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Abstract—With the invention of the low-cost Microsoft Kinect
sensor, high-resolution depth and visual (RGB) sensing has
become available for widespread use. The complementary nature
of the depth and visual information provided by the Kinect sensor
opens up new opportunities to solve fundamental problems in
computer vision. This paper presents a comprehensive review of
recent Kinect-based computer vision algorithms and applications.
The reviewed approaches are classified according to the type of
vision problems that can be addressed or enhanced by means
of the Kinect sensor. The covered topics include preprocessing,
object tracking and recognition, human activity analysis, hand
gesture analysis, and indoor 3-D mapping. For each category of
methods, we outline their main algorithmic contributions and
summarize their advantages/differences compared to their RGB
counterparts. Finally, we give an overview of the challenges in
this field and future research trends. This paper is expected to
serve as a tutorial and source of references for Kinect-based
computer vision researchers.

Index Terms—Computer vision, depth image, information
fusion, Kinect sensor.

I. Introduction

K INECT is an RGB-D sensor providing synchronized
color and depth images. It was initially used as an

input device by Microsoft for the Xbox game console [1].
With a 3-D human motion capturing algorithm, it enables
interactions between users and a game without the need
to touch a controller. Recently, the computer vision society
discovered that the depth sensing technology of Kinect could
be extended far beyond gaming and at a much lower cost than
traditional 3-D cameras (such as stereo cameras [2] and time-
of-flight (TOF) cameras [3]). Additionally, the complementary
nature of the depth and visual (RGB) information provided
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by Kinect bootstraps potential new solutions for classical
problems in computer vision. In just two years after Kinect
was released, a large number of scientific papers as well
as technical demonstrations have already appeared in diverse
vision conferences/journals.

In this paper, we review the recent developments of Kinect
technologies from the perspective of computer vision. The
criteria for topic selection are that the new algorithms are
far beyond the algorithmic modules provided by Kinect de-
velopment tools, and meanwhile, these topics are relatively
more popular with a substantial number of publications. Fig. 1
illustrates a tree-structured taxonomy that our review follows,
indicating the type of vision problems that can be addressed
or enhanced by means of the Kinect sensor. More specifically,
the reviewed topics include object tracking and recognition,
human activity analysis, hand gesture recognition, and indoor
3-D mapping. The broad diversity of topics clearly shows the
potential impact of Kinect in the computer vision field. We do
not contemplate details of particular algorithms or results of
comparative experiments but summarize main paths that most
approaches follow and point out their contributions.

Until now, we have only found one other survey-like paper
to introduce Kinect-related research [4]. The objective of that
paper is to unravel the intelligent technologies encoded in
Kinect, such as sensor calibration, human skeletal tracking
and facial-expression tracking. It also demonstrates a prototype
system that employs multiple Kinects in an immersive tele-
conferencing application. The major difference between our
paper and [4] is that [4] tries to answer what is inside Kinect,
while our paper intends to give insights on how researchers
exploit and improve computer vision algorithms using
Kinect.

The rest of the paper is organized as follows. First, we
discuss the mechanism of the Kinect sensor taking both
hardware and software into account in Section II. The purpose
is to answer what signals the Kinect can output, and what ad-
vantages the Kinect offers compared to conventional cameras
in the context of several classical vision problems. In Section
III, we introduce two preprocessing steps: Kinect recalibration
and depth data filtering. From Section IV to Section VII, we
give technical overviews for object tracking and recognition,
human activity analysis, hand gesture recognition and indoor
3-D mapping, respectively. Section VIII summarizes the cor-
responding challenges of each topic, and reports the major
trends in this exciting domain.

2168-2267/$31.00 c© 2013 IEEE
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Fig. 1. Tree-structured taxonomy of this review.

Fig. 2. Hardware configuration of Kinect, on which we point out the location of each sensor. Additionally, two image samples captured by the RGB camera
and the depth camera are provided.

II. Kinect Mechanism

Kinect, in this paper, refers to both the advanced RGB/depth
sensing hardware and the software-based technology that
interprets the RGB/depth signals. The hardware contains a
normal RGB camera, a depth sensor and a four-microphone
array, which are able to provide depth signals, RGB images,
and audio signals simultaneously. With respect to the soft-
ware, several tools are available, allowing users to develop
products for various applications. These tools provide facilities
to synchronize image signals, capture human 3-D motion,
identify human faces, and recognize human voice, and others.
Here, recognizing human voice is achieved by a distant speech
recognition technique, thanks to the recent progresses on the
surround sound echo cancelation and the microphone array
processing. More details about Kinect audio processing can
be found in [5] and [6]. In this paper, we focus on techniques
relevant to computer vision, and so leave out the discussion
of the audio component.

A. Kinect Sensing Hardware

Fig. 2 shows the arrangement of a Kinect sensor, consisting
of an infrared (IR) projector, an IR camera, and a color
camera. The depth sensor comprises the IR projector and the
IR camera. The IR projector casts an IR speckle dot pattern
into the 3-D scene while the IR camera captures the reflected
IR speckles. Kinect is therefore an instance of a structured
light depth sensor. The geometric relation between the IR
projector and the IR camera is obtained through an off-line
calibration procedure. The IR projector projects a known light
speckle pattern into the 3-D scene. The speckle is invisible
to the color camera but can be viewed by the IR camera.

Since each local pattern of projected dots is unique, matching
between observed local dot patterns in the image with the
calibrated projector dot patterns is feasible. The depth of a
point can be deduced by the relative left-right translation of
the dot pattern. This translation changes, dependent on the
distance of the object to the camera-projector plane. Such a
procedure is illustrated in Fig. 3. More details concerning the
structured light 3-D imaging technology can be found in [7].

Each component of the Kinect hardware is described below.

1) RGB Camera: It delivers three basic color components
of the video. The camera operates at 30 Hz, and can
offer images at 640 × 480 pixels with 8-bit per channel.
Kinect also has the option to produce higher resolution
images, running at 10 frames/s at the resolution of
1280 × 1024 pixels.

2) 3-D Depth Sensor: It consists of an IR laser projector
and an IR camera. Together, the projector and the camera
create a depth map, which provides the distance infor-
mation between an object and the camera. The sensor
has a practical ranging limit of 0.8m − 3.5m distance,
and outputs video at a frame rate of 30 frames/s with
the resolution of 640 × 480 pixels. The angular field of
view is 57◦ horizontally and 43◦ vertically.

3) The Motorized Tilt: It is a pivot for sensor adjustment.
The sensor can be tilted up to 27◦ either up or down.

B. Kinect Software Tools

Kinect software refers to the Kinect development library
(tool) as well as the algorithmic components included in the
library. Currently, there are several available tools including
OpenNI [8], Microsoft Kinect SDK [9] and OpenKinect
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Fig. 3. Illustration of Kinect depth measurement.

(LibFreeNect) [10]. OpenNI always works together with a
Compliant middleware called NITE, and its highest version
until March 2013 is 2.0. Microsoft Kinect SDK is released
by Microsoft, and its current version is 1.7. OpenKinect is a
free, open source library maintained by an open community
of Kinect people. Since the majority of users are using the
first two libraries, we provide details concerning OpenNI and
Microsoft SDK. The Microsoft SDK (version 1.7) is only
available for Windows whereas OpenNI (version 2.0) is a
multiplatform and open-source tool. Table I gives a compar-
ison between these two tools in terms of their algorithmic
components.

