

Augmented Reality with Kinect

Develop your own hands-free and attractive
augmented reality applications with Microsoft Kinect

Rui Wang

 BIRMINGHAM - MUMBAI

Augmented Reality with Kinect

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2013

Production Reference: 1040713

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-438-4

www.packtpub.com

Cover Image by Suresh Mogre (suresh.mogre.99@gmail.com)

Credits

Author
Rui Wang

Reviewers
Ricard Borràs Navarra

Vangos Pterneas

Acquisition Editor
Kartikey Pandey

Commissioning Editors
Llewellyn Rozario

Priyanka Shah

Technical Editors
Sumedh Patil

Aniruddha Vanage

Copy Editors
Insiya Morbiwala

Alfida Paiva

Laxmi Subramanian

Project Coordinator
Amigya Khurana

Proofreader
Maria Gould

Indexer
Rekha Nair

Graphics
Abhinash Sahu

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

About the Author

Rui Wang is a Software Engineer at Beijing Crystal Digital Technology Co.,
Ltd. (Crystal CG), in charge of the new media interactive application design
and development. He wrote a Chinese book called OpenSceneGraph Design and
Implementation in 2009. He also wrote the book OpenSceneGraph 3.0 Beginner's Guide
in 2010 and OpenSceneGraph 3.0 Cookbook in 2012, both of which are published by
Packt Publishing and co-authored by Xuelei Qian. In his spare time he also writes
novels and is a guitar lover.

I must express my deep gratitude to the entire Packt Publishing team
for their great work in producing a series of high-quality Mini books,
including this one, which introduces the cutting-edge Kinect-based
development. Many thanks to Zhao Yang and my other colleagues
at Crystal CG, for their talented ideas on some of the recipes in this
book. And last but not the least, I'll extend my heartfelt gratitude
to my family for their love and support.

About the Reviewers

Ricard Borràs Navarra has always been working around computer vision and
machine learning. He started creating machines that apply pattern recognition
to quality assortment in the cork production industry. Later, he applied
these techniques for human tracking in complex scenarios, creating audience
measurement, and people-counter solutions for retail stores.

With the eruption of Kinect, he started working on and deploying augmented
reality interactive applications based on this great device. These applications
were targeted at the marketing and retail sectors.

All these projects were developed by him as an Inspecta (www.inspecta.es)
employee. Also, Ricard has developed several freelance projects based on
augmented reality.

Vangos Pterneas is a professional Software Engineer, passionate about natural
user interfaces. He has been a Kinect enthusiast ever since the release of the
very first unofficial SDKs and has already published a couple of commercial
Kinect applications.

He has worked for Microsoft Innovation Center as a .NET developer and consultant
and he's now running his own company named LightBuzz. LightBuzz has been
awarded the first place in Microsoft's worldwide innovation competition, held
in New York.

When he is not coding, he loves blogging about technical stuff and providing
the community with open source utilities.

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Table of Contents
Preface	 1
Chapter 1: Getting Started with Kinect	 5

Installation of Kinect	 6
Setting up your Kinect software on PCs	 7
Why did I do that?	 8

The idea of the AR-based Fruit Ninja game	 9
Summary	 10

Chapter 2: Creating Your First Program	 11
Preparing the development environment	 12

Building the Visual Studio project	 14
Starting the device	 16

Initializing and using Kinect in C++	 17
Understanding the code	 20
Additional information	 21

Summary	 21
Chapter 3: Rendering the Player	 23

Choosing image stream types	 23
Obtaining color and depth images	 24

Drawing color and depth as textures	 25
Understanding the code	 29

An incorrect way to combine depth and color	 31
A traditional way for background subtraction	 31
Understanding the code	 34

Aligning color with depth	 34
Generating a color image from depth	 35
Understanding the code	 38
Additional information	 38

Table of Contents

[ii]

Using a green screen with Kinect	 39
Making a magic photographer	 39
Understanding the code	 42
Additional information	 42

Summary	 42
Chapter 4: Skeletal Motion and Face Tracking	 43

Understanding skeletal mapping	 43
Obtaining joint positions	 45

Drawing the skeleton	 45
Understanding the code	 49

Drawing the linetrails following the hands	 50
Drawing the path for specified joints	 50
Understanding the code	 54

Face tracking in Kinect	 54
Detecting a face from the camera	 54

Detecting and drawing the face rectangle	 55
Understanding the code	 60

Constructing the face model	 61
Drawing the parametric face model	 61
Understanding the code	 64

Summary	 66
Chapter 5: Designing a Touchable User Interface	 67

Multitouch systems	 67
Locating the cursors	 68

Drawing cursors from two hands	 68
Understanding the code	 71
Additional information	 72

Common touching gestures	 72
Recognizing holding and swiping gestures	 73

Drawing cursors using two hands	 74
Understanding the code	 76
Additional information	 77

Sending cursors to external applications	 78
Emulating Windows mouse with cursors	 78
Understanding the code	 79

Summary	 80

Table of Contents

[iii]

Chapter 6: Implementing the Scene and Gameplay	 81
Integrating the current code	 81

Integrating existing elements in a scene	 82
Understanding the code	 85

Cutting the fruits	 86
Adding and handling fruit objects	 87
Understanding the code	 93

Playing the game	 94
Adding simple game logic	 94
Understanding the code	 97
Additional information	 97

Summary	 98
Appendix: Where to Go from Here	 99

libfreenect – the pioneer of Kinect middleware	 99
OpenNI – a complete and powerful Kinect middleware	 100
Free and open source resources	 102
Commercial products using Kinect	 103

Index	 105

Preface
Microsoft Kinect was released in the winter of 2010. As one of the first civil handsfree
motion input devices, it brings a lot of fun to end users of Xbox 360 and Windows
PCs. And because Kinect is very useful for designing interactive methods in user
applications, new media artists and VJs (video jockeys) are also interested in this
new technology as it makes their performances more dramatic and mystical.

In this book, we will focus on introducing how to develop C/C++ applications with
the Microsoft Kinect SDK, as well as the FreeGLUT library for OpenGL support,
and the FreeImage library for image loading. We will cover the topics of Kinect
initialization, color and depth image streaming, and skeleton motion and face tracking,
and discuss how to implement common gestures with Kinect inputs. A simple but
interesting Fruit Ninja-like game will be implemented in the last chapter of this book.
Some alternative middlewares and resources will be introduced in the Appendix,
Where to Go from Here, for your reference.

What this book covers
Chapter 1, Getting Started with Kinect, shows you how to install Kinect hardware and
software on your Windows PC and check if Kinect will start.

Chapter 2, Creating Your First Program, demonstrates how to create an OpenGL-based
framework first and then initialize the Kinect device in user applications.

Chapter 3, Rendering the Player, shows you how to read color and depth images
from the Kinect built-in cameras and display them in the OpenGL-based framework.
A common way to implement the green screen effect is also discussed.

Chapter 4, Skeletal Motion and Face Tracking, demonstrates how to obtain and render
the skeleton data calculated by the Kinect sensor. It also introduces the face detection
and facial mesh generation APIs with examples.

Preface

[2]

Chapter 5, Designing a Touchable User Interface, shows you how to use Kinect APIs
to simulate multi-touch inputs, which are very common in modern interactive
applications and GUI developments.

Chapter 6, Implementing the Scene and Game Play, demonstrates how to make use of
all prior knowledge we have gained to make a Fruit Ninja-like game, which uses
Kinect as the input device.

Appendix, Where to Go from Here, introduces more alternative middleware and many
resource websites for learning and developing Kinect.

What you need for this book
To use this book, you will need a graphics card with robust OpenGL support.
It would be better if it is with the latest OpenGL device driver installed from
your graphics hardware vendor.

You will also need a working Visual Studio compiler so as to convert C++ source
code into executable files. A working Kinect hardware, Microsoft Kinect SDK,
and Developer Kit are also required.

Who this book is for
This book is intended for software developers, researchers, and students who are
interested in developing Microsoft Kinect-based applications. You should also have
basic knowledge of C++ programming before reading this book. Some experience
of programming real-time graphics APIs (for example, OpenGL) may be useful,
but is not required.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "The updating of Kinect and user
data will be done in the update() method."

Preface

[3]

A block of code is set as follows:

#include <GL/freeglut.h>
#include <iostream>

// The updating callback
void update()
{ glutPostRedisplay(); }

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

#include <GL/freeglut.h>
#include <iostream>

// The updating callback
void update()
{ glutPostRedisplay(); }

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

Getting Started with Kinect
Before the birth of Microsoft Kinect, few people were familiar with the technology
of motion sensing. Similar devices have been invented and developed originally for
monitoring aerial and undersea aggressors in wars. Then in the non-military cases,
motion sensors are widely used in alarm systems, lighting systems and so on, which
could detect if someone or something disrupts the waves throughout a room and
trigger predefined events. Although radar sensors and modern infrared motion
sensors are used more popularly in our life, we seldom notice their existence,
and can hardly make use of these devices in our own applications.

But Kinect changed everything from the time it was launched in North America at
the end of 2010. Different from most other user input controllers, Kinect enables
users to interact with programs without really touching a mouse or a pad, but only
through gestures. In a top-level view, a Kinect sensor is made up of an RGB camera,
a depth sensor, an IR emitter, and a microphone array, which consists of several
microphones for sound and voice recognition. A standard Kinect (for Windows)
equipment is shown as follows:

The Kinect device

Getting Started with Kinect

[6]

The Kinect drivers and software, which are either from Microsoft or from third-
party companies, can even track and analyze advanced gestures and skeletons of
multiple players. All these features make it possible to design brilliant and exciting
applications with handsfree user inputs. And until now, Kinect had already brought
a lot of games and software to an entirely new level. It is believed to be the bridge
between the physical world we exist in and the virtual reality we create, and a
completely new way of interacting with arts and a profitable business opportunity
for individuals and companies.

In this book, we will try to make an interesting game with the popular Kinect
technology for user inputs, with the major components explained gradually in each
chapter. As Kinect captures the camera and depth images as video streams, we can
also merge this view of our real-world environment with virtual elements, which is
called Augmented Reality (AR). This enables users to feel as if they appear and
live in a nonexistent world, or something unbelievable exists in the physical earth.

In this chapter, we will first introduce the installation of Kinect hardware
and software on personal computers, and then consider a good enough idea
compounded of Kinect and augmented reality elements, which will be
explained in more detail and implemented in the following chapters.

Before installing the Kinect device on your PCs, obviously you should
buy Kinect equipment first. In this book, we will depend on Kinect for
Windows or Kinect for Xbox 360, which can be learned about and bought
at:
http://www.microsoft.com/en-us/kinectforwindows/

http://www.xbox.com/en-US/kinect

Please note that you don't need to buy an Xbox 360 at all. Kinect will
be connected to PCs so that we can make custom programs for it. An
alternative choice is Kinect for Windows, which is located at:
http://www.microsoft.com/en-us/kinectforwindows/
purchase/

The uses and developments of both will be of no difference for our cases.

Installation of Kinect
It is strongly suggested that you have a Windows 7 operating system or higher.
It can be either 32-bit or 64-bit and with dual-core or faster processors.

Linux developers can also benefit from third-party drivers and SDKs
to manipulate Kinect components, which will be introduced in the
Appendix, Where to Go from Here, of this book.

Chapter 1

[7]

Before we start to discuss the software installation, you can download both the
Microsoft Kinect SDK and the Developer Toolkit from:

http://www.microsoft.com/en-us/kinectforwindows/develop/developer-
downloads.aspx

In this book, we prefer to develop Kinect-based applications using Kinect SDK
Version 1.5 (or higher versions) and the C++ language. Later versions should be
backward compatible so that the source code provided in this book doesn't need
to be changed.

Setting up your Kinect software on PCs
After we have downloaded the SDK and the Developer Toolkit, it's time for us to
install them on the PC and ensure that they can work with the Kinect hardware.
Let's perform the following steps:

1.	 Run the setup executable with administrator permissions. Select I agree
to the license terms and conditions after reading the License Agreement.

The Kinect SDK setup dialog

Getting Started with Kinect

[8]

2.	 Follow the steps until the SDK installation has finished. And then, install the
toolkit following similar instructions.

3.	 The hardware installation is easy: plug the ends of the cable into the USB
port and a power point, and plug the USB into your PC. Wait for the drivers
to be found automatically.

4.	 Now, start the Developer Toolkit Browser, choose Samples: C++ from
the tabs, and find and run the sample with the name Skeletal Viewer.

5.	 You should be able to see a new window demonstrating the depth/
skeleton/color images of the current physical scene, which is similar
to the following image:

The depth (left), skeleton (middle), and color (right) images read from Kinect

Why did I do that?
We chose to set up the SDK software at first so that it will install the motor and
camera drivers, the APIs, and the documentations, as well as the toolkit including
resources and samples onto the PC. If the operation steps are inversed, that is, the
hardware is connected before installing the SDK, your Windows OS may not be able
to recognize the device. Just start the SDK setup at this time and the device should
be identified again during the installation process.

But before actually using Kinect, you still have to ensure there is nothing between
the device and you (the player). And it's best to keep the play space at least 1.8 m
wide and about 1.8 m to 3.6 m long from the sensor. If you have more than one
Kinect device, don't keep them face-to-face as there may be infrared interference
between them.

Chapter 1

[9]

If you have multiple Kinects to install on the same PC, please note
that one USB root hub can have one and only one Kinect connected.
The problem happens because Kinect takes over 50 percent of the
USB bandwidth, and it needs an individual USB controller to run.
So plugging more than one device on the same USB hub means
only one of them will work.

The depth image at the left in the preceding image shows a human (in fact, the
author) standing in front of the camera. Some parts may be totally black if they are
too near (often less than 80 cm), or too far (often more than 4 m).

If you are using Kinect for Windows, you can turn on Near Mode
to show objects that are near the camera; however, Kinect for
Xbox 360 doesn't have such features.

You can read more about the software and hardware setup at:

http://www.microsoft.com/en-us/kinectforwindows/purchase/sensor_
setup.aspx

The idea of the AR-based Fruit Ninja
game
Now it's time for us to define the goal we are going to achieve in this book.
As a quick but practical guide for Kinect and augmented reality, we should be
able to make use of the depth detection, video streaming, and motion tracking
functionalities in our project. 3D graphics APIs are also important here because
virtual elements should also be included and interacted with irregular user inputs
(not common mouse or keyboard inputs).

A fine example is the Fruit Ninja game, which is already a very popular game all
over the world. Especially on mobile devices like smartphones and pads, you can
see people destroy different kinds of fruits by touching and swiping their fingers
on the screen.

With the help of Kinect, our arms can act as blades to cut off flying fruits, and
our images can also be shown along with the virtual environment so that we
can determine the posture of our bodies and position of our arms through the
screen display.

Getting Started with Kinect

[10]

Unfortunately, this idea is not fresh enough for now. Already, there are
commercial products with similar purposes available in the market; for example:

http://marketplace.xbox.com/en-US/Product/Fruit-Ninja-
Kinect/66acd000-77fe-1000-9115-d80258410b79

But please note that we are not going to design a completely different product here,
or even bring it to the market after finishing this book. We will only learn how to
develop Kinect-based applications, work in our own way from the very beginning,
and benefit from the experience in our professional work or as an amateur. So it is
okay to reinvent the wheel this time, and have fun in the process and the results.

Summary
Kinect, which is a portmanteau of the words "kinetic" and "connect", is a motion
sensor developed and released by Microsoft. It provides a natural user interface
(NUI) for tracking and manipulating handsfree user inputs such as gestures and
skeleton motions. It can be considered as one of the most successful consumer
electronics device in recent years, and we will be using this novel device to build
the Fruit Ninja game in this book.

We will focus on developing Kinect and AR-based applications on Windows 7 or
higher using the Microsoft Kinect SDK 1.5 (or higher) and the C++ programming
language. Mainly, we have introduced how to install Kinect for Windows SDK in
this chapter. Linux and Mac OS X users can first read the Appendix, Where to Go from
Here, which provides an alternative method to call Kinect functionalities on other
systems. Developers of .NET, processing, or other language tools may also find
useful resources in the last chapter of this book.

In the next chapter, we will learn how to start and shut down the Kinect device
in our applications, and prepare a basic framework for further development.

Creating Your First Program
We have already introduced how to install the Kinect device on Windows in the
previous chapter, as well as some official examples showing the basic concepts of
Kinect programming. In this chapter, we will prepare a simple OpenGL framework
for our Kinect-based game using the C++ language. OpenGL is a well-rounded
and evolving cross-platform API for rendering 2D and 3D graphics. It supports
multiple languages including C/C++, Java, Python, and C#. As we are working
on an Augmented Reality (AR) project, which must consist of the view of the real
world and some virtual elements, OpenGL will be a good choice here because
of its hardware-accelerated features and popularity all over the world.

As you may know, Microsoft's DirectX is another reliable 2D/3D
graphics API that could fit our requirements. But it is only used under
Windows currently, and can hardly support languages except C/C++
and C#. You can learn more about DirectX at:
http://msdn.microsoft.com/en-us/library/ee663274.aspx

Also, we have discussed about the installation of Kinect for the Windows SDK in
the previous chapter. The SDK provides us libraries and header files for use in
the official toolkits and our own applications. To make use of the SDK, we will
have to include the header files and link to the necessary libraries in our projects
to generate the final executables.

To note, this is not a Kinect API reference book, so we can't list and introduce all
the functions and structures here. You can refer to the following website for more
information about the Kinect NUI API:

http://msdn.microsoft.com/en-us/library/hh855366.aspx

Creating Your First Program

[12]

Before starting to create a C++ project, you should at least have a C++ compiler.
For Windows users, the Visual Studio product is always a better choice. You can
download Visual C++ 2012 Express for free from:

http://www.microsoft.com/visualstudio/eng/downloads#d-2012-express

It is assumed that you are already familiar with this environment, as well as the C++
language and OpenGL programming. You can refer to the following link for details
about the OpenGL API and related resources at http://www.opengl.org/.

Preparing the development environment
Before we create a new console project in Visual Studio, we are first going to
download some third-party dependencies for convenience; otherwise we will have
to implement the construction of the OpenGL context completely by ourselves, and
some important but complex functionality such as image reading and displaying.
To make this process less lengthy, we will choose only two external libraries here:

•	 FreeGLUT
•	 FreeImage

Both of them are open source and easy to understand.

External libraries will be used as dependencies for each of our C++ projects, so we
can make use of the OpenGL-based drawing and image loading functions, which
are important for future work.

FreeGLUT is a complete alternative to the famous OpenGL Utility Toolkit (GLUT),
allowing developers to create and manage OpenGL contexts with just a few
functions and readable callbacks. Its official website is:

http://freeglut.sourceforge.net/

But, we can directly download the prebuilt Windows package containing the DLL,
import library, and header files from:

http://files.transmissionzero.co.uk/software/development/GLUT/
freeglut-MSVC.zip

Then unzip the downloaded file to a proper path for later use.

Chapter 2

[13]

FreeImage is a fast and stable library for reading and writing to many popular
graphics image formats. It also provides basic image manipulations such as rotating,
resizing, and color adjustment. Its official website is:

http://freeimage.sourceforge.net/

The prebuilt Windows package is located at:

http://downloads.sourceforge.net/freeimage/FreeImage3153Win32.zip

Download and unzip it too. Find the DLLs, library files, and headers of both,
and place them in separate subdirectories (for example, bin, lib, and include),
so that we can manage and use these dependencies efficiently, as shown in the
following screenshot:

An example of the directory structure of dependencies

Other dependencies include OpenGL and the Kinect SDK. The OpenGL library
is automatically integrated with every Visual Studio project, so we don't have
to worry about the installation.

