
www.it-ebooks.info

http://www.it-ebooks.info/

Kinect in Motion – Audio and
Visual Tracking by Example

A fast-paced, practical guide including examples,
clear instructions, and details for building your own
multimodal user interface

Clemente Giorio

Massimo Fascinari

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Kinect in Motion – Audio and Visual Tracking
by Example

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2013

Production Reference: 1180413

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-718-7

www.packtpub.com

Cover Image by Suresh Mogre (suresh.mogre.99@gmail.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Authors
Clemente Giorio

Massimo Fascinari

Reviewers
Atul Gupta

Mandresh Shah

Acquisition Editor
James Jones

Commissioning Editor
Yogesh Dalvi

Technical Editors
Jalasha D'costa

Kirti Pujari

Project Coordinator
Sneha Modi

Proofreader
Paul Hindle

Indexer
Monica Ajmera Mehta

Production Coordinators
Pooja Chiplunkar

Nitesh Thakur

Cover Work
Pooja Chiplunkar

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors

Clemente Giorio is an independent Consultant; he cooperated with Microsoft SrL
for the development of a prototype that uses the Kinect sensor. He is interested in
Human-computer Interface (HCI) and multimodal interaction.

I would first like to thank my family, for their continuous support
throughout my time in University.

I would like to express my gratitude to the many people who
saw me through this book. During the evolution of this book,
 I have accumulated many debts, only few of which I have space
to acknowledge here.

Writing of this book has been a joint enterprise and a collaborative
exercise. Apart from the names mentioned, there are many others
who contributed. I appreciate their help and thank them for
their support.

Massimo Fascinari is a Solution Architect at Avanade, where he designs and
delivers software development solutions to companies throughout the UK and
Ireland. His interest in Kinect and human-machine interaction started during his
research on increasing the usability and adoption of collaboration solutions.

I would like to thank my wife Edyta, who has been supporting me
while I was working on the book.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

With more than 17 years of experience working on Microsoft technologies,
Atul Gupta is currently a Principal Technology Architect at Infosys' Microsoft
Technology Center, Infosys Labs. His expertise spans user experience and user
interface technologies, and he is currently working on touch and gestural interfaces
with technologies such as Windows 8, Windows Phone 8, and Kinect. He has prior
experience in Windows Presentation Foundation (WPF), Silverlight, Windows 7,
Deepzoom, Pivot, PixelSense, and Windows Phone 7.

He has co-authored the book ASP.NET 4 Social Networking (http://www.packtpub.
com/asp-net-4-social-networking/book). Earlier in his career, he also worked on
technologies such as COM, DCOM, C, VC++, ADO.NET, ASP.NET, AJAX, and ASP.
NET MVC. He is a regular reviewer for Packt Publishing and has reviewed books on
topics such as Silverlight, Generics, and Kinect.

He has authored papers for industry publications and websites, some of which are
available on Infosys' Technology Showcase (http://www.infosys.com/microsoft/
resource-center/pages/technology-showcase.aspx). Along with colleagues
from Infosys, Atul blogs at http://www.infosysblogs.com/microsoft. Being
actively involved in professional Microsoft online communities and developer
forums, Atul has received Microsoft's Most Valuable Professional award for
multiple years in a row.

www.it-ebooks.info

http://www.it-ebooks.info/

Mandresh Shah is a developer and architect working in the Avanade group for
Accenture Services. He has IT industry experience of over 14 years and has been
predominantly working on Microsoft technologies. He has experience on all aspects
of the software development lifecycle and is skilled in design, implementation,
technical consulting, and application lifecycle management. He has designed and
developed software for some of the leading private and public sector companies
and has built industry experience in retail, insurance, and public services. With his
technical expertise and managerial abilities, he also has played the role of growing
capability and driving innovation within the organization.

Mandresh lives in Mumbai with his wife Minal, and two sons Veeransh and
Veeshan. In his spare time he enjoys reading, movies, and playing with his kids.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface 1
Chapter 1: Kinect for Windows – Hardware and SDK Overview 7

Motion computing and Kinect 7
Hardware overview 9

The IR projector 10
Depth camera 10
The RGB camera 12
Tilt motor and three-axis accelerometer 13
Microphone array 13
Software architecture 14
Video stream 16
Depth stream 17
Audio stream 18
Skeleton 20

Summary 21
Chapter 2: Starting with Image Streams 23

Color stream 24
Editing the colored image 28
Image tuning 31
The color image formats 32
The Infrared color image format 33
The raw Bayer formats 33
YUV raw format 35

Depth stream 36
DepthRange – the default and near mode 38
Extended range 38
Mapping from the color frame to the depth frame 39

Summary 42

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Chapter 3: Skeletal Tracking 43
Tracking users 44

Copying the skeleton data 47
Default and Seated mode 53
Detecting simple actions 54

Joint rotations 60
Summary 62

Chapter 4: Speech Recognition 63
Speech recognition 64

Grammars 64
A simple grammar sample 64
The Microsoft.Speech library 66

Tracking audio sources 75
Sound source angle 75
Beam angle 76

Summary 82
Appendix: Kinect Studio and Audio Recording 83

Kinect Studio – capturing Kinect data 84
Audio stream data – recording and injecting 88
Summary 93

Index 95

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
To build interesting, interactive, and user friendly software applications, developers
are turning to Kinect for Windows to leverage multimodal and Natural User
Interface (NUI) capabilities in their programs.

Kinect in Motion – Audio and Visual Tracking by Example is a compact reference on
how to master color, depth, skeleton, and audio data streams handled by Kinect
for Windows. You will learn how to use Kinect for Windows for capturing and
managing color images tracking user motions, gestures, and their voice.
This book, thanks to its focus on examples and to its simple approach, will guide
you on how to easily step away from a mouse or keyboard driven application.

This will enable you to break through the modern application development space.
The book will step you through many detailed, real-world examples, and even
guide you on how to test your application.

What this book covers
Chapter 1, Kinect for Windows – Hardware and SDK Overview, introduces the Kinect,
looking at the key architectural aspects such as the hardware composition and the
software development kit components.

Chapter 2, Starting with Image Streams, shows you how to start building a Kinect
project using Visual Studio and focuses on how to handle the color stream and
the depth stream.

Chapter 3, Skeletal Tracking, explains how to track the skeletal data provided by
the Kinect sensor and how to interpret them for designing relevant user actions.

Chapter 4, Speech Recognition, focuses on how to manage the Kinect sensor audio
stream data and enhancing the Kinect sensor's capabilities for speech recognition.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[2]

Appendix, Kinect Studio and Audio Recording, introduces the Kinect Studio tool and
shows you how to save and playback video and audio streams in order to simplify
the coding and the test of our Kinect enabled application.

What you need for this book
The following hardware and software are required for the codes described in
this book:

• CPU: Dual-core x86 or x64 at 2,66 Ghz or faster
• USB: 2.0 or compatible
• RAM: 2 GB or more
• Graphics card: DirectX 9.0c
• Sensor: Kinect for Windows
• Operating system: Windows 7 or Windows 8 (x86 and x64 version)
• IDE: Microsoft Visual Studio 2012 Express or an other edition
• Framework: .NET 4 or 4.5
• Software Development Kit: Kinect for Windows SDK
• Toolkit: Kinect for Windows Toolkit

The reader can also utilize a virtual machine (VM) environment from the following:

• Microsoft HyperV
• VMware
• Parallels

Who this book is for
This book is great for developers new to the Kinect for Windows SDK and those who
are looking to get a good grounding in mastering the video and audio tracking. It's
assumed that you will have some experience in C# and XAML already. Whether
you are planning to use Kinect for Windows in your LOB application or for more
consumer oriented software, we would like you to have fun with Kinect and to
enjoy embracing a multimodal interface in your solution.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text are shown as follows: " The X8R8G8B8 format is a 32-bit RGB
pixel format, in which 8 bits are reserved for each color."

A block of code is set as follows:

<Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <!—- define additional RowDefinition entries as needed -->
</Grid.RowDefinitions>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

public partial class MainWindow : Window
{ private KinectSensor sensor;
 public MainWindow()
 { InitializeComponent();
 this.Loaded += MainWindow_Loaded;
 KinectSensor.KinectSensors.StatusChanged += KinectSensors_
 StatusChanged;
 }

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Select
the WPF Application Visual C# template".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com and
mention the book title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes
in the output.

You can download this file from http://www.packtpub.com/sites/default/
files/downloads/7187_Images.pdf.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material. We appreciate your help in protecting our authors, and our ability to
bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Kinect for Windows –
Hardware and SDK Overview

In this chapter we will define the key notions and tips for the following topics:

• Critical hardware components of the Kinect for Windows device and their
functionalities, properties, and limits

• Software architecture defining the Kinect SDK 1.6

Motion computing and Kinect
Before getting Kinect in motion, let's try to understand what motion computing
(or motion control computing) is and how Kinect built its success in this area.

Motion control computing is the discipline that processes, digitalizes, and
detects the position and/or velocity of people and objects in order to interact with
software systems.

Motion control computing has been establishing itself as one of the most relevant
techniques for designing and implementing a Natural User Interface (NUI).

NUIs are human-machine interfaces that enable the user to interact in a natural way
with software systems. The goals of NUIs are to be natural and intuitive. NUIs are
built on the following two main principles:

• The NUI has to be imperceptible, thanks to its intuitive characteristics:
(a sensor able to capture our gestures, a microphone able to capture our
voice, and a touch screen able to capture our hands' movements). All these
interfaces are imperceptible to us because their use is intuitive. The interface
is not distracting us from the core functionalities of our software system.

www.it-ebooks.info

http://www.it-ebooks.info/

Kinect for Windows–Hardware and SDK Overview

[8]

• The NUI is based on nature or natural elements. (the slide gesture, the touch,
the body movements, the voice commands—all these actions are natural and
not diverting from our normal behavior).

NUIs are becoming crucial for increasing and enhancing the user accessibility for
software solution. Programming a NUI is very important nowadays and it will
continue to evolve in the future.

Kinect embraces the NUIs principle and provides a powerful multimodal interface
to the user. We can interact with complex software applications and/or video
games simply by using our voice and our natural gestures. Kinect can detect our
body position, velocity of our movements, and our voice commands. It can detect
objects' position too.

Microsoft started to develop Kinect as a secret project in 2006 within the Xbox division
as a competitive Wii killer. In 2008, Microsoft started Project Natal, named after the
Microsoft General Manager of Incubation Alex Kipman's hometown in Brazil. The
project's goal was to develop a device including depth recognition, motion tracking,
facial recognition, and speech recognition based on the video recognition technology
developed by PrimeSense.

Kinect for Xbox was launched in November 2010 and its launch was indeed a
success: it was and it is still a break-through in the gaming world and it holds the
Guinness World Record for being the "fastest selling consumer electronics device"
ahead of the iPhone and the iPad.

In December 2010, PrimeSense (primesense.com) released a set of open source
drivers and APIs for Kinect that enabled software developers to develop Windows
applications using the Kinect sensor.

Finally, on June 17 2011 Microsoft launched the Kinect SDK beta, which is a set of
libraries and APIs that enable us to design and develop software applications on
Microsoft platforms using the Kinect sensor as a multimodal interface.

With the launch of the Kinect for Windows device and the Kinect SDK, motion
control computing is now a discipline that we can shape in our garages, writing
simple and powerful software applications ourselves.

This book is written for all of us who want to develop market-ready software
applications using Kinect for Windows that can track audio and video and control
motion based on NUI. In an area where Kinect established itself in such a short span
of time, there is the need to consolidate all the technical resources and develop them
in an appropriate way: this is our zero-to-hero Kinect in motion journey. This is what
this book is about.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

This book assumes that you have a basic knowledge of C# and that we all have
a great passion to learn about programming for Kinect devices. This book can be
enjoyed by anybody interested in knowing more about the device and learning how
to track audio and video using the Kinect for Windows Software Development Kit
(SDK) 1.6. We deeply believe this book will help you to master how to process video
depth and audio stream and build market-ready applications that control motion.
This book has deliberately been kept simple and concise, which will aid you to
quickly grasp the core and critical concepts.

Before jumping on the core of audio and visual tracking with Kinect for Windows,
let's take the space of this introduction chapter to understand what the hardware
and software architectures Kinect for Windows and its SDK 1.6 use.

Hardware overview
The Kinect device is a horizontal bar composed of multiple sensors connected to a
base with a motorized pivot.

The following image provides a schematic representation of all the main Kinect
hardware components. Looking at the Kinect sensor from the front, from the outside
it is possible to identify the Infrared (IR) Projector (1), the RGB camera (3), and the
depth camera (2). An array of four microphones (6), the three-axis accelerometer (5),
and the tilt motor (4) are arranged inside the plastic case.

Kinect case and components

The device is connected to a PC through a USB 2.0 cable. It needs an external power
supply in order to work because USB ports don't provide enough power.

Now let's jump in to the main features of its components.

www.it-ebooks.info

http://www.it-ebooks.info/

Kinect for Windows–Hardware and SDK Overview

[10]

The IR projector
The IR projector is the device that Kinect uses for projecting the IR rays that are used
for computing the depth data. The IR projector, which from the outside looks like a
common camera, is a laser emitter that constantly projects a pattern of structured IR
dots at a wavelength around of 830 nm (patent US20100118123, Prime Sense Ltd.).
This light beam is invisible to human eyes (that typically respond to wavelengths
from about 390 nm to 750 nm) except for a red bright dot in the center of emitter.

The pattern is composed by 3 x 3 subpatterns of 211 x 165 dots (for a total of 633 x
495 dots). In each subpattern, one spot is much brighter than all the others.

As the dotted light (spot) hits an object, the pattern becomes distorted, and this
distortion is analyzed by the depth camera in order to estimate the distance
between the sensor and the object itself.

Infrared pattern

In the previous image, we tested the IR projector against the
room's wall. In this case we have to notice that a view of the
clear infrared pattern can be obtained only by using an external
IR camera (the left-hand side of the previous image). Taking
the same picture from the internal RGB camera, the pattern will
look distorted even though in this case the beam is not hitting
any object (the right-hand side of the previous picture).

Depth camera
The depth camera is a (traditional) monochrome CMOS (complementary
metal-oxide-semiconductor) camera that is fitted with an IR-pass filter
(which is blocking the visible light). The depth camera is the device that
Kinect uses for capturing the depth data.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

The depth camera is the sensor returning the 3D coordinates (x, y, z) of the scene as
a stream. The sensor captures the structured light emitted by the IR projector and
the light reflected from the objects inside the scene. All this data is converted in to
a stream of frames. Every single frame is processed by the PrimeSense chip that
produces an output stream of frames. The output resolution is upto 640 x 480 pixels.
Each pixel, based on 11 bits, can represent 2048 levels of depth.

The following table lists the distance ranges:

Mode Physical limits Practical limits
Near 0.4 to 3 m (1.3 to 9.8 ft) 0.8 to 2.5 m (2.6 to 8.2 ft)
Normal 0.8 to 4 m (2.6 to 13.1 ft) 1.2 to 3.5 m (4 to 11.5 ft)

The sensor doesn't work correctly within an environment affected
by sunlight, a reflective surface, or an interference with light with
a similar wavelength (830 nm circa).

The following figure is composed of two frames extracted from the depth image
stream: the one on the left represents a scene without any interference. The one on
the right is stressing how interference can reduce the quality of the scene. In this frame,
we introduced an infrared source that is overlapping the Kinect's infrared pattern.

Depth images

www.it-ebooks.info

http://www.it-ebooks.info/

Kinect for Windows–Hardware and SDK Overview

[12]

The RGB camera
The RGB camera is similar to a common color webcam, but unlike a common
webcam, the RGB camera hasn't got an IR-cut filter. Therefore in the RGB camera, the
IR is reaching the CMOS. The camera allows a resolution upto 1280 x 960 pixels with
12 images per second speed. We can reach a frame rate of 30 images per second at a
resolution of 640 x 480 with 8 bits per channel producing a Bayer filter output with
a RGGBD pattern. This camera is also able to perform color flicker avoidance, color
saturation operations, and automatic white balancing. This data is utilized to obtain
the details of people and objects inside the scene.

The following monochromatic figure shows the infrared frame captured by the
RGB camera:

IR frame from the RGB camera

To obtain high quality IR images we need to use dim lighting
and to obtain high quality color image we need to use external
light sources. So it is important that we balance both of these
factors to optimize the use of the Kinect sensors.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

Tilt motor and three-axis accelerometer
The Kinect cameras have a horizontal field of view of 57.5 degrees and a vertical field
of view of 43.5 degrees. It is possible to increase the interaction space by adjusting
the vertical tilt of the sensor by +27 and -27 degrees. The tilt motor can shift the
Kinect head's angle upwards or downwards.

The Kinect also contains a three-axis accelerometer configured for a 2g range (g is the
acceleration value due to gravity) with a 1 to 3 degree accuracy. It is possible to know
the orientation of the device with respect to gravity reading the accelerometer data.

The following figure shows how the field of view angle can be changed when the
motor is tilted:

Field of view angle

Microphone array
The microphone array consists of four microphones that are located in a linear
pattern in the bottom part of the device with a 24-bit Analog to Digital Converter
(ADC). The captured audio is encoded using Pulse Code Modulation (PCM)
with a sampling rate of 16 KHz and a 16-bit depth. The main advantages of this
multi-microphones configuration is an enhanced Noise Suppression, an Acoustic
Echo Cancellation (AEC), and the capability to determine the location and the
direction of an audio source through a beam-forming technique.

www.it-ebooks.info

http://www.it-ebooks.info/

Kinect for Windows–Hardware and SDK Overview

[14]

Software architecture
In this paragraph we review the software architecture defining the SDK. The
SDK is a composite set of software libraries and tools that can help us to use the
Kinect-based natural input. The Kinect senses and reacts to real-world events
such as audio and visual tracking. The Kinect and its software libraries interact
with our application via the NUI libraries, as detailed in the following figure:

Interaction diagram

Here, we define the software architecture diagram where we encompass the
structural elements and the interfaces by which the Kinect for Windows SDK 1.6 is
composed, as well as the behavior as specified in collaboration with those elements:

Kinect for Windows SDK 1.6 software architecture diagram

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

The following list provides the details for the information shown in the
preceding figure:

• Kinect sensor: The hardware components as detailed in the previous
paragraph, and the USB hub through which the Kinect sensor is connected
to the computer.

