting model is the fact that we control the width of the
Specular, or its roughness, by looking up a texture that has a baked-in Specular function.
This will allow us to procedurally generate some UVs and pick a spot on the texture to use
for our Specular. For this we want to use the NdotH or the dot product of the half vector and
the vertex normal, and feed that into a float2() variable for the tex2D() function. This
float2() variable will become our UV that we use to look up our texture. The second value
is a property that we exposed in the Inspector tab. This allows the user to expand or contract
the Specular highlight.

We then need to create our Fresnel effect, so that when we look in the opposite direction the
light is pointing we get an increase in Specular intensity.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

79

With all of these components completed, we simply want to multiply them together to achieve
our final Specular value. In this case, we have also multiplied another property called
_SpecPower to give one more level of intensity control over the final Specular value.

The last step is to combine our Specular with the Diffuse component and return the final
color to the Surface Shader. Hopefully, you can see the level of modifications you can make
to a simple system just by using other types of vectors and textures.

See also
 f To find out more about the Cook Torrance Specular model, refer to the following links:

http://en.wikipedia.org/wiki/Specular_highlight#Cook.
E2.80.93Torrance_model

http://content.gpwiki.org/index.php/D3DBook:%28Lighting%29_
Cook-Torrance

http://forum.unity3d.com/threads/158589-Cook-Torrance

Creating an Anisotropic Specular type
Anisotropic is a type of Specular or reflection that simulates the directionality of grooves
in a surface, and modifies/stretches the Specular in the perpendicular direction. It is very
useful when you want to simulate brushed metals, not a metal with a clear, smooth, polished
surface. Imagine the Specular you see when you look at the data side of a CD or DVD, or
the way Specular is shaped at the bottom of a pot or pan. You will notice that if you carefully
examine the surface, you will see that there is a direction to the grooves in the surface,
usually the way the metal was brushed. When you apply a Specular to that surface, you get a
Specular stretched in the perpendicular direction.

This recipe will introduce you to the concept of augmenting your Specular highlights to achieve
different types of brushed surfaces. In future recipes, we will look at ways in which we can use
the concepts of this recipe to achieve other effects, such as stretched reflections and hair,
but here we are going to learn the fundamentals of the technique first. We will be using this
Shader as our reference for our own custom Anisotropic Shader:

http://wiki.unity3d.com/index.php?title=Anisotropic_Highlight_Shader

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Game Shine with Specular

80

The following screenshot shows examples of different types of Specular effects one can
achieve by using Anisotropic Shaders in Unity:

Getting ready
1. Create a new scene with some objects and lights, so that we can visually debug our

Shader.

2. Then, create a new Shader and Material, and hook them up to our objects.

3. Lastly, we will need some sort of normal map that will indicate the directionality of
our Anisotropic Specular highlight.

The following screenshot shows the Anisotropic normal map we will be using for this recipe. It
is available from the book's support page at www.packtpub.com/support:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

81

How to do it…
1. We first need to add the properties we are going to need for our Shader. These will

allow a lot of artistic control over the final appearance of the surface:

2. We then need to make the connection between our Properties block and
our SubShader block, so that we can use the data being provided by the
Properties block:

3. Now we can create our lighting function that will produce the correct Anisotropic
effect on our surface:

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Game Shine with Specular

82

4. In order to use this new lighting function, we need to tell the subshader's #pragma
statement to look for it instead of using one of the built-in lighting functions. We are
also telling the Shader to target Shader model 3.0, so that we can have more space
for textures in our program:

5. We have also given the Anisotropic normal map its own UVs by declaring the following
code in the Input struct. This isn't entirely necessary as we could just use the UVs
from the main texture, but this gives us independent control over the tiling of our
brushed metal effect, so that we can scale it to any size we want.

6. Finally, we need to use the surf() function to pass the correct data to our lighting
function. So we get the per-pixel information from our Anisotropic normal map and
set our Specular parameters.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

83

The following screenshot demonstrates the result of our Anisotropic Shader. The Anisotropic
normal map allows us to give the surface direction and helps us disperse the Specular
highlight around the surface:

How it works…
Let's break this Shader down into its core components and explain why we are getting the
effect we are getting. We will mostly be covering the custom lighting function here, as the rest
of the Shader should be pretty self-explanatory at this point.

We first start by declaring our own SurfaceCustomOutput struct. We need to do this in
order to get the per-pixel information from the Anisotropic normal map, and the only way we
can do that in a Surface Shader, is to use a tex2D() function inside the surf() function.

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Game Shine with Specular

84

We can use the SurfaceOutput struct as a way of interacting between the lighting function
and the surface function. In our case, we are storing the per-pixel texture information
in the variable called anisoTex in our surf() function, and then passing that data to
the SurfaceAnisoOutput struct by storing it in the AnisoDirection variable. Once
we have that, we can use that per-pixel information in the lighting function, by using
s.AnisoDirection.

With that data connection set up, we can move on to our actual lighting calculations. This
begins by getting the usual out of the way, the half vector, so that we don't have to do the full
reflection calculation and the diffuse lighting, which is the vertex normal dotted with the light
vector or direction.

Then we start the actual modification to the Specular to get the right look. We first dot the
normalized sum of the vertex normal and the per-pixel vectors from our Anisotropic normal
map with the halfVector calculated in the previous step. This gives us a float value that
gives a value of 1 as the surface normal, modified by the Anisotropic normal map, as it
becomes parallel with the halfVector and 0 as it is perpendicular. Finally, we modify
this value with a sin() function so that we can basically get a darker middle highlight and
ultimately a ring effect based off of the halfVector.

Finally, we scale the effect of the aniso value by taking it to a power of s.Gloss, and then
globally decrease its strength by multiplying it by s.Specular.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

85

This effect is great for creating more advanced metal type surfaces, especially ones that are
brushed and seem to have directionality to them. It also works well for hair or any sort of soft
surface with directionality to it. The following screenshot shows the result of just displaying
the final Anisotropic lighting calculation:

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

4
Reflecting Your World

Reflection is key nowadays to make your Shaders really punch from a visual standpoint.
It is the process of using the world around you and letting the Shader reflect that world's
information to simulate the environment reflecting on the surface of the Shader. This is in part
because we are able to use a new kind of texture called a Cubemap. This type of texture is
made up of six textures and uses these six textures to surround the current surface in a
cube-like fashion. So imagine a cube and each face of that cube has one of the six textures
on the face of it. This allows us to capture our environment and bake it into textures.

We will see how to generate our own Cubemaps from our own environments, and we are going
to look at different ways in which we can use these generated Cubemaps to create reflection
effects in our Shaders. This is great for simulating metal, car paint, and even plastics. So in
this chapter we are going to learn the following:

 f Creating Cubemaps in Unity3D

 f Simple Cubemap reflection in Unity3D

 f Masking reflections in Unity3D

 f Normal maps and Reflections in Unity3D

 f Fresnel reflections in Unity3D

 f Creating a simple dynamic Cubemap system in Unity3D

www.it-ebooks.info

http://www.it-ebooks.info/

Reflecting Your World

88

Creating Cubemaps in Unity3D
In order for us to start to learn how to create reflection effects for our Shaders, we are going
to have to learn how to create our own Cubemaps. You can find Cubemaps online, but you
will quickly find out that you will want to produce your own, as the ones found online don't
actually reflect your own game world. Any Cubemap found online is great for testing purposes
only. Once you get into production, creating your own Cubemaps, which reflect your game
world, is key to creating realistic reflection effects. We are going to cover a couple of ways in
which you can do this directly in the Unity editor. In addition, we will take a look at standalone
applications that will let you create your own Cubemaps. This will arm you with the knowledge
to move onto the next chapters, as the generation of Cubemaps and understating them is
crucial to this entire chapter.

So, this first recipe is going to arm us with a few different techniques for creating Cubemaps
for your Shaders.

Getting ready
Unity has provided us with the code in JavaScript to be able to create a Cubemap from
the environment we have created. So let's take a look at that. Here is the link to the script
reference for it: www.packtpub.com/support. This will serve as a basis for our script. We
are going to translate this to C#. In the last recipe in this chapter, we will cover how to create
a simple system for generating Cubemaps at multiple positions and use that data to swap
between these reflection maps as a character moves through an environment, ultimately
giving us a semi-real-time reflection system.

For this recipe we will just learn how the creation of a single Cubemap works, which will
prepare us for a dynamic reflection system that can be used for your game.

1. We will need to create some elements for our scene that will act as lights in our
reflection Cubemap. So, we need to create some geometric planes in our scene. You
can do this either in a modeling application, like Maya or Max, or you can use the
default Unity plane. Either way, it doesn't really matter. Your scene should look similar
to the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

89

2. Now, we need to create some textures that will simulate the effect of different types
of lights. So, we need to create some textures that will simulate the falloff and
intensity of lights in our environment. Refer to the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Reflecting Your World

90

3. Now, we need to use one of the built-in Shaders Unity has provided us so that we can
use our plane geometry and textures as lights in our Cubemap. It is suggested that
we use the unlit/transparent shader, so that we get the full intensity of the textures
that are simulating the lights. Once completed, your scene should look similar to
the following:

How to do it…
Let's begin writing our Shader by following the next few steps:

1. We first need to create a new script, but since this is going to be a pop-up editor
window, we must put this script in a folder called Editor. Create that folder
now in your Project panel, and then create a C# script in that folder called
GenerateStaticCubemap. Once it is created, double-click on the new script
to launch it in MonoDevelop.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

91

2. With the script open in MonoDevelop, we need to start to edit our script to perform
the functions we need. To start with, we need to make a new using directive so that
we are using the UnityEditor namespace.

3. In order for this script to be considered a pop-up type editor window, we need to make
the GenerateStaticCubemap script inherit from the ScriptableWizard class.
This will provide us with some nice low-level functions we can use in our script.

4. We then need to add a few public variables so that we can store our new Cubemap
and the position of our Cubemap. Add the following code to the start of the class:

5. Our first function in this script is a built-in function called OnWizardUpdate(). This
function is called when the wizard is first opened, or whenever the GUI is changed
by the user. So, this is a good place to check and to make sure that the user has
supplied the wizard some assets to work with. If we don't have a Cubemap or a
transform in the variables, we need to set the isValid Boolean to false and not
allow the future functions.

www.it-ebooks.info

http://www.it-ebooks.info/

Reflecting Your World

92

6. If the isValid Boolean is equal to true, the wizard will call the OnWizardCreate()
function. This will produce a new camera for us; then position it using our provided
transform, and use the RenderToCubemap() function to return a Cubemap.

7. Finally, we need to call this wizard to activate it from a menu option in the Unity editor
menu. Enter the following code to your GenerateStaticCubemap class:

How it works…
We begin by creating a new script and declaring its class as inheriting from a scriptable
wizard. This tells Unity3D that we intend to make a new pop-up window type custom editor
for Unity. This is why we have to put this script into a folder named Editor. If we don't, Unity
won't recognize it as a custom editor type script.

The variables that we declare in the next step give us a way to store the position we want
to create the Cubemap from, and a way to store a new Cubemap GameObject constructor
created in the Project tab. Having these variables will let us generate our new Cubemap.

We then have the OnWizardUpdate() function that is a function provided to us by the
ScriptableWizard class. It is called when the wizard is first opened and when any of the
wizard's GUI elements change. So, we can use it to do some verification that the user has in
fact entered a transform and a new Cubemap. If they have, we set the isValid variable to
true; if they haven't, we set isValid to false. The isValid variable is a built-in variable,
which is given to us by the ScriptableWizard class. It simply lets you turn on and off the
Create button found at the bottom of the wizard. This prevents anyone from running the next
function with an empty transform or Cubemap.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

93

Once we have made sure that the user has given us the right data to work with, we can
then move on to the OnWizardCreate() function. This is where the guts of the Cubemap
creation happens. It starts by creating a new GameObject constructor and making sure that
it is created as a Camera type. We then position it using the provided transform's position.

At this point, we have a new camera and have positioned it. All that needs to be done is to
call the RenderToCubeMap() function and pass to it the user-provided Cubemap. Once
this function runs, the six images for our Cubemap will be created and assembled into the
Cubemap object the user has provided.

Finally, we create a menu option for our wizard, so that we can let users access this tool from
Unity's top menu bar. With that menu item, we call upon the wizard's Static function, which
actually displays the menu. This completes the process of creating a small tool to generate
Cubemaps directly in the Unity editor.

See also
Let's take a look at other applications that can generate Cubemaps as well. This will give you
a nice list of resources that you can use to create your own reflection pipeline or workflow:

 f ATI CubeMapGen: http://developer.amd.com/resources/archive/
archived-tools/gpu-tools-archive/cubemapgen/

 f HDR Light Studio Pro: http://www.hdrlightstudio.com/

Simple Cubemap reflection in Unity3D
Now that we know how to create our own custom Cubemaps, we can now look at how we use
this new texture type to simulate reflections in our Shaders. The concept of using Cubemaps
for reflections is pretty simple actually, but provides a very powerful tool for your Shader
effects. It works by using the normal from each vertex on the surface of the model to look up
a position on the Cubemap textures. This lookup will return a color value that simulates the
effect of the Cubemap being reflected on the surface of your object. That is the basic idea.

This particular recipe will take the first step into using Cubemaps for reflections. Unity actually
provides us with ways to get the reflection vector automatically, so we don't have to calculate
it ourselves. This is done inside the Input struct by using the built-in worldRefl vector. This
will help us in the lookup operation for our Cubemap texture. So, this first step will give us
the most bare-bones way of creating a reflection effect for your Surface Shaders.

www.it-ebooks.info

http://www.it-ebooks.info/

Reflecting Your World

94

Getting ready
Before we begin our Shader code, we need to set up a simple scene by creating a few assets.

1. Create a new scene, Material, and Shader. Make sure to give your new assets a name
that easily identifies them.

2. Attach the new Shader to your new Material, and then assign your Material to
your object.

3. Finally, create or gather a Cubemap that you can use for the Shader.

The following screenshot shows the Cubemap we are using for this recipe. Yours could be
different, but we just wanted to show what we are using to remove any confusion.

How to do it…
Let's begin to code our Shader by following the next few steps.

1. First let's create some new properties in the Properties block. We will need a place
to get our Cubemap texture and to control the amount of reflection:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

95

2. We then need to make sure we create the connection to the properties inside our
SubShader block. This will allow us to access the data from our Properties block.

3. In order for us to simulate the correct reflection angle to the surface, we will need
to get some sort of vector data that will provide us with the proper world reflection
directions. To do this, we can use another built-in feature of Unity's Surface Shaders.
Inside the Input struct, the following code will give us a world reflection vector we
can use in our Shader:

4. Finally, we just need to get the texture information from our Cubemap, using the
texCUBE() function and our new world reflection vector, given to us by the Input
struct. Add the following code to your surf() function:

A result of creating our own custom Cubemap is shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Reflecting Your World

96

How it works…
If all went well, you should see your Cubemap being reflected onto your object such that it
samples the Cubemap just as a real reflective object would. This is all made possible because
Unity3D has a built-in property for its Surface Shader's Input struct. The worldRefl
property gives us the reflection vector we need to correctly sample our Cubemap. Just by
simply using the worldRefl property inside our texCube() function, we can easily sample
the correct reflection view for our Cubemap.

The following screenshot shows an example of what the reflection data, being passed to the
Shader, looks like when viewed with a debug script:

Masking reflections in Unity3D
Having a reflection is nice, but we aren't going to want to make reflective spheres all the time.
Just about everything reflects a certain amount of its environment, and hence, we need
some sort of per pixel control over the reflection effect.

In this recipe, we are going to look at a technique that lets us drive the reflection amount,
by using a texture as a mask. Basically, we can use the gray scale values of a texture to say
how reflective the surface is, meaning that a black value in the texture is going to produce
a non-reflective surface and a white value is going to produce a fully reflective surface. This
allows for a level of artistic control that is seen in just about every game production pipeline
these days. So, let's take a look at how to do it in Unity using Surface Shaders.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

97

Getting ready
Let's get our new scene ready for our new masked reflection Shader.

1. We will need to have a Cubemap ready for our Shader, you can generate a new one
or just use the one from the previous recipe. The Cubemap we will be using for this
recipe, which is included in the sample code for this book, is shown here:

2. We will also need a texture that will describe where the surface of our object is
reflective and where it is not. Remember, black will represent zero reflectivity and
white will represent full reflectivity, with all the gray scale in between providing a
certain amount of reflectivity. See the following texture for the one we are using in
this recipe:

3. Finally, create a new scene with an object, ground, and a directional light so that we
can see our Shader in all its reflectiveness!

www.it-ebooks.info

http://www.it-ebooks.info/

Reflecting Your World

98

How to do it…
With our scene set up, we can now begin to write the code necessary to produce our
reflection effect.

1. Add the following properties to your Shader. This will let us assign our own custom
Cubemap and reflection masks to our Shader:

2. We then need to make sure we add the same properties as variables to our
SubShader block.

3. In order for us to properly simulate the reflection from the Cubemap, we are going to
need to declare the worldRefl property in the Input struct. We can use this data
as the lookup parameter in the texCUBE() function.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

99

4. Lastly, we need to update our surf() function with the following code. This will be
explained in the next section of this recipe:

The following screenshot shows the result of masking the reflection component with a texture
in a Unity3D Surface Shader:

How it works…
This Shader works quite simply by first sampling the Cubemap using the texCUBE() function.
This function is built-in to the CGFX language. It provides us with the sampled Cubemap
colors that we can then apply to the surface of our Shader. Unity helps us in this endeavor by
providing us with the worldRefl property in the Input struct. As explained in the last recipe,
this property will pass in for us the reflection vector from our camera view.

www.it-ebooks.info

http://www.it-ebooks.info/

Reflecting Your World

100

Once we have the reflection element, we then need to sample our reflection mask texture.
This is simply done by using the tex2D() built-in function, which we have seen before in
Chapter 2, Using Textures for Effects.

With both texture types sampled and stored into a variable in our surf() function, we
simply have to multiply the Cubemap colors with the reflection texture colors and pass
that into the o.Emission parameter of our surface's Output struct. Finally, to globally
control the overall reflection intensity, we multiply the result of the reflection masking by
our _ReflectionAmount property. This will let us control the overall amount of reflection
over the whole surface.

The following screenshot shows the different results by controlling the overall reflection with
the _ReflectionAmount property:

Normal maps and reflections in Unity3D
There are situations where you are going to want to have the normal also perturb the reflected
Cubemap. Let's say you want to simulate a surface like frosted glass, or the surface of an ice
cube. You couldn't model in all the details of the surface and expect it to run at 60 fps in your
game. We have to use normal maps to fake the effects of higher resolution details, so we
need to learn how to pass the normal map information to the reflection effect.

To accomplish this task, we are going to look at another built-in parameter to the Input struct
that will pass in the modified surface normal, generated by the normal mapping technique.
So, let's see how we need to modify the Input struct to produce this effect.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

101

Getting ready
Let's create a new, fresh scene by following the next few steps.

1. Again, we will need a Cubemap to produce our reflection effects. So you can either
use the Cubemap from the previous recipes, or generate a new one. The Cubemap
we will be using for this recipe, which is included in the sample code for this book,
is shown here:

2. We will also need a normal map to produce our normal-mapped reflections.

3. Finally, create a new scene with an object, a ground plane, and a directional light,
and the create a new Shader and Material. This will allow us to see our Shader and
validate that it is working.

www.it-ebooks.info

http://www.it-ebooks.info/

Reflecting Your World

102

How to do it…
Now, let's write our Shader code so that we can learn how to add normal maps to
a reflective Shader.

1. Let's add the properties that we will need to give us the ability to add our own custom
Cubemap and normal map. This step should start to seem pretty familiar to you now.
You always want to set yourself up with the appropriate properties to let you develop
your Shaders. Add the following code to your Properties block in your new Shader:

2. We then need to declare the properties in the SubShader block so that we can
access the data from our Properties block.