In general, most corresponding components provided by
these two libraries are functionally comparable. Here, we men-
tion a few differences between them. For example, OpenNI’s
skeletal tracker requires a user to hold a predefined calibration
pose until the tracker identifies enough joints. The calibration
time varies greatly depending on environment conditions and
processing power. On the contrary, Microsoft SDK does not
need a specific pose initialization. However, it is more prone
to false positives than OpenNI, especially when the initial
pose of a human is too complicated. Moreover, the newest
version of the Microsoft SDK is capable of tracking a user’s
upper body (ten joints) in case the lower body is not visible.
This is particularly useful when analyzing human postures
with a sitting position. Furthermore, OpenNI focuses on hand
detection and hand-skeletal tracking whereas Microsoft SDK
realizes simple gesture recognition, such as “grip” and “push”
recognition.

It is worth highlighting that the new version of OpenNI (2.0)
allows users to install Microsoft Kinect SDK on the same
machine and run both packages using the Microsoft Kinect
driver, which means that the OpenNI is now compatible with
the Kinect driver. By doing so, switching between two drivers
is not necessary anymore even when users want to benefit from
both packages.

TABLE I

Comparisons of the OpenNI Library and the Microsoft SDK

OpenNI Microsoft SDK
Camera calibration

√ √
Automatic body calibration × √

Standing skeleton
√

(15 joints)
√

(20 joints)
Seated skeleton × √

Body gesture recognition
√ √

Hand gesture analysis
√ √

Facial tracking
√ √

Scene analyzer
√ √

3-D scanning
√ √

Motor control
√ √

C. Kinect Performance Evaluation

There are a few papers that evaluate the performance of
Kinect from either the hardware or the software perspective.
These evaluations help us to understand both the advantages
and limitations of the Kinect sensor and thus to better design
our own system for a given application.

In [11], the authors experimentally investigate the depth
measurement of Kinect in terms of its resolution and precision.
Moreover, they make a quantitative comparison of the 3-D
measurement capability for three different cameras, including
a Kinect camera, a stereo camera, and a TOF camera. The
experimental results reveal that Kinect is superior in accuracy
to the TOF camera and close to a medium-resolution stereo
camera. In another paper, Stoyanov et al. [12] compare the
Kinect sensor with two other TOF 3-D ranging cameras. The
ground truth data is produced by a laser range sensor with
high accuracy, and the test is performed in an uncontrolled
indoor environment. The experiments yield these conclusions.
1) the performance of the Kinect sensor is very close to that of
the laser for short range environments (distance< 3.5 meters);
2) the two TOF cameras have slightly worse performance in
the short range test; and 3) no sensor achieves performance
comparable to the laser sensor at the full distance range. This
implicitly suggests that Kinect might be a better choice (over
the TOF cameras) if the application only needs to deal with
short range environments, since TOF cameras are usually more
expensive than the Kinect sensor. Instead of comparing Kinect
with other available depth cameras, Khoshelham et al. [13]
provide an insight into the geometric quality of Kinect depth
data based on analyzing the accuracy and resolution of the
depth signal. Experimental results show that the random error
of depth measurement increases when the distance between the
scene and the sensor increases, ranging from a few millimeters
at close range to about 4 cm at the maximum range of the
sensor.

Another cluster of papers focus on studying the software
capability of Kinect, especially the performance of skeletal
tracking algorithm. It is indeed important when applying
Kinect to human posture analysis in a context other than
gaming, where the posture may be more arbitrary. In [14], the
3-D motion capturing capability offered by Kinect is tested in
order to know if the Kinect sensor has comparable accuracy
of existing marker-based motion acquiring systems. The result
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Fig. 4. Example for hole-filling based on the bilateral filter [25]. (a) Raw
depth image. (b) Depth image after filtering.

turns out that Kinect is able to capture the relative 3-D
coordinates of markers with minor errors (< 1cm) in case the
sensor is positioned in an ideal range (1m to 3m) and with an
effective field of view. In [15], authors examine the accuracy
of joint localization and the robustness of pose estimation
with respect to more realistic setups. In the experiment, six
exercises are conducted, in which the subject is either seated
or positioned next to a chair. The exercise is generally chal-
lenging for human pose recognition since the self-occlusion
appears frequently and the capturing view angle is changed
over time. The acquired 3-D location of each joint is then
compared to the data generated by a marker-based motion
capture system, which can be considered as ground truth data.
According to the results, Kinect has a significant potential as
a low-cost alternative for real-time motion capturing and body
tracking in healthcare applications. The accuracy of the Kinect
joint estimation is comparable to marker-based motion capture
in a more controlled body pose (e.g., standing and exercising
arms). However, in general poses, the typical error of Kinect
skeletal tracking is about 10 cm. Moreover, the current Kinect
algorithm frequently fails due to occlusions, nondistinguishing
depth (limbs close to the body) or clutter (other objects in the
scene).

III. Preprocessing

The data obtained with Kinect normally cannot be directly
fed into the designed computer vision algorithms. Most of
the algorithms take advantage of rich information (RGB and
depth) attached to a point. In order to correctly combine the
RGB image with the depth data, it is necessary to spatially
align the RGB camera output and the depth camera output. In
addition, the raw depth data are very noisy and many pixels
in the image may have no depth due to multiple reflections,
transparent objects or scattering in certain surfaces (such as
human tissue and hair). Those inaccurate/missing depth data
(holes) need to be recovered prior to being used. Therefore,
many systems based on Kinect start with a preprocessing mod-
ule, which conducts application-specific camera recalibration
and/or depth data filtering.

A. Kinect Recalibration

In fact, Kinect has been calibrated during manufacturing.
The camera parameters are stored in the device’s memory,
which can be used to fuse the RGB and depth information.

This calibration information is adequate for casual usage, such
as object tracking. However, it is not accurate enough for
reconstructing a 3-D map, for which a highly precise cloud of
3-D points should be obtained. Moreover, the manufacturer’s
calibration does not correct the depth distortion, and is thus
incapable of recovering the missing depth.

Zhang et al. [16] and Herrera et al. [17] develop a cali-
bration board based technique, which is derived from Zhang’s
camera calibration technique used for the RGB camera [18].
In this method, 3-D coordinates of the feature points on the
calibration card are obtained from the RGB camera’s coordi-
nate system. Feature-point matching between the RGB image
and the depth image is able to spatially correlate those feature
points between two different images. This spatial mapping
helps feature points to get their true depth values based on
the RGB camera’s coordinate system. Meanwhile, the depth
camera measures 3-D coordinates of those feature points in the
IR camera’s coordinate system. It assumes that the obtained
depth values by the depth camera can be transformed to the
true depth values by an affine model. As a result, the key is
to estimate the parameters of the affine model, which can be
done by minimizing the distances between the two point sets.
This technique combined with a calibration card allows users
to recalibrate the Kinect sensor in case the initial calibration is
not accurate enough for certain applications. The weakness of
this method is that it does not specifically pay attention to the
depth distortion. Correcting the depth distortion may become
unavoidable for most 3-D mapping scenarios.

There are a few publications that discuss solutions for
Kinect depth distortion correction. Smisek et al. [11] discover
that the Kinect device has shown radially symmetric distor-
tions. In order to correct this distortion, a spatially varying
offset to the calculated depth is applied. The offset at a given
pixel position is calculated as the mean difference between
measured depth and expected depth in metric coordinates.
In [19], a disparity distortion correction method is proposed
based on the observation that a more accurate calibration can
be made by correcting the distortion directly in disparity units.

An interesting paper [20] deals with more practical issues,
which investigates a possible influence of thermal and envi-
ronmental conditions when calibrating Kinect. The experiment
turns out that variations of the temperature and air draft have a
notable influence on Kinect’s images and range measurements.
Based on the findings, temperature-related rules have been
established in the paper, which reduce errors in the calibration
and measurement process of the Kinect.