• Kinect drivers: The Windows drivers for the Kinect, which are installed
as part of the SDK setup process. The Kinect drivers are accessible in the
%Windows%\System32\DriverStore\FileRepository directory and they
include the following files:

 ° kinectaudio.inf_arch_uniqueGUID;

 ° kinectaudioarray.inf_arch_uniqueGUID;

 ° kinectcamera.inf_arch_uniqueGUID;

 ° kinectdevice.inf_arch_uniqueGUID;

 ° kinectsecurity.inf_arch_uniqueGUID

These files expose the information of every single Kinect's capabilities.
The Kinect drivers support the following files:

 ° The Kinect microphone array as a kernel-mode audio device that you
can access through the standard audio APIs in Windows

 ° Audio and video streaming controls for streaming audio and video
(color, depth, and skeleton)

 ° Device enumeration functions that enable an application to use more
than one Kinect

• Audio and video components defined by NUI APIs for skeleton tracking,
audio, and color and depth imaging. You can review the NUI APIs header files
in the %ProgramFiles%\Microsoft SDKs\Kinect\v1.6 folder as follows:

 ° NuiApi.h: This aggregates all the NUI API headers
 ° NuiImageCamera.h: This defines the APIs for the NUI image and

camera services
 ° NuiSensor.h: This contains the definitions for the interfaces as the

audiobeam, the audioarray, and the accelerator
 ° NuiSkeleton.h: This defines the APIs for the NUI skeleton

www.it-ebooks.info

http://www.it-ebooks.info/

Kinect for Windows–Hardware and SDK Overview

[16]

• DirectX Media Object (DMO) for microphone array beam-forming
and audio source localization. The format of the data used in input and
output by a stream in a DirectX DMO is defined by the Microsoft.Kinect.
DMO_MEDIA_TYPE and the Microsoft.Kinect.DMO_OUTPUT_DATA_BUFFER
structs. The default facade Microsoft.Kinect.DmoAudioWrapper creates
a DMO object using a registered COM server, and calls native DirectX DMO
layer directly.

• Windows 7 standard APIs: The audio, speech, and media APIs in Windows
7, as described in the Windows 7 SDK and the Microsoft Speech SDK
(Microsoft.Speech, System.Media, and so on). These APIs are also
available to desktop applications in Windows 8.

Video stream
The stream of color image data is handled by the Microsoft.Kinect.
ColorImageFrame. A single frame is then composed of color image data. This data is
available in different resolutions and formats. You may use only one resolution and
one format at a time.

The following table lists all the available resolutions and formats managed by the
Microsoft.Kinect.ColorImageFormat struct:

Color image format Resolution FPS Data
InfraredResoluzion640x480Fps30 640 x 480 30 Pixel format is

gray16
RawBayerResoluzion1280x960Fps12 1280 x 960 12 Bayer data
RawBayerResoluzion640x480Fps30 640 x 480 30 Bayer data
RawYuvResoluzion640x480Fps15 640 x 480 15 Raw YUV
RgbResoluzion1280x960Fps12 1280 x 960 12 RGB (X8R8G8B8)
RgbResoluzion640x480Fps15 640 x 480 15 Raw YUV
Undefined N/A N/A N/A

When we use the InfraredResoluzion640x480Fps30
format in the byte array returned for each frame, two bytes
make up one single pixel value. The bytes are in little-endian
order, so for the first pixel, the first byte is the least significant
byte (with the least significant 6 bits of this byte always set to
zero), and the second byte is the most significant byte.

The X8R8G8B8 format is a 32-bit RGB pixel format, in which 8 bits are reserved for
each color.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

Raw YUV is a 16-bit pixel format. While using this format, we can notice the video
data has a constant bit rate, because each frame is exactly the same size in bytes.

In case we need to increase the quality of the default conversion done by the SDK
from Bayer to RGB, we can utilize the Bayer data provided by the Kinect and apply a
customized conversion optimized for our central processing units (CPUs) or graphics
processing units (GPUs).

Due to the limited transfer rate of USB 2.0, in order to handle
30 FPS, the images captured by the sensor are compressed
and converted in to RGB format. The conversion takes place
before the image is processed by the Kinect runtime. This
affects the quality of the images themselves.

In the SDK 1.6 we can customize the camera settings for optimizing and adapting the
color camera for our environment (when we need to work in a low light or a brightly
lit scenario, adapt contrast, and so on). To manage the code the Microsoft.Kinect.
ColorCameraSettings class exposes all the settings we want to adjust
and customize.

In native code we have to use the Microsoft.Kinect.
Interop.INuiColorCameraSettings interface instead.

In order to improve the external camera calibration we can use the IR stream to test
the pattern observed from both the RGB and IR camera. This enables us to have a
more accurate mapping of coordinates from one camera space to another.

Depth stream
The data provided by the depth stream is useful in motion control computing for
tracking a person's motion as well as identifying background objects to ignore.

The depth stream is a stream of data where in each single frame the single pixel
contains the distance (in millimeters) from the camera itself to the nearest object.

The depth data stream Microsoft.Kinect.DepthImageStream by the Microsoft.
Kinect.DepthImageFrame exposes two distinct types of data:

• Depth data calculated in millimeters (exposed by the Microsoft.Kinect.
DepthImagePixel struct).

• Player segmentation data. This data is exposed by the Microsoft.Kinect.
DepthImagePixel.PlayerIndex property, identifying the unique player
detected in the scene.

www.it-ebooks.info

http://www.it-ebooks.info/

Kinect for Windows–Hardware and SDK Overview

[18]

The following table defines the characteristics of the depth image frame:

Depth image format Resolution Frame rate
Resoluzion640x480Fps30 640 x 480 30 FPS
Resoluzion320x240Fps30 320 x 240 30 FPS
Resolution80x60Fps 80 x 60 30 FPS
Undefined N/A N/A

The Kinect runtime processes depth data to identify up to six human figures in
a segmentation map. The segmentation map is a bitmap of Microsoft.Kinect.
DepthImagePixel, where the PlayerIndex property identifies the closest person to
the camera in the field-of-view. In order to obtain player segmentation data, we need
to enable the skeletal stream tracking.

Microsoft.Kinect.DepthImagePixel has been introduced in the SDK 1.6 and
defines what is called the "Extended Depth Data", or full depth information: each
single pixel is represented by a 16-bit depth and a 16-bit player index.

Note that the sensor is not capable of capturing infrared
streams and color streams simultaneously. However, you
can capture infrared and depth streams simultaneously.

Audio stream
Thanks to the microphone array, the Kinect provides an audio stream that we
can control and manage in our application for audio tracking, voice recognition,
high-quality audio capturing, and other interesting scenarios.

By default, Kinect tracks the loudest audio input. Having said that, we can certainly
direct programmatically the microphone arrays (towards a given location, or
following a tracked skeleton, and so on).

DirectX Media Object (DMO) is the building block used by Kinect for processing
audio streams.

In native scenario in addition to the DirectX Media
Object (DMO), we can use the Windows Audio
Session API (WASAPI) too.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[19]

In managed applications, the Microsoft.Kinect.KinectAudioSource class
(exposed in the KinectSensor.AudioSource property) is the key software
architecture component concerning the audio stream. Using the Microsoft.Kinect.
INativeAudioWrapper class wraps the DirectX Media Object (DMO), which is a
common Windows component for a single-channel microphone.

The KinectAudioSource class is not limited to wrap the DMO, but it introduces
additional abilities such as:

• The _MIC_ARRAY_MODE as an additional microphone mode to support the
Kinect microphone array.

• Beam-forming and source localization.
• The _AEC_SYSTEM_MODE Acoustic Echo Cancellation (AEC). The SDK

supports mono sound cancellation only.

Audio input range

In order to increase the quality of the sound, audio inputs coming
from the sensor get upto a 20 dB suppression. The array microphone
allows an optional additional 6 dB of ambient noise removal for
audio coming from behind the sensor.
The audio input has a range of +/– 50 degrees (as visualized in
preceding figure) in front of the sensor. We can point the audio
direction programmatically using a 10 degree increment range in
order to focus our attention on a given user or to elude noise sources.

www.it-ebooks.info

http://www.it-ebooks.info/

Kinect for Windows–Hardware and SDK Overview

[20]

Skeleton
In addition to the data provided by the depth stream, we can use those provided by
the skeleton tracking to enhance the motion control computing capabilities of our
applications in regards to recognizing people and following their actions.

We define the skeleton as a set of positioned key points. A detailed skeleton contains
20 points in normal mode and 10 points in seated mode, as shown in the following
figure. Every single point of the skeleton highlights a joint of the human body.

Thanks to the depth (IR) camera, Kinect can recognize up to six people in the field
of view. Of these, up to two can be tracked in detail.

The stream of skeleton data is maintained by the Microsoft.Kinect.
SkeletonStream class and the Microsoft.Kinect.SkeletonFrame class. The
skeleton data is exposed for each single point in the 3D space by the Microsoft.
Kinect.SkeletonPoint struct. In any single frame handled by the skeleton stream
we can manage up to six skeletons using an array of the Microsoft.Kinect.
Skeleton class.

Skeleton in normal and seated mode

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[21]

Summary
In this chapter we introduced Kinect, looking at the key architectural aspects such
as the hardware composition and the SDK 1.6 software components. We walked
through the color sensor, IR depth sensors, IR emitter, microphone arrays, the tilt
motor for changing the Kinect camera angles, and the three-axis accelerometer.

Kinect generates two video streams using the color camera data and the depth
information using the depth sensor. Kinect can detect up to six users in its view
field and produce a detailed skeleton for two of them. All these characteristics
make Kinect an awesome tool for video tracking motion. The Kinect's audio
tracking makes the device a remarkable interface for voice recognition. Combining
video and audio, Kinect and its SDK 1.6 are an outstanding technology for NUI.

Kinect is not just technology, it is indeed a means of how we can elevate the way
users interact with complex software applications and systems. It is a break-through
on how we can include NUIs and multimodal interface.

Kinect discloses unlimited opportunities to developers and software architects to
design and create modern applications for different industries and lines of business.

The following examples are not meant to be an exhaustive list, but just a starting
point that can inspire your creativity and increase your appetite for this technology.

• Healthcare: This improves the physical rehabilitation process by constantly
capturing data of the motion and posture of patient. We can enhance this
scenario by allowing doctors to check the patient data remotely streamed by
the Kinect sensor.

• Education/Professional development: This helps in creating safe and more
engaging environments based on gamification where students, teachers, and
professionals can exercise activities and knowledge. The level of engagement
can be increased even further using augmented reality.

• Retail: This engages customers across multiple channels using the Kinect's
multimodal interface. Kinect can be used as a navigation system for virtual
windows while shopping online and/or visiting infotainment kiosks.

• Home automation: This is also known as domotics where, thanks to the
Kinect audio and video tracking, we can interact with all the electrical
devices installed at our home (lights, washing machine, and so on).

In the next chapter, we will start to develop with the Kinect SDK, utilizing the depth
and RGB camera streams. The applied examples will enable our application to
optimize the way we manage and tune the streams themselves.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Starting with Image Streams
The aim of this chapter is to understand the steps for capturing data from the
color stream, depth stream, and IR stream data. The key learning tools and steps
for mastering all these streams are:

• color camera: data stream, event driven and polling techniques to manage
color frames, image editing, color image tuning, and color image formats

• depth image: data stream, depth image ranges, and mapping between color
image and depth image

All the examples we will develop in this book are built on Visual Studio 2010 or 2012.
In this introduction, we want to include the key steps for getting started.

From Visual Studio, select File | New | Project. In the New Project window,
do the following:

1. Select the WPF Application Visual C# template.
2. Select the .Net Framework 4.0 as the framework for the project (it works

in .Net Framework 4.5 too).
3. Assign a name to the project (in our example, we selected Chapter02)
4. Choose a location for the project.
5. Leave all the other settings with the default value.
6. Click on the OK button.

In the Solution Explorer window, please locate the references of the project.
Right-click on References and select Add Reference to invoke the Reference
Manager window. Select the Microsoft.Kinect Version 1.6.0.0 assembly and
click on the OK button.

www.it-ebooks.info

http://www.it-ebooks.info/

Starting with Image Streams

[24]

An alternative approach to speeding up the preceding steps
is to consider downloading the KinectContrib (http://
kinectcontrib.codeplex.com) Visual Studio templates.

Color stream
Let's start by focusing on the color stream data. We are going to develop an example
of how to apply data manipulation to the captured color stream.

The complete code is included in the CODE_02/ColorStream example delivered
together with this book.

In the MainWindows.xaml file defined in the Visual Studio project, let's design
our User Interface (UI) elements. We will use those elements to display the data
obtained from the color stream.

Within the <Grid> </Grid> tags we can add the following XAML code:

<Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <!—- define additional RowDefinition entries as needed -->
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <!—- define additional ColumnDefinition entries as needed -->
</Grid.ColumnDefinitions>
<Image Name="imgMain" Grid.Row="1" Grid.Column="1" Grid.ColumnSpan="2"
/>
<TextBlock Name="tbStatus" Grid.Row="3" Grid.Column="2" />

The <Grid.RowDefinitions> and <Grid.ColumnDefinitions> tags define the
UI layout and the set of placeholders for additional UI elements, which we will
use later in the example. The imgMain image is the control we will use to display
the color stream data and the tbStatus TextBlock is the control we will use for
providing the feedback on the Kinect sensor status.

To get our color data displayed we need to first of all initialize the sensor. Here are
the tasks for initializing the sensor to generate color data.

In the MainWindows.xaml.cs file we enhance the code generated by Visual Studio
by performing the following steps:

• Retrieving the available sensors and selecting the first one (if any) connected
at any time using the private KinectSensor sensor member

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[25]

• Enabling the color stream using the KinectSensor.ColorStream.
Enable(ColorImageFormat colorImageFormat) API

• Starting the Kinect sensor using the KinectSensor.Start() API

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Our code will look like this:

public partial class MainWindow : Window
{ private KinectSensor sensor;

 public MainWindow()
 { InitializeComponent();
 this.Loaded += MainWindow_Loaded;
 KinectSensor.KinectSensors.StatusChanged += KinectSensors_
StatusChanged;
 }

 void MainWindow_Loaded(object sender, RoutedEventArgs e)
 { this.tbStatus.Text = Properties.Resources.KinectInitialising;
 //Invoke the Kinect Status changed at the app start-up
 KinectSensors_StatusChanged(null, null);
 }

//handle the status changed event for the current sensor.
 void KinectSensors_StatusChanged(object
sender,StatusChangedEventArgs e)
 { //select the first (if any available) connected Kinect Sensor
 from the KinectSensor.KinectSensors collection
 this.sensor = KinectSensor.KinectSensors.FirstOrDefault(s => s.Status
== KinectStatus.Connected);
 if (null != this.sensor)
 {this.tbStatus.Text = Properties.Resources.KinectReady;
//Color Image initialised
InitializeColorImage(ColorImageFormat.RgbResolution640x480Fps30);
 // Start the sensor
 try { this.sensor.Start();}
 catch (IOException) {this.sensor = null;}
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Starting with Image Streams

[26]

if (null == this.sensor)
 {this.tbStatus.Text = Properties.Resources.NoKinectReady;}
}
 void InitializeColorImage(ColorImageFormat colorImageFormat)
 { // Turn on the color stream to receive color frames
 this.sensor.ColorStream.Enable(colorImageFormat);}

 }

In order to compile the previous code we need to resolve the
Microsoft.Kinect and System.IO namespaces. The values
assigned to the tbStatus.Text are defined as Properties in
the Resources.resx file.

The KinectSensor.KinectColorFrameReady event is the event that the sensor fires
when a new frame from the color stream data is ready. The Kinect sensor streams
out data continuously, one frame at a time, till we enforce the sensor to stop—using
KinectSensor.Stop()—or we disable the color stream itself—using KinectSensor.
ColorStream.Disable().

We can register to this event to process the color stream data available and
implement the related event handler.

After the InitializeColorImage method call, let's add the ColorFrameReady event
of the Sensor object to process the color stream data. We manage the event defining
the following event handler:

private void SensorColorFrameReady(object sender,
ColorImageFrameReadyEventArgs e)
{
 using (ColorImageFrame colorFrame = e.OpenColorImageFrame())
 { if (colorFrame != null) { } }
}

By testing colorFrame != null, we ensure that the colorFrame
object has been rendered smoothly.

We now need to copy the data to our local memory in order to manipulate the same
and make them available for the imgMain image control defined in the UI.

In the MainWindow class, we define the private byte[] colorPixels variable,
which is going to store the data received by the color stream.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[27]

We need to pre-allocate the byte array, colorPixels, for containing all the pixels
stored in the color frame and provided by the Int32 Image.PixelDataLength
property.

We need to define the private WriteableBitmap colorBitmap instance to hold
the color information obtained by the color stream data.

Our InitializeColorImage method will now look like:

void InitializeColorImage(ColorImageFormat colorImageFormat)
{ // Turn on the color stream to receive color frames
 this.sensor.ColorStream.Enable(colorImageFormat);

 //Allocate the array to contain pixels stored in the color frame
 this.colorPixels = new byte[this.sensor.ColorStream.
FramePixelDataLength];

 //Create the WriteableBitmap with the appropriate PixelFormats
 this.colorBitmap = new WriteableBitmap(this.sensor.ColorStream.
FrameWidth,
 this.sensor.ColorStream.FrameHeight, 96.0, 96.0,
PixelFormats.Bgr32, null);
 // Displaying to point to the bitmap where putting image data
 this.imgMain.Source = this.colorBitmap;
}

Using the ColorImageFrame.CopyPixelDataTo(byte[]colorPixels) API, we
copy the color frame's pixel data to our pre-allocated byte array colorPixels.

Finally, after getting the color data and saving it in the WriteableBitmap object,
we draw the WriteableBitmap object itself using the WritePixels(Int32Rect
sourceRect, Array pixels, int stride, int offset) method. In computing
the stride parameter we have to take into account the BytesPerPixel value of the
ColorImageFrame in relation to the ColorImageFormat. In this current example,
as we are dealing with an RGBA (Red Green Blue Alpha) ColorImageFormat, the
BytesPerPixel value is 4.

Let's now complete the body of the if (colorFrame != null) selection introduced
previously in the event handler:

if (colorFrame != null)
{ //copy the color frame's pixel data to the array
 colorFrame.CopyPixelDataTo(this.colorPixels);

 //draw the WritableBitmap
 this.colorBitmap.WritePixels(

www.it-ebooks.info

http://www.it-ebooks.info/

Starting with Image Streams

[28]

 new Int32Rect(0, 0, this.colorBitmap.PixelWidth, this.
colorBitmap.PixelHeight),
 this.colorPixels, this.colorBitmap.PixelWidth *
colorFrame.BytesPerPixel, 0);
}

Compiling and running our example in Visual Studio, we are now in business.

Since our SensorColorFrameReady method runs frequently,
this code maximizes performance by doing the minimum processing
necessary to get the new data and copy it to the local memory. How
do we improve performance?
The using statement automatically takes care of disposing of the
ColorImageFrame object when we are done using it.
allocating the memory for the byte array colorPixels outside the
event handler.
Using the WriteableBitmap array instead of creating a Bitmap for
every frame. We can create the WriteableBitmap array only when
the pixel format changes.