3. The Input struct then needs to be updated to include the following code. This
is where the real magic of normal-mapped reflections happens. By using the
INTERNAL_DATA statement, we can access the surface normal after it has
been modified by the normal map:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

103

4. Finally, we need to modify our surf() function with the following code to get our
normal-mapped reflection:

The following screenshot shows the result of using a normal map to affect the reflection effect:

How it works…
You will notice that this Shader looks very similar to the last Shader we wrote, with one
very important difference. We want to use a per-pixel normal map to modify our reflected
Cubemap. In order to do this, you have to have the surface normal of the object after the
normal map has been applied to the Shader. This means that after the lines of code, we
need to write:

www.it-ebooks.info

http://www.it-ebooks.info/

Reflecting Your World

104

Once those lines of code in the Shader have been calculated, the normal on the surface of
the model will have been modified; hence, we need to use it to perturb our reflection. We
can access this modified normal by declaring INTERNAL_DATA in our Input struct, and
then using WorldReflectionVector(IN, o.Normal) as the look-up information for our
Cubemap. This is another built-in function that Unity has provided for us, so that we don't
have to do the laborious coding ourselves. We can concentrate on just writing the meat of the
Shader that produces our desired effects.

There's more…
There are quite a few other built-in functions we can access in our Input struct, and we will
most assuredly use them in future chapters; but the following table describes what each
of these built-in functions does and how to use them. You can also go to http://docs.
unity3d.com/Documentation/Components/SL-SurfaceShaders.html to get more
information about these built-in functions:

float3 viewDir Will contain view direction, for computing Parallax effects, rim
lighting, and so on.

float4 COLOR Will contain interpolated per-vertex color.
float4 screenPos Will contain screen-space position for reflection effects. Used by

WetStreet shader in Dark Unity, for example.
float3 worldPos Will contain world space position.
float3 worldRefl Will contain world reflection vector if Surface Shader does not

write to o.Normal. See Reflect-Diffuse shader for example.
float3 worldNormal Will contain world normal vector if Surface Shader does not

write to o.Normal.
float3 worldRef;
INTERNAL_DATA

Will contain world reflection vector if Surface Shader writes
to o.Normal. To get the reflection vector based on per-
pixel normal map, use WorldReflectionVector (IN,
o.Normal). See Reflect-Bumped shader for example.

float3
worldNormal;
INTERNAL_DATA

Will contain world normal vector if Surface Shader writes to
o.Normal. To get the normal vector based on per-pixel normal
map, use WorldNormalVector (IN, o.Normal).

Fresnel reflections in Unity3D
One of the most used types of reflections is the Fresnel reflection. This will basically increase
the amount of reflection as your view of the surface of an object. You will see this in almost
any type of surface, but one of the most used surfaces of this type of effect is the body of
a car. We can see that the surface is reflective, but as the surface of the car body becomes
more glancing to your view, you'll notice that the reflections and Specular become more
intense and create a nice rim-light-type effect.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

105

Not all surfaces have the same amount of Fresnel reflection, though. Some surfaces, like a
car body's surface, have a high intensity of Fresnel reflection, whereas something like a piece
of plastic has a more dull Fresnel intensity.

This recipe will give you the basic implementation of a Fresnel reflection, as in the real world
a Fresnel reflection is the calculation of reflection and refraction as compared to the viewer's
angle of view to the surface of an object. But since we haven't covered any sort of refraction
techniques, let's take a look at what most game productions implement and how we can
modify it to create a very visually appealing reflection effect.

Getting ready
Again, let's create a new scene and fill it with some assets so that we can focus on the Shader
we are coding.

1. We are going to need to have a Cubemap to produce our Fresnel effect. So you
can either generate a new one, or use one from the previous recipes. The following
screenshot shows the Cubemap we will be using for this recipe, which is included in
the book's support page at www.packtpub.com/support.

2. Create a new scene, an object, a ground plane, a new Shader, and a new Material.

3. Finally, create a directional light so that we have some light information as well.

www.it-ebooks.info

http://www.it-ebooks.info/

Reflecting Your World

106

How to do it…
Now let's code up our Shader and get the Fresnel effect working.

1. First, we need to set up our properties in our Properties block. This time we are
going to utilize the built-in BlinnPhong lighting model, so we will need to declare some
properties to use the Specular component of the lighting model.

2. For this Shader we will need to utilize Shader model 3.0, so that we have enough
registers to bring all the data into the surf() function. So we need to add the
#pragma statement to the definitions in the SubShader block.

3. We then need to make sure that we create connections between our new properties
and the SubShader block, so we need to declare our variables as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

107

4. To get our reflection to work, we need to declare the worldRefl parameter in the
Input struct as well as the viewDir parameter.

5. Then, we need to calculate the rim effect in the surf() function to create our simple
Fresnel reflection effect.

The following screenshot demonstrates the final result of our simple Frensel effect Shader. It
could also be used as the basis for a simple car Shader:

www.it-ebooks.info

http://www.it-ebooks.info/

Reflecting Your World

108

How it works…
In this example we are simply creating a falloff value that we can use to mask off where the
surface is more reflective and less reflective. By using the view direction compared to the
surface normal, we can compute a camera facing falloff value. We then invert that value to
achieve a mask that is whiter at the edges of the surface, and blacker when the surface is
facing more towards the viewer. Refer to the following screenshot for reference:

We then complete the Shader by adding in our Specular value and our Diffuse values to
achieve the final Fresnel reflection Shader.

Creating a simple dynamic Cubemap system
We have learned a lot of great information so far, but our reflections don't really reflect
the proper world as an object moves around the environment. For example, if you have an
environment composed of multiple rooms and hallways, we couldn't bake out a Cubemap for
the whole level and put it in a single Cubemap. That wouldn't reflect the proper environment
from room to room. We would get a very static, uninteresting reflection.

There are a couple ways in which this can be solved such that the reflection of one room is
different than that of the second room. The first and most basic way is to swap the Cubemap
based off of positions in the rooms. So as you move from room to room, the Cubemap would
swap out for the correct Cubemap for that room. The second way is to update the Cubemap in
real time as the character moves about the environment, ultimately getting a new Cubemap
every frame the game progresses. While the second option sounds more visually appealing,
since you would see a pop between Cubemaps, it is rather expensive and so needs to be
weighed against all the other resources your game will need.

This recipe is going to cover the first option and show you how you can set up a very simple
system to swap between two Cubemaps based off of set positions in the environment. There
is more information on creating a real-time reflection system in the last section of this recipe,
so if you are interested and want to see the differences between these two techniques, then
there you go!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

109

Getting ready
1. We need to create a new scene and place a ground plane and a sphere in the world.

Plus, add a directional light to get some lighting for our Shader.

2. Continue by adding two empty GameObject constructors to the scene and name
them pos001 and pos002 respectively.

3. Let's then assign a new material to our sphere and attach the Fresnel Shader, which
we just created in the last recipe, to our new Material. Your scene should now look
like the next screenshot.

4. Finally, let's create a script and name it SwapCubemaps.cs.

The following screenshot shows the result of our prepared scene that is ready for our dynamic
reflection system:

How to do it…
Once your scene is ready to go, we can begin to code up our reflection system by following the
next few steps.

1. Let's begin by adding [ExecuteInEditMode] just before we declare our class.

www.it-ebooks.info

http://www.it-ebooks.info/

Reflecting Your World

110

2. Then, we need to declare a few variables to store all the data in our system. We will
explain these in the next section of this recipe.

3. In order for us to visually see where our Cubemap positions are in space, we need to
take advantage of the awesome gizmos features that Unity3D provides for us. So let's
add the following code to the bottom of our script:

4. Now, we need to create a new function that will determine which Cubemap we should
be using based off of the distance between each of the positions we have set up:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

111

5. Finally, we just need to check every frame to see what the distance is between
each of the positions in our environment and swap out the appropriate Cubemap
in our Material:

Once you save the Shader, return to the Unity editor and let the Shader compile. When
done, hit Play and move the sphere back and forth. You should see a result similar to the
following screenshot:

How it works…
We simply start out this script by declaring the [ExecuteInEditMode] property for our
class. This will tell Unity that we want to run our Cubemap swapping script while it is in the
editor, not just when we hit Play. This will allow us to test out our Cubemap swapping without
having to hit Play—much faster workflow.

The script then has a few variables that we use to allow someone to input two Cubemaps and
two positions, which we use to compare distances. Lastly, we have two private variables with
which we keep track of the current material and the Cubemap while the program is running.

www.it-ebooks.info

http://www.it-ebooks.info/

Reflecting Your World

112

With our variables in place, we can then use the OnDrawGizmos() built-in function to
actually display the positions of our transforms we let the users input. These positions will
command the script as to when to swap out our Cubemaps.

We then get to the real meat of this program. We declare our own function/method that
will calculate the distance our sphere is away from either of the two transforms we have,
using Vector3.Distance(). It then checks to see which distance is smaller and returns
a Cubemap for that position.

Finally, in the Update() function we get the current material from our sphere, or the object
that this script is attached to, and simply assign the currently-selected Cubemap returned
from our custom function.

This is just a very simple script to illustrate the concept, but it could be expanded into a
complete system, where you have multiple Cubemaps per room. The system can autogenerate
all the Cubemaps for us at runtime, which would really be useful for games that can't afford a
full-real-time reflection system.

There's more…
You can also take a shot at creating a real-time reflection system, where a Cubemap is
updated for every frame the game progresses. This is definitely a more visually appealing
system, but does come at a cost to performance:

http://docs.unity3d.com/Documentation/ScriptReference/Camera.
RenderToCubemap.html

www.it-ebooks.info

http://www.it-ebooks.info/

5
Lighting Models

In this chapter, you will learn how to create the following lighting models:

 f The Lit Sphere lighting model

 f The diffuse convolution lighting model

 f A vehicle paint lighting model

 f The skin shader

 f The cloth shader

Introduction
Throughout the last few chapters we have been looking at ways in which we can use different
components of the Surface Shading language to construct Shaders and lighting models. In
this chapter, we are going to take advantage of our new-found knowledge to create our own
complete Shaders for different effects.

We are going to look at some common types of Shaders that are needed for many games in
the industry. This will arm us with the workflows to produce our own Shaders and learn more
about trying to tackle new Shaders when a game production calls for a custom Material. We
will also discuss some of the ways in which you can create more efficiency when working
within a team and how the artists on that team can use your Shaders.

www.it-ebooks.info

http://www.it-ebooks.info/

Lighting Models

114

The Lit Sphere lighting model
The Lit Sphere lighting model is a really interesting use of Image based lighting. We can
actually use a 2D texture to completely bake in our lighting. It's the same effect as what you
see in Zbrush. If you are familiar with Zbrush's MatCaps, the Lit Sphere works in the same
way. We can create a texture that literally bakes in the way that the diffuse, the Specular, the
reflection, and the rim lighting look, and use it to light our Shader. The only catch with this
Shader is that since we have baked the lighting completely in, the lighting never changes,
unless you swap to different textures throughout your environment, like we saw in the Simple
Cubemap reflection in Unity3D recipe in Chapter 4, Reflecting Your World. So this Shader will
not react to the lights in your environment, nor will it change as you move your view around
your model. An example of a Lit Sphere texture lookup, usually referred to as a Sphere Map,
is shown in the following screenshot:

This means that this Shader is good for creating nice diorama scenes or even to use in your
game's cinematics where a camera is locked off and you need really complex lighting for your
characters and environment.

So, let's take a look at how this type of lighting model is created and can be used inside Unity
using Surface Shaders.

Getting ready
To begin this Shader, we need to learn how to create the textures that will become our
lighting in our Shader. To do this we can use Photoshop, but it is much easier to use a little
free tool, called MaCrea, found on the web at: http://www.taron.de/macrea; this is a
great program offered for free to help you create these Lit Sphere maps. I would recommend
watching the videos on Vimeo to get you acquainted with the MaCrea interface and workflows.

An introduction to MaCrea is available at http://vimeo.com/14030320.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

115

Once you have become familiar with the process of creating these Sphere maps, we can move
on to the rest of this recipe. The following screenshot shows shows the MaCrea interface and
a completed Lit Sphere created with the program:

1. Create a new scene with a couple of objects, a plane, and a light.

2. Create a new Shader and Material. Then assign your Shader to your Material.

How to do it…
With our scene assets created and our Shader ready to go in MonoDevelop, we can start to
create our Lit Sphere shading model.

1. As always, we need to set up our properties for our Surface Shader so that we can let
the user of this Shader input different textures and change values. So, let's add the
following code to our Properties block:

www.it-ebooks.info

http://www.it-ebooks.info/

Lighting Models

116

2. Since this Shader is solely using the sphere map to light our model, we will not need
the Lambert lighting function, but we will need to declare our own Unlit lighting
function. We will also need to write a little bit of a vertex function in order for this
Shader to work:

3. Then as always, we need to make sure to declare our properties inside our SubShader
block in order for us to utilize the user-given data from the Inspector in the Unity editor.

4. At this point, we can create our new Lighting function that will produce for us an
Unlit lighting model. We have to do this, as in this case we do not want the lights to
affect our Shader. We just want to cast the shadow from the object. So, we need to
add the following Lighting function to our Shader:

5. We now need to populate our Input struct with some extra properties so that we can
pass the information from our vertex() function to our surf() function:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

117

6. In order for us to look up the Sphere map correctly, we will need to multiply the
tangent rotation matrix with the inverse transpose model view of the current model.
This will give us the proper vectors with which we can apply the Sphere map texture.
Don't worry if you don't understand what is happening here in the vertex shader, we
will explain it more in the next section.

7. Finally, we can fill out our surf() function with the appropriate calculations to
produce the proper lookup values for our Sphere map texture and feed these into
our SurfaceOutput struct. Again, the guts of this function will be explained in the
next section:

The following screenshot is the result of our Shader using a sphere map, or as Zbrush calls
them, MatCaps:

www.it-ebooks.info

http://www.it-ebooks.info/

Lighting Models

118

How it works…
The real magic of this lighting model is actually happening inside the vert() function, when
we assign o.tan1 and o.tan2 a new vector by multiplying the rotated tangent vector with
the inverse transpose model view matrix. This calculation is actually bending the vectors such
that they look up the sphere map in the correct way. So where does the inverse transpose
model view matrix come from? It is yet another built-in value that Unity provides us, so we
don't have to do the calculations for ourselves.

Unity has actually provided us with the most common transformation matrices that are usually
seen in standard CGFX shaders. This is one of the benefits of using Surface Shaders, we don't
have to write these position transformations ourselves. We simply call the built-in parameter.

But why do we need to use this particular transformation of the vertices? Understanding how
these matrices work is definitely beyond the scope of this book, as this isn't meant to be a
book about the heavy math of why objects render to screen in a real-time engine, but the
simple explanation is that we need to take the vertices in object space and convert them to
world space, so we can then map the sphere map on to our surface accordingly. Try to think
of it as changing your spatial relationship to the model.

The vectors being produced by the multiplication of the inverse transpose mode view and the
rotated tangent normal are shown in the following screenshot. We use these vectors to look
up values in our Sphere map texture:

Finally, we complete our Shader by simply using the values IN.tan1 and IN.tan2 as the UV
values for our sphere map texture lookup. We can use these values from the Input structure
because we populated them with data from the vert() function.

This is a simple yet visually appealing way to achieve complex lighting situations. The only
downside to using this technique is that the lighting doesn't update according to real lights.
The lighting is always locked to the facing view direction of the camera, almost as if the
texture is being projected on to the object in view.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

119

See also
As always, the Internet is a great resource to find out more information on many topics. We
have included a few links that will give you more information and training on sphere maps
and the Lit Sphere shading model.

 f There is a great explanation in the Cg tutorial online book here: http://http.
developer.nvidia.com/CgTutorial/cg_tutorial_chapter04.html.

 f You can find more information on all the built-in transformation matrices
here: http://docs.unity3d.com/Documentation/Components/SL-
BuiltinStateInPrograms.html.

 f Information on reflections in MaCrea can be found at: http://vimeo.
com/14189456.

 f Information on cell shading in MaCrea can be found at: http://vimeo.
com/14033777.

The diffuse convolution lighting model
Diffuse convolution is the process of blurring a Cubemap such that the overall intensity of the
lighting in the Cubemap is retained but the details are blurred out. This type of technique is
really useful when you want to achieve a more globally-lit surface. You can fake the effects
of global illumination by capturing a Cubemap of your scene and running it through a diffuse
convolution algorithm, and then lighting your model with the convolved Cubemap.

We are going to look at how we can use this technique inside Unity using Surface Shaders.
We will also utilize CubeMapGen to produce our diffuse convolved Cubemap.

Getting ready
In order for us to achieve this technique, we need to be able to create a Cubemap that has
been convolved. There are a few ways to do this, but we will focus on using CubeMapGen from
ATI. You can download this tool from their site using this link: http://developer.amd.
com/resources/archive/archived-tools/gpu-tools-archive/cubemapgen/.

www.it-ebooks.info

http://www.it-ebooks.info/

Lighting Models

120

The following image shows the CubeMapGen user interface as well as a Cubemap loaded into
the program:

Let's walk through the process of creating a convolved Cubemap:

1. Launch CubeMapGen and load one of the Cubemaps that comes with the
application. They will be located in the install directory of CubeMapGen.

2. Once you have loaded a Cubemap into the tool, we need to filter it, which means to
convolve it or blur it with intelligence. So, we need to go into the blue section of the
user interface and set Filter Type to Gaussian, Base Filter Angle to 72.00, Mip
Initial Filter Angle to 7.60, Mip Filter Angle Scale to 2.02, and Edge fix up to 4.
Then hit the Filter Cubemap button at the bottom of the blue section of the interface.
This will take a little while, but you should end up with something like the following
screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

121

3. Once CubeMapGen has completed its filter process, you can then save your Cubemap
into separate faces by hitting the Save Cubemap to Images button in the green
section of the user interface. This will create each of the sides of the Cubemap for
you. We can then take these images and construct a new Cubemap inside of Unity.

4. Now that we have completed the Cubemap creation, we need to set up a scene to
create our Shader with. So, create a new scene and place some objects in the scene
with one directional light. We will also need a new Material and a new Shader.

www.it-ebooks.info

http://www.it-ebooks.info/

Lighting Models

122

How to do it…
With all of our assets generated, we can now walk through the process of creating our Shader
to utilize our convolved Cubemap.

1. As usual, let's create the properties that will let an artist interact with our Shader so
that they can tune it how they see fit.

2. We then need to declare our #pragma statements. In this case, we are going to
create a new lighting model, as we want our Cubemap to light our model and not
the lights themselves. We are also going to need to declare the 3.0 target shading
model so that we don't run into a texture interpolation error.

3. In order for us to be able to access the data coming in from our properties, we need
to create the link between the Properties block and the SubShader block by
declaring a corresponding variable for each of our properties. Enter the following
code to create this link:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

123

4. Our Input struct is going to be pretty simple this time around, as all we need is
the world normal from our model. We will need the INTERNAL_DATA statement,
as we will be including a normal map in our Shader and this will give us the
modified normal.

5. Our next task is to create the structure for our lighting model. We will want to include
the view direction, as we are going to be creating a simple specular for our Shader
as well.

6. Our lighting function is no good if we don't actually fill it with stuff that calculates our
lighting. So, let's start that by getting all of our lighting vectors in order:

7. Then we need to take care of our Specular component.

8. Finally, we combine all of our calculations together to form our lighting model:

www.it-ebooks.info

http://www.it-ebooks.info/

Lighting Models

124

9. With our lighting model completed we can now simply process our textures, sample
our convolved Cubemap with the world normal of the model, and pass the result
to the SurfaceOutput struct:

Using the world normal, we can look up a color in a convolved Cubemap to give our models a
very realistic look.

The result of our diffuse convolution shader can be seen in the following screenshot:

How it works…
Another simple yet visually stunning technique is the diffuse convolution technique. While it is
a bit more interactive than the sphere map approach, the lighting is still locked off to a single
Cubemap. You could update the Cubemap in real time to sample the environment around
you, but the process of convolving the Cubemap would be too computationally expensive to
do in real time. Not to worry though. This is why Unity has provided us with the light probe
technique. It allows us to place points in an environment and sample the convolved ambient
light coming into each point. This is commonly referred to as ambient cube shading.

