Mastering Leap Motion

Design robust and responsive Leap Motion applications for
real-world use

Foreword by Dr, Woodie Flowers, Pappalardo Frofessor Emeritus MIT,
Distinguished Advisor, FIRST

Mastering Leap Motion

Table of Contents

Mastering L.eap Motion
Credits

Foreword

About the Author
Acknowledgments

About the Reviewers

www.PacktPub.com

Support files, eBooks, discount offers, and more
Why subscribe?

Free access for Packt account holders

Preface
What this book covers
What vou need for this book
Who this book is for
Conventions

Reader feedback

Customer support
Errata
Piracy
Questions
1. Introduction to the World of L.eap Motion

Setting up the L.eap Motion device

Installing the L.eap Motion Developers’ SDK

Installing the Java JDK

Setting up your IDE
Structure of the L.eap Motion Application Programming Interface (API)

The Vector class

The Finger class
The Hand class

The Frame class

The Controller class

The Listener class

Creating a simple framework program within the Eclipse IDE
Setting up the project

Let’s write some code!

Trying it out

Looking forward — the Skeletal Tracking API
Different fingers? Not a problem
Handedness is no longer an issue
Having confidence in tracking data
Pinching and grabbing are now much easier

A new API class — Bones
That’s it!
Summary
2. What the L.eap Sees — Dealing with Fingers, Hands, Tools, and Gestures
Handling hands and fingers
The Leap’s field of view

The InteractionBox class

How the interaction box works

Why would you ever want to use something like the interaction box?

Detecting gestures and tools

Detecting and using tools
Gestures
Detecting gestures

Some (albeit minor) limitations to keep in mind

Upside-down hands can be a problem!

Needing too many hands is a bad thing

Differentiating fingers can be fun!

Lack of support for custom gestures

Summary

3. What the User Sees — User Experience, Ergonomics, and Fatigue

When to use the Leap (and more importantly, when not to)

The Leap Motion user experience guidelines
Ergonomics and user fatigue
Ergonomics
User fatigue
A case study — the Artemis Quadrotor Simulator
Play testing and why you should do it
Providing as much visual feedback as possible

That’s it — for now!

Summary
4. Creating a 2D Painting Application

Laying out the framework for I.eapaint
LeapButton.java
LeapaintListener.java
Leapaint.java

Creating the graphical frontend
Making a responsive button — the [.eapButton class

Getting our bounds

Visually responding to the user

Making a graphical user interface

Constructing a constructor

Saving images

Interpreting Leap data to render on the graphical frontend

Testing it out

Improving the application

Summary
5. Creating a 3D Application — a Crash Course in Unity 3D

A brief introduction to Unity

Installing and setting up Unity 3D
Common jargon found in Unity

Scenes

GameObijects
Scripts
Creating a project
Setting the scene
Summary
6. Creating a 3D Application — Integrating the L.eap Motion Device with a 3D Toolkit
Setting up the scene to receive L.eap Motion input
A quick summary — the fundamentals of Unity scripts
Attaching a script to a GameQObject
Laying out a framework of scripts
Rendering hands
LeapListener.cs
HandRenderer.cs
Preparing the scene for hand rendering
Testing out the Hand Renderer
Rendering buttons and detecting button presses
BaseSingleton — a custom singleton pattern

Colorscheme — a utility class to keep track of colors

Core — the main class, if Unity had main classes

TouchPointer — let’s draw some cursors on the screen

TouchableButton — surely, the name is self-explanatory

TitleMenu — a simple main menu

Putting it all together
Summary

7. Creating a 3D Application — Controlling a Flying Entity

Creating the flying entity
Adding the PlayerArrow and Rigidbody components

Retrieving user input with the HandController class

Interpreting user input with the Player class
Putting everything together and testing it

Improving the application
Summary
8. Troubleshooting, Debugging, and Optimization
Making sure your Leap is connected
The Diagnostic Visualizer
Keeping the L.Leap Motion SDK updated
Cutting back on L.eap Motion API calls
Handling the NoSuchMethod and NoClassDefFound errors in Java

Custom calibration of the L.eap Motion Controller

Summary
9. Going beyond the L.eap Motion Controller
What you’ve learned so far
The Leap Motion Controller standing next to other emerging technologies
Microsoft’s Kinect

Oculus VR’s Oculus Rift

Reliability and safety concerns with the L.eap in industrial settings
Going beyond — ideas to control hardware and robots with the [.eap Motion Controller

Arduino

A few things you’ll need

Setting up the environment

Setting up the project
Writing the Java side of things
Writing the Arduino side of things

Deploying and testing the application

Ideas for Leap-driven applications — simulators and robots

FIRST Robotics Competition Robots
The FIRST Robotics Competition
Controlling an FRC robot with the L.eap Motion Controller

Making a robot of your own!

Summary

Index

Mastering Leap Motion

Mastering Leap Motion

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2014
Production reference: 1151114
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78355-139-2

www.packtpub.com

http://www.packtpub.com

Credits

Author

Brandon Sanders
Reviewers

Rudi Chen

Lamtharn Hantrakul
Justin Kuzma

Maria Montenegro
Commissioning Editor
Usha Iyer
Acquisition Editor
Richard Harvey
Content Development Editor
Shaon Basu

Melita Lobo
Technical Editor
Edwin Moses

Copy Editors

Dipti Kapadia

Deepa Nambiar
Project Coordinator
Sanchita Mandal
Proofreaders

Paul Hindle

Sandra Hopper
Jonathan Todd
Indexers

Monica Ajmera Mehta
Rekha Nair

Graphics

Abhinash Sahu

Production Coordinator
Nilesh R. Mohite

Cover Work

Nilesh R. Mohite

Foreword

This book is part of Packt’s Mastering series. The author assumes that you have some
programming background.

A decade ago, Mastering Leap Motion would not likely have been published. It is part of a
wave of crowdsourced, informal, and targeted publications. eBooks are changing things.
Innovation and creative projects are sprouting everywhere in part because digital
technology has lowered the barriers to the dissemination of knowledge and information.
Grade-school kids are creating smartphone apps. 3D printing has arrived in schools and
home workshops.

Gone is the time when one would be considered a professional and/or contributor because
they knew certain things. Now, you must do something with knowledge to be in the
winner’s circle. Real celebrity will go to those who understand both the technology and
the creative process. With this book, you can make technology dance in the celebration of
creativity.

If you listen to the author’s backstory, you will be inspired to use your newfound
understanding in creative ways. Brandon Sanders has spent several years working with
others in the FIRST (For Inspiration and Recognition of Science and Technology)
programs. FIRST gives young people complex and difficult problems related to robotics to
deal with. Good FIRST teams create delightful robots that bristle with innovation.
Brandon discusses some of those machines at the end of Chapter 9, Going beyond the
Leap Motion Controller.

I will encourage you to follow the author through a conversation about how to use Leap
Motion Controllers. Then, have your own conversation with an innovative use of Leap
Motion. Do something delightful! Do something that will make others smile.

Dr. Woodie Flowers
Pappalardo Professor Emeritus MIT
Distinguished Advisor, FIRST

About the Author

Brandon Sanders is an 18-year-old roboticist who spends much of his time designing,
building, and programming new and innovative systems, including simulators,
autonomous coffee makers, and robots for competition. At present, he attends Gilbert Finn
Polytechnic (which is a homeschool) as he prepares for college. He is the founder and
owner of Mechakana Systems, a website and company devoted to robotic systems and
solutions.

As a home-educated student, he’s had the unique opportunity to focus his efforts on the
fields that interest him. This has made him successful as the team captain for the FIRST
Robotics teams: #4982 Café Bot and #1444 the Lightning Lancers. He has also served as a
scientific research assistant to the Chairman of the Washington University Physics
Department, where he wrote software to aid in the calculation of equations of state for
dense matter in neutron stars.

He has received numerous awards and accolades as a result of his involvement in various
programs. Two of his most notable achievements are FIRST Robotics Competition Dean’s
List Award and FIRST Tech Challenge World Championship Inspire Award.

Acknowledgments

First and foremost, I would like to thank Dr. Woodie Flowers for not only being an
inspiration to me and my peers but also for graciously taking out the time to write the
foreword for this title.

In addition, I would also like to thank all my friends and family who helped double-check
my work during the lengthy process of writing this title, including Dr. Anne Jensen-
Urstad, Ethan Michaelicek, Jonas Kersulis, and my parents, Kim and Robert Sanders.

Finally, I wish to thank my editors and reviewers, Richard Harvey, Shaon Basu, Melita
Lobo, Edwin Moses, Rudi Chen, Justin Kuzma, Lamtharn Hantrakul, and Maria
Montenegro for their continued commitment throughout the duration of writing this title.

About the Reviewers

Rudi Chen is a software developer from the University of Waterloo and has worked for
companies such as Side Effects Software and Dropbox.

Lamtharn Hantrakul is an international student from Thailand who is double majoring
in Applied Physics and Music at Yale University. His research interests include instrument
acoustics, signal processing, and musical HCI. He has published and presented his work,
which combines Leap Motion and musical HCI, at Institut de Recherche et Coordination
Acoustique/Musique (IRCAM) and at the International Computer Music Conference
(ICMC). He enjoys composing music, playing jazz piano, building music controllers, and
learning about traditional Thai instruments such as Saw-U and Saloh. He speaks Thali,
English, French, and Chinese, and outside of Music and Physics, likes to read and write
modern nonfiction essays. His projects, compositions, writing, and research can be found
on his website at http://Ih-hantrakul.com/.

Justin Kuzma is a freelance engineer and software developer based in Burlington, VT. He
has experience in creating mechanical designs and digital art installations in addition to
iOS app development. Using Leap Motion, he has created intuitive interfaces that spark
the imagination as they blur the lines between the digital and the physical worlds.

Maria Montenegro is a computer scientist and an electronic media artist. Currently, she is
pursuing a Master’s degree in Entertainment Technology from the Entertainment
Technology Center (ETC) at Carnegie Mellon University. She is passionate about
developing new ways of entertainment with the use of new technology to promote and
enhance learning. She believes that interactive storytelling and interactive installations can
have a huge impact on people worldwide, showing them different perspectives of things.

As a computer scientist, she focuses more on computer graphics, artificial intelligence,
and computer vision to exploit the most of the technology in use. She likes pushing the
limits of a new technology to bring completely new experiences to users by knowing and
understanding its limitations.

For more information, visit http://www.fusion-sky.com/.

http://lh-hantrakul.com/
http://www.fusion-sky.com/

www.PacktPub.com

Support files, eBooks, discount offers, and
more

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as
a print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at <service@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

[lﬁ PACKT! i 1°

https://www?2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital
book library. Here, you can search, access, and read Packt’s entire library of books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
e On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com

Preface

The Leap Motion Controller is a revolutionary system that blends the boundary between
man and machine, or at least, between our hands and monitors. What if you wanted to
literally grab a 3D model with your hands and manipulate it however you want? This is
where the Leap Motion device and its prospective developers (you!) come in. After using
the powerful Leap API and with some innovation and a lot of patience, you will be aware
how this new device has the potential to revolutionize the way we work with our
computers.

As you are no doubt already familiar with the Leap device itself, we’ll keep the
introduction brief. As you’ve probably gathered from the title, this book is devoted to
mastering the process of designing, writing, and testing programs for the Leap Motion
Controller. It will teach you how to develop with the Leap Motion device effectively while
creating a polished user experience. Throughout the book, we’ll cover a broad range of
topics ranging from the API basics to user experience all the way to robotics integration.
Yes, robotics integration. As my primary field of study (and subsequently, one of my
forms of recreation) is robotics, I’ve integrated a bunch of different robots with the Leap
device, ranging from simplistic quadrotor simulators all the way to competition robots that
cost thousands of dollars. I'll be sharing a few of these different projects with you toward
the end of the book!

Once you start getting a hang of things, we’ll create both 2D and 3D applications to put all
of this knowledge to work. Of course, we’ll also cover the troubleshooting and debugging
of programs. After all, nothing is worse than an app that’s broken because of no obvious
reason, right?

This book emphasizes user experience, which is the most important thing when using the
Leap Motion Controller. You might not think about it at first, but something as simple as
user fatigue is a big problem when programming for the Leap. You will need to make sure
that your user can use the application, but at the same time, you need to make sure that
their hands don’t get tired from a series of repetitive gestures or motions. We will cover
problems such as this one as we progress through this book.

In keeping with the natural user interface that the Controller offers, a good Leap
application should be simple, intuitive, and easy to use. It’s okay if the underlying
software is complex, but the user interface and its controls should be obvious. For
example, instead of using a fancy U-shaped gesture to perform a simple task like an undo
operation, why not just have the user make a quick swipe to the left with one of their
hands? A good developer should always be on the lookout for opportunities to simplify
their interface without making it unusable!

What this book covers

Chapter 1, Introduction to the World of Leap Motion, shows you how to set up and test the
Leap Motion device and a programming environment to use with it. Once everything is set
up, we’ll review the API briefly and finish the chapter off with a simple example program

to make sure everything’s working.

Chapter 2, What the Leap Sees — Dealing with Fingers, Hands, Tools, and Gestures,
covers the software and hardware side of any Leap Motion application. This includes
basic tracking data such as hands and fingers as well as more advanced features such as
tools and gestures. We’ll finish off with an overview of some of the limitations that you
might run into when working with the API and the device.

Chapter 3, What the User Sees — User Experience, Ergonomics, and Fatigue, covers the
user side of any Leap Motion application. This includes when and when not to make use
of the Leap in an application, the importance of ergonomics, and the prevention of user
fatigue.

Chapter 4, Creating a 2D Painting Application, walks you through the creation of a two-
dimensional (or 2D) painting application for the Leap. We’ll start out simple with the
basic framework and graphical frontend and then move straight into rendering user input
onto the screen.

Chapter 5, Creating a 3D Application — a Crash Course in Unity 3D, introduces you to a
three-dimensional (or 3D) toolkit (Unity 3D) to prepare you for the next few chapters.
We’ll cover the basic installation and setup of the environment, which is followed by the
creation of a blank template project for use in the next few chapters.

Chapter 6, Creating a 3D Application — Integrating the Leap Motion Device with a 3D
Toolkit, walks you through the basic steps of integrating the Leap Motion device with an
external 3D toolkit. You’ll learn how to render hands, fingers, and buttons. We’ll finish off
by covering the detection of user input via the Leap. We will be using C# in this chapter
instead of Java.

Chapter 7, Creating a 3D Application — Controlling a Flying Entity, guides you through
the completion of our 3D application. We’ll create a 3D entity, retrieve user input from the
Leap, and then use that data to control the entity.

Chapter 8, Troubleshooting, Debugging, and Optimization, is devoted to the inevitable
things that will arise during application development: bugs and problems and
optimization. This chapter will go over a few different things you can use to fix common
problems with your device or application, in addition to a few general best practices.

Chapter 9, Going beyond the Leap Motion Controller, covers a variety of subjects that go
beyond the Leap Motion device itself. I’1l talk about what you’ve learned so far, where the
Leap Motion stands next to other emerging technologies, some concerns regarding the
reliability and safety of the device in the industry, and even some ideas to control robots!

What you need for this book

Before you begin with this book, there are a few things you’ll need. These include:

e A Leap Motion Controller
e A computer
¢ An Internet connection (to download various things such as the Leap SDK)

In addition to these, you should have an understanding of one or more object-oriented
programming (OOP) languages. Prior experience with the Unity 3D toolkit is also a good
thing to have for the later chapters, but it’s not required as we will review it in Chapter 5,
Creating a 3D Application — a Crash Course in Unity 3D.

In this book, we’ll use the Java programming language most of the time. However, we will
switch over to C# briefly for Chapter 5, Creating a 3D Application — a Crash Course in
Unity 3D; Chapter 6, Creating a 3D Application — Integrating the Leap Motion Device
with a 3D Toolkit; and Chapter 7, Creating a 3D Application — Controlling a Flying
Entity, when we start working with the Unity 3D toolkit.

Who this book is for

This book is for developers who have some experience with the Leap Motion device and
want to turn that experience into mastery of the device.

As this book is intended for more experienced developers, I highly suggest that you have
experience working with at least one object-oriented programming (OOP) language before
you begin reading; if you don’t, it will make the tutorials in this book rather frustrating.
On the flip side, even if you don’t have a whole lot of experience with the Leap, this book
will still provide you with a plethora of information to utilize within your projects as you
gain more experience!

Conventions

In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of their
meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: “The
addlistener method, on the other hand, is used to register a custom Listener class with
the device.”

A block of code is set as follows:

Finger frontMost = frame.fingers().frontmost();
Vector position = new Vector();

position.setX(frontMost.tipPosition().getX())
position.setY(frontMost.tipPosition().getY())
position.setZ(frontMost.tipPosition().getz())

4
4

4

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

public class MyListener extends Listener
Any command-line input or output is written as follows:

> java -jar C:\Users\YourPath\SimpleLeap.jar

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: “Following this, navigate
to the Downloads tab at the top of the Leap Motion website and click on it.”

Note

Warnings or important notes appear in a box like this.
Tip

Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to <feedback@packtpub.com>, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted and
the errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

mailto:copyright@packtpub.com

Questions

If you have a problem with any aspect of this book, you can contact us at
<guestions@packtpub.com>, and we will do our best to address the problem.

mailto:questions@packtpub.com

Chapter 1. Introduction to the World of
Leap Motion

In this chapter, we will walk through the setup and installation of the various tools that
you need to begin working with the Leap Motion Controller. You will learn how to install
the Leap Motion Controller, the Developers’ SDK and, optionally, an Integrated
Development Environment called Eclipse. Afterwards, we’ll go through the Leap Motion
API in detail, including the API structure, basic terminology, and anatomy of a program.
At the end of this chapter, we’ll create a simple program that you can use as a stepping
stone to the more complex Leap-driven applications that appear later in this book.

Note

Keep in mind that a majority of the code-related jargon used throughout this book is
relative to the Java programming language.

Should you come across any issues during this chapter, refer to Chapter 8,
Troubleshooting, Debugging, and Optimization, for troubleshooting tips and tricks.

This chapter is sprinkled with periodic Fun facts that offer high-level and entry-level
factoids about scripting and programming for your reading pleasure.

Setting up the Leap Motion device

If you’ve already set up your Leap Motion device, you can safely skip this section.
Otherwise, read on!

Note

This section (and the rest of the book) will assume that you are on the Windows operating
system.

Compared to the early days of Leap Motion development (when regedit.exe was far too
common), setting up the device is quite easy now. All you need to do is follow these
simple steps to get your device up and running:

1. Plug in your device. It may or may not begin installing the firmware; no worries if it
doesn’t.

2. Following this, head on over to https://www.leapmotion.com/setup and download the
Leap Motion installer for your platform (Windows in our case).

3. Once the installer has been downloaded, go ahead and run it; this will get your device
fully set up.

Once the installer has completed, go to your Start menu in Windows, type in “Leap
Motion Visualizer” in the search bar (you can show the search bar in Windows 8/8.1 by
pressing Windows Key + Q) and hit Enter:

https://www.leapmotion.com/setup

You're all set! You can try out your device by waving your hands in front of the Leap
Motion device; wireframe representations of your fingers and hands will be rendered on
the screen by the Leap Motion Visualizer, similar to the preceding screenshot.

If things did not go as anticipated, skip to Chapter 8, Troubleshooting, Debugging, and
Optimization, to learn about troubleshooting and debugging the Leap Motion Controller to
see what went wrong.

Installing the Leap Motion Developers’
SDK

Now that we’ve got your device installed and ready to go, we need to download the Leap
Motion Developers’ Software Development Kit, or SDK.

The SDK contains a series of language-specific libraries, DLLs, and examples for any
developer to freely use. Needless to say, it’s very important that you have it installed if
you’re going to develop anything for Leap! So, without further ado, let’s get the SDK
installed with the following steps:

1. Head to https://developer.leapmotion.com/ and sign in. If you do not have a
developer’s account, create one when prompted.

2. Following this, navigate to the Downloads tab at the top of the Leap Motion website
and click on it.

3. You should then see a page that looks something like the one shown in this step. Leap
Motion will attempt to autodetect your platform, presenting a screen that looks
similar to the following one. If the information is correct, accept the terms and
conditions (without reading them, naturally) and begin the download!

I_[,:H\P D-E._-e'nper P,:r‘a| m ¥ Downloads

Installer & SDK

V2 Tracking Beta Installation Guide

+ | accept the SDK terms and conditions

Download v.2.1.3.21998 Beta for Windows

Additional versions and platforms available

the Getting Staried Guide f

Once the download completes, extract the contents of the downloaded . zip file (assuming
you’re using Windows) to a safe place. We’ll be referring back to this folder quite a bit
later on. With that, you’re done!

https://developer.leapmotion.com/

Installing the Java JDK

Before we install Eclipse, the IDE you’ll be using for the remainder of this book, we need
to install an appropriate Java Development Kit, or JDK. Oracle (the company that
manages Java) is constantly changing its site, so here is a generalized step-by-step process
to get a JDK installed:

1. Go to http://www.oracle.com/technetwork/java/javase/downloads/index.html.

2. Look for a box that says JDK Download in big letters. Click on the Download
button.

3. You will be taken to a page with a list of JDKs and download options. Scroll down
until you see your platform listed; in the case of Windows, the platform will be
named either Windows x86 (32-bit systems) or Windows x64 (64-bit systems).

4. Accept the license agreement, download the file, and run it to install the JDK.

You’re done! Now we can move onto installing Eclipse.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Setting up your IDE

With the Leap Motion software and SDK installed and out of our way, we can move onto
getting your Integrated Development Environment, or IDE, installed and set up!

When I’'m developing applications for the Leap Motion device (usually to control robots),
I prefer to use the Eclipse Integrated Development Environment.

The Eclipse IDE was originally created for Java, but it has since expanded into many other
languages, including C/C++ and Python. Throughout this book, all of my examples and
instructions will assume you’re using the Eclipse IDE. While you’re welcome to use any
other IDE, or even a text editor, I highly suggest that you install Eclipse, as it will make
this book easier to use!

So first off, you have to find the IDE. Head to https://www.eclipse.org/downloads/ and
download Eclipse Standard Edition, as shown in the following screenshot:

= eclipse

Home Downkads Users Mambers Commiters Aesowces Pegjects Aboul Us Search

Packages Developer Builds o Folow GEcipectan [FI0

Echipse Kepler (4.3.2) SR2 Packages o (I

Eclipse Standard 4.3.2 0un Ji. ‘Wirdows 17 B
ﬁ DrwTiiende | ord 45T Tt CHbei Divwrbisds i Wirbirais 84 i
The Eckprse Platferm. ared all the 1oals Aceded 1o develop and debug & lawn and
Flugin Dirvalopmant Toclimg, Git aed O¥5
Package Solutions | Fimer Packages v |
S Eclipse IDE for Java EE Developers, 250ue J Piestoess 37 01m
! Drwricaced 704 S1E T e Wil G HE

Note

Make absolutely sure that you choose a version that matches your Java JDK (32-bit
Eclipse for a 32-bit JDK, 64-bit Eclipse for a 64-bit JDK, and so on), or else there will be
issues!

Once the download has completed (which can take a while, since the IDE is usually more
than 150 megabytes in size), extract the zIP file to wherever you’d like Eclipse to be
located. Since Eclipse doesn’t use an installer, everything you need is contained in the
folder you have just extracted.

At this point, there’s nothing left to do with the setup; we can now move onto the Leap
Motion device itself!

https://www.eclipse.org/downloads/

Structure of the Leap Motion Application
Programming Interface (API)

The Leap Motion API, while containing many complex and advanced features, is
relatively simple. At the time of writing this book, there are about 23 different classes
within the API, each one serving a different task.

Many of the classes are utilities that you won’t directly instantiate; FingerList, Handlist,
ToolList, Pointable, and so forth are some examples of these kinds of classes. On the
other hand (no pun intended), we have classes that contain data about a specific hand,
finger, or other object, such as the Finger, Hand, and Tool classes. In almost all cases, the
API classes are intuitively named and relatively easy to remember. Now, why don’t we go
over some of the more common classes and what they do?

Note

An up-to-date API documentation can always be found at
https://developer.leapmotion.com/documentation.

https://developer.leapmotion.com/documentation

The Vector class

The Vvector class is a kind of utility class. It contains and manages a single set of x, y, and
z coordinates. It also has a slew of built-in functions to make more common operations
easier to perform. You’ll find yourself using this class all the time, whether you know it or
not. Almost every Leap API class makes use of it! The following is a brief example of
how we can use the vector class to check a hand’s yaw (or simply put, to detect the
rotation of your hand):

Vector position = new Controller().frame().hands().get(0).direction();
System.out.println("Hand © Yaw: " + position.yaw());

Note
Fun fact

When using 3D coordinates, we use three special words to refer to the rotation of an
object. These words are Pitch, Yaw, and Roll, and they correspond to the forward and
backward tilt (pitch), left and right rotation (yaw) and left and right tilt (roll) of an object.

This will first create a new Vector object, fill it with directional data for the first hand in
Leap’s field of view and then output its approximate yaw (in degrees) to the console
window. This illustrates just one of the many functions you can perform with the vector
class.