Editing the colored image
We can now think about manipulating the color stream data and applying some
effects to enhance our example output. The following code provides a compact
sample of how we can add a sphere effect to the left half of the image:

private void Sphere(int width, int height)
{ int xMid = width / 2; int yMid = height / 2;
 for (int x = 0; x < xMid; x++)
 { for (int y = 0; y < height; ++y)
 { //Compute the angle between the real point vs the center
 int trueX = x - xMid; int trueY = y - yMid;
 var theta = Math.Atan2(trueY, trueX);
 double radius = Math.Sqrt(trueX * trueX + trueY * trueY);
 double newRadius = radius * radius / (Math.Max(xMid, yMid));
 //Compute the distortion as projection of the new angle
 int newX = Math.Max(0, Math.Min((int)(xMid + (newRadius *
 Math.Cos(theta))), width - 1));
 int newY = Math.Max(0, Math.Min((int)(yMid + (newRadius *
 Math.Sin(theta))), height - 1));
 int pOffset = ((y * width) + x) * 4;
 int newPOffset = ((newY * width) + newX) * 4;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[29]

 //draw the new point
 colorPixels[pOffset] = colorPixels[newPOffset];
 colorPixels[pOffset + 1] = colorPixels[newPOffset + 1];
 colorPixels[pOffset + 2] = colorPixels[newPOffset + 2];
 colorPixels[pOffset + 3] = colorPixels[newPOffset + 3];
 }
}}

Please note that the example included with this book provides
a full sphere effect. The example includes additional sample
algorithms to apply effects as: Pixelate, Flip, and RandomJitter.

The image manipulation or effects need to be applied just before the this.
colorBitmap.WritePixels call within the SensorColorFrameReady event
handler. As stated previously, this event handler runs frequently, so we need
to ensure that its execution is performing.

What if the next KinectColorFrameReady event is fired before the image
manipulation has completed?

This is a very likely scenario, as the Kinect sensor streams data with a throughput
of 40 to 60 milliseconds circa and the image manipulations are usually heavy and
long processing activities.

In this case, we have to change the technique by which we process the color stream
data and apply instead what is called the polling approach.

In the polling approach we don't obtain the frame of the color stream data
subscribing to the KinectSensor.KinectColorFrameReady event, but we
request a new frame enquiring the ColorImageFrame OpenNextFrame (int
millisecondsWait) API exposed by the KinectSensor.ColorStream object.

To implement this scenario, first of all we need to create a BackgroundWorker class
instance that is able to run the color frame handling asynchronously, and update the
WritableBitmap on the UI thread:

Subscribing to the BackgroundWorker.DoWork event, we ensure that intensive
manipulation of the color frame is performed asynchronously leaving the UI
thread free to respond to all the user inputs.

void backgroundWorker1_DoWork(object sender, DoWorkEventArgs e)
{ using (ColorImageFrame colorFrame = this.sensor.ColorStream.
 OpenNextFrame(0))
 { if (colorFrame != null)
 { //copy the color frame's pixel data to the array
 colorFrame.CopyPixelDataTo(this.colorPixels);
 //potentially apply the image effect

www.it-ebooks.info

http://www.it-ebooks.info/

Starting with Image Streams

[30]

 if (this.dataContext.IsImageEffectApplied)
 { Sphere(colorFrame.Width, colorFrame.Height,
 colorFrame.BytesPerPixel);
 Pixelate(colorFrame.Width, colorFrame.Height,
 20,colorFrame.BytesPerPixel);
 }//update the approximate value of the frame rate
 UpdateFrameRate(); }}}

Once the color frame manipulation is completed, we keep invoking the
BackgroundWorker.RunWorkerAsync() method in order to continuously
capture the next frame.

The first time the BackgroundWorker.RunWorkerAsync() method is invoked, just
after the this.sensor.Start();, call in the KinectSensors_StatusChanged method:

private void backgroundWorker1_RunWorkerCompleted(
 object sender, RunWorkerCompletedEventArgs e){
 this.colorBitmap.WritePixels(
 new Int32Rect(0, 0, this.colorBitmap.PixelWidth, this.
 colorBitmap.PixelHeight),
 this.colorPixels,
 this.colorBitmap.PixelWidth * 4, 0);
 //restart the manipulation
 this.backgroundWorker1.RunWorkerAsync();}

Using the new asynchronous pattern, we can take advantage of the
async and await keywords and simplify the previous syntax.

Sphere effect applied to the color stream

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[31]

Image tuning
In order to improve or tweak the stream image quality, the SDK 1.6 provides color
camera settings that allows you to add basic filters and effects on frames without
the need to implement a customized one. With these settings and the processing
of raw sensor data, it is possible to balance the different kinds of environmental
light conditions.

This is done simply by using the KinectSensor.ColorStream.CameraSettings
class, which implements the InotifyPropertyChanged interface. We can tune
the camera to collect more useful color image data utilizing the properties of the
following table:

Properties Possible values Default
BacklightCompensationMode gets or
sets the compensation mode for adjusting
the camera to capture data dependent on
the environment

AverageBrightness,
CenterOnly,
CenterPriority,
LowlightsPriority

Average
Brightness

Brightness gets or sets the brightness or
lightness

Range: [0.0, 1.0] 0.2156

Contrast gets or sets the amount of
difference between lights and darks

Range: [0.5, 2.0] 1.0

ExposureTime gets or sets the exposure
time

Range: [0.0, 4000]
Increments: 1/10,000

0.0

FrameInterval gets or sets the frame
interval

Range: [0, 4000]
Increments: 1/10,000

0

Gain gets or sets the multiplier for the
RGB color values

Range: [1.0, 16.0] 1.0

Gamma gets or sets the nonlinear
operations for coding luminance data

Range: [1.0, 2.8] 2.2

Hue gets or sets the value that describes
the shade of a color

Range: [-22.0, 22.0] 0.0

PowerLineFrequency reduces the
flicker caused by the frequency of a power
line

Disabled, FittyHertz,
SixtyHertz

Disabled

Saturation gets or sets the colorfulness
of a color relative to its own brightness

Range: [0.0, 2.0] 1.0

Sharpness Gets or sets the amount of
detail visible.

Range: [0.0, 1.0] 0.5

WhiteBalance gets or sets the color
temperature in degrees Kelvin

Range: [2700, 6500] 2700

www.it-ebooks.info

http://www.it-ebooks.info/

Starting with Image Streams

[32]

The CameraSettings class has the AutoExposure and
AutoWhiteBalance properties, which are by default set to true.
In order to change the Exposure and WhiteBalance settings it is
necessary to set those properties to false before using the color frame.
Use the ResetToDefault() method in order to reset the color camera
setting to its default value.

The color image formats
The Bayer formats match the physiology of the human eye better than other image
formats because they include more green pixels values than blue or red.

The Bayer color image data that the Kinect sensor returns at 1280 x 960 is
actually compressed and converted to RGB before transmission to the runtime.
The runtime then decompresses the data before it passes the data to the application.
The compression is performed in order to return color data at frame rates as high as
30 fps. Naturally this has the side effect of some loss in the image fidelity.

Be aware that Direct3D and OpenGL use different byte orders. Direct3D
(and Kinect for Windows) color data uses ARGB order, where alpha is
in the highest-order byte and blue is in the lowest-order byte. OpenGL
color data uses BGRA order, where blue is the highest-order byte and
alpha is the lowest-order byte. To convert color data between the two
formats, you will need to shift from one component order to the other
to get the same results. The complete details are provided at http://
msdn.microsoft.com/en-us/library/jj131027.aspx

Additional information on Bayer formats and filters is available at
http://en.wikipedia.org/wiki/Bayer_filter.

The API provided by the SDK V 1.6 allows us to change dynamically the format of
the color stream data. In order to change the format of the color image we can set the
ColorImageFrame.Format property with the appropriate ColorImageFormat value.

Changing the ColorImageFrame.Format property in our source code is the only
update we need to implement when using the following enum values:

• ColorImageFormat.RgbResolution1280x960Fps12:
(RGB format—1280 x 960 pixels as size—12 frames per second)

• ColorImageFormat.RgbResolution640x480Fps30:
(RGB format—640 x 480 pixels as size—30 frames per second)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[33]

• ColorImageFormat.YuvResolution640x480Fps15:

(YUV format—640 x 480 pixels as size—15 frames per second)

For all the other formats, we need to take into account additional considerations
and steps.

The Infrared color image format
The Kinect sensor streams out the IR data using the same channel of the color
stream data. For us to display the IR data stream data, we need to perform the
following steps:

1. Set the ColorImageFrame.Format property to the ColorImageFormat.
InfraredResolution640x480Fps30 value.

2. Ensure that colorBitmap is initialized with the PixelFormats.Gray16
format in order to allocate the right amount of bytes, as shown in the
following code snippet:

//Create the WriteableBitmap with the appropriate PixelFormats
if (colorImageFormat == ColorImageFormat.
InfraredResolution640x480Fps30)
{ //16 bits-per-pixel grayscale channel, 65536 shades of gray
 this.colorBitmap = new WriteableBitmap(this.sensor.
ColorStream.FrameWidth,
 this.sensor.ColorStream.FrameHeight, 96.0, 96.0,
PixelFormats.Gray16, null); }

Setting the ColorImageFrame.Format property to
ColorImageFormat.InfraredResolution640x480Fps30
enables the Kinect sensor to work in Infrared IR mode.
In low-light situations or without any environmental light the only
way to obtain video data stream is to use the IR mode.

The raw Bayer formats
The Kinect sensor is able to provide the color stream data in raw Bayer format
using the two color image formats: RawBayerResolution1280x960Fps12 and
RawBayerResolution640x480Fps30.

www.it-ebooks.info

http://www.it-ebooks.info/

Starting with Image Streams

[34]

To display the color stream based on the two raw Bayer formats, we need to:

• Set the ColorImageFrame.Format to ColorImageFormat.
RawBayerResolution1280x960Fps12 or ColorImageFormat.
RawBayerResolution640x480Fps30.

• In addition to the intermediate storage, colorPixels defines the color data
as an array of bytes, while the rawColorPixels defines the intermediate
storage for the color raw data. These intermediate storages will be used
in the conversion from Bayer format to RGB format.

• The two storages need to be sized as:
this.rawColorPixels = new byte[colorFrame.PixelDataLength];
//byetsPerPixel in this case is 4
this.colorPixels = new byte[bytesPerPixel * colorFrame.Width *
colorFrame.Height];

• Copy the pixels contained in the color frame to the intermediate storage for
the color raw data as follows:
colorFrame.CopyPixelDataTo(this.rawColorPixels);

• Convert the data contained in rawColorPixels to colorPixels.
• We are now ready to display the raw Bayer color data in the image control.

A valid Bayer to RGB conversion algorithm is defined by the following code snippet:

 private void ConvertBayerToRgb32(int width, int height)
 {
 // Demosaic using a basic nearest-neighbor algorithm
 for (int y = 0; y < height; y += 2)
 {
 for (int x = 0; x < width; x += 2)
 {
 int firstRowOffset = (y * width) + x;
 int secondRowOffset = firstRowOffset + width;

 // Cache the Bayer component values.
 byte red = rawColorPixels[firstRowOffset + 1];
 byte green1 = rawColorPixels[firstRowOffset];
 byte green2 = rawColorPixels[secondRowOffset + 1];
 byte blue = rawColorPixels[secondRowOffset];

 // Adjust offsets for RGB.
 firstRowOffset *= 4; secondRowOffset *= 4;
 // Top left

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[35]

 colorPixels[firstRowOffset] = blue;
 colorPixels[firstRowOffset + 1] = green1;
 colorPixels[firstRowOffset + 2] = red;
 // Top right
 colorPixels[firstRowOffset + 4] = blue;
 colorPixels[firstRowOffset + 5] = green1;
 colorPixels[firstRowOffset + 6] = red;
 // Bottom left
 colorPixels[secondRowOffset] = blue;
 colorPixels[secondRowOffset + 1] = green2;
 colorPixels[secondRowOffset + 2] = red;
 // Bottom right
 colorPixels[secondRowOffset + 4] = blue;
 colorPixels[secondRowOffset + 5] = green2;
 colorPixels[secondRowOffset + 6] = red;
 }}}

Warning
We may hit an argument exception stating that Buffer size is not
sufficient if the right sizing of the rawColorPixes and colorPixes
are not implemented and the conversion is not performed. Please also
provide the reasoning of why this exception would occur.

YUV raw format
The Kinect sensor is able to provide the color stream data in YUV raw format.
The Kinect sensor adopts the YUV 4:2:2 standards, which use 4 bytes per
2 pixels. We can set the YUV raw format using the ColorImageFormat.
RawYuvResolution640x480Fps15.

For displaying a color stream based on the YUV raw format, we perform similar
steps to those described for the raw Bayer format. The key differences are:

• Set the ColorImageFrame.Format to ColorImageFormat.
RawYuvResolution640x480Fps15

• Convert the data contained in rawColorPixels to colorPixels

A valid YUV 4:2:2 to RGB conversion algorithm is defined by the following
code snippet:

private void ConvertYuvToRgb32(int width, int height)
{ for (int i = 0; i < rawColorPixels.Length- 4; i ++)
 { // Cache the YUV component values.
 byte Y1 = rawColorPixels[i + 1];

www.it-ebooks.info

http://www.it-ebooks.info/

Starting with Image Streams

[36]

 byte U = rawColorPixels[i];
 byte V = rawColorPixels[i + 2];
 byte Y2 = rawColorPixels[i + 3];
 int C1 = Y1 - 16; int D = U - 128;
 int E = V - 128; int C2 = Y2 - 16;
//Apply the YUV444 to RGB conversion we need to convert to byte
 colorPixels[i + 2] = ((298 * C1 + 409 * E + 128) >> 8);
 colorPixels[i + 1] = ((298 * C1 - 100 * D - 208 * E + 128) >> 8);
 colorPixels[i] = ((298 * C1 + 516 * D + 128) >> 8);
 colorPixels[i + 6] = ((298 * C2 + 409 * E + 128) >> 8);
 colorPixels[i + 5] = ((298 * C2 - 100 * D - 208 * E + 128) >> 8);
 colorPixels[i + 4] = ((298 * C2 + 516 * D + 128) >> 8); }}

The YUV to RGB conversion algorithm applied in this chapter is based
on the following formulas for the conversion between the two formats:
RGB to YUV conversion
Y = (0.257 * R) + (0.504 * G) + (0.098 * B) + 16
Cr = V = (0.439 * R) - (0.368 * G) - (0.071 * B) + 128
Cb = U = -(0.148 * R) - (0.291 * G) + (0.439 * B) + 128
YUV to RGB conversion
B = 1.164(Y - 16) + 2.018(U - 128)
G = 1.164(Y - 16) - 0.813(V - 128) - 0.391(U - 128)
R = 1.164(Y - 16) +1.596(V - 128)
The source code project attached to this paragraph covers all the
aspects and considerations developed in the paragraph itself. The
CODE_02/ColorStream example covers the color stream data
manipulation, the polling technique, and all the color image formats.
The CODE_02/Tuning example covers the techniques for adjusting the
image by the SDK V 1.6 camera setting's APIs.

Depth stream
The process, and the relating code for getting our depth stream data displayed, is
very similar to the one we detailed for the color stream data.

In this section, we will list and document the essential steps for working with
the depth stream data. The example attached to this chapter will provide all the
additional details.

In order to process the depth stream data obtained by the connected
KinectSensor, sensor we need to enable the KinectSensor.DepthStream
using the KinectSensor.DepthStream.Enable(ColorImageFormat
colorImageFormat) API.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[37]

The KinectSensor.DepthFrameReady is the event that the sensor fires when a
new frame from the depth stream data is ready. The Kinect sensor streams data out
continuously, one frame at a time, till the sensor is stopped or the depth stream is
disabled. To stop the sensor, you can use the KinectSensor.Stop() method, and to
disable the depth stream, use the KinectSensor.DepthStream.Disable() method.

We can register to the KinectSensor.DepthFrameReady event to process the depth
stream data available. The following code snippet defines the details of the sensor_
DepthFrameReady event handler:

void sensor_DepthFrameReady(object sender,
DepthImageFrameReadyEventArgs e)
{ using (DepthImageFrame depthFrame = e.OpenDepthImageFrame())
 { if
 (depthFrame != null)
 {
 // Copy the pixel data from the image to the pixels array
 depthFrame.CopyDepthImagePixelDataTo(this.depthPixels);

//convert the depth pixels to colored pixels
ConvertDepthData2RGB(depthFrame.MinDepth, depthFrame.MaxDepth);

this.depthBitmap.WritePixels(
 new Int32Rect(0, 0, this.depthBitmap.PixelWidth, this.
depthBitmap.PixelHeight),
 this.colorDepthPixels,
 this.depthBitmap.PixelWidth * sizeof(int),0);}}}

The data we obtain for each single DepthFrame is copied to the DepthImagePixel[]
depthPixels array, which holds the depth value of every single pixel in the
depthFrame. We convert the depth pixels array to the byte[] colorDepthPixels
using our custom void ConvertDepthData2RGB(int minDepth, int maxDepth)
method. We finally display the colorDepthPixels using the depthBitmap.
WritePixels method.

The same consideration about performances and the same polling
technique we develop for the color stream data manipulation can be
applied to the depth stream data too. As an alternative to subscribing
to the DepthFrameReady event, we can obtain the current depth
frame using the public DepthImageFrame OpenNextFrame(int
millisecondsWait); method of the DepthImageStream class.

www.it-ebooks.info

http://www.it-ebooks.info/

Starting with Image Streams

[38]

DepthRange – the default and near mode
Using the Int32 DepthRange Range property of the DepthImageStream class,
we can select the two available depth range modes:

• DepthRange.Near: The Kinect sensor captures with high level of reliability
depth points within a range of 0.4 to 3 m

• DepthRange.Default: The Kinect sensor captures with high level of
reliability depth points within a range of 0.8 to 4 m

The DepthImageStream.MaxDepth and DepthImageStream.MinDepth properties
provide the minimum and maximum reliable depth value according to the
DepthRange we select.

Extended range
The Kinect sensor is able to capture depth points even outside of the depth ranges
defined previously. In this case, the level of reliability of the depth data is decreased.

In the following code, we convert the depth pixels to colored pixels, highlighting:

• Yellow: The point where the depth information is not provided
• Red: All the points that are closer than the Min depth dictated by the

current DepthRange
• Green: All the points that are more than the Max depth dictated by the

current DepthRange
• Blue: Ranges all the others

Using the this.depthPixels.Max(p => p.Depth) statement, we can notice that
the Kinect sensor is able to render points well over the MaxDepth. In an appropriate
environment this value can easily reach 10 meters.

void ConvertDepthData2RGB(int minDepth, int maxDepth)
{ int colorPixelIndex = 0;
 for (int i = 0; i < this.depthPixels.Length; ++i)
 { // Get the depth for this pixel
 short depth = depthPixels[i].Depth;
 if (depth == 0) // yellow points
 { this.colorDepthPixels[colorPixelIndex++] = 0;
 this.colorDepthPixels[colorPixelIndex++] = 255;
 this.colorDepthPixels[colorPixelIndex++] = 255;}
 else

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[39]

 { // Write out blue byte
 this.colorDepthPixels[colorPixelIndex++] = (byte)depth;
 // Write out green byte – full green for > maxdepth
 this.colorDepthPixels[colorPixelIndex++] = (byte)(depth >=
 maxDepth ? 255 : depth >> 8);
 // Write out red byte – full red for < mindepth
 this.colorDepthPixels[colorPixelIndex++] = (byte)(depth <=
 minDepth ? 255 : depth >> 10); }

 // If we were outputting BGRA, we would write alpha
 here.