This Shader, though, is great for setting up small scenes in which there isn't too much motion
or interactivity with lights. This is commonly referred to as Image based lighting, as we are
using the Cubemap images to light our model and not a light itself. This technique is great
for cinematics in your game, or even a vehicle customization screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

125

This simply works by taking the world normals of the model after they have been modified
by the normal map, and using that data to look up a position in the Cubemap to retrieve its
pixel color. This is why we have to declare float3, worldNormal, and the INTERNAL_DATA
parameters in our Input struct. We then have to use the WorldNormalVector() function
provided to us by Unity to get the final normal vector for our texCUBE() lookup. The rest of
the Shader is pretty familiar to us by now.

In the following screenshot, we can see how the world normal looks up which color it should
be from the Cubemap surrounding it:

There's more…
For more information on using light probes within Unity to get Ambient Cubemaps. refer to
http://docs.unity3d.com/Documentation/Manual/LightProbes.html.

See also
Remember to reference the Creating Cubemaps in Unity3D recipe in Chapter 4, Reflecting
Your World, if you need a refresher.

Creating a vehicle paint lighting model
One of the most used Shader effects is the car shader or vehicle shader. This includes many
of the techniques we have covered so far in the previous chapters, but now we are going
to put all our new-found knowledge to the test. We will create the foundation for a real
production-ready Shader that can be used on any of your vehicle models. This will definitely be
one of the more advanced Shaders we have written as well as one of the longest, but we will
step through it and I'll explain each element.

www.it-ebooks.info

http://www.it-ebooks.info/

Lighting Models

126

Getting ready
Let's get a new scene prepared with a few assets in it so that we can create our vehicle paint
lighting model.

1. We will first need something to shade, so we need to create a new object in a new
scene. It's nice to have a plane to act as a ground plane to catch shadows of our
object we are shading. So we recommend placing one in the scene as well.

2. In order to write a Shader, we need to have a new Shader and a new Material. So,
let's create those now and hook them up to our main object, in this case a sphere.

3. In order to achieve this particular vehicle shader, we will need to create a BRDF texture
as well. If you remember from the BRDF section we just need to create a texture that
has some variation in color, which represents the different viewing directions on the
model. Simply put, we need a color for the diffuse light, and the view direction light.
The following screenshot is an example of a texture used in this vehicle shader:

4. Our final step in preparing for the Shader is the creation of a Cubemap. Remember
from Chapter 4, Reflecting Your World that we can use the generate Cubemap script
to produce a Cubemap from our scene in unity. Let's do that now.

How to do it…
With all our assets ready we can start to construct our Shader. We will first run through the
code in this Shader, and then break it out and describe each individual component. So let's
create our Shader!

1. Our first step is to create the properties we are going to need. There are quite a few in
this Shader, but we will explain what each one is doing in the next section. Some are
pretty familiar to us by now, but they will still be explained.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

127

2. For this Shader we will be creating our own lighting model called CarPaint, so we
need to first declare that in our Shader's #pragma statement:

3. In order for us to access all the data from our properties, we need to declare them
inside of our SubShader block as well. See the following code snippet:

www.it-ebooks.info

http://www.it-ebooks.info/

Lighting Models

128

4. At this point we can start to work on our lighting model. For this Shader we will need
to create a lot of data, so read through the following code snippet a couple of times,
before actually inserting it into your Shader to absorb the information:

5. Let's turn our attention to the Input struct in our Shader and add the following code.
This will let us produce the Fresnel effect you saw in the previous chapter.

6. Finally, we have our surf() function that does most of the per pixel calculations.
Here we will create the final effects for our car paint shader:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

129

The following screenshot shows the result of our car paint shader on a sphere in Unity3D:

How it works…
Our car paint shader is actually quite simple when you break it into its components, and we
have actually already covered each of the components in Chapter 1, Diffuse Shading and
Chapter 3, Making Your Game Shine with Specular. So hopefully, it should all be sinking in
by now, but let's go over the broad concept.

We utilize the BRDF technique, seen in Chapter 1, Diffuse Shading to create the two-toned look
of car paint. Now, not every vehicle will have this so it is up to you, the Shader programmer, to
decide whether you are going to use a BRDF texture or some other form of diffuse component.

Finally, we simply calculate a Fresnel term and a fall-off component that drives the amount of
reflectivity seen on the surface of the vehicle. All these lighting components are driven by the
properties in the Properties block; so an artist can have ultimate control over the final look
of their Shader for their vehicle.

There's more…
There are also car paint shaders for sale in the Unity Asset Store. Here is a link to one of
them: http://u3d.as/content/ravel-tammeleht/mo-dy-en-car-paint-shader-
pack/2Xe.

www.it-ebooks.info

http://www.it-ebooks.info/

Lighting Models

130

Skin shader
Skin shaders are always in high demand during the course of a game production, that is if
your game production has characters with some sort of organic skin. This section is going to
look at a skin shader approach that can be used in production. It isn't by any means the most
accurate, but it does the trick and can produce some really nice effects.

Before we begin though, we need to understand what our skin surface has to do. This
information will arm us with the knowledge we can use to break our Shader into its
components, so that we can program in the different effects.

We can break the skin into four different components. This isn't the law of the land but you
can get a very nice skin effect by concentrating on these four. They are as follows:

 f Sub-surface scattering: This is the effect of the skin becoming very thin or very clear,
such that the light behind it is creating a coloring effect. For skin this is usually a
reddish hue to simulate the blood vessels being exposed. Here, we are going to learn
how to calculate the curvature of a surface using its normal map.

 f Diffuse: As you can imagine the effects of diffuse is not just a simple gray scale value
when it comes to skin. We will still use the technique of dotting the light vector with
the normal vector, but we need to utilize our BRDF technique to give more artistic
control over how the light is affected while being distributed over the surface.

 f Specular: Specular for skin is pretty tricky, as it is being controlled by how oily the
surface is. We can still utilize the Specular tricks we have learned so far, but we want
to add in our Fresnel and rim lighting techniques to control where the Specular is
placed. This will distribute the Specular in a more realistic fashion. We could also
use a lookup texture to control how the Specular is shaped, but we are going to
implement a basic Specular for this recipe as we have covered how to do a Specular
lookup in the previous chapter.

 f Blurred normals: The reason a lot of skin shaders for games don't look that realistic
or too plastic is because the normals of the normal map are reading at a very high-
detail level and that is great when it comes to the Specular component, as we want
to capture all that detail. But when we are talking about the diffuse component of the
skin, we need a nice soft transition of colors.

Getting ready
So, now let's get our scene prepared and gather some assets so that we can have them ready
as we implement the different components of our Shader.

1. Create a new scene, Shader, and Material. Make sure to attach the Shader to the
Material and assign the material to your object. It would be best if you can have a
model of a head, but if not, that's okay, you can still use a sphere, as we have been
using for the previous chapters.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

131

2. We will also need a BRDF texture to calculate our diffuse colors. There is a BRDF
texture that comes with this book, located on the book's support page at http://
www.packtpub.com/support. Your BRDF texture will need to simulate the coloring
of skin for the different tones of the skin. Here, we will be simulating a Caucasian
skin so that our BRDF texture looks like the following:

How to do it…
Now let's take a look at how we construct our Shader. We are going to step through each of
the blocks of code, and then explain the key concepts in the next section.

1. To begin with, we need to fill our Properties block to get our different tweakable
properties set up and give us a way to pass our textures to the Shader. We are now
starting to get a lot of properties in our Shaders. This is the point in which you would
want to speak with your artists and see if you can pack textures so that you don't
need to have a bunch of sliders, but for our purposes this will suffice.

www.it-ebooks.info

http://www.it-ebooks.info/

Lighting Models

132

2. We then need to declare a few #pragma statements, as this Shader requires quite a
bit of processing and specific features of CGFX. So we need to enter in the following
into our SubShader block, in order to remove any unwanted compiling errors. These
will be explained in the next section:

3. Our Shader needs to have access to the data being passed into our properties so that
we can use the values that a user of this Shader will set. So we need to declare the
corresponding property name in our SubShader block.

4. In order for us to completely take advantage of the power of Surface Shaders, we will
need to declare our own SurfaceOutput struct. This lets us pass data back and
forth between our custom lighting function and our surface function. If we were to
use just the built-in SurfaceOutput struct, we wouldn't be able to pass the blurred
normals out to our lighting function, as well as the curvature value, which we are
calculating on a per-pixel level.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

133

5. To complete the base structure of our Shader, we need to declare our Input struct
and fill it with some useful built-in data. In this case, we will need the world position of
each vertex of our model as well as the world normals and as we are using a normal
map for this Shader, we have to declare the INTERNAL_DATA line so that we can get
the normals after the normal map has been applied to the surface.

6. With all the data set up, we can now begin to write our custom lighting
function. We do this by first declaring the lighting models function called
LightingSkinShader().

7. We can now fill our lighting model with the appropriate calculations to produce
our skin lighting. To start it, we will get all of our vectors in order and normalized so
that we are dealing with unit vectors. Make sure this code goes inside the lighting
model function.

8. With the vectors ready, we can produce the values for our BRDF texture lookup.

www.it-ebooks.info

http://www.it-ebooks.info/

Lighting Models

134

9. Next up is our Fresnel and rim lighting components.

10. Then, we create our Specular component just as we had done it in Chapter 3, Making
Your Game Shine with Specular.

11. With all our calculations done for our lighting model, we can now combine them up
and pass the result over to the surface function.

12. Finally, we get to our surf() function where we get all of our texture information,
calculate the blurred normals, and produce the curvature value for our model based
off of the normal map.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

135

With all the components combined in our Surface Shader, our skin shader should look like the
following screenshot:

How it works…
For most of the Shader we have already seen how to implement its components, but there
are a few components that are new to us. To begin with, we have declared a new type of struct
called SurfaceOutputSkin, while we have seen this before, we will cover it here once
more here.

The SurfaceOutputSkin struct is our own custom struct that both the lighting function and
the surf() function can use as a means of passing data from the surf() function to the lighting
function. Think of it like a transport. When we assign values to the struct inside of the surf()
function, they get stored in the variables inside that struct. We can then use that data inside
the lighting function to perform more per-pixel lighting.

The next component that is new to us is the curvature calculation. We are basically measuring
the amount of change between the normals of the surface. So as the curvature of the surface
changes, so does the angle between the normals on that surface. We can use this data to find
the areas of highest curvature and get a black and white value from the calculation.

This calculation introduces two new built-in CGFX functions that will return for us the
necessary data to find this change in the surface curvature. The first is the fwidth()
function. In our Shader, you will notice that we are sending in a vector as the argument to the
fwidth() function. This will return for us how quickly the vector is changing over the surface
of the object. So, we end up with a vector that represents the curvature of the surface. Here
is the link to the Cg standard library description: http://http.developer.nvidia.com/
Cg/fwidth.html.

www.it-ebooks.info

http://www.it-ebooks.info/

Lighting Models

136

Using the fwidth() function from the Cg standard functions, we can get information about
the curvature of the surface of our model.

We then don't need the complete vector; we just want to find its magnitude on a per-pixel
basis. So, we can use the length() function as this will return for us the length of the vector
as a float value. Here is the description of the length function from the Cg standard library:
http://http.developer.nvidia.com/Cg/length.html.

Using the length() function, we can find out the magnitude of the per-pixel curvature vector
and get a float value that will drive how we look up our BRDF texture.

With that data processed, we simply divide the two floats and multiply the result by another
float value, passed to us from our CurveScale property, to give control over how intense the
curvature effect is.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

137

The final result of our complete curvature calculation in our skin shader is shown in the
following screenshot:

Finally, our last new function that we are utilizing to get a nice soft diffuse lighting on our skin
is the tex2Dbias() function. This allows us to offset or move the current mip level to a lower
or higher mip level using a property to allow control over how blurry the texture is. It's not that
we are blurring the texture pixel for pixel, we are actually just selecting a lower mip level from
our texture. For more information on mip maps and generating them, see this link to the Unity
reference: http://docs.unity3d.com/Documentation/Manual/Textures.html.

There's more…
This particular implementation of a skin shader was inspired by a couple of Shaders found on
the web. So we thought it proper to mention them here:

 f Unity forums: http://forum.unity3d.com/threads/131626-Gritty-
realistic-skin-shader.

 f Skin Shader 3: http://wiki.unity3d.com/index.php?title=Skin_
Shader_3.

Cloth shading
Cloth is another very common shading task that needs to be achieved in the process of
making games or shading real-time interactive experiences. It involves understanding how the
fibers of the cloth disperse the lighting over the surface to produce the look of cloth. It is also
very view-dependent and so we will look at some new tricks we can employ to fake the effects
of light glancing over the surface of the cloth, and the tiny fibers producing a very distinctive
rim lighting effect.

www.it-ebooks.info

http://www.it-ebooks.info/

Lighting Models

138

This Shader will introduce us to the concept of detail normal maps and detail textures. By
combining two normal maps together, we can actually achieve a higher level of detail that you
could store in a 2048 x 2048 texture. This technique will help us simulate the micro level of
bumps in the surface that will allow us to disperse the specular component over a wide surface.

Here, we can see the final cloth shader we are going to make in this recipe:

Getting ready
This Shader is going to require that we gather three different types of textures in order to
simulate a cloth-like surface.

 f We are going to need a Detail Normal map. This map will be tiled over the surface to
simulate the micro stitching in the cloth.

 f We will need a Normal Variation map that will give us a nice variation in the stitching
to make it feel less uniform and more like it has been worn over the years.

 f Finally, we need a Detail Diffuse map that we can multiply over the base color
in order to give the diffuse a bit more depth and realism, and to emphasize the
stitching in the cloth.

The following screenshot shows the three textures we will be using for this recipe. They are
also included on this book's support page located at www.packtpub.com/support:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

139

To complete the setup, we need to create a scene with an object and a directional light. Then
finally, create a new Shader and Material to assign to our main object.

How to do it…
Let's get our Shader started by filling in our Properties block.

1. Our Shader is going to take just a few properties here to control which textures we
use and how the falloff of our Fresnel and specular components look.

2. As we want to have full control over how the lighting reacts to the surface of our
cloth, we are going to declare a new lighting model in our #pragma statements, as
well as setting this Shader to use Shader model 3.0. In order for us to create our
own custom lighting model, we have to declare the name of our lighting model in
the #pragma statements.

3. Now, we have to make the connection between the Properties block and the
SubShader block. In order to use the data coming in from our Properties block,
we have to declare the same named variables in our SubShader block.

www.it-ebooks.info

http://www.it-ebooks.info/

Lighting Models

140

4. To control the tiling rates of our detail textures independently, we need to declare the
UV parameters in the Input struct. The UV information will be connected if you put
uv in front of the same name of the texture. Connect the texture's tiling rates within
the Input struct:

5. Now, we need to build the function that will become our lighting model. Create the
lighting function structure to start the process of creating a custom lighting model.
We are going to need the viewDir lighting function structure for this Shader, as the
cloth surface has view-dependent components.

It's always a good idea to take care of all your lighting vectors at the beginning of
your lighting function. This frees you up to worry about other parts of the lighting
calculation, instead of always having to normalize your vectors. Let's add our lighting
vectors to the beginning of our lighting model:

6. Our next task is to calculate our Specular component. Add the following code just
after the lighting vectors:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

141

The shading of cloth is very dependent on how you are looking at its surface. The
more glancing the surface of the cloth, the more the fibers catch the light behind it
and amplify the intensity of the Specular component.

7. With all our main lighting calculations completed, we just need to output the final
color. Complete the lighting model by entering the following code, just beneath the
Fresnel calculation:

8. Finally, we finish our Shader by filing in our surf() function. Here, we just need to
unpack our normal maps, and send all the data to our SurfaceOuput struct. Let's
complete the Shader by sampling our textures:

www.it-ebooks.info

http://www.it-ebooks.info/

Lighting Models

142

The following screenshot demonstrates the result of using this cloth surface shader on a
cloth-like model:

How it works…
Overall our cloth shader isn't that complicated really. We are doing some very basic lighting
operations, but sometimes that's all you need for your Shaders. When writing Shaders you
want to really look at the surface you are trying to simulate and break it into its components,
and then program them one at a time. The real magic comes in how you end up combining
the different calculations, much like blending layers in Photoshop.

The new technique demonstrated in our cloth shader is the process of combining two normal
maps with different tiling rates. Our basic linear algebra will show that we can in fact add two
vectors together to result in a new position. So we can do just that with our normal maps. We
take our Variation Normal map, which provides us a vector by using the UnpackNormal()
function, and add the normal vector from the Detail Normal map. This will basically result in
a new normal map. We then need to normalize our final vector, so that it is back in the 0 to 1
range. If we don't, our normal map will look very bruised and visually wrong.

Finally, the combination of the Fresnel and the Specular calculation allows us to create the
effect of the tiny fibers of cloth to catch the light at glancing angles to the surface of our object.

www.it-ebooks.info

http://www.it-ebooks.info/

6
Transparency

In this chapter, you will learn about:

 f Creating transparency with alpha

 f Transparent cutoff shader

 f Depth sorting with render queues

 f GUI and transparency

Introduction
Transparency and graphics cards can be a little tricky at first when writing Shaders. By
utilizing Unity's Surface Shaders we can quite easily start to build Shaders that can have full
transparency for surfaces like glass, or partial transparency for surfaces like hair and foliage.

We are going to look at how to first construct a very simple Shader using transparency, build
our knowledge set to include Shaders such as hair, and understand how transparency affects
the order in which your objects are drawn.

Creating transparency with alpha
Our first step in understanding how to write a transparent Surface Shader is to understand
what code we need to include in our Shader to allow for transparency to be enabled. Unity
again has provided us with a few new built-in parameters that we can include in our Shaders
to get transparency working quickly.

www.it-ebooks.info

http://www.it-ebooks.info/

Transparency

144

It is simply a process of using the alpha parameter in our #pragma statement in our Shader.
This basically tells Unity that we are going to be using transparency in the Shader. There are a
few things one has to be aware of though when creating transparent Shaders, since drawing
order becomes an element in our code. We will cover the basics in this recipe, just so we
can get a transparent object in our Unity scene. We will then begin to cover other means of
transparency in the following recipes.

Getting ready
To begin this recipe, we will need to gather a few resources and set up a new scene in the
Unity editor. Let's take the following steps to prepare for our Shader writing process:

1. Create a new scene in Unity and populate it with a sphere, a plane, and a simple
directional light.

2. We then need to create a new Shader and a new Material. The Shader should be
assigned to the Material and the Material to the sphere in your scene.

3. Finally, we need to gather a texture to act as the driving factor as to what is
transparent and what is not on our object in the scene.

The following diagram is an example of the texture we are going to be using for this recipe. Since
its colors are pure RGB and white, we can use the individual channels of the texture to act as a
transparency value of 0 or 1, meaning white is opaque and black is completely transparent.

How to do it…
With our assets ready to go, we can start the process of filling in our Surface Shader to create
our first transparent Shader.

1. Let's populate our Properties block with a new property that will give us a global
control over our Shader:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

145

2. We then need to modify our #pragma statement with a new parameter we haven't
seen yet, the alpha parameter.

3. Finally, we complete the Shader by adding the O.Alpha line to our surf() function:

The following screenshot is the result of our transparent Shader in the Unity editor:

How it works…
As you can see, it is very easy to get a transparent Shader up and running using Unity's
Surface Shaders. The Shader relies on two elements to be present when writing a transparent
Shader, the alpha parameter for the #pragma statement and the value to be used for the
alpha value in the SurfaceOutput struct.

Once we declare the parameter alpha in our #pragma statement, this tells Unity to allow for
a transparent surface to be rendered to the screen. All that is needed to be done is to feed
the O.Alpha value of our SurfaceOuput struct (the built-in one in this case) with a value of
0 or 1 on a per-pixel basis. In color terms, a value of white, or 1, gives us a completely opaque
surface, while a value of black, or 0, gives us a completely transparent surface.

www.it-ebooks.info

http://www.it-ebooks.info/

Transparency

146

While there comes many items, we have to keep in mind when using transparent Shaders
that this is the most basic implementation. As we move through this chapter, we will start to
discuss the issues that arise when using alpha or semi-transparent Shaders in a real-time
renderer such as Unity.

