

Mastering	Leap	Motion

Table	of	Contents

Mastering	Leap	Motion

Credits

Foreword

About	the	Author

Acknowledgments

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Errata

Piracy

Questions

1.	Introduction	to	the	World	of	Leap	Motion

Setting	up	the	Leap	Motion	device

Installing	the	Leap	Motion	Developers’	SDK

Installing	the	Java	JDK

Setting	up	your	IDE

Structure	of	the	Leap	Motion	Application	Programming	Interface	(API)

The	Vector	class

The	Finger	class

The	Hand	class

The	Frame	class

The	Controller	class

The	Listener	class

Creating	a	simple	framework	program	within	the	Eclipse	IDE

Setting	up	the	project

Let’s	write	some	code!

Trying	it	out

Looking	forward	–	the	Skeletal	Tracking	API

Different	fingers?	Not	a	problem

Handedness	is	no	longer	an	issue

Having	confidence	in	tracking	data

Pinching	and	grabbing	are	now	much	easier

A	new	API	class	–	Bones

That’s	it!

Summary

2.	What	the	Leap	Sees	–	Dealing	with	Fingers,	Hands,	Tools,	and	Gestures

Handling	hands	and	fingers

The	Leap’s	field	of	view

The	InteractionBox	class

How	the	interaction	box	works

Why	would	you	ever	want	to	use	something	like	the	interaction	box?

Detecting	gestures	and	tools

Detecting	and	using	tools

Gestures

Detecting	gestures

Some	(albeit	minor)	limitations	to	keep	in	mind

Upside-down	hands	can	be	a	problem!

Needing	too	many	hands	is	a	bad	thing

Differentiating	fingers	can	be	fun!

Lack	of	support	for	custom	gestures

Summary

3.	What	the	User	Sees	–	User	Experience,	Ergonomics,	and	Fatigue

When	to	use	the	Leap	(and	more	importantly,	when	not	to)

The	Leap	Motion	user	experience	guidelines

Ergonomics	and	user	fatigue

Ergonomics

User	fatigue

A	case	study	–	the	Artemis	Quadrotor	Simulator

Play	testing	and	why	you	should	do	it

Providing	as	much	visual	feedback	as	possible

That’s	it	–	for	now!

Summary

4.	Creating	a	2D	Painting	Application

Laying	out	the	framework	for	Leapaint

LeapButton.java

LeapaintListener.java

Leapaint.java

Creating	the	graphical	frontend

Making	a	responsive	button	–	the	LeapButton	class

Getting	our	bounds

Visually	responding	to	the	user

Making	a	graphical	user	interface

Constructing	a	constructor

Saving	images

Interpreting	Leap	data	to	render	on	the	graphical	frontend

Testing	it	out

Improving	the	application

Summary

5.	Creating	a	3D	Application	–	a	Crash	Course	in	Unity	3D

A	brief	introduction	to	Unity

Installing	and	setting	up	Unity	3D

Common	jargon	found	in	Unity

Scenes

GameObjects

Scripts

Creating	a	project

Setting	the	scene

Summary

6.	Creating	a	3D	Application	–	Integrating	the	Leap	Motion	Device	with	a	3D	Toolkit

Setting	up	the	scene	to	receive	Leap	Motion	input

A	quick	summary	–	the	fundamentals	of	Unity	scripts

Attaching	a	script	to	a	GameObject

Laying	out	a	framework	of	scripts

Rendering	hands

LeapListener.cs

HandRenderer.cs

Preparing	the	scene	for	hand	rendering

Testing	out	the	Hand	Renderer

Rendering	buttons	and	detecting	button	presses

BaseSingleton	–	a	custom	singleton	pattern

Colorscheme	–	a	utility	class	to	keep	track	of	colors

Core	–	the	main	class,	if	Unity	had	main	classes

TouchPointer	–	let’s	draw	some	cursors	on	the	screen

TouchableButton	–	surely,	the	name	is	self-explanatory

TitleMenu	–	a	simple	main	menu

Putting	it	all	together

Summary

7.	Creating	a	3D	Application	–	Controlling	a	Flying	Entity

Creating	the	flying	entity

Adding	the	PlayerArrow	and	Rigidbody	components

Retrieving	user	input	with	the	HandController	class

Interpreting	user	input	with	the	Player	class

Putting	everything	together	and	testing	it

Improving	the	application

Summary

8.	Troubleshooting,	Debugging,	and	Optimization

Making	sure	your	Leap	is	connected

The	Diagnostic	Visualizer

Keeping	the	Leap	Motion	SDK	updated

Cutting	back	on	Leap	Motion	API	calls

Handling	the	NoSuchMethod	and	NoClassDefFound	errors	in	Java

Custom	calibration	of	the	Leap	Motion	Controller

Summary

9.	Going	beyond	the	Leap	Motion	Controller

What	you’ve	learned	so	far

The	Leap	Motion	Controller	standing	next	to	other	emerging	technologies

Microsoft’s	Kinect

Oculus	VR’s	Oculus	Rift

Reliability	and	safety	concerns	with	the	Leap	in	industrial	settings

Going	beyond	–	ideas	to	control	hardware	and	robots	with	the	Leap	Motion	Controller

Arduino

A	few	things	you’ll	need

Setting	up	the	environment

Setting	up	the	project

Writing	the	Java	side	of	things

Writing	the	Arduino	side	of	things

Deploying	and	testing	the	application

Ideas	for	Leap-driven	applications	–	simulators	and	robots

FIRST	Robotics	Competition	Robots

The	FIRST	Robotics	Competition

Controlling	an	FRC	robot	with	the	Leap	Motion	Controller

Making	a	robot	of	your	own!

Summary

Index

Mastering	Leap	Motion

Mastering	Leap	Motion
Copyright	©	2014	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	November	2014

Production	reference:	1151114

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78355-139-2

www.packtpub.com

http://www.packtpub.com

Credits
Author

Brandon	Sanders

Reviewers

Rudi	Chen

Lamtharn	Hantrakul

Justin	Kuzma

Maria	Montenegro

Commissioning	Editor

Usha	Iyer

Acquisition	Editor

Richard	Harvey

Content	Development	Editor

Shaon	Basu

Melita	Lobo

Technical	Editor

Edwin	Moses

Copy	Editors

Dipti	Kapadia

Deepa	Nambiar

Project	Coordinator

Sanchita	Mandal

Proofreaders

Paul	Hindle

Sandra	Hopper

Jonathan	Todd

Indexers

Monica	Ajmera	Mehta

Rekha	Nair

Graphics

Abhinash	Sahu

Production	Coordinator

Nilesh	R.	Mohite

Cover	Work

Nilesh	R.	Mohite

Foreword
This	book	is	part	of	Packt’s	Mastering	series.	The	author	assumes	that	you	have	some
programming	background.

A	decade	ago,	Mastering	Leap	Motion	would	not	likely	have	been	published.	It	is	part	of	a
wave	of	crowdsourced,	informal,	and	targeted	publications.	eBooks	are	changing	things.
Innovation	and	creative	projects	are	sprouting	everywhere	in	part	because	digital
technology	has	lowered	the	barriers	to	the	dissemination	of	knowledge	and	information.
Grade-school	kids	are	creating	smartphone	apps.	3D	printing	has	arrived	in	schools	and
home	workshops.

Gone	is	the	time	when	one	would	be	considered	a	professional	and/or	contributor	because
they	knew	certain	things.	Now,	you	must	do	something	with	knowledge	to	be	in	the
winner’s	circle.	Real	celebrity	will	go	to	those	who	understand	both	the	technology	and
the	creative	process.	With	this	book,	you	can	make	technology	dance	in	the	celebration	of
creativity.

If	you	listen	to	the	author’s	backstory,	you	will	be	inspired	to	use	your	newfound
understanding	in	creative	ways.	Brandon	Sanders	has	spent	several	years	working	with
others	in	the	FIRST	(For	Inspiration	and	Recognition	of	Science	and	Technology)
programs.	FIRST	gives	young	people	complex	and	difficult	problems	related	to	robotics	to
deal	with.	Good	FIRST	teams	create	delightful	robots	that	bristle	with	innovation.
Brandon	discusses	some	of	those	machines	at	the	end	of	Chapter	9,	Going	beyond	the
Leap	Motion	Controller.

I	will	encourage	you	to	follow	the	author	through	a	conversation	about	how	to	use	Leap
Motion	Controllers.	Then,	have	your	own	conversation	with	an	innovative	use	of	Leap
Motion.	Do	something	delightful!	Do	something	that	will	make	others	smile.

Dr.	Woodie	Flowers

Pappalardo	Professor	Emeritus	MIT

Distinguished	Advisor,	FIRST

About	the	Author
Brandon	Sanders	is	an	18-year-old	roboticist	who	spends	much	of	his	time	designing,
building,	and	programming	new	and	innovative	systems,	including	simulators,
autonomous	coffee	makers,	and	robots	for	competition.	At	present,	he	attends	Gilbert	Finn
Polytechnic	(which	is	a	homeschool)	as	he	prepares	for	college.	He	is	the	founder	and
owner	of	Mechakana	Systems,	a	website	and	company	devoted	to	robotic	systems	and
solutions.

As	a	home-educated	student,	he’s	had	the	unique	opportunity	to	focus	his	efforts	on	the
fields	that	interest	him.	This	has	made	him	successful	as	the	team	captain	for	the	FIRST
Robotics	teams:	#4982	Café	Bot	and	#1444	the	Lightning	Lancers.	He	has	also	served	as	a
scientific	research	assistant	to	the	Chairman	of	the	Washington	University	Physics
Department,	where	he	wrote	software	to	aid	in	the	calculation	of	equations	of	state	for
dense	matter	in	neutron	stars.

He	has	received	numerous	awards	and	accolades	as	a	result	of	his	involvement	in	various
programs.	Two	of	his	most	notable	achievements	are	FIRST	Robotics	Competition	Dean’s
List	Award	and	FIRST	Tech	Challenge	World	Championship	Inspire	Award.

Acknowledgments
First	and	foremost,	I	would	like	to	thank	Dr.	Woodie	Flowers	for	not	only	being	an
inspiration	to	me	and	my	peers	but	also	for	graciously	taking	out	the	time	to	write	the
foreword	for	this	title.

In	addition,	I	would	also	like	to	thank	all	my	friends	and	family	who	helped	double-check
my	work	during	the	lengthy	process	of	writing	this	title,	including	Dr.	Anne	Jensen-
Urstad,	Ethan	Michaelicek,	Jonas	Kersulis,	and	my	parents,	Kim	and	Robert	Sanders.

Finally,	I	wish	to	thank	my	editors	and	reviewers,	Richard	Harvey,	Shaon	Basu,	Melita
Lobo,	Edwin	Moses,	Rudi	Chen,	Justin	Kuzma,	Lamtharn	Hantrakul,	and	Maria
Montenegro	for	their	continued	commitment	throughout	the	duration	of	writing	this	title.

About	the	Reviewers
Rudi	Chen	is	a	software	developer	from	the	University	of	Waterloo	and	has	worked	for
companies	such	as	Side	Effects	Software	and	Dropbox.

Lamtharn	Hantrakul	is	an	international	student	from	Thailand	who	is	double	majoring
in	Applied	Physics	and	Music	at	Yale	University.	His	research	interests	include	instrument
acoustics,	signal	processing,	and	musical	HCI.	He	has	published	and	presented	his	work,
which	combines	Leap	Motion	and	musical	HCI,	at	Institut	de	Recherche	et	Coordination
Acoustique/Musique	(IRCAM)	and	at	the	International	Computer	Music	Conference
(ICMC).	He	enjoys	composing	music,	playing	jazz	piano,	building	music	controllers,	and
learning	about	traditional	Thai	instruments	such	as	Saw-U	and	Saloh.	He	speaks	Thai,
English,	French,	and	Chinese,	and	outside	of	Music	and	Physics,	likes	to	read	and	write
modern	nonfiction	essays.	His	projects,	compositions,	writing,	and	research	can	be	found
on	his	website	at	http://lh-hantrakul.com/.

Justin	Kuzma	is	a	freelance	engineer	and	software	developer	based	in	Burlington,	VT.	He
has	experience	in	creating	mechanical	designs	and	digital	art	installations	in	addition	to
iOS	app	development.	Using	Leap	Motion,	he	has	created	intuitive	interfaces	that	spark
the	imagination	as	they	blur	the	lines	between	the	digital	and	the	physical	worlds.

Maria	Montenegro	is	a	computer	scientist	and	an	electronic	media	artist.	Currently,	she	is
pursuing	a	Master’s	degree	in	Entertainment	Technology	from	the	Entertainment
Technology	Center	(ETC)	at	Carnegie	Mellon	University.	She	is	passionate	about
developing	new	ways	of	entertainment	with	the	use	of	new	technology	to	promote	and
enhance	learning.	She	believes	that	interactive	storytelling	and	interactive	installations	can
have	a	huge	impact	on	people	worldwide,	showing	them	different	perspectives	of	things.

As	a	computer	scientist,	she	focuses	more	on	computer	graphics,	artificial	intelligence,
and	computer	vision	to	exploit	the	most	of	the	technology	in	use.	She	likes	pushing	the
limits	of	a	new	technology	to	bring	completely	new	experiences	to	users	by	knowing	and
understanding	its	limitations.

For	more	information,	visit	http://www.fusion-sky.com/.

http://lh-hantrakul.com/
http://www.fusion-sky.com/

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
The	Leap	Motion	Controller	is	a	revolutionary	system	that	blends	the	boundary	between
man	and	machine,	or	at	least,	between	our	hands	and	monitors.	What	if	you	wanted	to
literally	grab	a	3D	model	with	your	hands	and	manipulate	it	however	you	want?	This	is
where	the	Leap	Motion	device	and	its	prospective	developers	(you!)	come	in.	After	using
the	powerful	Leap	API	and	with	some	innovation	and	a	lot	of	patience,	you	will	be	aware
how	this	new	device	has	the	potential	to	revolutionize	the	way	we	work	with	our
computers.

As	you	are	no	doubt	already	familiar	with	the	Leap	device	itself,	we’ll	keep	the
introduction	brief.	As	you’ve	probably	gathered	from	the	title,	this	book	is	devoted	to
mastering	the	process	of	designing,	writing,	and	testing	programs	for	the	Leap	Motion
Controller.	It	will	teach	you	how	to	develop	with	the	Leap	Motion	device	effectively	while
creating	a	polished	user	experience.	Throughout	the	book,	we’ll	cover	a	broad	range	of
topics	ranging	from	the	API	basics	to	user	experience	all	the	way	to	robotics	integration.
Yes,	robotics	integration.	As	my	primary	field	of	study	(and	subsequently,	one	of	my
forms	of	recreation)	is	robotics,	I’ve	integrated	a	bunch	of	different	robots	with	the	Leap
device,	ranging	from	simplistic	quadrotor	simulators	all	the	way	to	competition	robots	that
cost	thousands	of	dollars.	I’ll	be	sharing	a	few	of	these	different	projects	with	you	toward
the	end	of	the	book!

Once	you	start	getting	a	hang	of	things,	we’ll	create	both	2D	and	3D	applications	to	put	all
of	this	knowledge	to	work.	Of	course,	we’ll	also	cover	the	troubleshooting	and	debugging
of	programs.	After	all,	nothing	is	worse	than	an	app	that’s	broken	because	of	no	obvious
reason,	right?

This	book	emphasizes	user	experience,	which	is	the	most	important	thing	when	using	the
Leap	Motion	Controller.	You	might	not	think	about	it	at	first,	but	something	as	simple	as
user	fatigue	is	a	big	problem	when	programming	for	the	Leap.	You	will	need	to	make	sure
that	your	user	can	use	the	application,	but	at	the	same	time,	you	need	to	make	sure	that
their	hands	don’t	get	tired	from	a	series	of	repetitive	gestures	or	motions.	We	will	cover
problems	such	as	this	one	as	we	progress	through	this	book.

In	keeping	with	the	natural	user	interface	that	the	Controller	offers,	a	good	Leap
application	should	be	simple,	intuitive,	and	easy	to	use.	It’s	okay	if	the	underlying
software	is	complex,	but	the	user	interface	and	its	controls	should	be	obvious.	For
example,	instead	of	using	a	fancy	U-shaped	gesture	to	perform	a	simple	task	like	an	undo
operation,	why	not	just	have	the	user	make	a	quick	swipe	to	the	left	with	one	of	their
hands?	A	good	developer	should	always	be	on	the	lookout	for	opportunities	to	simplify
their	interface	without	making	it	unusable!

What	this	book	covers
Chapter	1,	Introduction	to	the	World	of	Leap	Motion,	shows	you	how	to	set	up	and	test	the
Leap	Motion	device	and	a	programming	environment	to	use	with	it.	Once	everything	is	set
up,	we’ll	review	the	API	briefly	and	finish	the	chapter	off	with	a	simple	example	program
to	make	sure	everything’s	working.

Chapter	2,	What	the	Leap	Sees	–	Dealing	with	Fingers,	Hands,	Tools,	and	Gestures,
covers	the	software	and	hardware	side	of	any	Leap	Motion	application.	This	includes
basic	tracking	data	such	as	hands	and	fingers	as	well	as	more	advanced	features	such	as
tools	and	gestures.	We’ll	finish	off	with	an	overview	of	some	of	the	limitations	that	you
might	run	into	when	working	with	the	API	and	the	device.

Chapter	3,	What	the	User	Sees	–	User	Experience,	Ergonomics,	and	Fatigue,	covers	the
user	side	of	any	Leap	Motion	application.	This	includes	when	and	when	not	to	make	use
of	the	Leap	in	an	application,	the	importance	of	ergonomics,	and	the	prevention	of	user
fatigue.

Chapter	4,	Creating	a	2D	Painting	Application,	walks	you	through	the	creation	of	a	two-
dimensional	(or	2D)	painting	application	for	the	Leap.	We’ll	start	out	simple	with	the
basic	framework	and	graphical	frontend	and	then	move	straight	into	rendering	user	input
onto	the	screen.

Chapter	5,	Creating	a	3D	Application	–	a	Crash	Course	in	Unity	3D,	introduces	you	to	a
three-dimensional	(or	3D)	toolkit	(Unity	3D)	to	prepare	you	for	the	next	few	chapters.
We’ll	cover	the	basic	installation	and	setup	of	the	environment,	which	is	followed	by	the
creation	of	a	blank	template	project	for	use	in	the	next	few	chapters.

Chapter	6,	Creating	a	3D	Application	–	Integrating	the	Leap	Motion	Device	with	a	3D
Toolkit,	walks	you	through	the	basic	steps	of	integrating	the	Leap	Motion	device	with	an
external	3D	toolkit.	You’ll	learn	how	to	render	hands,	fingers,	and	buttons.	We’ll	finish	off
by	covering	the	detection	of	user	input	via	the	Leap.	We	will	be	using	C#	in	this	chapter
instead	of	Java.

Chapter	7,	Creating	a	3D	Application	–	Controlling	a	Flying	Entity,	guides	you	through
the	completion	of	our	3D	application.	We’ll	create	a	3D	entity,	retrieve	user	input	from	the
Leap,	and	then	use	that	data	to	control	the	entity.

Chapter	8,	Troubleshooting,	Debugging,	and	Optimization,	is	devoted	to	the	inevitable
things	that	will	arise	during	application	development:	bugs	and	problems	and
optimization.	This	chapter	will	go	over	a	few	different	things	you	can	use	to	fix	common
problems	with	your	device	or	application,	in	addition	to	a	few	general	best	practices.

Chapter	9,	Going	beyond	the	Leap	Motion	Controller,	covers	a	variety	of	subjects	that	go
beyond	the	Leap	Motion	device	itself.	I’ll	talk	about	what	you’ve	learned	so	far,	where	the
Leap	Motion	stands	next	to	other	emerging	technologies,	some	concerns	regarding	the
reliability	and	safety	of	the	device	in	the	industry,	and	even	some	ideas	to	control	robots!

What	you	need	for	this	book
Before	you	begin	with	this	book,	there	are	a	few	things	you’ll	need.	These	include:

A	Leap	Motion	Controller
A	computer
An	Internet	connection	(to	download	various	things	such	as	the	Leap	SDK)

In	addition	to	these,	you	should	have	an	understanding	of	one	or	more	object-oriented
programming	(OOP)	languages.	Prior	experience	with	the	Unity	3D	toolkit	is	also	a	good
thing	to	have	for	the	later	chapters,	but	it’s	not	required	as	we	will	review	it	in	Chapter	5,
Creating	a	3D	Application	–	a	Crash	Course	in	Unity	3D.

In	this	book,	we’ll	use	the	Java	programming	language	most	of	the	time.	However,	we	will
switch	over	to	C#	briefly	for	Chapter	5,	Creating	a	3D	Application	–	a	Crash	Course	in
Unity	3D;	Chapter	6,	Creating	a	3D	Application	–	Integrating	the	Leap	Motion	Device
with	a	3D	Toolkit;	and	Chapter	7,	Creating	a	3D	Application	–	Controlling	a	Flying
Entity,	when	we	start	working	with	the	Unity	3D	toolkit.

Who	this	book	is	for
This	book	is	for	developers	who	have	some	experience	with	the	Leap	Motion	device	and
want	to	turn	that	experience	into	mastery	of	the	device.

As	this	book	is	intended	for	more	experienced	developers,	I	highly	suggest	that	you	have
experience	working	with	at	least	one	object-oriented	programming	(OOP)	language	before
you	begin	reading;	if	you	don’t,	it	will	make	the	tutorials	in	this	book	rather	frustrating.
On	the	flip	side,	even	if	you	don’t	have	a	whole	lot	of	experience	with	the	Leap,	this	book
will	still	provide	you	with	a	plethora	of	information	to	utilize	within	your	projects	as	you
gain	more	experience!

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles,	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“The
addlistener	method,	on	the	other	hand,	is	used	to	register	a	custom	Listener	class	with
the	device.”

A	block	of	code	is	set	as	follows:

Finger	frontMost	=	frame.fingers().frontmost();

Vector	position	=	new	Vector();

position.setX(frontMost.tipPosition().getX());

position.setY(frontMost.tipPosition().getY());

position.setZ(frontMost.tipPosition().getZ());

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

public	class	MyListener	extends	Listener

Any	command-line	input	or	output	is	written	as	follows:

>	java	–jar	C:\Users\YourPath\SimpleLeap.jar

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	“Following	this,	navigate
to	the	Downloads	tab	at	the	top	of	the	Leap	Motion	website	and	click	on	it.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	through	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Introduction	to	the	World	of
Leap	Motion
In	this	chapter,	we	will	walk	through	the	setup	and	installation	of	the	various	tools	that
you	need	to	begin	working	with	the	Leap	Motion	Controller.	You	will	learn	how	to	install
the	Leap	Motion	Controller,	the	Developers’	SDK	and,	optionally,	an	Integrated
Development	Environment	called	Eclipse.	Afterwards,	we’ll	go	through	the	Leap	Motion
API	in	detail,	including	the	API	structure,	basic	terminology,	and	anatomy	of	a	program.
At	the	end	of	this	chapter,	we’ll	create	a	simple	program	that	you	can	use	as	a	stepping
stone	to	the	more	complex	Leap-driven	applications	that	appear	later	in	this	book.

Note
Keep	in	mind	that	a	majority	of	the	code-related	jargon	used	throughout	this	book	is
relative	to	the	Java	programming	language.

Should	you	come	across	any	issues	during	this	chapter,	refer	to	Chapter	8,
Troubleshooting,	Debugging,	and	Optimization,	for	troubleshooting	tips	and	tricks.

This	chapter	is	sprinkled	with	periodic	Fun	facts	that	offer	high-level	and	entry-level
factoids	about	scripting	and	programming	for	your	reading	pleasure.

Setting	up	the	Leap	Motion	device
If	you’ve	already	set	up	your	Leap	Motion	device,	you	can	safely	skip	this	section.
Otherwise,	read	on!

Note
This	section	(and	the	rest	of	the	book)	will	assume	that	you	are	on	the	Windows	operating
system.

Compared	to	the	early	days	of	Leap	Motion	development	(when	regedit.exe	was	far	too
common),	setting	up	the	device	is	quite	easy	now.	All	you	need	to	do	is	follow	these
simple	steps	to	get	your	device	up	and	running:

1.	 Plug	in	your	device.	It	may	or	may	not	begin	installing	the	firmware;	no	worries	if	it
doesn’t.

2.	 Following	this,	head	on	over	to	https://www.leapmotion.com/setup	and	download	the
Leap	Motion	installer	for	your	platform	(Windows	in	our	case).

3.	 Once	the	installer	has	been	downloaded,	go	ahead	and	run	it;	this	will	get	your	device
fully	set	up.

Once	the	installer	has	completed,	go	to	your	Start	menu	in	Windows,	type	in	“Leap
Motion	Visualizer”	in	the	search	bar	(you	can	show	the	search	bar	in	Windows	8/8.1	by
pressing	Windows	Key	+	Q)	and	hit	Enter:

https://www.leapmotion.com/setup

You’re	all	set!	You	can	try	out	your	device	by	waving	your	hands	in	front	of	the	Leap
Motion	device;	wireframe	representations	of	your	fingers	and	hands	will	be	rendered	on
the	screen	by	the	Leap	Motion	Visualizer,	similar	to	the	preceding	screenshot.

If	things	did	not	go	as	anticipated,	skip	to	Chapter	8,	Troubleshooting,	Debugging,	and
Optimization,	to	learn	about	troubleshooting	and	debugging	the	Leap	Motion	Controller	to
see	what	went	wrong.

Installing	the	Leap	Motion	Developers’
SDK
Now	that	we’ve	got	your	device	installed	and	ready	to	go,	we	need	to	download	the	Leap
Motion	Developers’	Software	Development	Kit,	or	SDK.

The	SDK	contains	a	series	of	language-specific	libraries,	DLLs,	and	examples	for	any
developer	to	freely	use.	Needless	to	say,	it’s	very	important	that	you	have	it	installed	if
you’re	going	to	develop	anything	for	Leap!	So,	without	further	ado,	let’s	get	the	SDK
installed	with	the	following	steps:

1.	 Head	to	https://developer.leapmotion.com/	and	sign	in.	If	you	do	not	have	a
developer’s	account,	create	one	when	prompted.

2.	 Following	this,	navigate	to	the	Downloads	tab	at	the	top	of	the	Leap	Motion	website
and	click	on	it.

3.	 You	should	then	see	a	page	that	looks	something	like	the	one	shown	in	this	step.	Leap
Motion	will	attempt	to	autodetect	your	platform,	presenting	a	screen	that	looks
similar	to	the	following	one.	If	the	information	is	correct,	accept	the	terms	and
conditions	(without	reading	them,	naturally)	and	begin	the	download!

Once	the	download	completes,	extract	the	contents	of	the	downloaded	.zip	file	(assuming
you’re	using	Windows)	to	a	safe	place.	We’ll	be	referring	back	to	this	folder	quite	a	bit
later	on.	With	that,	you’re	done!

https://developer.leapmotion.com/

Installing	the	Java	JDK
Before	we	install	Eclipse,	the	IDE	you’ll	be	using	for	the	remainder	of	this	book,	we	need
to	install	an	appropriate	Java	Development	Kit,	or	JDK.	Oracle	(the	company	that
manages	Java)	is	constantly	changing	its	site,	so	here	is	a	generalized	step-by-step	process
to	get	a	JDK	installed:

1.	 Go	to	http://www.oracle.com/technetwork/java/javase/downloads/index.html.
2.	 Look	for	a	box	that	says	JDK	Download	in	big	letters.	Click	on	the	Download

button.
3.	 You	will	be	taken	to	a	page	with	a	list	of	JDKs	and	download	options.	Scroll	down

until	you	see	your	platform	listed;	in	the	case	of	Windows,	the	platform	will	be
named	either	Windows	x86	(32-bit	systems)	or	Windows	x64	(64-bit	systems).

4.	 Accept	the	license	agreement,	download	the	file,	and	run	it	to	install	the	JDK.

You’re	done!	Now	we	can	move	onto	installing	Eclipse.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Setting	up	your	IDE
With	the	Leap	Motion	software	and	SDK	installed	and	out	of	our	way,	we	can	move	onto
getting	your	Integrated	Development	Environment,	or	IDE,	installed	and	set	up!

When	I’m	developing	applications	for	the	Leap	Motion	device	(usually	to	control	robots),
I	prefer	to	use	the	Eclipse	Integrated	Development	Environment.

The	Eclipse	IDE	was	originally	created	for	Java,	but	it	has	since	expanded	into	many	other
languages,	including	C/C++	and	Python.	Throughout	this	book,	all	of	my	examples	and
instructions	will	assume	you’re	using	the	Eclipse	IDE.	While	you’re	welcome	to	use	any
other	IDE,	or	even	a	text	editor,	I	highly	suggest	that	you	install	Eclipse,	as	it	will	make
this	book	easier	to	use!

So	first	off,	you	have	to	find	the	IDE.	Head	to	https://www.eclipse.org/downloads/	and
download	Eclipse	Standard	Edition,	as	shown	in	the	following	screenshot:

Note
Make	absolutely	sure	that	you	choose	a	version	that	matches	your	Java	JDK	(32-bit
Eclipse	for	a	32-bit	JDK,	64-bit	Eclipse	for	a	64-bit	JDK,	and	so	on),	or	else	there	will	be
issues!

Once	the	download	has	completed	(which	can	take	a	while,	since	the	IDE	is	usually	more
than	150	megabytes	in	size),	extract	the	ZIP	file	to	wherever	you’d	like	Eclipse	to	be
located.	Since	Eclipse	doesn’t	use	an	installer,	everything	you	need	is	contained	in	the
folder	you	have	just	extracted.

At	this	point,	there’s	nothing	left	to	do	with	the	setup;	we	can	now	move	onto	the	Leap
Motion	device	itself!

https://www.eclipse.org/downloads/

Structure	of	the	Leap	Motion	Application
Programming	Interface	(API)
The	Leap	Motion	API,	while	containing	many	complex	and	advanced	features,	is
relatively	simple.	At	the	time	of	writing	this	book,	there	are	about	23	different	classes
within	the	API,	each	one	serving	a	different	task.

Many	of	the	classes	are	utilities	that	you	won’t	directly	instantiate;	FingerList,	Handlist,
ToolList,	Pointable,	and	so	forth	are	some	examples	of	these	kinds	of	classes.	On	the
other	hand	(no	pun	intended),	we	have	classes	that	contain	data	about	a	specific	hand,
finger,	or	other	object,	such	as	the	Finger,	Hand,	and	Tool	classes.	In	almost	all	cases,	the
API	classes	are	intuitively	named	and	relatively	easy	to	remember.	Now,	why	don’t	we	go
over	some	of	the	more	common	classes	and	what	they	do?

Note
An	up-to-date	API	documentation	can	always	be	found	at
https://developer.leapmotion.com/documentation.

https://developer.leapmotion.com/documentation

The	Vector	class
The	Vector	class	is	a	kind	of	utility	class.	It	contains	and	manages	a	single	set	of	x,	y,	and
z	coordinates.	It	also	has	a	slew	of	built-in	functions	to	make	more	common	operations
easier	to	perform.	You’ll	find	yourself	using	this	class	all	the	time,	whether	you	know	it	or
not.	Almost	every	Leap	API	class	makes	use	of	it!	The	following	is	a	brief	example	of
how	we	can	use	the	Vector	class	to	check	a	hand’s	yaw	(or	simply	put,	to	detect	the
rotation	of	your	hand):

Vector	position	=	new	Controller().frame().hands().get(0).direction();

System.out.println("Hand	0	Yaw:	"	+	position.yaw());

Note
Fun	fact

When	using	3D	coordinates,	we	use	three	special	words	to	refer	to	the	rotation	of	an
object.	These	words	are	Pitch,	Yaw,	and	Roll,	and	they	correspond	to	the	forward	and
backward	tilt	(pitch),	left	and	right	rotation	(yaw)	and	left	and	right	tilt	(roll)	of	an	object.

This	will	first	create	a	new	Vector	object,	fill	it	with	directional	data	for	the	first	hand	in
Leap’s	field	of	view	and	then	output	its	approximate	yaw	(in	degrees)	to	the	console
window.	This	illustrates	just	one	of	the	many	functions	you	can	perform	with	the	Vector
class.

The	Finger	class
Next	on	the	list	is	the	Finger	class.	This	class	contains	tracking	data	for	a	single	finger
that	is,	or	was,	within	Leap’s	field	of	view.	Similar	to	the	Vector	class	we	just	covered,
this	class	contains	a	multitude	of	coordinates	(which	happen	to	be	vectors	themselves).
However,	it	also	includes	a	series	of	other	things,	including	the	hand	that	it	belongs	to,	the
current	position	of	its	tip,	the	direction	its	tip	is	facing,	and	more.	Here	is	an	example	of
how	we	can	retrieve	the	position	of	a	finger’s	tip:

Finger	finger	=	new	Controller().frame.().fingers().frontmost();

System.out.println("Frontmost	Finger	data:"	+	"\nTip	Position	(X|Y|Z):	"	+	

finger.tipPosition().getX()	+	"|"	+	finger.tipPosition().getY()	+	"|"	+	

finger.tipPosition().getZ());

The	Hand	class
Next	in	line	after	the	Finger	class	is	the	Hand	class!	This	class	is	just	like	the	Finger	class
in	respect	to	what	it	contains,	with	the	addition	of	a	few	more	items	like	the	Sphere	Radius
and	Palm	Position	of	the	hand.	The	Sphere	Radius	of	the	hand	is	the	approximate	radius	of
the	biggest	sphere	that	the	hand	can	hold.	Note	that	while	it	isn’t	effective	for	gauging	the
overall	size	of	a	hand,	it	can	be	useful	to	detect	how	spread	apart	a	hand’s	fingers	are.	The
Palm	Position	of	the	hand	is	relatively	straightforward;	this	is	the	position	of	the	hands
palm	in	the	x,	y,	and	z	coordinates.	Here	is	an	example	of	how	we	can	retrieve	the	position
of	a	hand’s	palm:

Hand	hand	=	new	Controller().frame().hands(0);

System.out.println("First	Hand	data:"	+	"\nPalm	Position	(X|Y|Z):	"	+	

hand.palmPosition().getX()	+	"|"	+	hand.palmPosition().getY()	+	"|"	+	

hand.palmPosition().getZ());

The	preceding	example	is	almost	identical	to	our	previous	one	with	the	Finger	class;	it
simply	outputs	the	three	vector	coordinates	of	the	oldest	hand	in	view	to	the	console
window.

The	Frame	class
Now	for	the	Frame	class.	Before	we	delve	into	the	specifics	of	this	class	too	much,	it’s
important	to	understand	that	the	Leap	Motion	Controller	works	using	frames	of
information;	that	is,	it’s	much	like	a	video	game	or	movie.	Frames	are	processed	as	they
are	received	from	Leap,	and	as	such,	have	no	set	refresh	rate	(or	frame	rate).

Each	frame	contains	a	complete	set	of	tracking	data	for	all	of	the	hands,	fingers,	tools,
gestures,	and	other	things	that	were	within	Leap’s	field	of	view	when	the	frame	was	taken.
The	following	code	counts	the	objects	within	Leap’s	field	of	view	for	a	single	frame:

Frame	frame	=	new	Controller.frame();

System.out.println("Frame	data:"	+	"\nHand	count:	"	+	frame.hands().count()	

+	"\nFinger	count:	"	+	frame.fingers().count()	+	"\nTool	count:	"	+	

frame.tools().count()	+	"\nTimestamp:	"	+	frame.timestamp());

The	preceding	example	will	retrieve	the	most	recent	frame	from	the	Leap	device	and
output	the	number	of	fingers,	hands,	and	tools	along	with	a	timestamp	to	the	console
window.

The	Leap	Motion	API	is	kind	enough	to	cache	the	most	recent	sixty	frames,	allowing	us	to
look	at	data	from	previous	frames	for	whatever	reason.	To	retrieve	a	specific	frame,	use
the	following	syntax:

Frame	frame	=	new	Controller.frame(frameNumber);

Here,	frameNumber	is	the	number,	1-60,	of	the	frame	that	you	want	to	fetch.	The	oldest
frame	in	memory	is	number	60,	whereas	the	newest	one	is	1.	To	get	the	current	frame,	do
not	specify	any	frame	number	at	all.

The	Controller	class
The	Controller	class	at	last!	This	class	is	your	portal	to	the	world	of	Leap	motion,	so	to
speak;	you’ll	notice	that	we’ve	used	it	in	all	of	the	previous	mini-examples	up	until	this
point.	The	class	itself	is	rather	simple	on	the	outside.	The	two	methods	that	we’ll	be	using
most	often	are	frame	and	addlistener.	The	frame	method,	as	the	name	would	suggest,
returns	the	most	recent	frame	received	from	Leap.	The	addlistener	method,	on	the	other
hand,	is	used	to	register	a	custom	Listener	class	with	the	device;	this	brings	us	to	the	next
topic.

The	Listener	class
The	Listener	class,	well,	listens.	To	be	specific,	it’s	an	event-driven	class	(or	a	callback,
if	you	will)	that	is	registered	with	the	Controller	class	and	responds	to	various	things	that
are	going	on	with	Leap.	It’s	a	little	hard	to	explain	it	with	just	text,	so	let’s	look	at	a
practical	example	here,	which	is	the	MyListener.java	file:

public	class	MyListener	extends	Listener

{

		public	void	onFrame(Controller	controller)

		{

				Frame	frame	=	controller.frame();

				if	(!frame.hands().empty())

System.out.println("First	Hand	data:"	+

"\nPalm	Position	(X|Y|Z):	"	+	frame.hand(0).palmPosition().getX()	+	"|"	+	

frame.hand(0).palmPosition().getY()	+	"|"	+	

frame.hand(0).palmPosition().getZ());

		}

}

Then,	in	a	separate	file,	Main.java,	use	this:

public	class	Main

{

		public	static	void	main(String	args[])

		{

				Controller	controller	=	new	Controller();

				MyListener	listener	=	new	MyListener();

				controller.addListener(listener);

				while	(true)	{}

		}

}

This	was	a	bit	longer	than	our	previous	examples,	wasn’t	it?	Let’s	break	it	down	into
chunks.	First,	let’s	look	at	the	lines	in	the	first	class,	MyListener:

public	class	MyListener	extends	Listener

The	first	part	of	this	class	defines	our	new	class,	which	will	be	extending	the	Listener
class;	this	is	what	allows	it	to	be	compatible	with	the	Leap	API.	Following	this,	let’s	take	a
look	at	the	next	line:

public	void	onFrame(Controller	controller)

The	second	part	of	this	class	defines	an	override	for	the	Listener	class’	internal	onFrame
method	so	that	we	can	respond	whenever	a	new	frame	is	received	from	the	controller.
Thusly,	this	function	(once	this	class	is	registered,	of	course)	will	be	called	every	time	a
new	frame	is	generated	by	Leap.	The	next	few	lines	from	that	point	should	be	fairly
familiar	at	this	point;	if	they	aren’t,	head	back	and	review	the	other	classes	that	we’ve
covered	so	far!

Now,	let’s	look	at	the	lines	of	the	Main	class.	The	first	few	lines	should	be	familiar	(they
simply	initialize	the	controller),	so	I’m	only	going	to	focus	on	one	particular	line:

controller.addListener(listener);

This	line	registers	our	instance	of	the	MyListener	class	with	the	Leap	API,	allowing	it	to
receive	events	from	Leap.	In	this	case,	once	registered,	the	onFrame	method	from	our
MyListener	instance	will	be	called	every	time	a	new	frame	is	received	from	the	controller.

Then,	there’s	the	last	line:

While	(true)	{}

This	line	prevents	our	main	class	from	exiting,	allowing	our	Listener	implementation	to
continue	running	and	receiving	events	until	we’re	ready	to	quit.

Note
Fun	fact

The	Leap	Motion	Listener	system	runs	inside	its	own	thread	at	all	times;	this	means	that
any	listeners	that	you	register	will	continue	to	receive	updates,	even	if	your	application	is
single	threaded	and	receives	a	blocking	call	or	something	similar.

Creating	a	simple	framework	program
within	the	Eclipse	IDE
Based	on	everything	we’ve	done	this	far,	we	can	go	ahead	and	create	a	basic	framework
program	to	build	off.	The	end	result	will	be	an	all	but	empty	program	that	continuously
outputs	tracking	data	from	a	single	hand	within	Leap’s	field	of	view.	You	can	then	use	this
template	with	the	examples	featured	later	on	within	this	book.	In	addition,	this	section	will
help	familiarize	you	with	the	Eclipse	IDE	if	you	haven’t	used	it	before.

So,	without	further	ado,	let’s	get	started!

Setting	up	the	project
First	off,	we	need	to	create	a	new	Eclipse	Java	project.	This	can	be	achieved	by	heading
over	to	File	|	New	|	Java	Project	from	within	the	IDE;	you	will	then	be	greeted	by	a
project	creation	wizard.	Choose	a	name	for	your	project	(in	this	case,	I	called	mine
SimpleLeap)	and	then	click	on	the	Finish	button.

Once	your	project	is	created,	navigate	to	it	in	the	Package	Explorer	window.	The
following	screenshot	illustrates	what	the	package	explorer	should	look	like:

While	my	IDE	layout	will	most	likely	drastically	differ	from	yours,	the	preceding
screenshot	should	give	you	a	general	idea	of	what	the	Package	Explorer	looks	like	(the
giant	orange	arrow	is	pointing	to	it).	It	most	conveniently	displays	all	of	your	Java
packages	as	a	folder	hierarchy,	making	navigating	large	and	more	complex	projects	a
breeze.

For	now,	we	should	go	ahead	and	create	a	new	package	to	put	our	classes	in.	This	can	be
achieved	by	right-clicking	on	the	src	folder	for	your	project	in	Package	Explorer	and	then
going	to	New	|	Package	tooltip.	You	can	name	it	whatever	you	like;	standard	Java	naming
convention	dictates	that	package	names	consist	of	your	web	address	in	the	reverse	order
followed	by	the	project	name,	so	I	named	mine	com.mechakana.tutorials.

Note
Fun	fact

Java	developers	use	web	addresses	in	the	reverse	order	(like	com.mechakana)	as	package
names	so	that	different	developers	can	distribute	packages	with	unique	names.	If	I	just
named	my	package	“tutorials”,	it	could	potentially	overwrite	somebody	else’s	package
named	tutorials—if	I	use	my	own	website	and	name	it	com.mechakana.tutorials,	I
can	guarantee	I’m	the	only	person	with	that	name.

Once	our	package	is	created,	we	can	fill	it	with	two	empty	files:	SimpleLeap.java	and
LeapListener.java.	To	create	a	new	class	in	Eclipse,	right-click	on	our	package
(com.mechakana.tutorials	in	my	case)	and	then	go	to	New	|	Class.	You	should	do	this
twice;	once	for	the	SimpleLeap	class	and	again	for	the	LeapListener	class.	Only	specify	a
name	for	the	class—keep	all	the	other	settings	as	their	defaults.

Now,	we	need	to	configure	the	Leap	libraries.	While	it	would	be	super	convenient	to	just
start	coding,	it	wouldn’t	do	us	a	whole	lot	of	good	if	we	didn’t	have	access	to	Leap,	right?
Fortunately,	this	is	a	relatively	easy	task	that	can	be	done	in	a	few	simple	steps:

1.	 Navigate	to	your	Leap	Motion	SDK	directory	that	we	created	earlier	and	go	to
LeapSDK/lib/.	Copy	the	LeapJava.jar	file	contained	within	to	the	root	of	our
project	in	Eclipse.	On	Windows,	you	can	simply	drag	the	file	from	the	Leap	SDK
folder	into	Eclipse	and	it	will	automatically	be	copied.

2.	 While	we’re	still	within	LeapSDK/lib/,	navigate	one	level	deeper	into	the	x86	folder.
Copy	the	Leap.dll	and	LeapJava.dll	files	contained	within	to	the	root	of	our
project	in	Eclipse.

3.	 Our	project	should	now	look	similar	to	the	following	screenshot	when	viewed	from
within	the	Eclipse	IDE:

4.	 Now,	with	all	of	the	items	we	need	contained	inside	our	project	folder,	hover	over	the
SimpleLeap	project	in	Package	Explorer	(inside	Eclipse)	and	right-click	on	it.
Navigate	to	Build	Path	|	Configure	Build	Path	in	the	tooltip	that	pops	up.

5.	 Once	inside,	you	will	be	presented	with	a	window	that	contains	a	series	of	tabs,
similar	to	the	one	pictured	here:

6.	 Navigate	to	the	Libraries	tab	and	hit	the	Add	JARs…	button.	In	the	window	that
pops	up,	open	our	SimpleLeap	project,	navigate	to	the	LeapJava.jar	file	and	then
double-click	on	OK.

With	that,	you	should	be	done	setting	up	the	project	for	development!	Aside	from	the
creation	of	our	two	files,	these	steps	are	common	to	pretty	much	any	Eclipse	project	that
uses	the	Leap	Motion	device;	be	sure	to	remember	them!