 ++colorPixelIndex;}
 //establish the effective maxdepth for each single frame
 this.dataContext.MaxDepth = this.depthPixels.Max(p => p.Depth);}

The complete code for the Depth stream data manipulation is
provided in the CODE_02/DepthStream Visual Studio solution.

Mapping from the color frame to the
depth frame
In order to map depth coordinate spaces to color coordinate spaces and vice versa, we
can utilize three distinct APIs. The CoordinateMapper.MapDepthFrameToColorFrame
and CoordinateMapper.MapColorFrameToDepthFrame enable us to map the entire
image frame. The CoordinateMapper.MapDepthPointToColorPoint API is used
for mapping one single point from the depth space to the color space. We suggest
referring the MSDN for a detailed explanation of the APIs.

In this paragraph, we will list and document the essential steps for mapping a depth
stream to the color stream. The CODE_02/CoordinateMapper example attached to
this chapter will provide all the additional details.

KinectSensor.AllFramesReady is the event that the sensor fires when all the new
frames for each of the sensor's active streams are ready.

We can register to this event to process the streams data available and implement
the related event handler using the this.sensor.AllFramesReady += this.
sensor_AllFramesReady statement. We initialize the depth and color data and
maps using the sensor.CoordinateMapper.MapDepthFrameToColorFrame
(DepthImageFormat depthImageFormat, DepthImagePixel[] depthPixels,
ColorImageFormat colorImageFormat, ColorImagePoint[] colorPoints) API.

www.it-ebooks.info

http://www.it-ebooks.info/

Starting with Image Streams

[40]

The following code snippet defines the details of the sensor_AllFramesReady
event handler:

void sensor_AllFramesReady(object sender, AllFramesReadyEventArgs e)
{
 rgbReady = false; depthReady = false;

 using (ColorImageFrame colorFrame = e.OpenColorImageFrame()){
 if (colorFrame != null) {

 //Copy the pre-pixel color data to a pre-allocated array
 colorFrame.CopyPixelDataTo(colorPixels);
 rgbReady = true;}}

 using (DepthImageFrame depthFrame = e.OpenDepthImageFrame()){
 if (depthFrame != null) {

 //Copy the pre-pixel depth data to a pre-allocated array
 depthFrame.CopyDepthImagePixelDataTo(depthPixels);
 mappedDepthLocations = new ColorImagePoint[depthFrame.
 PixelDataLength];
 depthReady = true;}}
 if (rgbReady && depthReady){

 // Coping color image into bitMapBits
 for (int i = 0; i < colorPixels.Length; i += 4){
 bitMapBits[i + 3] = 255; //ALPHA
 bitMapBits[i + 2] = colorPixels[i + 2]; //RED
 bitMapBits[i + 1] = colorPixels[i + 1]; //GREEN
 bitMapBits[i] = colorPixels[i]; //BLUE
}

//Maps the entire depth frame to color space.
 this.sensor.CoordinateMapper.MapDepthFrameToColorFrame(
 this.sensor.DepthStream.Format, depthPixels,
 this.sensor.ColorStream.Format, mappedDepthLocations);
 for (int i = 0; i < depthPixels.Length; i++){
 int distance = depthPixels[i].Depth;

//Overlay if distance > 400mm and <1200mm
if ((distance > sensor.DepthStream.MinDepth) && (distance < 1200)){
 ColorImagePoint point = mappedDepthLocations[i];
 int baseIndex = (point.Y * 640 + point.X) * 4;

/*the point near the edge of the depth frame correspond to a
pixel beyond the edge of the color frame. We verify that the point
coordinates lie within the color image. */
if ((point.X >= 0 && point.X < 640) &&
 (point.Y >= 0 && point.Y < 480)){

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[41]

 //Red overlay + depth image + grid
 bitMapBits[baseIndex + 2] =
 (byte)((bitMapBits[baseIndex + 2] + 255) >> 1);
}}}
//draw the WritableBitmap
 bitMap.WritePixels(new Int32Rect(0, 0,
 bitMap.PixelWidth, bitMap.PixelHeight),
 bitMapBits, bitMap.PixelWidth * sizeof(int), 0);
 this.mappedImage.Source = bitMap;}}

For a green overlay without a grid we could use: bitMapBits[baseIndex + 1] =
(byte)((bitMapBits[baseIndex] + 255) >> 1. For a simple blue overlay without
depth data we could use: bitMapBits[baseIndex] = 255;

In the following picture, the man is overlapped by a red color and a grid because he
is located between 40 cm and 1.2 m from the sensor. We can notice that there isn't an
overlay on a portion of the right hand and forearm because depth and color frames
come from different sensors, for this pixels date in the two frames may not always
line up exactly.

Overlapping entities located between 40 cm and 1.2 m with a red grid

With the CordinateMapper API we could easily implement a background
subtraction technique with full motion tracking. If necessary, we can also map
depth data on frames captured with external full HD color camera for enhanced
green screen movie studio capabilities.

www.it-ebooks.info

http://www.it-ebooks.info/

Starting with Image Streams

[42]

Summary
In this chapter we learned how to start building a Kinect project using Visual Studio,
and we focused on how to handle color streams and depth streams.

We managed the KinectSensors_StatusChanged event handler to retrieve the
potential active Kinect sensor and we learned how to start the sensor using the
KinectSensors.Start() method.

Thanks to the KinectSensors.ColorStream.Enable(ColorImageFormat) and
the event handler attached to the KinectSensors.ColorFrameReady, we started to
manipulate the color stream data provided by the Kinect sensor. We then had some
fun applying custom effects to the color stream data.

We went through scenarios where retrieving color frames using the KinectSensors.
ColorFrameReady could cause issues, and we introduced the polling technique using
the ColorImageFrame OpenNextFrame (int millisecondsWait) API instead.

We introduced the SDK V 1.6 new API ColorStream.CameraSettings for tuning
the images provided by the Kinect sensor.

Using the ColorImageFrame.Format property, we detailed the different color
image formats handled by the sensor and the detailed actions we need
to implement for handling raw formats such as Bayer and YUV.

We then looked at the depth stream data and managed the same listening to the
DepthFrameReady event. Handling the DepthRange Range property, we then
managed the depth of the pixels in the DepthImageFrame.

Using the CoordinateMapper.MapDepthFrameToColorFrame API we calibrated
depth and color frames. We also learned how to map depth data on color image
in order to enhance an object at a predefined distance or eventually remove the
background.

In the next chapter we will explore the skeleton stream and its features. In particular
we will walk through how to manage the skeleton stream in order to associate user's
gestures with actions.

Before jumping to the next chapter we encourage you to develop all the applications
of this chapter. The techniques and the process applied in this chapter are substantial
for the exercises developed in the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Skeletal Tracking
Skeletal tracking allows applications to recognize people and follow their actions.
Skeletal tracking combined with gesture-based programming enables applications to
provide a natural interface and increase the usability and ease of the application itself.

In this chapter we will learn how to enable and handle the skeleton data stream. For
instance, we will address the following:

• Tracking users by analyzing the skeleton data streamed by Kinect and
mapping them to the color stream

• Understanding what joints are and which joints are tracked in the near and
seated mode

• Observing the movements of the tracked users to detect simple actions

Mastering the skeleton data stream enables us to implement an application by
tracking the user's actions and to recognize the user's gestures.

The Kinect sensor, thanks to the IR camera, can recognize up to six users in its field
of view. Of these, only up to two users can be fully tracked, while the others are
tracked from one single point only, as demonstrated in the following image:

Tracking up to six users in the field of view

www.it-ebooks.info

http://www.it-ebooks.info/

Skeletal Tracking

[44]

Tracking users
The application flow for tracking users is very similar to the process we described in
the color frame and depth frame management:

1. Firstly, we need to ensure that at least one Kinect sensor is connected.
2. Secondly, we have to enable the stream (in this case the skeleton one).
3. And finally, we need to handle the frames that the sensor is streaming

through the relevant SDK APIs.

In this chapter we will mention only the code that is relevant to skeletal tracking.
The source code attached to the book does include all the detailed code and we can
refer to the previous chapter to refresh ourselves on how to address step 1.

To enable the skeleton stream, we simply invoke the KinectSensor.
SkeletonStream.Enable() method.

The Kinect sensor streams out in the skeleton stream's skeleton tracking data. This
data is structured in the Skeleton class as a collection of joints. A joint is a point at
which two skeleton bones are joined. This point is defined by the SkeletonPoint
structure, which defines a 3D position—or point defined in meters by the three
values (x,y,z)—in the skeleton space. We have up to twenty joints per single skeleton.
A detailed list of the joint types is defined by the JointType enumeration at http://
msdn.microsoft.com/en-us/library/microsoft.kinect.jointtype.aspx.

We are going to store the skeleton data in the private Skeleton[] skeletonData
array that we size as per the sensor.SkeletonStream.FrameSkeletonArrayLength
property. This property provides the total length of the skeleton data buffer for the
SkeletonFrame class and enables skeleton tracking to fully track active skeletons
and/or track the location of active skeletons.

We enable our application to listen to and manage the skeleton stream defining the
void sensor_AllFramesReady(object sender, AllFramesReadyEventArgs e)
event handler attached to the this.sensor.AllFramesReady event.

The following code snippet summarizes the necessary steps to enable the
skeleton stream:

//handle the status changed event for the current sensor.
//All the available status value are defined in the Microsoft.Kinect.
KinectStatus enum
void KinectSensors_StatusChanged(object sender, StatusChangedEventArgs
e)
{

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[45]

 //select the first (if any available) connected Kinect Sensor from
the KinectSensor.KinectSensors collection
 this.sensor = KinectSensor.KinectSensors.FirstOrDefault(s =>
s.Status == KinectStatus.Connected);

 if (null != this.sensor)
 {//enable the skeleton stream
 sensor.SkeletonStream.Enable();

 // Allocate Skeleton data
 skeletonData = new Skeleton[sensor.SkeletonStream.
FrameSkeletonArrayLength];

 // subscribe to the event raised when all frames are ready
 this.sensor.AllFramesReady += sensor_AllFramesReady;

 // Start the sensor
 try
 {
 this.sensor.Start();}
 catch (IOException)
 {
 this.sensor = null; }
 } }

As we have noticed, we subscribed to the AllFramesReady event,
which is raised when all the frames (color, depth, and skeleton) are
ready. We could rather subscribe to the SkeletonFrameReady
event, which is raised when only the skeleton frame is ready. As we
will see soon, we opted for the AllFrameReady event because in our
example, we need to handle both the skeleton and the color frames.
In this example we will manage the skeleton stream reacting to the
frame ready event. We could apply the same consideration debated
for the color frame and approach skeleton tracking using the polling
technique. To do so, we should leverage the SkeletonStream.
OpenNextFrame() method instead of subscribing to the
AllFramesReady event or to the SkeletonFrameReady event.

At this stage the code written in the sensor_AllFramesReady event handler should:

• Handle the color stream data
• Handle the skeleton stream data
• Visualize the skeleton drawing color overlapping the color frame

www.it-ebooks.info

http://www.it-ebooks.info/

Skeletal Tracking

[46]

The following code snippet embeds all the activities aforementioned:

/// <summary>
/// manage the entire stream data received from the sensor
/// </summary>
/// <param name=”sender”></param>
/// <param name=”e”></param>
void sensor_AllFramesReady(object sender, AllFramesReadyEventArgs e)
{
 using (ColorImageFrame colorFrame = e.OpenColorImageFrame())
 { if (colorFrame != null)
 { //copy the color frame's pixel data to the array
 colorFrame.CopyPixelDataTo(this.colorPixels);

 //draw the WritableBitmap
 this.colorBitmap.WritePixels(
 new Int32Rect(0, 0, this.colorBitmap.PixelWidth,
this.colorBitmap.PixelHeight),
 this.colorPixels, this.colorBitmap.PixelWidth *
colorFrame.BytesPerPixel, 0);
 } }

 //handle the Skeleton stream data
 using (SkeletonFrame skeletonFrame = e.OpenSkeletonFrame())
 // Open the Skeleton frame
 { if (skeletonFrame != null && this.skeletonData != null)
 // check that a frame is available
 {
 skeletonFrame.CopySkeletonDataTo(this.skeletonData);
 // get the skeletal information in this frame
 } }

 //draw the output
 using (DrawingContext dc = this.drawingGroup.Open())
 {
 // draw the color stream output
 dc.DrawImage(this.colorBitmap, new Rect(0.0, 0.0, RenderWidth,
RenderHeight));

 //draw the skeleton stream data
 DrawSkeletons(dc);

 // define the limited area for rendering the visual outcome
 this.drawingGroup.ClipGeometry = new RectangleGeometry(new
Rect(0.0, 0.0, RenderWidth, RenderHeight));
 }}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[47]

For all the explanations related to the color stream data and frame, we can refer
to the previous chapter. Let's now focus on the skeleton data stream and how we
visualize them overlapping the color frame.

Copying the skeleton data
Thanks to the SkeletonFrame.CopySkeletonDataTo method, we can copy
the skeleton data to our skeletonData array, where we store each skeleton
as collection of the joints.

We can draw the skeleton data overlapping the color frame on the screen
thanks to an instance of the System.Windows.Media.DrawingContext class.
We obtain this instance calling the Open() method of the System.Windows.Media.
DrawingGroup class.

There are certainly other ways we could obtain the graphical result. Having said that,
the DrawingGroup class provides a handy solution to our problem where we need to
handle a collection of bones and joints that can be activated upon as a single image.

RenderWidth and RenderHeight are two double constants set to 640.0f and
480.0f. We use them to handle the width and height dimensions of the image
we display.

The following code snippet initializes the DrawingImage imageSource and
DrawingGroup drawingGroup variables we use for displaying the graphical
outcome of this chapter's example:

this.drawingGroup = new DrawingGroup();

// Create an image source that we can use in our image control
this.imageSource = new DrawingImage(this.drawingGroup);

// Display the drawing using our image control
imgMain.Source = this.imageSource;

For drawing the skeletons, we loop through the entire skeleton data and we render
it skeleton by skeleton. For the skeletons that get fully tracked, we draw a complete
skeleton composed by bones and joints. For the skeletons that are not able to be
fully tracked, we draw a single ellipse only to highlight their position. We highlight
when a user moves to the edge of the field of view. This provides a visual feedback
indicating the user skeleton has been clipped:

/// <summary>
/// Draw the skeletons defined in the skeleton data
/// </summary>

www.it-ebooks.info

http://www.it-ebooks.info/

Skeletal Tracking

[48]

/// <param name=”drawingContext”>dc used to design lines and ellipses
representing bones and joints</param>
private void DrawSkeletons(DrawingContext drawingContext)
{
 foreach (Skeleton skeleton in this.skeletonData)
 { if (skeleton != null)
 {
 // Fully Tracked skeleton
 if (skeleton.TrackingState == SkeletonTrackingState.
Tracked)
 {
 DrawTrackedSkeletonJoints(skeleton.Joints,
drawingContext); }
 // Recognized position of the skeleton
 else if (skeleton.TrackingState == SkeletonTrackingState.
PositionOnly)
 {
 DrawSkeletonPosition(skeleton.Position,
drawingContext); }

 //handle clipped edges
 RenderClippedEdges(skeleton, drawingContext);
 } } }

We render the fully tracked skeletons using lines to represent bones and ellipses to
represent joints. A section of the body is defined as a set of bones and their related
joints. The following code snippet highlights the mechanism used to render the head
and shoulders. We could apply the same mechanism to render the left arm, the right
arm, the body, the left leg, and the right leg:

/// <summary>
/// Draw the skeleton joints successfully fully tracked
/// </summary>
/// <param name=”jointCollection”>joint collection to draw</param>
/// <param name=”drawingContext”>design the graphical output</param>
private void DrawTrackedSkeletonJoints(JointCollection
jointCollection, DrawingContext drawingContext)
{
 // Render Head and Shoulders
 DrawBone(jointCollection[JointType.Head],
jointCollection[JointType.ShoulderCenter], drawingContext);
 DrawBone(jointCollection[JointType.ShoulderCenter],
jointCollection[JointType.ShoulderLeft], drawingContext);
 DrawBone(jointCollection[JointType.ShoulderCenter],
jointCollection[JointType.ShoulderRight], drawingContext);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[49]

 // Render other bones...