From now on, the variable ${MYPROJECT_DIR} will be used to indicate the project
folder, which contains both project files and all third-party dependencies, and
${KINECTSDK10_DIR} is used to indicate the location of the Microsoft Kinect SDK.
You can either set these two environment variables in the Windows system,
or replace it manually with the actual paths while setting project properties.

Creating Your First Program

[14]

Building the Visual Studio project
Now, we are going to create our first application with Visual Studio. Please note
that the Microsoft Kinect SDK is only for Windows users. If you want to develop
Kinect-based applications on other platforms, you may prefer OpenNI instead,
which is also introduced in the previous chapter of this book.

1.	 Create a new C++ console project by navigating to File | New | Project
and choose Win32 Console Application from the Visual C++ menu. Set the
project name to FirstProgram or any name you like. Select Empty project
in the next dialog and click on OK.

2.	 Add include directories by right-clicking on the project and selecting
Properties. Navigate to C/C++ | General | Additional Include Directories
and input the following dependency paths:
${MYPROJECT_DIR}/include; ${KINECTSDK10_DIR}/inc

3.	 Navigate to Linker | Input | Additional Dependencies in the Property
page. Input the library paths and names as follows:
opengl32.lib; glu32.lib; ${MYPROJECT_DIR}/lib/freeglut.lib;
${MYPROJECT_DIR}/lib/FreeImage.lib;
${KINECTSDK10_DIR}/lib/x86/Kinect10.lib

For X64 configuration, we should use ${KINECTSDK10_DIR}/lib/
amd64/Kinect10.lib instead, and make sure the FreeGLUT and
FreeImage libraries are also built for X64 systems (you may have to
build them from the source code).

4.	 Now add some initial code to make our first program work.
#include <GL/freeglut.h>
#include <iostream>

// The updating callback
void update()
{ glutPostRedisplay(); }

// The rendering callback
void render()
{ glutSwapBuffers(); }

// The window resizing callback
void reshape(int w, int h)
{ glViewport(0, 0, w, h); }

Chapter 2

[15]

// The keyboard callback: make sure we can exit when press
// Esc or 'Q' key.
void keyEvents(unsigned char key, int x, int y)
{
 switch (key)
 {
 case 27: case 'Q': case 'q':
 glutLeaveMainLoop();
 return;
 }
 glutPostRedisplay();
}

int main(int argc, char** argv)
{
 // Initialize a GLUT window and make it full-screen
 glutInit(&argc, argv);
 glutInitDisplayMode(
 GLUT_RGB|GLUT_DOUBLE|GLUT_DEPTH|GLUT_MULTISAMPLE);
 glutCreateWindow("ch2_01_OpenGL_Env");
 glutFullScreen();

 // Register necessary callbacks
 glutIdleFunc(update);
 glutDisplayFunc(render);
 glutReshapeFunc(reshape);
 glutKeyboardFunc(keyEvents);

 // Start the main loop
 glutMainLoop();
 return 0;
}

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

5.	 The source code may be a little long for beginners to read. But this is
exactly the structure we are going to use in the entire book. The updating
of Kinect and user data will be done in update(). The rendering of color/
depth images and the skeleton, as well as other virtual objects will be done
in render().

Creating Your First Program

[16]

6.	 It's still a little too complicated and too redundant to write all the source code
for loading textures with FreeImage, or drawing meshes with OpenGL vertex
array features. Fortunately, we have already provided some useful functions
for immediate use.

7.	 Drag the files in the common folder (from the downloaded package) onto
your project icon. Now you should have two more source files named
GLUtilities.cpp and TextureManager.cpp.

8.	 Compile and build all the source code into an executable file. Put the output
into ${MYPROJECT_DIR}/bin and run it. You will only see a black screen,
which we can quit by pressing the Esc key.

Here, we just create a standard console application with FreeGLUT, FreeImage,
and Kinect SDK as dependencies. The framework we created cannot do anything
at present but we will soon add something interesting to make it more colorful.

Please note that the added source files GLUtilities.cpp and TextureManager.
cpp are not used. But they will play an important role in the following examples to
render all kinds of textures and geometries.

If you are still not familiar enough with the OpenGL API, or want to
do something interesting before stepping into Kinect programming,
there are some good references for you to read and test at:

•	 The OpenGL official website: http://www.opengl.org/
•	 The OpenGL wiki page: http://en.wikipedia.org/

wiki/OpenGL
•	 The NeHe OpenGL examples: http://nehe.gamedev.

net/ (good for exercising; see the Legacy Tutorials section)

Starting the device
Now it's time to initialize the Kinect device in our own application. There will be a
lot of Kinect API functions for us to use without any preparatory lessons. But don't
worry; you will find that most of them are self-explanatory and easy to understand.
Also, we will introduce each function and their parameters in the Understanding the
code section.

We will continue working on the framework we have just created, so existing code
lines will not be listed here again.

Chapter 2

[17]

Initializing and using Kinect in C++
Now we can try to find and start the Kinect device in our own C++ framework.

1.	 Add the following include files:
#include <MSHTML.h>
#include <NuiApi.h>
#include <sstream>

2.	 Add the necessary global variables for use in all functions:
INuiSensor* context = NULL;
HANDLE colorStreamHandle = NULL;
HANDLE depthStreamHandle = NULL;
std::string hudText;

3.	 Add an initializeKinect() function, which will be called before
the GLUT main loop. It returns false if the process fails for any reason.
// Check if there are any Kinect sensors connected with
// current PC and obtain the number
int numKinects = 0;
HRESULT hr = NuiGetSensorCount(&numKinects);
if (FAILED(hr) || numKinects<=0) return false;

// Create the sensor object and set it to context.
// Here we only use the first device (index 0) we find.
hr = NuiCreateSensorByIndex(0, &context);
if (FAILED(hr)) return false;

// Initialize the sensor with color/depth/skeleton enabled
DWORD nuiFlags = NUI_INITIALIZE_FLAG_USES_SKELETON |
 NUI_INITIALIZE_FLAG_USES_COLOR |
 NUI_INITIALIZE_FLAG_USES_DEPTH;
hr = context->NuiInitialize(nuiFlags);
if (FAILED(hr)) return false;

// Open color and depth video streams for capturing.
// The resolution is set to 640x480 here.
hr = context->NuiImageStreamOpen(
 NUI_IMAGE_TYPE_COLOR, NUI_IMAGE_RESOLUTION_640x480,
 0, 2, NULL, &colorStreamHandle);
if (FAILED(hr)) return false;

Creating Your First Program

[18]

hr = context->NuiImageStreamOpen(
 NUI_IMAGE_TYPE_DEPTH, NUI_IMAGE_RESOLUTION_640x480,
 0, 2, NULL, &depthStreamHandle);
if (FAILED(hr)) return false;

// Enable skeleton tracking
hr = context->NuiSkeletonTrackingEnable(NULL, 0);
if (FAILED(hr)) return false;
return true;

4.	 Add a destroyKinect() function after the main loop in which we just
release the sensor object we created before.
if (context)
 context->NuiShutdown();

5.	 In the main entry, we alter the last few lines as follows:
if (!initializeKinect()) return 1;
glutMainLoop();
destroyKinect();
return 0;

6.	 The program can compile and run now. But it still produces nothing.
We don't know whether Kinect works or not as it shows a blank window.
So, next we will add a few lines in update() and render() to print some
continuous updated Kinect information.

7.	 At the beginning of update(), obtain one color frame and output the
current frame number and time stamp value into a string:
NUI_IMAGE_FRAME colorFrame;
HRESULT hr = context->NuiImageStreamGetNextFrame(
 colorStreamHandle, 0, &colorFrame);
if (SUCCEEDED(hr))
{
 std::stringstream ss;
 ss << "Frame: " << colorFrame.dwFrameNumber << " "
 << "Time: " <<
(double)colorFrame.liTimeStamp.QuadPart * 0.001;
 hudText = ss.str();
 context->NuiImageStreamReleaseFrame(
 colorStreamHandle, &colorFrame);
}

Chapter 2

[19]

8.	 In the render() function, render the text on screen as follows:
// Clear last frame buffer
glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);

// Set up the projection matrix for text display
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

// Print the text at the bottom of the window
glRasterPos2f(0.01f, 0.01f);
glColor4f(1.0f, 1.0f, 1.0f, 1.0f);
glutBitmapString(GLUT_BITMAP_TIMES_ROMAN_24,
 (const unsigned char*)hudText.c_str());

9.	 Now, execute the compiled program; you may find it a little slower when
you start executing. Be patient until the depth sensor starts to lighten.
The screen is still dark but you will find a line of animation text at the
bottom-left as shown in the following figure:

A snapshot of the application

10.	 If the application directly exits without displaying anything, the initialization
process may fail. Add some text before returning false to see the value of hr
in initializeKinect(); also check if your Kinect sensor is connected and
not used by other programs.

Creating Your First Program

[20]

Understanding the code
The following table shows all the Kinect functions we have used as well as
descriptions of the important parameters.

Function/method name Parameters Description

NuiGetSensorCount int* pCount Get the number of Kinect sensors
connected to the PC and set to pCount.

NuiCreateSensorByIndex int index, INuiSensor**
ppNuiSensor

Creates an instance of the Kinect sensor
at index and sets it to ppNuiSensor.

INuiSensor::NuiInitialize DWORD dwFlags Initialize Kinect with specified feature
options, including audio, color, depth,
depth with player index, and skeleton.

INuiSensor::NuiImageStreamOpen NUI_IMAGE_TYPE type,

NUI_IMAGE_RESOLUTION
res,

DWORD dwFrameFlags,

DWORD dwFrameLimit,

HANDLE
hNextFrameEvent,

HANDLE
*phStreamHandle

•	 Open an image stream with
specific type (color, depth,
and so on) and resolution
(640x480 for our case), and set
its handle
to phStreamHandle.

•	 The dwFrameFlags provides
some additional options
(default is 0).

•	 The dwFrameLimit means
frame numbers limited for
buffering (always set to 2).

•	 The hNextFrameEvent is
used for multithreaded cases.

INuiSensor::NuiSkeletonTracki
ngEnable

HANDLE hNextFrameEvent,

DWORD dwFlags

Enable skeleton tracking with additional
options dwFlags (default is 0).

The hNextFrameEvent is used for
multithreaded cases.

INuiSensor::NuiShutdown Turns Kinect off.

All functions and methods start with the prefix "Nui". It is just short for
Natural User Interface(NUI).

Now the total process of creating and using Kinect in user applications can
be summarized as follows:

1.	 Find and create the sensor object.
2.	 Initialize the sensor with the required features (image streams

and skeleton tracking), and enable these features.
3.	 Update every frame to get stream and skeleton data for use.
4.	 Release the sensor object when exiting.

Chapter 2

[21]

Quite simple, isn't it? Note that, we didn't introduce the lines in the update()
function here. We will explain that in the next chapter, with more interesting
live images shown on the screen instead of a boring line of text.

Additional information
Another interesting and challenging task is to implement a multithreaded version
of the initialization and updating of Kinect. In fact, some functions here have
already supported such uses by accepting event handles as parameters, including
NuiImageStreamOpen() and NuiSkeletonTrackingEnable(). Events will change
when new video stream/skeleton frames arrive, so we can listen to them with
WaitForMultipleObjects() in a separate thread and then obtain related frame data.

Summary
In this chapter, we have created a simple enough OpenGL framework to use it
throughout the whole book. It is built on the open source FreeGLUT and FreeImage
libraries, as well as the Microsoft Kinect SDK.

We have also successfully initialized the Kinect device in our own C++ application
and obtained some continuous updating values for displaying on screen, which can
be found in the downloadable source code package of this book. This means that
Kinect is now ready for extensive usage based on color/depth camera images
and skeleton tracking points. These will be covered in the next two chapters.

Rendering the Player
In the previous chapter, we successfully initialized the Kinect device and started the
color and depth image streams. Now it is time to read data from the streams at every
frame and show them on screen so that we can obtain the very important depth values
for many uses. For example, we can change the color image at a specified depth to a
different one. Another good idea is to place some virtual objects around the player
while rendering the scene. Then we use depths to decide if part of an object is behind
or in front of the player to make the compositing result more natural.

In the following sections, we will introduce how to obtain and render color images
read by the cameras and depth images read by the depth sensor. We will continue
to work on the framework created in the previous chapter, with Kinect already
initialized and ready for use.

Choosing image stream types
The Microsoft Kinect SDK supports several types of image streams. In the example
from the previous chapter, we started the device with the following options:

DWORD nuiFlags = NUI_INITIALIZE_FLAG_USES_SKELETON |
 NUI_INITIALIZE_FLAG_USES_COLOR |
 NUI_INITIALIZE_FLAG_USES_DEPTH;
hr = context->NuiInitialize(nuiFlags);

It can be concluded from the enumeration values that three types of data will be
allocated in the current application: the skeleton, the color, and the depth.

Rendering the Player

[24]

The color and depth data are of course necessary here because we are going to make
use of them soon. The skeleton data will be first used in Chapter 4, Skeletal Motion and
Face Tracking. Besides this, Kinect even provides two more types of data for us to
select at the beginning of the application:

•	 NUI_INITIALIZE_FLAG_USES_AUDIO: This provides the audio data from
the microphone array located at the bottom of the device.

•	 NUI_INITIALIZE_FLAG_USES_DEPTH_AND_PLAYER_INDEX: This provides
the depth data with each pixel marked with a player index. This data type
will be widely used in our book to quickly separate the player image from
the background.

To open the stream for reading, we call NuiImageStreamOpen() immediately after
the device initialization. It contains a resolution parameter as follows:

context->NuiImageStreamOpen(
 NUI_IMAGE_TYPE_COLOR, NUI_IMAGE_RESOLUTION_640x480,
 0, 2, NULL, &colorStreamHandle);

The NUI_IMAGE_RESOLUTION_640x480 value tells us that the color data is allocated
as a 640 x 480 sized image from the camera. Other available values include NUI_
IMAGE_RESOLUTION_80x60, NUI_IMAGE_RESOLUTION_320x240, and NUI_IMAGE_
RESOLUTION_1280x960. Only the resolution of the color stream can be set to 1280 x
960. Depth data can't have such high resolutions at present, but it is always enough
to use a resolution of 320 x 240 or 640 x 480 for depth.

Obtaining color and depth images
In this section, we are going to first learn how to obtain and display images from
Kinect on the screen. OpenGL uses textures to contain image data and maps
textures onto any mesh surface so that the images can be shown as surface colors.
The mapping process requires the texture coordinates of surfaces, known as UVW
coordinates in most 3D modeling software, to denote the texture's x/y/z axes for
correct image painting. A good tutorial about the OpenGL texture mapping can
be found at http://www.glprogramming.com/red/chapter09.html.

As we are not developing very complicated 3D applications, we can just simplify
the whole process into two steps:

•	 Creating a simple quad with four vertices that is always facing the screen,
and mapping a 2D texture (with only UV coordinates set) onto it for
displaying 2D images

•	 Generating and updating the texture from Kinect image data every frame

Now let's start.

Chapter 3

[25]

Drawing color and depth as textures
We will first obtain color and depth data from the Kinect device and render both
onto the OpenGL quad to show them on the screen. The color and depth images
should be updated and assigned to the OpenGL texture per frame:

1.	 We will first add some necessary headers and global variables for use
based on the previous example. The TextureObject structure is defined
in GLUtilities.h for storing the attributes of an OpenGL texture:
#include "common/TextureManager.h"
#include "common/GLUtilities.h"
TextureObject* colorTexture = NULL;
TextureObject* depthTexture = NULL;

2.	 These two texture objects can be created in the main entry before starting
the simulation loop, and deleted after it:
colorTexture = createTexture(640, 480, GL_RGB, 3);
depthTexture = createTexture(640, 480, GL_LUMINANCE, 1);

glutMainLoop();

destroyTexture(colorTexture);
destroyTexture(depthTexture);

3.	 Now we are going to update the color/depth streams and obtain usable
data from every frame's image. The method to acquire one frame was already
used in the previous chapter, but we will explain its usage in more detail in
the next section:
// Update the color image
NUI_IMAGE_FRAME colorFrame;
HRESULT hr = context->NuiImageStreamGetNextFrame(
 colorStreamHandle, 0, &colorFrame);
if (SUCCEEDED(hr))
{
 updateImageFrame(colorFrame, false);
 context->NuiImageStreamReleaseFrame (
 colorStreamHandle, &colorFrame);
}

Rendering the Player

[26]

// Update the depth image
NUI_IMAGE_FRAME depthFrame;
hr = context->NuiImageStreamGetNextFrame(
 depthStreamHandle, 0, &depthFrame);
if (SUCCEEDED(hr))
{
 updateImageFrame(depthFrame, true);
 context->NuiImageStreamReleaseFrame (
 depthStreamHandle, &depthFrame);
}

4.	 A new updateImageFrame() function is introduced here. It includes two
parameters: imageFrame, containing the real data, and isDepthFrame to
differentiate between the two kinds of streams:
void updateImageFrame (
 NUI_IMAGE_FRAME& imageFrame, bool isDepthFrame)
{
 ...
}

5.	 The content of the new function is shown in the following code snippet.
It demonstrates how to load the image data into the corresponding
OpenGL texture object:
INuiFrameTexture* nuiTexture = imageFrame.pFrameTexture;
NUI_LOCKED_RECT lockedRect;
nuiTexture->LockRect(0, &lockedRect, NULL, 0);
if (lockedRect.Pitch!=NULL)
{
 // We assume the image is always 640 x 480 as set in
 // the initialization process.
 const BYTE* buffer = (const BYTE*)lockedRect.pBits;
 for (int i=0; i<480; ++i)
 {
 const BYTE* line = buffer + i * lockedRect.Pitch;
 const USHORT* bufferWord = (const USHORT*)line;
 for (int j=0; j<640; ++j)
 {
 if (!isDepthFrame)
 {
 // For colors, convert each pixel from BGR
 // to RGB
 unsigned char* ptr = colorTexture->
 bits + 3 * (i * 640 + j);

Chapter 3

[27]

 *(ptr + 0) = line[4 * j + 2];
 *(ptr + 1) = line[4 * j + 1];
 *(ptr + 2) = line[4 * j + 0];
 }
 else
 {
 // For depth, extract the depth value part
 unsigned char* ptr = depthTexture->
 bits + (i * 640 + j);
 *ptr = (unsigned char)
 NuiDepthPixelToDepth(bufferWord[j]);
 }
 }
 }

 // Send the textures to OpenGL side for displaying
 TextureObject* tobj =
 (isDepthFrame ? depthTexture : colorTexture);
 glBindTexture(GL_TEXTURE_2D, tobj->id);
 glTexImage2D(GL_TEXTURE_2D, 0, tobj->internalFormat,
 tobj->width, tobj->height, 0, tobj->imageFormat,
 GL_UNSIGNED_BYTE, tobj->bits);
}
nuiTexture->UnlockRect(0);

6.	 Now in the render() function, we render the color and depth images
horizontally on the screen at the same time. This can be easily done with
the functions provided in GLUtilities.h, with both vertices and texture
coordinates set:
// Define vertices and texture coordinates for a simple
// quad
// The quad's width is half of the screen's width so it can
// be drawn twice to show two different images on the
// screen
GLfloat vertices[][3] = {
 { 0.0f, 0.0f, 0.0f }, { 0.5f, 0.0f, 0.0f },
 { 0.5f, 1.0f, 0.0f }, { 0.0f, 1.0f, 0.0f }
};
GLfloat texcoords[][2] = {
 {0.0f, 1.0f}, {1.0f, 1.0f}, {1.0f, 0.0f}, {0.0f, 0.0f}
};
VertexData meshData = { &(vertices[0][0]), NULL, NULL,
 &(texcoords[0][0]) };

Rendering the Player

[28]

// Draw the quad with color texture attached
glBindTexture(GL_TEXTURE_2D, colorTexture->id);
drawSimpleMesh(WITH_POSITION|WITH_TEXCOORD, 4,
 meshData, GL_QUADS);

// Change position and draw the quad with depth texture
glTranslatef(0.5f, 0.0f, 0.0f);
glBindTexture(GL_TEXTURE_2D, depthTexture->id);
drawSimpleMesh(WITH_POSITION|WITH_TEXCOORD, 4,
 meshData, GL_QUADS);

7.	 Compile and run the application. You will see the screen is split into
two parts to show both the color and depth images:

The stream outputs of Kinect

8.	 You will find that the depth image (right) represents the depth value of each
pixel in the color image (left). Objects near the depth sensor will turn out to
be darker. When out of the range of the depth sensor (80-90 cm for Kinect on
Xbox and 40-50 cm for Kinect on Windows), the depth will be painted black
and the value becomes unsuitable for practical use.