Transparent cutoff shader
Unity actually provides us with another type of parameter for our #pragma statement that
will give us the ability to create a simpler transparent effect, called the cutoff transparency.
This type of transparency uses a value to simply not draw certain pixels to the screen, thereby
giving us a way to have either a completely opaque or completely transparent Shader, while in
the last recipe our Shader gave us the ability to use the full range of gray scale to affect the
transparency, otherwise called a semi-transparent shader.

Let's continue and see how to construct this type of Shader in Unity.

Getting ready
Let's start our Shader writing process by getting a few items together.

1. First, create a new scene and populate it with a simple sphere and a directional light.

2. Let's then create a new Shader and a new material.

3. Finally, assign the Shader to the Material and the Material to the sphere in our scene.

4. We are going to need a new texture this time. It would be best if you could find a
texture with gray scale values, so we can see the effect of the cutoff value in action.

The following screenshot shows the texture we will be using for this recipe. We created this
texture simply by using the Render Difference Clouds filter in Photoshop. The texture we
created is also available from the book's support page at www.packtpub.com/support.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

147

How to do it…
Now that we have our new scene and our assets gathered, let's take a look at what we have to
write, in terms of code, in our new Shader.

1. To begin with, let's fill in our Properties block with a float value that will let us pick
the cutoff value we want to use in our Shader:

2. Then, we need to tell our Shader that we are going to be setting this Shader to a
cutoff type Shader:

3. Finally, we fill O.Alpha with the values we want to use on a per-pixel basis for
our surface:

The following screenshot displays the result of our cutoff Shader with the cutoff slider at
different values between 0 and 1:

www.it-ebooks.info

http://www.it-ebooks.info/

Transparency

148

How it works…
Unity has provided us with quite a few parameters we can use with our #pragma directive. All
of them give us the power to change and optimize our Surface Shader. It's one more reason
why Surface Shaders are so powerful and efficient when it comes to writing Shaders and the
iterative process.

Our cutoff shader uses a new parameter to our #pragma directive called
alphatest:VariableName. This immediately sets the Shader into a simplified version of
transparency. Instead of our transparency being semi-transparent, meaning each value of
gray in the range of black to white affects transparency; only the value being passed by our
_CutOff variable will determine the transparency. This means that if we put the _CutOff
value to something like 0.4 in the Inspector, every value of gray below 0.4 will be considered
transparent, and everything above that value will be opaque or solid.

It's advantageous to use this type of transparency when performance becomes an issue,
as dealing with the blending of a semi-transparent Shader is more expensive than a cutoff
transparency. On mobile devices it's the opposite, as testing the pixel values for a texture
becomes quite expensive for those little GPUs. So if you are producing a mobile application
with Unity3D, remember to use the semi-transparent technique and use the cutoff
transparency technique sparingly.

Depth sorting with render queues
In order for us to truly understand transparency, we need to take a look at depth sorting or
in simpler terms, the drawing order of objects. Unity allows us to control the order in which
a particular object is drawn to the screen, so we can have a greater control of which objects
render over other objects. You can think of the drawing order as being very similar to layers in
Photoshop. Drawing order is especially important when dealing with transparency or elements
such as user interface objects.

This recipe is going to start to reveal how you can utilize this layered approach to rendering
your objects, using built-in tags provided to us by Unity. This is very important as you will
gain a greater amount of control over how your objects are rendered to the game view.

Getting ready
To get started, we will need to create a few assets in order for us to learn how we can use
Unity's drawing order to give us more flexibility and control in our real time renders.

1. Create a new scene and populate it with a couple of spheres, such that they are lined
up in a row in whichever axis you want. Our goal is to take a look at how we can draw
an object over another object regardless of its actual position in 3D space.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

149

2. In order to see the effects of modifying an objects drawing order, we will need to have
at least two Shaders. So let's create two new Shaders and name them appropriately.
The demonstration Shaders are named Depth001 and Depth002.

3. Your scene should look like the following screenshot. This set up will allow us to play
with the order in which objects are drawn:

How to do it…
The actual Shader code to achieve this technique is quite simple; it just requires two new lines
of code that we haven't seen before.

1. We first need to declare which render queue this object will be drawn into and to do
that we need to modify our Tags{} block, just inside our SubShader():

2. Next, we need to tell Unity that we want to control the order in which this object is
drawn and that we don't want to write to the depth buffer. Add the following line of
code just below the Tags{} line we added in the previous step:

www.it-ebooks.info

http://www.it-ebooks.info/

Transparency

150

3. With that code entered into your Shader, we can now save and return to the Unity
editor to let the Shader compile. When it is finished, you will notice that one of the
spheres appears behind every other object, even though its actual position in 3D
space is in front of every object in the scene. The following screenshot shows the
result of our depth sorting shader:

How it works…
Unity, by default, will sort your objects for you based off of the distance from the camera. So
as an object gets nearer to the camera, it is going to be drawn over all objects that are further
away from the camera. For most cases this works out just fine for making games, but you
will find certain situations where you will want to have more control over the sorting of your
objects in your scene. Using the Tags{} block we can control this sorting.

Unity has provided us with some default render queues, each with a unique value that
directs Unity when to draw the object to the screen. These built-in render queues are
called Background, Geometry, AlphaTest, Transparent, and Overlay. These queues
weren't just created arbitrarily; they actually serve a purpose to make our lives easier when
writing Shaders and interacting with the real time renderer. Refer to the following table for
descriptions on the usage of each of these individual render queues:

Render queue Render queue description Render queue
value

Background This render queue is rendered first. It is used for
skyboxes and so on.

1000

Geometry This is the default render queue. This is used for most
objects. Opaque geometry uses this queue.

2000

AlphaTest Alpha-tested geometry uses this queue. It's different
from the Geometry queue, as it's more efficient to render
alpha-tested objects after all the solid objects are drawn.

2450

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

151

Render queue Render queue description Render queue
value

Transparent This render queue is rendered after Geometry and
AlphaTest queues in back-to-front order. Anything alpha-
blended (that is, Shaders that don't write to depth buffer)
should go here, for example glass and particle effects.

3000

Overlay This render queue is meant for overlay effects. Anything
rendered last should go here, for example lens flares.

4000

So once you know which render queue your object belongs to, you can assign
it's built-in render queue tag. Our Shader used the Geometry queue, so we wrote
Tags{"Queue"="Geometry"}. But we wanted to tell our object to draw behind everything in
our Geometry queue but before the background queue. So we modified the Tags{} block to
read Tags{"Queue"="Geometry-20"}. Doing this tells Unity that we want to consider this
object as an opaque or solid object, but render it behind every other opaque object.

Lastly, we have to declare the Zwrite tag to our SubShader block. This tells Unity that we
are going to override the depth sorting of our object, and we will be assigning a new value for
its render queue. So, we simply set the Zwrite value to off.

GUI and transparency
Now that we have covered the basics of creating transparent Shaders and learned how we
can control the order in which objects are drawn, let's take a look at a practical production
scenario in which we would need to use transparency and have control over the order in which
the transparent objects are drawn.

Creating GUIs for Unity is definitely a huge task. One could use the Built-in OnGUI() function
to create their GUI using a bunch of 2D images with alpha, and let Unity draw the images to
the screen. Or, one could create an actual 3D GUI system in which you can actually see your
GUI elements in the scene view, inside the Unity editor. We are going to take a look at this last
approach. We need to be able to use a sheet of 2D images and place them onto 3D objects in
our scene, so they can be used as GUI elements for a game.

We are also going to take a look at some issues that will pop up when using a 3D GUI
approach, such as drawing order, and learn a simple way in which we can solve these issues.

www.it-ebooks.info

http://www.it-ebooks.info/

Transparency

152

Getting ready
For this recipe we will be creating a very simple GUI example, and so we are going to need to
construct a sheet of GUI elements for our scene. When a GUI is created in this 3D manner, a
texture sheet is created in order to save on the amount of textures we have to use. This means
that all button graphics, icon graphics, and in some cases even text graphics are laid out onto
a single texture with its alpha channel set to mask out where the texture sheet should be
transparent and where it's opaque or semi-transparent. Refer to the following screenshot of
the texture sheet we will be using for this recipe:

So let's start to construct our mock GUI for our Shader writing. This will allow us to simulate
the kinds of things we have to think about when working on a GUI system for a production.

1. Construct a GUI texture sheet similar to the texture sheet seen in the preceding
screenshot. Make sure to include the alpha texture in the alpha channel of the
texture sheet.

2. We also have to create some simple geometry for our GUI. In our case, Maya was
used to generate the meshes that the GUI elements sit on.

3. Create a new scene in Unity and place a plane and a directional light into the scene.

4. Then, create a new Shader and a new Material for our mock GUI and assign the
Shader to the Material.

5. Now, we simply assign our Material to our GUI objects in our scene to complete the
setup process.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

153

6. When completed with the previous steps, your scene should look similar to
the following screenshot. You are more than welcome to use the scene that is
included with this book, but it is always a good practice to create your own:

Not very interesting to look at and our alpha isn't creating the transparency effect we need in
order to have a real game GUI. We need to create our GUI Shader in order for us to create a
more elegant looking GUI. So let's do that now.

How to do it…
In order for our GUI to have transparency, we need to create the Shader so that we can tell
Unity that these objects are transparent.

1. As usual, we need to populate our Properties block with the appropriate properties
so that we can interact with our Shader in the Unity editor.

www.it-ebooks.info

http://www.it-ebooks.info/

Transparency

154

2. We then need to move down to our SubShader block and start it by setting the type
of render queue we are going to be using and setting up the lighting model. You'll
also notice that we have introduced some new tags to our SubShader block. We will
cover these in the next section. For now, enter the following code at the top of your
SubShader block:

3. After our SubShader tags have been declared, we need to move on to our #pragma
directives or statements, and declare our own custom lighting model and add some
new arguments we haven't seen before. This will allow us to create a completely unlit
surface and let the full color of the texture sheet drive the look of our GUI:

4. Our next step is to make the connection between the values in our Properties
block to the variables in our CGPROGRAM block:

5. After all of our Shader setup is completed, we have to write our unlit lighting model.
This is fairly simple and is simply passing the color value of the texture sheet to our
SurfaceOutput struct:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

155

6. As always, if we are going to be using textures, we have to make sure that we get the
UVs for that texture inside the Input struct:

7. Finally, we simply sample our texture and alpha values, and pass them to the
SurfaceOutput struct inside the surf() function:

When finished with the Shader, you should see something very similar to the following
screenshot, although if you are using your own custom geometry and texture sheet,
your scene will look different. Apart from that, the Shader should be generating an
effect of an unlit surface with alpha transparency:

www.it-ebooks.info

http://www.it-ebooks.info/

Transparency

156

You'll notice though that we are getting a small error in our GUI. Our background
box, just behind our buttons, is actually rendering over our Play Game button. This is
because the meshes are so close together that Unity is having a hard time discerning
which object to draw first. Since the order is currently being determined by the
distance from the camera, Unity is displaying the background box over the button.

8. In order for us to fix this issue, we are going to have to change the render queue on
a per-material basis. We can't simply change the render queue in the Shader, as this
would cause us to have to write a Shader for each queue level. We need individual
control over our Materials. So, we have to write a small C# script that will allow us to
achieve this effect. Let's do that now.

9. We first need to create a new C# script in order for us to achieve this fix to our
GUI Shader.

10. Once you have created the script, double-click on it to open it up in MonoDevelop.

11. Our first order of business here is to tell this script to run in the editor so that we can
see the effects of us changing the queue value in real time in the scene view. To
achieve this, we need to declare the [ExecuteInEditMode] attribute before our
class declaration:

12. In order for us to change the queue level in real time, we need to create a new
variable that we can change in the object's Inspector. So, we declare a new variable
with the name queueValue and make it public so that it displays in the Inspector.

13. We then move on to our Update() function and first see if the object that this script
is attached to has a Material assigned to it:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

157

14. Finally, using an if() statement we then check to make sure our curMaterial
variable has a Material reference in it and that it is not null. This is just to prevent
any unnecessary error messages from popping up in the console window.

With the script completed, you can now assign it to any of our GUI elements, and adjust the
queue value on the fly in the editor and see the drawing order change. Our GUI scene is now
complete and all of our GUI elements are drawing in the right order. We have given ourselves
a fine amount of control over the objects in our GUI, very similar to layers in Photoshop, all by
creating a Shader and a small script.

www.it-ebooks.info

http://www.it-ebooks.info/

Transparency

158

How it works…
Beginning with the GUI Shader, we have introduced a couple of new SubShader tags
that allow us to fine tune how our Shader works with the Unity renderer. By declaring
"IgnoreProjector"="True", we are telling Unity that we don't want any projector type
materials or textures to affect our objects or Shader. This is because we want the GUI to be
separate from our scene. All the scene effects, such as projectors, should only affect objects
in our game and not our GUI. The "IgnoreProjector" tag is one way to achieve this.

Our second new tag is the "RenderType"="Transparent". Similar to the "Queue" tag,
this tag categorizes the Shader into the transparent category for Unity's camera effects, just
so Unity can give you a more organized way of sorting your objects.

The last new element to our Shader is the addition of novertexlights to the #pragma
directive. This parameter tells Unity that we do not want to use any per-vertex lights or
Spherical Harmonics to light our objects. In fact, we do not want to use any lights at all; so we
can use this parameter to make our Shader a bit cheaper, which is exactly what we are going
for when developing a 3D GUI system.

Turning our attention to the render queue script we created, the script is simply getting access
to the Material attached to our object by using the transform.renderer.sharedMaterial
code. If a Material is in fact attached to the object that the script is assigned to, that line of code
will return the Material. If it cannot find a Material, it will return null.

We then check to see if the script found the Material and change the value of the render
queue. If it does not find a Material, we just send a debug message to the console to make
the user aware that the object needs a Material.

This is obviously a simple example of how much control you can have with transparency and
the render queue, but this does gives the foundational knowledge you will need to create
more robust systems of your own!

www.it-ebooks.info

http://www.it-ebooks.info/

7
Vertex Magic

In this chapter you will learn about:

 f Accessing a vertex color in a Surface Shader

 f Animating vertices in a Surface Shader

 f Using vertex color for terrains

Introduction
Shaders are absolutely necessary in order for us to render our real-time objects to the screen.
It gives us the power to create very complex lighting solutions for the surfaces of those
objects, but we can also use Shaders to actually modify the vertices of our objects. This
becomes very advantageous as we can process these modifications to our object's vertices
faster using a Shader.

The vertex function is executed once for each vertex that is sent to the graphics processing
unit (GPU). Its job is to take the vertex from its 3D local space and transform it in such a way
that it renders in the right location on the 2D screen. With the vertex function, we have the
ability to modify elements such as the vertex position, its color, and its UV coordinate. Once
the vertex function is finished modifying the vertex, it moves to the surf() function where
per-pixel effects are applied.

Using the vertex shader, we can gain a powerful amount of control over our model to create
effects such as waves on an ocean, or a waving flag, or shade our model with vertex colors.
In this chapter we will be learning how to use the vertex function in a Surface Shader.

www.it-ebooks.info

http://www.it-ebooks.info/

Vertex Magic

160

Accessing a vertex color in a Surface
Shader

Let's begin this chapter by taking a look at how we can access the information of a model's
vertex, using the vertex function within a Surface Shader. This will arm us with the knowledge
to start utilizing the elements contained within a model's vertex, to create really useful and
visually appealing effects.

A vertex in a vertex function can return information about itself that we need to be aware of.
You can actually retrieve the vertices' normal directions as a float3 value, the position of the
vertex as float3, and you can even store color values in each vertex and return that color as
float4. This is what we will take a look at in this recipe. We need to learn how to store color
information and retrieve that stored color information, inside each vertex of a Surface Shader.

Getting ready
In order to write this Shader we are going to prepare a few assets. The following steps will set
us up for creating this vertex shader:

1. In order to view the colors of a vertex, we need to have a model that has had color
applied to its vertices. While you could use Unity to apply colors, you would have
to write a tool to allow an individual to apply the colors or write some scripts to
achieve the color application. In the case of this recipe, we simply utilized Maya to
apply the colors to our model. This model is available on the book's Support page
at www.packtpub.com/support.

2. Create a new scene and place the imported model into the scene.

3. Create a new Shader and Material. When completed, assign the Shader to the
Material and then the Material to the imported model.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

161

Your scene should now look similar to the following screenshot:

How to do it…
With our scene, the Shader, and the Material created and ready to go, we can begin to write
the code for our Shader. Launch the Shader by double-clicking on it in the Project tab, in the
Unity editor.

1. Since we are creating a very simple Shader we will not need to include any
properties, to our Properties block. We will still include a global tint color, just to
stay consistent with the other Shaders in this book. Enter the following code into the
Properties block of your Shader:

2. This next step tells Unity that we will be including a vertex function in our Shader:

www.it-ebooks.info

http://www.it-ebooks.info/

Vertex Magic

162

3. As usual, if we have included properties in our Properties block, we must make
sure to create a corresponding variable in our CGPROGRAM statement. Enter the
following code just below the #pragma statement:

4. We now turn our attention to the Input struct. We need to add a new variable in
order for our surf() function to access the data given to us by our vert() function:

5. Now we can write our simple vert() function to gain access to the colors stored
in each vertex of our mesh:

6. Finally, we can use the vertex color data from our Input struct to be assigned to the
o.Albedo parameters in the built-in SurfaceOutput struct:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

163

7. With our code completed, we can now re-enter the Unity editor and let the Shader
compile. If all goes well, you should see something similar to the following screenshot:

How it works…
Unity provides us with a way to access the vertex information of the model to which a Shader
is attached to. This gives us the power to modify things such as the vertices' position and
color. With this recipe, we have imported a mesh from Maya (though just about any 3D
software application can be used), where vertex colors were added to the verts. You'll notice
that by importing the model, the default material will not display the vertex colors. We actually
have to write a Shader to extract the vertex color and display it on the surface of the model.
Unity provides us with a lot of built-in functionality when using Surface Shaders, which make
the process of extracting this vertex information quick and efficient.

Our first task is to tell Unity that we will be using a vertex function when creating our
Shader. We do this by adding the vertex:vert parameter to the #pragma statement of
CGPROGRAM. This automatically makes Unity look for a vertex function named vert, when it
goes to compile the Shader. If it doesn't find one, Unity will throw a compiling error and ask
for you to add a vert function to your Shader.

That brings us to our next step. We have to actually code the vert() function, as seen in step
5. By having this function, we can access the built-in data struct called appdata_full. This
built-in struct is where the vertex information is stored. So, we then extract the vertex color
information by passing it to our Input struct, by adding the code o.vertColor = v.color.

www.it-ebooks.info

http://www.it-ebooks.info/

Vertex Magic

164

The o variable represents our Input struct and the v variable is our appdata_full vertex
data. In this case, we are simply taking the color information from the appdata_full struct
and putting it into our Input struct. Once the vertex color is in our Input struct, we can use it
in our surf() function. In the case of this recipe, we simply apply the color to the o.Albedo
parameter in the built-in SurfaceOutput struct.

There's more…
One can also access a fourth component from the vert color data. If you notice, the
vertColor variable we declared in the Input struct is of type float4. This means we
are also passing in the alpha value of the vertex colors. Knowing this, you can use it to
your advantage, for the purpose of storing a fourth vertex color, to perform effects such as
transparency, or to give yourself one more mask to blend in two textures. It's really up to you
and your production to determine if you really need to use the fourth component, but it is
worth mentioning here.

With Unity 4, we now have the ability to target Shaders to Directx 11. This is great, but it
means that the compiling process for the Shaders is now a bit pickier. This means that we
need to include one more line of code to our Shader, to initialize the output of the vertex
information properly. The following code shows what the vertex function code looks like, if
you are using Directx 11 in your Shader:

By including this line of code, your vertex shader will not throw any warnings, which say that it
won't compile to Directx 11 appropriately.

Animating vertices in a Surface Shader
Now that we know how to access data on a per-vertex basis, let's expand our knowledge set
to include other types of data, and the position of a vertex.

Using a vertex function, we can access the position of each vertex in a mesh. This allows us
to actually modify each individual vertex, while the Shader does the processing.