The Finger class

Next on the list is the Finger class. This class contains tracking data for a single finger
that is, or was, within Leap’s field of view. Similar to the vVector class we just covered,
this class contains a multitude of coordinates (which happen to be vectors themselves).
However, it also includes a series of other things, including the hand that it belongs to, the
current position of its tip, the direction its tip is facing, and more. Here is an example of
how we can retrieve the position of a finger’s tip:

Finger finger = new Controller().frame.().fingers().frontmost();
System.out.println("Frontmost Finger data:" + "\nTip Position (X]|Y|Z): " +
finger.tipPosition().getX() + "|" + finger.tipPosition().getY() + "|" +
finger.tipPosition().getZ());

The Hand class

Next in line after the Finger class is the Hand class! This class is just like the Finger class
in respect to what it contains, with the addition of a few more items like the Sphere Radius
and Palm Position of the hand. The Sphere Radius of the hand is the approximate radius of
the biggest sphere that the hand can hold. Note that while it isn’t effective for gauging the
overall size of a hand, it can be useful to detect how spread apart a hand’s fingers are. The
Palm Position of the hand is relatively straightforward; this is the position of the hands
palm in the x, y, and z coordinates. Here is an example of how we can retrieve the position
of a hand’s palm:

Hand hand = new Controller().frame().hands(0);
System.out.println("First Hand data:" + "\nPalm Position (X]|Y|Z): " +
hand.palmPosition().getX() + "|" + hand.palmPosition().getY() + "|" +
hand.palmPosition().getZz());

The preceding example is almost identical to our previous one with the Finger class; it
simply outputs the three vector coordinates of the oldest hand in view to the console
window.

The Frame class

Now for the Frame class. Before we delve into the specifics of this class too much, it’s
important to understand that the Leap Motion Controller works using frames of
information; that is, it’s much like a video game or movie. Frames are processed as they
are received from Leap, and as such, have no set refresh rate (or frame rate).

Each frame contains a complete set of tracking data for all of the hands, fingers, tools,
gestures, and other things that were within Leap’s field of view when the frame was taken.
The following code counts the objects within Leap’s field of view for a single frame:

Frame frame = new Controller.frame();

System.out.println("Frame data:" + "\nHand count: " + frame.hands().count()
+ "\nFinger count: " + frame.fingers().count() + "\nTool count: " +
frame.tools().count() + "\nTimestamp: " + frame.timestamp());

The preceding example will retrieve the most recent frame from the Leap device and
output the number of fingers, hands, and tools along with a timestamp to the console
window.

The Leap Motion API is kind enough to cache the most recent sixty frames, allowing us to
look at data from previous frames for whatever reason. To retrieve a specific frame, use
the following syntax:

Frame frame = new Controller.frame(frameNumber);

Here, frameNumber is the number, 1-60, of the frame that you want to fetch. The oldest
frame in memory is number 60, whereas the newest one is 1. To get the current frame, do
not specify any frame number at all.

The Controller class

The controller class at last! This class is your portal to the world of Leap motion, so to
speak; you’ll notice that we’ve used it in all of the previous mini-examples up until this
point. The class itself is rather simple on the outside. The two methods that we’ll be using
most often are frame and addlistener. The frame method, as the name would suggest,
returns the most recent frame received from Leap. The addlistener method, on the other
hand, is used to register a custom Listener class with the device; this brings us to the next
topic.

The Listener class

The Listener class, well, listens. To be specific, it’s an event-driven class (or a callback,
if you will) that is registered with the Controller class and responds to various things that
are going on with Leap. It’s a little hard to explain it with just text, so let’s look at a
practical example here, which is the MyListener . java file:

public class MyListener extends Listener

{

public void onFrame(Controller controller)

{

Frame frame = controller.frame();

if (!frame.hands().empty())
System.out.println("First Hand data:" +

"\nPalm Position (X|Y|Z): " + frame.hand(0Q).palmPosition().getX() + "[" +
frame.hand(0).palmPosition().getY() + "|" +
frame.hand(0Q).palmPosition().getZ());

}

}

Then, in a separate file, Main. java, use this:

public class Main

{

public static void main(String args[])

{

Controller controller = new Controller();
MyListener listener = new MyListener();
controller.addListener(listener);

while (true) {}
¥

b
This was a bit longer than our previous examples, wasn’t it? Let’s break it down into
chunks. First, let’s look at the lines in the first class, MyListener:

public class MyListener extends Listener

The first part of this class defines our new class, which will be extending the Listener
class; this is what allows it to be compatible with the Leap API. Following this, let’s take a
look at the next line:

public void onFrame(Controller controller)

The second part of this class defines an override for the Listener class’ internal onFrame
method so that we can respond whenever a new frame is received from the controller.
Thusly, this function (once this class is registered, of course) will be called every time a
new frame is generated by Leap. The next few lines from that point should be fairly
familiar at this point; if they aren’t, head back and review the other classes that we’ve
covered so far!

Now, let’s look at the lines of the Main class. The first few lines should be familiar (they
simply initialize the controller), so I’m only going to focus on one particular line:

controller.addListener(listener);

This line registers our instance of the MyListener class with the Leap API, allowing it to
receive events from Leap. In this case, once registered, the onFrame method from our
MyListener instance will be called every time a new frame is received from the controller.

Then, there’s the last line:
While (true) {}

This line prevents our main class from exiting, allowing our Listener implementation to
continue running and receiving events until we’re ready to quit.

Note
Fun fact

The Leap Motion Listener system runs inside its own thread at all times; this means that
any listeners that you register will continue to receive updates, even if your application is
single threaded and receives a blocking call or something similar.

Creating a simple framework program
within the Eclipse IDE

Based on everything we’ve done this far, we can go ahead and create a basic framework
program to build off. The end result will be an all but empty program that continuously
outputs tracking data from a single hand within Leap’s field of view. You can then use this
template with the examples featured later on within this book. In addition, this section will
help familiarize you with the Eclipse IDE if you haven’t used it before.

So, without further ado, let’s get started!

Setting up the project

First off, we need to create a new Eclipse Java project. This can be achieved by heading
over to File | New | Java Project from within the IDE; you will then be greeted by a
project creation wizard. Choose a name for your project (in this case, I called mine
SimplelLeap) and then click on the Finish button.

Once your project is created, navigate to it in the Package Explorer window. The
following screenshot illustrates what the package explorer should look like:

A Sr0~-Q~ Juick Access 29 | RC/C++ &) Java | & Debug

1 Package Explorer “«

y pleleap » & src » & com.mechakana.tutorials » & Simpleleap » Simpleleap
* @8 src
4 @ com.mechakana.tutorials
1] simpleleapjava
B JRE System Library

com mechakana . tutorials

Writable Smart Insert 15:20

While my IDE layout will most likely drastically differ from yours, the preceding
screenshot should give you a general idea of what the Package Explorer looks like (the
giant orange arrow is pointing to it). It most conveniently displays all of your Java
packages as a folder hierarchy, making navigating large and more complex projects a
breeze.

For now, we should go ahead and create a new package to put our classes in. This can be
achieved by right-clicking on the src folder for your project in Package Explorer and then
going to New | Package tooltip. You can name it whatever you like; standard Java naming
convention dictates that package names consist of your web address in the reverse order
followed by the project name, so I named mine com.mechakana. tutorials.

Note
Fun fact

Java developers use web addresses in the reverse order (like com.mechakana) as package
names so that different developers can distribute packages with unique names. If I just
named my package “tutorials™, it could potentially overwrite somebody else’s package
named tutorials—if I use my own website and name it com.mechakana. tutorials, |
can guarantee I’'m the only person with that name.

Once our package is created, we can fill it with two empty files: SimpleLeap.java and
LeapListener.java. To create a new class in Eclipse, right-click on our package
(com.mechakana.tutorials in my case) and then go to New | Class. You should do this
twice; once for the SimpleLeap class and again for the LeapListener class. Only specify a
name for the class—keep all the other settings as their defaults.

Now, we need to configure the Leap libraries. While it would be super convenient to just
start coding, it wouldn’t do us a whole lot of good if we didn’t have access to Leap, right?
Fortunately, this is a relatively easy task that can be done in a few simple steps:

1. Navigate to your Leap Motion SDK directory that we created earlier and go to
LeapSDK/1ib/. Copy the LeapJava.jar file contained within to the root of our
project in Eclipse. On Windows, you can simply drag the file from the Leap SDK
folder into Eclipse and it will automatically be copied.

2. While we’re still within LeapSDK/1ib/, navigate one level deeper into the x86 folder.
Copy the Leap.d11 and LeapJava.d11l files contained within to the root of our
project in Eclipse.

3. Our project should now look similar to the following screenshot when viewed from
within the Eclipse IDE:

4 =2 SimpleLeap

4 B src

4 f com.mechakanatutorials

[J] LeapListenerjava
- [Sirnpleleap java
- B, IRE System Library [JawvaSE-17]
[mh Leap.dll
o Leaplava.dil
|| Leaplava.jar

4. Now, with all of the items we need contained inside our project folder, hover over the
SimpleLeap project in Package Explorer (inside Eclipse) and right-click on it.
Navigate to Build Path | Configure Build Path in the tooltip that pops up.

5. Once inside, you will be presented with a window that contains a series of tabs,
similar to the one pictured here:

Java Build Path

Resource :
Builders Source | i} Projects | B\ Libraries | & Order and Export

Java Build Path 4R and class folders on the build path:

Java Code Style = IRE System Library [JavaSE-17) Add JARs...
Java Compiler

Java Editor
Javadoc Location

Bgdd External JARS..,

Project Facets Aﬂ_du?ri_lbk...

Refactoring History Add Libeary,.,
Run/Debug Settings:
Task Repository
Tazk Tags
WValidation

WikiText

Add Class Folder...

|
l
!
Propect References |
[
l

Add External Class Folder...

6. Navigate to the Libraries tab and hit the Add JARs... button. In the window that

pops up, open our Simpleleap project, navigate to the LeapJava.jar file and then
double-click on OK.

With that, you should be done setting up the project for development! Aside from the
creation of our two files, these steps are common to pretty much any Eclipse project that
uses the Leap Motion device; be sure to remember them!

For more information about Eclipse, you can go to their official website at
http://www.eclipse.org.

http://www.eclipse.org

Let’s write some code!

With our project set up and ready to go, let’s start writing! First off, we need to create an
implementation of the 1istener class. Go ahead and open up the LeapListener.java file,
which we created earlier, and enter the following:

package com.mechakana.tutorials;
import com.leapmotion.leap.*;

public class LeapListener extends Listener

{

public void onFrame(Controller controller)

{

Frame frame = controller.frame();

if (!frame.hands().isEmpty())
System.out.println("First Hand data:" +
"\nPalm Position (X]|Y|Z): " + frame.hand(0).palmPosition().getX() + "|" +
frame.hand(0Q).palmPosition().getY() + "|" +
frame.hand(0Q).palmPosition().getZ());

if (!frame.fingers().isEmpty())
System.out.println("Frontmost Finger data:" +

"\nTip Position (X]|Y]|Z): " +
frame.fingers().frontmost().tipPosition().getX() + "|" +
frame.fingers().frontmost().tipPosition().getY() + "|" +
frame.fingers().frontmost().tipPosition().getZ());

}
}

Now, let’s discuss what each major chunk of code does:

import com.leapmotion.leap.*;

This line imports the entire Leap API into the context of our file. Needless to say, without
this statement, we cannot make use of Leap:

public class LeapListener extends Listener

The preceding line defines our LeapListener class and states that it extends the Leap
APT’s Listener class. This is what allows us to later register the class with a Controller
object.

public void onFrame(Controller controller)

This line overrides the Listener class’ built-in onFrame method. Once our LeapListener
class is registered with a Controller object, this method will be called every time a new
frame is received from Leap.

The rest of the lines contained in this example code have been covered previously in this
chapter, but basically, they collect tracking data from hands and fingers and output it to the
console window.

Moving on, let’s fill out the SimpleLeap class. Go ahead and open up SimplelLeap.java

and fill it with the following code:

package com.mechakana.tutorials;
import com.leapmotion.leap.*;

public class Simpleleap()
{

public static void main (String args[])

{

Controller controller new Controller();

LeapListener listener new LeaplListener();

controller.addListener(listener);

while (true) {}

}
}
This code should look pretty familiar to you; in fact, we’ve used it before in this chapter
during the previous Listener example! Since there’s nothing new to this code, I’'ll give
you the rundown; it registers an instance of our LeapListener class with Leap so that it
can receive callbacks. Once registered, it loops forever until the user closes the
application.

Trying it out

With all of the hard stuff out of the way, we can finally test out our code! With Eclipse, it’s
quite easy for us to launch a console application; simply click on the green arrow at the
top of your toolbar or press Ctrl + F11. If everything worked correctly, you’ll see a
console tab pop up somewhere within your workspace. Try waving your hands around in
front of the Leap device, and you’ll see an output similar to the following screenshot:

Frontmost Finger data:
Tip Position (X|¥|2):
First Hand data:

Falm Position (X|¥]|Z):
Frentmost Finger data:
Tip Pesition (X|¥|2):
First Hand data:

Palm Position (X|¥]Z):
Frontmost Finger data:
Tip Position (X|¥|2):
First Hand data:

Palm Position (X|¥]Z):
Frentmost Finger data:
Tip Position (X|¥|2):
First Hand data:

Palm Position (X|¥[2):
Frentmost Finger data:
Tip Pesition (X|¥|2):
First Hand data:

Palm Position (X|¥]Z):
Frentmost Finger data:
Tip Position (X|¥|2):
First Hand data:

Palm Position (X|¥[2):
Frentmost Finger data:
Tip Position (X|¥|2):
First Hand data:

Palm Position (X|¥]Z):
Frentmost Finger data:
Tip Position (X|¥|2):
First Hand data:

Palm Position (X|¥|Z):
Frentmost Finger data:
Tip Position (X|¥[2):
First Hand data:

Palm Position (X|¥]Z):
First Hand data:

Palm Position (X|¥]Z):

{f Package Explorer | 2 Consale 27 - wWHEE # E-ri-= B
SirnpleLlesp [Java Application] C\Program Files (<86)\Jmvaiyre Pibindsvaw.exe (Mar 27, 2004, 12:25:19 AM)

43.56153 | 168, 03516 -12. 346834
a.ele.2|0.e

58, 688755 | 194, 33201 | 14. 916054
a.ele.2|e.e

77.916336| 199, 8303 |42.570503
a.eje.2|0.e

96, BEALT | 202, 22314 | 72, 26536
g.eje.2|0.e

116, 63129 203, 9597|103, 52548
a.eje.e|e.e

53, 260296 138, 95626 | 144, 49332
0.0|e.0/0.0

160, 20007 200, S8569] 188, 61331
g.0]e.0|0.0

170, 15786 | 199, 4622|215, 0569
0.0]e.0)0.0

151, 57466 | 173, 46635] 269, 0885
o.0]e.0|0.0

o.ele.@le.@

-

With that, you’re ready to dive into the world of Leap Motion.

Let’s get started!

Looking forward — the Skeletal Tracking
API

Recently, the Leap Motion development team has released a new version of the Leap SDK
(v2.0), which contains an all new API for skeletal tracking (as in, you know, tracking the
bones in your hand).

This new API brings not only a slew of new possibilities, but also an increase in the
precision of current tracking and vision recognition functions. As the new API was still in
the beta phase during this book with no stable release in sight (beta software in a book
isn’t fun for anyone!), we will not be making heavy usage of it in the projects that we
work on.

With that said, as it is unlikely that the skeletal tracking API will change too much in the
coming months and the ideas it brings to the table are relatively straightforward, I thought
we might as well go over what it has to offer compared to the current API. Depending on
your level of experience with the Leap Motion Controller up to this point, some of the
things I talk about in the next few pages might or might not mean much to you—but I
assure you, it’s all relevant!

Different fingers? Not a problem

We’ll be covering the primary disadvantages of Leap and how to correct them later in this
book, but I’'m going to go ahead and say it now: the new Skeletal Tracking API eliminates
a lot of the issues present in the current APL. It is, in simple terms, freaking awesome.

With the new API, individual fingers can now be differentiated from each other. This
probably seems like something rather simple, but it can make a world of difference in
many cases. Let’s take a first-person shooter for example.

During normal gameplay, the player holds his or her primary hand out in front of the Leap
device in the form of a gun (making a fist with only the index finger and thumb pointing
out). Once the player has aimed at a target they want to shoot, they’ll close their thumb on
their hand as if firing the gun. This will cause the in-game weapon to fire in the direction
aimed by their finger, ideally.

Now, if you can’t tell the difference between the thumb and the pinky finger, or an index
finger and a ring finger, this seemingly trivial programming task—calling a function when
the user’s thumb disappears from view or enters a specific threshold—suddenly becomes a
beast of a programming task; this is where the new Skeletal Tracking API comes to the
rescue!

Earlier, we differentiated the fingers on a hand by trying various tricks like sorting the x
indices of each finger from left to right or right to left and then guessing and based on this
data, which finger belonged to which “named” finger (such as a thumb, index, or pinky).
We’ll be covering this in the next few chapters. However, with the new API, all we have
to do is check the type field on any valid finger object and the API will work its magic,
providing you with an integer that represents the proper name for the finger that the object
denotes.

The bare-bones snippet here illustrates, in two lines, how you’d query the finger type data
using the new API:

if (frame.hand(0).finger(0).type == 0)

System.out.println("The first finger on the first hand is a thumb.");
The preceding example snippet will print out a notice if, and only if, the first finger on the
first hand in a given frame is a thumb (finger 0 on hand 0, since the Leap Motion API is
zero indexed).

Handedness is no longer an issue

Gone are the days of wondering if a given hand belonged to somebody’s right arm or left
arm. Using the magic of mathematics and other unknown formulae, relating to the
structure of the skeleton of the average human hand, the shiny new API can now
differentiate between the left and right hands.

Again, this is not as simple as it sounds. There are times when you want to figure out
whether a user has their left or right hand out; why, I won’t ask, but there are such times.
Using the preskeletal tracking API, one of your best bets for figuring out which hand is
which is detecting the side of a hand the farthest finger (the thumb) was on; if the thumb
was on the left, it’s a right hand, and vice versa. Of course, this is little better than a guess
—what if the user’s hand is upside down, for instance? You’d then have to take that into
account, and so on, and so on...not fun.

Yet again, the new Skeletal Tracking API comes to the rescue with the isLeft () and
isRight () functions, which call all of our Hand objects home in the new API! I certainly
hope that the names of these functions are self-explanatory, but just in case, for the sake of
clarification, I shall clarify. The isLeft () function for any Hand object will return a result
of true if the object is a left hand and false otherwise. Likewise, the isRight () function
for any Hand object will return a result of true if the object is a right hand and false
otherwise. This is far superior to the previous method of guessing.

Having confidence in tracking data

This is slightly less of a concern to the average developer, but it is a concern nonetheless.
The confidence that your software has that a tracked hand is, indeed, a hand! The amount
of confidence the Skeletal Tracking API has about the accuracy of a hand is based on how
well the tracking data for a hand matches a predetermined model of an ideal hand,
including posture and finger positions.

In the 2.0 Beta API, this confidence value is rated on a scale of 0.0 to 1.0, with 0.0
meaning it is extremely unlikely that a tracked hand is valid, while a value of 1.0 means it
is extremely likely that a tracked hand is valid.

Since every Hand object has a confidence rating, all you have to do to get the confidence
rating for a hand is call the confidence() member function of a Hand object and you will
get a return value of 0.0 to 1.0, like so:

System.out.println("First Hand Confidence Rating: " +
String.valueOf (frame.hand(0).confidence()));

The preceding example snippet will print out the confidence rating of the first hand in a
given frame to your console window.

Pinching and grabbing are now much easier

Gone are the days of trying to detect gestures or interpolating finger coordinates in an
attempt to pick up pinches and grabs from the user. The new API introduces two new
member functions for the Hand class that are specifically for detecting grabbing (closing of
the fist) and pinching—grabStrength() and pinchStrength(), respectively.

The first function, grabStrength(), will return a value between 0.0 and 1.0 that represents
how tightly a given hand is making a fist. A value at or near 0.0 means a hand is almost
perfectly flat and not making a fist, while a value at or near 1.0 means a hand is making a
tight fist. In other words, the more a hand curls its fingers inward into the form of a fist,
the higher the returned value from grabStrength() will be. Similar to the other new
methods we’ve covered already, usage of this one is relatively simple:

System.out.println("First Hand Grab Strength: " +
String.valueOf(frame.hand(0).grabStrength()));

The preceding example snippet will print out the approximate grab strength of the first
hand in a given frame to your console window.

Moving on to the second function, pinchsStrength() will return a (you guessed it) value
between 0.0 and 1.0 that represents how close a hand’s thumb is to any other finger on the
hand. This one is just a tad more confusing than the other functions; basically, a hand’s
pinching strength is defined by a hand’s thumb being very close to any other finger on the
hand—it doesn’t matter which finger, as long as it’s a finger.

A value at or near 0.0 means that a hand’s thumb isn’t very close to any other finger, and
therefore the hand isn’t pinching very hard (or at all). On the other hand, a value at or near
1.0 means that a hand’s thumb is very close to other fingers and is pinching rather hard.
Basically, the closer a hand’s thumb is to another finger, the higher the returned value from
pinchStrength() will be. Just like grabStrength(), pinchStrength() is relatively
simple to use:

System.out.println("First Hand Pinch Strength: " +
String.valueOf(frame.hand(0).pinchStrength()));

The preceding example snippet will print out the approximate pinch strength of the first
hand in a given frame to your console window.

A new API class — Bones

Of course, the Skeletal Tracking API update wouldn’t make much sense if it didn’t
introduce a facility for dealing with, well, skeletons.

This is where the new Bone class comes in. Using it, you can glean all kinds of
information from any valid Finger object, such as the length of the metacarpals, proximal
phalanges, intermediate phalanges, and distal phalanges on a given finger. Don’t worry; I
didn’t know what these names meant either until I read the shiny new API docs for
developers. We won'’t go too in depth about this new class since the API was (or still is) in
the beta stage at the time of writing this, but let’s go ahead and touch on the basics.

In the new Skeleton Tracking API, every single Finger object contains an array of Bone
objects—four to be precise. The exception is for thumbs; while they technically have four
Bone objects, they only have three literal bones in real life. Therefore, the length of the
metacarpal bone (the one closest to the hand, which thumbs don’t have) on a thumb will
always be zero.

Every Bone object has a variety of useful and/or fun member functions, including:

e The standard isvalid() and invalid() functions to check data integrity

e The length() function to check the length of the given bone

e The prevJoint() function that returns the vector object for the point the given bone
is anchored to

e nextJoint() that returns the vector object for the tip of the given bone

e type() for getting the proper name, or type, of the given bone

For what it’s worth, the names of the individual bones on a finger, in the order from the
closest to the hand to the furthest from the hand, are: the metacarpal bone, proximal
phalange bone, intermediate phalange bone, and the distal phalange bone.

That’s it!

As you can see, the new Skeletal Tracking API is poised to revolutionize the way the Leap
Motion software will be written by developers like you and me. Everything is easier, from
simple things such as picking out named fingers to the more complex things such as
iterating over the bones of different fingers to create more accurate 3D representations of
our hands. Only time will tell what awesome and crazy applications will be written using
this new API. Now...back to Mastering the Leap Motion Controller!

Summary

In this chapter, we covered all of the basics of the Leap Motion device. You installed and
set up the Leap Motion device, its libraries, and an IDE to help you program for it. We
then went over all of the different members of the Leap Motion API, including vectors,
fingers, hands, frames, controllers, and listeners. Afterwards, you created a simple
framework program with Eclipse to make sure everything was working correctly. We
finished off with a lengthy look at the new Skeletal Tracking API and what it brings to the
development table. Armed with this knowledge, you are now ready to tackle the next few
chapters of this book.

In the next chapter, we’ll begin diving into the world of Leap Motion. You’ll be learning
about how Leap interprets your hands, various ways you can detect user input, and some
unavoidable limitations of the tracking software.

Chapter 2. What the Leap Sees — Dealing
with Fingers, Hands, Tools, and Gestures

In this chapter, you will learn about the more complex aspects adopted within any Leap
Motion application. This includes basic tracking and coordinate data, such as hands and
fingers, as well as more advanced features, such as tools and gestures. Throughout this
chapter, we’ll go through various sets of example code to give you an idea of everything
that can be done to grab input from a user.

Note

This chapter is sprinkled with periodic Fun facts that offer high-level and entry-level
factoids about scripting and programming for your reading pleasure.

Handling hands and fingers

In the previous chapter, you learned about the top-level functionality of the Hand and
Finger classes. How about we go over the specifics?

The Leap’s field of view

When the Leap is plugged in and turned on, it is constantly looking for and tracking any
hand, finger, or tool-like objects within a certain area, commonly referred to as its field of
view (FOV). The FOV is just 30 degrees short of being a perfect hemisphere, measuring
in as a 150-degree area protruding directly from the device. You can see this perfectly in
the following diagram:

_ Hemispherical FOV of about 150 degrees _ >

- Controller

=

The actual range of the FOV is about 20” (20 inches or 50 centimeters, for those who are
not familiar with the convention) from the device in the upward direction and 10” from the
device in any lateral direction. Anything within the field of view will automatically be
detected by the Leap and then forwarded to the API classes, which we will use when
programming applications.

To give you a better idea of the three-dimensional appearance of the Leap’s FOV, I’ve
included the following screenshot. The boundaries of the FOV are the yellow lines, with
one hand visible towards the center of the image.

Note
Fun fact

This screenshot was taken from the Leap Motion Diagnostic Visualizer—please refer to
Chapter 8, Troubleshooting, Debugging, and Optimization, for information on what it is
and how to use it.

When writing an application for the Leap, you should avoid placing user interaction areas
(menus, buttons, sliders, and so on) near the edges of the screen (and thus, near the edges
of the Leap’s field of view); this will help mitigate the potential for erratic and strange
feedback from the Leap.

Unfortunately, however, there are many cases where the best place for a button or a menu
is at the screen’s edge. The question is how do we place items near the edge of the screen,
and thus in the field of view, without the risk of violating the edge of the Leap’s detection
zone? Easy; we can use the InteractionBox class from the Leap Motion APIs.