The color image resolution might be higher than the depth image
resolution, so one depth pixel may correspond to more than one
color pixel. But in this example, we set the same resolution for
both the images.

Chapter 3

[29]

Understanding the code
Before we obtain image data from the stream, we should request the frame data
using NuiImageStreamGetNextFrame(), which accepts three parameters: the
handle, the time to wait in milliseconds before returning (0 ms in our case), and the
NUI_IMAGE_FRAME pointer, which will contain real image data. If we choose not to
wait before obtaining every frame's data, this function may fail sometimes because
of being called too frequently; so, we must check the return value at every frame
to see if the function has succeeded, and then call NuiImageStreamReleaseFrame()
to release the data at last.

The NUI_IMAGE_FRAME structure has a member pFrameTexture variable
containing the image resource we need (in the previous chapter, we made use of
dwFrameNumber and liTimeStamp from it, which indicate the frame number and
timestamp of the most recent frame). But before directly reading data from it, we
should first lock the buffer so that it is only available for the current thread to use
and unlock the buffer after receiving the data. This is done in updateImageFrame()
using a NUI_LOCKED_RECT variable:

INuiFrameTexture* nuiTexture = imageFrame.pFrameTexture;
NUI_LOCKED_RECT lockedRect;
nuiTexture->LockRect(0, &lockedRect, NULL, 0);

nuiTexture->UnlockRect(0);

Locking the buffer before working on it is important because Kinect may
transfer new data to the buffer and at the same time, other threads, or even other
applications, may also handle the same data. Any operations on the buffer without
locking it are totally unsafe and prohibited by the Kinect SDK.

After locking the buffer, we can now safely use the NUI_LOCKED_RECT structure
to read frame image data. Its definition is as follows:

typedef struct {
 INT Pitch; // The number of bytes of data in a row
 int size; // The size of pBits, in bytes
 BYTE *pBits; // A pointer to the upper left corner of data
 // rect
} NUI_LOCKED_RECT;

Rendering the Player

[30]

The pBits starts from the upper-left corner, but OpenGL treats image
data assuming that it starts from the lower-left corner. So the result
rendered on screen will be flipped vertically if we don't care about
the difference. In this example, we use OpenGL texture coordinates to
solve the problem, as you can see from the following diagram:

(0, 1) (1, 1) (0, 0) (1, 0)

Kinect output OpenGL image Displayed with flipped
texture coordinates

A
A

A
(0, 1) (1, 1)(0, 0) (1, 0)

The Kinect image displayed with OpenGL; because the OpenGL image is already flipped after being read,
the texture coordinates are set to flip the image again on the quad

The functions used in this example are listed in the following table:

Function/method name Parameters Description
INuiSensor::NuiImageStreamGe
tNextFrame

HANDLE
stream, DWORD
timeToWait,
and const NUI_
IMAGE_FRAME
**ppcImageFrame

This function gets
the next frame of
data from the specified
image stream and sets
it to ppcImageFrame,
waiting for timeToWait
milliseconds.

INuiSensor::NuiImageStreamRe
leaseFrame

HANDLE stream
and const NUI_
IMAGE_FRAME
*pImageFrame

This function
releases the data frame
pImageFrame from the
specified handle stream.

INuiFrameTexture::LockRect UINT Level,
NUI_LOCKED_RECT
*pLockedRect,
RECT *pRect, and
DWORD Flags

This function locks
the buffer and sets
it to pLockedRect.
Other parameters
are unused.

Chapter 3

[31]

Function/method name Parameters Description
INuiFrameTexture::UnlockRect UINT Level This function unlocks the

buffer. The parameter
here is unused and must
be set to 0.

An incorrect way to combine depth
and color
The basic idea of a green screen, or chroma key compositing, is commonly used
in the film industry. The director shoots a video with a single-colored backdrop
(always green or blue), and then replaces the single colors with another video or
still image. This produces some exciting effects such as the actor running out of an
explosion field or the weather broadcaster standing in front of a large virtual map/
earth. In this chapter, we will try to implement the same effect with the Kinect device.

The Kinect device is designed to be able to resolve depth data from the sensor to
human body results. It can recognize both the entire body and different parts of
human limbs and tries placing the joints to build up a skeleton, which is perhaps
the most impressive feature of Kinect. In fact, we had never seen a for-civil-use
production before that can perform similar work.

To learn more about the skeleton recognition of Kinect, you can refer to
http://research.microsoft.com/en-us/projects/vrkinect/default.aspx.

But in this example, it is enough to only know where the human body is in the depth
image. For the depth pixels within a specific human body, Kinect will save the player
index (a non-zero number). So the only task for us is to read the player indices in
the depth image and clear the pixels in the color image if their corresponding depth
value doesn't have a player index.

A traditional way for background subtraction
The simplest idea to combine depth and color images is to display them at the same
position but allow color pixels to be shown only when the depth value at the same
row and column is valid. We will implement our example in this way and see if
it works:

1.	 The depth stream we used before only recorded values read from the depth
sensor. The Kinect SDK also provides a packed depth stream with both depth
and player index recorded in every pixel. This is very useful for our case.

Rendering the Player

[32]

2.	 First, we modify the initializeKinect() function to listen to the packed
depth stream instead of the original one. The only change here is to replace
NUI_INITIALIZE_FLAG_USES_DEPTH with NUI_INITIALIZE_FLAG_USES_
DEPTH_AND_PLAYER_INDEX:
DWORD nuiFlags = NUI_INITIALIZE_FLAG_USES_SKELETON |
 NUI_INITIALIZE_FLAG_USES_COLOR |
 NUI_INITIALIZE_FLAG_USES_DEPTH_AND_PLAYER_INDEX;
hr = context->NuiInitialize(nuiFlags);

hr = context->NuiImageStreamOpen(
 NUI_IMAGE_TYPE_DEPTH_AND_PLAYER_INDEX,
 NUI_IMAGE_RESOLUTION_640x480,
 0, 2, NULL, &depthStreamHandle);

3.	 The second step seems straightforward. Because we know which pixel
contains a valid player index and which does not, we can just set the
corresponding texture's pixel to 0 where no player index is found. The
depthTexture then works like a mask image, replacing the same locations
in the color texture with empty values:
unsigned char* ptr = depthTexture->bits + (i * 640 + j);
if (NuiDepthPixelToPlayerIndex(bufferWord[j])>0)
 *ptr = 255;
else
 *ptr = 0;

4.	 OpenGL can implement masking with the GL_BLEND feature, as shown in the
following code snippet:
// Define vertices and texture coordinates for a simple
// quad
// The quad will cover whole screen to show the final image
GLfloat vertices[][3] = {
 { 0.0f, 0.0f, 0.0f }, { 1.0f, 0.0f, 0.0f },
 { 1.0f, 1.0f, 0.0f }, { 0.0f, 1.0f, 0.0f }
};
GLfloat texcoords[][2] = {
 {0.0f, 1.0f}, {1.0f, 1.0f}, {1.0f, 0.0f}, {0.0f, 0.0f}
};
VertexData meshData =
 { &(vertices[0][0]), NULL, NULL, &(texcoords[0][0]) };

// Draw the quad with color texture attached
glBindTexture(GL_TEXTURE_2D, colorTexture->id);
drawSimpleMesh(WITH_POSITION|WITH_TEXCOORD, 4,
 meshData, GL_QUADS);

Chapter 3

[33]

// Enable blending with the depth texture color as factors
glEnable(GL_BLEND);
glBlendFunc(GL_ONE_MINUS_SRC_COLOR, GL_SRC_COLOR);

// Draw the quad again before the previous one and blend
// them
// Result will be the product of color and depth textures
glTranslatef(0.0f, 0.0f, 0.1f);
glBindTexture(GL_TEXTURE_2D, depthTexture->id);
drawSimpleMesh
 (WITH_POSITION|WITH_TEXCOORD, 4, meshData, GL_QUADS);

// Disable blending at last
glDisable(GL_BLEND);

5.	 So the result should be nice, shouldn't it? Let's compile and stand
before the Kinect device to see if background subtraction has been
successfully implemented:

The result of our background subtraction, which is not good at all

6.	 Maybe you will be disappointed now. The depth data is clipped correctly,
but it is not aligned with the color image at all! The player is obviously
slanted and thus makes the entire application unusable.

Rendering the Player

[34]

Understanding the code
The NUI_IMAGE_TYPE_DEPTH_AND_PLAYER_INDEX data type is a slightly different
stream from the depth sensor. It doesn't contain pure depth value, but one that
is combined with a 3-bit index value belonging to specific players determined by
the skeleton tracking system. This packed depth pixel will thus have 11 bits and
must be stored using a USHORT data type. The Kinect SDK provides two convenient
functions to read the real depth value and player index from every pixel read:
NuiDepthPixelToDepth() and NuiDepthPixelToPlayerIndex().

In this example, we decide the value of our depth texture using the player index so
that we can get an image with only white (with the player index) and black (without
the player index) pixels. In OpenGL, we blend this monochrome picture with the color
texture. White pixels are transparent so the colors become visible, and black pixels
are still black so background colors appear blank, thus generating the final image.
Unfortunately, this is incorrect.

The reason is simple. Kinect's depth and color images in fact come from different
sensors. They may have different fields of view (FOV) and not face the same direction.
So a pixel at a specified location in a depth image is not always at the same location in
a color image. Without considering these factors, we can hardly line up the depth and
image pixels and produce a correct green screen effect.

However, thanks to the Kinect SDK, we still have some methods to fix this problem,
such as mapping a pixel at a certain location in depth space to the corresponding
coordinates in color space. We could even directly use some functions to achieve this.

Aligning color with depth
The steps to implement the green screen have now changed because of the alignment
problem of color and depth images. Instead of directly blending the depth and color
images, we will first construct a new texture for storing remapped colors (and use the
player index to subtract the background colors). Then we will display the new texture
on screen, which can be treated as the result of background removal.

Chapter 3

[35]

Generating a color image from depth
This time we will use an inbuilt Kinect API method to align the color data with
depth and combine them again. Let's start now:

1.	 Now we will have to traverse all pixels and save the color values where the
player index is valid (for others, we set the color to total black). This requires
a new texture object, which is named playerColorTexture here:
TextureObject* colorTexture = NULL;
TextureObject* playerColorTexture = NULL;

2.	 The playerColorTexture is in RGBA format, so we can use its alpha
channel for image masking, besides the RGB components for normal color
display:
colorTexture = createTexture(640, 480, GL_RGB, 3);
playerColorTexture = createTexture(640, 480, GL_RGBA, 4);

glutMainLoop();

destroyTexture(colorTexture);
destroyTexture(playerColorTexture);

3.	 In the updateImageFrame() function, we will try to read and compute the
player color texture instead of the depth one. This will be done in a new
setPlayerColorPixel() function:
if (!isDepthFrame)
{
 unsigned char* ptr = colorTexture->bits + 3 *
 (i * 640 + j);
 *(ptr + 0) = line[4 * j + 2];
 *(ptr + 1) = line[4 * j + 1];
 *(ptr + 2) = line[4 * j + 0];
}
else
 setPlayerColorPixel(bufferWord[j], j, i);

4.	 The setPlayerColorPixel() function has three parameters: the depthValue
read from Kinect and the x and y values located in the image space. It returns
false if the current location doesn't have a player index attached:
bool setPlayerColorPixel
 (const USHORT depthValue, int x, int y);

Rendering the Player

[36]

5.	 The content of the function is listed here:
// Find correct place to write the RGBA value
unsigned char* ptr =
 playerColorTexture->bits + 4 * (y * 640 + x);

// Check if there exists a player index
if (NuiDepthPixelToPlayerIndex(depthValue)>0)
{
 // Get correct x and y coordinates in color image space
 LONG colorX = 0, colorY = 0;
 context->NuiImageGetColorPixelCoordinates
 FromDepthPixelAtResolution(
 NUI_IMAGE_RESOLUTION_640x480,
 NUI_IMAGE_RESOLUTION_640x480, NULL,
 x, y, depthValue, &colorX, &colorY);
 if (colorX>=640 || colorY>=480) return false;

 // Write color value to the playerColorTexture
 unsigned char* colorPtr = colorTexture->bits + 3 *
 (colorY * 640 + colorX);
 *(ptr + 0) = *(colorPtr + 0);
 *(ptr + 1) = *(colorPtr + 1);
 *(ptr + 2) = *(colorPtr + 2);
 *(ptr + 3) = 255;
}
else
{
 // Write 0 to all four components of playerColorTexture
 *(ptr + 0) = 0;
 *(ptr + 1) = 0;
 *(ptr + 2) = 0;
 *(ptr + 3) = 0;
}
return true;

Chapter 3

[37]

6.	 We will render the image quad again with only the player color texture
this time:
// Define vertices and texture coordinates for a simple
// quad
// The quad will cover whole screen
GLfloat vertices[][3] = {
 { 0.0f, 0.0f, 0.0f }, { 1.0f, 0.0f, 0.0f },
 { 1.0f, 1.0f, 0.0f }, { 0.0f, 1.0f, 0.0f }
};
GLfloat texcoords[][2] = {
 {0.0f, 1.0f}, {1.0f, 1.0f}, {1.0f, 0.0f}, {0.0f, 0.0f}
};
VertexData meshData =
 { &(vertices[0][0]), NULL, NULL, &(texcoords[0][0]) };

// Render the player's color image
glBindTexture(GL_TEXTURE_2D, playerColorTexture->id);
drawSimpleMesh(WITH_POSITION|WITH_TEXCOORD, 4,
 meshData, GL_QUADS);

7.	 Now let's see if there are any improvements compared to the previous one:

The result of background subtraction, which is acceptable

8.	 The result is acceptable now. The aliasing problem occuring at the edges
of the depth image is still distinct. We can use some image-based methods
to optimize it later, but for this chapter, it is enough!

Rendering the Player

[38]

Understanding the code
The NuiImageGetColorPixelCoordinatesFromDepthPixelAtResolution()
function is the key for this recipe as it converts depth space coordinates to color space,
lining up pixels in both the images correctly. This function has quite a few parameters:

HRESULT
 NuiImageGetColorPixelCoordinatesFromDepthPixelAtResolution(
 NUI_IMAGE_RESOLUTION eColorResolution,
 NUI_IMAGE_RESOLUTION eDepthResolution,
 const NUI_IMAGE_VIEW_AREA *pcViewArea,
 LONG lDepthX,
 LONG lDepthY,
 USHORT usDepthValue,
 LONG *plColorX,
 LONG *plColorY
);

Here eColorResolution and eDepthResolution are set to NUI_IMAGE_
RESOLUTION_640x480 because we initialize both the streams with the same settings.
The pcViewArea parameter is NULL here because we don't need any optional zoom
and pan settings for the color image. The lDepthX and lDepthY parameters are x/y
coordinates in depth image space and usDepthValue is the depth value. With these
inputs, Kinect can compute the coordinate offset and output coordinates in color
space to plColorX and plColorY.

The given depth coordinates should not be too near to the depth image bounds,
otherwise they may be mapped to coordinates outside the bounds of the color
image, which is invalid and should be checked and excluded.

The usDepthValue parameter must be the original depth
value, that is, the packed pixel value for NUI_IMAGE_
TYPE_DEPTH_AND_PLAYER_INDEX, not the extracted one
from NuiDepthPixelToDepth().

Additional information
The NuiImageGetColorPixelCoordinatesFromDepthPixelAtResolution()
function is not effective because it must convert the pixels one
by one. The Kinect SDK also provides another function called
NuiImageGetColorPixelCoordinateFrameFromDepthPixelFrameAtResolution()
to perform the same work on an array of depth values, and the output will be an
array of color coordinate values:

Chapter 3

[39]

HRESULT NuiImageGetColorPixelCoordinateFrameFrom
 DepthPixelFrameAtResolution(
 NUI_IMAGE_RESOLUTION eColorResolution,
 NUI_IMAGE_RESOLUTION eDepthResolution,
 DWORD cDepthValues,
 USHORT* pDepthValues,
 DWORD cColorCoordinates,
 LONG* pColorCoordinates
);

Can you try to use it to modify this example and make it work smoothly?
Note that pColorCoordinates is an array of x/y coordinates for each pixel.

Using a green screen with Kinect
Now we can develop a simple game to satisfy ourselves, which will also be used
as part of our Fruit Ninja game. The idea can be described as a magic photographer
who automatically puts the photo of the player in front of the Kinect device onto any
scenery images, pretending that he had taken this photo some time ago.

The example we just finished is used to show a player with a single colored
background, so the only work left is to load a still image from the disk and blend
it with the player image to produce a final composite photo.

Making a magic photographer
Let's continue working on the previous example code we created, which already
contains the kernel functionality for our use:

1.	 We need a background image to be shown under the player's image. The
alpha channel of the player texture will be used to decide if the background
should show or not. FreeImage is used to load the image from a disk file and
bind it to an OpenGL texture. The global ID for the texture is declared here:
const unsigned int backgroundTexID = 1;

2.	 In the main entry, we will read a file named background.bmp from the disk.
Please copy any of your image files to the executable directory and convert
it to BMP format for use. Note that FreeImage always loads images in BGR
format; that is, in blue-green-red order:
if (TextureManager::Inst()->LoadTexture
 ("background.bmp", backgroundTexID, GL_BGR_EXT))
{

Rendering the Player

[40]

 glTexParameteri
 (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
 glTexParameteri
 (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
}

3.	 Render simple OpenGL quads with Kinect color and depth images:
// Define vertices and texture coordinates for a simple
// quad
// The quad will cover whole screen to show the final image
GLfloat vertices[][3] = {
 { 0.0f, 0.0f, 0.0f }, { 1.0f, 0.0f, 0.0f },
 { 1.0f, 1.0f, 0.0f }, { 0.0f, 1.0f, 0.0f }
};
GLfloat texcoords[][2] = {
 {0.0f, 1.0f}, {1.0f, 1.0f}, {1.0f, 0.0f}, {0.0f, 0.0f}
};
VertexData meshData =
 { &(vertices[0][0]), NULL, NULL, &(texcoords[0][0]) };

// Draw the background image quad
TextureManager::Inst()->BindTexture(backgroundTexID);
drawSimpleMesh
 (WITH_POSITION|WITH_TEXCOORD, 4, meshData, GL_QUADS);

// Enable blending with player texture alpha as factors
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

// Draw the quad again before the previous one and blend
// them
glTranslatef(0.0f, 0.0f, 0.1f);
glBindTexture(GL_TEXTURE_2D, playerColorTexture->id);
drawSimpleMesh
 (WITH_POSITION|WITH_TEXCOORD, 4, meshData, GL_QUADS);

Chapter 3

[41]

4.	 Start the program and you will see your chosen scenery image shown on the
screen, which could be your favorite place:

A sand landscape chosen by the author

5.	 Stand in front of the Kinect device and you will be added to the scene now.
Find a good position for yourself and take a photo now:

Add the player into the scene

Rendering the Player

[42]

Understanding the code
The only difference between this recipe and the previous one is that a background
image is added and blended with the player. The alpha values we set in the previous
recipe play an important role because they are used as the OpenGL blending factor
as follows:

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

This means the source pixels S, which form the player image to be drawn, and
the target pixels T, which are the background colors, will be blended using the
following equation:

S * alpha + T * (1 – alpha)

So, the player pixels will only be rendered on screen when alpha is 1, and the
background pixels are kept where alpha is 0.