 //Render all the joints
 foreach (Joint singleJoint in jointCollection)
 {
 DrawJoin(singleJoint, drawingContext);
 } }

We render a skeleton identified with its position only using a single azure-colored
ellipse, as defined in the following code snippet:

/// <summary>
/// Draw the skeleton position only
/// </summary>
/// <param name=”skeletonPoint”>skeleton single point</param>
/// <param name=”drawingContext”>dc used to design the graphical
output</param>
private void DrawSkeletonPosition(SkeletonPoint skeletonPoint,
DrawingContext drawingContext)
{
 drawingContext.DrawEllipse(Brushes.Azure, null, this.SkeletonPoint
ToScreen(skeletonPoint), 2, 2); }

The following code demonstrates how we can provide a visual feedback when the
user moves to the edge of the field of view. Thanks to the Skeleton.ClippedEdges.
HasFlag method, the skeletal tracking system provides a feedback whenever the
user skeleton has been clipped on a given edge:

/// <summary>

/// Highlights the edge where the skeleton data have been clipped

/// </summary>

/// <param name=”skeleton”>single skeleton</param>

/// <param name=”drawingContext”>dc used to design the graphical
output</param>

private void RenderClippedEdges(Skeleton skeleton, DrawingContext
drawingContext)

{ //tests wherever the user skeleton has been clipped or not
 if (skeleton.ClippedEdges.HasFlag(FrameEdges.Bottom))

 { // colors the bottom border when the user is reaching it
 drawingContext.DrawRectangle(

www.it-ebooks.info

http://www.it-ebooks.info/

Skeletal Tracking

[50]

 Brushes.Red,

 null,

 new Rect(0, RenderHeight - 10, RenderWidth, 10));

 }

 //manage the other edges
}

As stated previously, we intend a bone to be a line connecting two adjacent
joints. The single joint can assume a TrackingState value defined by the
JointTrackingState enum: NotTracked, Inferred, and Tracked. We define
a bone as tracked if and only if both the joints have TrackingState equal to
JointTrackingState.Tracked. We define a bone as non-tracked if at least one
of its joints has TrackingState equal to JointTrackingState.Inferred. We
are not able to render the bone if any of its joints has TrackingState equal to
JointTrackingState.NotTracked:

/// <summary>
/// draw a bone as line between two given joints
/// </summary>
/// <param name=”jointFrom”>starting joint of the bone</param>
/// <param name=”jointTo”>ending joint of the bone</param>
/// <param name=”drawingContext”>dc used to design the graphical
output</param>
private void DrawBone(Joint jointFrom, Joint jointTo, DrawingContext
drawingContext)
{ if (jointFrom.TrackingState == JointTrackingState.NotTracked ||
 jointTo.TrackingState == JointTrackingState.NotTracked)
 {
 return; // nothing to draw, one of the joints is not tracked
 }

 if (jointFrom.TrackingState == JointTrackingState.Inferred ||
 jointTo.TrackingState == JointTrackingState.Inferred)
 {
 // Draw thin lines if either one of the joints is inferred
 DrawNonTrackedBoneLine(jointFrom.Position, jointTo.Position,
drawingContext);
 }

 if (jointFrom.TrackingState == JointTrackingState.Tracked &&
 jointTo.TrackingState == JointTrackingState.Tracked)
 {
 // Draw bold lines if the joints are both tracked
 DrawTrackedBoneLine(jointFrom.Position, jointTo.Position,
drawingContext);
 }}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[51]

We draw the bone simply by calling the DrawingContext.DrawLine method.
We can use two different colors for differentiating between tracked bones and
non-tracked bones. For example, we can define Pen trackedBonePen = new
Pen(Brushes.Gold, 6) for tracked bones. The following method defines the
way we render tracked bones:

/// <summary>
/// draw a line representing a tracked bone
/// </summary>
/// <param name=”skeletonPointFrom”>starting point of the bone</param>
/// <param name=”skeletonPointTo”>ending point of the bone</param>
/// <param name=”drawingContext”>dc used to design the graphical
output</param>
private void DrawTrackedBoneLine(SkeletonPoint skeletonPointFrom,
SkeletonPoint skeletonPointTo, DrawingContext drawingContext)
{
 drawingContext.DrawLine(this.trackedBonePen, this.SkeletonPointT
oScreen(skeletonPointFrom), this.SkeletonPointToScreen(skeletonPoint
To));
}

Similarly, we can draw the joints as ellipses and differentiate those with
TrackingState equal to JointTrackingState.Tracked from those with
TrackingState equal to JointTrackingState.Inferred or JointTrackingState.
NotTracked. The following code snippet indicates how we can render the joint and
adjust it according to the joints' TrackingState:

 if (singleJoint.TrackingState == JointTrackingState.NotTracked)
 {
 return; // nothing to draw
 }
// singleJoint is the joint to draw
 if (singleJoint.TrackingState == JointTrackingState.Inferred)
 {
 DrawNonTrackedJoint(singleJoint, drawingContext);
 // Draw thin ellipse if the joint is inferred
 }

// drawingContext is the dc used to design the graphical

 if (singleJoint.TrackingState == JointTrackingState.Tracked)
 {
 DrawTrackedJoint(singleJoint, drawingContext);
 // Draw bold ellipse if the joint is tracked
 }

private void DrawTrackedJoint(Joint singleJoint, DrawingContext
drawingContext)

www.it-ebooks.info

http://www.it-ebooks.info/

Skeletal Tracking

[52]

{
 drawingContext.DrawEllipse(
 this.trackedJointBrush,
 null,
 this.SkeletonPointToScreen(singleJoint.Position),
 10, 10);
}

To visualize the single skeletons overlapping the color image in the right position,
we utilize the CoordinateMapper.MapSkeletonPointToColorPoint method,
which maps a point from skeleton space to color space:

/// <summary>
/// Maps a SkeletonPoint to lie within our render space and converts
to Point
/// </summary>
/// <param name=”skelpoint”>point to map</param>
/// <returns>mapped point</returns>
private Point SkeletonPointToScreen(SkeletonPoint skelpoint)
{
 // Convert point to color space.
 // We are assuming our output resolution to be 640x480.
 ColorImagePoint colorPoint = this.sensor.CoordinateMapper.
MapSkeletonPointToColorPoint(skelpoint, ColorImageFormat.
RgbResolution640x480Fps30);
 return new Point(colorPoint.X, colorPoint.Y);
}

We are now ready: our skeletons overlap the color data stream and we can take
a funny x-ray of ourselves. The full list of joints is detailed in the JointType
enumeration available online at http://msdn.microsoft.com/en-us/
library/microsoft.kinect.jointtype.aspx. The joint state is detailed in the
JointTrackingState enumeration available at http://msdn.microsoft.com/en-
us/library/microsoft.kinect.jointtrackingstate.aspx.

The Kinect sensor in its skeletal tracking mode by default selects
the first two recognized users in the field of view. We can use the
AppChoosesSkeletons and ChooseSkeletons members of the
SkeletonStream class to actively choose in the application which
skeleton to track among the six users recognized in the field of view.
We may decide to track the closest skeleton or the skeleton that falls
in a predefined distance interval. The source code attached to this
chapter defines a simple routine for tracking the closest skeleton.
The remaining four skeletons are tracked highlighting the
HipCenter (center, between hips) joint only.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[53]

Default and Seated mode
As we saw in the previous chapter, the Kinect for Windows SDK provides a
near-range feature in order to track people close to the sensor.

First of all, in order to activate the near tracking mode we need to enable the
near-range feature by setting the sensor.DepthStream.Range property to
DepthRange.Near; then by setting the sensor.SkeletonStream property to true.

This mode usually, in addition to tracking users in the range 0.4 – 0.8 m, allows for
greater accuracy up to 3 m than the Default mode.

For scenarios where the user to be tracked is seated, or the lower part of his/her
body is not entirely visible to the sensor, we can enable the Seated mode by setting
the sensor.SkeletonStream.TrackingMode property to SkeletonTrackingMode.
Seated. With this mode, the APIs track only the upper-body part's joints and will
get a NotTracked status for all of the remaining joints.

The following image highlights the twenty joint points for the Default mode and
joints ten joint points for the Seated mode:

Tracking details for a skeleton in Default and Seated mode

It should have been noticeable that enabling the Seated
mode decreases the skeleton frame throughput and hence
decreases the performances. We recommend not to use the
Seated mode to filter out the lower-body joint points.

www.it-ebooks.info

http://www.it-ebooks.info/

Skeletal Tracking

[54]

Detecting simple actions
Let's see now how we can enhance our application and leverage the Kinect sensor's
Natural User Interface (NUI) capabilities.

We implement a manager that, using the skeleton data, is able to interpret a body
motion or a posture and translate the same to an action as "click". Similarly, we could
create other actions as "zoom in". Unfortunately, the Kinect for Windows SDK does
not provide APIs for recognizing gestures, so we need to develop our custom gesture
recognition engine.

Gesture detection can be relatively simple or intensely complex depending on the
gesture and the environment (image noise, scene with more users, and so on).

In literature there are many approaches for implementing gesture recognition, the
most common ones are as follows:

• A neural network that utilizes the weighted networks (Gestures and neural
networks in human-computer interaction, Beale R and Alistair D N E)

• A DTW that utilizes the Dynamic Time Warping algorithm initially
developed for the speech recognition and signal processing (Space-Time
Gestures, T. Darrell and A. Prentland; Spatial-Temporal Features by Image
Registration and Warping for Dynamic Gesture Recognition, Y. Huang, Y ZHU,
G. XU, H. Zhang)

• The Adaptive Template method (Adaptive Template Method for Early
Recognition of Gestures, K. Kawashima, A. Shimada, H. Hagahara, and R. Taniguchi)

• HMMs that utilize statistical classification (Hidden Markov Model for Gesture
Recognition, J. Yang and Y. Xu)

• The Hybrid approach that utilizes a combination of the previously
mentioned approaches

In this chapter we are going to develop the manager for gesture recognition based on
an algorithmic approach that considers a gesture as a sequence of postures defined
by the position of the tracked joints. This algorithm is based on a simplification of the
Adaptive Template method that uses the skeletal tracking data provided by the SDK.
Understanding the complexity of all the approaches previously listed, we decided to
use the algorithm approach because it is simple and suits the scope of this book.

We are going to develop an example where we select an area of the scene captured
by the Kinect color camera of raising our left hand, and then we can drag the selected
area of moving the right hand. The scope of this example is to demonstrate how
we can translate a simple gesture in to a command for the application. Hence, this
example will demonstrate how we can use the Kinect sensor for leveraging NUI in
our applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[55]

The algorithmic approach enables us to define and easily distinguish simple
gestures. It is optimal for tracking uniform movements. The algorithmic approach
does face a few challenges on recognizing more complex gestures such as the swing
movement or drawing a circle.

Every single gesture can be decomposed in to two or more sections (or segments). A
section is a posture at a given time. A single posture is defined as the location of a
given joint in respect to other joints. For example, the gesture of raising the left hand
could be defined by the two sections: we start by having our left and right hands
alongside the body and lower than the shoulders; we finish with the left hand higher
than the left shoulder while the right hand is still lower than the right shoulder.

For simplicity we will decompose our initial SelectionHandLeft gesture in to two
sections that we are defining as the initial section and the final section. To recognize
the SelectionHandLeft gesture we have to first recognize the initial section and
then the final one. Every single section is validated. The single gesture is validated
if and only if all the sections composing the gesture itself are validated. Once the
gesture has been validated, the manager notifies all the observers with the gesture
recognition event.

The code provided in the following code snippet is a custom code for a single section
defined as a class that implements the IgestureSection interface:

//GESTURE'S SECTION INTERFACE
interface IgestureSection
{
 GestureSectionCheck Check(Skeleton skeleton);
}

The initial and final sections of the "Selection Hand Left:" gesture are defined
by the custom code classes, SelectionGestureHandLeftSTARTsection and
SelectionGestureHandLeftENDsection, described in the following code snippets:

class SelectionGestureHandLeftSTARTsection : IgestureSection
{
/// <summary> Validate a gesture's section
/// </summary>
/// <param name=”skeleton”>skeleton stream data</param>
/// <returns>'OK' if gesture is validate, 'KO' otherwise</returns>
public GestureSectionCheck Check(Skeleton skeleton)
 { if (skeleton.Joints[JointType.HandLeft].Position.X <
skeleton.Joints[JointType.ShoulderLeft].Position.X && skeleton.
Joints[JointType.HandRight].Position.Y <
 skeleton.Joints[JointType.ShoulderRight].Position.Y &&
 skeleton.Joints[JointType.HandLeft].Position.Z >

www.it-ebooks.info

http://www.it-ebooks.info/

Skeletal Tracking

[56]

 skeleton.Joints[JointType.ShoulderLeft].Position.Z-0.30f)
 {
 return GestureSectionCheck.ok;
 }
 return GestureSectionCheck.ko;
 }
}

class SelectionGestureHandLeftENDsection : IgestureSection
{public GestureSectionCheck Check(Skeleton skeleton)
 {if (skeleton.Joints[JointType.HandLeft].Position.X <
 skeleton.Joints[JointType.ShoulderLeft].Position.X &&
 skeleton.Joints[JointType.HandRight].Position.Y <
 skeleton.Joints[JointType.ShoulderRight].Position.Y &&
 skeleton.Joints[JointType.HandLeft].Position.Z <
 skeleton.Joints[JointType.ShoulderLeft].Position.Z-0.30f)
 {
 return GestureSectionCheck.ok;
 }
 return GestureSectionCheck.ko;
 }
}

Splitting a single gesture into discrete sections increases the
reliability of selecting and recognizing the right gesture.
We can improve the gesture recognition algorithm
by increasing the level of the status managed by the
Check method to allow a more detailed analysis of the
intermediate movements.

The following code snippet defines our base class for the gestures:

class Gesture
{
 private IgestureSection[] gestureSections;
 private int counterGestureSection = 0;
 private int counterFrame = 0;
 private GestureType gestureType;
 public event EventHandler<GestureEventArgs> GestureRecognized;
 public Gesture(IgestureSection[] gestureSections, GestureType
gestureType)
 {
 this.gestureSections = gestureSections;
 this.gestureType = gestureType;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[57]

 public void Update(Skeleton Data)
 {GestureSectionCheck check =
 this.gestureSections[this.counterGestureSection].Check(Data);
 if (check == GestureSectionCheck.ok)
 {
 if (this.counterGestureSection + 1 < this.gestureSections.
Length)
 {
 this.counterGestureSection++;
 this.counterFrame = 0;
 }
 else
 {
 if (this.GestureRecognized != null)
 {
 this.GestureRecognized(this,
 new GestureEventArgs(this.gestureType));
 this.Reset();
 }
 }
 }
 else if (check == GestureSectionCheck.ko || this.counterFrame
== 60)
 {
 this.Reset();

 }
 else
 {
 this.counterFrame++;
 }
 }

 public void Reset()
 {
 this.counterGestureSection = 0;
 this.counterFrame = 0;
 }

}

 public enum GestureType
 {
 NoGesture,
 SelectionGestureHandLeft
 //ADD OTHER GESTURE TYPE
 }

 //STATE OF GESTURE'S SECTION CHECK
 public enum GestureSectionCheck

www.it-ebooks.info

http://www.it-ebooks.info/

Skeletal Tracking

[58]

 {
 ko,
 ok
 }

 class GestureEventArgs:EventArgs
 {
 public GestureType GestureType
 {
 get;
 set;
 }
 public GestureEventArgs(GestureType gestureType)
 {
 this.GestureType = gestureType;
 }
 }

In the following code we define the gesture manager. In the GestureManager
class construct we define, in a single collection, all the different gestures that the
manager is going to handle and all the sections composing a single gesture. As
previously stated, in our example, the "Selection Hand Left" gesture is composed
of two sections only:

class GestureManager
{

 private List<Gesture> gestures = new List<Gesture>();

 public event EventHandler<GestureEventArgs> GestureRecognized;

 public GestureManager()
 {
 IgestureSection[] SelectionSectionsHandLeft = new
IgestureSection[2];
 SelectionSectionsHandLeft[0] = new
SelectionGestureHandLeftSTARTsection();
 SelectionSectionsHandLeft[1] = new
SelectionGestureHandLeftENDsection();
 Add(SelectionSectionsHandLeft, GestureType.
SelectionGestureHandLeft);

//ADD HERE OTHER GESTURE
 }
 public void Add(IgestureSection[] gestureSections,GestureType
gestureType)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[59]

 {
 Gesture gesture = new Gesture(gestureSections, gestureType);
 gesture.GestureRecognized += gesture_GestureRecognized;
 this.gestures.Add(gesture);
 }

 void gesture_GestureRecognized(object sender, GestureEventArgs e)
 {
 if (this.GestureRecognized != null)
 {
 this.GestureRecognized(this, e);
 }

 ResetAllGestures();
 }

 public void UpdateAllGestures(Skeleton data)
 {
 foreach (Gesture gesture in this.gestures)
 {
 gesture.Update(data);
 }
 }

 public void ResetAllGestures()
 {
 foreach (Gesture gesture in this.gestures)
 {
 gesture.Reset();
 }
 }

To utilize the gesture manager in our application, we need to declare and
instantiate the private GestureManager gestureManager variable and define
the gestureManager_GestureRecognized event handler for the GestureManager.
GestureRecognized event:

void gestureManager_GestureRecognized(object sender, GestureEventArgs
e)
{
 switch (e.GestureType)
 {
 case GestureType.SelectionGestureHandLeft:

 // THING TO DO WHEN THIS GESTURE WAS RECOGNIZED
 // ADD HERE ALL THE GESTURE TO BE MANAGED
 default:
 break;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Skeletal Tracking

[60]

Finally, anytime the skeleton data stream is providing a new frame, we need to
update the gesture manager and analyze the frame itself to detect potential new
gestures or sections. We add the following code snippet that is needed at the end
of the sensor_AllFramesReady event handler:

// update the gesture manager
if (skeletonData != null)
{
foreach (var skeleton in this.skeletonData)
{if (skeleton.TrackingState != SkeletonTrackingState.Tracked)
 continue;
 gestureManager.UpdateAllGestures(skeleton);
}
}

Joint rotations
We may face some scenarios where a given action needs to be designed according to
joint rotations. The Kinect sensor is able to capture the hierarchical (rotation of the
joint axis with regard to its parent joint) and absolute (rotation of the joint axis with
regard to the Kinect sensor) joint rotations.

Discussing the joint rotations goes beyond the scope of this book and we recommend
you review the SDK v1.6 documentation for a complete description of joint rotations
(http://msdn.microsoft.com/en-us/library/hh973073.aspx).

During our tests we have been noticing that there is some noise in the joint positions
streamed by the skeletal tracking system. An important step for improving the
quality of skeletal tracking is to use a noise reduction filter. Applying the filter before
the analysis of the skeletal tracking data helps to remove a part of the noise from the
joint data. Such filters are called smoothing filters and the process is called skeletal
joint smoothing. A full and in-depth study of skeletal joint smoothing is available
in the Microsoft White Paper at http://msdn.microsoft.com/en-us/library/
jj131429.aspx.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[61]

We can certainly share at this stage the smoothing parameters we have been testing
for optimizing the joint rotation recognition in some of the proof of concepts
developed in the past:

// Typical smoothing parameters for the bone orientations:
var boneOrientationSmoothparameters = new TransformSmoothParameters
{ Smoothing = 0.5f,
 Correction = 0.8f,
 Prediction = 0.75f,
 JitterRadius = 0.1f,
 MaxDeviationRadius = 0.1f };
// Enable skeletal tracking
sensor.SkeletonStream.Enable(boneOrientationSmoothparameters);

Using the Kinect sensor as a Natural User Interface device

The source code attached to this chapter provides a fully-functional
example, where we demonstrate how simple user's actions can be
combined to address a real scenario and utilize the Kinect sensor as a
Natural User Interface for a complex application.
In the proposed example, we select a portion of the color camera stream
data of raising our left or right hand. The selected portion of the color
stream data can then be dragged within the field of view using the other
hand (the right hand if we selected using the left one and vice versa).

www.it-ebooks.info

http://www.it-ebooks.info/

Skeletal Tracking

[62]

Summary
In this chapter we learned how to track the skeletal data provided by the Kinect
sensor and how to interpret them for designing relevant user actions.

With the example developed in this chapter, we definitely went to the core of
designing and developing Natural User Interfaces.

Thanks to the KinectSensors.SkeletonStream.Enable() method and the
event handler attached to KinectSensors.AllFramesReady, we have started to
manipulate the skeleton stream data and the color stream data provided by the
Kinect sensor and overlap them.

We addressed the SkeletonStream.TrackingMode property for tracking users
in Default (stand-up) and Seated mode. Leveraging the Seated mode together
with the ability to track user actions is very useful for application-oriented people
with disabilities.

We went through the algorithmic approach for tracking user's actions and
recognizing user's gestures and we developed our custom gesture manager.
Gestures have been defined as a collection of movement sections for increasing the
reliability of the gesture engine. The gestures dealt with in this chapter are simple
but the framework we developed can handle more articulated gestures based on
discrete movements. Alternative approaches such as the neural network approach
or the template-based approach should be considered in cases where the gestures to
track are more complex and cannot be decomposed easily in discrete, well-defined
movements. This chapter listed a set of references we could use to understand and
explore these alternative approaches.