The InteractionBox class

With the InteractionBox class, we can normalize the Leap’s coordinate system and map
it to the resolution of a user’s screen. How does the interaction box work, you might ask?
It’s quite simple in principle; the interaction box represents a (mostly) perfect cuboid (box-
shaped object) that exists entirely within the limits of the Leap’s FOV, as pictured here:

Fd Interaction Box area

Controller

. — . o _ = f

=

Now, the easiest way to demonstrate how this class works is with a practical example; let’s
write some code. If you’re still using the simple Leap app template from the previous
chapter, replace your listener’s onFrame method with the following code:

public void onFrame(Controller controller)

{
Frame frame = controller.frame();
//Retrieve an InteractionBox reference.
InteractionBox box = frame.interactionBox();
if (!frame.fingers().isEmpty())
{
//Retrieve the vector of the frontmost finger's tip.
Vector frontmost = frame.fingers().frontmost().tipPosition();
//Normalize the frontmost vector to a 0.1 scale.
frontmost = box.normalizePoint(frontmost);
//Print out the vector. Left, front and bottom are represented by 0.
System.out.println("Frontmost Finger normalized coordinates (X|Y|Z):
" + frontmost.getX() + "|" + frontmost.getY() + "|" + frontmost.getZ());
¥
3

OK, let’s break down this code. Check this line:

InteractionBox box = frame.interactionBox();

Here, we’re fetching a reference to the current frame’s InteractionBox object and
assigning it to an empty InteractionBox reference.

Note

You should never ever try to initialize your own InteractionBox object, as the frame-
supplied one takes into account the user’s current configuration settings and the state of
the motion controller device.

You should be pretty familiar with the following line:

Vector frontmost = frame.fingers().frontmost().tipPosition();
Here, we’re simply getting the vector coordinates for the frontmost finger’s tip position.
The next line is the important one, and the main reason why we use InteractionBox:

frontmost = box.normalizePoint(frontmost);

This line normalizes the value of the passed vector to a 0 — 1 scale, based on the internal
vector coordinate system of the frame that this InteractionBox reference belongs to. This
allows us to map the Leap coordinates to pretty much any percentage-based coordinate
system in existence.

Note
What does normalize mean?

Well, when you normalize a vector using the InteractionBox object’s normalizePoint
function, you’re converting the distinct vector coordinates within this vector to floating
point values between 0 and 1. This effectively turns a z value of, say, -164 (all the way to
the front on a standard Leap device) to a z value of 0 or O percent. In turn, a z value of 0
before being normalized will become a z value of about 50 percent or will be centered
within the Leap’s FOV. This normalization allows us to map the Leap input, in a
meaningful way, to other coordinate systems such as those found on graphical user
interfaces or games.

The InteractionBox class’ normalization process is described by the following graph,
assuming a maximum range of -164 (all the way forward) to 120 (all the way back):

Interaction Box Normalized Values

M Tracking
Data

0.5

0.0

0.5

Mormalized value (from interachion Box)

120 -6l 0 6l 120

Raw value (from Leap)

Finally, the last line simply prints out the three normalized coordinates of the frontmost
finger. Try the code out and you’ll see values with quite a few decimal places that range
from 0 to 1—although the values can be better read as “0 to 100 percent in a given
direction.”

How the interaction box works

Behind the scenes, the Leap Motion device is always tracking and gathering data on
anything that comes into its field of view. These items are then tagged as fingers, hands,
tools, or other objects and packed into a frame that is sent to the Leap API.

In addition to these items, the Leap also appends an InteractionBox object to every
single frame. The box represented by this object is equal to the size of the biggest possible
box that can fit within the Leap’s current field of view. Now, since the Leap’s FOV is
anything but a box (it’s basically a hemisphere), it’s impossible for the InteractionBox
area to fill the entire effective field of view for any Leap device.

In practice, this means that, for example, two different fingertips, one with a z value of 90
(towards the back of the Leap’s FOV) and the other with a z value of 150 (even further
back), will be normalized to the same value of 1.0 (all the way back). This is because of
the fact that once the fingertips exit the effective range of the interaction box area, the
InteractionBox class will automatically clamp the passed vectors down to the maximum
possible value of 1.

To give you a better illustration of how this looks, take a look at the following two
diagrams. In the previously shown screenshot and diagram, showing Leap’s FOV, you can
see the Leap Motion Controller from its right side when in normal operation, with the left
side of the image being the one facing the user.

Finger tip with Z vector of ~90 normalizes to 1 +Y

,,--'—'_'_._‘_‘—‘-—___

Interaction Box area -
-\-\-‘-\-‘-‘-\-""‘-h-_._,__‘___ //"

Controller
(Side view)

In the first situation, shown in the preceding diagram, the finger is breaking the wall of the
interaction box area and is, therefore, within it. Since it is at the edge of the box, its z
vector will be normalized to a value of 1.

Finger tip with Z vector of ~150 also normalizes to 1,

: it . : +Y
since it's outside of the Interaction Box area.
¥ = i
f 3 _— "'--..___
- S
/ - e 7
” ~ 4
/ ,_,-r"' \
i ™,
I . \-
Y
—, T
& K\
Interaction Box area -

—— Controller
D i (Side view)

In the second situation, pictured here, the finger is completely outside the interaction box’s
area but still within the field of view of the Leap device. Since its z vector cannot be
normalized to anything outside the O - 1 range, the InteractionBox class will
automatically clamp the z value passed to the normalizePoint function to 1 because this
is the closest applicable value.

Why would you ever want to use something like the interaction box?

Well, the interaction box is one of the most useful (and for me, one of the coolest) features
incorporated in the Leap API. You can use it to map the Leap coordinates to screen
coordinates or even other coordinate systems within games and simulators.

A good example of the interaction box in action is in a quadrotor simulator that I wrote a
while back, designed to simulate—you guessed it—quadrotors. This simulator, called
Artemis, was originally written to help me train with the Leap Motion Controller before I
deployed it in my real-life quadorotors...wouldn’t want to crash a flying robot into a wall
now, would we? In Artemis, I used the InteractionBox class to achieve two different
things:

e Using the interaction box, I was able to map tracking data from the Leap to three-
dimensional world-space coordinates within the simulator, allowing me to render 3D
hands on the screen.

e Using the same method, I was able to map data from the Leap directly onto the user
interface to give visual feedback as to where the user was pointing.

Once you start working with 3D toolkits in Chapter 5, Creating a 3D Application — a
Crash Course in Unity 3D, you’ll not only get to work on a simulator similar to Artemis,
but we’ll also cover the actual application of the interaction box and how it is essential for
user interface design.

Detecting gestures and tools

Next up on the list of things to tackle are gestures and tools. Let’s start with tools, since
they’re pretty simple...

Detecting and using tools

The Leap Motion API documents do the best job of defining what exactly a tool is to the
Leap:

“Tools are pointable objects that the Leap Motion software has classified as a tool.
Tools are longer, thinner, and straighter than a typical finger. Get valid LeapTool
objects from a LeapFrame object.

Tools may reference a hand, but unlike fingers they are not permanently associated.
Instead, a tool can be transferred between hands while keeping the same ID.”

In other words, any instance of the Tool class represents a three-dimensional object that is
longer and thinner than a regular finger. In addition, since Tool objects have their own
distinct ID and are tracked independently of hands, the hand that owns them can change
over the duration of the existence of the Tool object.

In practice, manipulation of tools is almost identical to manipulation of fingers; the only
difference is that Leap will only register objects that meet the aforementioned criteria as
tools, and they don’t necessarily always belong to the same hand throughout their lifetime.
The following code gives a brief demonstration of how to detect and read data from tools
present within Leap’s FOV:

Frame frame = controller.frame();

if(!frame.tools().isEmpty())

{
System.out.println("Frontmost Tool data:" + "\nTip Position (X|Y|Z): " +
frame.tools().frontmost().tipPosition().getX() + "|" +
frame.tools().frontmost().tipPosition().getY() + "|" +
frame.tools().frontmost().tipPosition().getz());
}

Easy, right? To test this code, start up the code and then grab something such as a pencil or
pen and wave it around within the Leap’s field of view. You should be greeted by an
output; you’ll notice that if you try to place your fingers in the field of view of the Leap, it
will ignore them because they aren’t tools.

Gestures

OK, so these are just a tad more complex than the previous topics we’ve covered so far.
However, I digress; they’re still relatively simple. As gestures are one of the more
complicated aspects of the Leap Motion API, we’ll walk through the different gestures

(and what they do) one at a time.

Detecting gestures

Whenever the Leap Motion Controller is turned on and is active, it is watching for activity
within its FOV that resembles certain kinds of movement patterns that are typical of a user
gesture or command. As an example, a circular movement of the user’s finger might be
detected as CircleGesture, while a hand moving from side to side might indicate
SwipeGesture.

As per the Leap API documents, whenever the Leap’s tracking software detects what
might be a gesture, it assigns the gesture an identifier and adds a corresponding Gesture
object to the gesture list for that frame. In the case of continuous gestures that take place
over multiple frames, the Leap software will update the gesture by adding a Gesture
object with an identical identifier to each subsequent frame.

The gestures that are currently supported by the Leap are pictured here:

¢ Circle gestures: These denote the circular motion of a single finger:

e Swipe gestures: These denote the swiping motion of a hand, finger, or tool:

e Screen tap gestures: These denote a finger tapping the screen by poking forward and
then returning to its original position:

o Key tap gestures: These denote a finger rotating down towards the palm and then
returning to its original position:

Now, how about an example of a gesture in action? Let’s try out how to detect a circular
gesture by adding the following code to your onFrame function:

//Enable detection of circular gestures.
controller.enableGesture(Gesture.Type.TYPE_CIRCLE);

if (!frame.gestures().isEmpty())

{
//Loop over all of the gestures detected by the Leap.

for (Gesture gesture : frame.gestures())

{

//If it's a circle gesture, print data for it.
if(gesture.type() == Gesture.Type.TYPE_CIRCLE)

{

CircleGesture circleGesture = new CircleGesture(gesture);

System.out.println("Detected Circle Gesture:" +
"\nRadius: " + circleGesture.radius() +
"\nRotations: " + circleGesture.progress());

¥
}
}

OK, let’s discuss each line. Here is the first one:

controller.enableGesture(Gesture.Type.TYPE_CIRCLE);

This line tells the Leap to start looking for circular gestures. By default, the Leap will not
detect any gestures, so it’s very important to call this function. Any Controller object
will support this. Currently, there are four gesture types that you can pass to the
enableGesture function:

TYPE_CIRCLE
TYPE_SWIPE
TYPE_SCREEN_TAP
TYPE_KEY_TAP

These functions cover the preceding four gestures, respectively, and can be accessed via
the Gesture.Type enum, as seen in the preceding line of code.

The next three lines check whether the current frame has gestures, and if it does, it iterates
over all of them looking for circular gestures.

Then, if a circular gesture is found, this line is executed:

CircleGesture circleGesture = new CircleGesture(gesture);

This line creates a new CircleGesture instance from the detected circular gesture. You
cannot cast a Gesture object to a CircleGesture object, no matter how convenient this
will be; you must explicitly call the CircleGesture constructor and pass it to the Gesture
object that you want to use, as seen in the preceding line of code.

Finally, refer to the last line:

System.out.println("Detected Circle Gesture:" + "\nRadius: " +

circleGesture.radius() + "\nRotations: " + circleGesture.progress());

This line prints out the radius (in millimetres, via the CircleGesture.radius member) of
the circular gesture as well as the amount of times a complete circle has been created by
the finger drawing the gesture (via the CircleGesture.progress member).

If you drop all of this into your simple Leap template project in Eclipse, run it, and then
draw some circles with one of your fingers, you should be greeted by a console output that
is similar to the output shown in the following screenshot:

) Console 3

Rotations: 20.E80989
Detected Circle Gesture:
Radius: 127. 24991
Rotations: 29.58349
Detected Circle Gesture:
Radius: 127.2499]
Rotations: 20.60369
Datected Circle Gesture:
Radius: 12724991
Rotations: 20.60369
Detected Circle Gesture:
Radius: 127.24991
Rotations: 2. 60369
Detected Circle Gesture:
Radius: 127.24991
Rotations: 20.E2369

Smpleleap [Java Apphication] CAProgram Files (B8 \Javajre Tiben'\jwvanac e (Apr 13, 2014, 11:35:09 PM)

Pretty simple, right? You’ll notice that the more circles you make at once with your hand,
the higher will be the number of rotations detected by the Leap. I’m sure there are plenty

of creative uses for this in applications...

Some (albeit minor) limitations to keep in
mind

While the Leap Motion Controller is able to track all of your hands and fingers with
remarkable accuracy (as long as you stay within the field of view, of course!), there are
some limitations that need to be kept in mind when developing. The list is, fortunately, by
no means exhaustive (and there are probably a few other minor caveats I missed while
writing this, too, as this is all based on experience).

Upside-down hands can be a problem!

The Leap sometimes has trouble detecting hands that are upside down. If a hand enters its
field of view upside down, the Leap will take the best guess and assume that the hand is
right-side up. If a hand starts right-side up, however, and then flips upside down, then the
Leap will usually correctly detect it as upside down.

However, fear not! The new Skeletal Tracking API from Leap Motion helps mitigate these
issues, thanks to its, well, skeletal tracking. Of course, it’s still possible to confuse the
Leap Motion Controller when you place a hand upside down into the field of view—but if
this happens, the Leap Motion API will automatically detect this mistake after a few
seconds and correct it.

Needing too many hands is a bad thing

More obvious than other limitations, it’s not practical to require more than two hands in
the field of view of the device at any given time. Doing this can cause the device to (albeit
rarely) confuse individual hands and fingers or even not see them at all (for example, if
one hand was above another). Fortunately, needing more than two hands within the field
of view should be a very rare thing...right?

Differentiating fingers can be fun!

This used to be a problem in the days that predated the Skeletal Tracking API from Leap
Motion, but no longer! Thanks to (rapid) advances in tracking and image analysis
technologies, developers are now able to get fingers on a given hand by name—heck, we
can even get the individual bones in the fingers!

Of course, for the purposes of completeness, I believe it will still be nice to talk a little bit
about what developing for the Leap Motion Controller was like in the...old days, as it
were.

In the old days, there was no reliable way to distinguish between the different fingers on a
hand (such as the thumb, pinky, or index finger); they were all just fingers. It was,
however, possible to take a guess as to which finger was which by doing some basic math
and ordering the fingers by, say, their x axis locations.

This process is best illustrated by the following code, taken from one of my Leap projects
from long ago, which you can copy-and-paste into a file and use as a Leap listener:

import java.util.ArraylList;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;

import com.leapmotion.leap.*;

public class LeaplListener extends Listener

{

//Finger enumeration to make the code more readable.
public enum kFingerName

{
THUMB(®), INDEX(1), MIDDLE(2), RING(3), PINKY(4);

private int value;
kFingerName(int newvValue) { value = newValue; }

public int getValue() { return value; }

}

//Comparator to sort the finger vectors from left to right.
class FingerTipVectorXComparator implements Comparator<Finger>

{

public int compare (Finger fingerl, Finger finger2)

{
return (int) (fingerl.tipPosition().getX() -
finger2.tipPosition().getX());
}
3

//Function: getNamedFinger
/**

* Detects the specified finger, by name, on a hand and then returns it.
*

* @param hand: The hand which contains the finger we're looking for.

* @param fingerName: The name of the finger that we're looking for.

* @param left: Set to true if this is assumed to be a
* left hand instead of a right one.

*

*

@return the Finger on the passed hand specified by fingerName.
*/
public Finger getNamedFinger (Hand hand, kFingerName fingerName, boolean
left)
{
//Finger vectors.
List<Finger> fingers = new ArrayList<Finger>();

//Retrieve the vector coordinates for all five fingers on the passed
hand.
for (Finger finger : hand.fingers())
fingers.add(finger);

//Using our custom comparator, sort the list of vectors from "left" to
"right" based on their X-axis.
if (left)
Collections.sort(fingers, Collections.reverseOrder(new
FingerTipVectorXComparator()));

else
Collections.sort(fingers, new FingerTipVectorXComparator());

//Return the specified finger if it is contained in our array.
if (fingerName.getValue() + 1 <= fingers.size()) return
fingers.get(fingerName.getValue());

//Return an empty finger if the specified one was not contained in our
array.
else return new Finger();

}

//0nFrame method.
public void onFrame(Controller controller)

{

Frame frame = controller.frame();

if (!frame.hands().isEmpty())
System.out.println("Right-most hand Ring Finger data:" + "\nTip
Position (X]|Y|Z): " +
getNamedFinger (frame.hands().rightmost(), kFingerName.RING,
true).tipPosition().getX());

3
}

OK! Allow me to explain how this code works...

The first segment of the code (public enum kFingerType...[]) defines a finger type
enumeration that allows us to specify which finger we’re looking for later on in the code. I
won’t go over the specifics, as they aren’t entirely relevant to this example.

The next segment of code (class FingerTipVectorXComparator...[]) is similar to our

kFingerType enumeration; it serves as a utility to help us sort the fingers later on in the
code. Again, I won’t go over the specifics, as they are not relevant to this example.

Now, for the meat of the code, the getNamedFinger function—time to go over some
specifics! It takes three main values when called; Hand, kFingerType, and Boolean telling
it whether it’s parsing a left or right hand. Now, let’s break down the contents of the
function:

List<Finger> fingers = new ArraylList<Finger>();

for (Finger finger : hand.fingers())
fingers.add(finger);
These first few lines create a basic list of the (presumably five) fingers on the passed Hand
object. Let’s take a look further:

if (left)
Collections.sort(fingers, Collections.reverseOrder(new
FingerTipVectorXComparator()));

else
Collections.sort(fingers, new FingerTipVectorXComparator());

These next four lines then order the fingers list based on the individual x axis of each
finger, ordering them from left to right if it’s a right hand and from right to left if it’s a left
hand, as specified by the Boolean type passed to the function. You’ll notice that we use the
FingerTipVectorXComparator class to allow comparisons between them and the sorting
of the complex Finger data type. Let’s move further:

if (fingerName.getValue() + 1 <= fingers.size()) return
fingers.get(fingerName.getValue());

else return new Finger();

Finally, these two lines parse the fingers list for the finger we want, as specified by the
kFingerType enum passed to the function.

With that out of the way, this brings us to the last block of code, the onFrame method. The
code is quite simple and only prints out tracking data for the rightmost hand’s (with
respect to the Leap’s FOV) ring finger. Try it out! When it is run, the output looks similar
to the output shown in the following screenshot:

B Console #% | ¥33 LogCat ® éﬁﬂ

<terminated> SimpleLeap [Java Application] C:\Program Files (xB86)\Java\jre8\bin'javaw.exg
Hand 1 Ring Finger data:

Tip Position (X|¥|Z): 25.6198863
Hand 1 Ring Finger data:

Tip Position (X|¥|Z): 25.414427
Hand 1 Ring Finger data:

Tip Position (X|Y¥|Z): 25.18283

Hand 1 Ring Finger data:

Tip Position (X|Y|Z): 24.871561
Hand 1 Ring Finger data:

Tip Position (X|Y¥|Z): 24.521173
Hand 1 Ring Finger data:

Tip Position (X|¥|Z): 24.123919
Hand 1 Ring Finger data:

Tip Position (X|Y¥|Z): 23.666886
Hand 1 Ring Finger data:

Tip Position (X|Y¥|Z): 23.19891

Now, in this code, we’re assuming that the passed hand had five (or more, if that’s
possible) fingers, allowing the kFingerType enumeration to map perfectly to the size of
the fingers list when parsing for fingers. In practice, this method almost always works...
the only case where there might be trouble is when all your five fingers are out but one of
your fingers isn’t detected for some reason; in this event, it might mistake your thumb for
your index finger, your pinky for your ring finger, and so on—this is very rare, though.

So, as you can see, there are some ways of getting around this problem. Nowadays,
though, we can just type:

Finger indexFinger =
hand.fingers().fingerType(Finger.Type.TYPE_INDEX).get(0);

Assuming hand is an instance of the Hand class, the preceding code will simply assign the
first (and hopefully the only) index finger attached to a given hand to the indexFinger
object.

Lack of support for custom gestures

To be honest, the lack of custom gesture support is (in my mind) not really a problem for
or a drawback of the Leap Motion Controller—it’s actually a good thing. Why, you might
ask? For a moment, imagine if every application out there was responsible for defining its
own set of gestures—each time you download a new application, you’d need to learn a
(potentially) entirely new set of gestures. That’s no fun.

Instead, by standardizing the usage of gestures and restricting developers to predefined
ones, Leap Motion guarantees that different apps will offer similar user experiences. This
allows users to transition from application to application with minimal difficulty, needing
to memorize only a few predefined gestures.

The main point here is this: avoid using custom gestures!

That’s it! Fortunately, there are very few common limitations and the ones that exist can
almost always be overcome with a little bit of extra code or some minor redesigns to your
user experience.

Summary

In this chapter, we went through the more complex features of the Leap as well as some of
the things that are going on in the background.

We talked about the Leap’s field of view and how it interacts with the InteractionBox
class, before making a simple application demonstrate how vector coordinates can be
normalized using this class. We then went over gestures and tools and how they work;
tools are basically really long, straight fingers, and gestures are unique patterns made by a
user’s hands and fingers. We then finished off this chapter with a brief look at some more
common limitations of the Leap motion device and its API and how they can be overcome
or avoided in the first place.

In the next chapter, we will dive into what is arguably the most important part of making
an application with the Leap: the user experience!

Chapter 3. What the User Sees — User
Experience, Ergonomics, and Fatigue

Armed with the information to grab user input and make use of it, it’s time to look at the
other half of your application: the user. In this chapter, we’ll take a break from the Leap-
Motion-specific jargons and discuss a slew of the common things that developers can
often forget, including user fatigue, ergonomics, and the overall experience of the
application—all the while keeping in mind how these apply to the Leap.

In this chapter, we’ll be covering the following topics:

When to use the Leap (and more importantly, when not to)
The Leap Motion user experience guidelines

A note on ergonomics and user fatigue

A case study: the Artemis Quadrotor Simulator

Note

This chapter is sprinkled with periodic Fun facts that offer high-level and entry-level
factoids about scripting and programming for your reading pleasure.

When to use the Leap (and more
importantly, when not to)

You just finished unpacking your shiny new Leap device and installing the developers’
software development toolkit. You fire up the Diagnostic Visualizer (don’t be afraid to
admit it; we all know it’s a fun way to pretend to be doing real work when the boss comes
by). And then it dawns on you, “I could make some really awesome and amazing
applications with this”—applications such as gesture-recognizing typewriters or maybe a
controller for your robots...yes, robots.

Hold that thought.

This is all fine and good but what exactly should you use the Leap for, aside from those
times when you want to look at three-dimensional representations of your hands?

Well, as an example (I by no means claim to have understood all the possible applications
for this device), you can look at the applications for the Leap from two different angles;
the first is as a replacement for preexisting controls such as joysticks, keyboards, and
mice. The second, more interesting (in my opinion), is as an entirely new interface that
allows the creation of applications that we’ve never even thought of before.

In the first case, where you’re replacing controls such as joysticks, keyboards, and mice,
you have to ask yourself, “Do I really need to replace this if it already works? Will it
improve the experience my end users and operators have?” If the answer to either of these
questions is no, then you might wish to rethink your strategy—the Leap is there to make a
more intuitive experience for the user, not a more complicated one!

However, when the time comes to create an entirely new interface and experience, you’re
in good company—that’s exactly what the Leap is for.

The Leap Motion user experience
guidelines

If you’ve developed applications for end users before, you’ve probably heard of user
experience (UX). Oh, the user experience! Arguably, it’s the single most important part of
any Leap-driven application—heck, of any software application really!

Without a good UX, you’ll have users tearing their hair out and/or punching the screen in
frustration when even the seemingly simplest things they try to do don’t go quite as
planned. Or in a milder, less drastic case, your user will develop carpal tunnel syndrome.
Either way, a good user experience is better than a bad one.

Note
Fun fact

Carpal tunnel syndrome develops when excess strain is placed on your hands, specifically
the median nerve (the nerve in the wrist that allows feeling and movement to parts of the
hand). Carpal tunnel syndrome can lead to numbness, tingling, weakness, or muscle
damage in the hand and fingers. Not good!

Over the course of the next few pages, I’ve listed and expanded on the guidelines for user
experience design given by the official Leap Motion developers. The original texts from
the development team are encased in quotes, for your reading pleasure.

Now, without further ado, here are the texts from the official guidelines with some added
commentary:

“Keep in mind that symbology can be difficult to learn and memorize.

Avoid forcing users to learn complex hand gestures to interact with your
application.”

In other words, avoid utilizing complex Harry Potter-esque hand motions within your
application. While they’re really cool from a developer’s standpoint, your users are going
to hate you. Of course, there are exceptions; if you’re writing something such as a sign
language interpreter or perhaps a wizard/spell-casting emulator, go right ahead—;just don’t
make the user draw an ampersand (&) or something to perform a simple task such as
navigating to the next page or confirming a dialogue.

“Instead, draw inspiration from physical interaction and real-world behaviors.
The more physically inspired interactions are, the less training a person needs and

the more intuitive and natural your application feels.”

For example, if the user needs to grab some kind of object, a ball for example, don’t make
them tap or swipe the ball to pick it up—have them literally grasp it. This exact task can
be achieved with a few simple steps:

1. Check whether the user’s palm coordinates are within the grabbing range of the ball.
2. If it is, using the new Skeletal API, check whether the hand’s grab strength is within
a certain threshold, such as 0.7 or higher. If you’re not using the Skeletal API, an

alternative will be to check whether the hand’s sphere radius is within a given
threshold.