Although we actually set alpha to 0 or 255 in the program, it is
always mapped to [0, 1] in OpenGL for further use.

Additional information
The composite image is still not that good because of aliasing and flickering at the
player edges. One possible improvement is to blur the depth image before using it.
We could also do some postprocessing work on the generated image to perfectly
match it with the background. It is now up to you to consider implementing these
features using, for instance, GrabCut (http://research.microsoft.com/en-us/um/
cambridge/projects/visionimagevideoediting/segmentation/grabcut.htm).

Summary
In this chapter, we saw how to obtain color and depth images from the Kinect
sensors and display them in the OpenGL context. A special type of depth image,
which packs both depth value and player index in one pixel, was also introduced
and used for background subtraction. It is more powerful than the traditional
green screen technique because it doesn't need a single colored background
(but the precision for civil-level use is not too high).

The main problem we encountered here was that the depth and color pixels were not
aligned. The Kinect SDK also provides some functions for quickly mapping depth
space coordinates to color space ones so that we can combine these two streams
smoothly for different uses.

Skeletal Motion and
Face Tracking

Capturing and tracking skeleton images of one or two people is one of the most
exciting features of Kinect development. It can transform many ideas to reality,
including gesture recognition, multi-touch emulation, data-driven character
animations, and even some advanced techniques such as motion capture and model
reconstruction. The skeletal mapping work in every Kinect device is actually done
by a microprocessor in the sensor (or directly by the Xbox core), and the results
can be retrieved using corresponding APIs for use in our own applications.

The Microsoft Kinect SDK 1.5 also includes a new face tracking module that can
track the position and rotation of our heads, and the shapes of our eyes and mouth.
It even provides APIs to compute a virtual face mesh, which can be directly rendered
in the 3D world. We will also introduce these excellent functionalities in this chapter,
although they are not quite related to our planned Fruit Ninja game.

The face tracker API may not be located in the same directory of the Kinect SDK. If
you have already installed the Developer Toolkit as discussed in Chapter 1, Getting
Started with Kinect, you should be able to locate it at ${FTSDK_DIR}. Here, the
environment variable indicates the location of the Kinect Developer Toolkit.

Understanding skeletal mapping
At present, Microsoft Kinect can identify up to six people within the view of
the field, but it can only track at most two people in detail at the same time.

The players must stand (or sit) in front of the Kinect device, facing the sensors. If the
player shows only a part of his body to the sensors, or wants the sensors to recognize
sideways poses, the result may not be accurate, as some part of the skeleton may be
in the wrong place, or may jitter back and forth.

Skeletal Motion and Face Tracking

[44]

Usually, the player is suggested to stand between 0.8 m and 4.0 m away from the
device. Kinect for Windows may perform better for near distances because it has
a near depth range mode (0.4 m) for use.

In every frame, Kinect will calculate a skeleton image for each person in tracking,
which includes 20 joints to represent a complete human body. The positions and
meanings of these joints can be found in the following figure:

Head

Shoulder

Spine

Hip

Right Shoulder

Right Elbow

Right Wrist

Right Hand
Right Hip

Right Knee

Right Ankle

Right Foot

The skeleton mapping

Kinect uses infrared lights to calculate the depth of people and
reconstructs the skeleton accordingly. So if you are using multiple
Kinect devices for more precise skeleton mapping or other purposes,
a different infrared light source (including another Kinect) in the view
of the field will interfere with the current device and thus reduce the
precision of computation. The interference may be low but we still
have to avoid such a problem in practical situations.

Chapter 4

[45]

Obtaining joint positions
Before we can consider using the skeleton for gesture-based interaction, we should
first print out all the skeletal-joint-related data to have a directly perceived look of
the Kinect skeleton positions. The data can then be merged with our color image
so that we can see how they are matched with each other in real time.

Drawing the skeleton
We will first draw the skeleton with a series of lines to see how Kinect defines all
the skeletal bones.

1.	 The Microsoft Kinect SDK uses NUI_SKELETON_POSITION_COUNT (equivalent
to 20 for the current SDK version) to represent the number of joints of one
skeleton, so we define an array to store their positions.
GLfloat skeletonVertices[NUI_SKELETON_POSITION_COUNT][3];

2.	 Add the following lines for updating a skeleton frame in the update()
function.
NUI_SKELETON_FRAME skeletonFrame = {0};
hr = context->NuiSkeletonGetNextFrame(0, &skeletonFrame);
if (SUCCEEDED(hr))
{
 // Traverse all possible skeletons in tracking
 for (int n=0; n<NUI_SKELETON_COUNT; ++n)
 {
 // Check each skeleton data to see if it is tracked
 NUI_SKELETON_DATA&
data=skeletonFrame.SkeletonData[n];
 if (data.eTrackingState==NUI_SKELETON_TRACKED)
 {
 updateSkeletonData(data);
 break; // in this demo, only handle one skeleton
 }
 }
}

Skeletal Motion and Face Tracking

[46]

3.	 We declare a new function named updateSkeletonData() with one
NUI_SKELETON_DATA argument for handling the specified skeleton data.
Now let's fill it.
POINT coordInDepth;
USHORT depth = 0;

// Traverse all joints
for (int i=0; i<NUI_SKELETON_POSITION_COUNT; ++i)
{
 // Obtain joint position and transform it to depth
space
 NuiTransformSkeletonToDepthImage(
 data.SkeletonPositions[i],
 &coordInDepth.x, &coordInDepth.y,
 &depth, NUI_IMAGE_RESOLUTION_640x480);

 // Transform all coordinates to [0, 1] and set them
 // to the array we defined before.
 // We will discuss about the transformation later
 skeletonVertices[i][0] =
 (GLfloat)coordInDepth.x / 640.0f;
 skeletonVertices[i][1] =
 1.0f - (GLfloat)coordInDepth.y / 480.0f;
 skeletonVertices[i][2] =
 (GLfloat)NuiDepthPixelToDepth(depth) * 0.00025f;
}

4.	 Before rendering the skeleton data we retrieved in updateSkeletonData(),
we have to define the skeleton index array so that OpenGL knows how
to connect these joint points. Because we will only draw the skeleton as
a reference, it is sufficient to draw the points using the GL_LINES mode,
which indicates that every two points are connected to form a line segment.

5.	 Using the human skeleton figure we just saw, we can quickly write out the
definition as follows:
// Every two indices will form a line-segment
// All Kinect enumerations here should be self-explained
GLuint skeletonIndices[38] = {
NUI_SKELETON_POSITION_HIP_CENTER,
NUI_SKELETON_POSITION_SPINE,

Chapter 4

[47]

NUI_SKELETON_POSITION_SPINE,
NUI_SKELETON_POSITION_SHOULDER_CENTER,
NUI_SKELETON_POSITION_SHOULDER_CENTER,
NUI_SKELETON_POSITION_HEAD,
// Left arm
NUI_SKELETON_POSITION_SHOULDER_LEFT,
NUI_SKELETON_POSITION_ELBOW_LEFT,
NUI_SKELETON_POSITION_ELBOW_LEFT,
NUI_SKELETON_POSITION_WRIST_LEFT,
NUI_SKELETON_POSITION_WRIST_LEFT,
NUI_SKELETON_POSITION_HAND_LEFT,
// Right arm
NUI_SKELETON_POSITION_SHOULDER_RIGHT,
NUI_SKELETON_POSITION_ELBOW_RIGHT,
NUI_SKELETON_POSITION_ELBOW_RIGHT,
NUI_SKELETON_POSITION_WRIST_RIGHT,
NUI_SKELETON_POSITION_WRIST_RIGHT,
NUI_SKELETON_POSITION_HAND_RIGHT,
// Left leg
NUI_SKELETON_POSITION_HIP_LEFT,
NUI_SKELETON_POSITION_KNEE_LEFT,
NUI_SKELETON_POSITION_KNEE_LEFT,
NUI_SKELETON_POSITION_ANKLE_LEFT,
NUI_SKELETON_POSITION_ANKLE_LEFT,
NUI_SKELETON_POSITION_FOOT_LEFT,
// Right leg
NUI_SKELETON_POSITION_HIP_RIGHT,
NUI_SKELETON_POSITION_KNEE_RIGHT,
NUI_SKELETON_POSITION_KNEE_RIGHT,
NUI_SKELETON_POSITION_ANKLE_RIGHT,
 NUI_SKELETON_POSITION_ANKLE_RIGHT,
NUI_SKELETON_POSITION_FOOT_RIGHT,
// Others
NUI_SKELETON_POSITION_SHOULDER_CENTER,
NUI_SKELETON_POSITION_SHOULDER_LEFT,
NUI_SKELETON_POSITION_SHOULDER_CENTER,
NUI_SKELETON_POSITION_SHOULDER_RIGHT,
NUI_SKELETON_POSITION_HIP_CENTER,
NUI_SKELETON_POSITION_HIP_LEFT,
NUI_SKELETON_POSITION_HIP_CENTER,
NUI_SKELETON_POSITION_HIP_RIGHT
};

Skeletal Motion and Face Tracking

[48]

6.	 Now in the render() function, we render the skeleton lines along with the
color image. The drawIndexedMesh() function is declared in GLUtilities.h
for quick and convenient use.
glDisable(GL_TEXTURE_2D);
glLineWidth(5.0f);

VertexData skeletonData = { &(skeletonVertices[0][0]),
NULL, NULL, NULL };
drawIndexedMesh(WITH_POSITION,
NUI_SKELETON_POSITION_COUNT, skeletonData, GL_LINES, 38,
skeletonIndices);

7.	 Compile the program, run it, and see what we have just done!

The skeleton along with the color image (only the upper body)

8.	 Please note that the author has only shown the upper body in the Kinect
camera, so the lower body part of skeletal mapping result may be incorrect
and might shake. But the shoulder and arms perform very well.

Chapter 4

[49]

Understanding the code
Some new functions we used in this example are listed as follows:

Function/method name Parameters Description
NuiSkeletonGetNextFrame DWORD timeToWait

and
NUI_SKELETON_
FRAME* frame

Gets skeleton
data of the
current frame
and sets it to
the frame
structure.

NuiTransformSkeletonToDepthImage Vector4 point,
LONG* coordX,
LONG* coordY,
USHORT* depth and
NUI_IMAGE_
RESOLUTION res

Returns the
depth space
coordX,
coordY, and
depth with
specified
resolution res
and specified
point in
skeleton space.

In this example, we will transform the joint positions to depth space, and then to
[0, 1] using the following functions:

NuiTransformSkeletonToDepthImage(
 data.SkeletonPositions[i],
 &coordInDepth.x, &coordInDepth.y,
 &depth, NUI_IMAGE_RESOLUTION_640x480);
skeletonVertices[i][0] = (GLfloat)coordInDepth.x / 640.0f;
skeletonVertices[i][1] = 1.0f - (GLfloat)coordInDepth.y / 480.0f;
skeletonVertices[i][2] = (GLfloat)NuiDepthPixelToDepth(depth) *
0.00025f;

The original skeleton positions are stored in data.SkeletonPositions to define all
the necessary joints in world space. The Microsoft Kinect SDK uses a right-handed
coordinate system with values in meters to manage all the positions. The origin is
at the sensor pinhole, and the z axis is pointing from the sensor to the view field.
So when we lift our hands horizontally (x axis), the coordinates of our left and right
hands may be:

Left hand: (-0.8, 0.2, 2.0), and right hand: (0.8, 0.2, 2.0)

Skeletal Motion and Face Tracking

[50]

The actual values won't be so stable and symmetrical, but it indicates that the person
is standing about 2 meters away from the Kinect device, and his/her arm span is
about 1.6 meters.

It can be easily inferred from the code segment that, after mapping the positions
to depth space, every joint's x and y values are using image coordinates (640 x 480),
and the z value is the actual depth, which is equivalent to the depth image pixel at
the same location. As we know, Kinect can detect depth values from 0.8 meters to
at most 4 meters, so we divide the return value of NuiDepthPixelToDepth() with
4000 millimeters to re-project the joint's z axis to [0, 1], which assumes that z = 0 is
the camera lens plane (but can't reach it), and z = 1 is the farthest.

The Microsoft Kinect SDK also provides joint orientation data, which could
be useful if we want to control the virtual body more precisely. Local or world
space orientations can be obtained by calling the following function in the
updateSkeletonData() function:

NUI_SKELETON_BONE_ORIENTATION
rotations[NUI_SKELETON_POSITION_COUNT];
NuiSkeletonCalculateBoneOrientations(&data, rotations);

It will output to an array containing the orientation data of each joint. Try to get and
display it (for example, add a small axis at each joint position) on screen by yourself.

Drawing the linetrails following the hands
Now let's start to develop a very important part of our Fruit Ninja game: the
knives that cut any coming fruits. Our hands can simulate the knives very well here,
because in a motion-sense environment, they are always the most agile and accurate
objects to operate on anything in space.

It will be easy to know the per-frame positions of the two hands as shown in
the previous example. But it is also a good idea to add some trailing effects to
demonstrate how fast and sharp the knives are, and to indicate to the players
where their weapons are. In this example, we will emulate these trails with a series
of continuous line segments. The alpha values of each line segment can also change
so that the entire trail seems to fade out at the end.

Drawing the path for specified joints
To implement linetrails of two hands, we have to use a dynamic array to store
historical points that the hands have moved to. We then connect them to implement
the line-trail effect, as shown in the following steps:

Chapter 4

[51]

1.	 We directly define two STL vector elements to store a custom structure to
simplify the process. Besides, a fixed-size array is used to store the fading
colors of the point list.
struct Vertex { GLfloat x, y, z; };
std::vector<Vertex> leftHandTrails;
std::vector<Vertex> rightHandTrails;
GLfloat trailColors[20][4];

// Use this to create a translucent depth texture
TextureObject* playerDepthTexture = NULL;

2.	 In the main entry, we set the trailing color array to constant values. The
alpha channel values will change to express a fade-in effect (index 0 is
nearly invisible, and index 19 is opaque).
for (int i=0; i<20; ++i)
{
 trailColors[i][0] = 1.0f;
 trailColors[i][1] = 1.0f;
 trailColors[i][2] = 1.0f;
 trailColors[i][3] = (float)(i + 1) / 20.0f;
}

// The optimized depth texture will have two channels, one
for player index display and another for transparency.
playerDepthTexture = createTexture(640, 480,
GL_LUMINANCE_ALPHA, 2);

3.	 Obtain the skeleton data and set the coordinates to the hand trailing vectors.
POINT coordInDepth;
USHORT depth = 0;
for (int i=0; i<NUI_SKELETON_POSITION_COUNT; ++i)
{
 NuiTransformSkeletonToDepthImage(
 data.SkeletonPositions[i], &coordInDepth.x,
&coordInDepth.y,
 &depth, NUI_IMAGE_RESOLUTION_640x480);

 Vertex vertex;
 vertex.x = (GLfloat)coordInDepth.x;
 vertex.y = 1.0f - (GLfloat)coordInDepth.y / 480.0f;
 vertex.z = (GLfloat)NuiDepthPixelToDepth(depth) *
0.00025f;

Skeletal Motion and Face Tracking

[52]

 if (i==NUI_SKELETON_POSITION_HAND_LEFT)
 {
 // Add latest hand point to the vector
 // Remove the oldest one if the vector is too large
 leftHandTrails.push_back(vertex);
 if (leftHandTrails.size()>20) leftHandTrails.erase(
leftHandTrails.begin());
 }
 else if (i==NUI_SKELETON_POSITION_HAND_RIGHT)
 {
 // Do the same thing as handling the left hand
 rightHandTrails.push_back(vertex);
 if (rightHandTrails.size()>20) rightHandTrails.erase(
rightHandTrails.begin());
 }
}

4.	 The updateImageFrame() function should also be changed to write to the
new playerDepthTexture object. If there's a player, a translucent white
pixel is written; otherwise a totally transparent pixel is written.
const BYTE* buffer = (const BYTE*)lockedRect.pBits;
for (int i=0; i<480; ++i)
{
 const BYTE* line = buffer + i * lockedRect.Pitch;
 const USHORT* bufferWord = (const USHORT*)line;
 for (int j=0; j<640; ++j)
 {
 unsigned char* ptr = playerDepthTexture->bits + 2 *
(i * 640 + j);
 if (NuiDepthPixelToPlayerIndex(bufferWord[j])>0)
 {
 *(ptr + 0) = 200;
 *(ptr + 1) = 80;
 }
 else
 {
 *(ptr + 0) = 0;
 *(ptr + 1) = 0;
 }
 }
}

Chapter 4

[53]

5.	 Enable blending and draw the depth texture in render(). Before doing this, we
should first place a background image as the shown in the previous chapter, so
that the result will be a smooth light shadow added onto a scenery image.
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glTranslatef(0.0f, 0.0f, 0.1f);

glBindTexture(GL_TEXTURE_2D, playerDepthTexture->id);
drawSimpleMesh(WITH_POSITION|WITH_TEXCOORD, 4, meshData,
GL_QUADS);

6.	 At last, we draw the hand linetrails as line strips. Don't disable blending
before the hand trails are finished, so that the alpha channel of trailColors
will take effect.
glDisable(GL_TEXTURE_2D);
glLineWidth(50.0f);

VertexData leftHandData = { &(leftHandTrails[0].x), NULL,
&(trailColors[0][0]), NULL };
drawSimpleMesh(WITH_POSITION|WITH_COLOR,
leftHandTrails.size(), leftHandData, GL_LINE_STRIP);

VertexData rightHandData = { &(rightHandTrails[0].x), NULL,
&(trailColors[0][0]), NULL };
drawSimpleMesh(WITH_POSITION|WITH_COLOR,
rightHandTrails.size(), rightHandData, GL_LINE_STRIP);

// Disable blending so it won't affect the next frame
glDisable(GL_BLEND);

7.	 Now let's have a look at the final result:

The linetrails effect with a translucent depth

Skeletal Motion and Face Tracking

[54]

Understanding the code
This example does not provide us with more technical details, but instead provides
us with some more ideas. The skeleton data from Kinect can be used to locate some
important body parts in an accurate and efficient way.

Thus, the skeletal mapping feature may help to quickly add virtual objects onto
or around the body. For example, add a hat on the head, a jackboot on the foot,
butterflies around the player, and so on.

One big problem is that this joint-related data may jitter all the time if the environment
is not good enough or the player cannot show his full body in front of the sensor. A
very common improvement is to record some historical data and compute the average
values of the current data and old data, as shown in this example. Another solution for
smooth skeleton transformation will be discussed again in the next chapter.