For	more	information	about	Eclipse,	you	can	go	to	their	official	website	at
http://www.eclipse.org.

http://www.eclipse.org

Let’s	write	some	code!
With	our	project	set	up	and	ready	to	go,	let’s	start	writing!	First	off,	we	need	to	create	an
implementation	of	the	listener	class.	Go	ahead	and	open	up	the	LeapListener.java	file,
which	we	created	earlier,	and	enter	the	following:

package	com.mechakana.tutorials;

import	com.leapmotion.leap.*;

public	class	LeapListener	extends	Listener

{

		public	void	onFrame(Controller	controller)

		{

				Frame	frame	=	controller.frame();

				if	(!frame.hands().isEmpty())

System.out.println("First	Hand	data:"	+

"\nPalm	Position	(X|Y|Z):	"	+	frame.hand(0).palmPosition().getX()	+	"|"	+	

frame.hand(0).palmPosition().getY()	+	"|"	+	

frame.hand(0).palmPosition().getZ());

				if	(!frame.fingers().isEmpty())

						System.out.println("Frontmost	Finger	data:"	+

								"\nTip	Position	(X|Y|Z):	"	+

frame.fingers().frontmost().tipPosition().getX()	+	"|"	+	

frame.fingers().frontmost().tipPosition().getY()	+	"|"	+	

frame.fingers().frontmost().tipPosition().getZ());

}

}

Now,	let’s	discuss	what	each	major	chunk	of	code	does:

import	com.leapmotion.leap.*;

This	line	imports	the	entire	Leap	API	into	the	context	of	our	file.	Needless	to	say,	without
this	statement,	we	cannot	make	use	of	Leap:

public	class	LeapListener	extends	Listener

The	preceding	line	defines	our	LeapListener	class	and	states	that	it	extends	the	Leap
API’s	Listener	class.	This	is	what	allows	us	to	later	register	the	class	with	a	Controller
object.

public	void	onFrame(Controller	controller)

This	line	overrides	the	Listener	class’	built-in	onFrame	method.	Once	our	LeapListener
class	is	registered	with	a	Controller	object,	this	method	will	be	called	every	time	a	new
frame	is	received	from	Leap.

The	rest	of	the	lines	contained	in	this	example	code	have	been	covered	previously	in	this
chapter,	but	basically,	they	collect	tracking	data	from	hands	and	fingers	and	output	it	to	the
console	window.

Moving	on,	let’s	fill	out	the	SimpleLeap	class.	Go	ahead	and	open	up	SimpleLeap.java

and	fill	it	with	the	following	code:

package	com.mechakana.tutorials;

import	com.leapmotion.leap.*;

public	class	SimpleLeap()

{

		public	static	void	main	(String	args[])

		{

				Controller	controller	=	new	Controller();

				LeapListener	listener	=	new	LeapListener();

				controller.addListener(listener);

				while	(true)	{}

		}

}

This	code	should	look	pretty	familiar	to	you;	in	fact,	we’ve	used	it	before	in	this	chapter
during	the	previous	Listener	example!	Since	there’s	nothing	new	to	this	code,	I’ll	give
you	the	rundown;	it	registers	an	instance	of	our	LeapListener	class	with	Leap	so	that	it
can	receive	callbacks.	Once	registered,	it	loops	forever	until	the	user	closes	the
application.

Trying	it	out
With	all	of	the	hard	stuff	out	of	the	way,	we	can	finally	test	out	our	code!	With	Eclipse,	it’s
quite	easy	for	us	to	launch	a	console	application;	simply	click	on	the	green	arrow	at	the
top	of	your	toolbar	or	press	Ctrl	+	F11.	If	everything	worked	correctly,	you’ll	see	a
console	tab	pop	up	somewhere	within	your	workspace.	Try	waving	your	hands	around	in
front	of	the	Leap	device,	and	you’ll	see	an	output	similar	to	the	following	screenshot:

With	that,	you’re	ready	to	dive	into	the	world	of	Leap	Motion.

Let’s	get	started!

Looking	forward	–	the	Skeletal	Tracking
API
Recently,	the	Leap	Motion	development	team	has	released	a	new	version	of	the	Leap	SDK
(v2.0),	which	contains	an	all	new	API	for	skeletal	tracking	(as	in,	you	know,	tracking	the
bones	in	your	hand).

This	new	API	brings	not	only	a	slew	of	new	possibilities,	but	also	an	increase	in	the
precision	of	current	tracking	and	vision	recognition	functions.	As	the	new	API	was	still	in
the	beta	phase	during	this	book	with	no	stable	release	in	sight	(beta	software	in	a	book
isn’t	fun	for	anyone!),	we	will	not	be	making	heavy	usage	of	it	in	the	projects	that	we
work	on.

With	that	said,	as	it	is	unlikely	that	the	skeletal	tracking	API	will	change	too	much	in	the
coming	months	and	the	ideas	it	brings	to	the	table	are	relatively	straightforward,	I	thought
we	might	as	well	go	over	what	it	has	to	offer	compared	to	the	current	API.	Depending	on
your	level	of	experience	with	the	Leap	Motion	Controller	up	to	this	point,	some	of	the
things	I	talk	about	in	the	next	few	pages	might	or	might	not	mean	much	to	you—but	I
assure	you,	it’s	all	relevant!

Different	fingers?	Not	a	problem
We’ll	be	covering	the	primary	disadvantages	of	Leap	and	how	to	correct	them	later	in	this
book,	but	I’m	going	to	go	ahead	and	say	it	now:	the	new	Skeletal	Tracking	API	eliminates
a	lot	of	the	issues	present	in	the	current	API.	It	is,	in	simple	terms,	freaking	awesome.

With	the	new	API,	individual	fingers	can	now	be	differentiated	from	each	other.	This
probably	seems	like	something	rather	simple,	but	it	can	make	a	world	of	difference	in
many	cases.	Let’s	take	a	first-person	shooter	for	example.

During	normal	gameplay,	the	player	holds	his	or	her	primary	hand	out	in	front	of	the	Leap
device	in	the	form	of	a	gun	(making	a	fist	with	only	the	index	finger	and	thumb	pointing
out).	Once	the	player	has	aimed	at	a	target	they	want	to	shoot,	they’ll	close	their	thumb	on
their	hand	as	if	firing	the	gun.	This	will	cause	the	in-game	weapon	to	fire	in	the	direction
aimed	by	their	finger,	ideally.

Now,	if	you	can’t	tell	the	difference	between	the	thumb	and	the	pinky	finger,	or	an	index
finger	and	a	ring	finger,	this	seemingly	trivial	programming	task—calling	a	function	when
the	user’s	thumb	disappears	from	view	or	enters	a	specific	threshold—suddenly	becomes	a
beast	of	a	programming	task;	this	is	where	the	new	Skeletal	Tracking	API	comes	to	the
rescue!

Earlier,	we	differentiated	the	fingers	on	a	hand	by	trying	various	tricks	like	sorting	the	x
indices	of	each	finger	from	left	to	right	or	right	to	left	and	then	guessing	and	based	on	this
data,	which	finger	belonged	to	which	“named”	finger	(such	as	a	thumb,	index,	or	pinky).
We’ll	be	covering	this	in	the	next	few	chapters.	However,	with	the	new	API,	all	we	have
to	do	is	check	the	type	field	on	any	valid	finger	object	and	the	API	will	work	its	magic,
providing	you	with	an	integer	that	represents	the	proper	name	for	the	finger	that	the	object
denotes.

The	bare-bones	snippet	here	illustrates,	in	two	lines,	how	you’d	query	the	finger	type	data
using	the	new	API:

if	(frame.hand(0).finger(0).type	==	0)

		System.out.println("The	first	finger	on	the	first	hand	is	a	thumb.");

The	preceding	example	snippet	will	print	out	a	notice	if,	and	only	if,	the	first	finger	on	the
first	hand	in	a	given	frame	is	a	thumb	(finger	0	on	hand	0,	since	the	Leap	Motion	API	is
zero	indexed).

Handedness	is	no	longer	an	issue
Gone	are	the	days	of	wondering	if	a	given	hand	belonged	to	somebody’s	right	arm	or	left
arm.	Using	the	magic	of	mathematics	and	other	unknown	formulae,	relating	to	the
structure	of	the	skeleton	of	the	average	human	hand,	the	shiny	new	API	can	now
differentiate	between	the	left	and	right	hands.

Again,	this	is	not	as	simple	as	it	sounds.	There	are	times	when	you	want	to	figure	out
whether	a	user	has	their	left	or	right	hand	out;	why,	I	won’t	ask,	but	there	are	such	times.
Using	the	preskeletal	tracking	API,	one	of	your	best	bets	for	figuring	out	which	hand	is
which	is	detecting	the	side	of	a	hand	the	farthest	finger	(the	thumb)	was	on;	if	the	thumb
was	on	the	left,	it’s	a	right	hand,	and	vice	versa.	Of	course,	this	is	little	better	than	a	guess
—what	if	the	user’s	hand	is	upside	down,	for	instance?	You’d	then	have	to	take	that	into
account,	and	so	on,	and	so	on…not	fun.

Yet	again,	the	new	Skeletal	Tracking	API	comes	to	the	rescue	with	the	isLeft()	and
isRight()	functions,	which	call	all	of	our	Hand	objects	home	in	the	new	API!	I	certainly
hope	that	the	names	of	these	functions	are	self-explanatory,	but	just	in	case,	for	the	sake	of
clarification,	I	shall	clarify.	The	isLeft()	function	for	any	Hand	object	will	return	a	result
of	true	if	the	object	is	a	left	hand	and	false	otherwise.	Likewise,	the	isRight()	function
for	any	Hand	object	will	return	a	result	of	true	if	the	object	is	a	right	hand	and	false
otherwise.	This	is	far	superior	to	the	previous	method	of	guessing.

Having	confidence	in	tracking	data
This	is	slightly	less	of	a	concern	to	the	average	developer,	but	it	is	a	concern	nonetheless.
The	confidence	that	your	software	has	that	a	tracked	hand	is,	indeed,	a	hand!	The	amount
of	confidence	the	Skeletal	Tracking	API	has	about	the	accuracy	of	a	hand	is	based	on	how
well	the	tracking	data	for	a	hand	matches	a	predetermined	model	of	an	ideal	hand,
including	posture	and	finger	positions.

In	the	2.0	Beta	API,	this	confidence	value	is	rated	on	a	scale	of	0.0	to	1.0,	with	0.0
meaning	it	is	extremely	unlikely	that	a	tracked	hand	is	valid,	while	a	value	of	1.0	means	it
is	extremely	likely	that	a	tracked	hand	is	valid.

Since	every	Hand	object	has	a	confidence	rating,	all	you	have	to	do	to	get	the	confidence
rating	for	a	hand	is	call	the	confidence()	member	function	of	a	Hand	object	and	you	will
get	a	return	value	of	0.0	to	1.0,	like	so:

System.out.println("First	Hand	Confidence	Rating:	"	+	

String.valueOf(frame.hand(0).confidence()));

The	preceding	example	snippet	will	print	out	the	confidence	rating	of	the	first	hand	in	a
given	frame	to	your	console	window.

Pinching	and	grabbing	are	now	much	easier
Gone	are	the	days	of	trying	to	detect	gestures	or	interpolating	finger	coordinates	in	an
attempt	to	pick	up	pinches	and	grabs	from	the	user.	The	new	API	introduces	two	new
member	functions	for	the	Hand	class	that	are	specifically	for	detecting	grabbing	(closing	of
the	fist)	and	pinching—grabStrength()	and	pinchStrength(),	respectively.

The	first	function,	grabStrength(),	will	return	a	value	between	0.0	and	1.0	that	represents
how	tightly	a	given	hand	is	making	a	fist.	A	value	at	or	near	0.0	means	a	hand	is	almost
perfectly	flat	and	not	making	a	fist,	while	a	value	at	or	near	1.0	means	a	hand	is	making	a
tight	fist.	In	other	words,	the	more	a	hand	curls	its	fingers	inward	into	the	form	of	a	fist,
the	higher	the	returned	value	from	grabStrength()	will	be.	Similar	to	the	other	new
methods	we’ve	covered	already,	usage	of	this	one	is	relatively	simple:

System.out.println("First	Hand	Grab	Strength:	"	+	

String.valueOf(frame.hand(0).grabStrength()));

The	preceding	example	snippet	will	print	out	the	approximate	grab	strength	of	the	first
hand	in	a	given	frame	to	your	console	window.

Moving	on	to	the	second	function,	pinchStrength()	will	return	a	(you	guessed	it)	value
between	0.0	and	1.0	that	represents	how	close	a	hand’s	thumb	is	to	any	other	finger	on	the
hand.	This	one	is	just	a	tad	more	confusing	than	the	other	functions;	basically,	a	hand’s
pinching	strength	is	defined	by	a	hand’s	thumb	being	very	close	to	any	other	finger	on	the
hand—it	doesn’t	matter	which	finger,	as	long	as	it’s	a	finger.

A	value	at	or	near	0.0	means	that	a	hand’s	thumb	isn’t	very	close	to	any	other	finger,	and
therefore	the	hand	isn’t	pinching	very	hard	(or	at	all).	On	the	other	hand,	a	value	at	or	near
1.0	means	that	a	hand’s	thumb	is	very	close	to	other	fingers	and	is	pinching	rather	hard.
Basically,	the	closer	a	hand’s	thumb	is	to	another	finger,	the	higher	the	returned	value	from
pinchStrength()	will	be.	Just	like	grabStrength(),	pinchStrength()	is	relatively
simple	to	use:

System.out.println("First	Hand	Pinch	Strength:	"	+	

String.valueOf(frame.hand(0).pinchStrength()));

The	preceding	example	snippet	will	print	out	the	approximate	pinch	strength	of	the	first
hand	in	a	given	frame	to	your	console	window.

A	new	API	class	–	Bones
Of	course,	the	Skeletal	Tracking	API	update	wouldn’t	make	much	sense	if	it	didn’t
introduce	a	facility	for	dealing	with,	well,	skeletons.

This	is	where	the	new	Bone	class	comes	in.	Using	it,	you	can	glean	all	kinds	of
information	from	any	valid	Finger	object,	such	as	the	length	of	the	metacarpals,	proximal
phalanges,	intermediate	phalanges,	and	distal	phalanges	on	a	given	finger.	Don’t	worry;	I
didn’t	know	what	these	names	meant	either	until	I	read	the	shiny	new	API	docs	for
developers.	We	won’t	go	too	in	depth	about	this	new	class	since	the	API	was	(or	still	is)	in
the	beta	stage	at	the	time	of	writing	this,	but	let’s	go	ahead	and	touch	on	the	basics.

In	the	new	Skeleton	Tracking	API,	every	single	Finger	object	contains	an	array	of	Bone
objects—four	to	be	precise.	The	exception	is	for	thumbs;	while	they	technically	have	four
Bone	objects,	they	only	have	three	literal	bones	in	real	life.	Therefore,	the	length	of	the
metacarpal	bone	(the	one	closest	to	the	hand,	which	thumbs	don’t	have)	on	a	thumb	will
always	be	zero.

Every	Bone	object	has	a	variety	of	useful	and/or	fun	member	functions,	including:

The	standard	isValid()	and	invalid()	functions	to	check	data	integrity
The	length()	function	to	check	the	length	of	the	given	bone
The	prevJoint()	function	that	returns	the	Vector	object	for	the	point	the	given	bone
is	anchored	to
nextJoint()	that	returns	the	Vector	object	for	the	tip	of	the	given	bone
type()	for	getting	the	proper	name,	or	type,	of	the	given	bone

For	what	it’s	worth,	the	names	of	the	individual	bones	on	a	finger,	in	the	order	from	the
closest	to	the	hand	to	the	furthest	from	the	hand,	are:	the	metacarpal	bone,	proximal
phalange	bone,	intermediate	phalange	bone,	and	the	distal	phalange	bone.

That’s	it!
As	you	can	see,	the	new	Skeletal	Tracking	API	is	poised	to	revolutionize	the	way	the	Leap
Motion	software	will	be	written	by	developers	like	you	and	me.	Everything	is	easier,	from
simple	things	such	as	picking	out	named	fingers	to	the	more	complex	things	such	as
iterating	over	the	bones	of	different	fingers	to	create	more	accurate	3D	representations	of
our	hands.	Only	time	will	tell	what	awesome	and	crazy	applications	will	be	written	using
this	new	API.	Now…back	to	Mastering	the	Leap	Motion	Controller!

Summary
In	this	chapter,	we	covered	all	of	the	basics	of	the	Leap	Motion	device.	You	installed	and
set	up	the	Leap	Motion	device,	its	libraries,	and	an	IDE	to	help	you	program	for	it.	We
then	went	over	all	of	the	different	members	of	the	Leap	Motion	API,	including	vectors,
fingers,	hands,	frames,	controllers,	and	listeners.	Afterwards,	you	created	a	simple
framework	program	with	Eclipse	to	make	sure	everything	was	working	correctly.	We
finished	off	with	a	lengthy	look	at	the	new	Skeletal	Tracking	API	and	what	it	brings	to	the
development	table.	Armed	with	this	knowledge,	you	are	now	ready	to	tackle	the	next	few
chapters	of	this	book.

In	the	next	chapter,	we’ll	begin	diving	into	the	world	of	Leap	Motion.	You’ll	be	learning
about	how	Leap	interprets	your	hands,	various	ways	you	can	detect	user	input,	and	some
unavoidable	limitations	of	the	tracking	software.

Chapter	2.	What	the	Leap	Sees	–	Dealing
with	Fingers,	Hands,	Tools,	and	Gestures
In	this	chapter,	you	will	learn	about	the	more	complex	aspects	adopted	within	any	Leap
Motion	application.	This	includes	basic	tracking	and	coordinate	data,	such	as	hands	and
fingers,	as	well	as	more	advanced	features,	such	as	tools	and	gestures.	Throughout	this
chapter,	we’ll	go	through	various	sets	of	example	code	to	give	you	an	idea	of	everything
that	can	be	done	to	grab	input	from	a	user.

Note
This	chapter	is	sprinkled	with	periodic	Fun	facts	that	offer	high-level	and	entry-level
factoids	about	scripting	and	programming	for	your	reading	pleasure.

Handling	hands	and	fingers
In	the	previous	chapter,	you	learned	about	the	top-level	functionality	of	the	Hand	and
Finger	classes.	How	about	we	go	over	the	specifics?

The	Leap’s	field	of	view
When	the	Leap	is	plugged	in	and	turned	on,	it	is	constantly	looking	for	and	tracking	any
hand,	finger,	or	tool-like	objects	within	a	certain	area,	commonly	referred	to	as	its	field	of
view	(FOV).	The	FOV	is	just	30	degrees	short	of	being	a	perfect	hemisphere,	measuring
in	as	a	150-degree	area	protruding	directly	from	the	device.	You	can	see	this	perfectly	in
the	following	diagram:

The	actual	range	of	the	FOV	is	about	20”	(20	inches	or	50	centimeters,	for	those	who	are
not	familiar	with	the	convention)	from	the	device	in	the	upward	direction	and	10”	from	the
device	in	any	lateral	direction.	Anything	within	the	field	of	view	will	automatically	be
detected	by	the	Leap	and	then	forwarded	to	the	API	classes,	which	we	will	use	when
programming	applications.

To	give	you	a	better	idea	of	the	three-dimensional	appearance	of	the	Leap’s	FOV,	I’ve
included	the	following	screenshot.	The	boundaries	of	the	FOV	are	the	yellow	lines,	with
one	hand	visible	towards	the	center	of	the	image.

Note
Fun	fact

This	screenshot	was	taken	from	the	Leap	Motion	Diagnostic	Visualizer—please	refer	to
Chapter	8,	Troubleshooting,	Debugging,	and	Optimization,	for	information	on	what	it	is
and	how	to	use	it.

When	writing	an	application	for	the	Leap,	you	should	avoid	placing	user	interaction	areas
(menus,	buttons,	sliders,	and	so	on)	near	the	edges	of	the	screen	(and	thus,	near	the	edges
of	the	Leap’s	field	of	view);	this	will	help	mitigate	the	potential	for	erratic	and	strange
feedback	from	the	Leap.

Unfortunately,	however,	there	are	many	cases	where	the	best	place	for	a	button	or	a	menu
is	at	the	screen’s	edge.	The	question	is	how	do	we	place	items	near	the	edge	of	the	screen,
and	thus	in	the	field	of	view,	without	the	risk	of	violating	the	edge	of	the	Leap’s	detection
zone?	Easy;	we	can	use	the	InteractionBox	class	from	the	Leap	Motion	APIs.

The	InteractionBox	class
With	the	InteractionBox	class,	we	can	normalize	the	Leap’s	coordinate	system	and	map
it	to	the	resolution	of	a	user’s	screen.	How	does	the	interaction	box	work,	you	might	ask?
It’s	quite	simple	in	principle;	the	interaction	box	represents	a	(mostly)	perfect	cuboid	(box-
shaped	object)	that	exists	entirely	within	the	limits	of	the	Leap’s	FOV,	as	pictured	here:

Now,	the	easiest	way	to	demonstrate	how	this	class	works	is	with	a	practical	example;	let’s
write	some	code.	If	you’re	still	using	the	simple	Leap	app	template	from	the	previous
chapter,	replace	your	listener’s	onFrame	method	with	the	following	code:

public	void	onFrame(Controller	controller)

{

				Frame	frame	=	controller.frame();

				//Retrieve	an	InteractionBox	reference.

				InteractionBox	box	=	frame.interactionBox();

				if	(!frame.fingers().isEmpty())

				{

						//Retrieve	the	vector	of	the	frontmost	finger's	tip.

						Vector	frontmost	=	frame.fingers().frontmost().tipPosition();

						//Normalize	the	frontmost	vector	to	a	0…1	scale.

						frontmost	=	box.normalizePoint(frontmost);

						//Print	out	the	vector.	Left,	front	and	bottom	are	represented	by	0.

						System.out.println("Frontmost	Finger	normalized	coordinates	(X|Y|Z):	

"	+	frontmost.getX()	+	"|"	+	frontmost.getY()	+	"|"	+	frontmost.getZ());

				}

}

OK,	let’s	break	down	this	code.	Check	this	line:

InteractionBox	box	=	frame.interactionBox();

Here,	we’re	fetching	a	reference	to	the	current	frame’s	InteractionBox	object	and
assigning	it	to	an	empty	InteractionBox	reference.

Note
You	should	never	ever	try	to	initialize	your	own	InteractionBox	object,	as	the	frame-
supplied	one	takes	into	account	the	user’s	current	configuration	settings	and	the	state	of
the	motion	controller	device.

You	should	be	pretty	familiar	with	the	following	line:

Vector	frontmost	=	frame.fingers().frontmost().tipPosition();

Here,	we’re	simply	getting	the	vector	coordinates	for	the	frontmost	finger’s	tip	position.

The	next	line	is	the	important	one,	and	the	main	reason	why	we	use	InteractionBox:

frontmost	=	box.normalizePoint(frontmost);

This	line	normalizes	the	value	of	the	passed	vector	to	a	0	–	1	scale,	based	on	the	internal
vector	coordinate	system	of	the	frame	that	this	InteractionBox	reference	belongs	to.	This
allows	us	to	map	the	Leap	coordinates	to	pretty	much	any	percentage-based	coordinate
system	in	existence.

Note
What	does	normalize	mean?

Well,	when	you	normalize	a	vector	using	the	InteractionBox	object’s	normalizePoint
function,	you’re	converting	the	distinct	vector	coordinates	within	this	vector	to	floating
point	values	between	0	and	1.	This	effectively	turns	a	z	value	of,	say,	-164	(all	the	way	to
the	front	on	a	standard	Leap	device)	to	a	z	value	of	0	or	0	percent.	In	turn,	a	z	value	of	0
before	being	normalized	will	become	a	z	value	of	about	50	percent	or	will	be	centered
within	the	Leap’s	FOV.	This	normalization	allows	us	to	map	the	Leap	input,	in	a
meaningful	way,	to	other	coordinate	systems	such	as	those	found	on	graphical	user
interfaces	or	games.

The	InteractionBox	class’	normalization	process	is	described	by	the	following	graph,
assuming	a	maximum	range	of	-164	(all	the	way	forward)	to	120	(all	the	way	back):

Finally,	the	last	line	simply	prints	out	the	three	normalized	coordinates	of	the	frontmost
finger.	Try	the	code	out	and	you’ll	see	values	with	quite	a	few	decimal	places	that	range
from	0	to	1—although	the	values	can	be	better	read	as	“0	to	100	percent	in	a	given
direction.”

How	the	interaction	box	works
Behind	the	scenes,	the	Leap	Motion	device	is	always	tracking	and	gathering	data	on
anything	that	comes	into	its	field	of	view.	These	items	are	then	tagged	as	fingers,	hands,
tools,	or	other	objects	and	packed	into	a	frame	that	is	sent	to	the	Leap	API.

In	addition	to	these	items,	the	Leap	also	appends	an	InteractionBox	object	to	every
single	frame.	The	box	represented	by	this	object	is	equal	to	the	size	of	the	biggest	possible
box	that	can	fit	within	the	Leap’s	current	field	of	view.	Now,	since	the	Leap’s	FOV	is
anything	but	a	box	(it’s	basically	a	hemisphere),	it’s	impossible	for	the	InteractionBox
area	to	fill	the	entire	effective	field	of	view	for	any	Leap	device.

In	practice,	this	means	that,	for	example,	two	different	fingertips,	one	with	a	z	value	of	90
(towards	the	back	of	the	Leap’s	FOV)	and	the	other	with	a	z	value	of	150	(even	further
back),	will	be	normalized	to	the	same	value	of	1.0	(all	the	way	back).	This	is	because	of
the	fact	that	once	the	fingertips	exit	the	effective	range	of	the	interaction	box	area,	the
InteractionBox	class	will	automatically	clamp	the	passed	vectors	down	to	the	maximum
possible	value	of	1.

To	give	you	a	better	illustration	of	how	this	looks,	take	a	look	at	the	following	two
diagrams.	In	the	previously	shown	screenshot	and	diagram,	showing	Leap’s	FOV,	you	can
see	the	Leap	Motion	Controller	from	its	right	side	when	in	normal	operation,	with	the	left
side	of	the	image	being	the	one	facing	the	user.

In	the	first	situation,	shown	in	the	preceding	diagram,	the	finger	is	breaking	the	wall	of	the
interaction	box	area	and	is,	therefore,	within	it.	Since	it	is	at	the	edge	of	the	box,	its	z
vector	will	be	normalized	to	a	value	of	1.

In	the	second	situation,	pictured	here,	the	finger	is	completely	outside	the	interaction	box’s
area	but	still	within	the	field	of	view	of	the	Leap	device.	Since	its	z	vector	cannot	be
normalized	to	anything	outside	the	0	-	1	range,	the	InteractionBox	class	will
automatically	clamp	the	z	value	passed	to	the	normalizePoint	function	to	1	because	this
is	the	closest	applicable	value.

Why	would	you	ever	want	to	use	something	like	the	interaction	box?
Well,	the	interaction	box	is	one	of	the	most	useful	(and	for	me,	one	of	the	coolest)	features
incorporated	in	the	Leap	API.	You	can	use	it	to	map	the	Leap	coordinates	to	screen
coordinates	or	even	other	coordinate	systems	within	games	and	simulators.

A	good	example	of	the	interaction	box	in	action	is	in	a	quadrotor	simulator	that	I	wrote	a
while	back,	designed	to	simulate—you	guessed	it—quadrotors.	This	simulator,	called
Artemis,	was	originally	written	to	help	me	train	with	the	Leap	Motion	Controller	before	I
deployed	it	in	my	real-life	quadorotors…wouldn’t	want	to	crash	a	flying	robot	into	a	wall
now,	would	we?	In	Artemis,	I	used	the	InteractionBox	class	to	achieve	two	different
things:

Using	the	interaction	box,	I	was	able	to	map	tracking	data	from	the	Leap	to	three-
dimensional	world-space	coordinates	within	the	simulator,	allowing	me	to	render	3D
hands	on	the	screen.
Using	the	same	method,	I	was	able	to	map	data	from	the	Leap	directly	onto	the	user
interface	to	give	visual	feedback	as	to	where	the	user	was	pointing.

Once	you	start	working	with	3D	toolkits	in	Chapter	5,	Creating	a	3D	Application	–	a
Crash	Course	in	Unity	3D,	you’ll	not	only	get	to	work	on	a	simulator	similar	to	Artemis,
but	we’ll	also	cover	the	actual	application	of	the	interaction	box	and	how	it	is	essential	for
user	interface	design.

Detecting	gestures	and	tools
Next	up	on	the	list	of	things	to	tackle	are	gestures	and	tools.	Let’s	start	with	tools,	since
they’re	pretty	simple…

Detecting	and	using	tools
The	Leap	Motion	API	documents	do	the	best	job	of	defining	what	exactly	a	tool	is	to	the
Leap:

“Tools	are	pointable	objects	that	the	Leap	Motion	software	has	classified	as	a	tool.
Tools	are	longer,	thinner,	and	straighter	than	a	typical	finger.	Get	valid	LeapTool
objects	from	a	LeapFrame	object.

Tools	may	reference	a	hand,	but	unlike	fingers	they	are	not	permanently	associated.
Instead,	a	tool	can	be	transferred	between	hands	while	keeping	the	same	ID.”

In	other	words,	any	instance	of	the	Tool	class	represents	a	three-dimensional	object	that	is
longer	and	thinner	than	a	regular	finger.	In	addition,	since	Tool	objects	have	their	own
distinct	ID	and	are	tracked	independently	of	hands,	the	hand	that	owns	them	can	change
over	the	duration	of	the	existence	of	the	Tool	object.

In	practice,	manipulation	of	tools	is	almost	identical	to	manipulation	of	fingers;	the	only
difference	is	that	Leap	will	only	register	objects	that	meet	the	aforementioned	criteria	as
tools,	and	they	don’t	necessarily	always	belong	to	the	same	hand	throughout	their	lifetime.
The	following	code	gives	a	brief	demonstration	of	how	to	detect	and	read	data	from	tools
present	within	Leap’s	FOV:

Frame	frame	=	controller.frame();

if(!frame.tools().isEmpty())

{

		System.out.println("Frontmost	Tool	data:"	+	"\nTip	Position	(X|Y|Z):	"	+

		frame.tools().frontmost().tipPosition().getX()	+	"|"	+	

frame.tools().frontmost().tipPosition().getY()	+	"|"	+	

frame.tools().frontmost().tipPosition().getZ());

}

Easy,	right?	To	test	this	code,	start	up	the	code	and	then	grab	something	such	as	a	pencil	or
pen	and	wave	it	around	within	the	Leap’s	field	of	view.	You	should	be	greeted	by	an
output;	you’ll	notice	that	if	you	try	to	place	your	fingers	in	the	field	of	view	of	the	Leap,	it
will	ignore	them	because	they	aren’t	tools.

Gestures
OK,	so	these	are	just	a	tad	more	complex	than	the	previous	topics	we’ve	covered	so	far.
However,	I	digress;	they’re	still	relatively	simple.	As	gestures	are	one	of	the	more
complicated	aspects	of	the	Leap	Motion	API,	we’ll	walk	through	the	different	gestures
(and	what	they	do)	one	at	a	time.

Detecting	gestures
Whenever	the	Leap	Motion	Controller	is	turned	on	and	is	active,	it	is	watching	for	activity
within	its	FOV	that	resembles	certain	kinds	of	movement	patterns	that	are	typical	of	a	user
gesture	or	command.	As	an	example,	a	circular	movement	of	the	user’s	finger	might	be
detected	as	CircleGesture,	while	a	hand	moving	from	side	to	side	might	indicate
SwipeGesture.

As	per	the	Leap	API	documents,	whenever	the	Leap’s	tracking	software	detects	what
might	be	a	gesture,	it	assigns	the	gesture	an	identifier	and	adds	a	corresponding	Gesture
object	to	the	gesture	list	for	that	frame.	In	the	case	of	continuous	gestures	that	take	place
over	multiple	frames,	the	Leap	software	will	update	the	gesture	by	adding	a	Gesture
object	with	an	identical	identifier	to	each	subsequent	frame.

The	gestures	that	are	currently	supported	by	the	Leap	are	pictured	here:

Circle	gestures:	These	denote	the	circular	motion	of	a	single	finger:

Swipe	gestures:	These	denote	the	swiping	motion	of	a	hand,	finger,	or	tool:

Screen	tap	gestures:	These	denote	a	finger	tapping	the	screen	by	poking	forward	and
then	returning	to	its	original	position:

Key	tap	gestures:	These	denote	a	finger	rotating	down	towards	the	palm	and	then
returning	to	its	original	position:

Now,	how	about	an	example	of	a	gesture	in	action?	Let’s	try	out	how	to	detect	a	circular
gesture	by	adding	the	following	code	to	your	onFrame	function:

//Enable	detection	of	circular	gestures.

controller.enableGesture(Gesture.Type.TYPE_CIRCLE);

if	(!frame.gestures().isEmpty())

{

		//Loop	over	all	of	the	gestures	detected	by	the	Leap.

		for	(Gesture	gesture	:	frame.gestures())

		{

				//If	it's	a	circle	gesture,	print	data	for	it.

				if(gesture.type()	==	Gesture.Type.TYPE_CIRCLE)

				{

						CircleGesture	circleGesture	=	new	CircleGesture(gesture);

						System.out.println("Detected	Circle	Gesture:"	+	

						"\nRadius:	"	+	circleGesture.radius()	+

						"\nRotations:	"	+	circleGesture.progress());

				}

		}

}

OK,	let’s	discuss	each	line.	Here	is	the	first	one:

controller.enableGesture(Gesture.Type.TYPE_CIRCLE);

This	line	tells	the	Leap	to	start	looking	for	circular	gestures.	By	default,	the	Leap	will	not
detect	any	gestures,	so	it’s	very	important	to	call	this	function.	Any	Controller	object
will	support	this.	Currently,	there	are	four	gesture	types	that	you	can	pass	to	the
enableGesture	function:

TYPE_CIRCLE

TYPE_SWIPE

TYPE_SCREEN_TAP

TYPE_KEY_TAP

These	functions	cover	the	preceding	four	gestures,	respectively,	and	can	be	accessed	via
the	Gesture.Type	enum,	as	seen	in	the	preceding	line	of	code.

The	next	three	lines	check	whether	the	current	frame	has	gestures,	and	if	it	does,	it	iterates
over	all	of	them	looking	for	circular	gestures.

Then,	if	a	circular	gesture	is	found,	this	line	is	executed:

CircleGesture	circleGesture	=	new	CircleGesture(gesture);

This	line	creates	a	new	CircleGesture	instance	from	the	detected	circular	gesture.	You
cannot	cast	a	Gesture	object	to	a	CircleGesture	object,	no	matter	how	convenient	this
will	be;	you	must	explicitly	call	the	CircleGesture	constructor	and	pass	it	to	the	Gesture
object	that	you	want	to	use,	as	seen	in	the	preceding	line	of	code.

Finally,	refer	to	the	last	line:

System.out.println("Detected	Circle	Gesture:"	+	"\nRadius:	"	+	

circleGesture.radius()	+	"\nRotations:	"	+	circleGesture.progress());

This	line	prints	out	the	radius	(in	millimetres,	via	the	CircleGesture.radius	member)	of
the	circular	gesture	as	well	as	the	amount	of	times	a	complete	circle	has	been	created	by
the	finger	drawing	the	gesture	(via	the	CircleGesture.progress	member).

If	you	drop	all	of	this	into	your	simple	Leap	template	project	in	Eclipse,	run	it,	and	then
draw	some	circles	with	one	of	your	fingers,	you	should	be	greeted	by	a	console	output	that
is	similar	to	the	output	shown	in	the	following	screenshot:

Pretty	simple,	right?	You’ll	notice	that	the	more	circles	you	make	at	once	with	your	hand,
the	higher	will	be	the	number	of	rotations	detected	by	the	Leap.	I’m	sure	there	are	plenty
of	creative	uses	for	this	in	applications…

Some	(albeit	minor)	limitations	to	keep	in
mind
While	the	Leap	Motion	Controller	is	able	to	track	all	of	your	hands	and	fingers	with
remarkable	accuracy	(as	long	as	you	stay	within	the	field	of	view,	of	course!),	there	are
some	limitations	that	need	to	be	kept	in	mind	when	developing.	The	list	is,	fortunately,	by
no	means	exhaustive	(and	there	are	probably	a	few	other	minor	caveats	I	missed	while
writing	this,	too,	as	this	is	all	based	on	experience).

Upside-down	hands	can	be	a	problem!
The	Leap	sometimes	has	trouble	detecting	hands	that	are	upside	down.	If	a	hand	enters	its
field	of	view	upside	down,	the	Leap	will	take	the	best	guess	and	assume	that	the	hand	is
right-side	up.	If	a	hand	starts	right-side	up,	however,	and	then	flips	upside	down,	then	the
Leap	will	usually	correctly	detect	it	as	upside	down.

However,	fear	not!	The	new	Skeletal	Tracking	API	from	Leap	Motion	helps	mitigate	these
issues,	thanks	to	its,	well,	skeletal	tracking.	Of	course,	it’s	still	possible	to	confuse	the
Leap	Motion	Controller	when	you	place	a	hand	upside	down	into	the	field	of	view—but	if
this	happens,	the	Leap	Motion	API	will	automatically	detect	this	mistake	after	a	few
seconds	and	correct	it.

Needing	too	many	hands	is	a	bad	thing
More	obvious	than	other	limitations,	it’s	not	practical	to	require	more	than	two	hands	in
the	field	of	view	of	the	device	at	any	given	time.	Doing	this	can	cause	the	device	to	(albeit
rarely)	confuse	individual	hands	and	fingers	or	even	not	see	them	at	all	(for	example,	if
one	hand	was	above	another).	Fortunately,	needing	more	than	two	hands	within	the	field
of	view	should	be	a	very	rare	thing…right?

Differentiating	fingers	can	be	fun!
This	used	to	be	a	problem	in	the	days	that	predated	the	Skeletal	Tracking	API	from	Leap
Motion,	but	no	longer!	Thanks	to	(rapid)	advances	in	tracking	and	image	analysis
technologies,	developers	are	now	able	to	get	fingers	on	a	given	hand	by	name—heck,	we
can	even	get	the	individual	bones	in	the	fingers!

Of	course,	for	the	purposes	of	completeness,	I	believe	it	will	still	be	nice	to	talk	a	little	bit
about	what	developing	for	the	Leap	Motion	Controller	was	like	in	the…old	days,	as	it
were.

In	the	old	days,	there	was	no	reliable	way	to	distinguish	between	the	different	fingers	on	a
hand	(such	as	the	thumb,	pinky,	or	index	finger);	they	were	all	just	fingers.	It	was,
however,	possible	to	take	a	guess	as	to	which	finger	was	which	by	doing	some	basic	math
and	ordering	the	fingers	by,	say,	their	x	axis	locations.

This	process	is	best	illustrated	by	the	following	code,	taken	from	one	of	my	Leap	projects
from	long	ago,	which	you	can	copy-and-paste	into	a	file	and	use	as	a	Leap	listener:

import	java.util.ArrayList;

import	java.util.Collections;

import	java.util.Comparator;

import	java.util.List;

import	com.leapmotion.leap.*;

public	class	LeapListener	extends	Listener

{

//Finger	enumeration	to	make	the	code	more	readable.

public	enum	kFingerName	

{

		THUMB(0),	INDEX(1),	MIDDLE(2),	RING(3),	PINKY(4);

		private	int	value;

		kFingerName(int	newValue)	{	value	=	newValue;	}

		public	int	getValue()	{	return	value;	}

}

//Comparator	to	sort	the	finger	vectors	from	left	to	right.

class	FingerTipVectorXComparator	implements	Comparator<Finger>

{

		public	int	compare	(Finger	finger1,	Finger	finger2)

		{

				return	(int)	(finger1.tipPosition().getX()	-	

finger2.tipPosition().getX());

		}

}

//Function:	getNamedFinger

/**

	*	Detects	the	specified	finger,	by	name,	on	a	hand	and	then	returns	it.

	*	

	*	@param	hand:	The	hand	which	contains	the	finger	we're	looking	for.

	*	@param	fingerName:	The	name	of	the	finger	that	we're	looking	for.

	*	@param	left:	Set	to	true	if	this	is	assumed	to	be	a	

	*								left	hand	instead	of	a	right	one.

	*	

	*	@return	the	Finger	on	the	passed	hand	specified	by	fingerName.

	*/

public	Finger	getNamedFinger(Hand	hand,	kFingerName	fingerName,	boolean	

left)

{

		//Finger	vectors.

		List<Finger>	fingers	=	new	ArrayList<Finger>();

		//Retrieve	the	vector	coordinates	for	all	five	fingers	on	the	passed	

hand.

		for	(Finger	finger	:	hand.fingers())	

				fingers.add(finger);

		//Using	our	custom	comparator,	sort	the	list	of	vectors	from	"left"	to	

"right"	based	on	their	X-axis.

		if	(left)

				Collections.sort(fingers,	Collections.reverseOrder(new	

FingerTipVectorXComparator()));

		else

				Collections.sort(fingers,	new	FingerTipVectorXComparator());

		//Return	the	specified	finger	if	it	is	contained	in	our	array.

		if	(fingerName.getValue()	+	1	<=	fingers.size())	return	

fingers.get(fingerName.getValue());

		//Return	an	empty	finger	if	the	specified	one	was	not	contained	in	our	

array.

		else	return	new	Finger();

}

//OnFrame	method.

public	void	onFrame(Controller	controller)

{

		Frame	frame	=	controller.frame();

		if	(!frame.hands().isEmpty())

				System.out.println("Right-most	hand	Ring	Finger	data:"	+	"\nTip	

Position	(X|Y|Z):	"	+

						getNamedFinger(frame.hands().rightmost(),	kFingerName.RING,	

true).tipPosition().getX());

}

}

OK!	Allow	me	to	explain	how	this	code	works…

The	first	segment	of	the	code	(public	enum	kFingerType…[])	defines	a	finger	type
enumeration	that	allows	us	to	specify	which	finger	we’re	looking	for	later	on	in	the	code.	I
won’t	go	over	the	specifics,	as	they	aren’t	entirely	relevant	to	this	example.

The	next	segment	of	code	(class	FingerTipVectorXComparator…[])	is	similar	to	our

kFingerType	enumeration;	it	serves	as	a	utility	to	help	us	sort	the	fingers	later	on	in	the
code.	Again,	I	won’t	go	over	the	specifics,	as	they	are	not	relevant	to	this	example.

Now,	for	the	meat	of	the	code,	the	getNamedFinger	function—time	to	go	over	some
specifics!	It	takes	three	main	values	when	called;	Hand,	kFingerType,	and	Boolean	telling
it	whether	it’s	parsing	a	left	or	right	hand.	Now,	let’s	break	down	the	contents	of	the
function:

		List<Finger>	fingers	=	new	ArrayList<Finger>();

		for	(Finger	finger	:	hand.fingers())	

				fingers.add(finger);

These	first	few	lines	create	a	basic	list	of	the	(presumably	five)	fingers	on	the	passed	Hand
object.	Let’s	take	a	look	further:

		if	(left)

				Collections.sort(fingers,	Collections.reverseOrder(new	

FingerTipVectorXComparator()));

		else

				Collections.sort(fingers,	new	FingerTipVectorXComparator());

These	next	four	lines	then	order	the	fingers	list	based	on	the	individual	x	axis	of	each
finger,	ordering	them	from	left	to	right	if	it’s	a	right	hand	and	from	right	to	left	if	it’s	a	left
hand,	as	specified	by	the	Boolean	type	passed	to	the	function.	You’ll	notice	that	we	use	the
FingerTipVectorXComparator	class	to	allow	comparisons	between	them	and	the	sorting
of	the	complex	Finger	data	type.	Let’s	move	further:

		if	(fingerName.getValue()	+	1	<=	fingers.size())	return	

fingers.get(fingerName.getValue());

		else	return	new	Finger();

Finally,	these	two	lines	parse	the	fingers	list	for	the	finger	we	want,	as	specified	by	the
kFingerType	enum	passed	to	the	function.

With	that	out	of	the	way,	this	brings	us	to	the	last	block	of	code,	the	onFrame	method.	The
code	is	quite	simple	and	only	prints	out	tracking	data	for	the	rightmost	hand’s	(with
respect	to	the	Leap’s	FOV)	ring	finger.	Try	it	out!	When	it	is	run,	the	output	looks	similar
to	the	output	shown	in	the	following	screenshot:

Now,	in	this	code,	we’re	assuming	that	the	passed	hand	had	five	(or	more,	if	that’s
possible)	fingers,	allowing	the	kFingerType	enumeration	to	map	perfectly	to	the	size	of
the	fingers	list	when	parsing	for	fingers.	In	practice,	this	method	almost	always	works…
the	only	case	where	there	might	be	trouble	is	when	all	your	five	fingers	are	out	but	one	of
your	fingers	isn’t	detected	for	some	reason;	in	this	event,	it	might	mistake	your	thumb	for
your	index	finger,	your	pinky	for	your	ring	finger,	and	so	on—this	is	very	rare,	though.

So,	as	you	can	see,	there	are	some	ways	of	getting	around	this	problem.	Nowadays,
though,	we	can	just	type:

Finger	indexFinger	=	

hand.fingers().fingerType(Finger.Type.TYPE_INDEX).get(0);

Assuming	hand	is	an	instance	of	the	Hand	class,	the	preceding	code	will	simply	assign	the
first	(and	hopefully	the	only)	index	finger	attached	to	a	given	hand	to	the	indexFinger
object.

Lack	of	support	for	custom	gestures
To	be	honest,	the	lack	of	custom	gesture	support	is	(in	my	mind)	not	really	a	problem	for
or	a	drawback	of	the	Leap	Motion	Controller—it’s	actually	a	good	thing.	Why,	you	might
ask?	For	a	moment,	imagine	if	every	application	out	there	was	responsible	for	defining	its
own	set	of	gestures—each	time	you	download	a	new	application,	you’d	need	to	learn	a
(potentially)	entirely	new	set	of	gestures.	That’s	no	fun.