3. Finally, if all these conditions are true, begin moving the ball in relation to the user’s
hand.

Little things such as these can make a world of difference to your users, even if they do
add a bit more complexity to the programming side of the application.

“Don't feel constrained by the limitations or inconveniences of the real-world—this
is your world.

Interaction doesn’t have to be the way it has always been. It can be any way we
imagine it to be. Why force the user to reach all the way out and grab an object? Why
not have the object reach back?—Give them “the force”!”

There’s not a whole lot to say about this one—it’s a fairly obvious guideline, right?

Having said that, just make sure that if you do something, you make it consistent! If your
world has different rules for interaction, make sure that you implement them in a
predictable fashion. If you decide to give your users “the force,” make sure that they can
always use it and don’t find themselves stuck wondering why they can’t grab the object.

“The user should feel as if their intent is amplified rather than subdued or masked.

For example, users often like their movements to be amplified when using a mouse
(i.e. they don’t need 10 inches of mouse movement to move 10 inches on screen). For
gestural interactions, amplifying or exaggerating responses can have an even more
positive result. Keep in mind that some people are more sensitive than others, so link
this exaggeration to a sensitivity setting for users to modify this effect to their
preference.”

This one is a pretty basic concept but an important one nonetheless. As a general rule, the
Leap’s coordinate system maps pretty well to the virtual realm...but even a normalized
box can only get you so far.

With a little bit of multiplication (or division, if you’re one for the decimal system), you
can very easily modify the Leap Motion Controller’s inputs and exaggerate or subdue
them. This is particularly useful when you want to incorporate a user-adjustable sensitivity
feature into your application, allowing users to configure how much (or little) they want to
move their hands and fingers to achieve a given task.

“Concentrate on giving the user dynamic feedback to their actions. The more
feedback they have, the more precisely they can interact with your software.

For example, the user will need to know when they are “pushing” a button, but can

be more effective if they can see when they are hovering over a button, or how much
they are pressing it.”

This one is a biggy! In fact, I think I spent more time working with this guideline than
anything else on some of the applications I’ve made.

Think about it; how does your user know if they’re pushing a button? They can’t exactly
feel something because their finger is being waved around in mid-air and then being
projected into a virtual realm...so, what do you do?

For those of you who are inclined toward modern-day touch devices such as tablets and
smartphones, you’d probably jump straight to basic haptic feedback (vibration) and visual
feedback (transparent circles where the user has touched and so forth). Unfortunately, at
the moment, we don’t have any technology at hand (pun intended) to enable physical
feedback for something you’re not physically touching. So, what do we do?

We give the user as much visual feedback as possible.

The most common form of visual feedback is in the case of a button, of course. The
method I use to inform my users that they’re pushing a button is to slowly expand the size
of the button until it pops (triggering the button-click event), kind of like blowing up a
bubble. Take a look at the following diagram for a better explanation:

1 2

Inactive Finger
button. | hovering.

Button expands Button pops,
while hovering triggering any
finger persists. callbacks.

Let’s take a look at the state of the button throughout this process, starting at the top-left
corner of the diagram:

1. The button is inactive with no fingers pressing it.

2. Finger enters the button area, causing it to change color.

3. Finger remains in the button area, causing the button to expand.
4. The button pops and triggers any callbacks or events.

Of course, there are many different ways to supply visual feedback to your user—anything

from gradually expanding buttons or onscreen cursors to virtual representations of the
user’s hands.

Just remember: visual feedback is one of the most powerful tools in your arsenal in order
to improve the user experience!

“Onscreen visuals (such as representations of hands, tools, or digital feedback)
should be simple, functional, and non-intrusive.

The user should not be distracted from the task by their tools or environment.
Decoration should not distract from your purpose.”

This guideline is ever-so-slightly less important than the other ones, but it is still important
nonetheless. It’s good to have a pretty (and somewhat detailed) user interface, but don’t
make the representation of a hand, finger, or other element so complicated and detailed
that it draws away from the main purpose of your application.

“Require more deliberate actions for destructive or non-reversible acts than for
harmless ones.

Subtle gestures should be reserved for subtle actions. Conversely, an act such as
closing an application or deleting a file can be a non-reversible event requiring a
more deliberate action. Double check with the user when unsure, such as a prompt
for confirmation.”

This is a critical note—don’t ever make it easy to do destructive, irreversible things such
as data deletion or save file overwrites. Then again, don’t make the gestures to perform
operations such as these so impossible that your user can’t remember them; just exercise
caution.

This deserves even more attention due to the very nature of the Leap Motion Controller—
on a touch screen (tablet, smartphone, and so on), you have the option of simply not
touching the screen, thereby avoiding the possibility of triggering any undesirable actions.
This isn’t the case with the Leap Motion Controller because it’s always watching and
waiting for input, meaning developers have to exercise a higher level of caution when
designing and implementing destructive actions.

“Provide a clear delineation and specific sense of modality between acts of
navigation and interaction, unless both are simple or one is handled automatically
(or with assistance). Mixing the two in a complex situation can lead to confusion or
disorientation.

For example, moving an object while having the user simultaneously position their
viewing angle inside a 3D environment is inherently difficult. However, if the viewing
angle moves automatically in response to the user’s movement, then working with the
object is easier. Likewise, when navigating a large data set the user will want the
view to move easily, but when highlighting a portion of the data the view should
remain still.”

Essentially, if your application is three-dimensional (in many cases, it will be), make sure
that a lot of the camera and viewing work is handled automatically in a meaningful way
that responds to current user input.

From personal experience, I can tell you that trying to fly a virtual quadrotor with one
hand while moving the camera with another is a very difficult task. Also, it’s not much fun
or practical either.

To illustrate this better, let’s take a look at modern first-person shooter movements and
camera controls. Typically, you will use two joysticks at any given time—one for moving
around, and one for looking around. It can take some people a little getting used to at first,
but these controls are very simple and easy to use because you’re only thinking about
managing two fingers.

Now, let’s try doing the same thing, except with your hands—one for moving around, and
one for controlling the camera. If you try, you will notice that you are suddenly using a lot
more brain power (and energy) because you’re trying to coordinate and manage two hands
instead of two thumbs. While some people can definitely pull it off, none of the people
I’ve had test my applications were able to pick it up and play without a bit of training and
practice beforehand, defeating the purpose of an intuitive interface.

“Overall, imagine that your user is faced with no instructions or tutorials on how to
use your application.

Strive at all costs to make their first intuitive guesses the right ones. Where
appropriate, create more than one proper way to do something.”

This is, perhaps, the most important guideline listed by the Leap Motion crew.

If your application can be used without a tutorial, based purely on intuitive guesses,
you’ve succeeded. The examples of this include Apple and Dropbox; both are famous for
their simplicity and the ease-of-use that their platforms possess. Always strive to simplify
the interface so that obvious things can be done in obvious ways: tapping to trigger
buttons, grasping and grabbing to manipulate objects, swiping to navigate pages, and so
on.

A lot of the things we just covered were relatively basic concepts but following and
remembering them while developing can mean the difference between a happy set of users
and...potentially...no users at all. Preferably, you want a happy set of users!

Ergonomics and user fatigue

So, we just finished covering the underlying, basic concepts of what makes a good, solid
user experience. However, we didn’t cover two things that also heavily impact the user
experience: ergonomics and user fatigue. I won’t spend too much time on these concepts,
as they can be highly situational, but I thought it might be good if we discussed what they
are briefly.

Ergonomics

Have you ever played a game for a while (perhaps 10 hours straight) on a keyboard or
gamepad? Perhaps, afterwards you noticed that you had severe wrist or hand cramping
and pain? This is the result of bad ergonomics.

The longer you have a user hold an interesting position or perform complex actions, the
more strain it puts on their hands, causing cramping over time. This can be caused by
simple things such as having the user twist their palms about the z axis (in other words,
rotate their entire hand to the left or right) or more complex things such as weaving
complicated gestures to perform relatively mundane actions.

I’m not an expert at human physiology, but I will say this: avoid having the user perform
actions such as those previously listed whenever possible, or else you run the risk of
making the user experience quite uncomfortable!

User fatigue

You could say that the concept of user fatigue is less obvious than that of ergonomics and
is a bit more exclusive to human interfaces such as the Leap device. Sometimes, though, it
can directly affect the ergonomics (and vice versa)!

In its simplest form, user fatigue is caused by having the user perform a given action for
an extended period of time, effectively tiring them out. This can be demonstrated by some
apps where you have to hold your hand out to control the throttle on a ship or, in the case
of my quadrotor simulator (which we’ll discuss next), control the direction of movement
of some kind of object. Sometimes, this is unavoidable!

However, when possible, try to avoid actions that induce user fatigue; favor short, quick
interactions with the screen as opposed to long, continuous actions. Giving the user the
ability to remove their hands from the field of view between interactions without affecting
the application can also be a very important tool when attempting to mitigate user fatigue.

If your application requires uninterrupted precision control for long periods of time, it’s
possible that the Leap is not the correct choice for your application’s user interface.

Always keep an eye out for how you can make your application more comfortable and less
tiring for the user. However, don’t try to accommodate the user so much that it detracts
from the functionality of your application—that’s no good either!

A case study — the Artemis Quadrotor
Simulator

Throughout this book (and chapter), you’ve probably noticed that I’ve made a few
comments here and there about one of my first Leap projects, a quadrotor simulator called
Artemis. To complete this chapter, I thought I’d spend some time talking about how I
developed the user experience for Artemis using an assortment of methods. Visual
feedback took the form of many things in Artemis, including hands, height meters, fuel
gauges and copies of the Leap’s tracking data (for debugging), as shown here:

RS LH:0 LY:0

RH:0 RY:0 T:0
305440961

Play testing and why you should do it

First, play testing or hallway testing is the art of grabbing an unsuspecting friend or co-
worker from the Internet or proverbial hallway and making them sit down in front of your
application to, well, use it. If you’ve developed any frontend applications before, you’re
probably already familiar with this concept. Trust me, it helps a lot.

By having your friends and coworkers (who have potentially never even seen your
application) interact with your program, you can see how people try to use it versus how
you intended them to use it. I’ll repeat myself yet again, saying that this is a fairly basic
concept of user experience, but it’s still a concept. Also, it applies to the Leap.

When performing play testing, it’s important that you don’t tell your testers how the
application works. This will allow you to observe what they try to do in comparison to
what you want them to do. Do they get frustrated? Do they try to do things you didn’t
anticipate or code? These are all important things to know when creating a user
experience.

With Artemis, I set out to make an application that would allow anyone to control a virtual
quadrotor with just their hand. Originally, I used the x, y, and z coordinate system on the
Leap to control the motion of the quadrotor, as seen in the following diagram:

+Y

Hand —50% forward

TOP VIEW

= Fingers and Hand

However, this didn’t work quite as well as I’d hoped. When my friend tried to take control
over the quadrotor, it went just everywhere except where he wanted it to go. What I soon
noticed was that every person I put in front of the simulator would try to tilt their hand to
control the motion of the quadrotor, as if the virtual quadrotor became a literal extension
of their hand.

After seeing the same behavior over and over again, I modified the controls to use the
pitch and roll of the hand instead so that if a user’s hand were to tilt forward, the virtual
quadrotor would tilt forward, and so on. You can see a diagram of how this works here:

+Z

Hand tilted —50% forward

+Y

SIDE VIEW

|:| = Fingers and Hand

After making this change, I asked my friends to try using the simulator one more time.
This time they were able to navigate an obstacle course just fine and found it natural on
the first try!

As you can see, play testing can help you to discover tiny issues that impact the
experience of the user tremendously, allowing you to fix these issues before making a
release of your application.

Providing as much visual feedback as possible

When I first began creating Artemis, I was trying to make a controllable three-dimensional
version of a quadrotor to test my Leap with, as I didn’t want to crash one of my real ones
(after all, watching a thousand dollars of hardware plummet viciously to the ground isn’t a
good time for anyone, especially the owner). Thus, the visual feedback of what was going
on in my simulator’s brain was a key concept during development! You can see an
assortment of the various things used in a 3D application like Artemis to provide
feedback; a virtual hand, a giant green radar arrow, and more, in the following screenshot:

e O Conssle
LGhae | Colmprn | Dlaw saPlay | Ervw Puans |
[T Opimiation complete "5
e oo ioi, Obgect
1" Fipping geadrator,

Uty Esgpnd DatargiLepi Ot Ohjeet)
“1 Wagpaist it
" iy s Do bea | Lo 0L
(1 Waypeist Ready
2 ity Engerve Dosbesg Lo boncth

(7 Lbad Fisinhed.

e ele

At this point in time, I had seen a few Leap applications here and there that used different
methods to show user input; the more 2D-oriented apps used little dots on the screen to
represent fingers, whereas the more 3D-oriented ones used simplistic models of the user’s
entire hand on the screen.

I opted for the 3D-oriented approach.

After a few hours of testing and debugging, I finally had a working solution to render
hands on screen, as seen in the following screenshot:

Allow me to explain the preceding screenshot. On the left-hand side of the screen, you can
see frozen tracking data for a person’s left hand within the Leap’s diagnostic visualizer. On
the right, you can see five blue cubes and a larger blue rectangle, which represent the same
left hand’s fingers and palm, respectively—except in the virtual game space.

After adding this feature, I sat one of my friends down in front of the computer yet again
and asked them to fly the virtual quadrotor around. They were now able to control the
quadrotor even better, thanks to the visual feedback of being able to see what the Leap is
seeing.

Before I added this feature, we would tilt our hands around randomly, hoping the
quadrotor was seeing our real hands and moving in response. After this addition though,
the user’s confidence shot through the roof, as they were able to see what the Leap was
seeing and know that the simulator was reflecting the desired actions.

Another feature that I added towards the end of the development was visual feedback on
buttons. We’ve discussed how you can apply visual feedback to buttons in this chapter
already, but I’ll go ahead and reiterate. By notifying users when they’re interacting with a
button, you can give them increased confidence and prevent them from doing things they
don’t necessarily want to do. Now, refer to the following two screenshots:

In this first screenshot, you can see the Start menu of Artemis with my left hand in the
field of view. At this moment, none of the buttons are engaged and everything is idle.

In this second screenshot, you can see the same Start menu. However, now I’ve moved
one of the fingers of my left hand over the play button and, if you look closely, you can
see it starting to expand—it will continue to expand until it pops, so to speak, taking the
user to the actual game.

As you can see, this simple visual addition can tremendously improve the feedback that

the user has.

Of course, some more advanced users might not want to wait for a full second to trigger a
button. In this case, you might consider implementing a configuration setting that shortens
the delay to half a second or less. Ultimately, the decision lies with the developer...and the
play testers!

Note
Another thing

It’s always a good thing to notify the user if their Leap Motion Controller is plugged in
and detected by your application. If they have no way of knowing this information, they
might think that your application is just plain unresponsive, even if there are other forces
at work.

In the preceding screenshot, you can see a little indicator in the bottom left side (if you
look closely) that says Leap Motion Controller: Connected; in the event that the device
gets disconnected, this text changes to Leap Motion Controller: Disconnected to notify
the user that something is amiss.

That’s it — for now!

This pretty much summarizes the user experience aspects of Artemis—between play
testing, rendering users’ hands, and providing visual feedback for button presses, I was
able to satisfy the requests of everyone who had ever picked up and played it.

So, remember: always give the users some kind of relevant visual feedback and always
make sure that your interface is as natural as possible. When in doubt, grab some friends
and do some play testing or hallway testing, whatever you prefer to call it!

Summary

In this chapter, we covered a series of more abstract concepts related to the Leap,
including the user experience, ergonomics, fatigue, and even a brief case study.

You learned about the different guidelines that Leap developers have in place for
designing a user experience and the author’s interpretation of these guidelines based on
past experiences. We then briefly covered why it’s important to pay attention to
ergonomics and user fatigue without compromising the functionality of an app. We
finished this chapter with a brief case study of the Artemis Quadrotor Simulator and how
its user experience was developed.

In the next chapter, we’re going to begin writing a two-dimensional drawing application
using all the things we’ve learned up until now!

Chapter 4. Creating a 2D Painting
Application

As you are familiar with all the essentials of the Leap Motion device, you should now
have mastered the basic concepts of developing with it. How about we apply that
knowledge to make a two-dimensional painting application? In this chapter, we’ll create a
painting application with the Java programming language and the Leap Motion API called
Leapaint. Here we go!

In this chapter, we’ll be covering the following topics:

Laying out the framework for Leapaint

Creating the graphical frontend

Interpreting Leap data for rendering on the graphical frontend
Testing the application

Improving the application

Note

This chapter involves writing an application entirely in the Java programming language.
Many of the user interface items will not be directly portable to other languages, as Swing
is heavily utilized. However, the core logic and design is easily transferrable to languages
such as C/C++, Python, and so forth.

You can find more information about the Java Swing API on Oracle’s official website at
http://docs.oracle.com/javase/7/docs/technotes/guides/swing/.

This chapter is sprinkled with periodic Fun facts that offer high-level and entry-level
factoids about scripting and programming for your reading pleasure.

http://docs.oracle.com/javase/7/docs/technotes/guides/swing/

Laying out the framework for Leapaint

We’re going to jump straight into working in this chapter! Have a look at the following
screenshot, which shows the Leapaint package:

[# Package Explorer §2 [E] Console = &

Leapaint (Java)
8 src
=, JRE System Library [JavaSE-
=, Referenced Libraries
% b
o Leap.dil
&> leapaint.bmp
;ﬂ_:;z LeapJava.dil
-3 LICENSE
, README.md

The first step in creating Leapaint will be laying out the baseline framework of files (or
classes, if you will) that we’ll be using. This first section will involve writing skeleton
versions of the three primary classes in Leapaint; these classes will contain all the
variables and functions that the final ones contain, without going overboard in defining
what the functions actually do.

Before we begin writing any code, create the following three files in Eclipse and place
them in a package under the src directory in a new Java project, as seen in the preceding
screenshot:

® Leapaint.java (the main file)
e LeapaintListener.java (the Leap interface)
e LeapButton.java (a special class for Leap-enabled buttons)

Note

If you are unsure as to how to do the things listed here, refer back to the first chapter on
setting up Java projects in Eclipse. Keep in mind that we’re making an entirely new
project, so don’t reuse the one from Chapter 1, Introduction to the World of Leap Motion.

With those files created, let’s go ahead and talk about what each of them will do when
we’re done writing code.

The LeapaintListener class, as the name suggests, is our Leap Listener implementation
for this project. It will be designed to read values from the Leap Motion Controller,
normalize them based on the InteractionBox class, and then forward their coordinates to
the main Leapaint class. It is also responsible for checking whether fingers are hovering
over buttons and then triggering the said buttons if they are.

The LeapButton class represents, as you might expect, a Leap-enabled button. This class
renders buttons on screen that are capable of visually expanding and then popping when
they are triggered. Technically, this class does not contain any Leap Motion code; instead,
it relies on an external class or function (the LeapaintListener class in this case) to
trigger and/or stop the expansion of the button.

Finally, we have the Leapaint class, which is our main class in this project. This class
controls the graphical user interface (GUI) of our application, allowing the various
buttons and lines that we draw to be rendered onto the user’s screen. In addition, it
initializes and coordinates the LeapaintListener and LeapButton classes. This class is
the glue that holds our project together.

When you put all of these classes together, you will have a working application that allows
a user to use their fingers to draw on screen, just like in the following screenshot:

Red || Blue | Purple || Save

Now then, let’s go ahead and start off by writing the smallest class in the Leapaint project,
LeapButton.

LeapButton.java

First up is the LeapButton class. This class extends the basic functionality of the JButton
class in Java’s Swing API by adding the ability to trigger visual inflation and deflation of
the button to allow for visual feedback when using the Leap to push buttons.

Let’s start by writing the bare-bones file with all the data members and function
definitions. When you finish writing, the file should look something like this (don’t forget
to add an appropriate package definition to the top such as package
com.mechakana.tutorials):

import java.awt.Color;
import java.awt.Dimension;
import java.awt.Rectangle;

import javax.swing.JButton;

public class LeapButton extends JButton

{
//Expanding state of the button.

private boolean expanding = false;

//0riginal button size.
private int originalSizeX, originalSizeY;

//Button expansion multiplier; defaults to 1.5 times as big.
private double expansionMultiplier;

//Allow expansion?
public boolean cankExpand = false;

//Constructor
LeapButton(String label, double expansionMultiplier)

{
//Always call the superclass methods with Swing.

super(label);

//Assign values.
this.expansionMultiplier = expansionMultiplier;

}

//Member Function: getBigBounds - We'll write this later!
public Rectangle getBigBounds() { return new Rectangle(); }

//Member Function: expand - We'll write this later!
public void expand() { }

}

As you can see, this class is pretty simple—there are a few data members to keep track of
basic state information and a constructor to define the name of the button.

Note

At this point, you’re most likely going to see several warnings (and possibly errors) in

Eclipse that will tell you certain variables aren’t being used—or possibly don’t even exist!
Don’t worry about this, as we will be writing code later on that will make full use of these
variables.

If you were to add an instance of this class to a JFrame class (more on this later), you’d
already see a full-fledged button appear on screen; the Java Swing API has a way with
simplifying a lot of the work for us developers.

However, before we get ahead of ourselves, let’s proceed to writing the other two skeleton
files. We’re not going to write the actual functions for getBigBounds and expand in the
LeapButton class just yet, as we’re still laying out a basic framework.

LeapaintListener.java

Next up is the LeapaintListener class. This class will allow our main class, Leapaint, to
communicate with the Leap Motion device—this is where all the fun, Leap-related stuff
will happen.

Your skeleton file should look something like this when you’re done writing, again
omitting the content of some member functions:

import com.leapmotion.leap.*;

public class LeapaintListener extends Listener
{

//Leap interaction box.

private InteractionBox normalizedBox;

//Leapaint instance.
public Leapaint paint;

//Controller data frame.
public Frame frame;

//Constructor.
public LeapaintListener(Leapaint newPaint)
{

//Assign the Leapaint instance.

paint = newPaint;

}

//Member Function: onInit
public void onInit(Controller controller)

{

System.out.println("Initialized");

}

//Member Function: onConnect
public void onConnect(Controller controller)

{

System.out.println("Connected");

}

//Member Function: onDisconnect
public void onDisconnect(Controller controller)

{

System.out.println("Disconnected");

}

//Member Function: onExit
public void onExit(Controller controller)

{
System.out.println("Exited");

}

//Member Function: onFrame - We'll write this later!
public void onFrame(Controller controller) { }

}

Unlike our previous LeapButton class, this one requires a bit of explanation before we
charge ahead to the next class.

As we discussed earlier, the Listener class within the Leap Motion API is our primary
entry point into accessing Leap tracking data; needless to say, there are numerous
functions for us to define (technically, we are overriding the functions) in any Listener
implementation, if we, as developers, so desire. The LeapButton class is no exception to
this, and the following are several examples of these functions:

The onInit function is called when the Leap Motion software itself initializes; this is
not to be confused with the Leap Motion Controller being connected or initialized.
The onConnect function is called when the Leap Motion software connects to a
physical Leap Motion Controller.

The onDisconnect function is called when the Leap Motion software is disconnected
from a physical Leap Motion Controller.

The onExit function is called when the Listener class disconnects from the Leap
Motion software.

Finally, the onFrame function is called whenever the Listener class receives a new
frame from the physical Leap Motion Controller; this function can be thought of as a
sort of while or for loop. This is where we’ll be doing all of the work with the Leap
later on in this chapter.

As a general rule, the functions previously listed will be called in this order
(assuming a controller is already connected to the computer and nothing goes terribly
wrong):

onInit

onConnect

onFrame (called many times per second)
onDisconnect

O O O O O

OnExit

You can find in-depth documentation on these functions at the official Leap Motion
website, http://developer.leapmotion.com/.

Now, let’s move onto the final bare-bones class that we’ll be writing before we begin
fleshing out the details.

http://developer.leapmotion.com/

Leapaint.java

Lastly, we have the Leapaint class. This is the main class for our project, so needless to
say, it’s very important! Not only does it initialize the LeapListener class and configure
all the LeapButton instances, but it also contains almost all of the graphical user interface
and code.

The skeleton file should look something like this by the time you finish writing in code.

For instructional and reference purposes, the relevant Leap-related lines have been
highlighted:

import java.awt.BasicStroke;

import java.awt.BorderLayout;

import java.awt.Color;

import java.awt.FlowlLayout;

import java.awt.Graphics;

import java.awt.Graphics2D;

import java.awt.Point;

import java.awt.Rectangle;

import java.awt.Robot;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.image.BufferedImage;
import java.io.File;

import java.util.ArraylList;

import java.util.List;

import javax.imageio.ImagelO;
import javax.swing.Box;
import javax.swing.JFrame;
import javax.swing.JPanel;

import com.leapmotion.leap.Controller;

public class Leapaint extends JFrame
{
//Static reference to this class.
private static Leapaint paint;

//X, Y and Z coordinates of the user's finger. These are set via the
LeapaintListener class.

public int prevX = -1, prevY = -1;

public int x = -1, y = -1;

public double z = -1;

//Current drawing color.
public Color inkColor = Color.MAGENTA;

/Line data structure used to keep track of the lines we'll be drawing.
public class Line
{

public int startX, startyY, endX, endy;

public Color color;

Line(int startX, int startY, int endX, int endY, Color color)

{
this.startX = startX;
this.startY = starty;
this.endX = endX;
this.endY = endY;
this.color = color;

3

}

//Lines drawn. We need to keep track of these, or they'll be lost every
time the screen refreshes.
public List<Line> lines = new ArraylList<Line>();

//Leap-enabled buttons.
public LeapButton buttonil, button2, button3, button4;

//Panels that we'll be drawing on.
public JPanel buttonPanel;
public JPanel paintPanel;

//Constructor—We'll write this later!
Leapaint() { }

//Member Function: savelImage—we'll write this later!
public void savelImage(String imageName) { }

//Member Function: main
public static void main(String args[])

{

//Create a new instance of the Leapaint class.
paint = new Leapaint();

//Create a new listener and controller for the Leap Motion device.
LeapaintListener listener = new LeapaintListener(paint);
Controller controller = new Controller();

//Start the listener.
controller.addListener(listener);

b
}

This file has just a little bit more going on compared to the previous ones...and we haven’t
even started filling in the empty constructors and functions yet.