B. Depth Data Filtering

Another preprocessing step is depth data filtering, which can
be used for depth image denoising or missing depth (hole)
recovering. A naive approach considers the depth data as a
monochromatic image and thus applies existing image filters
on it, such as a Gaussian filter. This simple method works only
for regions where the signal statistics is in favor of the underly-
ing filter. A more sophisticated algorithm [21] investigates the
specific characteristics of a depth map created by Kinect, and
finds out that there are two types of occlusions/holes caused
by different reasons. The algorithm automatically separates
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Fig. 5. Foreground (FG) detection results [36]. (a) From the left to the right, RGB images, FG mask using RGB data and FG mask using depth data,
respectively. The example on the top shows that it is hard to distinguish clothing from the background, and the one at the bottom reports the results when the
person suddenly turns on the lighting. (b) True positive and false positive of FG detection by using depth data and RGB data respectively. Here, the lighting
is stable but the foreground and background are similar.

these occlusion cases, and develops different filling schemes
accordingly. Although this sort of adaptive filtering scheme
is much better than a simple filtering algorithm, it still
fails to take advantage of all available information in this
application: depth, color and the temporal relation between
video frames.

In [22], the relation between the RGB image and the depth
image is taken into account when filling the holes on the
depth map. This approach first finds the spatial correspondence
between two channels by means of matching object borders.
Then, objects are located on the color image via segmentation,
and the locations of the segmented objects will be transferred
to the depth image. A missing depth value within a segment
can be interpolated with the assumption that the depth signal
is approximately smooth within each segment. Unfortunately,
this approach may not generate a uniform depth field when
the object surface is extremely colorful. Schmeing et al. [23]
make use of the combination of depth and RGB information
provided by video-plus-depth sensors to enhance corrupted
edges on depth maps. In their method, the correct edge
information is found on the RGB image via a superpixel
segmentation algorithm. This information helps to compute
a new representative depth map with robust edges, which is
used to enhance the source depth map.

In [24] and [25], the missing depth values are obtained
by iteratively applying a joint-bilateral filter to depth pixels
(Fig. 4). A bilateral filter is, in principle, an edge-preserving
and noise reducing smoothing filter. The depth value at each
pixel in an image is replaced by a weighted average of
depth values from nearby pixels. Here, the filter weights are
determined by considering RGB data, depth information and
a temporal consistency map. Alternatively, Qi et al. [26] treat
the hole-filling as an inpainting problem, and adapt a non-local
inpainting algorithm used for RGB images to fill the holes on
the depth map. However, the adaptation is nontrivial, because
the object boundary terminating the filling procedure cannot
be easily found on the textureless depth map. To solve this
problem, the algorithm seeks the object boundary on the color
image provided by Kinect and estimates its corresponding
position based on the calibration parameters.

IV. Object Tracking and Recognition

The first two sections of this paper have discussed the
field of Kinect at a fairly non-technical level. They mainly
address the questions “what is the Kinect sensor?” and “what
can Kinect offer?” In this section, we begin our exploration
of the detailed, technical principles. Throughout the rest of
the paper, we will overview what Kinect can do and how
people change and enhance Kinect-related techniques in order
to address particular vision problems.

A. Object Detection and Tracking

Object detection and tracking are hot topics in RGB-based
image and video analysis applications. A widely used approach
is background subtraction, when the camera is fixed. In this
approach, the background is assumed to be static over time,
while the foreground can be extracted by subtracting the
background model from the input image. However, in prac-
tice, detecting objects in images or videos using background
subtraction techniques is not that straightforward due to the
high variety of possible configurations of the scenario, such
as changes of illumination conditions and subtle movements
of the background. For such cases, the background is not
static at the signal level. Many approaches try to model the
variations and design new background models to cope with
the variations. Unfortunately, handling multiple variations with
one background model remains challenging in this field.

With the availability of the low-cost Kinect depth camera,
researchers immediately noticed that the nature of the depth
signal can help to establish a more stable background model,
which is resistant to changes in illumination or lack of
contrast. To investigate this, we feed depth images and normal
RGB images into a Gaussian mixture model (GMM)-based
background subtraction algorithm respectively. We test the
reliability of these two different signals in two challenging
situations (the total length of testing sequences is longer than
10 minutes). One is that the foreground and the background
are quite similar (case 1), and the other is that the illumination
in the room suddenly changed (case 2). Fig. 5 illustrates the
results, where (a) shows image samples of case 1 (top) and
case 2 (bottom), and (b) reports quantitative comparison of
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Fig. 6. Two schemes of using Kinect for people detection. Scheme A: Using
depth images only. Scheme B: Combining depth images and RGB images.

case 2. In Fig. 5(a), the images (from the left to right) are the
original image, the foreground mask obtained by using RGB
images, and the foreground mask obtained by using depth
images, respectively. Obviously, the quality of the segmented
foreground object from the depth images is much better than
that from the RGB images.

Most existing works make use of this unique property of
depth images. However, there is still a trade-off between using
depth images only and using both depth and RGB images. In
Fig. 6, we show the basic ideas of these two schemes. Here,
scheme A employs the depth images only while scheme B

takes the advantage of complementary data emanating from
the two vision sensors of Kinect.

The algorithm presented in [27] aims at detecting people
based on depth information obtained by Kinect in indoor en-
vironments. A 2-D chamfer distance matching scans across the
whole image and gives the possible regions that may contain
people. Each region is further verified by using a 3-D head
model, resulting in the final estimation. Afterwards, a region
growing algorithm is applied to find the entire body of the
people and thus the whole body contour is extracted. Rougier
et al. [28] and Zhang et al. [29] explore the Kinect sensor for
the application of detecting falls in the elderly. Here, the core
technique is the person segmentation and localization from
the depth images. Both systems adopt the similar background
subtraction algorithm. A depth background image is obtained
from a number of training background images. The mean
value and standard deviation are computed for each pixel of
the image, and used for calculating the distance of a given
pixel to the background pixels. Eventually, the foreground
image is cleaned with morphological filtering and the depth
silhouette can be obtained by combining the depth image with
the foreground silhouette. The work reported in [30] investi-
gates whether existing human detectors on the RGB image
can be directly extended to detect humans on depth images.
To this end, histograms of oriented gradients (HOG) [31],
pyramid HOG [32], local binary patterns (LBP) [33], Local
ternary patterns (LTP) [34], and census transform histograms
(CENTRIST) [35] are compared based on the same depth
image dataset. The results reveal that the LTP-based detector
outperforms other detectors, and is more suitable for human
detection on the depth map.

Instead of using the depth information only, another group
of papers exploit the complementary nature of (synchronized)
color and depth images. In principle, the depth signal is more

robust against changes in illumination or lack of contrast
than the conventional RGB signal. However, the depth is less
discriminative for representing an object due to its limited
dimension. In [36], Han et al. present a human detection and
tracking system for a smart environment application, which
selectively feeds the complementary data emanating from the
two vision sensors to different algorithmic modules. More
specifically, it segments the human out of the scene on depth
images as it is invariant to various environment changes. Once
the object has been located in the image, visual features are
extracted from the RGB image and are then used for tracking
the object in successive frames. Spinello et al. introduce their
RGB-D based people detection approach in [37] and [38]. In
their system, a local depth-change detector employing HOD is
formed, which is conceptually similar to HOG in RGB data.
On top of that, a probabilistic model combining HOD and
HOG detects the people from the RDB-D data. In another
paper [39], a multihypothesis human tracking algorithm is
presented, which describes the target appearance with three
types of RGB-D features and feeds them to an online learning
framework. More recently, they turn their research to investi-
gate how to optimally combine RGB and depth images for the
task of object detection [40]. The basic concept is the adaptive
fusion that changes the weight of each modality in terms of
the measurements of missing information and cross-cue data
consistency.