Face tracking in Kinect
Face detecting and tracking is a famous computer vision technology. It analyzes the
images from a webcam or other input devices, and tries to determine the locations
and sizes of human faces from these inputs. Some detailed face parts can also be
guessed from the given images, including eyes, eyebrows, nose, and the mouth. We
can even determine the emotion of a specific face, or the identity of a human from
the face tracking results.

The Microsoft Kinect SDK supports face tracking from Version 1.5 onwards.
It requires color and depth images from the sensors (or customized sources)
as inputs, and returns the position data of the detected head, as well as some
important recording points on the face, all of which can be retrieved or used
for reconstructing the 3D face mesh in real time.

We will explain how the Microsoft Kinect SDK declares and generates the face
mesh at the end of this chapter.

Detecting a face from the camera
Before we start to detect a face in front of the Kinect camera, we should set up the
include and library files of the face tracking library. For Visual Studio users, first
add ${FTSDK_DIR}/inc to the current include directories of your project, and add
${FTSDK_DIR}/Lib/x86/FaceTrackLib.lib to the additional dependencies. You
may also have to manually copy all the files in ${FTSDK_DIR}/Redist/x86 to your
executable folder to help find these dynamic library files smoothly.

Chapter 4

[55]

Now we will work on a Kinect example we have done before, which has already
initialized the Kinect context for the new face tracking library that is ready to use.

Detecting and drawing the face rectangle
In this example, we will first detect the position and size of the face.

1.	 Include the face tracking library header, and declare some global
variables for recording necessary face tracking data.
#include <FaceTrackLib.h>

IFTFaceTracker* tracker = NULL;
IFTResult* faceResult = NULL;
FT_SENSOR_DATA sensorData;
RECT faceRect;
bool isFaceTracked = false;

2.	 The face tracking process requires both the color and depth buffers
for computation, so we define them here, too.
TextureObject* colorTexture = NULL;
TextureObject* packedDepthTexture = NULL;

3.	 Create a new initializeFaceTracker() function to initialize the library.
bool initializeFaceTracker()
{
 // Create the face tracker object
 tracker = FTCreateFaceTracker();
 if (!tracker)
 {
 std::cout << "Can't create face tracker" <<
std::endl;
 return false;
 }

 // Define parameters for both color and depth sensors.
 FT_CAMERA_CONFIG colorConfig = {640, 480,
NUI_CAMERA_COLOR_NOMINAL_FOCAL_LENGTH_IN_PIXELS};
 FT_CAMERA_CONFIG depthConfig = {640, 480,
NUI_CAMERA_DEPTH_NOMINAL_FOCAL_LENGTH_IN_PIXELS * 2};

 // Initialize the face tracker with those parameters
 HRESULT hr = tracker->Initialize(&colorConfig,
&depthConfig, NULL, NULL);

Skeletal Motion and Face Tracking

[56]

 if (FAILED(hr))
 {
 std::cout << "Can't initialize face tracker" <<
std::endl;
 return false;
 }

 // Create the face tracker result object
 hr = tracker->CreateFTResult(&faceResult);
 if (FAILED(hr))
 {
 std::cout << "Can't create face tracker result" <<
std::endl;
 return false;
 }

 // Create sensor frames for storing color and depth
data
 sensorData.pVideoFrame = FTCreateImage();
 sensorData.pDepthFrame = FTCreateImage();
 if (!sensorData.pDepthFrame || !sensorData.pDepthFrame
)
 {
 std::cout << "Can't create color/depth images" <<
std::endl;
 return false;
 }

 // Attach the texture object data (which is updated by
 // Kinect NUI API) to the face tracker sensor frames,
 // to actually connect sensor data and the face tracker
 sensorData.pVideoFrame->Attach(640, 480,
(void*)colorTexture->bits, FTIMAGEFORMAT_UINT8_R8G8B8,
640*3);
 sensorData.pDepthFrame->Attach(640, 480,
(void*)packedDepthTexture->bits,
FTIMAGEFORMAT_UINT16_D13P3, 640);

 // Other default values for the sensor data
 sensorData.ZoomFactor = 1.0f;
 sensorData.ViewOffset.x = 0;
 sensorData.ViewOffset.y = 0;
 return true;
}

Chapter 4

[57]

4.	 Use destroyFaceTracker() to release face objects safely.
bool destroyFaceTracker()
{
 if (faceResult) faceResult->Release();
 if (tracker) tracker->Release();
 return true;
}

5.	 In the main entry, we will successively initialize the Kinect device, the color
and depth texture, and the face tracker. The releasing process is inverse,
so the face tracker function is destroyed first and the Kinect at last.
if (!initializeKinect()) return 1;
colorTexture = createTexture(640, 480, GL_RGB, 3);
packedDepthTexture = createTexture(640, 480,
GL_LUMINANCE_ALPHA, 2);
if (!initializeFaceTracker()) return 1;

glutMainLoop();

destroyFaceTracker();
destroyTexture(colorTexture);
destroyTexture(packedDepthTexture);
destroyKinect();

6.	 The updateImageFrame() function will write the BGR colors to the color
texture as usual, but will write the entire packed depth values to the depth
texture. This depth texture will not be used for displaying purposes, but
will be used for the face tracker to infer the result.
const BYTE* buffer = (const BYTE*)lockedRect.pBits;
for (int i=0; i<480; ++i)
{
 const BYTE* line = buffer + i * lockedRect.Pitch;
 const USHORT* bufferWord = (const USHORT*)line;
 for (int j=0; j<640; ++j)
 {
 if (!isDepthFrame)
 {
 unsigned char* ptr = colorTexture->bits + 3 *
(i * 640 + j);
 *(ptr + 0) = line[4 * j + 2];
 *(ptr + 1) = line[4 * j + 1];
 *(ptr + 2) = line[4 * j + 0];
 }

Skeletal Motion and Face Tracking

[58]

 else
 {
 USHORT* ptr = (USHORT*)packedDepthTexture->bits
+ (i * 640 + j);
 *ptr = bufferWord[j];
 }
 }
}

7.	 In the update() function, we will have a simple choice: if no faces are
found in the last frame, we restart the tracking work using the sensor
data we defined before; if there was one face in tracking, we continue
the tracking process to see if the face is still distinguishable.
if (!isFaceTracked)
{
 // Start new tracking process if no face is in scope
 hr = tracker->StartTracking(&sensorData, NULL, NULL,
faceResult);
 if (SUCCEEDED(hr) && SUCCEEDED(faceResult-
>GetStatus())) isFaceTracked = true;
}
else
{
 // Continue the tracking process if a face is already
 // captured in the field of view
 hr = tracker->ContinueTracking(&sensorData, NULL,
faceResult);
 if (FAILED(hr) || FAILED(faceResult->GetStatus()))
isFaceTracked = false;
}

8.	 Now we are going to draw a 2D quad around the tracked face in the
render() function. The result is stored in the faceRect variable and
displayed in every frame.
// Re-obtain the face rectangle when there are tracked
faces
if (isFaceTracked)
 faceResult->GetFaceRect(&faceRect);

Chapter 4

[59]

// The calculated rectangle is in image coordinates,
// so re-project it to [0, 1] for rendering in OpenGL
float l = (float)faceRect.left / 640.0f;
float r = (float)faceRect.right / 640.0f;
float b = 1.0f - (float)faceRect.bottom / 480.0f;
float t = 1.0f - (float)faceRect.top / 480.0f;
GLfloat faceVertices[][3] = {
 { l, b, 0.1f }, { r, b, 0.1f }, { r, t, 0.1f }, { l, t,
0.1f }
};
VertexData faceData = { &(faceVertices[0][0]), NULL, NULL,
NULL };

// Draw looped line-segments around the face
glDisable(GL_TEXTURE_2D);
glLineWidth(5.0f);
drawSimpleMesh(WITH_POSITION, 4, faceData, GL_LINE_LOOP);

9.	 Assuming that we have already rendered the color image as the background
image, the rendering result may be similar to the following screenshot:

The face tracking quad

Skeletal Motion and Face Tracking

[60]

Understanding the code
The functions and methods used in this example are listed in the following table:

Function/method name Parameters Description
FTCreateFaceTracker Creates an

IFTFaceTracker face
tracker instance.

FTCreateImage Creates an IFTImage image-
object instance.

IFTFaceTracker::Initialize const FT_CAMERA_
CONFIG* color,

const FT_CAMERA_
CONFIG* depth,

FTRegisterDepthToColor
func,

PCWSTR modelPath

Initializes the face tracker
with suitable camera
configurations for color
and depth sensors. The
optional func can be used
to register a function for
depth-to-color mapping, and
the optional modelPath is
the path of an external face
model.

IFTFaceTracker::CreateFTResult IFTResult** ppResult Creates an IFTResult
result object instance.

IFTFaceTracker::StartTracking const FT_SENSOR_DATA*
data,

const RECT* roi,

const FT_VECTOR3D
headPoints[2],

IFTResult* result

Starts a new face tracking
process with input sensor
data, optional region
of interest roi, optional
headPoints hints, and
writes out the result.

IFTFaceTracker::ContinueTrack
ing

const FT_SENSOR_DATA*
data,

const FT_VECTOR3D
headPoints[2],

IFTResult* result

Continues the face tracking
process with input sensor
data, optional headPoints
hints, and writes out the
result.

IFTResult::GetFaceRect RECT* rect Gets a face rectangle rect in
the image frame resolution.

Please note that the face tracker may be affected by different factors. For example,
if the light is too dark, or the player is wearing glasses, or he/she is too far away
from the sensor, the tracking process may not be able to catch stable results.

Also note that the Kinect SDK's face tracking feature can support multiple face
detection. We could just run the StartTracking() function with a headPoints
parameter to indicate the head and the neck points, so that the face tracker can
quickly find a face in a specific area. But, because the Kinect skeleton only supports
tracking of not more than two people at any given point of time, the face tracker
will hardly support more faces unless we specify the hint points by ourselves.

Chapter 4

[61]

Constructing the face model
Now we will extend the previous example to support rendering the face mesh onto
the color image. The face mesh itself may not be useful for your own applications,
but it is in fact composited by a few parameterized points, that is, animation units
(AU) and shape units (SU). The face tracking results can also be represented in
terms of the weights of six AUs and 11 SUs, which will be explained in the
forthcoming Understanding the code section.

Drawing the parametric face model
Now we are going to draw a 3D mesh of the face we have detected, which is formed
by a list of vertices and normals, as well as the triangle indices. The Microsoft Kinect
SDK already provides SDKs to obtain this data and this example will only draw
them on the screen with OpenGL commands.

1.	 Common mesh data contains two parts: the vertices on the mesh, and the
triangles composing the whole mesh, each of which includes three vertices.
We define two variables at first to store the vertex data and the indices
array representing all the triangles.
std::vector<GLfloat> faceVertices(1);
std::vector<GLuint> faceTriangles(1);

2.	 An obtainFaceModelData() function will be used to obtain all parameters
related with the face mesh, including the positions, rotations, key vertices
on the face for reconstructing the face model, and final mesh points and
primitives for direct rendering.
void obtainFaceModelData()
{
 // See if we could get the face model for use
 IFTModel* model = NULL;
 HRESULT hr = tracker->GetFaceModel(&model);
 if (FAILED(hr)) return;

 // Obtain AUs and SUs of the face
 FLOAT* auList = NULL;
 UINT numAU = 0;
 if (FAILED(faceResult->GetAUCoefficients(&auList,
&numAU)))
 {

Skeletal Motion and Face Tracking

[62]

 model->Release();
 return;
 }

 FLOAT* suList = NULL;
 UINT numSU = 0;
 BOOL haveConverged = FALSE;
 if (FAILED(tracker->GetShapeUnits(NULL, &suList,
&numSU, &haveConverged)))
 {
 model->Release();
 return;
 }

 // Obtain face model position, rotation and scale
 FLOAT scale, rotation[3], pos[3];
 if (FAILED(hr = faceResult->Get3DPose(&scale,
rotation, pos)))
 {
 model->Release();
 return;
 }

 // Declare variables to save face vertices and
triangles
 FT_TRIANGLE* triangles = NULL;
 UINT numTriangles = 0, numVertices = model-
>GetVertexCount();
 std::vector<FT_VECTOR2D> points2D(numVertices);

 // Obtain face model vertices and triangles
 POINT viewOffset = {0, 0};
 FT_CAMERA_CONFIG colorConfig = {640, 480,
NUI_CAMERA_COLOR_NOMINAL_FOCAL_LENGTH_IN_PIXELS};
 if (SUCCEEDED(model->GetTriangles(&triangles,
&numTriangles)) &&
 SUCCEEDED(model->GetProjectedShape(&colorConfig,
1.0, viewOffset,
 suList, numSU, auList, numAU, scale,
rotation, pos, &(points2D[0]), numVertices)))
 {
 // The vertices are in camera coordinates,
 // so we have to re-projct them to [0, 1]

Chapter 4

[63]

 faceVertices.resize(3 * numVertices);
 for (unsigned int i=0; i<numVertices; ++i)
 {
 faceVertices[3*i+0] = points2D[i].x / 640.0f;
 faceVertices[3*i+1] = 1.0f - (points2D[i].y /
480.0f);
 faceVertices[3*i+2] = 0.1f;
 }

 // Directly push each triangle indices to our
 // global index array
 faceTriangles.resize(3 * numTriangles);
 for (unsigned int n=0; n<numTriangles; ++n)
 {
 faceTriangles[3*n+0] = triangles[n].i;
 faceTriangles[3*n+1] = triangles[n].j;
 faceTriangles[3*n+2] = triangles[n].k;
 }
 }

 // Release the face model when everything is done
 model->Release();
}

3.	 In the render() function, we will try to obtain the face mesh data and
render it using our convenient drawIndexedMesh() function. We change
the OpenGL polygon mode to GL_LINE so that the model is drawn in the
wireframe mode.
if (isFaceTracked)
 obtainFaceModelData();

glDisable(GL_TEXTURE_2D);
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);

VertexData faceMeshData = { &(faceVertices[0]), NULL, NULL,
NULL };
drawIndexedMesh(WITH_POSITION, faceVertices.size()/3,
faceMeshData, GL_TRIANGLES, faceTriangles.size(),
&(faceTriangles[0]));

glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);

Skeletal Motion and Face Tracking

[64]

4.	 The rendering result, when we run the program, is shown in the following
screenshot. We can see a very nice parametric face model shown when
the Kinect SDK detects one face in the camera.

The facial mesh fitting with the face in real time

Understanding the code
The functions and methods used in this example are listed in the following table:

Function/method name Parameters Description
IFTFaceTracker::GetFaceModel IFTModel** model Returns an IFTModel to the face model.

IFTFaceTracker::GetShapeUnits FLOAT** ppSUCoefs,

UINT* pSUCount,

BOOL*
pHaveConverged

Returns shape units (SUs) and numbers
in use: ppSUCoefs is the shape unit
coefficients, pSUCount is the number, and
pHaveConverged can be used to determine
if SUs converge to real values.

IFTResult::GetAUCoefficients FLOAT**
ppCoefficients,

UINT *pAUCount

Returns animation units (AUs) and numbers
in use: ppCoefficients is the shape unit
coefficients, pAUCount is the number.

IFTResult::Get3DPose FLOAT* scale,

FLOAT
rotationXYZ[3],

FLOAT
translationXYZ[3]

Gets the 3D pose of the face model including
translations, rotations, and scale.

IFTModel::GetVertexCount Gets the number of vertices of the model.

IFTModel::GetTriangles FT_TRIANGLE**
ppTriangles,

UINT*
pTriangleCount

Gets mesh triangles of the 3D face model,
and stores them in ppTriangles, with the
triangle number stored in pTriangleCount.

Chapter 4

[65]

Function/method name Parameters Description
IFTModel::GetProjectedShape const FT_CAMERA_

CONFIG* cam,

FLOAT zoomFactor,

POINT viewOffset,

const FLOAT
*pSUCoefs,

UINT suCount,

const FLOAT
*pAUCoefs,

UINT auCount,

FLOAT scale,

const FLOAT
rotationXYZ[3],

const FLOAT
translationXYZ[3],

FT_VECTOR2D
*pVertices,

UINT vertexCount

•	 A face model is created with shape
units, animation units, scale,
rotation, and translation. Here, it is
projected to the image frame space
with the configuration cam.

•	 The viewOffset and zoomFactor
can be set to the same color as in
initializeFaceTracker(). The
following few parameters will be
used to pass SU and AU points, 3D
pose information. The final output
shows pVertices (2D points) and
vertexCount (number of vertices).

Here, we have mentioned the words "shape unit" (SU) and "animation unit" (AU)
multiple times. They are actually derived from a classic parameterized face model
named CANDIDE-3 (which is also the prototype of the Microsoft face tracker
model). The original website for this is:

http://www.icg.isy.liu.se/candide/

In short, shape units (SUs) define the deformation of a standard face to a current
player face, and animation units (AUs) define the delta values from the neutral shape
to a morphed one. These two coefficients are very useful for emotion detection and
recognition. For example, when the value of AU 4 is 1, the lip corners go up and thus
make a very happy face; but when the value of AU 4 is -1, the lip corners are down to
the bottom, so it means a sad face. More information about AU and SU computations
and usage can be found at the CANDIDE website or at the Microsoft Face Tracking
programming guide website:

http://msdn.microsoft.com/en-us/library/jj130970.aspx

Skeletal Motion and Face Tracking

[66]

Summary
In this chapter, we introduced the skeleton mapping technique in Kinect, and
discussed how to get the positions of all the 20 joints in a human skeleton. Some of
the positions are important for our successive developments; for example, the hand
positions will be used to determine if a fruit is cut or not. Some more joint data will
be used in the next chapter for emulating a multi-touch environment.

The new face tracking feature of the Microsoft Kinect SDK is also shown here with
two easy-to-understand examples. The face tracking API can be used to calculate the
position of a human head, as well as the mesh data composited from AUs and SUs.
These two examples have nothing to do with the Fruit Ninja game in processing,
but may be very useful for other kinds of AR-based applications and games.

Designing a Touchable
User Interface

In this chapter, we will introduce how to use Kinect APIs to simulate multitouch
inputs, which are very common in modern interactive applications, especially on
mobile devices. As a replacement of traditional methods (keyboard and mouse),
the user interface of a multitouch-based application should always be dragged,
or held and swiped, to trigger some actions. We will introduce some basic
concepts of such interactions and demonstrate how to emulate them with Kinect.

Multitouch systems
The word multitouch refers to the ability to distinguish between two or more fingers
touching a touch-sensing surface, such as a touch screen or a touch pad. Typical
multitouch devices include tablets, mobile phones, pads, and even powerwalls with
images projected from their back.

A single touch is usually done by a finger or a pen (stylus). The touch sensor will
detect its X/Y coordinates and generate a touch point for user-level applications
to use. If the device simultaneously detects and resolves multiple touches, user
applications can thus efficiently recognize and handle complex inputs.

Gestures also play an important role in multitouch systems. A gesture is considered
as a standardized motion, which can be used distinctly to represent a certain
purpose. For example, the "tap" gesture (hit the surface lightly and release) always
means to select and start a program on mobile phones, and the "zoom" gesture
(move two fingers towards or apart from each other), or sometimes called the
"pinch", is used to scale the content we are viewing.

Designing a Touchable User Interface

[68]

Locating the cursors
In the first example of this chapter, we will convert the two hand bones into cursors
to simulate a multitouch-like behavior. While the hand positions are changing,
the cursors will also move so that we can locate them on a certain object, such as a
button or a menu item. The available range of the hand positions must be limited
here, otherwise the result will be confusing if we drop the arms and don't want the
cursor to move again.