The more mundane items in this class, such as the Line class and its respective array, are
relatively straightforward and easy to understand, so I will let the code and comments do
the explaining for those.

There are a few lines of code that I’d like to provide a short explanation for, nonetheless,
as they are intrinsic to the Leap side of this class’s functionality:

e The field, public int x, vy, is set by the LeapaintListener class from the outside
using normalized screen coordinates and are used for drawing the lines and cursors

e The field, public double z, is also set by the LeapaintListener class and is used to
both provide visual feedback to the user and determine when to draw lines

I’d also like to bring your attention to the last three lines:

® LeapaintListener listener = new LeapaintListener(paint): This line creates a
new instance of our LeapaintListener class and passes in the Leapaint instance,
paint, that we initialized on the previous line.

e Controller controller = new Controller(): This line creates a new instance of
the Leap API’s Controller class, in turn creating our entry point to connect to the
Leap Motion control software.

e controller.addListener(listener): This line registers our LeapaintListener (or
Listener if you will) instance with the Leap Motion software, allowing it to receive
callbacks for the various functions that we talked about at the end of the
LeapListener.java section of this chapter.

Many (if not all) applications that involve the Leap Motion Controller will end up using
these three lines somewhere along the line (pun not intended), no matter how simple or
complex the application in question might be.

At this point, we now have three basic classes loaded up with a lot of variables and empty
member functions. If you were to run the application now, there probably wouldn’t be any

errors...but nothing would really happen.... So, how about we start filling in those
functions?

Creating the graphical frontend

With our skeleton framework written and laid out, we can now work on flushing out the
graphical component of Leapaint. As we’re using the Java programming language for this
application, we will write the graphical side of things using the Java Swing API. First up
is the LeapButton class.

Note

As you read this section and the remainder of this chapter, keep in mind that as this book
is titled Mastering Leap Motion and not Mastering the Java Swing API, I will not be
discussing the fine details of what the Swing API calls are doing or how they work.

Making a responsive button — the LeapButton class

It’s time to make your first Leap-driven, visually responsive button. There are many, many
different ways to go about coding the logic behind a button for the Leap Motion
Controller, and less so when you’re integrating with a preexisting API such as Java’s
Swing.

Our LeapButton class does not listen to or otherwise check the values coming out of the
Leap Motion Controller. Instead, it relies on an external class or function
(LeapaintListener in this case) to tell it what to do.

In order for us to achieve this behavior, I’ve incorporated two functions into the
LeapButton class, which more or less make up the entirety of the class.

Note

A brief disclaimer: the LeapButton class is not the be-all and end-all way of designing an
interactive and/or responsive button for Leap Motion. Rather, it is the most simple and
direct method I could think of for this chapter. However, it works, and it works well.

Getting our bounds

The first function, getBigBounds, will be used by our LeapListener class to detect where
the button is on the screen and whether or not a finger is within it. In essence, this function
returns an exaggerated version of the location and size of the button on screen, making it
easier for users to trigger.

Shown next is the aforementioned function. You should replace the contents of the
placeholder getBigBounds function that we wrote earlier in LeapButton.java with the
following lines of code:

//Retrieve original bounds.
Rectangle rect = getBounds();

//Increase height and width of the button.
rect.width = rect.width + 30;
rect.height = rect.height + 30;

//Reposition the button so that its central coordinates more or less remain
the same.

rect.x
rect.y

rect.x - 15;
rect.y - 15;

//Return the new button size.
return rect;

That’s it! At the end of the day, it’s a very simple function; now for the slightly more
complex function.

Visually responding to the user

The second function, expand, does exactly what it says: it makes the LeapButton visually
enlarge until it pops, triggering any registered callbacks. This function fulfills one of the

requirements for good design that we discussed in the previous chapter, giving the user
visual feedback.

Unlike what you might expect, this function is not integrated with the Leap Motion device
in any shape or form; it is purely math and logic driven, being triggered and stopped from
the outside by our LeapaintListener class.

In order for the button to cleanly expand and contract without halting our main execution
loop, this function starts an anonymous inner thread that handles the logic behind
expanding the button, popping the button, triggering any callbacks, and then resetting the
button. At any given point, this thread can be effectively terminated by setting the
canExpand member variable to false from outside the LeapButton instance, which we’ll
demonstrate later on.

The expand function is used in the following code. Again, you should replace the contents
of the placeholder expand function that we wrote earlier in LeapButton. java with the
content of this one:

//Don't start anything if this button is already expanding.
if ('expanding)

{
//Begin expanding.
canExpand = true;
expanding = true;

//Create an anonymous inner thread, so as not to freeze the main loop.
(new Thread()
{

public void run()

{
//Change the button's color to green for even better visual feedback.
Color originalColor = getBackground();
setBackground(Color.green);

//Store the original button size.
originalSizeX getPreferredSize().width;
originalSizeY = getPreferredSize().height;

//Calculate the target size based on this LeapButton's expansion
multiplier.

int targetSizeX

int targetSizeY

(int) (originalSizeX * expansionMultiplier);
(int) (originalSizeY * expansionMultiplier);

//Calculate the amount to increase button size by in terms of steps.
int stepX = (targetSizeX - originalSizeX) / 10;
int stepY (targetSizeY - originalSizeY) / 10;

//Loop while expanding is ok and we haven't reached the target size.
while (canExpand && getPreferredSize().width < targetSizeX)
{
//Increase button size.
setPreferredSize(new Dimension(getPreferredSize().width + stepX,
getPreferredSize().height + stepY));

//Repaint (update) the button.
revalidate();

//Wait a moment before increasing size again.
try { Thread.sleep(75); }
catch (Exception e) { }

}

//Trigger all callbacks if the button size on loop exit meets or

exceeds our target expansion size.

if (getPreferredSize().width >= targetSizeX) doClick();

//0therwise, revalidate (update) the button to make sure renders,

since doClick() would normally handle this.

else
revalidate();

//Reset the size of the button to its original dimensions.
setPreferredSize(new Dimension(originalSizeX, originalSizeY));

//Revalidate (update) the button.
revalidate();

//This button is no longer expanding.
expanding = false;

//Restore the original button color.
setBackground(originalColor);

}

}).start();

}

So, setting aside the fact that this was a good chunk of code you just wrote (or read), the
overall content of the function is relatively straightforward:

1.
2.
3.

N

First, we check whether the button is already expanding and exit if it is.

We make a note of the button’s current color and then switch it to another one.

We obtain the current size of the button and then calculate how big it should grow to
be.

We then use the data from the previous step to calculate how many pixels the button
should increase size by so that we perform more or less exactly 10 steps over the
course of a second.

Now we enter a loop, continuously incrementing the size of the button and waiting
for a fraction of a second until the button is told to no longer expand or it reaches the
target size.

We exit the loop, triggering any registered callbacks if the button managed to fully
expand.

Finally, we completely reset the state of the button and exit the function.

Even better, this process can be applied to any programming language with any API.
It’s not exclusive to Java in any way; in fact, there are very few Swing-specific
method calls in this function!

You can see this expansion method in action in the following screenshot on the finished
version of the Leapaint application:

s | _owe | [N [o |

Note

If you run the application right this moment, you will not see anything like the preceding
screenshot, as we haven’t written the Leap tracking code or the graphical frontend.

Now it’s time to move on to the graphics-heavy class and the brunt of the Leapaint
application’s coding, Leapaint!

Making a graphical user interface

The Leapaint class, as you’ve probably gathered from the name, is central to the
application we’re creating; it houses the main GUI components, it starts up all of the
services, and it generally just ties everything together. Now, we just have to fill in the
blanks that were left in the skeleton version we wrote earlier, starting with the constructor.

Constructing a constructor

Swing can, at times, involve some pretty big constructors. This is one of those times. As
this is mostly Swing-related code, I will let comments do a majority of the talking for this
particular snippet.

Here are the contents of the Leapaint constructor. You should replace the contents of the
constructor in the skeleton file with these:

//Always call the superclass constructor when overriding Java Swing
classes.
super("Leapaint - Place a finger in view to draw!");

//Configure the button panel.
buttonPanel = new JPanel(new FlowLayout());
buttonPanel.setBackground(new Color (215, 215, 215));

//Configure the buttons.
buttonl = new LeapButton('"Red", 1.5);
buttonl.addActionListener(new ActionListener ()

{
public void actionPerformed(ActionEvent e)
{
inkColor = Color.RED;
}
1)

button2 = new LeapButton("Blue", 1.5);
button2.addActionListener(new ActionListener()

{
public void actionPerformed(ActionEvent e)
{
inkColor = Color.BLUE;
}
3);

button3 = new LeapButton("Purple", 1.5);
button3.addActionListener(new ActionListener()

{
public void actionPerformed(ActionEvent e)
{
inkColor = Color.MAGENTA;
}
1)

button4 = new LeapButton("Save", 1.5);
button4.addActionListener(new ActionListener()

{

public void actionPerformed(ActionEvent e)

{

}
1),

//Add the buttons to the button panel.
buttonPanel.add(buttonl);
buttonPanel.add(button2);
buttonPanel.add(button3);

//Put a space between the color and save buttons.
buttonPanel.add(Box.createVerticalStrut(1));
buttonPanel.add(button4);

saveImage("leapaint");

//Configure the paint panel.
paintPanel = new JPanel()

{

public void paintComponent(Graphics g)

{

super .paintComponent(g);

//Setup the graphics.
Graphics2D g2 = (Graphics2D) g;
g2.setStroke(new BasicStroke(3));

//0nly start drawing if the user's finger is in view and not on the
button panel.
if (z <= 0.5)
lines.add(new Line(prevX, prevY, X, y, inkColor));

//Draw all registered lines.
for (Line line : lines)
{
g2.setColor(line.color);
g2.drawLine(line.startX, line.startY, line.endX, line.endY);

}

//Repaint all the buttons.
buttonPanel.repaint();

//Draw the cursor if a finger is within in view.
if (z <= 0.95 && z != -1.0)
{
//Set the cursor color to the inkColor if painting, and green
otherwise.
g2.setColor((z <= 0.5) ? inkColor : new Color(0, 255, 153));

//Calculate cursor size based on depth for better feedback.
int cursorSize = (int) Math.max(20, 100 - z * 100);

//Create the cursor.
g2.filloval(x, y, cursorSize, cursorSize);

+;

//Make sure the paint panel doesn't obscure any other elements.
paintPanel.setOpaque(false);

//Add the panels to the primary frame.
getContentPane().add(buttonPanel, BorderLayout.NORTH);
getContentPane().add(paintPanel);

//Make sure the application exits on close.
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

//Set initial frame size and become visible.
setSize (800, 800);
setVisible(true);

Almost all of the preceding code was Swing related, but there are a few things worth
noting before we move on to the next function.

The lines starting with buttonl = new LeapButton("buttoname", 1.5) or
buttonl.addActionListener(new ActionListener()) create new instances of the
LeapButton class and add anonymous action listeners to them, allowing them to, you
guessed it, respond to input when pushed via a finger or clicked by a mouse.

The block of code that starts with the line, public paintComponent(Graphics g),
highlighted in the preceding code for your convenience, contains most of the Leap-related
logic. The first few lines are pretty straightforward; we set up some graphics references,
store values for lines, and then draw some paint on the screen. One of the lines in there, if
(z <= 0.5) lines.add(new Line(prevX, prevY, X, y, inkColor)), uses the z axis of
the Leap device to tell whether or not it’s okay to paint; Leapaint will only start drawing
lines if the user’s finger passes a certain threshold, which we will be setting later via an
InteractionBox instance.

However, wait; there is more. We also draw an onscreen cursor representing where the
user’s finger is and what it is doing. There are a total of three lines involved with
configuring and drawing the user’s cursor; we’ll go over each one:

® g2.setColor((z <= 0.5) ? inkColor : new Color (0, 255, 153)): This
determines which color the cursor should be. If the user’s finger is close enough to
the screen to be painting (the value for the z axis less than 0.5), then it will match the
color of the ink that we are drawing with. Otherwise, it will be a soothing mint green.
While these checks could have been done using a basic if-else statement, the use of a
ternary operator here allows everything to fit on one line, which is nice.

® int cursorSize = (int) Math.max(20, 100 - z * 100): This calculates the exact
size the cursor should be, again using the depth (the z axis) of the user’s finger as the
primary metric. The closer the finger gets to the screen, the bigger the circle will
become. While it’s not required to provide visual feedback like this, it’s a great way
to provide visual feedback for people so that they aren’t poking around blindly (or
guessing how far in their finger is).

e g2.filloval(x, y, cursorSize, cursorSize): This finally renders the cursor on
screen as a circle using the current coordinates of the pointer and the size we

calculated on the previous line.

This results in a shape-shifting cursor that gets bigger and smaller as a finger gets closer to
and farther from the screen, as seen in the following screenshots:

Note

If you run the application right this moment, you will not see the cursor, as the Leap
tracking code has not been written yet.

This completes the Leapaint constructor! All that’s left before this class is finished is a
single function, saveImage.

Saving images

The saveImage function in Leapaint is in no way related to developing for the Leap
Motion Controller, but it’s a great toy—I mean, tool—to have in hand when you’re writing
a graphical drawing application. We will cover it very briefly before moving on to the
long-awaited Leap-side of things.

Find the code for saveImage. Be sure to replace the content of saveImage in your skeleton
file with the following code:

//Get the location and bounds of this JFrame.

Point pos = getContentPane().getLocationOnScreen();
Rectangle screenRect = getContentPane().getBounds();
screenRect.x = pos.X;

screenRect.y = pos.y;

//Attempt to take a screen capture and pipe it to the image file.
try
{

BufferedImage capture = new Robot().createScreenCapture(screenRect);
ImageIO.write(capture, "bmp", new File(imageName + ".bmp"));

}

catch (Exception e) {}

I won’t go into detail on how this function works, or why, but I will briefly cover the fun
part of how we go about getting the screen capture:

1. We first retrieve a set of onscreen coordinates for the location and size of the content
area of our application.

2. We then attempt to use Java’s Robot class (not literally related to robots, sadly) to
take a screen capture of the onscreen area depicted by the coordinates that we just
retrieved.

3. If all goes well when called, saveImage will pipe out an image to the file depicted by
the imageName variable.

If you were to fire up Leapaint right now using Eclipse, you will be greeted by a window
that looks something like the following (assuming there are no errors; if there are, check
your code!):

As you can see, the screen is blank and ripe to be painted on. All we need to do now is
catch our user input from the Leap Motion Controller!

Interpreting Leap data to render on the
graphical frontend

At long last, we can begin writing the Leap code! The only code we’ll be editing from this
point forward is the LeapaintListener class.

Go ahead and open up LeapaintListener.java now and scroll down to the onFrame
method. Replace its content with the lines of code I’ve written here:

//Get the most recent frame.
frame = controller.frame();

//Detect if fingers are present.
if (!frame.fingers().isEmpty())
{

//Retrieve the front-most finger.
Finger frontMost = frame.fingers().frontmost();

//Set up its position.
Vector position = new Vector(-1, -1, -1);

//Retrieve an interaction box so we can normalize the Leap's coordinates
to match screen size.
normalizedBox = frame.interactionBox();

//Retrieve normalized finger coordinates.

position.setX(normalizedBox.normalizePoint(frontMost.tipPosition()).getX())

l4

position.setY(normalizedBox.normalizePoint(frontMost.tipPosition()).getY())

l4

position.setzZ(normalizedBox.normalizePoint(frontMost.tipPosition()).getz())

l4

//Scale coordinates to the resolution of the painter window.
position.setX(position.getX() * paint.getBounds().width);
position.setY(position.getY() * paint.getBounds().height);

//Flip Y axis so that up is actually up, and not down.
position.setY(position.getY() * -1);
position.setY(position.getY() + paint.getBounds().height);

//Pass the X/Y coordinates to the painter.
paint.prevX = paint.Xx;
paint.prevY = paint.y;

paint.x = (int) position.getX();
paint.y = (int) position.getY();
paint.z = position.getZ();

//Tell the painter to update.
paint.paintPanel.repaint();

//Check if the user is hovering over any buttons.
if (paint.buttonl.getBigBounds().contains((int) position.getX(), (int)
position.getY()))

paint.buttonl.expand();

else paint.buttonl.canExpand = false;

if (paint.button2.getBigBounds().contains((int) position.getX(), (int)
position.getY()))

paint.button2.expand();

else paint.button2.canExpand = false;

if (paint.button3.getBigBounds().contains((int) position.getX(), (int)
position.getY()))

paint.button3.expand();

else paint.button3.canExpand = false;

if (paint.button4.getBigBounds().contains((int) position.getX(), (int)
position.getY()))

paint.button4.expand();

else paint.button4.canExpand = false;

}

Ah, it’s good to have some almost pure Leap code after our almost 20-page respite from
having any at all. I’'ll go ahead and break everything down line by line:

The first line, frame = controller.frame(), retrieves the most recent frame from
the Leap Motion Controller. This is, of course, critical if we’re to do any finger
tracking.

The if (!frame.fingers().isEmpty()) statement makes sure that we only analyze
the tracking data from the Leap if the frame we got has fingers inside. Otherwise,
there’s not much point, is there?

The Finger frontMost = frame.fingers().frontMost() statement obtains a copy
of the frontmost (furthest toward the screen) finger in the frame the controller gave
us. There were many different routes that we could’ve taken here in order to get a
reference to a single finger. We could have used the Skeletal Tracking API to get an
index finger, or we could have averaged the location of all the fingers in the frame,
and so on. I chose this method because it’s simple and straightforward, making it
great for a tutorial.

The vector position = new Vector(-1, -1, -1) statement initializes the set of
coordinates that we will be passing to the Leapaint class later on.

The normalizedBox = frame.interactionBox() statement retrieves an
InteractionBox instance from the frame; as we discussed earlier, always get an
InteractionBox instance from the Leap Motion API—never create a new one from
outside.

The line,

position.setX/Y/Z(normalizedBox.getNormalizedPoint(frontMost.tipPositior
retrieves the normalized 0.0 to 1.0 coordinates of the frontmost finger from our
InteractionBox instance.

The two lines, position.setX(position.getX() * paint.getBounds().width)
and position.setY(position.getY() * paint.getBounds().height), adjust the
normalized values to fit Leapaint’s JFrame, no matter what size it is set to. The cool
thing about floating point (decimal) numbers that are fixed to a scale of 0.0 to 1.0 is
that, when multiplied by the maximum dimension (for example, size) of another
coordinate system, they scale and integrate into this coordinate system perfectly.
Ergo, this method works for all kinds of things, ranging from 2D applications like
this one to 3D applications, which we’ll be getting into in the next chapter.

The next two lines, position.setY(position.getY() * -1) and
position.setY(position.getY() + paint.getBounds().height), invert the
normalized y axis coordinates of our frontmost finger’s tracking data. If we didn’t do
this, a finger that is pointing at the bottom of the screen would end up painting on the
top half of the screen and vice versa. This is due to a minor discrepancy in how the
Leap tracks the y axis as compared to how many of the common GUI frameworks
handle their coordinate systems.

Note
Fun fact

The Leap Motion Controller sees a higher (positive) value in the y axis to be further
away from the Leap, or higher. Conversely, many GUI systems, Java Swing included,
see higher values in the y axis as being further away from the origin or top-left corner
of the screen. In other words, a normal GUI framework will see higher values of y as
being lower on the screen, whereas the Leap Motion Controller sees them as being
higher.

The next few lines, such as paint.prevX = paint.x and paint.x =
position.getX(), pass our fully normalized and converted finger coordinates to the
Leapaint class instance so that it can start drawing lines.

The paint.paintPanel.repaint() statement tells the Leapaint instance to repaint
the drawing area of our application; in Swing terms, this basically tells the window to
update itself visually to respond to the new finger coordinates.

Finally, the last few lines like if

(paint.buttonX.getBigBounds().contains((int) position.getX(), (int)
position.getY())), paint.buttonX.expand(), and else
paint.buttonX.canExpand = false detect if the frontmost finger is touching any of
our four LeapButtons instances (the three color switchers and the save image button),
and triggers their associated expand function if it is. Otherwise, if a button isn’t being
touched by a finger, these lines make sure it stops expanding.

Testing it out

Now, for the long-awaited moment where we fire up the Leapaint application:

1. After verifying that all of the code in this chapter thus far has been written and put in
the correct places, plug in your Leap and hit the run button (if you’re using Eclipse)!
2. If all goes well, you should be able to start drawing—Ilike the image shown in the

following screenshot (do forgive this author’s inability to draw freehand; I much
prefer vector graphics):

Leapaint - Place a finger in view to draw! - 0

Hed Hiue Purphe Save

With this, you’ve completed a simplistic, but functional, 2D drawing application for the

Leap Motion Controller. Next on the list is a 3D application, the Leap’s native domain so
to speak.

Improving the application

With the bare-bones Leapaint application complete, you now have a great platform to
build off and improve. Why not use this as an opportunity to sharpen your skills before
moving on to the next chapter?

There are quite a few ways you can enhance Leapaint, including:

e A prettier user interface and better-looking buttons.

e Smoother, less random lines (occasionally, using this code, drawn lines will stutter;
this is because we interpolate the location of the lines by drawing them between
points).

e More colors to pick from; maybe by using a color wheel or slider?

e Anything else that you can possibly think of!

In addition, if you wish to further your skills with Java GUISs, you can find more
information about the Java Swing API (which Leapaint uses quite extensively) on Oracle’s

official website at http://docs.oracle.com/javase/7/docs/technotes/guides/swing/.

http://docs.oracle.com/javase/7/docs/technotes/guides/swing/

Summary

In this chapter, you wrote a two-dimensional (2D) drawing application for the Leap
Motion Controller using only the Leap and Java Swing APIs.

You covered how to make simple expanding buttons, responsive cursors, and a basic but
effective user experience. Heading forward, this knowledge will make the coming
chapters much easier as we begin working with a 3D application, which isn’t a whole lot
more complex than a 2D application once you get used to the third dimension, that is. You
also wrote a lot of code in this chapter.

In the next chapter, you will begin learning about the Unity 3D development toolkit as it
pertains to the Leap Motion Controller so that you can begin writing three-dimensional
applications for the Leap; we’re just getting started!

Chapter 5. Creating a 3D Application — a
Crash Course in Unity 3D

Now that we’ve tackled the design and development of a simple 2D painting application,
how about we move on to more advanced 3D applications? In this chapter, you’ll learn
about the Unity 3D toolkit, the go-to software suite for many Leap developers who are
working on applications that utilize three dimensions.

Topics that we’ll be covering in this chapter include:

A brief introduction to Unity
Installing and setting up Unity
Common jargon in Unity
Creating a project

Setting the scene

Note

Disclaimer: this chapter contains absolutely no Leap-Motion-related content or
information. It exists solely to teach you the basics of using Unity to prepare you for the
next two chapters, which will contain a lot of Leap-Motion-related content.

This chapter is sprinkled with periodic Fun facts that offer high-level, entry-level factoids
about scripting and programming for your reading pleasure.

A brief introduction to Unity

So far in this book, you’ve covered many of the fundamental concepts of the Leap,
ranging from simple things such as the API and configuring the IDE to more complex
things such as how the Leap sees tracking data and how user ergonomics can be enhanced.
Along the way, you also covered the creation of a simple two-dimensional application to
help tie all of these ideas together.

The following is a screenshot of the Unity 3D application, Artemis Quadrotor Simulator:

B eapecti
[Fraviem Camars | [5ishe = &

T Taq (Umggad s Lever | Gufesk 1

B Proisb | Selacy | R | Apph

Crue - |# o~ Transform =

B Favarites | hssets « Temp (= i camara

= m lriars

I ——T 7T
N Atgsky Tuscutayer
o a » L Aute stener
» i ateeTnce ittt W
P . wrrw o =T - | Tabbe TL Tickesin. | Auds Chg Thooense iy Cho
* i Sonps i L
-!w hEppt Brpasy Bffpctr [
: -m Flay On dmake
Wevgaid Wappesd Wyl s =]

aplpeees

Ll

A Unity 3D application, the Artemis Quadrotor Simulator

Now, it’s time for us to delve into the native realm of the Leap Motion Controller: three-
dimensional applications, including their design, creation, and integration with the Leap.
Over the course of the next three chapters, we will cover the setup, design, coding, and
testing of a simple 3D application for the Leap Motion Controller where the user will
control a simple floating object by moving their hand around.

Writing a 3D application can be a daunting task; you’ll need to pull together assets like 3D
models, 2D textures, audio clips, scripts, and so forth. How do you stitch all of these
together into a single, Leap-driven application? That is where 3D toolkits come into play;
and as I’'m sure you’ve guessed from the chapter title already, we will be using the Unity
3D toolkit in the next few chapters as we create a three-dimensional application.

Unity allows game designers, artists, and developers to create games and simulators with
little difficulty. Since the early days of Leap Motion, when things were still in beta and
just being kicked off, Unity was the go-to toolkit for creating applications that make full
use of all three dimensions that the Leap offers—this means there’s a lot of preexisting
tools, assets, and references to develop for the Leap with Unity. Thanks to the extremely
large user base that Unity has, there’s an extremely wide selection of resources and
documentation (often available freely) on the Internet!