Rather than fully relying on one single attribute of human
(both HOG and HOD represent human’s shape information),
the work reported in [41] adopts three different types of
attributes to sense human in the image, including biometrical
attributes (e.g., height information), appearance attributes (e.g.,
clothing color) and motion attributes (e.g., posture). Though
the aforementioned human attributes can be deduced with the
aid of Kinect (e.g., the depth and the length of a person in
the image may help to estimate his/her real height), the way
of combing those features retains to be problematic in case
that inaccurate detection happens. Choi et al. [42] apply this
sort of ensemble detection to track people over time, assuming
the initial location of people is available. The cues they used
contain human upper-body shape, human face, human skin,
as well as human motion. These multihypothesis detections
are fused into a coherent framework built upon a sampling
technique (Markov chain Monte Carlo particle filtering), thus
enabling a tracking-by-detection formulation.

B. Object and Scene Recognition

Object recognition differs from object detection in the
sense that it does not provide the location of the object
but only predicts whether a whole image contains the object
or not. Scene recognition is a straightforward extension of
object recognition, aiming to densely label everything in a
scene. Conventional algorithms on this topic are mainly based
on RGB images, where the color, texture, motion, or the
combination of them are used to represent the object. A
set of features describing a given object is used to learn a
classifier, and in turn, the trained classifier is responsible for
recognizing the (distorted) object by matching the extracted
features. The general conclusion is that the more information
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Fig. 7. Image samples from the dataset in [44]. From the left to the right: RGB images, depth images and annotated object regions with labels.

the algorithm uses the better discriminative capability of the
algorithm. In other words, increasing the feature dimension
helps the object recognition. The availability of Kinect offers
a cheaper way to combine RGB features with depth features
for object recognition.

To boost research in this area, authors of [43] and [44]
dedicate to establish large-scale RGB-D object datasets. The
datasets together with their annotation software have been
made publicly available to the research community. The former
dataset [43] contains multiple views of a set of objects and the
objects are organized into a hierarchical category structure,
while the later one [44] offers registered RGBD images, de-
tailed object labels, and annotated physical relations between
objects in the scene (Fig. 7), thus facilitating the application of
indoor scene analysis. In addition to describing the properties
of their dataset, the work presented in [43] also extends a con-
ventional RGB image-based object recognition to the RGB-D
images, in which the same feature extraction is performed to
both RGB and depth images. The best performance is attained
by combining image and depth features.

In [45], the authors integrate the RGB and depth information
of an object and recognize it at both the category and the
instance levels. Category level recognition tells which type
the object belongs to while instance level recognition identifies
whether an object is physically the same object as one that has
previously been seen. The key of such recognition systems is
how to efficiently combine heterogeneous features, such as
RGB images and depth images. Here, local distance learning
is adopted, which can model complex decision boundaries
by combining elementary distances. To make the algorithm
invariant to the change of the camera view, its model learns

a distance function jointly for all views of a particular object.
Instead of using a supervised learning [45], Bo et al. [46]
alternatively investigate the possibility of using an unsuper-
vised learning method for RGB-D object recognition. The
system based on their previous work [47] adapts a hierarchical
matching pursuit (HMP) algorithm to be suitable for color and
depth images captured by Kinect. HMP automatically learns
dictionaries over image and depth patches, and represents ob-
servations as sparse combinations of codewords. The success
of the algorithm proves that current recognition systems can be
significantly improved without resorting to carefully designed,
handcrafted features. In their recent work [48], a contextual
modeling is put on the top of object recognition in order
to label an indoor scene. The object recognition part of this
paper may not be that interesting since the similar ideas are
presented in their previous papers. For contextual modeling,
it combines segmentation tree and superpixel Markov random
fields (MRFs), in which the segmentation tree technique is
slightly modified for RGB-D data.

Unlike the above works that improve the decision making
of the systems, the following papers aim to extract better
features from RGB-D data. In [49], a new feature, namely
histogram of oriented normal vectors (HONV), is designed to
capture local 3-D geometric characteristics on depth images.
The motivation of inventing this feature is that an object can
be recognizable by looking at its 3-D surface without texture.
To characterize the object surface, the local distribution of
its tangent plane orientations is calculated, which can also
be formed as a concatenation of the local histograms of
azimuthal angles and zenith angles. Comparison results show
that this new descriptor significantly outperforms HOG (HOG
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on RGB images) and HOGD (HOG on depth images) in both
object detection and classification. Blum et al. [50] present
an algorithm that automatically learns feature responses from
the image. In order to cope with the high dimensionality
of the RGB-D signal, the algorithm only describes interest
points. This new feature descriptor encodes color and depth
into a concise representation. Alternatively, the work in Bo
et al. [51] introduces five depth kernel descriptors that capture
different recognition cues including size, shape and edges.
The usage of kernel descriptors turns pixel attributes into
patch-level features, enabling to generate rich features from a
variety of recognition cues. Apart from adapting RGB image
gradients and local binary patterns to depth images, the size
descriptor, the kernel principal component analysis (PCA)
descriptor and the spin kernel descriptor are also designed for
depth images. The combination of these feature descriptors
significantly improves the accuracy of object recognition.

C. Summary

The algorithms introduced in this section can be generally
divided into two categories: object detection and object recog-
nition. The former contains topics like object segmentation
and human detection, while the latter covers topics such as
object recognition and scene labeling. For the former one, the
reported results from various methods as well as our own ex-
periments clearly show that the algorithms based on analyzing
the depth signal significantly increase the robustness of the
system. This is mainly due to that the depth signal is inherently
resistant to lighting condition changes and environment clut-
ters, which are difficult problems for conventional algorithms.
We believe that the algorithms specifically designed for depth
cameras (e.g., Kinect) will become a standard processing
module in future indoor video surveillance applications.

Regarding object recognition, the classification accuracy can
be also further improved when using RGB-D information.
Such results are anticipated because adding depth information
into the object descriptor theoretically enhances the discrimi-
native power of the descriptor. However, it is also clear that
the benefit comes with the cost as it increases the load of
data processing. And, the achieved gain seems to be limited
according to the experimental results provided in [44] and
[48]. Therefore, it may not be practical yet to use proposed
algorithms in a real-time oriented application.

V. Human Activity Analysis

Analyzing human activities from video is an area with in-
creasingly important consequences from security/surveillance
to entertainment. In recent years, this topic has caught the
attention of researchers from academia, industry, consumer
agencies and security agencies. As a result, in the last 10 years
a huge number of papers were published, among which the
majority of papers uses RGB video as an input. In this paper,
we only deal with Kinect-related techniques, and our intention
is to give insights to the recent developments of human activity
analysis based on the Kinect sensor.

The research devoted to this particular field can be grouped
into two broad categories. In the first category, researchers

investigate skeletal tracking. We will refer to this as pose
estimation, because its goal is to achieve either a faster or
a more accurate skeletal joints approximation. The research
in the second category is called activity recognition, since it
steps forward to recognize the semantic activity of a human
in the context of various applications. Briefly speaking, pose
estimation, in this scenario, provides the position of skeletal
joints in the 3-D space, while the activity recognition tells
what the human is doing through analyzing temporal patterns
in these joint positions.