In the code built on this chapter, together with the full version attached to the book, we
demonstrated how we could control the skeleton and color stream data and interact
with the objects in the Kinect sensor's field of view. This represents a starting point
for delivering an augmented reality experience. We encourage you to enhance the
example developed in this chapter. You may want to embed content search capabilities
in the application and submit queries related to the objects you interact with.

In the next chapter we will explore the voice tracking data to enhance the example
developed in this chapter, and we will develop what is a real multimodal interface
(voice plus gestures to interact with the application).

Before jumping in to the next reading, we encourage you to develop all the
applications in this chapter. You may want to consider the application proposed
in this chapter as the starting point to develop an application that can help you to
virtually redesign the layout of your room or garage.

www.it-ebooks.info

http://www.it-ebooks.info/

Speech Recognition
In the previous chapter we saw how to use the Kinect sensor skeleton tracker
for providing inputs to our application. In this chapter we will explicate how
to use the Kinect sensor's speech recognition capability as an additional natural
interface modality in our applications. Speech recognition is a powerful interface
that increases the adoption of software solutions by users with disabilities. Speech
recognition can be used in working environments where the user can perform
his/her job or task away from a traditional workstation.

In this chapter we will cover the following topics:

• The Kinect sensor audio stream data
• Grammars defined by XML files and programmatically
• How to manage the Kinect sensor beam and its angle

The Microsoft Kinect SDK setup process includes the installation of the speech
recognition components.

The Kinect sensor is equipped with one array of four microphone devices.

The array of microphones can be handled using the code libraries released by
Microsoft since Windows Vista. These libraries include Voice Capture DirectX
Media Object (DMO) and the Speech Recognition API (SAPI).

In managed code, Kinect SDK v1.6 provides a wrapper extending the Voice Capture
DMO. Thanks to the Voice Capture DMO, Kinect provides capabilities such as:

• Acoustic echo cancellation (AEC)
• Automatic gain control (AGC)
• Noise suppression

The Speech Recognition API is the development library that allows us to use the built-
in speech recognition capabilities of the operating system while developing our custom
application. These APIs can be used with or without the Kinect sensor and its SDK.

www.it-ebooks.info

http://www.it-ebooks.info/

Speech Recognition

[64]

Speech recognition
Let's understand what a speech recognition process is and how it works.

The goal of the speech recognition process is to convert vocal commands spoken by
the user into actions performed by the application. The speech recognition process
is executed by a speech recognizer engine that analyzes the speech input against
predefined grammar.

The scope of the speech recognizer engine is to verify that the received speech input
is a valid command. A valid command is one that satisfies the syntactic and semantic
rules defined by grammar. A valid command recognized by the speech recognizer
engine is then converted into actions that the application can execute.

Grammars
Grammar defines all the rules and the logical speech statements we want to apply in
our specific situations. In order to accept and process more natural speaking styles
and improve the user experience, we should aim to define flexible grammars.

The grammar we use is based on the standard defined by the W3C Speech
Recognition Grammar Specification Version 1.0 (SRGS). This grammar is defined
using XML files. The detailed specifications of the grammar and the XML schema are
published at http://www.w3.org/TR/speech-grammar.

A simple grammar sample
Let's introduce a simple grammar structured as a list of rules that declares the words
and/or phrases used by the speech recognition engine to analyze the speech input.

Our goal is to define a set of commands that the user can enunciate. We list all the
commands as words and/or phrases in the grammar file. The speech engine is going
to analyze the Kinect sensor audio stream data and map them against the commands
list. Once a given command is recognized with sufficient confidence, we then execute
the action associated to the command.

The following XML file defines the rules of our simple grammar. The grammar is
implemented using two distinct semantic categories: UP and DOWN. Within any
single category we can define one or more as synonymous using the <item> node
(for example, up, move up, and tilt up are all synonymous and the speech engine
treats them in the same way):

<grammar version="1.0" xml:lang="en-US" root="rootRule" tag-
format="semantics/1.0-literals" xmlns="http://www.w3.org/2001/06/
grammar">

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[65]

 <rule id="rootRule">
 <one-of>
 <item>
 <tag>UP</tag>
 <one-of>
 <item> up </item>
 <item> move up </item>
 <item> tilt up </item>
 </one-of>
 </item>
 <item>
 <tag>DOWN</tag>
 <one-of>
 <item> down </item>
 <item> move down </item>
 <item> tilt down </item>
 </one-o>
 </item>
 </one-of>
 </rule>
</grammar>

Instead of using an XML file, we could create grammar
programmatically as demonstrated in the following code snippet:

var commands = new Choices();
commands.Add(new SemanticResultValue("up",
"UP"));
commands.Add(new SemanticResultValue("move up",
"UP"));
commands.Add(new SemanticResultValue("tilt up",
"UP"));
commands.Add(new SemanticResultValue("down",
"DOWN"));
// etc.
var gb = new GrammarBuilder { Culture =
ri.Culture };
gb.Append(commands);
var g = new Grammar(gb);

The grammar can be amended programmatically too. We may
decide to change the grammar while our application is running.

www.it-ebooks.info

http://www.it-ebooks.info/

Speech Recognition

[66]

There are scenarios where we could use rules and semantic definitions to organize
grammar's content into logical groupings. This approach is very useful for
decreasing the amount of information to be processed. For instance, we could
imagine a video game where we need to add or remove words and/or phases per
each specific stage or level of the video game.

Please be aware that in a Visual Studio project, it is not
sufficient to include the XML file containing the grammar.
In order to consume the grammar, we need to include the
XML file as the project's resource. Otherwise the grammar
will not be recognized.

We can load the grammar invoking the constructor of the Microsoft.Speech.
Recognition.Grammar class.

It is possible to load (or unload) simultaneously more than one grammar set
in a given speech recognition engine. (Using the SpeechRecognitionEngine.
UnloadAllGrammar() method we can unload all the grammar sets currently
associated to our speech recognition engine).

The Microsoft.Speech library
Even though we could find various similarities between the System.Speech library
and the Microsoft.Speech one, we need to use the latter one as it is optimized for
the Kinect sensor. Having said that, it is worth noticing that the Microsoft.Speech
library's recognition engine doesn't support DictationGrammar (dictation model),
which is instead supported in System.Speech.

Once we have defined the grammar, we can load the same in our speech recognizer
engine. Then we need to handle the SpeechRecognized event (raised when the
speech input has been recognized against one of the semantic categories defined in
the grammar) and the SpeechRecognizedRejected event (raised when the speech
input cannot be recognized against any of the semantic categories).

The following code snippet demonstrates how we initialize the speech recognizer
engine. The speech recognizer engine needs to be initialized after streaming data
from the Kinect sensor has been started.

For simplicity, we do not report here all the code for starting the Kinect sensor, as
it is the same discussed in the previous chapters. Having said that, the source code
attached to this chapter includes all the full functioning initialization code.

Let's review the standard approach published by Microsoft at http://msdn.
microsoft.com/en-us/library/jj131035.aspx for managing speech recognition.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[67]

The instance of the SpeechRecognitionEngine class is obtained thanks to the
RecognizerInfo class. The RecognizerInfo class provides information about
a SpeechRecognizer or SpeechRecognitionEngine instance. In order to retrieve
all the information associated to the Kinect sensor recognizer, we create the
RecognizerInfo class instance calling the GetKinectRecognizer method
(detailed in the second code snippet):

RecognizerInfo ri = GetKinectRecognizer();

if (null != ri){
 this.speechEngine = new SpeechRecognitionEngine(ri.Id);

 using (var memoryStream =
 new MemoryStream(
 Encoding.ASCII.GetBytes(Properties.Resources.SpeechGrammar)))
 {
 var g = new Grammar(memoryStream);
 speechEngine.LoadGrammar(g);
 }

 speechEngine.SpeechRecognized += SpeechRecognized;
 speechEngine.SpeechRecognitionRejected += SpeechRejected;

 speechEngine.SetInputToAudioStream(
 sensor.AudioSource.Start(),
 new SpeechAudioFormatInfo
 (EncodingFormat.Pcm, 16000, 16, 1, 32000, 2, null));
 speechEngine.RecognizeAsync(RecognizeMode.Multiple);
 }
 else
 {
 //TO DO WHEN NO SPEECH RECOGNIZED
 }
 }

The GetKinectRecognizer method retrieves the speech recognizer engine
parameters that better suit the Kinect sensor audio stream data. The optimal
speech recognition engine for the Kinect sensor is obtained from the
SpeechRecognitionEngine.InstalledRecognizers() collection of speech
recognizer engines available on our machine:

private static RecognizerInfo GetKinectRecognizer()
{
 foreach (RecognizerInfo recognizer in SpeechRecognitionEngine.
InstalledRecognizers())
 {
 string value;
 recognizer.AdditionalInfo.TryGetValue("Kinect", out value);

www.it-ebooks.info

http://www.it-ebooks.info/

Speech Recognition

[68]

 if ("True".Equals(value, StringComparison.OrdinalIgnoreCase)
&& "en-US".Equals(recognizer.Culture.Name, StringComparison.
OrdinalIgnoreCase))
 {
 return recognizer;
 }
 }

 return null;
}

The SpeechRecognitionEngine.SetInputToAudioStream method contained in
the Microsoft.Speech.Recognition namespace assigns the Kinect Sensor audio
stream using sensor.AudioSource.Start() as the input for the current speech
recognizer engine instance.

The parameters' values used in our example for setting SpeechAudioFormatInfo
are as follows:

• The encoding format is Pulse Code Modulation (PCM)
• 16000 samples captured per second
• Every single sample is sized on 16 bits
• We listen to 1 channel
• An average bitrate of 32 KB/s
• 2 bytes for block alignment

The speech recognition can be performed both synchronously and asynchronously.
The RecognizeAysnc method is for async recognition, where you need an
application to be responsive while the speech recognition engine is performing
its job. The Recognize method is for sync operations and can be used when the
responsiveness of the application is not a concern.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[69]

The RecognizeMode enum value can be set to either Single
or Multiple. The value Single ensures the speech recognizer
engine performs only a single operation; whereas setting the value
to Multiple will have the recognition to continue to recognize and
will not terminate after completion of one speech recognition. In our
example, the language and culture used is English en-US. The
Kinect sensor supports additional acoustic allowing speech recognition
in several locales such as en-GB, en-IE, en-AU, en-NZ, en-CA, French
fr-FR, fr-CA, Germany de-DE, and Italian it-IT. The complete list and
all the related components—packaged individually—are available
at http://www.microsoft.com/en-us/download/details.
aspx?id=34809.
For utilizing a different language we need to change the en-US value
in the GetKinectRecognizer method and the grammar file. Please
note that this setting is detached from the globalization setting defined
at operating system level.

The SpeechRecognized event handler handles the result of the speech input analysis
and its level of confidence. The SpeechRecognizedEventArgs event argument
provides the outcome of the speech recognition through the RecognictionResult
Result property.

By testing the SpeechRecognizedEventArgs.Result.Semantics.Value value and
assessing SpeechRecognizedEventArgs.Result.Confidence, we can perform the
appropriate actions and execute the commands specified in the grammar.

We have to notice that the value of the SpeechRecognizedEventArgs.Result.
Confidence property provides the level of confidence the speech bestows on the
computed result. The case of Confidence = 1 (100 percent) indicates that the
engine is completely confident of what was spoken. On the other end, the case
of Confidence = 0 (0 percent), the engine completely lacks confidence.

While performing our example we were in an environment where we could assume
a low level of accuracy. For this reason we defined a threshold of 30 percent (0.3).
In case we obtain a confidence value lower than the threshold, we reject the result.

www.it-ebooks.info

http://www.it-ebooks.info/

Speech Recognition

[70]

It is clear that the threshold is critical to define the level of confidence required to
accept the speech recognition process' result. Identifying the right threshold value is a
mindful decision we need to take, trading-off elements such as the type of application
(its criticality), as well as the environment where the Kinect sensor is operating.

We strongly recommend performing a tuning session
before finalizing the threshold value.

private void SpeechRecognized(object sender,
SpeechRecognizedEventArgs e)
{
 // Speech utterance confidence below which we treat speech as if
it hadn't been heard
 const double ConfidenceThreshold = 0.3;

 if (e.Result.Confidence >= ConfidenceThreshold)
 {
 switch (e.Result.Semantics.Value.ToString())
 {
 case "UP":
 tbRecognizer.Text = "Recognized 'UP' @ " + e.Result.
Confidence;
 //we increase the kinect elevation angle of 2 degree
 this.sensor.ElevationAngle = (int)(Math.Atan(previousA
ccelerometerData.Z / previousAccelerometerData.Y) * (180 / Math.PI) +
2);
 break;

 case "DOWN":
 tbRecognizer.Text = "Recognized 'DOWN' @ " + e.Result.
Confidence;
 //we decrease the kinect elevation angle of 2 degree
 this.sensor.ElevationAngle = (int)(Math.Atan(previousA
ccelerometerData.Z / previousAccelerometerData.Y) * (180 / Math.PI) -
2);;
 break;

 } }}

The previous code snippet details our SpeechRecognized event handler
implementation. We perform the commands related to the matched grammar
semantic if and only if the confidence provided by the speech recognizer engine is
above the 0.3 threshold value.

We will notice that we do not need to test all the grammar entries, but instead focus
on the semantic categories only. The entire related synonyms are handled by the
speech recognition engine itself as a whole:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[71]

The orientation axis of the Kinect sensor's accelerometer

In our example we attach to the UP and DOWN commands to actions we want to
perform against the Kinect sensor accelerometer. The Kinect for Windows Sensor
is equipped with a 3-axis accelerometer configured for a 2g range, where g is the
acceleration due to gravity. The axis' orientation is highlighted in the previous image.
The accelerometer enables the sensor to report its current orientation computed with
respect to gravity.

Testing the accelerometer data can help us to detect when the sensor is in an unusual
orientation. We may be able to use the angle between the sensor and the floor plane
and adjust the 3D projection's data in augmented reality scenarios. The accelerometer
has a lower limit of 1 degree accuracy. In addition, the accuracy is slightly
temperature-sensitive, with up to 3 degrees of drift over the normal operating
temperature range. This drift can be positive or negative, but a given sensor will
always exhibit the same drift behavior. It is possible to compensate for this drift
by comparing the accelerometer's vertical data (the y axis in the accelerometer's
coordinate system) and the detected floor plane depth data, if required.

We can control programmatically the Kinect sensor's field of view using the tilt
motor in the sensor. The motor can vary the orientation of the Kinect sensor with
an angle of +/-27 degrees. The tilt is relative to gravity rather than relative to
the sensor base. An elevation angle of zero indicates that the Kinect is pointing
perpendicular to gravity.

In our example we combine three different Kinect sensor capabilities to simulate a
complex scenario:

• Speech recognition enables us to issue commands to the Kinect sensor using
voice as natural interface—this is demonstrated by the semantics UP and
DOWN in our SpeechRecognized event handler implementation.

www.it-ebooks.info

http://www.it-ebooks.info/

Speech Recognition

[72]

• The Kinect sensor's accelerator provides the current value for the elevation
angle of the tilt monitor. The following formula computes the current
elevation angle:
Math.Atan(previousAccelerometerData.Z /
previousAccelerometerData.Y) * (180 / Math.PI)

Where:

 ° previousAccelerometerData is the latest
accelerometer data captured using the KinectSensor.
AccelerometerGetCurrentReading method

 ° In the Kinect sensor's orientation is a right-handed coordinate system
centered on the sensor with positive z in the direction to where the
sensor is pointing

• We adjust the Kinect sensor's orientation using the KinectSensor.
ElevationAngle property.

At the time of writing this book, the KinectSensor.
ElevationAngle getter had a bug, and it would raise a system
exception every time we tried to access it. Hence, to increase (decrease)
the Kinect sensor's elevation angle, it is not possible to use the the
simple statement KinectSensor.ElevationAngle += value.

In addition to the SpeechRecognized event handler implementation, we recommend
to implement the SpeechRejected event handler too, and provide the relevant
feedback that the recognition has been rejected:

/// <summary>
/// Handler for rejected speech events.
/// </summary>
/// <param name="sender">object sending the event.</param>
/// <param name="e">event arguments.</param>
private void SpeechRejected(object sender,
SpeechRecognitionRejectedEventArgs e)
{
 //Provide a feedback of recognition rejected
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[73]

In order to increase the reliability and overall quality of our examples, we suggest
to detach the SpeechRecognized and SpeechRejected event handlers and to stop
the recognition activities once we close or unload the current window. The following
code snippet provides a clean closure of the recognition process we may want to
attach to the Window.Closing or Window.Unload event:

if (this.sensor != null)
{
 this.sensor.AudioSource.Stop();
 this.sensor.Stop();
 this.sensor = null;
}
if (null != this.speechEngine)
{
 this.speechEngine.SpeechRecognized -= SpeechRecognized;
 this.speechEngine.SpeechRecognitionRejected -= SpeechRejected;
 this.speechEngine.RecognizeAsyncStop();
}

We can certainly combine the Kinect sensor's speech recognition capabilities with the
other strengths provided by the Kinect sensor itself.

For instance, we could enhance the example developed during the previous chapter
and make a more fluid and natural way to select the image section.

The following grammar defined as an XML file represents the starting point to
change the user experience of the example developed in Chapter 3, Skeletal Tracking.

<grammar version="1.0" xml:lang="en-US" root="rootRule" tag-
format="semantics/1.0-literals" xmlns="http://www.w3.org/2001/06/
grammar">
 <rule id="rootRule">
 <one-of>
 <item>
 <tag>SelectLEFT</tag>
 <one-of>
 <item> select left </item>
 <item> track left </item>
 </one-of>
 </item>
 <item>
 <tag>SelectRIGHT</tag>
 <one-of>
 <item> select right </item>
 </one-of>
 </item>

www.it-ebooks.info

http://www.it-ebooks.info/

Speech Recognition

[74]

 <item>
 <tag>Deselect</tag>
 <one-of>
 <item> deselect </item>
 </one-of>
 </item>
 </one-of>
 </rule>
</grammar>

The following code snippet is the alternative or integration to the Chapter 3 example's
gesture commands:

private void SpeechRecognized(object sender, SpeechRecognizedEventArgs
e)
{ const double ConfidenceThreshold = 0.3;

 if (e.Result.Confidence >= ConfidenceThreshold)
 {
 switch (e.Result.Semantics.Value.ToString())
 {
 case "SelectLEFT":
 if (!selected)
 {
 currentHand = JointType.HandLeft;
 selected = true;
 }
 break;
 case "SelectRIGHT":
 if (!selected)
 {
 currentHand = JointType.HandRight;
 selected = true;
 }
 break;
 case "Deselect":
 selected = false;
 frameSelected = false;
 startDrag = false;
 break;

 } }}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[75]

Tracking audio sources
The Kinect sensor captures sounds from every direction. Having said that, the audio
capture hardware has a specified area (as an imaginary cone) from where it is able to
capture audio signals the best. Audio waves that propagate through the length of the
cone can be separated from the audio waves that travel across the cone.