Of course, Unity is a very complex and useful program with a large number of features
and capabilities—an outright guide to using it is worthy of a book in its own right (and I
believe there are quite a few books on it too). Therefore, so as to avoid leaving the scope
of this book (mastery of Leap Motion development), this chapter (and the following two)
will touch only on the high-level aspects of using Unity—you will learn exactly what you
need to know to get the job done.

If you want to learn even more about Unity, or you get stuck at some point during the next
few chapters, you can find excellent documentation at http://unity3d.com/learn.

Let’s get straight to it then! In this chapter, you will install Unity and then create a basic
scene to place our 3D app in.

http://unity3d.com/learn

Installing and setting up Unity 3D

The first step in developing with Unity is, well, installing Unity. Head on over to
http://www.unity3d.com/unity/download and click on the giant blue button, as seen in the
following screenshot; this will begin downloading the installer for Unity. It’s a fairly large
file, so expect to wait a little while for it to finish.

DOWNLOAD AND GET STARTED

Get the free version of Unity for Windows. It's fully functional,

Once it finishes downloading, locate the installer file and run it. Follow all the prompts
that you see, with the end result (hopefully) involving the installation of Unity.

http://www.unity3d.com/unity/download

Activate your Unity license @unity

After a while, you will see a screen like the preceding one. Go ahead and tick the Activate
a free 30-day trial of Unity Pro box and click on OK. The installation of Unity should
now be complete.

Common jargon found in Unity

Before we continue any farther and begin creating a Unity project, let’s go over three of
the most common things that a project contains.

Scenes

Every single level created in Unity 3D is called a scene; scenes are to a Unity project as
chapters are to a book. Scenes can contain an arbitrary amount of GameObjects (limited
only by the user’s system resources), sky boxes, terrain, and so forth. You can think of
them as the canvas on which we create a given area in a 3D application.

GameODbjects

Every single item contained within a scene, be it a mountain, a wall, a robot, a light, or
even some kind of user interface element, is a GameObject. There’s even a GameObject
class when scripting with Unity! Think of these as the building blocks of a 3D application.

Scripts

Any GameObject in a given scene that performs some kind of function or series of
functions has one or more scripts attached to it. Scripts define the behavior of a
GameObject, allowing it to move around, interact with other GameObjects, respond to
user input, and even change shape and size! These are both the backbone of any control
scheme and the entry point for Leap Motion development when building a 3D application.

The three scripting languages supported by Unity are UnityScript (JavaScript for Unity),
Boo, and C#. We will be using C# for the duration of this book, as it has great integration
with the Leap Motion Controller and it’s quite similar to Java in terms of syntax.

As a short summary, every Unity project contains at least one scene. In turn, every scene
contains one or more GameObjects (usually quite a few). Finally, every GameObject will
usually have at least one or more scripts attached to it.

Creating a project

With the installation of Unity complete, you can now proceed to create a new project. Go
ahead and launch Unity.

| Open Project | Create Mew Project

Select recently opened project:

Open Other... Open

You will now be prompted to either open a preexisting project or create a new one. We are
going to create a new one, so click on the Create New Project tab.

This will take you to the screen shown here:

Open Project | Create New Project

Project Locaton:
C:\Users\Mizumi\Documents My FileProjects\Leap Flying Enfity [Browse...

Import the following padkages:

[] character Controfer unityPackage ~ |
[7] Light Cookies.unityPackage

[] Light Flares.unityPackage

[] Partides.unityPadkage

[] Physic Materials. unityPackage

[] Projectors.unityPackage

[Scripts.unityPackage v

< >

Setup defaults for: |3D W Create

Go ahead and browse to the folder you’d like the project to be located in via the Browse
button. Do not worry about importing any packages; we’re not worrying about that just
yet.

When you’re done, click on Create.

Upon creating the new project, you should now see a screen similar to the following one:

Fle B8t Asiets Gameljodl Composerd Worsdm Help
L S s ot | & ; _ ‘ | - [Laren + [navout -

| Olrapecor Lo

T SR P

SRTYCID
¥ Fawerfies Asaein

This screen is the main editor interface, which comprises multiple tabbed windows; while
there’s a lot going on, each individual window is rather simple (plus, we won’t be making
use of every single feature with this application).

There are four windows (or tabs, if you will) to pay attention to:

e Hierarchy: This window contains all of the GameObjects that are present in the
currently active scene.

e Scene: This window acts as a viewport of the currently active scene.

¢ Project: This window contains a sort of tree-style file browser for the currently
active project. In the next two chapters, we will be using this to organize and access
the various scripts and assets that are created. You can think of it as Unity’s version
of the Project Explorer in Eclipse.

¢ Inspector: This window contains all the data for the currently selected GameObject
in the Scene or Hierarchy window.

We will utilize the rest of the windows on an as-needed basis.

B rrapect

Cruats *

W Faveries | Rsiels n e
1 a1 atarialy [e e e b

A Meduly i Paldar ia ety

ol Prafaby

L al et

4 [@ tsapecer [

The preceding screenshot shows the editor layout that the author uses during development,
but you can lay out the editor however you want by simply clicking on the Window tabs
(Project, Console, Inspector, Scene, and so on) and dragging them around the screen.

Setting the scene

With our project created and the editor configured, we can now set the stage (or scene, as
it were) for this application.

File [Asiets | GarveOleedl | Composent Wisdow Heip
] Coeate Eropty avieieen [
) [Fastisie Symem
Camars
G Tt
AN Teshune
30 Tt

Directioral Light
Poin Light
Spotight

dus Light

Cubie

Sphmy

Capoate
Cymdr

To start off, you’ll want to create a basic plane GameOQObject to act as the ground for this
application. This can be achieved by navigating to GameObject | Create Other | Plane in
the toolbar, as shown in the preceding screenshot.

After clicking on the Plane button under Create in the previous step, you will see a
perfectly flat plane appear in the Scene window, as seen in the following screenshot:

2 + B coemETT 3R]

[

T | A[%]# | Ousapecter |

Note
Fun fact

All of those blue triangles that you see on any GameObject you select in the Scene
window are a visual representation of that object’s three-dimensional mesh.

=l + B OommErrm e Larar - s -

ot | | gepwes | oA

Now, as our 3D application (or game, as it was) is going to require a good deal of space
for navigating, you’ll want to make the plane a whole lot bigger.

Let’s go ahead and make the plane a bit bigger via the following steps (these will apply to
any GameObject):

1. Select (click on) your newly created plane in the Hierarchy window. You’ll notice
that a bunch of information appears in the Inspector window.

2. Click on the Transform tab within the Inspector window. You will now see a list of
fields labeled Position, Rotation, and Scale.

3. Select the X and Z fields that are next to the Scale label (the Y field is denoted by the
blue arrow in the preceding screenshot) set them both to 5.

4. With this, your plane should be a whole lot bigger—five times bigger, to be exact.
You can make it even bigger, but for now it’s plenty.

You’ve probably noticed the Main Camera GameObject hanging around in the
Hierarchy window for a while now. This is shown in the following screenshot:

=+ FFH e T

| #oeem |

We will be making a new one later on, so go ahead and click on it and delete it (right-click
on Main Camera and click on Delete). At this point, you should now have what is
essentially an empty scene with the exception of a flat plane. How about we add some

simplistic terrain to that plane? Head on over to the toolbar again and go to GameODbject |
Create Other | Cube, as shown here:

File F Aoty | Gueneligent | Compancsl Wiadew Hilp
)) Create Emgpty Cilsinfsl |
Citdte Cbad " Pastiche Sysiess

¥ Scane =
Tusherd) 2 Carmars

|
LR Tt |
|

LA Teatiare | a¥
0 Tt
Dheitsznal Light
Powrn Lt
tpmagre

Aana Light
Cube

Sphoer

Capoult |
Cplres
Flara
Chusd

Move To Wew Cirle A -F

8 Progest O Casashe = et A — —
fa— EXLIEN | O [rrigitin -
¥ Fawarites Apastn |
AH Matsrush
Al Mageh
Al Prefaka
AR Jiripts

Behold, a lone cube is now present in the middle of the vast emptiness that is the Scene
window, as shown here:

File Edit Assets GameObject Component Window Help
_'EHierm'ch\uI | .= i Scene € Game
| Create -| (@ AT Textured : | RGB 3| 20| ¢ |) | Effects - Gizmos ~| (GrAll

Main Camera

Moving on to the next step, let’s make the cube a wee bit larger. Just as we did for the
plane, go into the cube’s Transform settings (via the Inspector window after clicking on
the cube in the Hierarchy window). Then, go into the Scale field and set the X, Y, and Z
values to 5. This will make your cube a whole lot bigger, as shown in the following
screenshot:

=+ FIFY cmmErTm - Layer o

Now for the artistic part of laying out the scene—place the cube wherever you like in a
logical fashion.

By now, you’ve probably noticed the three red, yellow, and blue arrows that protrude from
the currently selected GameObject in the Scene window. These handles are used to move
objects around within the Scene window without having to type in coordinates by hand
from within that object’s inspector.

Go ahead and try it out for yourself: simply click and hold on any one of the arrows and
then drag your cursor across the screen. When you’re happy with the position of the
object, stop clicking. Use this method to move the cube to a spot that’s intersecting (or at
least touching) the plane.

You can very quickly copy and paste new cubes into the scene by selecting one in the
Hierarchy window, right-clicking its name, and then clicking on Duplicate. Go ahead and
do this now: copy, paste and randomly position about five more cubes until your plane
looks kind of like the one in the following screenshot:

Fila [d4 Sawty GemeDbjeci Componest Wedow Haelp
Bl + Bl eEmmETT)

Voila! You now have a basic scene to work with. This chapter was probably either
informative or slightly less interesting than the ones you’ve read thus far. Possibly both!
However, I hope that it got you ready for 3D Leap Motion development for the next two
chapters.

Before you forget, be sure to save the Unity project that you just finished working on!
Simply go to the toolbar yet again and navigate to File | Save Project to save your project.
If this is the first time you are saving your project, you will be greeted by a dialog like the
one in the following screenshot that will ask you to give a name for the default scene—I
named it Leap-Flyer-Main-Scene but you can use whatever name you like.

S ity - Unitied - Leap Flying Entity - PL. Mot & Unie: Standaione” =B

Summary

In this chapter, you learned about the Unity 3D editor, which will help you follow the
upcoming chapters. We started by covering the installation of Unity, followed by a review
of some common terms present in Unity, such as scenes, GameObjects, and scripts. You
spent the remainder of the chapter learning about the creation of a project and the design
and layout of a simple scene that you’ll be using in the chapters to come.

You finished off the chapter by saving the project for the first time, although I hope you
were actually saving all along.

In the next chapter, we’ll begin integrating the Leap Motion Controller with the Unity 3D
toolkit, including touchable buttons and real-time representations of a user’s hands.

Chapter 6. Creating a 3D Application —
Integrating the Leap Motion Device with a
3D Toolkit

Now that you’re familiar with the Unity 3D toolkit, we can begin integrating the Leap into
a 3D application. In this chapter, we’ll cover the integration of the Leap device as well as
the rendering of hands, fingers, and buttons using the C# programming language.

We’ll be covering the following topics in this chapter:

Setting up the scene to receive Leap Motion input

A quick summary — the fundamentals of Unity scripts
Laying out a framework of scripts

Rendering hands

Rendering buttons and detecting button presses

Note

Both this chapter and the next one make extremely heavy use of the C# programming
language. If you’re already familiar with it, great! If not, rest assured that it’s, at first
glance, quite similar to Java and/or C++. In addition, this chapter is sprinkled with
periodic Fun facts that offer high-level and entry-level factoids about scripting and
programming for your reading pleasure.

Setting up the scene to receive Leap
Motion input

Welcome to Chapter 6. Let’s get started!

Before you can retrieve input and tracking data from the Leap Motion device, the scene
must be modified to accommodate the required scripts to capture tracking data, manage
menus, and so on.

Unity requires you to attach every single script you write to a GameObject; this means that
you cannot just create a script and have it automatically work too. Fortunately, you can
create empty GameObjects to attach our scripts with minimal hassle, and this is exactly
what you’re going to do now. So, without further ado...

Within Unity, navigate to GameObject | Create Empty in the menu bar and select it. This
will create a new empty GameObject in your scene and hierarchy windows, as shown in
the following screenshot:

Right-click on the newly created GameObject and rename it to Core. Now, create one
more GameObject called Main Menu and nest it underneath core. Your Hierarchy window
should now look like the following screenshot (for organizational purposes, I also grouped
all the cube objects underneath a single empty GameObject):

= Hierarchy | =
Create 7| o All
¥ Core
Main Menu
¥ Landscape
Cube
Cube
Cube
Cube
Cube
Cube
Plane

Next, go ahead and create a Scripts folder in the Assets area, as shown in the following
screenshot:

3 Project | Console
Create ~ ;

71??Eavurﬁes ﬂ5§§t5~
) All Materials
20 All Models —
() Al Prefabs
2 all Scripts

'ﬁ ssets Scripts Leap-Flyer..
55 Scripts

Almost done. Now, you need to drop the Leap DLL files into your project. If you don’t,
your code will not work, as it will try to utilize libraries that aren’t there! The three DLLs
we need are Leap.dll, LeapCSharp.dll, and LeapCSharp.NET3.5.d11, all of which can
be found within the Leap SDK folder (refer back to Chapter 1, Introduction to the World of
Leap Motion, if you need help finding it). Make sure that you choose the appropriate ones
for your platform (x86 versus x64), otherwise nothing will work correctly!

Each one of these DLLs needs to go in a specific place, as listed here:

® Leap.dll and LeapCSharp.dll need to go in the root folder of your Unity project. As
an example, if your project was named My Leap 3D App, the root folder would be My
Leap 3D App/.

® LeapCSharp.NET3.5.d11 needs to go in the Assets folder of your project. This is
located under [Project Name]/Assets. Alternatively, you can simply locate the DLL
and drag it directly into the assets window in Unity.

With this, you’re ready to move on to the next step: writing code.

A quick summary — the fundamentals of
Unity scripts

All software written for a Unity application is written inside files that Unity refers to as
scripts. Scripts can be written in JavaScript, C#, and Boo, but we’re going to focus only on
C#, as that’s what you’ll be using to develop with Leap Motion.

Each C# script in Unity contains at least one class that extends Unity’s built-in
MonoBehaviour class. This class will almost always override one or more of the following
functions from the parent MonoBehaviour class:

e Awake: This is called when the script is being loaded

e onEnable: This is called when the script is enabled

e start: This is called on the frame when the script is enabled just before any of the
Update methods are called for the first time

Update: This is called once during every frame

onGUI: This is called to render and handle GUI events

onDisable: This is called when the script is disabled

onDestroy: This is called when the script is destroyed

You can find a more exhaustive breakdown of the MonoBehaviour class and how it works
at http://docs.unity3d.com/ScriptReference/MonoBehaviour.html.

Also, in addition to extending MonoBehaviour, every single script in Unity must be
attached to a GameObject in order to work; just writing a script won’t make anything
happen.

Note
Fun fact

Now is a good time to take note of the spelling of MonoBehaviour. You will notice that it
uses the British spelling of behaviour instead of the American spelling of behavior. Many
Unity developers have fallen victim to this subtle difference in syntax, ending up with
programs that “can’t find the MonoBehavior” class!

http://docs.unity3d.com/ScriptReference/MonoBehaviour.html

Attaching a script to a GameObject

Attaching a script to a GameObject is as simple as performing a few steps. The following
are the steps to attach a script to a GameObject:

1. Click on the name of the GameObject to which you want to add a script in the
Hierarchy window.

2. Click on the Add Component button in the Inspector window for that GameObject.

3. Search for the name of the script you want in the resulting dialog and select it.

Laying out a framework of scripts

At long last, it’s time to write some scripts and enjoy the oh-so-sweet instant gratification
of seeing your hands in the three-dimensional format.

Note
Fun fact

Both this chapter and the next one make use of adapted, simplified versions of scripts
from the engine used in Artemis Quadrotor Simulator.

Before you begin writing code, create the following script files (we won’t be filling in all
of them right away) inside the Scripts folder by right-clicking on Scripts and going to
Create | C# Script:

BaseSingleton
Colorscheme
Core
HandRenderer
LeapListener
TitleMenu
TouchableButton
TouchPointer

Your Scripts folder should look similar to the following screenshot when you’re done
(though not with quite as many scripts in it):

B3 Project L] Consals

Craats

L Favorites Assets » Scripts
All Materials
All Models
All Prafabs
AN Seripts L g _H L+ 1 L 3 L

¥l Assets BaseSingle_ Colorsche_ Core HandContro_ HandBende_ Leaplisten_ Player TitleMenu Touchable_ TeuchPoint.

g Res

B Senpts

Rendering hands

For your first adventure out into the realm of Unity scripting, you’ll be writing only two
scripts, which will render the user’s hands into the three-dimensional game world.

Go ahead and double-click on the LeapListener file that you created earlier inside the
Scripts folder. This will make Unity automatically open MonoDevelop, the Integrated
Development Environment used when writing scripts for Unity. Your screen should look a
little bit like this:

[o =
File Ed o 5w Progect B Fi
b 3]
Selution 4 LR ol
I 1 Leap Fiying Entity N selection g
- Husmembly - CSharp g
* | Rnfwrencen
w [Sevipts
Ease.ch 3
EaseSingheton.cs ‘E
HendControfer.cs E
HandHandens, oy
Lbaglilierer. 5
Merrubase o g
Tithebano. o
TaudhalieBuRion.cs %
TouhPonter o1 £
b T Lisap Fiying Ertity)
b ety
Tl a
z 5
H
~
|

The basic layout of MonoDevelop is pretty similar to Eclipse and other IDEs; you have
the Solution browser on the left (which is basically just your project explorer), the
workspace in the middle, and the file tabs at the top.

Go ahead and expand your Scripts folder in the Solution browser by clicking on [Name
of your Unity Project Here] and going to Assembly-CSharp | Scripts, and then
selecting LeapListener (if it wasn’t already opened when you launched MonoDevelop).

LeapListener.cs

Your first bit of Leap Motion code lies directly ahead. This class, as I’m sure you’ve
guessed, is the standard Leap Motion listener.

As there isn’t a whole lot to say about this class, go ahead and open up this
LeapListener.cs file and enter the following lines into it:

using Leap;

public class LeapListener
{
//Leap controller.
private Leap.Controller controller = null;

//Minimum distance from hand for thumb to be recognized.
public static float thumbDistance = 40;

//Current frame.
public Frame frame = null;

//Fingers contained in the current frame.
public int fingers = 0;

//Hands contained in the current frame.
public int hands = 0;

//Various easy-access hand values.
public float handPitch = 0.0F;
public float handRoll = 0.0F;
public float handYaw = 0.0F;

//Hand and finger positions.

public Vector handPosition = Vector.Zero;
public Vector fingerPosition = Vector.Zero;
public Vector handDirection = Vector.Zero;
public Vector fingerDirection = Vector.Zero;

//Quick-find for the right thumb.
public Leap.Finger thumb = null;

//Timestamp of the current frame.
public long timestamp = O;

//1s the Leap connected?
public static bool connected = false;

//Member Function: refresh
public bool refresh()
{
//Try.
try
{
//If there's no controller, make a new one.
if (controller == null) controller = new Leap.Controller();

//Check if the controller is connected.
connected = controller.IsConnected && controller.Devices.Count > 0 &&
controller.Devices[0].IsValid;

//1f we're connected, update.
if (connected)

{

//Get the most recent frame.
frame = controller.Frame();

//Assign some basic information from the frame to our variables.
fingers = frame.Fingers.Count;

hands = frame.Hands.Count;

timestamp = frame.Timestamp;

//1f we see some hands, get their positions and their fingers.
if (!frame.Hands.ISEmpty)
{
//Get the hand's position, size, and first finger.
handPosition = frame.Hands[0].PalmPosition;
handDirection = frame.Hands[@].Direction;
fingerPosition = frame.Hands[O].Fingers[0O].TipPosition;
fingerDirection = frame.Hands[0Q].Fingers[0].Direction;

//Get the hand's normal vector and direction.
Vector normal = frame.Hands[O].PalmNormal;
Vector direction = frame.Hands[@].Direction;

//Get the hand's angles.
handPitch = (float) direction.Pitch * 180.0f / (float)

System.Math.PI;

handRoll = (float) normal.Roll * 180.0f / (float) System.Math.PI;
handYaw = (float) direction.Yaw * 180.0f / (float)

System.Math.PI;

thumb = null;

//Find the thumb for the primary hand.
foreach (Leap.Finger finger in frame.Hands[0].Fingers)

{

if (thumb != null && finger.TipPosition.x < thumb.TipPosition.Xx

&& finger.TipPosition.x < handPosition.Xx)

thumb = finger;

else if (thumb == null && finger.TipPosition.x < handPosition.x
- thumbDistance)
thumb = finger;
¥
b

¥
//0therwise, reset all outgoing data to 0.
else
{

//Fingers contained in the current frame.

fingers = 0;

//Hands contained in the current frame.
hands = 0;

//Various easy-access hand values.
handPitch = 0.0F;

handRoll = 0.0F;

handyaw = 0.0F;

//Hand and finger positions.
handPosition = Vector.Zero;
fingerPosition = Vector.Zero;
handDirection = Vector.Zero;
fingerDirection = Vector.Zero;

//Quick-find for the right thumb.
thumb = null;

}

return true;

}

//In the event that anything goes wrong while reading and converting
tracking data, log the exception.

catch (System.Exception e) { UnityEngine.Debug.LogException(e); return
false; }

}

//Member Function: rotation
public UnityEngine.Vector3 rotation (Leap.Hand hand)
{
//Create a new vector for our angles.
UnityEngine.Vector3 rotationAngles = new UnityEngine.Vector3(0, 0, 0);

//Get the hand's normal vector and direction.
Vector normal = hand.PalmNormal;
Vector direction = hand.Direction;

//Set the values.
rotationAngles.x
System.Math.PI;
rotationAngles.z
System.Math.PI;
rotationAngles.y
System.Math.PI;

(float) direction.Pitch * 180.0f / (float)

(float) normal.Roll * 180.0f / (float)

(float) direction.Yaw * 180.0f / (float)

//Return the angles.
return rotationAngles;

b
}

By now, this should all look very familiar; thankfully, writing a listener for use with the
Unity scripting engine isn’t a whole lot different from writing one in Java or any other
language.

The only item I’d like to bring your attention to is the following function:
public UnityEngine.Vector3 rotation (Leap.Hand hand){

}

This function calculates the rotational values of the passed Leap hand and returns them as
a set of Unity-recognizable vectors. Quite handy in the files to come!

Now, let’s move on to the last of our files before we can do some playing/testing.

HandRenderer.cs

This class is the meat of our Leap Motion code so far; it renders all of the hands currently
in view of the Leap on to the user’s screen, which is a good way to get started with
integrating the Leap into a 3D application.

So, without further ado, let’s get started. Open up HandRenderer .cs and copy the
following content into it (you can also find the entire file online at

https://github.com/Mizumi/Mastering-Leap-Motion-Unity-Project in the
HandRenderer .cs file under Assets | Scripts):

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

class HandRenderer : MonoBehaviour

{

//Leap listener.
private LeapListener listener;

//Leap box.
private Leap.InteractionBox normalizedBox;

//Currently active fingers.
private GameObject[] fingers;

//Currently active palms.
private GameObject[] hands;

//Camera to render the hands on.
public Camera camera = null;

//Finger object.
public GameObject fingerTip = null;

//Palm object.
public GameObject palm = null;

//Distance modifiers.
public float depth = 20.0F;
public float verticalOffset = -20.0F;

//0nEnable.
public void OnEnable() {listener = new LeaplListener();}

//0nDisable.
public void OnDisable()

{
//Reset the hands array.

if (hands != null)
for (int i = 0; i < hands.Length; i++)
Destroy(hands[i]);

//Reset the fingers array.

https://github.com/Mizumi/Mastering-Leap-Motion-Unity-Project

if (fingers != null)
for (int i = 0; i < fingers.Length; i++)
Destroy(fingers[i]);

}
//Update.
public void Update()
{
if (listener == null) listener = new LeaplListener();

//Update the listener.
listener.refresh();

//Get a normalized box.
normalizedBox = listener.frame.InteractionBox;

//First, get any hands that are present.
if (listener.hands > 0)
{
//Reset the hands array.
if (hands != null)
for (int 1 = 0; i < hands.Length; i++)
Destroy(hands[i]);

//Initialize our hands.
hands = new GameObject[listener.hands];

//Loop over all hands.
for (int 1 = 0; i < listener.hands; i++)
{
try
{
//Create a new hand.
hands[i] = (GameObject) Instantiate(palm);

//Set its properties.
hands[i].transform.parent = camera.transform;
hands[i].name = "Palm:" + 1i;

//Set up its position.
Vector3 palmPosition = new Vector3(0, 0, 0);

palmPosition.x += listener.frame.Hands[i].PalmPosition.x / 10;

palmPosition.y += verticalOffset; palmPosition.y +=
listener.frame.Hands[1i].PalmPosition.y / 10;

palmPosition.z += depth; palmPosition.z +=
(listener.frame.Hands[i].PalmPosition.z * -1) / 10;

//Move the hand.
hands[i].transform.localPosition = palmPosition;

//Set the hands rotation to neutral.
Quaternion 1lr = hands[i].transform.rotation;

Vector3 leap = listener.rotation(listener.frame.Hands[i]);

1r.eulerAngles = new Vector3(leap.x * -1, leap.y, leap.z);

hands[i].transform.localRotation = 1r;

}

//Watch out for those pesky "index out of bounds" errors.
catch (System.IndexOutOfRangeException e) { Debug.LogException(e);

}
b

//If there aren't any, delete any active palms.
else if (hands != null)
for (int i = 0; i < hands.Length; i++)
Destroy(hands[i]);

//Get any fingers that are present.
if (listener.fingers > 0 && listener.hands > 0)
{
//Reset the fingers array.
if (fingers != null && listener.fingers != fingers.Length)
for (int i = 0; i < fingers.Length; i++)
Destroy(fingers[i]);

//Initialize our fingers.
if (fingers == null || listener.fingers != fingers.Length)
fingers = new GameObject[listener.fingers];

//Loop over all fingers.
for (int 1 = 0; i < listener.fingers; i++)
{
try
{
//Create a new finger.
if (fingers[i] == null)
fingers[i] = (GameObject) Instantiate(fingerTip);

//Set 1its properties.
fingers[i].name = "Finger:" + 1i;
fingers[i].transform.parent = camera.transform;

//Set up its position.
Vector3 tipPosition = new Vector3(0, 0, 0);

tipPosition.x += listener.frame.Fingers[i].TipPosition.x / 10;

tipPosition.y += verticalOffset; tipPosition.y +=
listener.frame.Fingers[i].TipPosition.y / 10;

tipPosition.z += depth; tipPosition.z +=
(listener.frame.Fingers[i].TipPosition.z * -1) / 10;

//Move the finger to where it belongs.
fingers[i].transform.localPosition = tipPosition;

//Set the fingers rotation to neutral.
Quaternion 1lr = fingers[i].transform.rotation;

1r.eulerAngles = Vector3.zero;

fingers[i].transform.localRotation = 1r;

}

//Watch out for those pesky "index out of bounds" errors.
catch (System.IndexOutOfRangeException e) { Debug.LogException(e);

}
}
}
//If not, delete any active fingers.
else if (fingers != null)
for (int i = 0; i < fingers.Length; i++)
Destroy(fingers[i]);
}
}

I’'m fairly certain that HandRenderer is one of the single longest scripts that you’ll be
writing in this chapter. Let’s go ahead and break it down.