In this recipe we will create a Shader that will allow us to modify the positions of each vertex
on a mesh with a sine wave. This technique can be used to create animations for objects such
as flags or the waves on an ocean.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

165

Getting ready
Let's gather our assets together so we can create the code for our vertex shader:

1. Create a new scene and place a plane mesh in the center of the scene.

2. Then create a new Shader and Material.

3. Finally, assign the Shader to the Material, and the Material to the plane mesh.

Your scene should look similar to the following screenshot:

How to do it…
With our scene ready to go, let's double-click on our newly created Shader to open it up in
MonoDevelop:

1. Let's begin with our Shader by populating the Properties block:

www.it-ebooks.info

http://www.it-ebooks.info/

Vertex Magic

166

2. We now need to tell Unity that we are going to be using a vertex function by adding
to the #pragma statement:

3. In order to access the values that have been given to us by our properties, we need
to declare a corresponding variable in our CGPROGRAM block:

4. We are going to be using the vertex position modification as a vert color as well. This
will allow us to tint our object:

5. At this point, we can perform our vertex modification using a sine wave and the vertex
function. Enter the following code after the Input struct:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

167

6. Finally, we complete our Shader by performing a lerp function between two colors, so
we can tint the peaks and valleys of our new mesh, modified by our vertex function:

After completing the code for your Shader, switch back to Unity and let the Shader compile.
Once compiled, you should see something similar to the following screenshot:

How it works…
This particular Shader uses the same concept from the last recipe except this time we are
modifying the positions of the vertices in the mesh. This is really useful if you don't want to
rig up simple objects, such as a flag, and then animate them using a skeleton structure or
a hierarchy of transforms.

We simply create a sine wave value using the sin() function that is built into the Cg
language. After calculating that value, we add it onto the y value of each vertex position,
creating a wave-like effect.

We also did a little bit of modification to the normal on the mesh, just to give it more realistic
shading, based on the sine wave value.

You will start to see how easy it is to perform more complex vertex effects by utilizing the
built-in vertex parameters that Surface Shaders give us.

www.it-ebooks.info

http://www.it-ebooks.info/

Vertex Magic

168

Using vertex color for terrains
One of the most common uses of vertex information is by creating more realistic-looking
terrains or environments. This is done by using each channel of the RGBA vertex color to blend
into different textures. This is very efficient since you don't have to import yet another texture
to blend into the other textures. You'll see this technique in just about every game that deals
with outdoor terrains and structures.

This particular recipe will demonstrate a more advanced way of performing this blend by using
a grayscale image or heightmap to add more detail to the vertex blending.

Getting ready
Let's take a moment to get our scene together and gather a few textures we will need:

1. Create a new scene and import a mesh from a 3D application that has vertex colors
applied to it. We used Maya for this example.

2. Place your imported mesh into the new scene and create a single directional light.

3. Finally, create a new Shader and Material. Then, assign the Shader to the Material
and the Material to the imported mesh.

How to do it…
Once you have your new scene created, double-click on the Shader to open it up in
MonoDevelop.

1. Let's create the properties we will need in order to give the users of this Shader more
control over the final visual effect:

2. We then need to tell Unity that we will be including a vertex function in our Surface
Shader with the following code:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

169

3. Let's then create variables that will connect our CGPROGRAM statements to our
Properties block:

4. Since we are going to be using a few more textures and our vertex colors, we will
need to fill out the Input struct with a few more parameters:

5. We then need to create our vertex function. This is simple since all we have to do in
this Shader is get the vertex color and pass it to the Input struct:

6. Now we can turn our attention to the surf() function. Here, we will need to sample
the texture first so that we have them ready for the blending part of this function:

7. We then want to process our blending value based on the red channel of our vertex
colors and the heightmap:

www.it-ebooks.info

http://www.it-ebooks.info/

Vertex Magic

170

8. Our next step is to calculate a falloff value for our vertex blend, so that we can add
one more level of detail to our texture blending:

9. Finally, we need to lerp our two textures with our final blending value and pass the
color to our SurfaceOutput struct:

When your Shader has completed compiling, you should see a result similar to the result in
the following image:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

171

How it works…
This Shader is definitely a bit more complex, but you'll notice that we don't have to do much in
the vertex function itself. We are simply passing the vertex colors off to the surf() function,
so we can perform per-pixel operations with our vertex colors. The reason for this, as you
might be able to notice, is that the vertex colors by themselves do offer us enough visual
detail to create very convincing blending. By default, the vertex colors create a very blocky
blending that can only be fixed by adding more vertices to the mesh and that isn't always a
feasible thing.

So, we take in the vertex colors and multiply it with a grayscale image that is the height of the
base texture we want to blend another texture type over. By running the vertex colors and the
heightmap through the algorithm in step 7, we can add another level of visual detail to our
blending that fakes the effect of one texture type blending into the base texture type. In our
case, the snow texture is blending into the little crevasses in our base stone texture.

This technique has recently been made popular by games such as Uncharted and Gears of
War, and is now available for you to use in your game projects!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

8
Mobile Shader

Adjustment

In the next two chapters we are going to take a look at making the Shaders we write
performance-friendly for different platforms. We won't be talking about any one platform
specifically, but we are going to begin to break down the elements of the Shaders we can
adjust to make them more optimized for mobile, and make them more efficient on any
platform in general. These techniques range from understanding what Unity offers you in
terms of built-in variables that reduce the overhead of the Shaders' memory to learning about
ways in which we can make our own Shader code more efficient. This chapter will cover the
following sections:

 f What is a cheap Shader?

 f Profiling our Shaders

 f Modifying your Shaders for mobile

Introduction
Learning the art of optimizing your Shaders will come up in just about any game project
you work on. There will always come a point in any production, where a Shader needs to be
optimized or it needs to use fewer textures but produce the same effect. As a technical artist,
or Shader programmer, you have to understand these core fundamentals to optimize your
Shaders so that you can increase the performance of your game, while still achieving the
same visual fidelity. Having this knowledge can also help in setting the way in which you write
your Shader from the start. For instance, by knowing that the game built using your Shader
will be played on a mobile device, we can automatically set all our lighting functions to use
a half vector as the view direction, or set all of our float variable types to fixed or half. These
and many other techniques all contribute to your Shaders running efficiently on your target
hardware. Let's begin our journey and start learning how to optimize our Shaders.

www.it-ebooks.info

http://www.it-ebooks.info/

Mobile Shader Adjustment

174

What is a cheap Shader?
When first asked what a cheap Shader is, it might be a little tough to answer, since there are
many elements that go into the making of a more efficient Shader. It could be the amount of
memory used up by your variables. It could be the amount of textures the Shader is using. It
could also be that our Shader is working fine, but we can actually produce the same visual
effect with half the amount of data, by reducing the amount of code we are using or the data
we are creating. We are going to explore a few of these techniques in this recipe and show
how they can be combined to make your Shader fast and efficient but still produce the high
quality visuals everyone expects from games today, whether mobile or PC.

Getting ready
In order to get this recipe started, we need to gather a few resources together. So, let's
perform the following tasks:

1. Create a new scene and fill it with a simple sphere object and a single directional light.
2. Create a new Shader and Material and assign the Shader to the Material.
3. We then need to assign the Material we just created to our sphere object, in

our new scene.
4. Finally, modify the Shader so that it uses a diffuse texture, a normal map, and

includes your own custom lighting function:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

175

This shows the result of modifying our default Shader we created in step 1.

You should now have a setup similar to the following image. This setup will allow us to take
a look at some of the basic concepts that go into optimizing Shaders using Surface Shaders
in Unity:

How to do it…
We are going to build a simple diffuse Shader to take a look at a few ways in which you can
optimize your Shaders in general.

First we'll optimize our variable types, so that they use less memory when they are
processing data:

1. Let's begin with the Input struct in our Shader. Currently, our UVs are being stored in
a variable of type float2. We need to change that to use half2 instead:

www.it-ebooks.info

http://www.it-ebooks.info/

Mobile Shader Adjustment

176

2. We can then move to our lighting function and reduce the variable's memory footprint
by changing their types to the following:

3. Finally, we can complete this optimization pass by updating the variables in our
surf() function:

4. Now that we have our variables optimized, we are going to take advantage of a
built-in lighting function variable, so we can control how lights are processed by
this Shader. By doing this, we can greatly reduce the amount of lights the Shader
processes. Modify the #pragma statement in your Shader with the following code:

5. We can optimize this further by sharing UVs between the normal map and the
diffuse texture. To do this, we simply change the UV lookup in our UnpackNormal()
function to use the _MainTex UVs instead of the UVs of _NormalMap:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

177

6. Since we have removed the need for the normal map UVs, we need to make sure we
remove the normal map UV code from the Input struct:

7. Finally, we can further optimize this Shader by telling the Shader that it only works
with certain renderers:

The result of our optimization passes show us that we really don't notice a difference in the
visual quality, but we have reduced the amount of time it takes for this Shader to be drawn
to the screen. We will learn about finding out how much time it takes for a Shader to render
in the next section, but the idea to focus on here is that we achieve the same result with less
data. So keep this in mind when creating your Shaders. The following image shows us the final
result of our Shader:

How it works…
Now that we have seen the ways in which we can optimize our Shaders, let's dive in a bit
deeper and really understand why all of these techniques are working, and look at a couple
of other techniques you can try for yourself.

www.it-ebooks.info

http://www.it-ebooks.info/

Mobile Shader Adjustment

178

Let's first focus our attention to the size of the data that each variable is storing when we
declare them. If you are familiar with programming, you will understand that you can declare
values or variables with different sizes using data types. This means that a float actually has
the maximum size in memory. Let's look at these variable types in more detail:

 f float: This is a full 32-bit precision value and is the slowest of the three different
types we see here. It also has its corresponding values of float2, float3, and
float4.

 f half: This is a reduced 16-bit floating point value and is suitable for storing
UV values, color values, and is much faster than using a float value. It has its
corresponding values like the float type, which are half2, half3, and half4.

 f fixed: This value is the smallest in size of the three types, but can be used for
lighting calculations, colors, and has the corresponding values of fixed2, fixed3,
and fixed4.

Our second phase of optimizing our simple Shader was to declare the noforwardadd value
to our #pragma statement. This is basically a switch that automatically tells Unity that any
object with this particular Shader only receives per-pixel light from a single directional light.
Any other lights that are calculated by this Shader will be forced to be processed as per-vertex
lights using spherical harmonic values produced internally by Unity. This is especially obvious
when we place another light in the scene to light our sphere object because our Shader is
doing a per-pixel operation by using the normal map.

This is great, but what if you wanted to have a bunch of directional lights in the scene and
want to have control over which of those lights are used for the main per-pixel light? Well, if
you notice, each light has a Render Mode drop-down menu. If you click on this drop-down
menu, you will see a couple of flags that can be set. These are Auto, Important, and Not
Important. By selecting a light, you can tell Unity that a light should be considered more as a
per-pixel light, than a per-vertex light, by setting its render mode to Important and vice versa.
If you leave a light set to Auto, you will let Unity decide the best course of action.

Place another light in your scene and remove the texture that is currently in the main
texture for our Shader. You will notice that the second point light does not react with the
normal map, only the directional light we created first. The concept here is that you save on
per-pixel operations by just calculating all extra lights as vertex lights, and save performance
by just calculating the main directional light as a per-pixel light. The following image visually
demonstrates this concept as the point light is not reacting with the normal map:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

179

Finally, we did a bit of a cleanup and simply told the normal map texture to use the main
texture's UV values, and we got rid of the line of code that pulled in a separate set of UV
values specifically for the normal map. This is always a good way to simplify your code and
clean up any unwanted data.

We also declared exclude_pass: prepass in our #pragma statement, so that this Shader
wouldn't accept any custom lighting from the deferred renderer. This means we can only really
use this Shader effectively in the forward renderer, which is set in the main camera's settings.

By taking a bit of time, you will be amazed at how much a Shader can be optimized. You have
seen how we can pack grayscale textures into a single RGBA texture, as well as using lookup
textures to fake lighting. There are many ways in which a Shader can be optimized, which is
why it is always an ambiguous question to ask in the first place; but knowing these different
optimization techniques, you can cater your Shaders to your game and to your target platform,
ultimately resulting in very streamlined Shaders and a nice steady frame rate.

Profiling your Shaders
Now that we know how we can reduce the overhead that our Shaders might take up, let's take
a look at how to find problematic Shaders in a scene where you might have a lot of Shaders,
or a lot of objects, Shaders, and scripts, all running at the same time. To find a single object
or a single Shader among a whole game can be quite daunting, but Unity provides us with its
built-in Profiler. This allows us to actually see on a frame-by-frame basis what is happening in
the game, and lets us see each item being used by the GPU and the CPU.

Using the Profiler we can isolate only items such as Shaders, geometry, and general rendering
items by using their interface to create blocks of profiling jobs. We can filter out items till we
are looking at the performance of just a single object. This then lets us see the effects on the
CPU and GPU that the object has while it is performing its functions at runtime.

www.it-ebooks.info

http://www.it-ebooks.info/

Mobile Shader Adjustment

180

Let's take a look at the different sections of the Profiler and learn how to debug our scenes
and most importantly our Shaders.

Getting ready
Let's begin using our Profiler by getting a few assets ready and launching the Profiler window:

1. Let's use the scene from the last recipe and launch the Unity Profiler from Window |
Profiler or by using Ctrl + 7.

2. Let's also duplicate our sphere a couple more times to see how that affects
our rendering.

You should see something similar to the following screenshot:

How to do it…
To begin using the Profiler, we will first take a look at some of the UI elements of this window.
Before we hit play, let's take a look at how to get the information we need from the Profiler.

1. First, click on the larger blocks in the Profiler window called GPU Usage, CPU Usage,
and Rendering. You will find these blocks in the left-hand side of the upper window
as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

181

Using these blocks we can see different data specific to those major functions of
our game. The CPU Usage block shows us what most of our scripts are doing as
well as the physics, and overall rendering. The GPU Usage block gives us detailed
information about the elements that are specific to our lighting, shadows, and render
queues. Finally, the Rendering block gives us information about the draw calls and
amount of geometry we have in our scene at any one frame.

By clicking on each of these blocks, we can isolate out the type of data we see during
our profiling session.

2. Now click on the tiny colored blocks inside one of these profile blocks and hit play or
Ctrl + P to run the scene.

This lets us dive down even deeper into our profiling session, so that we can filter out
what is being reported back for us. While the scene is running, uncheck all of the
boxes except for Opaque in the GPU Usage block. Notice how we can now just see
how much time is being used to render just the objects that are set to the render
queue of Opaque.

www.it-ebooks.info

http://www.it-ebooks.info/

Mobile Shader Adjustment

182

3. Another great function of the Profiler window is the action of clicking-and-dragging
in the graph view. This will automatically pause your game so that you can further
analyze a certain spike in the graph, to find out exactly which items are causing the
performance problem. Click-and-drag around in the graph view to pause the game
and see the effect of using this functionality:

4. Turning our attention now toward the lower half of the Profiler window, you will
notice that there is a drop-down item available, when we have the GPU Usage block
selected. We can expand this to get even more detailed information about the current
active profiling session and in this case, more information about what the camera is
currently rendering and how much time it is taking up:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

183

This gives us a complete look into the inner workings of what Unity is processing
at this particular frame. In this case we can see that our three spheres with our
optimized Shader are taking roughly 0.14 milliseconds to draw to screen, they are
taking up seven draw calls, and this process is taking 3.1 percent of the GPU's
time every frame. It's this type of information we can use to diagnose and solve
performance issues with regard to Shaders. Let's conduct a test to see the effects
of adding one more texture to our Shader and blending two diffuse textures together
using a lerp function. You will see in the Profiler window the effects pretty clearly.

5. Modify the Properties block of your Shader with the following code to give us
another texture to use:

www.it-ebooks.info

http://www.it-ebooks.info/

Mobile Shader Adjustment

184

6. Then let's feed our texture to our CGPROGRAM statement:

7. Now it's time to update our surf() function accordingly so we blend our texture
diffuse textures together:

Once you save your modifications in your Shader and return to Unity's editor, we can run our
game and see the increase in milliseconds of our new Shader. Press play once you have
returned to Unity and let's take a look at the results in our Profiler window:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

185

You can see now that the amount of time to render our Opaque Shaders in this scene is
taking 0.179 milliseconds, up from 0.140 milliseconds. By adding another texture and using
the lerp() function, we increased the render time for our spheres. While it's a small change,
imagine having 20 Shaders all working in different ways on different objects.

Using the information given here you can more quickly pin point areas that are causing
performance decreases, and solve those issues by using the techniques from the
previous recipe.

How it works…
While it's completely out of scope of this book to describe how this tool actually works
internally, we can surmise that Unity has given us a way to view the computer's performance
while our game is running. Basically this window is tied very tightly to the CPU and the GPU
to give us real-time feedback of how much time is being taken for each of our scripts, our
objects, and our render queues. Using this information we have seen that we can track the
efficiency of our Shader writing to eliminate problematic areas and code.

There's more…
It is also possible to profile specifically for mobile platforms. Unity provides us with a couple of
extra features when the Android or iOS build target is set in Build Settings. We can actually
get real-time information from our mobile devices while the game is running. This becomes
very useful because you are able to profile directly on the device itself, instead of profiling
directly in your editor. To find out more about this process, see Unity's documentation at the
following link:

http://docs.unity3d.com/Documentation/Manual/MobileProfiling.html

Modifying your Shaders for mobile
Now that we have seen quite a broad set of techniques for making really optimized Shaders,
let's take a look at writing a nice, high quality Shader targeted for a mobile device. It is actually
quite easy to make a few adjustments to the Shaders we have written so that they run faster
on a mobile device. This includes elements such as using the approxview or halfasview
lighting function variables. We can also reduce the amount of textures we need and even
apply better compression for the textures we are using. By the end of this section, we will
have a nicely optimized, normal-mapped Specular Shader for use in our mobile games.

www.it-ebooks.info

http://www.it-ebooks.info/

Mobile Shader Adjustment

186

Getting ready
Before we begin, let's get a fresh new scene made up and fill it up with some objects to apply
our mobile Shader to:

1. Create a new scene and fill it with a default sphere and a single directional light.

2. Create a new Material and a Shader, and assign the Shader to the Material.

3. Finally assign the material to our sphere object in our scene.

When completed you should have a scene similar to the one in the following image:

How to do it…
For this recipe we will write a mobile-friendly Shader from scratch and discuss the elements
that make it more mobile-friendly:

1. Let's first populate our Properties block with the needed textures. In this case we
are going to use a single diffuse texture with the gloss map in its alpha channel, plus
a normal map and a slider for Specular intensity:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

187

2. Our next task is to set up our #pragma declarations. This will simply turn certain
features of the Surface Shader on and off, ultimately making the Shader cheaper
or more expensive:

3. We then need to make the connection between our Properties block and our
CGPROGRAM statements. Though, this time we are going to use the fixed variable
type for our Specular-intensity slider to reduce its memory usage:

4. In order for us to map our textures to the surface of our object, we need to get some
UVs. In this case we are only going to get one set of UVs to keep the amount of data
in our Shader down to a minimum:

5. The next step is to fill in our lighting function using a few new input variables that are
available to us by using the new #pragma declarations:

6. Finally, we complete the Shader by creating the surf() function and processing the
final color of our surface:

www.it-ebooks.info

http://www.it-ebooks.info/

Mobile Shader Adjustment

188

When completed with the code portion of this recipe, save your Shader and return to the Unity
editor to let the Shader compile. If no errors occurred, you should see a result similar to the
following image:

How it works…
So, let's begin the description of this Shader by explaining what it does and doesn't do. First,
it excludes the deferred lighting pass. This means if you created a lighting function that was
connected to the deferred renderer's prepass, it wouldn't use that particular lighting function
and it would look for the default lighting function such as the ones we have been creating
thus far in this book.

This particular Shader does not support light mapping by Unity's internal light mapping
system. This just keeps the Shader from trying to find light maps for the object the Shader
is attached to, making the Shader more performance-friendly, because it is not having to
perform the light mapping check.