Quite often we may find ourselves to be in noisy environments where different
background noises and irrelevant sounds could corrupt the quality of our audio
stream data analysis and/or the speech recognition. In this type of scenario we
can improve the outcome of our application by pointing the cone in the direction
of the audio that our application is most interested in capturing. In fact, we can
improve the ability to capture and separate that audio source from other competing/
distracting audio sources.

The Kinect sensor provides a few APIs for managing the audio source beam angle
as well as the sound source angle. Using those APIs, we can set the direction of the
imaginary cone and improve our ability to capture a specific audio source.

In the example we develop in this paragraph, we demonstrate how to use—at its
best—the KinectAudioSource class and its members.

In our example we will combine the color stream data, the skeletal tracking, the
audio stream data, and the speech recognition to provide a whole and articulated
user experience.

Sound source angle
For simplicity, in the following code snippet we include only the part of codes that
are relevant for the KinectAudioSource class. The complete example is included in
this chapter's source code. The this.sensor instance is obtained as detailed in the
previous chapters:

 /// BeamAngleChanged event
 this.sensor.AudioSource.BeamAngleChanged += this.
AudioSourceBeamChanged;

 /// BeamAngleChanged event
 this.sensor.AudioSource.SoundSourceAngleChanged += this.
AudioSourceSoundSourceAngleChanged;

 ///TUNING///

 //Enables automatic gain control. The default value is false (no
automatic gain control).
 this.sensor.AudioSource.AutomaticGainControlEnabled = true;

www.it-ebooks.info

http://www.it-ebooks.info/

Speech Recognition

[76]

 //Gets or sets the echo cancellation and suppression mode. The
default value is EchoCancellationMode.None.
 this.sensor.AudioSource.EchoCancellationMode =
EchoCancellationMode.CancellationAndSuppression;
By default noise suppression is enabled.
 //this.sensor.AudioSource.NoiseSuppression = true ;

 // Start streaming audio
 this.audioStream = this.sensor.AudioSource.Start();

 // Include the speech recognition initialization code snippet
 // defined in the previous paragraph HERE
}

The KinectAudioSource class supports three different modes for managing
the KinectAudioSource.BeamAngle property. These modes are defined by the
KinectAudioSource.BeamAngleMode property and detailed as per the following table:

Mode Description
Automatic
(default value)

Sets a beam angle and adapts it to the strongest audio source. It is
recommended to use this setting for a low-volume loudspeaker and/or
isotropic (with the same value when measured in different directions)
background noise.

Adaptive Sets the beam angle and adapts it to the strongest audio source. It is
recommended to use this setting for a high-volume loudspeaker and/or
higher noise levels.

Manual Sets the beam angle to point in the direction of the audio source of
interest.

Working on the KinectAudioSource properties such as
AutomaticGainControlEnabled, EchoCancellationMode,
EchoCancellationSpeakerIndex, and NoiseSuppressionManual,
we can tune the audio source settings.

Handling the KinectAudioSource.BeamAngleChanged and KinectAudioSource.
SoundSourceAngleChanged events, we can take actions for managing the direction
of the imaginary cone and enforce our ability to capture a specific audio source.

Beam angle
Similar to the sound source angle, the beam angle is also defined in the x-z plane of
the sensor perpendicular to the z-axis. The beam angle and the sound source angle
are both updated continuously once the sensor has started streaming audio data
(when the Start method is called).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[77]

In our example we are using the AudioSourceBeamChanged event
handler to simply display—in the tbBeamAngle text block—the value of
BeamAngleChangedEventArgs.BeamAngle.

As highlighted in the following code snippet, in the
AudioSourceSoundSourceAngleChanged event handler we perform two
main activities:

• Capture the level of confidence, which represents the confidence in the
accuracy of the SoundSourceAngle property. This property is updated
continuously after calling the KinectAudioSource.Start method.

• Project the SoundSourceAngle property to the color image captured by
the color stream data. The computation applied for obtaining this projection
(stored in int audioSourcePosition) is approximate and not meant to
be scientific.

/// </summary>
/// <param name="sender">object sending the event.</param>
/// <param name="e">event arguments.</param>
private void AudioSourceSoundSourceAngleChanged(object sender,
SoundSourceAngleChangedEventArgs e)
{

 confidence = new SolidColorBrush();

 // convert the confidence value to a level of transparency.
 // Each value has a range of 0-255.
 confidence.Color = Color.FromArgb((byte)(255 * e.ConfidenceLevel),
255, 0, 0);

 // we assume the -50 degrees match the left end of the image and
 // the +50 angle matches the right end. we linearly adjust all
 //the other values
 // in the interval

 audioSourcePosition = (int)((RenderWidth / 2) + ((RenderWidth / 2)
* e.Angle) / 50);

 tbSourceAngle.Text = string.Format(CultureInfo.CurrentCulture,
Properties.Resources.SourceAngle, e.Angle.ToString("0", CultureInfo.
CurrentCulture));
}

www.it-ebooks.info

http://www.it-ebooks.info/

Speech Recognition

[78]

Within the sensor_AllFramesReady event handler, we draw vertical lines
representing the following:

• The manual beam angle's projection in the image (aqua)
• The sound source angle's projection in the image (red with its transparency

rated against the confidence value)
• The beam angle's projection in the image (green)

Even though the red vertical line is an approximate projection of
the source sound angle, it enables us to assert that there is an offset
between the central point of the camera frame and the central
point of the audio detection. We will notice those audios captured
with a positive angle value are falling further on the right-hand
side of the image, while audios captured with the opposite
negative angle value are not symmetric on the left-hand side of the
image. Hence our assertion: the two centers (the audio stream and
the color stream ones) are misaligned.

void sensor_AllFramesReady(object sender, AllFramesReadyEventArgs e)
{

 //handle ColorImageFrame as in the previous chapters

 //handle the Skeleton stream data as in the previous chapter

 //draw the output
 using (DrawingContext dc = this.drawingGroup.Open())
 {
 // draw the color stream output
 dc.DrawImage(this.colorBitmap, new Rect(0.0, 0.0, RenderWidth,
RenderHeight));

 // Manage the BeamAngleMode.Manual Mode
 if (lstBeamAngleMode.SelectedIndex == 2)
 {
 // Manage the BeamAngleMode.Manual Mode
 if (selected)
 {
 foreach (Skeleton skeleton in this.skeletonData)
 {
 if (skeleton != null)
 {
 Joint rightHand = skeleton.Joints[JointType.
HandRight];

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[79]

 if (rightHand != null && rightHand.
TrackingState == JointTrackingState.Tracked)
 {

 audioManualBeamPosition = (int)
SkeletonPointToScreen(rightHand.Position).X;

 // Track the ManualBeamAngle on the right hand position
 this.sensor.AudioSource.ManualBeamAngle =
 Math.Atan(rightHand.Position.X /
rightHand.Position.Z) * (180 / Math.PI);

 //tbManualBeamAngle.Text = string.
Format(CultureInfo.CurrentCulture, Properties.Resources.
ManualBeamAngle, this.sensor.AudioSource.ManualBeamAngle.ToString("0",
CultureInfo.CurrentCulture));
 break;
 }
 } } }

 // Highlight with an Aqua line the ManualBeamAngle
 dc.DrawRectangle(Brushes.Aqua, null, new Rect(Math.Max(0,
audioManualBeamPosition - ClipBoundsThickness),
 0, ClipBoundsThickness, RenderHeight));
 }

 // Highlight with Red line the SoundSourceAngle
 dc.DrawRectangle(confidence,
 null,
 new Rect(Math.Max(0, audioSourcePosition -
ClipBoundsThickness), 0, ClipBoundsThickness, RenderHeight));

 audioBeamPosition = (int)((RenderWidth / 2) + ((RenderWidth /
2) * this.sensor.AudioSource.BeamAngle) / 50);

 // Highlight with Green line the BeamAngle
 dc.DrawRectangle(Brushes.Green,
 null,
 new Rect(Math.Max(0, audioBeamPosition -
ClipBoundsThickness), 0, ClipBoundsThickness, RenderHeight));

 // define the limited area for rendering the visual outcome
 this.drawingGroup.ClipGeometry = new RectangleGeometry(new
Rect(0.0, 0.0, RenderWidth, RenderHeight));

 } }

www.it-ebooks.info

http://www.it-ebooks.info/

Speech Recognition

[80]

Finally, we use the speech recognition for selecting and localizing the value
of ManualBeamAngle. Voicing the START command, we start to drag the
ManualBeamAngle value, activating the selected = true flag and moving
our skeleton's right hand joint. Voicing the OK command, we confirm the
ManualBeamAngle value, deactivating the selected flag:

/// <summary>
/// Handler for recognized speech events.
/// </summary>
/// <param name="sender">object sending the event.</param>
/// <param name="e">event arguments.</param>
private void SpeechRecognized(object sender, SpeechRecognizedEventArgs
e)
{
 // Speech utterance confidence below which we treat speech as if
 //it hadn't been heard
 const double ConfidenceThreshold = 0.3;

 if (e.Result.Confidence >= ConfidenceThreshold)
 {
 switch (e.Result.Semantics.Value.ToString())
 { case "START":
 tbRecognizer.Text = "Recognized 'START' @ " +
e.Result.Confidence;
 selected = true;
 break;
 case "OK":
 tbRecognizer.Text = "Recognized 'OK' @ " + e.Result.
Confidence;
 selected = false;
 break;
 default:
 tbRecognizer.Text = "";
 break;
 } }}

The ManualBeamAngle value is computed as per the following code snippet:

this.sensor.AudioSource.ManualBeamAngle = Math.Atan(rightHand.
Position.X / rightHand.Position.Z) * (180 / Math.PI);

Notice that the SpeechRecognizedEventArgs.Result.Confidence value decreases
when we set the ManualBeamAngle value away from the angle between our mouth
and the Kinect sensor. SpeechRecognizedEventArgs.Result.Confidence is near to
1 when the ManualBeamAngle value is equal to the angle between our mouth and the
Kinect sensor.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[81]

In order to increase the reliability and overall quality of our examples, we suggest
to detach the AudioSourceBeamChanged and AudioSourceBeamChanged event
handlers and to stop the audio stream data activities once we close or unload the
current window. The following code snippet provides a clean closure of the audio
stream data processing we may want to attach to the Window.Closing or Window.
Unload event:

void MainWindow_Unloaded(object sender, RoutedEventArgs e)
{
 if (this.sensor != null)
 { this.sensor.AudioSource.BeamAngleChanged -=
this.AudioSourceBeamChanged;
 this.sensor.AudioSource.SoundSourceAngleChanged -= this.
AudioSourceSoundSourceAngleChanged;
 this.sensor.AudioSource.Stop();
 this.sensor.Stop();
 this.sensor = null;
} }

The following image highlights the outcome of the example. On the left-hand side,
we notice that the beam angle (green line) and the sound source (the mouth of the
user approximated by the green line) are very close. On the right-hand side, we set
manually the beam angle to a position (cyan line) that is far from the sound source
(the mouth of the user). We can notice how this inducts the Kinect to incorrectly
position the beam angle in the wrong direction (green line):

Projection of the sound source's angle, the beam angle, and the manual one

www.it-ebooks.info

http://www.it-ebooks.info/

Speech Recognition

[82]

Summary
In this chapter we learned how to manage the Kinect sensor audio stream data and
enhance the Kinect sensor's capabilities for speech recognition.

We have been working mainly using the KinectAudioSource class. This class
manages the stream of either raw or modified audio from the microphone array. The
audio stream can be modified to include a variety of algorithms to improve its quality,
including noise suppression, automatic gain control, and acoustic echo cancellation.

First of all we introduced the concept of grammars for converting sounds in
commands. Grammars are defined by XML files or programmatically. For increasing
the quality of the speech recognition process, many times applications use specific
prefixes to improve accuracy. While implementing a grammar, it is a good practice to
define a speech command as a combination of application-specific keywords plus the
actual command. This decreases the chance of treating random words as an actual
speech command.

While working with the Kinect sensor, Microsoft.Speech.Recognition.Grammar
is the class we need to use for defining and managing grammars processed by the
Microsoft.Speech.Recognition.SpeechRecognitionEngine speech recognizer
engine. We worked with the SpeechRecognized and SpeechRecognizedRejected
events for managing the speech recognition process outcome defined as a result and
level of confidence the speech recognition engine associates to the result itself.

The Kinect sensor captures sounds from every direction. Having said that, the sensor is
also able to define an area of focus. Managing the KinectAudioSource.BeamAngle and
KinectAudioSource.BeamAngleMode properties, we optimized the orientation of the
imaginary cone in order to select the most relevant sound source we wanted to track.

Audio source settings can be tuned using the KinectAudioSource properties
such as AutomaticGainControlEnabled, EchoCancellationMode,
EchoCancellationSpeakerIndex, and NoiseSuppressionManual.

Managing the Kinect sensor accelerometer and its ability to move up and down the
tilt motor can help us in optimizing the Kinect audio tracking results.

Speech recognition is a powerful capability handled by the Kinect sensor,
which promotes the sensor to a first-class natural interface device. Combining
its speech recognition capabilities together with its ability to track user's
movements and gestures, Kinect enables us to build a true multimodal interface
across all our examples.

In the last chapter we will focus on how the Kinect Studio can help us on debugging
and analyzing the data stream provided by the Kinect sensor.

www.it-ebooks.info

http://www.it-ebooks.info/

Kinect Studio and
Audio Recording

In the previous chapters, we walked through the journey on how to manage and
master all the data streamed out from the Kinect sensor, starting from managing
the depth and color stream to implementing natural user interface enabled
applications based on gestures and speech recognition.

While implementing the proposed examples, we have been standing up, walking
in our room or office, and letting our colleagues or friends wonder what we
were doing!

Of course, we would never like to discourage doing physical exercises and talking
to our Kinect sensor, but having said so, there are in fact scenarios where we need
to be close to the keyboard. For instance, when things go wrong and we cry for a
passionate look through the source code flow (does that sound like a romantic way
to explain debugging?). Moving back and forward from our keyboard limits our
ability to spot issues. What about when we have to process the same stream of data
over and over again, or, in a development team type of scenario, when we have to
unit test the application in a repetitive manner?

In this appendix we will learn how we can save time coding and testing on Kinect
enabled applications by:

• Recording all the video data coming into an application from a Kinect sensor
with Kinect Studio

• Injecting the recorded video in an application allowing us to test our code
without getting out of our chair over and over again

• Saving and playing back voice commands with a simple custom tool for
enforcing quality on our application’s speech recognition capabilities

www.it-ebooks.info

http://www.it-ebooks.info/

Kinect Studio and Audio Recording

[84]

The Kinect Studio is included in the Kinect for Windows Developer
toolkit. You can download the same from http://www.microsoft.
com/en-us/download/details.aspx?id=27226. You can install
the Kinect for Windows Developer toolkit only after you have installed
the Kinect for Windows SDK.

Kinect Studio – capturing Kinect data
Capturing data streamed out from the Kinect sensor with Kinect Studio is a simple
and intuitive process. We need to run Kinect Studio and the Connect to a Kinect
App & Sensor window, which will enable us to select the Kinect application from
which we want to record the data RGB or depth streams.

Kinect Studio connection dialog

Thanks to this same window we can otherwise select the Kinect application to inject
a stream we had saved earlier.

• Recording Kinect data is the operation we perform for creating, testing
data, or testing the application on the fly.

• Injecting Kinect data is the operation we perform mainly for testing
our application

We need to launch our application in advance to attach the same to Kinect Studio.
In case we haven’t launched our application yet, Kinect Studio will display an empty
Choose an app/sensor pair list. Once we launch our application, we can select the
Refresh button and the Kinect enabled application will eventually be listed.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

[85]

By Kinect enabled applications we mean an application using the
Kinect Sensor and where we have invoked the KinectSensor.
Start() method.

Kinect Studio is able to track Kinect enabled applications wherever they are running
in the debug or release mode. One additional requirement is that Kinect Studio and
the Kinect enabled application should have the same level of authorization.

Once the Kinect enabled application is listed in the Choose an app/sensor pair list,
we can select it and begin the test activities by clicking on the Connect button.

We are now ready to start our record activity against the color and depth data
stream. We will go through the injection operation later.

We can select which stream we want to track, visualize, and eventually play back
using the Kinect Studio main window.

We can still record the depth stream even in cases where our
application is not processing the RGB/depth stream. It is indeed
sufficient to initialize the Kinect sensor and does not disable the IR
stream in order to track the depth stream.
Usually, applications focused on speech recognition and/or audio
beam positioning are not concerned about depth data. We should
disable the IR stream in this scenario to improve the Kinect sensor's
overall performance.

Let’s now take a look at the scenario where we want to record a set of gestures to
perform a repeatable test against our gesture recognition engine:

Main window

www.it-ebooks.info

http://www.it-ebooks.info/

Kinect Studio and Audio Recording

[86]

Select the Record graphical button (Ctrl + R using the keyboard). Kinect Studio starts
to record the data stream from all the input sensors we have selected (color and/or
depth). To stop recording the data stream we simply select the Stop graphical button
(Shift + F5 using the keyboard). Finally, using the Play/Pause graphical button
(Shift + F5 on the keyboard), we can play back the stream data we just recorded.
All the data will be rendered in the Depth Viewer, 3D Viewer, and Color Viewer,
which provide a visual playback of the stream data. We will look more closely at the
viewers window shortly.

We can save the stream data as .xed binary files. By selecting the Save graphical
button (Ctrl + S using the keyboard), we make the test data persistent. The saved
data can be injected in to the application and allows us to test the application without
the need to stand once again in front of the Kinect.

We recommend adopting the approach where we record a single gesture
or key movement per single file. This will allow us to unit test the Kinect
enabled applications.

Let’s open the first recorded gesture. We can open a .xed file using the Open
graphical button (Ctrl + O by the keyboard). We can fetch on a precise frame using
the Kinect Studio timeline. Otherwise, we could select a given portion of the stream
we want to reproduce. We can do this by selecting the starting point on the Kinect
Studio timeline and dragging the mouse to the end point of the interval.

Using the Play/Pause graphical buttons, we can start playing back all the data
contained in the recorded streams. The outcome is visualized in the different
views as the following:

• In the Depth Viewer window we have the stream of the depth camera
mapped with a color palette, which, in the SDK Version 1.6 of the Kinect for
Windows, with colors between blue (for points close to the sensor) and red
(for points far from the sensor). The black color is used for highlighting areas
out of the range or not tracked.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

[87]

Depth Viewer window on left; Color Viewer window on right

• In the Color Viewer window we have the stream captured from the
RGB camera.