OnEnable and OnDisable are pretty straightforward, but as far as Update goes, this is
where all the action takes place. The first thing we do is refresh the tracking data from the
Leap listener, followed by retrieving an InteractionBox instance to normalize our values
with.

Next, we check whether any hands are present. If there aren’t any, all the hands that are
currently loaded into the game world are deleted along with their fingers (but I promise it
isn’t nearly as gruesome as it sounds).

If there are hands in the current frame in the Leap, we proceed to calculate where to place
the user’s hands in the game world. First, we loop over all the hands that are currently
loaded into the game world (if any) and delete them. We then loop over all the hands that
are contained in the most recent frame from the Leap, applying some fun math and
transformation to their coordinates to normalize them into the game world.

We repeat this process for any fingers in the current frame in the Leap (but only if hands
were present in that same frame).

Note
Fun fact

Unity automatically renders any GameObjects created via scripting on screen. You were
probably wondering when and/or how all those hands and fingers that we were putting
into arrays were going to get displayed; the truth is, they already are!

You might have noticed the definitions for two arrays of GameObjects at the start of the
file: GameObject[] fingers and GameObject[] hands. Any of the GameObjects we place
in here (in fact, any GameObjects’ period) are automatically rendered and handled by
Unity. These two arrays are used so that we can keep track of all the active hands and
fingers to make deleting or refreshing them all at once a piece of the proverbial cake.

Preparing the scene for hand rendering

After all that coding, let’s go ahead and return to the graphical realm for a little bit.

First things first: we need to add in a camera and some prefabs so that we can see the
user’s fingers rendered on screen. Go ahead and return to the Unity Editor (which will
probably start compiling your scripts).

Note
Fun fact

A prefab, as Unity calls it, is a predefined collection of GameObjects and their
configurations. These wonderful little things allow developers to save complex
combinations of GameObjects (including scripts and customizations made via the
Inspector) into a single file for easy portability and creation via scripts later.

Now, add a new camera to the scene by going to GameQObject | Create Other | Camera
and setting its y axis position (circled in the following screenshot) in the Inspector to
something around 4 so that it isn’t underneath the floor:

E3

]
File Edit Assets GameObject Component Window Help
. + E.IE:EI | = Center| @ Lacal | > 1l M [avers | {ioyow -]

| = Hierarchy
| Gizmes =| (G Al T A
Camera

@ Project

Create ~ \
e, - - @ Inspector

Tﬁ‘ Favorites Assets -

All Materials a o [Camera | L)Static =
All Madels Tag | Unzagged] mm_n
(Al Prefabs 5
(1Al Seripts
Scripts Leap-Flyer... x_npl:ﬁ arp
R
il Seripts

gﬂuﬂp Listener Qe
! Add Componert |

With that done, create a new folder in your Assets folder called Res (or resources if you

will). Now, right-click on the Res folder and go to Create | Material. Your Res folder
should now look similar to the following screenshot:

P Edié Amet OameObpct Component Window Help
"" oG [N =~ Comter| i naca | . Laer = [Layent -‘!J
Py e P o e £ . ETTTTE 7
Toss Aupein - Masmmecs oe Py | S Guman | | Covana | 55T
Camary
¥ Corg
M M
* Lundacape
Brraject LLNCeneale - - A=
Craats CIL TR e
W FaneRE | Adaets - Ras 2 MPL““I H;“—I . ‘:":
A Hanenaly A0 i
Al Medale Shader | Tiasypeney Uity DT .
s e Main Calas g
Bave [RGR) Trans {A)
r= Asnmty Tiy ooyt
- S] Balern

Go ahead and select your newly created material and rename it Leap Material for
convenience sake. Once you do this, within the Inspector window for your new material,
click on the Shader drop-down box and go to Transparent | Diffuse from the list. After
you do this, click on the little box to the right of Main Color in the Inspector window for
Leap Material. You’ll now see a color picker dialog similar to the one shown here:

¥ Sliders
R

G

o

A

¥ Presets
@ Click to add new oreset

You can choose literally any color that takes your fancy (I went with red in the preceding
screenshot), but make sure to set the A (alpha) value to 125; this will make the material
half transparent.

Note
Fun fact

Every single color within Unity (in scripting, anyway) is an instance of the Color class.
This class contains four main values that you’ll use quite often: R, G, B, and A, which stand
for red, green, blue, and alpha, respectively.

The first three values should be pretty familiar to you already, but it’s possible that you
might not be familiar with the alpha property of a color; the alpha of a color determines its
perceived transparency within Unity, on a scale of 0 to 255, with 0 being completely
transparent and 255 being completely solid.

Now, it’s time to make prefabs for the fingers and hands that will be shown in the game
world by the HandRenderer class. Go ahead and create two new cubes by going to
GameODbject | Create Other | Cube and then rename one to Hand and the other to Finger
via the Hierarchy window.

With the Hand and Finger cubes created, select both of them from within the Hierarchy
window and then look toward the Inspector window. You should see a component there
called Box Collider. Right-click on this and remove it, as shown in the following
screenshot:

ﬂ'Inspec’mr =
™ [Hand ~ | [static v &

Tag | Untagged 4 | Layer | Default | :
¥ .~ Transform #*,

Position ¥(1.5978| |-1.218: Z|-0.744
Rotation %0 Ral zo |
Scale ¥l il Fzi1 |

'» . Cube (Mesh Filter)
b i M Box Collider

v M Mes Reset
Cast Sha:l
Rereive | Rernove Component |
¥ Materials Move Up
Size Mowve Down
B S Copy Component
Use Light)
Paste Component As New
PrEC e : Paste Component Values

With Box Collider removed (see the preceding screenshot), you should now select just the
Hand cube and set its X and Z Transform Scales to 5 via the Inspector, as shown in the
following screenshot:

8 Inspector ;
¥ Hand | [static = &
Tag | Untagged # | Layer | Default #|
¥ .~ Transform i,
Position ¥11.5978) |-1.218: Z[-0.744 |
Ratation x|0 [¥lo |z[o |
Scale %[5 ¥ [1 |z[B |
» .| Cube (Mesh Filter) #*,
¥ .M Mesh Renderer L =%
Cast Shadows)
Receive Shadows [
¥ Materials
Size [1 |
Elernent 0 | @ Default-Diffuse | &
Use Light Probes -
ealt-i se & = =

Preview

Finally, select both the Hand and Finger cubes again, this time expanding the Mesh
Render component and clicking on the little circle next to the box that says Default-
Diffuse next to Element 0, highlighted in the following screenshot:

L] Inspector
™ [Hand | [Istatic + *
Tag | Untagged # | Layer
Prefab | Select | Revert | Apply |
¥ .~ Transform i,
Position X 1.5970 Y -1.218 Z -0.744
Rotation X0 ‘Yo lzlo]
Scale %(5 Pl | z[s |
b |0 Cube (Mesh Filter) Bty
v . [¥Mesh Renderer %
Cast Shadows M
Receive Shadows [
¥ Materials
Size 1 |
Element 0 |@ Default-Diffuse | ©
Use Light Probes [| 9

Preview

You will now see a dialog window appear on the screen, similar to the following
screenshot:

Mone Leap Mater... PlayerArrow

5 p rites-Def.. ; B} !'fi ult-Par...

DE'FEIJH"DiFFUSE
Material

Go ahead and select Leap Material from the dialog window that appears; this will make
both cubes appear to be of the color that you chose earlier when setting up the Leap
Material object.

For the last cube-related step, drag both cubes (one at a time) from the Hierarchy window
into the Res folder under Assets, shown in the following screenshot:

Fle U Ameic Camedbject Comporsni ‘Window Help

61 + B cemwm T e
LT T re— ;

Fows Mapact & s 5 Fliy | SE0E Giied

S mpecor [i

Once you drag both of these cubes in, delete them from the Hierarchy window, as they’re
no longer needed there; in the process of dragging the cubes into the Assets folder, you
created two new prefabs that contain all the configuration data for their respective cube,
allowing you to make an infinite number of them later.

Finally, we need to activate the HandRenderer class. To do this, click on the Core
GameObject in the Hierarchy window and navigate to Add Component | Scripts |
HandRenderer.cs, as shown in the bottom right-hand corner of the following screenshot:

[& Hand Renderer

This will add the Hand Renderer script to the Core GameObject, making it visible in the
Inspector, as shown in the following screenshot:

You’ll notice that the Camera, Finger Tip, and Palm fields listed underneath the Hand
Renderer (script) component are empty. Click on the little circle next to each one,
selecting the appropriate item as listed here:

e Select the Finger prefab for the Finger Tip field
e Select the Hand prefab for the Palm field
e Select Camera from Hierarchy for the Camera field

Now you’re done.

Testing out the Hand Renderer

All that’s left is to run it and see whether everything works. To do this, simply click on the
arrow icon above the Scene window. If all goes well, you should see virtual
representations of your hands when you place them into view, as shown in the following
screenshot:

Rendering buttons and detecting button
presses

Now that you’ve got some hands on the screen, let’s give those hands something to
manipulate; to me, buttons would seem to be the next logical step. Don’t you agree?

Get ready to write lots of code (six files, to be exact), because touchable buttons are no
laughing matter in a 3D toolkit (well, they aren’t so bad, but still). Head on over to the
Scripts folder and double-click on the BaseSingleton.cs file; this should open up
MonoDevelop if it wasn’t already open to begin with.

BaseSingleton — a custom singleton pattern

Our first class, as the name suggests, is a custom implementation of the singleton pattern.
What’s a singleton, you ask? Read on!

In every program—and consequently, every game—you need to have some form of global
logic that can be accessed from anyone, anywhere, and at any time, be it the current high
score in a game or a list of available sensors on a robot. Of course, in almost all object-
oriented languages, all of your logic will be contained in instances of classes. This results
in, you guessed it, multiple instances of their variables; that simply won’t do. So, what do
you do when you want to share global values within classes while guaranteeing that
there’s only ever one set of these values?

Meet the singleton pattern. In its simplest form, a singleton is a very special kind of class
that will only ever have one instance in existence at any given moment. This allows us to
guarantee that we’ll only ever have one instance of a given set of variables, functions, and
so on. We achieve this by utilizing a combination of a private constructor and private
instance of the class, as seen in the simplistic code here:

public class MySingleton()
{

private static final MySingleton instance = new MySingleton();
private MySingleton() { };
public String variable = "something";

public static MySingleton getInstance() { return instance; }

}

You can then access the variables in Mysingleton from anywhere in your code using the
following syntax:

String myLocalVariable = MySingleton.getInstance().variable;

Now, you’ll notice a few things about the preceding code: there’s a static instance of the
MySingleton class that is immediately initialized when the code is loaded, a private
constructor that can never be called from outside of the MySingleton class, and a static
getInstance function that returns a reference to the static instance of MySingleton. All of
these things work together, creating the common singleton pattern.

But wait, there’s more! As we’re using Unity, there are a few extra problems to solve:

e Unity doesn’t use constructors; instead, it uses a public Awake method. This means
there’s no way to prevent our singleton’s initialization function from being called
from outside of the class.

e As any script, and therefore any class, can be attached to an arbitrary number of
GameObijects, there is absolutely nothing that stops Unity from trying to load
multiple instances of the same singleton.

So then, given the insurmountable odds working against us, what do we do? No worries,

the solutions are quite simple:

e We can solve the lack of constructors by keeping track of whether or not the Awake
function is called. When it’s called, we’ll set a static Boolean to true.

e When our singleton executes the Awake function, it will first check whether there is a
pre-existing instance in play (and whether it’s already awoken). If there is, our
singleton will immediately call bestroy on itself, preventing it from coming into
existence.

Note
Fun fact

Unity’s built-in Destroy function completely and utterly decimates the passed
GameObiject or script, removing it from this realm of existence.

It’s a great way to clean up memory, but it’s also an excellent way to crash your game if
you’re not careful!

Although the behavior I’ve described here is rather unusual for a normal singleton, it’s
absolutely required if we’re going to create a Unity-compatible singleton. Of course,
talking about code is all well and good, but how about we turn all of this into a class called
BaseSingleton? Go ahead and write the following lines of code into the
BaseSingleton.cs file:

using UnityEngine;

//Class: BaseSingleton
public class BaseSingleton<T> : MonoBehaviour where T : MonoBehaviour
{

//Instance of this type.

private static T instance;

//Has this type already been enabled?
private static bool awoken = false;

//Member Function: Awake
public void Awake()
{
//If an instance already exists, delete this one.
if (instance != null && instance != this)
Destroy(this);

//0therwise, proceed to initialization.
else
{
//Check if we should wake up.
if (!awoken)
{
//Awake will now no longer be called.
awoken = true;

//Wake up.
onAwake();

}
b
3

//Member Function: onAwake.
public virtual void onAwake() {}

//Member Function: getInstance.
public static T getInstance()
{
//1If there is no instance to return, generate a new one.
if (instance == null)
{
//First attempt to see if there's already an instance
//attached to an object and use that.
try
{

}

//0therwise, create a new object with an instance.
catch

{

instance = (T) Object.FindObjectOfType(typeof(T));

GameObject instanceObject = new GameObject(typeof(T).ToString());
instanceObject.AddComponent<T>();
instance = instanceObject.GetComponent<T>();

}

//Call the instance's awake.
if ('awoken)

{

awoken = true;

instance.Invoke("onAwake", 0.0F);

}
b

//Return the current instance.
return instance;

b
}

Let’s break down the BaseSingleton class.
In one of the first few lines, we have this:

public class BaseSingleton<T> : MonoBehaviour where T : MonoBehaviour

We define the BasesSingleton class as a template class and extend the MonoBehaviour
class so that any of the classes that extend this one can be attached to GameObjects. This
allows any of our classes to extend it and automatically become a singleton. Isn’t that
nifty?

Note

Fun fact

Template classes are special classes that can take an arbitrary data type (that is, class)
during instantiation and then use this type to process data later. Although template classes
are out of the scope of this book, this one in particular (BaseSingleton) is useful, as it
saves us from having to rewrite the same code three or four times later on.

In the next few lines:

public void Awake()
{

//If there's already an instance, delete this one.

//0therwise, proceed to initialize.

}

We override the Awake function of MonoBehaviour to check whether an instance of this
class has already been created. If an instance has been created, the new one will be
immediately destroyed so as to avoid having multiple instances. Otherwise, our onAwake
function will be called.

As we’re overriding the Awake function of MonoBehaviour, we can’t let classes that inherit
from BaseSingleton override Awake again—that’d be disastrous! This is where our next
function, onAwake, comes into play:

public virtual void onAwake() {}

Classes that inherit from BaseSingleton will now have to override onAwake instead of
Awake. When the class gets loaded into the scene (this usually happens when a
GameObject the script is attached to gets loaded), the Awake function from BaseSingleton
will be called. Then, if the singleton hasn’t been initialized yet, it will call onAwake. This
guarantees that the initialization routines for any given class that decides to extend
BaseSingleton will only be called once.

Finally, in getInstance, we make brief use of the two rather obscure functions that I’d
like to point out: FindObjectOfType and Invoke.

The first function, Findobject0fType, tries to find any currently loaded GameObjects that
have the specified type (or script) attached to them. As this function is slow, it’s usually
better to figure out an alternative method to locate classes. In our case, though, it’s
perfectly fine—we’ll only call it once under normal conditions.

The second function, Invoke, is a bit more controversial. In essence, Invoke tries to
trigger a function (denoted by a string) that may or may not be contained by the object it is
called on. Normally, the usage of this function is a terrible idea, because calling a function
that may or may not even exist can cause all kinds of errors. However, as we want to call
onAwake on a generic template object, which has no class (and therefore no defined
onAwake function), we’re forced to use the Invoke method. However, in our case, we can
always guarantee the object that we’re calling Invoke on will have an onAwake method, as
it will have inherited from our BaseSingleton class.

So, now that we’ve spent a lot of time talking about singletons, logic, and other less than
interesting things, how about we move on to something a bit more colorful?

Colorscheme — a utility class to keep track of colors

Colorscheme is a relatively simple class used to color all the menus and miscellaneous
user interface (UI/GUI) elements in the Unity application that you’re creating; it includes
a simple palette of colors and a built-in method to convert them to grayscale equivalents.

Go ahead and open up the Colorscheme.cs file from within the solution browser in
MonoDevelop and enter the following lines of code:

using UnityEngine;
using System;

//This class is marked as serializable to enable direct editing of the
//public colorscheme values from the Unity Inspector.
[Serializable]
public class Colorscheme
{
//0riginal colorscheme that we can revert to when switching
//between greyscale and normal colors.
private Colorscheme original;

//1s this colorscheme currently set to greyscale?
private bool greyscale = false;

//Primary color.
public Color primary = new Color(©, 0, 0, 0);

//Secondary color.
public Color secondary = new Color(0, 0, 0, 0);

//Accent color #1.
public Color primaryAccent = new Color(0, 0, 0, 0);

//Accent color #2.
public Color secondaryAccent = new Color(0, 0, 0, 0);

//Special color.
public Color special = new Color(0, 0, 0, 0);

//Member Function: greyscale.
public void setGreyscale(bool grey)
{
//Set to greyscale if this colorscheme isn't already greyscale.
if (grey && greyscale == false)
{
//Backup current colors.
original = (Colorscheme) this.MemberwiseClone();

//Get the greyscale versions of all colors.

primary = new Color(primary.grayscale, primary.grayscale,
primary.grayscale, primary.a);

secondary = new Color(secondary.grayscale, secondary.grayscale,
secondary.grayscale, secondary.a);

primaryAccent = new Color(primaryAccent.grayscale,
primaryAccent.grayscale, primaryAccent.grayscale, primaryAccent.a);

secondaryAccent = new Color(secondaryAccent.grayscale,
secondaryAccent.grayscale, secondaryAccent.grayscale, secondaryAccent.a);

special = new Color(special.grayscale, special.grayscale,
special.grayscale, special.a);

//Now greyscale.
greyscale = true;

}

//Remove greyscale.
else if (grey == false && greyscale)

{

//Restore original colors.

primary = original.primary;

secondary = original.secondary;
primaryAccent = original.primaryAccent;
secondaryAccent = original.secondaryAccent;
special = original.special;

//No longer greyscale.
greyscale = false;

¥
3
}

There isn’t a whole lot to explain here, as Colorscheme is just a simple class that acts as a
container for a collection of different colors.

One thing to note before we move on to the next class is the [Serializable] flag that
we’ve placed before the definition of the Colorscheme class. By marking the class as
serializable, we are able to directly modify all the public variables (such as colors, vectors,
strings, integers, and so on) directly from the Inspector in Unity. This is a very nifty
feature if you want to make a class slightly generic and allow it to be customized by
developers in Unity later on.

Core — the main class, if Unity had main classes

When you’re working with a collection of arbitrary scripts that are barely tied together at
all, you need at least one class that acts as a sort of glue between them: a common area for
certain pieces of information to be exchanged.

In this case, the Core class will be responsible for handling the pausing and menu features
contained within our example application. During each update frame, the Core class will
check whether a certain number of hands are within the Leap’s field of view—if they
aren’t, it will automatically pause the game and bring up the menu (if the menu isn’t open
already). Likewise, if there are hands within the view, it will make sure that the game is
not paused.

This is where the Core.cs script comes into play (as well as the Core GameObject you
made earlier if you recall). Despite the important functions this class serves, it’s quite
short compared to the other ones we’ve written—fewer than a hundred lines, even with
comments!

So, go on ahead and open up the Core.cs file and write the following lines into it:
using UnityEngine;

public class Core : BaseSingleton<Core>

{

//Leap Listener.
private LeaplListener listener;

//Interface colorscheme.
public Colorscheme interfaceColors = new Colorscheme();

//Title menu.
public TitleMenu titleMenu = null;

//Does the application have focus?
public bool applicationFocused = true;

//Paused?
public bool paused = true;

//Member Function: onAwake.

public override void onAwake()

{
//This script will not be destroyed, even when a new level loads.
DontDestroyOnLoad(gameObject);

//Create a new Leap Listener.
listener = new LeaplListener();

}

//Member Function: OnApplicationFocus.
public void OnApplicationFocus(bool pauseStatus) { applicationFocused =
pauseStatus; }

//Member Function: Update.
public void Update()

{
//Update the Leap listener.

listener.refresh();

//If the user closes their hand while the game is not paused, pause it.
if (listener.hands < 1 || titleMenu.open || 'applicationFocused)

{

//Pause all entities.
paused = true;

//0pen the title menu.
if (titleMenu.open == false) titleMenu.enabled = true;

//Hide the hands.
this.GetComponent<HandRenderer>().enabled = false;

}

//0therwise, keep the game running.
else if (listener.hands >= 1 && titleMenu.open == false)

{

//Unpause all entities.
paused = false;

//Show the hands.
this.GetComponent<HandRenderer>().enabled = true;

¥
¥
}

One line I’d like to draw your attention to in this class is:

Public void OnApplicationFocus(bool pauseStatus) { applicationFocused =
pauseStatus; }

This function is called whenever the Unity application window is in focus (that is, the user
is currently using it). This allows the Core class to detect whether it should pause the game
world when the user loses interest in your application erm switches focus to another
window.

The update function keeps track of the current state of the game, using a combination of
metrics that include a value that shows whether the window has focus (see the preceding
code) if hands are in view and a menu is open.

If update thinks the game should be paused, the user’s 3D hands will cease to be rendered
and instead will be replaced by a plethora of 2D cursors, which represent the user’s fingers
(for the purpose of navigating menus); conversely, if Update thinks the game should be
running, the user’s 3D hands will resume rendering and the 2D cursors will be hidden.

The rest of this class should be mostly self-explanatory, so let’s go ahead and move on to
the next one.

TouchPointer — let’s draw some cursors on the
screen

The TouchPointer class pulls in coordinates from the Leap and then draws them on to the
screen in the form of mouse cursors. These cursors will then be used to trigger our
touchable buttons, enabling the user to intuitively (and visually) interact with your
application.

So, without further ado, open up TouchPointer.cs and paste these glorious lines of code
within:

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

class TouchPointer : BaseSingleton<TouchPointer>
{

//Leap listener.

private LeapListener listener;

//Leap box.
private Leap.InteractionBox normalizedBox;

//Pointer texture.
public Texture2D pointerNormal;

//Vertical (Y-axis) offset of pointer coordinates.
public float verticalOffset = -10.0F;

//Currently active fingers.
public List<Rect> fingers = new List<Rect>();

//Member Function: onAwake.
public override void onAwake() { listener = new LeapListener(); }

//Member Function: OnDisable.
public void OnDisable()
{
//Reset the fingers array.
if (fingers != null)
fingers.Clear();

}

//Member Function: Update.
public void Update()
{
//Update the listener.
listener.refresh();

//Reset the fingers array.
if (fingers != null)
fingers.Clear();

//Retrieve coordinates for any fingers that are present, but only if

the menus are visible.
if (listener.fingers > 0 && Core.getInstance().paused)
{
//Loop over all fingers.
for (int i = 0; i < listener.fingers; i++)
{
//Set up its position.
Vector3 tipPosition = new Vector3(0, 0, 0);

//Get a normalized box.
normalizedBox = listener.frame.InteractionBox;

//Finger coordinates.
tipPosition.x =

normalizedBox.NormalizePoint(listener.frame.Fingers[i].TipPosition).x;

tipPosition.y =

normalizedBox.NormalizePoint(listener.frame.Fingers[i].TipPosition).y;

//Modify coordinates to equal screen resolution.
tipPosition.x = tipPosition.x * Screen.width;
tipPosition.y = tipPosition.y * Screen.height;

//Flip Y axis.
tipPosition.y = tipPosition.y * -1;
tipPosition.y += Screen.height;

fingers.Add(new Rect(tipPosition.x, tipPosition.y,
¥
b
¥

//Member Function: OnGUI
public void OnGUI()

{

16, 16));

//Make a note of the current GUI color so that we don't overwrite 1it.