We included the noforwardadd declaration, so that we only process per-pixel textures with
a single directional light. All other lights are forced to become per-vertex lights and will not be
included in any per-pixel operations you might do in the surf() function.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

189

Finally, we are using the halfasview declaration to tell Unity that we aren't going to use the
main viewDir parameter found in a normal lighting function. We instead are going to use
the half vector as the view direction and process our Specular with that. This becomes much
faster for the Shader to process since it will be done on a per-vertex basis. It isn't completely
accurate when it comes to simulating Specular in the real world, but visually on a mobile
device it looks just fine and the Shader is more optimized.

Techniques such as these make a Shader more efficient and cleaner code-wise. Always make
sure you are using only the data you need while weighing that against your target hardware
and the visual quality the game requires. In the end, it becomes a cocktail of these techniques
that ultimately make up your Shaders for your games.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

9
Making Your Shader
World Modular with

CgIncludes

This chapter will reveal the following:

 f CgInclude files that are built into Unity

 f Creating a CgInclude file to store lighting models

 f Building Shaders with #define directives

Introduction
As we have taken our journey through the process of writing Shaders, we have seen how to
achieve many varieties of techniques and effects, but we still write very similar code over and
over again. When in a production environment, time is precious and creating Shaders quickly
and efficiently in an iterative manner is crucial to meeting the demands of a game production.
This is where CgInclude files come into play. They allow us to create a framework of code that
can be re-used over and over again, making our Shader writing environment modular.

Actually, we have already been using a couple of built-in CgInclude files to write our Surface
Shaders. Anytime we use the built-in Lambert or BlinnPhong lighting models, we are using
code snippets and functions from CgInclude files that Unity has already created for us. This
reduces the amount of coding we have to do at our end and keeps a nice level of consistency
in your lighting and effects over all your Shaders.

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Shader World Modular with CgIncludes

192

By understanding and writing your own CgInclude files for your Shader development
environment, the process of creating Shaders will become fast and easy to modify whenever
needed. So let's continue our Shader writing journey by taking a look at what Unity has already
provided us in terms of lighting models, functions, and built-in state variables.

CgInclude files that are built into Unity
Our first step into writing our own CgInclude files is to understand what Unity is already
providing us for Shaders. By writing Surface Shaders there is a lot happening underneath
the hood, which makes the process of writing Surface Shaders so efficient. We can see this
code in the included CgInclude files found in your Unity install folder at Editor | Data |
CGIncludes. All the files contained within that folder do their part to render our objects with
our Shaders on to the screen. Some of these files take care of shadows and lighting, some
take care of helper functions, and some manage platform dependencies. Without them, our
Shader writing experience would be much more laborious.

You can find a list of information Unity has provided to us at the following link:

http://docs.unity3d.com/Documentation/Components/SL-BuiltinIncludes.
html

Let's begin the process of understanding these built-in CgInclude files, using some of the built-
in helper functions from the UnityCG.cginc file.

Getting ready
Before we start diving into the meat of writing the Shader, we need to get a few items set up in
our scene. Let's create the following and then open the Shader in MonoDevelop:

1. Create a new scene and fill it with a simple sphere model.

2. Create a new Shader and Material.

3. Attach the new Shader to the new Material and assign the Material to the sphere.

4. Then, let's create a directional light and position it above our sphere.

5. Finally, we are going to want to open the UnityCG.cginc file from Unity's
CgInclude folder located in Unity's install directory. This will let us analyze some
of the helper function's code so we can better understand what is happening when
we use them.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

193

6. You should have a simple scene set up for working on the Shader. Refer to the
following screenshot as an example:

How to do it…
With the scene prepared, we can now begin the process of experimenting with some of the
built-in helper functions included with the UnityCG.cginc file. Double-click on the Shader
that was created for this scene to open it in MonoDevelop and insert the code given in the
following steps:

1. Add the following code to the Properties block of the new Shader file. We will need
a single texture and a single slide for our example Shader:

2. We then need to make sure we create the data connection between our Properties
block and our CGPROGRAM block, with the following code placed after the CGPROGRAM
declaration and #pragma directives:

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Shader World Modular with CgIncludes

194

3. Finally, we just have to update our surf() function to include the following code.
We introduce a new function that we haven't seen yet, which is built into Unity's
UnityCG.cginc file:

With the Shader code modified you should see something similar to the following screenshot.
We have simply used a helper function, built into Unity's CgInclude file, to give us an effect of
desaturating the main texture of our Shader:

How it works…
Using the built-in helper function named Luminance(), we are able to quickly get a
desaturation or gray scale effect on our Shaders. This is all possible because the UnityCG.
cginc file is automatically brought into our Shader since we are using a Surface Shader.

If you search through the UnityCG.cginc file, opened in MonoDevelop, you will find the
implementation of this function at line 276. The following screenshot shows the code from
the file:

Since this function is included in this file and Unity automatically compiles with this file, we
can use the function in our code as well, thereby reducing the amount of code we have to
write over and over again.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

195

If you notice there is also a Lighting.cginc file that Unity comes with. This file houses all
the lighting models that we use when we declare something like #pragma Surface surf
Lambert. Sifting through this file reveals that all the built-in lighting models are defined here
for re-use and modularity.

Creating a CgInclude file to store lighting
models

Knowing about the built-in CgInclude files is great, but what if we wanted to build our own
CgInclude files to store our own lighting models and helper functions? We can in fact create
our own CgInclude files, but we need to learn a little more code syntax before we can start to
use them efficiently in our Shader writing pipelines. Let's take a look at the process of creating
a new CgInclude file from scratch.

Getting ready
Using the same scene, Shader, and Material, let's walk through the process of generating
a new item for this recipe.

1. Begin by creating a new text file and call it something like MyCgInclude.txt.

2. Then change its file extension to .cginc. Windows will give you a warning message
saying that the file may become unusable, but it will still work.

3. Import that new .cginc file into your Unity project and let it compile. If all goes well,
you will see that Unity knew to compile it to a CgInclude file.

We are now ready to begin creating our own custom CgInclude code. Simply double-click on
the CgInclude file you created to open in MonoDevelop.

How to do it…
With our CgInclude file open, we can begin to enter the code that will get it working with
our Surface Shaders. The following code will get our CgInclude file ready for use within our
Surface Shaders and allow us to continually add more code to it as we develop more Shaders:

1. We begin our CgInclude file with what is called a preprocessor directive. These are
statements like #pragma and #include. In this case, we want to define a new set
of code that will be executed if our Shader includes this file in its compiler directives.
Enter the following code at the top of your CgInclude file:

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Shader World Modular with CgIncludes

196

2. We then always need to make sure we close our #ifndef or #ifdef with an
#endif to close the definition check, just like an if statement needs to be closed
with two brackets in C#. Enter the following code just after the #define directive:

3. At this point we just need to fill in the guts of the CgInclude file. So we finish off our
CgInclude file by entering in the following code:

4. With that completed, you now have your very first CgInclude file. With just this little bit
of code we can greatly reduce the amount of code we have to re-write, and we can
begin to store lighting models we use all the time here so that we never lose them.
Your CgInclude file should look similar to the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

197

There are a couple more steps we need to complete before we can fully utilize this
CgInclude file. We simply need to tell the current Shader we are working with to use
this file and its code. To complete the process of creating and using CgInclude files,
let's complete the next set of steps.

5. If we turn our attention to our Shader we need to tell our CGPROGRAM block to include
our new CgInclude file, so we can access the code it contains. Modify the directives
of our CGPROGRAM block to include the following code:

6. Our current Shader is currently using the built-in Lambert lighting model, but we want
to use the Half Lambert lighting model we created in our CgInclude. Since we include
the code from our CgInclude file, we can use the Half Lambert lighting model with the
following code:

7. Finally, we have also declared a custom variable in our CgInclude file to show that we
can set up default variables for our Shaders to use. To see this in action, enter the
following code into the Properties block of your Shader:

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Shader World Modular with CgIncludes

198

When we return to Unity, the Shader and CgInclude file will compile, and if you do not see any
errors, you will notice that in fact we are using our new Half Lambert lighting model and a new
color swatch appeared in our Materials Inspector. The following screenshot shows the result
of using our CgInclude file:

How it works…
When using Shaders, we can include other sets of code by using the #include preprocessor
directive. This tells Unity that we want to let the current Shader use the code from within the
included file in the Shader, that's the reason why these files are called CgInclude files. We are
including snippets of Cg code using the #include directive.

Once we declare the #include directive and Unity is able to find the file in the project, Unity
will then look for code snippets that have been defined. This is where we start to use the
#ifndef directive and #endif directive. When we declare the #ifndef directive we are
simply saying, if not defined, define something with a name. In this recipe's case, we said we
wanted to #define MY_CG_INCLUDE. So if Unity doesn't find a definition called MY_CG_
INCLUDE, it goes and creates it when the CgInclude file is compiled, thereby giving us access
to the code that follows. The #endif simply says that this is the end of this definition, so stop
looking for more code.

You can now see how powerful this becomes, since we can now store all of our lighting models
and custom variables in one file, and greatly reduce the amount of code we have to write. The
real power is when you can begin to give your Shaders the flexibility by defining multiple states
of functions within the CgInclude files.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

199

Building Shaders with #define directives
We have seen how we can use Unity's built-in CgInclude files, and we have seen how to
construct our very own simple CgInclude file to house all of our lighting models, variables,
and helper functions. Now, let's turn our focus to a more dynamic and efficient way to use
CgIncludes to make our Shader more modular and to have states we can switch on and off
as needed.

To demonstrate this we will change our Half Lambert lighting model we created in the last
recipe, to include a definition for Half Lambert. So if we do decide to define a Shader with Half
Lambert, our lighting model will update to a Half Lambert diffuse and not a standard NdotL
lighting model.

Let's see how this works in the following sections, using the assets we have already created.
We will just modify their contents with just a little bit of code.

How to do it…
We begin this section by turning our focus over to our CgInclude file. We want to somehow tell
the lighting model to have two states.

1. Our first state will be a normal NdotL diffuse lighting model and our second state
will be a Half Lambert lighting model. Modify your CgInclude file to include the
following code:

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Shader World Modular with CgIncludes

200

2. Then in our Shader, we need to update the directives in our CGPROGRAM block:

3. Save your CgInclude file and your Shader and return to Unity to let them compile. If
all went well, you shouldn't see a difference. This is because we are telling Unity to
define a directive called HalfLambert, and if it finds one in any of the included files
it will use that snippet of code.

4. Return to your Shader and just comment out the new definition we made. Then save
and return to Unity to let it compile.

If all went well, you should see that our Shader is now using a standard NdotL lighting model.
This is because we aren't defining the HalfLambert directive anymore, so Unity will skip
that snippet of code when compiled. This makes our Shader writing more flexible and more
efficient, since we don't have to constantly re-write or delete out large sections of code. The
following screenshot shows the results of this new modularity in our Shader writing:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

201

How it works…
As you can see, the amount of code needed at this point is really minimal. We can create
many variations of our lighting models using these simple techniques. By using the #ifdef
directive, we are telling Unity to look for the name of the definition following the #ifdef
statement; in this case we used HalfLambert.

When we declare the #define directive in our Shader, it tells Unity that it needs to look for
this definition in any of the included files. If it finds this particular definition then it will include
that snippet of code until it finds a #endif directive. You can imagine how important the
naming of these definitions becomes as you need to make sure you aren't using a definition
already included.

The power of using CgInclude files makes it more efficient to write Shaders, not only because
we save on the amount of code we have to write in our actual Surface Shaders, but it
becomes a way to store the vast amounts of lighting models. This makes it easier to recall a
lighting model or to modify it further with multiple states. Imagine trying to remember all of
the lighting models from this book, or documenting them in a notepad for use later on. Using
CgInclude files will make you a more productive Shader writer as well as more organized.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

10
Screen Effects with

Unity Render Textures

In this chapter, we will learn the following:

 f Setting up the screen effects script system

 f Brightness, saturation, and contrast with screen effects

 f Basic Photoshop-like blend modes with screen effects

 f Overlay blend mode with screen effects

Introduction
One of the most impressive aspects of learning to write Shaders is the process of creating
your own screen effects, also known as post effects. With these screen effects, we can create
stunning looking real-time images with Bloom, Motion Blur, HDR effects, and so on. Most
modern games out on the market today make heavy use of these screen effects, for their
depth of field (DOF) effects, their bloom effects, and even their color correction effects.

Throughout this chapter we will learn how to build up the script system that gives us the
control to create these screen effects. We will learn about render textures, what the depth
buffer is, and how to create effects that give you Photoshop-like control over the final rendered
image of your game. By utilizing screen effects for your games, you not only round out your
Shader-writing knowledge, but you will gain the power to create your own incredible real-time
renders with Unity.

www.it-ebooks.info

http://www.it-ebooks.info/

Screen Effects with Unity Render Textures

204

Setting up the screen effects script system
The process of creating screen effects is one in which we grab a full screen image (or texture)
use a Shader to process its pixels on the GPU, then send it back to Unity's renderer to apply it
to the whole rendered image of the game. This allows us to perform per-pixel operations to the
rendered image of the game in real time, giving us a more global artistic control.

Imagine if you had to go through and adjust each material on each object in your game to
just adjust the contrast of the final look of your game. While not impossible, this would take
a bit of labor to perform. By utilizing a screen effect, we can adjust the screen's final look as
a whole, thereby giving us a more Photoshop-like control over our game's final appearance.

In order to get a screen effect system up and running we have to set up a single script to act
as the courier of the game's current rendered image or what Unity calls the render texture.
By utilizing this script to pass the render texture to a Shader, we can create a flexible system
to create screen effects. For our first screen effect, we are going to create a very simple
grayscale effect, where we can make our game look black and white. Let's take a look at
how this is done.

Getting ready
In order to get our screen effects system up and running, we need to begin by creating a few
assets for our current Unity project. By doing this we will set ourselves up for the steps in the
following sections:

1. In the current project, we need to create a new C# script and call it
TestRenderImage.cs.

2. Create a new Shader and call it ImageEffect.shader.

3. Create a simple sphere in the scene and assign it a new Material. This new
Material can be anything, but for our example we decided to make a simple red,
Specular Material.

4. Finally, create a new directional light and save the scene.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

205

With all of our assets ready, you should have a simple scene setup, which looks similar to the
following image:

How to do it…
In order to make our grayscale screen effect to work we need a script and a Shader. So, we
will complete these two new items here and fill them with the appropriate code to produce our
first screen effect. Our first task is to complete the C# script. This will get the whole system
running. After that we will complete the Shader and see the results of our screen effect. Let's
complete our script and Shader using the following steps:

1. Open the TestRenderImage.cs C# script and let's begin by entering in a few
variables that we will need to store important objects and data. Enter the following
code into the very top of the TestRenderImage class:

www.it-ebooks.info

http://www.it-ebooks.info/

Screen Effects with Unity Render Textures

206

2. In order for us to edit the screen effect in real time, when the Unity editor isn't playing,
we need to enter the following line of code just above the declaration
of the TestRenderImage class:

3. Since our screen effect is using a Shader to perform the pixel operations on our
screen image, we have to create a material to run the Shader. Without it, we can't
access the properties of the Shader. For this we will create a C# property to check for
a material, then create one if it doesn't find one. Enter the following code just after
the declaration of the variables from step 1:

4. We now want to set up some checks in our script, to see if the current target platform
that we are building the Unity game to actually supports image effects. If it doesn't
find anything at the start of this script, the script will disable itself:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

207

5. To actually grab the rendered image from the Unity renderer, we need to make use of
the following built-in function that Unity provides us, called OnRenderImage(). Enter
the following code so we can have access to the current render texture:

6. Our screen effect has a variable called grayScaleAmount, which we can use to
control how much grayscale we want for our final screen effect. So, in this case, we
need to make the value go from 0 – 1, where 0 is no grayscale effect and 1 is full
grayscale effect. We will perform this operation in the Update() function, so that it
sets every frame this script is running on:

7. Finally, we complete our script by doing a little bit of cleanup on objects we created
when the script started:

At this point we can now apply this script to the camera if it compiled without errors in Unity.
So, let's apply the TestRenderImage.cs script to our main camera in our scene. You should
see the grayScaleAmount value and a field for a Shader, but the script throws an error to
the console window. It says that it is missing an instance to an object and so won't process
appropriately. If you remember from step 4, we are doing some checks to see if we have a
Shader and if the current platform supports the Shader. Since we haven't given the screen
effect script a Shader to work with, then the curShader variable is just null, which throws
the error.

www.it-ebooks.info

http://www.it-ebooks.info/

Screen Effects with Unity Render Textures

208

Let's continue our screen effects system by completing the Shader:

1. To begin our Shader, we will populate our properties with some variables, so we can
send data to this Shader:

2. Our Shader is now going to utilize pure Cg Shader code, instead of utilizing Unity's
built-in Surface Shader code. This will make our screen effect more optimized as we
only need to work with the pixels of the render texture. So, we will create a new pass
block in our Shader and fill it with some new #pragma statements that we haven't
seen before:

3. In order to access the data being sent to the Shader from the Unity editor, we need
to create the corresponding variables in our CGPROGRAM statement:

4. Finally, all we need to do is set up our pixel function, in this case called frag(). This
is where the meat of the screen effect is. This function will process each pixel of the
render texture, and return a new image back to our TestRenderImage.cs script:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

209

Once the Shader is complete, return to Unity and let it compile to see if any errors occurred.
If not, assign the new Shader to the TestRenderImage.cs script, and change the value of
the grayscale amount variable. You should see the game view go from a colored version of the
game to a grayscale version of the game. The following image demonstrates this screen effect:

With that complete, we now have an easy way to test out new screen effect shaders, without
having to write our whole screen effect system over and over again. Let's dive a little deeper
and learn about what's going on with the render texture and how it is processed throughout
its existence.

How it works…
To get a screen effect up and running inside of Unity, we need to create a script and a Shader.
The script drives the real-time update in the editor, but is also responsible for capturing the
render texture from the main camera, and passing it to the Shader. Once the render texture
gets to the Shader, we can use the Shader to perform per-pixel operations.

At the start of the script we perform a few checks to make sure the current selected build
platform actually supports screen effects and the Shader itself. There are instances where
a current platform will not support screen effects or the Shader that we are using. So the
checks we do in the Start() function make sure we don't get any errors, if the platform
doesn't support the screen system.

Once the script passes those checks, we initiate the screen effects system by calling the built-
in function OnRenderImage(). This function is responsible for grabbing the render texture,
giving it to the Shader using the Graphics.Blit() function, and returning the processed
image back to the Unity renderer. You can find out more information on these two functions at
the following URLs:

 f OnRenderImage (http://docs.unity3d.com/Documentation/
ScriptReference/MonoBehaviour.OnRenderImage.html)

 f Graphics.Blit (http://docs.unity3d.com/Documentation/
ScriptReference/Graphics.Blit.html)

www.it-ebooks.info

http://www.it-ebooks.info/

Screen Effects with Unity Render Textures

210

Once the current render texture reaches the Shader, the Shader takes it, processes it through
the frag() function, and returns the final color for each pixel.

You can see how powerful this becomes as it gives us Photoshop-like control over the final
rendered image of our game. These screen effects work sequentially, like Photoshop layers in
the camera. When you place these screen effects one after the other, they will be processed
in that order. These are just the bare bones steps to get a screen effect working, but it is the
core of how the screen effects system works.

There's more…
Now that we have our simple screen effect system up and running, let's take a look at some of
the other useful information we can obtain from Unity's renderer:

We can actually get the depth of everything in our current game by turning on Unity's built-in
depth mode. Once this is turned on, we can use the depth information for a lot of different
effects. Let's take a look at how this is done:

1. Create a new Shader and call it SceneDepth_Effect. Then double-click on this
Shader to open it up in the MonoDevelop editor.