Drawing cursors from two hands
The line-trailing example in the previous chapter is a good start for our new task,
so we will work on this example to add cursor support based on user-skeleton
data we have already obtained. The steps are given as follows:

1.	 Define arrays to store necessary hand positions, as well as the colors to
display in the window. We also declare a smoothParams variable here,
which will be introduced later.
NUI_TRANSFORM_SMOOTH_PARAMETERS smoothParams;
GLfloat cursors[6]; // Left hand: 0, 1, 2; Right: 3, 4, 5
GLfloat cursorColors[8]; // Left hand: 0-3; Right: 4-7

2.	 In the update() function, add a line calling NuiTransformSmooth() to
smooth the skeleton before using it.
NUI_SKELETON_FRAME skeletonFrame = {0};
hr = context->NuiSkeletonGetNextFrame(0, &skeletonFrame);
if (SUCCEEDED(hr))
{
 context->NuiTransformSmooth(&skeletonFrame,
&smoothParams);
 for (int n=0; n<NUI_SKELETON_COUNT; ++n)
 {
 NUI_SKELETON_DATA& data =
skeletonFrame.SkeletonData[n];
 if (data.eTrackingState==NUI_SKELETON_TRACKED)
 {
 updateSkeletonData(data);
 break;
 }
 }
}

Chapter 5

[69]

3.	 Rewrite the updateSkeletonData() function from the previous examples.
We will only consider two hand bones and treat them as two 2D cursors on
a virtual multitouch surface.
POINT coordInDepth;
USHORT depth = 0;
GLfloat yMin = 0.0f, zMax = 0.0f;
for (int i=0; i<NUI_SKELETON_POSITION_COUNT; ++i)
{
 NuiTransformSkeletonToDepthImage(
 data.SkeletonPositions[i],
 &coordInDepth.x, &coordInDepth.y,
 &depth, NUI_IMAGE_RESOLUTION_640x480);

 if (i==NUI_SKELETON_POSITION_SPINE)
{
 // Use the spine position to decide the available
 // cursor range
 yMin = 1.0f - (GLfloat)coordInDepth.y / 480.0f;
 zMax = (GLfloat)NuiDepthPixelToDepth(depth) *
0.00025f;
 }
 else if (i==NUI_SKELETON_POSITION_HAND_LEFT)
{
 // Obtain left hand cursor
 cursors[0] = (GLfloat)coordInDepth.x / 640.0f;
 cursors[1] = 1.0f - (GLfloat)coordInDepth.y /
480.0f;
 cursors[2] = (GLfloat)NuiDepthPixelToDepth(depth) *
0.00025f;
 }
 else if (i==NUI_SKELETON_POSITION_HAND_RIGHT)
{
 // Obtain right hand cursor
 cursors[3] = (GLfloat)coordInDepth.x / 640.0f;
 cursors[4] = 1.0f - (GLfloat)coordInDepth.y /
480.0f;
 cursors[5] = (GLfloat)NuiDepthPixelToDepth(depth) *
0.00025f;
 }
}

Designing a Touchable User Interface

[70]

// If cursors are in range, show solid colors
// Otherwise make the cursors translucent
if (cursors[1]<yMin || zMax<cursors[2])
 cursorColors[3] = 0.2f;
else
 cursorColors[3] = 1.0f;
if (cursors[4]<yMin || zMax<cursors[5])
 cursorColors[7] = 0.2f;
else
 cursorColors[7] = 1.0f;

4.	 Render the cursors in the render() function. It is enough to represent these
two cursors with two points, and the glPointSize() function to specify the
point size on screen.
glDisable(GL_TEXTURE_2D);
glPointSize(50.0f);

VertexData cursorData = { &(cursors[0]), NULL,
&(cursorColors[0]), NULL };
drawSimpleMesh(WITH_POSITION|WITH_COLOR, 2, cursorData,
GL_POINTS);

5.	 Don't forget to initialize the smoothing variable and the colors in the main
entry. The color is all set to white here.
smoothParams.fCorrection = 0.5f;
smoothParams.fJitterRadius = 1.0f;
smoothParams.fMaxDeviationRadius = 0.5f;
smoothParams.fPrediction = 0.4f;
smoothParams.fSmoothing = 0.2f;
for (int i=0; i<8; ++i) cursorColors[i] = 1.0f;

6.	 Run the program and we can see two circles (in fact, points) on the screen
instead of line trails. When we put our hands behind our body, or down to
the hip, the points turn translucent. And if we lift any of the arms in front
of the chest, the circle will become opaque to indicate that the cursor is
valid now.

7.	 The snapshot of this example is shown in the following image:

Chapter 5

[71]

Rendering the cursors from the hands

Understanding the code
Kinect will always return all the bones' data for every frame to user applications,
no matter whether this data is being currently tracked or inferred from the previous
frame data, so we have to manually set a range within which user motions can be
parsed to 2D cursors on a virtual surface. An arbitrary range may be inconvenient
for real use. For example, a gesture may be triggered unexpectedly when the user
already puts his/her hands down and wants to have a look at the current scene.

As a demo here, we will set a very simple limitation that uses the spine location
as the datum point. When the hand location in the camera space is behind the spine
(on the z axis), or lower than the spine (on the y axis), we think that it is invalid and
make it translucent; otherwise, it is in use and can trigger interface events, if we
have any.

A new NUI function is also introduced in this example:

HRESULT NuiTransformSmooth(
 NUI_SKELETON_FRAME* skeletonFrame,
 const NUI_TRANSFORM_SMOOTH_PARAMETERS* smoothingParams
);

Designing a Touchable User Interface

[72]

It reads skeleton positions from skeletonFrame and reduces jitters of them,
according to the parameters provided in smoothingParams. The skeleton data
in tracking may always be inaccurate because of the capturing and computing
precisions, or just clipped by some occludes. In such a case, a bone may
jitter because the inferred values of two frames are obviously different. The
NuiTransformSmooth() function can reduce such a problem here, with the
cost that the result may have latency compared with the actual motions.

The parameters of NuiTransformSmooth() are defined in the following structure:

typedef struct _NUI_TRANSFORM_SMOOTH_PARAMETERS
{
 FLOAT fSmoothing; // Smoothing parameter in [0, 1]
 FLOAT fCorrection; // Correction parameter in [0, 1]
 FLOAT fPrediction; // Number of frames to predict
 FLOAT fJitterRadius; // Jitter-reduction radius, in meters
 FLOAT fMaxDeviationRadius; // Max radius of filtered
positions
} NUI_TRANSFORM_SMOOTH_PARAMETERS;

Additional information
You may edit the smoothing parameters of this example and see if anything has
changed. Remember that higher smoothing leads to higher latency, and better
jitter-reduction means lower positioning accuracy. It is at your own risk to use
or overuse this feature in your applications.

Common touching gestures
The next step of this chapter is to support some very basic gestures so our cursors
can really work in interactive applications, rather than only provide the locations.
Before that, we will first introduce common single and multitouch gestures and how
they are implemented in this section. Although we are going to finish only two of
them (holding and swiping), it is still necessary to have a general understanding
here, for the purpose of developing a gesture-based user interface in the future.

Gesture name Action Equivalent mouse action
Tap Press on the surface lightly. Click a button.
Double tap Tap twice on the surface. Double click on a program

icon and start it.
Hold Press on the surface and wait for a

while.
Simulates right-clicking on
touch screens.

Chapter 5

[73]

Gesture name Action Equivalent mouse action
Swipe Drag on the surface and release

quickly.
Pans the scroll bars to view
parts of the content.

Drag Drag slowly on the surface. Drags an item and drop it
somewhere.

Two-finger tap Click on the surface with two fingers
at the same time.

None.

Zoom/Pinch Move two fingers on the surface,
towards or apart from each other.

Simulates the mouse wheel
on touch screens.

Rotate Make one finger the pivot, and move
another around.
Another implementation is to move
the two fingers in opposing directions.

None.

There are more resources about multitouch gesture implementations in depth.
For example, the Microsoft Touch Gesture website:

http://msdn.microsoft.com/en-us/library/windows/desktop/
dd940543(v=vs.85).aspx

You can also see the wiki page, which explains the history and implementation details:

http://en.wikipedia.org/wiki/Multi_touch

Recognizing holding and swiping
gestures
We are going to implement two of the gestures from the previous table in this
section: holding and swiping. They are actually not "multi" gestures because they
can be finished with only one finger on the surface, or one hand cursor from Kinect,
but both are very useful for developing Kinect-based applications. The holding
gesture can be used to trigger a button on the screen, and the swiping gesture can be
used to select the menu item, by scrolling the item list and finding the required one.

Designing a Touchable User Interface

[74]

Drawing cursors using two hands
Let's start now.

1.	 Declare variables for gesture recognizing. We can increase the related
counters when prerequisites of a specific gesture are fitted. And when the
counter reaches a certain value, we will mark the gesture as "recognized".
GLfloat cursors[6]; // Left hand: 0, 1, 2; Right: 3, 4, 5
GLfloat lastCursors[6];
GLfloat cursorColors[8]; // Left hand: 0-3; Right: 4-7
unsigned int holdGestureCount[2] = {0};
unsigned int swipeGestureCount[2] = {0};

2.	 At the end of the updateSkeletonData() function, we declare and call
a new function named guessGesture(). It will check possible gestures
of both cursors. The locations will then be recorded to the variable
lastCursors for the next frame use.
guessGesture(0, (yMin<cursors[1] && cursors[2]<zMax));
guessGesture(1, (yMin<cursors[4] && cursors[5]<zMax));
for (int i=0; i<6; ++i) lastCursors[i] = cursors[i];

3.	 The guessGesture() function has two parameters: the cursor index (0 is
the left hand, and 1 is the right hand), and a Boolean value to tell if the
cursor is in the available range.
void guessGesture(unsigned int index, bool inRange)
{
...
}

4.	 In the function body, we will determine if the current state fits the conditions
of either holding or swiping a gesture. Because lastCursors records the
cursor locations of the previous frame, we can obtain the velocities of both
cursors between two frames and use them for instantaneous judgment.
if (!inRange)
{
 // If the hand is not in range, reset all counters and
 // the cursor color (turn to translucence)
 holdGestureCount[index] = 0;
 swipeGestureCount[index] = 0;
 cursorColors[3 + index*4] = 0.2f;
}
else
{

Chapter 5

[75]

 // Compute the distance of this and last cursor, which
 // is actually the instantaneous velocity of the cursor
 float distance = sqrt(
 powf(cursors[index*3]-lastCursors[index*3], 2.0f) +
 powf(cursors[1+index*3]-lastCursors[1+index*3],
2.0f));
 if (distance<0.02)
 {
 // If the cursor is nearly unmoved, increase
holding
 holdGestureCount[index]++;
 swipeGestureCount[index] = 0;
 }
 else if (distance>0.05)
 {
 // If the cursor changes fast, increase swiping
 holdGestureCount[index] = 0;
 swipeGestureCount[index]++;
 }
 else
 {
 // Otherwise, reset the counters
 holdGestureCount[index] = 0;
 swipeGestureCount[index] = 0;
 }
 cursorColors[3 + index*4] = 1.0f;
}

5.	 We will print the gesture names on screen in the render() function. If the
counters for holding gesture are increased to a large enough value (in this
case, to 30), it means we are holding the cursor for a long time, so "hold"
is triggered. And if the swiping counters are set, it means we have already
swiped the hands and the "swipe" gesture is triggered.
std::string text = "Gestures (L/R): ";
for (int i=0; i<2; ++i)
{
 if (holdGestureCount[i]>30) text += "Hold;";
 else if (swipeGestureCount[i]>1) text += "Swipe;";
 else text += "None;";
}
glRasterPos2f(0.01f, 0.01f);
glColor4f(1.0f, 1.0f, 1.0f, 1.0f);
glutBitmapString(GLUT_BITMAP_TIMES_ROMAN_24, (const
unsigned char*)text.c_str());

Designing a Touchable User Interface

[76]

6.	 Now run the application and try to achieve these gestures by using your
hands. The gesture names will be displayed at the bottom-left corner of the
screen. Now lift one of your arms and stop for some time, and flick the other
hand quickly in front of you. Pay attention to the text displayed on the screen
and see if the recognized gestures are correct and stable.

Display hand gestures (at the bottom-left)

7.	 Please note that the swiping gesture may not be easily noticed from the text.
That's because it will happen in a very short time. The next example of this
chapter will demonstrate the use of the swiping gesture more clearly.

Understanding the code
Determining gestures always requires some mathematics, as well as some
user-engineering knowledge. An instantaneous state may not be used to decide
if a gesture happens or not. For example, the holding gesture requires the user
to keep his/her cursor at a specified place for a while, and double tapping means
we must detect the "tap" gesture at least twice in a short period of time. Thus, we
have to keep a historical list of the cursors, which is similar to the implementation
of a linetrail effect in the previous chapter.

Chapter 5

[77]

Here are some hints for implementing different gestures, including the two gestures
we have already done:

•	 Tap: Not good for Kinect-based use, as you can hardly decide the time
of "pushing" and "releasing" motions.

•	 Double tap: Again, not good for Kinect-based use, as you can hardly
decide the time of "pushing" and "releasing" motions.

•	 Hold: Checks the distance between the current cursor and the previous
cursor for every frame to see if they are near enough. The holding gesture
is triggered if the cursor is still for a significant amount of time.

•	 Swipe: Checks the distance between the current cursor and the previous
cursor. If the distance is large enough, the user must exert himself to fling
the arms and thus make a "swiping" gesture. Note that you must exclude
the jitters.

•	 Drag: Checks the distance between the current cursor and the previous
cursor for every frame to determine if the cursor is moving all the time,
while neither exceeding the holding and swiping threshold.

•	 Zoom: Checks the distance of both the cursors. If the average velocities
are opposite and the historical cursors of both are in a line, it produces
a "zooming" gesture.

•	 Rotate: Checks the distance of both the cursors. Make sure that the historical
cursors of both are not in a line. If one is still and the other is moving a lot, or
the average velocities are opposite, it can be considered as a "rotating" gesture.

Maybe you will have some other ideas and solutions, so don't hesitate to replace any
in the previous list with your own, and see if it can make your customers feel better.

Additional information
Try to implement some more gestures on your own, especially the dragging
and zooming gestures. They are very useful in your future projects for easy
user interactions.

Designing a Touchable User Interface

[78]

Sending cursors to external applications
In the last example of this chapter, we are going to make some use of the cursors we
obtained from the skeleton data. As there are many other applications developed
with only the mouse and keyboard as main input devices, it is sometimes meaningful
to synthesize keyboard inputs, mouse motions, and button clicks, and send them
to these applications for the purpose of providing more interaction methods.

A cool example, which we will be implementing here, is to convert the cursor
data from Kinect to Windows mouse information so that we can use motion-sense
techniques to control common operation systems. Other useful ideas include
converting the cursors to the TUIO protocol (a unified framework for tangible
multitouch surfaces) and use them for remote controls, or communicating with
some famous multimedia software such as VVVV and Max/MSP.

Emulating Windows mouse with cursors
This recipe will be slightly different from the previous ones. It won't render anything
in the OpenGL window, but will send mouse events to Windows, to control the real
mouse cursor. This requires us to make use of the Windows function SendInput().

1.	 We don't have to make it fullscreen. Just comment the following line:
//glutFullScreen();

2.	 At the end of updateSkeletonData(), after guessing the possible gestures,
we convert the left hand's location and gesture into mouse press and wheel
events, with the help of the Windows system API SendInput().
if (cursors[2]<zMax)
{
 // Set values of the INPUT structure
 INPUT input = {};
 input.type = INPUT_MOUSE;
 input.mi.dx = (LONG)(65535 * cursors[0]);
 input.mi.dy = (LONG)(65535 * (1.0 - cursors[1]));
 input.mi.dwExtraInfo = GetMessageExtraInfo();

 if (holdGestureCount[0]>30)
 {
 // Send mouse push and release events when the
 // holding gesture is detected
 if (!isMouseDown)
 {

Chapter 5

[79]

 input.mi.dwFlags = MOUSEEVENTF_ABSOLUTE |
MOUSEEVENTF_LEFTDOWN;
 }
 else
 {
 input.mi.dwFlags = MOUSEEVENTF_ABSOLUTE |
MOUSEEVENTF_LEFTUP;
 }
 isMouseDown = !isMouseDown;

 // Reset the counter so we won't receive the same
 // gesture continuously
 holdGestureCount[0] = 0;
 }
 else if (swipeGestureCount[0]>1)
 {
 // If we encounter the swiping gesture, use it
 // to emulate the mouse wheel to scroll pages
 input.mi.dwFlags = MOUSEEVENTF_WHEEL;
 input.mi.mouseData = WHEEL_DELTA;
 }
else
 {
 // For all other cases, simply move the mouse
 input.mi.dwFlags = MOUSEEVENTF_ABSOLUTE |
MOUSEEVENTF_MOVE;
 }
 SendInput(1, &input, sizeof(INPUT));
}

3.	 Start the program and stand in front of the Kinect device. Now lift the left
hand and we can see the Windows mouse cursor also move along with
us. Hold and stay on an icon on the desktop. This will be recognized as
"selecting and dragging", and a quick swipe in any direction will result
in scrolling the content we are currently viewing.

Understanding the code
There is nothing special in this example. We just used the Windows native function
SendInput() to send cursors and gestures inferred from Kinect data to Windows
mouse events. Windows uses the top-left corner as the original point, so we have
to alter the coordinates before sending them. The gestures are parsed as left clicks
and wheel events here, but of course you can consider them as different operations.

Designing a Touchable User Interface

[80]

It is more valuable to change your Kinect cursors to TUIO, which can then be
sent to local or remote clients that listen to the current TUIO server. There are
several pieces of multimedia software that regard TUIO as a regular input,
so you can easily connect them with Kinect devices.

The TUIO website is:

http://www.tuio.org/

TUIO API for C/C++ and other languages can be found at:

http://www.tuio.org/?software

Simply call the corresponding TUIO commands when you receive a new cursor
position or detect a new gesture, and any clients that listen to your PC using
the same TUIO protocol will receive it and can parse it for their own uses.

Summary
We introduced how to emulate mouse cursors and some single and multitouch
behaviors from skeleton inputs. This is useful for developing the user interface
of a Kinect-based application, which is hands-free and can hardly benefit from
common interaction methods.

Using gestures such as holding and swiping, it is now possible to add buttons, menu
items, and other triggerable elements in our application and select them with definite
and exclusive motions. And this will also help develop the graphics interface of the
Fruit Ninja game in the next chapter.

Another important highlight of this chapter is the integration of Kinect inputs and
applications without Kinect supports. We use the Windows system API to emulate
mouse inputs in this chapter. But it is also suggested to make use of the TUIO
protocol to be compatible with more multitouch applications in the future.

Implementing the Scene
and Gameplay

It may be a long time before we really get ready to create our Fruit Ninja game,
which is Kinect-based, with some augmented reality features. We have already
obtained the knowledge of building complete Kinect applications with image
streaming, skeleton tracking, and simple multi-touch gesture support. Now,
in this chapter we will integrate all that we learnt together to quickly finish the
basic elements of our game, and add simple game logic that includes computing
the player scores and dynamically changing difficulty levels.

We will not include all the components of a complete commercial game because of the
page and resource limitation. Good art design (graphics, sound, and so on) is always
important for a game to grasp the consumer's attention at first sight. Other features,
including network and multiplayer supports, will highly increase the replay-ability
of the game. But these are not necessary for this book to introduce and implement,
as they have no relationship with Kinect's programming techniques.