A. Pose Estimation

Besides reliably providing depth images in a low-cost way,
another innovation behind Kinect is an advanced skeletal
tracker, which opens up new opportunities to address human
activity analysis problems. A core part of the algorithm is
described in [52]. This paper introduces a per-pixel body part
classification, followed by estimating hypotheses of body joint
positions by finding a local centroids of the body part prob-
ability mass using mean shift mode detection. This algorithm
runs per frame, and uses no temporal information, allowing
the system as a whole to be robust to loss of track. The main
contributions of [52] are the use of body part recognition as
an intermediate representation for human pose estimation, and
the demonstration that the classifier can be made invariant to
human body shape and pose by training from a large corpus
of synthetic data using a parallelized multicore implementa-
tion [53]. The body part recognition algorithm considerably
improves the accuracy compared to related work, and even
more importantly, it runs at least 10 times faster. Finally,
using an unpublished, proprietary algorithm, a skeleton model
is fitted to the hypothesized joint positions. This algorithm
exploits temporal and kinematic constraints to result in a
smooth output skeleton that can handle occlusions.

The representatives of pose estimation algorithms are [54]–
[57]. The first two papers present enhanced algorithms from
the inventors of the Kinect skeletal-tracking algorithm. In [54],
an offset vote regression approach is proposed, in which pixels
vote for the positions of the different body joints, instead of
predicting their own body part labels. The new algorithm is
capable of estimating the locations of joints whose surrounding
body parts are not visible in the image due to occlusion of field
or limited view of the sensor. In [55], authors further extend
the original machine learning approach by learning to predict
direct correspondences between image pixels and a 3-D mesh
model. An energy minimization is then used to efficiently
optimize the pose of the 3-D mesh model without requiring
the standard iterated closest point (ICP) iteration between
the discrete correspondence optimization and the continuous
pose optimization. Ye et al. [56] and Shen et al. [57] aim to
achieve a highly accurate and robust pose estimation from a
single depth image in the case that the algorithm complexity
can be overlooked. Fig. 8 illustrates their processing pipeline,
consisting of pose estimation and pose refinement/correction
steps. More specifically, their pose estimation algorithm finds
the best matching pose from a precaptured motion database,
given an input point cloud obtained from the depth image. The
initial estimation is then refined by directly fitting the body



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HAN et al.: ENHANCED COMPUTER VISION WITH MICROSOFT KINECT SENSOR 9

Fig. 8. Basic processing pipeline of algorithms reported in [56] and [57], where the image examples are from [56].

configuration with the observation (the input depth image).
In fact, the initial estimated pose usually yields poor results
due to personal shape variations and small pose differences,
so that the pose refinement step is vital. In [56], authors treat
pose refinement as a non-rigid registration problem, and the
coherent drift point (CPD) algorithm is exploited to establish
point correspondences. The work in [57] strengthens the
pose refinement/correction step by jointly optimizing temporal
motion consistency and the systematic bias. Generally, these
systematic biases are associated with complex data manifolds,
which can be learned by leveraging the exemplar informa-
tion within a specific human action domain. The comparison
with Kinect’s embedded skeletal-tracking shows its superiority
when dealing with human actions that have certain regularity,
e.g. golf or tennis.

B. Activity Recognition

Another cluster of papers aim to recognize semantic human
activities in the context of specific applications, given the
skeletal joints at each frame. The systems presented in [58]–
[60] attempt to find compact and discriminative feature de-
scriptors to represent the configuration of a set of human joints.
In [58] and [59], the spatial position differences between
detected joints as well as the temporal differences between
corresponding joints are used to be the visual feature for activ-
ity recognition. This simple but efficient descriptor combines
action information including static posture, motion, and offset.
Alternatively, a compact representation of human postures
based on 3-D joint locations (HOJ3-D) is examined in [60].
In this representation, the 3-D space is partitioned into n bins
using a spherical coordinate system. Human joints casted into
certain bins are accumulated, thus constructing a histogram.
The collection of HOJ3-D vectors are first reprojected using
linear discriminant analysis (LDA) and then clustered into
a k posture vocabulary. According to the reported results,
this representation makes the recognition system invariant to
the camera view changes. Considering that the skeletal joints
are not always detected accurately, Liu and Shao [109] learn
discriminative representations directly from the raw RGB-D
video data for activity recognition. The feature learning is
optimized using a restricted graph-based genetic programming
(RGGP) approach, in which a group of primitive 3-D operators
are first randomly assembled as graph-based combinations
and then evolved by evaluating on a set of RGB-D video

samples. Finally the best-performed combination is selected
as the (near-)optimal representation for activity recognition.
Their results show that the RGGP feature learning approach
outperforms state-of-the-art hand-crafted and machine-learned
descriptors.

Several publications [61]–[63] focus on the inference part
of the recognition system, assuming the locations of skeletal
joints are available. To encode the sequential changes of the
features, they all utilize the hidden Markov model (HMM), a
popular graphical model in RGB camera-based human activity
recognition. The major difference between these approaches
is that the work [61] adopts a single layer structure while the
methods in [62], [63] exploit a two-layer hierarchical structure.
The benefit of using a two-layer structure is that a human
activity can be naturally considered as a combination of a
set of sub-activities over time. Rayes et al. [64] represent a
human model based on a feature vector formed by 15 joints on
a 3-D human skeleton model. Furthermore, they use dynamic
time warping (DTW) with automatic feature weighing on each
joint to achieve real-time action recognition. Wang et al. [65]
contribute to both feature generation and activity inference.
In this paper, a new feature called local occupancy pattern
is proposed to represent the “depth appearance,” which is
designed to capture the relations between the human body
parts and the environmental objects in the interaction. More-
over, it defines an actionlet as a particular conjunction of
features for a subset of the joints, indicating a structure of
the features. Based on it, one human action can be interpreted
as an actionlet ensemble that is a linear combination of the
actionlets. This actionlet ensemble coupled with a learning
technique yields a robust way to identify human activities. The
work in [66] presents a low-latency online action recognition
system, which runs in real-time and processes a video stream
without given temporal segmentation. This kind of systems
is highly demanded for the applications such as interactive
gaming and touch-based user interfaces. The major contri-
bution of this paper is the concept of “action points” that
serve as natural temporal anchors of simple human actions.
An action point is defined as a specific time instance at which
the presence of the action is clear and it can be easily identified
for all instances of the action. Detecting an action point only
incorporates information from the past, so that the presence of
an action can be immediately confirmed by detecting an action
point.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CYBERNETICS

To facilitate the research in this field, Ni et al. [67] establish
a human activity recognition benchmark database and make it
publicly available. In this dataset, 12 different human daily
activities within a home environment are recorded by Kinect.
Another popular dataset [68] is the MSRC-12 Kinect gesture
dataset, consisting of 12 gestures performed by 30 people.
The dataset contains tracks of 20 joints estimated by the
Kinect pose estimation algorithm and the associated gesture
labels. ACT42 [69] is a recently-published indoor human
action recognition dataset. It provides synchronized data from
4 views and 2 sources, aiming to facilitate the research of
action analysis across multiple views and multiple sources.

Several other papers on human activity recognition inves-
tigate how to apply skeletal tracking to different scenarios.
They usually define certain heuristic rules in the context
of a given application. Those rules, in turn, help to detect
predefined activities. For example, the algorithm described
in [70] enables humans to interact with the music, generating
musical notes based on the motion-related features such as
the velocity or acceleration of body parts. Kinect skeletal
tracking plays a role in bridging the gap between human
motion detection and computer-based music generation. In
another application [71], Kinect is used as a motion acquiring
tool to help the identification and examination of the dancing
gestures. In [72], a Kinect-based construction worker tracking
and action recognition algorithm is presented, which acts as
a part of an automated performance assessment system in
cluttered and dynamic indoor construction environments.