2. We will create the main texture property and a property to control the power of the
scene depth effect. Enter the following code into your Shader:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

211

3. Now we need to create the corresponding variables in our CGPROGRAM statement. We
are going to add one more variable called _CameraDepthTexture. This is a built-in
variable that Unity has provided us through the use of the UnityCG CgInclude file. It
gives us the depth information from the camera:

4. We complete our depth shader by utilizing a couple more built-in functions that Unity
provides us, the UNITY_SAMPLE_DEPTH() function and the linear01Depth()
function. The first function actually gets the depth information from our _
CameraDepthTexture and produces a single float value for each pixel. The
Linear01Depth() function then makes sure that the values are within the 0 to 1
range. By taking this final depth value to a power, we can control where the mid-value
on the 0 to 1 range sits in the scene based on the camera position:

5. With our Shader complete, let's turn our attention over to our screen effects script.
We need to add the depthPower variable to the script so we can let users change
the value in the editor:

www.it-ebooks.info

http://www.it-ebooks.info/

Screen Effects with Unity Render Textures

212

6. Our OnRenderImage() function then needs to be updated so that it passes the
right value to our Shader:

7. To complete our depth screen effect, we need to tell Unity to turn on the depth
rendering inside the current camera. This is simply done by setting the main
camera's depthTextureMode variable:

With all the code set up, save your script and Shader and return to Unity to let them both
compile. If no errors were encountered, you should see a similar result to the following image:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

213

Brightness, saturation, and contrast with
screen effects

Now that we have our screen effects system up and running, we can begin to learn how to
create more involved pixel operations to perform some of the more common screen effects
found in games today.

Using a screen effect to adjust the overall final colors of your game is crucial in giving artists
a final global control over the final look of the game. Techniques such as color adjustment
sliders to adjust the intensity for the reds, blues, and greens of the final rendered game, or
techniques such as putting a certain tone of color over the whole screen as seen in something
like a sepia film effect.

For this particular recipe we are going to cover some of the more core color adjustment
operations we can perform on an image. These are brightness, saturation, and contrast.
Learning how to code these color adjustments gives us a good base for learning the art of
screen effects.

Getting ready
To begin we are going to need to create a couple of new assets. We can utilize the same
scene as our test scene, but we will need a new script and a new Shader:

1. Create a new script and call it BSC_ImageEffect.

2. Create a new Shader called BSC_Effect.

3. Now we simply need to copy the code we had from the C# script, in the previous
recipe, into our new C# script. This will allow us to just focus on the math for the
brightness, saturation, and contrast effects.

4. Copy the code from the Shader in the previous recipe into our new Shader.

5. Create a couple of new objects in the scene and set up some different colored diffuse
materials and randomly assign them to the new objects in the scene. This will give us
a good range of colors to test our new screen effect.

www.it-ebooks.info

http://www.it-ebooks.info/

Screen Effects with Unity Render Textures

214

When completed, you should have a scene similar to the following screenshot:

How to do it…
Now that we have completed our scene setup and have created our new script and Shader. We
can begin to fill in the code necessary to achieve brightness, saturation, and a contrast screen
effect. We will be focusing on just the pixel operation and variable setup for our script and
Shader, as getting a screen effect system up and running is described in the previous recipe:

1. Let's begin by launching our new Shader and new script into MonoDevelop. Simply
double-click on the two files in the project view to perform this action.

2. Editing the Shader first makes more sense so that we know what kinds of variables
we will need for our C# script. Let's begin this by entering in the appropriate
properties for our brightness, saturation, and contrast effect. Remember, we need to
keep the _MainTex property in our Shader as that is the property the render texture
targets when creating screen effects.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

215

3. As usual, in order for us to access the data coming in from our properties into
our CGPROGRAM statement, we need to create the corresponding variables in
the CGPROGRAM statement:

4. Now we need to create the operations that will perform the brightness, saturation,
and contrast effects. Enter the following new function into our Shader just above the
frag() function. Don't worry if it doesn't make sense just yet; all the code will be
explained in the next section:

www.it-ebooks.info

http://www.it-ebooks.info/

Screen Effects with Unity Render Textures

216

5. Finally, we just need to update our frag() function to actually use the
ContrastSaturationBrightness() function. This will process all
the pixels of our render texture and pass it back to our script:

With the code entered into the Shader, return to the Unity editor to let the new Shader
compile. If there are no errors, we can return to MonoDevelop to work on our script. Let's
begin this by creating a couple new lines of code that will send the proper data to our Shader:

1. Our first step in modifying our script is to add the proper variables that will drive the
values of our screen effect. In this case we will need a slider for brightness, a slider
for saturation, and a slider for contrast:

2. With our variables set up, we now need to tell the script to pass their data to the
Shader. We do this in the OnRenderImage() function:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

217

3. Finally, all we need to do is clamp the values of the variables within a range that is
reasonable. These clamp values are entirely by preference, so you can use whichever
values you see fit:

With the script completed and the Shader finished up, we simply assign our script to our main
camera and our Shader to the script, and you should see the effects of brightness, saturation,
and contrast by manipulating the slider values. The following image shows a result you can
achieve with this screen effect:

The following image shows another example of what can be done by adjusting the colors of
the render image:

www.it-ebooks.info

http://www.it-ebooks.info/

Screen Effects with Unity Render Textures

218

How it works…
Since we now know how the basic screen effects system works, let's just cover the per-pixel
operations we created in the ContrastSaturationBrightness() function.

The function starts by taking in a few arguments. The first and most important is the current
render texture. The other arguments simply adjust the overall effect of the screen effect,
and are represented by sliders in the screen effects section in the Inspector tab. Once the
function receives the render texture and the adjustments values, it declares a few constant
values that we use to modify and compare against the original render texture.

The luminanceCoeff variable is storing the values that will give us the overall brightness of
the current image. These coefficients are based on the CIE color matching functions and are
pretty standard throughout the industry. We can find the overall brightness of the image by
getting the dot product of the current image dotted with these luminance coefficients. Once
we have the brightness, we simply use a couple of lerp functions to blend from the grayscale
version of the brightness operation, and have the original image multiplied by the brightness
value being passed into the function.

Screen effects like this one are crucial to achieving high quality graphics for your games, as
they let lets you tweak the final look of your game without having to edit each Material in your
current game scene.

Basic Photoshop-like blend modes with
screen effects

Screen effects aren't just limited to adjusting the colors of a rendered image from our game.
We can also use them to combine other images with our render texture. This technique is no
different than creating a new layer in Photoshop and choosing a blend mode to blend two
images together, or in our case, a render texture. This becomes a very powerful technique,
since it gives the artists in a production environment, a way to simulate their blending modes
in game, rather than just in Photoshop.

For this particular recipe, we are going to take a look at some of the more common blend
modes, such as Multiply, Add, and Overlay. You will see how simple it is to have the power
of Photoshop blend modes inside your game.

Getting ready
To begin we have to get our assets ready again. So let's follow the next few steps to get our
screen effects system up and running for our new blend mode screen effect:

1. Create a new script and call it BlendMode_ImageEffect.

2. Create a new Shader and call it BlendMode_Effect.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

219

3. Now we simply need to copy the code we had from the C# script in the Setting up the
screen effects script system recipe of this chapter, into our new C# script. This will
allow us to just focus on the math for the brightness, saturation, and contrast effect.

4. Copy the code from the Shader in the same recipe of this chapter, into our
new Shader.

5. Finally, we will need another texture with which we will perform our blend mode
effect. In this recipe we are going to use a grunge type texture. This will make the
effect very obvious when we are testing it out.

The following image is the grunge map used in the making of this effect. We'll need to find a
texture with enough detail and a nice range of grayscale values to test our new effect.

How to do it…
The first blend mode we will implement is the Multiply blend mode as seen in Photoshop. Let's
begin by modifying the code in our Shader first. So, launch the Shader into MonoDevelop by
double-clicking on it in Unity's project view.

1. We need to add in some new properties so that we have a texture to blend with
and a slider for an opacity value. Enter the code from the following image into
your new Shader:

www.it-ebooks.info

http://www.it-ebooks.info/

Screen Effects with Unity Render Textures

220

2. Enter the corresponding variables into our CGPROGRAM statement, so that we can
access the data from our Properties block:

3. Finally, we modify our frag() function so that it performs the multiply operation on
our two textures:

4. Save the Shader and return to the Unity editor to let the new Shader code compile
and check for errors. If no errors occurred, double-click on the C# script file to launch
it into the MonoDevelop editor.

5. In our script file we need to create the corresponding variables as well. So we will
need a texture, so we can assign one to the Shader, and a slider to adjust the final
amount of the blend mode we want to use:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

221

6. We then need to send our variable data to the Shader through the
OnRenderImage() function:

7. To complete the script, we simply fill in our Update() function so that we can clamp
the value of the blendOpacity variable between a value of 0.0 and 1.0:

With that completed, we assign the screen effect script to our main camera and our screen
effect shader to our script so that it has a Shader to use for the per-pixel operations. Finally,
in order for the effect to be fully functional, the script and Shader starts looking for a texture.
You can assign any texture to the texture field in the Inspector tab for the screen effect script.
Once that texture is in place, you will see the effect of multiplying this texture over the games
rendered image. The following image demonstrates the screen effect:

www.it-ebooks.info

http://www.it-ebooks.info/

Screen Effects with Unity Render Textures

222

The following image demonstrates a higher intensity of Opacity, making the multiplied image
much more apparent over our render image:

With our first blend mode set up we can begin to add a couple of simpler blend modes to
get a better understanding of how easy it is to add more effects and really fine-tune the
final result in your game. But first let's break down what is happening here.

How it works…
Now we are starting to gain a lot of power and flexibility in our screen effects programming. I
am sure you can start to understand how much one can do with this simple system in Unity.
We can literally replicate the effects of Photoshop layer blending modes in our game to give
artists the flexibility they need to achieve high quality graphics in a short amount of time.

With this particular recipe we looked at how to multiply two images together, add two images
together, and perform a screen-blending mode, using just a little bit of math. When working
with blend modes, one has to think on a per-pixel level. For instance, when we are using a
Multiply blend mode, we literally take each pixel from the original render texture and multiply
them with each pixel of the blend texture. The same goes for the Add blend mode. It is just a
simple math operation of adding each pixel from the source texture, or render texture, to the
blend texture.

The screen blend mode is definitely a bit more involved, but it is doing the same thing. It takes
each image, the render texture and the blend texture, inverts them both, then multiplies them
together, and then inverts them again to achieve the final look. Just like Photoshop blends its
textures together, using blend modes, we can do the same with screen effects.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

223

There's more…
Let's continue this recipe by adding a couple more blend modes to our screen effect:

1. In the screen effect shader, let's add the following code to our frag() function and
change the value we are returning to our script. We will also need to comment out the
Multiply blend so that we don't return that as well:

2. Save the Shader file in MonoDevelop and return to the Unity editor to let the Shader
compile. If no errors occurred, you should see a result similar to the following image.
This is a simple Add blending mode:

As you can see, this has the opposite effect of the Multiply because we are adding
the two images together.

www.it-ebooks.info

http://www.it-ebooks.info/

Screen Effects with Unity Render Textures

224

3. Finally, let's add one more blend mode, called a Screen Blend. This one is a little
bit more involved from a math standpoint, but still simple to implement. Enter the
following code into the frag() function of our Shader:

The following image demonstrates the results of using a Screen type blend mode to blend
two images together in a screen effect:

The Overlay blend mode with screen effects
For our final recipe we are going to take a look at another type of blend mode, the Overlay
blend mode. This blending actually makes use of some conditional statements that determine
the final color of each pixel in each channel. So, the process of using this type of blend mode
needs a bit more coding to get working. Let's take a look at how this is done in the following
few sections.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

225

Getting ready
For this last screen effect we will need to set up our two scripts like the ones we have in the
previous recipes in this chapter. For this recipe we will just be using the same scene we have
been using, so that we don't have to create a new one.

1. Create a new script file called Overlay_ImageEffect, and a Shader file called
Overlay_Effect.

2. Copy the code from the previous C# script file into our new script file.

3. Copy the code from the previous Shader file into our new Shader file.

4. Assign the Overlay_ImageEffect script to the main camera and
Overlay_Effect to the script component in the Inspector tab.

5. Finally, double-click on the script and the Shader files to open them up in the
MonoDevelop editor.

How to do it…
We begin our Overlay screen effect just as we have done for most of the recipes in this
chapter; we get the code of our Shader up and running without errors. We can then modify
our script file to feed the correct data into the Shader.

1. We first need to set up our properties in our Properties block. We will use the
same properties from the last few recipes in this chapter:

2. We then need to create the corresponding variables inside our CGPROGRAM statement:

www.it-ebooks.info

http://www.it-ebooks.info/

Screen Effects with Unity Render Textures

226

3. In order for the Overlay blend effect to work, we are going to have to process each
pixel from each channel individually. To do that, in a Shader we have to write a
custom function that will take in a single channel, such as the red channel for
instance, and perform the Overlay operation. Enter the following code into the
Shader just below the variable declarations:

4. Finally, we need to update our frag() function to process each channel of our
textures, to perform the blending:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

227

5. With the code completed in the Shader, our effect should be working. Save the
Shader and return to the Unity editor to let the Shader compile. Our script is already
set up, so we don't have to modify it any further. Once the Shader compiles, you
should see a result similar to the following image:

How it works…
Our Overlay blend mode is definitely a lot more involved, but if you break down the function,
you will notice that it is simply a Multiply blend mode and a Screen blend mode. It's just that
in this case we are doing a conditional check to apply one or the other blend mode to a pixel.

With this particular screen effect, when the Overlay function receives a pixel, it looks to see if
it is less than 0.5. If it is, we apply a modified Multiply blend mode to that pixel; if it's not, we
apply a modified screen blend mode to the pixel. We do this for each pixel for each channel,
giving us the final RGB pixel values for our screen effect.

As you can see, there are many things that can be done with screen effects. It really just
depends on the platform and the amount of memory you have allocated for screen effects.
Usually this is determined throughout the course of a game project, so have fun and get
creative with your screen effects.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

11
Gameplay and Screen

Effects

In this chapter, we will cover the following:

 f Creating an old movie screen effect

 f Creating a night vision screen effect

Introduction
If you are reading this book, you are most likely a person that has played a game or two in
your time. One of the aspects to real-time games is the effect of immersing a player into
a world to make it feel as if they were actually playing in the real world. The more modern
games make heavy use of screen effects to achieve this immersion.

With screen effects, we can turn the mood of a certain environment from calm to scary, just
by changing the look of the screen. Imagine walking into a room, which is contained within a
level, then the game takes over and goes into a cinematic moment. Many modern games will
turn on different screen effects to change the mood of the current moment. Understanding
how to create effects triggered by gameplay is next in our journey of Shader writing.

In this chapter, we are going to take a look at some of the more common gameplay screen
effects. We are going to learn how to change the look of the game from normal to an old
movie effect, and we are going to take a look at how many first-person shooter games apply
their night vision effects to the screen. With each of these recipes, we are going to look at how
to hook these up to game events, so that they are turned on and off as the game's current
presentation needs it.

www.it-ebooks.info

http://www.it-ebooks.info/

Gameplay and Screen Effects

230

Creating an old movie screen effect
Many games are set in different times. Some take place in fantasy worlds, or future sci-
fi worlds, and some even take place in the old west, where film cameras were just being
developed and the movies that people watched were black and white or sometimes tinted
with what is called a sepia effect. The look is very distinct, and we are going to replicate that
look using a screen effect in Unity.

There are a few steps to achieving this look and as just making the whole screen black and
white or gray scale, we need to break down this effect into its component parts. If we analyze
some reference footage of an old movie, we can begin to do this. Let's take a look at the
following image and break down the elements that make up the old movie look:

We constructed this image using a few reference images found online. It is always a good
idea to try and utilize Photoshop to construct images like this, to aid you in creating a plan
for your new screen effect. Performing this process not only tells us the elements we will have
to code in, but it also gives us a quick way to see which blending modes work and how we
will construct the layers of our screen effect. The Photoshop file we created for this recipe
is included in this book's support page at www.packtpub.com/support and is called
OldFilmEffect_Research_Layout.psd.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

231

Getting ready
Now that we know what we have to make, let's take a look at how each of the layers is
combined to create the final effect and gather some resources for our Shader and screen
effect script.

 f Sepia Tone: This is a relatively simple effect to achieve, as we just need to bring all
the pixel colors of the original render texture to a single color range. This is easily
achieved by using the luminance of the original image and adding a constant color.
Our first layer will look like the following image:

 f Vignette effect: We can always see some sort of soft border around old films, when
they are being projected with an old movie projector. This is caused because the
bulb being used for the movie projector has more brightness in the middle than it
does at the edges of the film. This effect is generally called a Vignette effect and is
our second layer in our screen effect. We can achieve this with an overlaid texture
over the whole screen. The following image demonstrates what this layer looks like
isolated out as a texture:

www.it-ebooks.info

http://www.it-ebooks.info/

Gameplay and Screen Effects

232

 f Dust and scratches: The third and final layer in our old movie screen effect is the
dust and scratches. This layer will utilize two different tiled textures, one for scratches
and one for dust. The reason is that we will want to animate these two textures over
time at different tiling rates. This will give the effect that the film is moving along and
there are small scratches and dust on each frame of the old film. The following image
demonstrates this effect isolated out to its own texture:

Let us get our screen effect system ready with the preceding textures. Perform the
following steps:

1. Gather up a Vignette texture and some dust and scratches textures, like the ones we
just saw.

2. Create a new script called OldFilmEffect.cs and a new Shader called
OldFilmEffectShader.shader.

3. With our new files created, fill in the code necessary to get the screen effect system
up and running. For reference on how to do that see Chapter 10, Screen Effects with
Unity Render Textures.

Finally, with our screen effect system up and running and our textures gathered, we can begin
the process of recreating this old film effect.

How to do it…
Our individual layers for our old film screen effect are quite simple, but when combined we get
some very visually stunning effects. Let's run through how to construct the code for our script
and our Shader, then we can step through each line of code and learn why things are working
the way they are. At this point you should have the screen effects system up and running, as
we will not be covering how to set that up in this recipe.

1. We will begin by entering the code to our script. Our first block of code we will enter
will define our variable we want to expose to the Inspector, to let the user of this
effect adjust it as they see fit. We can also use our mocked-up Photoshop file as
reference when deciding what we will need to expose to the Inspector of this effect.
Enter the following code into your effect script:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

233

2. Next, we need to fill in the contents of our OnRenderImage() function. Here, we will
be passing the data from our variables to our Shader, so that the Shader can then
use that data in the processing of the render texture:

www.it-ebooks.info

http://www.it-ebooks.info/

Gameplay and Screen Effects

234

3. To complete the script portion of this effect, we simply need to make sure we clamp
the values of the variables that need to have a clamped range, instead of being
any value.

4. With our script complete, let's turn our attention to our Shader file. We need to
create the corresponding variables, which we created in our script, in our Shader.
This will allow the script and the Shader to communicate with one another. Enter
the following code into the Properties block of the Shader:

5. Then as usual, we need to add those same variable names to our CGPROGRAM block,
so that the Properties block can communicate with the CGPROGRAM block:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

235

6. Now, we simply fill in the guts of our frag() function so that we process the pixels
for our screen effect. To start with, let's get the Render Texture and the Vignette
texture passed to us by the script:

7. We then need to add the process for the dust and scratches by entering the
following code:

8. The Sepia Tone process is next on our list:

9. Finally, we combine all of our layers and colors, to return the final screen
effect texture:

www.it-ebooks.info

http://www.it-ebooks.info/

Gameplay and Screen Effects

236

10. With all of our code entered and no errors, you should have a result very similar to
the following image. Hit Play in the Unity editor to see the effects of the dust and
scratches and the slight image shift we give the Screen Effect.

How it works…
Now, let's walk through each of the layers in this Screen Effect and break down why each of
the lines of code is working the way it is, and get more insight as to how we can add more to
this Screen Effect.

Now that our old film screen effect is working, let's step through the lines of code in our
frag() function as all the other code should be pretty self-explanatory at this point in
the book.

Just like our Photoshop layers, our Shader is processing each layer and then compositing
them together, so while we go through each layer, try to imagine how the layers in Photoshop
work. Keeping this concept in mind always helps when developing new screen effects.

Here, we have the first set of lines of code in our frag() function:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

237

The first line of code, just after the frag() function declaration, is the definition of how the
UVs should work for our main render texture, or the actual rendered frame of our game. As
we are looking to fake the effect of an old film style, we want to adjust the UVs of our render
texture, every frame, such that they flicker. This flickering simulates how the winding of the
film's projector is a just a bit off. This tells us that we need to animate the UVs and that is what
this first line of code is doing.