Integrating the current code
Until now, we have successfully created examples about displaying a translucent
depth image on a background image (Chapter 3, Rendering the Player), drawing
linetrails of the two hands (Chapter 4, Skeletal Motion and Face Tracking), and
determining a simple holding gesture (Chapter 5, Designing a Touchable User Interface)
of UI interaction. These can just be used in the Fruit Ninja game to display the player
and emulate his/her blade paths. The most basic UI components of our game are
the restart and exit buttons. We will use the holding gesture to check if the player
clicks on either of the two buttons.

Implementing the Scene and Gameplay

[82]

We use an image with two buttons (restart and exit) drawn at the top-left and
top-right corners of the background. We will use the holding gesture to trigger
the buttons. The image is shown as follows:

The background image

Integrating existing elements in a scene
Now let's start.

1.	 The following global variables are copied and altered from the examples in
Chapter 3, Rendering the Player, Chapter 4, Skeletal Motion and Face Tracking, and
Chapter 5, Designing a Touchable User Interface. They are mainly used for three
different purposes: displaying the player image, displaying hand point and
trails, and checking possible gestures.
INuiSensor* context = NULL;
HANDLE colorStreamHandle = NULL;
HANDLE depthStreamHandle = NULL;
TextureObject* playerDepthTexture = NULL;

struct Vertex { GLfloat x, y, z; };
std::vector<Vertex> leftHandTrails;
std::vector<Vertex> rightHandTrails;
GLfloat trailColors[20][4];

Chapter 6

[83]

NUI_TRANSFORM_SMOOTH_PARAMETERS smoothParams;
unsigned int holdGestureCount[2] = {0};
const unsigned int backgroundTexID = 1;

2.	 We will modify the code in guessGesture() to compute the distance
between the first and last points in the historical list. The resulting gesture
is a holding gesture if the distance is small enough in a span.
float distance = 0.0f, currentX = 0.0f, currentY = 0.0f;
if (index==0) // left hand
{
 currentX = leftHandTrails.back().x;
 currentY = leftHandTrails.back().y;
 distance = sqrt(
 powf(currentX-leftHandTrails.front().x, 2.0f)
 + powf(currentY-leftHandTrails.front().y, 2.0f));
}
else // right hand
{
 currentX = rightHandTrails.back().x;
 currentY = rightHandTrails.back().y;
 distance = sqrt(
 powf(currentX-rightHandTrails.front().x, 2.0f)
 + powf(currentY-rightHandTrails.front().y, 2.0f));
}

.// Increase the holding count if distance is small enough
if (distance<0.02)
 holdGestureCount[index]++;
else
 holdGestureCount[index] = 0;

// The player is holding something, check if he pressed
// one of the buttons (at top-left or top-right)
if (holdGestureCount[index]>30)
{
 if (currentY>0.9f && currentX<0.1f) // Restart
 { /* do nothing at present */ }
 else if (currentY>0.9f && currentX>0.9f) // Exit
 glutLeaveMainLoop();
}

Implementing the Scene and Gameplay

[84]

3.	 Finally, in the updateSkeletonData() function, check the gesture states as
follows:
guessGesture(0, (yMin<leftHandTrails.back().y &&
leftHandTrails.back().z<zMax));
guessGesture(1, (yMin<rightHandTrails.back().y &&
rightHandTrails.back().z<zMax));

4.	 And in the main entry, we will successively initialize the background texture,
the trail attributes, the Kinect device and the player image data, and the
smoothing parameters.
if (TextureManager::Inst()->LoadTexture("FruitNinja1.jpg",
backgroundTexID, GL_BGR_EXT))
{
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_LINEAR);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
GL_LINEAR);
}

for (int i=0; i<20; ++i)
{
 trailColors[i][0] = 1.0f;
 trailColors[i][1] = 1.0f;
 trailColors[i][2] = 1.0f;
 trailColors[i][3] = (float)(i + 1) / 20.0f;
}

if (!initializeKinect()) return 1;
playerDepthTexture = createTexture(640, 480,
GL_LUMINANCE_ALPHA, 2);

smoothParams.fCorrection = 0.5f;
smoothParams.fJitterRadius = 1.0f;
smoothParams.fMaxDeviationRadius = 0.5f;
smoothParams.fPrediction = 0.4f;
smoothParams.fSmoothing = 0.2f;

Chapter 6

[85]

5.	 Start the program, and we will see the depth image, the handtrails, and the
background image as expected.

The Fruit Ninja game interface

6.	 Isn't it cool? Now you can also hold your right hand on the close button
at the top-right corner to quit the program.

Understanding the code
Originally, the Fruit Ninja game was very easy to understand and it didn't need
a Kinect device at all. It only required the player to drag his fingers on the pad
screens and slice as many fruits as possible to earn higher scores. There were also
some occasional bombs hidden in the fruits thrown from the bottom of the screen,
so the player must be careful to avoid them; otherwise he will lose his life and the
game is over. The faster the fruits and bombs are thrown up, the more difficult the
game becomes.

Using a Kinect device will also increase the difficulty of the game. That's because the
player must swing his arms to make the blade move. The accuracy of hitting a fruit
will also be lower than that of using a finger or a mouse. In this example, we use the
depth image to indicate the player position and shape so that he/she won't be blinded
when facing the screen. The skeleton tracking feature is used only for obtaining the
hand positions and is a must-have element of this game as it determines if the player
reaches any fruit object and earns new scores, or holds on an exit button to quit to
the desktop.

Implementing the Scene and Gameplay

[86]

Cutting the fruits
Now we really want to "cut" something instead of just seeing the trailing effect.
To simplify the process, we should have the following prerequisite conditions:

•	 The fruit and bomb objects are represented by a 2D RGBA image with a
transparent background. The positions and states (whether sliced or not)
are updated in every frame.

•	 The fruit is thrown from the bottom of the screen with a random initial
velocity. It will fall down because of gravity.

•	 When the hand points reach the object image (in fact, a rectangle), it is
divided into four parts as if sliced by a mystical ninja.

The code doesn't need to be related with Kinect, but we will have to pass the hand
points and velocities to determine if a fruit object is cut. All these operations can
be done in the update() function.

It is also important to find or create some fruit and bomb images (using cartoon
styles may be a good idea). In this simple example, we choose the following ones:

Fruits/bomb images with a transparent background

Chapter 6

[87]

Adding and handling fruit objects
Now let's start with the process of adding and handling fruit objects.

1.	 We use an independent class to declare all the properties and methods
that a fruit object should have.
class FruitObject
{
public:
 // The constructor
 FruitObject(unsigned int id, bool b, GLfloat s,
 GLfloat tx=0.0f, GLfloat ty=0.0f,
 GLfloat tw=1.0f, GLfloat th=1.0f);

 // Update position and velocity of the fruit
 void update();

 // Render the fruit object
 void render();

 // Size of the fruit image
 GLfloat size;

 // Offset of the texture coordinate for slicing use
 GLfloat texOffset[4];

 // Position of the fruit image
 Vertex position;

 // Velocity of the fruit image
 Vertex velocity;

 // Texture ID of the fruit image
 unsigned int objectID;

 // Flag to determine if the image can be sliced
 bool canSlice;
};

2.	 We will maintain a list of the FruitObject variables, and define four
different texture IDs (watermelon, apple, mango, and bomb) for use.
std::vector<FruitObject> _fruitObjects;
const unsigned int objectTexIDs[4] = {2, 3, 4, 5};

Implementing the Scene and Gameplay

[88]

3.	 Use a simple random value generating function to create a random value
between min and max.
float randomValue(float min, float max)
{ return (min + (float)rand()/(RAND_MAX+1.0f)*(max - min)); }

4.	 In the update() function, we will have to perform two major tasks: first
we have to traverse and update all existing fruit objects, remove objects
out of the screen range, and slice objects into four smaller parts, and second,
generate new fruits and shoot them from the bottom randomly.
// Store new objects temporarily
std::vector<FruitObject> newObjects;

// Traverse all existing fruits
for (std::vector<FruitObject>::iterator
itr=_fruitObjects.begin(); itr!=_fruitObjects.end();)
{
 FruitObject& fruit = (*itr);
 bool isSliced = false;
 if (fruit.canSlice)
 {
 // Check distance between the fruit origin and
 // hand points. If near enough, mark as sliced
 float distance = sqrt(powf(fruit.position.x-
leftHandTrails.back().x, 2.0f) + powf(fruit.position.y-
leftHandTrails.back().y, 2.0f));
 if (distance<fruit.size) isSliced = true;

 distance = sqrt(powf(fruit.position.x-
rightHandTrails.back().x, 2.0f) + powf(fruit.position.y-
rightHandTrails.back().y, 2.0f));
 if (distance<fruit.size) isSliced = true;
 }

 if (isSliced)
 {
 // Slice into 4 parts and remove the old one
 // Will explain slicing process in the next step
 ...
 itr = _fruitObjects.erase(itr);
 }
 else if (fruit.position.y<0.0f)
 {

Chapter 6

[89]

 // If object is under the screen bottom, remove it
 itr = _fruitObjects.erase(itr);
 }
 else
 {
 // For all alive fruit objects, update them
 fruit.update();
 ++itr;
 }
}

5.	 Slice an existing object into four parts. A very easy-to-understand way to do
this is to divide the original image into four equal parts with the same size,
using the texture coordinate offsets to determine its display. Then we add
an offset to the current velocity to separate these four parts from each other.
float deltaX = fabs(fruit.velocity.x * 0.2f);
float deltaY = fabs(fruit.velocity.y * 0.2f);

// Note, smaller parts can't be sliced again
FruitObject chop1(fruit.objectID, false, 0.05f, 0.0f,
0.0f, 0.5f, 0.5f);
chop1.position.x = fruit.position.x;
chop1.position.y = fruit.position.y;
chop1.velocity.x = fruit.velocity.x - deltaX;
chop1.velocity.y = fruit.velocity.y - deltaY;
newObjects.push_back(chop1);

FruitObject chop2(fruit.objectID, false, 0.05f, 0.5f,
0.0f, 0.5f, 0.5f);
chop2.position.x = fruit.position.x + fruit.size*0.5f;
chop2.position.y = fruit.position.y;
chop2.velocity.x = fruit.velocity.x + deltaX;
chop2.velocity.y = fruit.velocity.y - deltaY;
newObjects.push_back(chop2);

FruitObject chop3(fruit.objectID, false, 0.05f, 0.5f,
0.5f, 0.5f, 0.5f);
chop3.position.x = fruit.position.x + fruit.size*0.5f;
chop3.position.y = fruit.position.y + fruit.size*0.5f;
chop3.velocity.x = fruit.velocity.x + deltaX;
chop3.velocity.y = fruit.velocity.y + deltaY;
newObjects.push_back(chop3);

Implementing the Scene and Gameplay

[90]

FruitObject chop4(fruit.objectID, false, 0.05f, 0.0f,
0.5f, 0.5f, 0.5f);
chop4.position.x = fruit.position.x;
chop4.position.y = fruit.position.y + fruit.size*0.5f;
chop4.velocity.x = fruit.velocity.x - deltaX;
chop4.velocity.y = fruit.velocity.y + deltaY;
newObjects.push_back(chop4);

6.	 The next step is to randomly create new fruits with random initial positions
and velocities. This is also decided by a random value (when it is less than
0.01).
bool createNew = randomValue(0.0f, 1.0f) < 0.01f;
if (createNew)
{
 FruitObject obj((int)randomValue(0.0f, 3.9f), true,
0.1f);
 obj.position.x = randomValue(0.1f, 0.9f);
obj.position.y = 0.0f;
 obj.velocity.x = randomValue(0.006f, 0.012f);
 obj.velocity.y = randomValue(0.03f, 0.04f);
 if (obj.position.x>0.5f) obj.velocity.x = -
obj.velocity.x;
 newObjects.push_back(obj);
}

// Insert new objects (sliced and newly created) into list
_fruitObjects.insert(_fruitObjects.end(),
newObjects.begin(), newObjects.end());

7.	 In the render() function, we traverse the objects again and render them one
by one.
for (unsigned int i=0; i<_fruitObjects.size(); ++i)
 _fruitObjects[i].render();

8.	 Now, we will implement each method of the FruitObject class. In the
constructor, we will receive the texture ID, the slicing flag, the size, and the
texture coordinate offsets as inputs. Set them to member variables for use.
FruitObject::FruitObject(unsigned int id, bool b, GLfloat
s,
 GLfloat tx, GLfloat ty, GLfloat tw, GLfloat th
)
{
 canSlice = b; size = s;
 texOffset[0] = tx; texOffset[1] = ty;
 texOffset[2] = tx + tw; texOffset[3] = ty + th;

Chapter 6

[91]

 position.x = 0.0f; position.y = 0.0f; position.z =
0.0f;
 velocity.x = 0.0f; velocity.y = 0.0f; velocity.z =
0.0f;
 objectID = id;
}

9.	 In the FruitObject::update() method, we add the current velocity to the
position, and alter the velocity with an imaginary gravity pull.
void FruitObject::update()
{
 position.x += velocity.x;
 position.y += velocity.y;

 const GLfloat gravity = -0.001f;
 velocity.y += gravity;
}

10.	 In the FruitObject::render() method, we draw the fruit object's
corresponding image onto a quad. Because this method is called in render()
after enabling blending, the alpha channel of the image will be used, and
background pixels with zero alpha values will be automatically culled.
void render()
{
 GLfloat vertices[][3] = {
 { 0.0f, 0.0f, 0.0f }, { size, 0.0f, 0.0f },
 { size, size, 0.0f }, { 0.0f, size, 0.0f }
 };
 GLfloat texcoords[][2] = {
 {texOffset[0], texOffset[1]}, {texOffset[2],
texOffset[1]},
 {texOffset[2], texOffset[3]}, {texOffset[0],
texOffset[3]}
 };
 VertexData meshData = { &(vertices[0][0]), NULL, NULL,
&(texcoords[0][0]) };

 glPushMatrix();
 glTranslatef(position.x, position.y, position.z);
 TextureManager::Inst()->BindTexture(
objectTexIDs[objectID]);
 drawSimpleMesh(WITH_POSITION|WITH_TEXCOORD, 4,
meshData, GL_QUADS);
 glPopMatrix();
}

Implementing the Scene and Gameplay

[92]

11.	 Don't forget to load the four fruit images (starting with the filename from
FruitNinja2.png to the filename FruitNinja5.png) in the main entry.
for (int i=0; i<4; ++i)
{
 std::stringstream ss;
 ss << "FruitNinja" << i+2 << ".png";
 if (TextureManager::Inst()-
>LoadTexture(ss.str().c_str(), objectTexIDs[i],
GL_BGRA_EXT, 4))
 {
 glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_MIN_FILTER, GL_LINEAR);
 glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_MAG_FILTER, GL_LINEAR);
 }
}

12.	 Start the program. You will see fruits randomly jumping out from the
bottom of the screen. Now swipe your arm to cut them!

Cut the fruits with Kinect-driven trails

Chapter 6

[93]

Understanding the code
When the fruit image is near enough to any hand point, we treat it as sliced and
will cut it into four parts. Although fragmentation is in fact a more complex process
and requires a lot of physics computations, we will not make such mistakes in
this book, and will divide the original image into four equal parts as shown in
the following figure.

The new length of any part is just half of the original one. And the texture coordinate
should also be translated and scaled. For example, the fragment at the bottom-left
has new texture coordinates from (0, 0) to (0.5, 0.5), and the one at the top-right
is from (0.5, 0.5) to (1, 1). So we must alter the input arguments of FruitObject
while creating these sliced parts as shown in the following code:

// The new object has the same texture ID as the original one
// The size is just the half, and it can't be sliced again
// The new texture coordinates is from (0, 0) to (0.5, 0.5)
FruitObject chop1(fruit.objectID, false, 0.05f, 0.0f, 0.0f, 0.5f,
0.5f);

And the velocity of the fragments must be changed slightly and gradually to
make the four parts move apart from each other. The following figure shows
how an offset value is added to each new velocity to make it act like an explosion:

The original velocity (light blue) and the velocity offsets (green) adding to the four sliced parts

And it's simply done using the following code segments:

float deltaX = fabs(fruit.velocity.x * 0.2f);
float deltaY = fabs(fruit.velocity.y * 0.2f);
...
chop.velocity.x = fruit.velocity.x +/- deltaX;
chop.velocity.y = fruit.velocity.y +/- deltaY;

Implementing the Scene and Gameplay

[94]

Playing the game
The last example in this chapter is to design a simple gameplay. We now have the
interaction driven by Kinect, and fruit objects that intersect with handtrails, but we
don't have any rules yet. The gameplay will specify how to win or lose the game and
how to set challenges for the player to overcome. A good gameplay is the base of the
playability of a game.

We have four rules for the Fruit Ninja game here to follow:

•	 Our goal is to cut as many fruits as possible to earn higher scores.
•	 The higher the points we earn, the faster and more in number the

fruits appear.
•	 The player has a life value (initially 100). The game finishes when

it becomes zero.
•	 If a fruit is not sliced, the life will be decreased by 5 points. If a bomb

is sliced, the life will be decreased by 20 points.

And these rules will be implemented in the following section.

Adding simple game logic
Let's start now.

1.	 We will declare the score and life variables, which will act as the very
basic elements of the gameplay. And we add a gameOverTexID variable
for displaying a different image when the game is over (when the life is
down to 0).
const unsigned int gameOverTexID = 6;
int score = 0, life = 100;

2.	 In guessGesture(), we will reset the score and life variables if the player
holds his hand on the restart button (top-left), and quit the program when
holding on the close button (top-right).
if (holdGestureCount[index]>30)
{
 if (currentY>0.9f && currentX<0.1f) // Restart
 { score = 0; life = 100; }
 else if (currentY>0.9f && currentX>0.9f) // Exit
 glutLeaveMainLoop();
}

Chapter 6

[95]

3.	 In the update() function, we have to check the objectID object of every
fruit object intersected with the hands. If it is a bomb (ID = 3), decrease
the life; otherwise increase the score.
if (isSliced)
{
 ...
 if (fruit.objectID<3) score += 10;
 else life -= 20;
}
else if (fruit.position.y<0.0f)
{
 // If the fruit is sliceable but not sliced
 // we also decrease the life as a punishment
 if (fruit.canSlice) life -= 5;
 itr = _fruitObjects.erase(itr);
}
else
{
 fruit.update();
 ++itr;
}

4.	 To make the game more difficult, when the player earns a high enough score,
we can increase the chance of generating new fruits in every frame gradually.
This is done by simply altering the following code:
bool createNew = randomValue(0.0f, 1.0f) < 0.01f * (1.0f +
(float)score / 100.0f);
if (createNew)
{
 ..
}

5.	 In the render() function, we check if the life equals to 0 and display the
"game over" texture instead of the normal one.
if (life<=0)
 TextureManager::Inst()->BindTexture(gameOverTexID);
else
 TextureManager::Inst()->BindTexture(backgroundTexID);
drawSimpleMesh(WITH_POSITION|WITH_TEXCOORD, 4, meshData,
GL_QUADS);

Implementing the Scene and Gameplay

[96]

6.	 We can also write the current score and life values on the screen in the
render() function.
std::stringstream ss;
ss << "Score: " << score << " Life: " << (life<0? 0:
life);

glRasterPos2f(0.01f, 0.01f);
glColor4f(1.0f, 1.0f, 1.0f, 1.0f);
glutBitmapString(GLUT_BITMAP_TIMES_ROMAN_24, (const
unsigned char*)ss.str().c_str());

7.	 Last but not least, read the "game over" image from the disk. You may design
this image by adding some texts and symbols on the normal background.
if (TextureManager::Inst()->LoadTexture("FruitNinja6.jpg",
gameOverTexID, GL_BGR_EXT))
{
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_LINEAR);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
GL_LINEAR);
}

8.	 Now, compile and run our game. You will see the score and life values
changing when you struggle to cut the fruits thrown suddenly.