Instead,	by	standardizing	the	usage	of	gestures	and	restricting	developers	to	predefined
ones,	Leap	Motion	guarantees	that	different	apps	will	offer	similar	user	experiences.	This
allows	users	to	transition	from	application	to	application	with	minimal	difficulty,	needing
to	memorize	only	a	few	predefined	gestures.

The	main	point	here	is	this:	avoid	using	custom	gestures!

That’s	it!	Fortunately,	there	are	very	few	common	limitations	and	the	ones	that	exist	can
almost	always	be	overcome	with	a	little	bit	of	extra	code	or	some	minor	redesigns	to	your
user	experience.

Summary
In	this	chapter,	we	went	through	the	more	complex	features	of	the	Leap	as	well	as	some	of
the	things	that	are	going	on	in	the	background.

We	talked	about	the	Leap’s	field	of	view	and	how	it	interacts	with	the	InteractionBox
class,	before	making	a	simple	application	demonstrate	how	vector	coordinates	can	be
normalized	using	this	class.	We	then	went	over	gestures	and	tools	and	how	they	work;
tools	are	basically	really	long,	straight	fingers,	and	gestures	are	unique	patterns	made	by	a
user’s	hands	and	fingers.	We	then	finished	off	this	chapter	with	a	brief	look	at	some	more
common	limitations	of	the	Leap	motion	device	and	its	API	and	how	they	can	be	overcome
or	avoided	in	the	first	place.

In	the	next	chapter,	we	will	dive	into	what	is	arguably	the	most	important	part	of	making
an	application	with	the	Leap:	the	user	experience!

Chapter	3.	What	the	User	Sees	–	User
Experience,	Ergonomics,	and	Fatigue
Armed	with	the	information	to	grab	user	input	and	make	use	of	it,	it’s	time	to	look	at	the
other	half	of	your	application:	the	user.	In	this	chapter,	we’ll	take	a	break	from	the	Leap-
Motion-specific	jargons	and	discuss	a	slew	of	the	common	things	that	developers	can
often	forget,	including	user	fatigue,	ergonomics,	and	the	overall	experience	of	the
application—all	the	while	keeping	in	mind	how	these	apply	to	the	Leap.

In	this	chapter,	we’ll	be	covering	the	following	topics:

When	to	use	the	Leap	(and	more	importantly,	when	not	to)
The	Leap	Motion	user	experience	guidelines
A	note	on	ergonomics	and	user	fatigue
A	case	study:	the	Artemis	Quadrotor	Simulator

Note
This	chapter	is	sprinkled	with	periodic	Fun	facts	that	offer	high-level	and	entry-level
factoids	about	scripting	and	programming	for	your	reading	pleasure.

When	to	use	the	Leap	(and	more
importantly,	when	not	to)
You	just	finished	unpacking	your	shiny	new	Leap	device	and	installing	the	developers’
software	development	toolkit.	You	fire	up	the	Diagnostic	Visualizer	(don’t	be	afraid	to
admit	it;	we	all	know	it’s	a	fun	way	to	pretend	to	be	doing	real	work	when	the	boss	comes
by).	And	then	it	dawns	on	you,	“I	could	make	some	really	awesome	and	amazing
applications	with	this”—applications	such	as	gesture-recognizing	typewriters	or	maybe	a
controller	for	your	robots…yes,	robots.

Hold	that	thought.

This	is	all	fine	and	good	but	what	exactly	should	you	use	the	Leap	for,	aside	from	those
times	when	you	want	to	look	at	three-dimensional	representations	of	your	hands?

Well,	as	an	example	(I	by	no	means	claim	to	have	understood	all	the	possible	applications
for	this	device),	you	can	look	at	the	applications	for	the	Leap	from	two	different	angles;
the	first	is	as	a	replacement	for	preexisting	controls	such	as	joysticks,	keyboards,	and
mice.	The	second,	more	interesting	(in	my	opinion),	is	as	an	entirely	new	interface	that
allows	the	creation	of	applications	that	we’ve	never	even	thought	of	before.

In	the	first	case,	where	you’re	replacing	controls	such	as	joysticks,	keyboards,	and	mice,
you	have	to	ask	yourself,	“Do	I	really	need	to	replace	this	if	it	already	works?	Will	it
improve	the	experience	my	end	users	and	operators	have?”	If	the	answer	to	either	of	these
questions	is	no,	then	you	might	wish	to	rethink	your	strategy—the	Leap	is	there	to	make	a
more	intuitive	experience	for	the	user,	not	a	more	complicated	one!

However,	when	the	time	comes	to	create	an	entirely	new	interface	and	experience,	you’re
in	good	company—that’s	exactly	what	the	Leap	is	for.

The	Leap	Motion	user	experience
guidelines
If	you’ve	developed	applications	for	end	users	before,	you’ve	probably	heard	of	user
experience	(UX).	Oh,	the	user	experience!	Arguably,	it’s	the	single	most	important	part	of
any	Leap-driven	application—heck,	of	any	software	application	really!

Without	a	good	UX,	you’ll	have	users	tearing	their	hair	out	and/or	punching	the	screen	in
frustration	when	even	the	seemingly	simplest	things	they	try	to	do	don’t	go	quite	as
planned.	Or	in	a	milder,	less	drastic	case,	your	user	will	develop	carpal	tunnel	syndrome.
Either	way,	a	good	user	experience	is	better	than	a	bad	one.

Note
Fun	fact

Carpal	tunnel	syndrome	develops	when	excess	strain	is	placed	on	your	hands,	specifically
the	median	nerve	(the	nerve	in	the	wrist	that	allows	feeling	and	movement	to	parts	of	the
hand).	Carpal	tunnel	syndrome	can	lead	to	numbness,	tingling,	weakness,	or	muscle
damage	in	the	hand	and	fingers.	Not	good!

Over	the	course	of	the	next	few	pages,	I’ve	listed	and	expanded	on	the	guidelines	for	user
experience	design	given	by	the	official	Leap	Motion	developers.	The	original	texts	from
the	development	team	are	encased	in	quotes,	for	your	reading	pleasure.

Now,	without	further	ado,	here	are	the	texts	from	the	official	guidelines	with	some	added
commentary:

“Keep	in	mind	that	symbology	can	be	difficult	to	learn	and	memorize.

Avoid	forcing	users	to	learn	complex	hand	gestures	to	interact	with	your
application.”

In	other	words,	avoid	utilizing	complex	Harry	Potter-esque	hand	motions	within	your
application.	While	they’re	really	cool	from	a	developer’s	standpoint,	your	users	are	going
to	hate	you.	Of	course,	there	are	exceptions;	if	you’re	writing	something	such	as	a	sign
language	interpreter	or	perhaps	a	wizard/spell-casting	emulator,	go	right	ahead—just	don’t
make	the	user	draw	an	ampersand	(&)	or	something	to	perform	a	simple	task	such	as
navigating	to	the	next	page	or	confirming	a	dialogue.

“Instead,	draw	inspiration	from	physical	interaction	and	real-world	behaviors.

The	more	physically	inspired	interactions	are,	the	less	training	a	person	needs	and
the	more	intuitive	and	natural	your	application	feels.”

For	example,	if	the	user	needs	to	grab	some	kind	of	object,	a	ball	for	example,	don’t	make
them	tap	or	swipe	the	ball	to	pick	it	up—have	them	literally	grasp	it.	This	exact	task	can
be	achieved	with	a	few	simple	steps:

1.	 Check	whether	the	user’s	palm	coordinates	are	within	the	grabbing	range	of	the	ball.
2.	 If	it	is,	using	the	new	Skeletal	API,	check	whether	the	hand’s	grab	strength	is	within

a	certain	threshold,	such	as	0.7	or	higher.	If	you’re	not	using	the	Skeletal	API,	an
alternative	will	be	to	check	whether	the	hand’s	sphere	radius	is	within	a	given
threshold.

3.	 Finally,	if	all	these	conditions	are	true,	begin	moving	the	ball	in	relation	to	the	user’s
hand.

Little	things	such	as	these	can	make	a	world	of	difference	to	your	users,	even	if	they	do
add	a	bit	more	complexity	to	the	programming	side	of	the	application.

“Don’t	feel	constrained	by	the	limitations	or	inconveniences	of	the	real-world—this
is	your	world.

Interaction	doesn’t	have	to	be	the	way	it	has	always	been.	It	can	be	any	way	we
imagine	it	to	be.	Why	force	the	user	to	reach	all	the	way	out	and	grab	an	object?	Why
not	have	the	object	reach	back?—Give	them	“the	force”!”

There’s	not	a	whole	lot	to	say	about	this	one—it’s	a	fairly	obvious	guideline,	right?

Having	said	that,	just	make	sure	that	if	you	do	something,	you	make	it	consistent!	If	your
world	has	different	rules	for	interaction,	make	sure	that	you	implement	them	in	a
predictable	fashion.	If	you	decide	to	give	your	users	“the	force,”	make	sure	that	they	can
always	use	it	and	don’t	find	themselves	stuck	wondering	why	they	can’t	grab	the	object.

“The	user	should	feel	as	if	their	intent	is	amplified	rather	than	subdued	or	masked.

For	example,	users	often	like	their	movements	to	be	amplified	when	using	a	mouse
(i.e.	they	don’t	need	10	inches	of	mouse	movement	to	move	10	inches	on	screen).	For
gestural	interactions,	amplifying	or	exaggerating	responses	can	have	an	even	more
positive	result.	Keep	in	mind	that	some	people	are	more	sensitive	than	others,	so	link
this	exaggeration	to	a	sensitivity	setting	for	users	to	modify	this	effect	to	their
preference.”

This	one	is	a	pretty	basic	concept	but	an	important	one	nonetheless.	As	a	general	rule,	the
Leap’s	coordinate	system	maps	pretty	well	to	the	virtual	realm…but	even	a	normalized
box	can	only	get	you	so	far.

With	a	little	bit	of	multiplication	(or	division,	if	you’re	one	for	the	decimal	system),	you
can	very	easily	modify	the	Leap	Motion	Controller’s	inputs	and	exaggerate	or	subdue
them.	This	is	particularly	useful	when	you	want	to	incorporate	a	user-adjustable	sensitivity
feature	into	your	application,	allowing	users	to	configure	how	much	(or	little)	they	want	to
move	their	hands	and	fingers	to	achieve	a	given	task.

“Concentrate	on	giving	the	user	dynamic	feedback	to	their	actions.	The	more
feedback	they	have,	the	more	precisely	they	can	interact	with	your	software.

For	example,	the	user	will	need	to	know	when	they	are	“pushing”	a	button,	but	can

be	more	effective	if	they	can	see	when	they	are	hovering	over	a	button,	or	how	much
they	are	pressing	it.”

This	one	is	a	biggy!	In	fact,	I	think	I	spent	more	time	working	with	this	guideline	than
anything	else	on	some	of	the	applications	I’ve	made.

Think	about	it;	how	does	your	user	know	if	they’re	pushing	a	button?	They	can’t	exactly
feel	something	because	their	finger	is	being	waved	around	in	mid-air	and	then	being
projected	into	a	virtual	realm…so,	what	do	you	do?

For	those	of	you	who	are	inclined	toward	modern-day	touch	devices	such	as	tablets	and
smartphones,	you’d	probably	jump	straight	to	basic	haptic	feedback	(vibration)	and	visual
feedback	(transparent	circles	where	the	user	has	touched	and	so	forth).	Unfortunately,	at
the	moment,	we	don’t	have	any	technology	at	hand	(pun	intended)	to	enable	physical
feedback	for	something	you’re	not	physically	touching.	So,	what	do	we	do?

We	give	the	user	as	much	visual	feedback	as	possible.

The	most	common	form	of	visual	feedback	is	in	the	case	of	a	button,	of	course.	The
method	I	use	to	inform	my	users	that	they’re	pushing	a	button	is	to	slowly	expand	the	size
of	the	button	until	it	pops	(triggering	the	button-click	event),	kind	of	like	blowing	up	a
bubble.	Take	a	look	at	the	following	diagram	for	a	better	explanation:

Let’s	take	a	look	at	the	state	of	the	button	throughout	this	process,	starting	at	the	top-left
corner	of	the	diagram:

1.	 The	button	is	inactive	with	no	fingers	pressing	it.
2.	 Finger	enters	the	button	area,	causing	it	to	change	color.
3.	 Finger	remains	in	the	button	area,	causing	the	button	to	expand.
4.	 The	button	pops	and	triggers	any	callbacks	or	events.

Of	course,	there	are	many	different	ways	to	supply	visual	feedback	to	your	user—anything

from	gradually	expanding	buttons	or	onscreen	cursors	to	virtual	representations	of	the
user’s	hands.

Just	remember:	visual	feedback	is	one	of	the	most	powerful	tools	in	your	arsenal	in	order
to	improve	the	user	experience!

“Onscreen	visuals	(such	as	representations	of	hands,	tools,	or	digital	feedback)
should	be	simple,	functional,	and	non-intrusive.

The	user	should	not	be	distracted	from	the	task	by	their	tools	or	environment.
Decoration	should	not	distract	from	your	purpose.”

This	guideline	is	ever-so-slightly	less	important	than	the	other	ones,	but	it	is	still	important
nonetheless.	It’s	good	to	have	a	pretty	(and	somewhat	detailed)	user	interface,	but	don’t
make	the	representation	of	a	hand,	finger,	or	other	element	so	complicated	and	detailed
that	it	draws	away	from	the	main	purpose	of	your	application.

“Require	more	deliberate	actions	for	destructive	or	non-reversible	acts	than	for
harmless	ones.

Subtle	gestures	should	be	reserved	for	subtle	actions.	Conversely,	an	act	such	as
closing	an	application	or	deleting	a	file	can	be	a	non-reversible	event	requiring	a
more	deliberate	action.	Double	check	with	the	user	when	unsure,	such	as	a	prompt
for	confirmation.”

This	is	a	critical	note—don’t	ever	make	it	easy	to	do	destructive,	irreversible	things	such
as	data	deletion	or	save	file	overwrites.	Then	again,	don’t	make	the	gestures	to	perform
operations	such	as	these	so	impossible	that	your	user	can’t	remember	them;	just	exercise
caution.

This	deserves	even	more	attention	due	to	the	very	nature	of	the	Leap	Motion	Controller—
on	a	touch	screen	(tablet,	smartphone,	and	so	on),	you	have	the	option	of	simply	not
touching	the	screen,	thereby	avoiding	the	possibility	of	triggering	any	undesirable	actions.
This	isn’t	the	case	with	the	Leap	Motion	Controller	because	it’s	always	watching	and
waiting	for	input,	meaning	developers	have	to	exercise	a	higher	level	of	caution	when
designing	and	implementing	destructive	actions.

“Provide	a	clear	delineation	and	specific	sense	of	modality	between	acts	of
navigation	and	interaction,	unless	both	are	simple	or	one	is	handled	automatically
(or	with	assistance).	Mixing	the	two	in	a	complex	situation	can	lead	to	confusion	or
disorientation.

For	example,	moving	an	object	while	having	the	user	simultaneously	position	their
viewing	angle	inside	a	3D	environment	is	inherently	difficult.	However,	if	the	viewing
angle	moves	automatically	in	response	to	the	user’s	movement,	then	working	with	the
object	is	easier.	Likewise,	when	navigating	a	large	data	set	the	user	will	want	the
view	to	move	easily,	but	when	highlighting	a	portion	of	the	data	the	view	should
remain	still.”

Essentially,	if	your	application	is	three-dimensional	(in	many	cases,	it	will	be),	make	sure
that	a	lot	of	the	camera	and	viewing	work	is	handled	automatically	in	a	meaningful	way
that	responds	to	current	user	input.

From	personal	experience,	I	can	tell	you	that	trying	to	fly	a	virtual	quadrotor	with	one
hand	while	moving	the	camera	with	another	is	a	very	difficult	task.	Also,	it’s	not	much	fun
or	practical	either.

To	illustrate	this	better,	let’s	take	a	look	at	modern	first-person	shooter	movements	and
camera	controls.	Typically,	you	will	use	two	joysticks	at	any	given	time—one	for	moving
around,	and	one	for	looking	around.	It	can	take	some	people	a	little	getting	used	to	at	first,
but	these	controls	are	very	simple	and	easy	to	use	because	you’re	only	thinking	about
managing	two	fingers.

Now,	let’s	try	doing	the	same	thing,	except	with	your	hands—one	for	moving	around,	and
one	for	controlling	the	camera.	If	you	try,	you	will	notice	that	you	are	suddenly	using	a	lot
more	brain	power	(and	energy)	because	you’re	trying	to	coordinate	and	manage	two	hands
instead	of	two	thumbs.	While	some	people	can	definitely	pull	it	off,	none	of	the	people
I’ve	had	test	my	applications	were	able	to	pick	it	up	and	play	without	a	bit	of	training	and
practice	beforehand,	defeating	the	purpose	of	an	intuitive	interface.

“Overall,	imagine	that	your	user	is	faced	with	no	instructions	or	tutorials	on	how	to
use	your	application.

Strive	at	all	costs	to	make	their	first	intuitive	guesses	the	right	ones.	Where
appropriate,	create	more	than	one	proper	way	to	do	something.”

This	is,	perhaps,	the	most	important	guideline	listed	by	the	Leap	Motion	crew.

If	your	application	can	be	used	without	a	tutorial,	based	purely	on	intuitive	guesses,
you’ve	succeeded.	The	examples	of	this	include	Apple	and	Dropbox;	both	are	famous	for
their	simplicity	and	the	ease-of-use	that	their	platforms	possess.	Always	strive	to	simplify
the	interface	so	that	obvious	things	can	be	done	in	obvious	ways:	tapping	to	trigger
buttons,	grasping	and	grabbing	to	manipulate	objects,	swiping	to	navigate	pages,	and	so
on.

A	lot	of	the	things	we	just	covered	were	relatively	basic	concepts	but	following	and
remembering	them	while	developing	can	mean	the	difference	between	a	happy	set	of	users
and…potentially…no	users	at	all.	Preferably,	you	want	a	happy	set	of	users!

Ergonomics	and	user	fatigue
So,	we	just	finished	covering	the	underlying,	basic	concepts	of	what	makes	a	good,	solid
user	experience.	However,	we	didn’t	cover	two	things	that	also	heavily	impact	the	user
experience:	ergonomics	and	user	fatigue.	I	won’t	spend	too	much	time	on	these	concepts,
as	they	can	be	highly	situational,	but	I	thought	it	might	be	good	if	we	discussed	what	they
are	briefly.

Ergonomics
Have	you	ever	played	a	game	for	a	while	(perhaps	10	hours	straight)	on	a	keyboard	or
gamepad?	Perhaps,	afterwards	you	noticed	that	you	had	severe	wrist	or	hand	cramping
and	pain?	This	is	the	result	of	bad	ergonomics.

The	longer	you	have	a	user	hold	an	interesting	position	or	perform	complex	actions,	the
more	strain	it	puts	on	their	hands,	causing	cramping	over	time.	This	can	be	caused	by
simple	things	such	as	having	the	user	twist	their	palms	about	the	z	axis	(in	other	words,
rotate	their	entire	hand	to	the	left	or	right)	or	more	complex	things	such	as	weaving
complicated	gestures	to	perform	relatively	mundane	actions.

I’m	not	an	expert	at	human	physiology,	but	I	will	say	this:	avoid	having	the	user	perform
actions	such	as	those	previously	listed	whenever	possible,	or	else	you	run	the	risk	of
making	the	user	experience	quite	uncomfortable!

User	fatigue
You	could	say	that	the	concept	of	user	fatigue	is	less	obvious	than	that	of	ergonomics	and
is	a	bit	more	exclusive	to	human	interfaces	such	as	the	Leap	device.	Sometimes,	though,	it
can	directly	affect	the	ergonomics	(and	vice	versa)!

In	its	simplest	form,	user	fatigue	is	caused	by	having	the	user	perform	a	given	action	for
an	extended	period	of	time,	effectively	tiring	them	out.	This	can	be	demonstrated	by	some
apps	where	you	have	to	hold	your	hand	out	to	control	the	throttle	on	a	ship	or,	in	the	case
of	my	quadrotor	simulator	(which	we’ll	discuss	next),	control	the	direction	of	movement
of	some	kind	of	object.	Sometimes,	this	is	unavoidable!

However,	when	possible,	try	to	avoid	actions	that	induce	user	fatigue;	favor	short,	quick
interactions	with	the	screen	as	opposed	to	long,	continuous	actions.	Giving	the	user	the
ability	to	remove	their	hands	from	the	field	of	view	between	interactions	without	affecting
the	application	can	also	be	a	very	important	tool	when	attempting	to	mitigate	user	fatigue.

If	your	application	requires	uninterrupted	precision	control	for	long	periods	of	time,	it’s
possible	that	the	Leap	is	not	the	correct	choice	for	your	application’s	user	interface.

Always	keep	an	eye	out	for	how	you	can	make	your	application	more	comfortable	and	less
tiring	for	the	user.	However,	don’t	try	to	accommodate	the	user	so	much	that	it	detracts
from	the	functionality	of	your	application—that’s	no	good	either!

A	case	study	–	the	Artemis	Quadrotor
Simulator
Throughout	this	book	(and	chapter),	you’ve	probably	noticed	that	I’ve	made	a	few
comments	here	and	there	about	one	of	my	first	Leap	projects,	a	quadrotor	simulator	called
Artemis.	To	complete	this	chapter,	I	thought	I’d	spend	some	time	talking	about	how	I
developed	the	user	experience	for	Artemis	using	an	assortment	of	methods.	Visual
feedback	took	the	form	of	many	things	in	Artemis,	including	hands,	height	meters,	fuel
gauges	and	copies	of	the	Leap’s	tracking	data	(for	debugging),	as	shown	here:

Play	testing	and	why	you	should	do	it
First,	play	testing	or	hallway	testing	is	the	art	of	grabbing	an	unsuspecting	friend	or	co-
worker	from	the	Internet	or	proverbial	hallway	and	making	them	sit	down	in	front	of	your
application	to,	well,	use	it.	If	you’ve	developed	any	frontend	applications	before,	you’re
probably	already	familiar	with	this	concept.	Trust	me,	it	helps	a	lot.

By	having	your	friends	and	coworkers	(who	have	potentially	never	even	seen	your
application)	interact	with	your	program,	you	can	see	how	people	try	to	use	it	versus	how
you	intended	them	to	use	it.	I’ll	repeat	myself	yet	again,	saying	that	this	is	a	fairly	basic
concept	of	user	experience,	but	it’s	still	a	concept.	Also,	it	applies	to	the	Leap.

When	performing	play	testing,	it’s	important	that	you	don’t	tell	your	testers	how	the
application	works.	This	will	allow	you	to	observe	what	they	try	to	do	in	comparison	to
what	you	want	them	to	do.	Do	they	get	frustrated?	Do	they	try	to	do	things	you	didn’t
anticipate	or	code?	These	are	all	important	things	to	know	when	creating	a	user
experience.

With	Artemis,	I	set	out	to	make	an	application	that	would	allow	anyone	to	control	a	virtual
quadrotor	with	just	their	hand.	Originally,	I	used	the	x,	y,	and	z	coordinate	system	on	the
Leap	to	control	the	motion	of	the	quadrotor,	as	seen	in	the	following	diagram:

However,	this	didn’t	work	quite	as	well	as	I’d	hoped.	When	my	friend	tried	to	take	control
over	the	quadrotor,	it	went	just	everywhere	except	where	he	wanted	it	to	go.	What	I	soon
noticed	was	that	every	person	I	put	in	front	of	the	simulator	would	try	to	tilt	their	hand	to
control	the	motion	of	the	quadrotor,	as	if	the	virtual	quadrotor	became	a	literal	extension
of	their	hand.

After	seeing	the	same	behavior	over	and	over	again,	I	modified	the	controls	to	use	the
pitch	and	roll	of	the	hand	instead	so	that	if	a	user’s	hand	were	to	tilt	forward,	the	virtual
quadrotor	would	tilt	forward,	and	so	on.	You	can	see	a	diagram	of	how	this	works	here:

After	making	this	change,	I	asked	my	friends	to	try	using	the	simulator	one	more	time.
This	time	they	were	able	to	navigate	an	obstacle	course	just	fine	and	found	it	natural	on
the	first	try!

As	you	can	see,	play	testing	can	help	you	to	discover	tiny	issues	that	impact	the
experience	of	the	user	tremendously,	allowing	you	to	fix	these	issues	before	making	a
release	of	your	application.

Providing	as	much	visual	feedback	as	possible
When	I	first	began	creating	Artemis,	I	was	trying	to	make	a	controllable	three-dimensional
version	of	a	quadrotor	to	test	my	Leap	with,	as	I	didn’t	want	to	crash	one	of	my	real	ones
(after	all,	watching	a	thousand	dollars	of	hardware	plummet	viciously	to	the	ground	isn’t	a
good	time	for	anyone,	especially	the	owner).	Thus,	the	visual	feedback	of	what	was	going
on	in	my	simulator’s	brain	was	a	key	concept	during	development!	You	can	see	an
assortment	of	the	various	things	used	in	a	3D	application	like	Artemis	to	provide
feedback;	a	virtual	hand,	a	giant	green	radar	arrow,	and	more,	in	the	following	screenshot:

At	this	point	in	time,	I	had	seen	a	few	Leap	applications	here	and	there	that	used	different
methods	to	show	user	input;	the	more	2D-oriented	apps	used	little	dots	on	the	screen	to
represent	fingers,	whereas	the	more	3D-oriented	ones	used	simplistic	models	of	the	user’s
entire	hand	on	the	screen.

I	opted	for	the	3D-oriented	approach.

After	a	few	hours	of	testing	and	debugging,	I	finally	had	a	working	solution	to	render
hands	on	screen,	as	seen	in	the	following	screenshot:

Allow	me	to	explain	the	preceding	screenshot.	On	the	left-hand	side	of	the	screen,	you	can
see	frozen	tracking	data	for	a	person’s	left	hand	within	the	Leap’s	diagnostic	visualizer.	On
the	right,	you	can	see	five	blue	cubes	and	a	larger	blue	rectangle,	which	represent	the	same
left	hand’s	fingers	and	palm,	respectively—except	in	the	virtual	game	space.

After	adding	this	feature,	I	sat	one	of	my	friends	down	in	front	of	the	computer	yet	again
and	asked	them	to	fly	the	virtual	quadrotor	around.	They	were	now	able	to	control	the
quadrotor	even	better,	thanks	to	the	visual	feedback	of	being	able	to	see	what	the	Leap	is
seeing.

Before	I	added	this	feature,	we	would	tilt	our	hands	around	randomly,	hoping	the
quadrotor	was	seeing	our	real	hands	and	moving	in	response.	After	this	addition	though,
the	user’s	confidence	shot	through	the	roof,	as	they	were	able	to	see	what	the	Leap	was
seeing	and	know	that	the	simulator	was	reflecting	the	desired	actions.

Another	feature	that	I	added	towards	the	end	of	the	development	was	visual	feedback	on
buttons.	We’ve	discussed	how	you	can	apply	visual	feedback	to	buttons	in	this	chapter
already,	but	I’ll	go	ahead	and	reiterate.	By	notifying	users	when	they’re	interacting	with	a
button,	you	can	give	them	increased	confidence	and	prevent	them	from	doing	things	they
don’t	necessarily	want	to	do.	Now,	refer	to	the	following	two	screenshots:

In	this	first	screenshot,	you	can	see	the	Start	menu	of	Artemis	with	my	left	hand	in	the
field	of	view.	At	this	moment,	none	of	the	buttons	are	engaged	and	everything	is	idle.

In	this	second	screenshot,	you	can	see	the	same	Start	menu.	However,	now	I’ve	moved
one	of	the	fingers	of	my	left	hand	over	the	play	button	and,	if	you	look	closely,	you	can
see	it	starting	to	expand—it	will	continue	to	expand	until	it	pops,	so	to	speak,	taking	the
user	to	the	actual	game.

As	you	can	see,	this	simple	visual	addition	can	tremendously	improve	the	feedback	that

the	user	has.

Of	course,	some	more	advanced	users	might	not	want	to	wait	for	a	full	second	to	trigger	a
button.	In	this	case,	you	might	consider	implementing	a	configuration	setting	that	shortens
the	delay	to	half	a	second	or	less.	Ultimately,	the	decision	lies	with	the	developer…and	the
play	testers!

Note
Another	thing

It’s	always	a	good	thing	to	notify	the	user	if	their	Leap	Motion	Controller	is	plugged	in
and	detected	by	your	application.	If	they	have	no	way	of	knowing	this	information,	they
might	think	that	your	application	is	just	plain	unresponsive,	even	if	there	are	other	forces
at	work.

In	the	preceding	screenshot,	you	can	see	a	little	indicator	in	the	bottom	left	side	(if	you
look	closely)	that	says	Leap	Motion	Controller:	Connected;	in	the	event	that	the	device
gets	disconnected,	this	text	changes	to	Leap	Motion	Controller:	Disconnected	to	notify
the	user	that	something	is	amiss.

That’s	it	–	for	now!
This	pretty	much	summarizes	the	user	experience	aspects	of	Artemis—between	play
testing,	rendering	users’	hands,	and	providing	visual	feedback	for	button	presses,	I	was
able	to	satisfy	the	requests	of	everyone	who	had	ever	picked	up	and	played	it.

So,	remember:	always	give	the	users	some	kind	of	relevant	visual	feedback	and	always
make	sure	that	your	interface	is	as	natural	as	possible.	When	in	doubt,	grab	some	friends
and	do	some	play	testing	or	hallway	testing,	whatever	you	prefer	to	call	it!

Summary
In	this	chapter,	we	covered	a	series	of	more	abstract	concepts	related	to	the	Leap,
including	the	user	experience,	ergonomics,	fatigue,	and	even	a	brief	case	study.

You	learned	about	the	different	guidelines	that	Leap	developers	have	in	place	for
designing	a	user	experience	and	the	author’s	interpretation	of	these	guidelines	based	on
past	experiences.	We	then	briefly	covered	why	it’s	important	to	pay	attention	to
ergonomics	and	user	fatigue	without	compromising	the	functionality	of	an	app.	We
finished	this	chapter	with	a	brief	case	study	of	the	Artemis	Quadrotor	Simulator	and	how
its	user	experience	was	developed.

In	the	next	chapter,	we’re	going	to	begin	writing	a	two-dimensional	drawing	application
using	all	the	things	we’ve	learned	up	until	now!

Chapter	4.	Creating	a	2D	Painting
Application
As	you	are	familiar	with	all	the	essentials	of	the	Leap	Motion	device,	you	should	now
have	mastered	the	basic	concepts	of	developing	with	it.	How	about	we	apply	that
knowledge	to	make	a	two-dimensional	painting	application?	In	this	chapter,	we’ll	create	a
painting	application	with	the	Java	programming	language	and	the	Leap	Motion	API	called
Leapaint.	Here	we	go!

In	this	chapter,	we’ll	be	covering	the	following	topics:

Laying	out	the	framework	for	Leapaint
Creating	the	graphical	frontend
Interpreting	Leap	data	for	rendering	on	the	graphical	frontend
Testing	the	application
Improving	the	application

Note
This	chapter	involves	writing	an	application	entirely	in	the	Java	programming	language.
Many	of	the	user	interface	items	will	not	be	directly	portable	to	other	languages,	as	Swing
is	heavily	utilized.	However,	the	core	logic	and	design	is	easily	transferrable	to	languages
such	as	C/C++,	Python,	and	so	forth.

You	can	find	more	information	about	the	Java	Swing	API	on	Oracle’s	official	website	at
http://docs.oracle.com/javase/7/docs/technotes/guides/swing/.

This	chapter	is	sprinkled	with	periodic	Fun	facts	that	offer	high-level	and	entry-level
factoids	about	scripting	and	programming	for	your	reading	pleasure.

http://docs.oracle.com/javase/7/docs/technotes/guides/swing/

Laying	out	the	framework	for	Leapaint
We’re	going	to	jump	straight	into	working	in	this	chapter!	Have	a	look	at	the	following
screenshot,	which	shows	the	Leapaint	package:

The	first	step	in	creating	Leapaint	will	be	laying	out	the	baseline	framework	of	files	(or
classes,	if	you	will)	that	we’ll	be	using.	This	first	section	will	involve	writing	skeleton
versions	of	the	three	primary	classes	in	Leapaint;	these	classes	will	contain	all	the
variables	and	functions	that	the	final	ones	contain,	without	going	overboard	in	defining
what	the	functions	actually	do.

Before	we	begin	writing	any	code,	create	the	following	three	files	in	Eclipse	and	place
them	in	a	package	under	the	src	directory	in	a	new	Java	project,	as	seen	in	the	preceding
screenshot:

Leapaint.java	(the	main	file)
LeapaintListener.java	(the	Leap	interface)
LeapButton.java	(a	special	class	for	Leap-enabled	buttons)

Note
If	you	are	unsure	as	to	how	to	do	the	things	listed	here,	refer	back	to	the	first	chapter	on
setting	up	Java	projects	in	Eclipse.	Keep	in	mind	that	we’re	making	an	entirely	new
project,	so	don’t	reuse	the	one	from	Chapter	1,	Introduction	to	the	World	of	Leap	Motion.

With	those	files	created,	let’s	go	ahead	and	talk	about	what	each	of	them	will	do	when
we’re	done	writing	code.

The	LeapaintListener	class,	as	the	name	suggests,	is	our	Leap	Listener	implementation
for	this	project.	It	will	be	designed	to	read	values	from	the	Leap	Motion	Controller,
normalize	them	based	on	the	InteractionBox	class,	and	then	forward	their	coordinates	to
the	main	Leapaint	class.	It	is	also	responsible	for	checking	whether	fingers	are	hovering
over	buttons	and	then	triggering	the	said	buttons	if	they	are.

The	LeapButton	class	represents,	as	you	might	expect,	a	Leap-enabled	button.	This	class
renders	buttons	on	screen	that	are	capable	of	visually	expanding	and	then	popping	when
they	are	triggered.	Technically,	this	class	does	not	contain	any	Leap	Motion	code;	instead,
it	relies	on	an	external	class	or	function	(the	LeapaintListener	class	in	this	case)	to
trigger	and/or	stop	the	expansion	of	the	button.

Finally,	we	have	the	Leapaint	class,	which	is	our	main	class	in	this	project.	This	class
controls	the	graphical	user	interface	(GUI)	of	our	application,	allowing	the	various
buttons	and	lines	that	we	draw	to	be	rendered	onto	the	user’s	screen.	In	addition,	it
initializes	and	coordinates	the	LeapaintListener	and	LeapButton	classes.	This	class	is
the	glue	that	holds	our	project	together.

When	you	put	all	of	these	classes	together,	you	will	have	a	working	application	that	allows
a	user	to	use	their	fingers	to	draw	on	screen,	just	like	in	the	following	screenshot:

Now	then,	let’s	go	ahead	and	start	off	by	writing	the	smallest	class	in	the	Leapaint	project,
LeapButton.

LeapButton.java
First	up	is	the	LeapButton	class.	This	class	extends	the	basic	functionality	of	the	JButton
class	in	Java’s	Swing	API	by	adding	the	ability	to	trigger	visual	inflation	and	deflation	of
the	button	to	allow	for	visual	feedback	when	using	the	Leap	to	push	buttons.

Let’s	start	by	writing	the	bare-bones	file	with	all	the	data	members	and	function
definitions.	When	you	finish	writing,	the	file	should	look	something	like	this	(don’t	forget
to	add	an	appropriate	package	definition	to	the	top	such	as	package
com.mechakana.tutorials):

import	java.awt.Color;

import	java.awt.Dimension;

import	java.awt.Rectangle;

import	javax.swing.JButton;

public	class	LeapButton	extends	JButton

{

		//Expanding	state	of	the	button.

		private	boolean	expanding	=	false;

		//Original	button	size.

		private	int	originalSizeX,	originalSizeY;

		//Button	expansion	multiplier;	defaults	to	1.5	times	as	big.

		private	double	expansionMultiplier;

		//Allow	expansion?

		public	boolean	canExpand	=	false;

		//Constructor

		LeapButton(String	label,	double	expansionMultiplier)

		{

				//Always	call	the	superclass	methods	with	Swing.

				super(label);

				//Assign	values.

				this.expansionMultiplier	=	expansionMultiplier;

		}

		//Member	Function:	getBigBounds	–	We'll	write	this	later!

		public	Rectangle	getBigBounds()	{	return	new	Rectangle();	}

		//Member	Function:	expand	–	We'll	write	this	later!

		public	void	expand()	{	}

}

As	you	can	see,	this	class	is	pretty	simple—there	are	a	few	data	members	to	keep	track	of
basic	state	information	and	a	constructor	to	define	the	name	of	the	button.

Note
At	this	point,	you’re	most	likely	going	to	see	several	warnings	(and	possibly	errors)	in

Eclipse	that	will	tell	you	certain	variables	aren’t	being	used—or	possibly	don’t	even	exist!
Don’t	worry	about	this,	as	we	will	be	writing	code	later	on	that	will	make	full	use	of	these
variables.

If	you	were	to	add	an	instance	of	this	class	to	a	JFrame	class	(more	on	this	later),	you’d
already	see	a	full-fledged	button	appear	on	screen;	the	Java	Swing	API	has	a	way	with
simplifying	a	lot	of	the	work	for	us	developers.

However,	before	we	get	ahead	of	ourselves,	let’s	proceed	to	writing	the	other	two	skeleton
files.	We’re	not	going	to	write	the	actual	functions	for	getBigBounds	and	expand	in	the
LeapButton	class	just	yet,	as	we’re	still	laying	out	a	basic	framework.

LeapaintListener.java
Next	up	is	the	LeapaintListener	class.	This	class	will	allow	our	main	class,	Leapaint,	to
communicate	with	the	Leap	Motion	device—this	is	where	all	the	fun,	Leap-related	stuff
will	happen.

Your	skeleton	file	should	look	something	like	this	when	you’re	done	writing,	again
omitting	the	content	of	some	member	functions:

import	com.leapmotion.leap.*;

public	class	LeapaintListener	extends	Listener

{

		//Leap	interaction	box.

		private	InteractionBox	normalizedBox;

		//Leapaint	instance.

		public	Leapaint	paint;

		//Controller	data	frame.

		public	Frame	frame;

		//Constructor.

		public	LeapaintListener(Leapaint	newPaint)

		{

				//Assign	the	Leapaint	instance.

				paint	=	newPaint;

		}

		

		//Member	Function:	onInit

		public	void	onInit(Controller	controller)

		{

		System.out.println("Initialized");

		}

		

		//Member	Function:	onConnect

		public	void	onConnect(Controller	controller)

		{

				System.out.println("Connected");

		}

		

		//Member	Function:	onDisconnect

		public	void	onDisconnect(Controller	controller)

		{

				System.out.println("Disconnected");

		}

		

		//Member	Function:	onExit

		public	void	onExit(Controller	controller)

		{

				System.out.println("Exited");

		}

		

		//Member	Function:	onFrame	–	We'll	write	this	later!

		public	void	onFrame(Controller	controller)	{	}

}

Unlike	our	previous	LeapButton	class,	this	one	requires	a	bit	of	explanation	before	we
charge	ahead	to	the	next	class.

As	we	discussed	earlier,	the	Listener	class	within	the	Leap	Motion	API	is	our	primary
entry	point	into	accessing	Leap	tracking	data;	needless	to	say,	there	are	numerous
functions	for	us	to	define	(technically,	we	are	overriding	the	functions)	in	any	Listener
implementation,	if	we,	as	developers,	so	desire.	The	LeapButton	class	is	no	exception	to
this,	and	the	following	are	several	examples	of	these	functions:

The	onInit	function	is	called	when	the	Leap	Motion	software	itself	initializes;	this	is
not	to	be	confused	with	the	Leap	Motion	Controller	being	connected	or	initialized.
The	onConnect	function	is	called	when	the	Leap	Motion	software	connects	to	a
physical	Leap	Motion	Controller.
The	onDisconnect	function	is	called	when	the	Leap	Motion	software	is	disconnected
from	a	physical	Leap	Motion	Controller.
The	onExit	function	is	called	when	the	Listener	class	disconnects	from	the	Leap
Motion	software.
Finally,	the	onFrame	function	is	called	whenever	the	Listener	class	receives	a	new
frame	from	the	physical	Leap	Motion	Controller;	this	function	can	be	thought	of	as	a
sort	of	while	or	for	loop.	This	is	where	we’ll	be	doing	all	of	the	work	with	the	Leap
later	on	in	this	chapter.
As	a	general	rule,	the	functions	previously	listed	will	be	called	in	this	order
(assuming	a	controller	is	already	connected	to	the	computer	and	nothing	goes	terribly
wrong):

onInit

onConnect

onFrame	(called	many	times	per	second)
onDisconnect

onExit

You	can	find	in-depth	documentation	on	these	functions	at	the	official	Leap	Motion
website,	http://developer.leapmotion.com/.

Now,	let’s	move	onto	the	final	bare-bones	class	that	we’ll	be	writing	before	we	begin
fleshing	out	the	details.

http://developer.leapmotion.com/

Leapaint.java
Lastly,	we	have	the	Leapaint	class.	This	is	the	main	class	for	our	project,	so	needless	to
say,	it’s	very	important!	Not	only	does	it	initialize	the	LeapListener	class	and	configure
all	the	LeapButton	instances,	but	it	also	contains	almost	all	of	the	graphical	user	interface
and	code.

The	skeleton	file	should	look	something	like	this	by	the	time	you	finish	writing	in	code.
For	instructional	and	reference	purposes,	the	relevant	Leap-related	lines	have	been
highlighted:

import	java.awt.BasicStroke;

import	java.awt.BorderLayout;

import	java.awt.Color;

import	java.awt.FlowLayout;

import	java.awt.Graphics;

import	java.awt.Graphics2D;

import	java.awt.Point;

import	java.awt.Rectangle;

import	java.awt.Robot;

import	java.awt.event.ActionEvent;

import	java.awt.event.ActionListener;

import	java.awt.image.BufferedImage;

import	java.io.File;

import	java.util.ArrayList;

import	java.util.List;

import	javax.imageio.ImageIO;

import	javax.swing.Box;

import	javax.swing.JFrame;

import	javax.swing.JPanel;

import	com.leapmotion.leap.Controller;

public	class	Leapaint	extends	JFrame

{

		//Static	reference	to	this	class.

		private	static	Leapaint	paint;

		//X,	Y	and	Z	coordinates	of	the	user's	finger.		These	are	set	via	the	

LeapaintListener	class.

		public	int	prevX	=	-1,	prevY	=	-1;

		public	int	x	=	-1,	y	=	-1;

		public	double	z	=	-1;

		//Current	drawing	color.

		public	Color	inkColor	=	Color.MAGENTA;

		/Line	data	structure	used	to	keep	track	of	the	lines	we'll	be	drawing.

		public	class	Line

		{

				public	int	startX,	startY,	endX,	endY;

				public	Color	color;

				Line(int	startX,	int	startY,	int	endX,	int	endY,	Color	color)

				{

						this.startX	=	startX;

						this.startY	=	startY;

						this.endX	=	endX;

						this.endY	=	endY;

						this.color	=	color;

				}

		}

		//Lines	drawn.	We	need	to	keep	track	of	these,	or	they'll	be	lost	every	

time	the	screen	refreshes.

		public	List<Line>	lines	=	new	ArrayList<Line>();

		//Leap-enabled	buttons.

		public	LeapButton	button1,	button2,	button3,	button4;

		//Panels	that	we'll	be	drawing	on.

		public	JPanel	buttonPanel;

		public	JPanel	paintPanel;

		//Constructor—We'll	write	this	later!

		Leapaint()	{	}

		//Member	Function:	saveImage—we'll	write	this	later!

		public	void	saveImage(String	imageName)	{	}

		//Member	Function:	main

		public	static	void	main(String	args[])

		{

				//Create	a	new	instance	of	the	Leapaint	class.

				paint	=	new	Leapaint();

				//Create	a	new	listener	and	controller	for	the	Leap	Motion	device.

				LeapaintListener	listener	=	new	LeapaintListener(paint);

				Controller	controller	=	new	Controller();

				//Start	the	listener.

				controller.addListener(listener);

		}

}

This	file	has	just	a	little	bit	more	going	on	compared	to	the	previous	ones…and	we	haven’t
even	started	filling	in	the	empty	constructors	and	functions	yet.

The	more	mundane	items	in	this	class,	such	as	the	Line	class	and	its	respective	array,	are
relatively	straightforward	and	easy	to	understand,	so	I	will	let	the	code	and	comments	do
the	explaining	for	those.

There	are	a	few	lines	of	code	that	I’d	like	to	provide	a	short	explanation	for,	nonetheless,
as	they	are	intrinsic	to	the	Leap	side	of	this	class’s	functionality:

The	field,	public	int	x,	y,	is	set	by	the	LeapaintListener	class	from	the	outside
using	normalized	screen	coordinates	and	are	used	for	drawing	the	lines	and	cursors

The	field,	public	double	z,	is	also	set	by	the	LeapaintListener	class	and	is	used	to
both	provide	visual	feedback	to	the	user	and	determine	when	to	draw	lines

I’d	also	like	to	bring	your	attention	to	the	last	three	lines:

LeapaintListener	listener	=	new	LeapaintListener(paint):	This	line	creates	a
new	instance	of	our	LeapaintListener	class	and	passes	in	the	Leapaint	instance,
paint,	that	we	initialized	on	the	previous	line.
Controller	controller	=	new	Controller():	This	line	creates	a	new	instance	of
the	Leap	API’s	Controller	class,	in	turn	creating	our	entry	point	to	connect	to	the
Leap	Motion	control	software.
controller.addListener(listener):	This	line	registers	our	LeapaintListener	(or
Listener	if	you	will)	instance	with	the	Leap	Motion	software,	allowing	it	to	receive
callbacks	for	the	various	functions	that	we	talked	about	at	the	end	of	the
LeapListener.java	section	of	this	chapter.