We use the built-in _SinTime variable, which Unity provides us, to get a value between -1 and
1. We then multiply this by a very small number, in this case 0.005, to reduce the intensity of
the effect. The final value is then multiplied again by the _RandomValue variable, which we
generate in the Effect script. This value bounces back and forth between -1 and 1, as well to
basically flip the direction of the motion back and forth.

Once our UVs are built and stored in the renderTexUV variable, we can sample the render
texture using a tex2D() function. This operation then gives us our final render texture,
which we can use to process further in the rest of the Shader.

Moving on to the last line in the previous image, we simply do a straight sample of the vignette
texture using the tex2D() function. We don't need to use the animated UVs we already
created, as the vignette texture will be tied to the motion of the camera itself and not to the
flickering of the camera film.

The following code snippet illustrates the second set of lines of code in our frag() function:

These lines of code are almost exactly like the previous lines of code, in which we need to
generate unique animated UV values to modify the position of our screen effect layers. We
simply use the built-in _SinTime value to get a value between -1 and 1, multiply it by our
random value, and then by another multiplier to adjust the overall speed of the animation.
Once those UV values are generated, we can then sample our dust and scratches texture
using these new animated values.

www.it-ebooks.info

http://www.it-ebooks.info/

Gameplay and Screen Effects

238

Our next set of code handles the creation of the colorizing effect for our old film screen effect.
The following code snippet demonstrates these lines:

With this set of code, we are creating the actual color tinting of the entire render texture. To
accomplish this, we first need to turn the render texture in the gray scale version of itself.
To do that, we can use the luminosity values given to us by the YIQ values. YIQ values are
the color space used by the NTSC color TV system. Each letter in YIQ actually stores color
constants that are used by TVs to adjust the color for readability. For more information on
the YIQ values refer to the following links:

 f http://en.wikipedia.org/wiki/YIQ

 f http://www.blackice.com/colorspaceYIQ.htm

 f http://dcssrv1.oit.uci.edu/~wiedeman/cspace/me/infoyiq.html

While it is not necessary to actually know the reasons for this color scale, it should be known
that the Y value in the YIQ is the constant luminance values for any image. So, we can
generate a gray-scale image of our render texture by taking each pixel of the render texture
and dotting it with our luminance values. That is what the first line in this set is doing.

Once we have the luminance values, we can simply add on the color we want to tint the image
with. This color is passed from our script, into our Shader, then into our CGPROGRAM block,
where we can add it on to our gray scale render texture. Once completed, we will have a
perfectly tinted image.

Finally, we create the blending between each of our layers in our screen effect. The following
code snippet shows the set of code we are looking at:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

239

Our last set of code is relatively simple and doesn't really need a ton of explanation. In short, it
is simply multiplying all the layers together to reach our final result. Just like we multiplied our
layers together in Photoshop, we multiply them together in our Shader. Each layer is processed
through a lerp() function so that we can adjust the opacity of each layer, which gives more
artistic control over the final effect. The more tweaks one can offer, the better when it comes
to screen effects.

Creating a night vision screen effect
Our next screen effect is definitely a more popular one. The night vision screen effect is seen
in Call of Duty Modern Warfare, Halo, and just about any first-person shooter out in the market
today. It is the effect of brightening the whole image using that very distinct lime green color.

In order to achieve our night vision effect, we need to break our effect down using Photoshop. It
is a simple process of finding some reference images online and composing a layered image to
see what kinds of Blending modes you will need, or in which order we will need to combine our
layers. The following image shows the result of performing just this process in Photoshop:

Let's begin to break down our rough Photoshop-composite image into its component parts so
that we can better understand the assets we will have to gather. In the next section, we will
cover the process of doing just that.

www.it-ebooks.info

http://www.it-ebooks.info/

Gameplay and Screen Effects

240

Getting ready
Let's begin this screen effect by again breaking down our effect into its component layers.
Using Photoshop, we can construct a layered image to better illustrate how we can go about
capturing the effect of night vision.

 f Tinted green: Our first layer in our screen effect is the iconic green color, found
in just about every night vision image. This will give our effect that signature night
vision look.

 f Scan lines: To increase the effect of this being a new type of display for the player,
we include scan lines over the top of our tinted layer. For this, we will use a texture
created in Photoshop and let the user tile it so that the scan lines can be bigger
or smaller.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

241

 f Noise: Our next layer is a simple noise texture that we tile over the tinted image and
the scan lines, to break up the image and to add even more detail to our effect. This
layer simply emphasizes that digital read out look.

 f Vignette: The last layer in our night vision effect is the vignette. If you look at the
night vision effect in Call of Duty Modern Warfare, you will notice that it uses a
vignette that fakes the effect of looking down a scope. We will do that for this
screen effect.

www.it-ebooks.info

http://www.it-ebooks.info/

Gameplay and Screen Effects

242

Let's create a screen effect system by gathering our textures. Perform the following steps:

1. Gather up a vignette texture, a noise texture, and a scan line texture, like the ones we
just saw.

2. Create a new script called NightVisionEffect.cs and a new Shader called
NightVisionEffectShader.shader.

3. With our new files created, fill in the code necessary to get the screen effect system
up and running. For instructions on how to do that, refer to Chapter 10, Screen
Effects with Unity Render Textures.

Finally, with our Screen Effect system up and running and our textures gathered, we can begin
the process of recreating this old film effect.

How to do it…
With all of our assets gathered and our screen effect system running smoothly, let's begin
to add the code necessary to both the script and the Shader. We will begin our coding
with the NightVisionEffect.cs script; so double-click on that file now to open it up in
MonoDevelop.

1. We need to create a few variables that will allow the user of this effect to adjust it in
the script's Inspector. Enter the following code into the NightVisionEffect.cs
script:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

243

2. Next, we need to complete our OnRenderImage() function so that we are passing
the right data to the Shader, in order for the Shader to process the screen effect
properly. Complete the OnRenderImage() function with the following code:

3. To complete the NightVisionEffect.cs script, we simply need to make sure
that we clamp certain variables so that they stay within a range. These ranges are
arbitrary and can be changed at a later time. These are just values that worked well.

www.it-ebooks.info

http://www.it-ebooks.info/

Gameplay and Screen Effects

244

4. We can now turn our attention over to the Shader portion of this screen effect. Open
the Shader, if you haven't already, and begin by entering the following properties
in the Properties block:

5. To make sure that we are passing the data from our Properties block into our
CGPROGRAM block, we need to make sure to declare them with the same name
inside the CGPROGRAM block.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

245

6. Our effect is also going to include a lens distortion to further convey the effect that
we are looking through a lens and the edges of the image are being distorted by the
angle of the lens. Enter the following function just after the variable decelerations in
the CGPROGRAM block:

7. We can now concentrate on the meat of our NightVisionEffect shader. Let's
start this by entering the code that is necessary to get the render texture and the
vignette texture. Enter the following code into the frag() function of our Shader:

8. The next step in our frag() function is to process the scan lines and noise textures
and apply the proper animated UVs to them:

9. To complete all of our layers in the screen effect, we simply need to process the
luminance value of our render texture, and then apply the night vision color to it
to achieve that iconic night vision look:

www.it-ebooks.info

http://www.it-ebooks.info/

Gameplay and Screen Effects

246

10. Lastly, we will combine all the layers together and return the final color of our night
vision effect:

When you have finished entering the code, return to the Unity editor to let the script and the
Shader to compile. If there are no errors, hit Play in the editor to see the results. You should
see something similar to the following image:

How it works…
The night vision effect is actually very similar to the old film screen effect, which shows us just
how modular we can make these components. Just by simply swapping out the textures we
are using for overlays and changing the speed at which our tiling rates are being calculated,
we can achieve very different results using the same code.

The only difference with this effect is the fact that we are including a lens distortion to our
screen effect. So let's break this down, so that we can get a better understanding of how
it works.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

247

The following code snippet illustrates the code used in processing our lens distortion. It is a
snippet of code provided to us by the makers of SynthEyes, and the code is freely available to
use in your own effects:

When breaking down the barrelDistortion() function, the first line of code finds the
center of the render texture image. Once we have the center of the image, we can then apply
a stretching to the pixels as they get further away from the center of the image. So, we fake
the effect of the main render texture being distorted by the angle of a lens. Quite a nice effect
when applied to screen effects like the night vision effect.

Once the UVs have been processed to compute the fake stretching, we can continue with
the Shader just like we have before, applying UV animation and pixel operations to achieve
our final night vision effect.

See also
 f The following link takes you to the page which describes the lens distortion effect:

Lens Distortion: http://www.ssontech.com/content/lensalg.htm

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
2D ramp texture

used, for creating faked BRDF 24-28
2D ToolKit

URL 38
#define directives

used, for building shaders 199-201

A
Adobe Flash Professional

URL 39
alpha

used, for creating transparency 143-145
ambient cube shading 124
Anime Studio Pro

URL 39
Anisotropic Specular type

about 79
creating 80-85

approxview or halfasview lighting function
variables 185

ATI CubeMapGen
URL 93

B
barrelDistortion() function 247
basic surface shader

creating 8-11
bidirectional reflectance distribution function.

See BRDF
blend modes

with screen effects 218-224

BlinnPhong Specular type
about 66
creating 66-68

blurred normals 130
BRDF 24
brightness

with contrast effects 213-218
built-In Specular type, Unity3D

Anisotropic 79-85
BlinnPhong 66-68
Phong 62-66
utilizing 60-62

bump mapping 44

C
ceil() function 37
ceil(x) function 37
cell shading, in MaCrea

URL 119
Cg 7
CGFX 37
CgInclude file

about 192-195
creating, for lighting models storage 195-198

Cg tutorial
URL 119

cheap shader 174
Cloth Shader

about 138
creating 138-142

components, skin shaders
implementing 130-137

contrast
with contrast effects 213-218

www.it-ebooks.info

http://www.it-ebooks.info/

250

ContrastSaturationBrightness() function 218
CrazyBump

URL 45
Cubemap

creating 120, 121
Cubemaps

about 88
creating, in Unity3D 88-93

CurveScale property 136
custom diffuse lighting model

creating 17-19
cutoff transparency 146

D
depth of field (DOF) 203
depth sorting

with render queues 148-151
diffuse 130
diffuse convolution lighting model

about 119, 122-124
working 124

diffuse shading
about 7
controlling 22-24

Dot3 bump mapping 44
dot product function 19
dynamic Cubemap system

creating, in Unity3D 108-112

F
faked BRDF

creating, 2D ramp texture used 24-28
fixed function lighting model 7
float2() function 26
fmod() function 37
fmod(x , y) function 37
frag() function 208, 235
Fresnel 76
Fresnel reflections

about 104
in Unity3D 105-108

fwidth() function 135

G
Gameplay 229
GenerateParabola() function 50, 51
gizmos features 110
GPU Gems

URL 58
Graphics.Blit

URL 209
Graphics.Blit() function 209
graphics cards 143
graphics processing unit (GPU) 11, 159
GUI

and transparency 151-158

H
Half Lambert lighting model

creating 20-22
HDR Light Studio Pro

URL 93

L
Lambert lighting function 116
length() function 136
Lens Distortion

URL 247
lerp(a , b, f) function 43
lerp() function 42, 183
Lighting.cginc file 195
lighting models

diffuse convolution lighting model 119
Lit Sphere lighting model 114-118
vehicle paint lighting model 125

LightingSkinShader() function 133
linear01Depth() function 211
Linear01Depth() function 211
Lit Sphere lighting model

about 114
creating 115-118

Luminace() function 194
luminanceCoeff variable 218

www.it-ebooks.info

http://www.it-ebooks.info/

251

M
MaCrea 114
masking reflections

in Unity3D 97-100
MatCaps 114
Mathf.Clamp() function 52
max function 20
Metallic Specular

versus Soft Specular 74-79
mobile

shaders, modifying for 185-189
MonoDevelop 9
Mudbox

URL 45
MyCgInclude.txt file 195

N
N2DO

URL 45
NdotL lighting model 199
night vision screen effect

about 239
creating 240-247
noise layer 241
scan lines layer 240
tinted green layer 240
Vignette layer 241

noise layer 241
normal mapping 46, 47
normal maps 44

O
old movie screen effect

about 230
creating 230-239
dust and scratches layer 232
Sepia Tone layer 231
Vignette effect layer 231

OnGUI() function 151
OnRenderImage

URL 209
OnRenderImage() function 207, 209, 212,

216, 233
OnWizardCreate() function 92, 93

OnWizardUpdate() function 91, 92
Overlay blend mode

with screen effects 224-227

P
Phong Specular type

about 62
creating 63-66

Photoshop
about 30, 146
levels effects 54-57

post effects 203
pow(arg1, arg2) function 16
pow() function 16
procedural texture effects 48
procedural textures

creating, in Unity editor 48-52
properties

adding, to surface shader 12-14
using, in surface shader 14-17

properties block 12

R
ramp texture

creating 22-24
reflection 87
reflections, in MaCrea

URL 119
Render Difference Clouds filter 146
renderer

overview 210-212
render queue

AlphaTest 150
background 150
geometry 150
overlay 151
transparent 151

render queues, depth sorting 148-151
render texture 204
RenderToCubemap() function 92
RenderToCubeMap() function 93
resources, sprite animation

2D ToolKit 38
SpriteManager 38
Sprite Manager 2 38

www.it-ebooks.info

http://www.it-ebooks.info/

252

S
saturate() function 20
saturation

with contrast effects 213-218
scan lines layer 240
screen effects, blend modes 218-224
screen effects, Overlay blend mode 224-227
screen effects script system

about 204
setting up 204-210

ScriptableWizard class 91, 92
semi-transparent shader

about 146
creating 146-148

Sepia Tone 231
shaders

about 7, 159
building, with #define directives 199-201
modifying, for mobile 185-189
optimizing 174-179
profiling 179-185

simple Cubemap reflection
in Unity3D 93-96

sin() function 167
Skin Shader 3

URL 137
skin shaders

about 130
components, implementing 130-137

Soft Specular
versus Metallic Specular 74-79

Specular
about 130
masking, with textures 69-74

sprite atlas 34
SpriteManager

URL 38
Sprite Manager 2

URL 38
sprite sheets

animating 33-37
Start() function 50, 209
SubShader() function 149
sub-surface scattering 130

surface shader
properties, adding 12-14
properties, using 14-17
vertex color, accessing in 160-164
vertices, animating 164-167

Surface Shader property types
2D 14
Color 14
Cube 14
Float 14
Range (min, max) 14
Rect 14
Vector 14

surf() function 17, 61, 95, 99, 116, 145, 176
159

T
Tags{} block 149
terrains

vertex color, using for 168-171
TestRenderImage class 206
tex2Dbias() function 137
tex2D() function 26, 31, 33, 55, 237
texCube() function 96
texCUBE() function 95, 98
textures

about 29
blending 39-44
packing 39-44
scrolling, by UV values modification 30-33
Specular, masking with 69-74
URL, for info 30

TimelineFX
URL 39

tinted green layer 240
transparency

about 143
and GUI 151-158
creating, with alpha 143-146

U
Unity

about 7
CgInclude files 192-195
URL, for forums 137

www.it-ebooks.info

http://www.it-ebooks.info/

253

Unity3D
built-In Specular type, utilizing 60-62
Cubemaps, creating 88-93
Fresnel reflections 105-108
masking reflections 97-100
normal maps information, passing to reflec-

tion effect 100-103
simple Cubemap reflection 93-96
simple dynamic Cubemap system, creating

108-112
UnityCG.cginc file 47, 62, 192
Unity editor

procedural textures, creating 48-52
Unlit lighting function 116
unlit lighting model 154
UnpackNormal() function 142, 176
UnpackNormals() function 45
Update() function 156, 207, 221
UV values

modifying, for scrolling textures 30-33

V
vehicle paint lighting model

about 125
creating 126-129

vertex color
accessing, in surface shader 160-164
using, for terrains 168-171

vertex() function 116
vert() function 118, 162
vertices

animating, in surface shader 164-167
view direction 24
Vignette effect 231, 241

W
World Machine

URL 44
WorldNormalVector() function 125

Z
Zbrush

about 114
URL 45

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Unity Shaders and Effects
Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Game Development
with GameMaker
ISBN: 978-1-84969-410-0 Paperback: 364 pages

Experience a captivating journey that will take you from
creating a full-on shoot 'em up to your first social web
browser game

1. Build browser-based games and share them with
the world

2. Master the GameMaker Language with easy to
follow examples

3. Every game comes with original art and audio,
including additional assets to build upon each
lesson.

Unity 3.x Scripting
ISBN: 978-1-84969-230-4 Paperback: 292 pages

Write efficient, reusable scripts to build custom
characters, game environments, and control
enemy AI in your Unity game

1. Make your characters interact with buttons and
program triggered action sequences

2. Create custom characters and code dynamic
objects and players' interaction with them

3. Synchronize movement of character and
environmental objects

4. Add and control animations to new and existing
characters

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Torque 3D Game
Development Cookbook
ISBN: 978-1-84969-354-7 Paperback: 380 pages

Over 80 practical recipes and hidden gems for getting
the most out of the Torque 3D game engine

1. Clear step-by-step instruction and practical
examples to advance your understanding of
Torque 3D and all of its sub-systems

2. Explore essential topics such as graphics, sound,
networking and user input

3. Helpful tips and techniques to increase the
potential of your Torque 3D games

Mastering UDK Game
Development
ISBN: 978-1-84969-560-2 Paperback: 290 pages

Eight projects specifically designed to help you exploit
the Unreal Development Kit to its full potential

1. Guides you through advanced projects that help
augment your skills with UDK by practical example

2. Comes complete with all the art assets and
additional resources that you need to create
stunning content

3. Perfect for level designers who want to take their
skills to the next level

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Diffuse Shading
	Introduction
	Creating a basic Surface Shader
	Adding properties to a Surface Shader
	Using properties in a Surface Shader
	Creating a custom diffuse lighting model
	Creating a Half Lambert lighting model
	Creating a ramp texture to control diffuse shading
	Creating a faked BRDF using a 2D ramp texture

	Chapter 2: Using Textures for Effects
	Introduction
	Scrolling textures by modifying UV values
	Animating sprite sheets
	Packing and blending textures
	Normal mapping
	Creating procedural textures in the Unity editor
	Photoshop levels effect

	Chapter 3: Making Your Game Shine with Specular
	Introduction
	Utilizing Unity3D's built-in Specular type
	Creating a Phong Specular type
	Creating a BlinnPhong Specular type
	Masking Specular with textures
	Metallic versus soft Specular
	Creating an Anisotropic Specular type

	Chapter 4: Reflecting Your World
	Creating Cubemaps in Unity3D
	Simple Cubemap reflection in Unity3D
	Masking reflections in Unity3D
	Normal maps and reflections in Unity3D
	Fresnel reflections in Unity3D
	Creating a simple dynamic Cubemap system

	Chapter 5: Lighting Models
	Introduction
	The Lit Sphere lighting model
	The diffuse convolution lighting model
	Creating a vehicle paint lighting model
	Skin shader
	Cloth shading

	Chapter 6: Transparency
	Introduction
	Creating transparency with alpha
	Transparent cutoff shader
	Depth sorting with render queues
	GUI and transparency

	Chapter 7: Vertex Magic
	Introduction
	Accessing a vertex color in a Surface Shader
	Animating vertices in a Surface Shader
	Using vertex color for terrains

	Chapter 8: Mobile Shader Adjustment
	Introduction
	What is a cheap Shader?
	Profiling your Shaders
	Modifying your Shaders for mobile

	Chapter 9: Making Your Shader World Modular with CgIncludes
	Introduction
	CgInclude files that are built into Unity
	Creating a CgInclude file to store lighting models
	Building Shaders with #define directives

	Chapter 10: Screen Effects with Unity Render Textures
	Introduction
	Setting up the screen effects script system
	Brightness, saturation, and contrast with screen effects
	Basic Photoshop-like blend modes with screen effects
	The Overlay blend mode with screen effects

	Chapter 11: Gameplay and Screen Effects
	Introduction
	Creating an old movie screen effect
	Creating a night vision screen effect

	Index