C. Summary

Having been a well-explored topic in computer vision for
many years, human activity analysis has recently regained its
popularity on RGB-D data provided by Kinect. Compared
with conventional methods, which extract either holistic or
local features from raw video sequences, the new algorithms
are supplied with the extra skeletal joints in addition to the
RGB and depth images. An accurate set of coordinated body
joints can potentially yield an informative representation of
the human body encoding the locations of different body
parts and their relative positions. This kind of representation
defines an activity as a sequence of articulated poses and its
availability is accredited to Kinect, because body parts are
very difficult to be obtained from normal RGB video data.
Using such a representation is able to significantly simplify
the learning of the activity recognition, since the relevant
high-level information has already been extracted. Moreover,
3-D skeleton poses are viewpoint and appearance invariant,
enabling potentially more robust arbitrary-view dynamic pose
estimation and action recognition.

Naturally, most Kinect-based pose estimation and activity
recognition approaches attempt to take advantage of the skele-
tal joints and design models on top of them. However, current
methods are still in their infant stage and have been proposed
through intuition and heuristics. A predictable trend is to
automatically learn optimal representations of the body joints
via advanced machine learning techniques. On the other hand,
detected body joints tend to be noisy and unreliable, especially
for cluttered and occluded scenes. Therefore, representations

that are robust to inaccurate and missing joints will be highly
desirable. In addition, as the original RGB-D images contain
the most information, effectively fusing features from the raw
RGB-D video and the high-level joint representation would be
another research direction of human activity analysis.

VI. Hand Gesture Analysis

Hand gesture analysis based on Kinect is an emerging topic,
enabling users to have better interactions with machines. In
contrast to human activity analysis relying on whole body
parts, hand gesture analysis is in some cases more efficient,
as only data around the hand area need to be processed.
Additionally, hand detection, which is a key component, can
be enhanced by considering the skin-tone color information
of the hand. However, the gain of using the color image
for human body detection and skeletal tracking may not be
significant because of the color variation of human clothing
in different body parts.1 Overall, recognizing hand gestures is
a challenging task and requires solving several sub-problems
including automatic hand detection and tracking, 3-D hand
pose estimation, and gesture classification.

A. Hand Detection

Similar to the object detection introduced before, hand
detection can be carried out either on depth images only or by
fusing the RGB and depth information. The former aims to
obtain a fast algorithm, whereas the latter targets an accurate
system. Several proposals detect hands on depth images. For
instance, authors in [73] treat hand segmentation as a depth
clustering problem, where the pixels are grouped at different
depth levels. Here, the critical part is to determine a threshold,
indicating at which depth level the hand is located. In this pa-
per, the threshold is estimated by analyzing the human posture
dimension, assuming that the human posture is known. The
algorithm seems to be rather heuristic, and is thus restricted
to specific applications. Lee et al. [74] not only detect hands
but also locate the fingertips on depth images. Hand detection
is accomplished by the k-means clustering algorithm with
a predefined threshold. The detection of fingertips requires
convex hull analysis for the hand contour.

Two more elegant algorithms are reported in [75] and [76].
In [75], Liang et al. detect hands on the depth images through
a clustering algorithm followed by morphological constraints.
Afterwards, a distance transform to the segmented hand con-
tour is performed to estimate the palm and its center. Instead
of starting by hand detection, Hackenberg et al. [76] directly
seeks pipe- or tip-like objects on a depth image. Those objects
are initially selected to be the candidates of palm and fingers.
They, as a whole, are further verified based on the spatial
configuration checking since the palm and fingers together
form a unique shape. In [77], Caputo et al. begin with a
human-body skeleton generated by Kinect. On this skeleton
map, the positions of both hands can be easily extracted with
the aid of the hypothesis. Given the 3-D position of a hand, the

1This may also partially explain why most publications introduced in the
previous section do not involve the RGB images in the analysis loop.
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Fig. 9. Illustrations for the shape-based pose estimation and the hand
skeleton-based pose estimation. Left: Hand contour (green line), convex hull
(blue line) and positions of fingers (red dots). Right: Hand skeleton.

algorithm finds the corresponding hand size in a look-up table,
which stores the sizes of a standard human hand at different
depth levels. With the size of the hand, their method is able
to roughly locate the hand region on the depth image.

Some other works further enhance the accuracy of hand
detection by integrating the color information into the frame-
work. For instance, in [78] and [79], they treat the hand
detection as a kind of pixel labeling problem, where each
pixel is labeled as either a hand pixel or a non-hand pixel.
The skin color detector on the RGB image and the clustering
on the depth image serve as two conditions to qualify a hand
pixel. The hand region is the intersection of a skin region and
a uniform region (cluster on the depth image) that is closer to
the camera.

B. Hand Pose Estimation

Most publications generally fall into three categories: shape-
based, 3-D model-based and hand skeleton-based. Shape-based
approaches typically match the shape features of the observa-
tion to a predefined, finite set of hand shape configurations.
In [80], the hand contour is extracted, implying the shape and
the boundary of the hand. Both the hand model and the testing
hand depth images are normalized in such a way that the
feature is invariant to the pose translation. The depth similarity
measure between two images is defined as the inverse of their
pixel-wise Euclidean distance. Ren et al. [81] propose to use
a Finger-Earth Mover’s distance to measure the dissimilarities
between different hand shapes. Yao et al. [82] introduces an
efficient feature descriptor that combines shape, local curvature
and relative position information.

3-D model-based approaches formulate the pose estimation
as an optimization problem that minimizes the discrepancy
between 3-D hand hypotheses and the actual observations.
In [78], the authors adopt a 3-D hand model consisting of
a set of assembled geometric primitives. Each hand pose is
presented as a vector of 27 parameters. They employ rendering
techniques to generate comparable skin and depth maps for a
given hand pose hypothesis. Then, a stochastic optimization
method, called particle swarm optimization (PSO), helps to
estimate the 27 model parameters that minimize the distance
between the rendered hypotheses and the inputs. The selec-
tion of PSO is due to its proven capability of solving high
dimensional optimization problem. The work in [79] further
extends their system to estimate the poses of two interacting

hands. Additionally, they accelerate their system by using GPU
implementation, achieving a near real-time operation.

Skeleton-based approaches deduce the hand pose based on
the configuration of the hand skeleton. The skeleton generation
is the key to these methods. A pioneering work [83] is the
random decision forests (RDF)-based hand skeleton tracking,
which can be seen as a hand-specific version of Shotton’s
human-body skeleton tracking [52]. It performs per-pixel
classification by means of the RDF technique and assigns
each pixel a hand part. Then, the mean shift algorithm is
applied to estimate the centers of hand parts to form a hand
skeleton. This algorithm is subsequently enhanced by using
a multilayered RDF framework [84], in which a hand shape
classification serves as an intermediate layer to bridge the
depth pixel and the hand pose estimator. In Fig. 9, we show
visual features used by shape-based and skeleton-based pose
estimation, respectively.