Color temp = GUI.color;

//Retrieve the "special" interface color and use it for
GUI.color = Core.getInstance().interfaceColors.special;

//Place a texture where the cursor currently is.
foreach (Rect point in fingers)
GUI.DrawTexture (point, pointerNormal);

//Restore the original GUI color.
GUI.color = temp;

b
}

the cursors.

All the action in this class takes place in Update and onGUI, so we’ll focus on them.

Starting with Update, we refresh the Leap tracking data and then reset the fingers array to
make sure no pointers get orphaned, for lack of a better word. We then begin storing

finger pointer coordinates if there are actually fingers on screen.

This process consists of iterating over all the fingers present in the most recent frame from
the Leap, performing the following steps in order:

1. We first set up a new fingertip position vector and retrieve an interaction box from
the Leap.

2. We then calculate the fingertip coordinates on screen by normalizing their values

against the interaction box and then rescaling them to match the screen resolution.

Then, we add this set of fingertip coordinates to our array of fingers to be rendered.

4. Next up, in onGUI (which is called when the graphical user interface, or GUI, is
refreshed), we render cursors onto the screen at the coordinates specified by the
fingers array that was populated earlier by Update. This process is relatively
straightforward, so I’ll let the comments do the talking for me this time around.

w

Now for the next class...you’re almost done.

TouchableButton — surely, the name is self-
explanatory

Dear reader, you’re almost done. Stay with me here. This next class, as the name implies,
creates a touchable button. When used in conjunction with the TouchPointer class, the
TouchableButton class will allow users to interact directly with onscreen buttons using
just their hands (as well as a built-in 750-millisecond delay, so as to prevent accidental
button presses).

Now, go ahead and open up the TouchableButton.cs file and enter the following lines:

using UnityEngine;
using System.Collections;
using System.Diagnostics;

public class TouchableButton
{
//Pointer reference.
private TouchPointer pointer;

//Stopwatch used to measure hovertime.
private System.Diagnostics.Stopwatch hoverTime;

//Number of possible missed reads from a hovering finger.
private int mistakes = 0;

//Current size multiplier being applied to this button.
private float size = 1.0F;

//Member Function: valueInRange.
private bool valueInRange(float item, float min, float max) { return
(item >= min) && (item <= max); }

//Member Function: over.
private bool over(Rect a, Rect b)

{

x
+

b.width) ||

bool xOverlap = valueInRange(a.x, b.x, b.
X + a.width);

valueInRange(b.x, a.x, a.

bool yOverlap = valueInRange(a.y, b.y, b.
valueInRange(b.y, a.y, a.y

b.height) ||
.height);

+ <
o+

return xOverlap && yOverlap;

}

//Time in milliseconds that a finger must hover over this button in
//order to trigger it.
public int triggerTime = 750;

//Constructor.
public TouchableButton()

{

//Grab a pointer reference.

if (pointer == null)
pointer = TouchPointer.getInstance();

//Set up the stopwatch.
hoverTime = new System.Diagnostics.Stopwatch();

}

//Member Function: render.
public bool render(Rect location, string text)
{
//Has the button been pressed by the mouse?
if (GUI.Button(new Rect((location.x - ((location.width * size) / 2)) +
(location.width / 2),
(location.y - ((location.height * size) / 2)) +
(location.width / 2),
location.width * size, location.height * size), text))
return true;

//Has a bad value been read during iteration?
bool bad = true;

//1s the button being pressed by a Leap pointer?
foreach (Rect rect in pointer.fingers)
{
//1f a finger 1is over this button, begin counting the amount of time
it spends.
if (over(location, rect))
{
//Begin logging hovertime.
if (hoverTime.IsRunning == false)
hoverTime.Start();

//Check to see if the hovertime is greater than the trigger time.
else if (hoverTime.ElapsedMilliseconds > triggerTime)
{

//Reset the hovertime.

hoverTime.Stop();

hoverTime.Reset();

//Reset the size.
size = 1.0F;

//Return true.
return true;

}

//Increment size.
size += 0.005F;

//We received at least one good value.
bad = false;

}
b

//If no good values were received, and the hovertime clock is running,
increment mistakes.

if (bad && hoverTime.IsRunning) mistakes += 1;

//0therwise, reset the mistakes.
else if (!bad && hoverTime.IsRunning) mistakes = 0;

//1If our mistakes exceed 5, stop the hovertime counter.
if (mistakes >= 5)

{

hoverTime.Stop();
hoverTime.Reset();

size = 1.0F;

}

//1If nothing is pressing the button, return false.
return false;

}
}
And now, for the breakdown—hopefully not a mental one (I promise there’s only one
more file left). The comments do a good job of covering the details, but let’s go over each
function for safety’s sake.

The first function, valueInRange, is super simple—it simply verifies that the passed value
is somewhere between the two other values. The function immediately following it, aptly
titled over, is also simple (relatively speaking). It takes two rectangles and checks to see if
they overlap. If they do, it returns true (and false otherwise).

The last function we’ll cover is render. This function, as the name implies, renders the
TouchableButton on the screen, but it serves another important function too; it checks to
see whether any of the fingers in the TouchPointerfingers array are overlapping the
button.

In the event that a finger is overlapping the button, a series of actions and checks take
place:

1. Once a finger is detected hovering over the button, a system timer is started.

2. If the finger remains over the button for an extended period of time (specifically,
once the elapsed milliseconds on the hoverTime timer exceed the triggerTime
value), the button returns true to indicate that it was clicked.

3. As the finger remains over the button, the size of the button is gradually increased to
give visual feedback to the user that they’re pushing the button.

4. In the event that a finger was hovering over the button but stopped before the button
could be fully pushed, the mistakes counter gets incremented. If this happens five
times, the button is reset to its current state without being clicked. While developing
this button, I was able to confirm that an average of two to three mistakes are
recorded every second or so, even though the user’s finger remained steady on a
button. If you didn’t use a mistakes counter and just reset every time a finger
disappeared from the view for a second, the buttons would constantly reset and your
application wouldn’t work!

5. The nice thing about this process is that it is entirely synchronous; that is, it can be

run within a single-threaded program such as Unity without stalling or slowing
anything down. This is thanks to the liberal use of timers and fault checking; you
wouldn’t know it, but a similar process is used quite frequently to increase
performance in robotic control systems that have limited processing power.

Note
Fun fact

A process is synchronous when there is only a single thread. This is the opposite of
asynchronous, which involves multiple threads. Most operating systems are
asynchronous, whereas a lot of lightweight applications (like those found on robots) are
synchronous.

Now for the last class...at last.

TitleMenu — a simple main menu

At last, before you lies the final class in this chapter: Tit1leMenu. This class, when attached
to a GameObject, creates a simplistic menu featuring a single play button flanked by two
color setting buttons—though perhaps it’s better just to show you. Go ahead and open up
the TitleMenu.cs file and enter the following lines of beautiful code:

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

public class TitleMenu : MonoBehaviour

{
//Smoothed button height for middle, right, and left.
public float buttonHeight = 0.0f;

//Font size.
public static int fontsize = 10000;

//Is the title menu open?
public bool open = false;

//Touchable buttons.

public TouchableButton colorButton;
public TouchableButton playButton;
public TouchableButton greyButton;

//Member Function: OnEnable.
public void OnEnable()
{
//The menu is now open.
open = true;

//Initialize buttons.

colorButton = new TouchableButton();
playButton new TouchableButton();
greyButton new TouchableButton();

}

//Member Function: OnDisable.
public void OnDisable()
{
//The menu is now closed.
open = false;

}

//Member Function: getButtonRect.
public Rect getButtonRect(float x, float y)

{
return new Rect(((Screen.width / 2) - (x * ((Screen.width +
Screen.height) / 2) / 1500)),
(Screen.height / 2 - y - GUI.skin.button.fontSize),
360 * ((Screen.width + Screen.height) / 2) / 1500, 180 *
((Screen.width + Screen.height) / 2) / 1500);

}

//Member Function: OnGUI.
public void OnGUI()

{
//Set up GUI fonts.

GUI.skin.button.fontSize = ((Screen.width + Screen.height) / 2) / 15;
fontsize = GUI.skin.button.fontSize;

//Set up GUI colors again.

GUI.color = new Color(Core.getInstance().interfaceColors.primary.r,
Core.getInstance().interfaceColors.primary.g,
Core.getInstance().interfaceColors.primary.b);

//Clicking on the Play button will unpause the game and begin play.
if(playButton.render(getButtonRect (180, buttonHeight), "play"))

{

//Close and disable the menu.
open = false; enabled = false;

}

//Clicking the Colour button will restore the interface colorscheme to
its defaults.
if(colorButton.render(getButtonRect (580, buttonHeight), "colour'"))

{

Core.getInstance().interfaceColors.setGreyscale(false);

}

//Clicking the Grey button will set the interface colorscheme to
greyscale.
if(greyButton.render (getButtonRect(-220, buttonHeight), '"grey"))

{

Core.getInstance().interfaceColors.setGreyscale(true);

b
b
}

The comments do most of the talking yet again.

However, let’s go ahead and talk about onGUI and what it’s doing briefly. The first few
lines set up the button colors and font size. We then proceed to render the touchable
buttons onto the screen using a series of mathematical expressions to make sure that
they’re positioned just so.

When a button is pressed, the contents of its respective if statement will be executed. The
first button, play, will close and disable the menu when pressed, allowing gameplay to
begin. The second button, colour, will disable any grayscaling of the interface color
scheme when pressed. Finally, the third button, grey, will enable grayscaling of the
interface color scheme when pressed.

Enough of me talking; seeing something happen is more exciting than reading about it.
Time to return to the Unity Editor!

Putting it all together

At last, you’re almost done; just a few more steps and you’ll have one half of a working
3D application (the interface).

Return to your Unity project and attach the following scripts to their respective
GameObjects, which you created earlier:

e Attach Core.cs and TouchPointer.cs to the Core GameObject.

e Attach TitleMenu.cs to the Main Menu GameObject.

¢ Now, before we continue, download a file called cursor.png from
https://github.com/Mizumi/Mastering-I.eap-Motion-Unity-
Project/blob/master/Assets/Res/Cursor.png and place it within your Res folder. This
image will be used for the cursors that the TouchPointer class draws on the screen.

Go ahead and select the Core GameObject from your Hierarchy window. Its Inspector
should look something like the following screenshot:

© Inspector | =

b @ [M Hand Renderer (Script) ﬁ i, -

¥ |z [core (Script) i =
Script = Core @

¥ Interface Colors

Primary O
secondary |/
Primary Accent _f
Secondary Accent_f
Specia ¥,

Title Menu Maone (Title Menu) @

Application Focused [

Paused [

7 |z ¥ Touch ointer (Script) 3 #
Script i TouchPaointer @
Pointer Normal Mone (Texture ZD) @
Vertical Offset -10

* Fingers E

Perform the following modifications to the specified fields before we proceed:

e Click on the little circle next to the Pointer Normal field underneath Touch Pointer
(Script) and select the cursor.png file you downloaded earlier from the dialog that
appears.

e Click on the little circle next to the Title Menu field underneath the Core script and
select the Main Menu GameObject from the dialog that appears.

e Now, we need to set up the interface colors underneath the Core script. You’ll notice
that right now, they appear as a series of black boxes; let’s fix that. Clicking on one of
the boxes will result in a dialog similar to the one here:

https://github.com/Mizumi/Mastering-Leap-Motion-Unity-Project/blob/master/Assets/Res/Cursor.png

¥ Sliders
R

€]
B
A

¥ Presets
@ Click to add new oreset

You can choose any color you like, but be sure to set the A value to 125 or higher; if you
keep it at 0, you won’t be able to see any of the colors as they’ll be invisible! Repeat this

process for the remaining four colors, and you should finish with an Inspector window
that looks something like the one here:

a Inspector I L:
[@ [Hand Renderer (Script) £,
7 || ¥ Core (Script) £,

Script |l Core | e
¥ Interface Colors
Primary E] 7

Secondary
primary Accent [T 7

Secondary Accent| 1
Special | o] #
Title Menu -[[1 Main Menu (TitleMenu @
Application Focused
Paused [+
¥ || ¥ Touch Pointer (Script)) %%
Script |l TouchPointer | e
Pointer Normal | Cursor i
Vertical Offset \-10 |
b Fingers

Say what you like, I like my colors pastel!

Rants about colors aside, you’re now ready to test the application. Without further ado, go
ahead and hit the run button. You’ll initially be greeted by three buttons in all, as shown in
the following screenshot:

If you place your hand within the view of the Leap, you will see some cursors appear
within the field of view (as seen in the top portion of the preceding screenshot). Then, if
you proceed to click on the play button (by hovering one of your fingers over it), you’ll
see the button slowly expand (as seen in the bottom portion of the preceding screenshot).

If you’re successful in clicking on the play button, you’ll see your hands come into view
in the 3D realm and the menu will disappear, as shown in the following screenshot:

Fle Bd Asieti GameOgoll Composend Windos Hilp
F=1 whe ENd PP — PR

[caret |

If you remove your hands from view, the menu will immediately reappear, giving you the
ability to repeat this process over and over again—or just keep the game paused.

With this, you’re done! You now have a working 3D renderer for hands, in addition to a
simple interface for triggering buttons via the Leap. I admit, there were probably some
close calls here and there, but all’s well that ends well, right?

Summary

In this chapter, you learned the value of not only listening to directions but also listening
to them well (that is, if the resultant application worked as this author expected it to). We
started off by setting up the scene to support Unity scripts, followed by a quick summary
of how Unity scripts work.

You then proceeded to write a series of files to render hands and fingers from the Leap
Motion device on to a screen in the 3D format. After learning how to configure the scene
to support these hands, you tested it out and proceeded to the next step: rendering buttons
and detecting fingers on them. After writing a slew of utility classes, you learned how to
map Leap input and convert it to a series of two-dimensional cursors. You then wrote a
few more menu classes. Finally, you put it all together into a working user interface with a
relatively solid flow.

In the next chapter, we’ll combine all the work you’ve done so far with a flying entity that
can be controlled by simply (perhaps even gracefully) moving your hand.

Chapter 7. Creating a 3D Application —
Controlling a Flying Entity

In this chapter, we will take everything we covered in Chapter 5, Creating a 3D
Application — a Crash Course in Unity 3D, and Chapter 6, Creating a 3D Application —
Integrating the Leap Motion Device with a 3D Toolkit, to create a playable 3D application
where you will control a virtual flying entity (similar to a quadrotor) in an empty room.
We’ll go over the basics of creating an entity, interpreting user input, and then moving the
entity around. At the conclusion of this chapter, you should have a complete 3D
application that you can control with just your hands!

Note

This chapter is sprinkled with periodic Fun facts that offer high-level and entry-level
factoids about scripting and programming for your reading pleasure.

We will be covering the following topics in this chapter:

Creating the flying entity

Retrieving user input

Interpreting user input with the Player class
Putting everything together and testing it

So, without further ado, let’s begin!

Creating the flying entity

At long last, it’s time for us to create the player character for our Unity application; after
all, what good is a game with no avatar to play as?

As making a complete player entity is a bit time consuming in Unity, we’re going to gloss
over this process entirely and use something that Unity refers to as packages. These nifty
files allow developers to download collections of preconfigured GameObjects and their
associated assets, allowing for drop-in usage. Needless to say, this can save a lot of time in
bigger projects!

Note
Fun fact

Unity packages can be thought of as reusable pieces of code (GameObjects in this case)
that can be included by simply dropping them into the scene.

So, without further ado, fire up your web browser and navigate to the following link:
https://github.com/Mizumi/Mastering-I.eap-Motion-Unity-
Project/blob/master/PlayerArrow.unitypackage

You will be presented with a fabulous GitHub repository and a file called
PlayerArrow.unitypackage, similar to what is shown in the following screenshot:

Mizumi / Mastering-Leap-Motion-Unity-Project @ Unwaich> 1 #Star 0 YFork o

i master = Mastering-Leap-Motion-Unity-Project / PlayerArrow.unitypackage

GT

L
& Mizumi Removed rigidbody from prefab

1

h

583.954 kb Raw History

Go ahead and click on the tiny View Raw link. This will open a dialog prompting you to
download the Player Arrow package (depending on the browser). You can also right-click
on the link and click on Save link as... in the pop-up menu to begin the download.

https://github.com/Mizumi/Mastering-Leap-Motion-Unity-Project/blob/master/PlayerArrow.unitypackage

When the download completes, fire up the Unity Editor and open your project. Once
everything finishes loading, navigate to Assets | Import Package | Custom Package, as
shown in the following screenshot:

File Edit | Assets | GameObject Component Window Help
Create
Show in Explorer
Oper

Delete

Import Mew Asset...

Import Package Custom Package..,

Export Package... Character Controller

TN ReTEreICES ¥l Shvie Glass Refraction (Pro Only)
Select Dependencies Image Effects (Pro Only)
Refresh Light Cookies

Reimport Light Flares

Particles

Physic Materials

Projectors

Scripts

Skyboxes

Standard Assets (Mobile)
Terrain Assets

Tessellation Shaders (DX11)
Toon Shading

Tree Creator

Water (Basic)

Water (Pro Onhy)

Reimport All

Sync MonoDevelop Project

Select our newly downloaded PlayerArrow.unitypackage file in the prompt that appears,
as shown in the following screenshot. Once you select the package, you will see a dialog
window similar to the following one:

Verify that all the items listed under items to import are checked and then click on the
Import button.

Adding the PlayerArrow and Rigidbody
components

If all goes well, you’ll see a new file show up in the root Assets window called
PlayerArrow, as shown here:

File Edit Assets GameObject Component Window Help

Now, the reason Unity packages are so amazing is that you can embed them in the scene
with almost no issues; go ahead and drag the PlayerArrow file into the Scene window and
place the resulting green arrow wherever you deem fit! When you’re done, you should
have a nice two-dimensional arrow in your scene, as shown in the following screenshot:

—

File Edit Assets GameObject Component Window Help

Once the arrow is in the scene, go to Transform | Position and make sure its Y option (set
via the Inspector window) is set to 2. This is to give the arrow the illusion of flying.

At this point, we’re almost ready to move on to scripting. However, there’s still one last
step to perform on the arrow before we do so: adding a Rigidbody component.

Note
Fun fact

Adding a Rigidbody to a GameObject will allow the object’s motion to be controlled by
Unity’s physics engine. Even if you don’t script anything, adding a Rigidbody to a
GameObject will cause it to naturally fall with gravity, react to physical collisions with
other objects, and so on. A much better write-up on what Rigidbodies are and what they

do can be found at http://docs.unity3d.com/ScriptReference/Rigidbody.html.
In other words, Rigidbodies make GameODbjects move and react to the laws of physics.
Fortunately, adding a Rigidbody is quite easy: simply click on PlayerArrow in your

Hierarchy window, click on the Add Component button within the Inspector window,
and navigate to Physics | Rigidbody, as shown in the following screenshot:

http://docs.unity3d.com/ScriptReference/Rigidbody.html

.’Q | ™

= Physics

o Character Contraller

I Box Collider

8 ns Sphere Collider

s [v Iy Capsule Collider
Tail:zi Mesh Collider

PrefabiQl Wheel Collider

b |==Terrain Collider

B | |upInteractive Cloth

b |\ [y Skinned Cloth

: W Cloth Renderer @ %
k) “®Hinge Joint . \Edit... |
“¢*Fixed Jaint :

Add Component

Once the Rigidbody component is added to the PlayerArrow GameObject, expand it
within the Inspector window of PlayerArrow and disable the Use Gravity checkbox, as
shown in the following screenshot:

& Inspector l . .)
Scale ¥%[0.25 |¥[0.25 [Zlo.25 | -
... Plane (Mesh Filter) i, !
b | [MMesh Renderer *
¥ A Rigidbody #*,
Mass 1 |
Drag o
Angular Drag |0.05
Use Gravity L]
Is Kinematic -
Interpolate | Mone il
Collision Detectior Discrete % |

b Constraints

{) PlayerRadarirrow £,
Shader | Transparent/Cutout/Speculs || Edit.. |

[Add Component]

Unchecking the Use Gravity option will prevent the arrow from falling to the ground
when the game starts; after all, we don’t want something that flies to plummet ingloriously
to the ground.

With this, you’re done making the player entity. It’s simple, granted, but anything more
complex and we’d be spending much more than 50 pages on just 3D modeling and that’s

not fun at all! Now to write some code...

Retrieving user input with the
HandController class

At long last, only two files stand before us and a completed application. Go ahead and
navigate to the scripts folder in Unity’s file browser and create two new C# scripts:

e HandController.cs
® Player.cs

Once these are made, your Scripts folder should look almost identical to the one in the
following screenshot:

Assets « Scripts

b 11 b 11 b 11 b 11 b 11 b 1 b 11 b 11 g 11 b 11

BasaSingle Calerscha. Care HamdContre. HandRende. LeapListen.. Player TitlaManu Tauchabls TowchPaint

Now, go ahead and double-click on the HandController.cs file; this should
automagically open MonoDevelop. Let’s write some code!

As the header of this section suggests, the first class we’ll be writing is HandController.
This class will take input from the Leap Motion Controller and convert it into an x value
and a y value, which will in turn be used to control the movement of our arrow. Kindly
copy the following code into your HandController.cs file now:

using UnityEngine;
using System.Collections;

class HandController : BaseSingleton<HandController>
{

//Leap Listener reference.

public LeapListener listener;

//Left joystick X/Y. Corresponds to pitch and roll of the hand.
public int x = 0;

public int y = 0;

//Member Function: onAwake

public override void onAwake() { listener = new LeapListener(); }

//Member Function: Update
public void Update()
{
//Try to read data from the Leap Motion device.
try
{
//Refresh the Leap data.
listener.refresh();

//Reset all the variables.
X =y =0,

//If there are hands in the field of view and the Leap device is
connected, use the Leap's input.
if (LeapListener.connected && listener.hands > 0 && listener.fingers

> 0)
{
//Right joystick X-Axis. Sensitivity is doubled to increase
responsiveness.
X = (int) (listener.handRoll * -2);
//Right joystick Y-Axis. Sensitivity is doubled to increase
responsiveness.
y = (int) (listener.handPitch * -2);
}
}

//1If reading data fails, make sure that X and Y are set to 0.
catch(System.Exception e){x =y = 0;}
}
b
This is probably one of the simpler classes we’ve written thus far; it contains a very
simple onAwake function that initializes the Leap Motion listener as well as an Update
function.

The update function is fairly simple; perform the following steps in this order:

1. Refresh the Leap Listener data.

2. Reset all the variables.

3. Verify that there are both hands and fingers in the field of view—we wouldn’t want
to start reacting to a pencil now, would we?

4. Assign the roll and pitch values of the first hand in the field of view to the x and y
variables, respectively. We multiply and invert the raw values from the Leap during
this step to make the controller a bit more sensitive (as well as convert it to a roughly
100 to 100 scale) so that the user doesn’t have to overexaggerate their hand motions
to make our flying entity move.

That’s all there is to it. Let’s go ahead and move on over to the next class.

Interpreting user input with the Player
class

The Player class is responsible for controlling our flying entity, although I’'m sure the
name gave its purpose away. The Player class will take input from the HandController
class and convert it into movement control for whichever GameObject it is connected to.
Go ahead and open up your Player.cs file now and copy the following code into it:

using UnityEngine;
using System.Collections;

public class Player : MonoBehaviour

{

//Reference to the hand controller.
HandController controller;

//Member Function: Start
void Start()

{
}

//Member Function: Update
void Update ()

{

controller = HandController.getInstance();

//0nly move if the game 1is unpaused.
if (!'Core.getInstance().paused)

{

//Transform position forward.
rigidbody.velocity = transform.forward * (controller.y / -2);

//Rotate.
transform.Rotate (0, controller.x * 1.25f * Time.deltaTime, O,
Space.World);

}

//1If the game is paused, cancel all force vectors.
else rigidbody.velocity = new Vector3(0, 0, 0);

b
}

This is the simplest class by far. I’ll skip straight to breaking down how the update class
works, as it uses methods that we have yet to utilize in the prior classes.

Update starts by checking whether the game is paused. If the game isn’t paused, Update
will apply force to the Rigidbody in the forward direction, equivalent to the y axis input
from the HandController class using the following snippet of code:

rigidbody.velocity = transform.forward * (controller.y / -2);

The variable, transform. forward, contains a three-axis vector that points in the forward
direction of the GameObject, guaranteeing that our velocity is applied in the correct

direction; we wouldn’t want our arrow flying straight into the ground, would we now?

Update will then proceed to rotate the GameObject about its y axis by changing the
rotational value of the GameObject itself. If we were to apply sideways velocity to the
Rigidbody instead of manually rotating the GameObject, we’d either have to do some
extra math or risk overwriting the velocity we just applied to the Rigidbody in the
previous line—and neither of these things are any fun.

Note
Fun fact

It’s important to note here that the y axis in Unity points up, whereas the y axis in Leap
Motion’s world points forward. That’s why we’re applying an x axis value to the y axis, z
axis values to the x axis, and so on.

Always keep track of the difference in axes across platforms, or you’ll get confused really
quickly!!

In the event that the game is paused, Update will proceed to cancel out any forces
currently acting on the Rigidbody of the GameObject, Player.cs, which is attached to by
setting them to 0. This prevents the player from moving around when the menu is open.

With this, the coding is all done. Let’s move on to finishing up this application.

Putting everything toget