Playing the Kinect-based Fruit Ninja game

Chapter 6

[97]

9.	 When the game is over, you will see a different image on the screen, and
you can hold on to the restart button at the top-left corner to restart the game,
or exit by holding on to the exit button at the top-right corner.

The game is over if the value of the player's life reaches zero

Understanding the code
A perfect gameplay system will be more complex than the current one. We can have
several levels for the player to reach when his/her score is high enough. One could
also get some new abilities when playing for a long time or reach a specific level, for
example, clearing all the fruits on the screen with a special gesture, or destroy the
bombs without getting hurt, in a specific timespan.

However, since the game system design is not the key point of this book, we will
only use the two simplest concepts of a game here, that is, score and life. They are
enough for interacting with the existing elements in the scene. If slicing a fruit is
detected, the score increases. The life decreases if you slice a bomb. If the life is zero,
the game is over and you can only restart it. The score and life values will be reset.

Additional information
Now it depends on you to improve this game as much as possible. You can change
the images it currently uses. You can also add new game concepts such as levels and
special props. As well as this, you can add audio and networking supports as you
wish. After all, it's a Kinect-based game, which we have developed from zero!

Implementing the Scene and Gameplay

[98]

Summary
In this last chapter, we have integrated all the past functionalities, built a simple Fruit
Ninja game, and added some game elements to make it playable. You will see that
with the knowledge we have collected in the last few chapters, it is not too difficult
for us to develop a complete Kinect-driven game. The game itself can have more
features such as audio, graphics, and networking, but this is beyond the scope of
this book. You can play with your imagination now to use Kinect and its APIs and
to develop more interesting and complicated applications from now on.

Where to Go from Here
Congratulations! We have already finished all six chapters of this book. We have
learned how to install and configure the Kinect SDK, how to initialize it and obtain
image-streaming data into OpenGL textures, how to get a player skeleton and use
hand positions to emulate multitouch inputs and gestures, and how to design a
comparatively complete Fruit Ninja game using these features. Now you can feel
free to make use of the mighty Kinect and its APIs to develop your own applications.

But before that, in this last chapter we will provide some extra ideas about Kinect
programming. First, we will have a quick look at two third-party SDKs that
can replace the functionalities of the Microsoft Kinect SDK. For non-Windows
developers, they are always preferred as alternative middleware. Then, we will
introduce some open source and commercial software based on Kinect, and even
some hardware solutions that can be considered for motion-sensing uses.

libfreenect – the pioneer of Kinect
middleware
The Kinect sensor was first launched for Xbox 360 game consoles in November
2010, but the first distribution of the Kinect SDK for Windows was released in June
2011. During the interregnum, many hackers and programmers had published their
methods to drive and use Kinect features, which were extremely attractive to new
media artists and developers. So here come the libfreenect and OpenNI libraries.

Where to Go from Here

[100]

libfreenect was born in the race of hacking Microsoft Kinect in early November
2010. Héctor Martin made his code open source on GitHub, a famous social coding
host. And this is the rudiment of libfreenect. Now this library is maintained by the
OpenKinect community; it can be downloaded at:

•	 The community page: http://openkinect.org/wiki/Main_Page
•	 The GitHub source repository: https://github.com/OpenKinect/

libfreenect

The libfreenect library can be used with Linux, Mac OS X, and Windows. Currently,
it supports RGB and depth images through the Kinect USB camera. It has a planning
analyses library that provides skeleton tracking, hand tracking, audio, point cloud,
and 3D reconstruction features. But it has still not been released at the time of writing.
libfreenect also supports different programming languages besides C/C++, including
C#, Java, Python, Ruby, and ActionScript.

As an open source project, you can contribute to libfreenect at any time under
the license of Apache 2.0 or GPL 2.1 (optional).

OpenNI – a complete and powerful Kinect
middleware
The OpenNI (Open Natural Interaction) organization was also created in November
2010. It focuses on natural and organic user interfaces and develops its own framework
for Kinect devices and uses. In December 2010, PrimeSense, one of the OpenNI
members, released its open source drivers and motion-tracking middleware
called NITE for Microsoft Kinect.

The OpenNI framework provides a series of APIs fulfilling natural interaction
requirements, such as voice recognition, motion tracking, and hand and body
gestures. To directly install OpenNI packages and Kinect drivers, we can go
to the following web page:

http://www.openni.org/openni-sdk/

Before you download and use OpenNI, you'd better remove all existing
Microsoft Kinect drivers from your device manager. These are shown in
the following screenshot:

Appendix

[101]

Find and remove Microsoft Kinect drivers from the Windows driver manager

You may also refer to the following article about how to install different drivers:

http://www.codeproject.com/Articles/148251/How-to-Successfully-
Install-Kinect-on-Windows-Open

Download appropriate OpenNI Binaries files (stable or unstable). At present,
OpenNI provides Windows, Linux, and Mac OS X versions of their SDKs for use.

Install OpenNI by following the given instructions during installation. Please note
that the stable version of OpenNI only supports Windows and Ubuntu at present,
but its unstable version can even support Mac OS X and ARM platforms.

You may also require the NITE middleware for full-body tracking, accurate user
skeleton joint tracking, and gesture recognition. It can be found at:

http://www.openni.org/files/nite/

You will find that NITE currently doesn't support ARM platforms. This means that
skeleton tracking will be disabled on embedded platforms.

Now we can start an OpenNI program to see if it works. Run NiViewer.exe from
OpenNI\Samples\Bin\Release\. You will see screenshots like the following one:

The result of running NiViewer

Where to Go from Here

[102]

You may read something more about OpenNI programming at the following link:

http://www.openni.org/resources/

The OpenNI source code repository can also be found at GitHub:

https://github.com/OpenNI/OpenNI

PrimeSense Sensor Module for OpenNI can be found at:

https://github.com/PrimeSense/Sensor

https://github.com/avin2/SensorKinect

Free and open source resources
You will find some open source Kinect development resources and software in
this section. They are both useful for learning Kinect programming in advance
and making use of some valuable free resources in your own applications.

•	 OpenKinect: This can be called the wiki of the OpenKinect/libfreenect
project and can be found at http://openkinect.org/wiki/Main_Page

•	 DevelopKinect: This is a community for Kinect depth sensor development
and programming, and can be found at http://developkinect.com/

•	 FAAST: This is a middleware used to facilitate the integration of full-body
control using skeleton tracking, and can be found at http://projects.ict.
usc.edu/mxr/faast/

•	 Coding4Fun Kinect Toolkit: This is the utilitiy for Kinect development using
C#, and can be found at http://c4fkinect.codeplex.com/

•	 AS3Kinect: This allows us to use Kinect functionalities in Adobe Flash and
can be found at http://www.as3nui.com/air-kinect/

•	 TUIOKinect: This can be used to translate Kinect hand data into multitouch
cursors using the TUIO protocol, and can be found at https://code.
google.com/p/tuiokinect

•	 OSCeleton: This is used to send skeleton data in OSC format and can
be found at https://github.com/Sensebloom/OSCeleton

•	 Kinect support for Cinder (a famous open source creative-coding library):
This can be found at https://github.com/cinder/Cinder-Kinect

•	 Kinect for VVVV (a hybrid graphical programming environment):
This can be found at http://vvvv.org/documentation/kinect

•	 Kinect for openFrameworks (another open source C++ toolkit for creative
coding): This can be found at https://github.com/ofTheo/ofxKinect

Appendix

[103]

Commercial products using Kinect
There are some very creative solutions and products that have already been
developed using Kinect as the main interaction tool. Meanwhile, talent designers
are also creating some other motion-sensing systems that can totally replace Kinect
in interactive applications. Here is a very incomplete list of them:

•	 KinÊtre: This can be used to create playful 3D animations using realistic
deformations of arbitrary static meshes with Kinect (by Microsoft Research),
and can be found at http://research.microsoft.com/en-us/projects/
animateworld/

•	 KineMocap: This is used with multiple Kinect devices for accurate motion
capturing and can be found at http://www.kinemocap.com/

•	 FaceShift: This uses Kinect as a replacement of motion capture devices
for facial animations, and can be found at http://www.faceshift.com

•	 ReconstructMe: This is a real-time, 3D reconstruction system that can be
used by moving Kinect around freely to collect data, and can be found
at http://reconstructme.net/

•	 So Touch Air: Using this, you can create impressive air presentations
that can be controlled by moving your hands in the air; it can be found at
http://www.so-touch.com/?id=software&content=air-presenter#

•	 OMEK: This provides middleware and tools for easy gesture recognition and
tracking interfaces, and can be found at http://www.omekinteractive.
com/

•	 SoftKinetic: This provides 3D gesture-control solutions for consumer and
professional markets, including its own time-of-flight, depth-sensing camera
and the iisu SDK, and can be found at http://www.softkinetic.com/

•	 PlayStation Eye: This is a digital camera device for PlayStation 3; it includes
computer vision and gesture recognition features and can be found at
http://us.playstation.com/ps3/accessories/playstation-eye-
camera-ps3.html

•	 Xtion Pro: This is another 3D depth camera from the OpenNI community
and can currently be purchased through ASUS at http://www.asus.com/
Multimedia/Xtion_PRO_LIVE/

•	 LeapMotion: This can be used to record and use natural hand and finger
movements to precisely interact with different devices, and can be found
at https://leapmotion.com/

Index
A
AR-based Fruit Ninja game 9, 10
AS3Kinect

URL 102
Augmented Reality (AR) 6

C
color

aligning, with depth 34
color and depth images

about 24
background subtraction 31, 33
combining, ways 31
drawing, as textures 25-28
NUI_LOCKED_RECT variable, using 29

color images
generating, from depth 35-38

commercial products, Kinect used
FaceShift 103
KineMocap 103
KinÊtre 103
LeapMotion 103
OMEK 103
PlayStation Eye 103
ReconstructMe 103
SoftKinetic 103
So Touch Air 103
Xtion Pro 103

common touching gestures
about 72, 73
double tap 72
drag tap 73
hold tap 72

rotate 73
swipe tap 73
tap 72
two-finger tap 73
zoom 73

community page 100
current code

existing elements, integrating
in scene 82-85

integrating 81
cursors

code 71, 72
code example 79
drawing, from two hands 68-70
locating 68
sending, to external application 78
Windows mouse, emulating 78, 79

D
depth

color images, generating from 35, 37
destroyKinect() function 18
DevelopKinect

URL 102
development environment

preparing 12, 13
Visual Studio project, building 14-16

double tap 77
drag tap 77

F
FAAST

URL 102

[106]

face detection, from camera
about 54
face rectangle, drawing 55-59
functions, using 60

face model
constructing 61
function, using 64, 65
parametric face model, drawing 61-64

faceRect variable 58
FaceShift

URL 103
face tracking

in Kinect 54
fields of view. See FOV
FOV 34
free and open source resources

about 102
AS3Kinect 102
Coding4Fun Kinect Toolkit 102
DevelopKinect 102
FAAST 102
Kinect for openFrameworks 102
Kinect for VVVV 102
Kinect support for Cinder 102
OpenKinect 102
OSCeleton 102

FreeImage 13
Fruit Ninja game

code 97
current code, integrating 81
playing 94-97
rules 94
simple game logic, adding 94-96

FruitObject::render() method 91
fruit objects

adding 87-92
code 93
handling 87-92
prerequisite conditions 86

FTCreateFaceTracker function 60
FTCreateImage function 60

G
GitHub source repository 100

glPointSize() function 70
GLUT 12
guessGesture() function 74

H
hand linetrails

drawing 50
example 54
specified joints path, drawing 50-53

holding gesture 73
hold tap 77

I
IFTFaceTracker::ContinueTracking

function 60
IFTFaceTracker::CreateFTResult

function 60
IFTFaceTracker::GetFaceModel

function 64
IFTFaceTracker::GetShapeUnits

function 64
IFTFaceTracker::Initialize function 60
IFTFaceTracker::StartTracking function 60
IFTModel::GetProjectedShape 65
IFTModel::GetTriangles 64
IFTModel::GetVertexCount function 64
IFTResult::Get3DPose function 64
IFTResult::GetAUCoefficients function 64
IFTResult::GetFaceRect function 60
image stream types

choosing 23, 24
initializeFaceTracker() function 55
initializeKinect() function 17, 32
INuiFrameTexture::LockRect function 30
INuiFrameTexture::UnlockRect 31
INuiSensor::NuiImageStreamGetNextFrame

function 30
INuiSensor::NuiImageStreamOpen 20
INuiSensor::NuiImageStreamReleaseFrame

function 30
INuiSensor::NuiInitialize functiom 20
INuiSensor::NuiShutdown 20
INuiSensor::NuiSkeleton

TrackingEnable 20

[107]

J
joint positions

function 49, 50
obtaining 45
skeleton, drawing 45-48

K
Kinect

about 5, 6
commercial products 103
diagram 5
face tracking 54
features 43
installing 6

Kinect device
code 20
initializing, in C++ 17-19
starting 16
using, in C++ 17-19

Kinect for openFrameworks
URL 102

Kinect for VVVV
URL 102

Kinect installation
about 7
need for 8, 9
software, setting up on PCs 7, 8

Kinect support for Cinder
URL 102

KineMocap
URL 103

KinÊtre
URL 103

L
LeapMotion

URL 103
libfreenect 99, 100

M
Microsoft Kinect. See Kinect
Microsoft Touch Gesture

website 73
multitouch systems 67

N
Natural User Interface. See NUI
NUI 20
NuiCreateSensorByIndex function 20
NuiGetSensorCount function 20
NuiImageGetColorPixelCoordinate

FrameFromDepthPixelFrame
AtResolution() function 38

NuiImageGetColorPixelCoordinates
FromDepthPixelAtResolution()
function 38

NuiImageStreamOpen() 21
NUI_INITIALIZE_FLAG_USES_AUDIO 24
NUI_INITIALIZE_FLAG_USES_DEPTH_

AND_PLAYER_INDEX 24
NuiSkeletonGetNextFrame function 49
NuiSkeletonTrackingEnable() 21
NuiTransformSkeletonToDepthImage

function 49
NuiTransformSmooth() function 72

O
obtainFceModelData() function 61
OMEK

URL 103
OpenGL texture mapping 24
OpenGL Utility Toolkit. See GLUT
OpenKinect

URL 102
Open Natural Interaction. See OpenNI
OpenNI 100-102
OpenNI Binaries files 101
OSCeleton

URL 102

P
pcViewArea parameter 38
PlayStation Eye

URL 103

R
ReconstructMe

URL 103

[108]

render() function 19, 63, 96
rotate tap 77

S
SendInput() function 78
setPlayerColorPixel() function 35
skeletal mapping

about 43, 44
diagram 44

SoftKinetic
URL 103

So Touch Air
URL 103

StartTracking() function 60
swipe tap 77
swiping gesture

about 73
cursor drawing, from two hands 74-76
double tap 77
drag 77
hold 77
rotate 77
swipe 77
tap 77
zoom 77

T
tap 77
TUIO API 80
TUIOKinect

URL 102
TUIO website 80

U
update() function 58, 88, 95
updateImageFrame() function 26, 35, 52, 57
updateSkeletonData() function 50, 69, 74, 84
usDepthValue parameter 38

V
Visual C++ 2012 Express 12

X
Xtion Pro

URL 103

Z
zoom tap 77

Thank you for buying
Augmented Reality with Kinect

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Augmented Reality using
Appcelerator Titanium Starter
[Instant]
ISBN: 978-1-849693-90-5 Paperback: 52 pages

Learn to create Augmented Reality applications in
no time using the Appcelerator Titanium Framework

1.	 Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

2.	 Create an open source Augmented Reality
Titanium application

3.	 Build an effective display of multiple points
of interest

Kinect in Motion – Audio and
Visual Tracking by Example
ISBN: 978-1-849697-18-7 Paperback: 112 pages

A fast-paced, practical guide including examples,
clear instructions, and details for building your
own multimodal user interface

1.	 Step-by-step examples on how to master the
essential features of Kinect technology

2.	 Fully-functioning code samples ready to
expand and adjust to your need

3.	 Compact and handy reference on how to adopt
a multimodal user interface in your application

Please check www.PacktPub.com for information on our titles

Kinect for Windows SDK
Programming Guide
ISBN: 978-1-849692-38-0 Paperback: 392 pages

Build motion-sensing applications with Microsoft's
Kinect for Windows SDK quickly and easily

1.	 Building application using Kinect for
Windows SDK.

2.	 A detailed discussion of all the APIs involved
and the explanations of their usage in detail

3.	 Procedures for developing motion-sensing
applications and also methods used to enable
speech recognition

Mastering openFrameworks:
Creative Coding Demystified
ISBN: 978-1-849518-04-8 Paperback: 300 pages

Boost your creativity and develop highly-interactive
projects for art 3D, graphics, computer vision and
more, with this comprehensive tutorial

1.	 A step-by-step practical tutorial that explains
openFrameworks through easy to understand
examples

2.	 Makes use of next generation technologies and
techniques in your projects involving OpenCV,
Microsoft Kinect, and so on

3.	 Sample codes and detailed insights into the
projects, all using object oriented programming

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Kinect
	Installation of Kinect
	Set up your Kinect software on PCs
	Why did I do that?

	The idea of the AR-based Fruit Ninja game
	Summary

	Chapter 2: Creating Your First Program
	Preparing the development environment
	Building the Visual Studio project

	Starting the device
	Initializing and using Kinect in C++
	Understanding the code
	Additional information

	Summary

	Chapter 3: Rendering the Player
	Choosing image stream types
	Obtaining color and depth images
	Drawing color and depth as textures
	Understanding the code

	An incorrect way to combine depth
and color
	A traditional way for background subtraction
	Understanding the code

	Aligning color with depth
	Generating a color image from depth
	Understanding the code
	Additional information

	Using a green screen with Kinect
	Making a magic photographer
	Understanding the code
	Additional information

	Summary

	Chapter 4: Skeletal Motion and
Face Tracking
	Understanding skeletal mapping
	Obtaining joint positions
	Drawing the skeleton
	Understanding the code

	Drawing the linetrails following the hands
	Drawing the path for specified joints
	Understanding the code

	Face tracking in Kinect
	Detecting a face from the camera
	Detecting and drawing the face rectangle
	Understanding the code

	Constructing the face model
	Drawing the parametric face model
	Understanding the code

	Summary

	Chapter 5: Designing a Touchable
User Interface
	Multitouch systems
	Locating the cursors
	Drawing cursors from two hands
	Understanding the code
	Additional information

	Common touching gestures
	Recognizing holding and swiping gestures
	Drawing cursors using two hands
	Understanding the code?
	Additional information

	Sending cursors to external applications
	Emulating Windows mouse with cursors
	Understanding the code

	Summary

	Chapter 6: Implementing the Scene
and Gameplay
	Integrating the current code
	Integrating existing elements in a scene
	Understanding the code

	Cutting the fruits
	Adding and handling fruit objects
	Understanding the code

	Playing the game
	Adding simple game logic
	Understanding the code
	Additional information

	Summary

	Appendix: Where to Go from Here
	libfreenect – the pioneer of Kinect middleware
	OpenNI – a complete and powerful Kinect middleware
	Free and open source resources
	Commercial products using Kinect

	Index