Many	(if	not	all)	applications	that	involve	the	Leap	Motion	Controller	will	end	up	using
these	three	lines	somewhere	along	the	line	(pun	not	intended),	no	matter	how	simple	or
complex	the	application	in	question	might	be.

At	this	point,	we	now	have	three	basic	classes	loaded	up	with	a	lot	of	variables	and	empty
member	functions.	If	you	were	to	run	the	application	now,	there	probably	wouldn’t	be	any
errors…but	nothing	would	really	happen….	So,	how	about	we	start	filling	in	those
functions?

Creating	the	graphical	frontend
With	our	skeleton	framework	written	and	laid	out,	we	can	now	work	on	flushing	out	the
graphical	component	of	Leapaint.	As	we’re	using	the	Java	programming	language	for	this
application,	we	will	write	the	graphical	side	of	things	using	the	Java	Swing	API.	First	up
is	the	LeapButton	class.

Note
As	you	read	this	section	and	the	remainder	of	this	chapter,	keep	in	mind	that	as	this	book
is	titled	Mastering	Leap	Motion	and	not	Mastering	the	Java	Swing	API,	I	will	not	be
discussing	the	fine	details	of	what	the	Swing	API	calls	are	doing	or	how	they	work.

Making	a	responsive	button	–	the	LeapButton	class
It’s	time	to	make	your	first	Leap-driven,	visually	responsive	button.	There	are	many,	many
different	ways	to	go	about	coding	the	logic	behind	a	button	for	the	Leap	Motion
Controller,	and	less	so	when	you’re	integrating	with	a	preexisting	API	such	as	Java’s
Swing.

Our	LeapButton	class	does	not	listen	to	or	otherwise	check	the	values	coming	out	of	the
Leap	Motion	Controller.	Instead,	it	relies	on	an	external	class	or	function
(LeapaintListener	in	this	case)	to	tell	it	what	to	do.

In	order	for	us	to	achieve	this	behavior,	I’ve	incorporated	two	functions	into	the
LeapButton	class,	which	more	or	less	make	up	the	entirety	of	the	class.

Note
A	brief	disclaimer:	the	LeapButton	class	is	not	the	be-all	and	end-all	way	of	designing	an
interactive	and/or	responsive	button	for	Leap	Motion.	Rather,	it	is	the	most	simple	and
direct	method	I	could	think	of	for	this	chapter.	However,	it	works,	and	it	works	well.

Getting	our	bounds
The	first	function,	getBigBounds,	will	be	used	by	our	LeapListener	class	to	detect	where
the	button	is	on	the	screen	and	whether	or	not	a	finger	is	within	it.	In	essence,	this	function
returns	an	exaggerated	version	of	the	location	and	size	of	the	button	on	screen,	making	it
easier	for	users	to	trigger.

Shown	next	is	the	aforementioned	function.	You	should	replace	the	contents	of	the
placeholder	getBigBounds	function	that	we	wrote	earlier	in	LeapButton.java	with	the
following	lines	of	code:

//Retrieve	original	bounds.

Rectangle	rect	=	getBounds();

//Increase	height	and	width	of	the	button.

rect.width	=	rect.width	+	30;

rect.height	=	rect.height	+	30;

//Reposition	the	button	so	that	its	central	coordinates	more	or	less	remain	

the	same.

rect.x	=	rect.x	-	15;

rect.y	=	rect.y	–	15;

//Return	the	new	button	size.

return	rect;

That’s	it!	At	the	end	of	the	day,	it’s	a	very	simple	function;	now	for	the	slightly	more
complex	function.

Visually	responding	to	the	user
The	second	function,	expand,	does	exactly	what	it	says:	it	makes	the	LeapButton	visually
enlarge	until	it	pops,	triggering	any	registered	callbacks.	This	function	fulfills	one	of	the

requirements	for	good	design	that	we	discussed	in	the	previous	chapter,	giving	the	user
visual	feedback.

Unlike	what	you	might	expect,	this	function	is	not	integrated	with	the	Leap	Motion	device
in	any	shape	or	form;	it	is	purely	math	and	logic	driven,	being	triggered	and	stopped	from
the	outside	by	our	LeapaintListener	class.

In	order	for	the	button	to	cleanly	expand	and	contract	without	halting	our	main	execution
loop,	this	function	starts	an	anonymous	inner	thread	that	handles	the	logic	behind
expanding	the	button,	popping	the	button,	triggering	any	callbacks,	and	then	resetting	the
button.	At	any	given	point,	this	thread	can	be	effectively	terminated	by	setting	the
canExpand	member	variable	to	false	from	outside	the	LeapButton	instance,	which	we’ll
demonstrate	later	on.

The	expand	function	is	used	in	the	following	code.	Again,	you	should	replace	the	contents
of	the	placeholder	expand	function	that	we	wrote	earlier	in	LeapButton.java	with	the
content	of	this	one:

//Don't	start	anything	if	this	button	is	already	expanding.

if	(!expanding)

{

		//Begin	expanding.

		canExpand	=	true;

		expanding	=	true;

		//Create	an	anonymous	inner	thread,	so	as	not	to	freeze	the	main	loop.

		(new	Thread()

		{

				public	void	run()

				{

						//Change	the	button's	color	to	green	for	even	better	visual	feedback.

						Color	originalColor	=	getBackground();

						setBackground(Color.green);

						//Store	the	original	button	size.

						originalSizeX	=	getPreferredSize().width;

						originalSizeY	=	getPreferredSize().height;

						//Calculate	the	target	size	based	on	this	LeapButton's	expansion	

multiplier.

						int	targetSizeX	=	(int)	(originalSizeX	*	expansionMultiplier);

						int	targetSizeY	=	(int)	(originalSizeY	*	expansionMultiplier);

						//Calculate	the	amount	to	increase	button	size	by	in	terms	of	steps.

						int	stepX	=	(targetSizeX	–	originalSizeX)	/	10;

						int	stepY	=	(targetSizeY	–	originalSizeY)	/	10;

						//Loop	while	expanding	is	ok	and	we	haven't	reached	the	target	size.

						while	(canExpand	&&	getPreferredSize().width	<	targetSizeX)

						{

								//Increase	button	size.

								setPreferredSize(new	Dimension(getPreferredSize().width	+	stepX,	

getPreferredSize().height	+	stepY));

								//Repaint	(update)	the	button.

								revalidate();

								//Wait	a	moment	before	increasing	size	again.

								try	{	Thread.sleep(75);	}

								catch	(Exception	e)	{	}

						}

						//Trigger	all	callbacks	if	the	button	size	on	loop	exit	meets	or	

exceeds	our	target	expansion	size.

						if	(getPreferredSize().width	>=	targetSizeX)	doClick();

						//Otherwise,	revalidate	(update)	the	button	to	make	sure	renders,	

since	doClick()	would	normally	handle	this.

						else

						revalidate();

						//Reset	the	size	of	the	button	to	its	original	dimensions.

						setPreferredSize(new	Dimension(originalSizeX,	originalSizeY));

						//Revalidate	(update)	the	button.

						revalidate();

						//This	button	is	no	longer	expanding.

						expanding	=	false;

						//Restore	the	original	button	color.

						setBackground(originalColor);

				}

		}).start();

}

So,	setting	aside	the	fact	that	this	was	a	good	chunk	of	code	you	just	wrote	(or	read),	the
overall	content	of	the	function	is	relatively	straightforward:

1.	 First,	we	check	whether	the	button	is	already	expanding	and	exit	if	it	is.
2.	 We	make	a	note	of	the	button’s	current	color	and	then	switch	it	to	another	one.
3.	 We	obtain	the	current	size	of	the	button	and	then	calculate	how	big	it	should	grow	to

be.
4.	 We	then	use	the	data	from	the	previous	step	to	calculate	how	many	pixels	the	button

should	increase	size	by	so	that	we	perform	more	or	less	exactly	10	steps	over	the
course	of	a	second.

5.	 Now	we	enter	a	loop,	continuously	incrementing	the	size	of	the	button	and	waiting
for	a	fraction	of	a	second	until	the	button	is	told	to	no	longer	expand	or	it	reaches	the
target	size.

6.	 We	exit	the	loop,	triggering	any	registered	callbacks	if	the	button	managed	to	fully
expand.

7.	 Finally,	we	completely	reset	the	state	of	the	button	and	exit	the	function.
8.	 Even	better,	this	process	can	be	applied	to	any	programming	language	with	any	API.

It’s	not	exclusive	to	Java	in	any	way;	in	fact,	there	are	very	few	Swing-specific
method	calls	in	this	function!

You	can	see	this	expansion	method	in	action	in	the	following	screenshot	on	the	finished
version	of	the	Leapaint	application:

Note
If	you	run	the	application	right	this	moment,	you	will	not	see	anything	like	the	preceding
screenshot,	as	we	haven’t	written	the	Leap	tracking	code	or	the	graphical	frontend.

Now	it’s	time	to	move	on	to	the	graphics-heavy	class	and	the	brunt	of	the	Leapaint
application’s	coding,	Leapaint!

Making	a	graphical	user	interface
The	Leapaint	class,	as	you’ve	probably	gathered	from	the	name,	is	central	to	the
application	we’re	creating;	it	houses	the	main	GUI	components,	it	starts	up	all	of	the
services,	and	it	generally	just	ties	everything	together.	Now,	we	just	have	to	fill	in	the
blanks	that	were	left	in	the	skeleton	version	we	wrote	earlier,	starting	with	the	constructor.

Constructing	a	constructor
Swing	can,	at	times,	involve	some	pretty	big	constructors.	This	is	one	of	those	times.	As
this	is	mostly	Swing-related	code,	I	will	let	comments	do	a	majority	of	the	talking	for	this
particular	snippet.

Here	are	the	contents	of	the	Leapaint	constructor.	You	should	replace	the	contents	of	the
constructor	in	the	skeleton	file	with	these:

//Always	call	the	superclass	constructor	when	overriding	Java	Swing	

classes.

super("Leapaint	-	Place	a	finger	in	view	to	draw!");

//Configure	the	button	panel.

buttonPanel	=	new	JPanel(new	FlowLayout());

buttonPanel.setBackground(new	Color(215,	215,	215));

//Configure	the	buttons.

button1	=	new	LeapButton("Red",	1.5);

button1.addActionListener(new	ActionListener()

{

		public	void	actionPerformed(ActionEvent	e)

		{

				inkColor	=	Color.RED;

		}

});

button2	=	new	LeapButton("Blue",	1.5);

button2.addActionListener(new	ActionListener()

{

		public	void	actionPerformed(ActionEvent	e)

		{

				inkColor	=	Color.BLUE;

		}

});

button3	=	new	LeapButton("Purple",	1.5);

button3.addActionListener(new	ActionListener()

{

		public	void	actionPerformed(ActionEvent	e)

		{

				inkColor	=	Color.MAGENTA;

		}

});

button4	=	new	LeapButton("Save",	1.5);

button4.addActionListener(new	ActionListener()

{

		public	void	actionPerformed(ActionEvent	e)

		{

				saveImage("leapaint");

		}

});

//Add	the	buttons	to	the	button	panel.

buttonPanel.add(button1);

buttonPanel.add(button2);

buttonPanel.add(button3);

//Put	a	space	between	the	color	and	save	buttons.

buttonPanel.add(Box.createVerticalStrut(1));

buttonPanel.add(button4);

//Configure	the	paint	panel.

paintPanel	=	new	JPanel()

{

		public	void	paintComponent(Graphics	g)

		{

				super.paintComponent(g);

				//Setup	the	graphics.

				Graphics2D	g2	=	(Graphics2D)	g;

				g2.setStroke(new	BasicStroke(3));

				//Only	start	drawing	if	the	user's	finger	is	in	view	and	not	on	the	

button	panel.

				if	(z	<=	0.5)

						lines.add(new	Line(prevX,	prevY,	x,	y,	inkColor));

				//Draw	all	registered	lines.

				for	(Line	line	:	lines)

				{

						g2.setColor(line.color);

						g2.drawLine(line.startX,	line.startY,	line.endX,	line.endY);

				}

				//Repaint	all	the	buttons.

				buttonPanel.repaint();

				//Draw	the	cursor	if	a	finger	is	within	in	view.

				if	(z	<=	0.95	&&	z	!=	-1.0)

				{

						//Set	the	cursor	color	to	the	inkColor	if	painting,	and	green	

otherwise.

						g2.setColor((z	<=	0.5)	?	inkColor	:	new	Color(0,	255,	153));

						//Calculate	cursor	size	based	on	depth	for	better	feedback.

						int	cursorSize	=	(int)	Math.max(20,	100	-	z	*	100);

						//Create	the	cursor.

						g2.fillOval(x,	y,	cursorSize,	cursorSize);

				}

		}

};

//Make	sure	the	paint	panel	doesn't	obscure	any	other	elements.

paintPanel.setOpaque(false);

//Add	the	panels	to	the	primary	frame.

getContentPane().add(buttonPanel,	BorderLayout.NORTH);

getContentPane().add(paintPanel);

//Make	sure	the	application	exits	on	close.

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

//Set	initial	frame	size	and	become	visible.

setSize(800,	800);

setVisible(true);

Almost	all	of	the	preceding	code	was	Swing	related,	but	there	are	a	few	things	worth
noting	before	we	move	on	to	the	next	function.

The	lines	starting	with	button1	=	new	LeapButton("buttoname",	1.5)	or
button1.addActionListener(new	ActionListener())	create	new	instances	of	the
LeapButton	class	and	add	anonymous	action	listeners	to	them,	allowing	them	to,	you
guessed	it,	respond	to	input	when	pushed	via	a	finger	or	clicked	by	a	mouse.

The	block	of	code	that	starts	with	the	line,	public	paintComponent(Graphics	g),
highlighted	in	the	preceding	code	for	your	convenience,	contains	most	of	the	Leap-related
logic.	The	first	few	lines	are	pretty	straightforward;	we	set	up	some	graphics	references,
store	values	for	lines,	and	then	draw	some	paint	on	the	screen.	One	of	the	lines	in	there,	if
(z	<=	0.5)	lines.add(new	Line(prevX,	prevY,	x,	y,	inkColor)),	uses	the	z	axis	of
the	Leap	device	to	tell	whether	or	not	it’s	okay	to	paint;	Leapaint	will	only	start	drawing
lines	if	the	user’s	finger	passes	a	certain	threshold,	which	we	will	be	setting	later	via	an
InteractionBox	instance.

However,	wait;	there	is	more.	We	also	draw	an	onscreen	cursor	representing	where	the
user’s	finger	is	and	what	it	is	doing.	There	are	a	total	of	three	lines	involved	with
configuring	and	drawing	the	user’s	cursor;	we’ll	go	over	each	one:

g2.setColor((z	<=	0.5)	?	inkColor	:	new	Color(0,	255,	153)):	This
determines	which	color	the	cursor	should	be.	If	the	user’s	finger	is	close	enough	to
the	screen	to	be	painting	(the	value	for	the	z	axis	less	than	0.5),	then	it	will	match	the
color	of	the	ink	that	we	are	drawing	with.	Otherwise,	it	will	be	a	soothing	mint	green.
While	these	checks	could	have	been	done	using	a	basic	if-else	statement,	the	use	of	a
ternary	operator	here	allows	everything	to	fit	on	one	line,	which	is	nice.
int	cursorSize	=	(int)	Math.max(20,	100	-	z	*	100):	This	calculates	the	exact
size	the	cursor	should	be,	again	using	the	depth	(the	z	axis)	of	the	user’s	finger	as	the
primary	metric.	The	closer	the	finger	gets	to	the	screen,	the	bigger	the	circle	will
become.	While	it’s	not	required	to	provide	visual	feedback	like	this,	it’s	a	great	way
to	provide	visual	feedback	for	people	so	that	they	aren’t	poking	around	blindly	(or
guessing	how	far	in	their	finger	is).
g2.fillOval(x,	y,	cursorSize,	cursorSize):	This	finally	renders	the	cursor	on
screen	as	a	circle	using	the	current	coordinates	of	the	pointer	and	the	size	we

calculated	on	the	previous	line.

This	results	in	a	shape-shifting	cursor	that	gets	bigger	and	smaller	as	a	finger	gets	closer	to
and	farther	from	the	screen,	as	seen	in	the	following	screenshots:

Note
If	you	run	the	application	right	this	moment,	you	will	not	see	the	cursor,	as	the	Leap
tracking	code	has	not	been	written	yet.

This	completes	the	Leapaint	constructor!	All	that’s	left	before	this	class	is	finished	is	a
single	function,	saveImage.

Saving	images
The	saveImage	function	in	Leapaint	is	in	no	way	related	to	developing	for	the	Leap
Motion	Controller,	but	it’s	a	great	toy—I	mean,	tool—to	have	in	hand	when	you’re	writing
a	graphical	drawing	application.	We	will	cover	it	very	briefly	before	moving	on	to	the
long-awaited	Leap-side	of	things.

Find	the	code	for	saveImage.	Be	sure	to	replace	the	content	of	saveImage	in	your	skeleton
file	with	the	following	code:

//Get	the	location	and	bounds	of	this	JFrame.

Point	pos	=	getContentPane().getLocationOnScreen();

Rectangle	screenRect	=	getContentPane().getBounds();

screenRect.x	=	pos.x;

screenRect.y	=	pos.y;

//Attempt	to	take	a	screen	capture	and	pipe	it	to	the	image	file.

try

{

		BufferedImage	capture	=	new	Robot().createScreenCapture(screenRect);

		ImageIO.write(capture,	"bmp",	new	File(imageName	+	".bmp"));

}

catch	(Exception	e)	{}

I	won’t	go	into	detail	on	how	this	function	works,	or	why,	but	I	will	briefly	cover	the	fun
part	of	how	we	go	about	getting	the	screen	capture:

1.	 We	first	retrieve	a	set	of	onscreen	coordinates	for	the	location	and	size	of	the	content
area	of	our	application.

2.	 We	then	attempt	to	use	Java’s	Robot	class	(not	literally	related	to	robots,	sadly)	to
take	a	screen	capture	of	the	onscreen	area	depicted	by	the	coordinates	that	we	just
retrieved.

3.	 If	all	goes	well	when	called,	saveImage	will	pipe	out	an	image	to	the	file	depicted	by
the	imageName	variable.

If	you	were	to	fire	up	Leapaint	right	now	using	Eclipse,	you	will	be	greeted	by	a	window
that	looks	something	like	the	following	(assuming	there	are	no	errors;	if	there	are,	check
your	code!):

As	you	can	see,	the	screen	is	blank	and	ripe	to	be	painted	on.	All	we	need	to	do	now	is
catch	our	user	input	from	the	Leap	Motion	Controller!

Interpreting	Leap	data	to	render	on	the
graphical	frontend
At	long	last,	we	can	begin	writing	the	Leap	code!	The	only	code	we’ll	be	editing	from	this
point	forward	is	the	LeapaintListener	class.

Go	ahead	and	open	up	LeapaintListener.java	now	and	scroll	down	to	the	onFrame
method.	Replace	its	content	with	the	lines	of	code	I’ve	written	here:

//Get	the	most	recent	frame.

frame	=	controller.frame();

//Detect	if	fingers	are	present.

if	(!frame.fingers().isEmpty())

{

		//Retrieve	the	front-most	finger.

		Finger	frontMost	=	frame.fingers().frontmost();

		//Set	up	its	position.

		Vector	position	=	new	Vector(-1,	-1,	-1);

		//Retrieve	an	interaction	box	so	we	can	normalize	the	Leap's	coordinates	

to	match	screen	size.

		normalizedBox	=	frame.interactionBox();

		//Retrieve	normalized	finger	coordinates.

		

position.setX(normalizedBox.normalizePoint(frontMost.tipPosition()).getX())

;

		

position.setY(normalizedBox.normalizePoint(frontMost.tipPosition()).getY())

;

		

position.setZ(normalizedBox.normalizePoint(frontMost.tipPosition()).getZ())

;

		//Scale	coordinates	to	the	resolution	of	the	painter	window.

		position.setX(position.getX()	*	paint.getBounds().width);

		position.setY(position.getY()	*	paint.getBounds().height);

		//Flip	Y	axis	so	that	up	is	actually	up,	and	not	down.

		position.setY(position.getY()	*	-1);

		position.setY(position.getY()	+	paint.getBounds().height);

		//Pass	the	X/Y	coordinates	to	the	painter.

		paint.prevX	=	paint.x;

		paint.prevY	=	paint.y;

		paint.x	=	(int)	position.getX();

		paint.y	=	(int)	position.getY();

		paint.z	=	position.getZ();

		//Tell	the	painter	to	update.

		paint.paintPanel.repaint();

		//Check	if	the	user	is	hovering	over	any	buttons.

		if	(paint.button1.getBigBounds().contains((int)	position.getX(),	(int)	

position.getY()))

				paint.button1.expand();

		else	paint.button1.canExpand	=	false;

		if	(paint.button2.getBigBounds().contains((int)	position.getX(),	(int)	

position.getY()))

				paint.button2.expand();

		else	paint.button2.canExpand	=	false;

		if	(paint.button3.getBigBounds().contains((int)	position.getX(),	(int)	

position.getY()))

				paint.button3.expand();

		else	paint.button3.canExpand	=	false;

		if	(paint.button4.getBigBounds().contains((int)	position.getX(),	(int)	

position.getY()))

				paint.button4.expand();

		else	paint.button4.canExpand	=	false;

}

Ah,	it’s	good	to	have	some	almost	pure	Leap	code	after	our	almost	20-page	respite	from
having	any	at	all.	I’ll	go	ahead	and	break	everything	down	line	by	line:

The	first	line,	frame	=	controller.frame(),	retrieves	the	most	recent	frame	from
the	Leap	Motion	Controller.	This	is,	of	course,	critical	if	we’re	to	do	any	finger
tracking.
The	if	(!frame.fingers().isEmpty())	statement	makes	sure	that	we	only	analyze
the	tracking	data	from	the	Leap	if	the	frame	we	got	has	fingers	inside.	Otherwise,
there’s	not	much	point,	is	there?
The	Finger	frontMost	=	frame.fingers().frontMost()	statement	obtains	a	copy
of	the	frontmost	(furthest	toward	the	screen)	finger	in	the	frame	the	controller	gave
us.	There	were	many	different	routes	that	we	could’ve	taken	here	in	order	to	get	a
reference	to	a	single	finger.	We	could	have	used	the	Skeletal	Tracking	API	to	get	an
index	finger,	or	we	could	have	averaged	the	location	of	all	the	fingers	in	the	frame,
and	so	on.	I	chose	this	method	because	it’s	simple	and	straightforward,	making	it
great	for	a	tutorial.
The	Vector	position	=	new	Vector(-1,	-1,	-1)	statement	initializes	the	set	of
coordinates	that	we	will	be	passing	to	the	Leapaint	class	later	on.
The	normalizedBox	=	frame.interactionBox()	statement	retrieves	an
InteractionBox	instance	from	the	frame;	as	we	discussed	earlier,	always	get	an
InteractionBox	instance	from	the	Leap	Motion	API—never	create	a	new	one	from
outside.
The	line,

position.setX/Y/Z(normalizedBox.getNormalizedPoint(frontMost.tipPosition()).getX/Y/Z())

retrieves	the	normalized	0.0	to	1.0	coordinates	of	the	frontmost	finger	from	our
InteractionBox	instance.
The	two	lines,	position.setX(position.getX()	*	paint.getBounds().width)
and	position.setY(position.getY()	*	paint.getBounds().height),	adjust	the
normalized	values	to	fit	Leapaint’s	JFrame,	no	matter	what	size	it	is	set	to.	The	cool
thing	about	floating	point	(decimal)	numbers	that	are	fixed	to	a	scale	of	0.0	to	1.0	is
that,	when	multiplied	by	the	maximum	dimension	(for	example,	size)	of	another
coordinate	system,	they	scale	and	integrate	into	this	coordinate	system	perfectly.
Ergo,	this	method	works	for	all	kinds	of	things,	ranging	from	2D	applications	like
this	one	to	3D	applications,	which	we’ll	be	getting	into	in	the	next	chapter.
The	next	two	lines,	position.setY(position.getY()	*	-1)	and
position.setY(position.getY()	+	paint.getBounds().height),	invert	the
normalized	y	axis	coordinates	of	our	frontmost	finger’s	tracking	data.	If	we	didn’t	do
this,	a	finger	that	is	pointing	at	the	bottom	of	the	screen	would	end	up	painting	on	the
top	half	of	the	screen	and	vice	versa.	This	is	due	to	a	minor	discrepancy	in	how	the
Leap	tracks	the	y	axis	as	compared	to	how	many	of	the	common	GUI	frameworks
handle	their	coordinate	systems.

Note
Fun	fact

The	Leap	Motion	Controller	sees	a	higher	(positive)	value	in	the	y	axis	to	be	further
away	from	the	Leap,	or	higher.	Conversely,	many	GUI	systems,	Java	Swing	included,
see	higher	values	in	the	y	axis	as	being	further	away	from	the	origin	or	top-left	corner
of	the	screen.	In	other	words,	a	normal	GUI	framework	will	see	higher	values	of	y	as
being	lower	on	the	screen,	whereas	the	Leap	Motion	Controller	sees	them	as	being
higher.

The	next	few	lines,	such	as	paint.prevX	=	paint.x	and	paint.x	=
position.getX(),	pass	our	fully	normalized	and	converted	finger	coordinates	to	the
Leapaint	class	instance	so	that	it	can	start	drawing	lines.
The	paint.paintPanel.repaint()	statement	tells	the	Leapaint	instance	to	repaint
the	drawing	area	of	our	application;	in	Swing	terms,	this	basically	tells	the	window	to
update	itself	visually	to	respond	to	the	new	finger	coordinates.
Finally,	the	last	few	lines	like	if
(paint.buttonX.getBigBounds().contains((int)	position.getX(),	(int)

position.getY())),	paint.buttonX.expand(),	and	else
paint.buttonX.canExpand	=	false	detect	if	the	frontmost	finger	is	touching	any	of
our	four	LeapButtons	instances	(the	three	color	switchers	and	the	save	image	button),
and	triggers	their	associated	expand	function	if	it	is.	Otherwise,	if	a	button	isn’t	being
touched	by	a	finger,	these	lines	make	sure	it	stops	expanding.

Testing	it	out
Now,	for	the	long-awaited	moment	where	we	fire	up	the	Leapaint	application:

1.	 After	verifying	that	all	of	the	code	in	this	chapter	thus	far	has	been	written	and	put	in
the	correct	places,	plug	in	your	Leap	and	hit	the	run	button	(if	you’re	using	Eclipse)!

2.	 If	all	goes	well,	you	should	be	able	to	start	drawing—like	the	image	shown	in	the
following	screenshot	(do	forgive	this	author’s	inability	to	draw	freehand;	I	much
prefer	vector	graphics):

With	this,	you’ve	completed	a	simplistic,	but	functional,	2D	drawing	application	for	the
Leap	Motion	Controller.	Next	on	the	list	is	a	3D	application,	the	Leap’s	native	domain	so
to	speak.

Improving	the	application
With	the	bare-bones	Leapaint	application	complete,	you	now	have	a	great	platform	to
build	off	and	improve.	Why	not	use	this	as	an	opportunity	to	sharpen	your	skills	before
moving	on	to	the	next	chapter?

There	are	quite	a	few	ways	you	can	enhance	Leapaint,	including:

A	prettier	user	interface	and	better-looking	buttons.
Smoother,	less	random	lines	(occasionally,	using	this	code,	drawn	lines	will	stutter;
this	is	because	we	interpolate	the	location	of	the	lines	by	drawing	them	between
points).
More	colors	to	pick	from;	maybe	by	using	a	color	wheel	or	slider?
Anything	else	that	you	can	possibly	think	of!

In	addition,	if	you	wish	to	further	your	skills	with	Java	GUIs,	you	can	find	more
information	about	the	Java	Swing	API	(which	Leapaint	uses	quite	extensively)	on	Oracle’s
official	website	at	http://docs.oracle.com/javase/7/docs/technotes/guides/swing/.

http://docs.oracle.com/javase/7/docs/technotes/guides/swing/

Summary
In	this	chapter,	you	wrote	a	two-dimensional	(2D)	drawing	application	for	the	Leap
Motion	Controller	using	only	the	Leap	and	Java	Swing	APIs.

You	covered	how	to	make	simple	expanding	buttons,	responsive	cursors,	and	a	basic	but
effective	user	experience.	Heading	forward,	this	knowledge	will	make	the	coming
chapters	much	easier	as	we	begin	working	with	a	3D	application,	which	isn’t	a	whole	lot
more	complex	than	a	2D	application	once	you	get	used	to	the	third	dimension,	that	is.	You
also	wrote	a	lot	of	code	in	this	chapter.

In	the	next	chapter,	you	will	begin	learning	about	the	Unity	3D	development	toolkit	as	it
pertains	to	the	Leap	Motion	Controller	so	that	you	can	begin	writing	three-dimensional
applications	for	the	Leap;	we’re	just	getting	started!

Chapter	5.	Creating	a	3D	Application	–	a
Crash	Course	in	Unity	3D
Now	that	we’ve	tackled	the	design	and	development	of	a	simple	2D	painting	application,
how	about	we	move	on	to	more	advanced	3D	applications?	In	this	chapter,	you’ll	learn
about	the	Unity	3D	toolkit,	the	go-to	software	suite	for	many	Leap	developers	who	are
working	on	applications	that	utilize	three	dimensions.

Topics	that	we’ll	be	covering	in	this	chapter	include:

A	brief	introduction	to	Unity
Installing	and	setting	up	Unity
Common	jargon	in	Unity
Creating	a	project
Setting	the	scene

Note
Disclaimer:	this	chapter	contains	absolutely	no	Leap-Motion-related	content	or
information.	It	exists	solely	to	teach	you	the	basics	of	using	Unity	to	prepare	you	for	the
next	two	chapters,	which	will	contain	a	lot	of	Leap-Motion-related	content.

This	chapter	is	sprinkled	with	periodic	Fun	facts	that	offer	high-level,	entry-level	factoids
about	scripting	and	programming	for	your	reading	pleasure.

A	brief	introduction	to	Unity
So	far	in	this	book,	you’ve	covered	many	of	the	fundamental	concepts	of	the	Leap,
ranging	from	simple	things	such	as	the	API	and	configuring	the	IDE	to	more	complex
things	such	as	how	the	Leap	sees	tracking	data	and	how	user	ergonomics	can	be	enhanced.
Along	the	way,	you	also	covered	the	creation	of	a	simple	two-dimensional	application	to
help	tie	all	of	these	ideas	together.

The	following	is	a	screenshot	of	the	Unity	3D	application,	Artemis	Quadrotor	Simulator:

A	Unity	3D	application,	the	Artemis	Quadrotor	Simulator

Now,	it’s	time	for	us	to	delve	into	the	native	realm	of	the	Leap	Motion	Controller:	three-
dimensional	applications,	including	their	design,	creation,	and	integration	with	the	Leap.
Over	the	course	of	the	next	three	chapters,	we	will	cover	the	setup,	design,	coding,	and
testing	of	a	simple	3D	application	for	the	Leap	Motion	Controller	where	the	user	will
control	a	simple	floating	object	by	moving	their	hand	around.

Writing	a	3D	application	can	be	a	daunting	task;	you’ll	need	to	pull	together	assets	like	3D
models,	2D	textures,	audio	clips,	scripts,	and	so	forth.	How	do	you	stitch	all	of	these
together	into	a	single,	Leap-driven	application?	That	is	where	3D	toolkits	come	into	play;
and	as	I’m	sure	you’ve	guessed	from	the	chapter	title	already,	we	will	be	using	the	Unity
3D	toolkit	in	the	next	few	chapters	as	we	create	a	three-dimensional	application.

Unity	allows	game	designers,	artists,	and	developers	to	create	games	and	simulators	with
little	difficulty.	Since	the	early	days	of	Leap	Motion,	when	things	were	still	in	beta	and
just	being	kicked	off,	Unity	was	the	go-to	toolkit	for	creating	applications	that	make	full
use	of	all	three	dimensions	that	the	Leap	offers—this	means	there’s	a	lot	of	preexisting
tools,	assets,	and	references	to	develop	for	the	Leap	with	Unity.	Thanks	to	the	extremely
large	user	base	that	Unity	has,	there’s	an	extremely	wide	selection	of	resources	and
documentation	(often	available	freely)	on	the	Internet!

Of	course,	Unity	is	a	very	complex	and	useful	program	with	a	large	number	of	features
and	capabilities—an	outright	guide	to	using	it	is	worthy	of	a	book	in	its	own	right	(and	I
believe	there	are	quite	a	few	books	on	it	too).	Therefore,	so	as	to	avoid	leaving	the	scope
of	this	book	(mastery	of	Leap	Motion	development),	this	chapter	(and	the	following	two)
will	touch	only	on	the	high-level	aspects	of	using	Unity—you	will	learn	exactly	what	you
need	to	know	to	get	the	job	done.

If	you	want	to	learn	even	more	about	Unity,	or	you	get	stuck	at	some	point	during	the	next
few	chapters,	you	can	find	excellent	documentation	at	http://unity3d.com/learn.

Let’s	get	straight	to	it	then!	In	this	chapter,	you	will	install	Unity	and	then	create	a	basic
scene	to	place	our	3D	app	in.

http://unity3d.com/learn

Installing	and	setting	up	Unity	3D
The	first	step	in	developing	with	Unity	is,	well,	installing	Unity.	Head	on	over	to
http://www.unity3d.com/unity/download	and	click	on	the	giant	blue	button,	as	seen	in	the
following	screenshot;	this	will	begin	downloading	the	installer	for	Unity.	It’s	a	fairly	large
file,	so	expect	to	wait	a	little	while	for	it	to	finish.

Once	it	finishes	downloading,	locate	the	installer	file	and	run	it.	Follow	all	the	prompts
that	you	see,	with	the	end	result	(hopefully)	involving	the	installation	of	Unity.

http://www.unity3d.com/unity/download

After	a	while,	you	will	see	a	screen	like	the	preceding	one.	Go	ahead	and	tick	the	Activate
a	free	30-day	trial	of	Unity	Pro	box	and	click	on	OK.	The	installation	of	Unity	should
now	be	complete.

Common	jargon	found	in	Unity
Before	we	continue	any	farther	and	begin	creating	a	Unity	project,	let’s	go	over	three	of
the	most	common	things	that	a	project	contains.

Scenes
Every	single	level	created	in	Unity	3D	is	called	a	scene;	scenes	are	to	a	Unity	project	as
chapters	are	to	a	book.	Scenes	can	contain	an	arbitrary	amount	of	GameObjects	(limited
only	by	the	user’s	system	resources),	sky	boxes,	terrain,	and	so	forth.	You	can	think	of
them	as	the	canvas	on	which	we	create	a	given	area	in	a	3D	application.

GameObjects
Every	single	item	contained	within	a	scene,	be	it	a	mountain,	a	wall,	a	robot,	a	light,	or
even	some	kind	of	user	interface	element,	is	a	GameObject.	There’s	even	a	GameObject
class	when	scripting	with	Unity!	Think	of	these	as	the	building	blocks	of	a	3D	application.

Scripts
Any	GameObject	in	a	given	scene	that	performs	some	kind	of	function	or	series	of
functions	has	one	or	more	scripts	attached	to	it.	Scripts	define	the	behavior	of	a
GameObject,	allowing	it	to	move	around,	interact	with	other	GameObjects,	respond	to
user	input,	and	even	change	shape	and	size!	These	are	both	the	backbone	of	any	control
scheme	and	the	entry	point	for	Leap	Motion	development	when	building	a	3D	application.

The	three	scripting	languages	supported	by	Unity	are	UnityScript	(JavaScript	for	Unity),
Boo,	and	C#.	We	will	be	using	C#	for	the	duration	of	this	book,	as	it	has	great	integration
with	the	Leap	Motion	Controller	and	it’s	quite	similar	to	Java	in	terms	of	syntax.

As	a	short	summary,	every	Unity	project	contains	at	least	one	scene.	In	turn,	every	scene
contains	one	or	more	GameObjects	(usually	quite	a	few).	Finally,	every	GameObject	will
usually	have	at	least	one	or	more	scripts	attached	to	it.

Creating	a	project
With	the	installation	of	Unity	complete,	you	can	now	proceed	to	create	a	new	project.	Go
ahead	and	launch	Unity.

You	will	now	be	prompted	to	either	open	a	preexisting	project	or	create	a	new	one.	We	are
going	to	create	a	new	one,	so	click	on	the	Create	New	Project	tab.

This	will	take	you	to	the	screen	shown	here:

Go	ahead	and	browse	to	the	folder	you’d	like	the	project	to	be	located	in	via	the	Browse
button.	Do	not	worry	about	importing	any	packages;	we’re	not	worrying	about	that	just
yet.

When	you’re	done,	click	on	Create.

Upon	creating	the	new	project,	you	should	now	see	a	screen	similar	to	the	following	one:

This	screen	is	the	main	editor	interface,	which	comprises	multiple	tabbed	windows;	while
there’s	a	lot	going	on,	each	individual	window	is	rather	simple	(plus,	we	won’t	be	making
use	of	every	single	feature	with	this	application).

There	are	four	windows	(or	tabs,	if	you	will)	to	pay	attention	to:

Hierarchy:	This	window	contains	all	of	the	GameObjects	that	are	present	in	the
currently	active	scene.
Scene:	This	window	acts	as	a	viewport	of	the	currently	active	scene.
Project:	This	window	contains	a	sort	of	tree-style	file	browser	for	the	currently
active	project.	In	the	next	two	chapters,	we	will	be	using	this	to	organize	and	access
the	various	scripts	and	assets	that	are	created.	You	can	think	of	it	as	Unity’s	version
of	the	Project	Explorer	in	Eclipse.
Inspector:	This	window	contains	all	the	data	for	the	currently	selected	GameObject
in	the	Scene	or	Hierarchy	window.

We	will	utilize	the	rest	of	the	windows	on	an	as-needed	basis.

The	preceding	screenshot	shows	the	editor	layout	that	the	author	uses	during	development,
but	you	can	lay	out	the	editor	however	you	want	by	simply	clicking	on	the	Window	tabs
(Project,	Console,	Inspector,	Scene,	and	so	on)	and	dragging	them	around	the	screen.

Setting	the	scene
With	our	project	created	and	the	editor	configured,	we	can	now	set	the	stage	(or	scene,	as
it	were)	for	this	application.

To	start	off,	you’ll	want	to	create	a	basic	plane	GameObject	to	act	as	the	ground	for	this
application.	This	can	be	achieved	by	navigating	to	GameObject	|	Create	Other	|	Plane	in
the	toolbar,	as	shown	in	the	preceding	screenshot.

After	clicking	on	the	Plane	button	under	Create	in	the	previous	step,	you	will	see	a
perfectly	flat	plane	appear	in	the	Scene	window,	as	seen	in	the	following	screenshot:

Note
Fun	fact

All	of	those	blue	triangles	that	you	see	on	any	GameObject	you	select	in	the	Scene
window	are	a	visual	representation	of	that	object’s	three-dimensional	mesh.

Now,	as	our	3D	application	(or	game,	as	it	was)	is	going	to	require	a	good	deal	of	space
for	navigating,	you’ll	want	to	make	the	plane	a	whole	lot	bigger.

Let’s	go	ahead	and	make	the	plane	a	bit	bigger	via	the	following	steps	(these	will	apply	to
any	GameObject):

1.	 Select	(click	on)	your	newly	created	plane	in	the	Hierarchy	window.	You’ll	notice
that	a	bunch	of	information	appears	in	the	Inspector	window.

2.	 Click	on	the	Transform	tab	within	the	Inspector	window.	You	will	now	see	a	list	of
fields	labeled	Position,	Rotation,	and	Scale.

3.	 Select	the	X	and	Z	fields	that	are	next	to	the	Scale	label	(the	Y	field	is	denoted	by	the
blue	arrow	in	the	preceding	screenshot)	set	them	both	to	5.

4.	 With	this,	your	plane	should	be	a	whole	lot	bigger—five	times	bigger,	to	be	exact.
You	can	make	it	even	bigger,	but	for	now	it’s	plenty.

You’ve	probably	noticed	the	Main	Camera	GameObject	hanging	around	in	the
Hierarchy	window	for	a	while	now.	This	is	shown	in	the	following	screenshot:

We	will	be	making	a	new	one	later	on,	so	go	ahead	and	click	on	it	and	delete	it	(right-click
on	Main	Camera	and	click	on	Delete).	At	this	point,	you	should	now	have	what	is
essentially	an	empty	scene	with	the	exception	of	a	flat	plane.	How	about	we	add	some
simplistic	terrain	to	that	plane?	Head	on	over	to	the	toolbar	again	and	go	to	GameObject	|
Create	Other	|	Cube,	as	shown	here:

Behold,	a	lone	cube	is	now	present	in	the	middle	of	the	vast	emptiness	that	is	the	Scene
window,	as	shown	here:

Moving	on	to	the	next	step,	let’s	make	the	cube	a	wee	bit	larger.	Just	as	we	did	for	the
plane,	go	into	the	cube’s	Transform	settings	(via	the	Inspector	window	after	clicking	on
the	cube	in	the	Hierarchy	window).	Then,	go	into	the	Scale	field	and	set	the	X,	Y,	and	Z
values	to	5.	This	will	make	your	cube	a	whole	lot	bigger,	as	shown	in	the	following
screenshot:

Now	for	the	artistic	part	of	laying	out	the	scene—place	the	cube	wherever	you	like	in	a
logical	fashion.

By	now,	you’ve	probably	noticed	the	three	red,	yellow,	and	blue	arrows	that	protrude	from
the	currently	selected	GameObject	in	the	Scene	window.	These	handles	are	used	to	move
objects	around	within	the	Scene	window	without	having	to	type	in	coordinates	by	hand
from	within	that	object’s	inspector.

Go	ahead	and	try	it	out	for	yourself:	simply	click	and	hold	on	any	one	of	the	arrows	and
then	drag	your	cursor	across	the	screen.	When	you’re	happy	with	the	position	of	the
object,	stop	clicking.	Use	this	method	to	move	the	cube	to	a	spot	that’s	intersecting	(or	at
least	touching)	the	plane.

You	can	very	quickly	copy	and	paste	new	cubes	into	the	scene	by	selecting	one	in	the
Hierarchy	window,	right-clicking	its	name,	and	then	clicking	on	Duplicate.	Go	ahead	and
do	this	now:	copy,	paste	and	randomly	position	about	five	more	cubes	until	your	plane
looks	kind	of	like	the	one	in	the	following	screenshot:

Voilà!	You	now	have	a	basic	scene	to	work	with.	This	chapter	was	probably	either
informative	or	slightly	less	interesting	than	the	ones	you’ve	read	thus	far.	Possibly	both!
However,	I	hope	that	it	got	you	ready	for	3D	Leap	Motion	development	for	the	next	two
chapters.

Before	you	forget,	be	sure	to	save	the	Unity	project	that	you	just	finished	working	on!
Simply	go	to	the	toolbar	yet	again	and	navigate	to	File	|	Save	Project	to	save	your	project.
If	this	is	the	first	time	you	are	saving	your	project,	you	will	be	greeted	by	a	dialog	like	the
one	in	the	following	screenshot	that	will	ask	you	to	give	a	name	for	the	default	scene—I
named	it	Leap-Flyer-Main-Scene	but	you	can	use	whatever	name	you	like.

Summary
In	this	chapter,	you	learned	about	the	Unity	3D	editor,	which	will	help	you	follow	the
upcoming	chapters.	We	started	by	covering	the	installation	of	Unity,	followed	by	a	review
of	some	common	terms	present	in	Unity,	such	as	scenes,	GameObjects,	and	scripts.	You
spent	the	remainder	of	the	chapter	learning	about	the	creation	of	a	project	and	the	design
and	layout	of	a	simple	scene	that	you’ll	be	using	in	the	chapters	to	come.

You	finished	off	the	chapter	by	saving	the	project	for	the	first	time,	although	I	hope	you
were	actually	saving	all	along.

In	the	next	chapter,	we’ll	begin	integrating	the	Leap	Motion	Controller	with	the	Unity	3D
toolkit,	including	touchable	buttons	and	real-time	representations	of	a	user’s	hands.

Chapter	6.	Creating	a	3D	Application	–
Integrating	the	Leap	Motion	Device	with	a
3D	Toolkit
Now	that	you’re	familiar	with	the	Unity	3D	toolkit,	we	can	begin	integrating	the	Leap	into
a	3D	application.	In	this	chapter,	we’ll	cover	the	integration	of	the	Leap	device	as	well	as
the	rendering	of	hands,	fingers,	and	buttons	using	the	C#	programming	language.

We’ll	be	covering	the	following	topics	in	this	chapter:

Setting	up	the	scene	to	receive	Leap	Motion	input
A	quick	summary	–	the	fundamentals	of	Unity	scripts
Laying	out	a	framework	of	scripts
Rendering	hands
Rendering	buttons	and	detecting	button	presses

Note
Both	this	chapter	and	the	next	one	make	extremely	heavy	use	of	the	C#	programming
language.	If	you’re	already	familiar	with	it,	great!	If	not,	rest	assured	that	it’s,	at	first
glance,	quite	similar	to	Java	and/or	C++.	In	addition,	this	chapter	is	sprinkled	with
periodic	Fun	facts	that	offer	high-level	and	entry-level	factoids	about	scripting	and
programming	for	your	reading	pleasure.

Setting	up	the	scene	to	receive	Leap
Motion	input
Welcome	to	Chapter	6.	Let’s	get	started!