• In the 3D Viewer window we have the three-dimensional representation of
the scene captured by the Kinect sensor. The viewer enables us to change the
camera position and to have a different perspective of the very same scene.

3D Viewer from two different perspectives

www.it-ebooks.info

http://www.it-ebooks.info/

Kinect Studio and Audio Recording

[88]

What makes Kinect Studio so vital is not only the fact that the recorded stream data
is reproduced in the viewer, but indeed the fact that it can inject the same data in to
our application. We can, for instance, record the stream data, notice a bug, fix our
code, and then inject the very same stream data to ensure that the issue has been
fixed. Kinect Studio is also very useful to ensure that the way we are rendering the
stream data in our application is faithful. We can compare the graphical output of
our application with the ones rendered by Kinect Studio and ensure that they are
providing the same result, or rationalize the reason why they differ. For instance,
in the following figure, we can understand that the color palette utilized in Kinect
Studio for highlighting the depth points value is different from the one utilized in
the application we developed in Chapter 2, Starting with Image Streams.

Depth Viewer on the left, Depth frame displayed inside app on the right

Audio stream data – recording and
injecting
As stated previously, the Kinect Studio currently delivered by Microsoft does
not support the tracking and injecting of the audio stream data.

In this appendix, we have attached a simple and primitive tool for recording
the speech input and to submit it against the speech recognition engine
and the grammar defined.

We encourage you to take the idea further and to realize a more complex and
user-friendly Kinect Audio/Studio type of application.

The idea behind the tool is very simple. You can record your audio input as a .wav
file and then inject it in to the speech recognition engine and debug/test the audio
stream processing.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

[89]

You may want to use a different .wav file and see how the speech engine recognition
works against other people pronunciation or other environmental characteristics that
differ from the one where you are currently testing your application. Have you ever
thought of developing an application that is capturing commands from a song? Or
what about building a chaos monkey (a small tool able to test the reliability of your
application) type of test injecting a no-sense .wav file in to your application? How is
the application reacting to that?

As you may remember, we enabled the speech recognition process in to Chapter
4, Speech Recognition, calling the key SetInputToAudioStream API of the
SpeechRecognitionEngine class for processing the AudioSource streamed out from
the KinectSensor (please refer to the following code snippet). This enabled our
application to try recognizing all the speech inputs streamed in by the Kinect sensor:

speechEngine.SetInputToAudioStream(
 sensor.AudioSource.Start(),
 new SpeechAudioFormatInfo
 (EncodingFormat.Pcm, 16000, 16, 1, 32000, 2, null));
 speechEngine.RecognizeAsync(RecognizeMode.Multiple);

The SpeechRecognitionEngine class provides the SetInputToWaveFile method
too, which enables us to receive input from a .wav file. So we can load the .wav file
we recorded in advance with the following code:

speechEngine.SetInputToWaveFile(“COMMAND_TO_TEST.WAV”);

The speech recognition process will be the very same one we saw in the previous
chapter. In order to save the audio captured by the Kinect sensors we can utilize the
Recorder class to save the audio stream inside a .wav file format:

 sealed class Recorder
 { static byte[] buffer = new byte[4096];
 static bool isRecording;
 public static bool IsRecording
 { get { return isRecording; }
 set { isRecording = value; }
 }

The data format of a wave audio stream is defined by the WAVEFORMATEX structure:

 struct WAVEFORMATEX
 { public ushort wFormatTag;
 public ushort nChannels;
 public uint nSamplesPerSec;
 public uint nAvgBytesPerSec;
 public ushort nBlockAlign;

www.it-ebooks.info

http://www.it-ebooks.info/

Kinect Studio and Audio Recording

[90]

 public ushort wBitsPerSample;
 public ushort cbSize;
 }

More details on a structure’s members are explained in the Microsoft
references at http://msdn.microsoft.com/en-us/library/
windows/hardware/ff538799(v=vs.85).aspx.
A complete list of WAVE_FORMAT_XXX formats (WAVE_FORMAT_PCM for
one or two channel PCM data) can be found in the Mmreg.h header file.

With the WriteWavHeader method we create the header of the .wav file:

// Support method utilized by WriteWavHeader method
 static void WriteString(Stream stream, string s)
 { byte[] bytes = Encoding.ASCII.GetBytes(s);
 stream.Write(bytes, 0, bytes.Length);
 }

 public static void WriteWavHeader(Stream stream, int
 dataLength)
 { using (MemoryStream memStream = new MemoryStream(64))
 { int cbFormat = 18;
 WAVEFORMATEX format = new WAVEFORMATEX()
 { wFormatTag = 1,
 nChannels = 1,
 nSamplesPerSec = 16000,
 nAvgBytesPerSec = 32000,
 nBlockAlign = 2,
 wBitsPerSample = 16,
 cbSize = 0
 };

 using (var bw = new BinaryWriter(memStream))
 { WriteString(memStream, “RIFF”);
 bw.Write(dataLength + cbFormat + 4);
 WriteString(memStream, “WAVE”);
 WriteString(memStream, “fmt “);

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

[91]

 bw.Write(cbFormat);
 bw.Write(format.wFormatTag);
 bw.Write(format.nChannels);
 bw.Write(format.nSamplesPerSec);
 bw.Write(format.nAvgBytesPerSec);
 bw.Write(format.nBlockAlign);
 bw.Write(format.wBitsPerSample);
 bw.Write(format.cbSize);
 WriteString(memStream, “data”);
 bw.Write(dataLength);
 memStream.WriteTo(stream);
 }
 }}

The WriteWaveFile method converts the Kinect Audio source in the .wav file:

public static void WriteWavFile(KinectAudioSource sourceAudio,
FileStream fileStream)
 { var size = 0;
 //Write header
 WriteWavHeader(fileStream, size);

 using (var audioStream = sourceAudio.Start())
 { while (audioStream.Read(buffer, 0, buffer.Length) > 0
 && isRecording)
 { fileStream.Write(buffer, 0, buffer.Length);
 size += buffer.Length;
 }
 long prePosition = fileStream.Position;
 fileStream.Seek(0, SeekOrigin.Begin);
 WriteWavHeader(fileStream, size);
 fileStream.Seek(0, SeekOrigin.Begin);
 WriteWavHeader(fileStream, size);
 fileStream.Seek(prePosition, SeekOrigin.Begin);
 fileStream.Flush();
 }}
 }}

www.it-ebooks.info

http://www.it-ebooks.info/

Kinect Studio and Audio Recording

[92]

We recall the Recorder class inside our application simply by invoking the
RecordAudio method:

private static object lockObject = new object();
private void RecordAudio()
 {
 lock (lockObject)
 {Recorder.IsRecording = true;
 using (var fileStream = new
 FileStream(“COMMAND.WAV”, FileMode.Create))
 {
 Recorder.WriteWavFile(this.sensor.AudioSource,
 fileStream);
 }
 }
 }

To make our WPF application responsive to the user input and able to record the
audio data streamed in by the Kinect sensor, we need to use background workers.
The following code snippet highlights how to define the background worker and to
invoke the RecordAudio method as the activity to implement when the background
worker executes its work. The complete code source is provided in the code attached
to this appendix:

private BackgroundWorker bgW =
new System.ComponentModel.BackgroundWorker();
…
this.bgW.RunWorkerCompleted += backgroundWorker1_RunWorkerCompleted;
this. bgW.DoWork += backgroundWorker1_DoWork;
…
void backgroundWorker1_DoWork(object sender, DoWorkEventArgs e)
{ RecordAudio(); }
…
Recorder.IsRecording = true;
if (!this.backgroundWorker1.IsBusy)
 {
this.backgroundWorker1.RunWorkerAsync();
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

[93]

Summary
In this appendix we introduced Kinect Studio as a useful tool for testing our Kinect
enabled application.

Kinect Studio can be installed with the Kinect for Windows Developer Toolkit. The
Kinect for Windows SDK is the only software prerequisite for installing the Kinect
for Windows Developer Toolkit. The Kinect for Windows Developer Toolkit is
available as a free download at http://www.microsoft.com/en-us/download/
details.aspx?id=27226.

Kinect Studio provides a simple interface to record and playback RGB and
depth streams from a Kinect.

You can use the Kinect Studio recording capabilities for creating test data for the
color and depth streams. Kinect Studio creates .xed binary files for all the color and
depth data recorded during our testing sessions.

Thanks to the injection capability offered by the Kinect Studio we can test the video
stream of our applications. This enables us to discover bugs and to apply solutions
without the need to be away from our keyboard. As a matter of fact, even though
the Kinect sensor is enabling our application to leverage a powerful multimodal
interface, we are still depending on the keyboard for coding, analyzing performance,
debugging our source code, and creating repeatable scenarios for testing.

Currently, Kinect Studio is not able to record and inject audio stream data.
During this appendix we presented a simple and intuitive approach for testing
the speech recognition process using a .wav file. The audio data streamed out by the
Kinect sensor can be saved in a .wav file. Thanks to the SpeechRecognitionEngine.
SetInputToWaveFile() method, we can exercise the speech recognition engine
using the .wav file previously saved or any other .wav input.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
3D Viewer window 87
<Grid.ColumnDefinitions> tag 24
<Grid.RowDefinitions> tag 24

A
absolute rotation 60
Acoustic Echo Cancellation (AEC) 13, 19
Adaptive mode 76
Adaptive Template method 54
AllFramesReady event 45
Analog to Digital Converter (ADC) 13
audio sources

tracking 75
AudioSourceSoundSourceAngleChanged

event handler 77
audio stream 18
audio stream data

injecting 88-92
recording 88-92

Automatic (default value) mode 76

B
BackgroundWorker.DoWork event 29
BackgroundWorker.RunWorkerAsync()

method 30
BacklightCompensationMode property 31
beam angle 76-81
Brightness property 31

C
CameraSettings class 32
Check method 56

color frame
to depth frame, mapping from 39, 41

ColorFrameReady event 26
color image

editing 28-30
formats 32, 33

ColorImageFrame.Format property 32, 33
ColorImageFrame object 28
color stream

about 23-28
colored image, editing 28-30
color image, formats 32, 33
image, tuning 31, 32
Infrared color image format 33
raw Bayer formats 33, 35
YUV raw format 35

Color Viewer window 87
Connect button 85
Contrast property 31

D
default mode 53
depth camera, Kinect 10, 11
depth image frame

features 18
DepthImageStream class 38
DepthRange.Default 38
DepthRange.Near 38
depth stream

about 17, 18, 23, 36, 37
color frame to depth frame,

mapping from 39-41
DepthRange 38
Extended range 38, 39

Depth Viewer window 86

www.it-ebooks.info

http://www.it-ebooks.info/

[96]

DictationGrammar 66
DirectX Media Object (DMO) 16, 18, 19
DrawingContext.DrawLine method 51
DrawingGroup class 47
DrawingGroup drawingGroup variable 47
DrawingImage imageSource variable 47
DTW 54
Dynamic Time Warping algorithm. See

DTW

E
ExposureTime property 31
Extended range 38, 39

F
FrameInterval property 31

G
gain property 31
gamma property 31
GestureManager class 58
gestureManager_GestureRecognized

event 59
GetKinectRecognizer method 67
grammars

about 64
sample 64-66

H
hardware, Kinect 9
hierarchical rotation 60
HMMs 54
hue property 31
Hybrid approach 54

I
image

tuning 31, 32
Infrared color image format 33
InitializeColorImage method 26, 27
InotifyPropertyChanged interface 31
Int32 DepthRange Range property 38

Int32 Image.PixelDataLength property 27
IR-pass filter 10
IR projector, Kinect 10

J
joint 44
joint rotation 60
JointType enumeration

URL 44

K
Kinect

about 7
audio stream 18, 19
depth camera 10, 11
depth stream 17, 18
drivers 15
hardware overview 9
IR projector 10
microphone array 13
RGB camera 12
sensor 15, 63
skeletal tracking 43
skeleton 20
software architecture 14, 15
speech recognition 63
three-axis accelerometer 13
tilt motor 13
video stream 16, 17

KinectAudioSource.BeamAngleMode
property 76

KinectAudioSource.BeamAngle property 76
KinectAudioSource class 19, 75, 76
KinectColorFrameReady event 29
KinectContrib

URL 24
Kinect data

capturing 84-88
Kinect sensor accelerometer 71
KinectSensor.AccelerometerGetCurren-

tReading method 72
KinectSensor.AudioSource property 19
KinectSensor.ColorStream.CameraSettings

class 31
KinectSensor.DepthFrameReady event 37

www.it-ebooks.info

http://www.it-ebooks.info/

[97]

KinectSensor.ElevationAngle property 72
KinectSensor.KinectColorFrameReady

event 26
KinectSensor.SkeletonStream.Enable()

method 44
KinectSensors_StatusChanged method 30
KinectSensor.Start() method 85
Kinect Studio

about 83, 84
URL 84

M
MainWindows.xaml file 24
ManualBeamAngle value 80
Manual mode 76
microphone array, Kinect 13
Microsoft.Kinect.ColorCameraSettings class

17
Microsoft.Speech library 66, 73
Microsoft White Paper

URL 60

N
Natural User Interfaces. See NUI
neural network 54
NUI

about 7
principles 7, 8

NUI APIs header files 15

O
Open graphical button (Ctrl + O by the

keyboard) 86
Open() method 47

P
PlayerIndex property 18
Play/Pause graphical button (Shift + F5 on

the keyboard) 86
polling approach 29
posture 55
PowerLineFrequency property 31
previousAccelerometerData 72

PrimeSense
URL 8

private byte[] colorPixels variable 26
Pulse Code Modulation (PCM) 13, 68

R
raw Bayer formats 33, 35
RecognizeAysnc method 68
Recognize method 68
RecognizeMode enum value 69
RecognizerInfo class 67
RecordAudio method 92
Recorder class 92
Record graphical button (Ctrl + R using the

keyboard) 86
ResetToDefault() method 32
RGB camera, Kinect 12

S
saturation property 31
SDK 9
seated mode 53
section 55
SelectionHandLeft gesture 55
sensor 11
sensor_AllFramesReady event handler 45,

78
SensorColorFrameReady method 28
sensor.SkeletonStream property 53
sensor.SkeletonStream.TrackingMode

property 53
SetInputToWaveFile method 89
sharpness property 31
skeletal joint smoothing 60
skeletal tracking

about 43
base class, for gestures 56, 58
copying 47-52
default mode 53
gesture manager, utilizing 59, 60
joint rotation 60, 61
seated mode 53
simple actions, detecting 54, 55
users, tracking 44

skeleton 20

www.it-ebooks.info

http://www.it-ebooks.info/

[98]

SkeletonFrame class 44
SkeletonFrame.CopySkeletonDataTo

method 47
SkeletonFrameReady event 45
SkeletonStream class 52
SkeletonStream.OpenNextFrame()

method 45
smoothing filters 60
Software Development Kit. See SDK
sound source angle 75, 76
SoundSourceAngle property 77
Speech Recognition API (SAPI) 63
SpeechRecognitionEngine class 67, 89
SpeechRecognitionEngine.UnloadAllGram-

mar() method 66
Speech Recognition Grammar Specification

Version 1.0 (SRGS) 64
SpeechRecognized event 66, 72
SpeechRecognizedEventArgs event 69
SpeechRecognized event handler 69, 71, 73
SpeechRecognizedRejected event 66
SpeechRejected event handler 73
START command 80
Stop graphical button (Shift + F5 using the

keyboard) 86
System.Windows.Media.DrawingContext

class 47

T
this.sensor instance 75
three-axis accelerometer, Kinect 13
tilt motor, Kinect 13

U
users

tracking 44-47
using statement 28

V
video stream 16, 17
Voice Capture DirectX Media Object

(DMO) 63

W
WhiteBalance property 31
Windows 7 standard APIs 16
Windows Audio Session API (WASAPI) 18
WriteableBitmap array 28
WriteWaveFile method 91
WriteWavHeader method 90

X
X8R8G8B8 format 16

Y
YUV raw format 35, 36
YUV to RGB conversion algorithm 36

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Kinect in Motion – Audio and
Visual Tracking by Example

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Kinect for Windows SDK
Programming Guide
ISBN: 978-1-84969-238-0 Paperback: 392 pages

Build motion-sensing applications with Microsoft's
Kinect for Windows SDK quickly and easily

1. Building application using Kinect for Windows
SDK

2. Covers the Kinect for Windows SDK v1.6

3. A practical step-by-step tutorial to make
learning easy for a beginner

4. A detailed discussion of all the APIs involved
and the explanations of their usage in detail

Cinder – Begin Creative Coding
ISBN: 978-1-84951-956-4 Paperback: 146 pages

A quick introduction into the world of creative
coding with Cinder through basic tutorials and
a couple of advanced examples

1. More power – Cinder is one of the most
powerful creative coding engines out there
and it will be hard to find a better one for
your professional grade project

2. Do it fast – each section should not take longer
than one hour to complete

3. We give you the tools and it is up to you
what you do with them – we won't go into
complicated algorithms, but rather give you
the brushes and paints so you can paint the
way you already know

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Cinema 4D R13 Cookbook
ISBN: 978-1-84969-186-4 Paperback: 514 pages

Elevate your art to the fourth dimension with
Cinema 4D

1. Master all the important aspects of Cinema 4D

2. Learn how real-world knowledge of cameras
and lighting translates onto a 3D canvas

3. Learn Advanced features like Mograph,
Xpresso, and Dynamics.

4. Become an advanced Cinema 4D user with
concise and effective recipes

Cinder Creative Coding Cookbook
ISBN: 978-1-84951-870-3 Paperback: 300 pages

Create compelling graphics, animation, and
interaction with Kinect and Camera input using
one of the most powerful C++ frameworks available

1. Learn powerful techniques for building creative
applications using motion sensing and tracking

2. Create applications using multimedia content
including video, audio, images, and text

3. Draw and animate in 2D and 3D using fast
performance techniques

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Kinect for Windows–Hardware and SDK Overview
	Motion computing and Kinect
	Hardware overview
	The IR projector
	Depth camera
	The RGB camera
	Tilt motor and three-axis accelerometer
	Microphone array
	Software architecture
	Video stream
	Depth stream
	Audio stream
	Skeleton

	Summary

	Chapter 2: Starting with Image Streams
	Color stream
	Editing the colored image
	Image tuning
	The color image formats
	The Infrared color image format
	The raw Bayer formats
	YUV raw format

	Depth stream
	DepthRange – the default and near mode
	Extended range
	Mapping from the color frame to the
depth frame

	Summary

	Chapter 3: Skeletal Tracking
	Tracking users
	Copying the skeleton data

	Default and Seated mode
	Detecting simple actions
	Joint rotations

	Summary

	Chapter 4: Speech Recognition
	Speech recognition
	Grammars
	A simple grammar sample
	The Microsoft.Speech library

	Tracking audio sources
	Sound source angle
	Beam angle

	Summary

	Appendix: Kinect Studio and Audio Recording
	Kinect Studio – capturing Kinect data
	Audio stream data recording and injecting
	Summary

	Index