C. Gesture Classification

Hand gesture classification is the task of understanding the
meanings of hand gestures, thus facilitating silent communica-
tion applications such as sign language. It usually incorporates
hand detection and/or pose estimation techniques and outputs
semantic keywords in the context of the application. Tang
et al. [85] aim at establishing a fast system to identify
simple hand gestures (e.g. grasping, pointing). In their work,
a person’s hand is estimated based on a skeletal tracker [77].
Next, local shape-related features, such as radial histogram
and modified speeded-up robust features (SURF) [97], are
extracted from the image. A support vector machine(SVM)
classifier (with a radial basis function) is used to distinguish
the hand gestures. The work reported in [86] organizes three
classifiers in a hierarchical way, assuming the positions of all
fingers at each frame are available. In the first layer, the system
determines the number of fingers. In the second layer, the
finger names can be provided. The classifier in the third layer
calculates the angles between each pair of fingers, enabling
to deduce the hand pose. In [87], Doliotis et al. adapt a
well-known technique, called DTW, to depth-based gesture
recognition. By doing so, the system is invariant to translation
and scale changes of the gesture, leading to a system with
fewer restrictions. In order to enhance the robustness of gesture
recognition, authors in [88] employ two Kinect sensors in
the system. The algorithm is designed to assist people who
have difficulty in using a standard keyboard and a mouse.
Two calibrated Kinects provide a rich point cloud, indicating
positions of human hands in 3-D space. Eventually, a majority
voting scheme is applied to multiple descriptors computed
from the point cloud.

D. Summary

Kinect’s depth signal adds considerable value to the vi-
sual understanding of human hands. Firstly, it simplifies the
problem of robustly detecting and localizing hands in the
image, benefiting downstream recognition of hand poses and
gestures. Secondly, the depth signal is largely invariant to
lighting conditions and skin colors, and gives a very clear



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON CYBERNETICS

segmentation from the background. This allows the analysis
of the hand to work robustly across different users in different
environments. Finally, the calibrated depth signal gives you
information about the distance of the hand from the sensor,
allowing you to build a system that works at different depths.

However, the limited resolution of the Kinect sensor has
its drawbacks: when the hand is far from the sensor, too few
structure light dots illuminate the finger, and thus fingers tend
to drop of the depth image. Despite this limitation, Microsoft
has recently released version 1.7 of the Kinect SDK which
includes a hand grip-release detector. Having been trained on
a wide variety of data, this can work reliably across a wide
range of hand shapes and depths, even when the fingers have
dropped out.

VII. Indoor 3-D Mapping

Indoor 3-D mapping aims at creating a digital representation
of an indoor environment, thus enabling automatic localization
in that environment or the reconstruction of an environment.
Earlier techniques [89], [90] have mostly relied on expensive
sensors, for example, range sensors or laser finders, to generate
3-D point clouds. Spatially aligning 3-D point clouds of
consecutive frames helps in building 3-D maps of indoor
environments. For most algorithms, matching 3-D point clouds
is typically accomplished by the ICP algorithm, where the
correspondences are initialized by looking for nearest neighbor
points in a 3-D space. Such algorithms are simple and usually
have reasonable performance as long as a good initialization
is available. However, the main constraint is that it normally
requires a full overlap between the two point clouds. Addition-
ally, the lack of RGB information makes the correspondence
finding unreliable.

Alternatively, a stereo-camera setup [91] is adopted in the
indoor 3-D mapping filed, in which the point depth needs to
be computed by using stereo matching techniques. Although
this solution is less costly and takes advantage of rich visual
information, it is extremely difficult to obtain a dense depth
map from a standard stereo-camera setup, especially in indoor
environments with very dark or sparsely textured areas.

RGB-D sensor-based indoor 3-D mapping became popular
recently because it combines depth sensors with color sensors
to overcome the weaknesses of both. As a representative of
the RGB-D sensors, Kinect was immediately used in this
particular research field after it was released. Basically, exist-
ing indoor mapping systems sequentially consist of two main
components. 1) Data acquisition and feature correspondence
finding. 2) Loop closure detection and global optimization.
In Fig. 10, we show the basic diagram of such systems. The
loop closure detection and global optimization parts are often
similar regardless of the sensing modality. Hence, we only
focus on explaining how/what Kinect brings additive benefits
to point clouds matching, and the detailed discussions on the
entire chain are out of the scope of this paper.

A. Sparse Feature Matching

Several systems base their scene alignment on sparse feature
points matching, in which a number of distinct points are

Fig. 10. Basic components of an indoor 3-D mapping system. It is noted that
most papers choose either sparse feature alignment or dense point alignment.

extracted from successive frames and the geometric relation
between them is found. The core idea is to compute a trans-
formation by a fraction of accurate point-correspondences.

A typical sparse feature matching approach is presented
in [92], which improves the transformation estimation by using
a more accurate feature matching. The novelty of the paper is a
joint optimization for both appearance and shape matching via
an ICP algorithm, where the shape can be reliably sensed on
the depth map. Afterwards, a pose graph optimization ensures
the global consistency using RGB feature correspondences.
Later, many systems initialize with this algorithm [92] and
aim to further improve its performance. Here, we list some
of them. In [93] and [94], scale invariant feature transform
(SIFT) [95]-based feature extraction and description used
in [92] is replaced by some recently developed techniques,
such as FAST feature descriptor [96] and SURF descrip-
tor [97], which are relatively cheaper with respect to the
computational load. Stuckler et al. [98] represent the shape-
texture information in a more compact way. In [99], authors
notice that the feature matching algorithm used in [92] fails
for repetitive patterns such as carpet and wallpaper. To address
this problem, they modify the matching algorithm to be a
maximum likelihood estimation based on the prior knowledge
regarding the continuity of motion between video frames.

B. Dense Point Matching

On the other hand, several systems insist on using the
dense points tracking between two frames, where all pix-
els in the image contribute to the scene alignment. Since
the point matching is computationally expensive, the dense
point-tracking can only be performed on depth images if
one targets real-time processing. The pioneering work of
dense point-tracking is termed KinectFusion [100], [101]. This
system demonstrates that the algorithm, using an efficiently
parallelized implementation, can perform fast dense frame-
to-frame depth tracking. The parallelized program is carried
out on high-end graphics cards, thus enabling a real-time 3-
D reconstruction. The key to such a system is the frame-to-
frame depth tracking, which applies ICP between the new,
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noisy depth frame and a clean rendering of the previous
frame given the current 3-D reconstruction. With the new
camera pose provided by ICP, the algorithm can fuse the
new depth information into a 3-D volume using a truncated
signed distance function. In [102], the KinectFusion method is
evaluated by comparing it to high-end ground truth generation
techniques. The objective is to study under which circum-
stances the 3-D reconstruction of KinectFusion is accurate
enough to be used as training data. The results reveal that
the system can resolve object details with a minimum size of
approximately 10 mm. However, sharp depth edges or highly
concave scenes are still problematic for the KinectFusion
system. More recently, several systems are presented in order
to adapt the KinectFusion system to more realistic situations,
such as large lighting variations [103], [104], allowing camera
roam free [105], and unbounded environments [106]. Similar
to the research of RGB-D object recognition, a testing database
as well as a benchmark are established by [107], containing
color images, depth maps, and associated ground-truth camera
pose information.

C. Summary

Depth information has been well explored in the indoor 3-
D mapping area prior to the emergence of Kinect. Compared
with other range sensors (e.g., TOF camera) used for 3-D
mapping, Kinect enables much cheaper way of generating 3-
D point clouds. More importantly, these 3-D point clouds are
more accurate and attached with rich visual information, which
potentially lead to a better point-cloud matching. In contrast
to a stereo-camera based system that only provides depths
for texture-rich points in the image (surfaces with little or no
texture cannot be matched easily), novel Kinect-based systems
can produce much denser depth maps, making applications that
require a dense point cloud matching possible.