Before	you	can	retrieve	input	and	tracking	data	from	the	Leap	Motion	device,	the	scene
must	be	modified	to	accommodate	the	required	scripts	to	capture	tracking	data,	manage
menus,	and	so	on.

Unity	requires	you	to	attach	every	single	script	you	write	to	a	GameObject;	this	means	that
you	cannot	just	create	a	script	and	have	it	automatically	work	too.	Fortunately,	you	can
create	empty	GameObjects	to	attach	our	scripts	with	minimal	hassle,	and	this	is	exactly
what	you’re	going	to	do	now.	So,	without	further	ado…

Within	Unity,	navigate	to	GameObject	|	Create	Empty	in	the	menu	bar	and	select	it.	This
will	create	a	new	empty	GameObject	in	your	scene	and	hierarchy	windows,	as	shown	in
the	following	screenshot:

Right-click	on	the	newly	created	GameObject	and	rename	it	to	Core.	Now,	create	one
more	GameObject	called	Main	Menu	and	nest	it	underneath	Core.	Your	Hierarchy	window
should	now	look	like	the	following	screenshot	(for	organizational	purposes,	I	also	grouped
all	the	Cube	objects	underneath	a	single	empty	GameObject):

Next,	go	ahead	and	create	a	Scripts	folder	in	the	Assets	area,	as	shown	in	the	following
screenshot:

Almost	done.	Now,	you	need	to	drop	the	Leap	DLL	files	into	your	project.	If	you	don’t,
your	code	will	not	work,	as	it	will	try	to	utilize	libraries	that	aren’t	there!	The	three	DLLs
we	need	are	Leap.dll,	LeapCSharp.dll,	and	LeapCSharp.NET3.5.dll,	all	of	which	can
be	found	within	the	Leap	SDK	folder	(refer	back	to	Chapter	1,	Introduction	to	the	World	of
Leap	Motion,	if	you	need	help	finding	it).	Make	sure	that	you	choose	the	appropriate	ones
for	your	platform	(x86	versus	x64),	otherwise	nothing	will	work	correctly!

Each	one	of	these	DLLs	needs	to	go	in	a	specific	place,	as	listed	here:

Leap.dll	and	LeapCSharp.dll	need	to	go	in	the	root	folder	of	your	Unity	project.	As
an	example,	if	your	project	was	named	My	Leap	3D	App,	the	root	folder	would	be	My
Leap	3D	App/.
LeapCSharp.NET3.5.dll	needs	to	go	in	the	Assets	folder	of	your	project.	This	is
located	under	[Project	Name]/Assets.	Alternatively,	you	can	simply	locate	the	DLL
and	drag	it	directly	into	the	assets	window	in	Unity.

With	this,	you’re	ready	to	move	on	to	the	next	step:	writing	code.

A	quick	summary	–	the	fundamentals	of
Unity	scripts
All	software	written	for	a	Unity	application	is	written	inside	files	that	Unity	refers	to	as
scripts.	Scripts	can	be	written	in	JavaScript,	C#,	and	Boo,	but	we’re	going	to	focus	only	on
C#,	as	that’s	what	you’ll	be	using	to	develop	with	Leap	Motion.

Each	C#	script	in	Unity	contains	at	least	one	class	that	extends	Unity’s	built-in
MonoBehaviour	class.	This	class	will	almost	always	override	one	or	more	of	the	following
functions	from	the	parent	MonoBehaviour	class:

Awake:	This	is	called	when	the	script	is	being	loaded
OnEnable:	This	is	called	when	the	script	is	enabled
Start:	This	is	called	on	the	frame	when	the	script	is	enabled	just	before	any	of	the
Update	methods	are	called	for	the	first	time
Update:	This	is	called	once	during	every	frame
OnGUI:	This	is	called	to	render	and	handle	GUI	events
OnDisable:	This	is	called	when	the	script	is	disabled
OnDestroy:	This	is	called	when	the	script	is	destroyed

You	can	find	a	more	exhaustive	breakdown	of	the	MonoBehaviour	class	and	how	it	works
at	http://docs.unity3d.com/ScriptReference/MonoBehaviour.html.

Also,	in	addition	to	extending	MonoBehaviour,	every	single	script	in	Unity	must	be
attached	to	a	GameObject	in	order	to	work;	just	writing	a	script	won’t	make	anything
happen.

Note
Fun	fact

Now	is	a	good	time	to	take	note	of	the	spelling	of	MonoBehaviour.	You	will	notice	that	it
uses	the	British	spelling	of	behaviour	instead	of	the	American	spelling	of	behavior.	Many
Unity	developers	have	fallen	victim	to	this	subtle	difference	in	syntax,	ending	up	with
programs	that	“can’t	find	the	MonoBehavior”	class!

http://docs.unity3d.com/ScriptReference/MonoBehaviour.html

Attaching	a	script	to	a	GameObject
Attaching	a	script	to	a	GameObject	is	as	simple	as	performing	a	few	steps.	The	following
are	the	steps	to	attach	a	script	to	a	GameObject:

1.	 Click	on	the	name	of	the	GameObject	to	which	you	want	to	add	a	script	in	the
Hierarchy	window.

2.	 Click	on	the	Add	Component	button	in	the	Inspector	window	for	that	GameObject.
3.	 Search	for	the	name	of	the	script	you	want	in	the	resulting	dialog	and	select	it.

Laying	out	a	framework	of	scripts
At	long	last,	it’s	time	to	write	some	scripts	and	enjoy	the	oh-so-sweet	instant	gratification
of	seeing	your	hands	in	the	three-dimensional	format.

Note
Fun	fact

Both	this	chapter	and	the	next	one	make	use	of	adapted,	simplified	versions	of	scripts
from	the	engine	used	in	Artemis	Quadrotor	Simulator.

Before	you	begin	writing	code,	create	the	following	script	files	(we	won’t	be	filling	in	all
of	them	right	away)	inside	the	Scripts	folder	by	right-clicking	on	Scripts	and	going	to
Create	|	C#	Script:

BaseSingleton

Colorscheme

Core

HandRenderer

LeapListener

TitleMenu

TouchableButton

TouchPointer

Your	Scripts	folder	should	look	similar	to	the	following	screenshot	when	you’re	done
(though	not	with	quite	as	many	scripts	in	it):

Rendering	hands
For	your	first	adventure	out	into	the	realm	of	Unity	scripting,	you’ll	be	writing	only	two
scripts,	which	will	render	the	user’s	hands	into	the	three-dimensional	game	world.

Go	ahead	and	double-click	on	the	LeapListener	file	that	you	created	earlier	inside	the
Scripts	folder.	This	will	make	Unity	automatically	open	MonoDevelop,	the	Integrated
Development	Environment	used	when	writing	scripts	for	Unity.	Your	screen	should	look	a
little	bit	like	this:

The	basic	layout	of	MonoDevelop	is	pretty	similar	to	Eclipse	and	other	IDEs;	you	have
the	Solution	browser	on	the	left	(which	is	basically	just	your	project	explorer),	the
workspace	in	the	middle,	and	the	file	tabs	at	the	top.

Go	ahead	and	expand	your	Scripts	folder	in	the	Solution	browser	by	clicking	on	[Name
of	your	Unity	Project	Here]	and	going	to	Assembly-CSharp	|	Scripts,	and	then
selecting	LeapListener	(if	it	wasn’t	already	opened	when	you	launched	MonoDevelop).

LeapListener.cs
Your	first	bit	of	Leap	Motion	code	lies	directly	ahead.	This	class,	as	I’m	sure	you’ve
guessed,	is	the	standard	Leap	Motion	listener.

As	there	isn’t	a	whole	lot	to	say	about	this	class,	go	ahead	and	open	up	this
LeapListener.cs	file	and	enter	the	following	lines	into	it:

using	Leap;

public	class	LeapListener

{

		//Leap	controller.

		private	Leap.Controller	controller	=	null;

		//Minimum	distance	from	hand	for	thumb	to	be	recognized.

		public	static	float	thumbDistance	=	40;

		//Current	frame.

		public	Frame	frame	=	null;

		//Fingers	contained	in	the	current	frame.

		public	int	fingers	=	0;

		//Hands	contained	in	the	current	frame.

		public	int	hands	=	0;

		//Various	easy-access	hand	values.

		public	float	handPitch	=	0.0F;

		public	float	handRoll	=	0.0F;

		public	float	handYaw	=	0.0F;

		//Hand	and	finger	positions.

		public	Vector	handPosition	=	Vector.Zero;

		public	Vector	fingerPosition	=	Vector.Zero;

		public	Vector	handDirection	=	Vector.Zero;

		public	Vector	fingerDirection	=	Vector.Zero;

		//Quick-find	for	the	right	thumb.

		public	Leap.Finger	thumb	=	null;

		//Timestamp	of	the	current	frame.

		public	long	timestamp	=	0;

		//Is	the	Leap	connected?

		public	static	bool	connected	=	false;

		//Member	Function:	refresh

		public	bool	refresh()	

		{

				//Try.

				try

				{

						//If	there's	no	controller,	make	a	new	one.

						if	(controller	==	null)	controller	=	new	Leap.Controller();

						//Check	if	the	controller	is	connected.

						connected	=	controller.IsConnected	&&	controller.Devices.Count	>	0	&&	

controller.Devices[0].IsValid;

						//If	we're	connected,	update.

						if	(connected)

						{

								//Get	the	most	recent	frame.

								frame	=	controller.Frame();

								

								//Assign	some	basic	information	from	the	frame	to	our	variables.

								fingers	=	frame.Fingers.Count;

								hands	=	frame.Hands.Count;

								timestamp	=	frame.Timestamp;

								

								//If	we	see	some	hands,	get	their	positions	and	their	fingers.

								if	(!frame.Hands.IsEmpty)

								{

										//Get	the	hand's	position,	size,	and	first	finger.

										handPosition	=	frame.Hands[0].PalmPosition;

										handDirection	=	frame.Hands[0].Direction;

										fingerPosition	=	frame.Hands[0].Fingers[0].TipPosition;

										fingerDirection	=	frame.Hands[0].Fingers[0].Direction;

										

										//Get	the	hand's	normal	vector	and	direction.

										Vector	normal	=	frame.Hands[0].PalmNormal;

										Vector	direction	=	frame.Hands[0].Direction;

										

										//Get	the	hand's	angles.

										handPitch	=	(float)	direction.Pitch	*	180.0f	/	(float)	

System.Math.PI;

										handRoll	=	(float)	normal.Roll	*	180.0f	/	(float)	System.Math.PI;

										handYaw	=	(float)	direction.Yaw	*	180.0f	/	(float)	

System.Math.PI;

										

										thumb	=	null;

										

										//Find	the	thumb	for	the	primary	hand.

										foreach	(Leap.Finger	finger	in	frame.Hands[0].Fingers)

										{	

												if	(thumb	!=	null	&&	finger.TipPosition.x	<	thumb.TipPosition.x	

&&	finger.TipPosition.x	<	handPosition.x)

														thumb	=	finger;

												else	if	(thumb	==	null	&&	finger.TipPosition.x	<	handPosition.x	

-	thumbDistance)

														thumb	=	finger;

										}

								}

						}

						//Otherwise,	reset	all	outgoing	data	to	0.

						else

						{

								//Fingers	contained	in	the	current	frame.

								fingers	=	0;

								//Hands	contained	in	the	current	frame.

								hands	=	0;

								//Various	easy-access	hand	values.

								handPitch	=	0.0F;

								handRoll	=	0.0F;

								handYaw	=	0.0F;

								//Hand	and	finger	positions.

								handPosition	=	Vector.Zero;

								fingerPosition	=	Vector.Zero;

								handDirection	=	Vector.Zero;

								fingerDirection	=	Vector.Zero;

								//Quick-find	for	the	right	thumb.

								thumb	=	null;

						}

						return	true;

				}

				//In	the	event	that	anything	goes	wrong	while	reading	and	converting	

tracking	data,	log	the	exception.

				catch	(System.Exception	e)	{	UnityEngine.Debug.LogException(e);		return	

false;	}

		}

		//Member	Function:	rotation

		public	UnityEngine.Vector3	rotation	(Leap.Hand	hand)

		{

				//Create	a	new	vector	for	our	angles.

				UnityEngine.Vector3	rotationAngles	=	new	UnityEngine.Vector3(0,	0,	0);

				//Get	the	hand's	normal	vector	and	direction.

				Vector	normal	=	hand.PalmNormal;

				Vector	direction	=	hand.Direction;

				//Set	the	values.

				rotationAngles.x	=	(float)	direction.Pitch	*	180.0f	/	(float)	

System.Math.PI;

				rotationAngles.z	=	(float)	normal.Roll	*	180.0f	/	(float)	

System.Math.PI;

				rotationAngles.y	=	(float)	direction.Yaw	*	180.0f	/	(float)	

System.Math.PI;

				//Return	the	angles.

				return	rotationAngles;

		}

}

By	now,	this	should	all	look	very	familiar;	thankfully,	writing	a	listener	for	use	with	the
Unity	scripting	engine	isn’t	a	whole	lot	different	from	writing	one	in	Java	or	any	other
language.

The	only	item	I’d	like	to	bring	your	attention	to	is	the	following	function:

public	UnityEngine.Vector3	rotation	(Leap.Hand	hand){

		...

}

This	function	calculates	the	rotational	values	of	the	passed	Leap	hand	and	returns	them	as
a	set	of	Unity-recognizable	vectors.	Quite	handy	in	the	files	to	come!

Now,	let’s	move	on	to	the	last	of	our	files	before	we	can	do	some	playing/testing.

HandRenderer.cs
This	class	is	the	meat	of	our	Leap	Motion	code	so	far;	it	renders	all	of	the	hands	currently
in	view	of	the	Leap	on	to	the	user’s	screen,	which	is	a	good	way	to	get	started	with
integrating	the	Leap	into	a	3D	application.

So,	without	further	ado,	let’s	get	started.	Open	up	HandRenderer.cs	and	copy	the
following	content	into	it	(you	can	also	find	the	entire	file	online	at
https://github.com/Mizumi/Mastering-Leap-Motion-Unity-Project	in	the
HandRenderer.cs	file	under	Assets	|	Scripts):

using	UnityEngine;

using	System.Collections;

using	System.Collections.Generic;

class	HandRenderer	:	MonoBehaviour	

{

		//Leap	listener.

		private	LeapListener	listener;

		

		//Leap	box.

		private	Leap.InteractionBox	normalizedBox;

		//Currently	active	fingers.

		private	GameObject[]	fingers;

		

		//Currently	active	palms.

		private	GameObject[]	hands;

		

		//Camera	to	render	the	hands	on.

		public	Camera	camera	=	null;

		

		//Finger	object.

		public	GameObject	fingerTip	=	null;

		

		//Palm	object.

		public	GameObject	palm	=	null;

		

		//Distance	modifiers.

		public	float	depth	=	20.0F;

		public	float	verticalOffset	=	-20.0F;

		

		//OnEnable.

		public	void	OnEnable()	{listener	=	new	LeapListener();}

		

		//OnDisable.

		public	void	OnDisable()

		{

				//Reset	the	hands	array.

				if	(hands	!=	null)

						for	(int	i	=	0;	i	<	hands.Length;	i++)

								Destroy(hands[i]);

				

				//Reset	the	fingers	array.

https://github.com/Mizumi/Mastering-Leap-Motion-Unity-Project

				if	(fingers	!=	null)

						for	(int	i	=	0;	i	<	fingers.Length;	i++)

								Destroy(fingers[i]);

		}

		

		//Update.

		public	void	Update()

		{			

				if	(listener	==	null)	listener	=	new	LeapListener();

				//Update	the	listener.

				listener.refresh();

				

				//Get	a	normalized	box.

				normalizedBox	=	listener.frame.InteractionBox;

				

				//First,	get	any	hands	that	are	present.

				if	(listener.hands	>	0)

				{

						//Reset	the	hands	array.

						if	(hands	!=	null)

								for	(int	i	=	0;	i	<	hands.Length;	i++)

										Destroy(hands[i]);

						

						//Initialize	our	hands.

						hands	=	new	GameObject[listener.hands];

						

						//Loop	over	all	hands.

						for	(int	i	=	0;	i	<	listener.hands;	i++)

						{

								try

								{

										//Create	a	new	hand.

										hands[i]	=	(GameObject)	Instantiate(palm);

										

										//Set	its	properties.

										hands[i].transform.parent	=	camera.transform;

										hands[i].name	=	"Palm:"	+	i;

										

										//Set	up	its	position.

										Vector3	palmPosition	=	new	Vector3(0,	0,	0);

										

										palmPosition.x	+=	listener.frame.Hands[i].PalmPosition.x	/	10;

										palmPosition.y	+=	verticalOffset;	palmPosition.y	+=	

listener.frame.Hands[i].PalmPosition.y	/	10;

										palmPosition.z	+=	depth;	palmPosition.z	+=	

(listener.frame.Hands[i].PalmPosition.z	*	-1)	/	10;

										

										//Move	the	hand.

										hands[i].transform.localPosition	=	palmPosition;

										

										//Set	the	hands	rotation	to	neutral.

										Quaternion	lr	=	hands[i].transform.rotation;

										

										Vector3	leap	=	listener.rotation(listener.frame.Hands[i]);

										

										lr.eulerAngles	=	new	Vector3(leap.x	*	-1,	leap.y,	leap.z);

										

										hands[i].transform.localRotation	=	lr;

								}

								

								//Watch	out	for	those	pesky	"index	out	of	bounds"	errors.

								catch	(System.IndexOutOfRangeException	e)	{	Debug.LogException(e);	

}

						}

				}

				

				//If	there	aren't	any,	delete	any	active	palms.

				else	if	(hands	!=	null)

						for	(int	i	=	0;	i	<	hands.Length;	i++)

								Destroy(hands[i]);

				

				//Get	any	fingers	that	are	present.

				if	(listener.fingers	>	0	&&	listener.hands	>	0)

				{

						//Reset	the	fingers	array.

						if	(fingers	!=	null	&&	listener.fingers	!=	fingers.Length)

								for	(int	i	=	0;	i	<	fingers.Length;	i++)

										Destroy(fingers[i]);

						

						//Initialize	our	fingers.

						if	(fingers	==	null	||	listener.fingers	!=	fingers.Length)

								fingers	=	new	GameObject[listener.fingers];

						

						//Loop	over	all	fingers.

						for	(int	i	=	0;	i	<	listener.fingers;	i++)

						{

								try

								{

										//Create	a	new	finger.

										if	(fingers[i]	==	null)

												fingers[i]	=	(GameObject)	Instantiate(fingerTip);

										

										//Set	its	properties.

										fingers[i].name	=	"Finger:"	+	i;

										fingers[i].transform.parent	=	camera.transform;

										

										//Set	up	its	position.

										Vector3	tipPosition	=	new	Vector3(0,	0,	0);

										

										tipPosition.x	+=	listener.frame.Fingers[i].TipPosition.x	/	10;

										tipPosition.y	+=	verticalOffset;	tipPosition.y	+=	

listener.frame.Fingers[i].TipPosition.y	/	10;

										tipPosition.z	+=	depth;	tipPosition.z	+=	

(listener.frame.Fingers[i].TipPosition.z	*	-1)	/	10;

										

										//Move	the	finger	to	where	it	belongs.

										fingers[i].transform.localPosition	=	tipPosition;

										

										//Set	the	fingers	rotation	to	neutral.

										Quaternion	lr	=	fingers[i].transform.rotation;

										

										lr.eulerAngles	=	Vector3.zero;

										

										fingers[i].transform.localRotation	=	lr;

								}

								

								//Watch	out	for	those	pesky	"index	out	of	bounds"	errors.

								catch	(System.IndexOutOfRangeException	e)	{	Debug.LogException(e);	

}

						}

				}

				

				//If	not,	delete	any	active	fingers.

				else	if	(fingers	!=	null)

						for	(int	i	=	0;	i	<	fingers.Length;	i++)

								Destroy(fingers[i]);

		}

}

I’m	fairly	certain	that	HandRenderer	is	one	of	the	single	longest	scripts	that	you’ll	be
writing	in	this	chapter.	Let’s	go	ahead	and	break	it	down.

OnEnable	and	OnDisable	are	pretty	straightforward,	but	as	far	as	Update	goes,	this	is
where	all	the	action	takes	place.	The	first	thing	we	do	is	refresh	the	tracking	data	from	the
Leap	listener,	followed	by	retrieving	an	InteractionBox	instance	to	normalize	our	values
with.

Next,	we	check	whether	any	hands	are	present.	If	there	aren’t	any,	all	the	hands	that	are
currently	loaded	into	the	game	world	are	deleted	along	with	their	fingers	(but	I	promise	it
isn’t	nearly	as	gruesome	as	it	sounds).

If	there	are	hands	in	the	current	frame	in	the	Leap,	we	proceed	to	calculate	where	to	place
the	user’s	hands	in	the	game	world.	First,	we	loop	over	all	the	hands	that	are	currently
loaded	into	the	game	world	(if	any)	and	delete	them.	We	then	loop	over	all	the	hands	that
are	contained	in	the	most	recent	frame	from	the	Leap,	applying	some	fun	math	and
transformation	to	their	coordinates	to	normalize	them	into	the	game	world.

We	repeat	this	process	for	any	fingers	in	the	current	frame	in	the	Leap	(but	only	if	hands
were	present	in	that	same	frame).

Note
Fun	fact

Unity	automatically	renders	any	GameObjects	created	via	scripting	on	screen.	You	were
probably	wondering	when	and/or	how	all	those	hands	and	fingers	that	we	were	putting
into	arrays	were	going	to	get	displayed;	the	truth	is,	they	already	are!

You	might	have	noticed	the	definitions	for	two	arrays	of	GameObjects	at	the	start	of	the
file:	GameObject[]	fingers	and	GameObject[]	hands.	Any	of	the	GameObjects	we	place
in	here	(in	fact,	any	GameObjects’	period)	are	automatically	rendered	and	handled	by
Unity.	These	two	arrays	are	used	so	that	we	can	keep	track	of	all	the	active	hands	and
fingers	to	make	deleting	or	refreshing	them	all	at	once	a	piece	of	the	proverbial	cake.

Preparing	the	scene	for	hand	rendering
After	all	that	coding,	let’s	go	ahead	and	return	to	the	graphical	realm	for	a	little	bit.

First	things	first:	we	need	to	add	in	a	camera	and	some	prefabs	so	that	we	can	see	the
user’s	fingers	rendered	on	screen.	Go	ahead	and	return	to	the	Unity	Editor	(which	will
probably	start	compiling	your	scripts).

Note
Fun	fact

A	prefab,	as	Unity	calls	it,	is	a	predefined	collection	of	GameObjects	and	their
configurations.	These	wonderful	little	things	allow	developers	to	save	complex
combinations	of	GameObjects	(including	scripts	and	customizations	made	via	the
Inspector)	into	a	single	file	for	easy	portability	and	creation	via	scripts	later.

Now,	add	a	new	camera	to	the	scene	by	going	to	GameObject	|	Create	Other	|	Camera
and	setting	its	y	axis	position	(circled	in	the	following	screenshot)	in	the	Inspector	to
something	around	4	so	that	it	isn’t	underneath	the	floor:

With	that	done,	create	a	new	folder	in	your	Assets	folder	called	Res	(or	resources	if	you

will).	Now,	right-click	on	the	Res	folder	and	go	to	Create	|	Material.	Your	Res	folder
should	now	look	similar	to	the	following	screenshot:

Go	ahead	and	select	your	newly	created	material	and	rename	it	Leap	Material	for
convenience	sake.	Once	you	do	this,	within	the	Inspector	window	for	your	new	material,
click	on	the	Shader	drop-down	box	and	go	to	Transparent	|	Diffuse	from	the	list.	After
you	do	this,	click	on	the	little	box	to	the	right	of	Main	Color	in	the	Inspector	window	for
Leap	Material.	You’ll	now	see	a	color	picker	dialog	similar	to	the	one	shown	here:

You	can	choose	literally	any	color	that	takes	your	fancy	(I	went	with	red	in	the	preceding
screenshot),	but	make	sure	to	set	the	A	(alpha)	value	to	125;	this	will	make	the	material
half	transparent.

Note
Fun	fact

Every	single	color	within	Unity	(in	scripting,	anyway)	is	an	instance	of	the	Color	class.
This	class	contains	four	main	values	that	you’ll	use	quite	often:	R,	G,	B,	and	A,	which	stand
for	red,	green,	blue,	and	alpha,	respectively.

The	first	three	values	should	be	pretty	familiar	to	you	already,	but	it’s	possible	that	you
might	not	be	familiar	with	the	alpha	property	of	a	color;	the	alpha	of	a	color	determines	its
perceived	transparency	within	Unity,	on	a	scale	of	0	to	255,	with	0	being	completely
transparent	and	255	being	completely	solid.

Now,	it’s	time	to	make	prefabs	for	the	fingers	and	hands	that	will	be	shown	in	the	game
world	by	the	HandRenderer	class.	Go	ahead	and	create	two	new	cubes	by	going	to
GameObject	|	Create	Other	|	Cube	and	then	rename	one	to	Hand	and	the	other	to	Finger
via	the	Hierarchy	window.

With	the	Hand	and	Finger	cubes	created,	select	both	of	them	from	within	the	Hierarchy
window	and	then	look	toward	the	Inspector	window.	You	should	see	a	component	there
called	Box	Collider.	Right-click	on	this	and	remove	it,	as	shown	in	the	following
screenshot:

With	Box	Collider	removed	(see	the	preceding	screenshot),	you	should	now	select	just	the
Hand	cube	and	set	its	X	and	Z	Transform	Scales	to	5	via	the	Inspector,	as	shown	in	the
following	screenshot:

Finally,	select	both	the	Hand	and	Finger	cubes	again,	this	time	expanding	the	Mesh
Render	component	and	clicking	on	the	little	circle	next	to	the	box	that	says	Default-
Diffuse	next	to	Element	0,	highlighted	in	the	following	screenshot:

You	will	now	see	a	dialog	window	appear	on	the	screen,	similar	to	the	following
screenshot:

Go	ahead	and	select	Leap	Material	from	the	dialog	window	that	appears;	this	will	make
both	cubes	appear	to	be	of	the	color	that	you	chose	earlier	when	setting	up	the	Leap
Material	object.

For	the	last	cube-related	step,	drag	both	cubes	(one	at	a	time)	from	the	Hierarchy	window
into	the	Res	folder	under	Assets,	shown	in	the	following	screenshot:

Once	you	drag	both	of	these	cubes	in,	delete	them	from	the	Hierarchy	window,	as	they’re
no	longer	needed	there;	in	the	process	of	dragging	the	cubes	into	the	Assets	folder,	you
created	two	new	prefabs	that	contain	all	the	configuration	data	for	their	respective	cube,
allowing	you	to	make	an	infinite	number	of	them	later.

Finally,	we	need	to	activate	the	HandRenderer	class.	To	do	this,	click	on	the	Core
GameObject	in	the	Hierarchy	window	and	navigate	to	Add	Component	|	Scripts	|
HandRenderer.cs,	as	shown	in	the	bottom	right-hand	corner	of	the	following	screenshot:

This	will	add	the	Hand	Renderer	script	to	the	Core	GameObject,	making	it	visible	in	the
Inspector,	as	shown	in	the	following	screenshot:

You’ll	notice	that	the	Camera,	Finger	Tip,	and	Palm	fields	listed	underneath	the	Hand
Renderer	(script)	component	are	empty.	Click	on	the	little	circle	next	to	each	one,
selecting	the	appropriate	item	as	listed	here:

Select	the	Finger	prefab	for	the	Finger	Tip	field
Select	the	Hand	prefab	for	the	Palm	field
Select	Camera	from	Hierarchy	for	the	Camera	field

Now	you’re	done.

Testing	out	the	Hand	Renderer
All	that’s	left	is	to	run	it	and	see	whether	everything	works.	To	do	this,	simply	click	on	the
arrow	icon	above	the	Scene	window.	If	all	goes	well,	you	should	see	virtual
representations	of	your	hands	when	you	place	them	into	view,	as	shown	in	the	following
screenshot:

Rendering	buttons	and	detecting	button
presses
Now	that	you’ve	got	some	hands	on	the	screen,	let’s	give	those	hands	something	to
manipulate;	to	me,	buttons	would	seem	to	be	the	next	logical	step.	Don’t	you	agree?

Get	ready	to	write	lots	of	code	(six	files,	to	be	exact),	because	touchable	buttons	are	no
laughing	matter	in	a	3D	toolkit	(well,	they	aren’t	so	bad,	but	still).	Head	on	over	to	the
Scripts	folder	and	double-click	on	the	BaseSingleton.cs	file;	this	should	open	up
MonoDevelop	if	it	wasn’t	already	open	to	begin	with.

BaseSingleton	–	a	custom	singleton	pattern
Our	first	class,	as	the	name	suggests,	is	a	custom	implementation	of	the	singleton	pattern.
What’s	a	singleton,	you	ask?	Read	on!

In	every	program—and	consequently,	every	game—you	need	to	have	some	form	of	global
logic	that	can	be	accessed	from	anyone,	anywhere,	and	at	any	time,	be	it	the	current	high
score	in	a	game	or	a	list	of	available	sensors	on	a	robot.	Of	course,	in	almost	all	object-
oriented	languages,	all	of	your	logic	will	be	contained	in	instances	of	classes.	This	results
in,	you	guessed	it,	multiple	instances	of	their	variables;	that	simply	won’t	do.	So,	what	do
you	do	when	you	want	to	share	global	values	within	classes	while	guaranteeing	that
there’s	only	ever	one	set	of	these	values?

Meet	the	singleton	pattern.	In	its	simplest	form,	a	singleton	is	a	very	special	kind	of	class
that	will	only	ever	have	one	instance	in	existence	at	any	given	moment.	This	allows	us	to
guarantee	that	we’ll	only	ever	have	one	instance	of	a	given	set	of	variables,	functions,	and
so	on.	We	achieve	this	by	utilizing	a	combination	of	a	private	constructor	and	private
instance	of	the	class,	as	seen	in	the	simplistic	code	here:

public	class	MySingleton()

{

		private	static	final	MySingleton	instance	=	new	MySingleton();

		private	MySingleton()	{	};

		public	String	variable	=	"something";

		public	static	MySingleton	getInstance()	{	return	instance;	}	

}

You	can	then	access	the	variables	in	MySingleton	from	anywhere	in	your	code	using	the
following	syntax:

String	myLocalVariable	=	MySingleton.getInstance().variable;

Now,	you’ll	notice	a	few	things	about	the	preceding	code:	there’s	a	static	instance	of	the
MySingleton	class	that	is	immediately	initialized	when	the	code	is	loaded,	a	private
constructor	that	can	never	be	called	from	outside	of	the	MySingleton	class,	and	a	static
getInstance	function	that	returns	a	reference	to	the	static	instance	of	MySingleton.	All	of
these	things	work	together,	creating	the	common	singleton	pattern.

But	wait,	there’s	more!	As	we’re	using	Unity,	there	are	a	few	extra	problems	to	solve:

Unity	doesn’t	use	constructors;	instead,	it	uses	a	public	Awake	method.	This	means
there’s	no	way	to	prevent	our	singleton’s	initialization	function	from	being	called
from	outside	of	the	class.
As	any	script,	and	therefore	any	class,	can	be	attached	to	an	arbitrary	number	of
GameObjects,	there	is	absolutely	nothing	that	stops	Unity	from	trying	to	load
multiple	instances	of	the	same	singleton.

So	then,	given	the	insurmountable	odds	working	against	us,	what	do	we	do?	No	worries,

the	solutions	are	quite	simple:

We	can	solve	the	lack	of	constructors	by	keeping	track	of	whether	or	not	the	Awake
function	is	called.	When	it’s	called,	we’ll	set	a	static	Boolean	to	true.
When	our	singleton	executes	the	Awake	function,	it	will	first	check	whether	there	is	a
pre-existing	instance	in	play	(and	whether	it’s	already	awoken).	If	there	is,	our
singleton	will	immediately	call	Destroy	on	itself,	preventing	it	from	coming	into
existence.

Note
Fun	fact

Unity’s	built-in	Destroy	function	completely	and	utterly	decimates	the	passed
GameObject	or	script,	removing	it	from	this	realm	of	existence.

It’s	a	great	way	to	clean	up	memory,	but	it’s	also	an	excellent	way	to	crash	your	game	if
you’re	not	careful!

Although	the	behavior	I’ve	described	here	is	rather	unusual	for	a	normal	singleton,	it’s
absolutely	required	if	we’re	going	to	create	a	Unity-compatible	singleton.	Of	course,
talking	about	code	is	all	well	and	good,	but	how	about	we	turn	all	of	this	into	a	class	called
BaseSingleton?	Go	ahead	and	write	the	following	lines	of	code	into	the
BaseSingleton.cs	file:

using	UnityEngine;

//Class:	BaseSingleton

public	class	BaseSingleton<T>	:	MonoBehaviour	where	T	:	MonoBehaviour

{

		//Instance	of	this	type.

		private	static	T	instance;

		

		//Has	this	type	already	been	enabled?

		private	static	bool	awoken	=	false;

		//Member	Function:	Awake

		public	void	Awake()

		{

				//If	an	instance	already	exists,	delete	this	one.

				if	(instance	!=	null	&&	instance	!=	this)

						Destroy(this);

				

				//Otherwise,	proceed	to	initialization.

				else

				{	

						//Check	if	we	should	wake	up.

						if	(!awoken)

						{	

								//Awake	will	now	no	longer	be	called.

								awoken	=	true;

								

								//Wake	up.

								onAwake();

						}

				}

		}

		//Member	Function:	onAwake.

		public	virtual	void	onAwake()	{}

		

		//Member	Function:	getInstance.

		public	static	T	getInstance()

		{

				//If	there	is	no	instance	to	return,	generate	a	new	one.

				if	(instance	==	null)

				{

						//First	attempt	to	see	if	there's	already	an	instance

						//attached	to	an	object	and	use	that.

						try

						{

								instance	=	(T)	Object.FindObjectOfType(typeof(T));

						}

						

						//Otherwise,	create	a	new	object	with	an	instance.

						catch

						{

								GameObject	instanceObject	=	new	GameObject(typeof(T).ToString());

								instanceObject.AddComponent<T>();

								instance	=	instanceObject.GetComponent<T>();

						}

						

						//Call	the	instance's	awake.

						if	(!awoken)

						{

								awoken	=	true;

								

								instance.Invoke("onAwake",	0.0F);

						}

				}

				

				//Return	the	current	instance.

				return	instance;

		}

}

Let’s	break	down	the	BaseSingleton	class.

In	one	of	the	first	few	lines,	we	have	this:

public	class	BaseSingleton<T>	:	MonoBehaviour	where	T	:	MonoBehaviour

We	define	the	BaseSingleton	class	as	a	template	class	and	extend	the	MonoBehaviour
class	so	that	any	of	the	classes	that	extend	this	one	can	be	attached	to	GameObjects.	This
allows	any	of	our	classes	to	extend	it	and	automatically	become	a	singleton.	Isn’t	that
nifty?

Note
Fun	fact

Template	classes	are	special	classes	that	can	take	an	arbitrary	data	type	(that	is,	class)
during	instantiation	and	then	use	this	type	to	process	data	later.	Although	template	classes
are	out	of	the	scope	of	this	book,	this	one	in	particular	(BaseSingleton)	is	useful,	as	it
saves	us	from	having	to	rewrite	the	same	code	three	or	four	times	later	on.

In	the	next	few	lines:

public	void	Awake()

{

		//If	there's	already	an	instance,	delete	this	one.

		...

		

		//Otherwise,	proceed	to	initialize.

		...

}

We	override	the	Awake	function	of	MonoBehaviour	to	check	whether	an	instance	of	this
class	has	already	been	created.	If	an	instance	has	been	created,	the	new	one	will	be
immediately	destroyed	so	as	to	avoid	having	multiple	instances.	Otherwise,	our	onAwake
function	will	be	called.

As	we’re	overriding	the	Awake	function	of	MonoBehaviour,	we	can’t	let	classes	that	inherit
from	BaseSingleton	override	Awake	again—that’d	be	disastrous!	This	is	where	our	next
function,	onAwake,	comes	into	play:

public	virtual	void	onAwake()	{}

Classes	that	inherit	from	BaseSingleton	will	now	have	to	override	onAwake	instead	of
Awake.	When	the	class	gets	loaded	into	the	scene	(this	usually	happens	when	a
GameObject	the	script	is	attached	to	gets	loaded),	the	Awake	function	from	BaseSingleton
will	be	called.	Then,	if	the	singleton	hasn’t	been	initialized	yet,	it	will	call	onAwake.	This
guarantees	that	the	initialization	routines	for	any	given	class	that	decides	to	extend
BaseSingleton	will	only	be	called	once.

Finally,	in	getInstance,	we	make	brief	use	of	the	two	rather	obscure	functions	that	I’d
like	to	point	out:	FindObjectOfType	and	Invoke.

The	first	function,	FindObjectOfType,	tries	to	find	any	currently	loaded	GameObjects	that
have	the	specified	type	(or	script)	attached	to	them.	As	this	function	is	slow,	it’s	usually
better	to	figure	out	an	alternative	method	to	locate	classes.	In	our	case,	though,	it’s
perfectly	fine—we’ll	only	call	it	once	under	normal	conditions.

The	second	function,	Invoke,	is	a	bit	more	controversial.	In	essence,	Invoke	tries	to
trigger	a	function	(denoted	by	a	string)	that	may	or	may	not	be	contained	by	the	object	it	is
called	on.	Normally,	the	usage	of	this	function	is	a	terrible	idea,	because	calling	a	function
that	may	or	may	not	even	exist	can	cause	all	kinds	of	errors.	However,	as	we	want	to	call
onAwake	on	a	generic	template	object,	which	has	no	class	(and	therefore	no	defined
onAwake	function),	we’re	forced	to	use	the	Invoke	method.	However,	in	our	case,	we	can
always	guarantee	the	object	that	we’re	calling	Invoke	on	will	have	an	onAwake	method,	as
it	will	have	inherited	from	our	BaseSingleton	class.

So,	now	that	we’ve	spent	a	lot	of	time	talking	about	singletons,	logic,	and	other	less	than
interesting	things,	how	about	we	move	on	to	something	a	bit	more	colorful?

Colorscheme	–	a	utility	class	to	keep	track	of	colors
Colorscheme	is	a	relatively	simple	class	used	to	color	all	the	menus	and	miscellaneous
user	interface	(UI/GUI)	elements	in	the	Unity	application	that	you’re	creating;	it	includes
a	simple	palette	of	colors	and	a	built-in	method	to	convert	them	to	grayscale	equivalents.

Go	ahead	and	open	up	the	Colorscheme.cs	file	from	within	the	solution	browser	in
MonoDevelop	and	enter	the	following	lines	of	code:

using	UnityEngine;

using	System;

//This	class	is	marked	as	serializable	to	enable	direct	editing	of	the	

//public	colorscheme	values	from	the	Unity	Inspector.

[Serializable]

public	class	Colorscheme

{

		//Original	colorscheme	that	we	can	revert	to	when	switching	

		//between	greyscale	and	normal	colors.

		private	Colorscheme	original;

		//Is	this	colorscheme	currently	set	to	greyscale?

		private	bool	greyscale	=	false;

		

		//Primary	color.

		public	Color	primary	=	new	Color(0,	0,	0,	0);

		

		//Secondary	color.

		public	Color	secondary	=	new	Color(0,	0,	0,	0);

		

		//Accent	color	#1.

		public	Color	primaryAccent	=	new	Color(0,	0,	0,	0);

		

		//Accent	color	#2.

		public	Color	secondaryAccent	=	new	Color(0,	0,	0,	0);

		

		//Special	color.

		public	Color	special	=	new	Color(0,	0,	0,	0);

		//Member	Function:	greyscale.

		public	void		setGreyscale(bool	grey)

		{

				//Set	to	greyscale	if	this	colorscheme	isn't	already	greyscale.

				if	(grey	&&	greyscale	==	false)

				{

						//Backup	current	colors.

						original	=	(Colorscheme)	this.MemberwiseClone();

						//Get	the	greyscale	versions	of	all	colors.

						primary	=	new	Color(primary.grayscale,	primary.grayscale,	

primary.grayscale,	primary.a);

						secondary	=	new	Color(secondary.grayscale,	secondary.grayscale,	

secondary.grayscale,	secondary.a);

						primaryAccent	=	new	Color(primaryAccent.grayscale,	

primaryAccent.grayscale,	primaryAccent.grayscale,	primaryAccent.a);

						secondaryAccent	=	new	Color(secondaryAccent.grayscale,	

secondaryAccent.grayscale,	secondaryAccent.grayscale,	secondaryAccent.a);

						special	=	new	Color(special.grayscale,	special.grayscale,	

special.grayscale,	special.a);

						//Now	greyscale.

						greyscale	=	true;

				}

				//Remove	greyscale.

				else	if	(grey	==	false	&&	greyscale)

				{

						//Restore	original	colors.

						primary	=	original.primary;

						secondary	=	original.secondary;

						primaryAccent	=	original.primaryAccent;

						secondaryAccent	=	original.secondaryAccent;

						special	=	original.special;

						//No	longer	greyscale.

						greyscale	=	false;

				}

		}

}

There	isn’t	a	whole	lot	to	explain	here,	as	Colorscheme	is	just	a	simple	class	that	acts	as	a
container	for	a	collection	of	different	colors.

One	thing	to	note	before	we	move	on	to	the	next	class	is	the	[Serializable]	flag	that
we’ve	placed	before	the	definition	of	the	Colorscheme	class.	By	marking	the	class	as
serializable,	we	are	able	to	directly	modify	all	the	public	variables	(such	as	colors,	vectors,
strings,	integers,	and	so	on)	directly	from	the	Inspector	in	Unity.	This	is	a	very	nifty
feature	if	you	want	to	make	a	class	slightly	generic	and	allow	it	to	be	customized	by
developers	in	Unity	later	on.

Core	–	the	main	class,	if	Unity	had	main	classes
When	you’re	working	with	a	collection	of	arbitrary	scripts	that	are	barely	tied	together	at
all,	you	need	at	least	one	class	that	acts	as	a	sort	of	glue	between	them:	a	common	area	for
certain	pieces	of	information	to	be	exchanged.

In	this	case,	the	Core	class	will	be	responsible	for	handling	the	pausing	and	menu	features
contained	within	our	example	application.	During	each	update	frame,	the	Core	class	will
check	whether	a	certain	number	of	hands	are	within	the	Leap’s	field	of	view—if	they
aren’t,	it	will	automatically	pause	the	game	and	bring	up	the	menu	(if	the	menu	isn’t	open
already).	Likewise,	if	there	are	hands	within	the	view,	it	will	make	sure	that	the	game	is
not	paused.

This	is	where	the	Core.cs	script	comes	into	play	(as	well	as	the	Core	GameObject	you
made	earlier	if	you	recall).	Despite	the	important	functions	this	class	serves,	it’s	quite
short	compared	to	the	other	ones	we’ve	written—fewer	than	a	hundred	lines,	even	with
comments!

So,	go	on	ahead	and	open	up	the	Core.cs	file	and	write	the	following	lines	into	it:

using	UnityEngine;

public	class	Core	:	BaseSingleton<Core>

{

		//Leap	Listener.

		private	LeapListener	listener;

		//Interface	colorscheme.

		public	Colorscheme	interfaceColors	=	new	Colorscheme();

		

		//Title	menu.

		public	TitleMenu	titleMenu	=	null;

		//Does	the	application	have	focus?

		public	bool	applicationFocused	=	true;

		//Paused?

		public	bool	paused	=	true;

		//Member	Function:	onAwake.

		public	override	void	onAwake()

		{

				//This	script	will	not	be	destroyed,	even	when	a	new	level	loads.

				DontDestroyOnLoad(gameObject);

				//Create	a	new	Leap	Listener.

				listener	=	new	LeapListener();

		}

		

		//Member	Function:	OnApplicationFocus.

		public	void	OnApplicationFocus(bool	pauseStatus)	{	applicationFocused	=	

pauseStatus;	}

		

		//Member	Function:	Update.

		public	void	Update()

		{

				//Update	the	Leap	listener.

				listener.refresh();

				//If	the	user	closes	their	hand	while	the	game	is	not	paused,	pause	it.

				if	(listener.hands	<	1	||	titleMenu.open	||	!applicationFocused)

				{	

						//Pause	all	entities.

						paused	=	true;

						//Open	the	title	menu.

						if	(titleMenu.open	==	false)	titleMenu.enabled	=	true;

						//Hide	the	hands.

						this.GetComponent<HandRenderer>().enabled	=	false;

				}

				

				//Otherwise,	keep	the	game	running.

				else	if	(listener.hands	>=	1	&&	titleMenu.open	==	false)

				{	

						//Unpause	all	entities.

						paused	=	false;

						//Show	the	hands.

						this.GetComponent<HandRenderer>().enabled	=	true;

				}

		}

}

One	line	I’d	like	to	draw	your	attention	to	in	this	class	is:

Public	void	OnApplicationFocus(bool	pauseStatus)	{	applicationFocused	=	

pauseStatus;	}

This	function	is	called	whenever	the	Unity	application	window	is	in	focus	(that	is,	the	user
is	currently	using	it).	This	allows	the	Core	class	to	detect	whether	it	should	pause	the	game
world	when	the	user	loses	interest	in	your	application	erm	switches	focus	to	another
window.

The	Update	function	keeps	track	of	the	current	state	of	the	game,	using	a	combination	of
metrics	that	include	a	value	that	shows	whether	the	window	has	focus	(see	the	preceding
code)	if	hands	are	in	view	and	a	menu	is	open.

If	Update	thinks	the	game	should	be	paused,	the	user’s	3D	hands	will	cease	to	be	rendered
and	instead	will	be	replaced	by	a	plethora	of	2D	cursors,	which	represent	the	user’s	fingers
(for	the	purpose	of	navigating	menus);	conversely,	if	Update	thinks	the	game	should	be
running,	the	user’s	3D	hands	will	resume	rendering	and	the	2D	cursors	will	be	hidden.

The	rest	of	this	class	should	be	mostly	self-explanatory,	so	let’s	go	ahead	and	move	on	to
the	next	one.

TouchPointer	–	let’s	draw	some	cursors	on	the
screen
The	TouchPointer	class	pulls	in	coordinates	from	the	Leap	and	then	draws	them	on	to	the
screen	in	the	form	of	mouse	cursors.	These	cursors	will	then	be	used	to	trigger	our
touchable	buttons,	enabling	the	user	to	intuitively	(and	visually)	interact	with	your
application.

So,	without	further	ado,	open	up	TouchPointer.cs	and	paste	these	glorious	lines	of	code
within:

using	UnityEngine;

using	System.Collections;

using	System.Collections.Generic;

class	TouchPointer	:	BaseSingleton<TouchPointer>

{

		//Leap	listener.

		private	LeapListener	listener;

		

		//Leap	box.

		private	Leap.InteractionBox	normalizedBox;

		//Pointer	texture.

		public	Texture2D	pointerNormal;

		

		//Vertical	(Y-axis)	offset	of	pointer	coordinates.

		public	float	verticalOffset	=	-10.0F;

		

		//Currently	active	fingers.

		public	List<Rect>	fingers	=	new	List<Rect>();

		//Member	Function:	onAwake.

		public	override	void	onAwake()	{	listener	=	new	LeapListener();	}

		//Member	Function:	OnDisable.

		public	void	OnDisable()

		{

				//Reset	the	fingers	array.

				if	(fingers	!=	null)

						fingers.Clear();

		}

		

		//Member	Function:	Update.

		public	void	Update()

		{

				//Update	the	listener.

				listener.refresh();

				//Reset	the	fingers	array.

				if	(fingers	!=	null)

						fingers.Clear();

				//Retrieve	coordinates	for	any	fingers	that	are	present,	but	only	if	

the	menus	are	visible.

				if	(listener.fingers	>	0	&&	Core.getInstance().paused)

				{

						//Loop	over	all	fingers.

						for	(int	i	=	0;	i	<	listener.fingers;	i++)

						{			

								//Set	up	its	position.

								Vector3	tipPosition	=	new	Vector3(0,	0,	0);

								

								//Get	a	normalized	box.

								normalizedBox	=	listener.frame.InteractionBox;

								//Finger	coordinates.

								tipPosition.x	=	

normalizedBox.NormalizePoint(listener.frame.Fingers[i].TipPosition).x;

								tipPosition.y	=	

normalizedBox.NormalizePoint(listener.frame.Fingers[i].TipPosition).y;

								//Modify	coordinates	to	equal	screen	resolution.

								tipPosition.x	=	tipPosition.x	*	Screen.width;

								tipPosition.y	=	tipPosition.y	*	Screen.height;

								//Flip	Y	axis.

								tipPosition.y	=	tipPosition.y	*	-1;

								tipPosition.y	+=	Screen.height;

								fingers.Add(new	Rect(tipPosition.x,	tipPosition.y,	16,	16));

						}

				}

		}

		//Member	Function:	OnGUI

		public	void	OnGUI()

		{

				//Make	a	note	of	the	current	GUI	color	so	that	we	don't	overwrite	it.

				Color	temp	=	GUI.color;

				//Retrieve	the	"special"	interface	color	and	use	it	for	the	cursors.

				GUI.color	=	Core.getInstance().interfaceColors.special;

				

				//Place	a	texture	where	the	cursor	currently	is.

				foreach	(Rect	point	in	fingers)

						GUI.DrawTexture	(point,	pointerNormal);

				//Restore	the	original	GUI	color.

				GUI.color	=	temp;

		}

}

All	the	action	in	this	class	takes	place	in	Update	and	OnGUI,	so	we’ll	focus	on	them.

Starting	with	Update,	we	refresh	the	Leap	tracking	data	and	then	reset	the	fingers	array	to
make	sure	no	pointers	get	orphaned,	for	lack	of	a	better	word.	We	then	begin	storing
finger	pointer	coordinates	if	there	are	actually	fingers	on	screen.

This	process	consists	of	iterating	over	all	the	fingers	present	in	the	most	recent	frame	from
the	Leap,	performing	the	following	steps	in	order:

1.	 We	first	set	up	a	new	fingertip	position	vector	and	retrieve	an	interaction	box	from
the	Leap.

2.	 We	then	calculate	the	fingertip	coordinates	on	screen	by	normalizing	their	values
against	the	interaction	box	and	then	rescaling	them	to	match	the	screen	resolution.

3.	 Then,	we	add	this	set	of	fingertip	coordinates	to	our	array	of	fingers	to	be	rendered.
4.	 Next	up,	in	OnGUI	(which	is	called	when	the	graphical	user	interface,	or	GUI,	is

refreshed),	we	render	cursors	onto	the	screen	at	the	coordinates	specified	by	the
fingers	array	that	was	populated	earlier	by	Update.	This	process	is	relatively
straightforward,	so	I’ll	let	the	comments	do	the	talking	for	me	this	time	around.

Now	for	the	next	class…you’re	almost	done.

TouchableButton	–	surely,	the	name	is	self-
explanatory
Dear	reader,	you’re	almost	done.	Stay	with	me	here.	This	next	class,	as	the	name	implies,
creates	a	touchable	button.	When	used	in	conjunction	with	the	TouchPointer	class,	the
TouchableButton	class	will	allow	users	to	interact	directly	with	onscreen	buttons	using
just	their	hands	(as	well	as	a	built-in	750-millisecond	delay,	so	as	to	prevent	accidental
button	presses).

Now,	go	ahead	and	open	up	the	TouchableButton.cs	file	and	enter	the	following	lines:

using	UnityEngine;

using	System.Collections;

using	System.Diagnostics;

public	class	TouchableButton

{

		//Pointer	reference.

		private	TouchPointer	pointer;

		//Stopwatch	used	to	measure	hovertime.

		private	System.Diagnostics.Stopwatch	hoverTime;

		

		//Number	of	possible	missed	reads	from	a	hovering	finger.

		private	int	mistakes	=	0;

		

		//Current	size	multiplier	being	applied	to	this	button.

		private	float	size	=	1.0F;

		

		//Member	Function:	valueInRange.

		private	bool	valueInRange(float	item,	float	min,	float	max)	{	return	

(item	>=	min)	&&	(item	<=	max);	}

		

		//Member	Function:	over.

		private	bool	over(Rect	a,	Rect	b)

		{

				bool	xOverlap	=	valueInRange(a.x,	b.x,	b.x	+	b.width)	||

																		valueInRange(b.x,	a.x,	a.x	+	a.width);

				

				bool	yOverlap	=	valueInRange(a.y,	b.y,	b.y	+	b.height)	||

																		valueInRange(b.y,	a.y,	a.y	+	a.height);

				

				return	xOverlap	&&	yOverlap;

		}

		//Time	in	milliseconds	that	a	finger	must	hover	over	this	button	in

		//order	to	trigger	it.

		public	int	triggerTime	=	750;

		

		//Constructor.

		public	TouchableButton()

		{

				//Grab	a	pointer	reference.

				if	(pointer	==	null)

						pointer	=	TouchPointer.getInstance();

				

				//Set	up	the	stopwatch.

				hoverTime	=	new	System.Diagnostics.Stopwatch();

		}

		

		//Member	Function:	render.

		public	bool	render(Rect	location,	string	text)

		{	

				//Has	the	button	been	pressed	by	the	mouse?

				if	(GUI.Button(new	Rect((location.x	-	((location.width	*	size)	/	2))	+	

(location.width	/	2),	

																(location.y	-	((location.height	*	size)	/	2))	+	

(location.width	/	2),	

																				location.width	*	size,	location.height	*	size),	text))

						return	true;

				

				//Has	a	bad	value	been	read	during	iteration?

				bool	bad	=	true;

				

				//Is	the	button	being	pressed	by	a	Leap	pointer?

				foreach	(Rect	rect	in	pointer.fingers)

				{

						//If	a	finger	is	over	this	button,	begin	counting	the	amount	of	time	

it	spends.

						if	(over(location,	rect))

						{

								//Begin	logging	hovertime.

								if	(hoverTime.IsRunning	==	false)

										hoverTime.Start();

								

								//Check	to	see	if	the	hovertime	is	greater	than	the	trigger	time.

								else	if	(hoverTime.ElapsedMilliseconds	>	triggerTime)

								{

										//Reset	the	hovertime.

										hoverTime.Stop();

										hoverTime.Reset();

										

										//Reset	the	size.

										size	=	1.0F;

										

										//Return	true.

										return	true;

								}

								

								//Increment	size.

								size	+=	0.005F;

								

								//We	received	at	least	one	good	value.

								bad	=	false;

						}

				}

				

				//If	no	good	values	were	received,	and	the	hovertime	clock	is	running,	

increment	mistakes.

				if	(bad	&&	hoverTime.IsRunning)	mistakes	+=	1;

				

				//Otherwise,	reset	the	mistakes.

				else	if	(!bad	&&	hoverTime.IsRunning)	mistakes	=	0;

				

				//If	our	mistakes	exceed	5,	stop	the	hovertime	counter.

				if	(mistakes	>=	5)

				{

						hoverTime.Stop();

						hoverTime.Reset();

						

						size	=	1.0F;

				}

				

				//If	nothing	is	pressing	the	button,	return	false.

				return	false;

		}

}

And	now,	for	the	breakdown—hopefully	not	a	mental	one	(I	promise	there’s	only	one
more	file	left).	The	comments	do	a	good	job	of	covering	the	details,	but	let’s	go	over	each
function	for	safety’s	sake.

The	first	function,	valueInRange,	is	super	simple—it	simply	verifies	that	the	passed	value
is	somewhere	between	the	two	other	values.	The	function	immediately	following	it,	aptly
titled	over,	is	also	simple	(relatively	speaking).	It	takes	two	rectangles	and	checks	to	see	if
they	overlap.	If	they	do,	it	returns	true	(and	false	otherwise).

The	last	function	we’ll	cover	is	render.	This	function,	as	the	name	implies,	renders	the
TouchableButton	on	the	screen,	but	it	serves	another	important	function	too;	it	checks	to
see	whether	any	of	the	fingers	in	the	TouchPointerfingers	array	are	overlapping	the
button.

In	the	event	that	a	finger	is	overlapping	the	button,	a	series	of	actions	and	checks	take
place:

1.	 Once	a	finger	is	detected	hovering	over	the	button,	a	system	timer	is	started.
2.	 If	the	finger	remains	over	the	button	for	an	extended	period	of	time	(specifically,

once	the	elapsed	milliseconds	on	the	hoverTime	timer	exceed	the	triggerTime
value),	the	button	returns	true	to	indicate	that	it	was	clicked.

3.	 As	the	finger	remains	over	the	button,	the	size	of	the	button	is	gradually	increased	to
give	visual	feedback	to	the	user	that	they’re	pushing	the	button.

4.	 In	the	event	that	a	finger	was	hovering	over	the	button	but	stopped	before	the	button
could	be	fully	pushed,	the	mistakes	counter	gets	incremented.	If	this	happens	five
times,	the	button	is	reset	to	its	current	state	without	being	clicked.	While	developing
this	button,	I	was	able	to	confirm	that	an	average	of	two	to	three	mistakes	are
recorded	every	second	or	so,	even	though	the	user’s	finger	remained	steady	on	a
button.	If	you	didn’t	use	a	mistakes	counter	and	just	reset	every	time	a	finger
disappeared	from	the	view	for	a	second,	the	buttons	would	constantly	reset	and	your
application	wouldn’t	work!

5.	 The	nice	thing	about	this	process	is	that	it	is	entirely	synchronous;	that	is,	it	can	be

run	within	a	single-threaded	program	such	as	Unity	without	stalling	or	slowing
anything	down.	This	is	thanks	to	the	liberal	use	of	timers	and	fault	checking;	you
wouldn’t	know	it,	but	a	similar	process	is	used	quite	frequently	to	increase
performance	in	robotic	control	systems	that	have	limited	processing	power.

Note
Fun	fact

A	process	is	synchronous	when	there	is	only	a	single	thread.	This	is	the	opposite	of
asynchronous,	which	involves	multiple	threads.	Most	operating	systems	are
asynchronous,	whereas	a	lot	of	lightweight	applications	(like	those	found	on	robots)	are
synchronous.

Now	for	the	last	class…at	last.

TitleMenu	–	a	simple	main	menu
At	last,	before	you	lies	the	final	class	in	this	chapter:	TitleMenu.	This	class,	when	attached
to	a	GameObject,	creates	a	simplistic	menu	featuring	a	single	play	button	flanked	by	two
color	setting	buttons—though	perhaps	it’s	better	just	to	show	you.	Go	ahead	and	open	up
the	TitleMenu.cs	file	and	enter	the	following	lines	of	beautiful	code:

using	UnityEngine;

using	System.Collections;

using	System.Collections.Generic;

public	class	TitleMenu	:	MonoBehaviour

{

		//Smoothed	button	height	for	middle,	right,	and	left.

		public	float	buttonHeight	=	0.0f;

		//Font	size.

		public	static	int	fontsize	=	10000;

		//Is	the	title	menu	open?

		public	bool	open	=	false;

		

		//Touchable	buttons.

		public	TouchableButton	colorButton;

		public	TouchableButton	playButton;

		public	TouchableButton	greyButton;

		//Member	Function:	OnEnable.

		public	void	OnEnable()

		{

				//The	menu	is	now	open.

				open	=	true;

				//Initialize	buttons.

				colorButton	=	new	TouchableButton();

				playButton	=	new	TouchableButton();

				greyButton	=	new	TouchableButton();

		}

		//Member	Function:	OnDisable.

		public	void	OnDisable()

		{

				//The	menu	is	now	closed.

				open	=	false;

		}

		

		//Member	Function:	getButtonRect.

		public	Rect	getButtonRect(float	x,	float	y)

		{

				return	new	Rect(((Screen.width	/	2)	-	(x	*	((Screen.width	+	

Screen.height)	/	2)	/	1500)),	

								(Screen.height	/	2	-	y	-	GUI.skin.button.fontSize),	

								360	*	((Screen.width	+	Screen.height)	/	2)	/	1500,	180	*	

((Screen.width	+	Screen.height)	/	2)	/	1500);

		}

		

		//Member	Function:	OnGUI.

		public	void	OnGUI()	

		{

				//Set	up	GUI	fonts.

				GUI.skin.button.fontSize	=	((Screen.width	+	Screen.height)	/	2)	/	15;

				fontsize	=	GUI.skin.button.fontSize;

				//Set	up	GUI	colors	again.

				GUI.color	=	new	Color(Core.getInstance().interfaceColors.primary.r,	

Core.getInstance().interfaceColors.primary.g,	

Core.getInstance().interfaceColors.primary.b);

				//Clicking	on	the	Play	button	will	unpause	the	game	and	begin	play.

				if(playButton.render(getButtonRect(180,	buttonHeight),	"play"))

				{

						//Close	and	disable	the	menu.

						open	=	false;	enabled	=	false;

				}

				//Clicking	the	Colour	button	will	restore	the	interface	colorscheme	to	

its	defaults.

				if(colorButton.render(getButtonRect(580,	buttonHeight),	"colour"))

				{

						Core.getInstance().interfaceColors.setGreyscale(false);

				}

				//Clicking	the	Grey	button	will	set	the	interface	colorscheme	to	

greyscale.

				if(greyButton.render(getButtonRect(-220,	buttonHeight),	"grey"))

				{

						Core.getInstance().interfaceColors.setGreyscale(true);

				}

		}

}

The	comments	do	most	of	the	talking	yet	again.

However,	let’s	go	ahead	and	talk	about	OnGUI	and	what	it’s	doing	briefly.	The	first	few
lines	set	up	the	button	colors	and	font	size.	We	then	proceed	to	render	the	touchable
buttons	onto	the	screen	using	a	series	of	mathematical	expressions	to	make	sure	that
they’re	positioned	just	so.

When	a	button	is	pressed,	the	contents	of	its	respective	if	statement	will	be	executed.	The
first	button,	play,	will	close	and	disable	the	menu	when	pressed,	allowing	gameplay	to
begin.	The	second	button,	colour,	will	disable	any	grayscaling	of	the	interface	color
scheme	when	pressed.	Finally,	the	third	button,	grey,	will	enable	grayscaling	of	the
interface	color	scheme	when	pressed.

Enough	of	me	talking;	seeing	something	happen	is	more	exciting	than	reading	about	it.
Time	to	return	to	the	Unity	Editor!

Putting	it	all	together
At	last,	you’re	almost	done;	just	a	few	more	steps	and	you’ll	have	one	half	of	a	working
3D	application	(the	interface).

Return	to	your	Unity	project	and	attach	the	following	scripts	to	their	respective
GameObjects,	which	you	created	earlier:

Attach	Core.cs	and	TouchPointer.cs	to	the	Core	GameObject.
Attach	TitleMenu.cs	to	the	Main	Menu	GameObject.
Now,	before	we	continue,	download	a	file	called	Cursor.png	from
https://github.com/Mizumi/Mastering-Leap-Motion-Unity-
Project/blob/master/Assets/Res/Cursor.png	and	place	it	within	your	Res	folder.	This
image	will	be	used	for	the	cursors	that	the	TouchPointer	class	draws	on	the	screen.

Go	ahead	and	select	the	Core	GameObject	from	your	Hierarchy	window.	Its	Inspector
should	look	something	like	the	following	screenshot:

Perform	the	following	modifications	to	the	specified	fields	before	we	proceed:

Click	on	the	little	circle	next	to	the	Pointer	Normal	field	underneath	Touch	Pointer
(Script)	and	select	the	Cursor.png	file	you	downloaded	earlier	from	the	dialog	that
appears.
Click	on	the	little	circle	next	to	the	Title	Menu	field	underneath	the	Core	script	and
select	the	Main	Menu	GameObject	from	the	dialog	that	appears.
Now,	we	need	to	set	up	the	interface	colors	underneath	the	Core	script.	You’ll	notice
that	right	now,	they	appear	as	a	series	of	black	boxes;	let’s	fix	that.	Clicking	on	one	of
the	boxes	will	result	in	a	dialog	similar	to	the	one	here:

https://github.com/Mizumi/Mastering-Leap-Motion-Unity-Project/blob/master/Assets/Res/Cursor.png

You	can	choose	any	color	you	like,	but	be	sure	to	set	the	A	value	to	125	or	higher;	if	you
keep	it	at	0,	you	won’t	be	able	to	see	any	of	the	colors	as	they’ll	be	invisible!	Repeat	this
process	for	the	remaining	four	colors,	and	you	should	finish	with	an	Inspector	window
that	looks	something	like	the	one	here:

Say	what	you	like,	I	like	my	colors	pastel!

Rants	about	colors	aside,	you’re	now	ready	to	test	the	application.	Without	further	ado,	go
ahead	and	hit	the	run	button.	You’ll	initially	be	greeted	by	three	buttons	in	all,	as	shown	in
the	following	screenshot:

If	you	place	your	hand	within	the	view	of	the	Leap,	you	will	see	some	cursors	appear
within	the	field	of	view	(as	seen	in	the	top	portion	of	the	preceding	screenshot).	Then,	if
you	proceed	to	click	on	the	play	button	(by	hovering	one	of	your	fingers	over	it),	you’ll
see	the	button	slowly	expand	(as	seen	in	the	bottom	portion	of	the	preceding	screenshot).

If	you’re	successful	in	clicking	on	the	play	button,	you’ll	see	your	hands	come	into	view
in	the	3D	realm	and	the	menu	will	disappear,	as	shown	in	the	following	screenshot:

If	you	remove	your	hands	from	view,	the	menu	will	immediately	reappear,	giving	you	the
ability	to	repeat	this	process	over	and	over	again—or	just	keep	the	game	paused.

With	this,	you’re	done!	You	now	have	a	working	3D	renderer	for	hands,	in	addition	to	a
simple	interface	for	triggering	buttons	via	the	Leap.	I	admit,	there	were	probably	some
close	calls	here	and	there,	but	all’s	well	that	ends	well,	right?

Summary
In	this	chapter,	you	learned	the	value	of	not	only	listening	to	directions	but	also	listening
to	them	well	(that	is,	if	the	resultant	application	worked	as	this	author	expected	it	to).	We
started	off	by	setting	up	the	scene	to	support	Unity	scripts,	followed	by	a	quick	summary
of	how	Unity	scripts	work.

You	then	proceeded	to	write	a	series	of	files	to	render	hands	and	fingers	from	the	Leap
Motion	device	on	to	a	screen	in	the	3D	format.	After	learning	how	to	configure	the	scene
to	support	these	hands,	you	tested	it	out	and	proceeded	to	the	next	step:	rendering	buttons
and	detecting	fingers	on	them.	After	writing	a	slew	of	utility	classes,	you	learned	how	to
map	Leap	input	and	convert	it	to	a	series	of	two-dimensional	cursors.	You	then	wrote	a
few	more	menu	classes.	Finally,	you	put	it	all	together	into	a	working	user	interface	with	a
relatively	solid	flow.

In	the	next	chapter,	we’ll	combine	all	the	work	you’ve	done	so	far	with	a	flying	entity	that
can	be	controlled	by	simply	(perhaps	even	gracefully)	moving	your	hand.

Chapter	7.	Creating	a	3D	Application	–
Controlling	a	Flying	Entity
In	this	chapter,	we	will	take	everything	we	covered	in	Chapter	5,	Creating	a	3D
Application	–	a	Crash	Course	in	Unity	3D,	and	Chapter	6,	Creating	a	3D	Application	–
Integrating	the	Leap	Motion	Device	with	a	3D	Toolkit,	to	create	a	playable	3D	application
where	you	will	control	a	virtual	flying	entity	(similar	to	a	quadrotor)	in	an	empty	room.
We’ll	go	over	the	basics	of	creating	an	entity,	interpreting	user	input,	and	then	moving	the
entity	around.	At	the	conclusion	of	this	chapter,	you	should	have	a	complete	3D
application	that	you	can	control	with	just	your	hands!

Note
This	chapter	is	sprinkled	with	periodic	Fun	facts	that	offer	high-level	and	entry-level
factoids	about	scripting	and	programming	for	your	reading	pleasure.

We	will	be	covering	the	following	topics	in	this	chapter:

Creating	the	flying	entity
Retrieving	user	input
Interpreting	user	input	with	the	Player	class
Putting	everything	together	and	testing	it

So,	without	further	ado,	let’s	begin!

Creating	the	flying	entity
At	long	last,	it’s	time	for	us	to	create	the	player	character	for	our	Unity	application;	after
all,	what	good	is	a	game	with	no	avatar	to	play	as?

As	making	a	complete	player	entity	is	a	bit	time	consuming	in	Unity,	we’re	going	to	gloss
over	this	process	entirely	and	use	something	that	Unity	refers	to	as	packages.	These	nifty
files	allow	developers	to	download	collections	of	preconfigured	GameObjects	and	their
associated	assets,	allowing	for	drop-in	usage.	Needless	to	say,	this	can	save	a	lot	of	time	in
bigger	projects!

Note
Fun	fact

Unity	packages	can	be	thought	of	as	reusable	pieces	of	code	(GameObjects	in	this	case)
that	can	be	included	by	simply	dropping	them	into	the	scene.

So,	without	further	ado,	fire	up	your	web	browser	and	navigate	to	the	following	link:

https://github.com/Mizumi/Mastering-Leap-Motion-Unity-
Project/blob/master/PlayerArrow.unitypackage

You	will	be	presented	with	a	fabulous	GitHub	repository	and	a	file	called
PlayerArrow.unitypackage,	similar	to	what	is	shown	in	the	following	screenshot:

Go	ahead	and	click	on	the	tiny	View	Raw	link.	This	will	open	a	dialog	prompting	you	to
download	the	Player	Arrow	package	(depending	on	the	browser).	You	can	also	right-click
on	the	link	and	click	on	Save	link	as…	in	the	pop-up	menu	to	begin	the	download.

https://github.com/Mizumi/Mastering-Leap-Motion-Unity-Project/blob/master/PlayerArrow.unitypackage

When	the	download	completes,	fire	up	the	Unity	Editor	and	open	your	project.	Once
everything	finishes	loading,	navigate	to	Assets	|	Import	Package	|	Custom	Package,	as
shown	in	the	following	screenshot:

Select	our	newly	downloaded	PlayerArrow.unitypackage	file	in	the	prompt	that	appears,
as	shown	in	the	following	screenshot.	Once	you	select	the	package,	you	will	see	a	dialog
window	similar	to	the	following	one:

Verify	that	all	the	items	listed	under	items	to	import	are	checked	and	then	click	on	the
Import	button.

Adding	the	PlayerArrow	and	Rigidbody
components
If	all	goes	well,	you’ll	see	a	new	file	show	up	in	the	root	Assets	window	called
PlayerArrow,	as	shown	here:

Now,	the	reason	Unity	packages	are	so	amazing	is	that	you	can	embed	them	in	the	scene
with	almost	no	issues;	go	ahead	and	drag	the	PlayerArrow	file	into	the	Scene	window	and
place	the	resulting	green	arrow	wherever	you	deem	fit!	When	you’re	done,	you	should
have	a	nice	two-dimensional	arrow	in	your	scene,	as	shown	in	the	following	screenshot:

Once	the	arrow	is	in	the	scene,	go	to	Transform	|	Position	and	make	sure	its	Y	option	(set
via	the	Inspector	window)	is	set	to	2.	This	is	to	give	the	arrow	the	illusion	of	flying.

At	this	point,	we’re	almost	ready	to	move	on	to	scripting.	However,	there’s	still	one	last
step	to	perform	on	the	arrow	before	we	do	so:	adding	a	Rigidbody	component.

Note
Fun	fact

Adding	a	Rigidbody	to	a	GameObject	will	allow	the	object’s	motion	to	be	controlled	by
Unity’s	physics	engine.	Even	if	you	don’t	script	anything,	adding	a	Rigidbody	to	a
GameObject	will	cause	it	to	naturally	fall	with	gravity,	react	to	physical	collisions	with
other	objects,	and	so	on.	A	much	better	write-up	on	what	Rigidbodies	are	and	what	they
do	can	be	found	at	http://docs.unity3d.com/ScriptReference/Rigidbody.html.

In	other	words,	Rigidbodies	make	GameObjects	move	and	react	to	the	laws	of	physics.

Fortunately,	adding	a	Rigidbody	is	quite	easy:	simply	click	on	PlayerArrow	in	your
Hierarchy	window,	click	on	the	Add	Component	button	within	the	Inspector	window,
and	navigate	to	Physics	|	Rigidbody,	as	shown	in	the	following	screenshot:

http://docs.unity3d.com/ScriptReference/Rigidbody.html

Once	the	Rigidbody	component	is	added	to	the	PlayerArrow	GameObject,	expand	it
within	the	Inspector	window	of	PlayerArrow	and	disable	the	Use	Gravity	checkbox,	as
shown	in	the	following	screenshot:

Unchecking	the	Use	Gravity	option	will	prevent	the	arrow	from	falling	to	the	ground
when	the	game	starts;	after	all,	we	don’t	want	something	that	flies	to	plummet	ingloriously
to	the	ground.

With	this,	you’re	done	making	the	player	entity.	It’s	simple,	granted,	but	anything	more
complex	and	we’d	be	spending	much	more	than	50	pages	on	just	3D	modeling	and	that’s

not	fun	at	all!	Now	to	write	some	code…

Retrieving	user	input	with	the
HandController	class
At	long	last,	only	two	files	stand	before	us	and	a	completed	application.	Go	ahead	and
navigate	to	the	Scripts	folder	in	Unity’s	file	browser	and	create	two	new	C#	scripts:

HandController.cs

Player.cs

Once	these	are	made,	your	Scripts	folder	should	look	almost	identical	to	the	one	in	the
following	screenshot:

Now,	go	ahead	and	double-click	on	the	HandController.cs	file;	this	should
automagically	open	MonoDevelop.	Let’s	write	some	code!

As	the	header	of	this	section	suggests,	the	first	class	we’ll	be	writing	is	HandController.
This	class	will	take	input	from	the	Leap	Motion	Controller	and	convert	it	into	an	x	value
and	a	y	value,	which	will	in	turn	be	used	to	control	the	movement	of	our	arrow.	Kindly
copy	the	following	code	into	your	HandController.cs	file	now:

using	UnityEngine;

using	System.Collections;

class	HandController	:	BaseSingleton<HandController>

{

		//Leap	Listener	reference.

		public	LeapListener	listener;

		//Left	joystick	X/Y.		Corresponds	to	pitch	and	roll	of	the	hand.

		public	int	x	=	0;

		public	int	y	=	0;

		//Member	Function:	onAwake

		public	override	void	onAwake()	{	listener	=	new	LeapListener();	}

		//Member	Function:	Update

		public	void	Update()	

		{

				//Try	to	read	data	from	the	Leap	Motion	device.

				try

				{

						//Refresh	the	Leap	data.

						listener.refresh();

						//Reset	all	the	variables.

						x	=	y	=	0;

						//If	there	are	hands	in	the	field	of	view	and	the	Leap	device	is	

connected,	use	the	Leap's	input.

						if	(LeapListener.connected	&&	listener.hands	>	0	&&	listener.fingers	

>	0)

						{

								//Right	joystick	X-Axis.		Sensitivity	is	doubled	to	increase	

responsiveness.

								x	=	(int)	(listener.handRoll	*	-2);

								//Right	joystick	Y-Axis.		Sensitivity	is	doubled	to	increase	

responsiveness.

								y	=	(int)	(listener.handPitch	*	-2);

						}

				}

				//If	reading	data	fails,	make	sure	that	X	and	Y	are	set	to	0.

				catch(System.Exception	e){x	=	y	=	0;}

		}

}

This	is	probably	one	of	the	simpler	classes	we’ve	written	thus	far;	it	contains	a	very
simple	onAwake	function	that	initializes	the	Leap	Motion	listener	as	well	as	an	Update
function.

The	Update	function	is	fairly	simple;	perform	the	following	steps	in	this	order:

1.	 Refresh	the	Leap	Listener	data.
2.	 Reset	all	the	variables.
3.	 Verify	that	there	are	both	hands	and	fingers	in	the	field	of	view—we	wouldn’t	want

to	start	reacting	to	a	pencil	now,	would	we?
4.	 Assign	the	roll	and	pitch	values	of	the	first	hand	in	the	field	of	view	to	the	x	and	y

variables,	respectively.	We	multiply	and	invert	the	raw	values	from	the	Leap	during
this	step	to	make	the	controller	a	bit	more	sensitive	(as	well	as	convert	it	to	a	roughly
100	to	100	scale)	so	that	the	user	doesn’t	have	to	overexaggerate	their	hand	motions
to	make	our	flying	entity	move.

That’s	all	there	is	to	it.	Let’s	go	ahead	and	move	on	over	to	the	next	class.

Interpreting	user	input	with	the	Player
class
The	Player	class	is	responsible	for	controlling	our	flying	entity,	although	I’m	sure	the
name	gave	its	purpose	away.	The	Player	class	will	take	input	from	the	HandController
class	and	convert	it	into	movement	control	for	whichever	GameObject	it	is	connected	to.
Go	ahead	and	open	up	your	Player.cs	file	now	and	copy	the	following	code	into	it:

using	UnityEngine;

using	System.Collections;

public	class	Player	:	MonoBehaviour

{

		//Reference	to	the	hand	controller.

		HandController	controller;

		//Member	Function:	Start

		void	Start()	

		{	

				controller	=	HandController.getInstance();

		}

		//Member	Function:	Update

		void	Update	()	

		{

				//Only	move	if	the	game	is	unpaused.

				if	(!Core.getInstance().paused)	

				{

						//Transform	position	forward.

						rigidbody.velocity	=	transform.forward	*	(controller.y	/	-2);

						//Rotate.

						transform.Rotate	(0,	controller.x	*	1.25f	*	Time.deltaTime,	0,	

Space.World);

				}

				//If	the	game	is	paused,	cancel	all	force	vectors.

				else	rigidbody.velocity	=	new	Vector3(0,	0,	0);

		}

}

This	is	the	simplest	class	by	far.	I’ll	skip	straight	to	breaking	down	how	the	Update	class
works,	as	it	uses	methods	that	we	have	yet	to	utilize	in	the	prior	classes.

Update	starts	by	checking	whether	the	game	is	paused.	If	the	game	isn’t	paused,	Update
will	apply	force	to	the	Rigidbody	in	the	forward	direction,	equivalent	to	the	y	axis	input
from	the	HandController	class	using	the	following	snippet	of	code:

rigidbody.velocity	=	transform.forward	*	(controller.y	/	-2);

The	variable,	transform.forward,	contains	a	three-axis	vector	that	points	in	the	forward
direction	of	the	GameObject,	guaranteeing	that	our	velocity	is	applied	in	the	correct

direction;	we	wouldn’t	want	our	arrow	flying	straight	into	the	ground,	would	we	now?

Update	will	then	proceed	to	rotate	the	GameObject	about	its	y	axis	by	changing	the
rotational	value	of	the	GameObject	itself.	If	we	were	to	apply	sideways	velocity	to	the
Rigidbody	instead	of	manually	rotating	the	GameObject,	we’d	either	have	to	do	some
extra	math	or	risk	overwriting	the	velocity	we	just	applied	to	the	Rigidbody	in	the
previous	line—and	neither	of	these	things	are	any	fun.

Note
Fun	fact

It’s	important	to	note	here	that	the	y	axis	in	Unity	points	up,	whereas	the	y	axis	in	Leap
Motion’s	world	points	forward.	That’s	why	we’re	applying	an	x	axis	value	to	the	y	axis,	z
axis	values	to	the	x	axis,	and	so	on.

Always	keep	track	of	the	difference	in	axes	across	platforms,	or	you’ll	get	confused	really
quickly!!

In	the	event	that	the	game	is	paused,	Update	will	proceed	to	cancel	out	any	forces
currently	acting	on	the	Rigidbody	of	the	GameObject,	Player.cs,	which	is	attached	to	by
setting	them	to	0.	This	prevents	the	player	from	moving	around	when	the	menu	is	open.

With	this,	the	coding	is	all	done.	Let’s	move	on	to	finishing	up	this	application.

Putting	everything	together	and	testing	it
Go	ahead	and	open	your	Unity	Editor	and	load	up	our	project.	With	the	Player	and
HandController	scripts	completed,	we	can	go	ahead	and	attach	them	to	their	respective
GameObjects	now:

Attach	the	Player	script	to	our	PlayerArrow	GameObject
Attach	the	HandController	script	to	our	Core	GameObject

At	this	point,	you	should	be	quite	familiar	with	how	attaching	scripts	to	GameObjects
works.	As	a	refresher,	simply	dragging	the	desired	script	onto	the	target	GameObject	will
do	the	trick.	Fortunately,	no	configuration	is	required	this	time	around.

With	the	scripts	attached,	we	need	to	perform	a	few	last	pieces	of	configuration	to	make
sure	everything	works.	The	first	thing	we’ll	be	doing	is	attaching	the	main	camera	to	the
PlayerArrow	GameObject;	this	will	allow	it	to	follow	the	arrow	around,	just	like	you’d
expect	from	any	third-person	game.	To	do	this,	simply	drag	the	Camera	object	in	the
Hierarchy	window	onto	the	PlayerArrow	GameObject,	as	shown	here:

Now	that	the	camera	object	is	attached	to	the	PlayerArrow	GameObject,	its	coordinate

system	will	now	use	local	coordinates	by	default.

Note
Fun	fact

When	an	object	is	using	local	coordinates	(a	camera	in	this	case),	this	means	that	if	it	has	a
vector	coordinate	of	0,	0,	0,	it	will	be	placed	at	the	exact	center	of	the	GameObject	it	is
attached	to	and	not	at	the	center	of	the	world.

Likewise,	if	the	parent	object	has	a	vector	coordinate	of	0,	10,	0	and	the	child	object	has	a
vector	coordinate	of	0,	10,	0,	the	child	will	actually	have	a	global	coordinate	of	0,	20,	0,	as
everything	is	offset	relative	to	the	parent’s	location.	Isn’t	that	cool?

Although	local	and	global	coordinates	can	be	extremely	confusing,	they	can	also	be
extremely	useful.	There	are	so	many	cases	where	it’s	much	easier	to	think	of	coordinates
in	relation	to	other	GameObjects	(local)	than	it	is	to	think	of	them	in	relation	to	the	origin
of	the	entire	game	(global).

In	our	case,	we’ll	be	using	local	coordinates	to	ensure	the	camera	always	follows	the
arrow	around	and	maintains	a	fixed	viewpoint.	However,	right	now	your	camera	is	most
likely	looking	at	the	ground	or	something	terrible	like	that;	go	ahead	and	modify	your
camera’s	local	position	and	rotation	to	be	equal	to	the	values	seen	in	the	editor	window
here:

Using	these	coordinates,	the	camera	will	be	placed	behind	the	PlayerArrow	GameObject
and	look	slightly	down	at	it,	similar	to	most	third-person	experiences	that	you	might	find

in	today’s	games.	Before	you	go	and	hit	play,	there’s	just	one	last	thing	to	do:	we	need	to
make	sure	that	the	camera	is	still	being	referenced	correctly	by	the	HandRenderer	script.
To	do	this,	head	on	over	to	the	Core	GameObject’s	Inspector	window	and	verify	that
there	is	a	camera	present	in	the	HandRenderer	script,	as	shown	here:

At	long	last,	if	you	did	everything	correctly	(which	I’m	sure	you	did),	you	can	now	hit	the
play	button	in	Unity	and	enjoy	the	experience	of	controlling	3D	objects	with	just	your
hands!	Naturally,	I’m	inclined	to	include	a	screenshot	of	what	the	final	experience	should
look	like:

Congratulations!	That’s	one	Unity	application	down—you	can	make	another	or	improve
this	one.

Improving	the	application
There	are	many	ways	you	could	improve	on	this	app;	the	most	obvious	one	would	be	to
make	it	look	better	(yes,	even	this	author	admits	it’s	ugly).	This	can	be	achieved	by	adding
more	GameObjects,	using	custom	textures	and	light	maps.	Unfortunately,	the	instructions
on	how	to	do	this	far	exceeds	the	scope	of	this	book.	I	suggest	you	hit	up	the	official	Unity
documentation	at	http://docs.unity3d.com/	for	more	information	on	lighting,	texture,	and
beautification.

http://docs.unity3d.com/

Summary
In	this	chapter,	you	learned	more	about	Unity’s	powerful	yet	complicated	coordinate
system,	its	amazing	built-in	asset	manager,	and	how	its	physics	engine	is	incorporated	into
scripting.	Indeed,	you	learned	that	the	y	axis	is	not	always	up	and	the	z	axis	isn’t	always
forward.

We	started	off	by	importing	a	simple	Unity	package,	containing	a	GameObject	for	a	flying
entity	that	would	be	controlled	by	a	player.	We	then	proceeded	to	write	two	scripts:	one
that	turns	Leap	Motion	input	data	into	fake	joystick-like	data	and	another	that	turns	that
data	into	physical	forces	in	the	game	world,	making	things	move	and	react	to	a	user’s
hands.	You	finished	off	the	chapter	by	attaching	the	scripts	to	their	corresponding
GameObjects	and	testing	the	game.

If	everything	went	well,	you’ll	now	have	a	finished,	albeit	simple,	Unity	game	to	call	your
own!	In	the	next	chapter,	we	will	take	a	break	from	writing	code	and	instead	talk	about
something	that’s	slightly	less	fun,	but	important	nonetheless:	troubleshooting,	debugging,
and	optimizing	the	code.

If	you	had	any	trouble	during	the	past	few	chapters,	or	just	wish	to	see	how	this	author	set
up	his	code,	you	can	view	and	download	the	entire	Unity	Project	from	GitHub	at
https://github.com/Mizumi/Mastering-Leap-Motion-Unity-Project.

https://github.com/Mizumi/Mastering-Leap-Motion-Unity-Project

Chapter	8.	Troubleshooting,	Debugging,
and	Optimization
If	your	application	gives	you	trouble,	come	here	for	help!

We	will	cover	the	following	topics	in	this	chapter:

Making	sure	your	Leap	is	connected
Keeping	the	Leap	Motion	SDK	updated
Cutting	back	on	Leap	Motion	API	calls
Handling	the	NoSuchMethod	and	NoClassDefFound	errors	in	Java
Custom	calibration	of	the	Leap	Motion	Controller

Note
This	chapter	is	sprinkled	with	periodic	Fun	facts	that	offer	high-level	and	entry-level
factoids	about	scripting	and	programming	for	your	reading	pleasure.

Making	sure	your	Leap	is	connected
Well,	the	absolute	first	thing	you	should	check	when	one	of	your	programs	is	being	cruel
is	whether	your	device	is	connected	to	the	computer—and	not	just	physically.

The	first	thing	to	do,	of	course,	is	to	verify	that	your	Leap	Motion	device	is	securely
plugged	into	your	computer	and	that	the	little	green	light	on	the	front	of	the	Leap	device	is
turned	on,	as	seen	in	the	following	image:

Once	you	verify	this,	check	to	see	whether	your	application	has	started	to	work	as
expected.

No?	If	not,	then	the	next	thing	we	have	to	do	is	fire	up	the	oh-so-wonderful	Leap	Motion
Diagnostic	Visualizer.

Note
Not-so-fun	fact

The	following	instructions	make	the	assumption	that	you	are	on	the	Windows	platform.	If
this	is	not	the	case,	do	not	feel	distressed!	All	of	these	instructions	should	work	on	the	OS
X	and	GNU/Linux	platforms	with	minimal	differences.

The	first	thing	to	do	is	launch	the	Leap	Motion	Control	Panel	application.	Go	ahead	and
do	this	now,	either	by	going	to	Start	|	All	Programs	|	Leap	Motion	|	Leap	Motion
Control	Panel	(Windows	7)	or	pressing	the	Windows	key	+	Q	and	in	the	search	box,
typing	Leap	Motion	Control	Panel	(Windows	8).

Once	the	control	panel	is	launched,	go	to	your	system	tray	(the	collection	of	icons	on	your
taskbar),	right-click	on	it,	and	select	the	Visualizer	option,	as	seen	in	the	following

screenshot:

Note
Not-so-fun	fact

Depending	on	your	installation	of	the	Leap	software,	the	directions	that	were	previously
mentioned	will	not	open	the	Diagnostic	Visualizer.	Instead,	they’ll	open	a	very	pretty	(but
relatively	useless)	application	that	shows	very	fancy	versions	of	your	hands.

If	this	happens,	you	will	instead	need	to	right-click	on	the	Leap	Motion	Control	Panel
from	your	system	tray	(as	shown	in	the	preceding	screenshot)	and	click	on	Settings.	Then,
you’ll	want	to	go	to	Troubleshooting	|	Diagnostic	Visualizer	in	the	window	that	pops	up,
as	seen	in	the	next	screenshot.

If	all	goes	well,	you’ll	be	greeted	by	the	same	Diagnostic	Visualizer	seen	next.

The	Diagnostic	Visualizer
Once	the	Visualizer	is	launched,	you’ll	see	a	relatively	empty	window	pop	up	that	is
similar	to	the	one	shown	here:

This	application	is	known	as	the	Diagnostic	Visualizer,	which	allows	developers	to	see	a
simple	version	of	what	the	Leap	is	currently	seeing.	Go	ahead	and	try	placing	your	hand
into	the	view—if	the	Leap	is	working,	you	will	see	a	virtual	representation	of	your	hand
similar	to	the	following	screenshot:

If	you	don’t	see	your	hand	in	the	application	and	yet	your	Leap	Motion	device	is	plugged
in,	immediately	proceed	to	the	next	section	of	this	chapter,	which	is	on	how	to	keep	the
Leap	Motion	SDK	updated.	It’s	possible	that	you	need	to	get	an	update	for	the	controller.

The	Leap	Motion	Diagnostic	Visualizer	is	an	extremely	powerful	tool,	allowing
developers	to	speed	up	their	development	process	by	being	able	to	easily	test	the	Leap
Motion	Controller’s	physical	hardware.	It	is	able	to	provide	real-time	tracking	of	data	for
all	the	key	aspects	of	every	single	hand	in	view	as	well	as	provide	virtual	representations
of	the	Leap’s	field	of	view.	An	example	of	the	amount	of	data	you	can	get	from	it	is	shown
here:

In	the	preceding	screenshot,	I’ve	turned	on	tracking	info,	processing	latency,	and	trail
interpolation	by	hitting	the	I	and	L	keys.	All	of	these	commands	can	be	listed	by	hitting
the	H	key	whenever	the	Visualizer	window	is	in	focus.