We have to point out that neither sparse nor dense (feature)
point matching is good enough in terms of the system perfor-
mance. For instance, most (feature) point descriptors used for
matching are simple extensions/variations of available RGB
feature descriptors without taking the characteristics of RGB-
D images into account. A very new paper from Shotton et
al. proves that advanced machine learning techniques (e.g.,
a decision forest), given simple RGB-D features, are able to
considerably improve both sparse feature matching and whole-
image keyframe matching [108].

VIII. Problems, Outlook and Conclusion

A lot of enthusiasm has been generated in the vision
community by recent advances in low-cost 3-D depth cameras
such as the Microsoft Kinect sensor. As we can see from the
selection of work reviewed above, Kinect and its associated
tools indeed have helped to overcome several problems that
plague RGB camera-based algorithms and thus to enable many
interesting applications of computer vision.

However, several important issues remain to be addressed.
In this section, we first discuss some of these issues from the
global point of view, and then we summarize the future trends
for each vision topic mentioned in the paper. Finally, we draw
a conclusion.

A. Real-World Applications

We have seen that the success of Kinect in gaming applica-
tions is mainly due to its efficient combination of new camera
sensors and a highly robust skeletal tracker. However, it should
be also noted that several environmental constraints in this
scenario simplify the problem somewhat. For example, users
in a game usually will not be too far away from the display,
since they want to clearly see what happens on the screen.
And since the camera is co-located with the display, this tends
to avoid the range limitation of the depth sensor. Moreover,
it’s natural that users stand upright with their bodies near
perpendicular to the camera plane when playing games. These
valid assumptions make the human-pose estimation slightly
easier: it is not necessary to tackle the view-angle change
problem and the orientation of the human body can be well
approximated. Furthermore, the limited number of users (one
or two) and also the few obstacles within the playing area
reduce the possibility that users’ body parts are occluded. In
fact, estimating the human pose when a person is partially or
heavily occluded in the scene remains challenging.

Unfortunately, the above assumptions do not hold in more
unconstrained computer vision applications, such as surveil-
lance, smart environments and robotic vision. Factors that can
severely restrict the applicability of Kinect-based intelligent
systems in real world conditions include camera view-range
limitation, occlusions, unpredictable human poses, etc. Meth-
ods that are robust to these factors merit further investigation.

Most high-level recognition systems, such as RGB-D ob-
ject recognition and human activity recognition, assume that
objects and humans can be reliably detected. However, the
fact is that errors in feature extraction step can be propagated
to higher levels. For example, if a human tracking algorithm
(used for a feature extraction) does not extract the human
at the focus of attention, then recognizing the activity be-
ing performed becomes much more difficult or impossible.
Therefore, designing a high-level recognition system which is
able to compensate for such low-level failures is a challenging
task.

B. Efficient Integration of Algorithms

Most algorithms discussed above aim to solve one particular
vision problem. Each solved problem can be seen as a crucial
stepping stone toward the larger goal of designing computer-
based intelligent systems. But how can we seamlessly integrate
these algorithms? One straightforward way is to integrate them
in a sequential order in terms of the requirements of the
system. However, this is not efficient enough, because different
algorithms may share more or less the same components.
A typical example is the automatic indoor robotic system,
which consists of RGB-D object recognition and indoor 3-
D mapping. Both algorithms incorporate the RGB and depth
feature extraction and matching/alignment. If we explore these
algorithms separately, they may extract different types of
features using the same input (e.g. depth images). In order
to obtain a more efficient system, it is necessary to design
improved feature extraction and description methods that are
multifunctional.
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C. Information Fusion

Several Kinect-related computer vision algorithms can be
interpreted, at a high level, as performing information fusion
of RGB and depth images. There are two common fusion
schemes adopted by most current approaches. The first scheme
is to selectively feed the complementary data (RGB or depth)
to different algorithmic modules. A typical example is the
Kinect gaming system, in which depth images are used to
extract a player’s skeleton while RGB images are the input
of a facial feature based human identification algorithm. The
second scheme simply feeds all available information (visual
features) into an optimization algorithm. Such an example can
be found in RGB-D object recognition.

The first scheme enables a fast system because it is not
necessary to process all data at each algorithmic module.
However, the decision about which data should be fed to
which module is set empirically based on simple experiments.
There are no proposals for the situation where either depth or
RGB information is missing or polluted. The second scheme is
potentially more accurate because all information can be taken
into account. However, it is also clear that some information
is typically redundant for certain algorithmic modules, and so
a crude fusion in this case may not improve accuracy and will
likely slow the system down. Therefore, the investigation for
intelligent information fusion or interactive fusion is highly
desirable, and could have a large impact. Fortunately, some
works, for example [40], have started research in this direction.

Additionally, the way of extracting useful information
(features) from depth images seems not to be sophisticated
enough. Most of current approaches just slightly change
feature extraction and description algorithms available in the
RGB image domain, such as HOG, SIFT and SURF. The
suitability of such algorithms for depth images is suspectable,
because the characteristics of RGB and depth images are
different, e.g. the texture on the depth image is much less than
that on the RGB image. Therefore, specific feature extraction
algorithms designed for depth images, such as HONV in [49],
are encouraged.

D. Outlook for the Future

By analyzing above papers, we believe that there are cer-
tainly many future works in this research community. Here,
we discuss potential ideas for each of main vision topics
separately.

1) Object tracking and recognition. Seen from Fig. 5,
background subtraction based on depth images can eas-
ily solve practical problems that have hindered object
tracking and recognition for a long time. It will not be
surprising if tiny devices equipped with Kinect-like RGB
and depth cameras appear in normal office environments
in the near future. However, the limited range of the
depth camera may not allow it to be used for standard in-
door surveillance applications. To address this problem,
the combination of multiple Kinects may be a potential
solution. This will of course require the communication
between the Kinects and object reidentification across
different views.

2) Human activity analysis. Achieving a reliable algo-
rithm that can estimate complex human poses (such as
gymnastic or acrobatic poses) and the poses of tightly
interacting people will definitely be active topics in the
future. For activity recognition, further investigations
for low-latency systems, such as the system described
in [66], may become the trend in this filed, as more and
more practical applications demand online recognition.

3) Hand gesture analysis. It can be seen that many ap-
proaches avoid the problem of detecting hands from
a realistic situation by assuming that the hands are
the closest objects to the camera. These methods are
experimental and their use is limited to laboratory envi-
ronments. In the future, methods that can handle arbi-
trary, high degree of freedom hand motions in realistic
situations may attract more attention. Moreover, there is
a dilemma between shape based and 3-D model based
methods. The former allows high speed operation with
a loss of generality while the latter provides generality
at a higher cost of computational power. Therefore, the
balance and trade-off between them will become an
active topic.

4) Indoor 3-D mapping. According to the evaluation re-
sults from [107], most current approaches fail when
erroneous edges are created during the mapping. Hence,
the methods that are able to detect erroneous edges and
repair them autonomously will be very useful in the
future [107]. In sparse feature-based approaches, there
might be a need to optimize the key point matching
scheme, by either adding a feature look-up table or elim-
inating non-matched features. In dense point-matching
approaches, it is worth trying to reconstruct larger scenes
such as the interior of a whole building. Here, more
memory efficient representations will be needed.

E. Conclusion

The dream of building a computer that can recognize
and understand scenes like human has already brought many
challenges for computer-vision researchers and engineers. The
emergence of Microsoft Kinect (both hardware and software)
and subsequent research efforts have brought us closer to
this goal. In this review, we summarized the main methods
that were explored for addressing various vision problems.
The covered topics included object tracking and recognition,
human activity analysis, hand gesture analysis, and indoor 3-D
mapping. We also suggested several technical and intellectual
challenges that need to be studied in the future.
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