Keeping	the	Leap	Motion	SDK	updated
The	second	thing	to	do	when	your	application	starts	getting	buggy	or	stops	working
entirely,	after	you	confirm	that	the	device	is	properly	connected,	is	to	update	your	Leap
Motion	SDK.	Updating	the	SDK	is	identical	to	installing	the	SDK;	all	you’re	doing	is
overwriting	old	files	with	new	ones.	To	do	this,	simply	perform	the	following	steps:

1.	 Go	to	http://developer.leapmotion.com.
2.	 Click	on	the	Downloads	link	at	the	top	of	the	screen.
3.	 Sign	in	if	prompted.
4.	 Accept	all	the	agreements	and	download	the	most	recent	SDK	for	the	Windows

platform	(or	a	platform	of	your	choice).
5.	 When	the	download	concludes,	extract	the	.zip	archive	and	run	the	installer

program.
6.	 When	the	SDK	finishes	installing,	all	you	have	to	do	next	is	replace	your	current

Leap	Motion	DLLs	with	the	ones	from	your	newly	downloaded	SDK.	This	ensures
there	are	no	weird	issues	in	the	future,	even	though	in	most	cases,	old	DLLs	will
work	with	new	SDKs.	To	find	these,	simply	navigate	to	the	LeapSDK	folder	under
/lib	in	your	extracted	SDK	folder	and	copy	the	DLLs	appropriate	for	your
platform(s).

http://developer.leapmotion.com

Cutting	back	on	Leap	Motion	API	calls
Simple	as	it	might	sound,	cutting	back	on	calls	to	the	Leap	API	and	caching	tracking	data
can	(slightly)	increase	the	responsiveness	of	your	code.	Take	the	following	(bad)	example
of	an	infinite	loop	that	outputs	the	position	of	the	first	hand	in	the	Leap’s	field	of	view	to
the	console:

while	(true)

{

		Controller	controller	=	new	Controller();

		if	(controller.frame().hands().isEmpty()	==	false)

		{

				float	x	=	controller.frame().hands().get(0).palmPosition().getX();

				float	y	=	controller.frame().hands().get(0).palmPosition().getX();

				System.out.println("Hand	X|Y:	"	+	x	":"	+	y);

		}

}

This	piece	of	code	is	pretty	simple	and	short,	right?	This	shortness	is	actually	its	downfall,
allowing	this	snippet	to	demonstrate	a	few	things	you	can	do	wrong	when	writing	a	piece
of	Leap	code.

Let’s	break	down	what’s	wrong	with	this	snippet:

We	create	an	entirely	new	Controller	reference	in	each	iteration.	This	is	terrible
because	initialization	of	a	new	object	is	always	very	expensive	processor-wise.
We	retrieve	the	same	frame	three	times	via	controller.frame().	This	is	unnecessary
abuse	of	the	Leap	API,	as	we	can	just	retrieve	the	frame	once	and	store	it	for
processing.

This	example	averages	roughly	3-5	milliseconds	per	iteration	on	an	Intel	Core	i5	2.4	GHz
CPU.

Note
Fun	fact

If	you	continuously	grab	a	new	frame	from	the	controller	throughout	a	single	segment	of
the	Leap	code,	like	the	preceding	example,	there	is	a	chance	that	the	tracking	data	in	the
frame	will	change	between	each	line	of	your	program—if	this	happens,	it	can	totally
wreck	your	code.	Always,	always,	always	cache	the	current	frame	when	you’re	working
with	tracking	data!

So,	why	don’t	we	fix	these	issues	and	see	how	it	looks?	Here	is	the	modified	snippet:

Controller	controller	=	new	Controller();

while	(true)

{

		Frame	frame	=	controller.frame();

		if	(frame.hands().isEmpty()	==	false)

		{

				float	x	=	frame.hands().get(0).palmPosition().getX();

				float	y	=	frame.hands().get(0).palmPosition().getY();

				System.out.println("Hand	X|Y:	"	+	x	+	":"	+	y);

		}

}

So,	it’s	a	bit	longer,	but	it’s	also	faster	and	clearer,	now	averaging	0	milliseconds	and	is
practically	instant!	However,	there’s	still	one	issue:	we	fetch	the	exact	same	hand	two
times	in	a	row	from	the	Leap	API,	which	uses	more	time	and	resources	than	necessary.

While	modern	compilers	(and	Java	Virtual	Machine)	probably	inline	the	method	we	use	to
get	the	hand	at	runtime,	preventing	us	from	truly	fetching	the	same	value	twice	(thus
removing	any	performance	detriments	from	making	the	call	twice),	it’s	also	a	readability
thing—the	code	just	looks	nicer	if	you	only	get	the	hand	once.

Refer	to	the	snippet	here	for	how	the	fully	optimized	code	should	look:

Controller	controller	=	new	Controller();

while	(true)

{

		Frame	frame	=	controller.frame();

		if	(frame.hands().isEmpty()	==	false)

		{

				Hand	hand	=	frame.hands().get(0);

				System.out.println("Hand	X|Y:	"	+	hand.palmPosition().getX()	+	":"	+	

hand.palmPosition().getY());

		}

}

While	this	snippet	is	even	longer,	it	too	averages	only	0	milliseconds	(again,	basically
instant)	and	is	the	most	optimal	version	of	all	the	snippets	we’ve	seen	so	far.	The	only
change	is	that	we	now	cache	the	hand-tracking	data	by	retrieving	it	once	and	assigning	it
to	a	Hand	object,	saving	on	actual	code,	time,	and	operations.

Now	would	also	be	a	good	time	to	point	out	the	biggest	problem	in	our	code,	which	exists
mainly	to	make	these	examples	way	simpler:	the	presence	of	a	while	(true)	loop.	What’s
wrong	with	a	loop,	you	ask?	Inherently,	there’s	nothing	wrong.	The	problem	is	that	when
you	use	a	loop	that	doesn’t	have	any	delays	or	conditional	checks,	it’ll	just	keep	trying	to
run	forever	and	ever	as	fast	as	it	possibly	can.	This	behavior	results	in	a	loop	that’s
updating	faster	than	its	input	values,	resulting	in	a	huge	amount	of	wasted	processing
power.	Therefore,	in	the	final	production	code,	it’s	best	to	use	loops	with	fixed	intervals
(via	timers	or	delays	in	the	loops)	instead	of	loops	that	run	as	fast	as	they	can.

However,	making	a	proper	game	loop	with	timing	is	a	complicated	topic	that	goes	far
outside	the	scope	of	this	chapter,	so	allow	me	to	leave	you	with	this:	don’t	use	while
(true)	loops	that	try	to	run	as	fast	as	possible!

Note
Fun	fact

You	might’ve	noticed	that	throughout	this	book,	there	have	been	examples	of	Leap	Motion
programs	that	define	custom	Listener	implementations	and	other	examples	that	don’t.
Why	is	this?	Well,	you	don’t	actually	need	to	define	a	Listener	class	(or	register	one,	for
that	matter!).

A	general	rule	to	follow	is	that	you	only	need	to	use	a	Listener	implementation	when	you
want	something	to	happen	every	single	time	the	Leap	receives	a	new	frame	or	event.	If
you	instead	only	need	things	to	happen	on	your	terms,	say,	an	update	loop	in	your	main
program,	you	can	just	define	a	Controller	object	and	manually	obtain	the	current	frame
from	it	(as	seen	in	the	examples	in	this	section).

Of	course,	at	this	level	of	code	(simply	printing	two	values),	you	won’t	notice	much	of	a
difference.	However,	if	you	start	writing	very	complex	pieces	of	Leap	code,	for	example,
say,	a	skeletal	tracking	system,	you	will	most	certainly	notice	the	difference.

Handling	the	NoSuchMethod	and
NoClassDefFound	errors	in	Java
As	this	book	makes	extensive	use	of	the	Java	programming	language,	this	author	thought
it	might	be	a	nice	touch	to	include	two	errors	that	you	might	get	from	Java	if	you	don’t
have	the	Leap	Motion	SDK	installed	but	try	to	run	a	Leap	application	anyway.

These	two	errors	(or	exceptions,	as	they	are	referred	to	in	Java)	are
java.lang.NoSuchMethodError	and	java.lang.NoClassDefFoundError.	They	are	caused
(or	thrown	in	Java	terminology)	whenever	you	try	to	instantiate	a	Leap	Motion	class	or
call	a	Leap	Motion	function	without	the	Leap	Motion	runtime	installed.	What’s	worse,	if
these	errors	crop	up,	they	will	completely	terminate	the	application	with	basically	no
warning	whatsoever.	This	can	be	potentially	disastrous	if	you’re	distributing	a	commercial
application	to	a	wide	user	base	and	some	of	them	don’t	have	anything	to	do	with	Leap
Motion	installed	on	their	systems	yet.

So	what	do	you	do	in	Java	to	counter	this?	We	catch	some	exceptions!

Take	our	example	from	the	previous	section,	where	we	print	out	some	hand	coordinates	to
the	console.	If	you	were	to	run	it	as	is	on	a	computer	that	didn’t	have	the	Leap	Motion
runtime	installed,	you	would	receive	the	java.lang.NoSuchMethodError	error	as	the
runtime	could	not	be	located.	Not	good.	To	fix	this,	we’re	going	to	surround	everything
Leap-related—in	other	words,	the	entire	snippet—in	a	try-catch	statement,	like	the
example	here:

try

{

		Controller	controller	=	new	Controller();

		while	(true)

		{

				Frame	frame	=	controller.frame();

				if	(frame.hands().isEmpty()	==	false)

						{

								Hand	hand	=	frame.hands().get(0);

								System.out.println("Hand	X|Y:	"	+	hand.palmPosition().getX()	+	":"	

+	hand.palmPosition().getY());

				}

		}

}

catch	(java.lang.NoSuchMethodError	e)	{	System.out.println("Leap	Motion	

runtime	not	found.");	}

catch	(java.lang.NoClassDefFoundError	e)	{	System.out.println("Leap	Motion	

runtime	not	found.");	}

The	good	news	is	that	the	program	won’t	come	to	a	screeching	halt	now—it’ll	just	print
out	a	message	that	says	Leap	Motion	runtime	not	found.	From	here,	you	can	add	in	a

fallback	control	system,	or	print	a	multitude	of	fancy	error	graphics	informing	the	user	that
the	Leap	Motion	software	needs	to	be	installed.

Tip
The	important	thing	to	take	away	from	here	is	this:	make	sure	that	your	application
doesn’t	outright	crash	if	the	Leap	Motion	software	isn’t	installed.	Even	more	importantly,
print	out	an	error	message	telling	the	user	to	get	it	installed!	Nothing’s	worse	than	a	user
trying	to	figure	out	why	their	app	isn’t	working,	only	to	realize	that	they	were	missing
some	libraries	or	executables.

Custom	calibration	of	the	Leap	Motion
Controller
While	Leap	Motion	comes	with	calibration	software	to	ensure	they	it	is	fairly	consistent
across	installs,	sometimes	it	isn’t	enough.	For	example,	there	might	be	some	instances
where	you	need	to	custom-calibrate	the	Leap	Motion	device	to	make	sure	that	tracking
data	is	consistent	and	reliable	for	your	particular	application.

If	you	find	yourself	in	such	a	case,	there’s	a	relatively	simple	method	to	do	this.	Although
simple,	it’s	still	a	little	lengthy.	Peruse	the	well-documented	snippet	here	for	an	example
of	how	custom	calibration	can	work:

import	java.io.IOException;

import	com.leapmotion.leap.Controller;

import	com.leapmotion.leap.Frame;

import	com.leapmotion.leap.Vector;

class	CalibratedLeapApp

{

		//Vector	that	we'll	be	using	for	our	central	coordinates.

		public	static	Vector	center	=	Vector.zero();

		//Sensitivity	of	the	controller.

		public	static	final	float	sensitivity	=	50;

		//Member	Function:	main

		public	static	void	main(String	args[])	throws	InterruptedException,	

IOException

		{

				//Create	the	controller	and	frame	objects	for	use	later.

				Controller	controller	=	new	Controller();

				Frame	frame	=	null;

				//Print	out	some	nice	text	telling	the	user	what	to	do.

				//The	program	will	not	proceed	until	the	enter	key	is	pressed.

				System.out.println("Press	enter	to	calibrate	the	sensor.");

				System.in.read();

				System.out.println("Hold	your	hand	over	the	sensor	for	a	few	

seconds.");

				//Iteration	counter.

				int	i	=	1;

				//Get	our	base	zero	point.	We	don't	use	a	for-loop	here	since	that	

would

				//prevent	us	from	"waiting"	for	a	user	to	place	a	hand	in	view.

				while	(i	<=	10)

				{

						//Retrieve	the	latest	frame	from	the	Leap.

						frame	=	controller.frame();

						//Only	perform	operations	if	hands	are	in	view.

						//If	a	hand	isn't	in	view,	the	loop	will	keep	going	infinitely.

						if	(frame.hands().count()	>	0)

						{

								//Get	the	position	of	the	first	hand	into	the	Leap's	view.

								Vector	handPosition	=	frame.hands().get(0).palmPosition();

								//If	this	is	the	first	iteration	of	the	loop,	tell	the	user	to	

wait.

								if	(i	==	1)

								{

										System.out.println("Please	wait.");

										Thread.sleep(1000);

								}

								//Print	out	the	current	iteration	and	calibrated	coordinates.

								System.out.println("Calibrating…"	+	i	+	"..."	+	handPosition);

								//Append	the	coordinates	to	our	zero	position.

								center	=	center.plus(handPosition);

								i++;

						}

						//Wait	a	fifth	of	a	second	before	getting	the	next	zero.

						Thread.sleep(200);

				}

				//Average	out	the	zero	coordinates	to	get	our	actual	zero	position.

				center	=	center.divide(10);

				//Print	out	the	final	zero	coordinates	to	the	screen.

				System.out.println("Calibration	complete!");

				System.out.println("Zero:	"	+	zero);

				//Begin	tracking	hands.

				while	(true)

				{

						//Retrieve	the	latest	frame	from	the	Leap.

						frame	=	controller.frame();

						//Only	perform	operations	if	hands	are	in	view.

						if	(frame.hands().count()	>	0)

						{

								//Textual	position	of	the	hand.	We'll	start	out	by	assuming	it's	

centered.

								String	posX	=	"Center";

								String	posY	=	"Center";

								String	posZ	=	"Center";

								//Raw	position	of	the	first	hand	in	the	Leap	Motion's	view.

								Vector	rawPosition	=	frame.hands().get(0).palmPosition();

								//If	the	hand	is	greater	than	or	less	than	the	X	zero	coordinate	

+/-	our	tolerance,	

								//assign	it	a	value	of	Left	or	Right.

								if	(rawPosition.getX()	>	center.getX()	+	sensitivity	||	

rawPosition.getX()	<	center.getX()	-	sensitivity)

								{

										if	(rawPosition.getX()	<	center.getX())

										posX	=	"Left";

										else

										posX	=	"Right";

								}

								//If	the	hand	is	greater	than	or	less	than	the	Y	zero	coordinate	

+/-	our	tolerance,	

								//assign	it	a	value	Up	Left	or	Down.

								if	(rawPosition.getY()	>	center.getY()	+	sensitivity	||	

rawPosition.getY()	<	center.getY()	-	sensitivity)

								{

										if	(rawPosition.getY()	>	center.getY())

										posY	=	"Up";

										else

										posY	=	"Down";

								}

								//If	the	hand	is	greater	than	or	less	than	the	Z	zero	coordinate	

+/-	our	tolerance,	

								//Assign	it	a	value	of	Front	or	Back.

								if	(rawPosition.getZ()	>	center.getZ()	+	sensitivity	||	

rawPosition.getZ()	<	center.getZ()	-	sensitivity)

								{	

										if	(rawPosition.getZ()	<	center.getZ())

										posZ	=	"Front";

										else

										posZ	=	"Back";

								}

								//Print	out	the	final	position	of	the	hand	relative	to	our	zero	

coordinates.

								System.out.println("X-Axis	Position:	"	+	posX);

								System.out.println("Y-Axis	Position:	"	+	posY);

								System.out.println("Z-Axis	Position:	"	+	posZ);

						}

						//Wait	for	half	a	second	to	prevent	flooding	the	console	with	

positions.

						Thread.sleep(500);

				}

		}

}

If	you	were	to	put	this	code	into	a	Java	file	and	run	it	from	within	Eclipse,	you	would	be
presented	with	a	series	of	prompts	that	guide	you	through	the	basic	calibration	of	a	zero
position	for	your	hand.	Upon	completion	of	the	calibration,	this	example	will	then
continuously	print	the	coordinates	of	the	first	hand	in	the	Leap’s	field	of	view,	relative	to
the	calibrated	zero	point,	to	the	console.

Personally,	this	method	served	me	quite	well	in	my	early	days	of	working	with	Leap-
Motion-enabled	robots.	While	I’ve	since	taken	to	using	pitch,	roll,	and	yaw	values	for
hands,	I’m	sure	there	are	quite	a	few	places	for	this	kind	of	custom	calibration.

However,	wherever	possible,	I	encourage	you	to	use	the	predefined	calibrations	from	the
Leap	Motion	device,	in	conjunction	with	the	InteractionBox	class	and	the	other	useful
utilities.	This	will	save	the	user	from	having	to	recalibrate	their	Leap	as	well	as	possibly
allow	for	a	more	consistent	experience	across	platforms	and	installations.

Summary
In	this	chapter,	we	covered	a	variety	of	topics	related	to	the	troubleshooting	and
debugging	of	the	Leap	Motion	code.	We	started	off	by	discussing	how	to	verify	a	Leap
Motion	Controller	connected	using	the	Diagnostic	Visualizer	and	then	making	sure	your
SDK	was	up	to	date.	We	then	went	over	a	bad	example	of	the	Leap	Motion	code	and
talked	about	how	it	can	be	optimized	to	be	much	faster.	The	chapter	finished	off	with	an
example	of	how	you	can	create	a	custom	calibration	routine	for	the	Leap	Motion	device.

In	the	next	chapter,	we’ll	review	what	we’ve	done	so	far	and	then	look	ahead	to	the	future
of	Leap	Motion	and	how	it	stacks	up	with	other	emerging	technologies.	Naturally,	we’ll
also	discuss	a	bit	about	how	the	Leap	Motion	Controller	can	be	used	with	robots.	Yes,
robots.

Chapter	9.	Going	beyond	the	Leap	Motion
Controller
Armed	with	all	the	knowledge	to	master	developing	with	the	Leap,	you’re	finally	ready	to
go	beyond	the	device.	In	this	final	chapter,	we	will	cover	all	sorts	of	abstract	concepts	and
ideas	that	go	far	beyond	just	software.

Note
This	chapter	is	more	of	an	abstract	chapter,	retracing	what	you’ve	learned	up	to	now	and
then	looking	at	a	whole	slew	of	things	that	are	related	to,	but	outside	the	world	of	the	Leap
Motion	Controller	itself.

This	chapter	is	sprinkled	with	periodic	Fun	facts	that	offer	high-level	and	entry-level
factoids	about	scripting	and	programming	for	your	reading	pleasure.

We	will	cover	the	following	topics	in	this	chapter:

What	you’ve	learned	so	far
Moving	forward	–	where	the	Leap	Motion	Controller	stands	next	to	other	emerging
technologies
Concerns	regarding	the	reliability	and	safety	of	the	device	in	industrial	settings
Going	beyond	–	ideas	to	control	robots	with	the	Leap	Motion	Controller

What	you’ve	learned	so	far
We’ve	covered	a	lot	of	things	together	over	the	course	of	the	past	eight	chapters,	ranging
from	the	basics	of	the	Leap	Motion	API	all	the	way	up	to	making	a	complete	three-
dimensional	application;	how	about	a	brief	recap	of	what	we’ve	learned?

Testing	out	the	Visualizer	for	the	first	time	in	Chapter	1,	Introduction	to	the	World	of	Leap
Motion

In	Chapter	1,	Introduction	to	the	World	of	Leap	Motion,	we	got	the	Leap	Motion	SDK	up
and	running	and	then	covered	some	basics	that	surround	the	Leap	Motion	Application
Programming	Interface,	or	API.

Let’s	take	a	look	at	the	Leap	Motion	Controller’s	field	of	view	in	Chapter	2,	What	the
Leap	Sees	–	Dealing	with	Fingers,	Hands,	Tools,	and	Gestures,	shown	in	the	following
screenshot:

In	the	second	chapter,	we	covered	what	the	Leap	Motion	Controller	sees,	how	to	detect
tools	and	gestures,	while	putting	particular	emphasis	on	the	InteractionBox	class.	We
finished	this	chapter	off	with	a	review	of	some	of	the	limitations.

In	Chapter	3,	What	the	User	Sees	–	User	Experience,	Ergonomics,	and	Fatigue,	we
reviewed	a	part	of	the	many	applications	developers	often	forget:	the	user	experience.	We
covered	topics	ranging	from	ergonomics	and	fatigue	to	basic	interface	design.

Let’s	have	a	look	at	a	simple	drawing	application	that	we	made	in	Chapter	4,	Creating	a
2D	Painting	Application,	shown	in	the	following	screenshot:

In	Chapter	4,	Creating	a	2D	Painting	Application,	we	created	a	simple	two-dimensional
(or	2D)	painting	application	for	the	Leap	Motion	Controller.	We	started	by	laying	out	a
basic	framework	for	the	application.	Then,	we	created	the	graphical	frontend,	including
responsive	buttons	and	a	colorful	interface.	We	then	converted	Leap’s	tracking	data	into
input,	finishing	off	the	chapter	with	a	test	run	of	the	application.

The	following	screenshot	shows	the	3D	application	we	made	using	Unity	in	Chapter	5,
Creating	a	3D	Application	–	a	Crash	Course	in	Unity	3D;	Chapter	6,	Creating	a	3D
Application	–	Integrating	the	Leap	Motion	Device	with	a	3D	Toolkit;	and	Chapter	7,
Creating	a	3D	Application	–	Controlling	a	Flying	Entity:

Throughout	these	three	chapters,	we	created	a	complete	three-dimensional	(or	3D)
application.	We	started	by	learning	the	basics	of	the	Unity	3D	toolkit,	followed	by	the
creation	of	a	simple	project	and	3D	scene.	After	that,	we	learned	how	to	pull	content	from
the	Leap	Motion	device	into	the	3D	scene;	this	included	the	rendering	of	fingers,	hands,
and	buttons.	We	concluded	Chapter	6,	Creating	a	3D	Application	–	Integrating	the	Leap
Motion	Device	with	a	3D	Toolkit,	by	covering	how	to	react	to	actions	from	the	user	and
detect	fingers	on	buttons.	We	then	proceeded	to	create	a	simple	2D	arrow,	or	flying	entity,
to	control.	After	this,	we	scripted	a	controller	class	that	used	the	Leap	Motion	Controller
as	an	input	for	the	x	and	y	axes.	We	then	put	everything	together	and	tested	it,	with	the
result	being	a	fully	functional	3D	simulation.

Finally,	in	Chapter	8,	Troubleshooting,	Debugging,	and	Optimization,	we	covered	a
selection	of	things	that	have	the	potential	to	go	wrong	when	using	or	developing	for	the
Leap	Motion	Controller;	this	included	updating	the	Leap	Motion	SDK,	cutting	back	on
API	calls,	custom	calibration	of	the	Leap	Motion	Controller,	and	more.

The	Leap	Motion	Controller	standing	next
to	other	emerging	technologies
Now	that	you’ve	mastered	the	essentials	of	developing	with	the	Leap	Motion	Controller,
let’s	have	a	look	at	some	other	technologies.

Microsoft’s	Kinect
It’s	no	secret	that	the	closest	competitor	out	there	to	the	Leap	Motion	Controller	is
Microsoft’s	very	own	Kinect.	In	fact,	I	often	find	myself	using	Kinect	as	a	sort	of	point	of
reference	when	trying	to	describe	the	Leap	Motion	Controller	to	other	people.

Microsoft’s	newest	iteration	of	Kinect

In	short,	Kinect	is	a	motion	tracker	developed	by	Microsoft	for	its	Xbox	360	and	Xbox
One	gaming	platforms.	It	was	originally	designed	to	track	the	individual	major	limbs	on	a
person’s	body	(head,	arms,	hands,	legs,	and	feet).	Since	its	original	release,	it	has	also
been	used	in	a	number	of	other	projects.	For	example,	I’ve	used	it	as	the	primary	vision
system	on	a	robot,	thanks	to	its	advanced	suite	of	range	finders	and	cameras	offered	at	a
very	competitive	price	along	with	a	well-documented	and	widely	available	API.

However,	if	Kinect	is	more	mature	than	the	Leap	Motion	Controller	and	competitively
priced,	why	would	we	developers	use	the	Leap	instead?	Although	it’s	true	that	the	latest
advancements	in	Kinect	technology	have	improved	its	ability	to	track	people’s	hands,	it
still	isn’t	anywhere	near	as	good	as	what	the	Leap	Motion	Controller	achieves.	The	exact
metrics	have	definitely	changed	over	the	past	year	or	so,	but	at	launch,	the	Leap	Motion
Controller	was	about	200	times	more	accurate	than	Kinect.	200!!

Naturally,	Kinect	(at	the	time	of	writing	this)	remains	the	top	contender	for	detecting	a
user’s	entire	body.	This	is	what	it	was	designed	for.	It’s	also	a	lot	better	at	being	used	as	an
advanced	vision	system	for	objects	such	as	robots.	I’ve	had	the	pleasure	of	using	one
myself,	and	it’s	quite	amazing.	In	time,	though,	the	Leap	Motion	Controller	will	rise	above
Kinect	in	every	category.

Oculus	VR’s	Oculus	Rift
In	contrast	to	the	other	technology	we	just	covered,	the	Kinect,	the	Oculus	Rift	is	less	of	a
competitor	with	the	Leap	Motion	Controller	and	more	of	a	collaborator.

One	of	Oculus	VR’s	earlier	Rift	units

In	short,	the	Rift	is	a	very	new	kind	of	technology,	commonly	referred	to	as	either	a	head-
mounted	display	(HMD),	virtual	reality	(VR),	or	both.	In	other	words,	it’s	a	display…
on	your	head.

However,	what	does	the	Rift	have	to	do	with	the	Leap,	you	ask?	They’re	two	totally
different	technologies…right?	Not	really.	The	primary	goal	of	the	Leap	Motion	Controller
is	to	revolutionize	the	way	we	control	machines,	and	virtual	reality	falls	under	this	goal.
When	you	use	the	Leap	with	a	monitor,	a	lot	of	immersion	is	lost	because	there’s	no	sense
of	depth;	you	can’t	“reach	in”	and	grab	an	object	when	everything	is	a	purely	two-
dimensional	experience.

The	Oculus	Rift	with	the	Leap	Motion	Controller	mounted	to	it

This	is	where	the	Rift	comes	into	play.	Utilizing	its	dual-display	stereoscopic	3D	in
conjunction	with	proprietary	software,	you	can	truly	create	an	experience	that’s	just	like,
or	very	close	to,	the	real	world.	In	fact,	Leap	Motion	has	even	developed	a	special	mount
for	the	Rift	that	allows	you	to	move	around	freely	while	having	your	hands	in	view
(shown	in	the	preceding	image).

Note
Fun	fact

Stereoscopic	3D	is	a	fancy	term	for,	among	other	things,	having	a	miniature	display	for
each	of	your	eyes,	allowing	a	system	to	make	two	2D	images	appear	truly	three-
dimensional	in	every	respect.	This	term	also	applies	to	other	methods	of	creating	a	3D
effect,	like	those	classic	red	and	blue	3D	glasses	you	used	to	see	in	movie	theaters	way
back.

Although	all	of	this	technology	is	still	very	young,	it’s	growing	at	an	exceptional	rate.
Who	knows	what	the	future	holds	for	the	Leap	Motion	Controller?

For	more	information	on	Oculus	VR,	you	can	visit	its	official	website	at
http://www.oculusvr.com/.

http://www.oculusvr.com/

Reliability	and	safety	concerns	with	the
Leap	in	industrial	settings
As	is	always	the	case	with	new	and	old	technologies	alike,	reliability	and	safety	concerns
with	the	usage	of	technology	in	industrial,	medical,	or	high-risk	settings	have	always	been
the	subject	of	much	scrutiny.	Such	settings	include	military	robots,	industrial	automation
systems,	medical	systems	(such	as	surgery	robots),	and	more.

The	developers	over	at	Leap	Motion	heavily	discourage	the	usage	of	the	Leap	Motion
Controller	in	such	settings,	even	including	a	clause	in	the	official	license	(available	at
https://central.leapmotion.com/agreements/SdkAgreement)	preventing	the	distribution
(but	not	the	creation	and	internal	usage)	of	such	applications	without	an	additional	special
license	from	Leap	Motion.

Leap	Motion	elaborates	further	on	this	in	its	frequently	asked	questions	(FAQ)	section
for	the	SDK	license	agreement:

“What	is	a	Specialized	Application,	and	why	must	I	contact	Leap	Motion	if	I	want	to
distribute	one?

Basically,	a	Specialized	Application	is	a	Leap	Motion-enabled	application	which	is:
(i)	priced	at	more	than	US$500	(or	$240/year	if	on	a	subscription	or	similar	basis);
(ii)	for	use	with	a	system,	machine	or	device	(other	than	a	PC),	priced	at	more	than
US$500	(or	$240/year	if	on	a	subscription	or	similar	basis);	or	(iii)	designed	for	use
with	or	control	of	industrial,	military,	commercial,	or	medical	equipment.

If	you	would	like	to	distribute	a	Specialized	Application,	please	contact	our	business
development	team	at	<bizdev@leapmotion.com>.

We	have	set	$500	(or	$240/year	if	on	a	subscription	basis)	as	the	price	limit	for
applications	that	can	be	distributed	under	the	SDK	Agreement	because	we	think	that
above	these	prices	the	use	may	be	so	specialized	that	it	is	appropriate	to	have	a
separate	agreement.	The	same	goes	for	uses	with	other	systems,	machines	or	devices
above	$500	/	$240.	We	believe	these	thresholds	should	allow	99%	of	Leap	Motion-
enabled	applications	to	be	distributed	under	the	SDK	Agreement,	without	needing	to
get	a	special	distribution	license	from	us.

We	do	not	allow	distribution	under	the	SDK	Agreement	of	applications	at	any	price	if
the	application	is	to	control	industrial,	military,	commercial,	or	medical	equipment.
Again,	we	believe	that	for	these	uses	it	is	appropriate	to	have	a	separate	agreement.

Does	Leap	Motion	have	a	standard	agreement	for	Specialized	Applications?

Because	of	the	diverse	range	of	potential	Specialized	Applications,	we	do	not	have	a
standard	agreement.	Please	contact	our	business	development	team	at
<bizdev@leapmotion.com>.

Does	the	SDK	Agreement	restrict	development	of	Specialized	Applications?

https://central.leapmotion.com/agreements/SdkAgreement
mailto:bizdev@leapmotion.com
mailto:bizdev@leapmotion.com

No.	The	restriction	in	the	agreement	applies	to	distribution	of	Specialized
Applications.	You	can	still	test	and	develop	Specialized	Applications.

I’m	a	maker,	and	have	put	together	something	to	control	my	drone	/	robot	/	dragon.
What’s	up?

In	general,	make	away!	If	you	are	doing	it	for	yourself,	and	don’t	plan	to	distribute	it
to	others,	you	are	largely	free	to	test	and	develop	as	you	like.	And,	if	you	do	want	to
distribute	your	app,	our	restrictions	apply	to	industrial,	military,	commercial	or
medical	equipment,	or	to	other	equipment	if	you	plan	to	sell	it	(and	then,	only	if	it’s
priced	at	more	than	$500).	(Of	course,	we	don’t	allow	uses	where	failure	of	the
controller	or	software	could	lead	to	death	or	serious	bodily	injury	of	any	person,	or
to	severe	physical	or	environmental	damage.)”

So,	as	you	can	see,	Leap	Motion	is	okay	with	you	making	these	kinds	of	applications,	but
it	doesn’t	want	to	take	responsibility,	and	it	also	restricts	the	distribution	of	such	apps
without	written	permission	(for	a	good	reason).

However,	why	would	the	Leap	Motion	Controller	be	so	potentially	dangerous	in	a	high-
risk	environment?	Well,	straight	off,	it’s	a	very	new	technology	that’s	quite	unstable	and
has	weekly	updates.	This	is	not	quite	what	you’d	call	stable.	The	sometimes	erratic
behavior	of	the	Leap	Motion	Controller	could	have	the	potential	to	throw	a	robotic	arm
out	of	control,	severely	injuring	someone	nearby.	As	the	technology	develops	further	and
further,	it’s	possible	that	these	restrictions	might	be	lifted;	for	now,	keep	any	proprietary	or
high-risk	applications	to	yourself!

To	summarize:

You	can	make	Leap	Motion	applications	for	use	in	industrial,	commercial,	medical,
military,	or	other	high-risk	settings
You	cannot	redistribute	such	applications,	no	matter	the	price	you’re	charging,
without	written	permission	from	Leap	Motion

Going	beyond	–	ideas	to	control	hardware
and	robots	with	the	Leap	Motion
Controller
For	this	section,	I	thought	it	would	be	nice	to	focus	on	what	I	specialize	in—hardware	and
robotics	systems.	While	normal	applications	are	all	fine	and	good,	I	find	it	much	more
gratifying	if	a	program	I	write	has	an	impact	in	the	physical	world,	and	I	think	robots
achieve	this	in	the	best	way	possible.

Over	the	past	year	and	a	half	since	I	received	my	first	Leap	Motion	developer	unit,	I’ve
been	working	on	various	platforms	that	use	the	Leap	Motion	Controller.	I	thought	I	might
share	some	of	these	with	you	to	give	you	some	ideas	as	to	what	you	can	manipulate	in	the
real	world	with	the	Leap	Motion	Controller.

Arduino
One	of	the	most	popular	hobbyist	hardware	solutions,	as	I’m	sure	you	know,	is	the
Arduino.	This	cute	little	blue	board	from	Italy	brought	the	power	of	microcontrollers	to
the	masses.	The	following	image	shows	the	Arduino	board:

For	one	of	our	last	tutorials	in	this	magnificent	title,	I	thought	it	would	be	nice	if	we
programmed	a	physical	microcontroller	to	do	something.	Don’t	you	agree?	The	project
we’re	going	to	do	in	this	section	will	be	relatively	simple—we’re	going	to	make	the	built-
in	LED	on	an	Arduino	blink	either	slower	or	faster,	depending	on	how	far	a	user’s	hand	is
away	from	the	Leap.

Unlike	our	previous	projects,	this	one	will	follow	the	client-server	model	of	programming
(as	will	most	other	hardware-related	endeavors);	we’ll	be	writing	a	simple	Java	server	that
will	be	run	from	a	computer	and	a	C++	client	that	will	run	on	an	Arduino	connected	to	the
computer.	The	server	will	be	responsible	for	retrieving	Leap	Motion	input	and	sending	it
to	the	client,	while	the	client	will	be	responsible	for	making	an	LED	blink	based	on	data
received	from	the	server.

Note
Before	we	begin,	I’d	like	to	note	that	you	can	download	the	completed	(and	working)
project	from	GitHub	at	https://github.com/Mizumi/Mastering-Leap-Motion-Chapter-9-
Project-Leapduino.

https://github.com/Mizumi/Mastering-Leap-Motion-Chapter-9-Project-Leapduino

A	few	things	you’ll	need
Before	you	begin	working	on	this	tutorial,	there	are	a	few	things	you’ll	need:

A	computer	(for	obvious	reasons)
An	Arduino;	this	tutorial	is	based	around	the	Uno	model,	but	other	similar	models,
such	as	Mega,	should	work	just	as	well
A	USB	cable	to	connect	your	Arduino	to	your	computer

Setting	up	the	environment
Before	we	begin	coding	an	Arduino	application,	there	are	two	things	you’ll	(besides	all	the
Leap-specific	things)	need:	the	Java	Simple	Serial	Connector	(JSSC)	library	and	the
Arduino	IDE.

You	can	download	the	library	JAR	for	JSSC	from	GitHub	at
https://github.com/scream3r/java-simple-serial-connector/releases.	Once	the	download
completes,	extract	the	JAR	file	from	the	downloaded	ZIP	folder	and	store	it	somewhere
safe;	you’ll	need	it	later	on	in	this	tutorial.

You	can	then	proceed	to	download	the	Arduino	IDE	from	its	official	website	at
http://arduino.cc/en/Main/Software.	If	you’re	on	Windows,	you	will	be	able	to	download	a
Windows	installer	file,	which	will	automagically	install	the	entire	IDE	on	to	your
computer.	On	the	other	hand,	Mac	and	Linux	users	will	need	to	instead	download	the	.zip
or	.tgz	file	and	then	extract	them	manually,	running	the	executable	binary	from	the
extracted	folder	contents.

Setting	up	the	project
To	set	up	our	project,	perform	the	following	steps:

1.	 The	first	thing	we’re	going	to	do	is	create	a	new	Java	project	in	Eclipse	(this	tutorial
will	assume	that	you’re	using	Eclipse,	as	that’s	what	we’ve	used	throughout	the	rest
of	the	book).	This	can	be	easily	achieved	by	opening	up	Eclipse	and	heading	over	to
File	|	New	|	Java	Project.

2.	 You	will	then	be	greeted	by	a	project	creation	wizard,	where	you’ll	be	prompted	to
choose	a	name	for	the	project	(I	used	Leapduino).

3.	 Click	on	the	Finish	button	when	you’re	done.

Note
As	we’ve	spent	so	much	time	working	in	Unity,	as	you	work	through	this	section	I’ll	be
refreshing	you	on	how	to	perform	some	of	the	basic	tasks	in	Eclipse	for	your	reading
pleasure.

Once	the	project	is	created,	navigate	to	it	in	the	Package	Explorer.	Go	ahead	and	perform
the	following	actions:

1.	 Create	a	new	package	for	the	project	by	right-clicking	on	the	src	folder	for	your
project	in	the	Package	Explorer	and	then	navigating	to	New	|	Package	in	the

https://github.com/scream3r/java-simple-serial-connector/releases
http://arduino.cc/en/Main/Software

resulting	tooltip.	You	can	name	it	whatever	you	like;	I	called	mine
com.mechakana.tutorials.

2.	 Now,	add	three	files	to	our	newly	created	package:	Leapduino.java,
LeapduinoListener.java,	and	RS232Protocol.java.	To	create	a	new	file,	simply
right-click	on	the	package	and	then	navigate	to	New	|	Class.

3.	 Create	a	new	folder	in	your	project	by	right-clicking	on	the	project	name	in	the
Package	Explorer	and	then	navigating	to	New	|	Folder	in	the	resulting	tooltip.	For
the	purposes	of	this	tutorial,	name	it	Leapduino.

4.	 Now	add	one	file	to	your	newly	created	folder:	Leapduino.ino.	This	file	will	contain
all	the	code	that	we’re	going	to	upload	to	the	Arduino.

With	all	of	our	files	created,	we	need	to	add	the	libraries	to	the	project.	Go	ahead	and
create	a	new	folder	at	the	root	directory	of	your	project,	called	lib.	Within	the	lib	folder,
place	the	jssc.jar	file	that	you	downloaded	earlier,	along	with	the	LeapJava.jar	file
from	the	Leap	Motion	SDK.	Then,	add	the	appropriate	Leap.dll	and	LeapJava.dll	files
for	your	platform	to	the	root	of	your	project.

Finally,	you’ll	need	to	link	the	jssc.jar	and	LeapJava.jar	files	to	your	project.	Refer	to
the	Creating	a	simple	framework	program	within	the	Eclipse	IDE	section	in	Chapter	1,
Introduction	to	the	World	of	Leap	Motion,	for	more	information	on	this.

When	you’re	done,	your	project	should	look	similar	to	the	following	screenshot:

You’re	done;	now	to	write	some	code!

Writing	the	Java	side	of	things
With	everything	set	up	and	ready	to	go,	we	can	start	writing	some	code.	First	off,	we’re
going	to	write	the	RS232Protocol	class,	which	will	allow	our	application	to	communicate
with	any	Arduino	board	connected	to	the	computer	via	a	serial	(RS-232)	connection.

This	is	where	the	JSSC	library	will	come	into	play,	allowing	us	to	quickly	and	easily	write
code	that	would	otherwise	be	quite	lengthy	(and	not	fun).

Note
Fun	fact

RS-232	is	a	standard	for	serial	communications	and	the	transmission	of	data.	There	was	a
time	when	it	was	a	common	feature	on	a	personal	computer	and	was	used	for	modems,
printers,	mice,	hard	drives,	and	so	on.	With	time,	though,	the	Universal	Serial	Bus	(USB)
technology	replaced	RS-232	for	many	of	those	roles.

Despite	this,	today’s	industrial	machines,	scientific	equipment,	and	(of	course)	robots	still
make	heavy	usage	of	this	protocol	due	to	its	light	weight	and	ease	of	use;	the	Arduino	is
no	exception!

Go	ahead	and	open	up	the	RS232Protocol.java	file	that	we	created	earlier	and	enter	the
following:

package	com.mechakana.tutorials;

import	jssc.SerialPort;

import	jssc.SerialPortEvent;

import	jssc.SerialPortEventListener;

import	jssc.SerialPortException;

public	class	RS232Protocol

{

		//Serial	port	we're	manipulating.

		private	SerialPort	port;

		//Class:	RS232Listener

		public	class	RS232Listener	implements	SerialPortEventListener	

		{

				public	void	serialEvent(SerialPortEvent	event)	

				{

						//Check	if	data	is	available.

						if	(event.isRXCHAR()	&&	event.getEventValue()	>	0)	

						{

								try

								{

										int	bytesCount	=	event.getEventValue();

										System.out.print(port.readString(bytesCount));

								}

												

								catch	(SerialPortException	e)	{	e.printStackTrace();	}

						}

				}

		}

		

		//Member	Function:	connect

		public	void	connect(String	newAddress)

		{	

				try

				{

						//Set	up	a	connection.

						port	=	new	SerialPort(newAddress);

						

						//Open	the	new	port	and	set	its	parameters.

						port.openPort();

						port.setParams(38400,	8,	1,	0);

												

						//Attach	our	event	listener.

						port.addEventListener(new	RS232Listener());

				}

				

				catch	(SerialPortException	e)	{	e.printStackTrace();	}

		}

		

		//Member	Function:	disconnect

		public	void	disconnect()

		{

				try	{	port.closePort();	}

				

				catch	(SerialPortException	e)	{	e.printStackTrace();	}

		}

		

		//Member	Function:	write

		public	void	write(String	text)

		{

				try	{	port.writeBytes(text.getBytes());	}

				

				catch	(SerialPortException	e)	{	e.printStackTrace();	}

		}

}

All	in	all,	RS232Protocol	is	a	simple	class—there	really	isn’t	a	whole	lot	to	talk	about
here!	However,	I’d	love	to	direct	your	attention	to	one	interesting	part	of	the	class:

public	class	RS232Listener	implements	SerialPortEventListener

{

		public	void	serialEvent(SerialPortEvent	event)	{	/*code*/	}

}

You	might	have	found	it	rather	odd	that	we	didn’t	create	a	function	to	read	from	the	serial
port—we	only	created	a	function	to	write	to	it.	This	is	because	we’ve	opted	to	utilize	an
event	listener,	the	nested	RS232Listener	class.	Under	normal	operating	conditions,	this
class’	serialEvent	function	will	be	called	and	executed	every	single	time	new
information	is	received	from	the	port.	When	this	happens,	the	function	will	print	all	the
incoming	data	out	to	the	user’s	screen.	Isn’t	that	nifty?

Moving	on,	our	next	class	is	a	familiar	one—LeapduinoListener,	a	simple	Listener
implementation.	This	class	represents	the	meat	of	our	program,	receiving	Leap	Motion
tracking	data	and	then	sending	it	over	our	serial	port	to	the	connected	Arduino.

Go	ahead	and	open	up	LeapduinoListener.java	and	enter	the	following	code:

package	com.mechakana.tutorials;

import	com.leapmotion.leap.*;

public	class	LeapduinoListener	extends	Listener

{

		//Serial	port	that	we'll	be	using	to	communicate	with	the	Arduino.

		private	RS232Protocol	serial;

		//Constructor

		public	LeapduinoListener(RS232Protocol	serial)

		{

				this.serial	=	serial;

		}

		//Member	Function:	onInit

		public	void	onInit(Controller	controller)

		{

				System.out.println("Initialized");

		}

		//Member	Function:	onConnect

		public	void	onConnect(Controller	controller)

		{

				System.out.println("Connected");	

		}

		//Member	Function:	onDisconnect

		public	void	onDisconnect(Controller	controller)	

		{

				System.out.println("Disconnected");	

		}

		//Member	Function:	onExit

		public	void	onExit(Controller	controller)	

		{

				System.out.println("Exited");	

		}

		//Member	Function:	onFrame

		public	void	onFrame(Controller	controller)	

		{

				//Get	the	most	recent	frame.

				Frame	frame	=	controller.frame();

				//Verify	a	hand	is	in	view.

				if	(frame.hands().count()	>	0)

				{

						//Get	some	hand	tracking	data.

						int	hand	=	(int)	(frame.hands().frontmost().palmPosition().getY());

						//Send	the	hand	pitch	to	the	Arduino.

						serial.write(String.valueOf(hand));

						//Give	the	Arduino	some	time	to	process	our	data.

						try	{	Thread.sleep(30);	}

						catch	(InterruptedException	e)	{	e.printStackTrace();	}

				}

		}

}

At	this	point,	you	should	be	very	familiar	with	what	a	standard	Leap	Motion	Listener
implementation	looks	like—we’ve	got	the	basic	onInit,	onConnect,	onDisconnect,
onExit,	and	onFrame	functions.

Our	onFrame	function	is	fairly	straightforward:	we	get	the	most	recent	frame,	verify	a
hand	is	within	view,	retrieve	its	y	axis	coordinates	(the	height	from	the	Leap	Motion
Controller),	and	then	send	it	off	to	the	Arduino	via	our	instance	of	the	RS232Protocol
class	(which	gets	assigned	during	initialization).

And	now,	for	our	final	class	on	the	Java	side	of	things:	Leapduino!	This	class	is	a	super
basic	main	class	that	simply	initializes	the	RS232Protocol	class	and	the
LeapduinoListener—that’s	it!

Without	further	ado,	go	ahead	and	open	up	Leapduino.java	and	enter	the	following	code:

package	com.mechakana.tutorials;

import	com.leapmotion.leap.Controller;

public	class	Leapduino

{	

		//Main

		public	static	final	void	main(String	args[])

		{			

				//Initialize	serial	communications.

				RS232Protocol	serial	=	new	RS232Protocol();

				serial.connect("COM4");

		

				//Initialize	the	Leapduino	listener.

				LeapduinoListener	leap	=	new	LeapduinoListener(serial);

				Controller	controller	=	new	Controller();

				controller.addListener(leap);

		}

}

Like	all	the	classes	so	far,	there	isn’t	a	whole	lot	to	say	here.	That	said,	there	is	one	line
that	you	must	absolutely	be	aware	of,	as	it	can	change	depending	on	how	your	Arduino	is
connected:

serial.connect("COM4");

Depending	on	which	port	Windows	chose	for	your	Arduino	when	it	is	connected	to	your
computer	(more	on	that	next),	you	will	need	to	modify	the	COM4	value	in	the	preceding	line
of	code	to	match	the	port	your	Arduino	is	on.	Examples	of	values	you’ll	probably	use	are
COM3,	COM4,	and	COM5.

With	this,	the	Java	side	of	things	is	complete.	If	you	run	this	project	right	now,	most	likely
all	you’ll	see	will	be	two	lines	of	output:	Initialized	and	Connected.	If	you	want	to	see
anything	else	happen,	you’ll	need	to	move	on	to	the	next	section	and	get	the	Arduino	side
of	things	working.

Writing	the	Arduino	side	of	things

With	our	Java	coding	done,	it’s	time	to	write	some	good-old	C++	for	the	Arduino.	If	you
were	able	to	use	the	Windows	installer	for	Arduino,	simply	navigate	to	the	Leapduino.ino
file	in	your	Eclipse	project	explorer	and	double-click	on	it.

Note
If	you	had	to	extract	the	entire	Arduino	IDE	and	store	it	somewhere	instead	of	running	a
simple	Windows	installer,	navigate	to	it	and	launch	the	Arduino.exe	file.	From	there,	go
to	File	|	Open,	navigate	to	the	Leapduino.ino	file	on	your	computer,	and	double-click	on
it.

You	will	now	be	presented	with	a	screen	similar	to	the	one	here:

This	is	the	wonderful	Arduino	IDE—a	minimalistic	and	straightforward	text	editor	and
compiler	for	the	Arduino	microcontrollers.

On	the	top	left	of	the	IDE,	you’ll	find	two	circular	buttons:	the	check	mark	verifies
(compiles)	your	code	to	make	sure	it	works,	and	the	arrow	deploys	your	code	to	the
Arduino	board	connected	to	your	computer.	On	the	bottom	of	the	IDE,	you’ll	find	the
compiler	output	console	(the	black	box),	and	on	the	very	bottom	right	you’ll	see	a	line	of
text	telling	you	which	Arduino	model	is	connected	to	your	computer,	and	on	what	port	(I
have	an	Arduino	Uno	on	COM4	text	in	the	preceding	screenshot).	As	is	typical	for	many
IDEs	and	text	editors,	the	big	white	area	in	the	middle	is	where	your	code	will	go.

So,	without	further	ado,	let’s	get	started	with	writing	some	code!	Input	all	the	text	shown

here	into	the	Arduino	IDE:

//Most	Arduino	boards	have	an	LED	pre-wired	to	pin	13.

int	led	=	13;

//Current	LED	state.		LOW	is	off	and	HIGH	is	on.

int	ledState	=	LOW;

//Blink	rate	in	milliseconds.

long	blinkRate	=	500;

//Last	time	the	LED	was	updated.

long	previousTime	=	0;

//Function:	setup

void	setup()	

{

		//Initialize	the	built-in	LED	(assuming	the	Arduino	board	has	one).

		pinMode(led,	OUTPUT);		

		

		//Start	a	serial	connection	at	a	baud	rate	of	38,400.

		Serial.begin(38400);

}

//Function:	loop

void	loop()	

{	

		//Get	the	current	system	time	in	milliseconds.

		unsigned	long	currentTime	=	millis();

		

		//Check	if	it's	time	to	toggle	the	LED	on	or	off.

		if	(currentTime	-	previousTime	>=	blinkRate)

		{

				previousTime	=	currentTime;

			

				if	(ledState	==	LOW)	ledState	=	HIGH;

				else	ledState	=	LOW;

			

				digitalWrite(led,	ledState);

		}

		

		//Check	if	there	is	serial	data	available.

		if	(Serial.available())

		{

				//Wait	for	all	data	to	arrive.

				delay(20);

				

				//Our	data.

				String	data	=	"";

				

				//Iterate	over	all	the	available	data	and	compound	it	into	a	string.

				while	(Serial.available())

						data	+=	(char)	(Serial.read());

				

				//Set	the	blink	rate	based	on	our	newlyread	data.

				blinkRate	=	abs(data.toInt()	*	2);

				

				//A	blink	rate	lower	than	30	milliseconds	won't	really	be	perceptable	

by	a	human.

				if	(blinkRate	<	30)	blinkRate	=	30;

				

				//Echo	the	data.

				Serial.println("Leapduino	Client	Received:");

				Serial.println("Raw	Leap	Data:	"	+	data	+	"	|	Blink	Rate	(MS):	"	+	

blinkRate);

		}

}

Now,	since	this	is	the	only	Arduino	code	example	in	this	book,	let’s	go	over	the	contents.

The	first	few	lines	are	basic	global	variables,	which	we’ll	be	using	throughout	the	program
(the	comments	do	a	good	job	of	describing	them,	so	we	won’t	go	into	much	detail	here).

The	first	function,	setup,	is	an	Arduino’s	equivalent	of	a	constructor;	it’s	called	only	once,
when	the	Arduino	is	first	turned	on.	Within	the	setup	function,	we	initialize	the	built-in
LED	(most	Arduino	boards	have	an	LED	pre-wired	to	pin	13)	on	the	board.	We	then
initialize	serial	communications	at	a	baud	rate	of	38,400	bits	per	second—this	will	allow
our	board	to	communicate	with	the	computer	later	on.

Note
Fun	fact

The	baud	rate	(abbreviated	as	Bd	in	some	diagrams)	is	the	unit	for	symbol	rate	or
modulation	rate	in	symbols	or	pulses	per	second.	Simply	put,	on	serial	ports,	the	baud	rate
controls	how	many	bits	a	serial	port	can	send	per	second—the	higher	the	number,	the
faster	a	serial	port	can	communicate.

The	question	is,	why	don’t	we	set	a	ridiculously	high	rate?	Well,	the	higher	you	go	with
the	baud	rate,	the	more	likely	data	loss	will	occur—and	we	all	know	data	loss	just	isn’t
good.	For	many	applications,	though,	a	baud	rate	of	9,600	to	38,400	bits	per	second	is
sufficient.

Let’s	move	on	to	the	second	function,	loop.	It	is	the	main	function	in	any	Arduino
program,	which	is	repeatedly	called	while	the	Arduino	is	turned	on.	Due	to	this
functionality,	many	programs	will	treat	any	code	within	this	function	as	if	it	were	inside	a
while	(true)	loop.

In	loop,	we	start	off	by	getting	the	current	system	time	(in	milliseconds)	and	then
comparing	it	to	our	ideal	blink	rate	for	the	LED.	If	the	time	elapsed	since	our	last	blink
exceeds	the	ideal	blink	rate,	we’ll	go	ahead	and	toggle	the	LED	on	or	off	accordingly.

We	then	proceed	to	check	whether	any	data	has	been	received	over	the	serial	port.	If	it	has,
we’ll	proceed	to	wait	for	a	brief	period	of	time,	20	milliseconds,	to	make	sure	that	all	data
have	been	received.	At	that	point,	our	code	will	proceed	to	read	in	all	the	data,	parse	it	for
an	integer	(which	will	be	our	new	blink	rate),	and	then	echo	the	data	back	out	to	the	serial
port	for	diagnostics	purposes.

As	you	can	see,	an	Arduino	program	(or	sketch,	as	they	are	formally	known)	is	quite

simple.	Why	don’t	we	test	it	out?

Deploying	and	testing	the	application
With	all	the	code	written,	it’s	time	to	deploy	the	Arduino	side	of	things	to,	well,	Arduino.

The	first	step	is	to	simply	open	up	your	Leapduino.ino	file	in	the	Arduino	IDE.	Once
that’s	done,	navigate	to	Tools	|	Board	and	select	the	appropriate	option	for	your	Arduino
board.	In	my	case,	it’s	an	Arduino	Uno.	At	this	point,	you’ll	want	to	verify	that	you	have
an	Arduino	connected	to	your	computer	via	a	USB	cable—after	all,	we	can’t	deploy	to
thin	air!

At	this	point,	once	everything	is	ready,	simply	hit	the	Deploy	button	in	the	top-left	corner
of	the	IDE,	as	seen	here:

If	all	goes	well,	you’ll	see	the	following	output	in	the	console	after	15	or	so	seconds:

With	this,	your	Arduino	is	ready	to	go!	How	about	we	test	it	out?	Keeping	your	Arduino
plugged	into	your	computer,	go	on	over	to	Eclipse	and	run	the	project	we	just	made.	Once
it’s	running,	try	moving	your	hand	up	and	down	over	your	Leap	Motion	Controller;	if	all
goes	well,	you’ll	see	the	following	output	from	within	the	console	in	Eclipse:

All	of	that	data	is	coming	directly	from	Arduino,	not	your	Java	program;	isn’t	that	cool?
Now,	take	a	look	at	your	Arduino	while	you’re	doing	this;	you	should	notice	that	the	built-
in	LED	(circled	in	the	following	image,	labelled	L	on	the	board	itself)	will	begin	to	blink
slower	or	faster.	depending	on	how	close	your	hand	gets	to	the	Leap.

Circled	in	red	is	the	built-in	L	LED	on	an	Arduino	Uno,	wired	to	pin	13	by	default

With	this,	you’ve	created	a	simple	Leap	Motion	application	for	use	with	an	Arduino.	From
here,	you	could	go	on	to	make	an	Arduino-controlled	robotic	arm	driven	by	coordinates
from	the	Leap,	or	maybe	an	interactive	light	show.	The	possibilities	are	endless,	and	this	is
just	the	(albeit	extremely,	extremely	simple)	tip	of	the	iceberg.

Now,	finally,	how	about	we	take	a	look	at	some	robots	that	we	can	use	the	Leap	with?

Ideas	for	Leap-driven	applications	–	simulators
and	robots
Arduinos	are	all	fine	and	good,	but	my	favorite	thing	in	the	entire	world	is—you	guessed
it—robots	(which	more	often	than	not	incorporate	Arduinos	as	part	of	the	control	system).

Of	course,	besides	the	robots	themselves,	you	also	have	simulators.	Not	all	roboticists
make	use	of	these,	but	they’re	a	great	way	to	test	an	idea	before	committing	to	one	(in	the
case	of	a	very	expensive	or	very	hard	to	implement	idea).	Simulators	have	helped	me	quite
a	bit	when	developing	for	the	Leap	Motion	Controller,	as	they	allowed	me	to	test	a	Leap
Motion	Control	scheme	on	a	virtual	robot	before	deploying	to	a	real	one;	this	can	save	lots
of	time	and	money.	In	fact,	my	first	production	Leap	Motion	application	was	one	such
simulator:	Artemis.

A	screenshot	from	the	Artemis	Quadrotor	Simulator	during	early	development

The	application	shown	in	the	preceding	screenshot,	the	Artemis	Quadrotor	Simulator
(http://www.mechakana.com/blog/artemis-a-leap-motion-powered-game-with-
quadrotors/),	is	one	example	of	a	simulator;	it	was	initially	designed	to	allow	me	to	test	the
Leap	Motion	Controller	with	a	virtual	quadrotor,	so	as	to	avoid	crashing	(and	ruining)	one
of	my	real	ones.	I	still	use	it	to	this	day	to	test	new	control	ideas	before	deploying	them.

Naturally,	the	nature	of	a	simulator	is	entirely	based	on	what	you’re,	well,	simulating.	It

http://www.mechakana.com/blog/artemis-a-leap-motion-powered-game-with-quadrotors/

can	range	anywhere	from	a	simple	replica	of	how	a	competition	robot	works,	all	the	way
to	a	full-featured	simulation	that	emulates	natural	occurrences	like	wind	and	thermal
updrafts.

There	are	many	methods	you	can	use	to	write	a	simulator;	I	prefer	using	Unity,	as	it’s	very
simple	and	straightforward	to	develop	with.	We	already	covered	everything	you	need	to
know	to	get	started	with	writing	simulators	with	the	Leap	Motion	in	Unity	during	Chapter
5,	Creating	a	3D	Application	–	a	Crash	Course	in	Unity	3D;	Chapter	6,	Creating	a	3D
Application	–	Integrating	the	Leap	Motion	Device	with	a	3D	Toolkit;	and	Chapter	7,
Creating	a	3D	Application	–	Controlling	a	Flying	Entity,	so	why	not	hit	the	Unity
documentation	and	start	working	on	a	simulator	of	your	own?

My	pet	project	at	the	time	of	writing:	a	coffeemaker-turned-robot	aptly	named	the
Coffeemecha

Now,	for	some	actual	robots!	I’ve	literally	been	waiting	the	entire	book	to	talk	about	these.

One	example	of	a	robot	that	I’m	currently	working	with	is	my	homebrew	coffeemaker-
turned-robot,	the	Coffeemecha	(shown	in	the	preceding	image,	and,	yes,	all	the	puns	are
intended).	While	it	features	a	whole	new	suite	of	networked	machine	learning	software,
it’s	also	Leap	Motion-enabled;	nothing	is	quite	as	cute	as	a	coffeemaker	on	treads	running
around	the	ground	at	the	command	of	your	hands,	right?

As	the	control	systems	for	these	kinds	of	robots	vary	wildly,	from	anywhere	to	highly
integrated	systems	and	Arduino’s	to	Raspberry	Pi’s	with	proprietary	serial	controllers,	I
will	not	be	covering	how	to	program	these—instead,	I	leave	it	to	your	imagination.

FIRST	Robotics	Competition	Robots
My	latest	FTC	robot	design	and	a	2014	World	Champion	is	shown	here:

Competition	robots	are	a	great	place	to	start	with	Leap	Motion	and	robots	if	you	were	(or
are)	on	a	competitive	robotics	team	with	a	few	spare	robots	lying	around.

The	competition	robots	I’ve	worked	with	are	exclusive	to	the	FIRST	Robotics
Competition	(FRC)	and	FIRST	Tech	Challenge	(FTC)	programs.

These	programs	engage	students	from	all	around	the	world	in	STEM	(Science,
Technology,	Engineering,	and	Mathematics)	learning	driven	by	complex	robots—I
happen	to	be	one	such	student,	having	competed	(and	won)	at	the	World	Championship
level	and	received	numerous	awards	and	accolades.

In	both	of	these	programs,	teams	will	always	work	with	other	teams	to	achieve	success
while	learning	and	having	fun—thanks	to	FIRST’s	core	values,	centered	around	a	term
known	as	Gracious	Professionalism®,	fierce	competition	and	mutual	gain	are	anything	but
separate	notions.

You	can	learn	more	about	FIRST	at	http://www.usfirst.org.

http://www.usfirst.org

The	FIRST	Robotics	Competition
Now,	let’s	go	ahead	and	cover	one	of	the	kinds	of	competition	robots	I’ve	worked	on—
FRC	robots.

One	of	the	earlier	FIRST	Robotics	Competition	robots	I	worked	on

These	large-scale	robots,	ranging	anywhere	from	three	feet	to	ten	foot	high,	are
participants	in	the	FIRST	Robotics	Competition.	In	this	competition,	students	design,
build,	and	program	a	robot	that	must	complete	a	predefined	set	of	challenges	that	change
every	year,	just	like	FTC.	The	challenges	for	FRC	can	be	anywhere	from	placing	giant
inner	tubes	on	pegs	to	shooting	Frisbees	into	goals	using	Kinect	targeting	systems.

FRC	teams	only	have	six	weeks	(starting	on	the	first	Saturday	in	January	of	every	year)	to
complete	their	robots.	This	makes	strong	time	management	and	organizational	skills	key
to	the	success	of	FRC	teams—nothing	is	worse	than	only	having	five	minutes	to	program
a	robot	before	it	has	to	go	into	the	shipping	crate	on	the	last	day	of	week	six!

The	FIRST	Robotics	Competition	Ultimate	Ascent	field

To	give	you	an	idea	of	what	a	game	might	look	like,	the	FRC	robot	shown	in	the
preceding	image	competed	in	the	2013	FIRST	Robotics	Competition	Ultimate	Ascent.	In
this	challenge,	robots	had	to	retrieve	Frisbees	from	human	players	on	the	far	ends	of	the
field,	or	the	ground,	and	then	shoot	them	into	small	goals	raised	a	good	amount	off	the
ground.	During	the	last	30	seconds	of	the	game,	robots	were	awarded	bonus	points	for
climbing	up	their	alliance-colored	pyramids—the	higher	they	climbed,	the	more	points
they	got.

There	are	two	identical	sides	to	the	field:	red	and	blue.	These	colors	represent	two
alliances	of	teams	that	comprise	three	randomly	selected	teams	(and	their	robots).	This
makes	for	a	very	exciting,	if	not	hectic,	game!

You	can	read	more	about	the	FIRST	Robotics	Competition	at
http://www.usfirst.org/roboticsprograms/frc.

http://www.usfirst.org/roboticsprograms/frc

Controlling	an	FRC	robot	with	the	Leap	Motion
Controller
Of	course,	at	this	point,	you’re	probably	wondering	“Great!	But	what	does	this	have	to	do
with	the	Leap	Motion	Controller?”	Fear	not,	for	that	is	exactly	what	I’m	going	to	go	over
now:	interfacing	the	Leap	Motion	Controller	with	the	big	FRC	robots.	It’s	shockingly	easy
(I’ve	not	attempted	to	do	so	yet	with	the	smaller	FTC	robots,	so	we	won’t	be	discussing
those).

Unfortunately,	due	to	Field	Management	System	(which	is	responsible	for	connecting	the
FRC	driver	stations	to	the	robots	during	a	game)	that	is	in	place	during	an	official
competition,	the	Leap	Motion	Controller	is	only	a	viable	option	during	an	off-season	event
or	practice	tournament.	However,	don’t	let	this	get	you	down;	the	time	you’ll	spend
working	(playing)	with	your	FRC	robot	during	the	off-season	will	be	much	bigger	than	the
time	you	spend	with	it	during	the	actual	season	(more	than	eight	months,	on	average).

Note
Fun	fact

In	FRC,	each	team	supplies	both	a	robot	and	a	custom-made	driver	station	at	each	event.
The	driver	station	is	a	computer	that	is	typically	embedded	in	a	custom	control	panel
containing	a	dozen	or	more	switches,	LEDs,	and	joysticks.	Though	you	probably	guessed
this	by	the	name,	the	driver	station	is	what	teams	use	to	control	their	robots	during	an
event—it’s	a	very	important	piece	of	hardware!

The	question	of	how	to	make	an	FRC	robot	integrate	with	a	Leap	Motion	has	been	asked
many	times	on	the	Leap	Motion	developer	forums,	and	I	thought	it	would	be	nice	to
include	an	answer	to	it	here.	I	cannot	include	full	example	code	as	the	exact
implementation	varies	wildly	depending	on	the	robot	and	control	system	in	question,	but	I
will	do	my	best	to	explain	it	in	a	logical	fashion.

Ultimately,	you	will	need	to	write	two	applications—a	server	and	a	client.

The	server	runs	on	the	computer	that	has	a	Leap	Motion	Controller	connected	to	it,
interpreting	tracking	data	and	then	forwarding	it	to	the	client.

The	client	runs	directly	on	the	FRC	robot’s	required	control	system	(a	National
Instruments	CompactRIO,	as	of	the	2014	rules).	It	receives	and	interprets	the	data	from
the	server,	turning	it	into	whatever	actions	are	required	on	the	robot	itself.

Historically,	I’ve	achieved	a	working	Leap	Motion	control	scheme	using	two	simple	Java
applications	and	network	sockets.	Usually,	I	forward	the	data	from	the	server	to	the	client
in	the	form	of	a	simple	colon-delimited	string,	similar	to	the	format	of	x	axis:y-axis:z-
axis.	In	practice,	one	of	these	strings	will	usually	look	something	like	0:100:0	or
40:90:0,	and	so	on.	The	client	will	then	unpack	the	string	and	react	accordingly.

That’s	all	there	is	to	it!	If	you	have	an	FRC	robot	on	hand,	or	know	someone	who	does,
give	this	a	try	and	see	how	it	works	for	you.	There’s	a	certain	joy	in	controlling	a

complicated	several-thousand-dollar	competition	robot	without	ever	having	to	touch	any
joysticks	or	buttons.

Making	a	robot	of	your	own!
Ok.	This	would	literally	go	far	outside	the	scope	of	our	title.	I	mean,	way	outside	the
scope.	You	could	write	an	entire	series	of	books	on	making	robots…literally.

Instead,	there	are	some	facts	that	I’d	like	to	point	you	to	if	you’re	truly	interested	in
building	robots:

Did	you	find	the	FIRST	robots	interesting,	even	though	you	might	not	be	old	(young)
enough	to	participate?	No	worries—even	I’m	too	old	now!	One	website	(well,	a
forum	really)	in	particular	is	a	great	resource	for	asking	questions	about	the	robots
and	programs—there’s	also	a	ton	of	examples	of	robots	teams	have	made.	This
website	can	be	found	at	http://www.chiefdelphi.com/.

You	can	also	take	a	look	at	my	own	team’s	website	at	http://www.cafebot.org/	if
you’re	interested	in	what	I’m	up	to.

Want	to	make	your	own	Coffeemecha?	Well,	you’re	going	to	need	a	classic	Starbucks
Barista.	Have	one	of	those?	Head	on	over	to	my	first	blog	post	about	the
Coffeemecha	and	how	I	put	mine	together	at
http://www.mechakana.com/blog/introducing-project-coffeemecha/.

Note
Disclaimer:	The	preceding	blog	post	is	NOT	a	tutorial—it’s	more	of	a	log	of	what	I
did	and	a	good	guide	to	follow	if	you	want	to	do	so!

Perhaps	you	want	to	make	a	robot,	but	don’t	know	where	to	get	started?	Well…
drones	sure	are	popular	these	days,	aren’t	they?

There’s	a	wonderful	and	helpful	online	community	of	hobbyist,	do-it-yourself	drone
builders	who	are	always	ready	to	help	people	with	their	ideas	at
http://diydrones.com/.	If	you	want	to	get	started	with	robots	(and	Leap	Motion	with
robotics),	DIY	Drones	could	be	a	great	place	to	start.

So,	get	out	there	and	make	a	robot	with	some	groovy	Leap	Motion	integration—make	me
proud!

As	this	chapter	draws	to	a	close,	I	hope	you	took	something	awesome	with	you	from	the
book.	If	not,	send	an	e-mail	to	me	at	<brandon@mechakana.com>	and	tell	me	what
could’ve	been	better.	If	you	found	the	robots	fascinating,	visit	http://www.mechakana.com
for	even	more,	well,	robots.

http://www.chiefdelphi.com/
http://www.cafebot.org/
http://www.mechakana.com/blog/introducing-project-coffeemecha/
http://diydrones.com/
mailto:brandon@mechakana.com
http://www.mechakana.com

Summary
In	this	final	chapter,	we	started	by	reviewing	everything	that	you	have	learned	and	covered
up	to	this	point.	We	then	took	a	look	at	some	other	emerging	technologies	and	how	they
impact	the	Leap	Motion	Controller,	including	Microsoft’s	Kinect	and	the	Oculus	VR
technology.	This	chapter,	and	the	book,	was	finished	off	by	taking	a	lengthy	look	at	some
things	you	can	do	with	the	Leap	Motion	Controller	and	robots.

From	here,	you	can	take	everything	we’ve	learned	and	looked	at	and	create	something
entirely	new—how	about	a	robot	that	uses	a	Kinect	to	see,	but	is	operated	by	a	Leap
Motion	Controller	connected	to	an	Oculus	Rift?

Remember,	the	only	limitation	when	developing	with	the	Leap	Motion	is	your	own
imagination	(and	user	fatigue).

Index
A

API
about	/	Structure	of	the	Leap	Motion	Application	Programming	Interface	(API)

application,	Leapaint
improving	/	Improving	the	application

Arduino
about	/	Arduino
side	of	things.	writing	/	Writing	the	Arduino	side	of	things

Arduino	IDE
URL	/	Setting	up	the	environment

Arduino	side	of	things
deploying	/	Deploying	and	testing	the	application
testing	/	Deploying	and	testing	the	application

Artemis	/	Why	would	you	ever	want	to	use	something	like	the	interaction	box?
Artemis	quadrotor	simulator

about	/	A	case	study	–	the	Artemis	Quadrotor	Simulator
URL	/	Ideas	for	Leap-driven	applications	–	simulators	and	robots

asynchronous	/	TouchableButton	–	surely,	the	name	is	self-explanatory
Awake	function	/	A	quick	summary	–	the	fundamentals	of	Unity	scripts

B
BaseSingleton

about	/	BaseSingleton	–	a	custom	singleton	pattern
Bone	class

about	/	A	new	API	class	–	Bones
Bone	object

isValid()	function	/	A	new	API	class	–	Bones
invalid()	functions	/	A	new	API	class	–	Bones
length()	function	/	A	new	API	class	–	Bones
prevJoint()	function	/	A	new	API	class	–	Bones
nextJoint()	function	/	A	new	API	class	–	Bones
type()	function	/	A	new	API	class	–	Bones

bounds,	graphical	frontend
getting	/	Getting	our	bounds

button	presses
detecting	/	Rendering	buttons	and	detecting	button	presses

buttons
rendering	/	Rendering	buttons	and	detecting	button	presses

C
carpal	tunnel	syndrome	/	The	Leap	Motion	user	experience	guidelines
circle	gestures	/	Detecting	gestures
Colorscheme

about	/	Colorscheme	–	a	utility	class	to	keep	track	of	colors
constructor,	graphical	user	interface

constructing	/	Constructing	a	constructor
Controller	class	/	The	Controller	class
core	class

about	/	Core	–	the	main	class,	if	Unity	had	main	classes
Cursor.png	/	Putting	it	all	together

D
Diagnostic	Visualizer

about	/	The	Diagnostic	Visualizer
DIY	Drones

URL	/	Making	a	robot	of	your	own!

E
Eclipse

URL	/	Setting	up	your	IDE,	Setting	up	the	project
Eclipse	IDE

framework	program,	creating	/	Creating	a	simple	framework	program	within	the
Eclipse	IDE

Eclipse	Java	project
creating	/	Setting	up	the	project

environment
setting	up	/	Setting	up	the	environment

Ergonomics
about	/	Ergonomics

F
field	of	view	(FOV)	/	The	Leap’s	field	of	view
Finger	class	/	The	Finger	class
FIRST

URL	/	FIRST	Robotics	Competition	Robots
FIRST	Robotics	Competition	Robots

about	/	FIRST	Robotics	Competition	Robots
working	/	The	FIRST	Robotics	Competition
URL	/	The	FIRST	Robotics	Competition
controlling,	with	Leap	Motion	Controller	/	Controlling	an	FRC	robot	with	the
Leap	Motion	Controller

FIRST	Tech	Challenge	(FTC)	/	FIRST	Robotics	Competition	Robots
flying	entity

about	/	Creating	the	flying	entity
PlayerArrow	component,	adding	/	Adding	the	PlayerArrow	and	Rigidbody
components
Rigidbody	component,	adding	/	Adding	the	PlayerArrow	and	Rigidbody
components
user	input,	retrieving	with	HandController	class	/	Retrieving	user	input	with	the
HandController	class
user	input,	interpreting	with	Player	class	/	Interpreting	user	input	with	the	Player
class
testing	/	Putting	everything	together	and	testing	it
improving	/	Improving	the	application

Frame	class	/	The	Frame	class
framework	program,	Eclipse	IDE

creating	/	Creating	a	simple	framework	program	within	the	Eclipse	IDE
project,	setting	up	/	Setting	up	the	project
code,	writing	/	Let’s	write	some	code!
code,	testing	/	Trying	it	out

frequently	asked	questions	(FAQ)
learnings	/	Reliability	and	safety	concerns	with	the	Leap	in	industrial	settings

G
GameObject

script,	attaching	to	/	Attaching	a	script	to	a	GameObject
GameObjects

about	/	GameObjects
gestures

about	/	Gestures
detecting	/	Detecting	gestures
circle	gestures	/	Detecting	gestures
swipe	gestures	/	Detecting	gestures
screen	tap	gestures	/	Detecting	gestures
key	tap	gestures	/	Detecting	gestures
types	/	Detecting	gestures

GitHub
URL	/	Summary,	Arduino

grabStrength()	function	/	Pinching	and	grabbing	are	now	much	easier
graphical	frontend

creating	/	Creating	the	graphical	frontend
responsive	button,	creating	/	Making	a	responsive	button	–	the	LeapButton	class
LeapButton	class	/	Making	a	responsive	button	–	the	LeapButton	class
bounds,	getting	/	Getting	our	bounds
user	responding	to,	visually	/	Visually	responding	to	the	user
Leap	data,	interpreting	/	Interpreting	Leap	data	to	render	on	the	graphical
frontend

graphical	user	interface
creating	/	Making	a	graphical	user	interface

H
Hand	class	/	The	Hand	class
HandController	class

used,	for	retrieving	user	input	/	Retrieving	user	input	with	the	HandController
class

HandRenderer.cs
about	/	HandRenderer.cs

hand	rendering
about	/	Rendering	hands
LeapListener.cs	/	LeapListener.cs
HandRenderer.cs	/	HandRenderer.cs
scene,	preparing	for	/	Preparing	the	scene	for	hand	rendering
testing	/	Testing	out	the	Hand	Renderer

hands	and	fingers
about	/	Handling	hands	and	fingers
Leap’s	field	of	view	/	The	Leap’s	field	of	view
limitations	/	Some	(albeit	minor)	limitations	to	keep	in	mind,	Needing	too	many
hands	is	a	bad	thing,	Differentiating	fingers	can	be	fun!

head-mounted	display	(HMD)	/	Oculus	VR’s	Oculus	Rift

I
IDE

setting	up	/	Setting	up	your	IDE
images,	graphical	user	interface

saving	/	Saving	images
InteractionBox	class

about	/	The	InteractionBox	class
working	/	How	the	interaction	box	works
need	for	/	Why	would	you	ever	want	to	use	something	like	the	interaction	box?

J
JAR

URL	/	Setting	up	the	environment
Java

NoClassDefFound	error,	handling	/	Handling	the	NoSuchMethod	and
NoClassDefFound	errors	in	Java
side	of	things.	writing	/	Writing	the	Java	side	of	things

Java	JDK
installing	/	Installing	the	Java	JDK

Java	side	of	things
writing	/	Writing	the	Java	side	of	things

Java	Simple	Serial	Connector	(JSSC)
about	/	Setting	up	the	environment

K
key	tap	gestures	/	Detecting	gestures

L
Leap

using	/	When	to	use	the	Leap	(and	more	importantly,	when	not	to)
Leap-Driven	applications

ideas	/	Ideas	for	Leap-driven	applications	–	simulators	and	robots
Leapaint

framework,	laying	out	/	Laying	out	the	framework	for	Leapaint
LeapButton.java	/	LeapButton.java
Listener.java	/	LeapaintListener.java
.java	/	Leapaint.java
testing	/	Testing	it	out
improving	/	Improving	the	application

Leapaint.java
about	/	Leapaint.java

LeapaintListener.java
about	/	LeapaintListener.java

LeapaintListener	class	/	Laying	out	the	framework	for	Leapaint
LeapButton.java

about	/	LeapButton.java
LeapButton	class	/	Laying	out	the	framework	for	Leapaint

about	/	Making	a	responsive	button	–	the	LeapButton	class
Leap	connection

checking	/	Making	sure	your	Leap	is	connected
Diagnostic	Visualizer	/	The	Diagnostic	Visualizer

Leap	data
interpreting,	to	render	on	graphical	front	end	/	Interpreting	Leap	data	to	render
on	the	graphical	frontend

LeapListener.cs
about	/	LeapListener.cs

Leap	Motion
URL	/	LeapaintListener.java
learnings	/	What	you’ve	learned	so	far

Leap	Motion	API
structure	/	Structure	of	the	Leap	Motion	Application	Programming	Interface
(API)

Leap	Motion	API	calls
cutting	back	/	Cutting	back	on	Leap	Motion	API	calls

Leap	Motion	Controller
limitations	/	Some	(albeit	minor)	limitations	to	keep	in	mind,	Needing	too	many
hands	is	a	bad	thing,	Differentiating	fingers	can	be	fun!,	Lack	of	support	for
custom	gestures
custom	calibration	/	Custom	calibration	of	the	Leap	Motion	Controller
Microsoft’s	Kinect	/	Microsoft’s	Kinect

Oculus	VR’s	Oculus	Rift	/	Oculus	VR’s	Oculus	Rift
settings	/	Reliability	and	safety	concerns	with	the	Leap	in	industrial	settings
hardware	controlling,	ideas	/	Going	beyond	–	ideas	to	control	hardware	and
robots	with	the	Leap	Motion	Controller
robots	controlling,	ideas	/	Going	beyond	–	ideas	to	control	hardware	and	robots
with	the	Leap	Motion	Controller
used,	for	controlling	FIRST	Robotics	Competition	Robots	/	Controlling	an	FRC
robot	with	the	Leap	Motion	Controller

Leap	Motion	device
setting	up	/	Setting	up	the	Leap	Motion	device
URL	/	Setting	up	the	Leap	Motion	device
SDK,	setting	up	/	Installing	the	Leap	Motion	Developers’	SDK

Leap	Motion	input
receiving,	scene	set	up	for	/	Setting	up	the	scene	to	receive	Leap	Motion	input

Leap	Motion	Listener	system	/	The	Listener	class
Leap	Motion	SDK

updating	/	Keeping	the	Leap	Motion	SDK	updated
Leap	Motion	User	Experience

guidelines	/	The	Leap	Motion	user	experience	guidelines
Listener	class	/	The	Listener	class

M
Microsoft’s	Kinect	/	Microsoft’s	Kinect
MonoBehaviour	class

Awake	function	/	A	quick	summary	–	the	fundamentals	of	Unity	scripts
OnEnable	function	/	A	quick	summary	–	the	fundamentals	of	Unity	scripts
Start	function	/	A	quick	summary	–	the	fundamentals	of	Unity	scripts
Update	function	/	A	quick	summary	–	the	fundamentals	of	Unity	scripts
OnGUI	function	/	A	quick	summary	–	the	fundamentals	of	Unity	scripts
OnDisable	function	/	A	quick	summary	–	the	fundamentals	of	Unity	scripts
OnDestroy	function	/	A	quick	summary	–	the	fundamentals	of	Unity	scripts
URL	/	A	quick	summary	–	the	fundamentals	of	Unity	scripts

N
NoClassDefFound	error

in	Java,	handling	/	Handling	the	NoSuchMethod	and	NoClassDefFound	errors	in
Java

normalize	/	The	InteractionBox	class
NoSuchMethod	error

in	Java,	handling	/	Handling	the	NoSuchMethod	and	NoClassDefFound	errors	in
Java

O
Oculus	VR’s	Oculus	Rift	/	Oculus	VR’s	Oculus	Rift
onConnect	function	/	LeapaintListener.java
OnDestroy	function	/	A	quick	summary	–	the	fundamentals	of	Unity	scripts
OnDisable	function	/	A	quick	summary	–	the	fundamentals	of	Unity	scripts
onDisconnect	function	/	LeapaintListener.java
OnEnable	function	/	A	quick	summary	–	the	fundamentals	of	Unity	scripts
onExit	function	/	LeapaintListener.java
onFrame	function	/	LeapaintListener.java
OnGUI	function	/	A	quick	summary	–	the	fundamentals	of	Unity	scripts
onInit	function	/	LeapaintListener.java
Oracle

URL	/	Improving	the	application

P
packages	/	Creating	the	flying	entity
pinchStrength()	function	/	Pinching	and	grabbing	are	now	much	easier
PlayerArrow	component

adding	/	Adding	the	PlayerArrow	and	Rigidbody	components
player	character	/	Creating	the	flying	entity
Player	class

used,	for	interpreting	user	input	/	Interpreting	user	input	with	the	Player	class
play	testing

advantages	/	Play	testing	and	why	you	should	do	it
project

setting	up	/	Setting	up	the	project
project,	Unity

creating	/	Creating	a	project
hierarchy	window	/	Creating	a	project
scene	window	/	Creating	a	project
project	window	/	Creating	a	project
inspector	window	/	Creating	a	project

R
responsive	button

creating	/	Making	a	responsive	button	–	the	LeapButton	class
Rigidbodies

URL	/	Adding	the	PlayerArrow	and	Rigidbody	components
Rigidbody	component

adding	/	Adding	the	PlayerArrow	and	Rigidbody	components
robots	/	Ideas	for	Leap-driven	applications	–	simulators	and	robots

creating	/	Making	a	robot	of	your	own!

S
saveImage	function	/	Saving	images
scene

setting	up,	to	receive	Leap	Motion	input	/	Setting	up	the	scene	to	receive	Leap
Motion	input
preparing,	for	hand	rendering	/	Preparing	the	scene	for	hand	rendering

scene,	Unity
URL	/	Scenes
setting	/	Setting	the	scene

screen	tap	gestures	/	Detecting	gestures
script

attaching,	to	GameObject	/	Attaching	a	script	to	a	GameObject
framework,	laying	out	/	Laying	out	a	framework	of	scripts

scripts
about	/	Scripts

SDK,	Leap	Motion	device
setting	up	/	Installing	the	Leap	Motion	Developers’	SDK

simulators	/	Ideas	for	Leap-driven	applications	–	simulators	and	robots
Skeletal	Tracking	API

about	/	Looking	forward	–	the	Skeletal	Tracking	API
finger	/	Different	fingers?	Not	a	problem
handedness	/	Handedness	is	no	longer	an	issue
isLeft()	function	/	Handedness	is	no	longer	an	issue
isRight()	function	/	Handedness	is	no	longer	an	issue
confidence	rating	/	Having	confidence	in	tracking	data
pinching	/	Pinching	and	grabbing	are	now	much	easier
grabStrength()	function	/	Pinching	and	grabbing	are	now	much	easier
pinchStrength()	function	/	Pinching	and	grabbing	are	now	much	easier
Bone	class	/	A	new	API	class	–	Bones

Start	function	/	A	quick	summary	–	the	fundamentals	of	Unity	scripts
STEM	(Science,	Technology,	Engineering,	and	Mathematics)	/	FIRST	Robotics
Competition	Robots
structure,	Leap	Motion	API

about	/	Structure	of	the	Leap	Motion	Application	Programming	Interface	(API)
Vector	class	/	The	Vector	class
Finger	class	/	The	Finger	class
Hand	class	/	The	Hand	class
Frame	class	/	The	Frame	class
Controller	class	/	The	Controller	class
Listener	class	/	The	Listener	class

swipe	gestures	/	Detecting	gestures
synchronous	/	TouchableButton	–	surely,	the	name	is	self-explanatory

T
TitleMenu

about	/	TitleMenu	–	a	simple	main	menu
tools

detecting	/	Detecting	and	using	tools
TouchableButton

about	/	TouchableButton	–	surely,	the	name	is	self-explanatory
TouchPointer	class

about	/	TouchPointer	–	let’s	draw	some	cursors	on	the	screen

U
Unity

about	/	A	brief	introduction	to	Unity
jargon	/	Common	jargon	found	in	Unity
documentation,	URL	/	Improving	the	application

Unity,	jargon
scenes	/	Scenes
GameObjects	/	GameObjects
scripts	/	Scripts

Unity	3D
installing	/	Installing	and	setting	up	Unity	3D
URL	/	Installing	and	setting	up	Unity	3D
setting	up	/	Installing	and	setting	up	Unity	3D
working	/	Putting	it	all	together

Unity	3D	application
about	/	A	brief	introduction	to	Unity

Unity	scripts
about	/	A	quick	summary	–	the	fundamentals	of	Unity	scripts

Universal	Serial	Bus	(USB)	/	Writing	the	Java	side	of	things
up-to-date	API	documentation,	Leap	Motion	device

URL	/	Structure	of	the	Leap	Motion	Application	Programming	Interface	(API)
Update	function	/	A	quick	summary	–	the	fundamentals	of	Unity	scripts,	Core	–	the
main	class,	if	Unity	had	main	classes
user	experience	(UX)	/	The	Leap	Motion	user	experience	guidelines
user	fatigue

about	/	User	fatigue
user	input

retrieving,	HandController	class	used	/	Retrieving	user	input	with	the
HandController	class
interpreting,	Player	class	used	/	Interpreting	user	input	with	the	Player	class

V
Vector	class	/	The	Vector	class
virtual	reality	(VR)	/	Oculus	VR’s	Oculus	Rift
visual	feedback

providing	/	Providing	as	much	visual	feedback	as	possible,	That’s	it	–	for	now!

	Mastering Leap Motion
	Credits
	Foreword
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Errata
	Piracy
	Questions
	1. Introduction to the World of Leap Motion
	Setting up the Leap Motion device
	Installing the Leap Motion Developers' SDK
	Installing the Java JDK
	Setting up your IDE
	Structure of the Leap Motion Application Programming Interface (API)
	The Vector class
	The Finger class
	The Hand class
	The Frame class
	The Controller class
	The Listener class
	Creating a simple framework program within the Eclipse IDE
	Setting up the project
	Let's write some code!
	Trying it out
	Looking forward – the Skeletal Tracking API
	Different fingers? Not a problem
	Handedness is no longer an issue
	Having confidence in tracking data
	Pinching and grabbing are now much easier
	A new API class – Bones
	That's it!
	Summary
	2. What the Leap Sees – Dealing with Fingers, Hands, Tools, and Gestures
	Handling hands and fingers
	The Leap's field of view
	The InteractionBox class
	How the interaction box works
	Why would you ever want to use something like the interaction box?
	Detecting gestures and tools
	Detecting and using tools
	Gestures
	Detecting gestures
	Some (albeit minor) limitations to keep in mind
	Upside-down hands can be a problem!
	Needing too many hands is a bad thing
	Differentiating fingers can be fun!
	Lack of support for custom gestures
	Summary
	3. What the User Sees – User Experience, Ergonomics, and Fatigue
	When to use the Leap (and more importantly, when not to)
	The Leap Motion user experience guidelines
	Ergonomics and user fatigue
	Ergonomics
	User fatigue
	A case study – the Artemis Quadrotor Simulator
	Play testing and why you should do it
	Providing as much visual feedback as possible
	That's it – for now!
	Summary
	4. Creating a 2D Painting Application
	Laying out the framework for Leapaint
	LeapButton.java
	LeapaintListener.java
	Leapaint.java
	Creating the graphical frontend
	Making a responsive button – the LeapButton class
	Getting our bounds
	Visually responding to the user
	Making a graphical user interface
	Constructing a constructor
	Saving images
	Interpreting Leap data to render on the graphical frontend
	Testing it out
	Improving the application
	Summary
	5. Creating a 3D Application – a Crash Course in Unity 3D
	A brief introduction to Unity
	Installing and setting up Unity 3D
	Common jargon found in Unity
	Scenes
	GameObjects
	Scripts
	Creating a project
	Setting the scene
	Summary
	6. Creating a 3D Application – Integrating the Leap Motion Device with a 3D Toolkit
	Setting up the scene to receive Leap Motion input
	A quick summary – the fundamentals of Unity scripts
	Attaching a script to a GameObject
	Laying out a framework of scripts
	Rendering hands
	LeapListener.cs
	HandRenderer.cs
	Preparing the scene for hand rendering
	Testing out the Hand Renderer
	Rendering buttons and detecting button presses
	BaseSingleton – a custom singleton pattern
	Colorscheme – a utility class to keep track of colors
	Core – the main class, if Unity had main classes
	TouchPointer – let's draw some cursors on the screen
	TouchableButton – surely, the name is self-explanatory
	TitleMenu – a simple main menu
	Putting it all together
	Summary
	7. Creating a 3D Application – Controlling a Flying Entity
	Creating the flying entity
	Adding the PlayerArrow and Rigidbody components
	Retrieving user input with the HandController class
	Interpreting user input with the Player class
	Putting everything together and testing it
	Improving the application
	Summary
	8. Troubleshooting, Debugging, and Optimization
	Making sure your Leap is connected
	The Diagnostic Visualizer
	Keeping the Leap Motion SDK updated
	Cutting back on Leap Motion API calls
	Handling the NoSuchMethod and NoClassDefFound errors in Java
	Custom calibration of the Leap Motion Controller
	Summary
	9. Going beyond the Leap Motion Controller
	What you've learned so far
	The Leap Motion Controller standing next to other emerging technologies
	Microsoft's Kinect
	Oculus VR's Oculus Rift
	Reliability and safety concerns with the Leap in industrial settings
	Going beyond – ideas to control hardware and robots with the Leap Motion Controller
	Arduino
	A few things you'll need
	Setting up the environment
	Setting up the project
	Writing the Java side of things
	Writing the Arduino side of things
	Deploying and testing the application
	Ideas for Leap-driven applications – simulators and robots
	FIRST Robotics Competition Robots
	The FIRST Robotics Competition
	Controlling an FRC robot with the Leap Motion Controller
	Making a robot of your own!
	Summary
	Index

